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Abstract

To assist the investigation into the health effects of sulfur dioxide (SO2) pollution, a 

spatiotemporal model was developed using a discrete process convolution approach for 

the SO2 data collected in rural areas of Saskatchewan, Alberta, and British Columbia. The 

proposed spatiotemporal model was found to be flexible, allowing us to predict the SO2 

exposure at any single time point or over the entire study period for any single locality, or 

any sub-region, or the entire study region, regardless of whether or not a location within 

the coverage of the model was actually monitored for SO2 . The potential use of the model 

in epidemiological studies is demonstrated and future direction of research is discussed in 

the thesis.
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Chapter 1 

Introduction

Sulfur dioxide (SO2) is a natural and an anthropogenic air pollutant (Leveque 2003). The 

average ambient SO2 concentration in dry, unpolluted air is less than 0.3 pg m ' 3 (Harrison 

1990). In comparison, annual mean SO2 concentrations in Canadian cities range from 

approximately 3 pg m ' 3 in Winnipeg, Regina, and Saskatoon, 8  pg m ' 3 in Edmonton and 

Calgary, to 26 pg m"3 in Halifax (WBK & Associates Inc. 2003).

Sulfur dioxide has reportedly been associated with adverse effects on human health 

(Bernstein et al. 2004, Routledge and Ayres 2005). Its oxidative products, such as 

aerosols and salts of sulfate (particularly those with diameter < 1 pm) may be even more 

damaging than the gaseous SO2 because they can research the lower respiratory system in 

the lung (Waldbott 1978, Bernstein 2004). These fine particles, like the gaseous SO2 , can 

be suspended in the air for a prolonged period (1 to 8  days (Katz 1977, Hidy 1994)) and 

be easily carried far away from their source of production by air currents. One example of 

such long distance transportation is the acid deposit in Eastern Canada from the United 

States of America (Environment Canada 1997).

The exact SO2 concentration in the near ground-level atmosphere is therefore difficult to 

predict for a given location at a given time. This uncertainty in the spatiotemporal 

distribution of SO2 concentrations creates difficulties for epidemiological studies on the 

health effect of SO2 . As epidemiological studies are mostly observational, they rely on an 

accurate assessment of the exposure. Errors in exposure measurements can attenuate or 

severely distort the association between exposure and health outcome, as well as reduce 

the statistical power of the studies (Armstrong et al. 1993, Armstrong 1998, 2003).

One way to ascertain the human exposure to a continuous variable like SO2 may be to 

monitor them continuously for 24 hours a day around the year. However, practicality 

often leads to the monitoring of the locality of the residence or the working environment
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of those exposed people as a proxy of the true exposure. In studies covering a large area, 

a conventional practice is to establish a network of environmental monitoring sites in the 

study area for data requisition.

This approach, though economical, leaves unmonitored holes between the monitored 

sites. The air pollution levels in those un-monitored sub-areas need to be interpolated 

using the data obtained at nearby monitoring sites. One way to conduct this spatial 

interpolation is to employ spatial statistic models, such as the Kriging method used in 

geostatistics (Cressie 1994), which exploits similarities/dissimilarities in measurement 

variances and covariances between monitoring sites. When an explicit time factor is 

incorporated, a spatial model becomes a spatiotemporal model.

The research presented in this thesis describes an application of a spatiotemporal 

modeling method to analyze ambient SO2 concentrations that were measured during a 

twelve month period over a large area in three Western Canadian provinces, i.e., 

Saskatchewan, Alberta, and British Columbia. The results from the model will provide a 

basis for assessments of SO2 exposure in subsequent epidemiological studies.

The thesis is organized in four chapters. Following this introduction chapter, Chapter 2 

describes the background and research objectives. Chapter 3 details the data, statistical 

methods, results, as well as examples of application of the model in epidemiological 

studies. Chapter 4 covers the discussion and a brief outline of future research.

On the way to developing this thesis, many mathematical formulae and statistical terms 

are used. To preserve the readability, some mathematic formulae are provided whereas 

others are omitted. Some spatial statistical terms are italicized following their first use in 

the text. A more detailed explanation of these terms is then given in Appendix I. This 

treatment is designed to focus on the delivery of messages, with the assumption that the 

reader has already possessed some basic knowledge of spatial statistics. For similar 

considerations, all tables and figures are placed at the end of each respective chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 

Background and research objectives

2.1. Literature Review

2.1.1. Introduction

Sulfur dioxide (SO2) and its derivatives, i.e. sulfur trioxide (SO3), sulfurous acid (H2SO3), 

and salts of sulfuric acid (H2SO4), are air pollutants that have many detrimental effects on 

the health of human beings, animals, natural ecosystems, and civil engineering structures 

(National Air Pollution Control Administration 1969). However, this thesis focuses 

exclusively on spatiotemporal modeling of SO2 and only a brief literature review of the 

health effects of SO2 is included in this section.

Statistical modeling of spatiotemporal phenomena in environmental monitoring data can 

be achieved through many different approaches. Each of them has its strengths and 

weakness, being applicable to certain specific situations, but unsuitable to others. The 

review on spatiotemporal modeling will selectively cover only those methods that are 

frequently used in modeling air pollution, particularly those that are close in spirit to the 

methodology used in this thesis research.

2.1.2. Origin, fate, and air quality standards of sulfur dioxide pollution

Sulfur dioxide is a heavy, colorless gas with a pungent odor. Natural sources of SO2 in 

the environment include releases from volcanoes, ocean sprays, aquatic and terrestrial 

microbial activities, and wildfire combustion of biological materials, such as forests, 

grassland (Komamisky et al. 2003, Leveque 2003, Michaud et al. 2005). Anthropogenic 

sources of SO2 consist of combustion of solid and liquid fuels that contain sulfur (i.e. 

wood, coal, and petroleum products), ore smelting and roasting, Kraft and sulfite wood 

pulping, sour gas processing, and other minor sources (Western Research &

Development 1978). The burning of fossil fuels (coal and petroleum products) is the 

primary source of sulfur pollution in the United States (National Air Pollution Control
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Administration 1969). In comparison, upstream oil and gas production is the biggest 

contributor of SO2 emissions in Canada, followed by power generation (Environment 

Canada 2002). Alberta Environment (2005) estimates that half of the total SO2 emissions 

of the province come from natural gas processing plants, with oil sands facilities, power 

plants, gas plant flares, oil refineries, pulp and paper mills and fertilizer plants as other 

contributors in order of importance.

Once released into the atmosphere, SO2 can be photochemically oxidized to form H2SO3 

and H2SO4  (Bunce 1994, Clavert and Stockwell 1984):

S 0 2 + 0 H ' + (H 2 0 , 0 2 ,o rN 2 ) -> H 2 S0 3  (2.1)

HSO3  + 0 2 —>S0 3 + H 2 0  (2.2)

S03 + H 20 - * H 2S04 (2.3)

where in Equation (2.1), the molecules in the parentheses are carriers that remove excess 

energy from the reaction. Alternatively, SO2 can be catalytically oxidized in the presence 

of H2O such as in cloud droplets, fog, or on wet surfaces of plants, soil, or water bodies 

(Friend 1973):

S 0 3 +y202+ H 20  -> 2  H + + SO ~  (2.4)

Sulfuric acid and other sulfates that formed through the photochemical and catalytic 

reactions could account for 5% to 20% of the total suspended particulate matters in urban 

air (National Air Pollution Control Administration 1969).

Sulfur dioxide, along with its oxidized products, can also be removed from the 

atmosphere through either dry or wet deposition (Leveque 2003). Dry deposition is the 

process in which gaseous and particulate species of SO2 and/or its derivatives are directly 

collected on land or water surfaces, such as the direct absorption and adsorption of SO2 

by soil or plants. Wet deposition consists of washout and rainout processes (Leveque

4
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2003, WBK & Associates Inc. 2003). The washout process refers to all removal events 

that take place within clouds, whereas the rainout process, as so named, means the 

interception of sulfur-containing particles by falling raindrops and the diffusion-driven 

uptake of SO2 by raindrops (Leveque 2003).

In order to reduce the SO2 level in the atmosphere, many jurisdictions around the world 

have established air quality standards (see Table 2.1). The table reveals substantial 

variation in those standards. In addition to political reasons, the discrepancy in the 

standards probably stems, to a certain degree, from insufficient scientific understanding 

of the adverse health effect of SO2 pollution.

2.1.3. Effects of sulfur dioxide pollution on human health

2.I.3.I. Clinical evidence of SO2 absorption

Exposure to SO2 first incites reactions in the upper and lower respiratory tracks. 

Symptoms include nasal-constriction, broncho-constriction, and stimulated mucus 

secretion (Koren 1995). These reactions act as a first line of defense to facilitate the 

absorption of SO2 in the upper respiratory tract. Experimental studies show that most of 

the inhaled SO2 is absorbed between the nose and the pharynx in human subjects (Frank 

and Speizer 1964, Speizer and Frank 1966, Wolf et al. 1975), but some may reach deeper 

into the respiratory tract due to conversions to sulfates or other gas-particle chemical 

reactions. The absorption of SO2 is much more effective during nasal breathing than oral 

breathing (95% vs. 70%) (Federal-Provincial Advisory Committee on Air Quality 1987). 

Nasal removal of SO2 accounts for 95 to 99% of inhaled SO2 under resting conditions in 

both human and animal subjects, but is reduced because the increase in activities and 

respiratory workload produces a shift from nasal to oronasal breathing (Environmental 

Criteria and Assessment Office 1982). This points to a potentially greater effect of SO2 

pollution on those who are active outdoors, such as athletes, field workers, and the like, 

as well as those in the adult population who are hyperresponsive to SO2 (Nowak et al. 

1997), particularly those with asthmatic conditions (Frank 1980).
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The 95% -  99% removal efficiency of SO2 in the upper respiratory tract is obtained at 

concentrations > 2.62 mg m ' 3 ( 1  parts per million (ppm)), but not at ambient SO2 levels 

(generally less than 0.1 mg m' (0.038 ppm)) (Environmental Criteria and Assessment 

Office 1982). For instance, nasal absorption of SO2 at > 20 ppm is 80 to 90% in animal 

models, but is substantially reduced at concentrations < 1 ppm, which may allow SO2 to 

reach the bronchi (Federal-Provincial Advisory Committee on Air Quality 1987).

Upon inhalation, SO2 is rapidly absorbed into the secretions lining the respiratory 

passages; most is transferred into the systemic circulation. However, during inhalation, 

SO2 may react with water to form sulfurous acid (H2SO3) or be oxidized into trioxide 

(SO3) in the respiratory tract. The SO3 then reacts readily with water to form sulfuric acid 

(H2SO4), which could then form ammonium sulfate ((NFL^SC^) in the presence of 

ammonia. Sulfurous acid can readily dissociate to form equilibrium of sulfite and 

bisulfite ions. Bisulfite ions can sulfonate with biological molecules by auto-oxidation or 

by addition to cytosine. If not utilized by the human body in any metabolic biochemical 

reaction, the inhaled SO2 may be detoxified in the liver and other organs through the 

sulfite-oxidase pathway to form sulfate salts, which are then carried by blood streams to 

the kidneys, and excreted in urine (Environmental Criteria and Assessment Office 1982).

2.I.3.2. Mortality

Sulfur dioxide pollution is attributed to cause excess deaths by exacerbating conditions in 

the young and the elder populations as well as patients with predisposed conditions of 

heart and respiratory system diseases, such as asthma, bronchitis, cystic fibrosis, 

emphysema, and cardiovascular diseases (Environmental Criteria and Assessment Office 

1982). An earlier incident occurred between December 1 and 5,1930 in the Meuse 

Valley, Belgium. A blanket of heavy fog, with an estimate of SO2 and sulfuric acid 

combined to 25,000 pg m'3, caused several hundreds of illness and 63 deaths (Firket 

1936). To stress the severity of the pollution, Firket stated that if the same condition had 

occurred in London, England, the death toll might have reached 3200. Indeed, an excess 

mortality of 4,000 cases was observed during the smog with the SO2 concentration of 

1.24 ppm (~ 4500 pg m'3) in December 1952 in the great London area (Wilkins 1954). A
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marked increase in deaths was noticed in respiratory and cardiovascular deaths, as well as 

other causes of deaths except deaths to traffic accidents. The National Air Pollution 

Control Administration (1969), as well as the Environmental Criteria and Assessment 

Office (1982), cited more incidents of air pollution in several large cities of the United 

States between the 1950s and 1960s. However, Ferris and colleagues (1980) cautioned 

that in those earlier episodes of events, smoke in the air, but not SO2 , was probably 

responsible for the excess mortality and morbidity. They cited Lawther et al. (1970), who 

reported that after smoke control measures were instilled, episodes of SO2 pollution 

above 750 pg m ' 3 did not produce exacerbations in patients with chronic bronchitis as 

had been observed before.

Recent studies, however, have consistently reported an increase in mortality due to SO2 

pollution. These include a significant association between SO2 pollution and natural 

causes of deaths in nine Italian cities (Biggeri et al. 2005), increased neonatal deaths in 

Sao Paulo, Brazil (Lin et al.2004), sudden infant death syndrome in 10 Canadian cities 

(Dales et al. 2004), increased risk of death in diabetes (Kan et al. 2001) and in all causes 

in Shanghai, China (Kan and Chen 2003). Conversely, a reduction in SO2 pollution 

reportedly decreased excess respiratory and cardiovascular deaths (Hedley et al. 2002).

2.1.3.3 Morbidity

The most frequently reported short term effects of SO2 exposure are increased emergency 

room visits (Xu et al., 1995, Bernstein 2005, Wilson et al. 2005), worsening of health 

status in patients with chronic respiratory diseases, such as bronchitis (Lawther et al.

1970, Herbarth et al. 2001), asthma (Chew et al. 1999, Wong et al. 2001, Lin et al. 2003, 

Barnett et al. 2005), as well as induction of cardiac illness (Martin 1964, Routledge and 

Ayres 2005). The health effects of SO2 are particularly acute and severe in young 

children, such as increased hospital admissions for respiratory diseases, increased history, 

symptoms, and prevalence of respiratory illness, reduced lung function and airway flows 

(Timonen KL and Pekkanen 1997, Asgari et al. 1998, Chew et al. 1999, Herbarth et al. 

2001, Lin et al. 2003, Barnett et al. 2005). Exposure to SO2 pollution and other air 

pollutants reportedly increases adverse pregnancy outcomes (Liu et al. 2003, Sram 2005).
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2.1.4. Spatiotemporal modeling of environmental monitoring data

Throughout this thesis, the following notations will be observed: bold large capital letters 

indicate matrices; bold small capital letters indicate vectors; lower case letters with 

subscripts indicate individual elements of matrices and vectors; lower case without 

subscripts indicate scalar; Italic letters indicate random variables. The Harrington letters 

indicate a domain in which a random process is defined.

Consider a random process (y )  in space (5 ) and time (T) as the sum of a space-time (z )  

and an error (e) processes:

y(s, t) = z(s, t) + e(s, t) (for s = 1 ,2 ,... ,  N; t= l, 2 ,.. .,  T) (2.5)
iid

where e(s, t) is white noise that is assumed as e(s, t) ~ N(0, 0 7 ). The variance of the error 

term (<r2) could evolve in time but many treat it as a constant to simplify the estimation.

The space-time process (z )  can be further modeled as the sum of a mean trend process (jj)  

and a zero mean spatiotemporal process ( if/):

z (s ,t)= ^ (s ,t)  + y<s,t) (2 .6 )

where fi(s, t) is explained by covariates that are observed at the same location and time as 

the observations on the random process (y); y/y,, t) follows a mean zero process.

Environmental monitoring data with both spatial and temporal trends fit the profile of 

such a random process. Below is a brief review on some of the spatiotemporal modeling 

methods that have been used on this type of data.

2.I.4.I. Multiple random Held/time series models

Kyriakidis and Joumel (1999) characterize geostatistical spatiotemporal modeling into 

two broad approaches, one being multiple random field/time series models and the other 

being spatiotemporal random field models. Multiple random field models treat the

8
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random process as a set of temporally correlated random fields; time series models treat 

the random process as a set of spatially correlated time series. An intrinsic difference 

between the multiple random field models and the time series models is that the random 

field models use only the past information in modeling and forecasting. On the other 

hand, the time series models can take into account both the past and the present 

information after the data have been observed.

Models that employ time series techniques generally apply to situations when the 

monitoring sites are limited in numbers. Typically, a multivariate time series (called 

spatial time series) approach is taken in the time series models (Bennett 1979). The 

advantage of this approach is that many of the techniques developed for time series 

analysis are readily available, but the drawback is that the results are only applicable to 

the monitored sites. Further modeling is required for mapping in space. Examples of this 

approach can be found for modeling the wind speed by Haslett and Raftery (1989) and 

Roccio (2005), for modeling ozone by Alvo and Dabrowski (2000) and for modeling 

carbon monoxide by Tonellato (2001).

Models following the multiple random field philosophy are generally built on the Markov 

random field (MRF) concept (Cressie 1993). In contrast to the time series method, MRF 

models tackle first the spatial aspect of the random process, with the parameters evolving 

over time. In MRF models, the monitoring sites in a study region S  are specified through 

a neighborhood system N  = {Ni, ieS } , where Ni is the set of sites neighboring i, i & N  

and isN j o j e  N . A random field X  is an MRF on S  in relation to a neighborhood 

system N  if and only if

P(x) > 0 Vx e  X  (2.7)

P(xi|x.{i)) =  P (Xi|xN0 (2.8)

Simply said, in MRF models, given its neighborhood structure, the observation taken at 

one site in a sub-area in S  is conditionally independent of observations taken at any other 

sites in other sub-domains in S. The Hammersley-Clifford theorem guarantees a valid

9
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joint distribution of the random process at all sites on S  through this conditional 

specification (Besag 1974). Typically, the neighborhood is defined through a first order 

specification on a grid system, meaning that only the neighbors in the four cardinal 

directions are considered although a second order specification (diagonal neighbors) 

could be easily accommodated in a MRF model.

The MRF models are typically used for modeling a random process on lattice (i.e. areal) 

data, similar to those many applications in disease mapping (Elliot et al. 2000). To apply 

this method for modeling a continuous spatial process of environmental data, one needs 

first to divide the study region into finite countable number of sub-regions that contain 

the monitoring sites. The distribution of the random process that underlies the 

environmental data in the sub-regions is then specified using conditional distribution.

This approach was used by Handcock and Wallis (1994), as well as Lavine and Lozier 

(1999), to model temperature patterns, by McMillan et al. (2005) to model ozone 

patterns.

2.I.4.2. Geostatistical models

A geostatistical model is constructed similarly as specified in the beginning of Section

2.1.4. The model is composed of a mean component that models the trend, and a residual 

component that models the spatiotemporal variation of the random field around that 

trend. Deterministic or stochastic models can be used to specify the trend models. 

Deterministic trend models employ periodic functions to account for variation in time and 

polynomial functions for continuity in space. These functions may be used alone or 

mixed, depending on what underlies the data. A stochastic model emerges when the 

coefficients of the models are specified as random variables that follows a certain 

probability distribution (Kyriakidis and Joumel 1999).

Among the geostatistics-based spatiotemporal models, some directly use classic 

geostatistics such as space-time variograms (Sampson and Guttorp 1992, Guttorp et 

al. 1994, De Iaco et al. 2002,2003, Femendez-Casal et al. 2003) and covariograms (Bocci 

and Dabrowski 2002). Others extend the geostatistical techniques, for instance, the

10
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‘kriged Kalman filter’ and corresponding likelihood-based estimation strategy (Mardia et 

al. 1998) or Markov Chain Monte Carlo (MCMC) strategy (Sahu and Mardia 2005), as 

well as the dimension reduction space-time Kalman filter (Wikle and Cressie 1999).

2.1.4.3. Kalman filter

The Kalman filter (Kalman 1960) is a recursive estimation procedure. Although 

developed initially for solving engineering problems, it has now a wide range of 

applications in fields like computer graphics, engineering, aerospace tracking, statistical 

quality control, short-term forecasting, biological and environmental data modeling. A 

Kalman filtering procedure initializes itself by using the information obtained at time t-1 

to forecast the state of a random process at time t before the state is actually observed. 

After the state is observed, the information obtained is then used to correct the previous 

forecast to arrive at a new state, which is then used for the forecast of the state at time 

t+1. This forecast-correction-forecast procedure continues until it reaches the final 

destination of the state of the random process under study. A detailed description of the 

linear Kalman filter and the space-time Kalman filter are found in Meinhold and 

Singpurwalla (1983) and in Cressie and Wikle (2002).

2.1.4.4. Hierarchical Models

In recent years, hierarchical specification is increasingly popular in modeling 

environmental data (Mateu et al. 2003). Aside from benefiting from increased computer 

power, this trend is aided by a strong desire to infer on the underlying hidden process 

from the data, which are often subject to measurement errors. The appeal of the 

hierarchical model specification lies in its flexibility. It breaks down a large, complex 

model into much simpler smaller components. Each component can then have its own 

specifications, for instance, a nonlinear component at a lower hierarchy in an otherwise 

linear model at a higher hierarchy. A recent book by Banerjee et al. (2004) covers a wide 

range of issues and techniques in hierarchical modeling.

One version of the hierarchical spatiotemporal model specification is the dynamic linear 

model (DLM) (Banerjee et al. 2004). This type of models (also called state space models)

11
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has their origin in time series analysis and system theory. The term “dynamic” stems 

from the fact that the time series process change with the passage of time, whereas the 

“state space” terminology originates from systems theory. One subclass of dynamic 

models is normal dynamic linear model (NDLM).

A simple case of DLM is the general univariate NDLM, which can be specified as

{F, G, V, W}t ={F t, Gt, vt, Wt} 

for each time t, where Ft is a known (r x 1) design vector; Gt a known (r x r) transition 

matrix; vt a variance scalar; Wt a known (r x r) error matrix; r the number of components 

in the parameter vector 0 t.

The quadruple then leads to the following distributions 

(Y, |0t) ~ N(Ft'0t, v t) 

and

(0t|0t.i)~N(Gt0t.i,Wt)

where Yt is a vector of observations.

With the initial conditions at time t = 0, Equations 2.9 and 2.10 specify the full definition 

of a general univariate NDLM as follows:

Measurement equation: Yt = Ft'0t + vt Vt ~ N(0, Vt) (2.11)

System equation: 0t = Gt0t i + C0 t cot~N(0, Wt) (2.12)

Initial information: (0o|Do) ~ N(Mo, C o)

Both vt and ©t are assumed to be internally and mutually independent. Do is the initial 

information set at time t = 0. Equation 2.11 relates Yt to 0t via a dynamic linear regression 

with a normal error structure having a time varying observational error variance vt (which 

can be specified as constant). Equation 2.12 (also called state equation) defines the one- 

step Markov Chain of the state vector because of the conditional independence property, 

i.e. given 0t, Yt is conditionally independent of the other observations at time t-1 and
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earlier. Equivalently, this is to say that given the present, the future is independent of the 

past. For time t, Ft is the design vector of known values of independent variables; 0t the 

state or system vector; (it = Ft'0t the mean response; vt the observational error. For a more 

spirited discussion on the DLMs, the reader is referred to West and Harrison (1997), as 

well as Shumway and Stoffer (2000).

Because of their flexibility and hierarchical specification, DLMs allow for incorporation 

of multiple sources of stochastic processes. As such, they have been widely used in 

environmental modeling (Shaddick and Wakefield 2002, Huerta et al. 2004) and 

population ecology (Meyer and Miller 1999, Calder et al. 2003). Many of these 

applications involve the use of the Kalman filter or its variants.

2.I.4.5. Kernel mixing

Kernel mixing is another way of spatiotemporal model specification. For a long time, 

kernel mixing has been used for probability density estimation and regression modeling 

in statistical literature (Silverman 1986). The attractiveness of this method rests with its 

convenience in introducing non-stationarity while permitting analytic calculation and 

clear interpretation, a feature that is fully taken advantage of in this thesis research. A 

further advantage is the ability to handle very large datasets, which is often a challenge to 

other methods. There are two schools of kernel mixing in spatiotemporal modeling, one 

attributable to Fuentes (Fuentes 2002a, b), and the other to Higdon (Higdon 1998,2002, 

Higdon et al. 1999). Calder et al. (2002) modified the method of Higdon and came up 

with a discrete process convolution dynamic linear model.

Let Yt = {y(s, t)} be the measurement vector at the N monitoring sites (s = 1 ,..., N) in a 

study region at time t during the monitoring period. A discrete process convolution 

dynamic linear model without covariates in a matrix format can be written as:

x,
(M x 1)

(N x 1)

K x, + (ll + Et

(N x M)(M x 1) (N x 1) (N x 1) 

Xt-l + vt

(M x 1) (M x 1)

(2.14)

(2.13)

13
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where K is a bivariate Gaussian kernel. X is a latent process specified as a zero mean 

Gaussian random walk process at M supporting sites. M is chosen based on the spatial 

variability of the random process and the desired model resolution. A large M at shorter 

inter-site distances models more local variability, whereas a small M at longer inter-site 

distance models better the global trend of the random process (Higdon 2002). p. is the 

grand mean with 1 (a Nxl matrix) signifying its invariance in space due to the absence of 

covariates in the model. Et and v t are vectors representing observational and system error 

vectors, respectively.

This specification of the model is flexible. Not only can the model incorporate easily 

covariates for the mean (p) trend, but also by-pass the need for imputing the missing data. 

The latter feature is realized by adopting different kernels at different time points.

2.1.5. Bayesian modeling

Bayesian statistical modeling differs from the usual frequentist approach in that 1) it 

explicitly incorporates subjectivity in the model statement through the use of prior 

distributions and 2 ) it treats the model parameters as random variables that follow a 

certain probability distribution. Therefore, its conclusions about a parameter or the 

unobserved data are stated in terms of probability, which contrasts to the point estimates 

in the frequentist statistics.

The core of Bayesian statistics is to find a probability model and to infer on the posterior 

distribution of the model parameters based on the Bayes’ rule. Suppose that there is a 

joint probability distribution of a model parameter 0 and an observed data point y, this 

joint probability can be written as a product of a prior distribution p(0 ) and a sampling 

distribution p(y|0 ), i.e.

p(0,y) = p(0)p(y|0) (2.15)

Conditional on the observed data y, the posterior density of Abased on the Bayes’ rule is:

14
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P(0\y)=^9’yK p^y\eK
p(y)  p(y)

p(0 ) p (y  10) (2.16)

where

p(y)  = HeP(O)p(y\0) (2.17)

if y is a discrete random variable,

or

p(y)  = f p(0)p(y  10)d0 (2.18)

if y  is a continuous random variable.

The posterior distribution is generally obtained through MCMC methods using various 

sampling methods. One such method is the Gibbs sampler (Gelman and Gelman 1984, 

Gelfand and Smith 1990, Chen et al. 2000). This is an alternating sampling scheme, 

which estimates one model parameter a time by conditioning the parameter on the other 

parameters in the model and the data. For instance, suppose that we have data y  and a 

vector of two parameters (0 i,0 2 )' in the model and want to estimate these two parameters 

through MCMC, we would start the Gibbs sampling procedure in the following steps:

Step 0. Choose an arbitrary starting point 0o = (0i,o, 0 2 ,o)' and set i =0.

Step 1. Generate 0j+i = (0i, i+i, 0 2 , i+i)' sequentially 

01, i+l~ P(0l|02, i> y)

0 2 ,i+l~ P(0 2 |0 1 , i, y)

Step 2. set i = i +1 and repeat Step 1.

Iterate this procedure n times for n being sufficiently large. After convergence in 

probability distribution, the samples of (0i,02)' are from a hue stationary posterior

15
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distribution (Gelfand and Smith 1990). The distribution quantities of (6 1 ,6 2 )' can then be 

estimated from the sample after discarding the iterations during the burn-in period. 

Details on MCMC using the Gibbs sampler can be found in Gelman and Gelman (1984), 

Gelfand and Smith (1990), Gelman et al. (1995) and Gilks et al. (1996).

2.2. Research objectives

This thesis research deals with the environmental monitoring data on ambient SO2 

concentrations that were collected over a large land area in Saskatchewan, Alberta, and 

British Columbia over a period of 12 months. The data contain both spatial and temporal 

components. To capture both the spatial and temporal information embedded in the SO2 

data, this thesis research takes a spatiotemporal modeling approach to address the 

following three questions:

1) What is the spatial pattern of the near ground-level SO2 concentrations in rural

Western Canada?

2) How does this spatial pattern evolve over time during the monitoring period?

3) How can the spatiotemporal modeling results be used in epidemiological studies?
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Table 2.1. Air quality criteria, objectives, and standards (ppm, parts per million) for 

sulfur dioxide in Canada and other jurisdictions around the world.*

Agency S02 concentration Average time
Threshold ue/nr1 DDin

Canada* National Acceptable 900 0.34 1-hour

300 0.11 24-hour
60 0.02 1-year

Desirable 450 0.17 1-hour
150 0.06 24-hour
30 0.01 1-year

Tolerable 800 0.30 24-hour
Alberta 450 0.17 1-hour

150 0.06 24-hour
30 0.01 1-year

B.C. Level “A” 450 0.17 1-hour
160 0.06 24-hour
25 0.01 1-year

Level “B” 900 0.34 1-hour
665 0.10 24-hour
75 0.03 1-year

Ontario 690 0.25 1-hour
275 0.10 24-hour
55 0.02 1-year

Quebec 1310 0.50 1-hour
228 0.09 24-hour
52 0.02 1-year

USA National Secondary 1300 0.50 3-hour
Primary 365 0.13 24-hour

80 0.03 1-year
California 1300 0.50 1-hour
Florida 260 0.10 1-hour
Missouri 665 0.25 1-hour
Montana 665 0.25 1-hour

60 0.02 1-year
New York 665 0.25 1-hour
Vermont 260 0.10 1-hour

60 0.02 1-year
Argentina 75 0.03 30-day
Belgium 150 0.06 1-year
Columbia 75 0.03 1-year
Denmark 750 0.30 30-min.
Finland 750 0.30 30-min.

75 0.03 1-year
Italy 750 0.30 30-min.
Japan 260 0.10 1-hour

100 0.04 24-hour
Switzerland 30 0.01 Annual
Germany 750 0.30 30-min.
W.H.O. Acceptable1 60 0.02 1-year

Desirable' 40 0.015 1-year
* Taken from Federal-Provincial Advisory Committee on Air Quality (1987) 
+ All other unlisted provinces follow Canada’s air quality objectives, 
i  98% of 1-hour averages < 200 pg/m3.
' 98% of 1-hour averages <120 pg/m3.
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Chapter 3 

Spatiotemporal modeling of ambient sulfur dioxide 

concentrations in rural Western Canada

3.1 Introduction

Sulfur dioxide pollution has been linked to adverse effects on human health (McManus et 

al. 1989, Koren 1995, Van Burg 1995, Brunekreef and Holgate 2002, Komamisky et al.

2003). Recent epidemiological studies have found a significant association between 

exposure to SO2 pollution and mortality of natural causes (Kan et al. 2001, Kan and Chen 

2003, Biggeri et al. 2005), neonatal deaths (Lin et al. 2004) and sudden infant death 

syndrome (Dales et al. 2004). Conversely, a reduction in SO2 pollution allegedly 

moderates excess respiratory and cardiovascular deaths (Hedley et al. 2002). Exposure to 

SO2 pollution also reportedly increases morbidity, such as increased hospital emergency 

room visits (Xu et al. 1995, Wilson et al. 2005), bronchitis (Lawther et al. 1970, Herbarth 

et al. 2001), asthma (Chew et al. 1999, Wong et al. 2001, Lin et al. 2003, Barnett et al.

2005), cardiac diseases (Martin 1964, Pope 2000, Brunekreef and Holgate 2002, Lee et 

al. 2003, Brook et al. 2003, Brook et al. 2004).

Western Canada is a major oil and gas producing region. Environmental data have shown 

that upstream oil and gas production is the primary source of the near ground-level 

atmospheric SO2 in Canada (Environment Canada 2002). In Alberta, natural gas 

processing plants, oil sands facilities, oil refineries, and other industrial activities, such as 

power generation, are the major contributors to die near ground-level atmospheric SO2 

(Alberta Environment 2005a). Annual average SO2 concentrations ranged between 1 to 4 

parts per billion (ppb) in the Edmonton and Calgary area, and 0.5 to 3.5 ppb in Northern 

Alberta during the period from 1990 to 2003 (Alberta Environment 2005b). However, 

these annual averages do not adequately describe the spatial and temporal patterns of 

ambient SO2 concentrations in Western Canada. A spatiotemporal model that portrays 

those patterns would be helpful to epidemiological studies on the health effect of SO2 

pollution in Western Canada.
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Spatiotemporal modeling of environmental monitoring data can be accomplished through 

a broad range of approaches (Kyriakidis and Joumel 1999, Mateu et al. 2003). Dynamic 

modeling is one of such approaches in that the spatiotemporal model is comprised of a 

measurement (or observation) equation and a system (or state) equation (Banerjee et al.

2004). The measurement equation specifies what has been measured, whereas the system 

equation represents the unobservable latent state of the random process that is to be 

modeled. In the system equation, the process variables are often defined as a function of 

their prior states to allow the spatiotemporal process to evolve over time. A key 

advantage of this approach is that multiple sources of variability, whether being linear or 

nonlinear (Carroll et al. 1997), can be easily incorporated into the model. One example is 

the framework of the kriged Kalman filter (Mardia et al. 1998) that is used to model and 

forecast ozone in New York City (Sahu and Mardia 2005). To handle large datasets, 

Wikle and Cressie (1999) proposed a dimension reduction Kalman filter. Other examples 

of dynamic spatiotemporal modeling are those of Sanso and Guenni (2000) for modeling 

non-stationary rainfall data in Venezuela, Shaddick and Wakefield (2002) for modeling 

daily multivariate pollutant data in London, and Huerta et al (2004) for modeling ozone 

pollution in Mexico City.

Kernel mixing is another method of spatiotemporal modeling. One example of this 

method is a dimension-reduction process convolution approach proposed by Higdon 

(1998,2002), which is particularly advantageous in handling very large datasets. In 

modeling the North Atlantic temperature field, he used two kernels, one for die spatial 

process and the other for the temporal evolution of the spatial process (Higdon 1998). In 

a modification to Higdon’s method, Calder (Calder et al. 2002, Calder 2003,2005) used 

only one kernel to mix the spatial process variables, which were, in turn, specified as a 

function of their prior states for the temporal evolution of the spatiotemporal model. In 

doing so, the model becomes a dynamic linear model. An added advantage of this 

modification, among other things, is the flexibility in handling temporally misaligned 

spatial data. This is achieved by using a different kernel for each different time period in 

the spatiotemporal model, avoiding altogether the usual requirement of data imputation 

(Little and Rubin 2002).
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Our overall goal is to use the available SO2 monitoring data to develop a model of 

spatiotemporal patterns of S0 2 in rural Western Canada. Specifically, the main objective 

is to use the spatiotemporal model 1) to decipher the spatial pattern of the ambient S 0 2 

concentrations in rural Western Canada, 2) to find the temporal evolution of the ambient 

S 0 2 concentration pattern in the study region, and 3) to predict the S0 2 exposure for 

localities within the study region where S 0 2 was not monitored. Lastly, we will illustrate 

how the resultant model may be used in environmental epidemiology.

This chapter is organized in a manuscript format with five sections, including data and 

methods, descriptive statistical and spatiotemporal modeling results, epidemiological 

applications of results from the spatiotemporal model, and finally, discussion and 

conclusions.

3.2. Methods

3.2.1. Data

A more detailed description on the data, the sampling strategy and the analysis of the air 

samples can be found in Davies et al. (2006) and Burstyn et al. (2006). Briefly, the 

monthly environmental monitoring data on ambient S0 2 concentrations were obtained 

from the Western Interprovincial Scientific Studies Association. They were collected in 

the three Western Canadian provinces, Saskatchewan, Alberta, and British Columbia 

during the period from June 2001 to May 2002. The data were initially collected for 

studies on cattle health. As such, the spatial monitoring sites were located where the 

study cattle herds were managed or pastured. On those locations, air monitors (see 

descriptions below) were set 1.5 to 1.8 m above the ground in flat terrains that were away 

for at least 1 0 m to 1 0 0 m from roads, farm houses, farm equipment, transportation 

corridors, immediate vicinity of local oil and gas facilities, and forest edges. The spatial 

geographic coordinates of the monitoring sites were then converted to nominal 

coordinates of Sx and Sy in kilometer before being provided to researchers to protect the 

confidentiality of the real site locations. The spatial locations of the monitoring sites in 

Western Canada are shown in Figure 3.1, with the nominal coordinates in kilometers by 

month in Figure 3.2.
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Monthly averaged SO2 concentrations were measured using PASS SO2 passive monitors 

manufactured by Maxxam Analytics Inc. (Mississauga, ON), which also analyzed the air 

samples. The air samples were taken with a filter impregnated with sodium 

carbonate/sodium bicarbonate and shipped to the lab in containers sealed with Teflon 

tape for analysis (Farwell et al 1987). The sulfate ion was extracted from the sampling 

media with a hydrogen peroxide solution in ultra pure distilled/deionized water. Ion 

chromatography following US EPA method 300.1 was used to determine the sulfate ion 

concentrations (Tang et al 1997, Sembulak and Kindzierski 1999).

In a random sample of locations, replicate measurements were collected for a given 

month. Because the replication was random and highly variable from month to month, 

those replicates were averaged for each of the locations before being used for the 

modeling in this thesis. This was to speed up the model fitting process.

Unless stated otherwise, all analyses and modeling were done using natural logarithm- 

transformed SO2 concentration data [i.e. ln(S0 2 )]. The transformation was based on a 

preliminary inspection of the histogram of the raw data, which suggested an approximate 

log-normal distribution.

3.2.2. Descriptive statistics and semivariograms

Descriptive statistics were obtained on raw SO2 data to examine their characteristics 

before they were transformed for subsequent analysis and modeling. This was done using 

the ‘summary’ function in R, a free statistical software (R Development Core Team

2006).

The SO2 data arose from a random spatial process. They were autocorrelated within a 

certain distance, i.e. ambient SO2 concentrations measured at two adjacent spatial points 

were similar. Beyond a certain distance, the similarity was by chance alone. This spatial 

feature can be explored by semivariogram, a plot of semivariance versus distance.
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To compute the semivariance (y), denote ys (s = 1 , . . Nt and TV, the number of SO2 

monitoring sites in each month) the ln(SC>2), the (spatial) variance of ys is then:

VarOw, -  ys) = var(ys+h) + var(ys) -  2  cov(ys+/l, ys) 

=> 2 y(/i) = 2 C(0) -  2 C(h) (3.1)

where h is the separation distance between two spatial points, called lag. Divide both 

sides of Equation 3.1 by 2:

and the result is semivariance.

As can be seen in Equation 3.2, y is a function of h. Theoretically, y(0) = 0 for h = 0 (i.e. 

no variability for a data point in itself), and y(h) = sill for h = <|). Nevertheless, y(0) = 0 for 

h = 0 exists mostly in theory, but seldom in practice. There are unresolved, sub-grid local 

variability and measurement errors embedded in the SO2 data. Consequently, y(0) = t 2 

(notation as in Figure 3.3) for h = 0, where t 2 is called nugget, a term that originates from 

geology and mining. It is the intercept on a semivariogram. The sill is the total (or 

maximum) variance as <|) goes to infinity, whereas (j) is the range of spatial autocorrelation 

of the ln(S0 2 ) data. Beyond <j), the ln(SC>2) (equivalently, the original SO2) data points are 

no longer spatially autocorrelated. The difference between the sill and the nugget is called 

partial sill (a2). These concepts are graphically explained in Figure 3.4.

Semivariograms computed from sampling data are called empirical (or experimental or 

sampling) semivariograms. Because sampling data contain measurement errors, the 

resultant empirical semivariograms are often jiggled and are therefore rarely used in 

spatial modeling. Instead, a theoretical semivariogram model (such as a Gaussian, or a 

spherical, or a Matem semivariogram) is often fitted to the empirical semivariogram to 

find the range, (partial) sill, and nugget (see Figure 3.4).

y(h) = C(0) -  CQi) (3.2)
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In this thesis, omnidirectional semivariance was computed on die residuals after the 

spatial trend of the ln(SC>2) data was removed with a second order polynomial, using a 

binning method with 25 km lags in the geoR package (Ribeiro and Diggle 2001) in R. 

Semivariance is called omnidirectional because it is computed from all spatial point pairs 

that fall into a spatial distance class without consideration for the directional relationship 

between the point pairs. (This is in contrast to the directional semivariance, which takes 

not only distance, but also direction into consideration when binning the spatial pairs into 

a class). To implement the computation, all SO2 monitoring sites were first paired and 

then binned according to their separation (Euclidean) distance into distance classes and 

the number of such pairs in each bin recorded. The empirical semivariance (% )  for the 

(i, j)* bin was then calculated according to Ecker and Gelfand (1999):

J w - j - w f  (3.3)
2N b ,, {(k,iy.(sk- s , ) zB v )

where NBij was the number of sites in bin By and y(s.) was the ln(SC>2).

A Matem correlation function of the form

<3-4a>

was fitted to the empirical semivariograms to determine the range, partial sill and nugget 

for each month. In Equation 3.4a, h is the distance between pairs of monitoring sites; <j) > 

0 is a scale parameter; k  > 0 (varied between 0.4 and 0.45) is a shape parameter that 

controls the differentiability of the underlying random process; Kk is a modified Bessel 

function of the third kind of order k ; T ( k )  is the usual Gamma function.

Occasionally, the Matem function did not fit the empirical semivariogram well. Under 

such circumstances, a spherical correlation function in the following form was used:
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where 0o (x2 in Figure 3.3), 0i(o2 in Figure 3.3.), and <|> are respectively the nugget, 

partial sill and range (see Figure 3.4)

Temporal semivariograms of SO2 measurements were Fitted to data obtained at some 

single sites as well as on a subset of sites that were monitored for at least 1 1  months (n = 

242). This was done using a SAS program shown in Appendix IV.

3.2.3. Spatiotemporal modeling

The spatiotemporal modeling followed broadly a dynamic process convolution model 

specification (Calder et al 2001, Calder 2003, Calder et al. 2003, Calder 2005), which 

was a variation of the process convolution approach used by Higdon (1998,2002) as 

described in Section 2.4. Briefly, the ln(SC>2 ) [i.e. y(s, t); s = 1 ,2 ,... ,  Nt; t = 1 ,2 ,...,  12; 

s is the s monitoring site. Nt is the number of sites monitored in month t (see Table 3.1)] 

was modeled by convolving a zero mean Gaussian random process X  at each supporting 

site C0 j for j = 1 ,..., M ( =  64) with a symmetric bivariate Gaussian kernel (K(s, (p j)). The 

kernel had a zero mean and standard deviation of 200 km. The standard deviation equaled 

approximately to the mean range of the monthly semivariograms as described above. The 

supporting sites, (Oi, C0 2 , . . .  (0 6 4 , were systematically laid on an equilateral grid that 

covered the entire study region as well as a buffering boundary (Kern 2000) that equals to 

half of the standard deviation of the Gaussian kernel (Figure 3.6). The starting point for 

these grid points was the most south-western coordinates of the monitoring sites minus 

half of the standard deviation of the Gaussian kernel. Thereafter, those grid points that 

were far away from the study region were manually removed for the lack of data support. 

The coordinates of those remaining 64 supporting sites are shown in Appendix V. Each 

process variable x(o)j; j = 1 ,..., 64) followed a Gaussian random walk for t = 1 ,... 12.

Under such a setup, the spatiotemporal model is written as:
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M
y(s,t) = jut +'Zkt (ct)j -  s)x(0)j, t) + e s>t (3.5a)

VieM (3.5b)

where both the £s,t and the Vj;t are mutually independent and normally distributed with 

zero means. pt is a time-varying mean shift suggested by data shown in Table 3.1.

The mean zero bivariate Gaussian kernel is centered on each monitoring site:

where a  equals 200 km, ||d|| = ||cpj -  s|| is the Euclidean distance between the supporting 

and the monitoring sites. Note that the kernel varied with time, because the number of 

monitoring sites differed from month to month, which had caused spatial misalignment in 

the data. The fewest number of monitoring sites was observed in March 2002 (303) and 

the highest number of sites was observed in August 2001 (928) (Table 3.1). The use of a 

separate kernel for each month avoided the need for imputation of missing data as usually 

practiced under such circumstances (Little and Rubin 2002). From the specifications in 

Equation 3.5, one can easily derive the correlogram, which is simply the kernel 

convolving with itself (Kem 2000).

For brevity, Equation 3.5 can be rewritten in a matrix form:

where at time t, Yt is a length Nt-vector containing ln(SC>2); Kt an Nt x M kernel matrix; x t 

a length M-vector of latent system variables; 1 is a length Nr vector of ones; Et a length 

Nt-vector of measurement errors; Vt a length M-vector of system errors. Although being 

time-varying, pt is a spatial constant at time t.

(3.6)

Xt =  X,_i + Vt

Yt =  K tXt + p tl  +  Et et ~ N(0, M) 

vt ~ N(0, M)

(3.7a)

(3.7b)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The kernel Kt in Equation 3.7a was rescaled to ensure the validity of the correlogram 

(Kern 2000):

M .
Z k ,1(a>l - s )  = 1 (3.8)

According to the specifications in Equation 3.7a, the kernel Kt mixes the Gaussian 

processes x(CQj; j = 1 ,..., 64) to model the spatial pattern of the SO2 data at time t. The xt 

as a function of x,_i in Equation 3.7b fits the temporal evolution of the spatial random 

process. Together, they complete the spatiotemporal process for the ambient SO2 

concentration data.

Under the Bayesian paradigm of hierarchical modeling, the joint posterior distribution of 

all parameters in Equation 3.5 or 3.7 is

where fi = {pt; t = l , ..., 12). Distributions of posteriors were obtained through MCMC 

using a Gibbs sampler (German and German 1984, Gelfand and Smith 1990) in 

WinBUGS, a free Bayesian statistical computing software (version 1.4.1., Spiegelhalter et 

al. 2003). Two chains were run simultaneously. Convergence was considered achieved if 

the time history of the parameters in the two chains overlapped each other and stayed flat 

as shown in Appendix VI, although a more formal analysis, such as the ‘coda’ package in 

R (Plummer et al. 2006), could be used for this purpose. The parameters were obtained 

from 1 2 0 0 0  iterations, following 8000 burn-in iterations.

The independent and conjugate priors for the parameters in Equation 3.5 or 3.7 were 

specified as follows:

T

/?(*,//,4 ,4 , |7)oc r \xt,jU,Ae)p(xt I X '^ ^ p i t f p t t J P ^ P i X o )  (3.9)

Pt ~ N(m(U, c^)

X0 ~ N(mol, cqI)

A,e ~ Inverse-GammaCrie, 5e)

(3.10)

(3.11)

(3.12)
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Xv ~ Inverse-Gamma(riv, 6 y) (3.13)

where mm, % , mo, Co, Tie, 8 e, r|v, and 8 V are all hyperparameters of the priors as listed in 

Table 3.2.

The WinBUGS program has a built-in expert system to determine automatically the full 

conditionals for the model parameters according to the prior specifications. Because these 

priors are all proper conjugates, the full conditional distribution for pt, Xe and A,v can all 

be found in closed form. For completeness, the full conditionals for p t, Xe and Xv were 

provided below (Calder 2003); detailed derivation of these conditionals could be found in 

Appendix III.

To find jit, define

(3.14)
i=1

where Kt(s,-) is the sth row of the kernel matrix Kt. The full conditional distribution of p*

is

(3.15)

To find XE, we first define
T

SSE = X (Y f - / / l -K x ,) '(Y ( -  / / I  -  Kx,) (3.16)

The full conditional distribution of Xe is

A£ \.~  Inverse_Gamma (3.17)

Similarly, we define

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SSv = 'Z,(xt - x , . l y (x t - x t_l ) (3.18)
t=i

The full conditional distribution of is

( M T  CC \
Av \.~ Inverse_Gamma ----- + yv,— -  + 8V (3.19)

V 2 2

The full conditional distribution of the xt’s was found iteratively following the Kalman 

filter approach (see Appendix II for details) (Kalman 1963, Meinhold and Singpurwalla 

1983).

3.2.4. Smoothed maps of sulfur dioxide

To visualize the modeled results, 2000 random points were simulated using a simple 

sequential inhibition process (rSSI) in the ‘spatstat’ package of R (Baddeley and Turner 

2005). The inhibition distance was arbitrarily chosen at 10 km. It was understood that this 

distance was unnecessarily short because the spatial autocorrelation of the SO2 data 

ranged much farther. The choice of this distance was solely for the purpose of a better 

interpolation of the modeled surface. The Kt matrix in Equation 3.7 was recalculated 

accordingly based on the coordinates of these simulated points in relation to the 

supporting sites C0 j (j = 1 ,2 ,..., 64). The ln(S0 2 ) was then predicted for these spatial 

points over time using the parameters in Equation 3.7 that were estimated by WinBUGS. 

After converting back to the original linear scale, the predicted SO2 surface was 

interpolated in ArcGIS 9.1 (Environmental Systems Research Institute, Inc. (ESRI) 2005) 

with an Ordinary Kriging method in the spatial analyst extension.

3.2.5. Epidemiological application of the model

To demonstrate the utility of the spatiotemporal model (Equation 3.7) in epidemiological 

studies, the study region was defined first by dissolving a 1 0 0  km circular buffer 

surrounding each monitoring site in ArcView GIS3.2 (ESRI. 1999). The boundary of the 

study region was then defined by joining the outmost edges outlining the buffers (Figure

3.9).
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Within the boundary of the study region, 200 random points with an inhibition radius of 

50 km were simulated using the rSSI function in the ‘spatstat’ package of R. Thiessen 

polygons were then created to define the influence area surrounding each of these points 

in ArcView GIS 3,2. This resulted in 200 Thiessen polygons to cover the entire study 

region (Figure 3.9). Each polygon symbolizes one areal unit in a hypothetical 

epidemiological study.

The 2000 random points that were simulated for making the smoothed maps were then 

superimposed on the Thiessen polygon theme layer in ArcView GIS3.2. The points that 

intersected with each of the 200 Thiessen polygons were assigned to that polygon (Figure

3.9). The predicted values for all the points that fell within each polygon were averaged 

over space to arrive at a geometric mean (or arithmetic means) of the predicted ambient 

SO2 concentrations for that polygon by month. This created a 200 (polygons) x 12 

(months) attribute matrix, which was then used in the hierarchical analysis as discussed 

below.

A grand geometric mean was also calculated for each polygon. This grand geometric 

mean (pg) is defined as:

Hg = exp
1 1 ILL

iy j1 t=i 1=1

(3.20)

where T = 12, the total number of time points in month; Nj is the number of random 

points in the j*  polygon; yit is the i*11 ln(S02) at time t that is predicted from the 

spatiotemporal model (Equation 3.7). This result was used to produce Figure 3.11.

3.2.6. Consolidation of sub-regions through hierarchical cluster analysis

The predicted S 0 2 exposure obtained in the step above was continuous, which could be 

difficult to use in epidemiological studies. The subtlety rests with die precision of the 

prediction, the magnitude of the error, etc (Tielemans et al. 1998, Armstrong 2003, Kim
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et al. 2006). Variation in exposure estimates could introduce substantial errors into the 

final results, making them less reliable. In light of this fact, some non-overlapping 

parsimonious classes of exposure would be much more desirable. This was achieved 

using a hierarchical cluster analysis (Romesburg 1984, Timm 2002) of the attribute 

matrix developed in Section 3.2.5.

To begin with, a dissimilarity matrix was constructed from the Euclidean distance (eji) of 

the predicted SO2 concentrations between the polygons. The matrix was then employed 

to cluster the polygons hierarchically based on Ward’s method (Ward 1963). The 

Euclidean distance is defined as:

<=1

where yy and yn are the predicted S 0 2 concentrations for the j*  and 1th areal units at time t.

The Ward’s method originates from the analysis of variance. It aims to minimize the 

intra-cluster variance while maximizing the inter-cluster variance. Therefore, the 

clustering process seeks out the least amount of increase in the sum of squared deviations 

from cluster means. The error sum of squares (ESS) between each pair of polygons is 

calculated as:

£SS = Z ( i ^ - i ( Z : y „ ) 2) (3.22)
t i n i

where the first summation is with respect to the predicted S0 2 average for each polygon 

in each of the 1 2  months arranged in columns, and n the number of polygons within each 

cluster. The criterion for joining polygons is that it should produce the smallest possible 

increase in the error sum of squares.

The hierarchical tree clustering process begins with each polygon as a distinct duster by 

itself. Then, the algorithm proceeds iteratively, joining the two most similar clusters 

together until eventually all polygons are joined together to form only one large cluster in
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the final step. This iterative process produces a dendrogram with branches of various 

numbers of polygons joining at different heights. When the dendrogram is cut at a chosen 

height, the polygons that are linked together into clusters become distinctive classes, 

achieving the objective of classification. The cluster analysis was performed using the 

‘hclust‘ function, and the cut of the dendrogram used the ‘cutree’ function in the base 

package of R. The output of the cluster analysis was then re-mapped using ArcView 

GIS3.2, as shown in Figure 3.13.

Where to cut the hierarchical dendrogram requires the consideration of many factors. 

Statistically, one may look into the variability or homogeneity within and between classes 

that the cut results, given the option that the dendrogram can be cut at different heights. 

One example is to use a linear random effect model to compare the effect of cuts at 

different heights:

yyk = (i + oti + Pj® + £k(jj) (3.23)

where yyk is the ln(S0 2 ) value at kth time of j 111 polygon in i,h class and 

Oi ~ N(0, c c2), pj(i) ~ N(0, a p2), ek(ij) ~ N(0, a e2)

where oii is random effect of classes with a c2 as between class variance; Pj® is random 

effect of polygons (within class) with a p 2 as common between-polygon variance; £k(ij) is 

random effect of monthly prediction of ln(S0 2 ) within polygon within class with c e2 as 

common between-month variance. The SAS PROC MIXED codes for this analysis are 

attached in Appendix IV.

3.2.7. Prediction of ambient sulfur dioxide concentrations for spatial points

The use of the spatiotemporal model (Equation 3.7) for predicting SO2 exposure at point 

locations requires only a recalculation of the kernel matrix (Kt). To demonstrate this use, 

two locations were randomly sampled within the study region. (These points were in the

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



areas where no S 0 2 monitoring data were available). The S 0 2 concentrations for these 

two locations were predicted from the spatiotemporal model (Equation 3.7).

3.3. Results

3.3.1. Descriptive statistics and spatial features of the data

The monitored ambient S 0 2 concentrations varied widely (Table 3.1), with values being 

as low as undetectable by the monitoring instrument/methodology (< 0.005 ppb) to as 

high as 8.35 parts per billion (ppb). The winter months (December 2001 to March 2002) 

had much higher ambient S 0 2 concentrations than the months of the other seasons.

The spatial variability of the S 0 2 measurements was evident in Figure 3.2. Two 

important features were readily identifiable. One was the consistency of the locations 

with high and low ambient S 0 2 concentrations over time. The other was the spatial 

mosaic of the high and low ambient S 0 2 concentrations. Sub-regions with high and low 

ambient S 0 2 concentrations were readily recognizable, for instance, the central high 

concentration sub-region versus the lower left comer low concentration sub-region in 

Figure 3.2.

3.3.2. Semivariograms

3.3.2.I. Spatial semivariograms

As described in Section 3.2.2, semivariogram is a convenient display of the spatial 

variation and the range of the autocorrelation of the ln(S02) data. Shown in Figure 3.3 are 

the semivariograms of the ln(S02) data for each of the 12 months during the study period. 

The partial sill of the semivariograms varied between 0.06 (March 2002) and 0.29 (May 

2002), with a mean at 0.16 ± 0.07. The nugget fluctuated between 0.03 (March 2002) and 

0.22 (October 2001), with a mean at 0.15 ± 0.07. Compared to the partial sill, the nugget 

was relatively large. The range of the autocorrelation of the ln(S02) data span between 

153 (October 2001) and 431 km (May 2002). On average, this range was 217 ± 2.5 km. 

The above numbers seemingly implied large spatial variation in the ln(S02) data from 

month to month. However, a careful examination of all the values shown in Figure 3.3 

actually suggested otherwise. Both the spatial variation and the range were considerably
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similar from month to month when the extremes were ignored. This suggested some 

consistence in the spatial pattern of the ambient SO2 concentrations over the study region.

Figure 3.4 is the semivariogram for the month of January 2002. Shown in this graph are 

the sill, partial sill, nugget, and range of the semivariogram. The semivariance increased 

from 0 . 1  (nugget) at "zero km" (indicating local variability and measurement error of 

ln(S02)) to a maximum of 0.29 (sill or total variance of the ln(S02)) at 201 km (the 

range). This left a partial sill of 0.19. This description of the semivariogram for January 

2002 can be used to interpret the semivariograms for other months in Figure 3.3.

3.3.2.2. Temporal semivariograms

Shown in Figure 3.5 are the empirical temporal semivariograms for one randomly picked 

individual site (Sites 22) and for all 242 sites that had been monitored for at least 11 

months. The empirical temporal semivariance of the SO2 data showed a gradual increase 

starting from 1 time distance (one month) and reached a plateau in 5 time distances 

before declining again. The smallest semivariance at 1 time distance suggested a strong 

temporal (auto)correlation at 1 time lag. Indeed, the autocorrelation coefficient was 0.35 

for both the single site and all 242 sites averaged. The temporal specification of the 

random system process (i.e. the x variables) in the spatiotemporal model was thus 

justifiable.

3.3.3. Spatiotemporal modeling results

After 8000 iterations through the WinBUGS program, the model parameters converged 

(see Appendix VI). The posterior statistics of the spatiotemporal model parameters are 

listed in Tables 3.3,3.4 and 3.5, respectively. The results in Table 3.3 indicated that the 

spatial c o n s t a n t , > did not differ much from zero over time except a higher value

in March 2002. This suggested a possibility of simplifying the spatiotemporal model in 

Equation 3.5 (or Equation 3.7) by removing the time index for this term.
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The error precisions for both the measurement equation (Ae) and the system equation (Au) 

were not particularly large, with the system equation error precision slightly smaller than 

the measurement equation error precision (Table 3.4). So, the system equation error 

variance (0.23) (which is the inverse of Xy) was greater than the measurement equation 

error variance (0.15) (which is the inverse of Ae). A larger spatial variance of the system 

equation in relation to a smaller error variance of the measurement equation was a 

desirable effect, because this implied a better spatial predicting power of the model in 

Equation 3.7. The measurement equation error variance was approximately the same 

magnitude as the average nugget value on the monthly semivariograms in Figure 3.3.

This implied that measurement errors were responsible for much of the nugget effect 

shown in the monthly semivariograms in Figure 3.3 than was micro variability in the SO2 

data (Waller and Gotway 2004). Replicated measurements seemed to agree with this 

contention (data not shown).

As expected, the latent variables x(a)j,j = 1,...,64) showed much variation both in space

and in time, with their inter-location spatial variability considerably greater than their 

intra-location temporal variability (Table 3.5). Because the latent variables 

x(0) j , j  = 1,...,64) measure the underlying spatial random process, their large inter

location variability is therefore self-explanatory. With the availability of these random 

process variables, the mathematical spatiotemporal model of Equation 3.5 (or 3.7) is 

transformed into an analytical model, which can be readily used for spatiotemporal 

prediction of ambient SO2 concentrations in the near ground-level atmosphere at any 

location within the study region at any time point during the study period.

The spatiotemporal model fitted the ln(SC>2) data well (Figure 3.7).The modeled versus 

the observed ln(SC>2) measurements were tightly clustered along a straight line (panel (a)) 

and the residuals were normally distributed (panel (b)) within the range between - 1  and 1 , 

with 86.5% of the residuals being within the range between -0.5 and 0.5. The spatial 

component of the spatiotemporal model used a moving average approach to estimate the
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ln(S0 2 ) for each spatial location. If the data had smooth transition from location to 

location, this method should mimic well the spatial pattern embedded in the data.

For some reasons, there could be abrupt changes in the spatial data. One such abrupt 

change was illustrated in red in panel (a) of Figure 3.7. Some of those measurements 

came with negative values in the original data (39 out of 10295 observations, replicates 

included) and were treated either as at the detection limit of the instrument/analytical 

method, or were averaged with a valid value of a replicate if there were replicated 

measurements at the same time on the same location. As shown in Figure 3.7, neither 

treatment appeared to be perfect. A better treatment might be either to set the data as 

missing and let the program to estimate them as unknown parameters through MCMC or 

to impute the data before modeling them (Homung and Reed 1990, Little and Rubin 

2002, Lubin et al. 2004). One could also choose to delete them from the data set 

(Rappaport and Kupper 2004), but this would result in a loss of information.

3.3.4. Spatiotemporal patterns of ambient sulfur dioxide concentrations in rural 

Western Canada

In addition to the estimation and prediction of the ambient SO2 concentrations for 

specific localities, an important application of the model is to visualize the spatiotemporal 

patterns of the ambient SO2 concentrations in the study region, so that they are easily 

comprehensible to end-users. Figure 3.8 illustrates the interpolated surfaces of the mean 

ambient SO2 concentrations in rural Western Canada in each of the 12 months during the 

monitoring period. The mean surfaces were interpolated from the SO2 concentrations that 

were predicted by the model for the 2 0 0 0  simulated random spatial points, as explained 

in Section 3.2.4.

These smoothed maps showed clearly the spatial patterns of the high and low ambient 

SO2 concentrations within the study region, and the temporal evolution of those spatial 

patterns during the study period. Spatially, the three hot spots of high ambient SO2 

concentrations (> 2 . 0  ppb) occurred respectively in the upper left comer, the upper right 

comer, and the lower right comer, a high SO2 concentration sub-region in the middle left,
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and a low SO2 concentration sub-region in die lower left comer of the study region were 

consistently identifiable on the maps across all the 1 2  months of the monitoring period. 

These high SO2 concentration sub-regions all expanded their ranges in space during the 

winter months from December 2001 to March 2002, and then retreated during the spring 

of Year 2002. The range expansion of the middle left sub-region with high ambient SO2 

concentrations was the most obvious.

Temporally, the winter months from December 2001 to March 2002 saw the ambient SO2 

concentrations rising to a substantially higher level than those in the months of the other 

seasons for the entire study region. The exception was in some sub-regions at the edges 

of the study region, where estimates could be imprecise due to the lack of monitoring 

sites (Figure 3.8).

3.3.5 Epidemiological application of the spatiotemporal model

3.3.5.1. Simulated polygons and random points

Figure 3.9 shows the 200 polygons symbolizing 200 hypothetical administrative districts 

within the study region. Each polygon covered a land area ranging from 2793 to 13782 

hectares. Figure 3.9 also shows the 2000 simulated random points that were used for 

predicting ambient SO2 concentrations for each of the polygons in the study region. As 

expected, the number of points that intersected with each polygon was variable (Figure

3.9), ranging from 3 to 21 per polygon in proportion to the area of the polygons (Figure

3.10). This is desirable because more predicting points for a large areal unit ensure a 

better prediction of the areal average of ambient SO2 concentrations than otherwise. This 

approach differs from some of the usual practices in spatial statistic literature, which 

often use only the centroid of the sub-area for prediction (Baneijee et al. 2004).

Although different in approaches, the end results differed little in a simulation like this 

one (data not shown), because the distance between the centroids of the simulated 

polygons was much smaller than the range of the spatial variance of the SO2 data. Points 

that are too close to each other in space are redundant and contribute little to the statistic 

power in spatial statistics. However, in a real-world application with large administration
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districts, the value predicted for the centroid may not be a good representation of the 

average exposure for the district as a whole. The approach taken in this exercise could be 

superior (Banerjee et al. 2004).

3.3.5.2. Spatial patterns of the predicted average ambient SO2 in the study region

The grand geometric mean of the predicted ambient SO2 concentrations for each of the 

200 polygons is shown in Figure 3.11. Several interesting features were apparent in the 

figure. The first was the 260-fold spatial difference in the averaged ambient SO2 

concentrations (predicted) within the study region, from 0.03 to 7.29 ppb.

The second feature was the striking spatial pattern of the predicted ambient SO2 

concentration averages. Three sub-regions with very high predicted SO2 concentrations 

occurred, respectively, in the upper-left, the upper-right, and the lower-right comers of 

the study region. They extended inward from the edge of the study region for less than 

150 km, and being parallel to the edge for only approximately 300 km. A second sub- 

region with higher predicted SO2 concentrations occurred in the left-center part of the 

study region. This sub-region extended roughly parallel to the edges for approximately 

1000 km and in perpendicular direction for about 300 km. A third high predicted SO2 

concentration sub-region could be identified at 300 km to the right of the left-center sub- 

region. This sub-region was approximately 200 km (left-right) x 300 km (up-down). The 

lower-left comer generally had the lowest average SO2 concentrations (< 0.4 ppb). 

Sandwiched between the high and the low SO2 concentration sub-regions were the sub- 

regions with intermediate average SO2 concentrations.

A third feature was that sub-regions with both the lowest and the highest predicted SO2 

concentrations situated at the edges of the study region. A possible explanation for the 

low SO2 concentrations in the edge sub-regions could be due to a lack of monitoring sites 

in these sub-regions, because the study region was extended outward by 1 0 0  km (half of 

the spatial variance range) from the outmost monitoring sites. The highest concentrations 

occurring at the edges could only be explained by the data, because there were several
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monitoring sites at those sub-regions that consistently reported high SO2 readings all the 

time (Figure 3.2).

Comparing Figure 3.11 with Figure 3.8, it appeared that the results observable in Figure 

3.11 was a composite of the results shown in Figure 3.8. The predicted SO2 exposure was 

categorized into 15 classes in Figure 3.11. In epidemiological studies, these predicted 

SO2 concentrations, in ordinal scale, could be used as indicator of SO2 exposure in any of 

those sub-regions where health outcomes were measured.

3.3.5.3. Hierarchical classification of the sub-regions according to the predicted 

ambient SO2 concentrations

In situations where parsimonious classes of exposure are preferred, the classes shown in 

Figure 3.11 need to be consolidated. Hierarchical cluster analysis is a quantitative method 

that is well suited to situations in which one does not have a priori knowledge on how the 

exposure levels should be classified and would like the data to guide the classification. 

The hierarchical cluster analysis shown in Figure 3.12 was a data-driven classification 

method because the number of classes had not been defined a priori. In the clustering 

process, the computer program placed the more homogenous clusters on the left of the 

dendrogram, with the heterogeneous clusters on the right. Depending on the research 

objective (taking into consideration of statistical power, measurement error reduction, 

etc.), financial feasibility, and personnel resources, the dendrogram could be cut at any 

height to obtain the desired number of classes. The reduction of measurement errors is 

particularly worthy of extensive examination when categorizing a continuous exposure 

variable into discrete classes (Gustafson 2004). Nevertheless, a lower cut results in more 

classes, lower variability of attributes within each class, but poorer efficiency in the 

deployment of financial and personnel resources. The opposite is true for a higher cut.

For instance, when the dendrogram in Figure 3.12 was cut at the height of eight, seven 

classes resulted. A cut at 20, on the other hand, reduced the classes to only four, an easily 

manageable option in a real-world epidemiological study. Shown in Figure 3.13 is the 

classification of the 200 polygons in Figure 3.11 into four classes, with the mean 

predicted ambient SO2 concentrations for each of the four classes listed in Table 3.6.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The information in Figure 3.13 is much easier to read than that in Figure 3.11. All four 

classes were distinctive from each other. From the lowest to the highest, the predicted 

ambient SO2 concentrations doubled at each jump from the first to the third class, but 

nearly tripled from the third to the fourth class (Figure 3.13 and Table 3.6).

As expected, the variability in the predicted mean ambient SO2 concentrations also 

increased as fewer classes were produced. This was illustrated in Table 3.7, in which the 

variance components of the linear random effect model in Equation 3.21 were 

demonstrated for both a four- and a seven-class classification. The between-class 

variance, as well as the standard error of the variance, for the four-class classification was 

noticeably greater than those for the seven-class classification. The greater standard error 

for the variance of the four-classes made the hypothesis test on gc = 0  non-significant, in 

comparison to the statistical significance for the test on ctc2 = 0  for the variance of the 

seven-classes. Similarly, the variance for the between-polygons (within class) for the 

four-class classification was more than double of that for the seven-class classification. A 

large between-class variance is generally preferred in statistical designs, but to what 

extent one can tolerate the increased within-class variability may need to be balanced 

with other factors, such as financial and personnel resource requirements, measurement 

error in exposure assessment, and expected effect size in health outcomes. A large effect 

size can tolerate greater attenuation due to exposure misclassification (Armstrong et al. 

1993, Armstrong 1998,2003). Effect size is defined as the difference of observed 

outcomes between two contrasting groups or treatments.

Regardless, the result in Figure 3.13 should be easier to use than that in Figure 3.11 in an 

epidemiological study. For instance, in a usual logistic regression analysis, one may 

choose the first level as the reference and let the remaining three groups compare with 

this reference group. If the exposure to SO2 had indeed contributed to a human health 

problem and if  the modeled exposure was close to the true exposure of the subjects, the 

odds ratios for the higher exposure groups would be elevated. If the modeled exposure 

did not represent the true exposure and if  the misclassification of the exposure was non- 

differential, then, measurement errors in exposure assessment would attenuate the results
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(Armstrong et al. 1993, Armstrong 1998,2003, Kim et al. 2006). On the other hand, if 

the measurement errors were differential, the results could be either over- or under

estimated (Armstrong et al. 1993, Armstrong 1998,2003). A safeguard to the exposure 

ascertainment may be to validate the correspondence between the true and the modeled 

SO2 exposure on selected locations and then make adjustments accordingly either in the 

design or the analysis of the study.

3.3.5.4 Use of the spatiotemporal model for point-referenced epidemiological data

If epidemiological data are point-referenced (e.g. the exact geographic location where 

subjects reside and receive exposure is known such as in a case-control study), the 

prediction of exposure to SO2 from the spatiotemporal model (Equation 3.7) is direct. No 

additional work is required as compared to the above case for the areal unit data. All that 

is required is to follow these 4 steps: 1) recalculate the Kt matrix in Equation 3.4 using 

the coordinates of both the points and the support sites (coi; i= l , ..., M) in Appendix V ;

2) multiply the Kt matrix with the vector of = 1  ,...,M) obtained from the 

WinBUGS in Table 3.5; 3) add the ju, constant to the product obtained in step two; 4)

obtain anti-logarithm of the results to convert them back to the original linear scale. Table 

3.8 demonstrates the monthly results for two such random points, A and B, in the study 

region (Figure 3.14). Should one wish, a grand mean could be obtained by averaging over 

time for each of these two spatial points.

3.3.5.S. Use of the modeled results for epidemiological study design

In previous sections, we demonstrated how the spatiotemporal model (Equation 3.7) 

could be used in epidemiological studies under the assumption that health data had been 

collected and the results from the spatiotemporal model was used to assign exposure to 

the study subjects. The results from the spatiotemporal model can also be used to design a 

study examining the association between ambient SO2 concentrations and health effects.

In designing such a study, the results from the spatiotemporal model provide information 

about the hot-spot areas of SO2 exposure. The researcher would design a study in such a 

way so that the data-collection (recruitment of cases and controls in a case-control design
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or assignments of exposure groups in a cohort design) will specifically target more of 

those hot areas than the other areas. In this way, the researcher can more efficiently use 

financial and personnel resources. More importantly, s/he may very well improve the 

research results, because the between-group variation is maximized, while the within- 

group variation reduced. Consequently, the chances of exposure misclassification are 

minimized, and the statistical power is increased due to reduced measurement errors in 

the exposure assessment.

3.4. Discussion and Conclusions

In this chapter, a spatiotemporal modeling approach was used to describe the 

spatiotemporal patterns of ambient SO2 concentrations in rural Western Canada. The 

spatiotemporal patterns revealed by the spatiotemporal model were consistent both in 

space and time.

The established spatiotemporal model has provided a valuable tool to the design and 

conduct of epidemiological studies. Its main utility rests with its versatility in predicting 

ambient SO2 concentrations in both space and time, whether the required prediction is for 

a single spatial point location or for an areal unit, i.e. an administration district. Many 

factors, including the emission sources, the meteorological conditions, the topology of the 

land mass, and the season of the year, can all influence the spatiotemporal distribution of 

ambient SO2 concentrations. The exposure of the at-risk subjects to SO2 is therefore 

constantly changing both with time and with spatial location. With the model providing 

spatiotemporal information on the exposure to ambient SO2 pollution, the epidemiologist 

may reduce the rate of misclassifying the exposure by invoking group-based exposure 

assessment (Tielemans et al, 1998, Armstrong 1998,2003, Kim et al. 2006).

The smoothed S 0 2 maps clearly and consistently identify the high and low S 0 2 

concentration sub-regions in both space and time. These visualized model results convey 

sharp contrasts in ambient S 0 2 concentrations within the study region at a glance. The 

user can quickly grasp this spatiotemporal information, as the patterns are almost 

completely self-explanatory. This information should be helpful to the design of
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epidemiological studies. For instance, one could strategically sample the sub-regions of 

interest with the guidance of this information. In such a way, both the financial and the 

human resources could be more efficiently deployed.

The seasonal variation in ambient SO2 concentrations shown in the smoothed maps is a 

well documented phenomenon (Brook et al. 2001), which was also observed in this 

monitoring program (Burstyn et al. 2006). Monitoring data show that the ambient SO2 

and the fine sulfate particles track each other seasonally in opposite directions. Ambient 

SO2 concentrations are high in spring/winter/fall months and low in summer months; 

sulfate particle concentrations low in spring/winter/fall months and high in summer 

months. Based on these observations and the physical, chemical principles of SO2 

reactions in the atmosphere, Brook and colleagues (2001) propose that low conversion of 

SO2 to particulate sulfate, less in-cloud aqueous-phase oxidation of SO2 to sulfate, less 

removal of SO2 by precipitation, and low air mixing height and strength are the reasons 

for the higher ambient SO2 concentrations in winter than in summer months.

A great advantage of this spatiotemporal model is that not only does it provide ambient 

SO2 concentration estimation for monitored sites, but also predictions for sites at which 

there are no monitored data available. The latter case is often more helpful than the 

former case in an epidemiological study. In this sense, the model extends one’s capability 

of predicting (or assessing) the exposure factor for an epidemiological study. The only 

pre-caution is that one must evaluate the error of this prediction against the true exposure, 

perhaps following the methodology advocated by Armstrong (2003). In so doing, one 

may set up some validation monitoring sites in the study region to take some ambient 

SO2 concentration measurements, which are then compared with the model predicted 

results. If necessary, adjustments are made to reconcile the predicted ambient SO2 

concentrations with the true exposure.

Three scenarios of model uses are demonstrated. One is the use of the model for 

prediction of SO2 exposure in areal units. Another is for prediction of ambient SO2 

concentrations at spatial points of interest. The third is for guiding the design of
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epidemiological studies using the exposure information. These examples reveal the 

essence and flexibility of the modeling approach. On the way to demonstrating the use of 

the spatiotemporal model for the areal unit data, a hierarchical cluster analysis method 

and a variance comparison method were introduced. By employing these methodologies, 

numerous quantitative classes were consolidated into fewer parsimonious groups. One 

could then more effectively and efficiently use financial and personnel resources to focus 

only on those interesting areas where one would expect greater contrast in exposure 

under a given hypothesis. In so doing, s/he may also improve the validity of the research 

results due to reduced measurement errors in exposure assessment. These methodologies 

therefore constitute a valuable part of the spatiotemporal modeling process in 

epidemiological studies.
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Table 3.1. Summary statistics of the SO2 data by month from the year of 2001 to the year 

o f 2 0 0 2 *.

Month Nmea Nsite Min.
First

quantile Median Mean
Third

quantile Max.
June 01 1661 890 <det. 0.31 0.45 0.54 0 . 6 8 6.40
July 01 1735 927 <det. 0.38 0.53 0.64 0.78 4.60
August 01 1724 928 <det. 0.38 0.54 0.61 0.72 3.43
September 01 1 0 2 0 910 <det. 0.32 0.47 0.55 0.69 6.58
October 01 895 785 <det. 0.25 0.40 0.49 0.64 8.35
November 01 600 499 <det. 0.39 0.61 0.71 0.89 4.65
December 01 454 361 <det. 0.64 0.94 1 . 1 2 1.39 6 . 0 0

January 02 430 337 <det. 0.60 1 . 0 0 1.13 1.37 7.58
February 02 403 314 <det. 0.53 0.78 0.93 1 . 1 1 5.60
March 02 380 303 <det. 0.99 1.40 1.47 1.83 4.30
April 02 389 315 <det. 0.28 0.50 0.61 0.84 3.09
May 02 604 522 <det. 0.23 0.34 0.42 0.48 4.46

* Nmea is the number of individual measurements taken. NSjte is the number of unique sites 
monitored for SO2 in each month. Min. and Max. are, respectively, the minimum and 
maximum SO2 concentrations in parts per billion (ppb). <det. stands for below the 
detection limit (0.005 ppb) of the monitoring instrument/methodology.

Table 3.2. Hyperparameters of the priors for the spatiotemporal model (Letters in the 

parentheses correspond to the parameters in Equations 3.8-3.11).

Parameters

X0 0 (m0) 2 0  (Co)

0  (nv) 1 0 0  m

Xs 0 . 1  (Tie) 0 . 1  (5e)

A,u 0.1 (T]v) 0 . 1  (8 V)
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Table 3.3. Posterior mean trends (pt) of the spatiotemporal model (in ln(SC>2)) by month.

Time Mean SD Median
Credible interval
2.5% 97.5%

June 01 -0.07 0.09 -0.07 -0.25 0 . 1 0

July 01 0.07 0.08 0.08 -0 . 1 0 0.24
August 01 0.03 0.08 0.03 -0.14 0 . 2 0

September 01 0 . 0 1 0.09 0 . 0 1 -0.16 0.17
October 01 -0.13 0.09 -0.13 -0.30 0.04
November 01 0.05 0.08 0.05 -0 . 1 2 0 . 2 1

December 01 0.05 0.09 0.05 -0 . 1 1 0 . 2 2

January 02 0.05 0.08 0.05 -0 . 1 1 0 . 2 1

February 02 -0.05 0.09 -0.05 -0 . 2 2 0 . 1 2

March 02 0 . 2 2 0.09 0 . 2 2 0.05 0.39
April 02 -0.06 0.09 -0.07 -0.23 0 . 1 1

May 02 -0 . 1 1 0.09 -0 . 1 0 -0.29 0.07

Table 3.4. Precisions of the measurement ( Xe ) and the system (Av ) equations of the 

spatiotemporal model.

Parameter Mean SD Median
Credible interval

2.5% 97.5%
Xe 6.58 0 . 1 1 6.58 6.35 6.82
Xy> 4.26 0.84 4.33 3.21 5.74
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Table 3.5. Estimates of the latent variables ( x(cOj, j  - 1,...,64)) in the spatiotemporal 

model in each month from June 2001 to May 2002.

X

Time

2001 2002

Jun Jul Aur Sep Oct Nov Dec Jan Feb Mar Apr May

1 -0.72 -0.82 -0.90 -0.88 -1.08 -1.02 -0.69 -0.52 -0.60 -0.70 -0.93 -1.13

2 -0.69 -0.45 -0.44 -0.25 -0.48 -0.38 -0.23 -0.21 -0.41 -0.58 -0.77 -0.85

3 8.76 9.05 9.14 9.43 10.05 10.24 9.88 9.77 9.57 9.48 9.52 9.50

4 -1.95 -1.99 -1.94 -1.63 -1.42 -1.30 -1.41 -1.57 -1.61 -1.74 -1.90 -2.08

5 0.52 0.27 0.29 0.31 0.45 0.47 0.72 0.85 0.82 0.79 0.54 0.38

6 -7.09 -7.18 -7.27 -7.49 -8.26 -8.15 -7.61 -7.42 -7.53 -7.58 -8.00 -7.90

7 1.68 2.01 2.20 2.29 1.60 2.40 2.64 2.67 2.56 2.57 2.36 2.37

8 -7.51 -7.68 -7.80 -8.27 -8.03 -7.38 -7.82 -7.89 -7.98 -8.00 -8.00 -8.16

9 -1.11 -1.17 -1.04 -0.97 -0.64 -0.69 -0.79 -0.84 -0.77 -0.72 -0.82 -0.83

10 10.29 10.32 10.39 10.20 10.55 10.29 10.48 10.55 10.60 10.73 10.43 10.88

11 -1.49 -1.20 -1.10 -1.10 -1.94 -1.57 -1.09 -1.13 -1.15 -0.99 -1.46 -1.01

12 2.03 2.11 2.24 1.90 0.58 1.31 1.50 1.44 1.47 1.67 1.36 1.22

13 0.89 0.55 0.43 -0.12 -0.25 0.14 0.06 0.07 0.15 0.23 0.11 -0.08

14 -8.69 -8.74 -8.89 -9.24 -8.86 -9.18 -9.37 -9.47 -9.46 -9.44 -9.59 -9.43

15 -2.52 -2.28 -2.45 -2.54 -1.96 -2.20 -2.22 -2.43 -2.56 -2.59 -3.03 -2.74

16 -4.36 -4.10 -4.03 -3.75 -4.01 -4.04 -3.77 -3.87 -3.91 -3.82 -4.30 -4.31

17 3.74 3.59 3.65 3.80 3.75 3.69 4.12 4.35 4.63 4.92 4.70 4.62

18 0.79 0.61 0.60 0.59 0.97 1.05 1.30 1.44 1.59 1.68 1.45 1.43

19 1.52 1.55 1.49 1.22 1.29 1.54 1.62 1.63 1.70 1.74 1.65 1.52

20 6.68 6.87 6.76 6.61 6.65 6.90 6.92 6.81 6.67 6.57 6.37 6.22

21 -3.83 -3.86 -3.88 -3.64 -3.33 -3.65 -3.55 -3.52 -3,61 -3.64 -3.84 -3.89

22 -3.15 -3.28 -3.46 -3.50 -3.11 -3.53 -3.40 -3.39 -3.46 -3.47 -3.97 -4.00

23 0.58 0.87 0.91 0.65 0.55 0.44 0.44 0.33 0,19 0.12 -0.36 -0.46

24 -7.97 -7.96 -7.94 -8.09 -8.56 -7.80 -7.57 -7.52 -7.42 -7.53 -7.67 -7.93

25 6.72 6.99 6.99 6.83 6.54 7.07 7.19 7.19 7.18 6.97 7.04 7.20

26 -3.86 -3.86 -3.97 -4.01 -3.92 -4.04 -3.93 -4.15 -4.26 -4.44 -4.69 -4.65

27 3.42 3.77 3.86 3.62 3.52 3.42 3.68 3.64 3.61 3.69 3.17 3.03

28 -4.19 -3.69 -3.33 -3.41 -3.49 -3.36 -3.02 -2.87 -2.75 -2.57 -2.90 -3.00

29 6.28 6.55 6.85 7.32 7.31 7.41 7.54 7.58 7.65 7.48 6.95 6.49

30 -11.36 -11.10 -11.14 -11.05 -11.23 -11.07 -10.82 -10.81 -10.70 -10.96 -11.51 -11.75

31 9.56 9.55 9.44 9.36 9.20 9.39 9.86 9.71 10.02 9.95 9.94 10.07

32 -6.43 -6.64 -6.55 -6.36 -6.15 -6.03 -5.48 -5.67 -5.51 -5.33 -5.41 -5.58

33 4.25 4.39 4.51 4.56 4.70 4.85 5.36 5.54 5.60 5.98 5.64 5.58

34 -3.66 -3.95 -4.08 -4.17 -4.19 -4.16 -3.95 -3.82 -3.63 -3.36 -3.54 -3.59

35 4.77 5.12 5.38 5.72 6.01 5.58 5.57 5.59 5.59 5.58 5.03 4.77

36 -0.63 -0.63 -0.74 -0.94 -0.88 -1.30 -1.17 -1.23 -1.12 -1.00 -1.22 -1.26

37 -2.70 -3.32 -3.24 -3.53 -3.61 -3.78 -3.63 -3.90 -3.94 -3.90 -3.81 -4.18

38 1.66 1.77 1.94 2.19 2.36 2.14 2.15 1.92 1.53 1.63 1.39 1.10

39 -3.21 -3.41 -3.99 -4.28 -4.71 -4.79 -5.02 -5.21 -5.36 -5.13 -5.58 -5.43

40 6.75 6.64 6.69 6.86 6.95 6.82 6.73 6.59 6,50 6.36 6.36 6.07

41 -12.16 -11.92 -11.76 -11.68 -11.41 -11.35 -11.17 -11.20 -11.37 -11.31 -11.43 -11.29
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Table 3.5 continued.

42 10.10 10.06 10.14 9.97 10.17 10.33 10.48 10.76 10.77 10.85 11.00 10.98

43 -6.53 -6.60 -6.21 -6.33 -6.12 -6.08 -6.19 -5.94 -6.12 -6.08 -6.09 -6.57

44 9.73 10.09 10.10 10.32 10.25 10.33 10.20 10.23 10.12 10.35 10.10 10.10

45 -11.51 -11.66 -11.81 -11.90 -12.23 -11.79 -11.71 -11.64 -11.48 -11.28 -11.38 -11.34

46 8.10 8.41 8.70 8.93 8.93 9.10 9.48 9.59 9.41 9.12 9.16 8.56

47 3.95 4.51 4.92 4.84 4.50 4.93 5.04 5.11 5.05 4.96 4.78 4.75

48 6.47 6.50 6.52 6.56 6.77 7.08 7.45 7.24 7.14 ‘ 6.93 6.87 6.82

49 -0.53 -0.77 -1.00 -1.15 -0.85 -0.86 -0.82 -0.58 -0.49 -0.47 -0.43 -0.62

50 -10.17 -10.21 -10.19 -10.17 -10.00 -9.91 -9.88 -9.55 -9.42 -9.23 -9.34 -9.55

51 15.64 15.78 15.87 16.11 16.13 16.62 16.86 17.13 17.43 17.72 17.63 17.65

52 -21.35 -21.50 -21.74 -22.01 -22.34 -21.97 -21.62 -21.40 -21.33 -21.31 -21.34 -21.55

53 4.98 5.20 5.12 5.01 4.83 4.95 5.23 5.33 5.22 5.08 5.04 4.72

54 -2.46 -1.93 -1.77 -2.28 -3.03 -2.86 -3.09 -2.66 -2.48 -2.40 -2.49 -2.50

55 -11.77 -12.08 -11.96 -12.41 -12.41 -12.30 -12.16 -12.29 -12.29 -12.38 -12.48 -12.70

56 1.29 0.80 0.53 0.39 0.89 0.63 0.88 0.40 0.31 0.43 0.30 0.00

57 -2.77 -2.66 -2.94 -2.85 -2.83 -3.13 -3.19 -3.45 -3.64 -3.43 -3.74 -4.09

58 5.42 5.52 5.60 5.45 5.62 5.72 5.58 6.00 6.09 6.06 5.98 5.89

59 4.15 3.78 3.74 3.83 4.32 4.57 4.72 4.83 4.84 5.07 4.85 4.64

60 1.48 1.83 1.69 2.01 1.64 2.00 2.21 2.02 1.83 2.49 1.94 1.58

61 3.58 4.22 4.16 4.46 3.97 4.14 4.26 4.15 3.96 4.34 3.91 3.60

62 1.23 1.20 0.99 0.93 1.47 1.78 1.50 1.80 1.57 1.25 0.96 0.77

63 -4.36 -4.17 -4.36 -4.40 -4.82 -3.98 -4.02 -3.70 -3.79 -3.50 -4.01 -4.16

64 -6.89 -6.38 -6.50 -6.45 -7.41 -6.71 -6.52 -6.37 -6.38 -5.78 -6.21 -6.40

Table 3.6. Mean and standard deviation of the predicted ambient SO2 concentrations for 

each of the four classes shown in Figure 3.13.

Group N Mean SD

1 69 0.34 0 . 2 0

2 84 0 . 6 6 0.38

3 41 1.36 0.93

4 6 3.50 2.77
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Table 3.7. Estimated variances in predicted ambient sulfur dioxide concentrations when 

the original 2 0 0  polygons were classified into four classes versus seven classes.

Source of 

variance

Variance

Four classes Seven classes

Estimate
Standard

Error
Pr( Z >Z)* Estimate

Standard

Error
Pr( Z >Z)

Between-

class
0.9567 0.6844 0.0811 0.9103 0.4898 0.0315

Between-

polygon

(within-

class)

0.0942 0.0114 <0 . 0 0 0 1 0.0403 0.0060 <0 . 0 0 0 1

Month-to-

month

(within

polygon)

0.2255 0.0068 <0 . 0 0 0 1 0.2255 0.0068 <0 . 0 0 0 1

* Z is a standardized normal statistic.

Table 3.8. Predicted ambient sulfur dioxide concentrations by month from 2001 to 2002 

for the two random spatial points shown in Figure 3.14.

Time
Point Jun

0 1

Jul
0 1

Aug
0 1

Sep
0 1

Oct
0 1

Nov
0 1

Dec
0 1

Jan
0 2

Feb
0 2

Mar
0 2

Apr
0 2

May
0 2

A 0 . 2 1 0.25 0.28 0.17 0.18 0.35 0.49 0.52 0.43 0.60 0.29 0.18
B 0.45 0.67 0.61 0.56 0.39 0.60 1.16 1.05 0.94 1.29 0.36 0.33
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Figure 3.1. Spatial locations of the sulfur dioxide monitoring sites in rural Western 

Canada.*
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Figure 3.2. Sulfur dioxide monitoring sites and spatiotemporal variation in ambient sulfur dioxide concentrations by month.
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Figure 3.3. Spatial semivariograms of ambient sulfur dioxide concentrations by month, where t2 is the nugget, a 2 the partial sill, and (j) 
the range in kilometer.
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Figure 3.4. Semivariogram for January 2002, showing the sill, partial sill, nugget, and 

range.
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Figure 3.5. Temporal semivariograms of ambient sulfur dioxide concentrations for Site 

22 (a) and for all 242 sites (b).
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Figure 3.6. Spatial locations of sulfur dioxide monitoring sites with nominal coordinates 

(red circles) and supporting sites on an equilateral distance grid for the spatiotemporal 

modeling of ambient sulfur dioxide concentrations.
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Figure 3.7. Positive linear relationship between the modeled and the observed mean 

ln(S02) (a) and the residuals of the modeled ln(SC>2) (b).
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Figure 3.8. Smoothed mean surface maps of ambient sulfur dioxide concentrations by month from Jane 2001 to May 2002.
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Figure 3.9. Two hundred simulated Thiessen polygons (irregular polygons in black) and 

2000 simulated random points (green dots) overlapping with each of the polygons for 

prediction of sulfur dioxide exposure in each polygon.
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Figure 3.10. Relationship between polygon area and number of points for the 200 

simulated polygons.
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Figure 3.11. Predicted ambient sulfur dioxide concentrations (in ppb) from the 

spatiotemporal model that were averaged over time and space for each of the 200 

polygons.
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Figure 3.12. Hierarchical clusters of the 200 polygons, which were formed according to the sulfur dioxide concentrations predicted 

from the spatiotemporal model for each of the 12 months. Numbers on the X-axis are the sequential polygon numbers. The height on 

the Y-axis is the value of the criterion for the particular cluster agglomeration.
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Figure 3.13. Clustered classes of the original 200 polygons with different means 

predicted ambient sulfur dioxide concentrations.
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Figure 3.14. Two random locations (A and B) whose ambient sulfur dioxide 

concentrations are to be predicted from the spatiotemporal model.
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Chapter 4 

Discussion and future research

Western Canada is an oil and gas production region. Thermal power generation is also an 

important industry in both Alberta and Saskatchewan. In these industries, SO2 and other 

noxious gases are emitted to the atmosphere in Canada (Environment Canada 2002, 

Alberta Environment 2005a). An understanding of die spatial, temporal, and 

spatiotemporal patterns of the ambient SO2 concentrations is very useful in conducting 

epidemiological studies on the health effect of outdoor air pollution in Western Canada, 

despite the apparently low ambient concentrations of SO2 in this region (Table 3.1,

Figure 3.8) as compared to the national standard (Table 2.1). In this thesis, a 

spatiotemporal model was proposed to predict the ambient SO2 concentrations and 

describe spatial and temporal patterns in Western Canada.

The model thus developed is versatile. It can be used to decipher the spatiotemporal 

patterns of ambient SO2 concentrations in the study region. A major advantage of using 

the modeled information is that one can assign discriminatory SO2 exposure to the at-risk 

population in different sub-regions, in comparison to the usual practice of using averaged 

SO2 concentrations from centrally located stationary monitoring sites in environmental 

epidemiological studies (Suh 2003, see examples in Timonen and Pekkanen 1997, Kan 

and Chen 2003, Lee et al. 2003, Liu et al. 2003,20004). Exposure averaged over a large 

study region could contain substantial measurement emor with respect to personal 

exposure, as it does not take into account the spatial and temporal variability of the air 

pollutants and the relationship of concentrations between the average ambient 

environment and the specific personal breathing zone (Zeger et al. 2000).

Nevertheless, caution is warranted in using the results from the spatiotemporal model in 

epidemiological studies of the health effects of exposure to SO2 . Specifically, this has to 

do with the exposure assessment, die very core of this research. At issue is the true and 

proxy exposure of the subjects (Rappaport and Kupper 2004). The modeled SO2
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concentrations are for the area of the residence, but not for the actual exposure of any 

individual person in the residential area. They are therefore an ecological measure -- a 

proxy to the true individual exposure. To what extend that this proxy is close to the true 

exposure cannot be ascertained by the modeled results themselves. An independent 

validation with high quality data is required, so that proper variance structure of the 

exposure measurements can be assessed (Rappaport and Kupper 2004) and adjustments 

be made (Gustafson 2004). To this end, the modeled results are more restrictive in 

comparison to other group-based exposure assessment schemes, because in those cases, 

one can at least work with some measurements of exposure on some individuals within a 

group in a particular environmental setting. An interesting finding is that group-based 

exposure assessment errors tend to attenuate the association of exposure and health 

outcomes to a lesser extent then more error-prone individual-based exposure assessment 

when measurement error is additive and group means can be precisely estimated 

(Armstrong 1998, 2003, Kim et al. 2006).

There are other computer models available, which have been used in Alberta to model 

short range ambient SO2 concentrations from “industry accidents”, such as sour gas well 

blowout and natural gas pipeline rupture (Alp et al. 1990), and long range distribution 

and deposition of SO2 in Canada, including Western Canada (Environment Canada 

1997). Both types of those models have more sophisticated inputs than the spatiotemporal 

statistical model proposed in this thesis. The first model proposed for the short range 

distribution of ambient SO2 concentrations is a modular model that consists of modules 

of emission rate, jet expression, plume rise, transient release ratio, and passive dispersion 

as the model inputs. The second model proposed for the long range distribution and 

deposition of SO2 comprises two component models, one using a backward trajectory 

model with meteorological factors as the inputs and the other using a forward “moving- 

box” chemical model with emissions and deposition as the inputs. Because both models 

have inputs and outputs coupled, they are capable of on-line modeling and forecasting, if 

the inputs required by the models are fed to the models on-line. Unfortunately, most such 

inputs are beyond the reach of epidemiologists and therefore may not be practical in 

epidemiological studies. Attempts have been made to use this approach in
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epidemiological studies (Scott et al. 2003), and methodologies of how to use 

environmental data for health effect investigations have been proposed (Best et al. 2000, 

Richardson and Best 2003).

In their studies of the effects of sour-gas emissions on cattle health, Scott and colleagues 

(2003) used two models, one being a Gaussian-dispersion model and the other being a 

distance-decay model. Both models were centered on the point sources of pollution and 

the SO2 emissions from the point sources were estimated from the models. The exposure 

to SO2 at a location was then summed from all the sources as an indicator of exposure in 

epidemiological studies. Because retrospective meteorological data and emission data 

were used as model inputs, many assumptions, such as constant emission rates and stable 

meteorological conditions, had to be made, which may not be valid. Furthermore, they 

modeled only the sour-gas plant emissions, but atmospheric SO2 is known of multiple 

origins (Leveque 2003). Consequently, the predicted SO2 exposure for a location could 

be off from the truth.

In contrast, the spatiotemporal model presented here is driven primarily by the SO2 

monitoring data, which are cumulative measures from all sources. Unlike the other 

models mentioned above, this statistical model does not have any covariates either to 

model the spatial trend or the temporal evolution. Therefore, it does not rely on the 

assumptions of peripherals, such as constant emission rates and stable meteorological 

conditions. Like any other statistical models, it draws conclusions according to actual 

monitoring data that cover the study region. To what extent the modeled results resemble 

the truth is therefore a matter of data quality, but nothing else.

The spatiotemporal model proposed in this thesis does have limited capability of 

forecasting, but the forecast would be based only on the past SO2 data, not on the current 

environmental or industrial conditions in the study region. Should there be any significant 

departure of either the meteorological or the industrial conditions or both from those 

under which the past SO2 data were generated, the forecast made from this 

spatiotemporal model would not be correct. The fact is that this spatiotemporal model
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lacks covariates so that it can not adjust itself for those condition changes. In comparison, 

the other models would be able to handle the changes, because they are an intrinsic part 

of the models.

This brings up another note of caution in using the spatiotemporal model proposed in this 

thesis. It can not be extrapolated too far from the study period. Extrapolation both 

forward and backward in time is not reliable, as the confidence intervals tend to increase 

with time lags in time series models (West and Harrison 1997, Shumway and Stoffer 

2000). Spatial extrapolation is strongly discouraged because of the lack of any data 

support outside of the study region.

These limitations, however, do not diminish the merits of this spatiotemporal model and 

the modeling approach that was undertaken in this research. The process convolution 

approach adopted in this thesis has several advantages over other spatiotemporal 

statistical modeling approaches. The first such advantage is the modeling of non- 

stationary spatiotemporal data. Because the modeling takes a spatial moving-average 

approach, the data needs not to be stationary. In comparison, some geostatistical models 

require that the data be spatially stationary (Cressie 1994). Otherwise, pre-treatments, 

such as trend removal, have to be applied before the data are modeled. The second 

advantage is the handling of misalignment in spatiotemporal data, which often requires 

imputation of missing values (Little and Rubin 2002) or complicated mathematic 

treatment in other modeling approaches (Banerjee et al. 2004). By using separate kernels 

for data measured in displaced space at each time point, the misalignment problem is 

easily handled (Calder 2005). The third advantage, which has not been explored in this 

thesis research, is the ability to accommodate spatial anisotropy (Higdon et al. 1999, 

Higdon 2002). By anisotropy, we mean the spatial process showing different variance in 

different directions. This often occurs in geology, in which the geological phenomenon 

being studied is dictated by the orientation of the rock veins. This can also occur in 

environmental monitoring data when meteorological conditions distort the spatial 

distribution of the air pollutants. For instance, a prevailing wind in one direction could 

result in the air pollutants spatially following the downwind direction. Judging according
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to how the SO2 data were collected, it is difficult to speculate how meteorological 

conditions might have caused anisotropy in this study. The fourth advantage is the 

handling of large datasets, i.e. the large sample (N) problem in spatial statistics (Wikle 

and Cressie, 1999, Banerjee et al. 2004). This is probably the most significant advantage 

of this modeling approach. By reducing the original dimension of N to a new dimension 

of M for M «  N, the computation suddenly becomes much easier. Another advantage of 

the approach is that the random process X  of the model can be specified as correlated, if a 

priori knowledge or the data appear to suggest so (Lee et al. 2005).

As with any other statistical modeling, some critical assumptions were made in the 

development of the spatiotemporal model in this research. These were: a) the SO2  random 

process was isotropic; b) the underlying random process X  at each supporting sites was 

independent; c) the random process X  temporally evolved in a random walking fashion. 

Due to these assumptions, it is conceivable that the current work could be subjected to 

criticism. Further work is required to verify the validity of these assumptions.

As a result, the spatiotemporal model proposed in this thesis should be viewed as 

exploratory and the model developed as preliminary. Much could be done to improve the 

modeling accuracy, i.e. the closeness of the modeled results to the truth of the underlying 

process. Some areas that could be further explored are the incorporation of anisotropy, 

the assumption of a correlated random process, a stationary temporal evolution of the 

random process (i.e. not to use the random walk approach, because a time series of 

random walk is not stationary), incorporation of other covariates, and the re

programming the estimation procedure to achieve faster convergence of the model 

parameters.
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Appendix I 

Glossary

Areal data: Also called lattice data. They are a type of spatial data that are aggregated 

based on areal units, such as a census tract, a postal code coverage, an electoral riding, a 

county, a province. In some applications, continuous data may be converted into areal 

data by dividing the study region into equal sized cells through a grid system.

Markov Chain: A mathematical concept. On a countable state space, a discrete time 

stochastic process whose conditional probability distribution in the next future state (t = 

t+1), give the present and past states, is dependent only on the present (t = t) state is a 

Markov chain. This definition on the discrete space can be extended to a more general 

space.

Markov Chain Monte Carlo: Mathematical methods (algorithms) that are based on 

constructing a Markov Chain of certain desired stationary properties for repeatedly 

sampling to arrive a sample that represents a target probability distribution. Some of the 

sampling methods include the popular Gibbs sampler and the Metropolis-Hastings 

algorithm.

Misalignment: This occurs through the sampling design. For instance, a mobile 

monitoring station takes environmental data at different locations at different time points. 

A fixed monitoring station is moved from its current location at one time point to a new 

location at a different time point.

Monte Carlo methods: Monte Carlo methods (named after a Morocco city) are 

mathematic experimentation, which typically uses random numbers to conduct 

experiments on computers for specific purposes.
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Point pattern data: These are spatial data generated from a discrete spatial random 

process. The key characteristic of the point pattern process is that the spatial domain D is 

itself random and the elements of the index set D mark the spatial locations of events that 

constitute the spatial point pattern.

Point-referenced data: These are spatial data generated from a continuous spatial 

random process. The indices marking each event vary continuously in a spatial domain 

D, and each index is associated with a pair of geographic coordinates to label the spatial 

position of the event in D. The geographic coordinates can be expressed in Universal 

Transverse Mercator (UTM, popular with Global Positioning System (GPS) users) or 

spherical degrees (latitude and longitude) or any other methods. In three dimensional 

systems, a third coordinate marks the elevation of the observed points.

R: A free, command-driven statistical computing program that was initially launched by 

a group of scientists in New Zealand. It has a core development team for the base 

package, with many others contributing numerous packages to it. It uses the S and S-plus 

language for programming. The S language was developed from the Bell Laboratory of 

Lucent Technologies Inc. in the USA. The commercial counterpart of R is the S-plus sold 

by Insightful Inc. in Seattle, Washington State, USA.

Simple Sequential Inhibition: It is a Poisson process that generates regular point 

patterns in a spatial domain D by using a rejection sampling process. Its mechanism is as 

follows:

1) Generate the first site Sj from a homogeneous Poisson process and place a desired 

radius r  around Sj.

2) Generate a candidate site c from the same homogeneous Poisson process.

3) Determine the distance d between si and c. Reject c if d < r and draw a new 

candidate. Otherwise, keep it and call it s2.

4) Continue drawing candidate sites and rejecting them if they fall within the radius 

of any points that are already established.
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5) Stop when no new points can be accepted, or when the random draw reached the 

pre-determined total number of points.

Stationary: In time series analysis, a strictly stationary random process is die one whose 

distribution probability does not change with time. A week stationarity requires only the 

mean does not change with time and the covariance is determined by time differences, 

but not by time per se. This concept is readily expanded into spatial statistics.

Theme: In ArcView GIS, a theme is a collection of all or a subset of the features of a 

particular feature class in the data source that it is based on, for instance, all highways in 

a map. Each theme is added into an ArcView GIS project as a layer, which can be 

manipulated when required.

Thiessen polygons: Thiessen polygons are also called Voronoi polygons. They are one 

type of spatial tessellation. In a plane, their boundaries define the area that is closest to 

each point relative to all other points. They are mathematically formed by 

perpendicularly bisecting the lines between all points.

Weakly stationary spatial process: If the mean and variance of a spatial process is 

dependent on the separation vector d = |s -  s'| between pairs of spatial locations s, the 

process is said to be stationary. If the mean and variance of a spatial process depends 

only on the separation distance d = ||s -  s'|| between pairs of spatial locations s, the 

process is regarded as weakly stationary.

WinBUGS : A free Bayesian statistic software that is jointly developed by a team of 

scientists at the MRC Biostatistics Unit, Institute of Public Health in Cambridge, UK and 

the Department of Epidemiology & Public Health, Imperial College School of Medicine 

in London, UK. It is implemented in the Microsoft Windows environment. BUGS is a 

humorous acronym standing for Bayesian Inference Using Gibbs Sampling. The latest 

version of WinBUGS is 1.4.1. Efforts to update the program have stopped due to the 

launch of the OpenBUGS program, which can be implemented in R and other statistical 

packages, such as MatLab, SAS, STATA etc.
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Appendix II 

Kalman filter

(References: Meinhold and Singpurwalla 1983, West and Harrison 1997)

Define a univariate dynamic linear model as:

Observation equation: Yt=Ft'xt + Vt Vt~ N(0, \)t)

System equation: xt = GtXt.i + Wt Wt ~ N(0, G3t)

Initial information: (xt|D0) ~ N (X 0,Z0)

The estimation procedure of the model is as follows:

A

At time to, choose X0 and E0 as our best guesses of the mean and variance of Xo- 

At time t-1, our knowledge about the state Xt.i is:

(* ,-i I (A4)

where Xt-1 and Xt_j are the expectation and the variance of {Xt_x j Yt_x) , respectively.

At time t prior to observing Yt, our best choice of Xt is governed by the system equation 

(A2). Since Xt.i is described by A4, therefore:

( Xj r M H V ( G , ( A 5 )

where Rt = GtEt-iGt'  + Wt. This step is equivalent to a forecast of Xt based on our 

knowledge of Xt.i.

At time t after observing Yt, our knowledge of Xt is updated by correcting our forecast 

based on information on Xt.i in the prior step, i.e.
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( X , k , r M H V (X „2 ,) (A6)

where

et =Yt - Y t = Y t - F tGtX t_t (A7)

X t = GtX t_1 + RtF't(yt + FtRtFt )~l et . (A8)

Xt =Rt + RtFi(Vt + FtRtF't y l FtRt (A9)

In A8 and A9,

R,Ft (Vt + FtRtFt )_1 is called the Kalman gain.

The estimation procedure iteratively continues from A5 to A9 until the Final destination.
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Appendix III 

Conditional distributions

(Reference: Gelman, A, Carlin, JB, Stem, HS and Rubin, DB. 1995. Bayesian data 

analysis. Chapman & Hall. New York, NY. Pp 28-58).

AIII.1. Preparations

AIII.1.1 Basics of Bayesian statistics

Given data y, the joint probability distribution for 0 and y  is a product of the prior 

distribution p (0 ) and the sampling distribution p(y|0):

p(0,y) = p(0)p(y|0) A3.1

Conditional on the known value of y  by using the Bayes’ rule, the posterior density is

m  -  ■*»<*> A3-2p (y ) p(y) jp (0 )p (y \0 )d 0

The core of the Bayesian data analysis is to develop the model p(0, y) and to find the 

posterior distribution p(0|y).

AIII.1.2 Posterior distribution of normally distributed data with a normal prior

If both the prior p(0) and a datum probability distribution p(y|0) are both normal,

P (0 )  =  - ? = e x p ( - - ! T ( 0 - m ) 2) A3.3
V 2ns 2s

and

P(y 1 &) =  j 1 , expC-^-Cy ~ 0)1) A3.4
■]2jcg\

then
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exp
1 1
2 + -2 

S O q

2 0

/  \  m y

0 2 v oy
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Let ju =
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A3.5

p(0|y) -  N(p, a2)

1 1 1where— = —  + —
a  s a.o

Given a normal prior distribution with hyperparameters of <5q and po

p(0) = N(0|po, Go2)

and the normally distributed data Y (Y = y i , . . yn), i.e. yi|0 ~ N<0, a2), the posterior 

distribution of 0, given Y, is:

p(0|Y) oc p(Y|e)p(0)

= p ( m p ( y , \ f f )
1=1

06 exP(-^r(^-A»)2)f[exp(--iT(y(. - o f )
2Tq i=i 2(7
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« exp(-i[i(e -  ft)2 + 4  i ( y ,  -  ef ] )
* Tq 1=1

With some algebraic manipulations as shown above, the above equation becomes:

p(0|yi,.. .,y„) = p(0| y ) = N(0|pn, I2,,) A3.6

where

1 n _
Ta

1 „
r02 + a 2

A.3.7

AIII.1.3 Gamma, inverse-Gamma, and scaled-inverse-^2 distributions

The Gamma distribution takes the form:

/ \ @ jt—i x.p(x) =  x  exp(— )ix*) e
A3.8

If x ~ Gamma(k, 0), then y =  Inv-Gamma(a, P). The inverse-Gamma distribution
x

(with x > 0) then is:

P(y) = ̂ - y <a+1)™P ( - AT(k) y
A3.9

With shape parameter a  (=k) and scale parameter p (= 0 1) as derived below:

d - \ ,  
—  8 (?) dy
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0 T(k)

k-1
exp

*\  /

0*T O

T O

< j  Y +1

- (* + D  ov1

r - i ^expI )
/ 0T1'

) -
V y  ,

A3.10

For p(y|0, a 2) with 0 known and a 2 unknown, the likelihood for a vector Y of n 

identically, independently distributed observations is

PCYlO2) ^  /T_" f^vrJ _____________________ ^  ( s r 2 \  2 ^ Mloc^ ' '  exp( - 4 -  I (yt -  0)* = (O’*) 2 expl
\2<t  i=i ) \ 2 a

A3.11

1 " 2 where s = — X (y, -  0) is a sufficient statistic. 
n i=i

Given an inverse-gamma conjugate prior density with hyperparameters a  and {3,

( a \
p (a *) oc (o'2) (a+1) exp z l

V cr2 j
A3.12

The posterior density for a  is 

pC^ly)06 p(a2)p(y|o2)

oc(<j2) (a+1)exp —y- (a 2) 2 exp - n s
~2o2
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pCc^ly) ~ Inv-Gamma(— + a,—  + /?) A3.14
2 2

AIII.2 Conditional distribution for pt> and Xy

Follow the same logic as above for the normally distributed data and re-arrange Eqn 3.3a

M
ys,t = Ms,t -  s)x(Q)i,t) + £ ,

i =1

to obtain

M
Ms,t = ys,t -  Y.kt(s)xi t

i= 1

Define

N <at = T,(ys t ~ k t(s,.)xt) (equivalent to ny)
5=1

where kt(s,-) is the s**1 row of the smoothing kernel matrix Kt. According to Eqn A3.7, 

the full conditional distribution of |Ht is

j2l + ̂ V

— L _|------- '*e
Ae c/e

To find X,e, define
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SSC = £ ( Y , - f l l - K x , ) \ X  - / d - K * , )
t=l

According to A3.14, the full conditional distribution of Xe is

0 I SS£ C X4 1  -~ IG ({ — +Ye,—  + 6e)

Similarly, define

i

SSV = ]£(* , - ocxt) \ x t - ocxt )
t-1

The full conditional distribution of Xv is

, . MT SSv
4 I “ ~ + + v^

The full conditional distributions of the xt’s are found sequentially using the Kalman 

filter (Meinhold and Singpurwalla 1986, West and Harrison 1997).
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Appendix IV 

Computing and graphing programs

Note: # stands for comments. Anything following it would not be executed in R 

WinBUGS.

# ‘Root.directory’ is the working directory on the C or any other drive. 

AIV 1. WinBUGS codes for the main spatiotemporal model

Model { # note T=12+l in my research.

# The observation Equations

for (t in 2:T) { 

for (s in offset[t]:(offset[t+l]-l)) { 

m.y[s] <- inprod(K[s, ], X[, t]) + mu[t] 

y[s] ~ dnorm(m.y[s], tau.y) } }

# The state Eqn

for (t in 2:T) { 

fo r(m in l :M ){

X[m, t] ~ dnorm(X[m, (t-1)], tau .x)} }

# The priors

for (i in 1:M) { m.X[i] <-0;

C.inv[ i] <- 0.05;

X[i, 1] -  dnorm(m.X{i], C.inv[i])} 

for (t in 2:T) {mu[t] ~ dnorm(0,100)}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tau.y ~ dgamma<0.1,0.1);

sig2.y<-l/tau.y;

tau.x ~ dgamma(.l, .1);

sig2.x<-l/tau.x;

}

Initials (a separate dat file)

Data (a separate dat file)

AIV. 2. R codes for data preparation and analysis

1. Codes to produce the supporting sites

sppt.site.fn<-function(data, sd, plot.it = F) {

# data: The original monitoring dataset; sd: the standard deviation of the Gaussian

# kernel. A buffering zone of the width of sd is added to surround the study region

# vertical distance between rows

ht <- (sd/2) * tan(pi/3)

# distance between rows

sw <- c(min(data$x) - sd, min(data$y) - sd) 

ne <- c(max(data$x) + sd, max(data$y) + sd)

# number of columns of supporting sites

n <-1 + round((ne[l] - sw[l])/sd)

# number of rows of supporting sites

m <- round((ne[2] - sw[2])/ht) 

if (!is.integer(ne[2]-sw[2]/ht - m)) m<-m+l

# margines of x, y coordinates at the sw comer of the study region

mn.x < - sw[l] - sd/2 

mn.y <- sw[2] - sd/2

# initialize die first two rows of supporting sites 

rwl.x <- numeric(length = n) 

rwl .y <- numeric(length = n) 

rw2.x <- numeric(length = n -1)
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rw2.y <- numeric(length = n -1)

# row 1

rw l.x[l] <- mn.x 

rwl.y[l:n] < -mn.y 

for(i in 2:n) {

rwl.x[i] <- rwl.x[(i -1)] + sd }

# row 2

rw2.x[l] <- sd/2 + mn.x 

rw2.y[l:(n-l)] <- ht + mn.y 

for(i in 2:(n -1)) { 

rw2.x[i] <- rw2.x[(i -1)] + sd } 

xx <- append(rep(c(rwl.x, rw2.x), 0.5 * m + 1), rwl.x) 

yy < -append(rwl.y, rw2.y) 

yy.n<-length(yy) 

for(i in 1:(0.5 * m)) {

yy <- append(yy, c(rwl.y, rw2.y) + ht * (i * 2))} 

yy.nc-length(yy)

yy <- append(yy, rwl.y + (m + 1) * ht) 

n <- length(yy)

nn <- as.integer(seq(l, n, by = 1)) 

sppt.site <- data.frame(cbind(nn, xx, yy))

if(sppt.site[yy.n, 3]==sppt.site[yy.n+l, 3]) sppt.site<-sppt.site[l:yy.n, ] 

dimnames(sppt.site)[[2]] <- c("sppt.site", "x", "y") 

if(plot.it) {

plot(sppt.site[, 2], sppt.site[, 3], type = "n", xlab = "X", ylab = "Y") 

text(sppt.site[, 2], sppt.site[, 3], labels = sppt.site[, 1], cex = 0.5)} 

sppt.site}

2. Codes to produce the bivariate Gaussian kernel

ker.fn <-function (sppt.data, site.data, sd) {

# sppt.data is a data frame bolding the x, y coordinates of the supporting sites
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# that are laid on a grid covering the study region.

# site.data is a list of data frames. Each data frame holds the time, site_id, and

# x,y coordinates of the sites at time t in columns.

# sd is the standard deviation of the Gaussian kernel. 

sx<-sppt.data$x; sy<-sppt.data$y;

ns <- length(sx); # number of supporting sites

T <- length(site.data); # total number of monitoring time points

nm<-numeric(length=T); # number of monitoring sites at time t

# Create the Gaussian kernel 

ker<-list(length=T); 

for(tinl:T){

nm[t] <-length(site.data[[c(t,3)]]); 

dx <-matrix(NA, nrow= nm[t], ncol=ns); 

dy <-matrix(NA, nrow=nm[t], ncol=ns); 

ker.t <-matrix(NA, nrow=nm[t], ncol=ns); 

for (i in l:nm[t]){

dx[i, ]<-dnorm(sx, mean=site.data([c(t,3,i)]], sd=sd); 

dy[i, ]<-dnorm(sy, mean=site.data[[c(t,4,i)]], sd=sd);

}

ker.t <-dx*dy;

# scale the sum of the squared kernel at each monitoring site to 1 

d<-sqrt(rowSums(ker.t *ker.t));

for (i in 1 :nm[t]){ker.t [i,]<-ker.t [i,]/d[i]}; 

dimnames(ker.t) <- NULL; # Remove dim names 

ker[[t]]<-t(ker.t); } 

retum(ker)}

3. R codes to pool the kernel matrices for the WinBUGS

ker.pooled<-rbind(ker{[3]], ker[[4]]) # use only the 12 measured months.

for(i in 5:14){ker.pooled<-rbind(ker.pooled, ker[[i]])} 

dimnames(ker.pooled)<-NULL
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4. R codes to produce the offset vector for the WinBUGS

# N is a vector holding the number of sites measured at each time period.

# T is the total time point (i.e. 12 in my research) 

offset<-numeric(length=(T+1)); 

offset[l]<-NA;

offset[2]<-l;

for (i in 3:T) {offset{i]<-offset[2]+sum(N[(3-l):(i-l)])}; 

offset[T+l ]<-sum(N[ !is.na(N)])+l;

(sum(N[!is.na(N)]); offset

# Check if the largest entry of the offset vector equals total number of sites +1

# It is very important to get this vector right).

5. R codes to produce the data list for the WinBUGS

data.list<-list(T, M, offset, y, ker)

# T = total time points +1, M = number of supporting sites.

# offset is the offset vector created above.

# y is the log_so2 data vector

# ker is the pooled kernel matrix. 

names(data.list)<-c(T, 'M', 'offset', 'y', ‘K’) 

writeDatafileR(data.list, 'Root.directory/data.txt')

# download the above writeDatafileR function from the Internet.

# WinBUGS accept capital ‘E’, but not small ‘e’, in scientific notation, and

# no spaces between any numbers preceding the ‘E’.

# All these can be edited out by in MS Word by using the ‘replace’

# function in the ‘edit’ pull down menu.

# The Initials list can be created in a similar way according to the parameters

# to be estimated in the WinBUGS model.

6. R codes to produce the semivariograms and the graph

geo.dat <- as.geodata(cbind(data$x, data$y, data$log_so2)) 

variog.dat <- variog(coords = geo.dat$coords, data = geo.dat$data,
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trend='2nd', method-matem', kappa=0.45, type=’modulus')

cov.dat <- variofit( variog.dat, ini.cov.pars=c(0.25,120), cov.model = "matem",

kappa=0.45)

plot(variog.dat, xlab='Distance (km)',ylab='Semivariogram') 

lines(cov.dat)

legend(x='topleft', legend=c('Jun 2001'), bty='n') # replace the legend 

text(200,0.02, labels=expression(~tauA2)) 

text(375,0.02, labels=expression(~sigmaA2)) 

text(545,0.02, labels=expression(~phi))

text(265,0.02, labels='= 0.20') # replace the value following the labels =

text(435,0.02, labels='= 0.15') # replace the value following the labels =

text(605,0.02, labels='= 230') # replace the value following the labels =

7. R code for the cluster analysis and plotting the results

tree.dat<-hclust(dist(poly.attributes.dat), method = "ward") 

plot(tree.dat, ylab = "Height", cex=0.3) 

group.dat<-cutree(tree.dat, k = 4) # replace the k value

AIV.3. SAS codes
(These were provided by Dr. Igor Burstyn)

1 The Linear mixed effects model 

Proc import out=my.data

datafile=”root.directory:\my.Excel.data file” */ehange file name here

dbms=excel replace;

sheet=”my.Excel.data$”;

getnames=yes;

mixed=no;

scantext=yes;

useddate=yes;

scantime=yes;

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



proc mixed data=my.data covtest; 

class location time;

model log_so2=/outp=predicted_value; 

random int/subject=location; 

random int/subject=time; 

run;

2 Temporal semivariogram

libname Work 'c:\programs\sas\libraries\work'; 

data v;

set data.file.name; */change file name here

z=0;

run;

proc variogram data=v outv=outv; 

compute lagd=l maxlag=12 robust;

coordinates xc=time /*month from 1 to 12*/ yc=z /*z=0=constant*/;

var logso2;

run;

title 'OUTVAR= Data Set Showing Temporal Variogram Results for ln(S02)'; 

data outv; set outv;

if vamame-log_so2' then name='S02'; proc sort data=outv; by name; proc print 

data=outv label;

var lag count distance variog rvario;

by name;

run;

data outv2; set outv;
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vari=variog; type = 'regular'; output; 

vari=rvario; type = 'robust'; output; 

run;

title 'Standard and Robust Semivariogram for ln(S02)'; 

proc sort data=outv2; 

by name;

proc gplot data=outv2;

plot vari*distance=type / frame vaxis=axis2

haxis=axisl;

symboll i=join 1=1 v=star; 

symbol2 i=join 1=1 v=square; 

axisl minor=none

label=(c=black 'Lag Distance (month)') /* offset=(3,3) */; 

axis2 order=(0 to 1 by 0.1) minor=none 

label=(angle=90 rotate=0 c=black 'Variogram')

/* offset=(3,3) */; 

run;

3. Random effects model comparing dendrogram cut effects on variances

* Codes for the four class cut. Replace variable name for the seven class cut 

proc mixed data=data method=ml covtest; 

class poly_grp4 poly_id; 

model y=;

random poly_grp4 poly_id(poly_grp4); 

run;
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Appendix V 

Coordinates of the 64 supporting sites used for the 

spatiotemporal modeling

No. Sitex Sitey No. Sitex Sitev
1 7154.709 11369.27 33 7954.709 12408.5
2 7354.709 11369.27 34 8154.709 12408.5
3 7554.709 11369.27 35 7254.709 12581.7
4 6854.709 11542.47 36 7454.709 12581.7
5 7054.709 11542.47 37 7654.709 12581.7
6 7254.709 11542.47 38 7854.709 12581.7
7 7454.709 11542.47 39 8054.709 12581.7
8 7654.709 11542.47 40 8254.709 12581.7
9 6954.709 11715.68 41 7354.709 12754.91

10 7154.709 11715.68 42 7554.709 12754.91
11 7354.709 11715.68 43 7754.709 12754.91
12 7554.709 11715.68 44 7954.709 12754.91
13 7754.709 11715.68 45 8154.709 12754.91
14 7054.709 11888.88 46 8354.709 12754.91
15 7254.709 11888.88 47 7254.709 12928.11
16 7454.709 11888.88 48 7454.709 12928.11
17 7654.709 11888.88 49 7654.709 12928.11
18 7854.709 11888.88 50 7854.709 12928.11
19 7154.709 12062.09 51 8054.709 12928.11
20 7354.709 12062.09 52 8254.709 12928.11
21 7554.709 12062.09 53 8454.709 12928.11
22 7754.709 12062.09 54 7154.709 13101.32
23 7954.709 12062.09 55 7354.709 13101.32
24 7254.709 12235.29 56 7554.709 13101.32
25 7454.709 12235.29 57 7754.709 13101.32
26 7654.709 12235.29 58 7254.709 13274.52
27 7854.709 12235.29 59 7454.709 13274.52
28 8054.709 12235.29 60 7654.709 13274.52
29 7154.709 12408.5 61 7854.709 13274.52
30 7354.709 12408.5 62 7354.709, 13447.73
31 7554.709 12408.5 63 7554.709 13447.73
32 7754.709 12408.5 64 7754.709 13447.73
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Appendix VI 

History series of the spatiotemporal model parameters

0 .4  

0.2
5 .5 5 1 1 2 E -1 7  

- 0.2 
-0 .4  

- 0.6

8 0 0 0  1 0 000  1 5 0 0 0  2 0 0 0 0

iteration

0.6 
0 .4  

0.2 
0.0 

- 0.2 
-0 .4

8 0 0 0  1 0 0 0 0  1 5 000  2 0 0 0 0

iteration

0 .4  

0.2 

0.0 

- 0.2 

-0 .4

8 0 0 0  1 0 000  1 5 000  2 0 0 0 0

iteration

0 .4

0.2

0.0

- 0.2

-0 .4

mu[5] c h a in s  1 :2

8 0 0 0  1 0 0 0 0  1 5 000  2 0 0 0 0

iteration

m u[4] c h a in s  1 :2

 1---------------------1-----------------------------------------------------1-----------------------------------------------------r

m u[3] c h a in s  1:2

 1---------------------1-----------------------------------------------------1-----------------------------------------------------r

m u[2] c h a in s  1 :2
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0.2

5 .5 5 1 12E -17  

- 0.2 

-0 .4  

- 0.6

8 0 0 0  1 0 000  1 5 000  2 0 0 0 0

iteration

0 .4

0.2

0.0

- 0.2

-0 .4

mu[7] c h a in s  1 :2

800 0 10000 15000 20000
iteration

mu[6] c h a in s  1 :2

mu[8] c h a in s  1 :2
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I | I |
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iteration
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m u[10] c h a in s  1:2

8 0 0 0 10000 15000 20000
iteration

m u[11] c h a in s  1:2

0 .6 - 

0 .4 -  

0 .2 -  

0 .0 -  

- 0.2  -
 1 , 1--------------------------------------------------------------------------------------------------------------1—

8 0 0 0  1 0 000  15000  2 0 0 0 0

iteration

m u[12l c h a in s  1:2

800 0 10000 15000 20000
iteration

m u[13] c h a in s  1:2

5 .5 5 1 12E -17

8 0 0 0 10000 15000 20000
iteration
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0 .1 7  

0 .1 6  

0 .1 5  

0 .1 4

8 0 0 0  1 0 0 0 0  1 5 000  2 0 0 0 0

iteration

0 .5

0 .4

0 .3

0.2

0.1

Notes: mu[2] ~ mu[13] are equivalent to pi to ]in, and sig2.x and sig2.y are equivalent to 

Au and Xe in the spatiotemporal model.

i i i
8 0 0 0  1 0 000  15000

iteration

sig 2 .y  c h a in s  1:2
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Appendix VII 

SAS modeling results

It was proposed that a comparison be made between this spatiotemporal model and a 

previously established random-effect linear model estimated through the Proc Mixed 

procedure using the Best Linear Unbiased Estimation method in SAS (Dr. Burstyn, pers. 

comm.). The SAS model took the form:

Y = Z|3 + e

where Y is a vector of observed ln(SC>2), Z a matrix of monitoring sites and time points,

P a vector of unknown random-effects parameters, e a vector of unknown independent 

and identically distributed normal (Gaussian) random variables with mean 0 and variance 

o 2.

The SAS codes that treat both the monitoring sites and the monitoring time as random- 

effect are shown in Appendix VI. The model results are listed in Table A5.1, which show 

a 39% greater of spatial variance than temporal variance. The relationship between the 

model fitted and the observed ln(SC>2), as well as the residuals of the model fitted values 

are shown in Figure A5.1. As typical with any random-effect model, the fit of this 

specific random-effect model to the SO2 data is sufficiently well. The residuals are 

generally normally distributed, though slightly left-skewed. This model also handled the 

problematic observations well. These results are broadly comparable to those of the 

spatiotemporal model as shown in Figure 3.7, with the spatiotemporal model producing a 

better residual distribution. The fitted ln(S02) values of the two models are linearly 

correlated (Figure A5.2), with an adjusted R = 0.75.

This SAS model has three key assumptions, i.e. normality, homoscedasticity and 

independence. Unfortunately, as the SO2 data arose from a spatiotemporal random 

process, measurements of the ambient SO2 concentrations were both temporally and

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



spatially correlated. The value of individual SO2 measurements is random, but not the 

location where the value is obtained.

One weakness of this SAS model emerges if one wants to use it for predicting die 

ambient SO2 concentrations for new locations in the study region. The entire model needs 

to be re-computed and the results could be variable from time to time when a new 

prediction is performed. In contrast, there is no such a requirement for re-computation of 

the spatiotemporal model per se in this usage.
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Table A5.1. Covariance Param eter Estimates of the SAS model

Covariance Param eter Subject Estimate
Standard

Error
z

Value Pr Z
Intercept Location 0.25 0.01 22.19 <.0001
Intercept Time 0.18 0.08 2.34 0.0096
Residual 0.14 0.00 67.45 <.0001

Fit Statistics

-2 Res Log Likelihood 12403.3

AIC (smaller is better) 12409.3

AICC (smaller is better) 12409.3

BIC (smaller is better) 12403.3
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Figure A5.1. Positive linear relationship between the SAS modeled and the 

measured ln(S02> (a) and the residuals of the SAS modeled ln(S02) (b). The red dots 

in panel (a) are the problematic observations as shown in Figure 3.7.
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ST 
fit

Figure A5.2. Linear correlation between the ln(SC>2) fitted by SAS (SAS fit) and by 

the spatiotemporal mode (ST fit)
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