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Abstract

The spatial distributions of animals have fascinated scientists for centuries. Un-

derstanding where animals go and why helps ecologists conserve their popula-

tions. Technological advances during the 21st century have allowed scientists

to record the spatial location of animals over time, motivating the development

of models that explain these patterns. Animals use external factors, such as

qualities of their environments, and internal processes, such as memory, when

deciding where to move. Interest in models that relate these internal processes

to movement has increased in the last decade. In this thesis, I expand on ex-

isting work to model how perception, memory, and learning affects the way

animals move. The methods described here incorporate different mathematical

perspectives with a collective goal of identifying how moving animals account

for temporal variation in their environments, predictable or unpredictable.

Temporal environmental variation results from many biological processes.

When this variation is directly caused by animals themselves (e.g., through re-

source depletion), these animals navigate away from patches they visited (and

depleted) recently. Resources may also vary independently from the animal, and

when this variation is predictable, animals may benefit from learning schedules

of resource availability. Chapter 2 describes a model that uses animal tracking

data to identify patch revisitation patterns. The model’s ability to quantify

these patterns was verified on simulated data before being fit to brown bear

(Ursus arctos) data from the Canadian Arctic. These bears live in an envi-

ronment where food resources vary seasonally, and the model suggested that

they use spatiotemporal memory to leverage these predictable patterns. Using

advanced model-fitting techniques to obtain maximum likelihood estimates and

confidence intervals, the model suggested that brown bears wait approximately
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one year before navigating to resource-rich patches they visited previously.

When temporal variation in an animal’s environment is not so predictable,

animals must learn and adjust their foraging behaviour to survive. Psychologists

and ecologists have theorized that animal learning resembles Bayesian inference,

suggesting that animals refine their prior knowledge by incorporating the out-

come of subsequent experiences (data). Chapter 4 incorporates this theory into

a mechanistic model that simulates how animals learn, using Bayesian Markov

chain Monte Carlo sampling to model how animals optimize a task with a quan-

tifiable outcome. Using a mechanistic model that simulates the movement of

spatially informed foragers within a home range, we apply this framework to

predict how animals may learn to adjust to rapid and unpredictable changes in

their environments. At larger spatial scales, predictable temporal variation in

the environment may give rise to migratory behaviour. Chapter 5 presents a

model that can statistically identify the beginning and end of migration from

animal tracking data. This model can be used to partition animal location data

into biologically reasonable behavioural segments for further analysis.

Movement ecologists have used statistical models to identify important bio-

logical patterns from data, and mechanistic models can incorporate causal links

to make important predictions about how animals may move in the future. The

work presented in this thesis advances movement ecology by introducing statis-

tical and mechanistic tools that describe how cognitive processes inform animal

foraging patterns.
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1 General introduction

1.1 Movement ecology as a discipline

Almost all animal species must move to survive. Moving allows these animals

to acquire nutrients, evade predation, or find conspecifics to reproduce with.

As one of the most fundamental components of an animal’s survival, ecologists

have been fervently interested with studying movement for decades. The field of

"movement ecology" (Nathan et al., 2008) has expanded into a discipline of its

own and has garnered widespread attention. The effects of anthropogenic global

change on these movement patterns, and their corresponding consequences for

animal population persistence, have elevated movement ecology’s importance

(Tucker et al., 2018). Understanding not just where animals go, but why they

decide to go there, allows ecologists to pinpoint how to manage and conserve

at-risk animal populations.

For centuries, ecologists have learned about animal behaviour and cogni-

tion by observing how animals move. Ecological pioneers like Charles Darwin

observed and documented large-scale migrations long before methods existed

to rigorously track and/or study these patterns (Darwin, 1839). In the early

20th century, live-traps were used to estimate the size of spatial areas used by

non-migratory animals, which came to be known as an animal’s "home range"

(Burt, 1940, 1943). Methods for characterizing the size and shape of animal

home ranges continue to evolve (Worton, 1989; Moorcroft et al., 2006; Fleming

and Calabrese, 2017), and in turn so has the desire to identify what qualities

constitute a valuable home range. Ideal free distribution theory (Fretwell and

Lucas, 1969; Calsbeek and Sinervo, 2002), which postulates that animals dis-

tribute themselves according to the spatial distribution of resources, and optimal

foraging theory (Charnov, 1976; Krebs et al., 1978), which introduces energetic
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and economic principles to suggest foraging procedures that would maximize the

fitness of wild animals, are among the many theoretical frameworks developed

to answer these questions. These ideas influence how we think about animal

movement to this day (Fagan et al., 2022; Martin et al., 2022; Netz et al., 2022;

Railsback, 2022; Scott and Resetarits, 2022). The seminal work of Charnov

and others focused the budding movement ecology community on how spatial

heterogeneity in resources leads to spatial heterogeneity in animal distributions.

The application of the use-available model design to animal movement data in-

spired the development of widely used resource selection functions (Manly, 1974;

Johnson, 1980; Manly et al., 1993; Arthur et al., 1996; Boyce and McDonald,

1999). These methods rely on the proposition that animals can only occupy

regions that are spatially available to them, and thus their habitat preferences

must be analyzed within that domain of availability. Despite decades of inno-

vation and research, identifying why animals go where they do is still one of the

most important questions facing ecologists today (Nathan et al., 2008, 2022).

The 21st century brought about technological advances that advanced move-

ment ecology through animal tracking, remote sensing, and more. Live-traps

and direct observations have been replaced by tracking apparatuses that, when

attached to wild animals, record a discrete sample of the animal’s movement

path. These data have been crucial for advancing movement ecology in ter-

restrial and marine systems (Hussey et al., 2015; Kays et al., 2015; Wilmers

et al., 2015). This trend will likely continue as animal tracking technology

evolves in the future (Jetz et al., 2022). Increased data availability has been

accompanied by innovative mathematical models. Advances in computational

technology have produced complex numerical techniques ranging from numer-

ical analysis of differential equations to simulation of animal movement paths

(Moorcroft et al., 2006; Schick et al., 2008; Tang and Bennett, 2010). Perhaps
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the most notable consequence of this uptick in movement ecology research has

been its application to conservation (Fraser et al., 2018). Understanding animal

movement and space-use has clear conservation implications and the movement

ecology has grown to address these increasing concerns (Barton et al., 2015;

Hays et al., 2019; Davidson et al., 2020). To this day, there is still much we do

not know about animal movement, motivating the development of models that

can fill important knowledge gaps.

Fitting models to animal tracking data can uncover new details about the

cognitive and behavioural drivers of movement. Nathan et al. (2008) char-

acterized animal movement as a complex process resulting from external and

internal factors. From this framework, an animal’s decision to move somewhere

would come about as a result of its internal interpretation of the external envi-

ronment, limited by its locomotive and navigational capabilities. Notably, the

majority of movement ecology studies have focused solely on how these exter-

nal factors affect movement, often ignoring internal processes (Joo et al., 2022).

Animal movement depends heavily on learning and spatial memory, as has been

demonstrated in laboratory experiments for decades (Castro and Wasserman,

2010; Jacobs and Menzel, 2014). Uncovering these phenomena in the wild typ-

ically requires coupling high-resolution tracking data with mathematical and

statistical models (Fagan et al., 2013; Lewis et al., 2021). Such approaches have

suggested that home range emergence and migration, along with many other

important behavioural patterns, would be impossible without spatial memory

(van Moorter et al., 2009; Merkle et al., 2019; Ranc et al., 2022). There is still

much to be learned about exactly how animals perceive and memorize the en-

vironment around them, though, and modelling the movements of wild animals

is likely to provide insight on the problem (Lewis et al., 2021).
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1.2 Spatiotemporal cognition in wild animals

The cognitive capabilities of animals have been of great interests to biologists

and psychologists alike for decades. For many years, animals were a proxy used

by psychologists to learn about human cognition, inspiring pioneering work on

conditioning, discrimination learning, and sociality (Pavlov, 1927; Rescorla and

Wagner, 1972; de Waal, 1991). Neuroscientific approaches have pinpointed brain

regions that control spatial cognition in animals, enhancing our understanding

of animal and human cognition (O’Keefe and Nadel, 1978). The popularity of

Bayesian statistics has led cognitive ecologists to suggest that animals may learn

in a way that resembles Bayesian inference (Green, 1980; Berger, 1985; Valone,

2006). Recently, interest in animal cognition has expanded past its application

to humans due to conservation and management applications. In many cases,

laboratory experiments often fail to encompass the overwhelming complexity

of real-world environments, focusing recent work on spatial cognition in wild

animals (Jacobs and Menzel, 2014; Pritchard et al., 2016). Identifying how an-

imals memorize the spatial location of landmarks, patches, or other important

areas, a process known as spatial memory, has emerged as an important study

area for movement ecologists (Collett et al., 2013; Fagan et al., 2013; Vámos

and Shaw, 2022). Spatial memory appears to be pivotal in forming many fun-

damental movement patterns (Clayton and Dickinson, 1998; van Moorter et al.,

2009; Riotte-Lambert et al., 2015; Jesmer et al., 2018; Merkle et al., 2019), but

different life history strategies may necessitate the use of different memory pro-

cesses (Mueller and Fagan, 2008; Fagan et al., 2013). Specifically, incorporating

temporal variability in an animal’s landscape, and thus, its spatial memory,

has been studied for animals with a variety of movement strategies (Schlägel

and Lewis, 2014; Oliveira-Santos et al., 2016; Abrahms et al., 2019). "Spa-

tiotemporal memory" in wild animals has not been extensively studied as there
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is no all-encompassing framework for how these mechanisms facilitate optimal

foraging in different animal populations.

Identifying patterns of spatial (or spatiotemporal) cognition in wild animals

typically involves developing mathematical models and, if possible, fitting them

to animal tracking data (Fagan et al., 2013). The wealth of modelling approaches

take on many mathematical forms that can typically be classified as mechanistic

or statistical. Statistical models characterize and identify consistent patterns,

such as memory, from animal tracking data. Spatial memory is often quantified

using the rate at which animals revisit areas they have been before (Berger-Tal

and Bar-David, 2015). An exceptional number of these "recursive" movements

in a dataset suggests that animals can navigate back to areas they visited previ-

ously (Merkle et al., 2014; Falcón-Cortés et al., 2021; Ranc et al., 2022). Similar

approaches have been applied to migratory animals (Merkle et al., 2019; Kürten

et al., 2022). More complex techniques have explored the temporal context

of these revisitations, unearthing important knowledge about animal foraging

(Schlägel and Lewis, 2014; Lafontaine et al., 2017). These models must statisti-

cally eliminate the possibility that patterns observed in the data could have arose

from memory-less movement, which often requires designing competing alter-

native hypotheses (Fagan et al., 2013). In some cases, eliminating memory-less

mechanisms for movement is difficult, but mechanistic models address this issue

by directly including a mathematical causality between variables. These models

need not incorporate data and can instead attempt to simulate realistic move-

ment patterns for individuals or populations. These simulation-based analyses

can fill important knowledge gaps about animal cognition and movement (van

Moorter et al., 2009; Mueller et al., 2011; Potts and Lewis, 2016). An exciting

new body of work has focused on how mechanistic and statistical models can be

linked, mathematically and biologically (Potts et al., 2022). Ultimately, both
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approaches are useful and can be especially powerful when taken together.

Developing models for how animals incorporate spatiotemporal memory into

their movements will connect empirical observations with ecological theory. The

utility of memory-informed movement, and consequently the way that animals

incorporate memory into their movement decisions, depends on the spatiotem-

poral heterogeneity and predictability of their environments (Mueller and Fa-

gan, 2008; Fagan et al., 2013). For example, when resources vary temporally

but this variation is predictable, animals may move cyclically between resource-

rich areas, and the temporal context to spatial memory would heavily influence

these movements (Mueller and Fagan, 2008). These types of movements can

be characterized as migration or seasonal home-range use depending on their

scale, but may be brought about by similar cognitive mechanisms (Dingle and

Drake, 2007). Many of these theoretical predictions have not been confronted

with animal tracking data and some of them have not even been addressed with

data-free mechanistic models. The links between learning and animal move-

ment, which are vital in an age where animals are frequently met with novel

stimuli, are under-explored (Lewis et al., 2021). True learning is more difficult

to observe in the wild, and typically requires environments rife with novel and

unpredictable change. Translocation experiments (Jesmer et al., 2018; Falcón-

Cortés et al., 2021) can address the problem, but the way animals learn to adjust

to environmental change is a still major knowledge gap in movement ecology.

Modelling advances can close these gaps and enhance our understanding of why

animals go where they do.

1.3 Dissertation outline

The work described below represents an array of statistical and mechanistic

approaches for characterizing spatiotemporal memory and learning processes in
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animals. These models determine how animals decide where to go and when,

with a particular emphasis on the temporal context of these decisions. The mod-

els encompass a spectrum of movement strategies, ranging from home ranging

to migration, and mathematical formulations, ranging from simulations to sta-

tistical functions. The work was made possible by innovative numerical and

computational techniques that are relatively new to movement ecology, promot-

ing the possibility of future work expanding on these approaches. Chapter 6

synthesizes the inference drawn from modelling efforts discussed in Chapters

2-5.

Chapter 2 contains methodological details behind the development of a sta-

tistical movement model used to identify the spatial and temporal characteristics

of revisitations within an animal’s home range. The model builds on existing

statistical techniques to identify whether animals use spatial memory to navi-

gate to previously visited locations, and if they do, how long they wait before

revisiting these locations. The timing and strength of this spatial signal are

estimated, along with other behavioural qualities, as parameters, by fitting the

model to tracking data. The temporal complexity of some parameters in the

model made it difficult to fit with simple, traditional methods. We applied a re-

cently developed likelihood profile algorithm for identifying accurate confidence

intervals to ensure we properly handled the uncertainty of our results. Special

cases of the model (with certain parameter values fixed) correspond to different

hypotheses about memory and movement, so we used information theory to elu-

cidate which hypothesis was most likely to be true. We verified that the model

properly identifies memory-informed and memoryless movements using a simu-

lation study, which also estimated the amount of data required for reasonable

model inference.

In Chapter 3 we fit the model to 21 adult brown bears (Ursus arctos) collared
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in the Mackenzie Delta region of the Northwest Territories, Canada. Brown

bears are omnivorous and typically eat many different foods. In the Canadian

Arctic, these foods are not available year-round and thus remembering the tem-

poral availability of food resources is important for brown bears. We fit the

model described in Chapter 2 to the bears and identified temporally consistent

spatial revisitations in a majority of the individuals. We found that brown bears

typically navigated towards regions of their home range that they visited ap-

proximately one year prior, suggesting that they are aware of seasonal patterns

in food availability. Our model outperforms memory-less approaches even when

the temporal availability of the resources is explicitly defined.

Chapter 4 discusses a mechanistic model that simulates how animals learn.

The model builds on theoretical work suggesting that animals learn and make

decisions using principles similar to Bayesian inference. Taken literally, this

would suggest that Bayesian Markov chain Monte Carlo (MCMC) samplers can

be used to simulate animal learning, given some sort of task with "parameters"

and a "reward" function. We applied this framework to a foraging task, which

simulates the movement of a spatially informed, non-migratory animal. The

model yields notable conclusions about behavioural plasticity, adaptation to

rapidly changing environments, and learning. Our framework is flexible and

can be applied to many other tasks, and there is potential to corroborate the

model with laboratory experiments or even empirical data from wild animals.

Chapter 5 summarizes a model that quantifies the temporal extent of migra-

tion in animals. Migration is a widespread, complex, and diverse behavioural

process, but there are still not many approaches that can characterize migra-

tion phenology for a variety of ecological systems. The approach described

here uses simple movement metrics (step lengths and turning angles) to identify

abrupt behavioural shifts in animal movement patterns. We developed a grid-
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based temporal likelihood optimization approach to accurately identify these

timings. In addition to a brief simulation analysis, we tested the model on

three case studies: ferruginous hawks (Buteo regalis), barren-ground caribou

(Rangifer tarandus groenlandicus), and the brown bears from Chapter 3. The

model identified migrations for the hawks and caribou, and failed to identify any

consistent "migratory" patterns in the non-migratory bears. The confidence in-

tervals for our model parameters, including those for migration timings, were

obtained using parametric bootstrapping and indicate that these quantities can

be estimated with high certainty.

Chapter 6 summarizes and synthesizes the analysis conducted in Chapters

2-5. This includes a discussion of how these mathematically unique modelling

approaches connect with one another to answer the same questions in ecology:

how animals know where to go, and why they go where they do. There is so

much more to learn about animal cognition and movement, and Chapter 6 de-

scribes how the results from Chapters 2-5 can be elaborated on to fill important

knowledge gaps in movement ecology. Specific attention is given to applications

with significant implications for wildlife conservation and management.
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2 Detecting seasonal episodic-like spatiotempo-

ral memory patterns using animal movement

modelling

2.1 Introduction

Animal movement modelling has rapidly emerged as a subfield of ecology (Nathan

et al., 2008) due to advances in animal tracking (Kays et al., 2015) and compu-

tational technology (Kristensen et al., 2016). The products of these advances

have been widely applied to conservation and management (Fortin et al., 2005;

Graham et al., 2012; Gerber et al., 2019). These models allow ecologists to un-

derstand the size and shape of an animal’s home range (Worton, 1989) as well

as what habitat attributes animals prefer on a finer scale (Gaillard et al., 2010).

To address the latter, ecologists have developed tools such as resource selec-

tion functions (RSFs; Boyce and McDonald, 1999) and step selection functions

(SSFs; Fortin et al., 2005). These allow for inference on an individual’s habitat

preference in what is known as third-order selection (Johnson, 1980; Thurfjell

et al., 2014). The fine temporal and spatial resolution of these models allows

ecologists to draw inference about a variety of behavioural processes, such as

how an animal’s movement rates are affected by its environment (Avgar et al.,

2016; Prokopenko et al., 2017) and how movement patterns change at different

temporal scales (Oliveira-Santos et al., 2016; Richter et al., 2020). And yet,

even with the advances that have been made in animal movement modelling,

some notable behavioural mechanisms are often not considered.

Spatial memory, defined by Fagan et al. (2013) as memory of the spatial con-

figuration of one’s environment, is one of the most important influences on ani-

mal movement patterns. The idea of episodic-like memory, which hypothesizes
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that animals can remember the "what", "where", and "when" associated with

specific events, is often intertwined within the intersection of spatial memory

and foraging (Munoz-Lopez and Morris, 2009; Eacott and Easton, 2010; Allen

and Fortin, 2013; Crystal, 2018). Many well-known behavioural processes, such

as home range emergence (van Moorter et al., 2009; Riotte-Lambert et al., 2015),

food caching (Clayton and Dickinson, 1998), and even migration (Bracis and

Mueller, 2017; Merkle et al., 2019), require the ability to remember the spatial

location of landmarks or regions, which often requires some form of episodic-like

memory of previous events. Animal species use spatial memory in different ways

(Fagan et al., 2013), and the benefits an animal may receive from memory of-

ten depend on its environment (Mueller and Fagan, 2008; Mueller et al., 2011).

Theory on animal cognition has proposed that animals encode this spatial in-

formation in their brain as a cognitive map (Tolman, 1948; O’Keefe and Nadel,

1978). Ecologists have proposed multiple theories for the structure of these

maps, with debate arising over whether a spatially explicit Euclidean map or

a network-based topological map is more accurate (Bennett, 1996; Sturz et al.,

2006; Normand and Boesch, 2009; Asensio et al., 2011). The true structure of

these cognitive maps in animals is still unclear and may vary in different animal

species. In the least, a cognitive map is an effective mathematical vehicle to

quantify how animals remember to revisit valuable places within their home

ranges. The link between memory and movement has long interested ecolo-

gists (in the case of Siniff and Jessen, 1969, for the purposes of home range

modelling), but there are still ample opportunities for modelling.

Attempts to model these revisitations have proposed cognitive maps with

spatial and temporal components, but have neglected to make inference about

the specific nature of these influences. While many such approaches exist

(Dalziel et al., 2008; Avgar et al., 2013, 2015; Vergara et al., 2016; Harel and
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Nathan, 2018), a common and simple technique involves integrating cognitive

maps into SSFs (Merkle et al., 2014; Oliveira-Santos et al., 2016; Marchand et al.,

2017). A notable example is the model developed by Schlägel and Lewis (2014),

where cognitive maps are based on time since last visit (a form of episodic-like

memory) for each point in space. It is proposed that animals will only be en-

couraged to revisit locations when they have not visited them recently, as seen

in some ecological systems (Davies and Houston, 1981). This model was used

to draw inference from gray wolf (Canis lupus) movement patterns (Schlägel

et al., 2017), but it does not provide detail on when animals choose to revisit

portions of their home range. The model only considers the last visit to any

point in space, disregarding any previous visits to that point. Time since last

visit alone is insufficient to model the complex time-dependent spatial memory

that inspires movement patterns described above, because waiting longer to re-

visit such locations may not always be beneficial for the animals (e.g., trees that

lose their ripe fruit after too long).

Here we describe a model that mathematically estimates the timing and

precision of these seasonally recursive movements (Fig. 2.1). We employ in-

novative model fitting techniques (Kristensen et al., 2016; Fischer and Lewis,

2021) brought about by advances in computational methods to detect patterns

in animal location data. Our modelling framework characterizes the movement

of simulated or real animals according to four hypotheses: (N) the null hy-

pothesis, assuming random walk behaviour; (R) the resource-only hypothesis,

assuming animals move entirely according to nearby resources without memory;

(M) the memory-only hypothesis, assuming animals exhibit seasonal revisita-

tion patterns within their home range with a prescribed mean lag time; and

(RM) the resource-memory hypothesis, assuming animals are simultaneously

influenced by local resources and spatial memory. This model expands on pre-
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vious work, which has provided detail on how animals react to previously visited

locations (Schlägel and Lewis, 2014), how animals react to familiar locations at

different times of day (Oliveira-Santos et al., 2016), and how memory may decay

over time (Avgar et al., 2015). Riotte-Lambert et al. (2017) have even devel-

oped a movement metric capable of gauging how often recursions are present in

animal movement data. We add to this rich array of literature by developing

a model that quantifies how long animals may take to revisit certain regions

of their home range, and how much a resource landscape plays a part in these

movements, by analyzing the animal’s entire movement path as opposed to the

recursion events themselves. The model is not intended to answer the question

of if animals use memory, but instead how, testing the prevalence of temporally

consistent recursive movements in foraging animals.

To test our model, we first simulated movement tracks according to the

model’s prescribed rules on simulated environments, subsequently analyzing

how sample size affects both model selection and parameter estimation. We

found that even with data sizes equivalent to roughly one year of animal track-

ing data, the model accurately identified movement patterns consistent with the

four different hypotheses and produced accurate parameter estimates. These re-

sults improved when tracks with more locations were simulated. We then fit

the model to telemetry data from a population of Arctic grizzly bears (Ursus

arctos) and performed the same simulation analysis with real landscape data

and movement parameters estimated for the bears. These bears live in a harsh

environment where food resources are seasonal (Edwards and Derocher, 2015)

and sparsely distributed (Edwards et al., 2009). We found a heavy influence of

spatiotemporal memory in the bears’ movement patterns, although we deter-

mined that more data may be required to analyze these populations than for

simulated movements.
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2.2 Materials and Methods

Here we introduce a new modelling framework based on step selection functions

that accounts for temporally consistent revisitations by animals that forage

on ephemeral resources (Fig. 2.1). We developed a nested structure of four

models in discrete time and continuous space (see Table 2.1 and Table A.1

for a summary of the parameters and models) to address our four alternative

hypotheses (N, R, M, RM). Our model fitting process, made possible through

advanced automatic differentiation techniques, allows for further inference about

the specific nature of these cognitive mechanisms. The novelty and complexity

of the computational processes used to analyze animal location data with our

model motivated multiple simulation-based studies to identify the statistical

power and parameter estimability of our models.

2.2.1 Modelling framework

We fit a hidden Markov model (HMM) to animal movement data to incorporate

switching between stationary (or quasi-stationary) and non-stationary states.

HMMs are a first-order Markov process, implying that the animal’s current

state is entirely dependent on its most recent state. This approach is common

in movement ecology due to the multitude of behavioural strategies observed

in foraging animals (Morales et al., 2004; Jonsen et al., 2013). We employ

this approach to differentiate resting or other stationary behaviour from what

the model would otherwise identify as spatial memory. Our model identifies

time lags at which the animal moves particularly close to its previously visited

locations, and staying put for one time step is interpreted mathematically by the

model as strong recursive behaviour with a time lag of one time step. Without

including the stationary behavioural state, the model erroneously identifies this

one-step time lag in most animal data.
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Figure 2.1: Schematic describing our modelling framework. Given an animal’s
movement track, quantified as a set of spatial coordinates, as well as landscape
data describing an animal’s environment, we fit four nested, competing models
using maximum likelihood estimation. The insight we gain from this process al-
lowed us to make conclusions about the mechanistic drivers of animal behaviour.
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An HMM consists of a Markov matrix A of state-switching probabilities as

well as conditional probability distributions of the animal’s spatial location for

each state (Jonsen et al., 2013). For a model with n different movement states,

A maps from Rn → Rn, with each column summing to 1. Our model has

two states, so we can infer the structure of A from its diagonal. We denote

these entries λ and γ, representing the probability that the animal will stay

in the stationary or non-stationary state, respectively, given it was just there.

Explicitly, it takes the form below:

A =

⎛⎜⎝ λ 1− λ

1− γ γ

⎞⎟⎠ (2.1)

While our model is meant to be applied to continuous-space animal data, we

make an approximation by discretizing our landscape over a two-dimensional

square grid. Empirical landscape data is rarely continuous in space, and the

resolution of this data can suggest a clear choice for the resolution of the domain

grid. We define points in continuous space as x (or xt to represent the animal’s

location at time t) and their corresponding grid cells as z or zt. Thus, x0 ∈ z0

is the animal’s initial location.

We define our conditional probability density functions for the stationary

and non-stationary state fs (which remains the same in all four models) and

fns, respectively. Each conditional probability distribution represents a first-

order Markov process modelling the animal’s location xt and its heading ϕt

over time, which depend only on xt−1 and ϕt−1 from the previous time step.

Due to observation error in animal tracking data, we assumed that the animal’s

observed location may change slightly even if it is not moving (Jonsen et al.,

2013), so we allowed for small "movements" in our stationary state. The proba-

bility distribution for headings in the stationary state, gs(ϕt|ϕt−1), is a uniform

16



distribution since we assume no directional autocorrelation here, so

gs(ϕt|ϕt−1) =
1

2π
, (2.2)

fs(xt, ϕt|xt−1, ϕt−1, ρs) =
2

πρs
gs(ϕt|ϕt−1) exp−

∥xt − xt−1∥2

πρ2s
. (2.3)

We modelled the probability of the animal moving from xt−1 to xt when

in the stationary state using a half-Gaussian distribution with a fixed mean

ρs. The half-Gaussian distribution has thinner tails than the more traditionally

used exponential distribution, decreasing the probability of longer movements

from this state. We fix ρs to reduce model complexity, noting that it is fairly

straightforward to do so based on the known degree of observation error or the

resolution of environmental data.

In the non-stationary state, we use a cognitive map structure to keep track

of the animal’s spatiotemporal movement experiences (Fig. 2.2). Our imple-

mentation of a cognitive map expands on the concept of time since last visit

(Davies and Houston, 1981; Schlägel and Lewis, 2014; Schlägel et al., 2017) by

allowing for the memory of more than just the last location to any point in

space. Instead, we formulate the animal’s cognitive map as the set of times

since previous visits (TSPVs) for any area in space. This formulation allows

for a form of seasonal episodic-like memory that expands on the "time since

last visit" framework (Clayton and Dickinson, 1998; Martin-Ordas et al., 2010).

We define this map Zt at each time t as a function over the domain grid. At

each grid cell z, Zt(z) is a linked list of integers, with each element of the list

representing an animal’s visit to a point inside that cell. Z0 is a grid full of

empty linked lists, except for z0; Z0(z0) is a list with one element, 0. We can
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Figure 2.2: Diagram describing how an animal’s cognitive map Z changes over
four discrete time steps, given an animal’s movement track, which is illustrated
in the shaded panels. Each cell of Z contains a linked list that starts out empty
but is iteratively appended as the animal traverses its environment.

obtain Zt if we know Zt−1 as well as the animal’s location at time t. When t

is incremented by 1, so is every entry on every linked list across the grid, and

a new entry (0) is added to the linked list corresponding to the animal’s new

location:

Zt(z) =

⎧⎪⎪⎨⎪⎪⎩
Zt−1(z) + 1 xt /∈ z

[Zt−1(z) + 1, 0] xt ∈ z

. (2.4)

where [Zt−1(z) + 1, 0] implies adding 1 to every entry of the linked list Zt−1(z)

and appending it with a new value 0.

The function fns, which models the animal’s location and heading in the

non-stationary state, resembles a step selection function (Fortin et al., 2005;

Forester et al., 2009), with two main components: k, the resource-independent

movement kernel; and W , the environmental (or cognitive) weighting function.
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The function k describes the animal’s locomotive capability while W , which

may depend on the animal’s cognitive map Zt−1, describes how attractive the

point is to the animal. This yields the following expression for fns:

fns(xt, ϕt|xt−1, ϕt−1, Zt−1,Θ1,Θ2)

=
k(xt|xt−1, ϕt−1,Θ1)W (xt|Zt−1,Θ2)∫︁

Ω
k(x′|xt−1, ϕt−1,Θ1)W (x′|Zt−1,Θ2)dx′ . (2.5)

The integral in the denominator serves as a normalization constant to ensure

that fns integrates to 1. The parameter vector Θ2 represents parameters re-

lated to the W and Θ1 represents the locomotive parameters associated with

k, namely ρns which describes the animal’s mean step length and κ which de-

scribes the degree of directional autocorrelation in the animal’s movements. For

each of our four models (null, resource-only, memory-only, resource-memory),

the animal’s resource-independent movement kernel k (as well as Θ1) has the

same formulation. We modelled the distance between xt and xt−1, known as

a step length, using an exponential distribution with mean parameter ρns, and

modeled the heading ϕt using a von Mises distribution centred at ϕt−1 with

concentration parameter κ ≥ 0 (Equation 2.6). Higher values of κ indicate

straighter movement. We assume here that the animal’s step lengths and turn-

ing angles are independent. This modelling structure, known more generally

as a correlated random walk, has been applied to a variety of ecological sys-

tems (Fortin et al., 2005; Auger-Méthé et al., 2015; Duchesne et al., 2015), and

the exponential and von Mises distributions are both particularly easy to deal

with analytically while still providing accurate fits for a majority of field data

(Codling et al., 2008; Thurfjell et al., 2014). We formulate k such that
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gns(ϕt|ϕt−1) =
exp (κ cos(ϕt − ϕt−1))

2πI0(κ)
, and (2.6)

k(xt|xt−1, ϕt−1,Θ1) =
exp

(︂
−∥xt−xt−1∥

ρns

)︂
ρns

gns(ϕt|ϕt−1), (2.7)

where I0(κ) is the modified Bessel function of order 0. Notice that ϕt, the

animal’s heading at time t, is not explicitly included in the left side of Equation

2.7; it can instead be calculated easily if xt and xt−1 are known (Fortin et al.,

2005). Note that gns, just like gs, is separate from the rest of k, following our

assumption that the animal’s step lengths and bearings are independent.

The only mathematical difference between the four models is the formulation

of W . To differentiate between these different formulations, we refer to them

as WN , WR, WM , and WRM for the null, resource-only, memory-only, and

resource-memory models, respectively. The set of parameters we estimate in

each model also varies, so we define Θ2,N , Θ2,R, Θ2,M , and Θ2,RM in a similar

respect.

2.2.1.1 Null model

The null model describes an animal’s locomotive capability and directional au-

tocorrelation based on its observed movement track. As a result, there is no

extra weighting, so WN (xt|Θ2,N ) = 1 for all xt in space, and Θ2,N is the empty

set. As a result, when considering the null model, fns is equal to k.

2.2.1.2 Resource-only model

The resource-only model has the following key component:

(R1) the animal’s movement is driven by third-order selection for resources

reachable within one time step.
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As a result, WR resembles the weighting function from an RSF or SSF (Boyce

and McDonald, 1999; Fortin et al., 2005). If we are interested in P differ-

ent resource covariates (expressed mathematically at each spatial location x as

r1(x), ..., rP (x)), we must estimate selection parameters β1, ..., βP for each co-

variate. These parameters make up Θ2,R. The expression for our weighting

function in the resource-only model is a linear combination of the covariates:

WR(xt|Θ2,R) = exp

[︄
P∑︂

p=1

βprp(xt)

]︄
. (2.8)

2.2.1.3 Memory-only model

The memory-only model contains the following key components:

(M1) the animal uses a cognitive map to remember the timing of previous visits

to regions of its environment, and

(M2) it will return to locations it previously visited after temporally similar

time lags.

This type of cognitive map has been supported in the literature (Normand

and Boesch, 2009; Martin-Ordas et al., 2010; Schlägel and Lewis, 2014) as has

the validity of path recursions and revisitations as a foraging strategy for an-

imals (Berger-Tal and Bar-David, 2015; Schlägel et al., 2017). Note that this

behaviour could arise from multiple mechanisms: if an animal is foraging for

periodically available resources, we can use its previous locations to determine

where it might be in the future, and if an animal forages on some depleting

resource, we could use this model to identify how long the animal waits be-

fore returning to a resource it had previously depleted. Note, though, that

the memory-only model assumes a homogeneous landscape, as resource data

are not included. While this assumption is usually unrealistic, we include it as
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an alternate hypothesis to models including resource selection. In cases where

appropriate resource data are not available, or the existing resource data are

insufficient to explain patterns in the movement data, the memory-only model

serves to identify if a pattern of timed re-visitation exists.

We calculate WM based on distance to previously visited points on the ani-

mal’s track. Given some time lag τ , we can use the cognitive map Zt to find the

point in space (or at least, the grid cell) where the animal was τ time indices

ago. There is always exactly one grid cell zt−τ where τ is an element of the

linked list Zt(zt−τ ).

For each time lag τ , we compute the distance between the animal’s current

location and zt−τ , ∥xt − zt−τ∥, and transform it using an exponential decay

function with decay parameter 10α. The primary role of α is to convert dis-

tances to unitless quantities representing attractiveness. Under the assumption

that points closer to previously visited locations are more attractive, we use

exp (−10α∥xt − zt−τ∥) as the transformation for the distance between x and

the centre of zt−τ . We include the power here so α can be any real number,

and use 10 so its estimate can be interpreted more easily. The transformation

with α produces a discounting of importance with distance, where α quantifies

how quickly this importance is discounted spatially. If α is larger, then points

must be very close to the previously visited location for the animal to deem

them attractive. As α decreases, the mathematical difference between a step

1000 m away and a step 2000 m away is amplified, suggesting that the animal

understands these differences in space on a wider scale. The value of α may

be informative about the heterogeneity of the landscape, which can be informa-

tive about how animals value the importance of distance in predicting resource

quality (Farnsworth and Beecham, 1999).

The animal’s revisitation schedule, which is mediated by two parameters
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µ and σ, dictates the weights for each of these exponentially transformed dis-

tances. The timing with which an animal navigates back to an existing location

can be thought of as a random process, following a Gaussian distribution with

mean parameter µ and standard deviation parameter σ. We can imagine that

this timing reflects the state of the environment, with µ indicating the time scale

at which resources may come and go and σ indicating the variability of these

revisitations. For any given time lag τ , the exponentially transformed distance

between xt and zt−τ is weighted by the Gaussian probability distribution func-

tion φ(τ |µ, σ). This produces a weighted mean of exponentially transformed

distances, following the hypothesis that animals will navigate towards points

they visited roughly µ time increments ago; the most "attractive" points for

the animal are closest to zµ. We introduce one final parameter, βd, a "selection

coefficient" for memorized locations. This parameter can be thought of as the

relative probability of revisiting a memorized location instead of moving ran-

domly or selecting for present-time resources. We restricted βd ≥ 0.5 (implying

log βd

1−βd
> 0), in line with the hypothesis that animals select for (not against)

previously visited locations.

The resulting formulation of WM is as follows:

WM (xt|Zt−1,Θ2,M )

= exp

(︄
β̃d

[︄∑︁t
τ=1 φ(τ |µ, σ) exp (−10α∥xt − zt−τ∥)∑︁t

τ=1 φ(τ |µ, σ)

]︄)︄
, (2.9)

where β̃d = log( βd

1−βd
), and Θ2,M contains µ, σ, βd, and α.

WM does not directly contain any periodic components (the Gaussian weight

simply just has one mode around µ), and we do this to increase the flexibility

of the model. In the event that an animal is pursuing resources that vary
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periodically with a period of µ, its location at any point is likely to be nearby

its location µ timesteps ago. Movements simulated from this model do also

produce movements that are somewhat periodic, although the spatial correlation

between an animal’s location and its location µ time steps prior is stronger than

locations separated temporally by 2µ, for example.

2.2.1.4 Resource-memory model

The resource-memory model incorporates both resource selection and memory

into the animal’s movements, so (R1) and (M1) still remain as components in

this model. However, there is one additional component that is not present in

the resource-only or memory-only models:

(RM1) the animal will return to locations it previously visited at a prescribed

and scheduled time if habitat conditions there were favourable; otherwise

it will avoid these areas.

Models combining resources and memory in some way have proven to be ef-

fective in explaining movement patterns for many different animals (Dalziel

et al., 2008; Merkle et al., 2014; Schlägel et al., 2017). The resource-memory

model builds on the memory-only model, which is often unrealistic due to the

omission of environmental data, by truly quantifying an animal’s episodic-like

memory, capturing the "when" and "where" of an animal’s spatial experience

via Z and augmenting this with the "what": the resource quality at these previ-

ously visited points. The addition of hypothesis RM1 produces memory that is

resource-dependent, whereas the memory-only model works under the typically

false simplifying assumption of a spatially homogeneous landscape.

The linear combination of resource covariates
∑︁P

p=1 βprp(x) is relative, so we

introduced an additional parameter β0 representing the relative probability of

visiting a faraway location depending on its resource quality. As β0 approaches
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1, the animal perceives all previously visited locations as "attractive" for re-

visitation. We transform this parameter with an inverse logistic function so it

represents a pseudo-intercept (recall that traditional SSFs and are conditional

models and do not require an intercept; Fortin et al., 2005).

The weighting function now includes present-time resource selection in the

first sum and memorized information in the second term:

WRM (xt|Zt−1,Θ2,RM ) = exp

(︄
p∑︂

p=1

βprp(xt)+ (2.10)

β̃d

[︄∑︁t
τ=1 φ(τ |µ, σ) exp (−10α∥xt − zt−τ∥)(β̃0 +

∑︁P
p=1 βprp(zt−τ ))∑︁t

τ=1 φ(τ |µ, σ)

]︄)︄
,

where β̃d = log( βd

1−βd
) and β̃0 = log( β0

1−β0
).
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Units Description N R M RM

ρns
distance

time Mean movement speed in non-stationary state X X X X

κ N/A Degree of directional autocorrelation X X X X

β0 N/A Probability of revisitation X

βi
1

ri units Resource selection coefficient(s) X X

βd N/A Strength of selection for memorized areas X X

µ time Mean time lag between revisitations X X

σ time Standard deviation in time between revisitations X X

α log(distance) Degree of perceptual resolution X X

λ N/A Probability of staying in stationary state X X X X

γ N/A Probability of staying in non-stationary state X X X X

Table 2.1: Description of model parameters, including units (N/A implies that
the parameter is unitless) and models (N = null; R = resource-only; M =
memory-only; RM = resource-memory) in which the parameters are estimated.
For functions and other quantities that were not fit as model parameters, see
Table A.1.

The null model is a special case of both the resource-only and memory-only

models, which are both a special case of the resource-memory model. Setting

βi = 0 for i = 1, 2, ..., P and log
(︂

β0

1−β0

)︂
= 1 in the resource-memory model

yields the memory-only model, while setting βd = 0 yields the resource-only

model. Nesting models is advantageous for many mathematical reasons, includ-

ing the ability to conduct likelihood ratio tests between models (Burnham and

Anderson, 2004).
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2.2.2 Statistical inference

We fit the four models to discrete-time, continuous-space animal movement

data and used information theory to identify which corresponding hypothesis

was most likely to be true. We identified the optimal set of parameters for a

given track using maximum likelihood estimation, and used likelihood profiling

to obtain accurate confidence intervals for our parameters.

2.2.2.1 Likelihood function

The likelihood of a set of model parameters for one step is a weighted sum of

the conditional likelihood functions (fs and fns), weighted by the probability

of being in each state. These state probabilities depend on probabilities for the

previous step, so for the first point we fit (there is no previous step), we fixed

δs, the probability of being in the stationary state right before the data begins,

as the proportion of steps shorter than ρs.

The likelihood function for the entire track is a product of the likelihoods

for each step included in model fitting. We omitted all animal locations before

some time t∗, since our model (or at least, the memory-only and resource-

memory models) relies on past information to explain where the animal may

go. We left the portion of the track that happened before t = t∗ to "train"

the model on what the animal remembers. Thus, our iterative formula for the

likelihood function begins at t = t∗. We define Φt ∈ R2 as the vector of state

probabilities for time t ≥ t∗, and we calculate our likelihood using the iterative

equations below:
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Φt∗ = (δs, 1− δs)
T , (2.11)

Pt =

⎛⎜⎝fs(xt|xt−1, ρs) 0

0 fns(xt, ϕt|xt−1, ϕt−1, Zt−1,Θ1,Θ2)

⎞⎟⎠ , (2.12)

Φt =
ΦT

t−1Pt−1

∥Pt−1Φt−1∥
A. (2.13)

Then, following Whoriskey et al. (2017), the overall likelihood for the model is∏︁tmax
t=t∗ ΦT

t Pt1, where 1 = (1, 1)T .

We approximate the denominator of Equation 2.5 with a sum so we do

not have to integrate every time we evaluate the likelihood function. As is

commonly done with SSFs (Thurfjell et al., 2014), we calculated W at a set

of "control points" for each observed point xt. If xt, the endpoint of a step

from xt−1, is a random variable conditional on Zt−1, Θ1, and Θ2, the integral

in the denominator of Equation 2.5 is E(W (xt)). Thus, we can approximate it

by estimating the mean value of W at a set of simulated draws from xt, which

has probability density function k. This gives us the following approximation

for fns:

f̃ns(xt, ϕt|xt−1, ϕt−1, Zt−1,Θ1,Θ2)

=
k(xt|xt−1, ϕt−1,Θ1)W (xt|Zt−1,Θ2)

1
K

∑︁K
j=1 W (xt,j |Zt−1,Θ2)

, (2.14)

where xt,j represents the jth control point (a simulated step starting at xt−1)

and K is the number of control points per observed step. From this approxi-

mation, it becomes evident that each model compares W from steps the animal

actually took to steps that are simulated from a random walk. This implies that

28



if an animal occasionally returns to previously visited locations as a result of

random movement, the model will account for this and identify the null model

as a more parsimonious explanation of the data than the other models. For

the memory-only model to truly be an effective explanation of movement pat-

terns observed in the data, these revisitations must be frequent and temporally

consistent.

2.2.2.2 Fitting the model

We fit the model to data using maximum likelihood estimation, with the Tem-

plate Model Builder (TMB) R package (Kristensen et al., 2016) improving nu-

merical accuracy for this complex problem. TMB has been used to fit complex

animal movement models, including HMMs (Albertsen et al., 2015; Auger-Méthé

et al., 2017; Whoriskey et al., 2017). TMB uses automatic differentiation to

calculate the gradient of a multidimensional likelihood function using pseudo-

analytical methods, as opposed to traditional finite-difference methods that are

slow and frequently result in numerical errors (Skaug and Fournier, 2006). We

wrote a likelihood function for each model in C++, which TMB compiles and

returns as a callable function in R (Kristensen et al., 2016). This allowed us

to use an R optimizer of our choice while also benefiting from C++’s superior

programming speed.

We used the R nlminb function to obtain maximum likelihood estimates

for the negative log of our likelihood function. To prevent our model from

producing errors or unrealistic results, we imposed various bounds on some of

the parameters. We bounded the estimation for µ at t∗ because if µ > t∗, we

would not be able to identify a signal due to a lack of training data. We also put

a lower bound on σ; when this parameter was small, the partial derivative of

our likelihood function with respect to µ became noisy, leading to computational

errors in optimization. We found that a lower bound of approximately 20 time

29



indices eliminated this problem. We additionally required estimates for α <

− log10(ρ̄), where ρ̄ is the animal’s empirical mean step length (for context, we

expect ρ̄ to be close to but slightly smaller than ρns). Values of α above this

bound imply that the animal cannot perceive a difference between a few step

lengths, which is unreasonable biologically. For parameters with fairly restrictive

bounds (λ, γ, βd, and β0, which are bounded between 0 and 1), we performed

logit transformations (λ̃ = log 1
1−λ , for example) so the optimizer would more

effectively traverse the parameter space.

We tested two "initial values" for µ for each dataset we fit the model to,

picking the fit that gave us the best likelihood function value. When profiling

the likelihood surface with respect to this parameter, we often found many local

optima, so we fit the model with initial values of t∗ and t∗

2 . Fitting with different

initial values incurs additional computational time (we are effectively running

the optimization algorithm twice) but is necessary due to the importance of

picking a good initial value for each parameter (Pan and Wu, 1998). Using a

different number of initial values for µ may be advantageous for some datasets.

For a model as complicated as this one, obtaining confidence intervals (CIs)

using traditional Wald-type methods does not always produce accurate results.

We frequently found this to be true for our model in practice so we used the

likelihood profiling from Fischer and Lewis (2021). Given a multidimensional

objective function with a known optimum, this algorithm finds confidence in-

tervals for one parameter at a time by performing a binary search algorithm

for a target function value (typically, the optimum minus some small confidence

threshold). The algorithm starts searching at the optimal parameter value, and

tries an initial step, fixing the parameter in question at this value and optimizing

the rest of the function parameters. This process is repeated subsequently until

the lengths of each step in parameter space are small enough for the algorithm
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to converge (Fischer and Lewis, 2021).

We used the Bayesian Information Criterion (BIC) to rank the four models

by their likelihood and identify the hypothesis that was most likely to be true.

BIC has a stronger penalization for model complexity than the more commonly

used Akaike Information Criterion (AIC), and is a more useful criterion for

model selection when one is interested in the truth of a hypothesis rather than

the predictability of a model (Burnham and Anderson, 2004).

2.2.3 Simulation studies

Before applying our model to an ecological system, we simulated data and used

it to test the model. These simulations are individual-based representations of

our model that produce movement patterns associated with our four hypotheses.

We performed this analysis as a means to ensure that our fitting methods could

accurately identify the parameter values prescribed by the model. At each time

index, we used our Markov matrix A to decide whether the animal would change

its behavioural state. If the animal was in the stationary state we simulated a

random step from fs (half-Gaussian step length, uniform turning angle). For

the non-stationary state, we simulated from fns using a Monte Carlo method

(Parzen, 1961). We first calculated W for the entire grid, then we simulated a

large number of random steps from k (Equations 2.6 and 2.7). This simulation

process resembles the generation of control points in Equation 2.14, but we

simulated Nr = 10000 steps at each point in time. Making Nr very large did

not greatly affect computational time, so we did so in the interest of accurately

approximating Equation 2.5. These simulations took place on a bounded grid

representing the hypothetical landscape, and any of the Nr proposed steps that

took the animal off this grid were re-sampled until they were on the grid. While

this resembles reflective boundary conditions, the animal is not assumed to

"bounce off" the boundary or interact with it in any way other than avoiding
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it. Note that it is possible to tune the animal’s mean step length as well as the

size of the landscape in simulations to drastically reduce the probability of this

happening, which we did. We then randomly choose one of the steps based on

the values of W at each step, with the probability of any step xt,i being chosen

described below:

W (xt,i|Zt−1,Θ2)∑︁Nr

j=1 W (xt,j |Zt−1,Θ2)
. (2.15)

For models that incorporate memory, we simulated memoryless training data

(WM = WN for the memory-only model, and WRM = WR for the resource-

memory model) for t < t∗. As expected, these initial points are omitted from

model fitting.

2.2.3.1 Model verification: simulated data

We simulated tracks on artificial landscapes with preset model parameters, then

fit the model to these tracks to explore parameter estimability and model se-

lection accuracy. We varied the length of these tracks, T = tmax − t∗, as well

as K, the number of controls points per step, to evaluate the amount of data

required for accurate inference. Specifically, we tested four "treatment groups":

T = 600,K = 10;T = 600,K = 50;T = 1200,K = 10; and T = 1200,K = 50.

We used the R NLMR package (Sciaini et al., 2018) to simulate spatially au-

tocorrelated Gaussian random fields representing our resource covariates. For

each treatment group, we simulated 50 random movement tracks for each hy-

pothesis. Each group of 50 tracks had the same set of parameters. In our

simulations, we simulated environments for P = 3 resource covariates per track

using the nlm_gaussianfield function in R. We then fit all four models to each

track individually, then used BIC to identify how often the "correct" model

was selected for each movement track. We compared these results with AIC to
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confirm that BIC is the most suitable information criterion for our modelling

framework. We also estimated the bias and mean squared error (MSE; the mean

squared difference between the parameter estimate and the true value) for each

parameter with each model.

2.2.3.2 Model application: grizzly bear case study

We applied the model to grizzly bears in the Canadian Arctic, and then re-

peated the simulation study with data and model parameters from this system.

Bears were captured from 2003 to 2006 and released with global positioning sys-

tem (GPS) collars. Collars returned a location every four hours while the bear

was not hibernating, and remained on the bears for up to four years (Edwards

et al., 2009). The University of Alberta Animal Care and Use Committee for

Biosciences approved all animal capture and handling procedures, which were in

accordance with the Canadian Council on Animal Care. Capture and tracking

was conducting under permit from the Government of the Northwest Territo-

ries, Department of Environment and Natural Resources, Inuvik Office (Permit

numbers: WL3104, WL3122, WL3282, WL5352, and WL5375) following meth-

ods approved by the University of Alberta Animal Care and Use Committee

for Biosciences (Permit numbers: ACUC412305, ACUC412405, ACUC412505,

ACUC412605, and ACUC412705) in accordance with the Canadian Council on

Animal Care guidelines.

The bears were collared in the Mackenzie River Delta region in the North-

west Territories (Edwards et al., 2009). Resources in the region are sparse

and heterogeneous both in space and time (Shevtsova et al., 1995; Edwards

and Derocher, 2015). To survive and forage optimally, bears take advantage of

ephemeral, unpredictable, or seasonally available resources through a variety of

foraging strategies (Edwards et al., 2009, 2011; Edwards and Derocher, 2015).

We analyzed grizzly bear habitat selection using multiple sources of environ-
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mental data describing the Mackenzie Delta region. Vegetation class data for the

region assigned a one of 46 classes (indicating the dominant plant type or ter-

rain) to each 30x30 m cell. A digital elevation model for the region (with 30x30

m cell resolution) provided information on elevation and slope. We also used an

RSF layer estimating resource use for Arctic ground squirrels (Urocitellus par-

ryii), a common grizzly bear prey item (Barker and Derocher, 2010; Edwards

and Derocher, 2015). We considered P = 6 resource covariates: berry density,

represented as a likelihood of having berries for each vegetation class; distance

to turbid water, an indicator of broad whitefish (Coregonus nasus; a grizzly bear

prey item; Barker and Derocher, 2009) density as well as riparian habitat; Arctic

ground squirrel density, taken directly from the RSF; sweetvetch (Hedysarum

alpinum; a key grizzly bear food item; Edwards and Derocher, 2015) density,

estimated by the vegetation class data; distance to the nearest of two towns

in the region; and distance to six remote industrial camps (likely with little

human activity). We modelled these resources in two different ways, fitting the

resource-only and resource-memory models twice to each bear with different

interpretations: resources constant in time and resources that explicitly vary

throughout the year. We expected that if the movement patterns we had ob-

served were simply a result of the resource variation, as opposed to the bears

memorizing the location and timing of these resources, then the resource-only

model with seasonal resources would outperform any of our models including

memory. We defined an interval of availability based on the literature (Mac-

donald et al., 1995; Buck and Barnes, 1999; Gau et al., 2002; MacHutchon and

Wellwood, 2003), and assigned the value 0 to every point on the grid outside

the time interval for that resource. The null and memory-only model, which do

not incorporate resources, are unaffected by this change, but since we needed

to generate new available points for the seasonally varying resources, the model
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fits were slightly different for these models as well.

Of the 21 bears with enough data for model fitting (at least two years of

GPS collar data), we selected the eight with the most GPS fixes (these bears

had at least three years of collar data). We set ρs = 30 metres, corresponding

to the length of one grid cell for the environmental raster data, and we set

t∗ = 365 days. We used K = 50 control points when fitting the models. For

each of these bears, we fit the models to the entire track as well as each year

individually, comparing model selection between years. We then replicated that

analysis using simulated bear tracks; for each bear, we simulated 100 movement

tracks using the optimal parameters for each bear and the Mackenzie Delta

environmental data. We simulated tracks of length T = 600 (approximately

one year of grizzly bear GPS data, accounting for missed fixes and hibernation)

and T = 1200 to evaluate how model selection accuracy changed with sample

size. We used BIC to identify the hypothesis that most accurately explained

each movement track, and also conducted likelihood ratio tests for each pair of

nested models to determine the significance of specific behavioural signals.

2.3 Results

Our modelling structure allows ecologists to explain movement patterns iden-

tified from location data according to a set of four hypotheses, of which two

incorporate complex time-dependent spatial memory. For animals that appear

to use memory, our parametric approach evaluates the temporal consistency of

navigations to previously visited locations in an animal’s home range. By fit-

ting the model to simulated data we showed that the accuracy of the model is

improved by sample size, and ecologists can also increase parameter estimabil-

ity by simulating additional control points. Still, the amount of data required

to draw accurate inference from the model is not large, as we show both with
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simulated environments and real-life landscape data (where the model is slightly

less accurate).

2.3.1 Model verification: simulated data

The model’s ability to accurately characterize each type of movement behaviour

increased with the amount of location data (T ) but not with the number of

control points (K; Table 2.2). The model identified null and resource-only

movements accurately at all treatment levels, but the model’s ability to identify

memory-only and resource-memory movement increased for longer simulated

tracks. As a whole, increasing K does not improve model selection accuracy

for either choice of T . The most common misidentification at all sample sizes

was mistaking resource-memory movement for resource-only or memory-only

movement.

36



K = 10 K = 50

N R M RM N R M RM

T
=

6
0
0

N 48 0 0 2 47 0 0 3

R 0 45 0 5 0 46 0 4

M 7 0 40 3 4 0 44 2

RM 0 5 7 38 0 8 7 35

T
=

12
0
0

N 49 0 0 1 45 0 0 5

R 0 46 0 4 0 47 0 3

M 2 0 47 1 0 0 50 0

RM 0 3 2 45 0 7 2 41

Table 2.2: Breakdown of model selection counts using BIC for the simulated
tracks. The row represents the "true" model that the tracks were simulated
from (N = null; R = resource-only; M = memory-only; RM = resource-memory),
while the column represents the model that was identified as the most parsimo-
nious explanation of the data using BIC. Treatment groups (based on T, the
length of the fitted movement track, and K, the number of available points per
timestep)

are identified by the outer left and upper portions of the table and are

separated by shading.

Using AIC instead of BIC resulted in a higher rate of "false positives" for

memory (i.e., the resource-memory or the memory-only model was identified

as the most parsimonious explanation for memoryless simulated tracks), and

made model selection less accurate overall (Table A.2). Likelihood ratio tests

on the same dataset for each pair of nested models revealed a similar trend; the

likelihood ratio test often identified memory when it was not incorporated into

the simulated tracks (Table A.3).

The model produced more accurate parameter estimates with larger values

of T and K (Table 2.3). When focusing on β1 in the resource-memory model,

we can see that bias does not change as much with different treatment groups as
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Figure 2.3: Violin plot of parameter estimates for β1 in the resource-memory
model for our four treatment groups (listed on the x-axis), with 50 simulations
per plot. The true value of 7.5 is denoted by a horizontal red line.

MSE (Fig. 2.3). For the simpler movement parameters (ρns, κ, λ, γ), parameter

estimates were consistent even with smaller values of T and K (Table 2.3).

2.3.2 Model application: grizzly bear case study

According to our modelling framework, five of the eight grizzly bears exhibited

consistently timed revisitations to previously visited locations in their home

ranges (Table 2.4). When the data were broken up into one-year increments,

model selection results varied annually, and sometimes differed even from the

full dataset. For three of the bears (GF1008, GF1016, GM1046), the model

identified as most explanatory of the bears’ movement behaviours by BIC was

different for the full dataset, the first subset, and the second subset. The

resource-memory model was the most parsimonious explanation of the move-

ment patterns of four bears, while the resource-only (2), memory-only (1), and
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True value
T = 600 T = 1200 T = 600 T = 1200
K = 10 K = 10 K = 50 K = 50

Bias MSE Bias MSE Bias MSE Bias MSE
ρns 0.75 -0.17 0.03 -0.18 0.04 -0.14 0.03 -0.17 0.04
κ 0.75 -0.21 0.05 -0.21 0.05 -0.19 0.04 -0.19 0.04
β0 0.50 0.06 0.12 0.04 0.12 0.13 0.11 0.18 0.12
β1 7.5 1.3 10.1 1.6 13.4 0.0 2.6 -0.7 1.7
β2 -7.5 -1.2 7.8 -1.1 5.5 0.2 3.8 0.5 1.5
β3 0.0 -0.1 5.0 0.4 4.3 -0.1 2.5 0.0 1.7
βd 0.999 -0.04 0.02 -0.04 0.02 -0.01 0.00 -0.03 0.02
µ 500 -8 795 -13 543 -22 7819 -25 7277
σ 25 2 341 -3 32 1 197 -1 217
α -1.78 -0.45 2.64 -0.28 1.30 -0.14 1.81 -0.67 2.17
λ 0.85 -0.02 0.001 -0.02 0.001 -0.02 0.002 -0.03 0.001
γ 0.90 -0.03 0.001 -0.03 0.001 -0.03 0.001 -0.03 0.001

Table 2.3: Estimates of bias and MSE for each parameter in the resource-
memory model, averaged from 50 simulated movement tracks per treatment
group. True values for each parameter are displayed on the left.

null (1) models were also identified as most parsimonious in some cases. Four of

the five memory-informed bears exhibited seasonal memory timescales close to

one year (µ > 320 days), while GF1016 had a µ value of 3 days. The six bears

with resource selection included in their "best model" displayed similar resource

selection patterns: significant selection for areas indicative of berries and Arctic

ground squirrels, avoidance of areas indicative of sweetvetch, and indifference to

towns and cabins. When we considered the resources to be explicitly seasonal,

the memory-only model was most commonly the "best model" for the bears,

with models including resources being much less common (Table 2.4).
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Bear ID Full data First subset Second subset Seasonal resources

GF1004 RM (38.54) N (1.11) RM (1.15) RM (3.50)

GF1008 RM (17.53) R (39.78) N (4.90) M (21.34)

GF1016 M (5.99) N (18.24) R (1.84) M (22.32)

GF1041 RM (45.74) R (18.24) RM (24.62) N (4.29)

GF1086 R (49.35) R (5.45) RM (19.68) R (16.78)

GF1107 R (33.63) R (30.17) RM (83.54) M (15.25)

GF1130 N (12.87) RM (73.82) N (17.13) RM (16.71)

GM1046 RM (40.32) R (6.03) M (10.06) M (19.71)

Table 2.4: Model selection results for each bear in the Mackenzie Delta popula-
tion. We list the hypothesis (N = null; R = resource-only; M = memory-only;
RM = resource-memory) identified by BIC as most likely to be true given the
data for the full dataset, the first subset, and the second subset. We also include
results for the full dataset when resources were modelled as being explicitly sea-
sonal. The numbers in parentheses are the difference in BIC between the best
model and the second-best model.

Our simulation study revealed that at smaller sample sizes, the model oc-

casionally failed to identify memory from memory-informed simulated tracks,

but this issue is remedied with double the data. An example was GF1008,

where only 10 of the 100 simulated tracks were correctly identified as "resource-

memory" movements at T = 600. With T = 1200, this improved to 89. When

we used likelihood ratio tests to compare the resource-memory model with the

resource-only model (a special case of the resource-memory model) for GF1008,

we found that at T = 600, 76 of our 100 simulated tracks registered a p-value

below 0.05, indicating that the resource-memory model was significantly more

explanatory than the resource-only model 76% of the time. With T = 1200,

this increased to 95. We observed similar trends for the other three resource-

memory bears (GF1004, GF1041, GM1046) but not as strongly. It should be

noted that GF1008 had the smallest estimate for βd (2.3) of these bears. When
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we performed BIC model selection on simulated tracks based on GF1086, a

"resource-only" bear, a false memory signal was identified more frequently with

larger T (from 4 to 12 out of 100). This trend was not replicated for GF1107,

the other "resource-only" bear (decrease from 10 to 7).

2.4 Discussion

Our model builds on existing literature to identify unique behavioural and cog-

nitive mechanisms from animal movement data. Using advanced computational

techniques, this novel and complex modelling framework can provide statistical

inference for a variety of ecological systems. Our simulation studies provided

insight on the viability of the model for different amounts of data.

We formulated a model that expresses parameters with clear biological im-

plications to aid in the interpretation of our results, but we had to do so carefully

to ensure that these parameters could be estimated accurately. Finding a set of

biologically meaningful parameters with low mean squared error (Table 2.3) re-

quired a degree of trial and error, especially for β0 and βd. We chose to express

them in a way that makes sense both biologically (where they represent relative

probabilities) and mathematically (where they can easily be estimated with less

error). While we can redefine these parameters without actually changing our

likelihood function, we made sure to define parameters that are easy to estimate

and biologically meaningful.

Our results provided support for a positive effect of the amount of location

data and control points on parameter estimation, with the number of control

points having a negligible effect on model selection accuracy. However, at all

treatment groups, parameter estimates were occasionally inaccurate (Fig. 2.3,

Table 2.3), and the model occasionally mistook the movement mechanisms driv-

ing the simulated tracks (Table 2.2). These outliers may be due to the stochastic-
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ity of simulated movement tracks; for example, a resource-only simulated animal

may happen to visit similar portions of its landscape at a coincidentally regular

interval, which the model might mistake for memory-informed movement. Con-

versely, an animal following the "memory-only" rules may coincidentally visit

locations that happen to be particularly high (or low) in specific resource values,

resulting in the movement track being best explained by the resource-memory

or even the resource-only model.

Increasing the number of observed animal locations (T ) improved our results,

but we are more encouraged by the positive effects of simulating additional con-

trol points (K). While increasing T may require such costly tasks as using

longer-lasting tracking devices, re-capturing animals and equipping them with

new tracking devices periodically, or increasing the temporal resolution of track-

ing devices, increasing K is easy to do post-hoc. While increasing K may not

yield benefits as large as increasing T , the cost of increasing K is much smaller.

Our simulated tracks consistently underestimated ρns and κ in the resource-

only and resource-memory models (Table 2.3), which is an artifact of the way

we simulated the data. In these models, the animal "chooses" a step from Nr

proposed steps, which are simulated from k, which depends on ρns and κ. Our

simulated landscapes are spatially autocorrelated, so if the simulated animal

found itself in a resource-rich patch, it would be very likely to stay put. These

movements are also less directionally autocorrelated than would be suggested

by κ for similar reasons. Using an integrated step selection function (Avgar

et al., 2016) could remedy these issues but for our purposes, it adds additional

complexity to the model and is not our primary concern.

Our estimates of bias and MSE for α did not consistently decrease with

increases in the amount of location data or the number of control points, po-

tentially because of an odd bimodal distribution of parameter estimates (Figure
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A.1). The larger portion of this bimodal distribution is clearly centred around

the true value of approximately -1.78 for all four treatment groups, but curi-

ously the "second" mode, which appears to be centred around -4.5, seems to

account for more of the estimates T and K increase. These smaller estimates

for α would imply that the hypothetical organisms moving according to our

simulation rules occasionally behave with a much wider understanding of their

environment, which they perceive to be spatially heterogeneous. The exact

cause of these patterns requires further investigation.

When we applied the analysis to field data, we notice that the model’s ef-

fectiveness, especially when it comes to identifying a memory signal, increased

greatly with sample size. Our simulations revealed that the model may miss a

memory signal with inadequate data, which could explain the disparity between

subsets of the data in Table 2.4. It must also be noted that, as stated in the

Introduction, the goal of this model is not to determine whether or not grizzly

bears have spatial memory; we are more interested in if they use that memory

the way we have hypothesized. If the resource-only model is the "best model"

for a bear, it may just mean that they are using memory in some other way.

While it is possible that grizzly bears, especially females that take on different

reproductive roles in different years, would change their movement strategies

between years, it is also likely that the model may have not had enough data to

identify a memory signal in an individual year. With twice data, the simulations

accurately identified memory more often, suggesting that the memory signals

identified for the entirety of each bear’s track are legitimate. Nevertheless, even

with these considerations, we see that half the bears in the dataset exhibited

patterns following the resource-memory hypothesis, suggesting a strong influ-

ence of both habitat selection as well as spatial memory on the movement of

grizzly bears in the Mackenzie Delta.
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We occasionally observed "false positives" (the model identified memory as

a driver of movement from memoryless simulated data) that increased in longer

animal tracks (K = 1200 vs. K = 600) when simulating tracks with the grizzly

bear data. This trend may be an artifact of how the Mackenzie Delta landscape

data influenced simulated tracks, since false positives were much less frequent

in the simulation study with artificial landscapes. When comparing this result

with the real-life subsetting for the bears, we saw examples of subsetted data

registering memory when the full data set did not, but we also saw examples of

the opposite.

Our modelling framework operates under the assumption that resources vary

in time, forcing animals to exhibit seasonal movement patterns within their

home ranges. We handled this assumption in two different ways: by explicitly

defining this temporal variation, and by indirectly incorporating it into the

resource-memory and memory-only models. In this case, explicitly defining the

seasonality of the grizzly bear resources made the memory-only model (which is

primarily meant for situations when sufficient environmental data may not be

available) much more effective. We suggest that making arbitrary assumptions

about these timings may not always improve model parsimony, and instead

may overshadow patterns and behaviours we are interested in. An alternative

method to capture this variation would be to assume that µ is informative about

how long resources take to re-appear, and as a result how long animals take to

return to them.

Due to the novelty of this contribution, we accept that there will be op-

portunities to build on and improve the approach. Particularly interesting is

the addition of more behavioural states to the model. We applied a hidden

Markov component to the model mainly to avoid mistaking stationary periods

for recursive movement on a short timescale, but adding many states (e.g., a
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memoryless searching state and a memory-informed navigating state) could pro-

vide insight on the frequency of these movements. One such adjustment could

involve changing the form of WM and WRM such that they are truly periodic;

this could be done by changing φ from a traditional Gaussian to a wrapped

Gaussian. Making this change would imply that animals are influenced to re-

visit locations they visited kµ time steps ago for all positive integers k. Including

such a mechanism would also potentially warrant the incorporation of explicit

memory decay, which we omitted but could be useful when longer timescales or

wrapped distributions are involved. Revising φ to a mixture of multiple Gaus-

sians instead could also be used to test the hypothesis that animals perform

recursive movements on different, asymmetrical scales. Modifying the formu-

lation of the cognitive map Z (e.g., to something resembling a discrete-time

analog of the territory interaction model from Potts and Lewis, 2016) could also

be an opportunity to improve and tweak the model. Connections to the work

of Potts and Lewis (2016) could also be made by incorporating territoriality

or the presence of other individuals into the model somehow, potentially as a

"resource" covariate. A final point for future work would be to redevelop this

model from the perspective of integrated step selection analysis (iSSA; Avgar

et al., 2016). Here, we could analyze how animal movement behaviour is directly

influenced by covariates such as its distance from previously visited locations or

the strength of its reliance on spatial memory.

While we used grizzly bears as a case study, the model was designed to

be general and can be applied to a variety of different systems. Many ani-

mals, including turkey vultures (Cathartes aura; Holland et al., 2017), black

vultures (Coragyps atratus; Holland et al., 2017), caribou (Rangifer tarandus;

Lafontaine et al., 2017), and eastern indigo snakes (Drymarchon couperi ; Bauder

et al., 2016), perform seasonal movements within their home ranges. For data
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with higher temporal resolution, it would be possible to model complex time-

dependent recursive movements on a diel scale, since many animals exhibit

repetitive day-to-day movements within their home range (Christiansen et al.,

2016; Herbig and Szedlmayer, 2016). Collecting data at finer temporal resolu-

tions would be beneficial for inference on memory-informed movement, assum-

ing observation errors are accounted for. Even patrolling predators, which were

modelled by Schlägel and Lewis (2014), could be modelled using our framework,

although we may expect estimates for µ to be smaller than in the grizzly bears.

Schlägel et al. (2017) displayed the importance of time since last visit for gray

wolves, but insight on when exactly wolves deem parts of their home range

"re-visitable" could be interesting. Of course, migration is also seasonal and

predictable, and although it is typically difficult to obtain environmental data

for an animal’s entire migratory route, spatial memory has been identified as a

key driver of migration in many instances (Mueller and Fagan, 2008; Mueller

et al., 2011; Fagan et al., 2013; Bracis and Mueller, 2017; Merkle et al., 2019).

Fitting this model to migratory populations could provide insights on how to

quantify or potentially even predict these mechanisms.

2.5 Conclusions

Our model uses patterns in animal movement data to obtain information on

complex time-dependent spatial memory patterns. Made possible by advanced

computational techniques, we expand on existing literature from animal move-

ment modelling as well as animal cognition to generate a model that can be

applied to a variety of ecological systems. The model can estimate the tim-

ing of recursive movement patterns observed in an animal, which is novel, and

also allows for the interaction of present-time resource selection and memory-

informed navigation. We verify our model fitting process using simulated data
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before testing its utility on GPS collar data from grizzly bears, finding that

this very complex model can be effective without need for immense data col-

lection. We hope to apply this model more broadly to animals with different

foraging strategies as a means to compare the nature of time-dependent memory

mechanisms in different ecological systems.
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3 Time-dependent memory and individual varia-

tion in Arctic brown bears (Ursus arctos)

3.1 Introduction

Ecologists have used animal movement data to answer many important ecologi-

cal questions in recent years (Nathan et al., 2008; Joo et al., 2020). Models have

been developed to explore the qualities of an animal’s home range (Worton, 1989;

Dahle and Swenson, 2003; Borger et al., 2008; Edwards et al., 2009), large-scale

movements such as migration (Dingle and Drake, 2007; Merkle et al., 2019),

and species-habitat relationships (i.e., habitat selection; Boyce and McDonald,

1999; Fortin et al., 2005; Thurfjell et al., 2014). Habitat selection analyses, in

particular, have advanced due to the increasing availability of remote sensing

data, which can describe large-scale environmental patterns, as well as animal

movement data itself (Kays et al., 2015). These analyses provide solutions to dif-

ficult problems concerning how animals interact with their environment (Muhly

et al., 2019; Suraci et al., 2019). Understanding these interactions, however, is

limited without incorporating how animals perceive their environments cogni-

tively (Fagan et al., 2017). This realization in movement ecology has inspired

the growth of memory-informed movement modelling.

By including spatial memory, we can quantitatively model animal cognition

using movement data. Animals use spatial memory to encode, store, and retrieve

information about the location of landmarks in an animal’s environment (Fagan

et al., 2013). Ecologists have included memory into habitat selection models by

hypothesizing that animals will select for areas they have visited more frequently

(Dalziel et al., 2008; Oliveira-Santos et al., 2016), assuming animals will select

against areas they have just visited (Schlägel and Lewis, 2014), or modifying
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habitat selection models such that animals will not be attracted to high-quality

patches unless they can perceive this quality (van Moorter et al., 2009; Avgar

et al., 2013). Most of these models lack attention to temporal memory, where

animals remember not just where they have visited but how long ago they were

there. While the "time since last visit" construct incorporated by Schlägel

and Lewis (2014) is a noteworthy exception, they assumed patches become

increasingly attractive to the animal as time passes, which is not realistic in

seasonally variable environments. For animals with seasonally varying home

ranges, the energetic value of visiting a food patch may vary periodically or

seasonally. Animals that live in such environments may change the size and

shape of their home range seasonally, implying that they only visit specific

parts of their home range at specific times of year (Wiktander et al., 2001). On

a smaller timescale, spatiotemporal memory allows animals to capitalize on ripe

fruit, which loses its energetic return if visited too late (Janmaat et al., 2016).

Despite the occurrence of such patterns, which may be either ephemeral or

seasonal, animal movement models rarely incorporate a time-dependent spatial

memory mechanism that accounts for them.

The brown bear (Ursus arctos) is a widespread, omnivorous mammal found

in the Northern Hemisphere (Pasitschniak-Arts, 1993), and populations in sea-

sonal regions of the species’ range are likely to benefit from remembering the

timing of food resources. The Canadian Arctic is an example of such an envi-

ronment, and brown bears that live here are especially opportunistic, taking ad-

vantage of a wide variety of food resources (Edwards and Derocher, 2015). Most

brown bear food resources here are only available for a fraction of the bears’

active season (Nagy and Haroldson, 1990; Burn and Kokelj, 2009; Edwards

and Derocher, 2015), resulting in seasonal variation in their habitat selection

(McLoughlin et al., 2002). Brown bears in the Arctic also display individual
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dietary variation due to sexual size dimorphism as well as the reproductive

constraints of adult females (Edwards et al., 2011). Theoretical studies have

displayed the utility of memory-informed movement in environments with pre-

dictable temporal variation (Mueller et al., 2011). Evidence of memory-informed

movement in other brown bear populations includes oriented movement towards

previously visited kill sites (Selva et al., 2017), scent marking to identify territo-

rial boundaries (Clapham et al., 2012), fidelity to the same salmon-rich stream

each year (Wirsing et al., 2018), and repeated use of the same denning area each

year (Manchi and Swenson, 2005; Sorum et al., 2019). These studies demon-

strate the cognitive and perceptual capabilities of the species, suggesting that

brown bears in the Canadian Arctic may incorporate time-dependent spatial

memory into their movement patterns.

We applied a new animal movement model that incorporates a unique form

of complex, time-dependent spatial memory to global positioning system (GPS)

data for brown bears from the Mackenzie Delta region of the Canadian Arc-

tic. Chapter 2 describes a model with four special cases, each concerning its

own hypothesis about cognition and movement: a null hypothesis; a resource-

only hypothesis assuming simple resource selection; a memory-only hypothesis

assuming resource-less seasonal revisitation patterns within an animal’s home

range; and a resource-memory hypothesis assuming animals are simultaneously

influenced by local resources and spatial memory. Fitting each of these four

models to animal location data provides inference on the likelihood of each

hypothesis being true, and the parameters in each model describe explicit com-

ponents of the animal’s foraging behaviour. We obtained parameter estimates

and performed model selection analysis for 21 individual bears, allowing us to

explicitly examine variation at the individual level. We found that amid high

individual variation within the population, movement patterns from a majority
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of the bears supported the resource-memory hypothesis. These results repre-

sent the first application of a novel model to a population of opportunistic and

potentially sensitive omnivores.

3.2 Materials and Methods

We applied the model described in Chapter 2 to global positioning system (GPS)

location data from a population of brown bears in the Canadian Arctic. We used

the model to test four alternate hypotheses stated above about animal move-

ment and cognition (Figure 3.1). We drew inference from maximum likelihood

estimates for the model parameters to quantify characteristics of the bears’ be-

haviour (Table 2.1). We describe the biological function of the model here,

noting that it is described in full detail in Chapter 2.

3.2.1 Study area

The Mackenzie River empties into the Arctic Ocean in the northern Northwest

Territories, in NW Canada. Our study area, the Mackenzie Delta region, spans

23,000 km2 of wet Arctic tundra, interspersed with many lakes and smaller

streams (Edwards et al., 2013). The Mackenzie Delta region is a harsh environ-

ment for brown bears, with minimal food availability that results in short active

seasons (Ferguson and McLoughlin, 2000). There are two human settlements

in the region, Inuvik and Tuktoyaktuk, in addition to some remote and rarely

inhabited industrial camps.

Our landscape data provide information on the spatial heterogeneity in veg-

etation and topography. We used three 30 x 30 m raster layers to describe the

study area: a digital elevation model (DEM) measuring elevation (ranging from

0 m to 1676 m), a vegetation class raster describing dominant vegetation in

each portion of the landscape, and a raster approximating the density of Arctic
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ground squirrels (Urocitellus parryii), which are a common brown bear prey

species (MacHutchon and Wellwood, 2003; Barker et al., 2015). The vegeta-

tion class raster classified each 30 x 30 m grid cell into one of 46 vegetation

classes, describing the age, size, and/or dominant plant species present in each

area (Ducks Unlimited, 2002; but also see Appendix B). The ground squirrel

raster is a product of a resource selection function from an existing study, so

it quantifies the likelihood (based on environmental conditions) for any spatial

region to support ground squirrels (Barker and Derocher, 2010).

We manipulated our landscape data to produce six resource covariates.

Berries (including but not limited to Empetrum nigrum, Shepherdia canadensis,

Vaccinium uliginosum, and V. vitis-idaea) are an important dietary item for

most individuals (Edwards et al., 2011; Edwards and Derocher, 2015). In the

Canadian Arctic, berries are generally found in dwarf shrub areas (Porsild and

Cody, 1980; Shevtsova et al., 1995; Norment and Fuller, 1997), but they can

also occur beneath the canopy of northern woodlands (Murray et al., 2005). We

do not have an explicit berry density survey, so we used the vegetation class

data along with knowledge of common berry species to infer the probability of

berries occurring at each spatial grid cell (Table B.1).

We included a covariate representing the Euclidean distance from turbid

water to gauge the extent to which brown bears select for riparian areas. These

regions support food resources such as horsetails (Equisetum spp.) and wetland

sedges (Carex spp.) that are important in the early summer (Edwards and

Derocher, 2015). Brown bears in the Mackenzie Delta region also fish broad

whitefish (Coregonus nasus) beside streams and rivers when the fish migrate

(Barker and Derocher, 2009).

We also included covariates representing the possible presence of Arctic

ground squirrels and alpine sweetvetch (Hedysarum alpinum), two common di-
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etary resources in the area (Edwards and Derocher, 2015). We used the ground

squirrel RSF from Barker and Derocher (2010) as a covariate for squirrel selec-

tion. Sweetvetch occurs in dry, shrubby uplands (Porsild and Cody, 1980), so we

used an interaction between slope (from our DEM) and dwarf shrub vegetation

classes to quantify sweetvetch density.

Brown bears are affected by the presence of humans in many ways (Mace

et al., 1996; Steyaert et al., 2016; Lamb et al., 2017), so we included covariates

measuring the Euclidean distance from various human settlements or dwellings.

The first covariate measured the distance from the nearest human settlement in

the Mackenzie Delta region (either Inuvik or Tuktoyaktuk). Brown bears that

come near human settlements are often deterred by the residents or wildlife of-

ficials in a forceful manner (Kellert et al., 1996), so we expected bears whose

home ranges overlap one of the settlements to avoid them. Some more re-

mote industrial buildings are occasionally inhabited but often lack the constant

human presence brown bears face near Inuvik or Tuktoyaktuk. As opportunis-

tic omnivores, brown bears commonly use anthropogenic food sources (Kavčič

et al., 2015) and may visit these buildings. Our second anthropogenic covariate

measured the Euclidean distance from the closest of the 6 cabins in the region.

3.2.2 Brown bear data

Between 2003, and 2006, 31 brown bears (24 female, 7 male) were captured

and equipped with GPS collars (Telconics Inc., Mesa, AZ, USA) that provided

the bear’s spatial location every four hours. The collars used long temporal

sequences without movement to identify denning periods, and did not record

any signals until the bear began to move again in the spring. The collars were

removed and/or stopped recording bear locations after one to four years. The

University of Alberta Animal Care and Use Committee for Biosciences approved

all animal capture and handling procedures, which were in accordance with the
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Canadian Council on Animal Care. Capture was conducted under permit from

the Government of the Northwest Territories. A subset of these data were

analyzed in Chapter 2 as a preliminary analysis of the model.

3.2.3 Model design

We fit a discrete-time hidden Markov model (HMM) that assesses the nature

of complex time-dependent spatial memory mechanisms in Arctic brown bears.

The model has two movement states: one representing resting or not moving

(stationary), and one representing movement (non-stationary). In a HMM, the

state is not explicitly known but can be inferred from observed data (e.g., if

consecutive GPS locations are only 1 m apart, we can infer that the bear is

likely in the stationary state), which is mathematically expressed with condi-

tional likelihood functions (Jonsen et al., 2013). Like other HMMs, the bear’s

movement state at any point in time depends only on the previous state as

well as fixed state-switching probabilities: λ and γ (Table 2.1). The conditional

likelihood functions for the non-stationary and stationary states can be found

in Equations 2.5 and 2.3, respectively. See Section 2.2.1 for more modelling

details.

3.2.3.1 Null model

In the null model, we assume that the bear moves randomly, so the only param-

eters of concern are those dictating movement speed (ρns), directionality (κ),

and state-switching (λ and γ; Table 2.1). If the 95% confidence interval for κ

excludes 0, we can conclude that there exists significant directional autocorrela-

tion in the bear’s movements. The weighting function WN (xt|Zt−1,Θ2,N ) = 1

for all xt in space.
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Figure 3.1: Simulated animal movement tracks (300 steps per track) on a ran-
domly generated landscape displaying behaviours consistent with each hypoth-
esis (and model). The colour of each point on this simulated movement track
represents the hypothetical time in the animal’s memory "cycle", which is here
set to 100 time units (points at t = 75 have the same colour as t = 175). The
null model implies completely random movement, while the resource-only model
implies that the animal will locate nearby resources and select for those areas.
The memory-only model implies that the animal relocates itself to areas it vis-
ited 100 time units before. The resource-memory model combines mechanisms
in the resource-only and memory-only models.
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3.2.3.2 Resource-only model

The resource-only model tests the hypothesis that bears select for nearby lo-

cations with high habitat quality. We define WR in Chapter 2 (Equation 2.8).

If the 95% confidence interval for any of these parameters excludes 0, we can

conclude that the animal significantly selected for (or against) that variable.

To ensure that the seasonal revisitation patterns we observed were a result

of spatial memory, we tested an alternate version of the model where resource

covariates were restricted to seasons of availability. In the original versions of

the resource-only and resource-memory model, each resource covariate ri(x) re-

tains the same value throughout the year. This follows the assumption that

our covariates measure the habitat conditions necessary to support seasonally

available resources, not the resources themselves. For example, r2(x), the dis-

tance from x to the nearest riparian area, does not change seasonally, but the

likelihood of obtaining valuable food resources from that region does vary sea-

sonally. That being said, identifying memory based solely on movement pat-

terns requires rigorously eliminating any other mechanisms that could cause

those patterns (Fagan et al., 2013), so we designed an alternate model where

resources were explicitly seasonal.

We identified temporal intervals in which each resource would be treated as

present on the landscape, and assumed that ri(x) would be equal to 0 outside

of these intervals. Berries are available in smaller portions year-round (Edwards

and Derocher, 2015), but the primary period of occurrence lasts from approxi-

mately August 1 until the end of the active season, which we considered to be

November 30, when bears had entered dens and GPS collars turned off (Gau

et al., 2002; MacHutchon and Wellwood, 2003). The food available in riparian

habitats (including whitefish, which generally migrate in early October; Barker

and Derocher, 2009) is most prominent from May 10 to October 16 (Macdonald
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et al., 1995) when the ice has melted from the Mackenzie River. Arctic ground

squirrels are always present, but they are easier for brown bears to hunt when

they are hibernating (Barker et al., 2015), so we used an interval from Septem-

ber 11 to November 30 to approximate when most squirrels would be dormant

(Buck and Barnes, 1999). Sweetvetch is also available year-round, but provides

the highest nutritional return in the early spring, so we used an interval from

April 1 (the beginning of the active season) to June 15 (MacHutchon and Well-

wood, 2003). We left r5 and r6, the covariates relating to presence of humans,

temporally constant.

3.2.3.3 Memory-only model

The memory-only model quantifies the hypothesis that brown bears remember

the spatial location of areas they have visited previously, with the intent to re-

turn there after a consistently scheduled time lag. The cognitive map associated

with this model builds on the idea of time since last visit proposed by Schlägel

and Lewis (2014), where previously visited locations become increasingly more

attractive to the animal as time increases. We model this structure with a

discrete-space cognitive map Zt where the animal keeps track of all its previous

locations (Figure 2.2). The weighting function for the memory-only model WM

incorporates this cognitive map structure through Equation 2.9.

The memory-only model follows the hypothesis that there is some "peak"

in attractiveness that represents the periodicity of habitat quality in the envi-

ronment (see µ and σ in Table 2.1). Higher values of σ indicate that bears are

less precise in their revisitation patterns, and may also be indicative of lower

temporal predictability in the environment. Each distance is transformed using

an exponential decay function with parameter α (Table 2.1). As α decreases,

the mathematical difference between a step 1 km away and a step 2 km away

is amplified, suggesting that the animal understands these differences in space
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on a wider scale. We propose log10(ρns) as an important cutoff point for this

parameter, as the decay term for these distances is equal to ρns, the animal’s

mean step length (Equation 2.9). The memory-only model includes one last

parameter βd (β̃d = log( βd

1−βd
)), representing the probability of moving in a way

that incorporates Z, relative to moving randomly or selecting for present-time

resources. As βd approaches 1, the animal will approach oriented movement

towards previously visited locations, and if the 95% confidence interval for this

parameter excludes 0.5, we can conclude that the animal is displaying significant

selection for memorized areas.

3.2.3.4 Resource-memory model

The resource-memory model combines the principles of the resource-only and

memory-only models. Bears moving according to this model consider present-

time resources in nearby locations as well as previously visited locations. We

additionally hypothesize that bears will only be attracted to previously vis-

ited locations that had food, and will not revisit previously visited locations

with low resource quality. This mechanism is mediated by "threshold" parame-

ter β0, which approximates the probability of returning to a previously visited

location (Table 2.1). We can infer about the habitat quality necessary to in-

fluence revisitations from a bear if the 95% confidence interval for β0 overlaps

0.5, which would imply no selection for these areas. The weighting function for

the resource-memory model includes two terms, one representing present-time

resource selection and one representing memorized information (Equation 2.10).

3.2.4 Fitting the model to data

We used maximum likelihood estimation to fit the four models to each indi-

vidual, comparing each model using the Bayesian Information Criterion (BIC).

In Chapter 2, we found that BIC was more accurate than AIC in terms of se-

58



lecting the most parsimonious model for simulated data, suggesting that BIC

makes more sense for this modelling framework. A difference in information cri-

teria greater than 2 between the best and second-best models indicates greater

support for the best model (Burnham and Anderson, 2004). We used maxi-

mum likelihood estimates (MLEs) along with 95% confidence intervals for each

parameter in the best model to obtain further information on the bears’ move-

ment behaviours. We removed the first year of GPS data from model fitting for

every bear because we could not determine enough about the bear’s previous

movement experience to identify memory. We refer to this first year as "training

data", and removed bears with only one year of GPS data from the analysis.

The models are computationally complex, so we used advanced automatic dif-

ferentiation techniques to obtain MLEs (Albertsen et al., 2015; Kristensen et al.,

2016; Whoriskey et al., 2017) and likelihood profiling to obtain confidence inter-

vals (Fischer and Lewis, 2021). See Section 2.2.2 for additional details on model

fitting.

We fit all four models to each bear under the assumption of temporally

constant resources, then fit the resource-only and resource-memory models with

the explicit inclusion of seasonal resource variation. Resources are not included

in the null or memory-only models so they are mathematically equal in both

cases.

3.3 Results

Of the 31 bears for which we had GPS data, 21 (18 females, 3 males) bears had

enough data (at least one year excluding the first year of training) for model

fitting. We fit all four models to each bear and used BIC to identify which

associated hypothesis was most heavily supported by the data. Once we iden-

tified the best model for each bear, we calculated MLEs and 95% confidence
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intervals for all parameters in that model. We found that despite a large de-

gree of individual variation, bears generally exhibited movement informed by

resources as well as memory, with a revisitation scale close to 365 days. We

also confirmed that memory, not the seasonality of resources, was the primary

mechanism causing brown bears to return to previously visited food patches in

a periodic fashion.

3.3.1 Model selection

The Mackenzie Delta brown bear population displayed a variety of movement

behaviours, although the resource-memory model was most frequently selected

as the most parsimonious explanation of the bears’ movement patterns (Table

3.1). It was identified as the "best model" (using BIC) for 9 of the 21 bears. The

resource-only and memory-only models also received some support within the

population; these models were the best model for 5 and 4 bears, respectively.

For 3 of 21 bears, the null model was the most parsimonious explanation of

bear movement patterns. There were only two cases where the difference in

BIC between the two best models was < 2 (Table 3.1).
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Bear ID Null Resource-only Memory-only Resource-memory

GF1004 70.8 51.7 76.3 0.0

GM1046 148.3 42.3 98.9 0.0

GF1008 49.2 0.0 19.1 33.2

GF1086 99.1 19.4 100.6 0.0

GF1016 22.3 11.8 0.0 30.5

GF1041 100.9 0.0 109.6 34.3

GF1107 228.7 0.0 237.9 2.4

GF1130 0.0 28.4 18.6 42.6

GF1005 65.3 0.0 52.0 16.5

GF1096 60.9 0.8 58.5 0.0

GF1167 16.6 21.0 0.0 4.8

GF1079 121.6 5.0 123.1 0.0

GF1089 8.0 16.1 0.0 20.2

GF1141 0.3 24.3 0.0 24.9

GM1133 85.2 85.5 0.0 4.4

GF1087 32.6 43.2 8.0 0.0

GF1108 0.0 9.4 0.1 15.6

GF1143 19.5 10.2 12.3 0.0

GM1147 1041.4 1021.3 0.0 960.1

GF1092 39.4 9.1 30.5 0.0

GF1146 2.0 19.6 0.0 7.8

Table 3.1: dBIC (difference in BIC from the "best model") values for each model
and bear, with resource covariates set to be temporally constant. Cells shaded
gray represent the model that best explains the movement patterns of each bear
(dBIC = 0), and cells shaded light gray represent models < 2 BIC above the
best model. Bears are sorted in descending order by number of data points (i.e.,
bears with more data at the top of the table).
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3.3.1.1 Seasonal resource modelling

When we revised our resource covariates by adding time dependence, the memory-

only model was a much more parsimonious explanation of the data (Table 3.2).

It was the "best model" for 14 of the 21 bears when resource covariates were re-

stricted to our prescribed seasons. The resource-only model was the best model

for three bears, and the null and resource-memory model were the best for two

bears each. There were three cases where the difference in BIC between the

best model and the other models was < 2 (Table 3.2).
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Bear ID Null Resource-only Memory-only Resource-memory

GF1004 3.5 11.4 9.0 0.0

GM1046 49.4 43.0 0.0 19.7

GF1008 30.1 51.8 0.0 21.3

GF1086 39.8 0.0 41.3 16.8

GF1016 22.3 41.3 0.0 33.4

GF1041 0.0 4.3 8.7 23.5

GF1107 17.1 25.2 0.0 15.2

GF1130 16.7 41.4 30.9 0.0

GF1005 14.9 41.9 0.0 33.8

GF1096 2.4 16.8 0.0 27.9

GF1167 16.6 28.4 0.0 47.6

GF1079 39.1 0.0 40.6 17.7

GF1089 9.4 0.0 1.3 1.9

GF1141 0.3 29.2 0.0 38.3

GM1133 85.2 90.2 0.0 106.3

GF1087 24.6 43.8 0.0 25.9

GF1108 0.0 31.5 0.1 36.6

GF1143 7.2 30.9 0.0 26.8

GM1147 1041.4 977.4 0.0 953.8

GF1092 8.9 34.5 0.0 32.9

GF1146 2.0 57.2 0.0 22.9

Table 3.2: dBIC (difference in BIC from the "best model") values for each model
and bear, with resource covariates set to be temporally variable. Cells shaded
gray represent the model that best explains the movement patterns of each bear
(dBIC = 0), and cells shaded light gray represent models < 2 BIC above the
best model. Bears are sorted in descending order by number of data points (i.e.,
bears with more data at the top of the table).
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Figure 3.2: Movement track for bear ID GM1046 for the years 2004 (left) and
2005 (right). Each point on the animal’s track is coloured according to the day
of the year. Note the extended visitation of the southern part of the bear’s home
range in 2003, followed by a directed navigation towards that same area at the
same time in 2004. The movement patterns of GM1046 were best explained by
the resource-memory model (Table 3.1).
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3.3.2 Parameter estimation

Most of the results below concern the "traditional" model, where we did not

explicitly set the seasonality for the resource parameters. See Table B.3 for

parameter estimates when resources were explicitly seasonal.

3.3.2.1 Movement parameters

Brown bears varied in their movement speed and directional autocorrelation

(Table 3.3). Mean movement speed in the non-stationary state (ρns) varied

from 0.22 (GF1086) to 0.65 (GF1005) km/h. Parameter estimates for κ varied

from 0 (GF1092) to 0.7306 (GF1143), and 19 of the 21 bears exhibited some

significant directional autocorrelation (i.e., the 95% confidence interval for κ

excluded 0).

Every bear spent more time in the non-stationary state than the stationary

state, with estimates for λ (the probability of remaining in the stationary state

given the bear was already in it; Table 2.1) being significantly lower than γ.

The 95% confidence intervals for γ, the probability of remaining in the non-

stationary state, were entirely above 0.5 for every member of the Mackenzie

Delta population, implying that all bears were significantly more likely to stay

in the non-stationary state than leave it at any given time. Conversely, 10 of the

21 bears had 95% confidence intervals for λ that were entirely below 0.5, and

only two bears (GF1016 and GF1041) had a confidence interval for λ that was

entirely above 0.5. Dividing λ and γ each by λ+ γ estimates the percentage of

time each bear spent in the stationary and non-stationary states, respectively,

and we found that most bears spent between 30 and 40% of their time in the

stationary state.
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3.3.2.2 Resource selection parameters

Of the 21 bears in the population, 12 (8 resource-memory + 4 resource-only)

had resource selection in their "best model". Some resource covariates displayed

more within-population variation than others (Table 3.3). Only one (GF1143)

of the 12 bears did not display significant selection for areas likely to contain

berries (i.e., the 95% confidence interval for β1 was entirely above 0). The pa-

rameter estimate for GF1143 was positive but the lower confidence bound for

β1 overlapped 0 (Table B.2a). 6 of the 12 bears selected for areas closer to

turbid water, suggesting attraction to riparian areas. None of the bears selected

against this covariate. 11 of the 12 bears selected for areas indicative of high

Arctic ground squirrel density, with GF1087 displaying neutral selection for

this covariate. Curiously, parameter estimates for β4, the selection coefficient

for sweetvetch habitat, were negative for all 12 "resource-informed" bears. 8 of

the 12 bears displayed significant selection against these areas. Bears generally

displayed minimal responses to anthropogenic dwellings in the region. Only one

(GF1087) bear displayed any significant pattern in relation to human settle-

ments (selecting closer to them), and only three displayed such behaviours with

respect to industrial cabins (GF1087 avoided them while GF1008 and GF1086

selected for areas closer to them).

3.3.2.3 Memory parameters

15 of the 21 bears had memory incorporated in their "best model", and most of

these "memory-informed bears" returned to previously visited locations between

300 and 365 days after their last visit (Table 3.3). These trends were similar

when resources were explicitly assumed to be seasonal (Table B.3), where the

memory-only model provided the best explanation of most of the bears’ move-

ments. Estimates of βd were often close to 1, suggesting that memory played a
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part in movement for all of the memory-informed bears. 9 of the 15 bears had

estimates for µ that were close to one year (>10 months or 300 days), implying

that the majority of the population used a revisitation schedule of approximately

one year. The median estimate value for σ was 8.2 days. For 8 of the 15 bears,

the confidence interval for σ excluded 3 days (the lower optimization bound

for σ; see Chapter 2 for more information), implying significant variation in the

bears’ revisitation schedules. Estimates for α also varied between bears, ranging

from -2.91 (GF1086) to 0.11 (GF1016). Based on the confidence intervals for

this parameter, we found that 4 (GF1079, GF1086, GF1087, GM1147) of the

15 bears exhibited significantly heterogeneous perception of their landscapes,

while 3 (GF1016, GF1089, GF1096) exhibited the opposite.

Of the 8 bears whose movements were best explained by the resource-memory

model, 5 displayed especially selective revisitations to locations along their track

(based on whether the 95% confidence interval for β0 was below 0.5). There

was some individual variation in the estimates for β0 themselves, ranging from

approximately 0 (GF1079) to approximately 1 (GF1096) (Table 3.3). However,

the confidence interval for β0 was large for the latter. Figure 3.2 depicts an

example of one of these 9 bears, GM1046, highlighted by clear navigations to

previously visited locations approximately a year later.

3.4 Discussion

We used brown bear movement data from the Mackenzie Delta region to analyze

the viability of a new model for an opportunistic omnivore living in a harsh

and seasonal environment. This model incorporates a complex time-dependent

spatial memory mechanism that allowed us to identify how long brown bears

wait before returning to previously visited locations. We found a great deal of

variation between individual bears, but this did not hinder our ability to observe
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population-level trends in the bears’ movement patterns. We also showed that

representing resources as temporally constant was more effective in explaining

the movement patterns of the brown bears than explicitly defining seasons for

these resources.

The most common pattern observed in the population was a 365-day "cir-

cannual memory", implying that many bears returned to portions of their home

range that they visited roughly a year before (Figure 3.2). While the model

does account for bears potentially avoiding previously visited areas through β0,

this behaviour was seldom observed in our population. Previous work on this

population identified a pattern of annual home range shift for Mackenzie Delta

brown bears (Edwards et al., 2009). Potentially, brown bears maintain fidelity

to portions of their home range, visiting those portions of the environment at

the same time each year, and displaying less annual fidelity to other portions

of their home range. Our GPS data display the bears’ movements as discrete-

time "steps", but recent modelling advances have allowed for continuous-time

modelling of animal location data (Wang et al., 2019). With more data, it may

be more feasible to estimate these "steps" more explicitly and incorporate them

into Z, the animal’s cognitive map.

Some of the resource selection patterns observed in the "resource-informed"

subset of the bear population could be explained by the nature of our landscape

data. The lack of response to areas suggestive of sweetvetch presence was sur-

prising, as almost every bear in the population displayed significant avoidance

from such habitats. We based our estimate of sweetvetch presence on Porsild

and Cody (1980), but other citations (e.g., Aiken et al. (2007)) indicate that

they may appear closer to bodies of water, in sandy areas, or even in tundra (in

fact, this could explain selection for areas closer to turbid water bodies such as

rivers and coastlines).
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Most bears did not display selection for or against anthropogenic structures,

and when they did, the resulting behaviour was not always what we predicted.

Bears are typically most affected by human presence when they have had a

previous negative encounter with humans (Hertel et al., 2019), suggesting that

this lack of significant selection could be explained by a lack of human-bear

encounters. Many of the bears did not even go near Inuvik or Tuktoyaktuk

while they were collared, suggesting a lack of encounters with humans.

When we adjusted our resource covariates such that they were explicitly as-

sumed to only appear during a prescribed temporal interval, we found that the

resource-only and resource-memory models were a significantly worse explana-

tion of brown bear movement patterns. In fact, the number of bears that had

resource selection included in their "best model" decreased from 12 with tem-

porally constant resources to only 5 with explicitly seasonal resources. When

resources were seasonally bounded, the memory-only model was much more ef-

fective than it was when resources were temporally constant. Recalling that

the memory-only model is constructed independently of resources, this yields a

clear ordering in the effectiveness of each model type for the entire population:

resource-memory with constant resources > memory-only > resource-only with

seasonal resources. We do not dispute that these resources are indeed seasonal,

but instead suggest that the landscape data we included in the model represent

more than just the seasonal resources we included them for. For example, it may

be possible that brown bears select for (and remember the location of) shrubby,

berry-rich habitats outside of berry season, when they may provide other forag-

ing benefits. Brown bears are opportunistic omnivores, and even when one food

resource is widely available, they still maintain a balanced diet with multiple

food sources (Robbins et al., 2007). When we restricted our resource availabil-

ity to seasonal intervals, we nearly limited brown bear habitat selection to one
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resource covariate at a time, which may have been unrealistic. The correction

we attempted in this model may not have worked for this population of bears,

but in other systems (e.g., specialist herbivores in Kenyan savannas; Kartzinel

and Pringle, 2020), it may be more appropriate.

The high inter-individual variation in the brown bear population is both

interesting and unsurprising given what we know about the species and popu-

lation. Brown bears undoubtedly possess the cognitive capability to remember

the location of previously visited areas (Manchi and Swenson, 2005; Clapham

et al., 2012; Selva et al., 2017; Wirsing et al., 2018), and the Arctic’s seasonal

and spatial dynamics suggest that the spatio-temporal memory we tested here

would be useful for optimal foraging (Fagan et al., 2013). It is then somewhat

surprising that only 15 of the 21 bears in the population exhibited memory-

informed movement according to our model selection process. One potential

explanation is that if the temporal variation in the landscape is unpredictable,

then periodic memory-informed movement may not improve foraging success

(Mueller et al., 2011). Vegetation in the Mackenzie Delta region is somewhat

unpredictable from year to year (Edwards et al., 2013), and while some resources

may be available at the same place and time each year, memorizing the location

of a patch that may not support resources in the future could be detrimental

to foraging. It is also possible that bears remember the locations of previously

visited areas, but take a different (possibly more efficient) route to these areas.

This is just one example of a memory-informed movement that may not be

identified by our memory-only or resource-memory models, as our models and

hypotheses are concerned only with a specific kind of memory-informed move-

ment. Our model also does not account for social dominance hierarchies that are

often present in brown bear populations (Gende and Quinn, 2004). Including

the paths of nearby conspecifics would be difficult given our data restrictions
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(e.g., many bears in the population were not tracked) but would connect to

innovative theoretical work (e.g., Potts and Lewis, 2014) to answer important

questions about animal cognition and sociality.

The model used here may not reliably be able to identify the correct signal

when fit to only one year of bear GPS data, forcing us to question our results

for bears with this much data. In Chapter 2, although the simulation analyses

performed with the model were effective for small data sizes, the model fits for

individual years of data from the same bear, the "best model" often changed

from year to year. A finer temporal resolution for our GPS data could also

solve this problem, since processes such as movement autocorrelation are more

difficult to identify with temporally sparse data. With the data we have, though,

we can only postulate that either the bears are changing the way they move

from one year to another, or that the model is unreliable in detecting a spatio-

temporal memory signal without enough data. The former could arise as a

result of reproductive activity in the population. When female bears have cubs,

their movement strategies change as preventing infanticide and supporting their

offspring become priorities (Edwards and Derocher, 2015). Male bears display

much less behavioural plasticity with regard to reproduction, and all three of

the male bears included in our analysis were best explained by the resource-

memory model. Year-to-year variability in the landscape could also influence

this behaviour; for example, if a bear finds food somewhere in one year, revisits

that area 365 days later, and does not find food, it may use its cognitive map

differently in subsequent years. Conversely, if a bear finds a new food source

it may abandon its cognitive map and spend time at the newly found patch

instead. We acknowledge that we cannot support or refute these hypotheses

about within-individual variation without a longer temporal scale of data per

individual.
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One bear, GF1079, yielded noticeably different parameter estimates from the

resource-memory model as its "best model". This bear had a β0 value close to 0

and its estimate for µ was less than 1 day, which implies that it was consistently

moving away from locations it had visited very recently. This would be expected

from an animal performing correlated random walk behaviour (its estimate for

κ was 0.731, the largest in the population), but in our model, we control for

this behaviour by comparing observed steps to random steps simulated from

a correlated random walk (as is done in traditional step selection analysis).

This combination of parameter estimates only occurred with GF1079, which

had only one year of location data (excluding the first year used for model

training), suggesting that this occurrence is rare and may be alleviated with

more data. Another bear, GM1147, exhibited movement patterns that were

explained much better by the memory-only model than any other model we fit

(Tables 3.1 and 3.2). A dBIC value of nearly 1000 from these data is difficult

to explain, although once again, the infrequency of this situation implies that

it may disappear if more data are included.

Our modelling framework focuses on behaviours that are observed in many

other taxa, with potential for application in wildlife management. Boreal wood-

land caribou (Rangifer tarandus caribou) display site fidelity patterns that vary

by season, displaying greater fidelity at different parts of the year (Lafontaine

et al., 2017). Applying our framework to location data for woodland caribou,

potentially breaking data up into seasonal partitions, would provide valuable

inference about the extent of these patterns. The individual variation in brown

bear movement behaviour was a key conclusion that we identified, which sug-

gests that our modelling framework may be applicable to other ecological sys-

tems with high individual variation. As an example, black-legged kittiwakes

(Rissa tridactyla) display individual differences in site fidelity when foraging
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near nesting colonies (Harris et al., 2020). These birds may not only exhibit

different degrees of support for the resource-memory model, but the rate at

which previous foraging paths are revisited (µ) may differ between individuals.

Our approach may also be useful when resources do not vary temporally, but

other factors (such as prey vigilance or depletion-recovery dynamics) necessitate

the use of spatio-temporal memory in animals (e.g., Schlägel and Lewis, 2014).

Identifying the degree to which animals rely on memory is also important for

translocation and reintroduction protocols. These protocols are often applied

to animals that pose a high risk of coming into conflict with humans, transport-

ing these animals to an environment they are unfamiliar with. Translocated

animals that rely heavily on memory struggle to forage effectively in their new

environments (Jesmer et al., 2018). Brown bears are frequently translocated,

and these costly and time-consuming protocols significantly increase mortality

risk if not executed properly (Milligan et al., 2018). These important and nec-

essary decisions can be made more effectively with knowledge of how memory

and familiarity impacts the movements of problem animals.

3.5 Conclusions

Animal movement is one of ecology’s most complex processes, with many po-

tential drivers that undoubtedly vary between individuals and species alike.

Brown bears in the Arctic display this complexity due to the heterogeneity of

their environment and the high dietary variation between individuals. We ap-

plied a newly derived modelling framework to a subset of the Mackenzie Delta

brown bear population and amid high variation between individuals, we found

the most frequent movement strategy to be a circannual pattern of revisita-

tion to resource-rich food patches, which our model suggests is driven by time-

dependent spatial memory. These results highlight the ability of this modelling
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framework to identify complex cognitive processes from discrete-time animal

location data.
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4 Simulating how animals learn: a new modelling

framework applied to the process of optimal

foraging

4.1 Introduction

Animals do not know everything about the environments they live in (Fagan

et al., 2013), and even if they did, human-induced climate change is making the

world very unpredictable (Masson-Delmotte et al., 2021). While evolutionary

adaptations are typically too slow to match these changes (Bell and Collins,

2008; Chevin et al., 2010; Merilä and Hendry, 2014), many animals can exhibit

multiple behavioral responses to a changing environment without modifying

their genetic code in a phenomenon known as behavioral plasticity (DeWitt

et al., 1998; Schmidt et al., 2010; Snell-Rood, 2013; Wong and Candolin, 2015).

Examples of behavioral plasticity range from temporal adjustments in the phe-

nology of frogs in the temperate forests of the eastern United States (Gibbs

and Breisch, 2001) to the settlement of urban areas by birds in Europe (Møller,

2009). The ability to incorporate external information into a revised behavioral

strategy may confer a fitness benefit to animals living in uncertain environments

(Parrish, 2000; Donaldson-Matasci et al., 2008), but the conditions under which

behavioral plasticity is adaptive are not well-understood (Wong and Candolin,

2015). Most forms of behavioral plasticity involve learning (Snell-Rood, 2013),

which has a rich theoretical background (Pearce, 2008) that could provide im-

portant context to the problem.

Our understanding of how animals learn is largely derived from laboratory

studies of simple tasks (Pearce, 2008), which elucidate important cognitive

mechanisms for learning but do not particularly resemble the natural world.
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This rich field of study can be traced back to Pavlov’s work on conditioning and

associative learning (Pavlov, 1927; Harris and Bouton, 2020), which spawned

theoretical and experimental work assessing the formation and extinction of

these associative relationships, along with an animal’s ability to categorize stim-

uli into different groups (Spence, 1936; Rescorla and Wagner, 1972; Pearce, 1987;

Katz and Wright, 2006). As food is often used as a positive reinforcer for animals

(Pavlov, 1927), it follows logically that "foraging" tasks can effectively display

how animals learn to prioritize different food resources based on their relative

reward (Krebs et al., 1978; Lea et al., 2012). Many of these conclusions draw

heavily from optimal foraging theory (Charnov, 1976), generating a connection

between cognitive and spatial ecology. When the proper data are available, ani-

mal movement and foraging processes can characterize memory and learning in

wild animals (Fagan et al., 2013; Lewis et al., 2021). The mechanistic clarity of

laboratory experiments and the realism of animal movement models are difficult

to combine into one analysis, but individual-based simulation modelling may be

an effective tool for generating realistic patterns with clear mechanistic origins

(Tang and Bennett, 2010; DeAngelis and Diaz, 2019; Murphy et al., 2020).

Cognitive psychologists and ecologists have identified a striking resemblance

between learning and Bayesian inference. This is most clear when couched

in terms of statistical decision theory (SDT; McNamara and Houston, 1980;

Berger, 1985). Broadly speaking, SDT is a mathematical framework describing

the optimal way animals or humans should make decisions according to learned

information (Dall et al., 2005; Dayan and Daw, 2008; Schmidt et al., 2010). A

key component of SDT is the use of Bayes’s theorem to represent how prior

knowledge is updated through learning to produce a refined, posterior distri-

bution of belief (Berger, 1985). Bayes’s theorem and its key principles have

been used to explain many learning processes (Griffiths et al., 2001; McNamara
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et al., 2006), including Pavlovian conditioning (Courville et al., 2006), mate

choice (Luttbeg, 1996; Castellano et al., 2012), and optimal foraging (Green,

1980, 2006; Valone, 2006). The application of SDT to optimal foraging prob-

lems has inspired the term "Bayesian foraging", which describes how animals

update their foraging preferences in a decision-theoretic manner (Green, 1980;

Valone, 2006). Most of this work has focused on small-scale foraging tasks,

but in reality, foraging is a complex process influenced by many cognitive cues

(Fagan et al., 2013). Extending SDT to a model that wholly encompasses an-

imal movement and foraging will produce results that are more realistic and

applicable to vulnerable wildlife populations.

Bayesian Markov Chain Monte Carlo (MCMC) sampling is a simple algo-

rithm that we can use to simulate how animals learn. MCMC sampling uses a

stochastic approach to calculate the posterior distribution of a set of parameters

based on prior distributions and data supplied by the user (Raftery and Lewis,

1992). When applied to learning, these parameters represent biological qualities

of an animal, and the data represent information collected by animals through

empirical experience. The structure of the prior and posterior distributions re-

flects the relative "belief" an animal possesses in a certain behavioral strategy

(i.e., combination of parameters) before and after incorporating "data", respec-

tively. The data enforce revised posterior belief in certain behavioral strategies

through an objective function, which depends on the parameters and may also

be stochastic. While the objective function in a MCMC sampling procedure

is typically a probability distribution function (or likelihood function) of some

sort, it does not need to be continuous nor does it need to integrate to 1 over

the sampled domain. Instead of using MCMC to find the global optimum of a

likelihood function, we can use it to identify behavioral strategies that result in

globally optimal fitness. In this example, the objective function would represent
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the net energetic yield afforded by a specific strategy. Under this framework,

MCMC simulates how "animals" sample information by executing the task and

evaluating the energy afforded by different behavioral strategies (i.e., parameter

values). Behavioral strategies that consistently produce less favorable objective

function values are less likely to accumulate probability mass in the posteriors.

One complete run of the MCMC algorithm, which we henceforth refer to

as a "chain", consists of many iterations. In each iteration the sampler draws

random parameter values and calls the objective function at those values, either

accepting or rejecting the parameters based on the function value. The number

of iterations in a chain has important mathematical and biological interpreta-

tions. Chains with more iterations allow for more extensive modification of the

priors, which biologically represent a simulated animal’s relative belief in dif-

ferent behavioral strategies. With that in mind, we suggest that the number of

iterations in a chain represents the amount of information the animal gathers in

its environment. We can more effectively ensure that the animal consistently de-

velops the same posterior belief in identically parameterized, but independent,

chains when these chains have more iterations (this is mathematically akin to

ensuring the algorithm converges; Raftery and Lewis, 1992; Cowles and Carlin,

1996). Some MCMC algorithms leave iterations at the beginning of the chain

out of the posterior distribution, classifying them as "burn-in" iterations. The

burn-in period was designed to enhance chain convergence (Cowles and Carlin,

1996) but by omitting the behavioral strategies employed at the beginning of

the simulation process, the posterior distributions no longer include information

the animal gathered during the unrealistically "naive" (given the structure of

the priors) stages of learning.

During the sampling process, MCMC allows for the acceptance of subop-

timal objective function values (i.e., lower than previous values) to search the
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parameter space more completely and avoid local optima. The rate at which

these suboptimal values are accepted can be likened to the range of behavioral

strategies an animal may try in a given environment. Animals that accept a

wide variety of strategies, even when they may not be optimal, could be thought

of as displaying behavioral plasticity. Consistently following the optimal behav-

ioral strategy could be thought of as displaying environmental canalization, a

term used to characterize a lack of phenotypic variation in reaction to environ-

mental change (Gibson and Wagner, 2000; Gaillard and Yoccoz, 2003; Liefting

et al., 2009). The simplest way to enforce this in the model is to introduce

an exponent k > 0 which is applied to the objective function during sampling.

We can think of k as an index of canalization, implying that lower values of k

correspond to high behavioral plasticity. Animals that possess high plasticity

frequently sample many behavioral strategies amid environmental uncertainty

in what is commonly referred to as bet-hedging (Donaldson-Matasci et al., 2008;

Nevoux et al., 2010).

We expanded on existing implementations of SDT by coupling an individual-

based simulation model for animal movement with memory (Avgar et al., 2013)

to a Bayesian model simulating how animals learn to forage optimally. Our

algorithm incorporates an objective function measuring the net energetic intake

of a foraging bout, given a set of parameters controlling animal behavior. To

this end, the posterior distribution of these parameters obtained after sampling

reflects what simulated animals learned about the efficiency of different forag-

ing techniques. We tested how effectively animals adjusted to unexpected and

abrupt changes in the distribution and abundance of resources on the landscape.

We found that animals with higher behavioral plasticity performed more effi-

cient foraging returns after these abrupt changes, but were less efficient when

the environment did not change. Our framework displays how SDT can be
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extended to the simulation of realistic ecological processes that, if formulated

correctly, can make effective predictions when data are lacking.

4.2 Methods

4.2.1 The learning model

We used Bayesian Markov Chain Monte Carlo (MCMC) sampling to simulate

how animals learn to adjust their behavior based on indicators of success. The

effectiveness with which an animal executes a certain task was quantified by

an objective function f . Animals "sample" different parameter values (i.e.,

behavioral strategies) and evaluate their optimality by calculating f ; depending

on the value of f , the animal may be more or less likely to attempt similar

strategies as represented by the posterior distribution of behavioral strategies.

We parameterized the MCMC sampler in a way that produced consistent and

biologically realistic results. We used uniform priors for each of the behavioral

parameters, which necessitated that we added a burn-in period to our chains,

and we chose to omit the first Nburn = 500 iterations of each chain from the

posterior distribution to this end. Choosing the number of iterations per chain

(including burn-in), Niter, was a careful optimization of the trade-off between

computational expense and consistency. Chains with more iterations take longer

to simulate but they also more accurately represent what simulated animals

have learned. We analyzed chains of different sizes to evaluate the fewest iter-

ations necessary to produce consistent posterior distributions, which supported

our choice of Niter = 2000 (see Appendix D for more detail). This produced

posterior distributions with Niter − Nburn = 1500 parameter values. We also

tested many different values for k, the exponent applied to f during sampling:

k = 5, 10, 20, 50, 100, 200, 500, 1000. Parameter values used in this study are

summarized in Table 4.1. We ran our algorithm in Julia 1.6.2 using the Turing
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Par Description Value
MCMC algorithm parameters

Niter Number of MCMC iterations per chain 2000
Nburn Number of iterations in burn-in period 500

k Exponent of objective function f Many values
Behavioral parameters

β Degree of reliance on memory Not fixed
γ Likelihood to make long navigations Not fixed
q Default expectation of habitat quality Not fixed
h Relative preference for resource Q1 Not fixed

Movement parameters (see Appendix A)
Nr Number of potential points of interest simulated 1000
λ Exponent of C values when choosing point of interest 10
ρ Average step length on navigations 2
κ von Mises angular correlation parameter for navigations 10

Objective function parameters
Ttrain Length of training portion of each track 1000
Ttest Length of test portion of each track 1000
v Energetic loss per 1 cell length of movement 0.05

Navg Number of tracks incorporated into one f call 5
Landscape parameters (see Appendix A)

Q Threshold for landscape patches 0.6 or 0.9
dL Rate of resource depletion per time step 1.0
rL Recovery rate of depleted resources per time step 0.025

Table 4.1: Description of model parameters. The four parameters under the
section "Behavioral parameters" are incorporated into the objective function f ,
and sampled in the Bayesian MCMC algorithm.
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library, which offers a number of different MCMC samplers. We sampled differ-

ent parameter combinations with the widely used Metropolis-Hastings algorithm

(Hastings, 1970; Chib and Greenberg, 1995), using the "MH()" function from

the Turing library. Parameters with infinite support were log-transformed and

bounded on finite intervals determined by assessing their biological meaning.

4.2.2 Application of the model to foraging

We tested our modelling framework with an optimal foraging task involving

the individual-based simulation of animal movement across a continuous-space

landscape. Our individual-based model (IBM) for movement is heavily inspired

by Avgar et al. (2013) and contains four parameters mediating the behavioral

strategy of simulated animals. We provide a summary of the model and param-

eters below, but see Appendix A for a more detailed explanation of the process

using the ODD (Overview, Design Concepts, and Details) protocol (Grimm

et al., 2006).

Simulated animals move on a landscape characterized as a a 100 x 100 ar-

bitrary length unit (lu) square in two-dimensional continuous space. The land-

scape has two independently distributed "resources" that provide an energetic

benefit to the animal. In the interest of producing movements similar to empiri-

cally observed location data, animals take discrete-time "steps" every 1 aribtrary

time unit (tu). Animals perceive, remember, and recall the quality of previously

visited foraging patches to make informed movement decisions. We make four

key assumptions about how animals do this, listed below:

(A1) Animals exhibit a preference for one of the two resources on the landscape

and bias their movements accordingly.

(A2) Animals remember the resource density of areas they have previously vis-

ited, but the animals’ reliance on memory decreases over time.
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(A3) All points that the animal has not visited are perceived by the animal as

having equal value, regardless of their spatial or temporal position.

(A4) Animals are more likely to navigate to nearby points, all else held equal.

The foraging quality of any point x at any time t, which we denote Q(x, t),

ranges from 0 to 1 and is composed of two independent foraging resources,

Q1(x, t) and Q2(x, t). While Q(x, t) = (Q1(x, t) + Q2(x, t))/2 across the land-

scape, we allow animals to exhibit "habitat selection" for the different resources

on the landscape (Assumption A1). The behavioral parameter h ranges from

0 to 1 and mediates the animal’s relative preference for Q1 and Q2. Simu-

lated animals perceive Q1 and Q2 as independent entities, and when computing

the animal’s perceived foraging quality for any point x and time t, we use

Q̃(x, t) = hQ1(x, t) + (1− h)Q2(x, t) as opposed to Q(x, t) (Figure 4.1).

Simulated animals perceive new information about resources on the land-

scape and encode this information into spatial memory. Many different animals

use memory to guide their foraging movements (Panakhova et al., 1984; Clayton

and Dickinson, 1998; Schlägel and Lewis, 2014; Potts and Lewis, 2016; Bracis

et al., 2018; Ranc et al., 2021), but heavy reliance on spatial memory is ac-

companied by numerous energetic costs (Fagan et al., 2013). The behavioral

parameter β ≥ 0 quantifies the extent to which simulated animals rely on their

memory of previous foraging experiences. As β increases the animal relies less

on its memory, potentially a strategy to adapt to temporally variable environ-

ments (Fagan et al., 2013). We note that unlike memory decay, a neurological

process (Thomas and Riccio, 1979), the mechanism displayed here represents the

animal’s conscious choice not to rely on the memory of previous experiences.

Animals make a naive, uninformed "guess" about the resource quality of

locations they have not visited, and per Assumption A3, this guess is constant

across space and time. Specifically, any location will be assigned the value
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Figure 4.1: Schematic describing the generation of C(x, t), the animal’s esti-
mation of resource quality across the environment. The animal weights two
independently distributed resources and incorporates newly perceived informa-
tion into C based on the perception function p(x,xt). Note the incremental
updating of C as the animal moves to a new location (xt, pictured in blue on
the bottom right).
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q ∈ [0, 1] as long as that location remains unvisited by the animal. Larger

values of q suggest that the animal is more "optimistic" about the quality of

unexplored areas (Berger-Tal and Avgar, 2012; Avgar et al., 2013), and will more

frequently visit these areas as a result.

Once the animal generates an expectation of resource quality across the

landscape, it must choose a location to navigate to. Assumption A4 states

that animals are more likely to navigate towards nearby points than faraway

points. This idea follows logically from the marginal value theorem (Charnov,

1976), which considers the energetic cost of travel to other patches. We included

behavioral parameter γ ≥ 0 to quantify this relationship. As γ increases, the

probability that the animal will navigate to a faraway point decreases; even if

the animal believes there are resources far away, it may opt for nearby resource

patches instead, a tactic many animals adopt as a risk avoidance mechanism

(Gehr et al., 2020).

The animal’s perceived resource quality for any point x and time t, denoted

C(x, t), depends on these four assumptions. This function consists of a weighted

average of three quantities: newly perceived information (weighted by percep-

tion function p(x,y)), memorized information (weighted by memory function

m(t)), and the naive expectation q.

p(x,y) = exp

(︃
−d(x,y)

ρ

)︃
, (4.1)

m(t) = exp(−βt), (4.2)

C(x, t) = p(x,xt)Q̃(x, t)⏞ ⏟⏟ ⏞
perception

+

(1− p(x,xt))
(︂
m(1)C(x, t− 1)⏞ ⏟⏟ ⏞

memory

+(1−m(1))q⏞ ⏟⏟ ⏞
expectation

)︂
. (4.3)

86



The perception function relies on the assumption that animals perceive

nearby information more accurately than faraway information (Fletcher et al.,

2013; Avgar et al., 2015; Fagan et al., 2017), where d(x,y) is the distance be-

tween x and y and ρ is the animal’s average movement speed in lu/tu. A pos-

itive association between movement capability and perceptual range has been

documented across many animal taxa (Kiltie, 2000; Møller and Erritzøe, 2010).

4.2.2.1 Calculating the objective function

We designed an objective function f measuring the energetic benefit afforded by

a certain behavioral strategy. We divided these simulated foraging bouts into

"training" and "test" sections of durations Ttrain and Ttest, respectively, and

only measured f over the test section. Avgar et al. (2013) made a similar correc-

tion to allow animals to develop an initial memory of their simulated landscape,

producing movement paths that resemble empirically collected animal location

data. We subtracted the animal’s total resource intake across the simulation

by the energetic loss as a result of movement, calculated as the animal’s total

distance traveled multiplied by a proportionality constant v ≥ 0 (Table 4.1).

Our function f consists of an average of Navg independent movement tracks

so it effectively characterizes the expected value of any parameter combination.

We define fi, the net energetic intake from the ith of these tracks, by summing

the energetic gains collected at each location xt along the animal’s path:

fi(β, γ, q, h|Q) =

∑︁Ttrain+Ttest

t=Ttrain+1 Q(xt, t)− v
∑︁Ttrain+Ttest

t=Ttrain+1 d(xt,xt−1)

Ttest
, (4.4)

f(β, γ, q, h|Q) =
1

Navg

Navg∑︂
i=1

fi(β, γ, q, h|Q). (4.5)
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4.2.2.2 Scenarios of environmental change

We randomly generated spatially autocorrelated resource landscapes (see Ap-

pendix A for further detail) and used them to simulate abrupt landscape-level

changes in the environment. Bayesian inference allows for the iterative updating

of prior expectations based on previous analyses (Ellison, 2004). The posterior

distributions of our behavioral parameters represent knowledge accumulated by

a simulated animal, which we can use as more "informative" priors for a sec-

ond MCMC chain. Each of our scenarios of environmental change contains two

stages, where each stage has a unique Q1 and Q2 (Figure 4.2). The scenar-

ios we generated incorporate two "types" of landscape, which can be visually

compared in the first chain of Scenario A (Figure 4.2). Here, Q1 is much more

abundant and widely distributed than Q2, but Q2 is richer than Q1 in the small

area where it can be found. Scenario A serves as a "control" where the envi-

ronment does not change; we would expect the animal to identify an optimal

strategy and retain this strategy for both chains. In Scenarios B and C, only one

of the resources switches between being widely abundant and locally available

(the difference being the directionality of this change), and in Scenario D, both

resources swap.

We ran the MCMC algorithm with each of the four scenarios and a suite of

k values (5, 10, 20, 50, 100, 200, 500, 1000) to evaluate how these quantities

affected optimal foraging behavior. For each value of k and scenario, we ran

algorithm 12 independent times. We obtained posteriors for the first and second

chains of each run for the four parameters β, γ, h, and q, along with a posterior

distribution of fi values (1500 iterations after burn-in × 5 fi per f call × 12

chains = 90000 total fi calls) for each k and scenario.
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Figure 4.2: Different scenarios of environmental change used in our simulations.
Scenario A is a “control” where the environment, composed of two resources Q1

and Q2, does not change at all. In Scenarios B and C, Q1 stays the same, but
Q2 becomes more or less abundant than Q1, respectively. In Scenario D, the
distributions of Q1 and Q2 "swap".
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4.3 Results

4.3.1 Posterior distribution of parameters

Under the same environmental circumstances, 12 independently simulated MCMC

runs produced similar posterior distributions, suggesting that Niter = 2000 and

Nburn = 500 is sufficient for convergence (a subset of these are displayed in

Figure 4.3). In most circumstances, simulated animals displayed a relatively

"pessimistic" expectation of unvisited food patches, as suggested by posterior

distributions concentrated around low values of q. Posterior distributions of β

were relatively spread out across all values, suggesting that long-term reliance

on memory only has a minimal advantage over short-term reliance in these sim-

ulations. Simulated animals avoided long-distance navigations, opting instead

for values of γ close to 1 frequently (Figure 4.3). Most notably, though, an-

imals simulated in Scenario A (Figure 4.2) exhibited a strong preference for

resource Q2, which was much less abundant across the landscape than Q1. This

is indicated by posterior distributions for h concentrated around lower values.

4.3.2 Posterior distribution of objective function values

Both the scenario of environmental change and the MCMC parameter k affected

the second chain’s posterior distribution of fi values. Typically, the spread of

these distributions increased as k decreased, especially in Scenario A, where

they appear similar to delta functions at k = 500 and k = 1000 (Figure 4.4). In

scenarios where the environment changed dramatically (e.g., Scenario D; Figure

4.2), these distributions took on different shapes, sometimes becoming bimodal

(Figure 4.5).

More specifically, the effect of MCMC parameter k on the distribution of

objective function fi values depended on the scenario of environmental change
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Figure 4.3: Posterior density plots for one independent runs of the MCMC
algorithm, taken from the first chain of Scenario A (see Figure 4.2) with k = 10.
Greater probability mass at certain parameter values indicates higher belief in
that value optimizing the net energetic gain function f . Note, in particular,
the animal’s preference for resource Q2, which in this case is much less widely
available but provides a larger energetic benefit than Q1 where it can be found
(Figure 4.2).
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Figure 4.4: Example violinplots detailing the distribution of objective function
fi, which represents the net energetic gain from a simulated animal foraging
bout. These two violinplots are taken from the second chain of Scenario A (see
Figure 4.2), with k taking on two different values.

Figure 4.5: Example violinplots detailing the distribution of objective function
fi, which represents the net energetic gain from a simulated animal foraging
bout. These two violinplots are drawn from the second chain of Scenarios A
and D (Figure 2), respectively, with k = 200 for each.
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(Figure 4.6). In Scenario A (Figure 4.2), simulated animals performed more

consistently and efficiently with large values of k than with small k. In Scenario

B, k had a much smaller effect on foraging success than Scenario A, although

the spread of fi values was larger with smaller k (Figure 4.6). The posterior

distributions of fi from Scenario C resemble those from Scenario A at low k,

but appear to take on a skewed, slightly bimodal shape at higher k. In Scenario

D, intermediate values of k (k = 100 and k = 200) produced foraging bouts

that were, on average, more efficient than at large values of k (Figure 4.6). The

distribution of fi values was distinctly bimodal with large k, and as k increased,

more probability mass was concentrated in the second, lower mode.

4.4 Discussion

Predicting how animals will adjust to environmental change is an important

but complex ecological problem. We developed a Bayesian model that simu-

lates how animals sample information about their environments to develop a

posterior distribution of optimal foraging behavior. Our model builds on sta-

tistical decision theory, which has long been used to explain how animals learn

from a Bayesian perspective (McNamara and Houston, 1980; Berger, 1985; Dall

et al., 2005). We applied our learning model to a complex, continuous-space

foraging task to be completed by simulated spatially informed foragers (Avgar

et al., 2013). In the presence of two independently distributed resources with

equal energetic return, animals simulated in our model prioritized resources that

were concentrated within small, sparsely distributed patches. Animals that ex-

hibited canalized behaviour displayed consistently efficient foraging returns in

temporally predictable environments, but environmental canalization became

maladaptive when we introduced sudden, unpredictable changes to the land-

scape. Our results suggest that Bayesian MCMC can be used to simulate how
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Figure 4.6: Effect of MCMC parameter k on foraging efficiency in simulated
animals under four different scenarios of temporal environmental change (see
Figure 4.2 for detail on each scenario). Each individual violinplot represents a
sample of 90000 fi values (12 independent runs of MCMC × 1500 f values per
run × 5 fi values per f call) representing the net energetic gain from a single
simulated movement track. The red line represents the mean of all fi values
from each k value.
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animals, and potentially even humans, learn a wide variety of tasks in an ever-

changing world.

When faced with the choice of two resources, simulated animals chose the

resource that was available in smaller, but more heavily concentrated patches

(Figure 4.3). This finding suggests that simulated animals occupy areas with

the highest possible habitat suitability, a key principle of ideal free distribution

(IFD) theory (Fretwell and Lucas, 1969; Cantrell et al., 2007). Many patterns

predicted by IFD theory can be seen in our results even though our IBM did

not incorporate competition between individuals (this could be an interesting

topic for future work). Specifically, IFD theory predicts that individuals resid-

ing in poor habitat will adjust for the lack of resource abundance by adopting

larger home ranges (Haché et al., 2013). Simulated animals in our model cen-

tralized their movements around small plentiful resource patches, producing

smaller home range sizes than individuals that foraged on less concentrated

resources. Similarly, the resource dispersion hypothesis predicts that animals

will occupy larger home ranges when resources are less spatially concentrated

(Macdonald, 1983; Macdonald and Johnson, 2015). Increasing the speed or

breadth of resource depletion or further decreasing the spatial availability of

these concentrated resources could modify this relationship.

The wide variety of behavioral strategies adopted by simulated animals with

high behavioral plasticity during sampling produced variable energetic out-

comes. Behavioral plasticity allows animals to exhibit a variety of foraging

strategies simply as a result of learning and adjusting to new environmental

drivers (Parrish, 2000). Animals with highly canalized behavior (i.e., low plas-

ticity) would be expected to perform one foraging strategy consistently (Gail-

lard and Yoccoz, 2003; Snell-Rood, 2013; Wong and Candolin, 2015), and we

frequently saw that in our simulations. This is also unsurprising from an analyt-
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ical perspective, since k (specificity) also resembles the number of "clones" used

in data cloning algorithms (Lele et al., 2007). This consistency also suggests

that there is minimal stochastic variation in the value returned by our objective

function fi when our behavioral parameters were held constant.

Our simulations strongly suggest that behavioral plasticity is adaptive when

the environment changes dramatically and unexpectedly. Animals simulated

in temporally constant environments had unimodal distributions of energetic

return, but those simulated in temporally unpredictable environments had a

second mode centered around a lower energetic intake (Figure 4.5). The latter

group of simulated animals foraged efficiently until the distribution of resources

suddenly changed, rendering the original strategy suboptimal. Animals with

high behavioral plasticity shifted their resource preferences depending on the

environment, for better or for worse (Parrish, 2000; van Baaren and Candolin,

2018; Dunn et al., 2020). Animals with very low behavioral plasticity contin-

ued to forage according to their initial, now suboptimal, strategy, while animals

with intermediate levels of behavioral plasticity adjusted their foraging strate-

gies more effectively (Figure 4.6). Animals with very high behavioral plasticity

performed a diverse array of foraging strategies, many of which were too ineffi-

cient to produce optimal foraging returns.

While behavioral plasticity is typically considered an adaptive trait, some

animals suffer from it. Ecological traps are resources that appear beneficial to

animals but, in reality, do not confer a fitness benefit (e.g., mayflies lay their

eggs on asphalt because it reflects light similarly to water; Kriska et al., 1998).

Ecological traps have become more frequent in the Anthropocene due to the

proliferation of man-made novel objects in natural environments (Robertson

and Chalfoun, 2016). A typical consequence of behavioral plasticity is an in-

creased likelihood to explore unfamiliar stimuli (Mettke-Hofmann et al., 2009;
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Snell-Rood, 2013), which is believed to associate behavioral plasticity and vul-

nerability to ecological traps (Robertson and Chalfoun, 2016). The results from

our simulation study corroborate empirical evidence that environmental canal-

ization can be more effective than behavioral plasticity in some environments.

Translocated animals represent an effective way to test our model, displaying

behavior similar to our simulations. Animal translocation and reintroduction

protocols have many purposes, ranging from the displacement of potentially

dangerous animals (Milligan et al., 2018) to the restoration of populations and

ecosystems (Seddon et al., 2007; Polak and Saltz, 2011). Translocated animals

are abruptly brought to entirely new environments where they must learn to for-

age optimally or face heightened mortality risk. The nature of these protocols

makes them an effective real-life test for our model, and many of the predictions

offered by our model are verified from translocation studies. Translocated elk

(Cervus canadensis) displayed different foraging behavior depending on the envi-

ronmental conditions in their original home range and the environmental change

they underwent (Falcón-Cortés et al., 2021). Specifically, elk translocated be-

tween two very different environments (resembling our Scenario D) were more

exploratory and less reliant on memory than those translocated between similar

environments, suggesting a shift in behavior from their original home ranges

(Falcón-Cortés et al., 2021). As another case study, greater prairie-chickens

(Tympanuchus cupido) typically sought out habitat similar to that of their na-

tal ranges, suggesting a strong prior preference for resources found in their old

environments (Kemink and Kesler, 2013). Here, canalization was detrimental

to the birds’ survival, adding support to the pattern observed in panel D of

Figure 4.3. Translocations and reintroductions are frequently practiced across a

wide array of animal taxa, but they are still risky and unpredictable (Berger-Tal

and Saltz, 2014). The principles drawn from our analysis provide an improved
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forecast for the efficacy of these protocols in different ecological systems.

In addition to the complex foraging task tested here, our framework for

describing and simulating learning can be applied in many other situations.

Much of what we currently know about animal learning comes from manipula-

tive experiments conducted with captive animals (Pearce, 2008). Many of these

studies have been critical for unearthing the mechanisms behind animal cogni-

tion, memory, and learning (Pavlov, 1927; Rescorla and Wagner, 1972), but they

do not replicate the conditions wild animals experience. By incorporating the

prevailing mathematical theory behind animal learning, our modelling frame-

work fills this gap. Our results with respect to continuous-space foraging align

with optimal foraging theory (Charnov, 1976), ideal free distribution theory

(Fretwell and Lucas, 1969), and prevailing knowledge on behavioral plasticity

(Wong and Candolin, 2015; Robertson et al., 2013). With that being said, our

model for learning is general enough that it need not be confined to optimal

foraging. Specifically, any problem that can be characterized in the form of an

objective function and a set of parameters representing behavior is tractable

for our framework. This could include movement on different spatial or tem-

poral scales, social learning, or communication. Even more thought-provoking

is the potential for our modelling framework to predict how humans learn and

make decisions. Through these potential applications and more, our computa-

tional modelling framework has the capacity to address challenging problems in

cognitive science.
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5 A parametric model for estimating the timing

and intensity of animal migration

5.1 Introduction

Migration is one of the most widespread and important ecological processes

within the animal kingdom (Dingle and Drake, 2007; Bauer and Hoye, 2014).

The process occurs in countless animal taxa and has evolved convergently many

times (Pulido, 2007; Roff and Fairbairn, 2007; Fryxell and Holt, 2013). Owing in

part to this convergent evolution, migration is a diverse process, occurring across

a wide variety of temporal and spatial scales (Egevang et al., 2010; Hebblewhite

and Merrill, 2011; Bohart et al., 2021; Abril-Colón et al., 2022). Understand-

ing how and why animals migrate is important theoretically but understanding

where these animals are going and when facilitates effective management (Mid-

dleton et al., 2020; Kauffman et al., 2021). As the world undergoes a period of

rapid and unprecedented change, the migratory patterns of many animals have

changed in response, particularly with respect to their spatial and temporal

extent (Hardesty-Moore et al., 2018; Tucker et al., 2018). Recent advances in

tracking technology have allowed ecologists to collect animal location data at

unprecedented spatial and temporal resolutions, creating opportunities to an-

swer more complex questions pertaining to migration (Kays et al., 2015). This

influx of data describes the spatial extents of many animal migrations in detail.

The temporal extent of migration is needed for phenological studies but is more

difficult to quantify.

Ecologists have designed many approaches to identify the beginning and end

of an animal’s migration (Cagnacci et al., 2016; Soriano-Redondo et al., 2020).

In some cases, the presence of ecological barriers along an animal’s migratory
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route make the onset of a migratory period easy to classify without explicit

modelling (López-López et al., 2010; Rotics et al., 2018). When these barriers

or thresholds are difficult to rigorously define, statistical methods can estimate

migration timings. An often-used approach designed by Bunnefeld et al. (2011)

relies on net squared displacement (NSD; the animal’s distance from its initial

location). The model fits non-linear curves representing different movement

strategies (e.g., migratory, nomadic) to explain how an animal’s NSD changes

over time. The approach effectively differentiates migratory animals from non-

migrants, but it only estimates the "centre" of migration as a parameter, not

the beginning or end. Path segmentation analyses focus on dividing a move-

ment path into segments with "change-points" that represent shifts in behaviour

(Edelhoff et al., 2016). These models have often been used for identifying area-

restricted searching bouts in foraging animals (Weng et al., 2008) but their prin-

ciples can be extended to identifying migration (Limiñana et al., 2007; Madon

and Hingrat, 2014; Mikle et al., 2019; Wolfson et al., 2022). Path segmentation

approaches take many forms but broadly, they typically couple a movement

metric (e.g., NSD) with a change-point algorithm that identifies changes in the

distribution of this metric (Edelhoff et al., 2016). Methods that rely on NSD

are sensitive to the animal’s initial location and may break down depending on

when data collection began (Singh et al., 2016). First passage time (FPT) is

a similar metric that measures the amount of time required for an animal to

travel a certain distance, and it has been used to identify changes in movement

behaviour on many scales (Johnson et al., 1992; Fauchald and Tveraa, 2003;

Le Corre et al., 2014). This distance must be user-defined beforehand, requir-

ing unique assumptions for every dataset (Barraquand and Benhamou, 2008).

Complex path segmentation approaches work even when the desired number of

segments is not known (Lavielle, 2005; Gurarie et al., 2009; Madon and Hin-
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grat, 2014). Among the plethora of migration models, movement ecologists are

still searching for a model that accurately and precisely estimates biologically

meaningful parameters that describe when and how animals migrate, with little

to no prior knowledge of the system.

Dingle and Drake (2007) provide two separate definitions for migration in in-

dividual animals: a persistent period of directionally autocorrelated (or straight)

movement, and a period of movement ranging over an exceptionally large spatial

extent. Step lengths, the Euclidean distance between two consecutive tracked

locations, and turning angles, the angle made by the animal’s turn during three

consecutive tracked locations, describe the speed and directionality of a move-

ment track, respectively. Both of these metrics are widely used in movement

ecology (Morales et al., 2004; Fortin et al., 2005; van Moorter et al., 2010; Avgar

et al., 2016). The first definition of migration suggested by Dingle and Drake

(2007) relates to directional persistence, and could be quantified by a change

in an animal’s turning angles, while the second definition relates to distance

covered and could be quantified by a change in an animal’s step lengths. While

many path segmentation models combine these properties into one metric (e.g.,

NSD or FPT), we suggest that a path segmentation model that identifies si-

multaneous changes in two metrics (step lengths and turning angles) will allow

ecologists to draw more biological context from migration data.

We designed a model that identifies the temporal extent of migration using

step lengths and turning angles alone. We hypothesized that migration can be

quantified by an abrupt change in an animal’s observed movement speed and

directionality for a sustained temporal interval. Unlike most path segmenta-

tion approaches, which focus on one all-encompassing movement metric, our

model generates distributions for step lengths and turning angles concurrently.

We designed a likelihood-based method for identifying the optimal sequence of
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change-points (e.g., start and end of migration) and used a parametric boot-

strapping algorithm to generate confidence intervals for the parameter estimates.

Our model works for a diversity of migratory animals sampled at different tem-

poral frequencies, which we display with three case studies: ferruginous hawks

(Buteo regalis) in the Great Plains of central North America, and barren-ground

caribou (Rangifer tarandus groenlandicus) and brown bears (Ursus arctos) in

northern Canada. The inference that can be drawn from this model can have

important management implications when applied to additional datasets.

5.2 Methods

5.2.1 The model

Our modelling approach builds on and simplifies existing approaches for esti-

mating the start, end, and intensity of migration. This model only requires

information on step lengths and turning angles calculated from a discrete-time

sample of an animal’s movement path. If we define zt = (xt, yt) to be the

animal’s recorded location at time t, we calculate the step length rt as follows:

rt = ∥zt − zt−1∥. (5.1)

Step lengths are an indicator of the distance an animal travels per time step, and

turning angles indicate the directional persistence (or straightness) of movement

(Morales et al., 2004). We calculate the turning angle ϕt as follows:

φt =

⎧⎪⎪⎨⎪⎪⎩
arctan yt−yt−1

xt−xt−1
xt > xt−1

arctan yt−yt−1

xt−xt−1
+ π otherwise;

(5.2)

ϕt = [φt − φt−1] % 2π, (5.3)

where arctan is the inverse tangent (arc-tangent) function. Applying the mod-
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ulus operator % ensures that all values are between 0 and 2π. Smaller turning

angles (closer to 0 or 2π) indicate straighter movement.

Step lengths and turning angles are well-studied and can typically be ex-

plained effectively using known distributions, which we leverage for our model

(Auger-Méthé et al., 2016a; Avgar et al., 2016). We hypothesize that an ani-

mal’s step lengths follow an exponential distribution at all stages of movement,

but during the animal’s migratory stage, the parameter dictating the mean step

length increases. We also hypothesize that an animal’s turning angles follow

a von Mises distribution, where the angular concentration parameter increases

during migration. We assume there exist temporal parameters t1 and t2 that

signal the start and end of migration, respectively. The likelihood function for

any given point zt incorporates these conditions explicitly with model param-

eters t1, t2, ρ0, ρ1, κ0, and κ1. During the non-migratory period (t < t1 or

t > t2) the animal’s step length distribution is parameterized by ρ0 and the

animal’s turning angle distribution by κ0. The parameters ρ1 and κ1 represent

the additional movement distance and angular concentration incurred during

migration, respectively. We define the likelihood function as follows:

Imig(t) =

⎧⎪⎪⎨⎪⎪⎩
1 t1 < t ≤ t2

0 otherwise,
(5.4)

L(ρ0, ρ1, κ0, κ1, t1, t2|zt) =
exp

[︂
(−ρ0 − Imig(t)ρ1)

−1
rt + (κ0 + Imig(t)κ1 cosϕt)

]︂
(ρ0 + Imig(t)ρ1) (2πI0(κ0 + Imig(t)κ1))

.

(5.5)

Here, I0(κ) is the modified Bessel function of order 0. The ratio between ρ0+ρ1,

the animal’s mean step length during migration, and ρ0, the mean step length

outside of migration, approximates how much more quickly the animal moves

when migrating. We denote this quantity R.
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If necessary, we can also expand the model to account for multiple migra-

tory periods within one dataset. This would necessitate the introduction of

additional parameters t3, t4, ..., t2c−1, t2c for a model with c distinct periods of

migratory movement. If c > 1, Imig(t) would be 1 when t2n−1 < t ≤ t2n

for any positive integer n. Unique step length and turning angle parameters

(ρ2, ..., ρc and/or κ2, ..., κc) for each migratory period could be biologically re-

alistic for some species. For any positive integers m and n, where m < n, the

m-migration model is nested within the n-migration model; this can be verified

by setting all ρ and κ equal to each other and fixing all ti equal to each other

for i > 2m.

5.2.2 Parameter estimation

Optimizing the likelihood function (Equation 5.5) is difficult because the func-

tion is not differentiable with respect to temporal parameters t1 and t2. The

easiest way to solve this problem is to fix all ti and optimize the model for all

ρi and κi. This process can be repeated for every meaningful set of ti values

(there is always a finite number of such combinations with discrete-time data)

to find the overall maximum likelihood estimate.

With datasets spanning a wide temporal range (or with c > 1), the number

of ti combinations can become problematically large. In these cases, we use an

iterative grid-search algorithm to find optimal regions of the likelihood profile

quickly, before honing in on those regions with a finer grid. We optimized

the ti over a subsetted grid that only included properly ordered parameter

combinations (tm < tn if m < n). The number of grids used and their respective

resolution depends on the temporal extent of the data as well as the desired

precision with which one hopes to estimate the ti parameters. The temporal

extent of the movement paths varied between datasets but we used a minimum

grid size of 1 day for all case studies. Optimizing over a coarse initial grid poses
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risk of missing global optima but reduces computational times. We started by

partitioning the temporal extent of each movement track into 14-day intervals

and first found the optimal values of each ti on this coarser grid. We then

identified the ti combinations that produced the five lowest values of the negative

log-likelihood (NLL) function when optimized over ρi and κi; this handles cases

when the global optimum may not be near the lowest NLL value along a coarser

grid. We then used a finer grid, this time with ti values spaced 7 days apart, to

more thoroughly search these optimal regions. Once again, the 5 lowest NLL

values were taken from the 7-day grid for further exploration. We repeated this

process with a 3-day grid before finally optimizing along a 1-day grid. By using

many grids with a temporal resolution increasing roughly by a factor of two,

our algorithm found the optimum much more quickly than using fewer grids,

because within each grid there were few ti combinations to be tested.

We generated a parametric bootstrapping algorithm that estimates 95% con-

fidence intervals for our model’s parameters. We cannot obtain confidence in-

tervals using more standard methods (e.g., Wald-type estimations or likelihood

profiles) because the likelihood function includes Imig(t), which resembles a step

function. The likelihood function is not continuous with respect to the ti pa-

rameters, which shift the position of Imig(t). To generate confidence intervals

for an individual migration, we simulated random paths with the same size

and temporal extent as the true migratory path. The number of random paths

necessary to generate consistent confidence intervals varied depending on the

dataset. These simulated paths were generated using the likelihood function

and parameterized based on the maximum likelihood estimate for each of the

model parameters from the true path. We then fit the model to each of these

paths independently and used the distribution of the parameter estimates from

each random path to obtain confidence intervals (taking the 2.5% and 97.5%
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quantiles as lower and upper confidence bounds, respectively). The process of

re-simulating data according to the estimated parameter values has been used

in time-series data for many purposes, including calculating confidence intervals

(Dennis and Taper, 1994; Kunst, 2008).

We conducted all data preparation and model fitting using R 4.2.1 (R Core

Team, 2021). We obtained maximum likelihood estimates for the ρi and κi (with

the ti fixed) using the R Template Model Builder (TMB) package (Albertsen

et al., 2015; Kristensen et al., 2016).

5.2.3 Simulation analysis

We simulated migratory movement as a series of random step lengths and turn-

ing angles, which form a complete path when taken together. Simulation analy-

ses like these allow us to directly compare parameter estimates to "true" param-

eter values, which cannot actually be identified from animal tracking data. We

simulated movement paths over 200 days with 1 observation per day (note that

the use of "day" here is for clarity as the time units are arbitrary). Between

days 70 and 100, we simulated step lengths from an exponential distribution

with a mean step length of 45 km (once again, the spatial units are arbitrary)

and turning angles from a von Mises distribution with concentration parameter

κ = 0.5. Outside of this simulated "migratory period", these values changed to

5 km and κ = 0, respectively. Once we constructed complete movement paths,

we randomly removed points such that approximately 150 of the 200 complete

"steps" (groups of three consecutive points necessary for calculating turning an-

gles) remained. We accomplished this by removing each point with a probability

of 12.5%, which would remove approximately 25% of the complete steps in the

data.

We compared our model to three commonly used approaches by fitting them

to simulated migratory movement paths. In addition to our model, we fit the
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NSD regression model from Bunnefeld et al. (2011), the FPT path segmentation

model from Le Corre et al. (2014), and a path segmentation approach using

daily movement distances (step lengths) from Madon and Hingrat (2014). The

two path segmentation approaches use different algorithms for identifying the

optimal change-points; Le Corre et al. (2014) use the penalized contrast method

designed by Lavielle (2005) and Madon and Hingrat (2014) used the Pruned

Exact Linear Time (PELT) algorithm designed by Killick et al. (2012). We fit

the models to 50 independently simulated migratory paths, all with the same

"true" parameters, and calculated the mean bias (estimated ti - true ti) and

mean squared error (MSE; the mean of (bias)2 for all 50 samples). The variance

of the estimator can be calculated by subtracting MSE from the square of the

mean bias, gauging the precision of the model. We used the adehabitatLT

R package (Calenge, 2006) to compute FPT time-series and identify change-

points in those time series. We used the changepoint R package (Killick and

Eckley, 2014) to run the PELT algorithm. We provide more detail on the

implementation of each of these methods in the Appendix.

5.2.4 Case studies

5.2.4.1 Ferruginous hawks in the Great Plains

Ferruginous hawks are large, migratory raptors found in central Canada and

United States (Schmutz and Fyfe, 1987; Schmutz et al., 2008). The shortgrass

prairies of southern Alberta, Canada represent the northern edge of this species’s

breeding range, and birds breeding this far north make relatively long migrations

to the southern Great Plains in the United States (Watson and Keren, 2019).

Adult ferruginous hawks were captured at nest sites during the breeding season,

using either a dho-gaza net or a bal-chatri trap (Watson, 2020). Captures

were limited to nests in which the young had survived at least 10 days. Once
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captured, the birds were fitted with solar ARGOS/global positioning system

(GPS) platform transmitter terminals and solar Groupe Special Mobile (GSM)

tags. ARGOS tags recorded a location every 1 hour and GSM tags recorded

a location as frequently as every 1 minute (Watson, 2020), so we rarefied each

movement track to one location per hour for consistency. Our dataset includes

50 individual hawks tagged on their breeding territories in southeastern Alberta

and spans 10 years (2012-2021). The tags also provided estimates of dilution of

precision (DOP) in the horizontal and vertical directions for every location. We

removed any locations with a DOP over 5 in either the horizontal or vertical

directions in preparation for our analysis (Edenius, 1997).

We isolated each individual migration (fall or spring) temporally so we could

fit our model with k = 1 to them separately. Each hawk was originally tagged on

its breeding territory so we used the date at which the first location was received

for each individual as the cut-off point between spring and fall. To define a cut-

off between the end of fall migration and the beginning of spring migration

(i.e., the birds’ arrival at the wintering grounds), we used the date at which

the southernmost location was recorded in each year. Once these separations

were made, we removed any migrations that were missing a significant section

of data, either spatially (any migration containing a location that was further

than 400 km away from the previous recorded location) or temporally (any

migration containing a 14-day period without any recorded locations). The

temporal resolution, or fix rate, of a movement dataset has a significant effect

on the results of many movement analyses (Jerde and Visscher, 2005; Thurfjell

et al., 2014), so we fit the model to the hawk movement tracks rarefied to 1-

hour, 12-hour, and 24-hour fix rates. We bounded t1 and t2 such that t2 −

t1 needed to be greater than 7 days, as anything shorter would represent a

biologically unrealistic migration (Watson and Keren, 2019). We also estimated
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95% confidence intervals for each individual migration using the parametric

bootstrapping method described above. We simulated 100 random paths for

each true migratory path. We ran the algorithm multiple times for the same

migration and comparing the intervals to ensure that this number of paths

produced consistent confidence intervals.

Like many animal species, ferruginous hawks display complex migratory

patterns including stopovers and pre-migratory dispersal (Watson et al., 2018;

Watson and Keren, 2019). Stopover behaviour is defined as the interruption of

migration over some temporal period (Rappole and Warner, 1976) and is very

diverse, just like migration itself (Salewski et al., 2007; Evans and Bearhop,

2022; Schmaljohann et al., 2022). Stopovers have many functions and differen-

tiating long-term, foraging stopovers from shorter stopovers may be important

in identifying critical habitat for migratory species (Green et al., 2002). During

fall migration, many ferruginous hawks display long-term stopovers; Watson

and Keren (2019) consider these fall movements to be two separate migrations

partitioned by the stopover. Ferruginous hawks also frequently embark on pre-

migratory movements, where they disperse from their breeding or winter terri-

tory before returning to the same general area (Watson et al., 2018). To evaluate

whether our model could statistically identify stopovers and other complexities

from the ferruginous hawk data, we compared our model fits with c = 1 (one

migration) to those with c = 2 (two migrations) using Akaike Information Cri-

terion (AIC) and Bayesian Information Criterion (BIC). AIC and BIC compare

models by incorporating the maximum log-likelihood estimate along with the

complexity of the model, quantified by the number of free parameters. Both

metrics are used to select the most parsimonious model but when sample size

is large, BIC is more likely than AIC to select models with fewer parameters

(Burnham and Anderson, 2004). The model associated with the lowest AIC or
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BIC value is assumed to be the most parsimonious, and the difference in AIC or

BIC between the best model and other models (∆AIC or ∆BIC, respectively)

quantifies how much more parsimonious the best model is. The likelihood ratio

test, another common model comparison metric, is not applicable to our model

because our likelihood function is not continuous (Self and Liang, 1987).

We performed a short simulation analysis to evaluate whether AIC or BIC

could reliably identify stopovers when they were knowingly present (i.e., incor-

porated into the simulation). We used the same process described in Section

5.2.3 to generate simulated movement paths but here, our simulation parame-

ters were informed directly by the observed migration timings from ferruginous

hawks. See the Appendix for more details on how we parameterized these sim-

ulations.

5.2.4.2 Barren-ground caribou in northern Canada

Caribou are one of the most well-studied species in the animal kingdom (Seip,

1992; Vors and Boyce, 2009; Festa-Bianchet et al., 2011). The many subspecies

and ecotypes of caribou exhibit different life history and foraging strategies

(Nagy et al., 2011), and the barren-ground caribou herds in the North Amer-

ican Arctic are notable for their migratory behaviour (Lent, 1966; Fleck and

Gunn, 1982; Gunn and Miller, 1986; Torney et al., 2018). Our caribou data

were collected for the Qamanirjuaq herd, which ranges across Nunavut’s Ki-

valliq region for much of the spring and summer. This herd moves annually be-

tween their more southern winter grounds and their calving and summer ranges

further north. Caribou do not always display high inter-annual fidelity to their

wintering grounds (Fullman et al., 2021) but, in part due to the gathering of

large herds which facilitates social learning, the herd displayed high fidelity to

their calving grounds for at least 40 years (Gunn et al., 2012). Pregnant females

that arrive on the calving grounds give birth to their calves shortly after, and
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dramatically reduce their movement for up to two weeks (DeMars et al., 2013;

Mallory et al., 2020). Identifying the temporal extent of barren-ground caribou

migration has management implications, especially as climate change and an-

thropogenic modifications to the landscape alter the phenology and availability

of their food resources (Chen et al., 2018; Mallory et al., 2020). Many efforts

have been made to identify these timings in other herds (DeMars et al., 2013;

Le Corre et al., 2014; Torney et al., 2018).

We fit the migration model with c = 1 to data describing the spring mi-

grations of barren-ground caribou. Caribou were pursued via helicopter and

immobilized via net-gunning, before being fitted with a GPS collar (Mallory

et al., 2020). Following approved protocols, caribou were collared between 2006

and 2016 and in total, we included 35 adult females in the dataset, of which 22

were tracked for more than 1 year. We isolated each individual year and sub-

setted the data such that any locations after July 1 of that year were omitted.

We chose this date because it is after the calving period (Mallory et al., 2020)

but earlier than the onset of fall migration (Le Corre et al., 2017). The fix rates

of each individual in the dataset varied from 1 hour to 1 day, so we rarefied all

the data to a 1-day fix rate for consistency. Similarly to the ferruginous hawk

dataset, we removed any migrations with significant spatial (150 km between

two consecutive recorded locations) or temporal (any 14-day period without

recorded locations) gaps from our dataset.

Caribou migrations are well-studied, so we compared migration timings from

our model to those identified by an existing, commonly used approach (Bun-

nefeld et al., 2011). This approach involves fitting a non-linear (specifically,

logistic) curve to an animal’s net squared displacement as a function of time.

When only modelling one migration (and not the return back to the winter-

ing grounds), the NSD model contains three parameters (see Equation 3 of
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Bunnefeld et al., 2011): the asymptotic NSD value δ, the peak or "centre" of

migratory movement θ, and the quarter-duration of migration ϕ. The beginning

and end of migration are estimated based on the estimates of θ and ϕ:

t̂1,NSD = θ − 2ϕ,

t̂2,NSD = θ + 2ϕ. (5.6)

To leverage the wealth of information on barren-ground caribou migration

and calving, we fit a second version of our model that incorporated a priori

knowledge of calving phenology. Caribou calving can be identified from move-

ment data because when females give birth to calves, they greatly reduce their

movement rate (DeMars et al., 2013). We used the broken-stick regression

method developed by DeMars et al. (2013) to identify the beginning of the calv-

ing period, which also conveniently signaled the end of spring migration. With

this information to our advantage, we fit the migration model again, but this

time we fixed t2 to be equal to the date at which calving began, and only op-

timized along t1. This reduces the complexity of our grid and allowed us to

optimize t1 immediately along the 1-day timescale, without need for the iter-

ative grid-search method described in Section 2.2. We visually compared the

results from the NSD model, our model with no a priori information, and our

model with a priori information to determine which model was most effective

in identifying meaningful shifts in caribou movement behaviour.

5.2.4.3 Brown bears in northern Canada

Brown bears are opportunistic omnivores with a wide distribution across North

America, Europe, and Asia (Pasitschniak-Arts, 1993). Brown bears in the

Canadian Arctic are unique in comparison to their conspecifics worldwide, ex-
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hibiting many adaptations to harsh environmental conditions (Edwards and

Derocher, 2015). Brown bears are not considered migratory, but bears living

in the Mackenzie River Delta region of northern Canada display annual home

range shifts (Edwards et al., 2009) and, as demonstrated by Chapter 3, perform

temporally oriented navigations to food resources visited a year prior. We used

brown bear movement data from the Mackenzie Delta to evaluate if our model

would identify any patterns in what biologists view as a non-migratory species.

Brown bears were captured, immobilized, and equipped with GPS collars be-

tween 2003 and 2006 (Edwards et al., 2009). These collars were set to record

GPS locations at a 4-hour fix rate. Brown bears in the Canadian Arctic spend

up to 6-7 months of the year in a den where they hibernate (Halloran and Pear-

son, 1972; Nagy et al., 1983; McLoughlin et al., 2002). In total, we included 30

bears (24 females, 6 males) in our analysis.

Given the broad definitions of migration (Dingle and Drake, 2007) and the

simplicity of our model, we saw value in searching for population-level trends

in periods of high-intensity movement within the brown bear dataset. We fit

the model with two migratory periods (c = 2) to every individual year in the

dataset (many individuals had more than one complete year of data), under

the assumption that bears would need to exhibit at least two periods of high-

intensity movement to complete their theoretical migratory cycle. We then

collectively analyzed the population-level distribution of ti for each model to

determine whether any trends persisted.

5.3 Results

The specific parameter estimates, confidence intervals, and more for each indi-

vidual migration can be found in Supplementary File 1, which is stored online

at github.com/pthompson234/migrationmodelling.
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5.3.1 Simulation analysis

Our model was more precise and accurate than other migration modelling ap-

proaches when fit to simulated data (Table 5.1). When the number of change-

points (here, two) is known, our model estimated the temporal duration of

migration to within 1 day, on average. Applying the PELT algorithm (Killick

et al., 2012; Madon and Hingrat, 2014) to daily distance time-series calculated

from the simulated paths produced similarly accurate and precise estimates of

migration timing. The NSD model does not explicitly estimate the beginning

and end of migration as parameters but we calculated these quantities based on

the parameters the model does estimate. These estimates displayed low bias and

high variance, suggesting high accuracy and low precision. Estimating change-

points with the penalized contrast method applied to first passage time data

produced high bias and MSE.

Model t1 Bias t1 MSE t1 Variance t2 Bias t2 MSE t2 Variance

Our model -0.1 2.7 2.7 0.5 1.4 1.2

NSD 4.1 182.4 165.6 -7.9 511.1 448.7

FPT -10.4 435.7 327.5 22.0 1231.6 747.6

PELT 0.6 4.6 4.2 -3.2 45.6 35.4

Table 5.1: Bias (parameter estimate - true value) and mean squared error (MSE;
bias squared) values for migration timing parameters t1 and t2, estimated by
fitting four different models to 50 randomly simulated migratory movement
paths. Variance is calculated as the difference between MSE and (bias)2. We
compared our model to the net squared displacement (NSD) approach developed
by Bunnefeld et al. (2011), the first passage time (FPT) approach from Le Corre
et al. (2014), and the PELT algorithm used by Madon and Hingrat (2014).

5.3.2 Ferruginous hawks: stopovers and fix rates

We identified 99 unique ferruginous hawk migrations (35 fall, 64 spring). Our

model precisely identified the beginning and end of these migratory movements

114



(a specific migration is shown in Figure 5.1). Ferruginous hawks rapidly in-

creased their step lengths during migration but did not display as much change

in their directionality. The average value of R was approximately 11.02 for

ferruginous hawks sampled at a 1-hour fix rate. Before and after migration, fer-

ruginous hawk step lengths averaged 1.34 km (the mean of all ρ0 estimates for

each migration), and this increased by 10.62 km (the mean ρ1 estimate) during

migration. Estimates of κ0, which quantified movement directionality outside of

migration, were frequently 0, which would suggest a turning angle distribution

that was either very close to uniform or not centred at 0 (Supplementary File

1). The median 95% confidence interval width for all six of our model parame-

ters (0.39 days, 0.33 days, 0.10 km, 2.99 km, 0.06, and 0.18 for t1, t2, ρ0, ρ1, κ0,

and κ1, respectively) suggests that all model parameters are estimable (Supple-

mentary File 1). Independent runs of the parametric bootstrapping algorithm

produced similar results for the same data. The largest confidence interval width

for either timing parameter (t1 or t2) for any individual was 26.88 days, and no

other confidence interval for these parameters was wider than 8 days.

The c = 2 model identified the timing and location of stopovers and pre-

migratory movements in ferruginous hawks. Fall migrants frequently exhibited

stopover behaviour, sometimes migrating for >500 km before drastically and

temporarily reducing their movement rates. The c = 1 model occasionally

identified only one portion of the fall migration in these cases, but sometimes

ignored the stopover altogether (Figure 5.2). The c = 1 model typically ignored

pre-migratory movements but sometimes included them as part of the migration

(Figure 5.3). The c = 1 model was identified as less parsimonious than the c = 2

model when compared with AIC and BIC when these behaviours were present

(Supplementary File 1). For example, the migration depicted in Figure 5.2 had

much lower AIC and BIC values with the c = 2 model (∆AIC = 1879.0; ∆BIC =
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1866.6, with 1-hour fix rate). The results were similar for the migration depicted

in Figure 3 (∆AIC = 104.6; ∆BIC = 93.6, with 1-hour fix rate). Our simulation

analysis provides further support for AIC and BIC as consistent identifiers of

stopovers (Supplementary File 1).

Varying the fix rate of our data did not significantly affect the estimation

of ferruginous hawk migration timings but did affect the estimates for step

length and turning angle parameters. In some of the migrations with long-term

stopovers or pre-migratory movements, the c = 1 model estimated different ti

values at different fix rates (e.g., Figure 5.2). For c = 2, temporal parameter

estimates were more consistent (Supplementary File 1). Estimates for ρ0 and

ρ1 were unsurprisingly highest at long fix rates. The mean values of ρ0 and ρ1

were 5.18 km and 131.40 km, respectively, when we fit the model to the 24-hour

data. The hawks’ proportional increase in movement speed, R, appear larger

at higher fix rates (59.4 with the 24-hour data and 39.8 for the 12-hour data).

Estimates for κ0 were very close to, if not exactly, 0 at all fix rates. The mean

estimate for κ1 increased from 0.48 with 1-hour fix rates to 1.34 with 24-hour

fix rates.

5.3.3 Caribou: incorporating calving phenology

After filtering the caribou data, we retained 57 individual spring migrations to

which we fit the c = 1 migration model. In many cases, the model identified

a biologically reasonable migratory period. The NSD model did the same but

often failed to precisely estimate the beginning and/or end of migration. In the

example from Figure 5.4, the NSD model estimated a migration that started 7

days later and ended 2 days earlier than our model. From visual inspection, it

appears that our model correctly captures more of the linear migratory compo-

nent than the NSD model. However, for some caribou-years, our model misiden-

tified a period of sustained movement on the wintering grounds as migration,
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rather than identifying the spring movement to the calving grounds (Figure 5.5,

Supplementary File 1). In many of these cases, the NSD model picked a more

appropriate midpoint but still failed to properly characterize the beginning and

end of migration (Figure 5.5). By estimating t2 from broken-stick regression

models fit to caribou step length data (DeMars et al., 2013), the model con-

sistently identified the biologically relevant spring migratory period. Supplying

the model with this additional information remedied the problematic model fits

like the example displayed in Figure 5.5, and allowed us to pinpoint the day at

which each caribou began migrating.

Caribou did not increase their speed as much as ferruginous hawks during

migration, as the mean value of R was 3.95 (Supplementary File 1). However, 49

of the migrations displayed significantly higher directional persistence on migra-

tion, with 95% confidence intervals for κ1 excluding 0. The median confidence

interval width for t1, ρ0, ρ1, κ0, and κ1 were 16.5 days, 1.21 km, 9.43 km, 0.37,

and 1.87, respectively. Individuals with low estimated values of ρ1 and κ1 were

an exception, because paths simulated by our bootstrapping technique exhib-

ited little change during the migratory period (Supplementary File 1). The six

migrations with a 95% confidence interval for t1 that was wider than 100 days

all satisfied κ1 < 0.6 (compared to the mean value of 2.05), and five of the six

satisfied ρ1 < 4 km (compared to the mean value of 9.14 km).

5.3.4 Brown bears: application to non-migrants

We fit the c = 2 model to 42 different bear-years and could not identify any

trends throughout the population. According to the model results, 29 of the

individuals spent over half of their active season "migrating", and 11 "migrated"

for over 75% of the active season (Supplementary File 1). In other individuals,

the duration of one or both of the theoretical migratory periods was 7 days or

shorter. While the model appears to have identified periods in which brown
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bears moved more quickly and/or less tortuously for a number of days or weeks,

there was no consistency within the population as to when these periods took

place or how long they lasted (Figure 5.6).

5.4 Discussion

Identifying when animals migrate is crucial to understanding and predicting

changes in migration phenology as a response to climate change (Hardesty-

Moore et al., 2018). We designed a model that synthesizes these existing ap-

proaches to estimate the timing of an animal’s migration. Our model out-

performed competing approaches when fit to simulated data (Table 5.1), and

also identified biologically reasonable timings for migratory mammals and birds

(Figures 5.1 and 5.4). We failed to identify any significant trends in migration-

like behaviour for animals that are not considered migratory (Figure 5.6). The

model relies on step lengths and turning angles, which are ubiquitous in ani-

mal movement modelling and can be calculated easily (Morales et al., 2004).

As a result, the parameters we estimated with the model have direct biological

interpretations that help describe multiple facets of migration. Our model ex-

plicitly estimated the beginning and end of migratory movement and was more

accurate than commonly used methods, which we demonstrated using simulated

migratory paths for which "true" parameter values were known. When fit to

animal tracking data, our model estimated biologically reasonable (e.g., Figure

5.1) timings with high certainty, according to our 95% confidence intervals. The

model does not require a priori biological knowledge of a system to identify tim-

ings, but is also flexible to include this information if it improves results (Figure

5.5). Applying our model to other migratory systems will further identify how

it can most effectively be used.

In addition to the beginning (t1) and end (t2) of migration, our model es-
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timated parameters that quantify exactly how an animal’s movement changes

during migration. By combining step lengths and turning angles to identify mi-

gration in ferruginous hawks and barren-ground caribou, our model facilitated

a connection between parameter estimates and the biological definitions of mi-

gration for these species. We used R = ρ1+ρ0

ρ0
and κ1 − κ0 to quantify increases

in speed and directionality during migration, respectively, as they can be easily

compared between species. Ferruginous hawks moved in a more directed manner

during migration, but also moved much more quickly (Supplementary File 1).

Migratory ferruginous hawks typically moved 10 times as far during migration

than they would otherwise, as the second definition of migration provided by

Dingle and Drake (2007) postulates. Migratory barren-ground caribou dramat-

ically increased the directional persistence of their movement during migration

and did not "speed up" as much as the ferruginous hawks did (Supplementary

File 1). These migrations resembled the "undistracted and persistent" definition

of migration from Dingle and Drake (2007).

Fix rate did not dramatically affect ti estimates for the ferruginous hawk

dataset, but estimates of the ρi and κi varied. It is unsurprising that step

lengths become longer as fix rates become longer, but notably, ρi estimates

did not scale linearly with fix rate. In other words, the estimated value of

ρ0 with data sampled at 24-hour fix rates was less than 24 multiplied by the

corresponding ρ0 at 1-hour fix rates. We advocate for using R to compare how

different animals migrate but this quantity also varies with fix rate, so this

must be controlled before comparing different datasets (e.g., by subsampling,

as we did here). Sampling data to coarser fix rates omits the tortuosity of

movement at smaller scales, so longer step lengths underestimate movement

speed (Postlethwaite and Dennis, 2013). Longer fix rates also produce straighter

turning angles (Jerde and Visscher, 2005), which our model quantified with
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larger κi values.

We applied parametric bootstrapping to our model to obtain confidence in-

tervals, and in most cases these intervals suggest high certainty in our parameter

estimates (Supplementary File 1). If ρ1 and κ1 are both small, the simulated

path would not change much during the simulated "migratory" period, making

the change-point difficult to estimate. Typically, this is not the case in migra-

tory animals, although some of the caribou paths displayed this result. When

this was the case, 95% confidence intervals for all parameters were concerningly

wide (Supplementary File 1). These migrations were also difficult to estimate

with the NSD model, which typically produced biologically suspicious results in

these cases. Accounting for uncertainty in path segmentation models is difficult

because of the focus on dividing movement into discernible sections (Edelhoff

et al., 2016). We hope our application of parametric bootstrapping to this

problem encourages ecologists to incorporate the uncertainty of change-point

algorithms into their analyses.

Unlike simple threshold-based approaches, our model does not require any

biological knowledge of the tracked animals. Nevertheless, incorporating a pri-

ori information about an animal’s movement ecology is easy because of our

grid-based temporal optimization approach. We directly controlled the set of

ti values included in our parameter space, allowing for the removal of biolog-

ically unreasonable timings. This process has the added benefit of reducing

computational time. By estimating the beginning of the calving period in adult

female caribou (DeMars et al., 2013), we removed an entire parameter (t2) from

optimization. The discrete-time nature of the data for which our model is in-

tended along with our optimization algorithm allows for effective manipulation

and improvement of the analysis, but only if necessary.

AIC and BIC were both effective at separating ferruginous hawk migrations
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with stopovers or pre-migratory periods from those without. Here, AIC and

BIC produced similar results but this may not hold at different sample sizes,

and picking between AIC and BIC can be a complex problem (Burnham and

Anderson, 2004). We note that our model was not effective at distinguishing

between stopovers and pre-migratory periods, and this may require additional

biological input. We did not test a version of the model with c > 2. The

computational time allotted by the grid-search optimization algorithm increases

exponentially with c. We are thus unsure if AIC and BIC are reliable when c is

larger. Other path segmentation methods (including the PELT algorithm) use

more complex techniques for identifying the optimal number of segments that

make them extremely useful when the number of segments is unknown (Lavielle,

2005; Gurarie et al., 2009; Killick et al., 2012). In migratory animals, when the

number of segments typically is known, our model outperformed other path

segmentation approaches, but these competing models are likely more suitable

otherwise.

Our model is intended to be fit to movement data for one individual, but

fitting the model to several individuals in the same population characterizes

the variation within that population. While analyzing the distribution of pa-

rameter values across a set of individuals (or individual migrations) is fairly

straightforward (Figure 5.6), there is also an opportunity to regress our pa-

rameter estimates (particularly, the ti parameters) against covariates. Animal

populations display high individual variation with respect to their migratory

behaviour (Hanski et al., 2004; Jesmer et al., 2018; Merkle et al., 2019; By-

holm et al., 2022), and inter-annual variation in an animal’s environment can

cause an individual’s migratory paths to vary from year to year (Tucker et al.,

2018; Mallory et al., 2020; Franklin et al., 2022). Similarly, the effects of habitat

modification and/or associated disturbance factors could also be assessed. With
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the appropriate environmental data, our model could be used to explore these

patterns for many animal populations.

Our model achieved the sought-after goal of determining when animals be-

gin and end their migrations. By parameterizing time-dependent step length

and turning angle distributions, we generated results that are easy to interpret

biologically. Migration incurs an elevated risk to the negative effects of anthro-

pogenic global change. Specifically, many animals are arriving at their breeding

grounds earlier to capitalize on global warming-induced advances in green-up

and prey availability (Haest et al., 2018; Mallory et al., 2020). Many ecologists

expect (or are already observing) changes in when, where, and how animals

migrate (Wilcove and Wikelski, 2008; Tucker et al., 2018). Our model provides

unbiased, quantitative information on all three of these characteristics.
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Figure 5.1: Movement path of a ferruginous hawk (hawk ID 192a; spring 2014)
performing a spring migration from its wintering grounds in the southern United
States to its breeding territory in southeastern Alberta, Canada. Black dots
represent the wintering grounds, blue dots represent the breeding grounds, and
red dots represent the migratory period as fit by our model.
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Figure 5.2: Movement path of a ferruginous hawk (hawk ID 196a; fall 2013)
performing a fall migration from its breeding territory in Alberta, Canada, to
its wintering grounds in the United States, including a stopover. Panel A)
represents the model fit from the k = 1 model to the 1-hour fix rate data.
Here, black dots represent the breeding grounds, blue dots represent what the
model identifies as the wintering grounds, and red dots represent the migratory
period. Panel B) represents the model fit from the k = 2 model to the 1-hour
fix rate data. Here, black dots represent the breeding and wintering grounds,
blue dots represent the stopover site, and red and green dots represent the first
and second migrations, respectively. Panel C) represents the model fit from the
k = 1 model to the 24-hour fix rate data. Each point is coloured similarly to in
Panel A).
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Figure 5.3: Movement path of a ferruginous hawk (hawk ID 191a; fall 2016)
performing a fall migration from its breeding territory in Alberta, Canada, to
its wintering grounds in the southern United States, including a pre-migratory
movement. Canada. Panel A) represents the model fit from the c = 1 model
to the 1-hour fix rate data. Here, black dots represent the breeding grounds,
blue dots represent what the model identifies as the wintering grounds, and red
dots represent the migratory period. Panel B) represents the model fit from the
c = 2 model to the 1-hour fix rate data. Here, black dots represent the breeding
and wintering grounds, blue dots represent the period between pre-migration
and migration, and red and green dots represent what the model identifies as
the first and second migrations, respectively. Panel C) represents the model
fit from the c = 1 model to the 24-hour fix rate data. Each point is coloured
similarly to in Panel A).

127



Figure 5.4: Movement path for a female caribou (caribou ID BL0560413; year
2016) in the Qamanirjuaq herd in Canada. Here, panel A) illustrates the mi-
gration timing estimates from our model, and panel B) illustrates the migration
timing based on the NSD method developed by Bunnefeld et al. (2011). In both
panels, black dots represent the wintering grounds, red dots represent migra-
tory movement, and blue dots represent post-migratory movement. The calving
grounds can be visually identified as a tightly packed clump of points just east
of the end of migration.
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Figure 5.5: Movement path for a female caribou (caribou ID QM0830508; year
2011) in the Qamanirjuaq herd in Canada. In all three panels, black dots
represent the wintering grounds, red dots represent migratory movement, and
blue dots represent post-migratory movement. The calving grounds can be
visually identified as a tightly packed clump of points just east of the end of
migration. Here, panel A) illustrates the migration timing estimates from our
model without a priori knowledge of calving phenology, and panel B) illustrates
the migration timing based on the NSD method developed by Bunnefeld et al.
(2011). Panel C) displays the fit from our model after using the technique
developed by DeMars et al. (2013) to estimate t2, the onset of calving and end
of spring migration.
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Figure 5.6: Distribution of theoretical Mackenzie Delta brown bear migratory
patterns for 30 individuals (46 bear-years). Portions of the graph shaded in
black represent the denning period each year, gray-shaded portions represent
non-migratory portions (either before, between, or after both the migrations),
and white portions represent theoretical migrations identified by the c = 2
migration model.

131



6 General conclusion

6.1 Statistical models as a window into animal cognition

Identifying exactly why animals make the decisions they do is extremely diffi-

cult. We cannot directly perceive these cognitive processes but we can develop

statistical models that elucidate this behaviour. This realization has inspired

exciting and innovative modelling work which has improved our knowledge of

animal foraging and memory (van Moorter et al., 2009; Fagan et al., 2013;

Pritchard et al., 2016; Lewis et al., 2021). Chapters 2, 3, 4, and 5 contribute

to this wealth of literature and advance the budding field of memory-informed

movement ecology. We developed a statistical model that can characterize spa-

tiotemporal memory in moving animals, specifically by identifying how long

they wait before returning to previously visited patches. The model builds on

existing work, expanding on the "time since last visit" concept (Schlägel and

Lewis, 2014; Schlägel et al., 2017) to account for animals that return to these

patches after a specific time lag (Janmaat et al., 2013; Edwards and Derocher,

2015). In Chapter 3 we documented seasonal revisitation patterns in brown

bears and, using the model described in Chapter 2, identified spatiotemporal

memory as a driver of these movements. The model developed in Chapter 5

takes a statistical approach to identify behavioural shifts in migratory animals.

The model estimates when animals start and stop migrating while also describ-

ing how movement patterns change during migration. Mechanistic links between

memory and movement have been explored using a variety of simulation-based

approaches that generate realistic, memory-informed foraging movements (Av-

gar et al., 2013; Riotte-Lambert et al., 2015; Bracis and Mueller, 2017; Aarts

et al., 2021). We built on the principles of these simulated foragers in Chapter

4, using repeated simulations as a model for learning in animals. Our model
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connects spatial memory and learning which recent work has suggested are in-

tertwined (Jesmer et al., 2018; Lewis et al., 2021). Taken together, the original

work presented here has produced important conclusions about optimal forag-

ing and animal cognition while also providing diverse opportunities for future

research.

A key component of the work discussed here involves the implementation of

temporal dynamics into spatial memory for movement models. These dynamics

come about as a result of many different mechanisms, from depletion-recovery

dynamics (González-Gómez et al., 2011) to prey vigilance (Schlägel et al., 2017)

to seasonally available resources (Janmaat et al., 2013; Lafontaine et al., 2017),

all of which can be handled by the model described in Chapter 2. Chapter 5

focuses on identifying the temporal extent of migration, using movement data to

estimate the temporal extent of this behaviour. Both of these models required

optimizing a likelihood function that contained some sort of temporal parameter

(in Chapter 2, µ and σ; in Chapter 5, t1 and t2). In both these cases, optimizing

the likelihood function was made difficult by the temporal parameters, which

produced many local optima. These numerical problems need to be addressed

for ecologists to further explore models with temporal parameters, as they have

many uses in ecology, and we handled these issues in both chapters to efficiently

obtain accurate maximum likelihood estimates for both models.

We developed and applied many numerical tools to draw valuable inference

from animal movement data in Chapters 2-5. The R Template Model Builder

(TMB; Kristensen et al., 2016) package sped up the optimization of the models

from Chapters 2 and 5. TMB uses automatic differentiation to accurately and

quickly obtain maximum likelihood estimates for complex statistical models, and

the work discussed here would not have been possible without it. Numerical and

computational advancements like these may not seem immediately applicable
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for advancing movement ecology as a field, but they are vital. Chapter 4 cen-

tres around a well-known numerical technique (Bayesian MCMC sampling) in

an entirely new context: simulating how animals learn. For this to be possible,

we ran MCMC using an objective function that simulated an animal path, pro-

ducing a metric of foraging success as its output. This framework is applicable

across disciplines, from simple laboratory tasks to complex cognitive problems

encountered by wild animals. The numerical innovations produced by the work

described here will allow movement ecologists to continue exploring how animals

perceive, memorize, and learn about their environments.

6.2 Spatiotemporal predictability and memory

The way animals use memory is theorized to depend heavily on the variability

of their environment (McNamara and Houston, 1987; Fagan et al., 2013). In

homogeneous environments, there are not many unique cues to remember, and

in extremely heterogeneous environments, these cues are far too abundant and

complex (Boyer and Walsh, 2010; Wauters et al., 2010). On a temporal scale,

not only does heterogeneity of the landscape contribute to animal movement

patterns, but so does predictability. Memory-informed movement has been the-

orized to be more useful under temporally predictable resources (Mueller et al.,

2011), and when these resources are distributed heterogeneously in space, mi-

gratory patterns are expected to arise (Mueller and Fagan, 2008; Berbert and

Fagan, 2012). The spatial complexity and heterogeneity of an animal’s en-

vironment should also affect its perceptual range (Olden et al., 2004). Taken

together, Chapters 3 and 5 suggest that migration is not the only behaviour that

can arise from these environmental conditions. Brown bears in the Mackenzie

Delta region forage for a wide variety of temporally predictable resources that

are distributed heterogeneously on the landscape. They use time-dependent
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spatial memory to navigate to these resources when they become nutritionally

valuable. These seasonal movements did not align with traditional definitions of

migration (Dingle and Drake, 2007), however, as no consistent migratory signal

was identified for these bears in Chapter 5. These results represent an important

and unique application of this theory to wild animals.

Chapter 4 expands on these results by mechanistically incorporating learn-

ing and behavioural plasticity into simulated animal movements. These be-

haviours require long-term tracking data for individual animals, which are in-

frequently available, but mechanistic simulation modelling is an alternative for

identifying the value of behavioural plasticity for animals in uncertain environ-

ments. Simulated foragers were more efficient when equipped with long-term

memory in temporally predictable environments, aligning with existing theory.

Our individual-based model for simulated foragers was heavily informed by the

model developed by Avgar et al. (2013), with a key difference being the imple-

mentation of long-distance, directed navigations to previously visited patches.

In environments with spatially "clumped" resources, simulated foraging paths

with many long-distance navigations were inefficient because too much time

was spent travelling, but short-distance navigations allowed the simulated for-

agers to efficiently exploit multiple resource patches. The framework displayed

in Chapter 4 can be used to further explore theory about spatiotemporal het-

erogeneity, predictability, and memory in animals with many different foraging

strategies.

In reality, it is likely that different food resources exhibit different tempo-

ral patterns of availability, suggesting that foraging animals may revisit these

resources at different timings. Territorial animals that live in seasonal envi-

ronments encounter this variability in at least two distinct stages: the seasonal

availability of food brought about by the region’s climate, and the depletion-
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recovery dynamics of food the individual eats within its territory (Davies and

Houston, 1981; Berger-Tal and Bar-David, 2015). The model from Chapter 2

does not explicitly account for this although it may be possible to extend it in

a way that allows for multiple time lags of revisitation.

6.3 Management applications

Understanding the value that familiarity and memory provides for wild ani-

mals informs the success of translocation and reintroduction protocols. Animals

are translocated for many reasons; some of these protocols facilitate popula-

tion growth while others mitigate human-wildlife conflict (Barton et al., 2015).

Translocated animals are unique case studies for cognitive ecologists because the

animal must learn the spatiotemporal configuration of its new environment with

little prior information (Jesmer et al., 2018; Falcón-Cortés et al., 2021; Cum-

ming et al., 2022). Animals with advanced cognitive and navigation capacities,

including brown bears, are susceptible to returning to their original home range,

rendering the translocation a failure (Kemink and Kesler, 2013; Milligan et al.,

2018; Lorand et al., 2022). We can use the model from Chapter 2 to identify

animal species that frequently navigate to previously visited locations, and as

a result may not be worth translocating. Adapting the model from Chapter 4

to a simulated translocation could more explicitly forecast these processes. The

success of translocation and reintroduction protocols, which can be expensive

and difficult, depends on how well ecologists understand the cognitive drivers of

animal movement.

Understanding where animals go is crucial for appropriately designing pro-

tected areas, which preserve landscape connectivity and gene flow (Geldmann

et al., 2013; Maxwell et al., 2020). Defining the spatial extent of protected areas

must be done properly to fulfill the implied management goals, and simulation-
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based models have been used to compare the predicted outcome of different

designs (Malishev and Kramer-Schadt, 2021; Chetcuti et al., 2022; D’Elia et al.,

2022). Chapter 4 suggests that the spatial distribution of resources has direct

implications on animal fitness. The learning-based simulation algorithm could

be applied to animals in proposed protected area designs. For migratory species,

certain spatial areas are more valuable for conservation than others. Specifically,

stopover sites have been identified as candidates for protected areas due to the

energetic importance they provide for migratory animals (Bonter et al., 2009;

Linscott and Senner, 2021). The model described in Chapter 5 can be used to

identify stopover sites, among other steps of a migratory animal’s life cycle. Ac-

curately partitioning an animal’s movement path into behaviourally meaningful

segments allows ecologists to prioritize high-quality habitat for protection.

6.4 The future of movement ecology

The model developed in Chapter 2 can be applied to many ecological systems,

connecting theory on memory-informed movement with tracking data. For ex-

ample, the model could be applied to a population of home range-bound animals

living in less predictable ecosystems. Polar bears (Ursus maritimus), for exam-

ple, are a close relative of brown bears but spend most of their time on sea ice,

a dynamic and unpredictable environment (Auger-Méthé et al., 2016b; Lunn

et al., 2016). Polar bears display site fidelity to on-land locations (Cherry et al.,

2013; McCall et al., 2016) and exploring how often they return to previously

visited areas of the sea ice could contribute to theory about memory and spa-

tiotemporal predictability. Taken together, analyses of independent populations

can be synthesized into conclusions about how memory is used to achieve differ-

ent ecological goals. We can also expand on these models by linking them with

mechanistic approaches that predict animal space-use. Incorporating mechanis-
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tic models allows us to handle complex feedbacks between animals and their

environments (Potts and Börger, 2022). We can also use mechanistic models to

verify the accuracy of statistical models (Potts et al., 2022). Augmenting the

model described in Chapter 2 to account for external variables that covary with

an animal’s movement, such as resources that deplete and recover, has potential

for powerful inference on animal cognition and movement.

The model described in Chapter 5 allows ecologists to estimate the temporal

phenology of animal migration with minimal data. Ecologists often use seasonal

boundaries to delineate periods in which an animal’s movement behaviour may

change, but these seasons are not always defined precisely, typically by months

(Allegue et al., 2022; Vales et al., 2022). Notably, Chapter 3 tested a similar

approach that defined resources based on their seasonal availability, which was

outperformed by the memory-only model for brown bears. We suggest that

meaningful changes in habitat selection or other behaviours can be elucidated

using the model described in Chapter 5, particularly for migratory animals. For

data-rich systems this model could also be used to compare migration phenology

across years for individual animals, or link migration timing to external and

internal covariates. The model is very simple and as a result, it is easy to tweak

what metrics are incorporated and how they are modelled statistically to better

encompass how certain animals migrate. Chapters 2 and 5 can even be coupled

to characterize changes in animal cognition throughout the migratory cycle.

Chapter 4 presents a novel framework that explains how animals make deci-

sions by incorporating the outcome of previous decisions. The model builds on

statistical decision theory and while we applied it to foraging, Bayesian MCMC

can simulate learning in many other ecological situations, as long as the value

of a task can be quantified using some objective function. The application of

approximate Bayesian computation to other problems in ecology (Beaumont,

138



2010) suggests that our model could be "fit" to data. This approach may be

most effective in laboratory studies where these decisions are under the con-

trol and surveillance of scientists, but using this approach we could potentially

estimate parameters like k from animal tracking data.

Technological advances in animal tracking and remote sensing have driven

methodological and scientific advances in movement ecology for decades (Kays

et al., 2015), and it is likely that this trend will continue. A likely consequence

of these developments will be high-resolution movement data that much more

accurately approximates an animal’s continuous-time path. While the data

used to characterize movement may change, there is no reason to suggest that

this correlates in any way to the timescale at which animals make decisions.

Movement ecologists will need to develop models (either in a discrete-time or

continuous-time framework) that can infer how animals perceive complex spatial

environments and remember this information, even when the input data are

highly autocorrelated.

We still have much to learn about how animals perceive and remember their

environments. Nathan et al. (2008) divided the movement process into four

components in their seminal movement ecology paper, two of which being the

animal’s external (environmental) and internal (cognitive) states. The former

has received great attention in literature through resource selection analysis and

other related methods, but as technology broadens the capability with which

ecologists can analyze animal movement, characterizing the latter has become

popular. Linking spatiotemporal memory with animal movement is one of the

key challenges facing the next generation of movement ecologists, carrying value

for theoreticians and conservationists alike. These extremely complex processes

are difficult to quantify in wild animals but the diversity of approaches described

in Chapters 2-5 have advanced our progress towards this goal. As the world
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around us changes rapidly and predictably, understanding how animals move

will be as important as ever, and the future of this question lies in learning,

cognition, and memory.
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Appendices

Appendix A: Supplementary Figures and Tables for Chap-

ter 2

Description
xt The animal’s location at time t

ϕt The heading at which the animal arrives at xt at time t

Zt
The animal’s cognitive map at time t; a spatially discrete function over a 2-D
square grid

zt The grid cell within Z in which the animal is located at time t

A Markov chain matrix describing state-switching probabilities

fs
Conditional likelihood function of the animal’s spatial position given the ani-
mal is in the stationary movement state

gs
Conditional likelihood function of the animal’s headings given it is in the
stationary movement state

ρs Mean "step length" for animals when in the stationary state

fns
Conditional likelihood function of the animal’s spatial position given the ani-
mal is in the non-stationary movement state

gns
Conditional likelihood function of the animal’s headings given it is in the non-
stationary movement state

k
Resource-independent movement kernel representing the probability of moving
to any spatial location given the animal’s current location; part of fns and
remains constant in all four versions of the model

W

Environmental weighting function measuring the relative quality or attractive-
ness of any point in space to the animal; part of fns and varies in each version
of the model (WN ,WR,WM , and WRM for the null, resource-only, memory-
only, and resource-memory models, respectively)

Θ1
Parameter vector containing ρns and κ, the two parameters incorporated in k;
remains constant in all four versions of the model

Θ2

Parameter vector containing all parameters incorporated into W ; varies in each
version of the model (Θ2,N ,Θ2,R,Θ2,M , and Θ2,RM for the null, resource-only,
memory-only, and resource-memory models, respectively)

P
Number of resource covariates included in the resource-only and resource-
memory models

φ Gaussian distribution function

δs
Probability that the animal begins its movement path in the stationary move-
ment state (in the model fitting process, estimated based on the data)

t∗
Number of time steps that are omitted from the movement track for model
fitting, to allow the animal to "train" its memory

T
Number of time steps included in the model fitting (the total length of the
animal’s movement path is t∗ + T time indices)

K Number of simulated "available points" per observed step used in model fitting

Table A.1: Description of all functions and quantities included in the model
that were not fit as parameters. For parameters that were fit in the model, see
Table 2.1. 170



K = 10 K = 50
N R M RM N R M RM

T
=

60
0 N 20 7 2 21 27 4 3 16

R 0 24 0 26 0 26 0 24
M 3 0 24 23 0 0 25 25

RM 0 2 5 43 0 0 2 48
T

=
1
2
00

N 28 1 1 20 29 2 1 18
R 0 35 0 15 0 32 0 18
M 0 0 15 35 0 0 20 30

RM 0 0 1 49 0 0 0 50

Table A.2: Breakdown of model selection counts using AIC for different types of
simulated tracks. The row represents the "true" model that the tracks were sim-
ulated from (N = null; R = resource-only; M = memory-only; RM = resource-
memory), while the column represents the model that was identified as the most
parsimonious explanation of the data using AIC. Treatment groups are identi-
fied by the outer left and upper portions of the table and are separated by
shading.

K = 10 K = 50
N-R N-M N-RM R-RM M-RM N-R N-M N-RM R-RM M-RM

T
=

60
0 N 5 2 26 25 9 3 3 17 18 27

R 50 24 50 22 50 50 22 50 20 50
M 4 45 46 45 22 3 48 50 50 23

RM 50 47 50 47 45 50 49 50 50 48

T
=

12
00

N 0 0 21 24 27 1 1 19 19 24
R 50 31 50 13 50 50 29 50 16 50
M 2 48 50 50 33 0 50 50 50 28

RM 50 50 50 50 49 50 49 50 50 50

Table A.3: Breakdown of likelihood ratio test results for different types of simu-
lated tracks. The row represents the "true" model that the tracks were simulated
from (N = null; R = resource-only; M = memory-only; RM = resource-memory),
while the column represents the two models that were compared using a likeli-
hood ratio test. Counts represent the number of simulated tracks (50 per cell)
that registered a p-value below 0.05 for the indicated likelihood ratio test (for
example, the "N-R" column indicates likelihood ratio tests determining whether
the resource-only model is significantly more explanatory than the null model).
Treatment groups are identified by the outer left and upper portions of the table
and are separated by shading.
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Figure A.1: Violin plot of parameter estimates for α parameter in the resource-
memory model for our four treatment groups (detailed on the x-axis), with 50
simulations per treatment. The true value of log10

1
60 ≈ −1.78 is denoted by a

horizontal red line.

Appendix B: Supplementary Material for Chapter 3

Generating the berry density raster

We generated a vegetation class raster using the decision tree from Ducks Un-

limited (2002) to classify each 30 x 30 m grid cell in the Mackenzie Delta region

into one of 46 classes. Table B.1 describes each class as well as its value for the

berry probability raster used in the model.
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Description Berry probability Percent of landscape
Open needleleaf 0.5 0.397

Woodland needleleaf (other) 1 1.481
Woodland needleleaf (moss) 1 0.303
Woodland needleleaf (lichen) 1 0.524

Closed deciduous 0.5 0.082
Open deciduous 0.5 0.344
Closed tall shrub 0 1.476
Open tall shrub 0 0.007

Medium willow shrub 0 0.480
Medium-tall willow shrub 0 0.356
Medium-tall shrub (other) 0 0.027

Low shrub (other) 0 14.087
Low shrub (recently burned) 0 0.352

Low shrub (wet) 0 0.004
Low shrub (floodplain) 0 0.688

Low shrub (delta lowlands) 0 1.243
Low shrub - wet graminoid 0 0.012

Low shrub - tussock 0 1.135
Low shrub (upland) 0.5 0.368
Dwarf shrub (other) 1 9.097

Dwarf shrub (tussock) 0 5.331
Dwarf shrub (lichen) 1 2.239

Dwarf shrub (unknown - Kendall area) 0.5 0.046
Dwarf shrub (tussock/Dryas) 0 0.072
Dwarf shrub (Dryas/heather) 0.5 0.796

Dwarf shrub (sloped hummocks) 0 0.035
Dwarf shrub (wet graminoid) 0.5 0.160

Tussock tundra 0.5 1.407
Lichen 0.5 0.243

Wet graminoid (wetland depressions or lake edges) 0 1.762
Wet graminoid (northern delta) 0 1.429

Wet graminoid (floodplain) 0 1.101
Wet graminoid (some shrubs) 0 0.111

Wet graminoid (unknown) 0 0.003
Dwarf shrub mosaic (wet) 0.5 0.355

Dwarf shrub mosaic (very wet) 0.5 0.761
Aquatic bed 0 0.014

Emergent vegetation 0 1.002
Emergent and other wet wetland areas 0 1.424

Clear water 0 20.108
Turbid water 0 25.385

Sparse vegetation 0 0.394
Sparse / non-vegetated (unsure) 0 0.030

Non-vegetated 0 0.670
Other 0 0.001

Unclassified 0 2.655

Table B.1: Classification method used to generate the berry density raster for
the resource-only and resource-memory models. The name of each original veg-
etation class is shown along with the assigned probability, representing how
correlated each habitat type is to the presence of berries, as well as the percent-
age of the landscape that is covered by each class.
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Supplementary tables

Appendix C: Overview, Design Concepts, and Details (ODD)

protocol for Chapter 4

Purpose

We developed a model heavily influenced by Avgar et al. (2013) to simulate the

movement of spatially informed foragers. The model includes four parameters

that, when combined, quantify an animal’s foraging strategy. These param-

eters are intended to measure behaviourally plastic qualities of an animal as

opposed to genetic or morphological traits. We assessed the adaptive value of

different foraging strategies using a net energetic gain metric, which weighs the

animal’s resource intake against the energetic cost of movement. We do not

specifically liken the model to any animal taxon, but we note that many com-

mon behavioural processes (e.g., migration and sociality) are not included in

the model.

State variables and scales

The model consists of one individual (henceforth referred to as an "animal") that

moves throughout a bounded spatial landscape. The animal performs discrete-

time, continuous-space movements at constant temporal intervals of 1 arbitrary

time unit (tu). The landscape is a 100 x 100 arbitrary length unit (lu) square

in two-dimensional space. Each spatial point on the landscape x and time

index t has a resource quality Q(x, t) ∈ [0, 1] representing the energetic value of

resources at that point. For mathematical convenience, we formulated Q(x, t) as

a piecewise constant function; all x in any 1x1 lu "grid cell" have the same value

of Q(x, t) at any time t. To prevent animals from getting "trapped" in corners

or boundaries of the landscape, we assume that landscapes have wrap-around
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boundaries (e.g., if the animal moves far enough to the left, it will eventually

end up on the right side of the grid).

The landscape has two unique resources that are added together to produce

the total resource quality Q(x, t) for each point and time. We define Q1(x, t)

and Q2(x, t) to be the quality values for the first and second resources at point

x and time t, respectively. Both of these resource functions can take on values

between 0 and 1, so to ensure that Q(x, t) is defined properly, we set Q(x, t) =

(Q1(x, t) +Q2(x, t)) ∗ 0.5 for every point x and time t.

We incorporated depletion-recovery dynamics to the landscape to ensure an-

imals would be incentivized to move. When the animal visits any point in a grid

cell, it consumes and depletes that cell’s resources. Specifically, we decrement

Q1(x, t) and Q2(x, t) by resource depletion parameter dL for every point x in

the cell the animal visits at time t. If dL is greater than the resource value at

that time, the cell is depleted entirely and is assigned a resource value of 0. Each

depleted resource recovers by rL units each time step until reaches its original,

pre-depletion value. We fixed dL and rL for all simulations (Table 4.1).

Process overview and scheduling

We tracked information storage in simulated animals using C(x, t), which rep-

resents the animal’s estimation of resource quality for each point and time. As

the animal perceives and remembers new information through movement, C is

updated. The animal moves by choosing a "point of interest" to navigate to

based on C. Points of interest may take more than 1 tu to reach, reflecting the

numerous timescales at which animals make movement decisions (McClintock

et al., 2014; Blackwell et al., 2016).
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Design concepts

Fitness: Simulated animals perform the most basic version of "fitness-seeking"

in that they search for points with a higher concentration of resources. Following

Assumption A1, animals exhibit "habitat selection" for the different resources

on the landscape. We introduce the parameter h ∈ [0, 1] to quantify this re-

lationship. When the animal visits a new location, it stores the value of that

location as Q̃(x, t) = hQ1(x, t)+(1−h)Q2(x, t) rather than Q(x, t) (Figure 4.1).

Per Assumption A4, animals will be more likely to navigate to nearby points,

as this minimizes locomotive cost as well as the opportunity cost of navigating

through potentially resource-poor habitat on the way to a faraway point of in-

terest.

Sensing: Animals are not omniscient and must obtain information via percep-

tion. Typically, animals perceive nearby information more accurately (Avgar

et al., 2015; Fagan et al., 2017). Mathematically, we formalize this using a

perception function p(x,y). This function measures how accurately (ranging

from 0 to 1) an animal located at x perceives information about y. We chose

an exponential decay function (similar to Avgar et al., 2013) to represent this

relationship:

p(x,y) = exp

(︃
−d(x,y)

ρ

)︃
, (C.1)

where d(x,y) is the distance between x and y, accounting for wrap-around

boundaries. We assume that the animal’s perceptual ability increases with ρ,

the parameter governing the animal’s locomotive capability.

Memory: Assumption A2 states that the animal’s reliance on memory decreases

as the time since the formation of that memory increases. Mathematically, we
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Figure C.1: Flowchart describing the individual-based simulation model for
animal movement. At each time step, animals update their perception of the
environment C, occasionally using it to choose a point of interest (POI) to
navigate to. This navigation can take any number of time steps, as the animal
does not typically stop navigating until it reaches the point.

used an exponential decay function to represent this (similarly to Avgar et al.,

2013). The function m(t) ranges between 0 and 1 and quantifies the animal’s

reliance on memory as a function of how long ago the memory was formed.

Simply put, m(t) = exp (−βt). If β = 0, the animal effectively has an infinite

memory, and as β becomes infinitely large, the animal begins to neglect its

memory entirely.

Prediction: The animal estimates the resource quality at any point on the land-

scape using perception and memory, but if it has never visited a location on

the grid, it must still make a naive "guess" about the resource quality there

(Berger-Tal and Avgar, 2012; Avgar et al., 2013). Assumption A3 states that

this guess is constant across space and time; in other words, the animal will

treat all unvisited points equally throughout the simulation. We can represent

this guess with q ∈ [0, 1]. Larger values of q will result in more exploratory

movement as animals assign higher value to unvisited areas.

Stochasticity: Animal movement paths are stochastic, and as a result animals
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will not always visit the patch that confers the highest expected benefit (i.e.,

the highest value of C). That being said, points with higher values of C are still

more likely to be chosen as points of interest. When the animal is not currently

en route to a point of interest, a new point of interest is picked using a Monte

Carlo sampling technique. This involves simulating Nr = 1000 possible points

of interest xt,1,xt,2, ...,xt,Nr
and randomly picking one (denoted xP

t ) based on

the value of C. More specifically,

P (xt,i = xP
t ) =

C(xt,i, t)
λ∑︁Nr

j=1 C(xt,j , t)λ
, (C.2)

for any positive integer i ≤ Nr. We include a fixed constant λ ≥ 0 that controls

the "determinism" of the animal’s movements: as λ increases, it is more likely

to choose the point with the highest value of C.

We simulate the xt,i as end points of a movement "step" beginning at xt−1,

where the lengths of each step follow an exponential distribution. The shape of

this distribution results in smaller step lengths being more frequently sampled,

following Assumption A4. We define γ ≥ 0 as the "rate" parameter of the

exponential distribution, quantifying the strength of the relationship between

distance and point-of-interest selection. As γ approaches 0, every point on the

grid has an equal chance of being selected (assuming equal values of C). If γ is

large, all xt,i will be close to the animal and it will not undertake long-distance

navigations very often.

The animal navigates to points of interest by performing a biased random

walk (Figure C.1). The lengths of each step along the navigation are simulated

from a gamma distribution with mean and variance ρ. This distribution has

an entirely positive support and is roughly bell-shaped for most values of ρ,

including the value we used (Table 4.1). If simulated step lengths are longer

than the distance to the point of interest (i.e., the animal would "overshoot" its
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destination), the animal goes directly to the point of interest instead. Other-

wise, it takes a step of the simulated length towards the point of interest. The

heading of this step is simulated from a von Mises distribution where the mean

heading is the heading required to reach the point of interest. The concentration

parameter for this distribution, κ ≥ 0, is a fixed quantity in this model (Table

4.1). It is recommended that large values of κ, which cause more directed move-

ment to the point of interest, are used here. If one of the steps on the animal’s

navigation ends on a point that has better resources than the point of interest

(i.e., Q̃(xt+1, t+1) > C(xP
t , t+1)), the animal "forgets" about the point of in-

terest and prioritizes foraging at the newfound location. The algorithm restarts

whenever the animal arrives at its point of interest.

Observation: We collected information about the animal’s movement as well as

its cumulative resource intake. We keep track of the animal’s location xt, as

well as the value of Q(xt, t), for each time step t in the track. Note that while

the animal exhibits relative preference for resources using Q̃, it still takes in

equal amounts of both resources when it visits a patch.

Our model does not implement interaction or collectives since animals are soli-

tary on the landscape. While we assume that animals can "adapt" to environ-

mental conditions by modifying β, γ, q, and h between simulations, we do not

allow for adaptation within a single simulation. We are not particularly focused

on emergent properties such as home range formation.

Initialization

At the beginning of each simulation, we randomly generate a landscape and

initialize the animal at a random point on that landscape. Initially, C(x, 0) = q

for every point x, as the animal has no prior experience on the grid.
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Input

For each simulated animal movement path, we supplied two randomly generated

landscapes (for Q1 and Q2 respectively) as inputs. We simulated our landscapes

as Gaussian random fields, implying that each cell on the grid is a component

of a multivariate Gaussian random variable (Schlather, 2012). In this case, the

covariance between any two cells depends on the wrap-around distance between

the two cells (closer cells have higher covariance). We then scaled the values

such they all fell between 0 and 1.

To more accurately capture the patchiness of many real-world habitats, we

defined a cut-off value Q that could be used to make these landscapes more

patchy. Under this rule, any grid cell with a value of Q below Q would be set

to 0. Increasing Q decreases the overall resource quality of the landscape and

is more likely to confine the animal to specific high-quality patches. Here, we

used landscapes with Q = 0.6 and Q = 0.9 (Figure 4.2).

Submodels

Our main submodel is the calculation of C, the animal’s spatial map of perceived

resource quality. This calculation is composed of three mechanisms: perception

(p(x,y)), memory (m(t)), and default expectation (q). Figure 4.1 displays how

these quantities are combined and weighted to produce C. This is mathemati-

cally formalized below:

C(x, t) = p(x,xt)Q̃(x, t)⏞ ⏟⏟ ⏞
perception

+

(1− p(x,xt))
(︂
m(1)C(x, t− 1)⏞ ⏟⏟ ⏞

memory

+(1−m(1))q⏞ ⏟⏟ ⏞
expectation

)︂
. (C.3)
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Note that m(1) = exp(−β), which resembles the model from Avgar et al. (2013).

Appendix D: Determining the appropriate number of MCMC

iterations

We determined an optimal number of iterations per MCMC chain by identifying

when additional iterations did not substantially affect the posterior distribution

of the four behavioural parameters. If some value N were to be sufficient as

the number of iterations per chain, we would expect that a chain simulated for

N iterations would produce similar posteriors when we added additional itera-

tions to the chain. If simulating more iterations produced negligibly different

posteriors, it is not computationally worthwhile to perform those iterations. To

that end, we ran a chain of the MCMC sampling algorithm for our foraging

task with 5000 iterations (what we deemed to be the largest computationally

reasonable value). We then took the first N iterations of that chain and com-

pared the posterior distribution from that subset with a slightly larger subset,

the first N +500 iterations. We used a static MCMC sampler in our analysis so

the individual iterations were independent of each other, rendering this process

similar to comparing two separate chains.

We compared posterior distributions using the earth mover’s distance, also

known as the Wasserstein distance, a common tool for comparing multivariate

distributions across many fields (Vaserstein, 1969; Rubner et al., 2000; Potts

et al., 2014). The earth mover’s distance approximates the energy required to

spatially transform one probability distribution such that it resembles another.

As a result, lower values of this metric suggest higher distributional similarity,

and an earth mover’s distance of 0 is only achieved between two perfectly iden-

tical probability distributions. Plotting the earth mover’s distance against N ,

the proposed number of iterations, for many different values of N (ranging from
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Figure D.1: Relationship between the number of iterations in a MCMC chain
used to simulate the foraging task and distributional similarity, measured using
the earth mover’s distance. We calculated the earth mover’s distance between
the first N iterations of the chain and the first N+500 iterations to evaluate the
difference that adding 500 iterations would make to the posterior distribution
of animal behaviour. The coloured lines represent five individual runs of the
process, and the thicker black line represents the mean earth mover’s distance
across these runs.

500 to 4500 by 100) led us to identify Niter = 2000 as the appropriate number

of iterations (Figure D.1). We ran the process described above five independent

times to ensure that this relationship was similar with different random runs of

the algorithm.

Appendix E: Simulation study for Chapter 5

We simulated movement paths intended to resemble ferruginous hawk migra-

tions with and without stopovers. We then fit the k = 1 (one-migration) and

k = 2 (two-migration) versions of the model to all these simulated paths and
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compared the parsimony of each model type using Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC). We parameterized the model

such that it resembled a typical fall hawk migration (where stopovers are more

frequent). We simulated our paths as a series of 1-hour movements over a 200-

day period, in line with the 1-hour fix rate data for fall migrant hawks. In both

stopover and non-stopover cases the simulated birds departed from their breed-

ing grounds after 119 days and arrived on their wintering grounds after 190 days

(in line with examples from our results). We simulated 25 paths without any

stopover behaviour and 25 paths with a 30-day stopover starting at day 130. To

simulate our paths, we generated step lengths and turning angles independently

using the probability distribution functions described in Equation 5.5. We sim-

ulated step lengths from an exponential distribution and turning angles from

a von Mises distribution, where the parameters for these distributions varied

depending on the time associated with each data point. In our simulation, we

set ρ0 = 0.6 km/hr, ρ1 = 7 km/hr, κ0 = 0, and κ1 = 0.5. This gave us 4800 step

lengths and turning angles from which we iteratively constructed a movement

path. The real-life hawk data had many missing steps so we randomly removed

0.5(1 − 2000
4800 ) = 29.16 percent of the generated locations. Our simulated paths

contained approximately 2000 pairs of consecutive data points (steps), resem-

bling the real-life data. We fit the k = 1 and k = 2 models to these simulated

paths using the same algorithm as the real data, obtaining parameter estimates

and calculating AIC and BIC. These results are included in Supplementary File

1.
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