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Abstract

A new warping technique is presented that maps images of arbitrary planar
shapes onto each other. The algorithm is called the Radial Transform which is
based on an extension of digital-straight line representation that resamples the
images in the pelar coordinate system. The Radial Transform described uses
boundary maps to compute the forward mapping functions. The technique not
only produces superior image quality than existing algorithms. but also
simplifies the correspondence problem and the resampling process. In addition,
the technique also transforms image shapes that are not ropologically equivaiens,

unlike several other methods discussed in the literature.

This thesis also presents another warping algorithm which is a combination ol
the Radial Transform and a 3-pass algorithm — an existing technique for
arbitrary image mapping. This technique is called the Radial-Axes Transform
that warps 2D images in three 1D transformations. The techniguce provides more

local control over the Radial Transform.
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Chapter 1

Introduction

Image warping is a 2D geometric transformation that modifies the spatial relationships
between pixels in an image. Imagine an image printed on a ¢ ieet of rubber and then
stretching or squeezing this sheet according to some predefined rules: geometric
transformations are often described as rubber sheet transformations. Image warping

plays an important role in both :mage processing and computer graphics.

In image processing. transformations often are defined over the 2D coordinate system.
However, it is gencrally not possible to formulate a single set of analytic expressions
that describes the geometric distortion process over the entire image. To overcome this
difficulty. four-corner mapping is often used to warp quadrilaterals onto quadrilaterals.
In computer graphics. warping amounts to reparameterization of coordinate systems
[Wolberg90]. The 2D source image 1s mapped onto 3D objects followed by a projection
onto the 2D screen. This process is known as texture mapping [Heckbert86]. Most
previous work in both the abeve research areas has concentrated on transformations
that can be formulated by analvtic expressions. However, there is a lack of attention in
the literature to the mapping between arbitrary image shapes such as hand-drawn closed
curves. The rectilinear Cartesian coordinates are not suitable for representing arbitrary
umage shapes [Wolberg88][Wolberg89]. These arbitrary image shapes cannot be easily
detined mathematically in general, and hence they may not be represented by 2D
transformations. They are also not suitable for four-corner mapping. Moreover, they

are not parameterized.



We present two simple algorithms that map an arbitrary image onto any other arbitrary
image. The first algorithm is called Radial transform in which the user defines an origin
in the image. The source image is converted from Cartesian coordinates to polar
coordinates to produce an intermediate image: then the intermediate image is warped to
the destination image. A possible application of the Radial transform is discussed in
Chapter 6. The second algorithm is called Radial-axes transform which is similar to the
first one. except that images are divided into regions before the waip takes place. First,
the images are divided into four regions by two axes specified by the user. Next, cach
region in the source is mapped to the corresponding destination using a 3-pass
technique. Both algorithms are based on an extension of digital-straight line
representation that resamples the images in the polar coordinate system. In addition to
scaling. the algorithms allow lateral transformation. Unlike previcus meihods discussed
in the literature, we used boundary maps to specify objects’ boundarics in order to
permit the mapping of arbitrary shapes even if they are not topological equivalents. The
following sections describe the three main components of image warping: spatial

transformations. resampling, and antialiasing.
1.1 Spatial Transformation

A geometric transformation maps one coordinate system onto another by means of o
mapping function. The mapping function is known as the spatial transformation that
establishes o sampling grid which defines the spatial relationship between all points in

the input and output images.

The spatial transformation mapping function may be specified by analytic expressions,
four-corner mapping. or control-grid mapping [Wolberg90]. In this thesis, we do not

consider spatial transformation that are represented by analytic expressions.

In general. the mapping function can take two forms: forward mapping and inverse

mapping.

|£9}



1.1.1 Forward Mapping

In forward mapping, input pixels are scanned in scanline order, but the results are free
to leave in any order. Each input pixel (s, ys) is mapped onto the output at positions
(xd, yaq) specified by the mapping functions X and Y.

(Xd.¥d) = ( X(X..¥). Y(Xg,¥4) (1.1)

Since there is no guarantee that X and Y will generate integer values, the input pixels
arc mapped from the integer coordinate values onto the real-valucd positions. Since the
input and output coordinates are different in nature ( one is discrete and the other is
continuous). it is not advisable to implement the spatial transformation as a point-to-
point mapping or holes and overlaps may occur. Holes occur when the input pixels are
mapped to sparse positions on the output coordinate. Overlaps occur when several

input samples are mapped to one output pixel.

The spatial transformation is usually implemented by a four-corner mapping where the
input pixels are treated as square patches that may be mapped into quadrilaterals in the
output image. Since the input can lie anywhere in the output image. input pixels often
straddle several output pixels, or lie embedded in one. Therefore, it is necessary to
calculate a weighted contribution of each input pixel that covers an output pixel. Costly
intersection tests are necded to compute the weights and the coverage. To avoid this
problem. the input can be sampled adaptively based on the size of the projected

quadrilateral.

1.1.2 Inverse Mapping

In inverse mapping. output pixels are generated in scanline order. Each output position
is projected into the input image by the mapping functions X-! and Y-!. which are the

mverse mapping function of X and Y respccavely.

(X ¥ = ( X—l(xd-,\li)-Y_l(xd..\'d) ) (1.2)



In contrast with forward mapping, the output pixels are projected from the integer
lattice onto the input at real-valued positions. The value of the sampled point is copiced
onto the output pixel. However. the input pixels are often defined on an integer lattice.
therefore an interpolation stage is required to sample the input values at the undefined
real-valued positions. The details of this interpolation stage are discussed in the Image

Resampling Section.

Inverse mapping assumes that all output pixels are computed but not all input pixels are
mapped. Therefore, artifacts may arise if large amounts of input pixels are discarded
while calculating the output. Inverse mapping is the most common method used
because it generates the output in scanline order, and therefore it guarantees cach output

pixel is mapped.
1.2 Image Resampling

Image resampling refers to image reconstruction followed by sampling. After
establishing an inverse spatial transformation, the input image must be reconstructed or
interpolated for sampling. Sampling theory is essential to digital image
transformations. In the discrete domain, undesirable artifacts can arise as a result of
geometric transformation, therefore sampling theory is central to the study of sampled-

data systems.
1.2.1 Image Reconstruction

Both input and output digital images are restricted to lic on integer coordinates. In
inverse mapping. the output pixels are passed through a mapping function that
generates a sampling grid which is used to resample the input. Unfortunately, cach
point ‘n the new resampling grid may take on any continuous value. Therefore. it is
necessary to interpolate a continuous surface through the discrete input samples. This
process is known as image reconstruction. After image reconstruction, the interpolated

continuous surface can be sampled at any position to yield an output value.

The guality of the output image depends on the accuracy of the interpolated image

which in turn depends on the interpolation function. Well known interpolation

4



algorithms include cubic convolution, bilinear, nearest neighbor, cubic spline and
convolution with a sinc function. For speed, efficiency and acceptable image quality,

we used bilinear interpolation for our algorithms.
1.3 Antialiasing

Antialiasing is the process of filtering the high frequencies of a signal that cause
aliasing. Aliasing occurs when a signal is undersampled and hence the high frequency
components overlap causing undesired artifacts. The problem can be solved by
bandlimiting the signal or increasing the sampling rate. The first solution uses low-pass
filters to bandlimit the signal to conform to the Nyquist rate. Bandlimiting the signal to
levels below the Nyquist rate effectively cuts off the offending high frequencies. The
sccond solution is to increase the sampling rate, thereby placing the replicated spectra
farther apart — this effectively separates the overlapping high frequencies that cause
aliasing. This method is superior in terms of image quality. but it is costly and may be
difficult to achieve. In practice, both methods are used together to combat aliasing.

The following sections briefly discuss the basic ideas behind the two methods.
1.3.1 Filtering

A bandlimited signal can be generated by passing the original signal through a low-pass
filter betore sampling. Since this process must be performed before the sampling, it is
known as prefiltering. Any low-pass filters may be used to bandlimit a signal.
Basically. there are two types of filters: space-invariant filter and space-variant filter. In
space-invariant filter. the kernel is constant as the filter scans the entire image. In

space-variant filter, the kernel varies with position.
1.3.2 Sampling

There are two classes of sampling algorithms that may be used to combat aliasing:
regular sampling algorithms and irregular sampiing algorithms. The former techniques
use regular sampling grids to collect the image samples where as the latter techniques

use irregular sampling grids to sample the input data.



1.4 Thesis Roadmap

The road map of the thesis is laid out as follows: Chapter 2 provides the background
work. The definition of the problem and the goal of the thesis are presented in Chapter
3. Chapter 4 describes an existing algorithm and introduces a new algorithm. The
performance of these algorithms are analyzed. The experimental results of the
performance are presented in Chapter 5. Chapter 6 describes a possible application of
this algorithm. The conclusion is given in Chapter 7. A selection of example pictures
is shown in Chapter 8.



Chapter 2

Background

In this study. we dichotomized warping techniques into rigid warping and free-form
warping algorithms. In rigid warping algorithms, the same set of transformation
functions is applied to all points in the image. Transformations such as rotation,
scaling, and perspective mapping are rigid warping algorithms. Since they are
frequently used in Computer Graphics and Computer Vision, we first describe some
techniques that optimize these transformations. In free-form warping algorithms, the
transformation functions apply to only a subset of the image points, that is, not all
image points arc mapped in the same way. These algorithms will be discussed next.
However. with all the rules there are exceptions. Some algorithms can be categorized
as rigid or free-form warping algorithms as we shall see that in Chapter 3. For
mapping between arbitrary shapes, only free-form warping algorithms should be used.

The reason becomes clear when we describe the problem in Chapter 3.
2.1 Rigid Warping Algorithms

In 1979. Braccini and Marino showed that transformations such as rotation and scale
can be impicmented by sampling a texture map in scanline order and placing the results
along the path of a Bresenham digital line [Braccini and Marino79]. "Holes" that may
appear between adjacent lines are filled with extra pixels, which results in some

redundancy. Nevertheless. the algorithm achieves high speed-up for image rotations.



Catmull and Smith propose a general 2-pass forward mapping scanline algorithm that
transforms a 2D image using two 1D transformations [Catmull and Smith80). The 2-
pass algorithm transforms the rows of the source image completely before transforming
the columns. The 1D transformation simplifies the resampling process, and it is
computationally less expensive than traditional transformations that operate entirely in
2D. Moreover, it is suitable for hardware implementation.

Based on Catmull and Smith's 2-pass algorithm, Wolberg and Boult propose a general
forward transformation that uses spatial look-up tables to specify any mapping
functions [Wolberg and Boult89]. The spatial look-up tables avoid the computation of
the inverse function required by the 2-pass algorithm{Catmull and Smith80}.

2.2 Free-form Warping Algorithms

Fiume et al. propose a conformal texture mapping where images are represented by
convex polygons [Fiume et al.87]. They use the Schwarz-Christofiel transformation to
construct the conformal maps. Schwarz-Christoffel mapping can be costly to compute

and extremely complicated analytically.

The first algorithm that maps between arbitrary shapes is proposed by Wolberg.  Since
this is the only algorithm that maps between arbitrary shapes. we will discuss it in detail
iater. Wolberg introduces a skeleton-based image warping technique that ecmploys
thinning (or erosion) process on the images, similar to peelthg the skins off an onion
[Wolberg88][Wolberg89]. This process creates a "thinning path". The sampled (or
extracted) image is then reparameterized from Cartesian coordinates into a new (u, v)
space in which u runs along the image boundary, and v runs radially inward. A 3-pass
algorithm is used to map the source image to the destination image. The final result is

placed back in Cartesian coordinates using the thinning paths.



Chapter 3

Problem Description

Eounding box —

o
Backeround /

{
Hole EEEEEEE—
Island
Qverlapping
oObjects’
boundaries
S D

Figure 3.1: Arbitrary image shapes.

We would like to map an arbitrary source image, S, onto any arbitrary destination
region, D, using a mapping function f (see Figure 3.1). In fact, both S and D are sub-
images that can be extracted by tracing objects' boundaries with a pointer on the screen.
Each sub-image is extracted together with its minimum bounding box, with the edges
of the bounding box parallel to the Cartesian coordinate axes. Pixels that are within
image boundaries are designated as foreground and the remaining ones as background.
Unlike Wolberg's technique., our algorithms do not put any restrictions on the topology

of the source and destination regions. For example. Figure 3.1 shows that S contains
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regions of hole, island, overlapping objects' boundaries. and two separate regions.
Moreover. our algorithms also allow scaling and lateral mapping.

3.1 Arbitrary Shapes

This section reviews the difficulties encountered when mapping between arbitrary
shapes. The main difficulty is finding correspondences in both images.

A function, f, that maps S onto D requires that both images be parameterized such that
correspondences may be established. Consider a rectangular image on the Cartesian
Coordinate (see Figure 3.2). Image S is bounded by its four edges. The position of
each interior point can be determined relative to those edges or the four corner points.
Since image D also has four corner points, we can use these points as the
corresponding points between S and D. Consider f as a simple scaling mapping
function. The correspondences as, by. ¢y and dg are mapped to aq. by, ¢g and dg
respectively. Since the positions of the four correspondences arc known in both § and
D. then the position of each interior point can be determined, hence all points in S can
be mapped onto D.

A hd
4 4
a, b, %
d g
o .
® ) \
dd 2“/ Cd
- >

Figure 3.2: Mapping between rectangular images.

For an arbitrary shape that lies on a Cartesian Coordinate, generally there is no
relationship between its edge and its interior points. It is difficult to find

correspondences in both images In fact, this is one of the most difficult problems ir:
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any image warping algorithms. For example, if we would like to map S onto D in
Figure 3.3, how do we determine the correspondences and scaling factors?

igure 3.3: Mapping between arbitrary image shapes.

We could use the 2-pass method to map the rows first and then map the columns
[Catmull and Smith80][Wolberg and Boult89]. As mentioned in the previous chapter,
we could not use mapping functions that are classified as the rigid warping algorithms.
However. the 2-pass method described in Chapter 2 can be treat as a free-form warping
algorithm. The 2-pass method requires that both images must have the same
dimension. Since the number of rows in the source and the destination may be
different, the smaller image is scaled up so that both images have the same number of
rows. Columns are treated similarly. When this scaling operation takes place, each
image is treated as a rectangular image delimited by its smallest bounding box. In the
first pass. we step along each row in the source image and map it onto the destination to
produce an intermediate image. In the second pass, we go through each column in the

intermediate image and map it onto the destination.

The problem with this approach is that the final image is not unique. The image
depends on the order of the mapping. If we map columns first and then rows, we
would have a different image than in the reverse case. This results in a direct
consequence: an arbitrary image is not suitable for direct mapping in the Cartesian

space.
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Chapter 4

Arbitrary-Shapes Warping

There is only one existing warping algorithm for mapping between arbitrary shapes in
the literature: the Skeleton-based method, which is described below.

4.1 Skeleton-based Warping

This section introduces the basic idea behind the Skeleton-based method. The next

section gives the formal algorithmn.

Wolberg extracts each image layer by a thinning process similar to peeling an onion
[Wolberg88][Wolberg89] (see Figure 4.1). The thinning process creates a thinning
path that repcrameterizes the (x, y) coordinate system into a new (u, v) space., where u
runs along the boundary of the image, and v runs radially inward across successive
layers. When the source and destination images are thinned to their remaining
skeletons, the (u,. vy) input coordinates are mapped to the output (ug, vg) by a 3-pass
algorithm: subscripts s and d denote the source and destination space respectively. The
first pass involves resampling each radial line in the source intermediate image to vipax.
where vmax denotes the longest radial line. The result is a rectangular image which is
fed to the second pass where the intermediate image is resampled along u so that u,
matches ug. The third pass maps the radial line into its correct length along v. Finally,
the destination image is traversed again using the same thinning paths, and the warped

pixels are placed in their correct positions.
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Figure 4.1: Conceptual Skeleton-based method.

4.1.1 3-pass Transformation

We mentioned that generally it is difficult to formulate a 2D transformation that maps
images with arbitrary regions. Wolberg's 3-pass algorithm approximates the mapping
function f in three 1D transformations. The idea is to reparameterize S and D from the
Cartesian coordinate system to a new (u, v) system which provides a closer
representation of arbitrary shapes. Image resampling is performed in (u. v) space. The

13



resulting image is reparameterized back to Cartesian coordinates. The three steps of the
algorithm are outlined below. Step (1) corresponds to spatial transformation. Step (2)
is the resampling process. Step (3) is the inverse of step (1).

(1) Convert S and D from Cartesian coordinate system, (x. y). to (u. v) space, using a
transformation function g. This yields S' and D' respectively. The (u, v) representation
of S and D simplifies the mapping. This step also involves normalizing S' in the
direction of v for easy resampling in the second step.

(2) Transform S' to D' using a second transformation h.

(3) Transform D' to D using a transformation g-! which is the inverse of ¢. Figure 4.2

shows the "decomposition” of function f into functions g, h and g,

Figure 4.2: Skeleton-based transtormation.



Figure 4.3 illustrates an example of the decomposition of a source image into a series of
intermediate images. The elliptical image S is warped to a rectangular shape D.

Figure 4.3: An exampie of intermediate images transformed by the Skeleton-based
method.

—
'



4.1.2 Establishing Correspondences

The Skeleton-based method precents a few difficulties. The first is to define points that
run radially. To establish a radial line, a point that lies on the first image layer needs to
be aligned with a point in the second layer, and subsequent layers. Note that as the
image is thinned one layer at a time, the entire radial line cannot be established
immediately. It is established when all layers are thinned. Figure 4.1 shows that D has
two radial lines with corresponding points. There is no definitive solution to choose
those corresponding points. Wolberg chooses the top icft-most point as the starting
correspondence in each image. The correspondence changes to the first skeletal point as
the image is thinned because this skeletal point is guaranteed to appear throughout the
remaining of the thinning process. The second difficulty is in sampling cach boundary
layer. Since the outermost boundary layer of the image is clearly defined. u is defined.
For this algorithm to work, each subsequent layer must have the same number of pixels
as that of the outermost layer. That is. u must be the same across all layers. Generally,
inner layers will contain fewer pixels than the outermost layer. The solution is to
supersample the inner layers. which results in redundancy. When supersampling., the
correspondences must be kept in the same positions, that is, on the same radial lines.
This implies that when there are mcre than one correspondences in a layer, the
sampling frequency for each segment is generally different and must be calculated
based on the length of the corresponding outer segment (a segment of a layer is
bounded by two correspondences). For example, Figure 4.1 shows that D has two
segments in each layer. Consider segment 2 of the second outermost layer. This
segment must be sampled to the same length as the corresponding scgment in the
outermost layver and this process must be repeated with segment 2 in cach of the other
inner layer, however, they all have different sampling frequencies. Morcover, cach
segment on the same layer may also have different sampling frequencies. Consider
segment | and segment 2 of the second outermost layer. The sampling frequencices in
these segments are different. This means we must keep track of all the segment
lengths. One further restriction that this algorithm imposes is that both images must be
topologically equivalent. That is. both images must contain the same number of holes
or no holes at all. The correspondence problem becomes more complicated with the

presence of holes.
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4.2 Radial Transform

The motivations behind the Radial transform are to improve image quality over the
Skeleton-based method. and to simplify the process of sampling and establishing
correspondences. The algorithm is similar to that of the Skeleton-based method. The
basic idea is to sample the images in the polar coordinates. Figure 4.4 illustrates the
concept. First, we define an origin in the image and a radial line or path which starts
from the origin and extends to the image boarder. This radial path is calculated using
the Bresenham-line algorithm. We then sample the image radially according to this
radial path. Next. we rotate the radial line by a certain degree and sample the image.
This rotation produces a theta path. The theta path and radial path comprise the
sampling grid. We Keep rotating the radial line until it sweeps over the entire image for
both the source and destination images. We then map each radial line from the source
to the destination. Finally, we place each mapped radial line back into Cartesian
coordinates using the same destination theta path. There are three stages of the Radial
transform algorithm: spatial transformation, image resampling, and inverse spatial

transformation.

4-\9 path
Polar Coordinate r

Transformation
L =
T
Origin  LI11] RN 'I’
0

Figure 4.4: Conceptual Radial transform.
4.2.1 Spatial Transformation

The first stage is to reparameterize S and D from Cartesian coordinates into S' and D'
of polar coordinates. The user needs to define only an origin and a radial sampling

direction in both S and D. Before the radial sampling process takes place. S and D may



be upscaled when necessary. In reviewing the difficulties encountered by the Skeleton-
based method. we find the following: First. in order to construct a radial line. a
correspondence must be searched from one image layer to another. Second. the inner
image layer is generally shorter than the outer layer, therefore. the inner laver must he
supersampled so that the number of pixels sampled along u is the same in all layers.
However, when supersampling a boundary segment, the correspondences must remain
on the radial lines — therefore, the supersampling frequency must be calculated for
each segment based on the segment length of the outer layer. This implies we must
know the length of each segment. Third, both S and D must be topologically
equivalent. Here, we tried to simplify the correspondence problem, the sampling
process. and the topology problem that are present in the Skeleton-based method. The
topology problem does not belong to the spatial transformation process and hence it
needs a different section itself. It is discussed in the Mapping Between Radial Lines
Section.

4.2.1.1 Image Origin

In Radial transform we need to calculate both r and 0 to sample the image. Before r
and 6 can be calculated. we must define an origin. Unlike the Skeleton-based method

of searching a correspondence in the image, we allow the user to define an origin as the
correspondence. Since the origin is defined, both r and 0 (v aad u in Skeleton-based

method) are defined as discussed later.

S D

Figure 4.5: Image origins and sampling directions for Radial method.



The user defines an origin by drawing a radial line on each of the source and destination
images. Figure 4.5 illustrates the idea. The user then defines the rotational or sampling
direction as either clockwise (w) or anticlockwise (~w). If the rotational directions in S
and D are the same, the mapping may serve as a 2D rotation. If, however, the
rotational dircctions are different, the mapping also serves as a lateral transformation.

4.2.1.2 Correspondence Problem

When we calculate a radial line from the origin to the image border, we establish ail the
correspondences along the radial line (or from one image layer to another layer in the
Skeleton-based mcthod). There is no need to search for correspondences — an
advantage implicitly inherited in the Radial transform when calculating the radial lines.
However, the following questions remain to be solved: "How many radial lines do we
need in both the source and destination images to cover the image areas?" and "How do
we establish radial-line correspondences between the two images?" Let us answer the
second question first. To simplify the radial-line correspondence problem, we will
assume that for each radial line in §' of polar coordinates, there must be a
corresponding line in D' — then the mapping can go from S' to D' directly. This
implics both O and 0y (or the number of radial lines) in S' and D' must be the same.
Let us further assume that 6 and 84 are equal. This also answers part of the first
question which can be rephrased as "How many degrees should we rotate the radial line
for cach rotation?" If the amount of rotation, 8, is too large, we may leave some area
uncovered. If it is too small. we may redundantly process many radial lines. The
optimal amount of rotation is implicitly defined by the number of pixels on the
outermost image boundary. Note that the image lies on an integer lattice. Calculations
should therefore be carried in integer coordinates as much as possible. Instead of using
degrees. O is defined by any two adjacent radial lines that cover the corresponding
image area. This also means that 6 may not be a constant value throughout the entire
image. We previously assumed that 8, equals 04. but the outermost boundary lengths
of both images are usually different and therefore 6, does not equal 84 in practice.
Before we solve this problem, let us first solve the "hole” problem which is described

next.



4.2.1.3 Sampling Radial Lines

"Holes" may appear between adjacent radial lines. This is because our image lies on an
integer lattice and a radial line must be approximated by a digital straight linc. We used
a Bresenham incremental straight line algorithm to approximate the radial linc [Foley et
al.90]. However, there is no guarantee that the two adjacent radial lines will cover
every pixel between them. Instead of traversing along the outermost image boundary.
we traverse the edges of the image bounding box one pixel at a time and draw a radial
line from the origin. This approach eliminates "holes". Figure 4.6 illustrates the

traversal.

Bounding box

<-Z

Figure 4.6: Bounding-box traversal.

4.2.1.4 Bresenham Line Algorithm

Consider the continuous line L and the digital line [ in Figure 4.7. Detailed discussion
on incremental algorithms can be found in [Foley et al.90]. The equation of line 1. that

passes through the origin is

vl ' (4.1)

where n and m are integers and 0 < n = m. Lines that lie in other octants can be

implemented by reflections on the x and y axes.
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Figure 4.7: Real line L and digital line 1 on Cartesian coordinates.

Starting from a point Py on 1, the next point, Py can be chosen so that it is closest to
line L. We need to cither choose the pixel immediately to the right of Py or the pixel to
the right and upwards of P. For consistency, when tie occurs we always choose the
pixel to the right of Py, Then a point (x;, yj) with x;, y; integers belongs to the digital

line 1if

n
=Ny i 4.2
Yisgmite (+.2)

with error lel < 5 which is the vertical distance between the chosen pixel and the line L.

4.2.1.5 Elimination of "holes"

The bounding box has edges parallel to the axes of Cartesiun coordinate. Let us
consider the real lines Ly and L in Figure 4.8. Lo is drawn from the origin to the edge

of the vertical bounding box and one unit down from L. The equation of L is

n o '
yi= X (4.3)

and Lo is

n-1_ ,
o=, X +.4)



For 0 s x s m, the vertical distance between L and L» is

=X
yi-y2=g
. X
Since == =< 1 then
m

yi-y2sl

nﬁ L, I

Lo Right edge of
bounding box

0.0 m

Figure 4.8: Real lines in real space.

(+.5)

(4.6)

(4.7)

Therefore. the vertical distance between L and L2 is always less than or cqual to 1 for

0 = x =m. The following gives a similar proof for digital lines. Consider Figure 4.9.

A point lies on Iy if

n
yi=

X + ¢y
m

] .
where lejl = 5 and x and y are integers.

[£%]
o

(4.8)
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Figure 4.9: Three adjacent radial-digital lines that pass through the origin.

Consider an adjacent line 13 which is drawn from the origin to the edge of the vertical

bounding box and one pixel down from I1. A point lies on 1> if

ya = nr-lllv X+ e 4.9)

I .
where lea | s 5 and x and y» are integers.
Subtract equation (4.9) from (4.8)

X
Yi-yr = dep-en (4.10)

Let us separate the proof intwo cases: x=mand0 s x <m.

Casc I: x =m, then

yYi-y2 =1 (4.11)
Case 2:0 = x<m

.. X
Since m < I and (¢y - ¢2) s 1.then

RS
‘o



X
—~+4+e;j-e1<2 A2
mter-e2 (+.12)

Since y| - y2 is an integer, we have

yi-y2 s 1 (4.13)
Letus consider lj and Iz wheren<mandxsm- |.

A point lies on I3 if

n . N
YiS T Xtes (4.14)

] .
where le3 | s 5 and x and y3 are integers.

Subtract equation (4.8) from (4.14)

n X
R QR 3y L ; 5
m)(m 7 ) +e3x-e (4.15)

ya-yi=(

Since (i) <1 and (**}“--) < |. then
m m- |

n X
(1)< (4.16)

and we have

vi-vy=l (4.17)
Hence. there are no "holes" between the adjacent radial lines.

The "hole" problem is solved by redundantly sampling the image. This supersampling
process is much simpler than that used in the Skeleton-based method. However, when

traversing the edges of the bounding box. we want only the foreground pixels covered
24



by the radial lines to be sampled. To avoid calculating intersections between the image
boundaries and the radial lines, we index a boundary map to test if the radial lines cover
forcground pixels. A boundary map, which is the same size as the image, specifies
which pixels are within image boundaries. The boundary map is covered in the

Mapping Between Radial Lines Section.

When traversing S and D. the Cartesian coordinate of each pixel on a radial path is
stored in a look-up table. After §' is mapped to D', pixels from D' will be placed back
in D. For cach pixel in D', we simply index into the look-up table to find its Cartesian
coordinate and place it into its correct position in D. The look-up table avoids
recalculating the positions of pixels that lie on radial paths in D.

4.2.1.6 Radial-Line Correspondences

We now come back to the question of how to make 8 equal 8. We have chosen an
casy method to radially sample the image and eliminate "holes". This method also
simplifies the process of making 65 equal to 84. In order for 65 to be equal to 8y, we
mentioned that the outermost image boundary lengths for both images must be the
same. Since we have chosen the bounding box as the traversal criteria, the perimeters
of the bounding boxes in both images must be equal. If they are different the smaller
images are scaled to match the largest dimensions. For example, if S is 3+4 and D is
542, then both images are scaled to 5+4 before sampling. Note that we need to scale
only the boundary map of D not the image D. Bilinear interpolation is used if scaling
image S is necessary. The disadvantage is the increase in computational time.

However, the time is bounded by the largest dimension among the two images.
4.2.2 Image Resampling

Stage two involves resampling each radial line from S' to D'. Fant's 1D resampling
algorithm is used because it is both fast and avoids alias artifacts [Fant86]. Since both
S and D have the same dimensions, they have the same number of radial lines. After
radial sampling. each radial line in S' has a corresponding line in D'. The resampling
process simplifies to mapping each radial line in S' to the corresponding line in D',
Betore we describe Fant's algorithm. let us discuss bilinear interpolation used for
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scaling images in the first stage, and linear interpolation needed for the radial sampling
process.

4.2.2.1 Bilinear Interpolation

Bilinear interpolation uses the four "closest neighboring” pixel values to interpolate the
new value. Given four points that lie on a rectangular grid, (xq, Yok (X1, ¥1). (X2, Vo),
and (x3, y3). and their intensity values vq, v|, va, and v3 respectively, any intermediate
coordinate value V(xp + X', yg + ¥'), where 0 < x', y' < 1 can be computed as

Vixo + X\ yg + y') = ag + a1x' + asy’ + azx'y’ (4.18)
where gj are coefiicients that can be computed from the following matrix expression

I X0 yo xoyol|ao VO
L xyyr xyyr||ag Vi (4.19)

I xa2ya xaya|fazf™ fv2
I x3ays xsysjjaz| |v3

Solving for a; and substituting them into (4.18) vields
VX0 + X yo+¥) = vy + (V] - vgIX' + (va - VOIY' + (Vi - vy - v+ vo)x'y' (4.20)
To achieve computational efficiency. bilinear interpolation can be represented by 2-pass

transformation. In the horizontal pass. each row in the image can be computed 1o

produce an intermediate image.

VoL = Vo + (v - v)x] (4.21)

V23 = Va4 (V3 - Vo)X (4.22)

In the vertical pass, cach column in the intermediate image can be interpolated to

produce the final image.

V(X0 + X, yo +¥) = vor + (vaz - vy’ (4.23)
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4.2.2.2 Linear Interpolation

y L
1 a P
s
yl
L~ b
] »
0,0 X=q X

Figure 4.10: Lincar interpolation for a digital line.

When using the Bresenham-line as the sampling grid. pixels are point sampies of S in
polar coordinates. Errors are introduced when we approximate the real radial line with
a Bresenham-line and point sample the "closest” pixels. This error can be minimized
by interpolating the two "closest” pixels that lie on the opposite side of this line.
Consider line L with x = q in Figure 4.10. The Bresenham-line algorithm that
approximates L may choose either pixel a or b as the closest one. However. L actually
passes in between pixels a and b. A better result can be obtained by interpolating pixels
aand b. Given that the intensity values of pixels a and b are v, and vp respectively. a
linear interpolation would yield y'vg + (1 - y')vph. where O = v' = 1. To achieve better

speed performance we do not use interpolation when radially sampling the image.
4.2.2.3 Fant's Resampling Algorithm

Fant presents a fast 1D resampling algorithm that combines image reconstruction and
antialiasing to map all input pixels onto the output, both in scanline order [Fantg86].
The input is consumed at a rate determined by the spatial mapping function and any of

the following three situations may arise:

(1) Only a fraction of the input pixel is consumed while completing the output pixel.
The remaining portion of the input pixel will be used to fill in the next output pixel.
(2) The entire input pixel is consumed without completely filling the output pixel.

(3) The entire input pixel is consumed while completing the output pixel.
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Each of these situations is described shortly.
The block diagram of Fant's resampling algorithm is illustrated in Figure 4.11.
¢ SIZFAC is the scaling factor

* INSFAC( = §I‘ZLFK-C )is the inverse of the scaling factor: it determines how many

input pixels contribute to each output pixel,

* INSEG is the portion of the current input pixel which remains to contribute to the next

output pixel.
* OUTSEG is the portion of the current output pixel which remains to be filled.
* Pixel is the intensity value of the current input pixel.

¢ Factor can have a value of either INSEG or OUTSEG.

Input Qutput l

cvele cevele
OUTSHG I

I 1.0 ] "’l Compare “' L INSEAC J
L

[ INsEG > Difierence je]
1

'L Factor J
Current v

i t

npd > | Fuctor * Pivel J

pisel

& L Accumulator ]-—»L SIZEAC « Accumulater j

Get new New output
input pisel prxed value

Figure 4.11: Fant's 1D resampling algorithm (redrawn) [Fant&861.
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The process begins by comparing the values of INSEG and OUTSEG. If INSEG is
larger than OUTSEG. an output pixel will be fully filled. This corresponds to the first
situation described carlier. Factor gets the value of OUTSEG. Pixel is multiplied by
Factor and the result is added to the Accumulator. Since the OUTSEG portion of the
input pixel has been used, INSEG is decreased by the value of OUTSEG. Since the
entirc output is filled, OUTSEG is reinitialized to INSFAC and Accumulator is
muluplied by INSFAC, yielding the value of the current output pixel. Accumulator is
initialized to O and the process repeats for comparison between INSEG and OUTSEG.

It OUTSEG is larger than INSEG, the entire current input pixel will be consumed.
This corresponds to the second situation. Factor gets the value of INSEG. Pixel is then
multiplied by Factor and the result is added to the Accumulator. Since the INSEG
portion of the output pixel is filled, OUTSEG is decreased by the value of INSEG.
Since the entire input pixel is consumed, INSEG is reinitialized to 1.0, and the next

input pixel is fetched. Then the process repeats.

If INSEG cquals OUTSEG. the entire input pixel will be consumed and the whole
output pixel will be filled. This corresponds to the third situation. In this case, only
one event can oceur at a time. but both events will occur. Either event can be chosen to

oceur first. and the algorithm will proceed correctly.
4.2.3 Inverse Spatial Transformation

Stage three converts D' from polar coordinate representation to Cartesian coordinnie
representation D and when necessary, downscales it to the same dimension as the
original destination image using bilinear interpolation. Earlier we noted that when
sampling D in stage one, we stored the Cartesian coordinate of each pixel on a radial
path in a look-up table. When placing pixels from D' back into D, we index rito the

look-up table {0 tind their Cartesian coordinates.

The complete Radial algorithm is outlined below. Figure 4.12 shows the block

diagram of the Radial transformatior.
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Figure 4.12: Radial transformation.

(1) Upscale the source image S and its corresponding boundary map. This is necessary

only if the dimensions of the bounding box of the source image are smaller than tha. of

the destination image. Bilinear interpolation is used if scaling is nccessary .

(2) Upscale the boundary map of destination image D. . This is necessary only if the

dimensions of the bounding box of the destination image arc smaller than that of the

source image.

(3) Convert S and D from Cartesian coordinate system. (x, y), to polar coordinates
(r. 8). using a transformation function g. This yields S' and D' respectively. The
polar coordinate representation of S and D simplifies the process of establishing

correspondences and hence simplifies the resampling stage. This step involves

calculating the sampling grids for S and D and samples S radially.
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Stage 2

(4) Transform S' to D' using a second transformation h. This step involves resampling
cach radial linc of S’ to the length of the corresponding line in D'.

Stage 3

(5) Convert D' to D from polar coordinate system to Cartesian coordinates using a

transformation function g-! which is the inverse of g.

(6) Downscale the final image. This is necessary only if the size of the final image is
larger than that of the original destination image. Bilinear interpolation is used if

scaling is necessary.

Figure 4.13 shows the decomposition of a source image into a series of intermediate
images. The elliptical image S. with its origin superimposed, is transformed into a

rectangular image D. Both images have the same rotational directions.
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Figure 4.13: An example of the intermediate images transformed by the Radial
transform.

Particular attention is needed when performing step (6). We chose bilincar
interpolation for downscaling the final image. If the foreground pixels of the final
image do not cover the entire area of the bounding box, bilinear interpolation will
introduce errors along the boundary of foreground pixels. This is illustrated in Figure
4.14. This error occurs at the vicinity of image boundary because the bilinear
interpolation algorithm may choose a background pixel as one of its four "closest
neighbor" pixels in the interpolation process. However, this error can be casily
corrected. When sampling the pixels in step (6). we may use the boundary map to
sample and interpolate only the foreground pixels. In the worst case. bilincar

interpolation of pixels along the image boundary degrades to point sampling.

I
Foreground /—b
Background

Error around

Bounding box / image boundary

Figure 4.14: Interpolation error around image boundary.



4.3 Mapping Between Radial Lines

Although the Radial transform provides a convenient way to map images that contain
holes, the warped image may have discontinuity at the breaking of radial lines, as we
shall see shortly. The user can define any closed free-hand drawn shapes for mapping.
This includes shapes | 2ving any number of holes, islands that are inside the defined
shapes, and object boundaries that overlap themselves (Figure 3.1). Recall that we
would like to map any image onto any other image even if their topologies are different.
To perform the mapping correctly, we must map all the input pixels to the output
pixels. For example, Figure 4.15 shows the source image with a hole, and the
destination is any hand drawn shape without holes. The lines in the images represent
the current radial lines to be mapped. Note that the source image has two line segments

of pixels mapped to a single line segment in the destination.

D

Figure 4.18: The first example for mapping of a radial line between two arbitrary

topological different image shapes.

To map all the input and output line segments completely, we must know the length of
cach segment for both the source and destination images. This is found by calculating
the intersections between the radial line and the image boundaries. For the example
above, assume the calculated lengths of the line segments are L and L> for the source
image and L3 for the destination. If we normalize the line segments, we can easily

compute the portion of the source pixels that map to the destination. In this case L1 will
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L

be mapped to L I-;IIS_ portion of L3. And L2 will be mapped to Li+Ls portion of

-
-

L3. Both the source and destination line segments are completely mapped.

However, if there are many line segments in both images. the calculations become quite
tedious because one line segment may be mapped to two or more line segments (Figure
4.17). Similarly. two or more line segments may be mapped to a single line segment.
We must know exactly the position of the last mapped segment in both S and D.
Fortunately, we can simplify all the calculations above by noting that each linc scgment
in the image can be extracted to form a single line segment. Figure 4.16 illustrates the
extracted line segments for Figure 4.15. For simplicity, only the lengths of the
segments are shown, the actual pixel values are not included. Figure 4.16 shows how
the input image pixels of length L and L; are extracted to form a single line segment.
This single line segment is then mapped to the output length L3. The dotted curves
show the mapping positions from the source to the destination.

L L,

- - Pixel

- -
Ly
Figure 4.16: Mapping input image pixels from two line segments to one for Figure
4.15.

After obtaining all the image boundary points from the uscr, we corsiiuct a boundary
map for each image. The boundary maps specify the boundaries of the: user defined
shapes and have the same dimensions as those of S and D. Instead of calculating the
intersections between the radial line and the image boundaries to sample the foreground
pixels. we step along the radial line and index the boundary map. This will tell us if the
pixel belongs to the foreground or the background and we can decide if sampling is

necessary. We then sum the number of pixels sampled and compute the mapping
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functions. The mapping function becomes a simple ratio between the input length and

output length (which is —L—'—i%—'l— for our example). Figure 4.17 shows another

cxample where there are two line segments in S and three in D. The mapping of the

input to output pixels is shown in Figure 4.18.

b

Figure 4.17: The second example for mapping of a radial line between two arbitrary

topological different image shapes.

Ly L
- >

Ly Ly Ls

Figure 4.18: Mapping input image pixels from two line-segments for Figure 4.17.

Although the Radial transform allows the mapping of topologically different images.
the breaking of radial lines at holes may not necessarily preserve the smoothness of the
mapping in some cases. Examples are provided in the Gallery Section. The Radial
transform simplifies the correspondence problem and the resampling process, however,
the source image may not be "evenly" stretched to take the shape of the destination.
Consider Figure 4.19 where image S is mapped into a rectangular image D with both

images superimposed.  The Skeleton-based method stretches each radial line in S
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evenly from the skeleton towards the boundary of D. This process is reminiscent of the
action of a small volume of oil as it tries to spread all the available area of the container.
On the other hand, depending on the image shapes and the positions of the origins, the
Radial transform may not stretch S "evenly". Figure 4.19 shows a possible origin in S
where the Radial transform would not produce "cven" stretching.

o—P

Figure 4.19: "Even"” image stretching.
4.4 Theoretical Analysis

There are two analyses that are important for warping algorithms. The first concerns
the quality of the warped image; the second, the speed of the algorithms. The
theoretical analysis of the Skeleton-based method and Radial transform are given
below. We also include the memory requirement for the Radial transform although no

analysis is given for the Skeleton-based algorithm.
4.4.1 Image Quality

The Skeleton-based algorithm introduces errors in two places: the resampling process
and the order of this resampling process. After the first step of the Skeleton-based
method, the intermediate image is resampled along v in the first pass. For the purpose
of discussion. we use a simplified version of the Skeleton-based method. We do not
resample the radial lines along v in step (1), but only resample the intermediate image

along u. This is valid for the example in Figure 4.20a.



R

F e - =T ™7

d ¢ ! I IQ ! I I I

lga F =t SxO= == = =+ —

T \ I I ! !

Y R N (RN IR T

b c i 1 PN I I I

li—— Scale |_ | _|_\ O_[ 1_
i 41— . R T {? R T
I | [ | I | [

F=r =~ —r-T7-°

I I [ I [ | [

R s e e el

S =5x5§ | | i | | i I

Figure 4.20a: Enlarge image S to D with radial lines and sampled pixels.

Consider Figure 4.20a. We enlarge S = 55 to D = 7+7. The source image is placed

on a solid grid whereas the destination image is placed on a dashed grid. Since the

images arc perfect squares and the Skeleton-based algorithm thins the images from the

outermost boundary and works towards the center (which is the skeleton). all radial

lines in S have the same length so there is no need to resample along v. For the Radial

transform we simply choose the centers of S and D as the origins. Both methods will

then sample S and D exactly the same way. Let us consider two adjacent radial lines in

S and one in D, and their sampled pixels. Figure 4.20b shows the two images

superimposed (they are not illustrated in the same scale). The sampling grid of D is

embedded in S for "even" interpolation. Also n

Imes ljand ] 4+ .
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Figure 4.20b: Superimposed images S and D with radial lines and sampled pixels.

The pixels sampled for J; and }; 4+ | are shown in Figure 4.21a. Due to the discrete
image domain. the middle pixel of 1; 4 j indicates that either pixel b or ¢ is chosen.
When the second pass of the Skeleton-based method resamples ug to ug, it does so
along the image layers (in this example, ug is 16 and uq is 24). For lincar interpolation,
assume two columns from S' (Figure 4.21a) will be used for interpolating cach column
in D' (Figure 4.21b). Readers may have already notice this in Figure 4.20b where 14 is
in between |; and 1 ;4 |. Consider the bottom row of Figure 4.21a and 4.21b.
Interpolation of [j and 1; 4 | to produce lg uses pixel a only. For the middle row, the
pixels used for interpolation are b and b, or b and ¢c. We are only interested in the
pixels chosen for interpolation. therefore. only one b is included instead of b and b.
For the top row. pixels d and ¢ are used. The result is shown in Figure 4.21b. The

line lg is then resampled from v (= 3) to vy (= 4). The result is shown in Figurc 4.21c¢.
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Figure 4.21a: Sampled pixels for Skeleton-based nicthod.
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Figure 4.21b: Pixels after resampling along the u-axis.
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Figure 4.21c: Pixels after resampling along v-axis.
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Figure 4.22: Errors in sampling for Skeleton-based method.
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When we convert the image from the (u, v) to (x, y) space in the Skeleton-based
method we obtain the final image. The errors of the interpolation are shown in Figure
4.22. Consider pixels O, P, Q. and R in the final image. For interpolation, the
Skeleton-based method chooses pixels [a], {[a, b] or [a. b, c]}, {[b. d, e] or [b, c. d.
el}.and [d, e] respectively (Figure 4.21c¢. 4.22) whereas the Radial transiorm chooses
pixels [a], [a. f, b. ¢], [c, b, e, h], and [b, g, d, e] respectively (using bilinear
interpolation). These input and output pixels are summarized in Table 4.1.

Table 4.1: Input pixcls sampled for the Skeleton-based and the Radial methods.

Skeleton-based Radial
(@] {a fa]
P la,b]or{a.b.c] fa.f.b.c]
Q Ib.d.e]jor|b.c.d.e] [c,b.e.h
R fd. e] [b, g.d.e]

With Cartesian coordinates, the Skeleton-based method does nor chose the closest
neighbors of O. P, Q. and R for interpolation. Moreover, the contribution of the source
pixels 1s not in the correct proportion. For example, when ug is resampled to uy, the
scaling factor is 3/2 (= 24/16). However, this distribution of pixel weights is not
Justified in the Cartesian coordinates where the scaling factor is 7/5. Therefore when
viewing the final image in the Cartesian coordinates. the result will not be as good as

that produced by the Radial transform.

Note that both methods also interpolate an image radially which is "Inappropriate” when
the image is viewed in the Cartesian coordinates. The Skeleton-based method performs
this interpolation in the first and third passes which is worst than that of the Radial
transform where this interpolation is only performed once in stage 2 step (4). This

“inappropriate” interpolation is inherited in both methods.

By examining the Skeleton-based method more closer. we note that 1y first chooses the
closest lines i and §j 4+ 1 in S. It then chooses 3 or 4 pixels which lic on l; and I; 4 | and
are closest to a point on ly. This can be generalized as follows: the Skeleton-based

algorithm chooses radial lines I from the source image that are closest to the radial lines
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14 in the destination image. The pixels that lie on lg are the interpolation of the closest

pixels that lie on I,

In the first step of the Radial transform, the original image may be scaled up af
necessary. This scaling operation is performed in the Cartesian space. The image is
then radially sampled (in step (3)). Next, each radial line in the intermediate image is
resampled to the destination length. The last step involves scaling down the final image
if necessary, again in Cartesian space. In both the first and last steps. bilinear
interpolation is used. The four "closest neighbor" pixels are chosen in Cartesian space.
Therefore. the Radial method performs image reconstruction in Cartesian space as
many as possible. On the other hand, the Skeleton-based method performs all image
reconstruction in (u, v) space where interpolations are not "appropriate” when intages

are viewed in Cartesian coordinate.

There is a situation where Radial transform will not generate a higher image quality than
that produced by the Skeleton-based method. If the source and destination images are
very thin, if the Radial trunsform introduces the breaking of radial lines in the image 1Y,
and if the image D' needs to be downscaled to D after the mapping. then the Radial
transform will not produce a high quality image. For example, imagine mapping an
image of a cigarette to an image of a thin Chinese dragon. Assume the origin in cach
image is at the centriod. Consider the image D' at the vicinity of the breaking of radial
lines introduced by the mapping. When downscaling D' using bilincar imnterpolation,

the breaking of radial lines in D' will introduce errors to the neighboring pixels.

The second error concerns with the order of the resampling process. There 1s an
important difference between the two methods.  In general, interpolation hefore
sampling produces higher image quality than sampling and then interpolating the
samples [Wolberg90]. The Radial transform performs image reconstruction before
radial sampling and the Skeleton-based method performs interpolation after sampling.
For the Radial transform, the final image quality partially depends on the interpolation

algorithm used for upscaling and downscaling the images.



4.4.2 Speed Performance

Speed is an important criterion in evaluating an image warping algorithm. We will
show the upper bound speed limit for the Radial transform. Speed is directly
proportional to the total cost of performing each operation in the three stages of the
Radial algorithm. The cost of each operation is directly proportional to the image area.
For example, scaling S in step(1) is proportional to the largest image area in S and D.
Let this arca be A = wh, where w = maximum(wyg, wq) and h = maximumchg, hy). In
step(3) we radially sample S. The largest area covered is Az =2wh-w - h -
minimum(w, h) + w(w-1)/2 + h(h-1)/2 - 1. This area is derived by having the origin at
any corner of the four corner points of the bounding box of S. The costs of all the

operations are listed in Table 4.2,

Table 4.2: Cost of performing all steps of Radial warping.

cost of scaling S Sc(A))
cost of scaling S's and D's boundary map 2Sc(AY)
cost of calculating polar coordinates 2Pc(A»)
cost of sampling S to §' Sp(Az)
cost of mapping S'to D' Mp(A»)
cost of placing D’ onto D Sp(A»)
(This cost is the same as that of sampling Sto S')

cost of scaling D Sc(Ap)
Total cost: =4Sc(A ) + 2Pc(A-) + 2Sp(A») + Mp(A»)

Note that the scaling for boundary maps using a simple scaling algorithm can be much
faster than scaling the image using an interpolation algorithm. We are only interested in
whether the boundary map specifies a foreground or background pixel. We are not
interested inthe accuracy of this value, hence interpolation is not necessary for scaling
boundary maps. For most images. the Skeleton-based method may run faster than the
Radial transform. In the Radial transform, both S and D may need to be scaled up, and
the user can place the origin anywhere in the image. The position of this origin directly
influences the area sampled: the intermediate image can be very large (A3). In the

Skeleton-based method the intermediate image area is approximately determined by the
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product of the length of the outermost layer and the number of layers when the skeleton
is reached.

4.4.3 Memory Requirement

Assuming the images and their boundary maps have already been scaled up, the
memory requirement for Radial transform is given in Table 4.3. The arca Ajand A»> are
given in the Speed Performance Section.

Table 4.3: Memory costs

storing of Sand D 2T )
storing of S's and D's boundary maps 2Am(A))
storing of look-up tables 2Lut(A>)
storing of S" and D' 2Im(A»)
Total memory costs: =4Im(A) + 2Lut{ A1) + 2Im(A»)

4.5 Radial-Axes Warping

The Radial-axes transform is a combination of both the Radial spatial transformation
and the Skeleton-based 3-pass technique. This method gives the user more local
control of the warping process over the Radial transtorm technique. Since we use the
3-pass algorithm for image resampling. the image quality will be similar to that used in
the Skeleton-based method. The Radial-axes method uses two axes to divide an image
into four regions for both images S and D. A region in S is then mapped to the

corresponding region in D using the 3-pass algorithm.
4.5.1 Spatial Transformation

The spatial transformation of the Radial-axes :aethod is similar to the Radial method
except that two axes are used to define Jhe origin and the rotational direction of an

image.
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4.5.1.1 Image Origin

(=
AX2 Rl
R> A;]
Ry NU?
s D

Figure 4.23: Image division for Radial-Axes method.

The user defines an origin by drawing two non-parallel axes on each image. The origin
is the point where the two axes cross. Figure 4.23 shows the bounding box, the
rotational direction, image boundary, the axes, and the divided regions for each image.
The axis is defined by a line passing two user selected points. Each axis is a directed
line with its direction pointing from the second user point towards the first. The two
axes are labeled Ax) and Ax; depending on the order in which they are defined. The
axes divide an image into four regions Rj. Ra. R3, and Ry. The rotational direction is
agefined differently than that of the Radial method. Instead of explicitly providing the
rotational direction by the user. the two axes together define a rotational direction. either
clockwise () or anti-clockwise (-w). The rotational direction is defined by the smallest
angle made by rotating Ax; onto Axa (with the origin as center of rotation) so that both
axes coincide with each other and point in the same direction. The rotational direction
serves two purposes: the regions are numbered sequentially according to the direction
of rotation, and the radial sampling direction is the same as the rotational direction. In
Figure 4.23 numbered regions in S are mapped to the corresponding regions in D, If
the rotational directions in S and D are the same, the mapping may serve as a 2D
rotation. If, however. the rotational directions are different, the mapping also serves as

a lateral transtormation.

The first step is to reparameterize S and D from Cartesian coordinates into S' and D' of

polar coordinates. This stage involves sampling S and normalizing it in the direction of
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r-axis. The process begins in region Ry of S by traversing the bounding box. Starting
from the first axis, we calculate a radial path from the origin to the edge of the bounding
box. Only the foreground pixels are sampled. We then increment theta clockwise or
anti-clockwise to calculate the next radial path. When the entire area of region Ry is
sampled, the process continues for Ry, R3, and R4 until the whole image is covered.

4.5.2 3-pass Transformation

When the image is divided into regions there is no guarantee that cach image region is
rectangular. If we want to use the Radial transformation, we must form a bounding
box around each region and treat it as an image. Instead. we used the Skeleton-based

3-pass transformation.

First pass

After sampling a region in S, each column on the 6-axis is resumpled along the r-axis o
the longest radial path in this region. All columns are supersampled at a sampling rate
that exceeds the Nyquist rate. The result is a rectangular image suitable for resampling
in the second pass.

Second pass

The second pass resamples the resulting rectangular image along the 6-axis so that the
number of radial lines in §' matches that in D', Each row in S’ can be resampled
independently using a 1D transformation.

Third pass

The intermediate image produced in the second pass has the correct number of radial
lines, but not the correct length along the r-axis. Each column in S" is resampled to the

dimension of the corresponding column in D',
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4.5.3 Inverse Spatial Transformation

As in the Radial transform, when traversing D for sampling, the position of each pixel
on a radial path is stored in a look-up table. When placing each column of D' back in D,
we traverse the corresponding radial path and index the look-up table to obtain the

positions in Cartesian coordinates.
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Chapter 5

Performance Comparisons

In this section. the comparisons of image quality are given first, followed by the
comparisons for speed performance. Our experiments showed that the Radial
transform produces image quality superior to that produced by the Skeleton-based
method. For the speed performance in general, the Skeleton-based method transforms

an image faster than that of the Radial transform, with a few exceptions.
5.1 Signal-to-noise Ratio Comparisons

For an m#n image. the image quality is measured by the mean-square signal-to-noise

ratio (SNR) which is defined as follows:

m_-‘l n-1
SNR = ;iijl’“n‘_;l“' TS T T . (5.1
xgﬁ \%0(\"(x.y)-v(x,y))z

where v(x.y) is the pixel value of the original image and v'(x, y) is the warped pixel

value.

We categorize images into two groups. The first group contains images with high
frequencies in the frequency domain. Typical images in this group exhibit many sharp
edges in the spatial domain. The second group contains images with Jow frequencies in
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the frequency domain. These images do not have many sharp edges; the images appear
to be smooth over an area. Our tests include three images in each group. Within each
group, images are arranged from high frequencies to low frequencies, relative to that
group. The test images in the first group are included in Figure 5.1a and those in the
second group are shown in Figure 5.1b. These images are shown at half of their

original size which is 199%199,

(a) Tree (b) Clock (c) Stream

Figure §5.1a: Images with high frequencies in the frequency domain.

o

(d) Mickey (e) Eagle (f) Rushmore
Figure 5.1b: Images with low frequencies in the frequency domain.

The tests involve warping each image S to D using a mapping function f and then
warping D back to S using a mapping function f-! which is the inverse of f. The
original image S is compared with the final warped image for SNR. In our tests, we

define two mapping functions as follows:

(D) {1, - warps the image S to twice its size, and

(2) s - warps the image S to half its size.
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Figure 5.2 shows the mapping functions and their inverses. We implemented an
algorithm similar to the Skeleton-based method. For fair comparison of signal-to-noise
ratio and speed performance, we chose square image for the tests and image center as
the origin for the Radial transform. Therefore both the Skeleton-based and the Radial
methods sample the entire image (without calculating background pixel positions) and

the areas sampled are the same.

f fi!
— L — m
2m
m m
2m
Original image S D Warped image S
f f!
S ‘ S
m ————r e m
=m |
2 =m
m 2 m

Figure 5.2: Mapping functions used for performance comparisons.

The SNR of these images for the Skeleton-based and Radial methods are illustrated in
Figure 5.3. The top row and bottom row of Figure 5.3 are SNR tests for the first and
second group of the images, respectively. The left column and right column of Figure

5.3 are transformations using i and fs respectively.
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Figure 5.3: Signal-to-noise ratio tests.

The Radial transform outperforms the Skeleton-based lcc'hnique in all the tests. This is
consistent with our theoretical analysis presented earlier. Note the scale difference in
the SNR-axis for Figure 5.3, Both Skeleton-based and Radial methods obtain higher
SNR using the mapping function {i than using fs. The mapping function f)_enlarges
the original image and hence intensity information is retained. On the other hand, fg
shrinks the original image and information is lost, therefore SNR drops dramatically.
Note that the proportion of drop of SNR in Radial methods is larger than that in the
Skeleton-based method. This is reasonable. When using the mapping function fg, the

51



destination image D is smaller than the original image S, therefore, D is enlarged first
(to be precise the boundary map of D is enlarged). Then S is mapped into D using fs.
But D must be shrunk down again using bilinear interpolation. This is the place where
interpolation is "inaccurate”. As discussed earlier in the Image Quality Section, both
methods interpolate an image radially: the Skeleton-based method interpolates an image
along the v-uxis and the Radial transform interpolates it along the r-axis. This
interpolation is not appropriate when the image is viewed in Cartesian coordinates.
Before shrinking D, it has been warped along the r-axis and we start with a deteriorated
image. Therefore, the final image quality drops dramatically. For the tests using fj, D
is not shrunk and so this problem does not exist. In any case, the Radial transform still
produces a higher quality image than the Skeleton-based method.

We have also warped arbitrary image shapes using both methods. Since these images
are difficult to generalize, they are not included. In all those tests we obtained similar
SNR results as shown in Figure 5.3.

5.2 Time Comparisons

In the Speed Performance Section we noted that the Skeleton-based method generally
transforms an image faster than that of the Radial transform. This is true when the
origin in the Radial transform is not at the same skeleton position as in the Skeleton-
based method, and if both S and D must be enlarged before the Radial transform
radially samples the images. There are a few exceptions where the Radial transform
outperforms the Skeleton-based method. For our SNR tests we used square images
with the Radial transform origin at the centers of the images, therefore, the origin is at
the same position as the skeleton in the Skeleton-based method, and the areas sampled
in both methods are the same. All the tests were run on a Sun 4/60C-24 station. Table
5.1 shows the CPU-time range in seconds for the Skeleton-based and the Radial
methods for the tests in Figure 5.3. The CPU-time ranges given are for the mapping
functions fi. and fs conducted in the Signal-to-noise Ratio Section. The CPU-time
ranges for the inverse of {1 and fg are similar to that shown in Table 5.1 and therefore

are not included.



Table §.1: CPU-time range.

Skeleton-based Radal
fi 26.8 - 31.2 25.7 - 26.3
fs 6.7-7.2 5.5-6.7

The Radial transform outperforms Skeleton-based method in all the tests. It is difficult
to give an exact explanation of why Radial transform still performs faster than the
Skeleton-based method. We will concentrate on the mapping function f;. Let the area
of image S be A; = m*m and the area of image D be A2 = 4m*m. The areas sumpled
for S and D are A3 = (4m - 4)(m/2 + 1) and A4 = (8m - 4)(m + 1). The costs of
performing all the steps of the Radial transform are given in Table 5.2.

Table §.2: Cost of performing Radial warping.

(1) cost of scaling S Sc(Ap)
(2) cost of scaling S's boundary map Sc(A3)
(3) cost of calculating polar coordinates 2Pc(A4)
(4) cost of sumpling Sto §' Sp(Ay)
(5) cost of mapping S'to D' Mp(Ag)
(6) cost of placing D’ onto D Sp(Ay)
(7) cost of scaling D 0
Total costs: R= ZSC(AQ + 2Pc(A4) + 25p(As)+ Mp(Ay)

Assume the time for calculating thinning paths of an image is the same as that for
calculating polar coordinates. Also assume the time for sampling an image using the
thinning paths is the same as that using theta paths. Let the area of resampling S' along
the u-axis in the Skeleton-based method be As = (8m.- 4)(m/2 + 1). The costs of

performing all the steps of the Skeleton-based method are given in Table 5.3.
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Table 8.3: Cost of performing Skeleton-based warping.

(1) cost of calculating thinning paths for S Pc(A3)
(2) cost of calculating thinning paths for D Pc(Ay)
(3) cost of sampling S to §' Sp(A3)
(4) cost of resampling S' along the v-axis Sp(A3)
(5) cost of resampling S' along the u-axis Mp(As)
(6) cost of resampling S' along the v-axis Mp(Ay)
(7) cost of placing D' onto D Sp(Ay)
Total costs: S = Pc(A3) + Pc(Ay) + 2Sp(A3) + Mp(As) +Mp(A4) + Sp(A4)

The difference of these costs is calculated as follows:

S - R =Pc(A3z) + 2Sp(A3) + Mp(As) - 2Sc(A2) - Pe(Ay) - Sp(Ay) (5.2)

From Table 5.1, since S - R > 0, then

Pc(A3z) + 2Sp(A3) + Mp(As) - 2Sc(A2) - Pc(Ayg) - Sp(Ay) > 0 (5.3)

Pc(A3) + 2Sp(A3) + Mp(As) > 2Sc(A2) + Pe(Ay) + Sp(Ay) (5.4)

This is all that we know. Now let us assume that both S and D have the same
dimension m#m; the total costs for the two methods are then reduced to the following:

R = 2Pc(A3) + 2Sp(A3) + Mp(Az) (5.5)
and
S = 2Pc(Az) + 3Sp(A3) + 2Mp(A3) (5.0)

From equations (5.5) and (5.6) we know that the Radial transform is definitely faster
than the Skeleton-based method. Indeed, the CPU-time ranges in seconds are shown
in Table 5.4:
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Table 5.4: CPU-time range for same image size.

Skeleton-based Radial
f 10.6 - 10.8 54-6.0

However, the above case rarely happens with arbitrary images. In all other situations
where both § and D must be enlarged for the Radial transform, the Skeleton-based
method will outperform the Radial transtform.



Chapter 6

Radial Morphing

The Radial transform has an application in morphing which is often used to create
visual effects. Morphing. which is derived from "image metamorphosis”, refers 1o
image warping followed by cross-dissolve [Wolberg90]|Beier and Neely92]. It is
often used as a technique for generating special effects. The user is allowed to define
key frames for the warp. Both the source and destination images will be warped to the
key frames to establish spatial correspondences. Then a cross-dissoive between the
two images is performed to interpolate the colors. To make the transformation smooth,
in-between frames are added between each key frame. In-between frames are frimes
automatically created by interpolation. The source image is then gradually warped 1o
the destination image. During the initial sequences of warping, the intermediate inmages
will look more like the source. In contrast, towards the end of the warping sequence
the intermediate images will look more like the destination. The sequences are usually
displayed rapidly to gencrate the visual effects. It is also possible to specify the rate of
cross-dissolve so that part of the image colors may be changed quicker than the others

for additional effects.

The Radial transform can be used to morph images of arbitrary shapes. Consider
interpolating Line 1 to Line 2 in Figure 6.1. For linear interpolation, we join the end-
points of the lines by dotted lines. The interpolated line (or the in-between line) lies
halfway between the dotted lines. To achieve smooth motion, we can split the dotted
lines as many segments as needed. All we have to do is divide the length of cach dotted

line by the number of interpolations.
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Figure 6.1: Lincar interpolation of two lines.

The interpolation of the radial lines for the Radial transform is similar to the above
example. As before. the bounding boxes of the source and destination images must
have the same size. If this is not the case, the smaller images are enlarged to match the
largest dimensions. For each radial line in the source image and its correspondence in
the destination, find the positions of the in-between lines as described above. The in-
between lines are used to warp the source image into a sequence of in-between frames.
Each in-between frame is warped using the Radial transform. The rotational direction
for cach frame must be the same within this sequence. Repeat the warping process for
the destination image in the reverse direction. We now have two sequences of in-
between frames.  Cross-dissolve each in-between frame from the source and
destination image sequences. We then have a sequence of morphed frames. These
frames all have the same dimension. If the original source and destination images
different in size. then the morphed frames must be downscaled. We could use linear
interpolation again to determine the size of each frame. We are now ready to display

the morphed image-sequences.

The above process morph images of arbitrary shapes. If the position of the origins of
the source and destination images is different, the morph will shift the origins ulso.

The only restriction of this algorithm is that both original images should not contain



holes or islands. The introduction of holes or islands in the images may not ensure i
smooth transition between the morphed frames.



Chapter 7

Conclusion

This thesis presents a simple Radial transform that warps images which are delimited
by any closed planar curves. The polar coordinate representation of arbitrary image
shapes provides a closer description of the relaticnship between image boundaries and
interior points. The Radial transfcrm also provides more control over the warping
process by allowing origins and sampling directions to be defined in the images. When
both the source and destination images are scaled to the same dimension, the
correspondence problem, which is the most difficult issue in this type of warping
algorithms, is solved almost trivially. The sampling directions allows either rotation or
rotation with lateral transformation. The bounding-box traversal of the source image
climinates "holes” by redundantly sample the image points. We have shown exactly
that this redundancy is bounded by an upper limit which is a function of the maximum
image dimension. The boundary maps not only provide a convenient method to sample
the foreground pixels, but also facilitate the warping of non-topological equivalent
images. However, this kind of warping may not necessarily describe a smooth

transition between the breaking points of radial-line segments.

This thesis also presents a Radial-axes algorithm which is the combination of the
Radial spatial transformation and the Skeleton-based 3-pass transformation. The
Radial-axes algorithm provides even more control over the warping process than that of

Radial transform.



Although the Radial transform produces a high quality image: simplifics the
correspondence problem, and hence the resampling process; and allows the mapping of
non-topological equivalent images, there are limitations. The arbitrary source image
may not have an "even" stretch over its entire area. Another desirable feature is to
smooth out the breaking points of line segments for non-topological equivalent
warping. In terms of complexity of the algorithm, it is also desirable to reduce the time
required for transforming images. One last disadvantage of the Radial transtform is the
requirements of large memory space. With presently available inexpensive memory
hardware. this is not a major problem.

60



Chapter 8

Gallery

This section provides several examples of the transformation of some images. The
example images of the Radial transform are given first. followed by that of the
Radial-Axes transform. The images on the left and right columns are the source and

destination images respectively. Their corresponding origins are also given.

Radial transform: the rotational directions for all images are the same.

Figure 8.1: Ozone
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Radial-Axes Transform: the rotational directions of some images are different.

AXx
- - _l_)
AX-
—_—
~W w
_E*

Figure 8.6: Silence
(lateral transform on non-topologically equivalent images)
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Figure 8.8: Eggle

65



Bibliography

[Anderson93] S. Anderson, “Morphing Magic™, SAMS, Carmel, IN, 1993.

[Beier and Neely92] T. Beier and S. Neely, “Feature-Based Image Metamorphosis",
Computer Graphics (SIGGRAPH '92), Vol. 26, No. 2, July, 1992, pp. 35-42.

{Braccini and Marino79] C. Braccini and G. Marino, “Fast Geometrical Manipulations
of Digital Images™. Computer Graphics and Image Processing, Vol. 13, 1979, pp.
127-141.

[Breene and Bryant93] L.A. Breene and J. Bryant, “Image Warping by Scanline
Operations™, Comput. & Graphics Vol. 17, No. 2, 1993, pp.127-130.

[Burt et al.83] P.J. Burt. C. Yen, and X. Xu, “Multi-resolution Flow-through Motion
Analysis™, Proc. IEEE CVPR Conf., 1983, pp. 246-252.

(Butler89] T. Butler. “Three Approaches to Terrain Rendering™, Proc. SPIL, Vol.
1075, Jan., 1989, pp. 217-225.

[Catmull and Smith80] E. Catmull and A.R. Smith, “3-D Transformations of Images in
Scanline Order™. Computer Graphics (SIGGRAPH 80 Proc.), Vol. 14, No. 3, July,
1980. pp. 279-285.

[DiPaola91] S. DiPaola, “Extending the Range of Facial Types”, Journal of
Visualization und Compuier Animation, Vol. 2, 1991, pp. 129-131.

[Fant86] K.M. Fant, A Non-Aliasing, Real-Time Spatial Transform Technique™,
IEEE Computer Graphics & Applications, Jan., 1986, pp. 71-80.

[Fiume et al.87] E. Fiume, A. Fournier and V. Canale, “Conformal Texture Mapping™,
Proc. Eurographics, 1987, pp. 53-64.

[Foley et al.90] J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes, "Computer
Graphics -- Principles and Practice™, Addison-Wesley, 1990).

[Heckbert86] P.S. Heckbert. “Survey of Texture Mapping”, Proc. Graphics Interfuce,
1986, pp. 56-67.

66



[Holzmann88] G.J. Holzmann, “Beyond Photography -- The Digital Darkroom,”
Prentice-Hall, Englewood, Cliffs, NJ, 1988.

[Huang and Hsu81] T.S. Huang and Y.P. Hsu, “Image sequence enhancement™, In
T.S. Huang, cd.. Image Sequence Analysis, Springer-Verlag, Berlin, 1981, pp. 290-
310.

[Magnenat-Thalmann at el.88] N. Magnenat-Thalmann, H. T. Minh, M. de Angelis,
and D. Thalmann, “Human Prototyping”, New Trends in Computer Graphics (Proc.
Computer Graphics Intl. ‘88), Ed by N. Magnenat-Thalmann and D. Thalmann,
Springer-Verlag, 1988, pp. 74-82.

[Magnenat-Thalmann at el.89] N. Magnenat-Thalmann, H. T. Minh, M. de Angelis,
and D. Thalmann, “Design, Transformation and Animation of Human Faces”, Visual
Computer, Vol. S, 1989, pp. 32-39.

[Morrison93] M. Morrison, “The Magic of Image Processing™, SAMS, Carmel, IN,
1993,

[Nahas et al.90] M. Nahas, H. Huitric, M. Rioux, and J. Domey, “Facial Image
Synthesis Using Skin Texture Recording”, Visual Computer, Vol. 6, 1990, pp. 337-
343,

[Quam84] L.H. Quam, “Hierarchical Warp Stereo”, In Proc. DARPA Image
Understunding Workshop, 1984, pp. 149 - 156.

[Singh90] A. Singh. *An Estimation-Theoretic Framework for Image Flow
Computation”, In Proc. Third Int'l Conf. Computer Vision, Osaka, Japan, 1990, pp.
168 - 177.

[Singh91] A. Singh, “Optic Flow Computation — A Unified Perspective”, IELE
Computer Society Press, 1991,

[Smith87] A.R. Smith, "Planar 2-pass Texture Mapping and Warping”, Computer
Graphics (SIGGRAPH *87 Proc.), Vol. 21, No. 4, July, 1987, pp. 263-272.

[Trainer and Sun91} T.J. Trainer and F.K. Sun, “Image Resampling in Remote
Sensing and Image Visualization Applications™, Proc. SPIE, Vol. 1567, Applications
of Digital Image Processing X1V, 1991, pp. 650-658.

[ Walterman and Weinhaus91] M. Walterman and G. Weinhaus, “Antialiasing Warped
Imagery using Look-up Table Based Methods for Adaptive Resampling”, Proc. SPIE,
Vol. 1567, Applications of Digital Image Processing XIV 1991, pp. 204-214.

[ Ward and Cok89] J. Ward and D.R. Cok, “Resampling Algorithms for Image
Resizing and Rotation™, Proc. SPIE, Vol. 1075, Digital Image Processing
Applications, 1989, pp. 260-269.

[Weinhaus and Walterman90] G. Weinhaus and M. Walterman, “A Flexible Approach
to Image Warping™. Proc. SPIE, Vol. 1244, Image Processing Algorithms and
Technigues. 1990, pp. 108-122.

67



[Wolberg and Boult89] G. Wolberg and T.E. Boult, “Separable Image Warping with
Spatial Lookup Tables™, Computer Graphics (SIGGRAPH ‘89 Proc.), Vol. 23, No. 3.
July. 1989, pp. 369-378.

[Wolberg88] G. Walberg. “Image Warping Among Arbitrary Planar Shapes™, New:
Trends in Computer Graphics (Proc. Computer Graphics Intl. ‘88). Ed. by N.
Magnenat-Thalmann and D. Thalmann, Springer-Verlag, 1988, pp. 209-218.

[Wolberg89] G. Wolberg, “Skeleton-Based Image Warping™, Visual Computer, Vol.
S, 1989, pp. 95-108.

[Wolberg90] G. Wolberg, **Digital Image Warping™, IEEE Computer Sociery Press,
1990.

[Yau and Dufiy88] J.F. Yau and N. D. Duffy, “3-D Facial Animation Using Image

Samples™, New Trends in Computer Graphics (Proc. Computer Graphics Intl. *88).
Ed by N. Magnenat-Thalmann and D. Thalmann, Springer-Verlag, 1988, pp. 64 - 73.

68



