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Abstract

Approximate computing (AC) is an emerging paradigm that leverages the in-

herent error tolerance of many applications—such as image recognition, multi-

media processing, and machine learning (ML)—to allow some accuracy to be

traded off to save energy consumption. AC techniques can be applied at both

the circuit and/or architecture levels, possibly in coordination with software-

level techniques.

Multiplication is one of the most resource- and power-hungry operations in

many error-tolerant computing applications, such as image processing, neural

networks (NN), and digital signal processing (DSP). In this research project,

we focus on the design and implementation of hardware-efficient approximate

computing circuits, aiming to simplify the multiplication operation and/or to

reduce the number of required multiplications.

Two 4×4 approximate multiplier designs are proposed in which approxi-

mation is employed in the partial product reduction tree, the most expensive

part of the design of a multiplier. The two proposed designs are then used to

construct larger approximate multipliers.

Multiplication is the computational bottleneck in NNs. For the first time,

we attempt to find the critical features in an approximate multiplier that make

it superior to others for use in a NN. Inspired by the insight that adding small

amounts of noise can improve the performance of NNs, we replaced the ex-

act multipliers in two representative NNs with 600 approximate multipliers

and then experimentally measured the effect on classification accuracy. In-
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terestingly, some approximate multipliers improved the performance of NNs.

Insight into which features of an approximate multiplier make it superior to

others in the NN applications was gained by training a statistical predictor

that anticipates how well a given approximate multiplier is likely to work in a

NN application.

In the logarithmic number system (LNS) the multiplication operation is

converted into simple shift and addition operations. We have proposed a novel

exact leading-one detector (LOD) to speed up the calculation of the base-2 log-

arithm of the input operands to a logarithmic multiplier. In addition, since

the logarithmic multipliers that use LODs always underestimate the actual

multiplication product, a nearest-one detector (NOD) is proposed for a loga-

rithmic multiplier that has a double-sided error distribution. Additionally, a

logarithmic squaring circuit is proposed that uses a linear approximation for

calculating the base-2 logarithm of the input operand.

Finally, we investigate the design of multiply-accumulate (MAC) units.

An approximate logarithmic MAC (LMAC) unit is proposed for the first time.

Furthermore, a soft-dropping low-power (SDLP) architecture is specifically

designed for convolutional neural networks (CNNs) that, unlike the existing

accelerators that simplify the multiplication/addition operations, reduces the

number of required multiplications. The SDLP takes advantage of the spatial

dependence between the input image pixels and skips some of the multipli-

cations during the convolution operation and, thereby, reduces the energy

consumption of the CNN inference calculation.
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Preface

This dissertation presents the original work in the field of approximate com-

puting (AC) by Mohammad Saeed Ansari.

In Chapter 3, we propose two 4×4 low-power approximate multipliers using

encoded partial products and approximate compressors. These two multipliers

are then used to build larger multipliers. This work has been published as

M. S. Ansari, H. Jiang, B. F. Cockburn, and J. Han, “Low-Power Approximate

Multipliers Using Encoded Partial Products and Approximate Compressors,”

IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol.

8, No. 3. pp. 404-416. I developed the circuit design and H. Jiang provided

the hardware description language (HDL) code for some of the existing designs

in the literature for comparison purposes. Dr. J. Han and Dr. B. F. Cockburn

provided technical suggestions and revised the manuscript.

The use of approximate multipliers in neural networks (NNs) is investigated

in Chapter 4, by replacing the exact multipliers in two NN benchmarks and

evaluating the resulting NN’s classification accuracy. A statistical analysis is

then carried out to identify the critical features in an approximate multiplier

that tend to improve its performance in NNs. This work has been accepted

for publication as M. S. Ansari, V. Mrazek, B. F. Cockburn, L. Sekanina, Z.

Vasicek, and J. Han, “Improving the Accuracy and Hardware Efficiency of

Neural Networks Using Approximate Multipliers,” IEEE Transactions on Very

Large Scale (VLSI) Systems. I provided the HDL code for some approximate

multipliers. V. Mrazek added my codes to his and evaluated the performance

of all of the approximate multipliers in two NN benchmarks. Based on his

results, I ran some statistical analysis to identify the critical features. Finally,

I developed the classifiers that anticipate how well an approximate multiplier
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would work in a NN. Drs. B. F. Cockburn, L. Sekanina, Z. Vasicek, and J.

Han provided technical suggestions and improved the flow of the manuscript

by their comments.

Chapter 5 presents a new leading-one detector (LOD) design, which has

been submitted IET Computers and Digital Techniques as M. S. Ansari, S.

Gandhi, B. F. Cockburn, and J. Han,“Approximate Leading One Detector

Design for a Hardware-Efficient Mitchell Multiplier”. I developed the main

idea and did the software level simulations and S. Gandhi helped with the

HDL coding. Drs. J. Han and B. F. Cockburn provided constructive sugges-

tions on improving the quality of the manuscript. An improved logarithmic

multiplier (ILM) is also proposed in this chapter that uses a nearest-one detec-

tor instead of the conventional LOD. This work has been submitted to IEEE

Transactions on Computers as M. S. Ansari, B. F. Cockburn, and J. Han,“An

Improved Logarithmic Multiplier for Energy-Efficient Neural Computing”. I

developed the main idea and performed the required simulations. Drs. J. Han

and B. F. Cockburn contributed by providing technical suggestions that signif-

icantly improved the quality of the manuscript. Finally, a low-error squaring

function (LESF) is proposed in this chapter. This work has been submit-

ted to IEEE Transactions on Emerging Topics in Computing as M. S. Ansari,

B. F. Cockburn, and J. Han, “Low-Power Approximate Logarithmic Squar-

ing Circuit Design for DSP Applications”. Drs. Han and Cockburn provided

suggestions to the research and helped revising the manuscript.

A logarithmic multiply-accumulate (MAC) unit is proposed in Chapter

6. This work has been submitted to IEEE Transactions on Very Large Scale

(VLSI) Systems as M. S. Ansari, B. F. Cockburn, and J. Han, “Design of a Fast

and Energy-Efficient Approximate Logarithmic Multiply-Accumulate Unit”. I

developed the idea and ran all the required simulations. Drs. Han and Cock-

burn provided technical suggestions to improve the quality of the manuscript.

A soft-dropping low-power (SDLP) accelerator is also presented for convolu-

tional neural networks (CNNs). This work is drafted as M. S. Ansari, B. F.

Cockburn, and J. Han, “Approximate Accelerators for CNN-based Image Clas-

sifiers that Rely on Pixel Spatial Dependence”. I carried out all of the simu-
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lations and Drs. Han and Cockburn provided valuable suggestions to improve

the structure as well as the technical content of the manuscript.
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Chapter 1

Introduction

1.1 Motivation

The demand for high performance and power efficiency as well as the error-

resiliency feature of many applications—such as machine learning (ML) and

digital signal processing (DSP)—has motivated the development of approxi-

mate computing [1]. The primary purpose of this research project is to pro-

pose high-performance computing platforms for error-resilient computation-

intensive applications, where approximate computing (AC) is applicable.

The increasing energy consumption of computer systems remains a serious

and growing challenge despite recent progress in energy-efficient design tech-

niques [2]. Today’s computing systems are increasingly used to process huge

amounts of data and are expected to present computationally-demanding nat-

ural human interfaces [2]. Moreover, computation-intensive applications, such

as pattern recognition and data mining, have emerged that account for a signif-

icant proportion of the computational resources. Hence, more energy-efficient

computing platforms are required in order to keep up with the increasing

amounts of data that need to be processed.

Fortunately, many of these applications are inherently error-resilient and

either fully-accurate results are not required or there is a range of acceptable

results rather than a unique result [3]. On the other hand, the continuing

shrinkage in the minimum feature size of semiconductor structures makes re-

cent integrated circuits vulnerable to process, voltage and temperature (PVT)

variations as well as to soft errors [4]. Therefore, the challenge of ensuring
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strictly deterministic computing is increasing [5]. Conventional fault-tolerant

computing techniques require redundancy at different levels of the design hier-

archy that require additional hardware and can cause significant energy over-

head [2].

Motivated by the above challenges, a promising computing paradigm, i.e.

AC, has emerged. By leveraging the inherent error tolerance of error-resilient

applications, AC allows some accuracy to be traded off to reduce the power

consumption and hardware implementation cost. This research project pro-

poses hardware-efficient computing platforms that take advantage of AC. The

motivations for this research are summarized as follows:

1. There are applications in which error correcting mechanisms are already

employed, such as wireless communications, that use error correcting

codes. These existing error correcting mechanisms can also be used to

fix many of the errors caused by approximate computing blocks.

2. AC could be beneficial for many error-resilient computation-intensive

applications, such as image processing, neural networks (NNs), DSP ap-

plications, etc. In particular, significant energy and area savings can be

obtained at the cost of often negligible accuracy degradation.

3. NNs are recognized as some of the most effective solutions to many chal-

lenging ML tasks [6]. AC can be utilized at different levels of abstraction

to manage a NN’s increasing complexity and implementation costs by

introducing more energy-efficient and smaller computing platforms.

4. Multiplication is a key arithmetic operation that is highly optimized in

digital processors, including central processing units (CPUs) and graph-

ics processing units (GPUs). Hence, hardware-efficient multiplier designs

could be used to significantly enhance a processor’s performance.

5. Multiplication has been shown to be the most power-hungry operation

in NNs [7]–[10]. Many approximate designs have been devised for mul-

tipliers (circuit-level approximation techniques); however, it is not clear

which multiplier designs are the most appropriate for use in a NN.
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6. Multiply-accumulate (MAC) units are widely-used in the hardware im-

plementation of ML and DSP applications. Designing low-error, more

energy-efficient, and smaller approximate MAC units could significantly

improve the performance of the entire application.

1.2 Research Plan and Objectives

Based on the above observations, the main objective of this research project is

to investigate the design of hardware-efficient approximate circuits for ML and

other computation-intensive applications by using AC techniques. Specifically,

the following research topics are addressed:

1. Improving the hardware cost-accuracy trade-offs of approximate multi-

pliers is of great importance. For the conventional multipliers, partial

product accumulation—the most power-hungry stage of the design—

can be approximated. For the logarithmic multipliers, on the other

hand, finding the leading one is the main bottleneck. More accurate

and hardware-efficient designs are required to find the position of the

most significant one in logarithmic multipliers.

2. Several approximate multipliers have been proposed in the literature to

improve the hardware-efficiency of NNs. One of our objectives in this

research project is to identify the critical features in an approximate

multiplier that enhance the multiplier’s performance in NNs. To do so,

a large set of approximate multipliers needs to be investigated. The

critical features can then be found by comparing the performance of

approximate multipliers in standard benchmark NN workloads.

3. The squaring function is frequently used in DSP applications and, there-

fore, a specific circuit for calculating the squaring function can be much

more hardware-efficient than a general-purpose multiplier. Since the

squaring function can be converted into simple addition operations in

the logarithmic number system (LNS), even more savings on the hard-

ware cost can be expected by designing a logarithmic squaring function.
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4. Logarithmic MAC unit has not been exploited in the literature while,

potentially, it can be more hardware-efficient than the conventional MAC

units due to the conversion of the multiplication operation into simple

addition operation in the LNS. Moreover, the dependency between input

data can be exploited to reduce the number of required multiplications

and additions in the design of the conventional MAC units.

1.3 Contributions

The main contributions of this research project are as follows:

1. Approximate multipliers using approximate compressors

An initial approximate 4:2 compressor is proposed that introduces a rela-

tively large error to the output. However, the number of faulty rows in the

compressor’s truth table is reduced by encoding its inputs using generate and

propagate signals. Based on this compressor, two 4×4 approximate multipli-

ers are designed with different accuracy-cost trade-offs. Then they are used as

building blocks for scaling up to 16×16 and 32×32 multipliers.

2. Improving the performance of NNs using approximate multipliers

There is a trade-off between the accuracy and hardware cost of approxi-

mate multipliers, and there is no one best design for all applications. Thus

selecting the appropriate approximate multiplier for any specific application

is a complex question that typically requires careful consideration of multiple

alternative designs. The critical features in an approximate multipliers that

tend to make one design outperform others with respect to NN accuracy are

identified based on which a statistical predictor is built that anticipates how

well an approximate multiplier would work in a NN.

3. Logarithmic multiplier and squaring circuits

Data representation has a significant impact on the complexity of arith-

metic operations. For example, the multiplication operation is converted into

simple shift and addition operations in the LNS. The LNS is exploited to de-

sign more hardware-efficient approximate multipliers. To multiply in the LNS,

leading-one detector (LOD)s are used to find the base-2 logarithm of the input
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operands. Then the base-2 logarithms of the two inputs are summed up and,

finally, the antilogarithm of the result is calculated, which yields the multipli-

cation product. An exact LOD is proposed to speed up and improve the hard-

ware efficiency of approximate logarithmic multipliers. However, LODs always

underestimate the actual base-2 logarithm of the inputs. Thus a nearest-one

detector (NOD) circuit is proposed that rounds both inputs to their nearest

powers. Then an improved logarithmic multiplier (ILM) is built by using the

proposed NOD circuit. Finally, due to the importance of the squaring function

in DSP applications, a low-error squaring function (LESF) is proposed. The

LESF operates in the LNS and approximates a base-2 logarithmic function

with a piece-wise linear polynomial.

4. Logarithmic MAC unit and accelerators for convolutional NNs

Approximate MAC units are widely used as accelerators in many tasks,

including DSP and image processing, and NN applications. The first fully-

logarithmic multiply-accumulate (LMAC) unit is proposed that calculates the

sum of products AB + CD for the four inputs A, B, C and D which are

floating point (FP) numbers. The partial products P1 = AB and P2 = CD

are obtained by using simple additions in the logarithmic domain. Then a

linear approximation of logarithmic addition is used to accumulate them. Ad-

ditionally, a soft-dropping low-power (SDLP) architecture is proposed that

accelerates the convolutional layers of CNNs . SDLP is specifically designed

for CNNs and takes advantage of the spatial dependence between the input

image pixels and skips some of the multiplications during the convolution op-

eration and, thereby, reduces the energy consumption of the CNN’s inference

evaluation. Unlike the existing designs that simplify the arithmetic operations

by using approximate computing blocks, SDLP reduces the number of required

arithmetic operations.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows: The background on comput-

ation-intensive applications and the recent development of approximate arith-
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metic circuits in these applications are reviewed in Chapter 2. In Chapter 3,

an approximate multiplier is proposed and evaluated in image sharpening, the

JPEG compression algorithm, and a MIMO system. The use of approximate

multipliers in NNs is discussed in Chapter 4, where the critical features of an

approximate multiplier that tend to indicate its better performance in NNs are

identified. Chapter 5 presents the design of the proposed LOD, NOD, approx-

imate multiplier ILM, and the squaring circuit LESF. In Chapter 6, we discuss

the LMAC unit and the CNN accelerators based on the proposed SDLP ap-

proximate architecture. Finally, conclusions and a discussion of possible future

work are provided in Chapter 7.
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Chapter 2

Computation-Intensive
Applications and Approximate
Arithmetic Circuits

2.1 Computation-intensive applications

This section provides a brief background on several error-resilient computation-

intensive applications and discusses the most common approximation tech-

nique used in these applications, i.e., the use of approximate multipliers.

2.1.1 Image and digital signal processing

Image sharpening

Image sharpening is a technique for increasing the sharpness of an image. This

algorithm is used to overcome blurring that might be introduced by camera

equipment, to draw attention to certain areas and to increase legibility.

The image sharpening algorithm computes R(x, y) = 2I(x, y) − S(x, y)

[11], where I is the input image, R is the sharpened image, and S is specified

by:

S(x, y) =
1

4368

2∑
m=−2

2∑
n=−2

G(m+ 3, n+ 3)I(x−m, y − n), (2.1)

where the spatial filter G is given by:
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G =


16 64 112 64 16
64 256 416 256 64
112 416 656 416 112
64 256 416 256 64
16 64 112 64 16

 (2.2)

The large number of multiplications in the image sharpening algorithm

makes it a computation-intensive DSP application which has led to its use for

evaluating approximate multipliers [12], [13]

JPEG image compression

The JPEG compression standard is widely used for saving storage space or

transmission bandwidth for digital images [14]. This compression algorithm

is lossy and causes image quality degradation depending on the compression

quality factor (QF). QF is a scaling factor ranging from 1 (high recovered

image quality) to 100 (high compression ratio at the cost of poorer image

quality).

The basic idea of JPEG image compression is to reduce the data correla-

tion by transforming it from the image plane domain into the spatial frequency

domain. The human visional system is less sensitive to higher frequencies,

therefore images can be compressed by suppressing their high frequency com-

ponents. The image-to-spatial frequency domain transformation is done by

applying the discrete cosine transform (DCT) [15].

In standard JPEG compression, the input image is divided into 8×8 pixel

blocks. Then the 8×8 DCT of each 8×8 image pixel block is computed and

unimportant DCT elements (corresponding to high frequencies) are discarded

by multiplying the DCT coefficient matrix with a quantization matrix. The

resulting matrix is then dequantized and its inverse DCT is computed to re-

construct an 8×8 image block. Finally, all of the image blocks are reassembled

to form an image of the same size as the original one [12].

Several matrix multiplications during the JPEG compression algorithm

make its hardware implementation a challenging task. Moreover, reasonable

quality loss is acceptable during the image compression. Therefore, approxi-
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mate multipliers can be used to improve the hardware efficiency of the JPEG

compression algorithm.

Square law detector

A radio signal must be modulated to be able to carry information efficiently

over a band-limited channel, such as audio information for broadcasting [16].

For example, amplitude modulation (AM) is a common modulation technique

that is widely used in telecommunications [16].

Let m(t) be any arbitrary message signal and c(t) = Accos(2πfct) be the

carrier signal, where Ac and fc denote the amplitude and frequency of the

carrier signal, respectively. The AM signal s(t) can then be calculated by:

s(t) =
(
1 + kam(t)

)
c(t). (2.3)

where the amplitude sensitivity ka is a constant such that kam(t) << 1 [16].

We will set kam(t) = 0.01.

Once the modulated signal s(t) is calculated, it is transmitted over an

ideal communication channel. At the receiver, the amplitude-modulated signal

s(t) can be demodulated using a square law detector [16]. Thus s2(t) can be

expressed as:

s2(t) =
(
1 + kam(t)

)2(1 + cos(4πfct)

2

)
. (2.4)

After dropping the DC terms, s2(t) is passed through a low-pass filter

which removes the high-frequency term cos(4πfct) and outputs a replica of

the message m(t). Approximate multipliers (or squaring functions) can be

used to calculate (2.4) in order to reduce the hardware costs.

2.1.2 Multiple-input multiple-output (MIMO) systems

Today, MIMO technology is being employed in wireless communications in-

stead of the conventional single-input single-output (SISO) technology due to
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its higher data bandwidth and power efficiency of MIMO over multipath fading

channels [17].

In digital communication, a transmitted ‘1/0’ could be changed to a ‘0/1’

due to various factors, such as noise and fading. The ratio of erroneous bits to

the total number of transmitted bits over a channel is called the bit error rate

(BER). Channel coding is a technique where functionally dependent bits are

inserted so that most of the errors that occur in data transmission over noisy

communication channels can be detected and corrected.

Given the error tolerance provided by error correcting codes, computation

errors in an approximate design are mixed with the errors caused by noise so

that a system can recover from some of the approximation errors using error

detection and correction coding. We use four coding schemes to evaluate the

performance produced by the proposed approximate multipliers. The evalua-

tion is done by using BER vs. SNR (short for signal-to-noise ratio) curves in

the standard way that is used in communication engineering to illustrate the

error correcting performance of codes.

We modeled an 8×8 MIMO system, see Fig. 2.1. The baseband system

model for Fig. 2.1 is specified algebraically by:

y = Hx+N, (2.5)

in which x is the coded user bit stream (i.e., a vector of baseband symbols), H

is the channel matrix that models the interference in the channel, N models

the additive white Gaussian channel noise, and y is the received vector of

corrupted baseband symbols. In an 8×8 MIMO system, y, x and N are 8×1

complex matrices while H is a complex 8×8 matrix.

In the receiver block, the minimum mean squared error (MMSE) inter-

ference nulling matrix w is multiplied by the incoming signal vector y. The

MMSE approach aims to find the matrix w that minimizes the criterion, E.

Nulling matrix w is specified by:

w = [H∗H +N0I]−1H∗, (2.6)
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Figure 2.1: Block diagram of an 8×8 MIMO system.

where N0 is 2× the variance of the noise at the receiver antennas and (.)∗ is

the conjugate transpose operator [18]. The final results at each receiver can be

obtained by left-multiplying (using the approximate multipliers) the incoming

signal vector y by the obtained nulling matrix w.

2.1.3 Neural networks

NNs process information in an entirely different way than a conventional (von

Neumann) computer [19]. Weights are adjusted in the neurons of a NN to

allow the NN to perform certain computations (e.g., pattern recognition and

classification on vectors or arrays of input values) [20]. Note that the neurons

in a NN are arranged in several layers including an input layer, a variable

number of hidden layer(s) (of the same or different types) followed by an

output layer. The neurons within the same layer process inputs from the

earlier layer in parallel. The outputs from the output layer are often used to

signal the likelihood of membership in two or more disjoint classes.

As experience is being gained in machine learning tasks, diverse types of

hidden NN layers have been proposed. The authors in [21] employed con-

volutional layers that function as local filters to data from the previous lay-

ers. Other common types of hidden layers are the average and max pooling

layer that are used for weighted sub-sampling [22]. More recently, several

application-specific layers have been proposed for image classification [23], seg-
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Figure 2.2: Model of an artificial neuron.

mentation [24] and speech processing [25].

Artificial neuron

Neurons are the main processing units of NNs that compute a weighted sum

of their inputs and then send the result through an activation function (AF).

The AF introduces non-linearity into a NN’s behavior and maps the resulting

output values either into either the interval (-1, 1) or (0, 1) [8]. The AF can be

either a hard-limiting function (e.g., a step function) or a soft-limiting function

(e.g., a sigmoid function) [26].

Fig. 2.2 shows the structure of an artificial neuron. A neuron has n ≥ 2

inputs (depending on the network structure) and one output. Each input xi

is multiplied by its corresponding synaptic weight wi, i = 0, 1, ..., n. An adder

tree is then used to sum up the products. The resulting sum is then input to

the AF. An external bias b is often included to increase or lower the sum that

is the input to the AF [20].

Feed-forward neural networks

The two major operating modes for NNs are training and inference. The

training process is usually performed infrequently and off-line and, therefore,

its energy consumption is less of a concern [26]. The inference process, on the

other hand, is done frequently. Although it is less computation-intensive than

the training process, inference still requires significant computation for large

networks. Note that a trained network can be retrained and used to perform
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Figure 2.3: Structure of a feed-forward NN.

a different task on a different dataset. Usually only a few steps of retraining

are required to fine-tune the pre-trained network for another problem. Fig. 2.3

shows a feed-forward NN with n, k, and m neurons in the input, hidden, and

output layers, respectively.

Convolutional neural networks

CNNs are a class of deep neural networks, which are mainly used to analyze

visual imagery [6], [27], [28]. CNNs are feed-forward neural networks consisting

of a pipeline of layers. Each layer inputs a set of data, known as a feature map

(FM), and produces a new set of FMs with higher-level semantics [6]. The

four main computations involved in the major types of a typical CNN layers

are:

1. Convolutional layer: A convolutional layer applies a set of trained con-

volution filters Θ to a set of input volumes Xconv (i.e., a color image

in the case of the first convolutional layer or an output generated by

previous layers in the network) and outputs a set of FMs, Y conv. The

computations involved in a convolutional layer are thus:

Y conv = conv(Xconv,Θ) + β[n] (2.7)
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where β denotes the trained bias term. Note that during convolution,

the kernel Θ slides across the whole range of Xconv.

2. Activation layer: A convolutional layer is usually followed by an activa-

tion layer that applies a non-linear function to all of the FM’s values.

The most common activation function, which is also used in this work,

is the rectified linear unit (ReLU) that implements Y act = max(0, Xact)

[23], where Xact denotes the input to this layer.

3. Pooling layer: A pooling layer sub-samples the output of the convolution

layer and reduces the spatial dimension by discarding irrelevant detail

[29]. The intuitive reasoning behind this layer is that the exact location

of a specific feature (which is extracted in the convolution layer) is not

as important as its location relative to the other features [30]. The

typical pooling layers are the maximum and average pooling layers, which

produce almost identical results [29]. The average pooling layer, which

slides over the input to this layer and outputs the average of every sub-

region that the filter convolves around, is used in this research study.

4. Fully-connected layer: The fully-connected layers are usually form the

last few layers of a CNN. A fully-connected layer takes the output of

the previous layer (i.e., the activation maps of high-level features) and

determines which features most strongly correlate to a particular class.

Fig. 2.4 shows an illustrative example of the feed-forward propagation in

the convolution and activation layers. The bias is omitted in Fig. 2.4 for sim-

plicity. Parameter N in this figure indicates the number of filters.

The computational workload of a CNN inference is the result of an intensive

use of the multiply-accumulate (MAC) operations. Most of these MACs occur

in the convolutional layers and, therefore, convolutional layers are responsible

of more than 90% of execution time during the inference [31], [32]. Thus we

focus on the convolution operation in the convolutional layers.
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Figure 2.4: Feed-forward propagation in convolutional and activation layers.

2.2 Approximate arithmetic for computation-

intensive applications

The most common arithmetic circuits are the multipliers, adders, and dividers.

Dividers are not used as frequently as multipliers and adders [13], as shown in

the example applications in Section 2.1. Hence, only approximate adders and

multipliers are reviewed in this section.

2.2.1 Approximate adders

Several approximation techniques have been proposed to reduce the hardware

cost and energy consumption of an exact adder. The three main schemes for

approximating an exact adder are:

1. Predicting Si (i.e. the ith LSB of the final result) by its previous k, where

k < i, LSBs [33], [34]. Approximate adders that are built by using this

techniques are usually referred to as speculative adders.

2. Dividing an adder into several smaller adders that operate in parallel

and, thereby, accelerating the addition operation [35], [36]. Approximate

adders that fall into this category are referred to as segmented adders.

3. Approximating one-bit full adders and then using them to implement

a few LSBs in an accurate adder [37], [38]. More approximate LSBs

usually results in more hardware savings at the cost of a lower accuracy.
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The most common and widely-used approximate adders in each category

are briefly summarized below.

The almost-correct adder (ACA) [34] is based on the speculative adder

design of [33]. In an n-bit ACA, k LSBs are used to predict the carry for each

sum bit. Note that the authors in [34] reduce the hardware cost in [33] by

sharing some components among the sub-carry generators.

The equal segmentation adder (ESA) [39] divides an n-bit adder into

a number of smaller k-bit sub-adders. All the sub-adders operate in parallel

with fixed carry inputs. In other words, so no carry is propagated among the

sub-adders. ESA is the fastest segmented adder [13].

The lower-part-OR adder (LOA) [38] approximates an exact adder by

simply using logical OR gates for a few LSBs. The LOA also uses one logical

AND gate for carry propagation of the LSBs and exact one-bit adders for the

MSBs.

The truncated adder [13] truncates a few LSBs. This adder is most likely

the simplest approximate adder that always underestimates the actual sum-

mation results. Hence, it is not the best choice in applications with successive

and iterative additions.

2.2.2 Approximate multipliers

Multiplication is more resource- and power-hungry than adders and, therefore,

this research project mainly focuses on the design of approximate multipliers.

Note that approximate MAC units are often designed by using approximate

multipliers and, thus we do not discuss them separately here in this section.

Approximate multipliers in this section are divided into two main groups:

(1) conventional approximate multipliers and (2) logarithmic approximate

multipliers.

Conventional multipliers

We divide the conventional approximate multiplier into two main categories:

(1) deliberately-designed approximate multipliers and (2) CGP-based approx-

imate multipliers. These two categories are discussed below.
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Deliberately-designed approximate multipliers:

Deliberately-designed approximate multipliers are obtained by making care-

fully chosen simplifying changes in the truth table of the exact multiplier.

In general, there are three ways of generating approximate multipliers [12],

[13]: (1) approximation in generating the partial products, such as the under-

designed multiplier (UDM) [40]; (2) approximation in the partial product tree,

such as the broken-array multiplier (BAM) [38] and the error-tolerant mul-

tiplier (ETM) [41]; and (3) approximation in the accumulation of the par-

tial products, such as the inaccurate multiplier (ICM) [42], the approximate

compressor-based multiplier (ACM) [43], the approximate multiplier (AM)

[44], and the truncated approximate multiplier (TAM) [45].

Here we briefly review the design of the deliberately-designed approximate

multipliers.

The under-designed multiplier (UDM) [40] is designed based on an ap-

proximate 2×2 multiplier. This approximate 2×2 multiplier produces “1112”

instead of “10012” to save one output bit when both of the inputs are “112”.

The broken-array multiplier (BAM) [38] omits the carry-save adders

for the least significant bit (LSB) in an array multiplier in both the horizontal

and vertical directions. In other words, it truncates the LSBs of the inputs to

permit a smaller multiplier to be used for the remaining bits.

The error tolerant multiplier (ETM) [41] divides the inputs into sep-

arate LSB and most significant bit (MSB) parts that do not necessarily have

equal width. Every bit position in the LSB part is checked from left to right

and if at least one of the two operands is ‘1’, checking is stopped and all of the

remaining bits from that position onward are set to ‘1’. On the other hand,

normal multiplication is performed for the MSB part.

The imprecise compressor multiplier (ICM) [42] uses an approximate

(4:2) counter to build approximate multipliers. The approximate 4-bit multi-

plier is then used to construct larger multipliers.

The approximate compressor-based multiplier (ACM) [43] is de-

signed by using approximate 4:2 compressors. The two proposed approximate

4:2 compressors (AC1 and AC2) are used in a Dadda multiplier with four
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different schemes.

The approximate multiplier (AM) [44] uses a novel approximate adder

that generates a sum bit and an error bit. The error of the multiplier is then

alleviated by using the error bits. The truncated version of the AM multiplier

is called the TAM [45].

Based on these main designs, variants were obtained by changing the con-

figurable parameter in each design, forming a set of 100 deliberately-designed

approximate multipliers. For example, removing different carry-save adders

from the BAM multiplier results in different designs; also the width of the

MSB and LSB parts in the ETM multiplier can be varied to yield different

multipliers.

CGP-based approximate multipliers:

Unlike the deliberately-designed approximate multipliers, the CGP-based

designs are generated automatically using Cartesian Genetic Programming

[8]. Although several heuristic approaches have been proposed in the litera-

ture for approximating a digital circuit, we used CGP since it is intrinsically

multi-objective and has been successfully used to generate other high-quality

approximate circuits [46].

A candidate circuit in CGP is modeled as a two-dimensional array of pro-

grammable nodes. The nodes in this problem are the 2-input Boolean func-

tions, i.e. AND, OR, XOR, and others. The initial population P of CGP

circuits includes several designs of exact multipliers and a few circuits that

are generated by performing mutations on accurate designs. Single mutations

(by randomly modifying the gate function, gate input connection, and/or pri-

mary output connections) are used to generate more candidate solutions. More

details are provided in [8] and [46].

Logarithmic multipliers

Let Z = ZnZn−1...Z1Z0 be the n-bit binary representation of a positive integer

N . Without loss of generality, let Zk, where k ≤ n, be the most significant

‘1’ in Z. Hence, N can be represented as:
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N = 2k(1 + x), (2.8)

where 0 ≤ x < 1.

Let A and B be the multiplicand and the multiplier, respectively. Following

(2.8), once the base-2 logarithms of input operands A and B are calculated as:

log2A = k1 + log2(1 + x1), (2.9)

log2B = k2 + log2(1 + x2), (2.10)

their product can be obtained by:

A×B = 2k1+k2(1 + x1)(1 + x2). (2.11)

Depending on the computation process, different values for log2A and log2B

and, consequently, different approximate products can be obtained. For ex-

ample the Mitchell algorithm uses the following approximation [47]:

A×B ≈

{
2k1+k2(1 + x1 + x2), x1 + x2 < 1,

2k1+k2+1(x1 + x2), x1 + x2 ≥ 1.
(2.12)

It was found in [48] that the average error for given k1, k2, x1 ∈ [0, 1), and

x2 ∈ [0, 1) for the Mitchell algorithm can be expressed as:

EA = −0.08333× 2k1+k2 . (2.13)

Hence, an error correction term c can be added to the Mitchell algorithm

to reduce the average error [48]:

A×B ≈

{
2k1+k2(1 + x1 + x2 + c), x1 + x2 < 1,

2k1+k2+1(x1 + x2 +
c

2
), x1 + x2 ≥ 1.

(2.14)

However, this modified technique increases the area and power consump-

tion compared to the Mitchell algorithm [48].

The approximate LM in [49] uses a so-called set-to-one adder (SOA) (ALM-

SOA). The set-one-adder (SOA) with k approximation bits (SOA-k) puts ‘1’

19



on the k LSBs and, therefore, the actual product is overestimated. Given the

fact that the Mitchell multiplier always underestimates the actual product,

using a SOA can compensate for the accuracy loss in the multiplier. This

technique is used in [49] to improve the accuracy of the Mitchell multiplier

with less hardware cost.

A low-power implementation of the Mitchell multiplier is proposed in [50].

As extended work, a parameter w is introduced in [51] for a customizable LM in

which only the most significant w bits of the operands are taken into account.

Subsequently, truncation is performed after the approximate logarithms of

the operands are calculated (using the Mitchell algorithm). This differs from

truncating the input operands before computing their logarithm. Due to the

truncation, this multiplier is more hardware-efficient than the Mitchell multi-

plier. However, it is less accurate than it in terms of both mean and worst-case

errors.

Unfortunately, Mitchell’s method can have relatively large approximation

errors [52]. Several Mitchell-based multipliers have been proposed to improve

the accuracy. They usually divide the power-of-two intervals into more than

one region and then apply piece-wise linear approximation within each region.

Different designs differ in the number of regions and in the piece-wise linear

approximation functions used in each region [53].

The approximation error in the reported Mitchell-based multipliers is al-

ways negative (i.e., the magnitude of the approximate product is smaller than

the exact product) [49]. This systematic error causes problems in repetitive

or iterative operations, such as matrix multiplications, since the errors do not

cancel and are accumulated.
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Chapter 3

Low-power approximate
multipliers using encoded
partial products and
approximate compressors

Consider two 4-bit unsigned operands α =
∑3

i=0 αi2
i and β =

∑3
i=0 βi2

i. The

partial product (PP) array pp is a 4×4-bit array of the partial product bits

pp(i,j) = αi.βj, where i, j ∈ {0, 1, 2, 3}. Table 3.1 gives all the PPs for a

4-bit multiplication and their corresponding product bits, with columns cor-

responding to increasing powers of two going from 20 at the right to 27 at the

left.

The product is denoted by γ =
∑7

k=0 γk2k. The bits of γ are produced in

stages going from the LSB to the MSB. According to Table 3.1, γ0 = pp(0,0)

and there is no further operation in Stage 0. In Stage 1, to generate γ1, we

can simply use a half adder that produces a sum bit γ1 and a carry bit (c1) for

the next stage. Since the half adder circuit is already a simple design, there is

no benefit to approximating it.

Table 3.1: Truth table of the proposed approximate compressor.

Stage 7 Stage 6 Stage 5 Stage 4 Stage 3 Stage 2 Stage 1 Stage 0
pp(3,3) pp(3,2) pp(3,1) pp(3,0) pp(2,0) pp(1,0) pp(0,0)

pp(2,3) pp(2,2) pp(2,1) pp(1,1) pp(0,1)
pp(1,3) pp(1,2) pp(0,2)

pp(0,3)
γ7 γ6 γ5 γ4 γ3 γ2 γ1 γ0
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In Stage 2, there are three pp terms and the carry in from the previous

stage (c1) that must be added together. Thus a 4:2 compressor is required to

generate γ2 and a carry out to the next stage. The PPs can be accumulated

using a compressor circuit. An exact 4:2 compressor calculates:

Sum = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ cin,
Cout = (x1 ⊕ x2)x3 + (x1 ⊕ x2)x1,

Carry = (x1 ⊕ x2 ⊕ x3 ⊕ x4)cin + (x1 ⊕ x2 ⊕ x3 ⊕ x4)x4.
(3.1)

Note that a 4:2 compressor has four data inputs (x1, x2, x3, and x4), one

carry input (cin) and three outputs (Sum, Cout and Carry). The Sum output

has the same weight as the four input signals while the Cout is used as the

carry in for the next higher-order inputs and the output Carry weighted like a

(pp) bit in a one-bit-higher position. Note that outputs Cout and Carry have

the same weight.

3.1 Proposed Multiplier Designs

3.1.1 Modified approximate 4:2 compressor

Several 4:2 compressors are required to implement one 4× 4 multiplier. How-

ever, the function of an exact 4:2 compressor can be approximated to reduce

the hardware cost. Ignoring Cout (due to its small impact on the compressor’s

accuracy [54]) as well as our goal to use as few gates as possible led to the

approximate compressor truth table given in Table 3.2.

As shown in Table 3.2, there are five/seven incorrect values for the approx-

imate Carry/Sum outputs which correspond to an output error. To reduce

this source of inaccuracy, we encode the inputs to the compressor using con-

ventional propagate and generate signals given by:

P(i,j) = pp(i,j) + pp(j,i),
G(i,j) = pp(i,j).pp(j,i),

(3.2)

This encoding ensures that, although the approximate circuit may have a

fairly large number of faulty output entries in the truth table, it in fact rarely

produces those outputs. To see how this approach affects the compressor’s

accuracy, consider Stage 2 in which the following terms are added: pp2,0, pp1,1,
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Table 3.2: Truth table of the proposed approximate compressor.

x1 x2 x3 x4
Carry

Exact / Approximate
Sum

Exact / Approximate
0 0 0 0 0/0 3 0/0 3

0 0 0 1 0/0 3 1/1 3

0 0 1 0 0/0 3 1/1 3

0 0 1 1 1/1 3 0/1 7

0 1 0 0 0/0 3 1/1 3

0 1 0 1 1/0 7 0/1 7

0 1 1 0 1/0 7 0/1 7

0 1 1 1 1/1 3 1/1 3

1 0 0 0 0/0 3 1/1 3

1 0 0 1 1/0 7 0/1 7

1 0 1 0 1/0 7 0/1 7

1 0 1 1 1/1 3 1/1 3

1 1 0 0 1/1 3 0/1 7

1 1 0 1 1/1 3 1/1 3

1 1 1 0 1/1 3 1/1 3

1 1 1 1 0/1 7 0/1 7

Approximate Sum = (x1 + x2) + (x3 + x4)
Approximate Carry = (x1.x2) + (x3.x4)

pp0,2, and c1. Table 3.3, where NA stands for Not Applicable, shows how

encoding the PPs using (3.2) helps to improve the design accuracy compared

to the situation in Table 3.2. Note that all possible input combinations for

the 4×4 multiplier were considered (24 × 24 = 256) to obtain the probability

of each input combination shown in Table 3.3.

Using the proposed technique, the number of faulty Carry/Sum values

is reduced from 5/7 to 2/4. Note that the two approximated cases for the

Carry signal occur only with a small probability of 0.078 (0.0624+0.0156),

see Table 3.3. It is also worth mentioning that the following combinations in

Table 3.3 cannot occur, so they do not contribute to the output errors for the

approximate compressor:

• (0,1) for (pp(1,1), c1): since c1 = pp(0,1).pp(1,0) = (α0.β1).(α1.β0), c1 = ‘1’

means that α0, β1, α1, and β0 are ‘1’. Consequently, pp(1,1) = α1.β1 = 1.

Hence, it is impossible to have the (0,1) combination for (pp(1,1), c1).

• (0,1,1) for (c1,pp(1,1),G(2,0)): having c1 = pp(0,1).pp(1,0) = (α0.β1).(α1.β0)=
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Table 3.3: Truth table for the Stage 2 compressor.

P(2,0) G(2,0) pp(1,1) c1 Carry Sum Probability
0 0 0 0 3 3 0.4218
0 0 0 1 NA NA 0.0000
0 0 1 0 3 3 0.1251
0 0 1 1 3 7 0.0156
0 1 0 0 NA NA 0.0000
0 1 0 1 NA NA 0.0000
0 1 1 0 NA NA 0.0000
0 1 1 1 NA NA 0.0000
1 0 0 0 3 3 0.2814
1 0 0 1 NA NA 0.0000
1 0 1 0 7 7 0.0624
1 0 1 1 3 3 0.0312
1 1 0 0 3 7 0.0468
1 1 0 1 NA NA 0.0000
1 1 1 0 NA NA 0.0000
1 1 1 1 7 7 0.0156

Approximate Sum = x1 + x3

Approximate Carry = x2 + x4

‘0’ and pp(1,1) = α1.β1= ‘1’ means at least one of a0 or b0 is ‘0’, which

leads to G(2,0) = pp(2,0).pp(0,2) = (α2.β0).(α0.β2)= ‘0’. Thus, the (0,1,1)

combination for (c1,pp(1,1),G(2,0)) is not possible.

• (0,1) for (P(2,0),G(2,0)): G(2,0) = pp(2,0).pp(0,2)= ‘1’ means that both pp(2,0)

and pp(0,2) are ‘1’. Therefore, P(2,0) = pp(2,0) + pp(0,2)= ‘1’ and so we

cannot have the (0,1) combination for (P(2,0), G(2,0)).

To compute bit γ3 of the product in Stage 3, the four pp(i,j) terms and

the carry c2 from Stage 2 should be added and, therefore, a 5:2 compressor is

required. Since the proposed compressor is a 4:2 design, we can merge two of

these five signals to reduce them to four, as specified by:

x1 = c2,
x2 = G(3,0) +G(3,0),

x3 = P(2,1),
x4 = P(3,0).

(3.3)

where x1, x2, x3 and x4 are the inputs to the compressor that generates γ3 and

a carry out (c3) for the next stage. Table 3.4 shows how altering the partial
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Table 3.4: Truth table for the Stage 3 compressor.

c2 G(3,0) +G(3,0) P(2,1) P(3,0) Carry Sum Probability
0 0 0 0 3 3 0.3087
0 0 0 1 3 3 0.1953
0 0 1 0 3 3 0.1952
0 0 1 1 3 7 0.1092
0 1 0 0 NA NA 0.0000
0 1 0 1 7 7 0.0273
0 1 1 0 7 7 0.0315
0 1 1 1 3 3 0.0233
1 0 0 0 3 3 0.0079
1 0 0 1 7 7 0.0156
1 0 1 0 7 7 0.0158
1 0 1 1 3 3 0.0314
1 1 0 0 NA NA 0.0000
1 1 0 1 3 3 0.0079
1 1 1 0 3 3 0.0038
1 1 1 1 7 7 0.0273

Approximate Sum = x1 + x3 + x4

Approximate Carry = (x1.x2) + (x3.x4)

products affects the compressor’s truth table in Stage 3. As for Stage 2, the

design can be simplified by using Boolean algebra, as given in Table 3.4.

Similar calculations are done for Stage 4 and the results are provided in

Table 3.5. Using the same argument as in Table 3.3, when G(3,1) = ‘1’, P(3,1)

must be ‘1’. Hence, the entries that do not follow this are NA entries.

The AND-OR-Invert (AOI) logic implementations of the three proposed

compressors are provided in Fig. 3.1

3.1.2 Two approximate 4× 4 multipliers

The two proposed 4×4 approximate multipliers are referred to as: (1) M1,

which considers the carry from the previous stage (c4) and uses an exact full-

adder to add pp terms pp(3,2), pp(2,3), and c4; and (2) M2, which ignores c4

and uses an exact half adder to add pp(3,2) and pp(2,3). Note that M1 is more

accurate than M2. By ignoring c4, multiplier M2 breaks the longest path

(that is, the carry propagation path), which is a common technique to reduce

the circuit’s latency [55]. Fig. 3.2 summarizes the two designs by showing the
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(a) Stage 2 compressor. (b) Stage 3 compressor.

(c) Stage 4 compressor.

Figure 3.1: AOI logic implementation of the proposed compressors.
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Table 3.5: Truth table for the Stage 4 compressor.

c2 G(3,0) +G(3,0) P(2,1) P(3,0) Carry Sum Probability
0 0 0 0 3 3 0.3087
0 0 0 1 3 3 0.1953
0 0 1 0 3 3 0.1952
0 0 1 1 3 7 0.1092
0 1 0 0 NA NA 0.0000
0 1 0 1 7 7 0.0273
0 1 1 0 7 7 0.0315
0 1 1 1 3 3 0.0233
1 0 0 0 3 3 0.0079
1 0 0 1 7 7 0.0156
1 0 1 0 7 7 0.0158
1 0 1 1 3 3 0.0314
1 1 0 0 NA NA 0.0000
1 1 0 1 3 3 0.0079
1 1 1 0 3 3 0.0038
1 1 1 1 7 7 0.0273

Approximate Sum = x1 + x2 + x3

Approximate Carry = x2 + (x3.x4)

employed blocks for reducing the partial products.

3.1.3 Scaling up to larger multipliers

To construct larger approximate multipliers, the two proposed 4×4 multipliers

can be combined in an array structure. For instance, to construct an 8×8

multiplier using a 4×4 design, the two 8-bit operands A and B are partitioned

into two 4-bit nibbles, namely αH and αL for A and βH and βL for B, where

αH and βH are the 4 MSBs and αL and βL indicate the 4 LSBs of A and B,

respectively. Each two of these four nibbles are then multiplied using 4×4

multipliers and the partial products are then shifted (based on the nibble’s

relative weight) and added together (using a fast Wallace tree architecture) to

produce the final multiplication product. Building 2n × 2n multipliers using

n× n multipliers is specified in Fig. 3.3 and is described by:

γ = α× β = (2n × αH + αL)× (2n × βH + βL)
= 22n × (αH × βH) + 2n × (αH × βL + αL × βH) + αL × βL

= 22n × P1 + 2n × (P2 + P3) + P4.
(3.4)
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(a) Multiplier M1

(b) Multiplier M2

Figure 3.2: Partial product reduction in multipliers (a) M1 and (b) M2.
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Figure 3.3: Building 2n× 2n multipliers using n× n multipliers.

Note that each partial product Pi, where i ∈ {1, 2, 3, 4}, in (3.4) is gener-

ated using an n × n multiplier and multiplications by 22n and 2n are simply

done by 2n-bit and n-bit left shifts, respectively.

Given that P4 is the least and P1 is the most significant partial products,

whereas P2 and P3 are equivalently significant, multipliers with different ac-

curacies can be designed with different configurations. We propose six 8×8

approximate multipliers, three of which, i.e. M8-1, M8-3, and M8-5, use M1

and the other three use M2 as their main building block. Table 3.6 shows how

each of these six 8×8 multipliers is constructed.

According to Table 3.6, M8-1 and M8-2 use 4×4 approximate multipliers

M1 and M2, respectively, to generate all four partial products from P1 to P4.

M8-3 and M8-4 are more accurate designs in which the most significant partial

product, P1, is generated using an exact 4×4 multiplier, and M1 and M2 are

used respectively to generate P2, P3, and P4. M8-5 and M8-6 are the most

accurate designs in which only the least significant partial product, P4, uses

approximate multipliers M1 and M2, respectively, and the other three partial

products are generated using exact multipliers.

Note that 16×16 and 32×32 approximate multipliers can be constructed

by considering (3.4). We scaled up the six 8×8 designs in Table 3.6 to form

six 16×16 and 32×32 multipliers. Using the six 8×8 multipliers in Table 3.6
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Table 3.6: Using M1 and M2 to construct 8×8, 16×16, and 32×32 designs.

Size Design P1 P2 P3 P4

8×8

M8-1 M1 M1 M1 M1
M8-2 M2 M2 M2 M2
M8-3 Exact M1 M1 M1
M8-4 Exact M2 M2 M2
M8-5 Exact Exact Exact M1
M8-6 Exact Exact Exact M2

16×16

M16-1 M8-1 M8-1 M8-1 M8-1
M16-2 M8-2 M8-2 M8-2 M8-2
M16-3 M8-3 M8-3 M8-3 M8-3
M16-4 M8-4 M8-4 M8-4 M8-4
M16-5 M8-5 M8-5 M8-5 M8-5
M16-6 M8-6 M8-6 M8-6 M8-6

32×32
M32-5 M16-5 M16-5 M16-5 M16-5
M32-6 M16-6 M16-6 M16-6 M16-6

to construct 16×16 ones, as specified in (3.4), we obtain 64 possible 16×16

multiplier designs. Since this is an impractically large number of possible

designs, we only consider six designs using the simple scheme shown in Table

3.6. These designs are (1) the most accurate scaled-up variants using M1

and M2, referred to as M16-5 and M16-6, respectively; (2) the most hardware

efficient scaled-up variants using M1 and M2, referred to as M16-1 and M16-2,

respectively; and (3) two designs (one using M1, i.e. M16-3 and the other one

using M2, i.e. M16-4) that appear to have a good trade-off between accuracy

and hardware. Only one type of 8×8 multiplier is used to construct all of the

16×16 designs. The most accurate variants of the 16×16 multipliers, i.e. M16-

5 and M16-6, are selected to construct 32×32 multipliers M32-5 and M32-6,

respectively.

The same design approach can be applied to any n× n multiplier where n

is a power of 2. Since we have six 8×8 multipliers and four n× n multipliers

are required to build a 2n × 2n multiplier, the number of possible designs is

given by:

(64)
log2

(n
8

)
= (64)

log2n−3 = 6

(n2

64

)
.

(3.5)
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According to (3.5), the number of possible designs increases exponentially

with n2. These designs have a wide range of accuracy-hardware trade-offs and

could be utilized in different applications, based on application requirements.

3.1.4 Extension to signed Booth multipliers

The proposed approximate compressor can also be utilized in signed Booth

multipliers. In a Booth multiplier, the PPs are generated using a Booth

encoder, and the major difference between the unsigned and signed Booth

multiplication is in the generation of the partial products. Therefore, the

partial products in Booth multipliers can be accumulated using approximate

compressors, but not the sign extension bits [56]. Following [55], an 8×8

Booth multiplier was designed and implemented using the proposed approx-

imate compressors for the 8 LSBs while the 8 MSBs use exact compressors.

Note that the sign extension of the partial product array is usually simplified

by using the Baugh-Wooley algorithm [55].

3.2 Performance Evaluation

3.2.1 Accuracy analysis

An important metric for an approximate design is the output accuracy with

respect to the exact result. We used the mean relative error distance (MRED)

[13] as the metric to quantify the accuracy of the approximate designs. Table

3.7 shows the MRED, the error rate (ER), and the normalized mean error dis-

tance (NMED) (the mean error distance normalized by the maximum output

of the accurate design [13]) for several 16×16 unsigned multipliers recently

reported in the literature. Note that the ER is the percentage of the multipli-

cations for which the approximate design produces a different result than the

exact one. Better designs will tend to have a lower ER in addition to a small

MRED. Since an exhaustive simulation of all possible input combinations is

very time-consuming and unnecessary to gain the key insights, we simulated

the accuracy of the approximate multipliers using MATLAB with 10 million

uniformly distributed randomly generated input combinations. Error metrics
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Table 3.7: Accuracy comparison for 16×16 and 8×8 approximate multipliers.

Multiplier
size

Multiplier
type

MRED ER (%) NMED

16×16

M16-1 0.0644 96.71 5.7×10−2

M16-2 0.0839 96.67 7.2×10−2

M16-3 0.0168 94.74 1.2×10−3

M16-4 0.0224 94.65 1.9×10−3

M16-5 0.0013 72.49 5.1×10−6

M16-6 0.0017 72.33 5.7×10−6

UDM [40] (2011) 0.0333 80.99 1.4× 10−2

AM2-16 [44] (2014) 0.0013 97.96 5.3× 10−6

ETM-7 [41] (2010) 0.0156 99.99 2.2× 10−3

ACM4 [43] (2015) 0.0026 99.97 6.4× 10−6

MUL2 [56] (2017) 0.0020 84.67 7.1× 10−6

BAM-16 [38] (2010) 0.0021 99.97 3.5× 10−5

TAM2-16 [45] (2016) 0.0020 99.98 3.1× 10−5

AWTM-4 [57] (2014) 0.0033 99.94 8.3× 10−6

8×8

M16-1 0.0649 73.17 1.9× 10−2

M16-2 0.0846 73.17 2.8× 10−2

M16-3 0.0170 66.36 2.1× 10−3

M16-4 0.0227 66.43 3.2× 10−3

M16-5 0.0013 36.22 6.8× 10−5

M16-6 0.0018 36.22 9.6× 10−5

UDM 0.0328 47.09 1.4× 10−2

AM2-16 0.0014 95.23 5.3× 10−4

ETM-3 0.0846 93.10 1.3× 10−2

ACM4 0.0028 99.03 1.2× 10−4

MUL2 0.0022 79.23 3.1× 10−4

BAM-16 0.0176 99.23 1.8× 10−2

TAM2-16 0.0024 99.11 7.2× 10−4

AWTM-4 0.1532 99.92 5.4× 10−3

MRED, ER, and NMED were calculated by simulating the 8×8 multipliers

over their entire input space (65536 cases) and the results are also provided in

Table 3.7.

The results in Table 3.7 show that the most accurate of the proposed 16×16

designs, M16-5 and M16-6, are more accurate than their competitors except

AM2-16, which has the same MRED as M16-5. However, with respect to

the ER and NMED, M16-5 is clearly more accurate than AM2-16. Note that

according to Table 3.7, the trend that is seen in the 16×16 multipliers can also

be seen in the 8×8 multipliers.

We also measured the MRED, ER, and NMED for the radix-4 Booth multi-

plier. This proposed design will be referred to as the compressor-based approx-

imate Booth multiplier (CABM). CABM was compared to two state-of-the-art
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Table 3.8: Accuracy comparison for 8×8 Radix-4 Booth multipliers.

Multiplier type MRED ER (%) NMED
AWBM1 [14] 0.051 98.26 0.30
AWBM2 [14] 0.029 91.49 0.18

CABM 0.014 84.72 0.18

approximate Radix-4 Booth multipliers and the results are given in Table 3.8.

Table 3.8 shows that CABM has the same NED as the AWBM2 while it has a

smaller error rate. NED refers to the normalized error distance, which is the

average error distance normalized by the maximum possible error. Moreover,

CABM is the most accurate design with respect to the MRED.

3.2.2 Hardware analysis

All of the designs were implemented in VHDL and then synthesized by using

the Synopsys Design Compiler (DC) for ST’s CMOS 28-nm process. The

supply voltage and the temperature in all simulations were set to 1 V and

25◦C, respectively. Note that we used an exact 16-bit Wallace tree multiplier

(Wallace-16) as the baseline exact multiplier for the comparison.

According to our simulations, for the 16×16 unsigned designs, the fastest

and the smallest design is ETM-7, which is 3.08% faster and 40.74% smaller

and than our fastest and smallest design, M16-2; however, ETM-7 consumes

15.22% more power than M16-2. With respect to power consumption, the

proposed designs M16-2 and M16-1 are the most power-efficient multipliers.

Even our most accurate designs, M16-5 and M16-6, are among the most power-

efficient and energy-efficient ones with relatively small power-delay product

(PDP) values. The only design that consumes less energy than M16-5 and

M16-6, is ETM-7; however, ETM-7 is almost 10× less accurate than M16-5

and M16-6. Also, the proposed M16-2 has the lowest PDP value among all

the designs.

The same trends that appear in 16×16 designs were also observed in 32×32

multipliers, i.e. M32-5 and M32-6 are the most hardware-efficient designs with

at least 21.51% (for M32-5) and 21.61% (for M32-6) smaller PDP compared

to ACM4, which has the smallest PDP among the other designs.
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Table 3.9: Hardware comparison for 8×8 Radix-4 Booth multipliers.

Multiplier type Delay (nS) Power (µW ) Area (µm2) PDP (fJ) PDP×MRED
AWBM1 1.80 99.375 393.12 178.875 9.122
AWBM2 1.66 68.750 285.62 114.125 3.309
CABM 1.63 69.678 284.32 113.575 1.788

Exact Booth 2.01 125.42 436.87 252.094 -

We further considered both the MRED and PDP metrics to evaluate differ-

ent designs, as in [13]. Fig. 3.4(a) compares the products of MRED and PDP

values and Fig. 3.4(b) shows the -log10 (MRED) vs. PDP for the considered

unsigned 16×16 multipliers. Since the MRED values are so close, they are

plotted on a logarithmic scale for easier comparison. Note that designs at the

top-left corner are the best designs, which have small PDPs with high accu-

racies. As the results in Fig. 3.4(a) show, M16-5 and M16-6 have the smallest

PDP-MRED products.

A similar comparison was done for the radix-4 Booth multipliers. As the

results in Table 3.9 show, AWBM2 is slightly more efficient than the proposed

CABM in terms of delay, power, and area; however, according to Table 3.9,

AWBM2 is more than 2× less accurate than the CABM. The MRED-PDP

products are also obtained for Radix-4 Booth multipliers and the results are

given in Table 3.9. It is shown that the proposed CABM has the lowest

MRED-PDP product.

3.3 Example Applications

The effectiveness of the proposed designs was evaluated using image sharpen-

ing, JPEG applications, and for the first time, an interference nulling calcula-

tion for the receiver in a MIMO wireless communication system.

3.3.1 Image sharpening

The PSNR and structural similarity structural similarity index (SSIM) are

used as objective quality measures. The PSNR and SSIM values for several

approximate multipliers are depicted in Fig. 3.5, which confirms that M16-

5 is more accurate than the other designs. Note that with respect to the
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(a) MRED vs. PDP.
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Figure 3.4: MRED and PDP of the approximate multipliers.
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Figure 3.5: PSNR and SSIM values for the image sharpening application.

SSIM, M16-5 and M16-6 are the best designs with the highest SSIM values.

In general, the rankings of the weaker designs are slightly different in some

cases, but the trend is roughly the same as the PSNR values.

3.3.2 JPEG image compression

Table 3.10 reports the PSNR and SSIM values for several approximate multi-

pliers for four increasing QFs. As the results in Table 3.10 show, M16-5 has

the highest PSNR and SSIM values for the four considered QFs, followed by

M16-6. Note that the reference image for computing the SSIM and PSNR

values in image sharpening application is the image reconstructed using exact

multipliers. However, it might be more reasonable to use the original image,

i.e. the image before compression, as the reference image in the JPEG com-

pression application. The results in Table 3.10 show that the exact multipliers

in a JPEG compressor can be replaced by approximate multipliers for power

and area saving purposes at the cost of negligible image quality degradation.

3.3.3 Multiple-input multiple-output wireless systems

We modeled an 8×8 multiple-input multiple-output (MIMO) system, see Fig. 2.1,

in which all multiplications in the receiver block use the proposed approxi-
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Table 3.10: Decompressed image quality comparison, PSNR and SSIM
metrics for JPEG compression.

Metric Multiplier type QF = 60 QF = 70 QF = 80 QF = 90

PSNR

Exact 27.81 27.34 27.01 26.91
M16-1 23.54 17.21 22.22 18.26
M16-2 22.93 13.27 19.11 13.96
M16-3 25.21 25.72 23.17 18.65
M16-4 24.51 23.80 19.63 14.11
M16-5 26.43 26.65 25.72 25.54
M16-6 26.41 26.63 25.62 25.28

AM2-16 26.17 26.07 25.51 24.48
ACM4 26.02 25.95 25.13 24.21
MUL2 26.21 26.44 25.64 25.37

AWTM4 25.88 25.67 24.82 24.03

SSIM

Exact 0.98 0.98 0.97 0.97
M16-1 0.83 0.79 0.79 0.79
M16-2 0.83 0.79 0.79 0.73
M16-3 0.95 0.93 0.90 0.87
M16-4 0.95 0.93 0.90 0.83
M16-5 0.97 0.97 0.96 0.95
M16-6 0.97 0.96 0.96 0.95

AM2-16 0.96 0.93 0.92 0.90
ACM4 0.95 0.92 0.92 0.89
MUL2 0.96 0.96 0.95 0.95

AWTM4 0.93 0.92 0.91 0.88

mate multipliers. In addition, three different codes were considered: Hamming

(7, 4), extended Golay (24, 12), and two variants of low-density parity-check

(LDPC) codes: LDPC (1024, 512), and LDPC (2048, 1024) [18].

The bit error rate (BER) vs. signal-to-noise ratio (SNR) characteristic was

computed for seven different cases: one for the exact multiplier and six for

the six variants of the proposed design. The results are shown in Fig. 3.6 for

the Hamming (7, 4), extended Golay (24, 12), LDPC (1024, 512), and LDPC

(2048, 1024) codes.

Since the six proposed 16×16 approximate multipliers cover a wide range

of accuracy, and given that M16-2 and M16-5 are the least and the most

accurate designs, we only consider these six designs in this sub-section. First,

we aim to show the practicality of approximate multipliers in MIMO receiver

applications in general. Second, we hypothesize that the performance of the

other designs in the described MIMO system would be similar to one of the

six proposed multipliers with the closest accuracy.

Fig. 3.6 shows that for the lowest SNRs and, consequently, relatively high
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BERs, the exact and approximate designs are equally (and massively) affected

by noise. This implies that the computation errors caused by the use of ap-

proximate multipliers are insignificant compared to the already large number

of errors caused by noise. Although the least accurate approximate multiplier

designs should be quite acceptable at low SNR operation, there are essentially

no applications that will operate in that regime. When operating at higher,

more typical SNR levels, Fig. 3.6 shows that the most accurate variants of the

proposed design, namely M16-5 and M16-6, can match the BER vs. SNR

performance of a design that uses exact multipliers down to lower and hence

more practical BERs.

As the SNR increases, the computation errors caused by the use of approx-

imate multipliers will eventually dominate the random errors and produce a

leveling off of the BER curve, a so-called error floor. This is the operating

region where the error correcting code cannot compensate for the multiplier’s

inaccuracies. This error floor can be easily seen, especially in Figs. 3.6(a) and

3.6(b), where the weakest codes, i.e. the (7, 4) Hamming code and the ex-

tended (24, 12) Golay code, respectively, are employed. Note that depending

on the accuracy of the approximate design and the strength of the correcting

code, the error floor is encountered at different SNR levels.

Figs. 3.6(c) and 3.6(d) show that approximate multipliers, especially M16-

5 and M16-6, can safely replace exact multipliers in a MIMO system with

LDPC codes to reduce the power, delay, and area (M16-5 and M16-6 have

59.25% and 59.89% smaller PDP compared to the exact Wallace-tree multi-

plier, respectively) at a relatively low cost in performance degradation. The

advantages of the approximate multiplier implementation could be even more

significant in larger MIMO systems, such as massive MIMO systems with many

dozens of antennas, and also if many parallel multipliers are required to meet

the required data throughput.

We performed some simulations and realized that using approximate mul-

tipliers increases the number of required iterations to get to a desired BER

at a given SNR; the results are given in Table 3.11. According to Table 3.11

the number of required iterations increases at higher SNR levels, where the
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Figure 3.6: BER vs. SNR.
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Table 3.11: Required increase in the number of iterations to get to a desired
BER at a given SNR level.

Approximate
multiplier

(BER, SNR)
(10−5, 3 dB) (5× 10−6, 4 dB)

M16-5 3.5% 9.3%
M16-3 6.1% 15.6%

errors caused by approximate multipliers dominate channel noise. Table 3.11

also shows that less accurate multipliers require more iterations to get to the

desired BER at a given SNR level. This trade-off could be exploited in some

design problems to save on hardware but pay more in decoding time and en-

ergy.

Analyzing the results at a reasonable operating point, e.g. an SNR of 4 dB

for the (2048, 1024) LDPC code using the M16-5 approximate multiplier, shows

a 9.3% increase in the number of required iterations. More iterations mean

more execution time and, consequently, more energy consumption. In fact,

the energy consumption increases by 9.3%. However, as previously mentioned,

M16-5 consumes 59% less energy than the exact multiplier and saves 20% on

the area. Hence, it would still be practical to use approximate multipliers in

this application.

3.4 Summary

We proposed an approximate 4:2 compressor that is employed to construct two

4×4 multipliers with different accuracies. The 4×4 designs are then scaled

up to 16×16 and 32×32 multipliers that provide a wide range of accuracy-

performance trade-offs. The least accurate of the proposed designs, M16-

2, has the smallest PDP among other approximate designs while the most

accurate of the proposed designs, M16-5, has a 44% smaller PDP compared

to AM2-16, which has a similar accuracy in MRED. Moreover, M16-5 is more

accurate than the other approximate designs in the literature. The proposed

compressor is also employed in a radix-4 Booth multiplier, resulting in a low-

power signed multiplier (CABM) with a small MRED. The simulation results
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reveal the advantages of the CABM over other designs in terms of the MRED

and PDP-MRED product. The proposed multipliers have been evaluated in

image sharpening and JPEG applications. It is shown that M16-5 produces

more accurate output than other approximate multipliers by achieving a higher

output quality while consuming less power. In addition, for the first time,

approximate multipliers are evaluated in the interference nulling calculation

of the MIMO baseband receiver. We measured how computation errors can

be corrected along with errors caused by channel noise so that the transmitted

data can be recovered without additional hardware cost using powerful error

detection and correction codes (e.g., LDPC codes) that are already present in

the communication system. It is shown that approximate multipliers can often

safely replace exact multipliers with relatively low performance degradation.
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Chapter 4

Improving the Accuracy and
Hardware Efficiency of Neural
Networks Using Approximate
Multipliers

Given that multipliers are the main computational bottleneck of neural net-

works (NNs) and a major hardware cost [26], [58], [59], this chapter focuses

on the use of approximate multipliers in NNs.

Many approximate multipliers have already been proposed in the literature

that decrease the hardware cost while maintaining acceptably high accuracy.

We divide the known approximate multipliers into two main categories: (1)

deliberately-designed multipliers, which includes designs that are obtained by

making some changes in the truth table of the exact designs [13], and (2)

CGP-based multipliers, which are designs that are generated automatically

using the CGP heuristic algorithm [8]. Note that there are other classes of

approximate multipliers that are based on analog mixed-signal processing [60],

[61]. However, they are not considered in this thesis since our focus is on digital

design, which is more flexible and aggressively scalable in implementation than

analog/mixed-signal based designs.

There is typically a trade-off between the accuracy and hardware cost in

approximate multipliers, and there is no one best design for all applications.

Selecting the appropriate approximate multiplier for any specific application

is typically a complex question that requires careful consideration of multiple
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alternative designs. The objective of this chapter is to find the approximate

multipliers that improve the performance of a NN, i.e. by reducing the hard-

ware cost while preserving an acceptable output accuracy. To the best of our

knowledge, this is the first work that attempts to find the critical features in

an approximate multiplier that make it superior to others for use in a NN.

Our benchmark multipliers, including 500 CGP-based approximate multi-

pliers and 100 variants of deliberately-designed multipliers, are evaluated for

two standard NNs: a MLP that classifies the MNIST dataset [62] and a CNN,

LeNet-5 [21], that classifies the SVHN dataset [63]. After each network is

trained while using double-precision floating-point exact multipliers, the accu-

rate multipliers are replaced with one approximate design (selected from the

set of benchmark multipliers), and then five steps of retraining are performed.

This process is repeated for each of the benchmark multipliers, resulting in 600

variants for each of the two considered NNs. The retraining is done for each

approximate multiplier only once. Then the inference operation is performed

on the NNs to evaluate their output accuracy. Since the simulations always

start from the same point, i.e. we run the retraining steps on the pre-trained

network (with exact multipliers), there is no randomness and, therefore, the

results will be consistent if the simulation is repeated.

4.1 Evaluation of Approximate Multipliers in

Neural Networks

This section considers both application-dependent and -independent metrics

to evaluate the effects of approximate multipliers in NNs.

4.1.1 Application-independent metrics

Application-independent metrics measure design features that do not change

from one application to another. Given that approximate multipliers are digi-

tal circuits, these metrics can be either output error or hardware cost metrics.

Error function metrics are required for feature selection analysis.

The main four error metrics are the ER, error difference (ED), absolute
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Table 4.1: Considered features of the output error function.

Feature Description
ER Error rate

Var-ED Variance of the ED values
Mean-ED Mean value of the ED values
RMS-ED Root mean square of the ED values
Var-RED Variance of the RED values

Mean-RED Mean value of the RED values
RMS-RED Root mean square of the RED values
Var-AED Variance of the AED values

Mean-AED Mean value of the AED values

error difference (AED), and the relative error difference (RED). We evaluated

all 600 multiplier designs using the 9 features extracted from these four main

metrics, as given in Table 4.1. All of the considered multipliers were imple-

mented in MATLAB and simulated over their entire input space, i.e. for all

256× 256 = 65536 combinations.

The definitions for most of these features are given in (4.1); those that are

not given in (4.1) are evident from the description. Note that E and A in (4.1)

refer to the exact and approximate multiplication results, respectively. Also

note that the mean/variance-related features in Table 4.1 are measured over

the entire output domain of the multipliers (N=65536), i.e. 256×256 = 65536

cases for the employed 8-bit multipliers.

ED = E − A

RED = 1− A

E

AED = |E − A|

RMSED =

√(
1

N
×
∑N

i=1(Ai − Ei)2
)

V arED =
1

N
×
∑N

i=1

(
EDi −

1

N
×
∑N

i=1EDi

)2

(4.1)

Note that the variance and the root mean square (RMS) are distinct met-

rics, as specified in (4.1). Specifically, the variance measures the spread of the
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Figure 4.1: Effects of multiplier size on classification accuracy.

data around the mean while the RMS measures the spread of the data around

the best fit. In the case of error metrics, the best possible fit is zero.

All of the multipliers were implemented in VHDL and/or Verilog and syn-

thesized using the Synopsys Design Compiler (DC) for the STMicro CMOS

28-nm process to obtain the most important hardware metrics: the power dis-

sipation, the circuit area, and the critical path delay. These hardware metrics

are useful for identifying the most hardware-efficient multiplier among those

with similar error characteristics.

We also generated 500 approximate multipliers using the CGP algorithm.

The Verilog, C, and MATLAB codes for all the designs and their error and

hardware characteristics can be found in [64].

4.1.2 Application-dependent metrics

The classification accuracies of the MLP and LeNet-5 networks were evaluated

over the MNIST and SVHN datasets, respectively. All 600 of the approximate

multiplier designs (100 deliberately-designed and 500 CGP-based) were em-

ployed in both NNs and the resulting classification accuracy of the NNs was

calculated.
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The results show that without performing the retraining steps, the 6-bit

multiplier is the smallest design that is able to provide acceptable results. On

the other hand, when retraining steps are considered (we performed 5 retrain-

ing steps), 4-bit designs can be used with only 2% degradation in classification

accuracy compared to 8-bit designs. Note that the 8-bit designs were found

to be only 0.04% less accurate than the 12-bit designs.

Interestingly, we observed that almost all of the approximate multipliers

result in similar classification accuracies for the MNIST dataset, regardless of

the circuit design. This was expected since MNIST is a relatively easy dataset

to classify. This bodes well for the use of cheaper, approximate multiplier

designs. The SVHN dataset, however, shows drops in classification accuracy

more clearly than the MNIST dataset when reduced-width multipliers are

used. This might be due to the fact that SVHN data is inherently harder to

classify than the MNIST data.

4.1.3 Overfitting

An interesting finding from this work is the observation that a few approximate

multipliers have slightly improved the classification accuracy over the exact

multipliers. This is a potentially significant result since it means that we can

use less hardware and less power and yet get better results. We believe that

overfitting in NNs may be the main reason for this interesting result.

Overfitting happens when the network is trained so much that it produces

overly complex and unrealistic class boundaries when deciding whether to

classify a data point into one class or another [65]. An overfitted network

performs well on the training data since it effectively memorizes the training

examples, but it performs poorly on test data because it has not learned to

generalize to a larger population of data values. Several solutions have been

proposed in the literature to avoid overfitting such as dropout [65], weight

decay [66], early stopping [67], and learning with noise [68]–[73].

Dropout techniques help to avoid overfitting by omitting some neurons

from a NN. More specifically, for each training case, a few neurons are se-

lected and removed from the network, along with all their input and output
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connections [65]. Weight decay is another strategy for handling overfitting in

which a weight-decay term is added into the objective function. This term

reduces the magnitude of the trained weights and makes the network’s out-

put function smoother and, consequently, improves the generalization (i.e., a

well-generalized NN can more accurately classify unseen data from the same

population as the learning data) and reduces the overfitting [66]. Early stop-

ping approaches stop the training process as soon as a predefined threshold

value for classification accuracy has been achieved with the objective of pre-

venting too much training and hence overfitting [67].

Last, but not the least, the addition of noise to the synaptic weights of

NNs has been found to be a low overhead technique for improving the perfor-

mance of a NN [69]. The authors in [71] report up to an 8% improvement in

classification accuracy by injecting stochastic noise into the synaptic weights

during the training phase. The noise injected into the synaptic weights in NNs

can be modeled as either additive or multiplicative noise [72], [73], as defined

in (4.2), and both have been found to be beneficial.

Additive noise : W ∗
ij = Wij + δij

Multiplicative noise : W ∗
ij = Wijδij

(4.2)

In (4.2), δij denotes the injected noise and Wij denotes the noisy synaptic

weight between the ith neuron in layer L and the jth neuron in layer L + 1.

The input of neuron j in layer L+ 1, denoted by nj, is calculated by

nj =
∑NL

i=1 xi × wij, (4.3)

where NL is the number of neurons in layer L, and xi and wij denote a neu-

ron’s output and its connection weight to neuron j, respectively. If the exact

multiplication in (4.3) is replaced with an approximate one, the approximate

product for multiplicand a and multiplier b is given by

M(a, b) = a× b+ ∆(a, b), (4.4)

where the dither (error function) ∆(a, b) is the function that expresses the dif-
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ference between the output of an exact multiplier and that of an approximate

multiplier. By combining (4.3) and (4.4) we obtain:

nj =
∑NL

i=1 xi × wij =
∑NL

i=1M(xi, wij) ≈

approximate multipliers−−−−−−−−−−−−−−−−−−→
∑NL

i=1M
′(xi, wij) =

∑NL

i=1

(
(xi × wij) + ∆(xi, wij)

)
=

∑NL

i=1

(
xi × (wij +

∆(xi, wij)

xi
)

)
=
∑NL

i=1 xi × w∗ij.

(4.5)

Note that the “noise” term, ∆(xi, wij) in (4.5) depends on the neuron out-

put xi and is a different function for each individual design. Hence, we cannot

compare the result in (4.5) to the definitions given in (4.2) since ∆(xi, wij)

is an unknown function that changes for different multipliers. However, we

hypothesize that the same argument that adding “noise” onto the synaptic

weights, as we did in (4.5), can sometimes help to avoid overfitting in NNs.

To provide experimental support for this hypothesis, we built an analytical

approximate multiplier, which is defined as:

M ′(a, b) = a× b+ ε, (4.6)

where ε denotes the injected noise. We added Gaussian noise since it is the

most common choice in the literature [68]–[70]. We used this noise-corrupted

exact multiplier in an MLP (784-300-10, i.e. 784 neurons in the first layer, 300

hidden neurons, and 10 output neurons) and tested it over the MNIST dataset.

Fig. 4.2 shows how the accuracy is affected by increasing noise levels. Note

that the noise’s mean and standard deviation in the noise-corrupted multiplier

are the exact multiplication product (EMP) and a percentage of the EMP,

respectively. This percentage is given by the term noise level in Fig. 4.2.

Since the added Gaussian noise is stochastic, we ran the simulations 10

times and report the average results. The results in Fig. 4.2 confirmed the

results in [68], [73]: adding small amounts of noise can indeed improve the

classification accuracy. However, as shown in Fig. 4.2, adding too much noise
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Figure 4.2: MNIST classification accuracy, training and testing with additive
Gaussian noise.

will degrade the classification accuracy. Note that the classification accuracies

in Fig. 4.2 are normalized to the classification accuracy obtained by using exact

multipliers.

Additionally, we injected Gaussian noise with positive and negative offsets

in our accuracy analysis in Fig. 4.2 to show the negative effect of biased noise

on the classification accuracy. For biased noise, the errors are more likely

to accumulate and, therefore, the accuracy drops. The mean is changed to

1.1×EMP and 0.9×EMP to model the positive and negative offsets, respec-

tively.

4.2 Critical Features of Multipliers for NNs

In the previous section, we showed that adding noise to the multipliers can

improve the accuracy of a NN. We also modeled the difference between an

exact multiplier and an approximate one using the error function ∆(xi, wij)

of the approximate multiplier, see (4.5). In this section we consider different

multipliers to investigate which properties of the error function might make

one design superior to others when employed in a NN.
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As previously mentioned, the error function depends on the multiplier and

is a different function for each individual design. An exact analysis of the

error functions for different multipliers is impractical and so instead we sought

the relevant features of the error functions using statistical techniques. Nine

seemingly relevant features of the error function were identified and listed in

Table 4.1. In order to determine the most discriminative features of the error

functions, i.e. the features that contribute the most to the performance of an

approximate multiplier in a NN, the nine features in Table 4.1 were applied to

several standard statistical feature selection tools (as described next).

To be able to run the feature selection algorithms, the multipliers were

classified into two categories based on their performance in NNs. We defined

a threshold accuracy, Ath, and classified the multipliers that produce higher

accuracies than Ath into “Class 1” while the others drop into “Class 0”. Since

in the NN accuracy analysis some approximate multipliers produce slightly

higher classification accuracies than exact multipliers when employed in NNs,

it was convenient to choose Ath = ACCExact, which is the NN classification ac-

curacy that is obtained when exact multipliers are employed in the network’s

structure. Note that the average noise level for the Class 1 approximate mul-

tipliers is 2.61%, which is close to the obtained noise level range in Fig. 4.2.

4.2.1 Feature selection

Feature selection is a statistical way of removing less relevant features that are

not as important to achieving accurate classification performance. There are

many potential benefits to feature selection including facilitating data under-

standing and space dimensionality reduction [74], [75]. In this article, feature

selection algorithms are used to select a subset of the multipliers’ error function

features that are the most useful for building a good predictor. This predictor

anticipates the behavior of an approximate multiplier in a NN.

Scikit-learn is a free machine learning tool that is widely used for feature

selection [76]. It accepts an input data array and their corresponding labels

to build an estimator that implements a fitting method. We used the three

classifiers recursive feature elimination (RFE) [77], mutual information (MI)
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[78], and Extra-Tree [79].

The RFE classifier iteratively prunes the least important features from the

current set of features until the desired number of features is reached. The

ith output of the RFE corresponds to the ranking position of the ith feature,

such that the selected (i.e., the estimated best) features are assigned a rank

of 1. Note that in RFE, the nested feature subsets contain complementary

features and are not necessarily individually the most relevant features [77].

MI is another useful feature selection technique that relies on nonparametric

methods based on entropy estimation from the K-nearest-neighbor distances,

as described in [78]. Each feature is assigned a score, where higher scores

indicate more important features. Finally, the tree-based estimators can also

be used to compute feature importance to discard less relevant features. Extra-

Tree, an extremely randomized tree classifier, is a practical classifier that is

widely used for feature selection [79]. Similar to MI, the ith output of this

classifier identifies the importance of the ith feature, such that the higher the

output score, the more important the feature.

The results for each of the three mentioned feature selection algorithms

are provided in Table 4.2. The results in Table 4.2 show that Var-ED is the

most important feature according to all three classifiers. RMS-ED is another

important metric, i.e. the most important metric according to RFE, the second

most critical feature in MI, and the third most significant metric in Extra-Tree

classifier. Our simulation results show that the average value of the Var-ED

and RMS-ED features for “Class 0” multipliers are 20.21× and 6.42× greater

than those of the “Class 1” approximate multipliers, respectively.

Other important features that have a good ranking in the three classifiers

are MEAN-AED and VAR-AED. We also observed that the multipliers

that produced better accuracies in a NN than the exact multiplier (Class 1

multipliers) all have double-sided error functions. Thus they overestimate the

actual multiplication product for some input combinations and underestimate

it for others. Having double-sided EDs seems to be a necessary but not a

sufficient condition for better accuracy.

Given that “Class 1” approximate multipliers tend to have smaller Var-
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Table 4.2: Ranking of the error function features.

Features
Feature ranking

RFE
MI

(score/ranking)
Extra-Tree

(score/ranking)
ER 5 0.2844 / 7 0.0518 / 9

Mean-ED 1 0.2124 / 8 0.0534 / 8
Var-ED 1 0.3884 / 1 0.2074 / 1

RMS-ED 1 0.3861 / 2 0.1383 / 3
Mean-RED 7 0.1623 / 9 0.0562 / 7
Var-RED 6 0.3309 / 5 0.0993 / 6

RMS-RED 4 0.3253 / 6 0.1235 / 5
Mean-AED 2 0.3655 / 3 0.1452 / 2
Var-AED 3 0.3424 / 4 0.1244 / 4

ED and RMS-ED values and the observation that double-sided errors are

necessary for a good approximate multiplier, the difference in the error mag-

nitude should be small to meet the RMS-ED requirement i.e., having small

RMS-ED values. Moreover, since the error should be double-sided to have a

small variance, these errors should be distributed around zero.

4.2.2 Training the classifier

Now, having found the most important features of the error function of an

approximate multiplier, we can use them to predict how well a given approx-

imate multiplier would work in a NN. In this sub-section we explain how to

build a classifier that has the error features of an approximate multiplier as

inputs and predicts if it belongs to Class 1 or Class 0.

NN-based classifier

The error features of 500 randomly selected multipliers were used to train the

NN-based classifier and those of the 100 remaining multipliers were used as

the test samples to obtain the classification accuracy of the trained model. We

designed a 3-layer MLP with 20 neurons in the hidden layer and 2 neurons

in the output layer (since we have two classes of multipliers). The number of

neurons in the input layer equals the number of features that are considered

for classification. The number of considered multiplier error features that
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were used as inputs to the NN-based classifier was varied from 1 up to 9 (for 9

features in total, see Table 4.1). The resulting classification accuracies, plotted

in Fig. 4.3, reflect how well the classifier classifies approximate multipliers into

Class 1 or Class 0.

Note that when fewer than nine features are selected, the combination of

features giving the highest accuracy is reported in Fig. 4.3. The combination

of features is selected according to the results in Table 4.2 and is given in Table

4.3.

To choose two features, for example, the candidate features are selected

from the top-ranked ones in Table 4.2: (1) Var-ED and Mean-AED (by

Extra-Tree), (2) Var-ED and RMS-ED (by MI), and (3) Mean-ED, Var-

ED, and RMS-ED (by RFE). For these four features (i.e. Mean-ED, Var-

ED, RMS-ED, and Mean-AED), we consider all six possible combinations

and report the results for the combination that gives the highest accuracy.

Using the same process as in this example, the feature combinations for which

the accuracy is maximized were found and are provided in Table 4.3.

As shown in Fig. 4.3, the highest classification accuracy is achieved when

two features are used as inputs to the NN-based classifier, namely Var-ED

and RMS-ED. Also, Fig. 4.3 shows that using more than two features does not

necessarily result in a higher accuracy.

MATLAB classification learner application

The MATLAB software environment provides a wide variety of specialized

applications [80]. In particular, the classifier learner application, available

in the “apps gallery”, allows us to train a model (classifier) that predicts if

a multiplier falls into “Class 0” or “Class 1” when applied to a NN. This

application provides the option of choosing a model type, i.e. decision trees, K

nearest neighbors, support vector machines (SVMs), logistic classifiers among

others. We considered all of these model types (with their default settings) to

find the model that most accurately fits the classification problem. Similarly,

500 randomly selected multipliers were used to train the model and the 100

remaining multipliers as the test samples to obtain the classification accuracy
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Table 4.3: Feature combinations that give the highest multiplier classification
accuracy.

Number of
features

Selected combination

1 Var-ED
2 Var-ED, RMS-ED
3 Var-ED, RMS-ED, Mean-AED

4
Var-ED, RMS-ED,

Mean-AED, Var-AED

5
Var-ED, RMS-ED, Mean-AED,

Var-AED, RMS-RED

6
Var-ED, RMS-ED, Mean-AED,
Var-AED, RMS-RED, Mean-ED

7
Var-ED, RMS-ED, Mean-AED, Var-AED,

RMS-RED, Mean-ED, Var-RED

8
Var-ED, RMS-ED, Mean-AED, Var-AED,

RMS-RED, Mean-ED, Var-RED, ER

of the trained model.

Fig. 4.3 also shows the effect of the number of selected features on the

accuracy of each of the three considered classifiers. Note that the SVM- and

KNN-based classifiers achieve higher accuracies than the decision tree-based

classifier. All three classifiers achieve better accuracies than the NN-based

classifier.

Similar to the NN-based classifier, the classifier’s accuracy for the combi-

nation of features that gives the highest accuracy is shown in Fig. 4.3 when

fewer than 9 features are selected. The highest classification accuracy for the

SVM- and KNN-based classifiers is achieved when only two features are used

as inputs to the classifier: i.e. Var-ED and RMS-ED. However, the decision

tree-based classifier has the highest accuracy when only one feature, Var-ED,

is considered.

Verifying the classifiers

The trained SVM classifier was verified in the previous subsection by using

100 approximate multipliers, where an accuracy of almost 86% was achieved.

In this section, the SVM classifier is used to predict the performance of 14
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Figure 4.3: Effect of the number of selected features on approximate
multiplier classifier accuracy.

representative approximate multipliers in a different benchmark NN. The SVM

classifier is selected since it has the best performance compared to the other

classifiers, see Fig. 4.3.

Ideally, we would want to verify the classifier using all 600 approximate

multipliers. However, the large number of multipliers in a deep NN bench-

mark and the large number of images in the dataset would make the ex-

haustive experiment prohibitively time consuming. Therefore, in addition to

the 100 previously considered multiplier, 5 multipliers were randomly selected

from each class of approximate multipliers, plus the two multipliers that pro-

vided the best accuracy when used in a NN to classify the SVHN and MNIST

datasets, and the two multipliers that had the worst accuracy for those same

datasets. The SVM classifier was used to predict the behavior of each of these

multipliers in a given NN benchmark. Then, these multipliers were used in

the NN to verify the classifier’s accuracy.

AlexNet is considered as the benchmark NN and trained to classify the

ImageNet dataset [81]. AlexNet is a CNN with 9 layers: an input layer, 5

convolution layers, and 3 fully-connected layers [23]. Note that training a
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Table 4.4: Classification accuracy of AlexNet on the ImageNet LSVRC-2010
dataset.

Class of multipliers Multiplier SVM classifier

Class 1

M0: Randomly selected 3

M1: Randomly selected 7

M2: Randomly selected 3

M3: Randomly selected 3

M4: Randomly selected 3

Best for SVHN 3

Best for MNIST 3

Class 0

M5: Randomly selected 3

M6: Randomly selected 3

M7: Randomly selected 3

M8: Randomly selected 3

M9: Randomly selected 3

Worst for SVHN 3

Worst for MNIST 3

deep CNN over a big dataset, such as the ImageNet, would be very time

consuming. Hence, we used the MATLAB pre-trained model and performed

10 retraining steps (using the approximate multipliers) as an alternative to

training the network from scratch.

Table 4.4 shows how the SVM classifier anticipates the performance of each

of the 14 multipliers (i.e., the five randomly selected multipliers from each class

of approximate multipliers and the four multipliers that provided the best and

the worst accuracies when used in a NN to classify the SVHN and MNIST

datasets) in AlexNet.

As shown in Fig. 4.3, none of the classifiers is 100% accurate. For instance,

the AlexNet implemented with approximate multiplier M1 has a worse accu-

racy than Ath (i.e., the accuracy of AlexNet implemented with exact multi-

pliers) even though the multiplier is classified into “Class 1” (see Table 4.4).

However, this misclassified multiplier produces an accuracy close to Ath and

the difference in accuracy (0.41%) is small.

While some multipliers might perform well for one dataset, they might not

work well for other datasets. In other words, the performance of a multiplier

is application-dependent. To illustrate this claim, we have plotted the Pareto-

optimal designs in power-delay product (PDP) for the SVHN dataset using all
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600 approximate multipliers in Fig. 4.4(a).

Fig. 4.4(b) shows the performance of the Pareto-optimal multipliers in PDP

for the SVHN dataset for the MNIST dataset. Note that a multiplier is con-

sidered to be PDP-Pareto optimal if there does not exist any other multiplier

which improves the classification accuracy with the same PDP. It is clear from

Fig. 4.4 that the Pareto-optimal designs for the two datasets are different.

4.3 Error and Hardware Analysis of Approxi-

mate Multipliers

This section analyzes the error and hardware characteristics of approximate

multipliers. Based on this analysis, a few designs that have a superior perfor-

mance in both considered datasets are identified and recommended.

4.3.1 Error analysis

Fig. 4.5 compares “Class 0” and “Class 1” multipliers with respect to four

important error features: Var-ED, RMS-ED, Mean-AED, and Var-AED.

This plot shows how the “Class 1” and “Class 0” multipliers measure differ-

ently for the considered features. As shown in Fig. 4.5, “Class 1” multipliers

generally have smaller Mean-AED, Var-ED, Var-AED, and RMS-ED val-

ues, when compared to “Class 0” multipliers. It also shows, in the zoomed-in

insets, that some “Class 0” multipliers have smaller Var-AED, RMS-ED,

Mean-AED, and/or Var-ED values than some “Class 1” multipliers is the

reason why some multipliers are misclassified by the classifiers.

4.3.2 Hardware analysis

To further understand the quality of approximate multipliers, we performed

a hardware analysis. The main hardware metrics of a multiplier, i.e. power

consumption, area, and critical path delay, and PDP, are considered in this

analysis. Note that all of the considered multipliers in this work are pure com-

binational circuits for which the throughput is inversely proportional (a.k.a.

reciprocal function) to the critical path delay.
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Figure 4.4: Neural network accuracy using the same approximate multipliers
for different datasets.

58



0 100 200 300 400 500 600 700

Mean-AED

0

1

2

3

4

5

6

7

8

V
a
r
-E

D

10
5

Class 0

Class 1

100 150 200

0

5

10

15
10

4

(a) Var-ED vs. Mean-AED.

-1 0 1 2 3 4 5 6

log
10

Var-AED

0

1

2

3

4

5

6

7

8

V
a

r-
E

D

10
5

Class 0

Class 1

4 4.5 5
0

0.5

1

1.5

2
10

5

(b) Var-ED vs. log10(Var-AED).

0 200 400 600 800 1000

RMS-ED

0

1

2

3

4

5

6

7

8

V
a
r
-E

D

10
5

Class 0

Class 1

150 200 250

2

4

6
10

4

(c) Var-ED vs. RMS-ED.

Figure 4.5: Classification of Class 0 and Class 1 multipliers based on the
most important features.
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Fig. 4.6 shows two scatter plots that best distinguish the two classes of ap-

proximate multipliers are area vs. delay (Fig. 4.6(a)) and power consumption

vs. delay (Fig. 4.6(b)). Note that only the results for the SVHN dataset are

shown as the results for the MNIST are almost the same.

As the results in Fig. 4.6 show, unlike for the error metrics, there is no clear

general trend in the hardware metrics. However, the designs with small delay

and power consumption are preferred for NN applications, as discussed next.

As approximate multipliers are obtained by simplifying the design of an

exact multiplier, more aggressive approximations can be used to further reduce

the hardware cost and energy consumption. As previously discussed, some

multipliers have almost similar accuracies, while as shown in Fig. 4.4, they

have different hardware measures. The main reasons are as follows: (1) The

hardware cost of a digital circuit totally depends on how it is implemented

in hardware; e.g., array and Wallace multipliers are both exact designs and,

therefore, they have the same classification accuracy. However, they have

different hardware costs. (2) Classification accuracy of NNs is application-

dependent and it depends on the network type, the dataset, learning algorithm,

and the number of training iterations.

4.4 Recommended Approximate Multipliers

This subsection identifies a few approximate multipliers that have superior

performance for both considered datasets. We chose the five best approximate

multipliers that produce better accuracies than exact multipliers when used in

the two considered NNs: the MLP for the MNIST dataset and LeNet-5 for the

SVHN dataset. Note that these five designs were selected and sorted based on

their low PDP values.

Table 4.5 lists and Fig. 4.6 shows these multipliers. Their Verilog, C, and

MATLAB descriptions can be found online from [64]. Table 4.5 also reports the

main hardware characteristics of these designs, i.e. the area, power consump-

tion, delay, and PDP. The results in Table 4.5 indicate that all five chosen

approximate multipliers (which are all CGP-based approximate multipliers)
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Figure 4.6: Hardware comparison between Class 0 and Class 1 approximate
multipliers.
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Table 4.5: Hardware characteristics of the five best approximate multipliers.

Multiplier Area (µm2) Power (µW ) Delay (nS) PDP (fJ)
Exact 290.98 176.90 0.92 162.74

mul8-350 92.86 43.37 0.62 26.97
mul8-439 95.96 44.03 0.62 27.40
mul8-120 97.92 44.30 0.65 28.62
mul8-183 109.67 46.45 0.62 28.92
mul8-134 111.14 46.69 0.62 29.07

Table 4.6: Error characteristics of the five best approximate multipliers.

Multiplier ER VAR-ED RMS-ED
Accuracy (%)

MNIST SVHN
Exact 0 0 0 97.69 86.93

mul8-350 99.0 1.246e+4 123.0 97.70 87.00
mul8-439 97.8 4.500e+4 275.5 97.71 86.96
mul8-120 98.5 3.954e+4 217.3 97.70 87.00
mul8-183 97.2 1.334e+4 135.6 97.70 86.98
mul8-134 93.9 0.768e+4 111.1 97.72 86.95

consume less power (at least 73%) than the exact multiplier, while providing

slightly higher accuracies (up to 0.18% more) when they are used in NNs.

Comparing the average area and PDP shows a significant saving in hardware

cost (i.e. 65.20% and 81.74% less area and PDP, respectively) by replacing the

exact multipliers with the approximate ones.

The accuracies of the five recommended multipliers when employed in the

two NN workloads are reported in Table 4.6. Although not an important error

feature, the ER is shown in Table 4.6, together with VAR-ED and RMS-ED,

which are two critical error features for the performance of an approximate

multiplier in NNs. The results show that the five recommended multipliers all

have small VAR-ED and RMS-ED values.

Hardware descriptions (in Verilog) of all of the CGP-based approximate

multipliers can be found online in [64]. By using the Verilog code, one can

easily obtain the truth table and/or the logic circuit for each design.

VAR-ED and RMS-ED, as the two most critical error features for the

performance of an approximate multiplier in NNs, are also given in Table

4.6. The results show that the five recommended multipliers all have small
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Table 4.7: Hardware characteristics of an artificial neuron implemented using
recommended approximate multipliers.

Multiplier used in the neuron Energy(fJ) Area(µm2)
Exact 944.08 956.02

mul8-350 269.48 367.52
mul8-439 438.29 475.72
mul8-120 553.68 599.10
mul8-183 631.76 561.40
mul8-134 801.73 583.92

VAR-ED and RMS-ED values, which is consistent with the results in Fig. 4.5.

An artificial neuron was also implemented using the five recommended

approximate multipliers to replace the exact ones. The implemented neuron

has three inputs and an adder tree composed of two adders to accumulate

the three multiplication products. This is a widely-used technique for the

performance analysis of multipliers in NNs [26].

The hardware characteristics for the implemented neuron are given in Table

4.7. The results show that the neurons constructed using the recommended

multipliers can be up to 71.45% more energy-efficient than the neuron that

uses the exact multiplier while being 61.55% smaller than it.

4.5 Summary

This chapter described the evaluation of a large pool of approximate multipli-

ers, which contained 100 deliberately-designed and 500 CGP-based multipli-

ers, for application in NNs. The exact multipliers in two benchmark networks,

i.e. one MLP and one CNN (LeNet-5), were replaced after training with ap-

proximate multipliers to see how the classification accuracy is affected. The

MLP and the CNN were employed to classify the MNIST and the SVHN

datasets, respectively. The classification accuracy was obtained experimen-

tally for both datasets for all 600 approximate multipliers.

The features in an approximate multiplier that tend to make it superior to

others with respect to NN accuracy were identified and then used to build a

predictor that forecasts how well an approximate multiplier is likely to work in
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a NN. This predictor was verified by classifying 114 approximate multipliers

based on their performance in LeNet-5 and AlexNet CNN for the SVHN and

ImageNet dataset, respectively.

The major findings of this chapter are as follows:

• NNs that use appropriate approximate multipliers can provide higher ac-

curacies compared to NNs that use the same number of exact multipliers.

This is a significant result since it shows that better NN performance can

be obtained with significantly lower hardware cost while using approxi-

mation.

• It appears that using approximate multipliers adds small inaccuracies

(i.e., approximation noise) to the synaptic weights and this noise helps

to mitigate the overfitting problem and thus improve NN accuracy.

• The most important features that make a design superior to others are

the variance of the error distance (Var-ED) and the root mean square of

the error distance (RMS-ED).

Although the statistically most relevant and critical features of approxi-

mate multipliers are identified in this work, a statistically accurate predictor

based on those features cannot guarantee that the best approximate design

will be identified: ensuring the best choice of approximate multiplier requires

application-dependent experimentation.

64



Chapter 5

Logarithmic Multiplier and
Squaring Circuits

This chapter proposes an energy-efficient leading-one detector (LOD) to speed

up and improve the hardware efficiency of approximate logarithmic arithmetic

circuits. The main drawback of the logarithmic multipliers that use LODs, like

the Mitchell-based multipliers, is that they always underestimate the actual

multiplication product. This may cause problems in iterative and repetitive

applications, where the errors would accumulate. Hence, a nearest-one de-

tector (NOD) is proposed and used in this chapter to design a logarithmic

multiplier that has a more convenient double-sided error distribution. In ad-

dition, a logarithmic squaring circuit is proposed and evaluated in this chap-

ter. Although the squaring function can be implemented with a multiplier,

the frequent use of squaring in DSP applications led us to investigate it as an

independent design.

5.1 Fast and Low-Power Leading-One Detec-

tor for More Energy-Efficient Logarithmic

Multipliers

In a logarithmic number system (LNS), the binary logarithm of the input

operand is computed using a LOD. Then the required operations (either shift

or addition/subtraction) are performed more economically in the LNS and,

finally, the antilogarithm of the result is computed. The common element in all
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logarithmic arithmetic units, which plays a significant role in the performance

of the system, is the LOD [53], [82]. Hence, a novel energy-efficient and fast

LOD is proposed in this section.

5.1.1 The proposed LOD design

The main idea of the proposed exact LOD is to use an exact n-bit LOD to find

the position of the leading one of a 2n-bit number. The 2n-bit input number

N is divided into two halves, i.e. the more significant half (NH = N2n−1:n) and

the less significant half (NL = Nn−1:0). An OR gate tree is used to find out

whether or not there is a ‘1’ in NH . The two possible scenarios arise:

• There is a ‘1’ in NH . In this case, NH is the input to an exact n-bit LOD.

Since the output bit width of a conventional LOD for a 2n-bit number

is 2n bits, n zeros can be immediately appended to the LSB lower half

of the one-hot encoded result.

• There is no ‘1’ in NH . In this case, NL is input to an exact n-bit LOD.

As in the previous case, n zeros are appended to the MSB upper half of

the result.

The block diagram of the proposed LOD is shown in Fig. 5.1. Note how

16 MSBs are evaluated using an OR gate tree and the final result, i.e. signal

sel, is used as the select line of a multiplexer. Similar to the scaling technique,

sel = ‘1’ means that there is at least one ‘1’ among the 16 MSBs (NH) and,

therefore, NH is the input to the 16-bit LOD. Otherwise, NL is used as the

input to the 16-bit LOD. Note that in Fig. 5.1, the symbol ‘&’ denotes vector

concatenation and not logical bit-wise AND.

Although the proposed LOD is only evaluated in a logarithmic multiplier

in this chapter, it is applicable to all of the other logarithmic arithmetic units

that use a LOD, such as logarithmic squaring and square root functions and

logarithmic dividers.
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Figure 5.1: Using a 16-bit LOD to find the position of the leading one in a
32-bit number.

Table 5.1: Hardware metrics of five different logarithmic squaring functions.

Multiplier type
Power
(mW )

Delay
(nS)

Area
(µm2)

PDP
(fJ)

Conventional Mitchell [47] 0.74 4.25 2257.21 3.14
Mitchell with proposed LOD 0.56 2.96 2173.66 1.65

5.1.2 Hardware analysis of the proposed LOD

This section provides the hardware metrics for the baseline Mitchell multi-

plier and the Mitchell multiplier with the proposed LOD. Both designs were

implemented using the VHDL hardware description language in Vivado and

then synthesized using the Synopsys Design Compiler for ST Micro’s 28-nm

CMOS process. The default settings for Design Compiler were used for all of

the simulations to ensure a fair comparison.

The conventional LOD in the Mitchell multiplier was replaced with the

proposed design. The predicted values for four key metrics — area, critical

path delay, power consumption, and PDP — were then extracted.

As shown in Table 5.1, the Mitchell Multiplier with the proposed LOD is
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30.35% faster than the conventional Mitchell multiplier. In terms of area, the

proposed LOD results in a smaller multiplier than the standard Mitchell multi-

plier. Finally, with respect to the energy consumption, the Mitchell multiplier

with the proposed LOD reduces the PDP by a factor of almost 0.5×.

5.2 An Improved Logarithmic Multiplier for

Energy-Efficient Neural Computing

The proposed logarithmic multiplier in this section can be used as a more ac-

curate baseline design instead of the Mitchell approach. Moreover, the existing

techniques in the literature for improving the accuracy of the Mitchell method

are also applicable to the proposed method.

5.2.1 Proposed approximation approach

The positive integer N expressed as in (2.8) can be also represented as:

N = 2k+1(1− y), (5.1)

where 0 < y ≤ 1.

The conventional logarithmic approximation uses 2k for the given number

2k ≤ N < 2k+1 (by using a LOD). Instead, we propose the approximation given

in Algorithm 1. Let d1 and d2 denote the differences N − 2k and 2k+1 − N ,

respectively. As shown in Algorithm 1, when d1 < d2 we underestimate the

value of log2N as k; otherwise, we overestimate it as k + 1.

Algorithm 1 Proposed approximation for computing log2N given N

1: N = 2k(1 + x) = 2k+1(1− y)
2: d1 = N − 2k . error in underestimate
3: d2 = 2k+1 −N . error in overestimate
4: if d1 < d2 then . use underestimate
5: x = d1/2

k

6: log2N ≈ k + x
7: else . use overestimate
8: y = d2/2

k+1

9: log2N ≈ k + 1− y
10: end if
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Figure 5.2: Approximation of log2N .

The exact, Mitchell, and the proposed methods for computing log2N are

plotted in Fig. 5.2. The k parameter values corresponding to the N values,

obtained from Algorithm 1, are also shown (between the vertical dotted lines)

in Fig. 5.2. Only the intervals for k ≥ 3 is shown in order to keep the figure

easy to read.

The proposed approximation results in more than 6× smaller average error

(over the integer range [1, 255]) than the Mitchell method (0.0088 vs. 0.0568),

which is due to the double-sided error distribution of the proposed approach.

To further illustrate the error behavior of the proposed method, we com-

pare the mean square error (MSE) values of the proposed and the Mitchell

approaches. Mitchell uses the approximation log2(1 + x) ≈ x. On the other

hand, according to Algorithm 1, log2N can be approximated as:

log2N ≈

{
k + x, for N = 2k(1 + x),

k + 1− y, for N = 2k+1(1− y).
(5.2)

Given the approximated values for log2N , the MSEM for the Mitchell

method can be calculated as:
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MSEM =
1

8
×

7∑
k=0

[
1

2k
×

2k−1∑
i=0

(
log2(1 +

i

2k
)− i

2k

)2
]
. (5.3)

The summation over k is provided to cover the entire input range for an 8-

bit design. To calculate the MSE for the proposed approach we need to divide

the input domain into two intervals. In the first interval, the input operand is

closer to the largest power of two smaller than or equal to it. In the second

interval, on the other hand, the input operand is closer to the smallest power

of two that is larger than it. This can be done for the MSEP as:

MSEP =
1

8
×

7∑
k=0

[
1

2k
×
[2k−1−1∑

i=0

(
log2(1 +

i

2k
)− i

2k

)2

+
2k−1∑

i=2k−1

(
log2(

2k + i

2k+1
)− 2k − i

2k+1

)2]]
.

(5.4)

The mathematical proofs for (5.3) and (5.4) are provided in Appendix A.1

and A.2, respectively.

5.2.2 Improved logarithmic multiplier design

High-level description of the ILM design

The proposed ILM first transforms the multiplicand A and multiplier B to the

closest powers of two plus an additional term, as given by:

A = m1 + q1, (5.5)

B = m2 + q2, (5.6)

where m1 = 2k1 and m2 = 2k2 . Hence, the product A×B can be approximated

as:

A×B ≈ (2k1+k2 + q22
k1 + q12

k2) +���q1q2. (5.7)

As shown in (5.7), the three most significant terms are all multiples of

powers of two that can be easily implemented as left-shift operations in hard-

ware. In this design, the least significant term (q1q2) is ignored and left as the
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approximation error. A more detailed description of the ILM is provided in

Algorithm 2, where NOD, PE and DEC denote the nearest-one detector, the

priority encoder, and the decoder, respectively. Detailed descriptions of these

three components are given in the following subsection.

Algorithm 2 Proposed logarithmic multiplication

1: procedure M(A, B)
2: A, B: inputs, γ: approximate output
3: m1 ← NOD(A),
4: k1 ← PE(m1),
5: q1 ← A−m1, . for steps 3-5 see (5.5)
6: m2 ← NOD(B),
7: k2 ← PE(m2),
8: q2 ← B −m2, . for steps 6-8 see (5.6)
9: q12

k2 ← q1 << k2,
10: q22

k1 ← q2 << k1,
11: 2k1+k2 ← DEC(k1 + k2),
12: γ ← 2k1+k2 + q22

k1 + q12
k2 . . see (5.7)

Hardware implementation

The ILM can be implemented by either: (1) implementing the logic to calculate

the nearest powers of two, or (2) using a look-up table (LUT). We decided not

to use LUTs as that would increase the memory usage, which is often a serious

bottleneck for neural networks applications [26], [83].

The block diagram of the ILM is given in Fig. 5.3(a). The NOD circuits

(Figs. 5.3(b) and 5.3(c)) are based on a leading-one detector (LOD) circuit.

However, unlike the LOD, the NODs find the nearest power of two to a given

input. Similar to some existing LODs [82], [84], the proposed NODs evaluate

from the MSB to the LSB.

The priority encoder (PE) then determines the number of required shifts

based on the NOD’s output. The two residue terms q1 and q2 are also calcu-

lated and shifted according to the k2 and k1 values, respectively, and a decoder

generates the most significant term, 2k1+k2 . Finally, the three resulting terms

are summed up to obtain the approximate product. For hardware savings, we

used the PE proposed in [50].
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(a) Block diagram of the ILM and the priority encoder [50].

(b) Proposed nearest-one detector (NOD) Circuit I.

(c) Proposed nearest-one detector (NOD) Circuit II.

Figure 5.3: The proposed improved logarithmic multiplier (ILM) design.
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Figs. 5.3(b) and 5.3(c) depict the design of the two proposed NODs, where

I and O are the primary input and output signals, respectively. Normally,

nine bits are needed to represent the nearest power of two to an 8-bit input.

However, the proposed multiplier is evaluated for NN applications, where large

synaptic weights are unlikely to appear and removing them would not signif-

icantly influence the performance of NNs. Hence, are designs are simplified

by rounding down the output of the NOD to the largest power of two repre-

sentable in 8 bits, i.e. 128. In other words, up-rounding is not performed if the

nearest-power of two is greater than 128.

The NOD design in Fig. 5.3(c) is composed of two stages: (1) an up-

rounding stage and (2) a leading one detector. The internal 8-bit signal

T [7 : 0], obtained from the design on the left side of Fig. 5.3(c), is the up-

rounded version of the original input I. In fact, T = I at all bit positions

unless two successive bits in I, e.g. Ii and Ii−1, are ‘1’. In that case, the

bit at one higher position in signal T , i.e. Ti+1, will be ‘1’. For example, the

input signal I = “00110010” results in T = “01110010”. Note that not all of

the numbers require up-rounding. According to Algorithm 1, we only need to

overestimate and round up if d1 ≥ d2, i.e., when the closest power of two to the

input is greater than the input number. The internal signal T is then used as

the input to an LOD, as proposed in [50], to output the one-hot representation

of the nearest power of two to the given input. In fact, the two circuits on the

right side of Fig. 5.3(c) together form an LOD, as explained in [50].

In order to further improve the hardware efficiency, we also propose a novel

adder. This adder is used in the final stage, i.e. the adder that produces A×B

in Fig. 5.3(a). There are three inputs to this adder (i.e., 2k1+k2 , q1 × 2k2 ,

and q2 × 2k1 , see step 12 in Algorithm 2), hence an adder tree composed of

two adders is required. A conventional 8-bit ripple-carry adder (composed of

conventional FAs) is used to add q1× 2k2 and q2× 2k1 and the proposed adder

is used to add the result to the third term, 2k1+k2 , see Fig. 5.3(a).

Note that the proposed adder is not an approximate design, however it

has a simplified structure. Since 2k1+k2 is in a one-hot representation, the

structure of the 8-bit adder is modified accordingly. The truth tables for both
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Table 5.2: The proposed vs. the conventional full adder.

a b cin
Conventional FA Proposed FA
sum cout sum cout

0 0 0 0 0 0 0
0 0 1 1 0 1 0
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 1 0 1 0
1 0 1 0 1 N/A N/A
1 1 0 0 1 0 1
1 1 1 1 1 N/A N/A

Conventional
sum = (a.b.cin) + (a.b.cin) + (a.b.cin) + (a.b.cin)

cout = (a.b) + (a.cin) + (b.cin)

Proposed
sum = (b.cin) + (a.b.cin) + (a.b)

cout = (a.b) + (b.cin)

Table 5.3: Hardware comparison of the conventional and proposed full
adders.

Full adder
Power
(µW )

Delay
(nS)

Area
(µm2)

PDP
(fJ)

Conventional 1.32 0.09 3.42 0.1188
Proposed 0.59 0.08 2.28 0.0472

the conventional and the proposed FAs are shown in Table 5.2. Note that the

“not applicable” (N/A) entries in Table 5.2 cannot happen because there is

only one ‘1’ in one of the inputs. If input A is a one-hot number and the ‘1’ is

at bit position i, then it is not possible to have carry in from less significant

positions.

The performance of the proposed adder is compared to the conventional

FA and the results are given in Table 5.3. Both adders were implemented in

VHDL and then synthesized using the Synopsys Design Compiler (DC) for ST

Micro’s CMOS 28-nm process. As shown, the proposed adder is 33.3% smaller

and 60.27% more energy-efficient than the conventional full adder. This can

significantly reduce the hardware implementation cost, as discussed in the next

section.
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To further improve the hardware efficiency, the “conventional adder 2” in

Fig. 5.3(a) is replaced with an approximate adder. A modified SOA-k adder

is used in which, instead of setting all of the k LSBs to ‘1’, these bits are

set alternatively to ‘1’ and ‘0’Ḃy doing so, the resulting adder can either

overestimate or underestimate the result. Therefore, the double-sided error

distribution property in the proposed ILM is preserved.

5.2.3 Performance evaluation of the ILM

Accuracy metrics

The error for the product of A = 2k1(1+x1) and B = 2k2(1+x2) depends on k1

and k2, i.e. the intervals in powers of two into which the input operands fall. To

illustrate this error, the difference between the exact and approximate products

is plotted for two designs, the Mitchell and the proposed ILM multipliers, in

Fig. 5.4 for integers A,B ∈ [0, 255] to provide a better visualization of the

error behavior. Notice how the error increases as k1 and k2 increase.

Fig. 5.4 shows the error behavior over the multiplier’s entire input domain.

However, it has been shown that the trained synaptic weights in NN applica-

tions do not have a uniform distribution and they are mostly centered around

zero ([85] and [86]), where the multiplier is most accurate. On the other hand,

the exact input distribution varies for a NN; it would depend on the applica-

tion. Therefore, in Table 5.4 the accuracy metrics are reported for the two

most common general distributions, the uniform and standard normal. To

study the error distribution 106 input combinations were generated for multi-

plications using exact and logarithmic multipliers; the corresponding MRED,

average error (AE), and the NMED [87] were then calculated. Note that the

error distance is defined as the absolute difference between the exact and the

approximate products, Pe and Pa, while the AE is calculated as:

AE =
1

N
×

N∑
i=1

(Pa− Pe) (5.8)

The parameter k in the ALM-SOA-k in Tables 5.4 and 5.5 indicates the

number of LSBs to which approximation is applied. Similarly, IML-L indicates
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(a) Error characteristics of Mitchell’s multiplier. [50].

(b) Error characteristics of the proposed ILM multiplier.

Figure 5.4: Error visualization in LMs.
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Table 5.4: Error metrics of the LMs for general input distributions.

Distribution Multiplier Type AE MRED NMED

Uniform

Mitchell [47] 589.71 0.0372 0.0091
ALM-SOA-5[49] 561.48 0.0343 0.0087
ALM-SOA-9[49] 305.68 0.0873 0.0076

ILM-0 0.25 0.0275 0.0068
ILM-5 28.03 0.0296 0.0068
ILM-9 288.49 0.1069 0.0086

Normal

Mitchell [47] 76.29 0.0346 0.0012
ALM-SOA-5[49] 53.24 0.0877 0.0010
ALM-SOA-9[49] 183.66 1.6657 0.0035

ILM-0 5.24 0.0269 0.0008
ILM-5 19.26 0.0951 0.0010
ILM-9 270.60 1.6982 0.0044

that L LSBs are approximated in the proposed ILM.

The results in Table 5.4 show that the proposed ILM-0 is the most ac-

curate design with respect to all the considered error metrics, especially the

MRED, for both input distributions. ILM-5, on the other hand, is the second

most accurate design when the inputs are uniformly distributed. However,

for a normal input distribution, the Mitchell and the ALM-SOA-5 multipliers

perform better than ILM-5. Finally, ILM-9 has the worst error behavior as it

approximates nine LSBs, as explained in Section IV.B.

The error metrics for the LMs when used in the two considered NN work-

loads are given in Table 5.5. Instead of assuming a general input distribution,

as in Table 5.4, we performed all of the multiplications xi × wi in the NNs

using LMs and calculated their error metrics accordingly.

The results in both Tables 5.4 and 5.5 show that the ILM-0 and ILM-5 are

the most accurate of all the considered designs in terms of AE, MRED, and

NMED for both the uniform and normal distributions of inputs and for the

two application-specific NNs. Because the ER is generally high (more than

98% [49], [88]) for LMs due to the approximation in the base-2 logarithm and

it does not give any insight as to how close the approximated result is to the

exact one, the ER values are not reported here.
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Table 5.5: Error metrics of the LMs for the two NN workloads.

NN Type Multiplier Type AE MRED NMED

MLP(784-128-10)
MNIST dataset

Mitchell [47] 2704.39 0.4319 0.1992
ALM-SOA-5[49] 2506.42 0.3004 0.1873
ALM-SOA-9[49] 618.52 0.6267 0.1828

ILM-0 13.14 0.1193 0.0296
ILM-5 55.31 0.2539 0.0299
ILM-9 602.43 0.4757 0.0933

Alexnet
CIFAR-10 dataset

Mitchell [47] 583.89 0.0759 0.0389
ALM-SOA-5[49] 577.58 0.0695 0.0385
ALM-SOA-9[49] 825.81 0.1166 0.0659

ILM-0 25.13 0.0300 0.0087
ILM-5 6.73 0.0303 0.0083
ILM-9 261.66 0.0869 0.0349

Table 5.6: Hardware metrics of the logarithmic multipliers.

Multiplier
Power
(µW )

Delay
(nS)

Area
(µm2)

PDP
(fJ)

Mitchell [47] 66.26 1.42 281.2 94.09
ALM-SOA-5[49] 61.04 1.39 255.4 84.84
ILM-0 (NOD I) 53.72 1.68 287.4 90.25
ILM-5 (NOD I) 50.37 1.64 255.3 82.61
ILM-0 (NOD II) 65.27 1.83 285.9 119.44
ILM-5 (NOD II) 56.90 1.59 239.9 90.47

Hardware metrics

The hardware measurements for four key metrics are given in Table 5.6. The

design in [89] was considered as the Mitchell multiplier as [47] does not detail

any particular hardware implementation. Only the basic block in [89] was

implemented, i.e. no iterations as iterative algorithms can be applied to any

logarithmic design and they would significantly increase the hardware costs

[50].

As shown in Table 5.6, the smallest designs are ILM-5 (using NOD II) and

ILM-5 (using NOD I), which are, respectively, 14.68% and 9.21% smaller than

the base Mitchell design while being almost 20% more accurate (see Tables 5.4

and 5.5). With respect to delay, the ALM-SOA and Mitchell multipliers are

17.98% and 15.49% faster than the proposed ILM-5 (with NOD I). However,

the results in Table 5.6 show that the ILM-5 (NOD I) has the lowest PDP value
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among all the considered designs. In term of power consumption, ILM-5 (NOD

I) is the most efficient design, consuming 21.18% less power than its closest

competitor, ALM-SOA-5. Note that from here on, the NOD I circuit type

given in Fig. 5.3(b) is considered in the proposed ILM circuit unless otherwise

noted.

The hardware complexity of the LMs, including the proposed design, in-

creases almost linearly with the input size N , while that of the conventional

multipliers increases almost quadratically with N [49]. Hence, more signifi-

cant savings are expected when the proposed multiplier is extended to larger

designs (e.g., 64-bit multipliers). However, as eight bits have been shown to

be sufficient for NN applications [90]–[92], 8-bit multipliers are considered in

this work.

5.2.4 Example application: neural networks

The proposed ILM can be used in various types of NNs; however, only the most

common feed-forward NNs are studied in this work. Two NNs are considered

to evaluate the LMs. The first one is an MLP that classifies the MNIST dataset

and the other one is a CNN that classifies the CIFAR-10 dataset.

Neural network workloads

We used an MLP network with 784 input neurons (one for each pixel of the

28 × 28 monochrome image), 128 neurons in the hidden layer and 10 output

neurons. The outputs are interpreted as the probability of classification into

the 10 target classes of the digits 0 to 9 [62]. The MLP uses the soft-limiting

sigmoid activation function.

The exact multipliers in the considered MLP are replaced with each of the

LMs and the classification accuracy is evaluated. The resulting weights are

plotted in Fig. 5.5 to determine if the trained synaptic weights are normally

distributed. Since an 8-bit width is used for inference and the most significant

bit is the sign bit, the trained synaptic weights are mapped into the range

[-127, 127] in Fig. 5.5.

Moreover, AlexNet is used to classify the CIFAR-10 dataset [23]. AlexNet
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Figure 5.5: Probability distribution of the trained weights for the MLP,
mapped into the range of [-127, 127].

Figure 5.6: Probability distribution of the trained weights for Alexnet,
mapped into the range of [-127, 127].
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Figure 5.7: Comparison of classification accuracy of the MNIST and
CIFAR-10 datasets with logarithmic multipliers.

is a CNN configuration that uses ReLU activation functions and has three

convolutional layers, two fully-connected layers, max-pooling layers and aver-

age pooling layers. Similarly, the exact multipliers (in the convolutional and

fully-connected layers) were replaced in succession with each type of the LMs

and the resulting classification accuracy was evaluated for each version. The

rectified linear units (ReLUs) is used as the activation function in the neurons

in this network. An ReLU has an output of zero if the input is less than zero,

otherwise the output is equal to the input [93]. The weights are also plotted

in order to investigate the distribution of the trained synaptic weights. The

weights are mapped into the range [-127, 127], as shown in Fig. 5.6.

Accuracy analysis

The classification accuracies for both the MNIST and the CIFAR-10 datasets

using the various LMs are plotted in Fig. 5.7. Unlike previous studies, such

as [8], [26], retraining has not been performed. The proposed designs that use

ILM-5 and ILM-9 show only 0.08% and 0.12% accuracy degradation, respec-

tively, for the MNIST dataset compared to the NN that use exact multipliers.

The ALM-SOA-5, on the other hand, has the same accuracy as the NN with

exact multipliers.

As also shown in Fig. 5.7, all three variants of the proposed ILM increase

the classification accuracy for the CIFAR-10 dataset compared to the NN with
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Table 5.7: Hardware characteristics of the artificial neuron when
implemented using different types of LMs.

Multiplier used in the neuron Energy(fJ) Area(µm2)
Mitchell [47] 93.85 1019.5

ALM-SOA-5[49] 68.23 915.1
ILM-0 (NOD I) 87.17 1004.8
ILM-5 (NOD I) 53.32 894.5
ILM-0 (NOD II) 87.48 995.1
ILM-5 (NOD II) 54.14 884.7

exact multipliers. Note that we can get up to 1.4% accuracy improvement by

using ILM-0 instead of the exact multipliers. The double-sided signed error

distribution and the low error magnitude of the proposed design help mitigate

the overfitting issue in Alexnet. In fact, the double-sided errors with lower

magnitudes effectively introduce noise into the proposed ILM. Hence, by using

the ILM multiplier we are adding noise to the NN. It has already been shown

that adding noise is often an effective way of improving the performance of

NNs [65], [94]. This result indicates that higher classification accuracies can

be obtained with less hardware costs.

Hardware analysis

The hardware characteristics of the LMs were discussed in Section V. In this

section, an artificial neuron is implemented using different types of LMs to

replace the conventional ones. The implemented neuron has three inputs and

an adder tree composed of two adders to accumulate the three multiplication

products. This is a widely-used technique for the performance analysis of

multipliers in NNs [7], [26].

The hardware characteristics for the implemented neuron are given in Table

5.7. The results show that the neuron that use the proposed ILM-5 (NOD I)

has the lowest energy consumption. It is 21.85% more energy-efficient than

the neuron using ALM-SOA-5 while being 2.25% smaller. In terms of area, on

the other hand, the neuron using ILM-5 (NOD II) is the smallest design.

Truncation needs to be considered in the implementation of the artificial

neuron. 8-bit precision is used for each of the three inputs and their corre-
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sponding synaptic weights and, therefore, the multiplication product would be

16-bit. However, since the output will be connected to another layer of neu-

rons, truncation to 8 bits is required. The truncation is done by performing

hard-limiting, i.e. using the maximum 8-bit number for all output values that

need more than 8-bit precision.

5.3 Low-Power Approximate Logarithmic Squar-

ing Circuit Design for DSP Applications

5.3.1 Proposed squaring function

Mathematical modeling

Any positive integer N , as expressed in (2.8), can be also factored as in (5.1).

Considering (2.8) and (5.1), the base-2 logarithm of N can be expressed as:

log2N = k + log2(1 + x) = k + 1 + log2(1− y). (5.9)

Hence, log2N
2 = 2log2N can be written as the summation of the middle

and right expressions in (5.9), as given by:

log2N
2 = 2k + 1 + log2(1 + x− y − xy). (5.10)

The variable y can be obtained as a function of x, i.e. y = 0.5(1 − x), by

considering the fact that both (2.8) and (5.1) represent the same value N .

Solving for t and substituting the expression into (5.10) results in:

log2N
2 = 2k + 1 + log2(0.5 + x+ 0.5x2). (5.11)

The least squares method is used to linearly approximate log2(0.5 + x +

0.5x2) in (5.11). This method chooses the coefficients so as to minimize the

summed square of residuals. We used the MATLAB Curve Fitting Toolbox

[95] for this purpose. The resulting best least squares linear fit over 0 ≤ x < 1

is:

log2(0.5 + x+ 0.5x2) ≈ 1.975x− 0.8732. (5.12)
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Hence the base-2 logarithm of N2 can be approximated by replacing the

log() function in (5.11) with (5.12). However, to simplify the hardware im-

plementation, the constant 1.975 is rounded to 2, which is a simple left-shift

in hardware. The approximation in (5.12) will not remain the best linear fit

when the coefficient 1.975 is changed to 2 and, therefore, the other coefficient

needs to be adjusted to minimize the approximation error. By trying different

values, we found out experimentally that 0.1268 (the constant obtained by

replacing (5.12) in (5.11)) needs to be changed to 0.039 to achieve the best

MRED for the LESF. This matter is further discussed in the accuracy analy-

sis of the proposed squaring function in Section 5.3.2. The proposed squaring

function is therefore given by:

N2 = 2log2N2 ≈ 22k+1.975x+0.1268 ≈ 22k+2x+0.039. (5.13)

Note that the coefficients that result in the minimum MSE for the ap-

proximation in (5.12) are 1.975 and -0.8732, according to the MATLAB curve

fitting toolbox. However, changing the coefficients to what is used in (5.13)

increases the MSE from 0.0026 to 0.0084. Although this increase is notable,

the new MSE is still negligible. More importantly, using the modified coeffi-

cients significantly simplifies the hardware implementation and still results in

a highly-accurate squaring function.

The signed relative error distance is plotted for the LESF and the baseline

Mitchell squaring circuit in Fig. 5.8. This figure shows that unlike Mitchell,

LESF has both positive and negative errors.

Hardware implementation

The form of the proposed squaring function in (5.13) does not imply any

particular hardware implementation. To address this issue, 2y, where y =

2x+ 0.039 needs to be approximated. The least squares method is used again

and the best linear fit over 0 ≤ y < 1 according to the MATLAB Curve

Fitting Toolbox is 2y ≈ 0.9923y + 0.9471. We modified the two coefficients

and implemented 2y ≈ y + 1 instead. Although this modification increases

84



0 2 4 6

Input N 10
4

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

S
ig

n
e

d
 r

e
la

ti
v

e
 e

rr
o

r

Mitchell

0 2 4 6

Input N 10
4

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

S
ig

n
e

d
 r

e
la

ti
v

e
 e

rr
o

r

LESF

Figure 5.8: Signed relative error for the Mitchell and the LESF squaring
circuits.

the MSE from 0.0007 to 0.003, it is still negligible. More importantly, it has

a low-cost hardware implementation and results in a highly-accurate squaring

function. Finally, LESF can be represented by:

N2 ≈


22k(y + 1), y < 1,

22k+1(y), 1 ≤ y < 2,

22k+2(y − 1), 2 ≤ y < 3.

(5.14)

For example for 2 ≤ y < 3 in (5.14), 2y = 2(2+(y−2)); let t = y − 2 and,

consequently, 2y = 22 × 2t. Since 0 ≤ t < 1, 2y can be approximate as

22 × (1 + t) = 22 × (y − 1).

Fig. 5.9(a) shows the block diagram of the n-bit LESF. As shown in Fig. 5.9(a),

the first step is to find the k and x values. We used the conventional Mitchell

approach to find these two parameters. The n-bit output of the LOD is used

as the input to the priority encoder (PE), which stores the value of k in log2n

bits, Rk. The value of x, on the other hand, is obtained by performing the

logical XOR between the original n-bit input I and the LOD’s output. Since

the output of the LOD uses a one-hot representation, performing the XOR

operation does the subtraction [96]. The result of this subtraction needs to be

represented in the (n − 1)-bit register Rx [47]. If Ii, where i ∈ {0, 1, 2, ..., n}

is the most significant ’1’ in I, then Rx = Ii−1Ii−2...I1I0. Hence, zeros should
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(a) Block diagram of the LESF.

(b) Control unit.

Figure 5.9: Architecture of the low-error squaring function LESF.

be padded to the least significant bits of Rx for i < n, e.g. Rx = 00100000 for

I = 00001001. This is done by using multiplexers (MuxBank in Fig. 5.9(a))

that use the output of the PE and then append the proper number of zeros

accordingly.

The next step is to calculate y, which can be done by adding the constant

0.039 to the shifted version of Rx, 2Rx, which has the value 2x. Since 2Rx

is an n-bit number, the constant 0.039 needs to be represented as the n-bit

value Rc. The result of this addition is stored in (n + 1)-bit register Ry. We

implicitly know that Rc contains the fraction part, which lies to the right side

of the radix point and, therefore, it can be represented as Rc = 000010100...00.

Since Rc in the addition Ry = 2Rx + Rc is a constant, a conventional

adder can be replaced by a simpler design. The required function is specified

below in Algorithm 3. In Algorithm 3, the two signals in pairs (Ry[j + 2], cj),
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Algorithm 3 Addition of 2Rx and Rc = 0.039

1: Inputs: 2Rx and Rc, Output: Ry

2: Ry[9 : n+ 1] = 2Rx[8 : n]
3: Ry[8] = ¬2Rx[7] . logical NOT
4: (Ry[7], c5) = HA(2Rx[6], 2Rx[7]) . conventional HA
5: (Ry[6], c4) = HA(¬2Rx[5], c5)
6: (Ry[5], c3) = HA(2Rx[4], c4)
7: (Ry[4], c2) = HA(2Rx[3], c3)
8: (Ry[3], c1) = HA(2Rx[2], c2)
9: (Ry[2], Ry[1]) = HA(2Rx[1], c1)

where j ∈ {1, 2, ..., 5}, denote the sum and carryout signals of a conventional

half-adder (HA), respectively. According to Algorithm 3, more savings can be

obtained by increasing n. In fact, the second step shows that no calculation

required from the 8th bit down toward the least significant bit, i.e. the (n+1)th

bit. Note that since this addition is done for the fraction part of the result,

index p has the weight of 2−p and, therefore, indexing starts from 1 (the most

significant bit) and goes to n+ 1.

The extra two bits in Ry compared to Rx are used to handle the three

conditions in (5.14). As shown in (5.14), y represents the fractional part of

the result and, thus, needs to be smaller than 1. Hence, adding two extra bits

to the left side of the radix point lets us track the value of y and compare

it to the conditions given in (5.14). Finally, the control unit calculates its

output O based on the values of Ry and Rk. Fig. 5.9(b) shows the hardware

implementation of the control unit. The first two most significant bits in Ry,

i.e.Ry[1] and Ry[2], implement the conditions in (5.14). Based on the position

of the most significant ‘1’, which is determined by the output of the adder

(a.k.a. the exponent) in Fig. 5.9(b), three cases can occur:

• The exponent is so small that there are not enough bit positions to store

the (n − 1) bits of Ry. In this case, the less significant bits of Ry are

discarded.

• The exponent is such that there are just (n − 1) bits left in O. In this

case, the (n − 1) bits of Ry will exactly fit into the available bits in O,

see Fig. 5.9(b).
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• The exponent is too big to fit into the (n − 1) available free bits in O.

In this case, after fitting the (n − 1) bit of Ry, the other bits are filled

with zeros.

For further hardware savings, we used the PE proposed in [50]. This design

exploits the fact that the output of the LOD uses a one-hot representation

and, therefore, the conventional PE can be simplified. Regarding the LOD,

the conventional LOD in [82] is used for all of the designs.

Note that LESF can be used as a more accurate baseline design instead of

the Mitchell design. What is more, the existing techniques in the literature

for improving the accuracy of the Mitchell design (e.g., the iterative technique

in [96]) are also applicable to the proposed design.

5.3.2 Performance evaluation

We sought out competitive squaring circuit designs to permit a performance

comparison. The designs in [47] and [49] are logarithmic multipliers, and not

squaring circuits. We used the approximation methods in these two references

and simplified their hardware implementation (e.g. by removing one of the

two LODs in a logarithmic multiplier as there is only one input to a squaring

circuit) to create comparable squaring circuits.

Note that there are other types of squaring functions in the literature, such

as [97], [98]. Basically, any multiplier design can be simplified and used as a

squaring circuit. However, only logarithmic designs were considered in this

research. The performance of the squaring functions is evaluated below using

both accuracy and hardware metrics.

Accuracy metrics

As mentioned in Section 5.3.1, the constant 0.039 in (5.13) was obtained by

empirically trying different values. Fig. 5.10 shows how the accuracy of the

LESF, in terms of the MRED, changes with different constant values. As

shown in Fig. 5.10, reducing this constant from 1 improves the accuracy of the

LESF. However, the minimum MRED, i.e. the maximum accuracy, is obtained
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Figure 5.10: Accuracy of the LESF, with respect to the MRED, vs. the
constant value in (5.13).

when the constant in (5.13) is in the range [0.035, 0.040], see the inset. Hence,

we chose 0.039, which falls into this range and, as mentioned earlier, can be

easily implemented in hardware.

All of the considered designs were implemented in MATLAB and their

accuracy was evaluated over the entire 16-bit unsigned input domain, i.e. from

0 to 65535. Table 5.8 reports the accuracy metrics for the proposed LESF and

other logarithmic squaring functions in the literature. The MRED and the

average error AE were then calculated.

The results in Table 5.8 show that the approximate squaring function in [96]

with one step of error correction, Sq. Fnc.-1, is the most accurate design, with

respect to the MRED. However, using iterative steps for error compensation

can be applied to other designs as well at the cost of significant additional hard-

ware, see Section 5.3.2. Hence, Sq. Fnc.-1 aside, LESF is the most accurate

design, being 21.39% more accurate than the next most accurate ALM-SOA-9

squaring function. With respect to the AE, LESF seems to be the best design,

due to its double-sided error distribution.

Regarding the ALM-SOA squaring function, we tried different numbers of
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Table 5.8: Error metrics of five different logarithmic squaring functions.

Squaring Function AE MRED
Mitchell [47] 5.09e+7 0.0384

ALM-SOA-9 [49] 4.87e+7 0.0374
Sq. Fnc.-0. [96] 2.05e+8 0.1137
Sq. Fnc.-1. [96] 2.91e+7 0.0149

LESF 1.44e+7 0.0297

Table 5.9: Hardware metrics of five different logarithmic squaring functions.

Squaring Function
Power
(mW )

Delay
(nS)

Area
(µm2)

Normalized
PDP×MRED

Mitchell [47] 8.02e-2 2.12 291.96 0.65
ALM-SOA-9 [49] 7.12e-2 1.79 258.01 0.47
Sq. Fnc.-0. [96] 8.55e-2 1.07 264.22 1.00
Sq. Fnc.-1. [96] 1.95e-1 2.86 562.55 0.79

LESF 5.86e-2 0.81 247.57 0.13

approximation bits in the SOA adder and we found that 9 bits produced the

lowest MRED.

Hardware metrics

The hardware measurements for three key metrics, area, critical path delay,

and power consumption, are given in Table 5.9. As shown in this table, LESF

is the most hardware efficient design, consuming 17.69% less power than the

second most power-efficient design ALM-SOA-9 and being 24.29% faster than

the second-fastest design Sq. Fnc.-0. As mentioned earlier, iterative techniques

significantly increase the hardware cost and this is well reflected in the results

of the Sq. Fnc.-1.

The hardware metric PDP and the accuracy metric MRED are multiplied

as a single metric in the last column of Table 5.9. The normalized MRED-PDP

product is a useful metric as it compares the squaring functions with respect

to both hardware and error metrics. As shown in Table 5.9, LESF clearly

has the best accuracy-hardware cost trade-off. Although ALM-SOA-9 is the

second-best design, it is almost 3.5× less efficient than the LESF with respect

to the PDP-MRED product metric.
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5.3.3 Example application: square law detector

The AM demodulation using the square law detector algorithm was previously

discussed in Chapter 2. Here we use a square-wave signal at 50 Hz for m(t).

Let m(t) be any arbitrary message signal (we used a square-wave signal at

50Hz). MATLAB was used to generate the message signal m(t), the carrier

signal c(t) with fc = 1 KHz, and the modulated message s(t).

Moreover, MATLAB lowpass function is used with the pass-band frequency

fpass = 150 Hz and a sampling frequency of fs = 10 KHz. With these inputs,

the lowpass function generates a finite impulse response (FIR) filter of order

48. Note that the exact squaring function in (2.4) was replaced with the LESF

and other logarithmic squaring functions.

Fig. 5.11 shows the demodulated messages m′(t), according to which the

LESF produces the closest waveform to the waveform generated by using the

exact squaring function. Sq. Fnc.-1 is the second most accurate design. Finally,

the waveforms generated by using the Mitchell and the ALM-SOA-9 squaring

functions seem to be equally accurate, and worse than the other two designs.

To numerically compare the performance of the squaring functions, the

Euclidean distance between the exact demodulated signal and those obtained

by using logarithmic squaring functions were calculated and are reported in

Table 5.10. The Euclidean distance EA,B between the two signals A and B

measures the straight-line distance between two points in A and B and can be

calculated as [99]:

EA,B =
√∑S

i=1(Ai −Bi)2. (5.15)

where S is the number of sample points in the two signals and Ai and Bi

denote the samples of the two signals A and B, respectively. According to the

results in Table 5.10, the demodulated signal using the LESF is 67.19% closer

to the demodulated signal using an exact squaring function compared to the

second best design, Sq. Fnc.-1, which is consistent with the results in Fig. 5.11.
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Figure 5.11: Comparison of the demodulated signal m′(t) with exact and
logarithmic squaring functions.

Table 5.10: Euclidean distance of five different logarithmic squaring functions.

Squaring Function Euclidean distance
Mitchell [47] 0.3961

ALM-SOA-9 [49] 0.3185
Sq. Fnc.-0. [96] 2.0441
Sq. Fnc.-1. [96] 0.2960

LESF 0.0971

5.4 Summary

This chapter proposed an exact 16-bit LOD that is used to find the position

of the leading-one in a 32-bit number N . The more significant half of N , NH ,

is searched for ‘1’. If at least one ‘1’ is found, NH is input to the 16-bit LOD

III; otherwise, the less significant half of N , NL, is used as the input to LOD.

Compared with the original Mitchell multiplier, the proposed LOD reduces

the PDP by 24.89% and operates 1.4× faster.

We also proposed a novel approximation method to efficiently compute

log2N . Using this method, the ILM is designed. The proposed ILM is more
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accurate and has the smallest MRED values compared to other logarithmic

designs in the literature. Two well-known NNs were considered as benchmark

applications, for which the proposed designs show a higher classification accu-

racy than the other designs. The exact multipliers in both NNs were replaced

with LMs and the ILM-5 resulted in the most energy-efficient NN structure.

Interestingly, higher classification accuracies are obtained for the CIFAR-10

dataset by using the ILM compared to the use of exact (and other LM) mul-

tipliers.

Finally, a low-error squaring function, LESF, is proposed that outperforms

the state-of-the-art designs in the literature. LESF is the most hardware effi-

cient design, consuming the least amount of power and while being the fastest

design. LESF is also more accurate than the existing designs, in terms of

the MRED, except for Sq. Fnc.-1, which uses an iterative error compensation

technique. However, this technique can be used to increase the accuracy of

any logarithmic squaring function with significant extra hardware cost. The

LESF was also shown to be almost 3× more accurate than the second most

accurate design, Sq. Fnc.-1, with respect to the Euclidean distance metric in

the square law detector application.
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Chapter 6

Logarithmic
Multiply-Accumulate Unit and
Accelerators

Multiply-accumulate (MAC) units are widely used in the hardware implemen-

tation of numerically demanding applications such as machine learning (ML),

digital signal processing (DSP), and optimization algorithms. Hence, design-

ing more efficient MAC units can significantly improve the performance of the

entire application. Four major considerations in the design of a MAC unit are

the performance/computation speed, circuit size, energy consumption, and

accuracy. Fortunately, in many ML and DSP applications, the accuracy can

often be traded off with the other three design parameters [12], [100]. Hence,

approximation techniques can be exploited to accelerate the MAC units, re-

duce their energy consumption, and make them smaller at the cost of often

negligible degradation in the final output quality.

This chapter proposes the first logarithmic MAC (LMAC) unit. Multi-

plication, the more time-consuming part of the MAC operation, is converted

into simple addition in the logarithmic domain and, therefore, the multiplica-

tion is accelerated. Novel linear approximations for logarithmic multiplication

and addition are considered to simplify the MAC operation. The proposed

LMAC benefits from a double-sided error distribution, which can increase the

likelihood of error cancellation during the accumulation phase of many appli-

cations.
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Furthermore, unlike the existing accelerators that simplify the multiplica-

tion/addition operations, this chapter proposes the first approximate accel-

erator that reduces the number of required multiplication operations. The

proposed soft-dropping low-power (SDLP) architecture is specifically designed

for convolutional neural networks (CNNs) and takes advantage of the spatial

dependence between the input image pixels and skips some of the multipli-

cations during the convolution operation and, thereby, reduces the energy

consumption of the CNN’s inference.

6.1 Design of a Fast and Energy-Efficient Ap-

proximate Logarithmic MAC Unit

6.1.1 Proposed logarithmic MAC (LMAC)

We implemented an approximate implementation of the sum of products AB+

CD and obtained significant savings in the energy consumption and area com-

pared to the conventional exact implementation, while preserving the accuracy.

Then the design is simplified to implement AB +C, which is a more common

form of the MAC operation.

Mathematical Modeling

To implement AB + CD, each of the four inputs is factored as given by:

A = 2k1(1 + x1)
B = 2k2(1 + x2)
C = 2k3(1 + x3)
D = 2k4(1 + x4),

(6.1)

where x1, x2, x3, and x4 all lie within the interval [0, 1). Following (2.9) and

by using (6.1), the base-2 logarithms of the four inputs A, B, C, and D (i.e.,

a = log2A, b = log2B, c = log2C, and d = log2D) can be calculated as:

a = k1 + log2(1 + x1)
b = k2 + log2(1 + x2)
c = k3 + log2(1 + x3)
d = k4 + log2(1 + x4).

(6.2)
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The least squares method can be used to linearly approximate log2(1 + x)

in (2.9). This method chooses the coefficients so as to minimize the summed

squares of the residuals over a relevant input interval. We used the MATLAB

Curve Fitting Toolbox [95] for this purpose and the resulting best linear fit for

the least squares over 0 ≤ x < 1 is:

log2(1 + x) ≈ 0.9877x+ 0.0634. (6.3)

Hence a, b, c, and d can be approximated by replacing the log functions

in (6.2) with (6.3). However, to simplify the hardware implementation, the

constant 0.9877 in (6.3) should be rounded up to 1. Note that, after changing

0.9877 to 1, the other coefficient needs to be updated to minimize the approx-

imation error over the same input interval. By experimentally trying different

values we found that 0.0634 should be changed to 0.0547=2−5+2−6+2−7 so

that all terms are powers of two and can be easily implemented in hardware.

Therefore (6.2) can be rewritten as:

a ≈ k1 + x1 + 0.0547
b ≈ k2 + x2 + 0.0547
c ≈ k3 + x3 + 0.0547
d ≈ k4 + x4 + 0.0547.

(6.4)

Changing the coefficients from (6.3) to what is used in (6.4) increases the

root mean square error (RMSE) from 0.0255 to 0.0258. This increase in the

RMSE is small and negligible in many applications.

Now, having found efficiently implementable approximations for a, b, c,

and d, the partial products P1 = AB and P2 = CD can be calculated as:

P1 = 2(a+b) = 2e1

P2 = 2(c+d) = 2e2 ,
(6.5)

where e1 = a + b and e2 = c + d. Let e be the maximum of e1 and e2.

P = P1 + P2 can then be calculated by:

P = 2e(1 + 2−|e1−e2|). (6.6)

Since e1 and e2 are not necessarily integers, it is easier to implement (6.6)

in the logarithmic domain. The base-2 logarithm of P , p, is then given by:
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Figure 6.1: Distribution of exp = |e1 − e2|.

p = e+ log2(1 + 2−|e1−e2|), (6.7)

The term t = 2−|e1−e2| lies within (0, 1] and, therefore, the linear approxi-

mation in (6.3) can be used to simplify log2(1 + t) in (6.7). To do so, we need

to calculate t, which is a challenging task. Thus the least squares method is

used again to linearly approximate the entire function, i.e. log2(1 + 2−|e1−e2|).

The distribution of the values of exp = |e1 − e2| plays a significant role

when finding the best coefficients of the linear approximation. Thus we exper-

imentally computed the distribution of exp by generating 10 million uniform

random quartets of inputs for A, B, C, and D. This distribution is shown in

Fig. 6.1. Note that each of these four inputs is assumed to be an integer x in

the range 0 ≤ x ≤ 255. The value 255 is the maximum value of a pixel color

intensity in many image file formats.

Selecting larger exp values covers a wider range of the entire input domain,

however our simulation results in the MATLAB Curve Fitting Toolbox show

that using a larger exp increases the approximation error. According to Fig. 6.1

almost 90% of the exp values are less than or equal to 7 and, therefore, the

interval 0 ≤ exp ≤ 7 is considered for our linear approximation. Using the
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MATLAB Curve Fitting Toolbox, the best linear fit for approximating log2(1+

2−|e1−e2|) within the given range is found to be:

log2(1 + 2−|e1−e2|) ≈ −0.1178(|e1 − e2|) + 0.655. (6.8)

To simplify the hardware implementation, the coefficient 0.1178 is raised to

0.1250, which is a power of two. Clearly, by changing 0.1178 to 0.1250, using

the original value of the second coefficient (0.6550) no longer guarantees the

smallest RMSE. Thus we experimentally tried different values and determined

that 0.6550 should be changed to 0.6875=2−1+2−3+2−4. All three of the

required terms that sum up to 0.6875 are powers of two. This modification

only slightly increases the RMSE of the original linear approximation in (6.8)

from 0.1170 to 0.1183. Hence, the base-2 logarithm of the final product P =

AB + CD, p, can be linearly approximated by:

p = e− 1

8
(|a+ b− c− d|) + 0.6875. (6.9)

Fig. 6.2 compares the proposed approximation in (6.9) with the exact value

of p for 100 randomly selected inputs from the entire input domain.
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The two important features of the proposed approximation method in (6.9)

are: (1) the double-sided error distribution, which is evident from Fig. 6.2; and

(2) the speed-up in calculating AB+CD. As opposed to other MAC units that

have to wait for the partial products P1 and P2 to calculate the final result,

the LMAC can directly calculate the final result once the base-2 logarithms of

the four inputs are found.

Another common form of the MAC operation is to calculate AB+C rather

than AB + CD. Given that AB + C is AB + CD when D = 1, the proposed

design can be easily extended to calculate AB + C as well. With D = 1, the

base-2 logarithm of D, d = 0. Hence, (6.9) can be rewritten as:

p = e′ − 1

8
(|a+ b− c|) + 0.6875. (6.10)

where e′ is the maximum of (a+ b) and c.

Note that choosing between AB +CD and AB +C depends on the avail-

able hardware and the most convenient form for the specific application. For

example, let M = [m1,m2] and N = [n1, n2] be two 1×2 arrays of numbers.

Then Q = MNT =
∑2

i=1mini, where NT is the transposed array N , can be

calculated either sequentially by using only one multiplier and one adder, or in

parallel by using two multipliers and one adder. The multiplier and the adder

in the sequential implementation are used twice and, therefore, it would be

slower than the parallel implementation, while being more resource-efficient.

Hardware Implementation

To implement the approximation in (6.9), a 16-bit (i.e., half precision) FP

number representation is used.

The first step is to find the base-2 logarithm of the input operands, by

following (6.4). The k and x values in (6.4) are the values of the exponent and

fraction fields of each of the four inputs, respectively. Once the k and x values

in (6.4) are found, the base-2 logarithm of the final output p can be calculated

using (6.9). Using the same analogy as in (6.1) and (6.4), the final product P

can be represented as:

99



log2(P ) = log2

(
2kp(1 + xp)

)
≈ kp + xp + 0.0547. (6.11)

Considering that (6.11) and (6.9) represent the same value, we obtain:

kp + xp = e− 1

8
(|a+ b− c− d|) + 0.6328. (6.12)

where kp and xp are the integer and the fraction parts of the right-hand side

of (6.12), respectively.

Fig. 6.3 shows the block diagram of the resulting implementation of LMAC.

Note that kp and xp fill the exponent and fraction fields of the final output. In

fact, Fig. 6.3 shows the hardware implementation of (6.12). The two inputs a

and b are added by using a conventional exact adder to generate e1. Similarly,

inputs c and d are added to generate e2. Then a max(e1, e2) unit compares e1

and e2 and outputs the greater input value as e. The constant 0.6328 is added

to e in the next step and, finally, the 0.125 × |e2 − e1| (obtained by shifting

|e2 − e1| to the right by three bits) is subtracted from that sum.

Note that the max(e1, e2) unit also generates signal sel, which is used to

correctly choose between e1 and e2 for calculating −|e1 − e2|. It selects the

smaller input from e1 and e2 and sends it to the subtractor. For example, if

e = e2, then e1 is passed to the subtractor.

To calculate AB+C, the hardware implementation in Fig. 6.3 needs to be

slightly modified. Since e2 = c + d = c in the AB + C calculation, the adder

that sums up c and d can be completely removed. The rest of the design will

remain the same.

6.1.2 Evaluation of the LMAC

In order to analyze the accuracy of the proposed MAC unit, the MRED mea-

sure is considered [12]. We randomly generated 10 million quartets of values

for A, B, C, and D and calculated the sum of products AB + CD by using

exact, LMAC, and other approximate MAC units.

For the hardware metrics, on the other hand, we implemented the exact and

approximate MAC units in VHDL and synthesized them using the Synopsys
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Figure 6.3: Block diagram of the LMAC unit.

Design Compiler (DC) for the STMicro CMOS 28-nm process to obtain the

power dissipation, the circuit area, the critical path delay, and power-delay

product (PDP). Table 6.1 shows the accuracy metric MRED and the four

hardware measures.

The CFPU uses the mantissa from one of the inputs for the output man-

tissa rather than multiplying the two mantissas, known as the mantissa dis-

carding technique [101]. We tried discarding the mantissa of the first and

second inputs and we obtained similar MREDs. The other design in Table 6.1

is the truncated MAC, Trun, in which seven of the ten mantissa bits are set

to zero [13].

As shown in Table 6.1, LMAC is the second most accurate MAC unit in

terms of MRED, while being the most hardware-efficient design four hardware

cost metrics. LMAC is 26.42% faster than the second fastest design CFPU

and 2.5× faster than the conventional exact design. In terms of area, LMAC is

the smallest design and it also consumes the least amount of power compared
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Table 6.1: Accuracy and hardware measures of the exact, logarithmic, and
other approximate MAC units.

MAC
type

MRED
Area

(µm2)
Power
(µW )

Delay
(nS)

PDP
(fJ)

Exact - 895.8 817.5 3.65 2983.8
LMAC 0.106 118.6 122.3 1.42 173.66

CFPU [101] 0.312 145.6 130.4 1.93 251.67
Trun [13] 0.082 259.2 193.2 2.48 479.13

to the exact and other approximate designs. The results in Table 6.1 show a

17.18× reduction in energy consumption compared to the conventional exact

MAC unit: the PDP is reduced from 2983.8 to 173.66.

As the results in Table 6.1 show, LMAC and the CFPU MAC units have

notably smaller hardware footprints and can operate faster compared to the

exact and the truncated MAC designs. Hence, we can conclude that multipli-

cation has a significant impact on the hardware cost, and this is why doing it

in the LNS (which is a simple addition) is more efficient.

6.1.3 Example application: image sharpening

To evaluate the effectiveness of the LMAC unit, we consider the image sharp-

ening application. Image sharpening algorithms based on spatial filters are

widely used in image processing to enhance the sharpness of an image without

producing halo artifacts [102].

One image sharpening algorithm that uses approximate arithmetic is pro-

posed in [11]. The same algorithm is used in this work. We also used the

PSNR metric to measure the quality of the sharpened image using the exact

MAC and those using an approximate MAC unit. The four sharpened images

and their corresponding PSNR values are shown in Fig. 6.4.

As shown in Fig. 6.4, LMAC generates the highest output quality (i.e., the

greatest PSNR value), more accurately than the truncated MAC, which had a

smaller MRED. We believe this is due to significant cancellation of the bipolar

approximation errors produced by the LMAC.
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(a) Reference for PSNR (b) PSNR = 26.58

(c) PSNR = 13.52 (d) PSNR = 23.18

Figure 6.4: Sharpened images using (a) exact MAC, (b) LMAC, (c) CFPU,
and (4) Trun.

6.2 Approximate Accelerators for CNN-based

Image Classifiers that Rely on Pixel Spa-

tial Dependence

Reducing the bit precision and using approximate multipliers are both useful

approximation techniques [8], [26], [90]–[92], [103]. However, we follow a dif-

ferent strategy and propose a hardware-efficient approximate architecture that

accelerates the convolution operation in the convolutional layers of CNNs by

skipping some multiplications.

The three key observations that motivate the proposed soft-dropping low-

power (SDLP) approximate accelerator are as follows:
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• Using approximate multipliers has a relatively small negative impact on

the classification accuracy [8], [26], [103]. Hence, the output of the convo-

lutional layer does not have to be fully accurate. The inaccuracy can be

caused by providing inaccurate inputs to the convolutional layer and/or

by using inexact techniques for performing the convolution operation.

• Removing some neurons often does not significantly impact the classi-

fication accuracy of CNNs and, therefore, the computation cost can be

reduced [65]. This dropout technique shows that prior knowledge of

the network is not required and the dropped out neurons can be chosen

randomly.

• The convolutional layer is often followed by a pooling layer (to obtain

either an average or a maximum) [29], which means that the exact lo-

cations of the extracted features in the convolutional layers are not as

important as their location relative to the other features [30]. Hence,

the exact values of the convolutional operation are not as important as

their relative values.

SDLP is a proposed approximate accelerator that skips performing the mul-

tiplication operations for some neurons in the convolutional layers (referred to

as SN s, short for skipped neurons) and uses the information of their adjacent

neurons instead. Clearly, as the number of SN s increases, the implementation

cost decreases at the cost of more accuracy degradation. Unlike references

[104], [105], we do not determine the neurons that make the least important

contribution to the network’s output quality since that would be computation-

intensive and not efficient in terms of hardware implementation. Additionally,

the critical neurons would be different depending on the network’s structure

and dataset. We simply use the neurons in every other column of the convo-

lution matrix as candidate SNs. More details are provided in Section 6.2.1.

The existing approximate accelerators for CNNs use one or more of the

following techniques:

• Static fixed-point arithmetic: Use a reduced-precision fixed-point rep-
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resentation for the operands rather than a full-precision floating-point

representation [91], [106].

• Dynamic fixed-point: Use a dynamic fixed-point representation, where

different scaling factors are used to process different parts of the network

[107].

• Extreme quantification with binary weights: Train and evaluate CNNs

that use extremely compact data representations (i.e., binary weights)

[108], [109].

• Stochastic computing (SC): Use a random sequence of bits to represent

the numbers. Stochastic arithmetic are performed with small circuits

[110], [111].

• Approximate computing (AC): Use approximate arithmetic blocks (mainly

for more resource-hungry multipliers) that exploit the inherent error re-

siliency of CNNs to reduce the hardware cost [8], [26].

• Weight pruning: Remove a set of weights (based on their magnitude [112]

or the energy consumption of a node [113]) to overcome the over-fitting

issue [114], [115].

• Dropout: Randomly select a few neurons and drop them from the net-

work’s structure at each training iteration, which helps to reduce the

over-fitting issue [65].

Among these techniques, neuron dropout and weight pruning are the only

ones that reduce the number of required computations in CNNs, while the

other techniques just simplify the original number of calculations to reduce

the area and energy consumption.

One of the main disadvantages of the weight pruning techniques is that

they require detailed knowledge of the network in order to identify the best

set of weights to prune. The best set of weights to prune depends on both

the dataset and the network’s structure; thus the set cannot be easily imple-

mented in hardware. With respect to the random dropout technique, selecting
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random neurons to drop not only does not reduce the hardware cost, but it

also increases the hardware complexity. In fact, we still need to keep the

hardware for all of the neurons and, moreover, add additional hardware for

neurons random selection. The dropout technique is meant to be used for the

training process of CNNs using software and the technique cannot be easily

implemented in hardware. The SDLP, on the other hand, reduces the number

of computations; however, it does not need to run an intensive analysis to

find the best set of neurons that can be safely skipped in the multiplication

operations.

Another unique feature of the SDLP is that all of the above-mentioned

techniques can be also applied to it. The SDLP still performs multiplication

and addition operations and, therefore, can benefit from the reduced precision,

stochastic arithmetic unit, approximate arithmetic blocks, weight pruning, and

the other aforementioned techniques. However, this has not been considered

here since those other techniques were not the focus of this project. Moreover,

the idea of using the spatial dependence between the input image pixels can

be extended to include other inputs for which there are no sharp changes in

the adjacent input components, such as audio signals.

6.2.1 Proposed approximate accelerators

Spatial Dependence Analysis

The SDLP accelerator was originally intended to be used in CNNs that clas-

sify images. Images are made up of rectangular arrays of pixels of different

colors. In the design of the SDLP, we benefit from the fact that an image has

smoothly varying color intensities. In fact, although pixels have different col-

ors (represented with numerical values in a digital system), there are usually

few sharp changes in the color component values of the adjacent pixels.

To verify the above-mentioned claim, several images are analyzed in this

section. Since the CIFAR-10 dataset (short for Canadian Institute For Ad-

vanced Research) [116] is used in our image classification task, the sample

images are chosen from this dataset. We randomly selected one hundred im-
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Table 6.2: Average PSNR of reconstructed images by using approximate
pixel values.

Approximation
scheme

PSNR
n = 64 n = 128 n = 256 n = 512

LNP 35.85 32.83 30.07 27.34
RNP 37.16 33.54 30.15 27.14
LRP 39.99 36.08 32.31 30.16

ages from each of the 10 categories in the CIFAR-10 dataset and performed

a through analysis on them. The images in the CIFAR-10 dataset are 32×32

and, therefore, there are 1024 pixels in each of the red, green, and blue planes.

The experiment on the spatial dependence of the pixels is done in three steps.

First, n pixels are randomly selected from the 1024 pixels of each plane. Once

the pixels are selected, the same pixels are used in all three planes. The second

step is to approximate the value of these n pixels with respect to their adjacent

pixels. Finally, the images constructed from approximate values are compared

with the original ones and the approximation quality is evaluated by using the

well-known peak signal-to-noise ratio (PSNR) metric.

Approximating the exact values is done using three different approximation

schemes: (1) using the value of the left-neighbor pixel (LNP), (2) using the

value of the right-neighbor pixel (RNP), and (3) using the average value of

the left and right neighbor pixels (LRP). The average PSNR values for the

randomly selected pixels over the one thousand CIFAR-10 dataset images are

reported in Table 6.2 for different numbers of approximated pixels, n.

As the results in Table 6.2 show, LRP achieves the highest PSNR. However,

the PSNR for the LNP and RNP are still relatively high values even for very

large n values, indicating good image quality. Hence, it can be concluded that

each pixel provides a reasonable estimate of the values of its neighbor pixels.

Clearly, increasing the number of approximated pixels worsens the PSNR, as

reflected in Table 6.2.
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Figure 6.5: Inputs and outputs to a convolutional layer followed by an
average pooling layer.

Approximate Matrix Multiplication

SDLP benefits from the correlation between the adjacent pixels in an image

and skips the exact MAC operation for some neurons (a.k.a. the SNs). A

convolutional layer followed by an average pooling layer is shown in Fig. 6.5.

In Fig. 6.5, X denotes the input to the convolution layer, Y is the output

of the convolutional layer, which is used as the input to the pooling layer, and

Z contains the output values of the pooling layer.

In the light of what we described above and what has been reported in the

literature, we conclude:

• Successfully applying approximate multipliers to the convolutional layers

in previous publications [8], [26], [103] shows that the elements of matrix

Y do not have to be fully accurate.

• The major benefits of using the dropout technique [65] are that not all

of the neurons in the convolution layer, i.e. matrix Y , are required for

acceptable CNN operation and, therefore, some neurons can be safely

removed.

• The adjacent pixels in matrix Y will be merged into only one value in

matrix Z as a result of the pooling operation [30]. Consequently, it is

not necessary to have exact values in Y and, furthermore, Z does not

need to be fully-accurate.

SDLP exploits the fact that “having the exact values at the output of the

convolutional layer is not necessary” and this realization allows the convolution

operation to be simplified by skipping the exact MAC operation for some

neurons.
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Figure 6.6: An example of the SDLP approximate accelerator for filter size of
5×5.

An example of the SDLP for a filter size of 5×5 is shown in Fig. 6.6. The

colored neurons in this figure indicate the SNs. As shown in the figure, the

neurons in every other column are chosen to be SNs. Note that we did not

perform any optimization on the number of SNs or how they are selected.

This could be studied in a future work and as an optimization problem.

As mentioned before, each SN uses only the information of their adjacent

neurons in the SDLP. This is done using three scenarios, as explained below.

The left-neighbor approximation (SDLP-LNA) In this scenario, the

value of the neuron on the left side of each SN is used as the SN ’s value.

Typically, the convolution operation with a k × k spatial filter requires k2

multiplication and k2 − 1 additions. The additions can be performed using

an s-stage adder-tree structure, where s = dlog2(k2)e. Assuming that the

additions at each stage are done in parallel in a time τa, the entire addition

process takes time sτa. Similarly, all of the multiplications can be performed

in parallel at once in a time τm and, therefore, the entire convolution operation

can be completed in time:

τConv = τm +

⌈
log2(k

2)

⌉
τa. (6.13)

SDLP-LNA, on the other hand, reduces the number of multiplications to
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k(k − bk/2c). Note that SDLP-LNA does not reduce the number of required

additions, however, it speeds up the addition process. By using the same value

for each SN as its neighbor neuron, the addition can be converted into faster

and less energy-consuming single left-shift operation, reducing the addition

time τa to τs. By doing so, the entire convolution operation in SDLP-LNA can

be completed in time:

τSDLP−LNA = τm + τs +

⌈
log2

(
k2 − kbk

2
c
)⌉
τa. (6.14)

Note that in (6.14), although the number of required multiplication op-

erations is reduced, the execution time τm remains the same. This is due

the parallel execution of the multiple multiplication operations. Then adding

the kbk/2cSNs with their adjacent neurons can be performed using single

left shifts (because they have similar values and, consequently, a left shift

models multiplication with two) that takes time τs. Finally, the remaining

k2 − kbk/2c terms can be summed up with an adder tree, which takes time

dlog2

(
k2 − kbk/2c

)
eτa.

Given that τs << τa, SDLP-LNA can result in significant improvement

in the latency of the convolutional layers of a CNN, especially for larger bit

precision. Note that increasing the bit precision makes the addition process

even slower than the shift operation. According to our simulations for an 8-bit

design, the shift operation is 6.8× faster than the addition operation. For

a 16-bit design, on the other hand, the shift operation is 14.1× faster than

the addition operation. Note that these results are obtained by implementing

the circuits in VHDL and synthesizing them by using the Synopsys Design

Compiler (DC) for ST Micro’s 28-nm CMOS process.

The right-neighbor approximation (SDLP-RNA) This scenario is

very similar to the SDLP-LNA and the only difference is that it uses the value

of the neuron on the right side of each SN as the SN ’s value. Consequently,

the reduction in the number of multipliers and the achieved speedup is similar

to that for SDLP-LNA.

The average of the left and right neighbors approximation (SDLP-
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LRA) In this scenario, the average value of the left and right neighbor neurons

to each SN is used as the SN ’s value. Hence, it is more complex than the

two previously discussed scenarios. However, it is still more hardware-efficient

than the conventional architecture as it reduces the number of multiplication

to k(k − bk/2c), similar to SDLP-LNA.

Regarding the number of required additions, SDLP-LRA needs to take the

average value of some neurons and, therefore, it may seem that it increases

the depth of the adder-tree. However, we successfully managed this issue by

reforming the required additions and proposing a novel compact adder. This

technique is explained below using an illustrative example.

There are nine terms to be added after the multiplication in a 3×3 filter;

sum = a + b + c + d + e + f + g + h + i. Following the given architecture

in Fig. 6.6, let b, e, and h be the three SNs in this example. Normally b,

e, and h should be calculated first as b = 0.5(a + c), e = 0.5(d + f), and

h = 0.5(g + i). Assuming that the additions are preformed all at once in

parallel, calculating b, e, and h can be completed in time τ1 = τa + τs. Then

τ1 needs to be added to τ2 =
(
dlog2(9)e

)
τa to give the total addition time for

the nine values. This clearly increases the number of required adders and the

latency. We propose simplifying this addition as sum = 1.5sumtemp, where

sumtemp = (a + c + d + f + g + i). By doing so, six terms are added to

generate sumtemp, then sumtemp is the shifted to the right by one bit and,

finally, it is added to its initial value before shift to produce the result for

the final summation. The required time for completing the entire convolution

operation by using the SDLP-RNA scenario can be calculated as:

τSDLP−LRA = τm +

⌈
log2

(
k2 − kbk

2
c
)⌉
τa + τs + τa. (6.15)

Similarly, τs << τa << τm, however, τa is multiplied by a coefficient, which

makes it significant in size compared to τm, especially for larger k values.

To further improve both the hardware and timing efficiency of the SDLP-

LRA accelerator, a specialized compact adder is also proposed. As mentioned

above, the SDLP-LRA calculates sum = 1.5sumtemp = sumtemp + 0.5sumtemp.
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This is a special case of addition due to the correlation between its inputs,

i.e. one input is half of the other one. Let α = “a3a2a1a0” be the 4-bit binary

representation of sumtemp. Hence, the second input to this adder would be

β = “a3a3a2a1”. Note that sign extension is considered as we might be dealing

with negative values. Such an adder is designed in this Chapter and its detailed

hardware implementation is provided in Table 6.3. Ideally, we would add the

expressions for all of the sum and carry bits of the conventional adder as well;

but it consists of a large number of terms (i.e., sum-of-products). Hence, it is

not reported for readability and simplicity. However, only one of the output

bits is calculated and shown in Table 6.3 for comparison purposes.

General 4-bit inputs α = “a3a2a1a0” and β = “b3b2b1b0” are used in Table

6.3 to better distinguish the compact and the conventional adders. However,

the compact adder is simplified considering that b0 = a1, b1 = a2, b2 = a3,

and b3 = b2 (as the sign bit needs to be extended). Although 8-bit adders are

used in the hardware implementation, a 4-bit adder is assumed in Table 6.3.

This is only for the sake of simplicity and more clarity in this Chapter. One

can readily extend this adder to larger designs by using the following Boolean

rules:

si = ai ⊕ bi ⊕ ci−1
ci = aibi + aici−1 + bici−1,

(6.16)

where ci and si denote the carry and sum signals at position i, where i ∈

{1, 2, ..., 7} and c0 = 0. The compact adder would be faster than the conven-

tional one and, therefore, (6.15) can be rewritten as:

τSDLP−LRA = τm +

⌈
log2

(
k2 − kbk

2
c
)⌉
τa + τs + τ ′a. (6.17)

where τ ′a < τa denotes the critical path delay of the proposed compact adder.

The relation between τ ′a and τa depends on the length of the adder and, there-

fore, it is not measured separately. However, the hardware metrics for the

entire design (i.e., adders included) are reported in Section 6.2.2.
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Table 6.3: The AND-OR-Invert (AOI) logic implementation of the proposed
compact adder.

Sum bits of the proposed compact adder Carry bits of the proposed compact adder
s0 = a0ā1 + a1ā0 c0 = a0a1

s1 = (a2c̄1) + (a2a0) + (ā2a1ā0) c1 = a1a2 + a1a0
s2 = (a3a2a1) + (a3ā2ā1) + (a3a1ā0) + (ā3a2ā1) + (ā3ā2a1a0) c2 = (a3a2) + (a2a1) + (a3a1a0)

s3 = (a3a2) + (a2a1) + (a3a1a0) c3 = a3
s1 and c1 bit of the conventional adder

s1 = (a1a0b1b0) + (a1ā0b̄1) + (a1b̄1b̄0) + (ā1a0b̄1b0) + (ā1ā0b1) + (ā1b1b̄0)
c1 = (a1b1) + (a1a0b0) + (b1b0a0)

6.2.2 Evaluation of the SDLP Accelerators

To evaluate the SDLP approximate accelerator, we implement a CNN in MAT-

LAB. The network architecture is shown in Fig. 6.7. The network is trained

from scratch using the conventional exact architecture. Then the inference

CNN design is implemented, where the convolutional layers are replaced with

our own SDLP-based convolutional layers.

As shown in Fig. 6.7, the employed CNN has three convolutional layers,

each followed by a ReLU activation (which is not shown in the figure) and

an average pooling layer. The final layers consist of two fully-connected lay-

ers, a ReLU activation layer, and a soft-max layer. The softmax layer assigns

probabilities to each class in a multi-class classification CNN. In fact, in a

classification problem with C classes, pi
(
i ∈ {1, 2, ..., C} and

∑C
i=1 pi = 1

)
anticipates the likelihood of the input image belonging to class i. The spec-

ification of each layer, such as the number of filters and filter sizes, are also

indicated in Fig. 6.7. Only the convolutional layers are modified by using the

SDLP accelerator; the other layers are kept exact.

We divide the performance analysis of the approximate SDLP accelerator

in this section into two parts: (1) accuracy metrics and (2) hardware metrics.

Accuracy metrics

An important feature of any approximate design is its impact on the accuracy.

Hence, the CNN in Fig. 6.7 is used to classify the CIFAR-10 dataset.

The only two approximate architectures for NNs that reduce the number

of required operations are the dropout and weight pruning techniques, neither
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Figure 6.7: Architecture of the employed CNN.
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Figure 6.8: Effects of the SDLP accelerator on the classification accuracy on
CIFAR-10 dataset.

of which are applicable to a hardware-level implementation. Moreover, as

mentioned earlier, all of the existing techniques in the literature are applicable

to the SDLP as well. For these reasons, we only compare the SDLP with the

conventional exact architecture.

The impact of SDLP with the three different approximation scenarios on

the classification accuracy of the CIFAR-10 dataset is illustrated in Fig. 6.8.

Fig. 6.8 shows how much each of the three variants of the SDLP is less

accurate than the conventional exact architecture. As shown in the figure,

SDLP-LRA achieves the highest accuracy. However, the other two variants

(i.e., SDLP-LNA and SDLP-RNA) are only slightly less accurate than the

SDLP-LRA. According to Fig. 6.8, the maximum accuracy loss in the SDLP

accelerator is only 2.58%.

Hardware metrics

The convolution operation between two 3×3 matrices was implemented in

VHDL and then synthesized using the Synopsys Design Compiler (DC) for ST

Micro’s 28-nm CMOS process.

The four main hardware metrics for any digital system are: area, latency,

power consumption, and PDP. These metrics are reported in Table 6.4 for
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Table 6.4: Comparison of the hardware cost between the exact and the
approximate variants of the SDLP accelerators.

Approximation
scheme

Area
(µm2)

Latency
(nS)

Power
(mW )

Energy
(fJ)

Exact 1952.68 1.56 1.46 2277.6
SDLP-LNA 1271.98 1.41 0.95 1339.5
SDLP-LRA 1325.83 1.49 1.01 1504.9

different variants of the SDLP accelerator. Note that since SDLP-LNA and

SDLP-RNA have the same architecture, we only report the hardware results

for SDLP-LNA.

As shown in Table 6.4 and, as expected, SDLP-LNA is more hardware-

efficient than the SDLP-LRA. According to Table 6.4, SDLP-LNA and SDLP-

LRA accelerate the convolution operation by 9.6% and 4.48%, respectively,

compared to the conventional exact design. They are also 1.7× and 1.5×

more energy-efficient, respectively, according to the PDP metric.

Although SDLP-LNA is much more hardware-efficient than SDLP-LRA, it

is only 0.18% less accurate than it.

6.3 Summary

This chapter proposed the first logarithmic approximate MAC unit, which we

call LMAC. As opposed to other approximate MAC units that take advantage

of approximate multipliers and adders, LMAC uses the least squares method

to linearly approximate the nonlinear functions in the logarithmic domain. Ac-

cording to our simulation results, LMAC achieves the second-best MRED, the

lowest energy consumption, and the highest throughput for AB+CD calcula-

tion. Moreover, evaluation of LMAC and other approximate MAC units in an

image sharpening application shows that LMAC generates the best objective

output quality, in terms of the PSNR.

We also proposed three variants of the SDLP accelerators for CNN-based

image classifiers. The SDLP approximates the MAC operation by skipping the
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exact multiplication operation for some neurons (a.k.a. SNs) while perform-

ing the convolution operation and, instead, uses the values of their adjacent

neurons. The SNs in this chapter are simply chosen as illustrated in Fig. 6.6,

i.e., the neurons in every other column. Three scenarios are used for predict-

ing the values of SNs: (1) using the values of the neurons on the left-hand

side (SDLP-LNA), (2) using the values of the neurons on the right-hand side

(SDLP-RNA), and (3) using the average value of the right and left neigh-

bor neurons (SDLP-LRA). Our simulation results show that the maximum

accuracy degradation for CIFAR-10 dataset is only 2.58%, obtained by using

SDLP-RNA. The minimum accuracy loss, on the other hand, is 1.38% that

is obtained by SDLP-LRA. The SDLP-LNA seems to be the best variant of

the SDLP as it is only 0.18% less accurate than the most accurate variant

SDLP-LRA, while being 10.99% and 41.18% more energy-efficient than the

SDLP-LRA and the conventional exact architecture, respectively.

117



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation begins with an introduction to computation-intensive appli-

cations including DSP, NNs, and MIMO receivers. Power- and resource-hungry

arithmetic operation in these applications are studied and the existing method-

ologies for designing approximate arithmetic circuits are reviewed in detail in

Chapter 2.

In Chapter 3, an initial approximate 4:2 compressor that introduces a

rather large error to the output is proposed. However, the number of faulty

rows in the compressor’s truth table is significantly reduced by encoding its

inputs using generate and propagate signals. Based on this improved com-

pressor, two 4×4 multipliers are designed with different accuracies and then

are used as building blocks for scaling up to larger multipliers. It is shown, for

the first time, that the approximate multipliers can be safely used in the inter-

ference nulling calculation of the MIMO baseband receiver, where the channel

codes can compensate for the approximation errors as well as the channel

noise.

A challenging topic that has never been addressed previously in the lit-

erature is finding the features of an approximate multiplier that make it a

superior design in NNs. This problem is investigated in Chapter 4, where

600 approximate multipliers are considered and the critical features in the

superior approximate multipliers are identified by using a statistical feature

selection approach. We found out that the most important features that make
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an approximate multiplier superior to others are the variance of the error dis-

tance (Var-ED) and the root mean square of the error distance (RMS-ED);

better designs tend to have smaller Var-ED and RMSE-ED values. Although

the statistically most relevant and critical features of approximate multipliers

are identified in this work, ensuring the best choice of approximate multiplier

requires application-dependent experimentation.

Multiplication and its special case, the squaring operation, in the LNS are

discussed in Chapter 5. An important step in every logarithmic arithmetic

circuit is finding the base-2 logarithm of the input operand(s). This is done in

the literature by using LODs. Chapter 5 proposes an exact 16-bit LOD that

is used to find the position of the leading one in a 32-bit number. Compared

with the original Mitchell approximate multiplier, the proposed LOD reduces

the PDP by 24.89% and makes the Mitchell multiplier 1.4× faster. A NOD

is also proposed for the first time that causes the LMs have a double-sided

error distribution. The proposed ILM using the NOD obtains a higher classi-

fication accuracy for the CIFAR-10 dataset than the other LMs. We attribute

this higher accuracy to the double-sided noise that is introduced into the NN

evaluation by the ILM.

Finally, MAC units and accelerators are studied in Chapter 6. The first

fully-logarithmic MAC (LMAC) unit is proposed. As opposed to other ap-

proximate MAC units that take advantage of approximate multipliers and

adders, LMAC uses the least squares method to linearly approximate the non-

linear functions in the logarithmic domain. LMAC is evaluated in an image

sharpening application where it is shown to generate the best output quality,

in terms of the objective PSNR metric. Chapter 6 also proposed the SDLP

architecture that is used to accelerate the convolution operations in CNNs.

It benefits from the spatial dependence between the input image pixels and

skips the exact MAC for some neurons. Our simulation results show that the

SDLP slightly reduces the CNN classification accuracy by 0.18%, while being

41.18% more energy-efficient than a CNN constructed using a conventional

exact MAC.
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7.2 Future work

There are other areas where approximate computing techniques could be ben-

eficial. In general, error-resilient applications and those that are inherently

noisy, such as having noisy inputs, could be good candidates for approximate

computing. In such applications, the errors introduced by approximation tech-

niques are unavoidably combined with the noise that already exists in the sys-

tem and the system might be able to manage these two sources of inaccuracy.

An example of this is when the data is protected, end-to-end, through the use

of error-correcting codes.

A very interesting application could be the hardware-efficient design of

LDPC code decoders. The demand for higher data rates and more reliable

communication standards, such as in IEEE 802.3an, 802.11n, 802.15, 802.16,

ETSI 2nd Gen. DVB, 3GPP LTE (4G) and ITU-T G.9960 and G.709 [30], [72],

[117] is pushing next-generation standards toward error correction schemes al-

lowing high throughput decoding with near Shannon limit performance [117].

Currently, LDPC codes are known to be the best candidates to meet these

competing requirements [117]–[119]. However, LDPC decoders are very com-

plex even for a short length codeword [117]. Hence, one could take advantage

of approximate computing as a potential solution to overcome this concern.

Furthermore, the LMAC unit and the SDLP architecture proposed in this

research project can be applied to other applications as well. Considering

the increasing complexity of ML applications, including NNs, the LMAC can

be used to significantly reduce the hardware implementation cost of these

algorithms. The SDLP, on the other hand, is specifically designed for CNNs

that classify images. The main idea of the SDLP, i.e. exploiting the spatial

dependence between the inputs, can be extended to other types of CNNs and,

further, to other applications (e.g., image and signal processing).
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Appendix A

A.1 Proof of (5.3)

A positive integer N can be written as given by (2.8). On the other hand,

according to the Mitchell method, log2(1 + x) ≈ x. Hence, the approximation

error EN for N can be calculated as follows:

EN = log2(1 + x)− x. (A.1)

Since 2k ≤ N < 2k+1, N can be rewritten as N = 2k + i, where i ∈

{0, 1, 2, ..., (2k − 1)}. Therefore, by using (2.8), x can be represented by:

x =
N

2k
− 1 =

i

2k
. (A.2)

The MSE can then be calculated for all of the 2k ≤ N < 2k+1 values as:

MSE2k≤N<2k+1 =
1

2k
×

2k−1∑
i=0

(
log2(1 +

i

2k
)− i

2k

)2

. (A.3)

The summation over k in (5.3) is provided to cover the entire input range

for an 8-bit design.

A.2 Proof of (5.4)

For the proposed method, the domain of N , 2k ≤ N < 2k+1, needs to be evenly

divided into two intervals. In the first half, N is closer to 2k and in the second

half it would be closer to 2k+1. The approximation function for each of these

intervals is given in (5.2).
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Keeping in mind that N = 2k + i where i ∈ {0, 1, 2, ..., (2k− 1)}, the errors

for the first half, i.e. i ≤ 2k−1− 1, are similar to those in the Mitchell method,

and therefore, (A.3) is valid. For the second half, i.e. i ≥ 2k−1, the second

part of (5.2) should be used. Based on (2.8) and (5.2), y can be represented

as:

y = 1− N

2k+1
=

2k − i
2k + 1

. (A.4)

Thus, the total error can be calculated in a similar way to (A.3), as given

by:

MSE2k≤N<2k+1 =
1

2k
×
[2k−1−1∑

i=0

(
log2(1 +

i

2k
)− i

2k

)2

+
2k−1∑

i=2k−1

(
log2(

2k + i

2k+1
)− 2k − i

2k+1

)2]
.

(A.5)

The summation over k can also be added to cover the entire input range

for an 8-bit design, see (5.4).
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