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ABSTRACT Parallel-in-time methods are emerging to accelerate the solution of time-consuming problems
in different research fields. However, the complexity of power system component models brings challenges to
realize the parallel-in-time power system electromagnetic transient (EMT) simulation, including the traveling
wave transmission lines. This paper proposes a system-level parallel-in-time EMT simulation method based
on traditional nodal analysis and the Parareal algorithm. A new interpretation scheme is proposed to solve the
transmission line convergence problem. To integrate different kinds of traditional EMTmodels, a component-
based EMT system solver architecture is proposed to address the increasing model complexity. An object-
oriented C++ implementation is proposed to realize the parallel-in-time Parareal algorithm based on the
proposed architecture. The results on the IEEE-118 test system show 2.30x speed-up compared to the
sequential algorithm under the same accuracy with 6 CPU threads, and a high parallel efficiency around 40%.
The performance comparison of various IEEE test cases shows that the system’s time-domain characteristics
determine the speed-up of Parareal algorithm, and the delays in transmission lines significantly affect the
performance of parallel-in-time power system EMT simulations.

INDEX TERMS Electromagnetic transient analysis, multi-core processors, object-oriented programming,
parallel-in-time, parallel processing, power system simulation.

NOMENCLATURE
DAE Differential-Algebraic Equation
DDE Delay Differential Equation
EMT Electromagnetic Transient
ODE Ordinary Differential Equation
F Fine Solution Operator
G Coarse Solution Operator
Uk System State Vector of k-th Iteration
W System of Equations
1t Coarse-Grid Time-Step
δt Fine-Grid Time-Step
n n-th Discrete Simulation Time-Step
τ Propagation Delay of Transmission Line

I. INTRODUCTION

THE electromagnetic transient (EMT) program, which
simulates the temporary electromagnetic phenomena

in the time domain such as voltage disturbances, surges,
faults, and other transient behaviors in the power system,
is essential for modern power system design and analysis
[1]. The simulation often requires detailed models with high
computation complexity to accommodate large-scale power
systems. The algorithms of mainstream EMT tools are highly
optimized using sparse matrix methods and fine-tuned power
system models, but the performance is bound by the sequen-
tial programming based on the central processing unit (CPU).
To get through the bottleneck, parallel computing became
a popular option to speed up large-scale EMT simulation.
By partitioning a large system into smaller parts, the rate
of parallelism and the speed of convergence increased for
nonlinear systems [2]. Both direct and iterative spatial domain
decomposition were proposed to partition the system. Based
on these domain decomposition methods, various paral-
lel EMT off-line or real-time programs were implemented
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on different multi-core CPU, many-core graphic process-
ing unit (GPU), field programmable gate array (FPGA),
and multiprocessor systems-on-chip (MPSoCs) archi-
tectures [3]–[5]. However, few works were done on
EMT simulation based on the parallel-in-time domain
decomposition.

Parallel-in-time algorithms have a long history of 50 years
[6], which are now widely used in many research fields to
solve time-consuming simulation problems [7], [8]. In elec-
trical engineering, parallel-in-time methods to solve power
system dynamic problems were proposed in the 1990s [9].
After 1998, there had been few works on the parallel-in-time
simulation until the recent 5 years. The Parareal algorithm,
which solves the initial value problems iteratively using two
ordinary differential equation (ODE) integration methods,
has become one of the most widely studied parallel-in-time
integration methods for its ability to solve both linear and
nonlinear problems [6]. In 2016, [10] implemented a sequen-
tial program based on Parareal to solve the semi-explicit
differential-algebraic equations (DAEs) system of power
dynamic simulation problem and analyses the efficiency
on theory. Reference [11] used the multi-grid reduction in
time (MGRIT) method, which is a general form of Parareal,
to solve a small 2-generator system in the full-implicit DAE
form. Reference [12] utilized Parareal to solve partial differ-
ential equations of eddy current problems for finite element
analysis (FEA). However, for EMT simulation, only a few
research works about the parallel-in-time simulation of a
single specific EMT model can be found. Reference [13]
proposed a parallel-in-time algorithm that solves a simple
average model of modular multilevel converter based on the
Parareal iteration. The lack of research in EMT simulation
is mainly due to: (1) Traditional time-domain simulation of
electric circuits is based on nodal-analysis, which often yields
a DAE with an index equal to or greater than one [14].
The implicit DAE system can only be solved by backward
differentiation formulas (BDF), andmany kinds of ODE-only
parallel-in-time methods cannot be used. Although there
are some works can convert DAE to state-space forms
[15], it dramatically increases the matrix size compared to
nodal analysis; (2) Although Parareal can solve nonlinear
DAEs according to aforementioned research works, tradi-
tional EMT model implementations often have a fixed-step
assumption, which needs adaptions to be used in Parareal;
(3) In power systems, the most important components are
transmission lines. In EMT simulation they are modeled with
traveling wave models like the Bergeron line model, which
brings delay differential equations (DDEs) to the system [16].
The dependency of past states creates additional convergence
problems. No DDE was considered by previous parallel-in-
time research works.

To address the aforementioned issues, this paper proposes a
component-based system-level parallel-in-time power system
EMT simulation algorithm based on the Parareal, which is
implemented on the multi-core CPU with object-oriented
C++ programming. Compared to other parallel-in-time

research, the proposed simulation program has the following
advantages and features:

1) Based on highly abstracted component class, the sys-
tem architecture is flexible and extensible to integrate
different kinds of traditional EMT models of power
system equipment into the parallel-in-time algorithm
and maintain all the advantages from nodal analysis;

2) Initial support for delay differential equations. With the
modified interpolation strategy, the convergence speed
increases so that transmission line models are able to
work with the Parareal;

3) Reusing solver workers and workspace to reduce mem-
ory usage and decrease the overhead caused by object
allocation in the Parareal iterations.

The paper is organized as follows: Section II describes the
basics of the Parareal algorithm and implementations of EMT
models, including the proposedmodifications to transmission
lines; Section III introduces the Parareal EMT simulation
algorithm implemented upon the component-based circuit
solver architecture; Section IV presents the case study and
efficiency analysis; Section V is the conclusion.

II. PARALLEL-IN-TIME MODELING
There are different kinds of iterative and direct parallel-in-
time methods, but only some of the iterative methods can
solve nonlinear ODE problems. Parareal algorithm, which
can be derived as amulti-gridmethod to solveODEproblems.
However, it can be proved that the Parareal algorithm is not
limited to the solution of ODE problems, and thus is suitable
for parallel-in-time EMT simulation.

A. PARAREAL ALGORITHM
This algorithm decomposes the simulation time [t0, tend ] into
N smaller sub intervals Ik = [Tj−1,Tj], where start-time
T0 = t0, and end-time TN = tend . At every time point Tj,
the system has a unique solution for its state variables U j
produced by a fine solution operator F(Tj,Tj−1,U j−1). So,
for N time intervals, following nonlinear equations can be
established:

W (U) :=


U1 − F

(
T1,T0,U0) = 0,

U2 − F
(
T2,T1,U1) = 0,

...

UN−1 − F(TN−1,TN−2,UN−2) = 0,

(1)

where U0 is determined as the known initial value.
The system (1) can be solved by Newton’s method. For

every U j ∈ U = {U1,U2, . . . ,Un−1}, only two entries are
nonzero. The individual update formula for each U j is given
by

U (k)
j = F

(
Tj,Tj−1,U

(k−1)
j−1

)
+
∂F
∂U

(
Tj,Tj−1,U

(k−1)
j−1

) (
U (k)
j−1 − U

(k−1)
j−1

)
(2)

where k represents the iteration number.
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FIGURE 1. Progression of steps in the Parareal algorithm:

(a) Initialize U(0)
j which equals to G(0)

j ; (b) Produce fine-grid

solution Fk
j ; (c) Refine U

(k)
j with U(k)

j = G(k)
j +Fk

j − G(k−1)
j .

The ∂F
∂U item in (2) can be approximated by

∂F
∂U

(Tj,Tj−1,U
(k−1)
j−1 )

≈
F(Tj,Tj−1,U

(k)
j−1)− F(Tj,Tj−1,U

(k−1)
j−1 )

U (k)
j−1 − U

(k−1)
j−1

. (3)

Notice that (3) is differentiated by index k not j since it is
the derivative of U . To parallelize the computation, this item
is approximated by a cheaper method G in sequential, which
can produce a close approximation to F , giving

F(Tj,Tj−1,U
(k)
j−1) ≈ G(Tj,Tj−1,U (k)

j−1),

F(Tj,Tj−1,U
(k−1)
j−1 ) ≈ G(Tj,Tj−1,U (k−1)

j−1 ). (4)

Substituting theF entries in (3) with the approximation in (4),
following equation can be derived:

U (k)
j = F

(
Tj,Tj−1,U

(k−1)
j−1

)
+G(Tj,Tj−1,U (k)

j−1)− G(Tj,Tj−1,U (k−1)
j−1 )), (5)

which becomes a Quasi-Newton method. This was first pro-
posed in [17].

The Parareal algorithm can solve nonlinear full-implicit
DAE problems in the condition of having a good approxima-
tion method G to predicted the states ofF so that it can satisfy
the assumptions in (4). The G andF method are called coarse
and fine solution operator, and the time points they work at
form up the coarse-grid and fine-grid, respectively. As shown
in Fig. 1, the coarse operator makes initial predictions for
the fine-grid; then the fine operator takes U as initial values
and works in parallel to populate the fine-grid results; next,
the coarse operator refines U states by making predictions
based on new fine-grid solutions using (5). When the U

stops changing, the fine-grid solutions are equal to the ones
sequentially computed by the fine operator.

B. COMPONENTS MODELS
Normally, the nodal equations of a circuit have a DAE-index
greater than zero [14], which means only implicit ODEmeth-
ods can solve the equations. To solve the the circuit with the
nodal analysis method, the general form of linear circuit DAE
discretized by Trapezoidal Rule can be reinterpreted as

Yvn+1 = sn+1 − ihistn+1, (6)

ihistn+1 = g(xn, vn), (7)

xn+1 = h(ihistn+1, vn+1), (8)

where Y is the admittance matrix, v is node voltage vector;
sn+1 is the source injection; ihistn+1 is the equivalent current
injections determined by (7); x is historical terms vector for
components. The x and v form up the global system state vec-
tor U = {v, x}. The nonlinear circuit has a varying Y matrix
and additional current injections when the Newton-Raphson
method is applied to linearize it at each time-step.
The equations are formed from different components in

the power system. Most components in EMT simulation are
treated as an equivalent conductance in parallel with a current
source, which is convenient for nodal analysis. However,
the behavior of these components differs very much from
each other. It is more convenient to integrate their states on
their local space, and the only common states they share are
the node voltages.

1) INDUCTOR/CAPACITOR MODELS
These components can be discretized by Trapezoidal method
in the general form [18]:

in+1 = Geqvn+1 + ihistn+1

ihistn+1 = in + Geqvn. (9)

where

GLeq =
2L
1t
,GCeq =

1t
2C
. (10)

Geq is the discretized equivalent admittance for the inductor
L or the capacitor C , in+1 is the total current going through
the inductor or capcitor component in the step n+ 1, and the
ihist is called historical current source which is injected to
the right hand side of (7). The current i and v are the state
variables of LC components.

In traditional fixed-step EMT simulation, the state variable
i is substituted and omitted by current source ihist because the
Geq remains unchanged between steps n and n + 1, which
gives:

ihistn+1 = ihistn + 2Geqvn. (11)

However, this only applies to fixed time-stepping. Since there
are two different time-steps in Parareal algorithm, the form
of (9) must be applied to all transient components. All fixed
time-stepping assumptions must be avoided.
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FIGURE 2. Admittance-based transformer model with saturation.

2) TRANSFORMER MODEL
The transformer for EMT simulation with winding resistance
R and leakage inductance L is represented as

v = Ri+ L
d i
dt
. (12)

where R and L are n×nmatrices; v and i are n×1 vectors of
winding voltages and currents. Using Trapezoidal discretiza-
tion, (12) can be written as

in+1 = Geqvn+1 + ihistn+1,

ihistn+1 = Geqvn −Hin, (13)

where

Geq = (R+
2L
1t

)−1,H = Geq(R−
2L
1t

).

The nonlinear saturation is modeled with a compensation
current source is on the secondary winding. The nonlinear
relationship between flux λ and saturation compensation cur-
rent is is given by a nonlinear function is = im(λ), details can
be found in [18]. The λ is the integral of node voltage v over
a time-step:

λ(t) = λ(t −1t)+
∫ t

t−1t
v(t) dt. (14)

Transformer states {i; λ} are chosen to participate in the
Parareal iteration.

3) GENERATOR MODEL
Indirect approaches are widely used in the EMT program to
interface the synchronous machines. For example, the Norton
current source representation of machines implemented in
PSCAD/EMTDC R©. However, this kind of model has weak
numerical stability [19], and causes oscillations in Parareal
iterations. Therefore, a machine model from [20], which can
be used in variable time-stepping methods, is used in the
proposed parallel-in-time simulation.

In this work, the synchronous generators are represented
by the machine model with one kd winding and two kq
windings.The relationship between voltages and currents can
be expressed as:

vum(t) = Rumium(t)−
d
dt
ψum(t)+ u(t) (15)

ψum(t) = Lumium(t), (16)

where vum =
[
vd , vq, v0, vf , 0, 0, 0

]T
, ium =

[
id , iq

i0, if , ikd , ikq1, ikq2
]T
, ψum =

[
ψd , ψq, ψ0, ψf , ψkd

FIGURE 3. Synchronous generator representation using variable
time-stepping machine model.

ψkq1, ψkq2
]T
, u =

[
−ωψq, ωψd , 0, 0, 0, 0, 0

]T
,Rum =

diag
(
Rd ,Rq,R0,Rf ,Rkd ,Rkq1,Rkq2

)
and Lum is the leakage

inductance matrix.
The machine is represented by a Thévenin voltage source

and a resistance. Details can be found in [20]. Since the
mechanical state ω changes slower than electrical ones,
the numerical stability is better than the models that make
relaxations or assumptions on electrical state variables.
In the Parareal iteration, the state vector for this model is
{vum, ium,ψum, ω}.

C. TRANSMISSION LINE MODEL
The transmission lines are the most common components in a
power system.However, themodels are based on the traveling
wave theory which means that the solutions are dependent on
a range of past states. This brings DDEs to the EMT power
systems simulation [16].

Taking the lossless line as an example, the equations to
update historical current source are given as:

ihistm (t) = −2Gvk (t − τ )− ihistk (t − τ )

ihistk (t) = −2Gvm(t − τ )− ihistm (t − τ ). (17)

where τ is the transmission delay ihistm is the receiving-end
current source, ihistk is the sending-end current source and
G is the characteristic conductance of the transmission line.
Details can be found in [18]. Since the equations are in
continuous-time domain, to work with discrete-time inte-
gration, linear interpolation is used to get the approxima-
tion between two discrete time points near t − τ . However,
the traditional method cannot work under the parallel-in-time
scenario for two reasons.

First, the DDE problems are not considered in previous
parallel-in-time research. Although Parareal algorithm can
solve nonlinear DAE problems by predicting states at certain
time points in coarse-grid and refine them in fine-grid, it is
difficult to do such thing for a transmission line because
the historical states for the fine-grid transmission lines do
not exist in coarse-grid. Using interpolation to predict the
fine-grid history vectors cannot reflect the transient wave-
form of the discrete system with a smaller time-step. In this
case, all transmission line history data should be prepared
before Parareal iteration. Currently, limiting the time window
of iteration is the only way to avoid this dependency issue.

VOLUME 7, 2020 299



FIGURE 4. (a) Proposed interpolation scheme; (b) Prediction
results comparison.

Second, limiting the time window is still not enough.
The traditional transmission line uses linear interpolation
to approximate the historical value at t − τ . However,
the approximated historical values are inconsistent with the
fine-grid ones. As shown in Fig. 4 (b), the traditional inter-
polation’s inconsistency causes a huge error between coarse
and fine-grid so that the prediction in the next window fails
to meet the assumption in (4) and causes deviations.

To solve these problems, a fine-grid reinforced transmis-
sion line model implementation is proposed, which is shown
in Fig. 4 (a). Unlike conventional line models, where each
line has its history vector to cover only one delay cycle,
a transmission line in fine-grid and coarse-grid share the
same memory for historical data. The computation is set
to a time window which is smaller than the transmission
delay τ , so that accurate historical data are prepared from
the previously completed window, which avoids the data
dependency issue. To improve the coarse-grid prediction,
the coarse-grid transmission lines must read data from the
data points in fine-grid history vectors, which requires a
conversion between two time-steps to get the data index,
given by

jfine = floor(jcoarse
1t
δt
+ (

1t
δt
− 1)

τ

1t
), (18)

where jfine is the converted index in fine-grid history vector
for coarse-grid transmission line; jcoarse is the original index
in 1t step simulation; δt is the fine-grid time-step, and the
index is always truncated to an integer.

III. PARAREAL APPLICATION TO POWER
SYSTEM EMT SIMULATION
Unlike other research works on parallel-in-time simulation,
which focuses on specific differential equations, the power
system EMT simulation needs to handle different kinds
of equations and configurations. Also, Parareal algorithm
requires the ability to restart the simulation at an arbitrary
time to do iterations. Therefore, it is necessary to model the
power system on a higher-level abstraction. A component-
based system architecture is proposed to handle the parallel-
in-time complexity flexibly and elegantly, and serves as the
fundamental element to build the parallel-in-time simulation
program.

FIGURE 5. Circuit class architecture for the proposed
parallel-in-time EMT simulation program.

A. COMPONENT-BASED SYSTEM ARCHITECTURE
A circuit is an undirected graph topological relationship
between different components, where the components con-
tain all the edge information of the graph. Therefore,
the circuit can be represented with a vector of components.
As shown in Fig. 5, the object-oriented concept is used to
model the circuit system and components. Major properties
of the circuit class contain the system matrix, state vectors,
and a container for heterogeneous dynamic time-varying
components.

All the components inherit from abstract base component
class-TransientComponent so that the circuit object is able
to call individual component functions with standard inter-
face: initalize(); assemble_mat(); update_i(); update_hist(),
with object polymorphism features. The get_hist_nums();
set_hist_index(); set_hist_i(); get_hist_vector() functions are
interface to gather or scatter state variables between individ-
ual components to the system history state vector.

The algorithm flow chart is shown in Fig. 6. Before solv-
ing the circuit, each component initializes its variables and
equivalent conductance according to the time-step. Then, they
assemble the global system matrix according to their branch
information in the graph. With the matrix formed, the circuit
is ready to be solved.With this architecture, the complexity of
power systemEMTmodels is encapsulated into two functions
of circuit class, the init() and step(). The component-based
object-oriented architecture has the following advantages:

1) High flexibility: It separates the individual compo-
nent model and system-level computation logic with
the application of TransientComponent. That means
users can focus on describing model behaviors without
caring about the structure of the global system. It is
easy to substitute models with different object-oriented
interfaces. By correctly implementing parallel-in-time
interfacing functions, the components automatically
become available for the parallel-in-time solution.

2) High scalability: The Circuit class serves as a generic
solver for different kinds of systems. The number
of components and matrix sizes can be arbitrary.
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FIGURE 6. Flowchart of proposed parallel-in-time EMT
simulation program.

For small systems, the implementation uses a single
thread, which achieves the optimal performance, but for
large-scale systems that have thousands of components,
parallel class functions can be used to increase the
performance and seamlessly integrated into the user’s
application code.

3) Modular design: TheCircuit class is not only composed
by decoupled modules but also designed as the basic
building block of a parallel-in-time algorithm based on
Parareal, which significantly reduces the implementa-
tion difficultly and human errors.

B. FIXED ALGORITHM IMPLEMENTATION
The basic version of Parareal algorithm is by using multiple
circuit instances proposed in the previous section as workers.
There is one coarse-grid worker, which is initialized with a
larger time-step as a predictor, and many fine-grid workers
with a smaller time-step; Their workspace is initialized before
the beginning of computation; The coarse and fine-grid work-
ers communicate with shared memory space. The algorithm
working on a fixed full simulation time range is called the
fixed Parareal algorithm in this paper. Suppose there are N

coarse time intervals with initial time T0 and state vector U0,
and k denotes the index number of Parareal iterations, then
the algorithm is composed of the following 4 stages:

1) INITIALIZATION
The first coarse worker initializes with the system states U0
and k = 0 at t = 0; then the coarse worker generates initial
guess with coarse time-step 1t and stores the N solutions
into an array called Gk in the Fig. 7, where k = 0. This initial
prediction process is only called once to start a full cycle of
Parareal iterations in the designated simulation time range.

2) PARALLEL OPERATION
After G(k) is prepared, the fine-grid workers load the initial
solution according to their subdivision’s position and initial-
ize all variables in parallel. Notice that in each iteration, Only
N − k threads are launched to reduce overhead, since the
first subdivision generates a solution which is guaranteed to
converge.

After initialization, fine-grid workers work on their
workspace to simulate m fine-grid steps, where m · δt = 1t .
The states we care about in Parareal iterations are located at
the points on coarse-grid. The (m)th step states at each sub-
division are extracted into the state vector F(k+1) except the
worker N because there is no (N )th state in coarse prediction.
But this is not a problem because the (N )th state can converge
once the (N − 1)th state is converged.
According to (5), it is possible to exploit the parallelism by

merging the F (k+1)
− G(k) into the parallel operation stage.

All workers execute P = F(k+1)
−G(k), which is shown as red

in the Fig. 7, in parallel after their solutions are done, which
reduces the sequential overhead caused by the large-scale
system. There is an exception that the (k + 1)th solution is
already converged, so it is skipped and be used directly in
this and next stage. After this step, all threads synchronize
and wait for SequentialUpdate of coarse states.

3) SEQUENTIAL UPDATE
Now it is the time to perform U (k+1)

= G(k+1)
− P so that

all states are corrected by new prediction. Obviously G(k+1)
j

in the Fig. 7, can only be processed in sequential depends on
U (k+1)
j−1 . The process starts from computing G(k+1)

k+2 . There is
no mistake to start with (k + 2)th solution because the k state
is already known and (k+1)th state is guaranteed to converge.
So the square with text (k + 1)th is loaded into coarse worker
first and produce G(k+1)

k+2 . then U (k+1)
k+2 is computed so that it

is ready to use U (k+1)
k+2 to compute U (k+1)

k+3 , etc. Finally, all
U (k+1)
k+1 to U (k+1)

N−1 are updated, and it is the time to check the
convergence. This is done by

error =
N−1∑
j=k+1

‖U (k+1)
j − U (k)

j ‖

‖U (k)
j ‖

. (19)

Which computes the system states’ relative Euclid distance
between (k + 1)th and (k)th generation at each coarse time
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FIGURE 7. Detailed procedures in the proposed parallel-in-time EMT simulation.

point and sums them up. If the error is larger than the
tolerance, the index (k)th increases by one and goes back
to the parallel operation with newly updated states. If the
computation converged, it is the time to generate final result.

4) OUTPUT
In this stage, all fine-grid workers use the converged coarse
stated to fill all fine-grid steps in the output solution vector,
which is the assembly procedure in the Fig. 7.

C. WINDOWED ALGORITHM IMPLEMENTATION
The fixed algorithm would waste much computation effort to
work on a long time range for large systems, especially when
there are many transmission lines, which require previous
historical data to propagate traveling waves. Additionally,
the memory consumption for a fixed algorithm is unaccept-
able since it needs the full-length memory allocation to work.

Therefore, a windowed version is adapted from the fixed
algorithm. The windowed algorithm only launches several
parallel workers and work on a small time window near
the start point. To keep the implementation simple, there is
no overlap between two consecutive windows. The work-
ers’ group first starts working on a known initial state and
workspace. Once the solution for the current window is fin-
ished, the worker in charge of the last subdivision transfers
the data to the first worker and all worker’s simulation time
and indices are reset for the next time window. Fig. 8 shows

FIGURE 8. Example of windowed algorithm with 3 parallel
workers.

an example of how the algorithm works, the simulation time
is the time for system simulation, and the program time is
the actual time consumed by executing. The convergence
and parallel efficiency increase a lot in this way. Moreover,
the memory allocation for the windowed algorithm can be
limited to one time window.

IV. CASE STUDIES
A CPU-based parallel-in-time EMT program is implemented
in C++with Intel R© Threading Building Block (Intel R© TBB)
and Intel R©Math Kernel Library (Intel R©MKL). Tests are per-
formed on the IEEE-9, IEEE-39 and IEEE-118 test systems to
verify the parallel-in-time results against the sequential ones.
In addition, the parallel-in-time performance is compared to a
traditional spatial parallel computing implementation which
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FIGURE 9. Simulation results of three-phase voltages: (a) Bus 7 in IEEE-9; (b) Bus 4 in IEEE-39; (c) Bus 30 in
IEEE-118. Simulation results of fault currents: (d) Bus 8 in IEEE-9; (e) Bus 14 in IEEE-39; (f) Bus 38 in IEEE-118.
Zoomed-in comparison: (g) voltages and currents of IEEE-9; (h) voltages and currents of IEEE-39; (i) voltages
and currents of IEEE-118.
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TABLE 1. Performance Comparison of Different Test Cases with
Fixed Twindow = 200µs, 1t = 40µs and δt = 1µs for A 500ms
Duration Using 5 Threads.

utilized Intel R©MKL’s highly optimized parallel lower–upper
(LU) decomposition algorithm.

The parameters of test cases are from [21]. The same thread
number and algorithm configuration are used to compare the
performance under the same condition. The time window
and other parameters are shown in Table 1. For the IEEE-
9 system, the minimal delay of transmission lines is 246µs,
which is enough for the 200µs time window. But for the other
test systems, there are some short transmission lines. The
transmission line length in IEEE-39 is scaled-up to 60-100km
so that it can fit the timewindow and get reasonable speed-up.
For the IEEE-118 case, the transmission lines below 60km are
simplified to multiple-PI sections and the remaining 61 lines
are modeled with the Bergeron model. Without the simplifi-
cation, although good results can be obtained, the parallel-in-
time algorithm falls back to the sequential program.

A three-phase-to-ground fault happens at 0.3s, Bus 8 in
IEEE-9, and 0.3s, Bus 14 in IEEE-39 case. A fault happens
at 0.2s in the IEEE-118 case at Bus 38. The fault resistor size
is Rfault = 0.01�, Rclear = 1M�. To achieve stable and
correct results, the error tolerance of a whole time window
is set to 0.01, which means the relative error sum of coarse
steps cannot exceed 1%. Parallel workers are fixed to five
for parallel-in-time cases, and they use the sequential LU
algorithm.

As shown in Fig. 9, the parallel-in-time simulation results
coincide with those from the traditional method, and the
zoomed-in views show the expected high accuracy. The
results are verified with PSCAD/EMTDC R©.
To evaluate the performance, the theoretical workload is

defined by the simulation time consumption without any
overhead from Parareal iterations or thread synchronizations.
To achieve speed-up, the parallel-in-time workload must be
smaller than the sequential one to get speed-up. The work-
load ratio can be obtained by Tpar/Tseq, where Tpar is the
parallel workload and Tseq is the sequential workload, and
the theoretical speed-up is the reciprocal of workload ratio.
Also, the parallel efficiency is computed to evaluate the uti-
lization of parallel processors. The efficiency is the ratio of
the speed-up to the number of threads.

Normally a small scale system cannot benefit from parallel
computing due to the thread launching and synchronization
overhead. As shown in Table 1, the Parallel LU cannot
achieve speed-up under the IEEE-9 (matrix size 27×27) and
IEEE-39 (matrix size 117 × 117) case, while in IEEE-118
(matrix size 354 × 354) case the speed-up is obvious.

TABLE 2. Comparison of Sequential, Parallel LU, and
parallel-in-time IEEE-118 Simulation with Various Twindow , 1t
and fixed δt = 1µs for a 300ms Duration Using 5 Threads.

In contrast, the Parareal algorithm can get speed-up in all
three cases because the speed-up is mainly determined by the
temporal factors, which is more obvious in Table 3.

Table 2 shows the performance of the IEEE-118 simulation
with the same fine-grid time-step δt = 1µs and different
coarse-grid time-steps. The parallel-in-time results are com-
pared to sequential, parallel LU, and theoretical speed-up.
The sequential and parallel LU simulation uses the same
time-step δt = 1µs. All parallel-in-time simulation’s error
tolerances are set to 0.01 per time window so their results are
on the same accuracy level.

From Table 2, the best performance case is when the
time window is 200µs. In this case, it is 2.08x faster than
the sequential one while the parallel efficiency is 42%. The
speed-ups are close to the theoretical ones and the overhead
is around 10%, indicating that the implementation is highly
efficient. The actual speed-ups and parallel efficiency are
higher than the MKL parallel LU case except for the 400µs
case.

When the1t = 80µs, the theoretical speed decreases. This
is understandable as the minimum transmission line delay is
200µs. The 400µs time window exceeds the limit a lot so
that the transmission lines cannot get historical data at the
beginning, so it requires more iterations to converge. When
1t = 10µs, each fine-grid worker only takes 10 steps and
the coarse worker takes 5 steps, which means the minimum
workload ratio is (5+ 10+ 4+ 10)/50 = 0.58. In this way,
although it can converge in one Parareal iteration, the effi-
ciency is limited by the workload distribution between coarse
and fine-grid. Therefore, appropriate time-steps and worker
assignment are significant to achieve practical speed-up using
the parallel-in-time method.

Table 3 shows the performance of all test cases with dif-
ferent thread numbers. The 1t , and δt remain constant for
all thread numbers and test cases, so the time window size
changes with the thread number. The different test cases show
similar theoretical speed-ups. If the coarse prediction can
match the fine-grid results on a wider range, the speed-up
can be higher. However, in power system EMT simulations,
the delay of transmission lines restricts the time window size
so utilizing more threads may not get better performance.
The exception is the IEEE-9 case, which gets the best the-
oretical speed-up with 16 threads. In general, the speed-up
of the Parareal method is mainly affected by the system’s
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TABLE 3. Performance Comparison of Various Thread Number with Fixed 1t = 40µs and δt = 1µs for A 500ms Duration.

time-domain characteristics such as the model’s time con-
stants and simulation time-steps rather than the system’s
scale.

Although the time-domain characteristics are dominant,
the overheads of multi-thread synchronization and error eval-
uations are noticed in the smallest test case. The actual
speed-up is much far away from the theoretical ones in
the IEEE-9 case compared to larger cases, indicating much
room for improvement in small scale systems. When the
thread number equals 16, the CPU cannot finish all the jobs
in parallel so the speed-up goes down significantly for all
cases. The optimal thread number for these cases is 5 or 6,
which gives a time window of 200-240µs. This is exactly
the minimal transmission line delay set for all the test cases.
This indicates that the transmission line delays are the main
factors to affect the best speed-up we can get. exceeding this
boundary causes inaccurate predictions so the speed-up drops
down. Therefore, the treatment of the delays in transmission
lines is significant for parallel-in-time power system EMT
simulation. For IEEE-118 case, the best speed-up is 2.30x
and the parallel efficiency is 38.3%, which is still higher than
parallel LU decomposition.

V. CONCLUSION
A component-based simulation class architecture is proposed
to handle different models in power systems, which deliv-
ers high flexibility and scalability to implement the system
level parallel-in-time algorithm. Major challenges to handle
the delay differential equations brought by transmission line
models in the parallel-in-time algorithm are analyzed and
a modified model implementation is proposed to solve the
problem. Using the proposed circuit solver class as basic
workers, the parallel-in-time algorithm based on the Parareal
is implemented using object-oriented C++. The case study
shows accurate results compared to the sequential program,
while better parallel speed-up and efficiency than the MKL
parallel LU implementation are obtained, showing the great
potential of accelerating power system EMT simulation.
The performance test also shows the system’s time-domain
characteristics determine the speed-up of Parareal algorithm,
especially the transmission line delay in power system EMT
simulation.
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