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Abstract 
 
 Gastric cancer is an aggressive malignancy.  Much of the mortality is 

attributable to delayed diagnosis from non-specific symptoms, and lack of early and 

accurate screening modalities.  Metabolomics, the most downstream of the “omics” 

sciences (genomics, transcriptomics, proteomics) is the latest tool to join the 

diagnostic armamentarium.  The transformation from normalcy to malignancy is 

accompanied by a series of aberrant biochemical and metabolic alterations.  

Through detection of metabolites from such pathways, metabolomics may offer 

potential for early and non-invasive detection of gastric cancer. 

 Hydrogen nuclear magnetic resonance spectroscopy was used as the 

analytical platform to explore the urinary metabolomic profile of patients with 

gastric cancer, in comparison to patients with benign gastric disease and healthy 

controls who were age, sex and body mass index matched.  On multivariate 

statistical analysis, gastric cancer individuals had a discrete urinary metabolomic 

signature that was clearly distinguishable from healthy patients, and a subset of 

benign gastric disease individuals, namely those with chronic gastritis and ulcers. 

LASSO logistic regression generated a parsimonious model with three metabolites 

(alanine, 2-hydroxyisobutyrate, 3-indoxylsulfate) that discriminated gastric cancer 

from healthy controls with high accuracy, sensitivity and specificity.  These 

preliminary results suggest that there is clinical potential for metabolic profiling for 

gastric cancer detection; however, future studies will be required to validate these 

findings. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Overview of Gastric Cancer 
 

1.1.1 Gastric cancer epidemiology 

 Gastric cancer (GC) is the fifth most common cancer worldwide1 and the 

third most deadly.2  It represents about 7% of all cancers, after lung, breast, 

colorectal and prostate respectively.  About one million people are diagnosed 

worldwide every year,1 and there is a 70% mortality rate.2  Premature death and 

disability from GC has a large economic impact.  In 2008, the American Cancer 

Society estimated that countries ranked in the second lowest quartile by per capita 

gross domestic product, lost 4.8 million disability adjusted life years (DALY) in one 

year due to GC.  This translates into 10.2 billion US dollars lost per year due to 

death/disability.3 

 There are geographical differences in GC distribution.  Sixty percent of cases 

occur in East Asia, with Korea, Mongolia and Japan having the top three prevalence 

rates.4  GC is considerably less common in Canada; in 2013, 3300 cases were 

diagnosed nationwide and GC contributed to 2-3% of all cancer related deaths.5 

Males are more commonly affected than females, with a 2:1 incidence ratio.6  The 

average age of diagnosis is 69 years old.7  
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1.1.2  Gastric cancer histology 

 The most common histological subtype of GC is adenocarcinoma, which 

comprises 95% of GCs.  The Lauren classification divides adenocarcinomas into 

diffuse or intestinal subtypes.   The intestinal type is found more commonly in high 

incidence geographic regions and is characterized pathologically by the tendency of 

malignant cells to form glands.  They generally spread hematogenously and are 

more frequent in older patients; most of the time these tumours are well to 

moderately differentiated.  On the other hand, the diffuse type lacks organized 

glands, has many signet ring cells, and is poorly differentiated.  Signet ring cells 

occur when greater than half the tumour contains intracytoplasmic mucin.  Diffuse 

type tumours commonly afflict younger and more obese patients.  They can spread 

via lymphatics and transmurally.8 

 Since the 1980s, the incidence of proximal gastric tumours (upper one-third 

of stomach) is rising, especially in North America.  Proximal tumours are associated 

with worse outcomes.9  Cancers of the gastric cardia account for nearly half of all 

adenocarcinomas.  Just under 10% of all tumours involve the entire stomach; this is 

known as linitis plastica or leather bottle stomach and it carries a dismal prognosis.  

Commonly gastric cancers metastasize to the liver, lungs and peritoneum.10 

 

1.1.3  Risk Factors 

 There are some well-established risk factors for GC.  Genetic, inflammatory, 

dietary, lifestyle, infectious and ethnic factors contribute to the multifactorial 

pathogenesis of GC.  High intake of salt has long been associated with increased GC 
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morbidity and mortality.  In one prospective cohort study, subjects with a dietary 

intake of salt ≥10 g/day had an age and sex adjusted hazards ratio 2 times higher 

than subjects with a dietary intake <10 g/day.11  The authors postulated that excess 

salt alters the viscosity of the mucus lining.  Once this mucosal barrier is weakened, 

carcinogenic agents such as nitrates can come into contact with the gastric mucosa.  

Alternatively, high salt intake can facilitate colonization by Helicobacter pylori (H. 

pylori) bacteria.  There may be a synergistic connection between salt and bacteria.  

With increased refrigeration, the frequency of salt use as a preservative has 

declined, as have GC mortality rates.12  Fruits and vegetables are a protective factor; 

in one prospective study, there was a 44% reduction in GC associated with 2-5 daily 

servings compared to 1 serving.  Smoking and tobacco use was correlated with a 

1.53 increase in relative risk of developing GC, and the risk was dose dependent.12  

 A body mass index (BMI) of 25-30 kg/m2 is associated with a 1.71 fold 

increased risk of GC, whereas a BMI over 30 kg/m2 confers a 2.34 fold relative risk 

compared to normal BMI.13  Ethnic groups at higher risk for GC include East Asians 

and First Nations who also have high rates of H. pylori infection and seropositivity.14  

Another infectious agent implicated in GC is Epstein-Barr Virus (EBV) which occurs 

in 10% of GC cases.6  Other miscellaneous factors associated with gastric 

carcinogenesis include pernicious anemia (an autoimmune disorder where gastric 

parietal cells are destroyed), prior gastric surgery for benign disorders such as 

ulcers, and ionizing radiation.6  

 About 3-5% of GCs have a genetic predisposition.15  E-cadherin (CDH1) 

mutations are found exclusively in the diffuse type of GC, whereas no genetic 
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associations have been identified yet in the intestinal type of GC.   People with CDH1 

mutations have as high as an 80% lifetime risk of developing hereditary diffuse 

gastric cancer (HDGC).  This tumour is known for multiple areas of signet ring 

carcinoma initially confined to the superficial lamina propria in the mucosa.16  

However most cases of HDGC eventually spread and cause death.  GC may also 

appear alongside other hereditary cancer syndromes such as hereditary non-

polyposis colon cancer (HNPCC), Li-Fraumeni syndrome, familial adenomatosis 

polyposis syndrome (FAP), and Peutz-Jeghers’ syndrome. 

 

1.1.4  Helicobacter pylori infection 

 Helicobacter pylori infection is the most significant risk factor for distal (non-

cardia) gastric cancer.  H. pylori is a Gram negative bacterium that colonizes the 

distal stomach.  In 1994, the International Agency for Research on Cancer classified 

this bacterium as a Class I carcinogen,17 as it was frequently associated with GC and 

mucosal associated lymphoid tissue lymphoma (MALT).  It also plays a role in peptic 

ulcer disease and chronic gastritis.  About 50% of the world’s population is infected; 

however, most are asymptomatic.  Infection rates are highest in developing 

countries, and it is tied to lower socioeconomic status, more specifically 

overcrowding and sanitation.  The odds of developing GC in patients infected with H. 

pylori are about three times greater than those who are not infected.6  

 H. pylori inhabits the mucus lining of the stomach.  It produces urease, which 

converts urea to carbon dioxide and ammonia.  The ammonia protects H. pylori  

from the harsh acidic environment in the stomach lumen.  H. pylori induces 
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inflammation and damage to the epithelial cells, resulting in a chronic gastritis.  A 

recent basic science study demonstrated that H. pylori induced double stranded 

breaks in DNA in gastric cell lines in vitro, setting the stage for carcinogenic 

mutations.18 

 H. pylori inflammation leads to chronic atrophic gastritis (CAG), which was 

implicated long ago to be an early step in the carcinogenesis pathway.  In 1988, Peyo 

Correa published an article studying GC progression in mice.  The progression 

sequence is from chronic superficial gastritis (CSG) to CAG to intestinal metaplasia 

(IM) to dysplasia (DYS) to intestinal GC.19  As inflammation progresses, there is loss 

of pepsinogen I and II, two pro-digestive enzymes produced predominantly in chief 

cells of the stomach.  Loss of chief cells decreases serum levels of pepsinogen I.  

Pepsinogen I levels below 20 ng/ml are closely correlated with atrophic gastritis.  

On the other hand, diffuse type GC does not progress through severe atrophic 

gastritis.20 

 Chronic gastritis induced by H. pylori is the strongest known risk factor for 

GC.  Development of subsequent GC seems to hinge greatly on persistence of H. 

pylori infection.  An animal study by Romero-Gallo demonstrated that Mongolian 

gerbils infected with H. pylori all developed gastritis; however, those that were 

treated appropriately with antibiotics resulted in attenuation of pre-malignant and 

malignant phenotypes compared with controls who were not given antibiotics.21  

 There are multiple ways to test for H. pylori.  Non-invasive techniques 

include the radioactive carbon urease breath test, stool antigen test, and blood IgG 

antibody test.  Endoscopic techniques include forceps and brush biopsy.  Each test 
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has its own sensitivity and specificity.  Eradication of H. pylori can be achieved with 

antibiotics; the aforementioned tests can be used to confirm effective treatment.  

Increased use of H. pylori antibiotics is correlated with a decreased incidence and 

mortality of gastric cancer.6  

 

1.1.5  Screening methods 

 Stomach cancer is often diagnosed late as signs and symptoms do not appear 

until the malignancy is reasonably advanced.  On average, it takes about 44 months 

for GC to progress to an advanced stage.22  Commonly patients present with vague 

epigastric pain, weight loss, anemia of unknown origin, and upper gastrointestinal 

bleed.  Stomach cancers that do not penetrate beyond the mucosa are often 

asymptomatic.  The delay in diagnosis can also be attributed to the widespread use 

of proton pump inhibitors (PPI).  Dyspeptic symptoms of early GC are similar to that 

of ulcer disease, and as such, can be passed off as benign.  PPIs mask GC symptoms 

leading to delayed recognition of malignancy.  There is a possibility that when 

patients undergo endoscopy, early gastric cancers may have healed after a short 

course of PPI.  For these reasons, it is recommended that patients over age 45 years 

with new onset of dyspepsia be referred first for endoscopy prior to receiving PPI 

therapy.23 

 There is currently no population based screening program in Canada or the 

United States, as the prevalence of GC is very low.  However, in countries such as 

Japan and Korea where GC prevalence is high, screening has been cost effective.  

Barium photofluorography, endoscopy and serum pepsinogen testing are common 
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modalities to detect early GC.24  The limitations of endoscopy are that it is operator 

dependent and not available in all centers.  

 Serum pepsinogen (PG) is another diagnostic marker of atrophic gastritis 

and possibly GC.  Pepsinogen I is a proenzyme produced almost exclusively by chief 

and mucous neck cells in the fundic glands, while Pepsinogen II is produced by chief 

cells and also by pyloric glands/Brunner glands.  Serum and tissue concentrations of 

PG I and PG I/II ratio showed a progressive decline in the sequence of conditions 

outlined by Correa (normal to CSG to CAG to GC).25  A recent Korean study defined 

gastric atrophy as PG I level <70 ng/mL and a PG I/II ratio <3.  These values had 

sensitivity of 77%, a false positive rate of 27%, and a high negative predictive value 

of  >99%.26  In both Japan and Korea, these are the accepted PG cut-off values for GC 

detection.  Serum pepsinogen can also be affected by other factors including age, 

gender, BMI, body surface area, smoking and diet. 

Table 1-1: Sensitivity and specificity of GC screening modalities 
Modality Sensitivity Specificity 
Barium photofluorography27 60-80% 80-90% 
Conventional endoscopy28  69% 96.0% 
Endoscopic ultrasound24  T staging- 86%  T staging- 91% 
Serum pepsinogen29  
For PG I ≤70 & PG I/II ≤3.0 

77% 73% 

 
 
 

1.1.6  Staging and Prognosis 

 Canada does not have its own staging system for stomach cancer, but it does 

follow the American Joint Committee on Cancer (AJCC) guidelines.  GC can be 

classified into four stages based on various combinations of TNM 
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(tumour/node/metastasis) statuses.  Tables 1-2 and 1-3 show the most recent (7th 

edition) classification system.30   

 Commonly employed staging modalities include EUS, computed tomography 

(CT) of the chest/ abdomen/pelvis, and staging laparoscopy.  EUS is most useful in 

determining depth of invasion (T stage), especially distinguishing between mucosal 

(T1a) versus submucosal (T1b) lesions.  Only T1a cancers are amenable to 

endoscopic mucosal resection.31  CT, on the other hand, is useful for evaluating 

distant metastases in the chest and abdomen.  However, early small malignant 

lesions (<1 cm diameter) can be missed on the CT scan, which is where staging 

laparoscopy becomes a useful adjunct.  The four quadrants of the abdomen can be 

visualized with a camera and any suspicious nodules biopsied.  Commonly 

peritoneal lavage with normal saline is also performed for tumour cytology.  With 

diagnostic laparoscopy, approximately one-quarter of patients can be spared a 

laparotomy if peritoneal metastases are identified.32  In this way, staging 

laparoscopy provides additional information about which patients have resectable 

disease. 
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Table 1-2: TNM classification of gastric cancer 

 

 

 

 

 
 

 

 

 
 

T category  N category M category 
Tx = primary tumour not 
able to be assessed 

Nx = regional lymph nodes 
cannot be assessed 

M0 = no spread to 
distant organs 

Tis = tumour in situ N0 = no regional lymph node 
metastasis 

M1 = spread to 
distant organs 

T0= no evidence of 
primary tumour 

N1 = 1-2 regional lymph nodes 
involved 

 

T1= tumour invades 
submucosa 

N2 = 3-6 regional lymph nodes 
involved 

 

T2 = tumour invades 
muscularis propria 

N3a = 7-15 or more regional 
lymph nodes involved 

 

T3 = tumour invades 
subserosal connective 
tissue without invasion of 
serosa.  May have spread 
into gastrocolic, 
gastrohepatic ligaments, 
greater or lesser 
omentum, no perforation 
of serosa 

N3b = ≥16 lymph nodes 
involved 

 

T4a= tumour invades 
serosa 

  

T4b = tumour invades 
adjacent structures such 
as spleen, colon, liver, etc. 
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Table 1-3: GC Staging based on TNM category combinations 
Stage T category N category M category 
0 Tis N0 M0 
IA T1 N0 M0 
IB T2 N0 M0 
 T1 N1 M0 
IIA T3 N0 M0 
 T2 N1 M0 
 T1 N2 M0 
IIB T4a N0 M0 
 T3 N1 M0 
 T2 N2 M0 
 T1 N3 M0 
IIIA T4a N1 M0 
 T3 N2 M0 
 T2 N3 M0 
IIIB T4b N0 or N1 M0 
 T4a N2 M0 
 T3 N3 M0 
IIIC T4b N2 or N3 M0 
 T4a N3 M0 
IV Any T Any N M1 
 
 
 Due to late diagnosis of stomach cancer, the prognosis of patients is generally 

poor.  Table 1-4 summarizes the 5-year survival for various stages of GC.30, 33 

 
Table 1-4: Five-year survival rate of GC patients by stage 
Stage 5-year survival rate (%) 
IA 71 
IB 57 
IIA 46 
IIB 33 
IIIA 20 
IIIB 14 
IIIC 9 
IV 4 
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 After achieving an R0 resection (complete removal of tumour with margins 

microscopically negative for cancer), the strongest prognostic factor is lymph node 

involvement.   Other prognostic factors that affect overall survival are: tumour size 

(<3 cm), depth of invasion (superficial tumour infiltration), tumour differentiation 

(lower grade tumours), and Lauren histological class (intestinal type cancers).34  

Favourable factors are indicated in brackets. 

 
  

1.1.7  Treatment modalities 

 
 As with most other cancers, GC therapy consists of a three-pronged 

approach: chemotherapy, radiotherapy and surgery.  After all staging investigations 

are completed, patients are divided into either resectable or non-resectable disease 

groups.  Early gastric lesions defined as being confined to the mucosa or submucosa 

of the stomach, <2 cm and non-ulcerated can be managed endoscopically either with 

endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD).  

These advanced techniques are more commonly practiced in East Asia, but are 

spreading to the west.   

 For lesions that have extended beyond submucosa but are not yet metastatic, 

either a subtotal or total gastrectomy is performed with lymphadenectomy.  The 

goal is for complete removal of tumour with a 5 cm proximal margin, as well as a 

minimum of fifteen lymph nodes.  A lymphadenectomy can be D1 (perigastric lymph 

nodes only), D2 (D1 + celiac trunk lymph nodes) or D3 (D2 + periaortic lymph 

nodes).  A large multi-institutional Dutch trial randomized over 700 resectable GC 
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patients to either a D1 or D2 lymphadenectomy.  Follow-up at fifteen years 

demonstrated that D2 lymphadenectomy was associated with lower locoregional 

recurrence rates and GC related mortality.35  However, overall survival was no 

different and in fact, the morbidity and mortality of the D2 group was significantly 

higher than the D1 group.  Similar results were found in the British Medical 

Research Council Gastric Cancer trial.36  While surgery is the mainstay of treatment, 

GC tends to be very aggressive, and often neoadjuvant and adjuvant 

chemoradiotherapy are needed to boost cure rates.37, 38  Usually a multidisciplinary 

tumour board decides on a patient’s candidacy for non-surgical therapies. 

 

1.1.8  Cancer and Metabolic Dysregulation 

 Altered metabolism is one of the hallmarks of cancer.  Malignant cells show 

enhanced ability to ferment glucose into lactate, even in an environment where 

there is sufficient oxygen to support mitochondrial metabolism.  This phenomenon 

is known as the Warburg Effect.39  Multiple in-vitro studies show elevated lactate 

levels in GC cells compared to healthy controls.40-42  Cancer cells also express high 

levels of glutamine, an amino acid, which acts as a substrate for lipogenesis and 

nucleic acid synthesis.  These processes are important for cell membrane synthesis 

and DNA replication.  Other features of tumours include the ability to evade regular 

apoptotic checks and balances.  In GC cell lines in particular, citrate (an intermediate 

of the Kreb’s cycle) has been implicated in regulating apoptosis.43  It is apparent that 

a number of metabolic pathways are affected during GC tumorigenesis and 
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propagation, so studying the metabolites of such perturbed pathways may offer 

insight into new diagnostic and therapeutic targets of GC. 

 

1.2  Overview of Metabolomics 
  

 Metabolomics is the study of metabolites, which are low molecular weight 

organic and inorganic chemicals (<1500 Da) in a biological organism.  Metabolites 

can be reactants, intermediates or products of any enzyme mediated reaction.  

Metabolites are formed from anabolic and catabolic reactions, and can be influenced 

by environmental factors such as drugs and diet.44  Metabolomics is the latest 

addition to the “omics” family of systems biology.  According to the central dogma, 

genes are transcribed into mRNA, which are translated into proteins and finally 

broken down into metabolites.  Mirroring this flow of biological information is the 

study of genomics (genes), transcriptomics (mRNA), proteomics (proteins) and 

metabolomics (metabolites) respectively.  This flow is illustrated in Figure 1-1.  

Metabolomics, the most downstream of the “omics” sciences, is closest to the 

phenotype of an organism.  There is bidirectional transfer of information between 

each functional level, and environmental inputs such as diet, lifestyle, and drugs 

integrate to create the final phenotype for an organism. 

 Endogenous metabolites are synthesized by enzymes intrinsic to the body; 

exogenous metabolites are imported from outside sources (drugs, diet).  Metabolites 

can also be classified as primary or secondary.  Primary metabolites are essential for 

growth, maintenance and reproduction of an organism.  The main classes of 
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endogenous metabolites are: lipids, alcohols, vitamins, carbohydrates, organic acids, 

nucleotides, and amino acids.  Secondary metabolites are not required for survival 

but may still have an important ecological function.44, 45  Mapping the metabolomic 

profile provides a global picture of the organism at a specific point in time under a 

specific set of conditions.  For any given disease state, a small genomic change can 

be amplified many times at the metabolite level and quantified.  The human 

metabolome consists of thousands of metabolites, many of which are listed in the 

Human Metabolome Database (HMDB).46  HMDB contains comprehensive 

descriptions of individual metabolites and can be accessed online.  As of 2013, over 

40,000 metabolites are in the HMDB library.47  
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Figure 1-1: Central Dogma of Biology 
Biological information flows from genes (genomics) to metabolites (metabolomics) 
to create the final phenotype.  There is bidirectional crosstalk between each step of 
the pathway as well as influence from drugs, diet and lifestyle. 
  

 Metabolites can be extracted, identified and quantified using human tissues, 

and biofluids such as urine, blood, and cerebrospinal fluid.  Biofluids are easily 

collected via minimally invasively techniques, whereas human tissues generally 

require lysis and homogenization to extract metabolites.  Validated standardized 

operating procedures for collection, storage, and processing are employed to ensure 

each sample is subjected to the same procedures.  Metabolites are very sensitive to 

enzymatic and environmental conditions such as temperature and pH.  There are 

two key steps in sample collection and preparation: a) “quenching” of metabolic 

activity and b) extraction of metabolites into an appropriate medium for analysis.44   
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 Quenching is a process where metabolic activity is stopped to capture an 

instant snapshot of metabolism at a certain time under a given set of conditions.  

Decreasing the temperature of the sample is a common way to inactivate enzymes.  

Samples are usually collected and stored in -80° Celsius (C) as soon as possible.  This 

temperature is usually enough to stop enzymatic activity, although after a few years, 

there is still the possibility of metabolic change.  Once metabolites are extracted 

from the tissue or biofluid, they often need to be solubilized into an organic solvent 

such as ethanol or methanol.44   

 

1.2.1  Analytical Platforms  

 There are a number of analytical platforms for metabolomics, including mass 

spectrometry (MS), 1Hydrogen- nuclear magnetic resonance (1H -NMR) 

spectroscopy, gas and liquid chromatography.  Often several techniques are 

combined to improve metabolite identification.  In chromatography, the sample, 

known as the mobile phase, exists in either gas or liquid form.  It is held within a 

glass or metal column.  The mobile phase is forced through a stationary phase held 

in a column or solid surface.  The stationary phase is usually an inert substance that 

does not react with the mobile phase.  Some components of the solute will be 

adsorbed onto the stationary phase, while other components will still be mobile; it 

depends on their chemical properties.  Volatile materials migrate through the 

column more rapidly.48  A recording device generates a series of peaks, which show 

the overall retention time of the compound in the chromatograph.  

  16 



 The two most common analytical platforms are MS and NMR.  As previously 

mentioned, MS separates ions in metabolites based on their mass-to-charge ratio, 

whereas NMR separates metabolites by their resonance frequencies in a magnetic 

field.  Both techniques generate a spectral profile of metabolites.  Both NMR and MS 

can identify and quantify a wide variety of metabolites with good precision, and 

both require small sample volumes for analysis (10-700 uL).49  NMR is highly 

reproducible and does not rely on component separation so samples can be 

recovered for future analysis.   

 Sensitivity of an analytical method refers to the minimum amount of sample 

compound that is required for quantification.50  Instruments that are more sensitive 

can detect metabolites that are present in smaller quantities.  For comparison, MS 

can typically detect metabolites present in nanomolar or picomolar concentrations, 

whereas the limit of detection for NMR is on the order of micromolar 

concentrations.51  NMR is also less resolved than MS because of co-resonant 

metabolites (overlapping peaks in the same region of the NMR spectrum), which can 

limit accurate detection in that particular region.44, 50  As NMR is the platform of 

choice for experiments in this thesis, its basic physics principles will be reviewed 

here. 

 

1.2.2  1Hydrogen (1H)-NMR Basic Principles  

 Any nucleus with an odd atomic number such as 1H possesses spin, which 

generates its own magnetic field.  In 1H-NMR, samples are placed inside an 

apparatus with a large external magnetic field.52  Magnetic moments of nuclei in the 
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sample either align with the external magnetic field (lower energy conformation) or 

against the magnetic field (higher energy conformation).  If the sample is irradiated 

with radiowaves, protons (1H) in the sample absorb the electromagnetic radiation 

and spin flip to a higher energy state;53 this process of energy absorption is known 

as resonance.  When protons fall back to ground state, they emit a radiofrequency 

signal that is directly proportional to the strength of the external magnetic field.  A 

radiofrequency receiver on a computer captures this, and translates the signal into a 

series of peaks with a characteristic chemical shift (Figure 1-2). 

  
Figure 1-2: Schematic of NMR spectrometer.   
Radiowaves irradiate the sample placed inside a magnetic field inside the NMR 
machine.  A radiofrequency receiver detects the energy released by the protons in 
the sample, and transmits this information to an NMR program, which produces a 
spectrum. 
  

 As nuclei lose energy, the radiofrequency signal gradually diminishes in a 

free induction decay (FID) pattern; the FID contains the sum of the frequencies from 

all nuclei and is visualized as a voltage versus time plot.  A single FID has a low 
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signal to noise ratio, but after repeated acquisitions, this ratio improves 

proportionally with the square root of the number of acquisitions.53  To double the 

signal to noise ratio, the FID signal must be acquired four times.  A mathematical 

function known as a Fourier transformation converts a time domain FID into a 

frequency domain spectrum.52, 53  This results in a series of peaks with a certain 

chemical shift.  The area under the peak is proportional to the relative concentration 

of the metabolite.  

 Prior to operation of the NMR magnet, a procedure called shimming is used 

to make the magnetic field more homogenous.  Shimming improves the sensitivity 

and resolution of the acquired signals.54  Each biofluid sample must be mixed with 

an internal standard in order to generate a peak on the spectrum.  

Tetramethylsilane (TMS) or 2,2-dimethyl-2-silapentane-5-sulfonate-d6 acid (DSS-

d6) are common standards for 1H-NMR spectroscopy.55  The internal standard is set 

to a reference chemical shift of 0 ppm; left of 0 ppm are increasing chemical shifts in 

the direction of increasing resonance frequency.  A chemical shift is defined as the 

difference in parts per million (ppm) between the resonance frequency of the 

observed proton in the sample and the internal standard, divided by the 

spectrophotometer frequency.52  The chemical shift is also known as the delta (δ) 

scale.  

  

1.2.3  Metabolite profiling strategies 

 Profiling of metabolites can take an untargeted, targeted, or semi-targeted 

approach.  Untargeted profiling involves acquiring data on hundreds to thousands of 
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metabolite features without a priori knowledge of biologically relevant metabolites.  

There is no definitive identification and quantification.  On the other hand, targeted 

profiling quantifies a smaller number of known metabolites (typically fewer than 

20), in an attempt to create systems biology models.  Targeted profiling is useful for 

hypothesis testing.44, 49  Semi-targeted analysis identifies and measures pre-defined 

metabolites of interest.49  Usually these metabolites are referenced from a library.56  

Both untargeted and semi-targeted techniques are for hypothesis generation.  The 

choice of metabolic profiling approach is determined by the hypothesis of the study.  

In this thesis, a semi-targeted method is employed, as metabolites are identified and 

quantified from a known reference library (Chenomx). 

 

1.2.4  Metabolomic Workflow 

 Once the biofluid or tissue has been chosen, metabolites extracted and 

isolated for analysis, then metabolomics studies usually follow an experimental 

workflow known as the “metabolomic pipeline”.44  Steps are delineated in Figure 1-

3.44, 49, 57  It starts with proper experimental design, instrument (analytical platform) 

setup, analysis, and then capturing of raw data.  Once data is acquired, then it 

undergoes pre-processing to generate a “cleaned” data set, which is then analyzed 

through a number of statistical techniques.  Components of this workflow will be 

discussed in greater detail later. 
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Figure 1-3: The Metabolomic Pipeline.  This flowchart illustrates the steps required 
to convert raw data into a list of potential biomarkers. 
 

1.2.5  Experimental Design 

 A valid and robust scientific study begins with a proper study design.  Every 

effort is made to ensure that variation related to biological observations is 

significantly greater than the variation related to performing the study.56  Bias and 

confounding can be introduced in either or both of the design and analysis stages of 

the experiment and this can lead to false observations and biological conclusions.  
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Goodacre et al58 described two important stages of experimental design.  First there 

is the biological study itself, which involves the rigorous collection, storage, and 

processing of study samples.  There should be a validated standardized operating 

procedure (SOP) such that different people collecting samples on different days at 

different centers will perform the same procedure.  This reproducibility helps 

minimize selection bias.  Data related to demographics, lifestyle and physiological 

variables such as diet, gender, ethnicity, and BMI should be collected where 

possible, as these may be confounding factors later.  As well, sample size should be 

determined prior to sample collection, to ensure that a study is sufficiently powered 

to detect a difference. 

 The second component is the analytical design.  In human studies, patients 

enrolled are generally not from a random sample, but rather a convenience sample.  

Subjects attend a collection site such as a hospital, or outpatient health clinic and are 

approached if they meet the inclusion/exclusion criteria.  While sampling methods 

are not randomized, researchers can randomize both sample preparation and 

analysis order.  It is best if patient identities are blinded to the researcher during 

experimentation and analysis to reduce bias.  Patients are enrolled by a convenience 

sampling method, but their run order in the experiment can be randomized.  Run 

order refers to the order in which patient biofluid or tissue samples are placed 

through the detection device (NMR or MS, or other platform).  Often, in large 

studies, all samples cannot be run on the same day.  This necessitates splitting of 

samples into smaller analytical experiments, or batches.  With successful 
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randomization, the distribution of subjects across each batch should be more or less 

similar.56   

 For quality assurance purposes in metabolomics experiments, a quality 

control (QC) sample should be analyzed intermittently.  A QC is a biologically 

identical aliquot of either one person’s biofluid or tissue sample, or a pooled mixture 

of multiple patients.  For example, 50 uL aliquots each of five different patient’s 

urine samples can be combined to make one QC.  The same SOP that was used to 

collect, store and process study samples should be applied to QCs.  Variation in the 

QCs represents the overall within-experiment precision.  Error can be introduced in 

the experimenter techniques and measurement devices, which can be captured in 

the QC variation.56 

 To quantify variation in the QC in metabolomics experiments, the relative 

standard deviation (RSD) can be calculated by dividing the standard deviation for 

each metabolite by the mean concentration of each metabolite.  The Food and Drug 

Administration (FDA) guidelines recommend that for single analyte tests, the QC-

RSD should be ≤15%, except for metabolites whose concentrations are at or near 

the lower limit of quantification, in which case a QC-RSD of ≤20% is acceptable.44  

The FDA recommends QC-RSD ≤20% for ultra performance liquid chromatography-

mass spectrometry (UPLC-MS) and QC-RSD ≤30% for gas chromatography-MS.  Any 

metabolites for which the QC-RSD exceeds industry standards are not considered in 

the analysis.  Only metabolite peaks in which ≥50% of the QCs express the same 

peak are preserved for analysis.  The less variable the QCs are, the more confidence 
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the researcher has that observed differences between samples are biologically 

significant.56 

 

1.2.6  Data Pre-processing 

 After a rigorously designed experiment is completed, raw spectroscopic data 

must be pre-processed.  There are multiple steps of pre-processing as outlined by 

Goodacre and colleagues.58  For NMR data, raw FID weighting, phasing, baseline 

correction with referencing to an internal standard, normalizing to spectral area and 

conversion to magnitude spectra are components of pre-processing.  Then data 

undergoes pre-treatment which consists of determining bin sizes of chemical shifts 

(if a binned analysis is utilized in NMR) and integrating intensities in chemical shifts.  

Pre-treatment involves other mathematical functions such as normalization, mean-

centering, scaling, missing value imputation and transformations that make the data 

more suitable for processing.58   

 Metabolites exist in a given system with a wide range of concentrations. 

Logically, high concentration metabolites will often have high variance in a given 

sample, whereas low concentration metabolites often have a low sample variance. 

As such in order to equalize the “importance” of each metabolite in an unbiased 

statistical model each metabolite is usually scaled to unit variance (each metabolite 

is divided by its standard deviation).59 

 After unit variance (UV) scaling comes mean centering.  The average value of 

each variable column (metabolite concentration) is calculated and then the average 

is subtracted from each row in that variable column.  This repositions the 
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coordinate system, such that the average point is now defined as “zero” (the 

reference point).59  Mean centering adjusts for differences between very high and 

very low abundance metabolites (outlier concentrations); mean centering focuses 

on the variance not the absolute concentration.60  

 One of the early crucial steps in pre-treatment is sample normalization; there 

are different techniques: integral normalization, creatinine normalization, 

probabilistic quotient normalization (PQN).61  A normalization step prior to data 

processing compensates for differences in overall concentration amongst samples.  

A mathematical transformation may also be applied to make skewed data more 

normally distributed.  Standard practice involves a logarithmic or power 

transformation of data point(s).60  

 

1.2.7 Data Analysis: Statistical Methods 

 Once the data is “clean” then it is suitable for either univariate or 

multivariate data analysis.  Univariate statistics (such as t-tests/Kruskal-Wallis 

tests)58 can be used to check whether individual metabolites are significantly 

increased or decreased between different groups.  A single metabolomics 

experiment can measure hundreds to thousands of metabolites; this can be likened 

to performing many individual tests simultaneously.  As the number of evaluations 

in an experiment increases, so does the chance of finding a spurious association.  

Post-hoc statistical tests such as Bonferroni correction and Benjamini-Hochberg 

False Discovery Rate can compensate for multiple comparisons.62  
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 Multivariate statistics analysis can be unsupervised or supervised.  

Unsupervised methods are used when the information about outcome, or class, is 

unavailable or not of primary interest.  These methods look for naturally occurring 

clustering of data based on multivariate covariance. The most popular unsupervised 

method is Principal Component Analysis (PCA).  Conversely, supervised methods 

use the known class membership to guide the clustering process.  The objective is to 

build a linear multivariate model that will correlate as much of the observed data 

with the class data. This can be considered similar to classical hypothesis testing – 

such as t-test or ANOVA.  

 PCA is essentially a dimension reduction technique that summarizes the 

variance between observed multivariate data points into a few principal 

components (PC).  The first PC explains a certain amount of variation in the data (for 

example 35%), and the second PC, which is orthogonal to the first, accounts for 

another portion of the variation in the data (for example 20%).  Finding the first PC 

involves finding an axis in multidimensional space for which the variance is 

maximized between data points.  PCA strives to compress the data while preserving 

as much of the original information as possible; it therefore provides a global 

overview of data points that can highlight similarities and differences.58, 59    

 Two popular supervised analytical methods are Partial Least Squares-

discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant 

analysis (OPLS-DA).58, 59, 63  Both PLS methods use information about class or 

outcome to summarize (project) the observed data in terms of discrimination rather 

than variance.  Like PCA, both PLS and OPLS are dimension reduction strategies and 
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can be expressed in terms of components.  The first PLS component strives to find 

an axis that well approximates the relationship between observed and outcome data 

points.  OPLS-DA is an extension of PLS-DA.  It splits the variability (sum of squares) 

in the observed data into a component that is correlated/predictive of 

outcome/class, and an orthogonal component that is not correlated/predictive of 

outcome/class.  The correlated part is known as the signal; the uncorrelated part is 

the noise.  This should theoretically improve the interpretability of the model.   

 In summary, PCA maximizes the variance between observations without 

knowledge of class or outcome variable.  PLS –DA models the maximum covariance 

between observed and outcome variables.  Cross validation is the method used by 

PLS to determine the optimal number components that are significant in the 

model.59, 64  OPLS-DA is similar to PLS-DA but it subdivides the observed 

components into a part that is correlated and a part that is not correlated with 

outcome, to improve biological interpretability. 

 

1.2.8 Model Diagnostics and Validation 

 In order to determine the appropriate number of PLS components, a cross 

validation mathematical technique is employed.  The optimal PLS model accurately 

explains a large amount of variance in the model, but also does not “overfit”.  The 

goodness of fit can be quantitatively represented by the R2 parameter.  R2 describes 

the percent of variance in the data set that is explained by the model.  The goodness 

of prediction from the model is represented by the Q2 parameter and identified by 

cross validation.  The R2 and Q2 parameters generally refer to the outcome data 
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rather than the observed data.  As more variables are added to the model, the R2 

value generally approaches 1, or close to 100% of the variance in the outcome 

variable can be explained by the observed data.  However the Q2 will plateau at a 

certain point, regardless of how many additional variables are incorporated into the 

model.  Q2 values only increase when significant variables are added to the model; 

Q2 decreases when “noisy variables” are added.  A good model essentially explains 

as much of the true variation between observed and outcome variables as possible, 

without describing the noise (random error).  At the same time, the relationship 

being described can also be generalized to a new data set (external validity).  An 

“overfit” model can be likened to connecting the dots on a scatterplot; it perfectly 

models the relationship between points, but the same relationship cannot be 

applied to a new data set.  On the other hand, an appropriately fit model has a line of 

best fit that approximates the sample data well, but at the same time, the 

mathematical relationship being described can be generalized to a new data set.   

 The optimal number of PLS components occurs in the zone where Q2 and R2 

are maximized and the difference between the two parameters is reasonably small 

(Figure 1-3).  Some general rules of thumb for quality measurements are that a Q2 > 

0.5 is good and Q2 >0.9 is excellent in its predictive ability (although these numbers 

are application dependent).  Differences between R2 and Q2 should not be larger 

than 0.2.59  

 To determine the optimal number of PLS components, cross validation is 

performed by dividing the data into a number of groups, and then excluding one 

group systematically to produce a number of independent parallel models from a 
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subset of data.  The excluded set is called the hold out, and the remainder of the data 

that is used to build a model is called the training set.  In some software programs 

such as SIMCA (Umetrics, Sweden), the default cross validation method divides the 

dataset into seven groups.   On each round of validation, six-sevenths of the total 

data is used to generate a model prediction.  Models built using the training data can 

then be independently validated with the omitted set.  After seven rounds of 

validation, seven models with seven individual Q2 values are generated; the Q2 

values are averaged together to create the final Q2 in the overall PLS model.44  

 

  

Figure 1-4: Cross validation model.  The trade-off between the goodness of fit (R2) 
and the goodness of prediction (Q2).  One PLS component appears to be the optimal 
model, as this is where maximum Q2 is seen, and difference between R2 and Q2 is 
reasonably small.  After one PLS component, the Q2  declines indicating that the 
model is being fitted to noise (random error). 
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 Once the biomarker discovery experiment is completed, a short list of 

significant metabolites generated and a specific discriminant model built, then a 

receiver operating characteristic (ROC) curve can be created, based on the model 

predictions.  ROC curves plot the sensitivity (true positive rate) versus the 1-

specificity (false positive rate).  Often, there is a trade-off between sensitivity and 

specificity, as one generally increases at the expense of the other.  ROC curves are 

limited to binary outcome experimental designs such as case-control studies.  In the 

context of metabolomics, where the outcome is continuous (concentrations of 

metabolites), then a specific concentration must be determined as the cut-point of a 

test.  The cut-point forms the border between one outcome (case) versus another 

outcome (control).  Essentially a ROC curve is a graph of the true positive rate 

versus the false positive rate for different decision boundaries or cut-points of a 

diagnostic test.  The equal distribution line is a 45° line that connects the origin (0,0) 

to the point (1,1).  If the area under the ROC curve (AuROC) is 0.5, the variable is 

distributed almost equally between cases and controls, such that any diagnostic test 

is essentially no better than chance.  An AuROC of 1 means there is perfect 

classification of samples, as the test is 100% sensitive, 100% specific.44, 62  An 

AuROC of ≥0.9 is considered an excellent test, and an AuROC of 0.8-0.9 is a good 

test.65 

 

1.2.9 Metabolomics applications: from bench to bedside 

 The field of metabolomics has grown exponentially in the last fifteen years. 

The three basic categories of metabolomics studies in humans are: 
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diagnostic/prognostic purposes where usually predictive biomarkers of disease are 

sought; pathogenesis studies where biochemical pathways/mechanism of disease 

are investigated; and risk factor studies, where associations between the human 

metabolome and factors such as diet, lifestyle, environmental stressors are 

identified.56  Metabolomics have a role in both oncological and non-oncological 

diseases.  Numerous disruptions in carbohydrate, lipid and other biochemical 

pathways occur in cancer cell initiation and propagation, so studying metabolites 

that are either intermediates or end products of these dysregulated pathways may 

offer insight into new diagnostic and therapeutic targets for GC.  

 

1.3 Summary 
 

 GC is a highly morbid and fatal disease.  Screening methods are limited, and 

by the time of diagnosis, the disease is often in the advanced stages.  As such, 

therapeutic options are limited.  Metabolomics, the newest of the “omics” 

technologies, has shown promise in the area of surgical oncology.  Although 

relatively new compared to more upstream methods such as genomics and 

transcriptomics, previous metabolomics studies of other malignancies have 

identified putative biomarkers that may be of use in disease diagnosis and 

prognosis.  With further validation and experimentation, such biomarkers may form 

a disease specific profile that could be used as a screening test in the future.  This 

program of research seeks to identify a disease specific metabolomic profile of GC 

from urinary samples using 1H-NMR spectroscopy as the analytical platform.  If such 
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a metabolomic signature is demonstrated, then this could have important 

implications for early screening of GC, and provide opportunities for earlier 

medical/surgical intervention, which in the long run, may reduce the morbidity and 

mortality associated with the disease. 

 

1.4 Objectives 
 

The objective of this program of research is to: 

identify whether a disease specific urinary metabolomic profile is associated with 

GC compared to BN and HE using 1H-NMR spectroscopy 

 

1.5 Program of research 
  

This thesis begins with a background discussion of GC and metabolomics.  In 

Chapter 1 the first portion reviews the epidemiology, diagnosis, screening, therapy 

and prognosis of GC; this is followed by a review of metabolomics where the 

background and components of the metabolome workflow from study design to 

data analysis/interpretation are reviewed.   

Chapter 2 is a comprehensive review of GC specific metabolomics (published 

in World Journal of Gastroenterology, Chan et al 2014).  It summarizes the small 

number of recent studies that have been done in this area.   

Chapter 3 compares the urinary metabolomic profile of a cohort of three 

types of patients: GC, BN gastric disease (portal hypertensive gastropathy, 
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gastroesophageal reflux disease, gastritis, gastric ulcers, non-cancerous gastric 

polyps, varices), and HE patients.  There are distinct metabolites that separate GC 

from HE patients, but not the GC and BN patients due to phenotypic heterogeneity 

within the BN group.  Gastritis patients appear to separate into two groups.  Those 

that cluster with GC tend to have chronic gastritis, whereas those with mild 

superficial gastritis tend to cluster with HE.  There is some misclassification, but 

these findings correlate with Correa’s hypothesis on GC tumorigenesis from CAG to 

GC.  As gastritis advances, it becomes metabolically and phenotypically more similar 

to GC.  Validation with a larger sample of gastritis patients is necessary to observe if 

this parallel change is consistent. 

Chapter 4 is the concluding chapter of this thesis and reviews the new 

information discovered from these experiments, as well as discusses future 

applications of metabolomics.  
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2.1 Abstract 
Gastric cancer is one of the deadliest cancers worldwide, and is especially prevalent 

in Asian countries. With such high morbidity and mortality, early diagnosis is 

essential to achieving curative intent treatment and long term survival. 

Metabolomics is a new field of study that analyzes metabolites from biofluids and 

tissue samples. While metabolomics is still in its infancy, there are numerous 

potential applications in oncology, specifically early diagnosis. Only a few studies in 

the literature have examined metabolomics’ role in gastric cancer. Various fatty acid, 

carbohydrate, nucleic acid, and amino acid metabolites have been identified that 

distinguish gastric cancer from normal tissue and benign gastric disease. However, 

findings from these few studies are at times conflicting. Most studies demonstrate 

some relationship of cancer cells to the Warburg Effect, in that glycolysis 

predominates with conversion of pyruvate to lactate. This is one of the most 

consistent findings across the literature. There is less consistency in metabolomic 

signature with respect to nucleic acids, lipids and amino acids. In spite of this, 

metabolomics holds some promise for cancer surveillance but further studies are 

necessary to achieve consistency and validation before it can be widely employed as 

a clinical tool.  

 

Key words: Gastric cancer; Metabolomics; Screening; Biomarkers; Surveillance 
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Core tip: There are differences in metabolomic profiles of gastric cancer patients 

and healthy controls, as well as between different stages of gastric cancer. The 

transition from normal to malignant consistently shows upregulation in lactate and 

downregulation of glucose consistent with the Warburg Effect. This trend is 

perpetuated as cells advance from non-invasive to invasive. Key tricarboxylic acid 

(TCA) cycle intermediates and amino acids are elevated as a result of anaplerotic 

reactions. Perpetuation of the TCA cycle generates energy for essential cell 

functions. There is less consistency between lipid and nucleic acid metabolites.  

 

 

2.2 Introduction 
 
 The burden of gastric cancer is significant in Canada and worldwide. In 2013, 

the Canadian Cancer Society estimated there were 3300 new cases of gastric cancer 

which caused 3.3% of all male cancer related deaths, and 2.2% of all female cancer 

related deaths.1  On a global scale, an estimated 990000 people were diagnosed in 

2008, with 60% of those cases occurring in East Asia.2 With an estimated 736000 

deaths worldwide,3 the fatality to case ratio is approximately 70%.4 Despite these 

grim statistics, overall morbidity and mortality are declining due to changes in diet, 

treatment for Helicobacter pylori, early screening programs, improved surgical 

techniques and chemotherapy regimens.  

Much of the mortality is attributable to delayed symptoms of gastric cancer. 

Early stage gastric cancer is asymptomatic: it takes an estimated 44 months to 

progress to an advanced stage.5 Commonly patients present with vague epigastric 

pain, unintentional weight loss, anemia from occult blood loss, or dysphagia if the 

tumour is proximal. Gastric cancers that do not penetrate into the muscularis 

propria are asymptomatic in up to 80% of cases; occasionally, patients experience 

epigastric pain or “dyspepsia”. Dyspeptic symptoms occur in up to 40% of the 

population, so its value as a predictor of gastric cancer is limited. Furthermore, 

amongst those who have dyspepsia, previous studies have found that only 1%-2% 

of them will develop gastric cancer.6-8  With such high morbidity and mortality, early 
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diagnosis is key. This review will highlight current surveillance methods and 

summarize how metabolomics may have important applications in future cancer 

surveillance and diagnosis. 

 

2.3 Current surveillance methods 
 
 There are currently several methods of detecting gastric cancer, but no 

uniform screening guidelines. In Japan, where there is a high incidence of gastric 

cancer, screening has been introduced for everyone forty years of age and over. 

Since 1962, Japanese have employed barium-meal photofluorography as a screening 

test. The initial exam consists of a series of 8 X-rays. If this is abnormal, a detailed 

exam with 11 X-RAYs is undertaken. Endoscopy is then used to analyzed suspicious 

lesions identified on barium exam.5 Case control studies suggest a 40%-60% 

decrease in gastric cancer mortality with photofluorography screening. The 

sensitivity of photofluorography is 60%-80% and specificity is 80%-90%. Studies 

indicate that survival rates of the screened group are 74%-80% compared to 46%-

56% in the non-screened group.9 Currently gastrofluorography is a Grade B 

recommendation. 

 Endoscopy is another tool used in gastric cancer surveillance. Its sensitivity 

ranges from 77%-84%.9  It can identify superficial flat and non-ulcerative lesions 

that barium studies can miss.5 In a Japanese study, detection of gastric cancer by 

endoscopy was 2.7 to 4.6 fold higher than with barium swallow. Endoscopy is 

versatile, as it allows clinicians to biopsy tissue, and perform endoscopic ultrasound 

to determine depth of invasion (tumour or T stage), should there be a lesion in the 

stomach. Despite these abilities, endoscopy has limitations in that it depends heavily 

on skills of the endoscopist and on availability of gastroscopy. Also it can be difficult 

to visualize early stage gastric cancers; the sensitivity is estimated to be 50%-60%. 

No studies have compared survival of gastric cancer patients between screened and 

non-screened groups. Therefore endoscopy has significant limitations as a screening 

technique, but currently it is still the best test available. 
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 Since the 1990s, serum pepsinogen has been incorporated into gastric 

screening programs. Pepsinogen I and II are proenzymes of pepsin, which originate 

in gastric mucosa. These markers reflect morphological and functional status of the 

gastric mucosa and can act as a marker for chronic atrophic gastritis (CAG). CAG is 

regarded as a precursor of gastric cancer, especially the intestinal type.10 In Japan, a 

serum pepsinogen (PG) test based on serum PG I level and PG I/II ratio have been 

used for screening. As mucosal atrophy increases, the level of PG I and thus the PG 

I/II ratio decreases.11 Recent studies10, 11 show that PG testing is useful at detecting 

early gastric cancers, especially in combination with barium X-ray. If either one or 

both of the two screening methods are positive, patients are referred for upper 

endoscopy. Cutoff values for serum PG tests are ≤ 50 ug/L and PGI/II ratio ≤ 3.0. 

These values detected gastric cancer in 0.28% of cases compared to 0.1% with 

barium X-ray. Early stage gastric cancer accounted for 100% of cancers detected by 

PG, 83% of cancers detected by barium X-ray, and 81% of cancers detected by both 

PG and X-ray. Eighty-nine percent of cancers detected by PG were intramucosal, 

compared to only 50% detected by barium X-ray. In this study42, pepsinogen testing 

seemed to be useful in detecting small cancers arising from atrophic gastric mucosa.  

 

2.4 Metabolomics in Cancer 
 
 Metabolomics is a relatively new area of study and the latest addition to the 

“omics” family of genomics, transcriptomics, and proteomics. The central dogma of 

molecular biology describes flow of biological information in a system from DNA to 

RNA to protein to metabolites. Different “omics” interventions play a part at 

different stages of this dogma to glimpse the inner workings of cell, tissue and 

organism. The metabolome of an organism consists of the entire collection of low 

molecular weight (<1500 Daltons) metabolites.12 Metabolites are required for 

maintenance, growth and normal functioning of a cell. Mapping the metabolomic 

profile provides a global picture of the organism at a specific point in time under a 

specific set of conditions. For any given disease state, a small genomic change can be 

amplified many times at the metabolite level and quantitatively measured. 
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Metabolites in biological samples such as tissues, urine, saliva and blood plasma can 

be measured, and this allows researchers to identify specific metabolic pathways. 

Previous studies have demonstrated that metabolic activities of cancer cells are 

markedly different from that of healthy cells. Studying the metabolomic profile may 

help distinguish certain cancer biomarkers, and provide keys to early diagnosis. 

 Biofluids such as urine and blood are optimal samples to study, as they can 

be obtained through minimally invasive means. Profiles of these biofluids can be 

linked back to their genetic origins to provide a view of disease pathways. As 

metabolites are “downstream” entitities compared to genes, they reflect cellular 

conditions at the time of sampling and can be considered “endpoint markers” for 

disease. There are currently several technologies for analyzing the metabolome: 

nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS), liquid 

and gas chromatography.  

 NMR utilizes a magnetic field. Spins of the atoms inside the tissue sample or 

fluid align themselves with respect to the magnetic fields. A radiofrequency pulse 

from the NMR machine elevates spins to a higher energy orientation. When the 

radiofrequency is turned off, spins undergo relaxation and release energy, returning 

to their original lower energy configurations. During this process, an NMR signal is 

emitted that can be detected by a computer system. A series of peaks are generated. 

Their positions are characteristic of certain known molecules. The NMR spectra of 

most metabolites have been identified and any new spectra can be identified in 

reference to available data. Liquid and gas chromatography are two separation 

techniques that rely on partitioning liquid or gas from a sample solution. Separation 

depends on the physical properties of the substance such as boiling point and 

solubility. As these chemicals are eluted off the column, they can be detected and 

quantified. Mass spectrometry is an analytical technique that identifies compounds 

based on their mass to charge ratio.  

 Each of the different analytical techniques has its benefits and drawbacks. A 

major advantage of NMR is its non-invasiveness and non-reliance on metabolite 

separation. Samples are not eluted off so they can be recovered for further analysis 

by chromatography or spectrometry. Sample preparation for NMR is simple, and 
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lends itself well to metabolite profiling of intact biofluids like culture medium or 

semi-solid samples like cells or tissue. However, a major disadvantage of NMR is its 

low sensitivity compared to chromatographic techniques.13 A cross-platform 

comparison of metabolomic methods by Buscher et al14 demonstrated that the three 

platforms of gas chromatography, liquid chromatography, and capillary 

electrophoresis were roughly equivalent in terms of sensitivity, and all superior to 

NMR. 

 Metabolomics has been studied with relation to numerous other cancers,12, 15 

including breast,16 prostate,17 lung,17 colorectal,18 pancreatic19, esophageal,20 

ovarian,21 bladder,22 and renal cell carcinoma[23] but to date, very little has been 

studied in the area of gastric cancer. This review summarizes current available 

literature on gastric cancer metabolomics. As it is a relatively new field, there are 

only a few studies. Our findings are presented below. 

 

2.5 Normal versus Malignant Metabolomic Signatures 
 
 A few studies in the literature have compared metabolomic profiles of gastric 

cancer patients with healthy controls. The type of biofluid or tissue they use varies 

between studies. This review organizes metabolites from each study into four main 

classes of biomolecules: carbohydrates, amino acids, lipids, and nucleic acids. Table 

2-1 summarizes metabolites from each study by biolmolecular class. 

 

2.5.1 Carbohydrate metabolism 

 Hu et al24 implanted human gastric cancer cells into 24 immune deficiency 

mice. They were randomly divided into a metastasis group, non-metastasis group 

and a normal group. Urine of these mice was collected and gas 

chromatography/mass spectrometry was employed to identify a metabolomic 

profile. Two diagnostic models for gastric cancer and metastasis were constructed 

by principal component analysis (PCA). PCA is a way to visualize distribution of 

metabolites between different disease states. A point on a graph can be plotted for 
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each patient and the clustering of individual points represent similarities in 

metabolite profiles between samples. Ten metabolites were different between 

normal and cancer groups. Seven metabolites were different between metastasis 

and non-metastasis groups. On the PCA scores plot, the normal group and cancer 

group were scattered into different regions. Similarly the PCA plot showed 

differential scatter between non-metastasis and metastasis groups. Levels of TCA 

intermediates such as butanedioic acid, malic acid, and citric acid were elevated in 

gastric cancer mice, as were lactic acid levels. This could be attributed to the 

“Warburg effect” in that glucose is often converted into lactic acid in cancer cells.25 

Hirayama et al26 investigated metabolites in tumour tissue and compared 

this with adjacent normal tissue on twelve resected gastric cancer specimens. They 

quantified 95 metabolites involved in glycolysis, pentose phosphate pathway, TCA 

and urea cycles. Metabolites in normal stomach tissue and tumour tissue were not 

well separated on PCA plot, making two types of tissues less distinguishable. With 

regards to glycolysis and the TCA cycle, Hirayama found that glucose concentrations 

were much lower in tumour than in normal tissues. Also pyruvate was decreased, 

while lactate concentration was increased in tumour tissues indicating a higher 

reliance of cancer cells on anaerobic breakdown of pyruvate under hypoxic cell 

conditions. This lab group identified elevated levels of TCA intermediates 

specifically that of succinate, fumarate, and malate in malignant tissue. These 

findings correlated to ones from Hu et al.24  

Song et al studied gastric cancer resections and compared the metabolomic 

profiles of the cancerous tissue matched to normal tissue at least 8 cm away on the 

specimen.27 This group noticed an increase in metabolites of aerobic glycolytic 

pathways namely alpha ketoglutarate and fumaric acid. Across all studies, lactate 

was the most consistently elevated carbohydrate pathway biomarker (four of four24, 

26, 28, 29 studies) between the cancer and control groups. Likewise glucose was the 

most consistently depleted (two of two26, 29 studies). Malate was the most 

consistently elevated TCA cycle biomarker (three of three24, 26, 29 studies). Other 

carbohydrate pathway products showed inconsistencies. 
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2.5.2 Amino Acid Metabolism 

 Amino acids can be an alternative energy source, and can be generated 

through anaplerotic reactions, a process whereby intermediates in a metabolic 

pathway are replenished from biomolecules outside of the pathway. Glutamine is a 

prime example of an anaplerotic reaction. It is converted to glutamate and then into 

alpha-ketoglutarate, a TCA cycle intermediate.30 

Wu et al. investigated gastric cancer mucosa in conjunction with adjacent 

normal mucosa.31 Amino acids such as serine, phosphoserine, L-cysteine, L-tyrosine, 

glutamine, isoleucine and valine were elevated in gastric cancer specimens. These 

amino acids can be produced by diverting glycolytic intermediates down alternate 

biochemical pathways. Song et al32 found that valine exhibited the greatest fold 

change in GC patients compared to controls. Overall, glutamine and valine were the 

most commonly recognized amino acids.  

  

2.5.3 Fatty acid metabolism 

 Cancerous cells are known to have dysregulation of fatty acid beta-oxidation 

and cell membrane synthesis. Hu et al24 who studied human gastric cancer in mice 

models identified elevated levels of hexadecanoic acid and glycerol in cancerous 

compared to normal tissues. They interpreted this as upregulation of adipocyte 

lipolysis and elevated circulation levels of adipocyte hormone sensitive lipase. Song 

et al27 found that squalene (an intermediate in cholesterol synthesis) was the most 

extensively depleted metabolite in gastric cancer specimens. Overall, there is great 

heterogeneity of lipids across studies.  

 

2.5.4 Nucleic acid metabolism 

The literature on nucleic acid metabolites is conflicting. Several studies reports that 

uric acid, the final metabolic product of purines is upregulated.24, 33 Other purines 
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such as hypoxanthine31 and guanosine26 are generally elevated. This is in contrast to 

Aa’s study29 which showed decreases in uridine, an RNA building block.  
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Table 2-1: Marker metabolites between gastric cancer and healthy controls 
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2.6 Metabolomic profile and stage 
 
 While it is interesting to see differences in metabolomic profile between 

normal and cancerous tissue, it is also useful to examine how the profile evolves 

along a gradient as it goes through the benign to dysplastic to cancerous sequence. 

In the 1980s, Correa proposed a model of human intestinal-type gastric 

carcinogenesis from normal mucosa to chronic superficial gastritis (CSG), to CAG, to 

intestinal metaplasia (IM) to dysplasia (DYS) and then to intestinal-type GC.34 Yu 

and colleagues33 employed gas chromatography and time-of-flight mass 

spectrometry to determine metabolite levels in plasma of 80 patients with the 

spectrum of disease described previously by Correa. They found that the metabolic 

phenotype of CSG is significantly different from GC, while that of IM is similar to GC. 

Knowing metabolites of each stage of the progression to GC, may be used as markers 

to indicate a risk for malignancy. Yu et al33 also found that when they mapped 

metabolites identified in GC, it was not much different from postoperative GC 

specimens within a 4-6 week window. Perhaps this is because it takes longer for 

metabolic derangements to resolve. Key metabolic differences between different 

histological stages are summarized on Table 2-2.  

Yu et al also found significant differences in serum levels of amino acids 

between GC and CSG patients. Levels of three amino acids- glutamate, cysteine, and 

glycine were upregulated. These amino acids are building blocks for glutathione 

synthesis, which is an important anti-oxidant. 2-hydroxybutyrate, which is 

postulated to be a by-product in glutathione synthesis was also elevated, as were 

asparagine and ornithine. Most other amino acids did not show an increase in this 

study, unlike previous studies on gastric cancer tissue.26 This shows that 

metabolomic profiling in blood may be different than in tissue. Lipid synthesis was 

similar between CSG and GC, except 11-eicosanoic acid and azelaic acid, which were 

elevated in malignant samples. Postoperative GC patients had decreased levels of 

urate, the end product of purine catabolism. This suggests that growth and DNA 

proliferation is slowed once tumour is resected. 
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It is also interesting to note how metabolomic profile changes with 

increasing TNM stages. Song and colleagues27 did not notice any significant variation 

in metabolites as patients progressed through T stage. They postulated that either 

metabolic perturbations may not be directly associated with pathological stages, or 

that the platform of gas chromatography and mass spectrometry is not sufficiently 

sensitive to identify metabolite changes. On the other hand, Wu et al31 identified that 

as cancers became more invasive (T3/T4 stage), there was a simultaneous increase 

in amino acids L-cysteine, hypoxanthine, L-tyrosine, as well as a decrease in levels of 

phenanthrenol and butanoic acid. Chen et al35 found that proline was the most 

upregulated amino acid from non-metastatic to metastatic specimens (2.45 fold 

increase), while glutamine was the most downregulated amino acid (1.71 fold).  

 Apart from amino acids, other biomolecules show changes between stages. 

Ikeda et al36 studied the sera of eleven GC patients and found that 3-hydropropionic 

acid and pyruvic acid, the terminal product of glycolysis, marked the greatest 

separation between healthy and cancer patients. In Stage I GC, there was a 1.5 fold 

increase in levels of 3-hydropropionic acid and 0.7 fold decrease in pyruvic acid 

compared to healthy controls. Both values were only statistically significant in Stage 

I cancers. This may have some future utility in diagnosing GC early, but more studies 

validating similar findings will be necessary. Key metabolic differences between 

different stages are highlighted in Table 2-2. 

 

2.7 Metabolomic profile and proximal gastric cancer 
 
 Over the last twenty to thirty years, there has been an increase in the 

numbers of proximal stomach tumours. As of 2011, gastroesophageal (GE) tumours 

affect 1.5 million people per year worldwide and contribute to 15% of cancer 

related deaths. The 5-year survival rate for localized tumours is 34%, while for all 

stages combined it is only 17%.37 Given the poor prognosis of these proximal 

tumours, some recent metabolomic studies look at the unique profile of cardia and 

GE tumours in the hope of shedding light on early diagnostic possibilities. 
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Cai et al28 used a combined proteomics and metabolomics approach to 

investigate gastric cardia cancer. They found that there was a dysregulation of 

pyruvic acid efflux in development of cardia cancer. A transition from glycolysis to 

the Kreb's cycle was associated with cancer inhibition. Several biomarkers related 

to glucose metabolism were elevated in cardia cancer samples compared to non-

cancerous cardia tissue. Five enzymes from glycolysis were upregulated while five 

enzymes involved in Kreb’s cycle and oxidative phosphorylation were 

downregulated in malignant samples. Several intermediates in glucose metabolism 

were identified in higher concentrations in gastric cancer samples including 

fructose, glyceraldehyde, pyruvic acid and lactate. A higher level of pyruvic acid was 

transformed into lactic acid, rather than acetyl CoA following Krebs cycle. These 

results suggest that glycolysis followed by anaerobic respiration were the major 

biochemical pathways to metabolize glucose in cardia cells, whereas Krebs cycle and 

oxidative phosphorylation were impaired. This is consistent with previous studies 

validating the Warburg effect. 

 A 2013 systematic review by Abbassi-Ghadi summarized metabolomic 

findings on gastroesophageal cancer.37 Twenty studies (11 tissue, 8 serum, 1 urine 

and 1 gastric content) were included. They classified metabolites into cellular 

respiration, proteins, lipids and nucleic acids. The most commonly recognized 

metabolites of the tricyclic acid cycle were lactate and fumarate. Valine, glutamine, 

and glutamate are the most commonly identified amino acid biomarkers. Most 

metabolites have shown contradictory results in terms of abundance between 

cancer and control groups, although there is a general trend of upregulation of 

amino acids. Amongst all tissues, glutamine is the most consistent biomarker of GE 

cancer as it is upregulated in serum, urine and tumour tissues.  

Sulphur containing compounds, from either incomplete metabolism of 

methionine in the transamination pathway or by bacterial metabolism, were also 

upregulated in cancer patients. In terms of lipid metabolites, myo-inositol, and cell 

membrane constituents choline, and phosphocholine were elevated. Of the 

endogenous ketones acetone and beta-hydroxybutyrate, have been described as 

potential biomarkers of GE cancer. Nucleotide metabolites in esophageal cancer 
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studies report increased levels of pyrimidines via gas chromatography-mass 

spectrometry and increased adenine and uridine with high resolution-magic angle 

spinning-NMR (HR-MAS-NMR).  

 

Table 2-2: Marker metabolites between stages of gastric cancer 

 
 

 

2.8 Discussion 
 
 This review demonstrates that there are significant inconsistencies in the 

relative abundance of metabolites between not only gastric cancer and controls, but 

also amongst various stages of cancer. Metabolites upregulated in one study may be 

downregulated in another. This may be attributable to analytical technique 
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(GC/MS/NMR), sample choice (blood/urine/tissue), or type of subject 

(animal/human). 

Of the four types of biomolecules, carbohydrates are most consistent in 

terms of type and quantity of metabolites. Glucose was consistently downregulated. 

This may be due to upregulation of glycolysis, high consumption by cancer cells and 

diminished delivery from structurally and functionally defective blood vessels. 

Lactate was consistently elevated across all studies. This observation is in keeping 

with the Warburg effect. 

In 1924, Otto Warburg observed that most cancer cells produce energy by a 

high rate of glycolysis followed by lactic acid fermentation in the cytosol. This occurs 

even in the presence of sufficient oxygen to support mitochondrial oxidative 

phosphorylation via the TCA cycle. Scientists have called this phenomenon 

“anaerobic glycolysis”. Healthy cells, in contrast, exhibit a lower rate of glycolysis 

followed by aerobic oxidation of pyruvate in mitochondria.25 Metabolic differences 

observed by Warburg adapts cancer cells to the relatively hypoxic environment 

inside solid tumours. He originally postulated that there was a mitochondrial defect 

impairing aerobic oxidation; however, subsequent studies have shown that most 

cancer cells have normal mitochondria. Anaerobic glycolysis is an inefficient way to 

produce energy in the form of adenosine triphosphate (ATP), and the reason as to 

why cancer cells predominantly utilize this method is still under study. Most studies 

have identified metabolites in glucose utilization and some kind of connection to the 

Warburg effect. 

Despite this, there are still elevated levels of certain TCA cycle intermediates, 

including malate (elevated in three of three studies24, 26, 29), citrate (elevated in 

three24, 29, 38 of four26 studies), and fumarate (elevated in three26, 27, 29 of five28, 32 

studies). While this may seem contradictory to the Warburg effect and cancer cell’s 

preference for anaerobic reactions, these TCA cycle intermediates may be funneled 

in from anaplerotic reactions rather than elevated TCA cycle activity. Glutamine is 

one example of such. It is an essential nitrogen donor for several key metabolic 

enzymes and for the de novo synthesis of nucleic acids[39]. Glutamine is converted to 
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alpha-ketoglutarate, which is a TCA intermediate; continuation of this cycle 

generates additional energy to produce building blocks for cells. 

Amino acid metabolism demonstrated variations as well, but glutamine and 

valine were most commonly elevated across studies. Like glutamine, valine is 

essential as an anaplerotic substrate. Valine is a branched chain amino acid that can 

be oxidized into succinyl Co-A, another TCA cycle intermediate.40 Other TCA 

intermediates include fumarate, citrate, and alpha-ketoglutarate, which are points in 

the cycle where amino acids can feed in. 

 Lipid metabolites have been inconsistent, although squalene, an intermediate 

in cholesterol synthesis, was downregulated. Cholesterol is an essential component 

of cell membranes. Squalene depletion may be a sign of excess demand for cell 

membrane synthesis. Although cancer cells are known to replicate quickly, it is 

interesting that nucleic acid metabolites do not show a consistent upregulation. 

Hirayama26 inferred that cancer cells have a growth advantage over their normal 

counterparts, by utilizing alternative pathways such as anaerobic glycolysis, 

glutaminolysis, autophagic production of amino acids instead of securing more ATP 

and other building blocks for DNA synthesis. 

For any given study, numerous metabolites were different between stages, 

but across studies, there were few consistencies. Similar to changes that occurred 

between normal to cancerous groups, a transition from non-metastatic to metastatic 

showed persistent elevations in lactate, malate and glutamate with a decrease in 

glucose.33, 35 This may indicate that the Warburg Effect and anaplerotic reactions are 

still major contributors to the sustenance of metastatic cell lines. 

The articles in this review have several limitations that may account for 

inconsistencies in metabolites. As previously mentioned, there are differences in 

analytical platform and different sensitivities for detection of such metabolites 

across different studies. Metabolomics is a relatively new field, and as such, the 

techniques are not yet standardized. Also several studies had a small sample size 

(n≤30 per group). This increases the possibility of chance findings and diminishes 

power of the study. The examination of mice versus human metabolites could be 

another source of error. Although human gastric cell lines were implanted into mice, 

 55 



A copy of this chapter was published in World Journal of Gastroenterology, Sep 2014 
 

human physiology is still considerably more complex; this may account for 

differences between human and animals studies. 

Some studies matched for age and gender between groups (Song32) but 

others (Ikeda36) just used twelve human volunteers. This introduces selection bias. 

The small sample size and lack of age and gender matching between cancer and 

normal groups could confound the metabolomic profile. Depending on the type of 

tissue or biofluid sampled, there may also be differences. Aa29 noted dissmilarities in 

relative quantities between tissue and serum in their study between GC and CSG 

patients. For example, TCA intermediates, lactate, amino acids and free fatty acids 

were more abundant in tissues than in the patient matched sera. This suggests that 

metabolism is most intensive at the tissue level and becomes somewhat diluted in 

biofluids. 

 

 

2.9 Conclusion 
 
 Gastric cancer is the one of the leading causes of cancer deaths worldwide, 

and is especially prevalent in Asian countries like Japan, China and Korea. Current 

surveillance techniques such as barium photofluorography, endoscopy and serum 

pepsinogen testing are known to have limitations. As of late, metabolomics is a new 

area of study that has joined the armamentarium of diagnostic possibilities. Only a 

handful of studies have looked at the role of metabolomics in gastric cancer. 

Variations in fatty acid, carbohydrate, lipid and nucleic acid metabolites have been 

identified that distinguish cancerous from healthy individuals, as well as stage of 

gastric cancer. Aberrations in carbohydrate metabolism seem to be the most 

preserved feature of these metabolic studies, as well as elevation of key amino acids 

that contribute to carbohydrate pathways through anaplerotic reactions.  

 In spite of the differences identified, there are inconsistencies in 

metabolomic profiles between studies. This may be attributable to differences in 

sample type, as plasma compared to urine compared to stomach tissue may yield 

different metabolomic profiles, as well as sampling techniques, analytical platforms 
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and subject type (animal or human). While these early studies on metabolomics 

show promise, this is a relatively new field in the pre-clinical phase. Our lab group is 

currently studying metabolic differences in urine between Stage I-III gastric cancer 

patients, benign gastric disease and healthy controls, as well as how Helicobacter 

pylori affects the metabolic signature. NMR spectroscopy will be employed. This 

future research will hopefully add to the growing body of knowledge and advance 

the clinical applicability of metabolomics in surveillance and diagnosis of gastric 

cancer. 
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3.1 Abstract  
 
Background 

Gastric adenocarcinoma causes significant morbidity and mortality.  Current 

screening modalities have limitations.  Metabolomics has shown some promise in 

early cancer diagnosis.  This study sought to identify whether gastric cancer (GC) 

has a unique urinary metabolomic profile compared to benign gastric disease (BN) 

and healthy (HE) patients. 

 

Methods 

Midstream urine samples from 43 GC, 40 BN, and 40 matched HE patients were 

biobanked at -80°C. Samples were chemically analyzed using 1H nuclear magnetic 

resonance spectroscopy, generating 77 reproducible metabolites.  Univariate and 

multivariate (MVA) statistics were employed.  A parsimonious biomarker profile of 

GC was investigated using LASSO regularized logistic regression (LASSO-LR). 

Receiver operating characteristic (ROC) curves were used to assess model 

performance. 
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Results 

Twenty-eight metabolites differed significantly between GC and HE, of which 10 also 

differed between BN and HE.  Using MVA, GC displayed a clear discriminatory 

biomarker profile; the BN profile overlapped with GC and HE.  LASSO-LR identified 

three discriminatory metabolites: 2-hydroxyisobutyrate, 3-indoxylsulfate, and 

alanine, which produced a discriminatory model with an area under ROC of 0.95.   

 

Conclusions 

GC patients have a distinct urinary metabolite profile compared to HE controls and a 

subset of BN patients.  This preliminary study shows clinical potential for metabolic 

profiling for early GC detection. 

 

Keywords 

Biomarkers, metabolomics, screening, gastric cancer, nuclear magnetic resonance 

 

3.2 Introduction 
 
 Gastric adenocarcinoma (GC) is the fifth most common cancer worldwide and 

the third most deadly.  Approximately one million people are diagnosed worldwide 

every year, and there is a 70% mortality rate.1,2  Premature death and disability 

from GC have a large impact on society.  In lower middle income countries (ranked 

by gross domestic product- GDP), there were close to 4.8 million disability adjusted 

life years (DALY) lost in one year due to GC.3  Sixty percent of cases occur in East 

Asia, with Korea, Japan and China having the top three prevalence rates.4  GC is often 
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diagnosed late, as non-specific symptoms such as dyspepsia resemble benign (BN) 

causes such as gastritis.  In spite of this, cancers identified early have a moderate 

chance of cure.  The five-year survival rate of Stage IA tumours is 71% and Stage IB 

tumours is 57%.5  This highlights the importance of appropriate screening in higher 

risk populations. Current screening tools include endoscopy, barium swallow, and 

serum pepsinogen testing, but each have their limitations.   

 Metabolomics is the study of low molecular weight chemicals (<1500 Da) in a 

biological system and is increasingly utilised in the area of oncology.6-8  It is the most 

downstream of the “omics” sciences (Genomics, Transcriptomics, Proteomics, etc.), 

and is considered closest to an organism’s phenotype.9  Altered metabolism is one of 

the features of cancer propagation.  Malignant cells can evade regular apoptotic 

checks and balances10 and solid tumours in particular demonstrate enhanced ability 

to ferment glucose into lactate, allowing them to thrive in hypoxic environments.11 

Changes in biochemical pathways provide cancer cells with new adaptations to 

propagate, so studying the metabolites of such perturbed pathways may offer 

insight into new diagnostic and therapeutic targets for GC.  Identification of a 

distinct metabolomic profile of GC could be the basis of a non-invasive screening 

tool in targeted, high-risk populations.   

 There are relatively few studies in the area of GC metabolomics.  Several of 

the studies are serum12-14 or tissue based.15  Most studies have a case control design 

comparing GC vs HE;14,16,17 however, in real life clinical situations, healthy people 

will not be seeking medical attention as they do not have symptoms.  This 

experiment added the benign (BN) disease group to test whether GC urinary 
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metabolomic profile differed not only from HE, but also with respect to BN gastric 

disease using 1hydrogen nuclear magnetic resonance (1H-NMR) spectroscopy as the 

analytical platform.  Due to overlapping symptoms of benign and malignant disease, 

a biomarker model discriminating GC and BN conditions may be of greater clinical 

utility than distinguishing GC and HE.  Urine was selected as the biofluid because it 

is economical, non-invasive and requires minimal sample processing before 

chemical analysis.  All three groups were age, sex, and body mass index (BMI) 

matched.  It is hypothesised that GC patients have a distinct set of metabolites (a 

biomarker profile) that can be discriminated from BN and HE patients. 

 

3.3 Materials and Methods 
 

Patient selection 

 Samples were collected between January 2009 and December 2014 from 

three hospitals in Edmonton, Alberta, Canada (the Royal Alexandra Hospital, 

University of Alberta Hospital, and Cross Cancer Institute).  Ethics approval was 

obtained from the Health Research Ethics Board at the University of Alberta.  A 

convenience sample of 43 GC, 40 BN, and 40 HE was obtained.  In patients with 

malignancy, samples were collected prior to chemoradiotherapy and surgery.  All 

patients provided written informed consent to collect and utilise midstream urine 

samples for research purposes. 

 Inclusion criteria for cancer patients were: biopsy confirmed diagnosis of GC, 

age ≥ 18 years old, and no metastases on their staging computed tomography (CT) 
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scans.  BN patients had to experience gastrointestinal symptoms (such as 

haematemesis or epigastric discomfort), and must have endoscopic evidence within 

the last six months of consent that symptoms were not due to a malignant cause.  BN 

and HE patients were recruited from August to November 2013 from the same 

hospitals as GC cases.  Groups were matched on age, gender and BMI.  BN patients 

had any of the following conditions: gastritis, gastro-oesophageal reflux disease 

(GORD), portal hypertensive gastropathy, varices, gastritis, ulcers, and polyps.  HE 

controls did not have any declared history of cancer, and did not experience any 

gastrointestinal symptoms. 

 Exclusion criteria included: breastfeeding, pregnancy, significant cardiac 

disease with New York Heart Association ≥ Class II (documented myocardial 

infarction within 6 months, unstable angina, or history of congestive heart failure), 

uncontrolled bacterial, viral or fungal infection, and prior history of cancer.  Those 

with clinically significant renal disease (glomerular filtration rate < 30 mL/min) 

were excluded, as impaired urinary metabolite excretion could be a confounder 

when determining metabolomic profile.  Patients were enrolled if they satisfied all 

inclusion/exclusion criteria.   

  

Sample collection and storage 

 Midstream urine samples were collected and processed within two hours of 

sample provision. The resulting aliquots were biobanked at -80°C until preparation 

for NMR analysis. Disease class and patient identification was anonymized before 

chemical analysis to remove the possibility of analysis bias.  Samples were thawed 
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to make 1 mL aliquots of urine mixed with 50 μL of 0.42% sodium azide 

preservative.  

 

Sample preparation for NMR spectroscopy 

 The experimental run order was block randomised, such that each block 

randomly contained 1 GC, 1 BN and 1 HE sample.  The experiment was divided into 

four batches and performed over a ten-day time span. To assess precision and 

repeatability of metabolite quantification, a quality control sample (QC) consisting 

of multiple aliquots derived from a single HE patient’s urine was analysed every 

tenth sample.18  Seventeen QCs were used in the experiment. 

  Urine aliquots were thawed and prepared by adding 75 μL of a chemical shift 

standard (Chenomx Inc., Edmonton, Alberta, Canada) containing 4.6 mM 2,2-

dimethyl-2-silapentane-5-sulfonate-d6 sodium salt (DSS-D6), 0.20% w/v NaN3 and 

98.0% v/v D2O, to 675 μL of urine.  Samples were titrated to a final pH of 6.75 ± 0.05 

using small volumes of sodium hydroxide (NaOH) and hydrochloric acid (HCl).  

Samples were centrifuged for 10 minutes at 10000 x g at 4 °C to remove particulate 

matter.  Next, 700 μL of supernatant was transferred to a 5 mm diameter NMR tube 

(Wilmad, Nuena, NJ, USA) immediately prior to NMR acquisition.    

 

1H-NMR Spectroscopy and NMR Data Processing 

 All one-dimensional (1D) 1H-NMR spectra were acquired at Canada’s 

National High Field Nuclear Magnetic Resonance Centre using a 600 MHz Varian 

Inova spectrometer equipped with a 5 mm inverse proton (Hx) probe with z-axis 
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gradient coil.  The entire dataset was collected at 25°C using the first increment of a 

2-dimensional-1H,1H-NOESY, with a recycling delay (d1) of 10 ms followed by a 

water presaturation delay of 900 ms at 6 dB, a 100 ms NOE mixing time, a 4 s 

acquisition time and a spectral width of 7200 Hz.  A total number of 128 transients 

were collected for each sample.  The free induction decays were processed zero-

filled to 128K points before Fourier transform, and the produced spectra were line 

broadened by 0.2 Hz, phased, and baseline corrected.  Reference deconvolution 

using the DSS methyl peak as was then applied to remove Voigt-profile line shapes 

and produced pure Lorentzian peaks. 

 Semi-targeted metabolite identification and quantification of 1D spectra was 

achieved using the 600 MHz database provided in Chenomx NMR Suite Professional 

software v7.6 (Chenomx Inc., Edmonton, Alberta, Canada).   

 

Data Modeling and Statistical Analysis 

 First, probabilistic quotient normalized19 was performed to correct for 

differences in sample metabolite dilution.  Then, for each metabolite, the QC’s 

relative standard deviation (QC-RSD) was calculated.  In this biomarker discovery 

experiment, a QC-RSD <20% was sufficiently precise.9  Any metabolites with QC-RSD 

above this threshold, and any metabolites that were detected in <15% of samples 

were not suitably reproducible for further consideration as effective biomarkers, 

and excluded from subsequent statistical analysis.  This resulted in an abbreviated 

data matrix of 77 metabolite concentrations for each of 123 patients. 
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  For the pairwise comparisons GC vs. HE and BN vs. HE, the null hypothesis of 

no difference in median metabolite concentrations was tested using the non-

parametric Mann-Whitney U test.  Correction for multiple comparisons was 

performed using the method described by Benjamini and Hochberg.20  Both p-values 

and q-values are reported, as are median concentrations and median-fold 

differences for each pairwise comparison.  To compare univariate statistical results 

from two arms of this study (GC vs HE, and BN vs HE) a biplot of log median fold 

change for metabolites significant in either comparison was constructed.   

 To investigate the potential utility of combining multiple metabolites into a 

single predictive model, multivariate statistical analysis was performed using SIMCA 

software (version 13, Umetrics, Umea, Sweden).  Original metabolite concentrations 

were log transformed in order to stabilize variance and then each metabolite vector 

was mean-centered and scaled to unit variance to equalize metabolite concentration 

bias.1  Principal Component Analysis (PCA)22 was performed to identify outliers and 

check multivariate QC consistency.18  Partial least squares discriminant analysis 

(PLS-DA) and orthogonal partial least squares discriminant analysis, OPLS-DA21 

were then performed to generate appropriate multi-class, and binary class, 

discriminant models respectively.  Seven-fold cross validation was used to optimize 

each model.  For each model Variable Importance in Projection (VIP) scores were 

obtained for individual metabolites.  VIP scores indicate the relative importance of 

each metabolite in a given PLS model.  Metabolites with a VIP >1 are most influential 

in a model and thus contribute most to discriminating disease groups.21  
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 Logistic regression optimized by LASSO regularization, (LASSO-LR) was then 

performed to derive an effective, robust, yet parsimonious discriminant GC 

biomarker model.  Logistic regression is a type of probabilistic statistical 

classification model commonly used for predicting the outcome of a categorical 

dependent variable (in this case GC vs. HE), and can be considered as a special case 

of a generalized linear model (GLM) with the form: 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛽0 + 𝛽1𝑥1,𝑖 +

𝛽2𝑥2,𝑖 … + 𝛽𝑚𝑥𝑚,𝑖 (where, 𝑝𝑖 is the predicted probability of positive classification for 

the ith patient; 𝑥1,𝑖 … 𝑥𝑚,𝑖 are the 𝑚𝑚 metabolite measurements for the ith patient; 𝛽0 is 

the regression constant; 𝛽1 …𝛽𝑚 are regression coefficients indicating the relative 

influence of a particular metabolite on the outcome).  

 LASSO regularization23 is a GLM variable selection method based on 

penalizing variables (metabolites) with low 𝛽 values by forcing them to zero 

dependent on a regularization parameter 𝜆.  Optimization of 𝜆 was performed using 

5-fold cross-validation with 100 Monte Carlo repetitions to ensure the avoidance of 

“over fitting” (i.e. ensuring the model is generalizable for future testing with new 

independent samples).  The trade-off between number of variables and 

classification success is then determined ad-hoc.  The resulting optimal classifier 

models were assessed using receiver operator characteristic (ROC) curve analyses. 

This allows determination a posteriori of the optimal “decision boundary” (the 

predictive score determining whether a sample is classified as case rather than 

control) and the associated optimal classification sensitivity and specificity. The 

area under the ROC curve (AuROC) is used as a generalized non-parametric estimate 

of biomarker utility (AuROC = 1 implies a perfect classifier; AuROC = 0.5 implies a 
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model which is no better than flipping a coin to determine outcome).  Bootstrap 

resampling was performed (n=500) to estimate the 95% confidence interval (CI) for 

both the AuROC, and a model’s optimal sensitivity given a fixed specificity. 

Additionally, all available data (GC, BN, HE) were projected through this model to 

quantify disease discrimination.  Statistical analyses were performed with MatLab 

scripting language (MathWorks Inc., Natick, Massachusetts, United States), SIMCA 

(version 13, Umea, Sweden), and STATA Version 13 (College Station, TX: StataCorp 

LP). 
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3.4 Results 
 
Patient Characteristics 
 
 Patient and tumour characteristics at baseline are listed in Table 3-1.   

 
Table 3-1: Baseline characteristics of study subjects and tumour 
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 1H-NMR spectroscopic analyses identified and quantified 150 metabolites 

across all samples. After peak removal and selection for QC-RSD<25%, 77 

metabolites remained.  Using a critical p-value of 0.05, 28 metabolites were 

identified as being significantly different between GC vs. HE and 14 were 

significantly different between BN vs. HE; 10 of 28 metabolites were common to 

both groups (Table 3-2).  Figure 3-1 is a biplot mapping log2 median fold change 

concentrations for metabolites that were significantly affected in the BN vs. HE and 

GC vs. HE models.  Metabolites significantly affected in each pairwise comparison 

are listed in Table 2 in bold.   
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Figure 3-1.  Biplot of log2 median fold change for metabolites in gastric cancer (GC) 
vs. healthy (HE) and benign (BN) vs. HE models.  Blue circles represent metabolites 
significantly changed in both models; red squares, significantly changed in GC vs. HE 
only; green triangles, significantly changed in BN vs. HE only. 
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Table 3-2: Metabolic data table univariate statistics for pairwise comparisons 
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PCA showed that there were six outlier data points and that the QC sample clustered 

well (Figure 3-2).  

 

 
 
Figure 3-2.  Principle component analysis (PCA) score plot of urine samples from 
gastric cancer (R2X = 0.22, Q2 = 0.052) from benign gastric disease (BN- green 
circles); gastric cancer (GC- blue squares); healthy controls (HE- red upright 
triangles) and quality control samples (QC- yellow inverted triangles). 
 

 For the compete data set PLS-DA (three disease groups) was performed.  The 

optimal model had 1 PLS component with R2Y = 0.24, Q2Y = 0.16.  Figure 3-3 show 

the PLS scores for each of the patient’s metabolite profiles labeled by class.  
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Figure 3-3.  Partial Least Squares-Discriminant Analysis (PLS-DA) score plot of 
metabolite profiles derived from 77 measured urine metabolites in gastric cancer 
(GC), benign gastric disease (BN), and healthy controls (HE).  Green circles are 
represented by BN disease patients; blue squares, GC; red triangles, HE.  Cross-
validated optimal model has 1 OPLS component, R2Y = 0.24, Q2Y = 0.16. 
 

 OPLS-DA for the GC vs. HE groups was performed (Figure 3-4) shows the 

OPLS scores for each of the patient’s metabolite profiles labeled by class).  The 

optimal model had 1 OPLS component with R2Y = 0.62, Q2Y = 0.48, and an AuROC = 

0.96 (95% CI = 0.92-0.99).  For a fixed specificity of 80%, the sensitivity of 

predicting GC was 90% (95% CI = 0.80-0.97) (Figure 3-4B shows the resulting ROC 

curve for GC classification).   
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(A)  

 
 
 (B)  

 
Figure 3-4. 
(A) Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) score plot 
for GC vs HE comparison.  The optimal model has 1 OPLS component with an  
R2Y = 0.62 and Q2Y = 0.48.  Green circles are GC patients; blue squares, HE patients. 
(B) ROC curve with an AuROC of 0.96 (95% CI = 0.92−0.99).  For a fixed specificity of 
80% the corresponding sensitivity for predicting GC was 90% (95% CI = 0.80–0.97). 
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OPLS-DA for the BN vs. HE groups was performed (Figure 3-5A) show the PLS 

scores for each of the patient’s metabolite profiles labeled by class).  The optimal 

model had 1 OPLS component with R2Y = 0.35, Q2Y = 0.13 and an AuROC = 0.85 

(95% CI = 0.75-0.92).  For a fixed specificity of 80%, the sensitivity of predicting GC 

is 63% (95% CI = 0.48-0.76) (Figure 3-5B) shows the resulting ROC curve for BN 

classification).   
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(A) 

  
 
 
(B) 

 
 
Figure 3-5.   
(A) OPLS-DA score plot for BN vs HE comparison.  The optimal model has 1 OPLS 
component with R2Y = 0.35 and Q2Y = 0.13.  Green circles are BN patients; blue 
squares, HE patients. 
(B) ROC curve with an AuROC of 0.85 (95% CI = 0.75−0.92).  For a fixed specificity of 
80% the corresponding sensitivity for predicting GC was 63% (95% CI = 0.48–0.76). 
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 VIP scores for important metabolites in the PLS-DA and each of the two 

OPLS-DA models are listed in Table 3-3.   

Table 3-3: VIP scores for metabolites in pairwise comparisons 
 VIP score 

PLS-DA 
GC vs BN vs HE 

OPLS-DA 
GC vs HE 

OPLS-DA 
BN vs HE Metabolite 

3-indoxylsulfate 3.0 2.8 2.7 
N-acetylglutamine derivative 2.9 3.1 2.9 
2-hydroxyisobutyrate 2.1 2.3 1.0 
β-alanine 2.1 1.8 1.8 
Creatinine 2.0 1.9 1.8 
Tropate 1.9 1.9 2.2 
Sucrose 1.9 1.8 0.9 
Citrate 1.8 1.9 2.6 
Dimethylamine 1.6 1.4 0.5 
1-methylnicotinamide 1.5 1.9 0.7 
5-hydroxytryptophan 1.4 1.6 1.2 
2-furoylglycine 1.3 1.4 0.3 
N-acetylserotonin 1.2 1.5 0.1 
Trans-aconitate 1.2 1.2 0.2 
Cis-aconitate 1.2 1.2 1.5 
Betaine 1.2 1.2 1.1 
Alanine 1.2 1.2 0.9 
Methylguanidine 1.2 1.1 1.2 
π-methylhistidine 1.1 1.0 1.0 
Formate 1.1 1.1 0.3 
Indole-3-lactate 1.1 1.1 1.2 
3-hydroxyisobutyrate 1.0 1.1 1.1 
Serotonin 1.0 1.0 0.4 
Tyrosine 1.0 1.0 1.0 
 
 

 VIP scores for metabolites in each PLS model mirrored the test scores found 

during the univariate statistical analysis.  Of particular importance were nine 

metabolites, which had high VIP scores in the GC vs. HE OPLS model, but low VIP 

scores in the BN vs. HE OPLS model: sucrose, dimethylamine, 1-methylnicotinamide, 

2-furoylglycine, N-acetylserotonin, trans-aconitate, alanine, formate, and serotonin.   
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OPLS-DA for the GC vs. BN groups was performed; however the model was unable to 

be successfully optimized, producing very poor R2Y and Q2Y values. Therefore it was 

considered inconclusive and unpublishable.   

 LASSO-LR produced an optimal model using just three metabolites: 2-

hydroxyisobutyrate (2-HIB), 3-indoxylsulfate (3-IS), and alanine (A). This resulted 

in the following diagnostic regression model: 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 15.0 − 7.7 × log(2-HIB) + 5.2 × log(3-IS) − 6.1 × log(A) 

 

The corresponding ROC curve had an AuROC of 0.95 (95% CI: 0.86−0.99) (Figure 3-

6A). For a fixed specificity of 80% the corresponding sensitivity for predicting GC 

was 96% (95% CI: 0.85–1.00).  Model statistics are in Table 3-4.  According to this 

specificity if the predicted score, p, for a given individual is > 0.3 the diagnosis would 

be GC; otherwise if p<0.3, “not GC”.  

 
Table 3-4: Regression parameters for Logistic Regression Model 

 

  

 Figure 3-6B shows a frequency histogram for three disease classifications 

grouped by the LASSO-LR model score.  BN samples are split into two broad 

distributions (a combined bimodal distribution); approximately half of BN patients 

classified with GC, the other half with HE.  
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(A) 

  
(B) 

 
Figure 3-6.   
(A) Receiver Operating Characteristic (ROC) curve for GC vs. HE comparison based 
on 3-metabolite model.  Area under curve (AUC) is 0.95 (95% CI = 0.86 – 0.99).  For 
a fixed specificity of 80%, the sensitivity is 95% (95% CI = 0.85-1.00). 
(B) Frequency histogram for logistic regression model scores.  White bars represent 
HE patients; grey, BN patients; black, GC patients.  The number (frequency) of 
patients with each score is depicted by the height of the bars.  Scores closer to 1 
indicate a high probability of GC; close to 0 indicates high probability of HE.  Cut-off 
boundary is score 0.3.  Above 0.3, classified as GC; below, not GC 
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3.5 Discussion 
 
 GC is a highly morbid and fatal disease.  Current screening techniques are 

limited, and strategies for earlier detection are necessary.  Diagnosis of GC is often 

delayed, owing to non-specific symptoms, which also clinically overlap with 

symptoms of non-malignant gastric conditions such as ulcers, GERD, and gastritis.  

Patients may be prescribed proton pump inhibitors or antacids for presumed benign 

gastric aetiologies; this may mask underlying malignancy symptoms.  The present 

study used 1D 1H-NMR spectroscopy to characterize a urinary metabolic profile of 

GC that is distinct from HE and a subpopulation of BN patients. 

 Univariate analysis revealed significant changes to 28 metabolites measured 

in urine of patients with either GC or BN gastric disease when compared to healthy 

matched controls (Table 3-2); these included carbohydrates, vitamins, organic and 

amino acid metabolites.  The biplot in Figure 3-1 showed log fold change in 

concentration for significant metabolites in the GC vs. HE and BN vs. HE models.  

Some interesting metabolites unique to the GC phenotype are: alanine, 1-

methylnicotinamide, sucrose, and methylguanidine.   

 Alanine is an endogenous amino acid that can be synthesized from pyruvate, 

or 3-phosphoglycerate, a glycolytic intermediate.  Five to seven percent of skeletal 

muscle is composed of alanine.24  During times of fasting, muscle protein is 

catabolized to release alanine as a substrate for liver gluconeogenesis.  Alanine 

provides the main carbon skeleton for gluconeogenesis, which produces glucose as 

an energy source for cancer cells.  Like previous studies,15, 25 alanine concentration 

increased from HE to GC, and was also significantly correlated with tumour stage.26  
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A lung cancer study showed that compared to healthy controls and weight-stable 

lung patients, weight-loss lung patients upregulated gluconeogenesis and had higher 

alanine concentrations.27  Several GC patients had lost a considerable amount of 

weight from baseline to diagnosis of cancer, and elevated alanine levels in urine may 

be an indication of increased lean muscle breakdown.    

 Both 1-methylnicotinamide and sucrose have connections with gastric 

mucosal inflammation.  In rats with chemically induced gastric lesions (ulcers, 

erosions), treatment with 1-methylnicotinamide inhibited gastric acid secretion, and 

increased mucosal blood flow and healing.  These changes were mediated through 

induction of gastro-protective prostaglandins.28  Diminished levels of 1-

methylnicotinamide in both BN and GC groups suggest loss of this mucosal 

protective mechanism, and may correlate with gastric mucosal damage observed in 

these patients.   

 Elevated urinary sucrose levels may be related to gastric mucosal integrity. 

In the 1990s, Meddings devised the sucrose permeability test, based on the premise 

that healthy gastric mucosa is intact and does not allow sucrose to leak excessively 

into the bloodstream.29  However, in areas of ulceration or erosion, sucrose can 

penetrate more easily into the bloodstream and be excreted into the urine.  After 

oral administration of a sucrose load, urinary sucrose levels showed steady 

increases going from healthy patients to those with gastric ulcer, early GC, and 

finally advanced GC.30, 31  Our results agreed with previous studies, as there were 

significant sucrose elevations in both BN and GC groups compared to baseline.  
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Perhaps this is due to the increased permeability of damaged mucosa in GC and BN 

patients. 

 Some interesting metabolites common to both models in the biplot are: 

creatinine, citrate, and cis-aconitate and 3-indoxylsulfate.  Creatinine, a waste 

product of muscle metabolism, is excreted by the kidneys.32  The amount of 

creatinine in urine is directly related to muscle mass.33  Cancer cachexia patients 

have lower total body skeletal muscle mass, and therefore lower levels of creatinine 

in urine.  This phenomenon was consistent with our results as GC patients had 

considerably lower levels of urinary creatinine than HE patients.  In this experiment 

only BMI was measured; a formal body composition analysis was not completed, but 

several GC patients reported muscular atrophy in the months preceding initiation of 

malignancy treatment. 

 Citrate is an intermediate of the Kreb’s cycle: complete oxidation of this 

metabolite provides a major source of cellular ATP.  It is also an important 

regulatory metabolite at the junction of several interconnected biochemical 

pathways- fatty acid and sterol biosynthesis, glycolysis and gluconeogenesis.34  With 

regard to cancer, an in-vitro experiment showed that citrate induced apoptosis in 

two GC cell lines in a dose dependent manner.10  In our study citrate was down-

regulated in GC patients, suggesting an ability of GC to escape regular programmed 

cell death.  Dehydration of citric acid produces cis-aconitate, one of the metabolites 

identified in this experiment.35 

 Finally, 3-indoxylsulfate is a metabolite of the amino acid tryptophan36 and a 

nephrotoxin that stimulates glomerular sclerosis and interstitial fibrosis.37  A 
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Korean research group found that 3-indoxylsulfate was nearly tripled in mice 

injected with GC cells;17 this mirrored our findings as GC concentrations of this 

metabolite were approximately 3.5 times that of controls.  It was also increased in 

oesophageal cancer;38 3-indoxylsulfate is postulated to increase oxidative stress by 

decreasing levels of glutathione, a cellular anti-oxidant.  

 OPLS modeling clearly distinguished GC metabolomic profiles from those of 

HE (Figure 3-4) and to a lesser extent BN from HE (Figure 3-5).  Identification of 

unique and important GC phenotype metabolites was consistent between 

multivariate and univariate methods.  Nine metabolites have VIP >1 in GC/HE 

comparison but VIP <1 in BN/HE comparison.   Eight metabolites contributing to the 

GC phenotype with VIP >1 matched significant metabolites identified on univariate 

analysis: sucrose, dimethylamine, 1-methylnicotinamide, 2-furoylglycine, N-

acetylserotonin, trans-aconitate, alanine, and formate. 

 The distinction between BN and either GC or HE was less clear using the 

multiclass PLS model (Figure 3-3).  Overall, alanine, 3-hydroxyisobutyrate and 2-

indoxylsulfate are most predictive of GC.  Interestingly, due to the phenotypic 

heterogeneity of the BN group, a bimodal distribution of patients was observed, as 

approximately half clustered with HE and the other half with GC. 

 BN conditions that clustered more frequently with HE include: varices, 

polyps, portal hypertensive gastropathy, gastroparesis, and gastritis.  BN conditions 

that clustered more frequently with GC include: ulcers, GERD, and gastritis. These 

observations fit with Correa’s hypothesis.39  He delineated a pre-neoplastic cascade 

from healthy to non-atrophic/superficial gastritis to chronic atrophic gastritis (CAG) 
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to intestinal metaplasia (IM) to dysplasia (DYS) to cancer.  Patients with chronic 

gastritis are farther on the pre-neoplastic cascade than early gastritis patients, so 

their phenotypes and metabolomic signature more likely resemble GC than they do 

HE.  Likewise patients with mild superficial gastritis have minimal inflammation and 

are more similar to HE.   

 While results of this biomarker discovery experiment have offered additional 

insight into GC, a number of limitations in the design, methods, and analysis stages 

should be addressed.  In the design phase, there are issues of sample size/power 

and confounding variables.  As the strength of relationships between urine NMR 

profiles and the differentiation of metabolomic profiles between benign and 

malignant disease is currently unknown, sample size could not be formally 

calculated.  Therefore, we enrolled a pragmatic sample size of 40 GC patients, 40 

patients with gastrointestinal symptoms and without GC (BN group), and 40 healthy 

controls.  A small sample size limits the power to detect a difference, and likewise, 

differences detected may be spurious.   

 This experiment matched patients on three common confounders- age, sex 

and BMI, but as it is an observational design, all known and unknown confounders 

cannot be controlled.  Randomization can better achieve this prognostic balance, but 

as samples were not randomly selected, only run order was randomized.  Since the 

experiment was completed over several days, randomization minimized any 

spurious batch effects.  Other confounders in this experiment include: patient 

medications, smoking, Helicobacter pylori status, and non-uniform endoscopy 

between groups.  Medication profiles amongst patients can be quite heterogenous; 
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moreover interactions of multiple drugs on the metabolome are difficult to predict.  

While all BN and GC patients underwent upper endoscopy for symptoms, HE 

patients did not.  It is still possible that this group may have stomach pathology that 

is clinically occult.  Some GC patients were not fasting at the time of urine collection, 

which could influence the metabolomic profile.  BN patients were all fasting as that 

was mandatory for scoping, as were HE patients. 

 In the analysis phase, limitations pertain to the 1H-NMR spectrometer and 

the Chenomx library.  The ability to detect metabolites is restricted by the sensitivity 

and resolution of the instrument, as well as the number of identified compounds in 

the Chenomx library.  The machine used in this experiment was exceptionally 

precise from run-to-run, but NMR can only detect metabolites with a concentration 

≥1 μm;40 furthermore distinguishing overlapping/co-resonant spectral peaks can 

make accurate identification of individual metabolites difficult.  The latest version of 

the Chenomx software houses about 340 known compounds, but there were several 

peaks, some of which were significant between GC vs. HE, that were unknown and 

not available in the library.  These were removed from further analysis. 

 In the future, there can be improvements to the design, methods and analysis 

stages.  Both the original biomarker discovery and an external validation 

experiment should employ a sufficiently large sample size (at least as large as the 

current experiment) to detect a difference in metabolomic profiles.  A larger 

external validation set will be important in identifying whether the same 

metabolites emerge as discriminatory biomarkers of disease.  Patient samples can 

be randomly collected, although in Canada, where the incidence of GC is only 2-3%, 
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this may be difficult.  It could take a long time to accrue enough GC patients, unless 

multiple centers pool their patients.  A validated standard operating procedure 

should be applied uniformly to all patients.  Everyone should be fasting and the time 

of day at which samples are collected should be similar.  Ideally patients should be 

enrolled, and samples collected and analyzed within a tight time frame to minimize 

time and temperature dependent alterations in biochemical profile.  Any HE patients 

who participate should also be scoped within the last six months to ensure absence 

of stomach pathology.   

 A sufficiently powered longitudinal study can examine the metabolomic 

profile in GC patients post-operatively at six week and six month intervals.  The 

same standard operating procedure should be applied to post-operative samples.  

After curative resection, some metabolites may return to normal levels.  One study 

found that as early as seven days after surgery, alanine, arginine, and hypoxanthine 

trended towards healthy concentrations.26 

 The National Cancer Institute (NCI) outlined 30 steps required to move 

“omics” assays from bench to bedside.41 Once a validated standardized protocol for 

specimen collection/storage and experimental assay is identified, then there are 

multiple steps to developing a valid biomarker model.  Thereafter an “omics” assay 

enters the clinical trial design stage after which multiple ethical, legal and regulatory 

issues must be resolved before it can be considered for a clinical test.  Once a test is 

of sufficient quality for clinical use, a risk stratification model should be constructed 

to identify the best candidates for the urine-screening test.  Like the Gail model in 

breast cancer,42 patients with different combinations of risk factors for GC can be 
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triaged to have this urine test.  If a patient’s metabolomic profile is classified with 

GC, then he or she can be further worked up with endoscopy and/or barium 

swallow.  Such a test serves as starting point for investigation, and enables clinicians 

to correctly target a small group of patients in a more efficient and cost effective 

manner. 

 
 

3.6 Conclusion 
 
 In this observational cohort study we demonstrated that GC has a unique 

urinary metabolomic profile compared to HE patients, and a subset of BN patients 

(mostly ulcers and chronic gastritis).  A parsimonious three metabolite model 

consisting of 2-hydroxyisobutyrate, 3-indoxylsulfate, and alanine was established 

that predicted GC as distinct from HE with 95% sensitivity and 80% specificity.  This 

study shows the clinical potential for urinary metabolomic profiling in GC patients, 

although numerous steps are required to first validate these findings, and then to 

advance it to a clinically applicable test.  
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CHAPTER 4: SUMMARY 
 
 

4.1 Summary of Research  
 

4.1.1 Overview 

 Metabolomics is the “study of the quantitative complement of metabolites in 

a biological system and changes in metabolite concentrations or fluxes related to 

genetic or environmental perturbations”.1  Metabolites are small molecules (<1500 

Da) in a biological organism and are the breakdown products of multiple convergent 

gene, protein and biochemical pathways.  Since the 1990s, research in this field has 

grown exponentially.  Metabolomics has important applications in nutritional 

science, drug metabolism, and increasingly now in the area of oncology diagnostics 

and therapeutics.2  Malignancies of the pancreas,3 breast,4 esophagus,5 kidney6, 7 and 

lung8, 9 have been studied previously, but very little has been done yet in the area of 

gastric cancer (GC).  

 GC is a devastating disease and the average mortality rate (all stages 

combined) is approximately 70%.  Most GC cases occur in East Asia.  Despite only 

3300 cases of GC in Canada, and 250 cases in Alberta every year, the mortality rates 

of 62% and 66% respectively are nearly on par with the rest of the world.10, 11  Much 

of the morbidity and mortality is related to late diagnosis as symptoms of GC often 

overlap with those of benign (BN) disease.  As the prevalence of GC is low in Canada 

and screening would not be cost effective, there is no official screening program for 

this malignancy.  Given the high mortality of the disease, and the limitations to 
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current screening modalities, such as endoscopy and barium swallow, tests to 

identify GC earlier are highly valuable. 

 

4.1.2 Current Evidence  

 Chapter 2 of this thesis summarized the research on GC as of 2014.  Multiple 

studies report disruptions to carbohydrate metabolism in GC cases.  The transition 

from healthy to malignant phenotype is correlated with an upregulation of lactate 

and a downregulation of glucose, consistent with the postulated Warburg Effect.12-15 

Cancer cells predominantly produce energy by a high rate of glycolysis followed by 

lactic acid fermentation in the cytosol, rather than aerobic oxidation of pyruvate in 

mitochondria as in normal cells.  Malignant cells have very high rates of glycolysis 

and therefore glucose consumption.  Overall, this adaptation has enabled cancer 

cells to survive in relatively hypoxic environments.  Amino acid, lipid, and nucleic 

acid metabolism also show disruptions, but they are considerably less consistent 

between literature articles.  

 Many studies featured a case-control design, but to date, no study has looked 

at three disease groups (GC, BN, and healthy controls- HE) with a large enough 

sample size.  While it is interesting to see differences between healthy controls and 

cancerous cases, it is also important and perhaps more clinically useful to identify 

whether metabolomic profiles differ between cancer and benign disease.  It is 

precisely these two groups of patients who are presenting the diagnostic dilemma, 

as healthy asymptomatic individuals will not seek medical attention.  An improved 

understanding of metabolic biomarkers and their functional significance may 
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provide an opportunity for early identification and treatment of GC.  Therefore 

Chapter 3 sought to identify whether there was a difference in urinary metabolomic 

signature between three disease groups (GC, BN and HE) using 1H-NMR 

spectroscopy. 

 

4.1.3 Disease Class Separation 

 Using univariate and multivariate statistical analysis, we found that GC has a 

discrete metabolomic signature compared to HE and a subset of BN patients, namely 

chronic gastritis and ulcers.  On univariate analysis, 28 metabolites initially differed 

between GC and HE patients, of which 10 also differed between BN and HE patients.  

There is strong agreement between univariate and multivariate results as 

metabolites that were significant discriminators of cancer on Mann-Whitney U test 

were virtually the same as metabolites with high variable importance in projection 

(VIP) scores on partial least squares-discriminant analysis (PLS-DA).  A discrete 

metabolomic profile was not identified for the BN group of patients, as the 

parameters for the multivariate GC vs BN model could not be successfully optimized.  

This is likely due to phenotypic heterogeneity of the BN disease group as a whole. 

 LASSO Logistic Regression was used to investigate the predictive ability of 

combining multiple metabolites in a single model.  Three compounds were selected 

as the key discriminatory biomarkers (2-hydroxyisobutyrate, 3-indoxylsulfate, and 

alanine).  This parsimonious triple metabolite biomarker model shows strong 

predictive accuracy in separating disease classes, with an area under the receiver 

operating characteristic curve [(AuROC) of 0.95, (95% CI =0.86-0.99)].  This three 
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metabolite assay can be used as an initial diagnostic test to screen for high risk 

patients.  Any individuals with a Logistic Regression model score above 0.3 (our cut 

point for the test) can be further investigated for possible stomach cancer with 

other tests such as endoscopy.  Given that endoscopy is a timely, and resource 

intensive service, any method to identify a smaller, more appropriate population for 

this test can be more practical, cost effective and efficient.  This relatively non-

invasive and economical urine metabolic screen may serve this purpose. 

 

4.1.4 Metabolites of Interest 

 Knowledge of cancer hallmarks16 may allow researchers to speculate upon 

the functional significance of the metabolites identified in this experiment.  There 

are multiple explanations for the role of a particular metabolite in cancer, as 

individual metabolites participate in multiple biochemical reactions.  The products 

of one reaction may be the intermediates or substrates of another.  The putative 

biomarkers identified in this discovery experiment provide a basis for future in-

depth studies of gastric carcinogenesis pathways. 

 This research identified a number of potential metabolites postulated to be 

involved in gastric tumor formation and propagation.  Metabolites of muscle 

breakdown, mucosal damage, and cellular proliferation were identified.  Creatinine 

and alanine, an endogenous amino acid, were prominent biomarkers identified and 

are both implicated in muscle catabolism.  Alanine can be released from skeletal 

muscle, and shuttled to the liver for gluconeogenesis.17  Creatinine, a waste product 

of muscle metabolism, is correlated with total body muscle mass.18, 19  Although a 
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formal body composition analysis was not undertaken, many cancer patients 

reported significant weight loss, muscle atrophy, and had lower urinary creatinine 

levels.  Cancer cachexia occurs in 50% of patients with malignancy,20 and has been 

considered a “paraneoplastic syndrome” in which tumour derived factors induce 

global alterations in gene expression and metabolic flux to release metabolites 

which can then be channeled to other pathways for tumour growth and expansion.21  

 GC grows from the mucosa towards the serosa of the stomach.  Damage to 

the mucosal lining is correlated with alterations in 1-methylnicotinamide and 

sucrose concentrations.  A previous study shows that 1-methylnicotinamide enables 

gastric mucosal healing in rats who have ulcers and erosions.  This metabolite was 

downregulated in GC patients in our experiment, indicating loss of this mucosal 

protective mechanism.  Sucrose, on the other hand, has not been linked to a 

particular dysregulated biological pathway but leaks into the bloodstream and 

subsequently the urine in higher quantities when the mucosa is damaged compared 

to when it is intact. 

 Other amino acids such as isoleucine, proline, and tyrosine were significantly 

different between cancers and controls as well, and this may reflect a need for the 

tumour to increase protein synthesis.  Proteins are essential constituents of cell 

membranes and signaling molecules. 

 The pattern of metabolic derangements associated with GC is speculative and 

explanations for biological significance are limited by the literature that is available 

on this topic.  Further in-depth analysis of these metabolites may be undertaken 

with Ingenuity Systems Pathway Analysis,22 an online application which allows 
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researchers to navigate molecular relationships between candidate biomarkers.  

Combining multiple levels of “omics” technologies may help to generate a more 

global and comprehensive picture of GC genesis and propagation at the gene, mRNA 

and metabolite levels. 

 

4.2 Limitations and Future Directions 

4.2.1 Sample Size and Power 

 While results of this biomarker discovery experiment have offered additional 

insight into GC, a number of limitations in the design, methods, and analysis stages 

should be addressed.  In the design phase, one of the issues is sample size and 

power.  Sample size could not be formally calculated because the strength of 

relationships between urine NMR profiles and the differentiation of metabolomic 

profiles between benign and malignant disease is currently unknown.  No published 

guidelines exist either on an appropriate sample size.  Previous GC metabolomics 

studies used anywhere from 8 to 65 patients per group.12, 14  Therefore, we enrolled 

a pragmatic sample size of 40 GC patients, 40 patients with gastrointestinal 

symptoms and without GC (BN group), and 40 healthy controls.   

 A small sample size limits the power to detect a difference, and conversely, 

differences detected may be spurious.  In “omics” experiments, the number of 

variables (metabolites) greatly exceeds the number of samples.  In the search for 

disease discriminatory biomarkers, multiple hypotheses are being tested 

simultaneously for each metabolite.  This increases the chance of making false 

discoveries (Type I error).23  For example, if a univariate test sets the significance 
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level at p-value 0.05, there is a one in twenty chance that the biomarker is false, but 

if one were to perform >100 tests (as is the case of this metabolomics experiment), 

then the chance of finding a false biomarker is greatly amplified.  The more tests that 

are performed, the greater the chance of finding a random metabolite that is not 

biologically relevant.1  

 Different correction methods for multiple hypotheses testing have been 

utilized.  The Bonferroni correction controls the family-wise error rate by dividing 

the overall desired p-value by the total number of hypotheses performed.  For 

example, if the desired significance level is 0.05 overall and there are 100 tests being 

performed, then the significance level for each individual test is now 0.0005.  This 

correction method can be overly stringent, as it can avoid Type I errors at the cost of 

increasing the potential for Type II errors (missing a true association).23  Bonferroni 

correction also assumes that all variables are independent of one another, which in 

reality, may only apply to a small number of metabolites in each sample.22  We 

utilized the Benjamini-Hochberg method to correct for multiple hypotheses.  This is 

a calculation that ranks p-values to produce a new adjusted q-value.  Ultimately, this 

method serves to reduce the number of false discoveries.25, 26  

 

4.2.2 Bias and Confounding 

 This experiment matched patients on three common confounders- age, sex 

and BMI, but as it is an observational design, all known and unknown confounders 

cannot be controlled.  The heterogeneity of human characteristics can make it 

virtually impossible to control for all confounders.  Since patients cannot be 
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randomized to a disease group, only experimental run order was randomized to 

minimize any spurious batch effects.   

 Other potential confounders in this experiment include: patient medications, 

smoking, Helicobacter pylori status, and non-uniform endoscopy between groups.  

Medication profiles amongst patients can be quite heterogenous; moreover the 

interaction of multiple drugs on the metabolome is difficult to predict.  While all BN 

and GC patients underwent upper endoscopy for symptoms, the HE patients did not.  

It is still possible that this group may have stomach pathology that is clinically 

occult, which could lead to misclassification.  For example, if a healthy individual has 

mild gastritis without symptoms, he or she may be misclassified into the control 

group, rather than in the benign gastric disease group.   

 With regard to the experimental methods, there were important differences 

in sample collection and storage time that could affect metabolomic profile.  Some 

GC urine samples were collected years before initiation of the current experiment.  

Although they were stored in -80 °C, subtle changes to metabolites may occur even 

at this temperature.  The oldest GC samples from 2009 were biobanked for nearly 

four years before they were thawed for experimental analysis.  This is in contrast to 

the BN and HE patients who were collected within a tight four-month time frame 

from August to November 2013.  No article has been officially published regarding 

the optimum storage time and temperature, but the consensus in the metabolomic 

community is that beyond 1.5 years, even in -80 °C, time dependent degradation 

processes such as proteolysis and lipidolysis occur.  Therefore age of samples can 

influence the validity of identified metabolomic profiles.    

102 



 

 Another difference between cancer and non-cancer samples is the fasting 

state of patients.  Some of the GC patients that were collected were not fasting at the 

time of urine collection, which could influence the metabolomic profile.  A large 

proportion of GC patients in the biobank were collected prior to the initiation of this 

MSc program of research in 2013, so fasting was not a necessary pre-requisite.  In 

contrast, the BN patients were all fasting as that was mandatory for scoping.  

Likewise, HE patients were fasting as they were all collected under the same 

protocol by the same researcher. 

 There needs to be a validated standard operating procedure applied 

uniformly to all patients in the study to ensure reproducibility.  Everyone should be 

fasting and the time of day at which samples are collected should be similar.  Ideally 

patients should be enrolled, and samples collected and analyzed within a tight time 

frame (two year window if possible) to minimize time and temperature dependent 

alterations in biochemical profile.     

 

4.2.3 Biofluids and Analytical Platforms 

 In the analysis phase, limitations pertain to the 1H-NMR spectrometer and 

the Chenomx software library.  The ability to detect metabolites is restricted by the 

sensitivity and resolution of the instrument, as well as the number of identified 

compounds in the Chenomx library.  The NMR device used in this experiment was 

exceptionally precise from run-to-run, but the lower limit of detection for NMR is 1 

μm concentration;28 any metabolite below this level is not detectable.  Furthermore 

distinguishing overlapping/co-resonant spectral peaks can make accurate 
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identification of individual metabolites difficult.  The latest version of Chenomx 

(version 7.7) has about 340 known compounds.  There were several peaks, some of 

which were significant between GC and HE that were unknown and not available in 

the library.  These had to be removed from further analysis. 

 Metabolomics can use a variety of fluid or tissue samples, most commonly 

urine or serum is utilized.  We chose to use urine because it is sterile, easy to collect, 

painless, is reasonably free from interfering proteins or lipids, and requires minimal 

processing for NMR.  However, urine is not without its challenges.  Urine typically 

contains water-soluble metabolic breakdown products of diet, environmental 

contaminants, endogenous waste metabolites and bacterial by-products.  It is a final 

common channel for multiple sources of breakdown products, many of which are 

not well characterized or understood.28 Every compound that is found in urine 

should theoretically also be found in blood, albeit in different concentrations.  Due to 

the filtration of substances from blood into the kidneys, the urine metabolome 

should be a subset of the serum metabolome.  However, according to the Human 

Metabolomic Database (HMDB), there are nearly 500 compounds that are identified 

in urine that are not detected in blood.  This may be due to the concentrating ability 

of the kidney for certain metabolites.  Some compounds that are too low 

concentration to be detected in blood can be found in higher concentrations in 

urine.28  No one particular biofluid or analytical platform can tell the entire story of a 

patient’s metabolome, so different biofluids and platforms should be combined to 

provide complementary analyses of the human metabolome. 
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4.2.4 Implications for Future Research 

 In the future, there can be improvements to the design, methods and analysis 

stages.  Both the original biomarker discovery and an external validation 

experiment should employ a sufficiently large sample size (at least as large as the 

current experiment) to detect a difference in metabolomic profiles.  An external 

validation set will be important in identifying whether the same metabolites emerge 

as candidate biomarkers of disease.  The external validation set should consist of all 

new individuals.  Each specimen should be collected under an identical and 

reproducible standard operating protocol to reduce bias and confounding.  This 

time, healthy individuals who participate should also be scoped within the last six 

months so that no occult stomach pathology is identified that could confound the 

metabolomic profile.  An external validation set can first be collected in the same 

hospitals in the Edmonton area, and then be repeated in other centers.  If further 

validation studies identify a similar metabolomic profile to this experiment, then 

this lends more strength to the validity of these metabolites as biomarkers of GC. 

 Beyond looking for differences in metabolomic profile between disease 

groups like in this current research program, other ideas for future experiments 

include investigating the effects of surgical resection and cancer recurrence on the 

metabolomic profile.  A sufficiently powered longitudinal study can examine the 

metabolomic profile in GC patients post-operatively at six week and six month 

intervals.  The same standard operating procedure should be applied to post-

operative samples.  After curative resection, do key discriminatory metabolites 

return to normal levels?  Do post-operative patients still cluster with cancer patients 
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on multivariate analysis, or are their metabolomic profiles more consistent with 

healthy individuals?  One study found that as early as seven days after surgery, 

alanine, arginine, and hypoxanthine trended towards healthy concentrations.29 

Likewise, the metabolomic signature can also be studied in patients with recurrent 

GC to identify whether the same metabolites of malignancy return.  In this way, each 

patient can be his or her own control at different time points.     

 Another idea for a future experiment could investigate the effects of 

Helicobacter pylori bacteria on the overall metabolomic profile.  It would be 

interesting to identify which metabolites are of bacterial versus human metabolic 

origin.   In this current experiment, not all patients’ H. pylori infection status were 

known, as information was missing from health records. 

 It is hoped that these candidate metabolites may emerge as reasonably 

robust biomarkers for disease detection in future validation experiments.  

Ultimately they may serve some purpose as a diagnostic screening tool.  However, 

there are still major challenges to moving “omics” experiments from bench to 

bedside.  McShane and colleagues discussed 30 steps required to transition a 

biomarker discovery experiment to a population level clinical tool.30 Apart from 

what has already been mentioned in terms of specimen and collection assay 

standardization, further considerations include model development, specification, 

and evaluation of statistical methods.  Then the “omics” based test must pass clinical 

trials, and finally overcome numerous ethical, legal and regulatory issues. 

 An ideal screening program should have the right balance of disease, test, 

and population characteristics.31 Pertaining to the disease, early detection and 
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therefore intervention of the condition in question should have a significant effect 

on quality of life.  The prevalence of the disease should be high enough to justify 

health economic costs.  There should be effective treatment for early stage disease 

and a long enough asymptomatic period during which detection and treatment 

reduces morbidity and mortality.  It takes on average 44 months for early stage GC 

to progress to advanced stage; during this transition period, patients are often 

asymptomatic.32  With regard to the characteristics of the test, it must be sufficiently 

sensitive enough to detect disease during the asymptomatic period, specific enough 

to minimize false positives, and acceptable to patients (painless, minimally invasive, 

few risks or side effects).  A urine metabolomics screening test has several 

favourable patient factors already.  Finally, the population characteristics must also 

be considered.  The disease should be sufficiently prevalent, and patients should 

have reasonable access to medical care.  There should be enough compliance with 

subsequent diagnostic tests and therapy.  In East Asia, GC is much more common, 

and such a screening program is justifiable given that several conditions of a good 

screening test are met.  In Canada on the other hand, stomach cancer is relatively 

rare (2-3% prevalence);10 however, there are certain subpopulations (East Asian 

immigrants and First Nations)33 who are at higher risk for GC and could potentially 

be a target group for this urine screening test in the future.   

 These characteristics must operate in conjunction with an appropriate risk 

stratification model.  A strategy to identify the correct target population for the 

screening test is important.  Knowledge of previous risk factors can be used to build 

a risk stratification tool.  Like the Gail model in breast cancer,34 patients with 
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different combinations of risk factors for GC can be triaged to have this urine test.  A 

positive screen can fast track them towards further work-up with other tests.  

 This experiment has shown compelling results for metabolic profiling in the 

diagnosis of GC.  Additional large-scale studies and integration of current knowledge 

with information from other “omics” studies (proteomics, genomics, etc) may foster 

a better understanding of the biological processes underpinning gastric 

adenocarcinomas. 
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