Programming a Plasma Physics

Calculator with the Use of Python
Krishna Patel, Dr. Jason Myatt, Sydney Easton

WISEST
August 11th, 2021

JISEST Canada PSCL & 115 RTA




Abstract

Practitioners in plasma physics and engineering often make use of formula
booklets when making calculations [e.g., The NRL Plasma Formulary...].
Computing these formulas by hand is often tedious and error prone, particularly
if the quantities need to be converted from a different set of units. In our
research, we decided to develop a Python program that solves this problem by
taking user input, converting it into the correct units, performing the user's
calculation and then outputting it with the units of the user's choice. This was
done by using object oriented programming, python libraries that stored basic
unit conversions, and tagged data which is essentially tuples that use a number
as index zero and the respective units as index one. EX: (23.45, "cm"). Through
implementing these three strategies we were able to successfully create a base
program that is easy to use, manipulate, and further extend for future purposes.
Therefore, by utilizing python to create a plasma physics calculator we were able
to find an effective way to organize a plasma formulary. For future purposes, we
would like to create a user interface for our program, and add additional

formulas, and units to it.

Introduction and Motivation

Across the world many different measurement units are used, whether that be in
engineering, science, technology, or just in daily life. Standardized units can also
vary country to country for example, whereas Canada uses The Systeme
International d'Unités (SI) the United States prefers The Imperial System of
Measurement. Similarly, when it comes to plasma physics this same variation
occurs. Depending on who is conducting the research, where it is taking place,
etc units can change accordingly. However, this causes another problem because
for certain formulas variables have to be in specific base units in order to ensure
the calculation is done correctly. This starts to get difficult when you have
various quantities that all have their own conversion factors because oftentimes

one formula can have five to six different variables.



On top of variables these formulas also contain many different constant values
which can create another colloquial to retrieve from data booklets because they
can be hard to memorize. For example, the Debye length formula for electrons
seen in Fig 1, is often described as a characteristic distance over which ions and
electrons can be separated in a plasma (Chen, 1984). This formula takes in k
which represents Boltzmann’s constant, temperature T in electron volts (eV),
density n in grams per cubic centimeter (1/cm3), and returns the Debye length in
cm. However if instead of electron volts the temperature was in kelvin and the
density was in kilogram per cubic centimeter (kg/cm?3) this would change up the
final units.

Ap = (kT /4nne?)/? = 7.43 x 10272~/ 2 cm
Figure 1: Debye Length Formula

This is just one example however for both temperature and density many other
units exist. It would be much easier to plug numbers into a Python program that
could easily convert the input into the correct units, perform the respective
calculations, and then ask the user what units they would like their final answer
in. This eliminates having to manually perform unit conversions by using various
long formula sheets, and speeds up the process significantly.

Methods

The creation of this calculator was done using Python only, with imports like
NumPy to do some extra mathematical calculations. The key goal remained
creating two python classes. One called the plasma class which contained plasma
formulary in methods that could be used to calculate the formula of the user's

choice, example seen in Fig 2.

class Plasma_functions:
def Debyelength(temperature, density):
Taken from the NRL plasma formulary, J.D. Huber 2087.
Temperature in eV
Density in 1/cm™3

debye = 7.43eZxnp.sqrt(temperature)/np.sqrtidensity)

Figure 2: Example Method of the Plasma Class



The second class was named the units class, which was used to organize the unit
conversions. We also implemented the dir built in Python function to print out
all possible formulas the user could call on. We specifically used dir because
this made it so in the future if any additional formulas were added, they would

automatically print.

method_1list = [method for method in dir
(Plasma_functions) if method.startswith('__ ') is False]
print(method_list)

Figure 3: Printing Methods in the Plasma Class using the dir Function

In order to ensure that the unit conversions class had the ability to be easily
extended in the future, we used the Python library to organize functions that
contained basic unit conversions. For example, we had length and time
conversions like cm, m, km, seconds, minutes, hours etc. Using these base
conversions was key in order to ensure that the code remained concise. By doing
so we eliminated the need for multiple functions for each conversion, for
instance converting between radians/seconds and radians/minutes would
typically require a function for both radians/seconds to radians/minutes and vice
versa. However with our new implication we only require a seconds to minute
method and minutes to second method which can both be reused for other units
as well. The initial units and value input received from the user would be
converted into tagged data, would go through a series of if-else statements in
order to determine what conversions needed to take place and ensure the units
were in the correct form before Python proceeded to calculate the answer.

input = tuple(input("Enter the temperature value and units separated by a space")

input.upper().split(" "))
in_value = float(tagged[0])

Figure 4: Converting User Input to Tagged Data

These if-else statements called on the unit conversion library which depending on
what formula was being calculated also called on the plasma class. The final step
was to prompt the user one to ask what units they would like their final answer

in.



Then the data will once again go through a series of if-else statements to
complete the final conversion. The final output is done using the format function
in Python so the final answer can be presented in scientific notation. This whole
user input, conversion, and calculation process is done through a while loop that
can be used over and over again until the user specifies otherwise.

final_ans = "Here is your final answer {@:.2e}, {1}.".Tormat(in_value, units_final)
print(final_ans)

Figure 5: Printing Final Output using the Format Function

Conclusion

Plasma formulary can be extensively used during research or coursework for
students, typically calculating formulas would be a long and difficult process.
However with the implication of a Python program that takes the formulas and
also converts the answer into preferred units this process can be simplified

making it much easier on researchers and students.

Although this is a base program containing only some formulas used in the field
of plasma physics the calculator has been programmed in such a way that in the
future extending it to include more formulas and unit conversions can be done
without having to worry about changing the whole framework. Another future
implication can be creating a user interface for the calculator making it even
easier for users to input values, and units. It would also overall increase the user
experience. Including a feature where the user can add in their own formulas
using the interface would also be a great feature to have because as the research
world is constantly evolving it may be deemed difficult to continuously add or

update formulas.



Acknowledgments

I would like to thank my PI/Supervisor Dr. Jason Myatt for providing me with
mentorship and valuable knowledge that allowed me to complete this research
project. His encouragement and endless support throughout the program has been
beyond helpful. I would also like to express my appreciation for my research
partner, Sydney who has been a pleasure to work with and a true asset to this
project. Another thank you to Process Solutions and Dr. Myatt for sponsoring me
this summer and allowing me to participate in this incredible program. Last but
not least thank you to the WISEST team for organizing the program and giving

students like me the opportunity to participate in trail-blazing research,

Citations

Huba, J. D. (2006). 2006 Plasma Formulary - Handbook of Data and Tables for
Plasma Physics & Engineering. Naval Research Laboratory.
https://doi.org/10.21236/ada447173

Harris, C. R., Millman, K. J., & van der Walt, S. J. (2020). Array programming
with NumPy.
Array Programming with NumPy. Published.https://doi.org/10.1038/s41586-
020-2649-2

Chen, F. F. (1984). Introduction to Plasma Physics and Controlled Fusion.
SPRINGER.
https://doi.org/10.1007/978-3-319-22309-4

Python 3.9.6 Documentation. (2020, October 5). Docs.Python.
https://docs.python.org/3/

JISEST Canadd PSCEL GATEERTA




