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Abstract

The overall purpose of this thesis is to extend and apply the Markov Switching

Multifractal (MSM) model to various economic problems. To this extent, Chapter 1

lays the ground work for the next chapters by reviewing the MSM model, discussing

its properties and outlining its estimation procedures. The chapter also reviews the

distributional properties of several commodity markets that make them amenable to

the MSM model.

Chapter 2 extends the MSM model by incorporating a vector error correction compo-

nent, which includes in the conditional mean equation, the cointegrating relationship

between spot and futures prices. The VECM-MSM model has two distinctive fea-

tures that incorporate the empirical properties of asset prices. First, it includes an

error correction mechanism in the mean equation that incorporates the long-run rela-

tionship between spot and futures prices. Second, the model specifies the conditional

second moments as a bivariate Markov Switching Multifractal (MSM) model.

The VECM-MSM model is applied to study the problem of risk hedging in the fu-

tures market. The hedging effectiveness of the proposed VECM-MSM model is eval-

uated, using a value-at-risk (VaR) approach. Specifically, we compare the hedging

effectiveness of the proposed model to those of alternative models by assessing their

unconditional and conditional VaR coverages. Models are then ranked in terms of

the adequacy and accuracy of their hedged portfolio VaR. The in-sample and out-of-
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sample hedge effectiveness shows that the VECM-MSM hedged portfolio outperforms

alternative hedging strategies in terms of having the lowest rate of VaR violations

among the different strategies. Statistical tests of unconditional and conditional cov-

erages also show that the VECM-MSM model better predicts an investor’s downside

risk in that the VaR predictions are more accurate than the predictions from the

alternative models.

Chapter 3 of this thesis investigates the excess commodity comovement phenomenon,

using the MSM model. One of the stylized facts of commodity prices is their ten-

dency for comovement. The phenomenon implies that seemingly unrelated commodi-

ties tend to move together beyond what can be attributed to fundamentals, such as

demand and supply conditions, exchange rates, interest rates, industrial production

etc. Excess commodity comovement bears significant welfare and risk management

implications. For an instance, a synchronous rise in prices of commodities exerts sig-

nificant inflationary pressure on commodity import dependent countries, and limits

their ability to maintain economic stability and resist inflationary pressures. More-

over, to the extent that comovement measures, such as correlation and covariance

among commodities, comprise an essential ingredient in risk assessment, pricing,

portfolio management and hedging, failure to account for such excess comovement

can lead to sub-optimal economic decisions.

Therefore within the debate on excess commodity comovement, the objective of this

chapter is twofold. First, it analyzes the degree of excess commodity comovement

across a variety of commodities. Second, it analyzes the frequency-dependent nature

of comovement across related (e.g. crude and heating oil) and unrelated commodi-

ties (e.g. copper and corn). First, we find that there is significant comovement

between commodity prices, beyond what can simply be explained by macroeconomic

fundamentals. Second, decomposing comovements into multiple frequencies, we find
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that all commodities exhibit long-run excess comovements which are driven by low

frequency fundamentals such as weather, demographic and macroeconomic factors.

But some commodities also exhibit significant short-run excess comovements that

may be attributable to short-run factors such as liquidity constraints, indexation,

etc. Third, the dynamic correlations show that excess comovements are higher in

periods of high volatility and vice-versa.

The final chapter applies a new class of model, the Autoregressive Markov switch-

ing multifractal model, for forecasting spot electricity prices. Three variants of the

model are examined. The first variant, the ARX-MSM, is a simple mean-reversion

model that allows for a Markov switching multifracal (MSM) volatility process. This

model incorporates several of the main characteristics of electricity prices, namely

mean-reversion, conditional volatility and price spikes. Price jumps with heteroge-

neous durations are introduced through switches in the volatility components with

heterogeneous frequencies. This second variant allows for regime switches in both

drift and volatility. This is motivated by earlier empirical findings that electricity

prices are characterized by regime dependent drifts and volatility. The last variant of

the model introduces a risk premium into the mean equation to capture the impact

of volatility on prices.

Employing hourly prices from the AESO market, the parameters of the ARX-MSM

models are estimated, and one-step-ahead hourly forecasts are obtained. To put the

performance of the ARX-MSM models into perspective, the results are compared

to those of other notable models used in the literature, namely the AR(1), ARX,

ARX-GARCH, mean-reverting jump and the 2-state independent Markov regime

switching models. Goodness-of-fit tests indicate that the ARX-MSM models fit the

data significantly better than the competing models. Likewise, out-of-sample results

show that the ARX-MSM models provide better forecast accuracy.
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Chapter 1

A Review of The
Markov-Switching Multifractal
Model

1.1. Introduction

Early studies on commodity prices are based on the mainstream literature of financial

markets of the time, with the fundamental assumption that financial returns are

normally distributed and that financial prices follow a random-walk process Gibson

and Schwartz (1990); Schwartz (1997). However empirical studies suggest that many

financial returns exhibit characteristics that significantly differ from those of a normal

distribution or a random-walk process. Therefore, effectively modeling the statistical

characteristics of financial series has been the subject of many academic studies in

the last few decades. To better understand the characteristics of financial returns

and to motivate the modeling choice of subsequent chapters, we discuss the so called

stylized facts of financial returns in what follows. The stylized facts are as follows:

1. Volatility clustering: Financial returns volatility exhibit strong autocorrelation
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over a long horizon, a property also known as persistence. Large negative or

positive returns on a given day tend to be followed by substantial return move-

ments. To accommodate this feature, the generalized autoregressive conditional

heteroscedasticity(GARCH)model was introduced by Engle (1982) and Boller-

slev (1986), and has since become the standard stochastic volatility model.

Persistent and variable volatility has significant implications for risk pricing

and management, therefore cannot be over emphasized.

2. Heavy tails: The unconditional distributions of financial returns are character-

ized by heavy tails when compared to the normal distribution i.e. the probabil-

ity of extreme returns is much higher than that suggested by a normal distribu-

tion. This phenomenon is also known as excess kurtosis. To accommodate this

characteristic, diffusion jump models have been employed in continuous time

settings (Hilliard and Reis, 1999; Merton, 1976). In discrete time, a GARCH

model with a student-t distributed errors can be employed to achieve the same

general effect (Bollerslev, 1987).

3. Aggregational gaussianity: This property implies the unconditional distribu-

tion of returns varies nonlinearly as the frequency of observations changes. At

short horizons, the distribution of returns is far from normality. But it be-

comes progressively closer to following a normal distribution as the frequency

of observations decreases (Campbell et al., 1996).

4. Power-law scaling: The moments of the absolute value of returns tend to vary

as a power function of the frequency of observations, a phenomenon often

described as power-law variation or scaling. It also implies that the growth rate

of the qth moment is a non-linear function of q, a feature that is consistent with

the nonlinear variations of financial returns distribution with the time horizon.

Evidence of power-law scaling has been documented in equity and exchange rate

2



markets (Calvet and Fisher, 2002; Lux, 2008), interest rate markets (Jamdee

and Los, 2005) and commodity markets (Li and Lu, 2011).

In order to accommodate the aforementioned characteristics of financial returns, sev-

eral models have been proposed in the extant literature. Prominent among these is

the GARCH class of models introduced by Engle (1982) and Bollerslev (1986). In

this class of models, volatility follows a smooth autoregressive process. In order to

further capture outliers in returns, standard GARCH models have been augmented

with error distributions other than the Gaussian type, such as the student-t distri-

bution. GARCH models have been found to produce good short-run forecasts of

volatility dynamics but they suffer from major drawbacks. It is well known that

GARCH models often have difficulty capturing low-frequency volatility cycles. Also,

GARCH models have been found to produce volatility forecasts that are too per-

sistent (Calvet and Fisher, 2008; Lien and Tse, 2002). Given these short comings,

several other models have been proposed. These include the fractionally integrated

GARCH model (Baillie et al., 1996; Ding and Granger, 1996), long-memory stochas-

tic volatility models (Breidt et al., 1998; Comte and Renault, 1998; Robinson and

Zaffaroni, 1998), diffusion jump models (Merton, 1976) and Markov regime-switching

models (Hamilton, 1989, 1990).

Notwithstanding the significant advancements that have been made, none of the

aforementioned models is able to simultaneously accommodate the full set of styl-

ized facts related to financial returns discussed earlier. Moreover, and perhaps most

importantly, none of the above models characterize the multifrequency nature of the

persistence and variability of financial returns volatility. Yet, an in-depth under-

standing of financial returns cannot be achieved without investigating their features

at different frequencies. A casual observation of financial returns at intra-day, daily,

weekly, monthly or even at longer intervals reveals the heterogeneity in durations
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and occurrence of shocks to returns. This observation is consistent with the in-

tuition that economic shocks are highly heterogeneous in their degree of occurrence

and persistence. High frequency shocks such as liquidity uncertainty, macroeconomic

data releases, weather reports and analyst reports affect the dynamics of financial

returns (Gennotte and Leland, 1990; Roll, 1984; Womack, 1996). At low frequen-

cies, exhaustible energy resource uncertainty, political policy feedbacks, technological

advancements, demographics, terrorist attacks, war, depression and macroeconomic

uncertainties simultaneously drive financial returns (Bansal and Yaron, 2004; Fong,

2002; Wilson et al., 1996).

It is this multifrequency nature of financial volatility, coupled with the aforemen-

tioned properties of financial returns, that motivated the development of the Markov-

Switching Multifractal (MSM) model in a series of articles by Calvet et al. (1997),

Calvet and Fisher (2001, 2002, 2004) and Calvet et al. (2006). The MSM model is

based on the regime-switching models of Hamilton (1989, 1990). The MSM model

assumes that volatility comprises multiple components with differing degrees of per-

sistence. Each volatility component switches randomly and independently of other

components over time, generating volatility shocks of multiple frequencies. Hence,

the MSM captures the thick-tails, long memory features and volatility clustering

which are characteristics of many financial returns.

The objective of this chapter is to lay the ground work for the next chapters by

reviewing the MSM model, discussing its properties and outlining its estimation pro-

cedures. The rest of this chapter is structured as follows. Section 2 reviews both the

univariate and bivariate MSM models and provides some simulations to demonstrate

the construction of the MSM model. Section 3 discusses the properties of commodity

markets and how they can be characterized by the MSM model. Section 4 concludes.
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1.2. The Markov-Switching Multifractal Model

1.2.1. Univariate Markov-Switching Multifractal Model

The univariate MSM model was introduced by Calvet and Fisher (2002) in the con-

text of modeling financial returns. Let rt denote log-return defined in discrete time

on a regular grid t = 0, 1, 2, .....∞. Following Calvet and Fisher (2002), rt is defined

as

rt = σ(Mt)εt (1.1)

where εt is i.i.d. standard Gaussian N (0, 1). Stochastic volatility is defined as

σ(Mt) = σ

( k̄∏
k=1

Mk,t

)1/2

(1.2)

where σ is a constant and coincides with the unconditional standard deviation of

returns. Stochastic volatility is driven by a first-order Markov state vector Mt with

k components

Mt = (M1,t;M2,t....;Mk̄,t) (1.3)

At any period t, the dynamics of each volatility component is as follows,

Mk,t =

{
is replaced with probability γk

Mk,t−1 with probability 1− γk

Each component of Mt corresponds to a particular frequency k =
{

1, 2...k
}

, with

each frequency representing a shock of heterogeneous duration. k = 1 represents the

lowest frequency (most persistent) volatility component while k = k represents the
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highest frequency (least persistent) volatility component. The volatility components

Mk,t have the same marginal distribution M , but switch at different frequencies with

probability γk, where the switching events are assumed to be independent across k

and t. γk is defined as:

γk = 1− (1− γk̄)b
k−k
,

γ1 ≤ γ2 ≤, .....γk ≤ 1

where b ∈ (0,∞) controls the spacing between different volatility components.

The marginal distribution of volatility components, M , can take on any specification

that ensures it has a positive support and a unit mean. A simple specification that

has been used by Calvet and Fisher (2004), Calvet et al. (2006) and Lux (2008) is

the binomial distribution. In a binomial MSM, each volatility component can take

on two possible values m0 ∈ (1, 2) or m1 = 2 − m0 with probability 0.5. With

this specification, each volatility component can switch independently between two

possible states(high and low) while the state vector Mt can switch between 2k possible

states. Also since all volatility components are replaced from the same marginal

distribution, increasing the state space does not lead to an increase in the parameter

space. This feature greatly contributes to the parsimony of the MSM model. The

binomial MSM parameter vector is given by

θ = (m0, σ, b, γk)

The size of the parameterm0 determines the size of each volatility component. There-

fore, the larger m0 is, the larger the size of shock induced by switching in each volatil-

ity component. Likewise, the more volatile a returns series is, the larger k is going

to be. Therefore, more volatile return series will require more volatility components

to be included in the MSM specification in order to match the returns volatility.
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The parameter γk controls the persistence of the shock induced by switching in each

volatility component. The lower γk is, the higher the duration of the shock. Hence, γ1

controls the persistence of the most persistent volatility component while γk controls

the persistence of the least persistent volatility component, since γ1 ≤ γ2 ≤, .....γk.

The parameter b controls the spacing between each transition probability, γk. Lastly,

σ corresponds to the unconditional standard deviation of the returns series.

The MSM model is able to capture many of the properties exhibited by financial

returns as discussed in the previous section. This is demonstrated in Figure 1.1. The

figure illustrates the construction of univariate MSM when the marginal distribution

M is binomial, k equals 10 and (m0, σ, b, γk) = (1.4, 0.5, 3, 0.85).

The volatility components are depicted beginning with M1 and ending with M10.

The last two panels of 1.1 show the resultant daily volatility and return series. The

return series shows extreme outliers and pronounced heterogeneity in volatility levels.

Likewise, the volatility series reflects substantial peaks, clustering and intermittent

bursts, accommodating a broad range of low, medium and high frequency dynamics.

Also comparing the simulated MSM return series to a variety of energy, agricultural

and metal commodity return series shown on Figure 1.2, it is easy to see substantial

similarity between them as the commodity returns series are also characterized by

volatility clustering, intermittent bursts and extreme outliers.

Univariate MSM Parameter Estimation

Since the econometrician only observes return rt and not the state vector, Mt is

therefore a latent state vector that must be inferred using Bayesian updating. Let

Mt = (M1,t ∗M2,t..... ∗Mk,t) = (m1,m2, ....,md)
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Figure 1.1: Simulated MSM Volatility Components
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Notes: The figure illustrates a simulated MSM model with 10 volatility components. The parameter
vector used for the simulation is (m0, σ, b, γk) = (1.4, 0.5, 3, 0.85). The first ten panels show the plots
of the volatility components, while the last two panels show the plots of the associated volatility
and log returns.
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Figure 1.2: Commodity Returns Series(%)
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be the sample space of Mt, where d = 2k. For example, when k = 1, there is one

volatility component, which can take two possible values. Hence, Mt = (m0 m1).

Therefore, volatility can take two possible values, σ(Mt)
1/2 = (σ(m0)1/2 σ(m1)1/2).

When k = 2, there are two volatility components, and each can take two possible val-

ues. Hence, Mt = (m0m0 m0m1 m1m0, m1m1). Therefore, volatility can take four

possible values, σ(Mt)
1/2 = (σ(m0m0)1/2 σ(m0m1)1/2 σ(m1m0)1/2 σ(m1m1)1/2).

Continuing this pattern, when there are k volatility components, and each can take

two possible values, Mt has 2k elements. Hence, volatility can switch between 2k

possible values.

We also define the vector of conditional probabilities ξt = (ξ1
t , ξ

2
t , ...ξ

d
t ) ∈ Rd, where

each component is defined as

ξjt ≡ P(Mt = mj|rt)

Here rt = (r1, r2, ...rt). Lastly, we define the vector f(rt) = (f 1, f 2, ...fd) ∈ Rd with

typical elements

f j = φ(r;σ2(mj)) =
1

σ(mj)
√

2π
exp{− r2

t

2(σ(mj))2
} ∈ Rd

Using Bayes’ rule, the conditional probability vector can be computed using the

following recursion

ξt+1 =
f(rt+1) ∗ (ξtP )

(f(rt+1) ∗ (ξtP ))1′
, (1.4)

where ∗ denotes an Hadamard product, 1 = (1, 1, ...1) ∈ Rd and P is the transition

matrix of the Markov chain, with element

Pi,j = P(Mt = mj|Mt−1 = mi) =
k∏
k=1

[(1− γk)1{mik=mjk}
+ γkP(M = mj

k)]

12



where 1{mik=mjk}
is an indicator variable taking value of one if mi

k = mj
k. The recursion

begins with the ergodic distribution given by ξj0 =
k∏
k=1

P(M = mj
k). Calvet and Fisher

(2004) show that the closed form likelihood function is given by

lnL(rt; θ) =
T∑
t=1

ln[f(rt) · (ξt−1P )] (1.5)

The univariate MSM model has been applied to many kinds of financial returns and

has often been found to outperform alternative models. Using data on exchange rates,

Calvet and Fisher (2004) compared the performance of univariate MSM to univariate

GARCH, Markov-switching GARCH and FIGARCH models and find that the MSM

model outperforms the alternative models in both in- and out-of-sample volatility

forecasts. Using data on exchange rates, stock indices and gold, Lux (2008) also

find that univariate MSM model outperforms the GARCH and FIGARCH models

in forecasting volatility.

Inspite of the empirical successes of univariate MSM, it is however limited in its

ability to capture other critical issues in financial markets such as market integration,

contagion and volatility comovement, all of which play essential roles in portfolio

selection and risk management. To accommodate these other features of financial

markets, the bivariate MSM model was developed by Calvet et al. (2006) and is

discussed in the next section.

1.2.2. Bivariate Markov-Switching Multifractal Model

Let the vector of returns for markets α and β be denoted by

xt =

[
rαt
rβt

]
=

[
σα(Mα

t )εα,t
σβ(Mβ

t )εβ,t

]

13



where the residual vector εt ∈ R2 is bivariate IID Gaussian N (0,Σ) with variance-

covariance matrix given by:

Σ =

[
1 ρε
ρε 1

]
(1.6)

Similar to the univariate set up, stochastic volatility is driven by a bivariate first-

order Markov state vector Mt with 2xk volatility components:

Mt = (M1,t;M2,t....;Mk̄,t)

where

Mk,t =

[
Mα

k,t

Mβ
k,t

]
∈ R2

+

The first row of Mt contains the volatility components of α returns while the second

row contains the volatility components of β returns. As in the univariate model, at

any period t, each column of Mt corresponds to a particular frequency k =
{

1, 2...k
}

,

with each frequency representing a shock of heterogeneous duration. k = 1 represents

the lowest frequency (most persistent) volatility component while k = k represents

the highest frequency (least persistent) volatility component. The volatility compo-

nents Mk,t have the same marginal distribution M but switch at different frequencies

with probability γk, where the switching events are assumed to be independent across

k and t. Also, corresponding to the economic intuition that volatility arrivals might

be correlated across return series, the bivariate MSM allows for correlation in the

switching events across volatility components and this is given by the correlation

coefficient λ ∈ [0, 1].

To define the evolution of Mk,t, let 1τk denote a random variable for τ ∈ {α, β}. In

each period t, 1τk takes a value of 1 if there is a switch in M τ
k,t and 0 otherwise. 1τk is
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assumed to be IID and symmetric:[
1αk,t
1βk,t

]
d
=

[
1βk,t
1αk,t

]
Given the realization of the arrival vector 1k,t, the joint dynamics of the volatility

components can be summarized as:

P
[
1αk,t = 1|1βk,t = 1

]
= γk [(1− λ) γk + λ] = P

[
1βk,t = 1|1αk,t = 1

]
P
[
1αk,t = 1|1βk,t = 0

]
= γk (1− λ) (1− γk) = P

[
1βk,t = 1|1αk,t = 0

]
P
[
1αk,t = 0|1βk,t = 0

]
= (1− γk) [1− γk (1− λ)] = P

[
1βk,t = 0|1αk,t = 0

]
(1.7)

γk is the transition probability of the kth frequency component and is defined as:

γk = 1− (1− γk)b
k−k

where γk ∈ (0, 1) and b ∈ (0,∞).

The parameter γk controls the persistence of the kth frequency component, while the

parameter b governs the growth rate of the transition probabilities of low frequency

components, with γ1 ≺ γ2 ≺, .....γk ≺ 1. As in the univariate case, the construction

of bivariate MSM can accommodate any distribution of the vector M with minimal

restrictions. Specifically, it requires that M has a positive support and a unit mean:

E (M) = 1 and M ≥ 0. As in Calvet and Fisher (2004) and Calvet et al. (2006), the

empirical work that follows in this thesis adopts a simple bivariate binomial distri-

bution where each volatility component is drawn from M =
(
Mα,Mβ

)′
. Assuming

that the volatility vector has been constructed up to time t. In time t + 1, each

element of Mk,t = (Mα
k,t,M

β
k,t) takes values mτ

0 ∈ [1, 2] or mτ
1 = 2−m0 ∈ [0, 1] with

probability 0.5, and stays constant otherwise. Therefore, the volatility component

vector M can take four possible values, (mα
0 ,m

β
0 ), (mα

0 ,m
β
1 ), (mα

1 ,m
β
0 ) and (mα

1 ,m
β
1 )
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with probability matrix (pi,j) = P
(
Mk = (mα

i ,m
β
j )
)

defined as

[
p00 p01

p10 p11

]
=

1 + ρm
4

1− ρm
4

1− ρm
4

1 + ρm
4


where ρm ∈ [0, 1] is the correlation coefficient between Mα

k and Mβ
k . Under the above

framework, the conditional variance-covariance matrix is
σ2
α

k̄∏
k=1

Et
(
Mα

k,t

)
ρεσασβ

k̄∏
k=1

Et
[(
Mα

k,tM
β
k,t

) 1
2

]
ρεσασβ

k̄∏
k=1

Et
[(
Mα

k,tM
β
k,t

) 1
2

]
σ2
β

k̄∏
k=1

Et
(
Mβ

k,t

)
 (1.8)

The bivariate MSM parameter vector is then characterized by

Θ =
(
mα

0 ,m
β
0 , σα, σβ, b, γk, ρε, λ, ρm

)
The MSM model specification implies that volatility is stochastic and hit by shocks of

heterogeneous frequencies indexed by k ∈
{

1, 2, ..., k
}

. Jumps in low-level volatility

components cause volatility to vary discontinuously and exhibit strong persistence,

while switches in high-frequency components produce substantial outliers in returns.

Estimation of Bivariate Markov-Switching Multifractal Model

Finally, to complete the specification, we discuss the maximum likelihood estimation

of the bivariate MSM. The dynamics of the volatility state vector Mt are governed

by a 4kx4k transition probability matrix P . The econometrician observes the history

of past returns Rt =
{
rαs , rβs

}t
s=1

but does not observe the volatility states. The

vector of conditional joint density of returns is defined by

f
(
Rt|Mt = mi

)
= φ

(
Rt;σg

(
mi
))
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where g(mi) is the 2x1 vector M1,t ∗M2,t ∗ ....∗Mk,t and φ(.) is the bivariate standard

normal density. The conditional probability vector over the unobserved states are

ξt = (ξ1
t , ....ξ

d
t ) ∈ Rk

+ where

ξit = P
(
Mt = mi|Rt

)
Using Bayes’ rule, the conditional probabilities are computed recursively as

ξt =
f (Rt)� ξt−1P

[f (Rt)� ξt−1P ]1′
(1.9)

where ξ0 is chosen to follow the ergodic distribution. The likelihood function is

simply the sum of the log conditional densities:

lnL(Rt, ; Θ) =
T∑
t=1

[ln (f(Rt) · ξt−1P )] (1.10)

1.3. Commodity Market

Evidence abounds in the literature that points to the similarities between the price

and return behavior of commodity assets and other traditional financial assets such

as equities, interest rates and exchange rates. Studying a monthly data set of 15 dif-

ferent commodities over the period between 1960 and 1994, Cromwell et al. (2000)

find evidence of power-law scaling and long-memory in commodity returns and vari-

ability in the persistence of volatility factors. Kat and Oomen (2007a) and Kat and

Oomen (2007b) study daily settlement prices on 142 different commodity futures

trading on 26 different exchanges from 1965 to 2005. They find that, similar to

equities, commodity returns exhibit long memory, significant kurtosis and skewness.

Most importantly, they also find that volatility exhibits considerable variation over

different phases of business cycles and under different monetary conditions.
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Empirical evidence (Bhardwaj and Dunsby, 2011; Brooks and Prokopczuk, 2013)

shows that different commodities behave differently and can not be treated as one.

We examine the energy, agricultural and metal markets in turn. The commodity

data consists of daily observations on spot prices for five commodities: West Texas

Intermediate (WTI) crude oil, heating oil, wheat, corn and copper. The heating oil

and crude oil datasets were obtained from Energy Information Administration (U.S.

Department of Energy) while other data sets were obtained from the Datastream

database.

1.3.1. Energy Markets

It is doubtless the case that some of the global recessions the world has experienced

were preceded by oil shocks. Therefore, the importance of oil in the economy at large

cannot be overemphasized. Looking at Figure 1.3, we observe that after lingering at

about $18 to $20 per barrel during the early 1990s, the price of oil declined sharply

to $10 in 1999. It then increased to a record high of $147 per barrel in July of 2008.

This was followed by a steady decline up until December 2008 when the price was

$32 per barrel. Such exceptional oil price volatility affects many other variables and

related products. Crude oil price fluctuation has significant effects on consumers and

producers in terms of cost and incentives to invest in new technologies, and it makes

planning more difficult. The effect of oil price fluctuation is also reflected in broader

energy price changes as other forms of energy (e.g heating oil, natural gas, coal etc.)

that are sometimes priced in relation to crude oil.

Energy price volatility can be (at least partially) explained by forces of demand and

supply, but it is highly contentious as to which exact factors might be driving energy

price volatility. Some economists argue that extreme oil price fluctuation can be

attributed to growing consumption of emerging economies and the increasing cost

18



of exploration and drilling (Krugman, 2008), low price elasticity of demand and the

failure of global production to increase rapidly (Hamilton, 2008, 2009) and exchange

rates fluctuation (Amano and Norden, 1998a,b; Chen et al., 2008; Cuaresma and

Breitenfellner, 2008; Geman, 2005). Other economists contend that the effect of

speculation on oil prices is not insignificant. Using monthly data from January 1998

to March 2008, Stevans and Sessions (2008) find that spot oil prices are driven by

real supply, while longer term prices are dominated by futures prices. Employing a

VAR framework, Kaufmann and Ullman (2009) find that oil price fluctuations are

driven by both changes in market fundamentals and speculative pressures.

1.3.2. Agricultural Markets

Prices of corn and wheat, as with other agricultural commodities, are naturally

volatile because they are constantly affected by unpredictable and uncontrollable

weather conditions. But other than weather as a significant source of volatility in

agricultural markets, the world’s increase in demand for food and alternative energy

has been driving up food prices. At the end of December 2010, corn prices were up

36% and wheat prices were up 40% from a year earlier. Higher demands for corn

stems from its consumption in livestock, food processing and biofuel energy. Price

of agricultural commodities also react to feedbacks from policy and political cycles.

For instance, since the passage of the Energy Independence and Security Act by the

United States congress in January 2007, the price of corn has risen by 55%, due to

a significant proportion of corn production been directed to ethanol production.

1.3.3. Metal Markets

Demand for copper is dominated by industrial requirements such as in the production

of electrical power cables, data cables, automobiles, ammunitions and jewelries. Since
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Figure 1.3: Commodity Spot Price Series ($US)
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the transition from producer pricing to exchange pricing in late 1970, volatility has

increased significantly in the copper market. The price of copper increased almost

three fold between March 2005 and May 2006, when commodity markets experienced

one of its most remarkable booms. But the price of copper has also been rising

steadily since the start of 2009. Much of the price increase can be attributed to

significant increase in the world’s demand for copper. In 2010 and 2011, world’s

demand for copper exceeded production by 144,000 and 99,000 tonnes respectively

(International Copper Study Group, 2014). Such a demand deficit has in turn led to

higher prices as commodity traders out-bid each other for the limited supply.

1.3.4. General Remarks

As is evident from the discussion above, commodity prices are simultaneously driven

by multiple factors, ranging from low frequency factors such as biofuel mandate

to high frequency factors such as weather conditions. Given the heterogeneity in

frequencies, durations and gradations of such factors, it therefore seems reasonable

to model commodity prices as being subjected to multifrequency risks as is assumed

throughout this thesis. Jump models and two-state Markov-switching models can

not effectively accommodate this extent of heterogeneity in volatility factors and

variability in shock durations. But the MSM framework is able to do so in a very

parsimonious way, irrespective of the number of volatility factors included in the

model.

1.4. Conclusion

This chapter provides a review of the Markov-Switching Multifractal(MSM) model

and its estimation procedures. The MSM model is a Markov-regime switching model,
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with multiple volatility components. Each component varies in its degree of variabil-

ity and persistence. Switches in low frequency components represent rare volatility

shocks such as demographics, war, depression etc that cause extreme movements in

volatility that can be maintained over a long period of time. On the other hand,

switches in high frequency components represent common shocks such as macroe-

conomic news releases, liquidity uncertainty, maturity effects etc. Such volatility

shocks cause extreme tail movements in asset returns. Therefore, the MSM model is

able to to capture such gradations in volatility shocks in a parsimonious way.

This chapter also lays the ground work for subsequent chapters that focus on the

application of MSM in different markets. As discussed in earlier sections, commodity

markets are characterized by both high frequency (maturity effects in futures mar-

kets, weather events, bad yields, economic news releases etc) and low frequency (e.g

terrorist attacks on oil rigs, trade restrictions on certain international commodities,

exhaustible natural resource uncertainty demand/supply shocks etc) shocks that si-

multaneously drive returns. While the low frequency volatility shocks matters for

long term investors or market makers, high frequency shocks have implications for

short term investors. Therefore, it seems consistent with this intuition to model

commodity returns using MSM.
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Chapter 2

Dynamic Futures Hedging In The
Presence of Multifrequency Risk

2.1. Introduction

The hedging of risk is an important factor in the day-to-day operations of derivative

market participants. Hence, the search for a methodology for reducing risk has

motivated the rapid development of the the theory of hedging with futures contracts1.

One such methodology for effective hedging strategy is the futures hedge ratio which

is defined as the number of futures contracts to buy or sell per unit of the underlying

asset on which the hedger bears risk. In a minimum-variance setting where an agent

seeks to minimize the variance of his portfolio, the optimum hedge ratio is the ratio

of the unconditional covariance between cash and futures returns over the variance

of futures returns. This definition implies that the hedge ratio is a constant. An

estimate of the constant hedge ratio can be obtained as the slope coefficient from an

Ordinary Least Square (OLS) regression of spot on futures prices. The OLS hedge

ratio, however, has two major drawbacks.

1A future contract is a standardized, transferable, exchange-traded contract that requires delivery
of a commodity, bond, currency, or stock index, at a specified price, on a specified future date.
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First, the OLS hedge ratio ignores the cointegrating relationship between the spot

and futures prices. Evidence abounds suggesting that omitting the long run equilib-

rium relationship will lead to a downward bias in the estimated hedge ratio. More-

over, changes in spot prices in many markets are partially predictable. For example,

natural gas and heating oil prices are normally lower in summer due to decreased de-

mand. Likewise, spot prices in grain markets are normally expected to fall at harvest

times due to an increase in supply. Consequently, if markets are efficient, the spread

between spot and futures prices (the basis) will reflect expected future price changes

for the underlying asset. But the OLS hedge ratio ignores this additional informa-

tion. Consequently, the OLS hedge ratio includes a partially predictable component

of spot prices, whereas the optimal hedge ratio should reflect only unanticipated

changes in prices. Ederington and Salas (2008) shows that when this is the case,

OLS regression estimates of the minimum variance hedge ratio are inefficient.

The second drawback of the OLS hedge ratio is that it ignores the last 30 years of

research in finance that has documented the time varying nature of the distributions

of asset prices. Volatility of financial assets exhibits clustering and heteroscedasticity.

In other words, a period of high volatility is likely to be followed by another period

of high volatility, and vice-versa. If this is the case, assuming a constant variance of

asset prices (hence a constant hedge ratio) does not provide adequate risk hedging.

Several methodologies have since been proposed in the literature to model the time-

varying optimal hedge ratio as a function of the time-varying conditional distribu-

tions of returns. A number of studies apply multivariate generalized autoregressive

conditional heteroscedasticity (GARCH) to model the joint distributions of spot

and future returns (Baillie and Myers, 1991; Bracker and Smith, 1999; Brunetti and

Gilbert, 2000; Engle and Kroner, 1995; Kroner and Sultan, 1993; Moschini and My-

ers, 2002; Smith and Bracker, 2003). These studies find that GARCH hedge ratios,
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on average, outperform constant hedge ratios in terms of risk reduction. However,

as observed by Lien and Tse (2002), the gains in risk reduction from GARCH hedge

ratios are minimal and market specific. Besides, although GARCH can be modeled

in terms of any higher order of moving average and autoregressive components, in

practice only GARCH(1,1) is widely used because the parameters of higher-order

GARCH models are notoriously difficult to estimate. Calvet et al. (1997) also argue

that the finite memory property of the discrete time GARCH process prevents it

from replicating some important characteristics of financial series such as time- and

frequency scaling and long memory.

To account for thick tails observed in the unconditional distributions of returns and

to capture infrequent but extreme events, another approach used in the hedging

literature is to introduce jumps in spot and futures prices (Chan and Maheu, 2002;

Chan and Young, 2006; Chang et al., 1996; Chang and Chang, 2003). This approach,

while providing some gains in hedging in terms of variance reduction, is not with-

out its drawbacks. The jump models isolate normal events from rare but extreme

events and assume that all jumps at any instant have the same expected size and

frequency. However from an intuitive point of view, gradations in size and frequency

exist among events such as war, depression, natural disasters etc. Therefore models

that dichotomize normal from extreme events can miss such regularities.

In order to account for these shortcomings, this paper introduces a vector error cor-

rection model with a Markov Switching Multifractal error structure (VECM-MSM).

The model has two distinctive features that incorporate the empirical properties of

asset prices. First, it includes an error correction mechanism in the mean equation

that incorporates the long-run relationship between spot and futures prices. Second,

the model specifies the conditional second moments as a bivariate Markov Switching

Multifractal (MSM) model (Calvet et al., 2006). In the bivariate MSM setting, the er-
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ror structure is driven by a bivariate Markov state vector with multiple components,

whose rescaled product defines volatility. Each of the volatility components can

switch to a new level with a different probability per unit time, generating volatil-

ity shocks of multiple frequencies. Hence, the MSM captures the thick-tails, long

memory features and volatility clustering which are characteristics of many financial

returns. Moreover, modeling the error structure as a bivariate MSM is consistent

with the intuition that asset prices are simultaneously subjected to multiple shocks

of heterogeneous durations and frequencies such as demand and supply shocks, tech-

nological innovations, macroeconomic uncertainty, intermediate contributions from

the political cycle as well as weather and other natural phenomena, with the relative

importance of various shocks varying according to the particular asset or commodity

under consideration.

The contributions of this paper are three-fold. First we extend the Markov Switch-

ing Multifractal model by introducing, for the first time, a vector error correction

component, which includes in the conditional mean equation the cointegrating rela-

tionship between spot and futures prices. Evidence abounds suggesting that if the

spot and futures prices are cointegrated, omitting the long run equilibrium relation-

ship will lead to a downward bias in the estimated hedge ratio (Kroner and Sultan,

1993; Lien, 2004, 2006). Second, while the MSM model has been applied to study

volatility forecasting in exchange rate market (Calvet and Fisher, 2004; Calvet et al.,

2006; Lux, 2008) and equity markets (Calvet and Fisher, 2007, 2008; Chuang et al.,

2013; Lux et al., 2011), no application of the model has been conducted to study

the problem of risk hedging in the futures market. Hence, we also extend the MSM

literature in this direction. Third, also for the first time, we evaluate the hedging

effectiveness of the proposed VECM-MSM model, using a value-at-risk (VaR) ap-

proach.2 Specifically, we compare the hedging effectiveness of the proposed model

2For the sake of completeness and in line with an earlier version of this paper, we also report the
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to those of alternative models by assessing their unconditional and conditional VaR

coverages. Models are then ranked in terms of the adequacy and accuracy of their

hedged portfolio VaR. Although a few studies also evaluate hedging performance in

terms of portfolio VaR (Alizadeh et al., 2008; Cotter and Hanly, 2006), these studies

simply compared the size of the VaR from alternative models. The model with the

smallest VaR is ranked best. But as shown later in this paper, a model’s VaR can be

inadequate and inaccurate if such VaR is continuously violated. Therefore, simply

ranking models in terms of the size of their portfolio VaR can be grossly inaccurate.

To anticipate our results, in-sample and out-of-sample hedge effectiveness shows the

VECM-MSM hedged portfolio outperforms alternative hedging strategies in terms

of having the lowest rate of VaR violation among the different strategies. Statistical

tests of unconditional and conditional coverages also show that the VECM-MSM

model better predicts an investor’s downside risk in that the VaR predictions are

more accurate than the predictions from the alternative models.

The structure of this chapter is as follows. Section 2 reviews the relevant literature

on the derivation and estimation of optimal futures hedge ratios. Section 3 presents

the VECM-MSM model of spots and futures returns. Section 4 presents the data,

the VECM-MSM estimation results, in- and out-of-sample hedging exercises, as well

a comparison of the MSM hedging strategies to naive, OLS, MRS-GARCH and

GARCH hedging strategies. Section 5 concludes.

unconditional hedged portfolio variances for all models considered. But for reasons argued later in
this paper, we do not evaluate hedging effectiveness of alternative models in terms of their hedged
portfolio variances
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2.2. Literature Review

The primary reason for hedging is to reduce, or if possible eliminate, the risk exposure

of agents arising from the variability of asset prices. To this extent a great amount

of attention has been dedicated to the issue of hedging, as evidenced by the large

number of articles written in this area. Of particular interest to this study is the

concept of futures hedging. There are two major issues surrounding the concept

of futures hedging. First is the determination of the optimal hedge ratio. The

determination of the optimal hedge ratio depends on the objective function to be

optimized. The objective function, in turn, reflects the goal of the agent as either a

speculator, who cares about both risk and return, or as a hedger, who simply hedges

against price fluctuation that might disrupt the delivery of the underlying asset.

Whatever the objective function of an agent, the resultant optimal hedge ratio is

usually a function of the distribution of the underlying asset price. This leads to the

second issue. Modeling the underlying price dynamics and estimation of the optimal

hedge ratio from the underlying price data.

The extant literature has dedicated a significant amount of effort to addressing these

issues. This section focuses on the review of the different techniques that have been

adopted for deriving and estimating the optimal futures hedge ratio.3 It is impor-

tant to note that modeling stochastic commodity prices and the valuation of their

derivative contracts have long been a focus in the field of financial economics. In

the commodity pricing literature, the general approach is to specify stochastic dy-

namics for commodity prices, and derive the valuation formulas of various derivative

contracts whose payoff depends on the realization of the underlying asset value. For

example, models for futures, forwards and option contracts can be derived from

3We do not however attempt an exhaustive review of the literature, as hedging is a broad concept
that has spawned a very extensive literature.
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stochastic models of commodity prices. Most notably, Schwartz (1997) propose and

empirically compare three stochastic models of commodity prices. The first model is

a simple one-factor mean-reverting model of the logarithm of spot commodity prices.

The second model introduces stochastic convenience yield as the second factor, which

also follows a mean-reverting process. The third model extends the second model by

introducing a stochastic interest rate process as the third factor. Schwartz (1997)

find strong evidence of mean-reversion in commodity prices. They also analyze the

implications of the proposed models for pricing futures contracts and for hedging

forward commitments.

Likewise, Schwartz and Smith (2000) consider a two-factor model in which the log-

arithm of spot commodity prices is a linear combination of a long-run equilibrium

price process and a short-run deviation from the long-run equilibrium price. The

long-run process follows a Geometric Brownian Motion, while the short-run process

is mean-reverting. They show that this model is equivalent to the stochastic conve-

nience yield model proposed by Gibson and Schwartz (1990). Several other models of

commodity prices have since been proposed, that consider additional latent factors

and more flexible stochastic processes of each factor (Casassus and Collin-Dufresne,

2005; Hilliard and Reis, 1998; Neuberger, 1999; Richter and Sørensen, 2002; Schwartz,

1998; Schwartz and Smith, 2000; Veld-Merkoulova and de Roon, 2003; Yan, 2002).

These models have been applied widely to study the term structure of commodity

prices, hedging commodity risk and for valuing commodity contingent claims.

However, the aforementioned models have three common features that render them

inapplicable to the kind of futures hedging problem studied in this paper. First, the

factors or state variables contained in these models are often not directly observable.

For example, the instantaneous convenience yield is not directly observable, and must

be inferred using latent variable estimation techniques. Sometimes, futures prices

34



with different maturities are used to compute it. Also, the instantaneous interest

rate is not directly observable. Therefore, the common approach for estimating

these models is to employ state space estimation procedures such as a Kalman Filter.

Second, like other state variables, the spot price is also assumed to be latent, and

must be inferred from existing futures prices. This assumption is somewhat justified

considering that spot prices for some commodities can sometimes be uncertain or

illiquid (Schwartz, 1997). But the kind of risk hedging considered in this paper

assumes that a hedger or speculator has a spot position, and must hedge his risk

exposure from such position using futures prices. Therefore, the problem requires

that prices be available for both spot and futures contract on the commodity. Lastly,

the aforementioned models are specified for commodity prices, whereas the problem

considered in this study requires that prices be specified for commodity returns.

Therefore, this section focuses on the review of various models for commodity returns,

and their application to the problem of futures hedging.

2.2.1. Derivation of the Optimal Hedge Ratio

Consider an agent with a spot position (long/short) in an underlying asset who

aims to combine this with another position in the futures market of the asset. The

primary objective is to eliminate or reduce fluctuations in the value of the portfolio.

Therefore, the agent seeks an optimal amount of futures positions per unit of spot

position that minimizes fluctuations in the portfolio value. Specifically, let the spot

and futures prices of the underlying asset be denoted by St and Ft, respectively.

Define the returns on the spot and futures positions as follows:

Rs,t = lnSt − lnSt−1 (2.1)

Rf,t = lnFt − lnFt−1 (2.2)
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The return on the hedged portfolio is defined as

Rh,t = Rs,t − ht−1Rf,t, (2.3)

where ht−1 is the hedge ratio, which is the number of futures contracts to buy or sell

for each unit of spot contract of the underlying asset on which the agent bears the

risk. The main objective of the agent is to choose the optimal hedge ratio h∗, which

in turn depends on the objective function of the agent. In what follows, we review

several objective functions that have been proposed in the literature.

Minimum Variance (MV) Hedge Ratio

The MV hedge ratio is the most widely considered hedging strategy. Ederington

(1979) and Myers and Thompson (1989) derive the MV hedge ratio by minimizing

the variance of the portfolio return given in Equation (2.3). The portfolio variance

is given by

V art(Rh,t) = V art(Rs,t) + h2
t−1V art(Rf,t)− 2ht−1Covt(Rs,t, Rf,t) (2.4)

Minimizing Equation (2.4) with respect to h gives the optimal hedge ratio as

h∗t−1 =
Covt(Rs,t, Rf,t)

V art(Rf,)
=
σt,sf
σt,f

(2.5)

The MV hedge ratio is widely used by academics and practitioners due to its sim-

plicity and ease of computation.

Mean-Extended-Gini (MEG) Coefficient Hedge Ratio

The MEG approach as an investment decision tool was developed by Yitzhaki (1982),

Yitzhaki (1983) and Shalit and Yitzhaki (1984) and has since been applied to the
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futures hedging decision problem (Cheung et al., 1990; Kolb and Okunev, 1992;

Lien and Luo, 1993; Lien and Shaffer, 1999; Shalit, 1995). The approach involves

minimizing the MEG coefficient, Γα(Rh), given by

Γα(Rh) = −αCov{Rh, [1− FR(Rh)]
α−1}, (2.6)

where FR(.) is the cumulative probability distribution function and α is a measure

of risk aversion. The MEG hedge ratio has been shown to be consistent with the

stochastic dominance framework (Shalit and Yitzhaki, 1984; Yitzhaki, 1982, 1983).4

Furthermore, if spot and future prices are jointly normally distributed, it can be

shown that the MEG hedge ratio is equivalent to the MV hedge ratio (Shalit, 1995).

The main drawback of the MEG approach is that evaluating the derivative of Γα(Rh)

with respect to h is difficult, as Γα(Rh) is a complicated function of h.

Generalized Semi-variance (GSV) Hedge Ratio

Another hedging strategy consistent with the stochastic dominance framework that

has been adopted in the literature is the GSV approach (Chen et al., 2001; De Jong

et al., 1997; Lien and Tse, 1998, 2000). The GSV hedge ratio is based on the α− δ

model of Fishburn (1977), who describes the expected disutility of an outcome under

a target return, δ, weighted by a measure of risk aversion, α. The measure of risk is

given by the GSV and defined as

Gα(δ) =

δ∫
−∞

(δ −Rh)
αdF (Rh), α > 0 (2.7)

4Stochastic dominance is a form of stochastic ordering. The term is used in decision theory and
decision analysis and often used to determine the preference of an expected utility maximizer
between some lotteries with minimal knowledge of the decision makers utility function.
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where F (Rh) is the probability distribution function of Rh. The GSV hedge ratio is

derived from minimizing the sample analog of Equation (2.7) with respect to h as

follows

h∗ = argminhGN,α(δ) =
1

N

N∑
i=1

(δ −Ri,h)
α1Ri,h≤δ (2.8)

where N is the number of returns and 1 is an indicator function equal to 1 if Ri,h ≤ δ

and 0 otherwise. Therefore, the GSV approach only considers downside risk and has

been shown to be consistent with the risk perceived by managers (Crum et al., 1981).

Moreover, Lien and Tse (1998) show that the GSV hedge ratio is equivalent to the

MV hedge ratio if spot and futures returns are jointly normally distributed and the

futures price is a martingale.

The three hedging strategies outlined above ignore the potential trade-offs between

risk and return, and are therefore not consistent with the mean-variance framework.

For the risk minimizing hedge ratio to be consistent with the mean-variance frame-

work, one needs to either assume that agents have infinite risk aversion or that the

futures price follows a pure martingale process. These assumptions are hard to jus-

tify in practice. This has led to the emergence of hedging strategies that consider

both risk and return . These strategies are discussed next.

Sharpe Hedge Ratio

Among the studies that consider both risk and return, Howard and D’Antonio (1984)

propose optimal hedge ratios based on the Sharpe index. With this strategy, the

utility function of an agent is extended from minimizing risk to optimizing with a risk-

return trade-off. With an existing position in a spot market, an agent’s optimization

problem is to choose a hedge ratio that maximizes the ratio of a portfolio’s excess

return to its volatility:
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Maxhθ =
E(Rh)− i

σh
, (2.9)

where i is the domestic risk-free rate. The optimal hedge ratio is derived from the

first-order condition for Equation (2.9) and is given by

h =
ϕ− ρ
1− ϕρ

· σs
σf

st
ft
, (2.10)

ϕ =
E(Rf )

E(Rs)− i

Note that if the futures price process is a martingale, then the Sharpe hedge ratio

collapses to the MV hedge ratio. The Sharpe index hedging strategy, however, has

two major drawbacks. First, the Sharpe ratio can be a proper measure of portfolio

performance only when excess returns are positive. However, negative excess returns

are common in practice, and are particularly unavoidable in some contexts such as

foreign exchange hedging. This may lead to optimal hedge ratios that minimize

rather than maximize the Sharpe ratio. Second, Chen et al. (2001) find that it is

possible for the optimal hedge ratio to be undefined, in which case, the Sharpe ratio

monotonically increases with the hedge ratio. Third, the Sharpe hedge ratio does

not consider an investor’s risk aversion.

HKL Mean-Variance Hedge Ratio

A mean-variance hedge ratio that explicitly models risk aversion was proposed by

Hsln et al. (1994)(hence the name HKL). They assume that the investor has a neg-

ative exponential utility function with constant risk-aversion. The optimal hedge

ratio is derived by maximizing the following expected utility function

Maxhθ(E(Rh), σ;α) = E(Rh)−
1

2
ασ2

h (2.11)
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where α is the parameter of absolute risk aversion. The optimal hedge ratio can be

derived from the first order condition for Equation (2.11) and is given by

h =
ρσs
σf
− E(Rf )

ασ2
f

(2.12)

It is obvious from Equation (2.12) that if the futures price process follows a pure

martingale process, then the HKL hedge ratio collapses to the MV hedge ratio. Also,

if the investor is infinitely risk averse (i.e if α → ∞ ), then the HKL hedge ratio is

equivalent to the MV hedge ratio.

Mean-generalized semi-variance (M-GSV) Hedge ratio

Chen et al. (2001) extend the GSV hedge ratio of De Jong et al. (1997) by incorpo-

rating expected returns into the GSV objective function. The M-GSV hedge ratio is

derived by maximizing the following risk return function

MaxhU(Rh) = E(Rh)−
∞∫
∞

(δ −Rh)
αdF (Rh) (2.13)

It can be shown that the M-GSV hedge ratio will be equivalent to the MV hedge

ratio if both spot and futures prices are jointly normal and the futures price follows

a martingale process.

Mean Minimum Extended-Gini Hedge Ratio

Kolb and Okunev (1993) extend the MEG hedging strategy by incorporating ex-

pected return. Specifically, their optimal hedge ratio is derived by maximizing the

following utility function:
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MaxhU(Rh) = E(Rh) + αCov{Rh, [1− FR(Rh)]
α−1} (2.14)

The M-MEG hedge ratio is similar to the MEG hedge ratio except that the M-MEG

hedging strategy explicitly considers the risk-return trade-off.

So far, we have reviewed the different hedging strategies proposed in the literature

in terms of possible investors objective functions. The next step in applying any

hedging strategy is to estimate the hedge ratio. There are various ways of estimating

the hedge ratios, as documented in the literature. But these ultimately depend on

the investor’s objective function. To facilitate a systematic exposition of the different

approaches and to motivate the contributions of this paper, we focus on the different

estimation approaches that have been proposed for the MV hedge ratio. Moreover,

it can be observed from the previous section that all other hedge ratios include the

MV hedge ratio as a special case.

2.2.2. Estimation of Minimum-Variance Hedge Ratio

Ordinary Least Squares(OLS) Hedge Ratio

Recall from Equation (2.5) that the minimum variance hedge ratio is the ratio that

minimizes the portfolio uncertainty, and is defined as the ratio of the conditional

covariance of spot and futures returns to the conditional variance of futures returns.

Ederington (1979) proposes that the minimum variance hedge ratio can be obtained

as the slope coefficient estimate from an OLS regression of spot returns on futures

returns as follows

Rs,t = α0 + α1Rf,t + εt (2.15)

where the optimal hedge ratio is obtained as α̂1. Therefore, the OLS hedge ratio is

defined as the sample analogue of
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h∗ =
Cov(Rs,t, Rf,t)

V ar(Rf,t)
=
σsf
σf

(2.16)

The OLS hedge ratio is simple, easy to compute, and has become what is termed

as the “conventional” hedge ratio in the literature. The OLS hedge ratio however

has several drawbacks. First, it is biased downwards because it ignores the long-run

equilibrium relationship between spot and futures prices (Bell and Krasker, 1986;

Kroner and Sultan, 1993; Lien, 2004, 1996). Second, it is inefficient when prices are

partially predictable, as in energy or grain markets (Ederington and Salas, 2008).

Third, it ignores the presence of volatility clustering in asset returns that has been

widely documented in the finance literature. In order to see the problem with the OLS

hedge ratio, note that the population moments in Equations (2.5) are conditional on

the information available up to time t− 1, while the OLS model replaces them with

their unconditional counterparts. Specifically, the following conditional moments are

replaced as follows:

Et(Rs,t) = E(Rs,t)

Et(Rf,t) = E(Rf,t)

Et[Rs,t − Et(Rs,t)]
2 = E[Rs,t − E(Rs,t)]

2

Et[Rf,t − Et(Rf,t)]
2 = E[Rf,t − E(Rf,t)]

2

Et[(Rs,t − Et(Rs,t))(Rf,t − Et(Rf,t))] = E[(Rs,t − E(Rs,t))(Rf,t − E(Rf,t))]

First, Bell and Krasker (1986) and Lien (1996) show that if Et(Rs,t) does not equal

E(Rs,t), then OLS regression produces a biased estimate of the minimum variance

hedge ratio. Lien (2004) further corroborates this finding by proving that if an error

correction term is omitted from the regression model, then the estimated hedge ratio

is biased downward. Second, prices are partially predictable in some markets. For

example, natural gas and heating oil prices are normally lower in summer due to
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decreased demand. Likewise, spot prices in grain markets are normally expected

to fall at harvest times due to an increase in supply. Consequently, if markets are

efficient, the spread between spot and futures prices (the basis) will reflect expected

future price changes for the underlying asset. Therefore, Et(Rs,t) is likely to differ

substantially and predictably from E(Rs,t).

Ederington and Salas (2008) show that if markets are efficient and Et(Rs,t) does not

equal E(Rs,t), then the regression estimate of the minimum variance hedge ratio is

inefficient. Lastly, given the widespread evidence of volatility clustering, it is likely

that Et[Rs,t − Et(Rs,t)]
2 > (<)E[Rs,t − Et(Rs,t)]

2 when volatility has been relatively

high (low) in the recent past. The implications from the foregoing is that first, the

estimate of the optimal minimum variance hedge ratio should be time varying because

the distribution of the underlying asset price is time varying. Second, an efficient

and unbiased estimate of the minimum variance hedge ratio should incorporate the

long-run relationship between the spot and the futures prices. These have led to the

emergence of hedging strategies that incorporate these features, and are discussed in

what follows.

GARCH Hedge Ratio

The GARCH model was proposed by (Bollerslev, 1986, 1990; Engle, 1982) and has

since been widely adopted for estimating conditional hedge ratios in commodity mar-

kets (Baillie and Myers, 1991; Bera et al., 1997; Lien and Tse, 2002; Lim, 1996; Myers,

1991), foreign exchange markets (Gagnon and Lypny, 1995; Kroner and Claessens,

1991; Kroner and Sultan, 1993) and stock markets (Brooks et al., 2002; Floros and

Vougas, 2004; Park and Switzer, 1995; Tong, 1996). Following Baillie and Myers

(1991), the GARCH model is specified as
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Rs,t = µs + εs,t (2.17)

Rf,t = µf + εf,t,[
εs,t
εf,t

]
= εt|Ωt−1 ∼ N(0, Ht),

Ht =

[
σss,t σsf,t
σfs,t σff,t

]
,

V ech(Ht) = C + AV ech(εt−1, ε
′
t−1) +BV ech(Ht−1)

The corresponding conditional optimal hedge ratio is defined as

ht−1|Ωt−1 =
σsf,t
σff,t

(2.18)

where Ωt−1 is the information available up to time t − 1. The GARCH model has

become the standard tool for dealing with the problem of heteroscedasticity and

leptokurtosis in asset returns. In spite of the empirical successes of the GARCH

hedge ratios that have been documented in the literature, there are contrary results

as well. Lien and Tse (2000), in a study of ten spot and futures markets covering

foreign exchange, commodities and stock markets, find that the OLS hedge ratios

perform better than the GARCH hedge ratios, with the OLS providing as much as

20% less portfolio variance than the GARCH portfolio. This is further supported

by Bystrom (2003), Butterworth and Holmes (2000) and Holmes (1995), who all

find that the OLS hedge ratio outperforms GARCH hedge ratios. Lien and Tse

(2002) attribute the failure of GARCH models to the fact that they produce variance

forecasts that are too variable and persistent. Also, GARCH models cannot capture

infrequent but extreme news events that drive financial returns. But such news

events cause discontinuities in asset returns, evidence of which has been documented

in large variety of studies (Ball and Torous, 1985; Jarrow and Rosenfeld, 1984; Jorion,

1988; Schwert, 1989).
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Error Correction Hedge Ratio

In order to avoid the mis-specification problem that may arise from a possible coin-

tegrating relationship between spot and futures prices, both series must be tested for

cointegration. If both series are found to be cointegrated, then the hedge ratio must

be estimated from an error correction model. This can be done by first running the

following cointegrating regression and extracting the residuals:

St = β0 + β1Ft + et (2.19)

The extracted residuals are then included in the following error correction model

(Chou et al., 1996; Ghosh, 1993; Lien and Luo, 1993) :

Rs,t = φ0et−1 + θRf,t +
I∑
i=1

φiRf,t−1 +
J∑
j=1

δiRs,t−1 + ut, (2.20)

where the optimal hedge ratio is given by θ̂.

In order to simultaneously account for the long-run cointegrating relationship be-

tween spot and futures price series and their time-varying distributions, Kroner and

Sultan (1993) combine the bivariate error correction model with a GARCH error

structure in estimating the optimal hedge ratio. Their model is given by

Rs,t = β0,s + β1,s(lnSt−1 − δ lnFt−1) + εs,t (2.21)

Rf,t = β0,f + β1,f (lnSt−1 − δ lnFt−1) + εf,t,[
εs,t
εf,t

]
= εt|Ωt−1 ∼ N(0, Ht),

Ht =

[
σs,t σsf,t
σfs,t σf,t

]
,
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where (lnSt−1 − δ lnFt−1) is the error correction term that imposes the long-run

relationship in the model. The optimal hedge ratio is given by

ht−1|Ωt−1 =
σsf,t
σff,t

Jump Process Hedge Ratios

Several studies have shown that jump processes can provide a good characterization

for a wide variety of asset returns. In estimating optimal hedge ratios, (Chan, 2008,

2010; Chan and Young, 2006) assume that the spot and futures returns (or basis,

as it may apply) follow a bivariate GARCH-jump process, where the common jump

component follows an Autoregressive Jump Intensity process. This model has the

additional advantage (over plain multivariate GARCH model) of allowing for a rich

unconditional leptokurtosis in the underlying returns series. It has been applied in

commodity market (Chan and Young, 2006) and foreign exchange market settings

(Chan, 2008, 2010). In these applications the GARCH-jump hedge ratios outperform

both the OLS and the standard GARCH hedge ratios.

Chang and Chang (2003) and Chang et al. (1996) also assume that returns follow a

jump-diffusion process and estimated the associated optimal hedge ratios. Consistent

with the previous studies, they find that the jump-diffusion process provide a better

hedging strategy.

Markov Regime-Switching Hedge Ratios

Another approach that has been used for estimating optimal hedge ratios is to assume

that the underlying returns series follow a Markov Regime-Switching (MRS) process.

The motivation for adopting MRS models stems from the empirical evidence that

46



suggests that the dynamic relationship between spot and futures returns may be

characterized by regime shifts. Fong (2002) documents regime shifts in the volatility

of crude oil futures returns, and associates such regime shifts to periods of severe

shortages and backwardation in the crude oil market. Wilson et al. (1996) also

document sudden regime shifts in the unconditional volatility of crude oil futures

that are associated with events such as the Gulf war, Iran-Iraq conflict, OPEC policy

changes, and extreme weather changes. This evidence suggest that the dynamic

relationship between spot and futures returns may be regime dependent, and models

that incorporate such regime dependent dynamics may provide superior hedge ratios

compared to GARCH and OLS hedge ratios.

Following Lee and Yoder (2007a), the bivariate Markov Regime Switching GARCH(l,1)

model is specified as follows:

Rs,t = µs,it + εs,it (2.22)

Rf,t = µf,it + εf,it[
εs,it
εf,it

]
= εt|Ωt−1 ∼ BN(0, Ht,it),

where it = {1, 2} is the state variable indicating the market regime at time t, and

follows a first-order two-state Markov process. Ht,it is a state-dependent time-varying

positive definite conditional covariance matrix specified as:

Ht,it =

[
σs,t,it σfs,t,it
σfs,t,it σf,t,it

]
= CitC

′
it + Aitεt−1A

′
it +BitHt−1B

′
it (2.23)

where C is a lower triangular matrix, A and B are 2-dimensional parameter matrices.

Lee and Yoder (2007a) apply the MRS-GARCH model to corn and nickel markets.

They find that their model outperforms both OLS and GARCH in-sample, but only

OLS in out-of-sample analysis. Alizadeh et al. (2008) extend the bivariate MRS-

GARCH model by including a vector error correction term in the conditional mean

47



equations, and allowing the speed of adjustment to long term mean to be dependent

on the volatility state. Their representation of the model is

Rs,t = αs,it + βs,it(lnSt−1 − δ lnFt−1) + εs,it (2.24)

Rf,t = αf,it + βf,it(lnSt−1 − δ lnFt−1) + εf,it (2.25)

Note that the speed of adjustment to the long-run equilibrium level, βc,it , c ∈ {s, f},

is also state dependent. This introduces an informative link between volatility and

cointegration, and allows for time dependency and asymmetric behaviour across dif-

ferent states of the economy. Alizadeh et al. (2008) apply the VECM-MRS-GARCH

model to estimate hedge ratios for crude oil, gasoline and heating oil markets. They

find that their model outperforms OLS and GARCH models in four out of six cases

of in- and out-of-sample analysis.

Alizadeh and Nomikos (2004) apply a univariate MRS model to estimate a MV

hedge ratio using data on FTSE100 and S&P500 stock indices. They find evidence

in favor of the MRS model in terms of variance reduction and increases in portfolio

utility. Lee et al. (2006) develop a Random Coefficient Autoregressive MRS model

for estimating optimal hedge ratios. Using data on aluminum and lead markets, they

find that the model outperforms both OLS and GARCH models in terms of portfolio

variance reduction. Lee and Yoder (2007b) apply a Markov regime-switching Time-

varying Correlation GARCH model to the Nikkei225 and Hang-Seng indices, and

report similar results.

General Comments

Although several alternative methodologies have been proposed for estimating time-

varying optimal hedge ratios, the gains in terms of portfolio risk reduction compared
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to the simple OLS method are often minimal and sometimes economically insignif-

icant. Sometimes, the OLS hedging strategy even performs better, as in the case

of Lee and Yoder (2007b). But given the complexity and cost of hedging based on

these alternative models, the superiority of these models over a simple naive or OLS

hedge strategy may be hard to justify. Furthermore, the alternative models suffer

from a variety of structural problems. First, it is well known that GARCH models

tend to produce variance forecasts that are too variable. Therefore, GARCH models

are not able to replicate some important characteristics of financial times series.

Second, jump models isolate normal events from rare but extreme events and assume

that all jumps at any instant have the same expected size and frequency. However

from an intuitive point of view, gradations in size and frequency exist among events

such as war, depression, natural disasters etc. Therefore, models that dichotomize

normal from extreme events can miss such regularities. Third, the MRS models

often impose two state volatility regimes on the data: a high state, corresponding to

periods of extreme market movements and a low state, corresponding to extremely

calm market periods. This implies that markets are either extremely volatile or

extremely calm. However, there are periods when markets can be characterized

by not in either of these extremes and the standard MRS models will miss such

regularities. Thus, the current state of the literature suggests that there is a need to

improve our understanding of estimating futures hedge ratios.

Therefore, this paper introduces a vector error correction Markov-Switching Mul-

tifractal (VECM-MSM) model as a suitable and empirically viable alternative to

model spot and futures returns. We assume that spot and futures prices are sub-

ject to multifrequency risk, and derive the resulting time-varying hedge ratios. The

model incorporates the long-run relationship between spot and futures prices by

including a vector error correction term in the conditional means. The conditional
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variance-covariance matrix is driven by a bivariate Markov state vector with multiple

components, whose rescaled product defines volatility. Each of the volatility compo-

nents can switch to a new level with a different probability per unit time, generating

volatility shocks of multiple frequencies. Hence, the VECM-MSM approach captures

the thick-tails, long memory features and volatility clustering which are characteris-

tics of many financial prices. Modeling the variance-covariance process as a bivariate

MSM is consistent with the intuition that asset prices are simultaneously subjected

to multiple shocks of heterogeneous durations and frequencies such as demand and

supply shocks, technological innovations, macroeconomic uncertainty, intermediate

contributions from the political cycle as well as weather and other natural phenom-

ena.

2.3. Vector Error Correction Markov-Switching Mul-

tifractal Model and Hedging

The joint distributions of spot and futures returns are assumed to follow the VECM-

MSM process as follows

Rs,t = βs + αs(lnSt−1 − δ lnFt−1) + εs,t (2.26)

Rf,t = βf + αf (lnSt−1 − δ lnFt−1) + εf,t,[
εs,t
εf,t

]
= εt|Ωt−1 =

[
σs(M

s
t )ηs,t

σf (M
f
t )ηf,t

]
(2.27)

where the scaled residual ηt ∈ R2 is bivariate IID Gaussian N(0,Σ) with variance-

covariance matrix given by

Σ =

[
1 ρη
ρη 1

]
(2.28)
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First, note that the model includes an error correction component to accommodate

the long-run relationship between spot and futures prices, for the reasons discussed

in section 2.2.1. Second, the conditional second moments are assumed to follow the

bivariate Markov Switching Multifractal process of Calvet et al. (2006). Specifically,

the volatility matrix is driven by a bivariate first-order Markov state vector, Mt,

given by

Mt =

[
M s

t

M f
t

]
∈ R2

+

Note that Ms and Mf are each state vectors on their own. Each state vector contains

k state variables, M c
k,t for c ∈ {s, f}, as follows

M s
t = (M s

1,t;M
s
2,t....;M

s
k,t

)

M f
t = (M f

1,t;M
f
2,t....;M

f

k,t
), (2.29)

therefore

Mt =

[
M s

t

M f
t

]
=

[
M s

1,t;M
s
2,t....;M

s
k,t

M f
1,t;M

f
2,t....;M

f

k,t

]
(2.30)

Mt can be viewed as a state matrix, containing 2xk state variables. The first row

contains the state variables for the spot returns, while the second row contains the

state variables for the futures returns. Under the MSM framework, each state vari-

able, M c
k,t, is referred to as a volatility component, volatility multiplier or volatility

frequency. The intuition is that switches in each volatility frequency represents a

volatility shock and each volatility frequency has its own duration, 1/γk, or switch-

ing probability, γk. The ranking is such that M c
1,t represents the most persistent

(lowest frequency) volatility component, while M c
k,t

represents the least persistent

(highest frequency) component.
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The volatility state variables are characterized by the same marginal distribution,

M = [M sM f ]′, but these variables are assumed to be statistically independent across

t. In other words, M c
k,t is independent of M c

k′,t, for k 6= k′. Therefore, at every time

t, Mk,t may switch independently with probability γk for k = 1, 2, ....k, where

γk = 1− (1− γk)b
k−k

where γk ∈ (0, 1) and b ∈ (0,∞) are parameters to be estimated. For simplicity, we

follow Calvet et al. (2006) and assume that

(γs1, γ
s
2, .....γ

s
k
) =(γf1 , γ

f
2 , .....γ

f

k
)

The parameter γk controls the persistence of the kth frequency component, while

the parameter b governs the growth rate of the transition probabilities. Also corre-

sponding to the economic intuition that volatility arrivals might be correlated across

series,5 the bivariate MSM allows for correlation in the switching probabilities, with

the correlation coefficient given by λ ∈ [0, 1] .

The construction of the MSM volatility model can accommodate a wide spectrum

of distributions for the vector M with minimal restrictions.6 Specifically, it requires

that M has a positive support and a unit mean: E(M) = 1 and M ≥ 0.

As in Calvet and Fisher (2004) and Calvet et al. (2006), this paper adopts a sim-

ple bivariate binomial distribution where each volatility component is drawn from

M =
(
M s,M f

)′
. Assuming that the volatility vector has been constructed up

to time t. At time t + 1, each element of Mk,t = (M s
k,t,M

f
k,t) takes values mc

0 ∈
5This is especially true in the case of the spot and futures returns of an asset.
6MSM allows for flexible parametric and non-parametric, discrete or continuous distributions for
M . See Calvet and Fisher (2004) for more details.
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[1, 2] or mc
1 = 2 − m0 ∈ [0, 1] with probability 0.5, and stays unchanged other-

wise. Therefore, the volatility component vector Mt can take four possible values,

(ms
0,m

f
0), (ms

0,m
f
1), (ms

1,m
f
0) and (ms

1,m
f
1) with probability matrix (pi,j) defined as

pi,j = P
(
Mk = (ms

i ,m
f
j )
)

=

[
p00 p01

p10 p11

]
=

1 + ρm
4

1− ρm
4

1− ρm
4

1 + ρm
4


where ρm ∈ [0, 1] is the correlation coefficient between M s

k and M f
k . Following

Calvet et al. (2006), we impose the restriction that ρm = 1. Under this framework,

the volatility state vector Mt therefore takes d = 4k possible values m1,m2...md.

Under the above assumptions, volatility is stochastic and is defined as the rescaled

product of the volatility components:

σs (Mt) = σs

 k∏
k=1

M s
k,t

 1
2

σf (Mt) = σf

 k∏
k=1

M f
k,t

 1
2

and the conditional variance-covariance matrix is
σ2
s

k∏
k=1

Et
(
M s

k,t

)
ρεσsσf

k∏
k=1

Et
[(
M s

k,tM
f
k,t

) 1
2

]
ρεσsσf

k∏
k=1

Et
[(
M s

k,tM
f
k,t

) 1
2

]
σ2
f

k∏
k=1

Et
(
M f

k,t

)
 (2.31)

The VECM-MSM parameter vector is then characterized by

θ =
(
αs, αf , βs, βf , δ,m

s
0,m

f
0 , σs, σf , b, γk, ρη, λ

)
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The MSM specification of volatility implies that volatility is stochastic and hit by

shocks of heterogeneous frequencies indexed by k ∈
{

1, 2, ..., k
}

. Jumps in low-

level volatility components (e.g uncertainty regarding exhaustible energy resources

supplies, weather, depression, war, etc.) cause volatility to vary discontinuously and

exhibit strong persistence, while switches in high-frequency components (e.g liquidity

uncertainty, maturity effects, macroeconomic and corporate news releases, political

feedbacks, etc.) produce substantial outliers in returns. While the former source of

risk is important for long-term hedgers in the futures market, the latter has seri-

ous implications for short-term hedgers. The parsimonious specification of bivariate

shocks of heterogeneous frequencies by MSM also corresponds to the intuition that

even though the spot and futures returns series may share the same fundamentals,

such fundamentals may have different innovation frequencies. The bivariate MSM

specification above also allows for correlation in volatility across series through the

bivariate binomial distribution M as well as correlation in spot and futures returns

through the bivariate IID Gaussian random variable ηs,t and ηf,t.

Once the joint distributions of the return series have been adequately specified, the

information can be used to construct the dynamic optimal hedge ratios. Using Equa-

tions (2.5) and (2.31) the dynamic optimal hedge ratio is defined as:

ht−1|Ωt−1 =
Covt(Rs,t, Rf,t)

V art(Rf,t)
=

ρησsσf
∏k

k=1 Et
[(
M s

k,tM
f
k,t

) 1
2

]
σ2
f

∏k
k=1 Et

(
M f

k,t

) (2.32)

2.3.1. Estimation and Inference

Recall that Mk,t = [M s
k,t M

f
k,t]
′ is assumed to follow a bivariate binomial distribution,

where M s
k,t and M f

k,t can each take two possible values and consequently, Mk,t can
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take four possible values at each time t. Therefore, there exist a finite number of

volatility states, and standard filtering methods apply for the estimation process.

Suppose there are k volatility components included in the model.7 Then Mt =

(M1,t ∗M2,t..... ∗Mk,t) can take 4k = d possible values (m1,m2, ....md) ∈ Rk
+. The

dynamics of Mt are then characterized by a dxd transition matrix A, with elements

aij = P(Mt+1 = mj|Mt = mi).

Note that the econometrician only observes the set of past returns, but not the volatil-

ity state vector. The vector Mt is therefore latent and must be inferred by Bayesian

updating. Let Πt = (Π1
t ,Π

2
t , ....Π

d
t ) ∈ Rd

+ be the vector of state probabilities, where

Πj
t = P(Mt = mj|Rt) (2.33)

where Rt = [Rs,t Rf,t]
′ is the return matrix. The conditional probability state vector

is computed recursively by Bayes updating. By Bayes rule, Πt can be expressed as

a function of the previous belief Πt−1 and the bivariate Gaussian density as follows

Πt =
f(Rt)� Πt−1A

[f(Rt)� Πt−1A]1′
, (2.34)

where

1 = [1, 1, ...1] ∈ Rd, (2.35)

The Gaussian density function is given by8

f(Rt) =
1

2πσs(ms)σf (mf )
√

1− ρ2
η

exp

[
− z

2(1− ρ2
η)

]
, (2.36)

7The choice of k is a model selection problem to be discussed later.
8Note that ms and mf refer to the first row and second row, respectively, of (M1 ∗M2..... ∗Mk) =
(m1,m2, ....md).
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where

z ≡
ε2
s,t

(σs(ms))2
+

ε2
f,t

(σf (mf ))2
− 2ρηεs,tεf,t
σs(ms)σf (mf )

The Bayes recursion is initiated with Π0 , using the ergodic distribution. The log-

likelihood then has a closed form expression and is given by

lnL(R1, ....RT ; θ) =
T∑
t=1

ln[f(Rt) · (Πt−1A)] (2.37)

The estimates of the VECM-MSM parameters are obtained using the two-step proce-

dure of Calvet et al. (2006). They show that the two-step procedure is a special case

of the Generalised Methods of Moment (GMM) approach, implying consistency and

asymptotic normality of the parameter estimators. The first stage of the procedure

entails maximizing the combined univariate log-likelihood functions, given by

lnL1 = lnLs(Rs,t;αs, βs, δs,m
s
0, σs, b, γk) + lnLf (Rf,t;αf , βf , δf ,m

f
0 , σf , b, γk)

This produces consistent estimates of the first stage parameters. In the second

stage, the first stage parameters are used to analytically calculate the bivariate log-

likelihood function in Equation (2.37). Maximization of the bivariate log-likelihood

function then produces the estimates of (ρm, λ), which are unique to the bivariate

MSM.

Estimating the optimal hedge ratio using the VECM-MSM model outlined above

overcomes both the limitations of OLS model the traditional GARCH or GARCH-

jump models. First, by including a vector error correction component, we allow for

adjustment to the long-run equilibrium between spot and futures prices. Second,

by allowing for bivariate shocks to volatility, we relax the restrictive assumption of

common jump components in the traditional jump models.9 Even though arrivals on

9For example, Chan (2008)
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volatility occur simultaneously in both spot and futures returns (as imposed by the

restriction that γs
k

= γf
k
), the size of jumps in both series will be different due to the

difference in other volatility parameters, ms
0,m

f
0 , σs and σf . Third, by introducing

multiple volatility components of different frequencies, the VECM-MSM model is

able to accommodate shocks of heterogeneous durations and frequencies through the

different frequency components. This is a substantial improvement over other jump

models that simply dichotomize between normal and rare events. Another signif-

icant improvement of the VECM-MSM hedge ratio is the ability to accommodate

many states. This is in contrast to the previous Markov switching models such as

the MRS-GARCH, where volatility of spot and futures returns switch between high

and low states (Alizadeh et al., 2008; Lee and Yoder, 2007a,b) or the four states

model of Li (2009). The VECM-MSM model can accommodate 4k̄ possible states

parsimoniously and the number of parameters does not increase with the number of

states. Consequently, it is expected that the VECM-MSM hedge ratio will outper-

form other alternative hedge ratios considered in this study. Using data on a variety

of assets ranging from energy, agricultural, metal and equity to foreign exchange

markets ensures that our results are not market specific as can be the case in previ-

ous studies. Also, using assets from distinct markets is consistent with the empirical

evidence that different asset prices behave differently and can not be treated as one

(Bhardwaj and Dunsby, 2011; Brooks and Prokopczuk, 2013).

2.4. Empirical Analysis

2.4.1. Data

The data consist of weekly observations on spot and futures prices for nine assets:

West Texas Intermediate (WTI) crude oil, heating oil, wheat, corn, gold, silver,
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S&P500 stock index, Canadian-U.S. dollars (CAD) and Pounds Sterling-U.S. dollars

(GBP) exchange rates. The different price data series used start on different dates,

but all data end on 12/26/2012.10 All data sets are publicly available. The heating oil

and crude oil data sets were obtained from the Energy Information Administration

(U.S. Department of Energy) while other data sets were obtained from the Quandl

database.11 Data from the beginning to the end of 2010, inclusive, are used for model

estimation.12 The remaining two years of observations are reserved for out-of-sample

exercises.

WTI crude oil and heating oil are traded on the New York Mercantile Exchange

(NYMEX), wheat is traded on the Kansas Board of Trade (KCBT), corn is traded

on the Chicago Board of Trade (CBOT) and gold and silver are traded on the Com-

modity Exchange of New York (COMEX). The CAD and GBP are traded on the

Chicago Mercantile Exchange (CME). All prices are Wednesday settlement prices.

When a holiday occurs on Wednesday, Tuesdays prices are used instead. The futures

prices are front month contract, rolled on expiration.13,14

Table 2.1 presents the summary statistics for log prices and log returns series for the

10The starting dates for the price series are necessitated by the availability of data. Forcing the time
series to start on the same date would result in significant loss of useful observations. The WTI
data start on 01/08/1986 and heating oil on 06/04/1986. The metals data start on 01/03/1979.
The agricultural data start on 01/02/1980. The S&P500 data starts on 04/28/1982. The CAD
data start on 01/19/1977 and the GBP on 02/19/1975.

11Quandl is a collaboratively-curated portal to millions of time-series data sets, and are publicly
available for downloading.

12The choice of 2010 as the end of the in-sample period is partly in response to a suggestion that
the chaotic financial period between 2008 and 2009 might unduly favor the the MSM model in
the out-of-sample analysis.

13The front month contract is the contract for the trading month that will expire next. Using the
wheat contract for example, in February 2004 the front month would be the March 2004 contract
as it is the next contract to expire. Once the March 2004 contract expires, the next front month
contract is the contract that will expire next, the May 2004 contract.

14There are several methods of constructing continuous futures price data. A popular method is
“Roll on expiration”. This implies that when the current contract expires (at which point the
price data terminates), the data rolls to the next contract that will expire.
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entire sample, where log returns are defined as ln(Pt−1/Pt) ∗ 100. Both price and

returns series exhibit significant excess kurtosis in all assets, with silver spot prices

providing the largest for returns, with a value of 12.12. The Jarque and Bera (1987)

test of normality is also reported in Table 2.1. The test statistics indicate significant

departures from normality for all price and returns series. Also reported in Table

2.1, is the Ljung and Box (1978) Q statistic on the first six lags of log prices and

squared returns series. As has been documented in the literature, the results show

significant presence of auto correlation in both log prices and squared returns.

These characteristics of the data support the need for a model that incorporates both

long memory and fat-tail features of the data, such as is the case for the proposed

VECM-MSM model. Next, in order to determine whether a vector error correction

component belongs in the model or not, we test for the existence of a cointegrating

relationship between log spot and futures prices for all assets. In order to achieve this,

we first test both log spot and log futures prices for the presence of a unit root. The

results are reported in columns 3 and 4 of Table 2.2. The augmented Dickey-Fuller

unit root test indicate that both series are non-stationary for all assets. the second

stage of the test requires that log spot be regressed on log futures and the residuals

extracted. The coefficients from the regression is the is normalized cointegrating

vector, which is presented in column 2 of Table 2.2. It can be observed from the

table that estimates of δ are very close to 1 for all series. Therefore, in order to

reduce the number of parameters to be estimated, we set δ = 1 and assume that

the cointegrating vector is the basis. Hence, in the second stage of the cointegration

test, we applied the augmented Dickey-Fuller test to the basis, and the results are

presented on the last column of Table 2.2.

The test results indicate that the basis is stationary for all series. The null hypothesis

that all assets spot prices are cointegrated with their respective futures prices cannot
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Table 2.1: Summary Statistics of Log Prices and Log Returns

Log Prices

Mean Std.Dev Min Max Skewness Kurtosis JB Test Q(6) N

WTI S 3.4312 0.6448 2.3823 4.9680 0.6388 -0.9535 148.68 1353.56 1406
F 3.4311 0.6456 2.3768 4.9668 0.6402 -0.9562 149.41 1357.24 1406

Heating S -0.1347 0.6613 -1.2483 1.4024 0.6706 -0.9001 150.33 1252.69 1385
F -0.1349 0.6640 -1.2107 1.4041 0.6826 -0.9158 155.68 1274.88 1385

Corn S 5.5940 0.3603 4.8081 6.7429 1.0371 1.0029 377.12 575.99 1719
F 5.6411 0.3434 4.9715 6.7217 1.1516 1.0573 456.45 565.34 1719

Wheat S 6.0290 0.3060 5.4670 7.2492 0.9264 0.7950 288.77 630.63 1719
F 5.9485 0.3170 5.4250 7.1546 1.0365 0.7114 341.57 647.55 1719

Gold S 6.1136 0.4768 5.3977 7.5058 1.4206 1.2020 698.22 551.88 1773
F 6.1162 0.4761 5.4090 7.5113 1.4197 1.2017 697.43 552.05 1773

Silver S 6.6456 0.5920 5.8777 8.4553 1.0998 0.3376 363.80 774.86 1773
F 6.6463 0.5927 5.8749 8.4329 1.0881 0.2963 354.40 784.99 1773

CAD S -0.2202 0.1250 -0.4752 0.0869 0.0581 -0.6896 38.11 1417.85 1852
F -0.2210 0.1247 -0.4753 0.0802 0.0657 -0.6839 37.80 1411.82 1852

GBP S 0.5224 0.1356 0.0695 0.8945 0.3316 0.4592 52.22 800.33 1953
F 0.5199 0.1349 0.0672 0.8926 0.3174 0.4529 48.76 796.22 1953

S&P 500 S 6.4199 0.7549 4.6308 7.3540 -0.5329 -1.0688 151.81 1783.58 1600
F 6.4236 0.7532 4.6313 7.3609 -0.5311 -1.0672 151.09 1782.63 1600

Log Returns

Mean Std.Dev Min Max Skewness Kurtosis JB Test Q2(6) N

WTI S 0.0892 5.2380 -29.2136 30.3046 -0.2248 3.0103 533.65 34.82 1406
F 0.0893 5.0907 -37.2877 24.3899 -0.4011 4.1363 1024.32 33.61 1406

Heating S 0.1509 5.3193 -30.0945 41.6999 0.2028 6.8029 2642.72 25.55 1385
F 0.1547 4.8665 -26.6083 27.4067 -0.1558 3.3402 638.71 22.62 1385

Corn S 0.0565 3.8074 -18.2322 21.6545 -0.1073 3.1627 709.93 40.29 1719
F 0.0514 3.7014 -31.1830 20.9092 -0.3778 6.1554 2723.20 22.24 1719

Wheat S 0.0317 3.6118 -18.2748 20.9555 0.2122 3.2481 758.26 28.11 1719
F 0.0322 4.0225 -25.0677 22.7058 -0.0489 4.1000 1189.47 11.26 1719

Gold S 0.1145 2.6170 -13.9475 22.4460 0.3783 6.6746 3297.08 27.51 1773
F 0.1132 2.6768 -13.1057 20.2097 0.4111 6.0728 2743.64 36.41 1773

Silver S 0.0908 4.6601 -43.7847 40.4142 -0.3295 12.1190 10772.33 17.18 1773
F 0.0906 4.4671 -29.5406 21.8094 -0.3477 4.5381 1538.80 41.96 1773

CAD/USD S 0.0009 0.9280 -5.9131 5.9619 -0.1454 6.1237 2869.25 15.16 1852
F 0.0014 0.9402 -6.1672 5.2556 -0.1929 5.3041 2158.47 16.13 1852

GBP/USD S -0.0203 1.4043 -8.6689 7.3974 -0.3881 3.5702 1074.05 23.48 1953
F -0.0185 1.4369 -12.0095 8.0914 -0.4210 4.7021 1837.32 31.16 1953

S&P 500 S 0.1559 2.3153 -16.6634 10.1824 -0.7392 5.1869 1915.57 27.18 1600
F 0.1551 2.3789 -17.4818 10.3134 -0.7452 5.1060 1863.07 31.47 1600

Notes: For each commodity, this table presents the summary statistics for the log prices and the percentage log
returns, defined as ln(Pt−1/Pt) ∗ 100. JB refers to the Jarque and Bera (1987) test statistics for normality, and has
a χ2 distribution with 2 degrees of freedom under the null. The test strongly rejects the null hypothesis of normality
in all log prices and returns. Q(6) refers to the Ljung and Box (1978) test statistics for autocorrelation of up to order
6 in log prices and Q2(6) refers to the test of autocorrelation in squared returns. Both tests have a χ2 distribution
with 6 degrees of freedom under the null. The tests strongly reject the null hypothesis of no serial correlation in all
log prices and squared returns.
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Table 2.2: Test of Cointegration Between Log Spot and Futures Prices

Normalized CV Augmented Dickey-Fuller Unit-Root Test
(1 β0 δ) Log Spot Log Futures Basis

WTI (1 0.0051 0.9986) -0.9510 -0.9010 -26.6640
[0.7707] [0.7878] [0.0000]

Heating (1 -0.0005 0.9947) -1.2100 -0.9070 -13.6910
[0.6695] [0.7856] [0.0000]

Corn (1 -2.8554 1.0422) -1.4540 -1.5010 -9.7490
[0.5560] [0.5332] [0.0000]

Wheat (1 0.5158 0.9268) -1.9360 -2.0280 -5.8070
[0.3152] [0.2745] [0.0000]

Gold (1 -0.011 1.0014) -0.0370 -0.0420 -29.6410
[0.9554] [0.9549] [0.0000]

Silver (1 0.0103 0.9983) -0.9600 -0.9050 -23.1790
[0.7677] [0.7863] [0.0000]

CAD/USD (1 0.0015 1.0028) -1.4910 -1.4670 -16.1700
[0.5379] [0.5498] [0.0000]

GBP/USD (1 -0.0001 1.0048) -3.1180 -3.0160 -14.9480
[0.0252] [0.0335] [0.0000]

S&P 500 (1 -0.0186 1.0023) -2.1030 -2.1040 -11.1080
[0.2432] [0.2429] [0.0000]

Notes: This table presents the results from the test of cointegration between log
spot and log futures prices. The normalized CV column refers to the cointegrating
vector, where β0 and δ are obtained by regressing log spot on log futures prices
for each series i.e lnSt = β0 + δ lnFt + µt. The last three columns report the
test statistics from the Augmented-Dickey Fuller unit root tests for the log spot,
log futures and basis (difference between log spot and log futures) for each se-
ries, using one lag. The associated p-values are reported on brackets. The null
hypothesis is that the associated series is non-stationary. The presence of a coin-
tegrating relationship between spot and futures prices requires that both series be
non-stationary and the basis be stationary. The tests indicate that all series are
cointegrated.

be rejected at all conventional levels, and at the 1% significance level for GBP. These

in turn indicate that there exists a long-run equilibrium relationship between spot

and futures prices of the assets under consideration. Therefore, the inclusion of the

vector error correction components into the MSM model is statistically appropriate.

2.4.2. VECM-MSM Model Estimates

Table 2.3 presents the parameter estimates from the two-step estimation procedure.

The VECM-MSM models are estimated for k equals 1 to 8. Several observations from

Table 2.3 merit attention. First, we find that the coefficients on the error correction
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terms are consistent, in most cases, with those implied by the theoretical model.15

The speeds of adjustment of spot prices to their long-run relationship, measured by

αs, are mostly consistently negative and statistically significant, with the exception

of CAD and S&P 500. On the other hand, the speeds of adjustment of futures prices

have mixed signs and are mostly insignificant. This means that in the estimated

error correction coefficients are in accordance with convergence towards a long-run

equilibrium relationship. In other words, in response to a positive spread at period

t − 1 (i.e., St−1 > Ft−1), the spot price in the next period will decrease while the

futures price will either be unresponsive or less responsive than spot prices, thus

restoring the long-run equilibrium.

Second, according to Fama (1984), if the current basis is an unbiased estimator of

the future spot price, αs = 1 and βs = 0 should hold. From a theoretical point of

view, as maturity approaches, the spot and futures prices should converge if markets

are efficient. We find that this hypothesis holds for corn, wheat, CAD, GBP and

S&P 500, while it does not hold for the other assets.

Third, looking at the volatility multiplier parameters m̂s
0 and m̂f

0 , they tend to de-

cline as the number of frequency components increases. The intuition is that less

variability is required in each individual component in order to match the volatility

fluctuation of the data. Estimates of σ̂s and σ̂f fluctuate across k without any appar-

ent pattern. Fourth, as k increases, the switching probability of the highest volatility

component γ̂k̄ increases,16 whereas b̂ does not exhibit any particular pattern. From

the estimated values of γ̂k̄, we can infer the duration of the volatility components.

Taking, corn for instance, when k = 1 the single volatility component has a duration

15Note that some values of αs and αf are large. This is partly due to the fact that returns are defined
as ln(Pt−1/Pt) ∗ 100. Also, we do not restrict the upper and lower bounds of the estimates of αs
and αf during the optimization process. We observe that the model fits are better (as indicated
by the log-likelihood values) when the upper and lower bounds are not restricted.

16This is with the exception of crude oil.
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of approximately 13 weeks (1/γ̂1). When k = 8, the highest frequency component

M8,t switches every one and a half weeks, while the lowest frequency component M1,t

has a duration of approximately 145 weeks. Therefore, the VECM-MSM model of

spot and futures returns is able to capture not only the frequent but transient shocks,

but also captures rare and extreme events. Thus, the lowest frequency shock in corn

occurs only approximately eleven times during the data period.

Next, we observe that the correlation between the Gaussian innovations ρ̂ε is always

positive with almost no variation across k. Values of ρ̂ε are also similar to the sample

correlation observed between spot and futures returns. The correlation coefficient

between volatility arrivals is also positive with no apparent pattern as k changes.

The results so far have important implications for dynamic hedging strategies. Switches

in the lowest frequency components parsimoniously capture the effects of rare but

extreme and unanticipated news arrivals on asset prices. This constitutes an im-

portant source of risk for long term hedgers pricing long-lived futures and must be

considered in their hedging decision. Jumps in high frequency components capture

normal random news events in the market, which matters most for pricing short-lived

futures contracts.

Table 2.3: Vector Error Correction-MSM Parameter Estimates

k = 1 2 3 4 5 6 7 8
WTI

β̂s 0.2488 0.1887 0.2010 0.2141 0.2050 0.2171 0.2194 0.2192
(0.1145) (0.1029) (0.1135) (0.1154) (0.2902) (0.1108) (0.1089) (0.1082)

β̂f 0.2215 0.1600 0.1678 0.1787 0.1717 0.1818 0.1829 0.1829
(0.1157) (0.1115) (0.1169) (0.1204) (0.2645) (0.1199) (0.1144) (0.1144)

α̂s -107.8678 -112.2647 -107.4020 -107.7128 -107.5846 -108.6111 -108.4814 -108.5218
(9.1244) (6.8269) (6.1526) (6.5116) (27.1052) (5.6054) (5.8291) (5.6934)

α̂f -6.4974 -9.5716 -6.9609 -6.6860 -6.8148 -7.8495 -7.3448 -7.6152
(7.0479) (10.3978) (9.2696) (8.5788) (13.3874) (8.2693) (8.4413) (8.3133)

m̂0,s 1.6520 1.5112 1.4198 1.4068 1.4028 1.3073 1.2959 1.2709
(0.0596) (0.0488) (0.0782) (0.0297) (0.0510) (0.4753) (0.0623) (0.0518)

m̂0,f 1.7179 1.5150 1.4245 1.4101 1.4067 1.3134 1.3005 1.2762
(0.0170) (0.1225) (0.0705) (0.0321) (0.0492) (0.4096) (0.0704) (0.0577)

Continued on next page
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Table 2.3 – Continued from previous page
k = 1 2 3 4 5 6 7 8

σ̂s 6.6326 6.3729 5.7257 4.9422 6.1940 5.4069 5.3260 5.2837
(1.1904) (0.4409) (0.3209) (0.4826) (0.5932) (6.1862) (0.9314) (0.7723)

σ̂f 7.7246 6.3181 5.8361 5.0175 6.3261 5.3703 5.3338 5.2914
(0.4582) (0.3515) (0.3806) (0.4252) (0.6847) (5.1500) (0.7233) (0.6539)

γ̂k 0.0251 0.0396 0.0240 0.0222 0.0160 0.0293 0.0275 0.0286
(0.0098) (0.0159) (0.0127) (0.0150) (1286.4) (0.1138) (0.0210) (0.0182)

b̂ - 2.9235 1.0001 1.0000 1.0000 1.0001 1.0000 1.0000
- (3.4035) (0.1390) (0.1130) (40603) (0.2498) (0.0516) (0.0512)

ρ̂e 0.9864 0.9895 0.9884 0.9881 0.9896 0.9885 0.9886 0.9881
(0.0003) (0.0002) (0.0003) (0.0003) (0.0004) (0.0004) (0.0004) (0.0004)

λ̂ 0.7435 0.8088 0.8825 0.9090 0.9271 0.9656 0.9739 0.9863
(0.0752) (0.0617) (0.0485) (0.0427) (0.0459) (0.0342) (0.0356) (0.0338)

lnL -5588.75 -5437.53 -5437.91 -5437.25 -5431.36 -5451.85 -5444.84 -5451.36

Heating Oil

β̂s 0.1409 0.1859 0.1616 0.1603 0.1653 0.1643 0.1642 0.1641
(0.1221) (0.1231) (0.1217) (0.1246) (0.1248) (0.1245) (0.1248) (0.1245)

β̂f 0.1711 0.2259 0.2096 0.2135 0.2127 0.2142 0.2149 0.2154
(0.1160) (0.1180) (0.1163) (0.1170) (0.1182) (0.1182) (0.1182) (0.1183)

α̂s -23.6033 -25.3902 -24.2017 -24.6552 -24.5622 -24.5710 -24.6177 -24.6335
(3.8724) (4.6204) (4.4648) (4.5112) (4.4771) (4.5076) (4.4901) (4.4908)

α̂f -4.7587 -5.5268 -5.0764 -5.0504 -5.0717 -5.0003 -5.0552 -5.0312
(2.9016) (4.0125) (3.7950) (3.8109) (3.8728) (3.9097) (3.8968) (3.9321)

m̂0,s 1.7005 1.5432 1.4523 1.4070 1.3564 1.3244 1.2990 1.2805
(0.0276) (0.0516) (0.0557) (0.0639) (0.0481) (0.0486) (0.0479) (0.0497)

m̂0,f 1.6355 1.5286 1.4126 1.3669 1.3229 1.2949 1.2734 1.2564
(0.0281) (0.0424) (0.0370) (0.0511) (0.0403) (0.0407) (0.0401) (0.0411)

σ̂s 7.3566 6.1971 6.1649 5.6835 5.5434 5.4203 5.3731 5.3559
(0.6184) (0.4830) (1.0557) (0.6666) (0.6025) (0.5570) (0.6063) (0.6490)

σ̂f 6.4173 5.4573 5.3666 5.1357 4.9966 4.9800 4.9774 4.9597
(0.4218) (0.3675) (0.5641) (0.3669) (0.3627) (0.4130) (0.4051) (0.4208)

γ̂k 0.0327 0.0455 0.0497 0.0524 0.0591 0.0618 0.0640 0.0649
(0.0103) (0.0138) (0.0240) (0.0275) (0.0260) (0.0299) (0.0439) (0.7609)

b̂ - 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
- (0.1697) (0.1679) (0.1023) (0.0700) (0.0712) (0.1475) (3.3751)

ρ̂e 0.9656 0.9582 0.9598 0.9621 0.9616 0.9636 0.9650 0.9661
(0.0000) (0.0001) (0.0011) (0.0009) (0.0010) (0.0010) (0.0010) (0.0011)

λ̂ 0.9125 0.9749 0.9771 0.9884 0.9904 0.9929 0.9945 0.9957
(0.0280) (0.0312) (0.0235) (0.0154) (0.0137) (0.0135) (0.0122) (0.0102)

lnL -6023.69 -6002.17 -5942.61 -5906.33 -5900.94 -5881.21 -5868.13 -5857.88

Corn

β̂s -0.2567 -0.1683 -0.1765 -0.1836 -0.1859 -0.1854 -0.1909 -0.1916
(0.2479) (0.2331) (0.2336) (0.2188) (0.2187) (0.1848) (0.2199) (0.2209)

β̂f 0.1824 0.1788 0.1975 0.1845 0.1713 0.1724 0.1690 0.1656
(0.2195) (0.2271) (0.2382) (0.2214) (0.2219) (0.1706) (0.2324) (0.2224)

α̂s -8.7720 -7.4777 -7.8384 -8.0409 -8.0245 -7.4520 -8.0794 -8.0836
(4.1806) (4.2187) (4.2227) (3.9514) (3.9113) (3.4590) (3.9523) (3.9739)

α̂f 2.3112 2.9050 2.9280 2.8561 2.7078 2.8557 2.6607 2.6141
(3.3150) (3.5695) (3.6675) (3.4911) (3.4357) (2.5444) (3.5725) (3.4765)

m̂0,s 1.7046 1.6220 1.5224 1.4720 1.4229 1.6064 1.3635 1.3429
(0.0171) (0.0218) (0.0351) (0.0284) (0.0270) (0.0209) (0.0971) (0.0332)

m̂0,f 1.6894 1.5981 1.5026 1.4524 1.4046 1.5963 1.3508 1.3327
(0.0239) (0.0335) (0.0454) (0.0352) (0.0378) (0.0328) (0.1252) (0.0426)

Continued on next page
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Table 2.3 – Continued from previous page
k = 1 2 3 4 5 6 7 8

σ̂s 4.0454 4.3632 3.9430 3.8186 3.7759 3.4852 3.8269 3.8205
(0.2325) (0.2853) (0.4334) (0.4340) (0.4297) (0.2567) (1.5000) (0.4790)

σ̂f 4.2402 4.3641 4.2506 3.9418 3.7941 3.4202 3.7773 3.8226
(0.3622) (0.4460) (0.4508) (0.3103) (0.3907) (0.4954) (1.5721) (0.4966)

γ̂k 0.0757 0.2025 0.1735 0.3310 0.4732 0.2224 0.5744 0.6475
(0.0260) (0.0523) (0.1337) (0.2525) (0.6391) (0.0666) (1.0536) (0.5304)

b̂ - 10.7519 3.0479 3.2181 2.7071 11.4144 2.1563 2.0468
- (5.4404) (1.6031) (1.7648) (2.0537) (5.1308) (2.9130) (0.8853)

ρ̂e 0.8775 0.8829 0.8755 0.8796 0.8842 0.8957 0.8860 0.8874
(0.0067) (0.0056) (0.0062) (0.0055) (0.0058) (0.0036) (0.0052) (0.0053)

λ̂ 0.9116 0.9369 0.9341 0.9573 0.9688 0.9437 0.9846 0.9852
(0.0188) (0.0073) (0.0051) (0.0037) (0.0209) (0.0067) (0.0377) (0.0445)

lnL -7312.75 -7210.11 -7235.50 -7194.76 -7176.20 -7193.73 -7165.12 -7163.64

Wheat

β̂s 0.2276 0.1958 0.1918 0.1918 0.1917 0.1917 0.1956 0.1974
(0.1677) (0.1621) (0.1718) (0.1401) (0.1197) (0.1400) (0.1295) (0.1588)

β̂f -0.0875 -0.0626 -0.0765 -0.0766 -0.0760 -0.0762 -0.0808 -0.0728
(0.1928) (0.2135) (0.1888) (0.1559) (0.1873) (0.1541) (0.1487) (0.1707)

α̂s -2.3286 -1.8683 -1.9600 -1.9605 -1.9605 -1.9605 -1.9464 -1.8904
(1.3335) (1.3012) (1.4341) (1.0749) (0.9915) (1.0771) (1.1097) (1.4455)

α̂f 1.2404 1.0085 0.9515 0.9515 0.9446 0.9463 1.1918 1.0169
(1.4486) (1.7422) (1.3261) (1.0268) (1.3067) (1.0104) (1.0959) (1.1667)

m̂0,s 1.6824 1.6501 1.5660 1.5661 1.5661 1.5661 1.5610 1.4548
(0.0185) (0.0229) (0.0311) (0.0282) (0.0272) (0.0395) (0.0249) (0.0244)

m̂0,f 1.6069 1.4903 1.4949 1.4950 1.4956 1.4955 1.4373 1.3572
(0.0304) (0.0400) (0.0402) (0.0396) (0.0453) (0.0387) (0.0853) (0.0475)

σ̂s 3.8618 3.2454 4.0326 3.2227 2.5752 3.9093 3.0944 2.9893
(0.2586) (0.2530) (0.2945) (0.2154) (0.1594) (0.3902) (0.2370) (0.4623)

σ̂f 4.6930 4.9669 3.9533 3.2344 4.5432 3.7168 3.2695 3.6385
(0.2950) (0.3843) (0.3000) (0.2242) (0.3968) (0.2841) (0.2341) (0.6180)

γ̂k 0.0573 0.1262 0.2004 0.2006 0.2014 0.2011 0.1826 0.3375
(0.0179) (0.0427) (0.0734) (0.0746) (0.0728) (0.0711) (0.0564) (0.1794)

b̂ - 18.4195 18.4599 18.6374 18.9916 18.8916 9.5792 4.6261
- (10.6954) (10.5063) (10.5673) (9.7472) (10.2389) (5.1785) (2.6592)

ρ̂e 0.7659 0.7747 0.7794 0.7794 0.7880 0.7879 0.7968 0.7912
(0.0131) (0.0102) (0.0097) (0.0098) (0.0090) (0.0081) (0.0069) (0.0117)

λ̂ 0.9299 0.6475 0.8809 0.8826 0.8458 0.8726 0.9235 0.8609
(0.0115) (0.0612) (0.0176) (0.0174) (0.0233) (0.0188) (0.0104) (0.0127)

lnL -7850.25 -7820.95 -7762.05 -7762.86 -7764.10 -7760.28 -7753.72 -7769.96

Gold

β̂s -0.1421 -0.1882 -0.1715 -0.1761 -0.1816 -0.1761 -0.1770 -0.1816
(0.0612) (0.0508) (0.0502) (0.0468) (0.0467) (0.0498) (0.0804) (0.0461)

β̂f 0.1149 0.0459 0.0509 0.0426 0.0408 0.0426 0.0447 0.0407
(0.0852) (0.0622) (0.0591) (0.0614) (0.0608) (0.0522) (0.0736) (0.0588)

α̂s -76.6394 -75.6211 -78.5632 -78.6091 -79.1449 -78.6161 -77.9197 -79.1205
(8.2851) (8.8539) (8.1984) (8.4519) (8.4696) (11.3939) (9.3163) (9.8575)

α̂f 19.3579 14.4339 13.3420 12.0579 12.2903 12.0555 12.8787 12.2920
(9.4030) (10.8290) (9.6828) (10.6063) (10.3830) (8.7456) (9.6216) (9.7187)

m̂0,s 1.7558 1.6348 1.6070 1.5408 1.4619 1.5407 1.5407 1.4602
(0.0147) (0.0272) (0.0238) (0.0895) (0.0312) (0.0315) (0.0258) (0.0270)

m̂0,f 1.7548 1.6448 1.6133 1.5597 1.4598 1.5595 1.5574 1.4593
(0.0164) (0.0215) (0.0244) (0.0788) (0.0325) (0.0245) (0.0280) (0.0289)

Continued on next page

65



Table 2.3 – Continued from previous page
k = 1 2 3 4 5 6 7 8

σ̂s 3.1214 2.8294 2.6315 3.2735 2.5609 2.1244 3.1685 2.3745
(0.2417) (0.2160) (0.1531) (0.6283) (0.2553) (0.1863) (0.2146) (0.2715)

σ̂f 3.1148 2.9164 2.7086 3.6196 2.7178 2.3204 3.4940 2.5281
(0.3623) (0.3065) (0.1738) (0.6164) (0.4053) (0.1371) (0.2918) (0.3347)

γ̂k 0.0629 0.0699 0.8660 0.8086 0.8615 0.8065 0.7269 0.8608
(0.0343) (0.0458) (0.0766) (0.0966) (0.0605) (0.1064) (0.0538) (0.0640)

b̂ - 11.5143 68.4520 34.9596 7.5179 34.6651 29.2239 7.4669
- (11.2883) (33.6961) (17.7257) (1.3941) (16.8373) (7.9282) (1.4756)

ρ̂e 0.9537 0.9483 0.9513 0.9535 0.9515 0.9535 0.9539 0.9535
(0.0014) (0.0018) (0.0004) (0.0024) (0.0028) (0.0024) (0.0024) (0.0028)

λ̂ 0.9887 0.9872 0.9768 0.9847 0.9983 0.9855 0.9876 0.9989
(0.0113) (0.0157) (0.0199) (0.0381) (0.0265) (0.0370) (0.0334) (0.0252)

lnL -5433.45 -5311.93 -5248.66 -5234.84 -5224.09 -5236.16 -5232.37 -5221.70

Silver

β̂s 0.0270 -0.0309 -0.0189 -0.0115 -0.0116 -0.0116 -0.0116 -0.0200
(0.0792) (0.0769) (0.0652) (0.0629) (0.0654) (0.0670) (0.0687) (0.0667)

β̂f 0.0258 -0.0229 -0.0115 -0.0121 -0.0122 -0.0122 -0.0122 -0.0184
(0.0797) (0.0731) (0.0827) (0.0724) (0.0714) (0.0720) (0.0724) (0.0717)

α̂s -47.0888 -55.7556 -58.3168 -61.6782 -61.6852 -61.6835 -61.6834 -49.3053
(16.3491) (13.3300) (11.4395) (13.7896) (36.3800) (22.9987) (32.9459) (14.0995)

α̂f 31.4786 29.3729 28.5457 28.2166 28.2152 28.2164 28.2157 32.6633
(6.5430) (7.4017) (8.9995) (6.4514) (6.9506) (6.4475) (8.5653) (6.0249)

m̂0,s 1.7655 1.6626 1.6077 1.5400 1.5398 1.5399 1.5399 1.5423
(0.0177) (0.0641) (0.0337) (0.0468) (0.0388) (0.0384) (0.0428) (0.0456)

m̂0,f 1.6982 1.5713 1.5376 1.5305 1.5303 1.5303 1.5303 1.5558
(0.0159) (0.0245) (0.0889) (0.0309) (0.0348) (0.0315) (0.0302) (0.0334)

σ̂s 5.3120 6.2340 5.7379 6.6104 5.3255 4.2919 3.4587 5.1845
(0.5352) (1.5843) (0.7579) (1.2126) (0.8571) (0.7487) (0.6765) (0.9363)

σ̂f 4.8068 5.0084 4.7040 3.7605 5.4837 4.4338 3.5845 5.9064
(0.2388) (0.2934) (3.7763) (0.4224) (0.7738) (0.5528) (0.4180) (0.8632)

γ̂k 0.0456 0.0626 0.8587 0.6816 0.6782 0.6789 0.6794 0.7637
(0.0126) (0.0189) (0.1228) (0.2112) (0.2147) (0.2282) (0.2417) (0.3797)

b̂ - 9.0231 39.1909 19.4022 19.2252 19.2664 19.2911 21.8948
- (8.6335) (15.8415) (13.1659) (13.5689) (13.5608) (13.8369) (34.5255)

ρ̂e 0.9543 0.9499 0.9488 0.9649 0.9659 0.9659 0.9659 0.9627
(0.0002) (0.0003) (0.0003) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

λ̂ 0.9665 0.9400 0.9384 0.9703 0.9759 0.9761 0.9763 0.9730
(0.0023) (0.0086) (0.0098) (0.0024) (0.0051) (0.0055) (0.0061) (0.0064)

lnL -7159.65 -7116.26 -7056.27 -6877.86 -6870.66 -6871.40 -6872.13 -6903.51

CAD

β̂s -0.0159 -0.0193 -0.0112 -0.0134 -0.0135 -0.0136 -0.0144 -0.0140
(0.0201) (0.0215) (0.0282) (0.0212) (0.0228) (0.0238) (0.0310) (0.0212)

β̂f -0.0523 -0.0463 -0.0480 -0.0463 -0.0443 -0.0443 -0.0447 -0.0455
(0.0217) (0.0218) (0.0255) (0.0184) (0.0185) (0.0189) (0.0332) (0.0175)

α̂s -7.5529 -2.2622 -2.8562 -2.9992 -3.1100 -3.1208 -2.5084 -2.4877
(5.1509) (8.0664) (10.9700) (8.7990) (9.0208) (11.3588) (2.9523) (8.1885)

α̂f 26.9400 29.6304 28.7778 27.4717 27.0146 26.9422 27.1701 27.2789
(5.7440) (8.0319) (9.0162) (6.2767) (6.1702) (5.6840) (6.4472) (5.0485)

m̂0,s 1.7426 1.6161 1.5494 1.4822 1.4643 1.4625 1.4160 1.3250
(0.0222) (0.0490) (0.8613) (0.0368) (0.0287) (0.0451) (0.0350) (0.0610)

m̂0,f 1.7175 1.6045 1.5224 1.4452 1.4242 1.4224 1.3631 1.2991
(0.0215) (0.0532) (0.3808) (0.0320) (0.0383) (0.0376) (0.0352) (0.1065)

Continued on next page
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Table 2.3 – Continued from previous page
k = 1 2 3 4 5 6 7 8

σ̂s 1.1829 1.1384 1.2170 1.1926 1.0047 1.3583 1.9791 0.9525
(0.0670) (0.1076) (0.8960) (0.1396) (0.1256) (0.2416) (0.3124) (0.0969)

σ̂f 1.1809 1.1015 1.1969 1.2249 1.0588 0.8893 1.3968 0.9934
(0.0684) (0.1024) (0.2068) (0.1614) (0.1288) (0.1066) (0.1685) (0.2988)

γ̂k 0.0097 0.0986 0.0711 0.0646 0.0525 0.0530 0.0851 0.0972
(0.0079) (0.0471) (0.3215) (0.0359) (0.0256) (0.0283) (0.0230) (0.0542)

b̂ - 87.7050 15.3211 4.1653 2.6504 2.6894 2.9143 1.9032
- (75.9132) (214.6779) (1.5210) (0.8988) (1.0398) (0.5271) (0.3975)

ρ̂e 0.9578 0.9565 0.9599 0.9578 0.9576 0.9572 0.9538 0.9590
(0.0011) (0.0013) (0.0015) (0.0018) (0.0018) (0.0018) (0.0003) (0.0019)

λ̂ 0.9999 0.9994 0.9999 0.9999 0.9999 0.9920 0.8769 0.9999
(0.1181) (0.0239) (0.0491) (0.1201) (0.1218) (0.0348) (0.0119) (0.0841)

lnL -1946.62 -1822.96 -1785.41 -1803.85 -1826.54 -1847.27 -1959.00 -1785.91

GBP

β̂s 0.0499 0.0488 0.0526 0.0638 0.0584 0.0641 0.0642 0.0641
(0.0362) (0.0450) (0.0366) (0.0404) (0.0509) (0.0440) (0.0483) (0.0449)

β̂f -0.0243 -0.0166 -0.0229 -0.0108 -0.0232 -0.0110 -0.0111 -0.0110
(0.0373) (0.0378) (0.0407) (0.0456) (0.0545) (0.0464) (0.0440) (0.0470)

α̂s -16.0128 -15.4706 -13.8430 -14.2435 -12.6179 -14.1007 -14.0412 -14.1037
(5.2085) (5.7573) (4.8302) (6.4174) (4.5436) (7.5585) (8.8240) (7.8463)

α̂f 17.1389 14.1569 17.6326 15.6895 17.6949 15.7006 15.7176 15.6934
(5.5266) (7.6057) (8.0092) (10.1668) (5.2650) (10.6764) (9.9204) (11.0425)

m̂0,s 1.5982 1.5031 1.5104 1.4663 1.5122 1.4658 1.4657 1.4658
(0.0298) (0.0623) (0.0601) (0.0333) (0.0362) (0.0390) (0.0358) (0.0674)

m̂0,f 1.5951 1.4932 1.4923 1.4504 1.4871 1.4499 1.4496 1.4499
(0.0343) (0.0632) (0.0267) (0.0377) (0.0377) (0.0405) (0.0390) (0.0475)

σ̂s 1.6214 1.5773 1.6502 1.2671 1.9506 1.4342 1.1857 1.6208
(0.1022) (0.3122) (0.0985) (0.0992) (0.1557) (0.1318) (0.1066) (0.2399)

σ̂f 1.6469 1.6255 1.6870 1.3325 1.9273 1.4913 1.2396 1.6690
(0.1160) (0.1769) (0.0944) (0.1306) (0.1590) (0.1397) (0.1274) (0.1866)

γ̂k 0.0287 0.0971 0.0316 0.7188 0.0363 0.7061 0.7002 0.7070
(0.0093) (0.1156) (0.0696) (0.2809) (0.0088) (0.3221) (0.3598) (0.3275)

b̂ - 14.9619 1.8917 13.8048 2.4076 13.3462 13.1032 13.3907
- (21.1034) (4.3635) (6.8499) (0.6566) (8.3437) (8.8835) (8.6959)

ρ̂e 0.9661 0.9681 0.9660 0.9673 0.9663 0.9673 0.9673 0.9673
(0.0009) (0.0010) (0.0012) (0.0014) (0.0012) (0.0014) (0.0014) (0.0014)

λ̂ 0.9830 0.9918 0.9821 0.9964 0.9825 0.9992 0.9984 0.9994
(0.0416) (0.0265) (0.0233) (0.0165) (0.0326) (0.0257) (0.0227) (0.0246)

lnL -3824.98 -3800.07 -3790.41 -3771.08 -3792.22 -3769.14 -3769.90 -3768.86

S&P 500

β̂s 0.2341 0.2417 0.2677 0.2615 0.2690 0.2673 0.2660 0.2611
(0.1019) (0.1140) (0.1110) (0.1088) (0.0828) (0.0952) (0.1075) (0.0894)

β̂f 0.3322 0.3412 0.3655 0.3654 0.3663 0.3653 0.3698 0.3659
(0.1006) (0.1135) (0.1076) (0.1077) (0.0832) (0.0935) (0.1086) (0.0910)

α̂s -0.7678 -0.9254 -0.5634 -1.0630 -0.5809 -0.8727 -0.3600 -1.1601
(12.4904) (15.5510) (15.5964) (15.1564) (10.6774) (12.4243) (14.1116) (11.0473)

α̂f 21.4393 19.8508 20.7015 20.8974 20.4119 20.3254 21.5499 20.8959
(12.3810) (15.6350) (14.9304) (14.9225) (10.8647) (12.0077) (13.9030) (11.4653)

m̂0,s 1.6494 1.5394 1.4977 1.4115 1.4982 1.4947 1.2982 1.4163
(0.0275) (0.0575) (0.0412) (0.0427) (0.0432) (0.0459) (0.0411) (0.0309)

m̂0,f 1.6518 1.5575 1.5146 1.4254 1.5149 1.5123 1.3072 1.4320
(0.0261) (0.0733) (0.0338) (0.0484) (0.0356) (0.0309) (0.0430) (0.0299)

Continued on next page
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Table 2.3 – Continued from previous page
k = 1 2 3 4 5 6 7 8

σ̂s 2.5560 2.7595 2.4989 2.5426 1.6782 2.3298 2.2911 2.0303
(0.1615) (0.3517) (0.3174) (0.2918) (0.2397) (0.4756) (0.2570) (0.1757)

σ̂f 2.5747 2.9315 2.5246 2.6558 1.6691 2.3753 2.3493 2.1200
(0.2023) (0.4631) (0.2663) (0.3742) (0.1542) (0.2762) (0.3050) (0.1916)

γ̂k 0.0439 0.0568 0.0616 0.0731 0.0802 0.0780 0.1596 0.0908
(0.0164) (0.0434) (0.0593) (0.0968) (0.0634) (0.0586) (0.4003) (0.0849)

b̂ - 4.1015 2.4638 1.9014 3.9388 3.7643 1.5972 2.5927
- (4.7385) (1.9924) (1.4100) (1.9812) (2.0251) (1.0841) (1.3856)

ρ̂e 0.9894 0.9878 0.9888 0.9883 0.9889 0.9889 0.9884 0.9883
(0.0004) (0.0005) (0.0005) (0.0006) (0.0005) (0.0005) (0.0006) (0.0006)

λ̂ 0.9999 0.9999 0.9833 0.9999 0.9781 0.9800 0.9999 0.9965
(0.0659) (0.0550) (0.0393) (0.0357) (0.0506) (0.0496) (0.0522) (0.0481)

lnL -3738.70 -3685.81 -3686.79 -3668.88 -3692.05 -3681.25 -3655.18 -3669.97

Notes: This table reports the maximum likelihood estimates of the VECM-MSM parameter estimates for each
asset. Log returns are defined as ln(Pt−1/Pt) ∗ 100. The VECM-MSM(k) model is fitted for k equals 1 to 8,
where each column corresponds to the given number of frequency components k in the MSM specification. When
k = 1, the VECM-MSM specification corresponds to a standard Markov-switching Vector Error Correction
model, with only two possible states of volatility and γk = γ1. b is therefore unidentified and omitted.
Asymptotic standard errors, reported in parenthesis, are computed using the Outer Product Gradient estimate
of the information matrix. See Hamilton (1994), page 143.

2.4.3. Model Selection

It can be observed from the results above that the log-likelihood increases non-

monotonically as the number of frequency components increases. This implies that

the fit of the model increases as the number of frequency components increases only

up to a certain point. Therefore for hedging purposes, we need to select the value of

k that fits the model best. We formalize this by following Calvet and Fisher (2004)

and employ the likelihood ratio based test of Vuong (1989).

To apply the Vuong test, we assume two non-nested models VECM-MSM(k) and

VECM-MSM(k′), with densities f and f ′ respectively. The log-likelihood difference

is given by

LRv = T−1/2(lnLfT (θ̂T )− lnLf
′

T (θ̂′T )) =
1√
T

T∑
t=1

ln
f(rt|Rt−1)

f ′(rt|Rt−1)
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We consider the null hypothesis that models VECM-MSM(k) and VECM-MSM(8)

have identical unconditional expected log-likelihood (VECM-MSM(k) and VECM-

MSM(8) fit the data equally well), against the alternative that VECM-MSM(k) per-

formed worst. Specifically, we test the following conditions

H0 : lnLkT − lnL8
T = 0, for k ∈ 1, 2, ..., 7

H1 : lnLkT − lnL8
T < 0

Under the null hypothesis,

T−1/2(lnLfT (θ̂T )− lnL8
T (θ̂′T ))

d→ N(0, σ2
∗)

where

σ2
∗ = V ar

(
ln

[
fk(rt|Rt−1)

f 8(rt|Rt−1)

])
The t-ratios and corresponding one-sided p-values are reported in Table 2.4. All

models are rejected in favor of VECM-MSM(8), for heating oil, corn, gold and GBP.

But the null hypothesis can not be rejected for other assets. While other models may

fit the data equally well, we find that VECM-MSM(8) performed best for hedging

purposes, both in-sample and out-of-sample. Therefore, we employ VECM-MSM(8)

for subsequent analysis.

Using the parameter estimates from the VECM-MSM model for each asset, we com-

pute the smoothed marginal probabilities of being in high state for each volatility

component, defined as Ψ̂
M(k)
t ≡ P(Mk,t = m0|RT ). The marginal probabilities for

corn are plotted on panel a to panel h of Figure 2.1 for M1,t to M8,t respectively, while

the basis (log spot price - log futures price) and the log spot price are plotted on

panels i and j, for illustration. Several points from the Figure 2.1 merit discussion.

First, the plot of marginal probabilities of each frequency component clearly depicts
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Table 2.4: MSM Model Selection (Vuong (1989) Test)

k WTI Heating Corn Wheat Gold Silver CAD GBP S&P 500

1 -5.4401 -7.3400 -9.9209 -6.7240 -7.5240 -6.0622 -10.2830 -2.9996 -6.7897
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0014) (0.0000)

2 0.8292 -11.6180 -12.5123 -12.2675 -7.2436 -11.1989 -4.9533 -3.8080 -4.9130
(0.7964) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0000)

3 1.9357 -14.0511 -40.7782 2.4850 -4.3106 -13.2592 0.1275 -2.1624 -7.0819
(0.9734) (0.0000) (0.0000) (0.9935) (0.0000) (0.0000) (0.5507) (0.0154) (0.0000)

4 2.2211 -13.3214 -46.9395 2.2391 -6.2620 8.2141 -9.1641 -6.4238 2.5939
(0.9867) (0.0000) (0.0000) (0.9874) (0.0000) (1.0000) (0.0000) (0.0000) (0.9952)

5 4.9944 -31.6390 -42.3787 4.8813 -3.6968 12.8639 -25.4579 -2.2555 -8.4249
(1.0000) (0.0000) (0.0000) (1.0000) (0.0001) (1.0000) (0.0000) (0.0121) (0.0000)

6 -1.2492 -28.2293 -9.5561 7.5267 -6.9185 12.6348 -35.5939 -87.4079 -5.6768
(0.1059) (0.0000) (0.0000) (1.0000) (0.0000) (1.0000) (0.0000) (0.0000) (0.0000)

7 30.4458 -45.0784 -51.7519 17.1385 -5.7935 12.3541 -74.7230 -43.7547 5.3561
(1.0000) (0.0000) (0.0000) (1.0000) (0.0000) (1.0000) (0.0000) (0.0000) (1.0000)

Notes: This table reports the t-ratios and the corresponding lower-tail p-values from the test of the null
hypothesis that VECM-MSM(k) and VECM-MSM(8) fit the data equally well (H0 : lnLkT − lnL

8
T = 0),

against the alternative hypothesis that VECM-MSM(k) performed worst (H1 : lnLkT −lnL
8
T < 0). Each row

corresponds to the number of frequencies in the alternative VECM-MSM model being compared to VECM-
MSM(8). For example, row k = 1 compares VECM-MSM(1) with VECM-MSM(8), for each asset. A low
p-value indicates that the corresponding VECM-MSM model will be rejected in favour of VECM-MSM(8).

their responses to past shocks. The run-ups in agricultural commodity prices between

1994 and 1996 are associated with switches in all frequency volatility components.

This price hike is due to a combination factors that include the burgeoning food de-

mand in emerging economies, increase in production cost of agricultural commodities

due to a rise in energy prices, increased demand for corn for bio-energy, decrease in

the value of U.S. dollar and production shortfall due to extreme weather conditions.

The impact of the 2008 financial crisis is also reflected across all frequency compo-

nents, with larger jumps in low and medium frequency components. Although not

shown here for the sake of brevity, the impact of the 2008 financial crisis is reflected

across all assets.

Second, looking at the dynamics of the volatility components in relation to the basis,

we observe that periods of high volatility generally coincide with periods where there

is substantial deviation of the basis away from zero (i.e wider spread between the
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Figure 2.1: Smoothed Probability, Basis and Spot Price For Corn
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Notes: This figure presents the smoothed probability of being in the high state (Ψt(Mk = m0))
for each MSM volatility component for corn returns. The figure illustrates the dynamics of the
volatility components and how they respond to different price shocks.

spot and the futures prices). Although not reported in the table, we find that the

correlation between the spot price volatility and the absolute values of the basis for

corn is 0.4183, indicating a positive relationship between volatility and the magnitude

of the basis. This is consistent with evidence from earlier studies such as Lee (1994),

Choudhry (1997) and Alizadeh et al. (2008). Finally, we also observe that high

volatility regimes of M1 to M3 (i.e medium and high frequency components) typically

span periods of rising as well as falling spot prices.
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2.4.4. Dynamic Hedge Ratios

We examine hedge ratios under alternative hedging strategies. We consider (i) the

conventional hedge ratio obtained as the slope coefficient from an OLS regression

of spot returns on futures returns; (ii) a naive hedge ratio of one; (iii) the GARCH

dynamic hedge ratios obtained from the diagonal BEKK specification17 of Engle and

Kroner (1995); (iv) dynamic hedge ratios obtained from the MRS-GARCH; and (v)

dynamic hedge ratios obtained from the VECM-MSM(8) specification. Following

the estimation of the VECM-MSM and MRS-GARCH parameters, we estimate the

smoothed regime probabilities by applying the Kim (1994) algorithm to the filtered

conditional densities. The smoothed regime probabilities are then used to calculate

the state dependent variance-covariance matrix.

The VECM-MSM dynamic hedge ratios, along with the hedge ratios from other

models are plotted for all assets and are depicted in Figure 2.2. The rich dynamics

of the MSM hedge ratios clearly reject the appropriateness of the constant hedge

ratios. More importantly the variation in the MSM hedge ratios also indicates the

need for frequent updating of the portfolio of spot and futures positions in response

to volatility movements in the commodity markets. Several other points are also

worth noting from the plots. First, we observe that the hedge ratios tend to be

at extreme ends the further away the basis is from zero. These periods generally

coincide with periods of extreme market volatility, as noted earlier.

Second, the impact of past extreme shocks can also be observed on the dynamics of

the hedge ratios. For example, the impact of the extreme market volatility following

the 1990-1991 Gulf war can be seen in the hedge ratios for crude oil and heating

oil. This period is characterized by extreme backwardation in which the spot price

17The BEKK GARCH is used in place of the constant correlation GARCH, in response to a sug-
gestion from the supervisory committee.
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Figure 2.2: VECM-MSM, MRS-GARCH, GARCH and OLS Hedge Ra-
tios
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deviates significantly from the futures price. This leads to an increase in hedge ratios

in order to minimize risk exposure from such extreme market movements. The impact

of the extreme market movements of 1994-1996 and the commodity boom of early

2000s is reflected across all commodities. Likewise, the impact of the financial crises

of 2008 following the collapse of Lehman Brothers is very noticeable in the stock

market and the crude oil market. The hedge ratios of crude oil and S&P 500 rose

substantially around this period, responding to increased volatility in the markets.

2.4.5. Hedging Effectiveness

Ederington (1979) proposed an hedging effectiveness measure that is used to measure

the risk reduction effect of a minimum variance hedging strategy. This measure is

defined as the percentage reduction in the variance of a hedged portfolio returns,

relative to the unhedged portfolio returns. The variance reduction metric is defined

as:

V R = 1−
[
σp,a
σp,b

]
(2.38)

V R = 1 implies a 100% reduction in variance while V R = 0 implies no reduction.

Therefore, abstracting from the cost of implementing complex hedging strategies,
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the best hedging strategy is the strategy with the smallest portfolio variance. This

unconditional variance has been adopted as a benchmark for hedging performance

and as a criterion to compare and select the best among competing hedging strategies.

There are, however, several problems with the use of unconditional variance as a

measure of comparing hedging strategies. First, portfolio returns variance attaches

equal weights to both positive and negative returns. But this assumption is not likely

to hold in practice because agents care more about downside risk, which assumes that

returns below a certain threshold involve risk while returns above such threshold

is perceived as better investment opportunities (Grootveld and Hallerbach, 1999;

Unser, 2000). Furthermore, Lien and Tse (2002) argue that a one-sided risk measure

is more representative of an agent’s risk perception in the context of hedging, than

the traditional variance measure. Second, Lien (2006) demonstrates analytically

that the variance method produces a downward biased estimator of the true hedging

effectiveness. Lien (2007) further quantifies the magnitude of the bias and finds that,

although the bias is small, the variance of the estimator is sometimes too large to be

reliable.

Third, the unconditional variance is a criterion designed specifically to determine the

hedging effectiveness of the OLS minimum variance hedge ratio by Ederington (1979),

and does not apply to other hedge ratios. Therefore, it is inappropriate for comparing

other hedge ratios against the OLS hedge ratios. Lien (2005) demonstrates that a

strict application of the unconditional variance as a criterion for comparing hedging

strategies almost always leads to an incorrect conclusion that the OLS hedging strat-

egy outperforms other strategies. The study further demonstrates that the exception

occurs only when the number of observations in the estimation sample or the out-

of-sample data is small, or when there is a structural change between the in-sample

period and the out-of-sample period. Lastly, using an unconditional performance

measure to assess the performance of a dynamic hedging strategy that minimizes the
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conditional portfolio variance is inadequate and theoretically incoherent.

Therefore, several other alternative performance measures have been applied in the

literature. These include unconditional semi-variance, lower partial moments (Al-

izadeh et al., 2008; Cotter and Hanly, 2006), certainty equivalence (Lien and Lee,

2012), value at risk (VaR) and conditional value at risk (CVaR) (Alizadeh et al.,

2008; Cotter and Hanly, 2006). However, the unconditional semi-variance and lower

partial moment suffer from the same criticism as the unconditional variance measure.

Likewise, the unconditional VaR and the CVaR employed in the literature so far are

also computed using unconditional variance (Alizadeh et al., 2008; Cotter and Hanly,

2006), thereby inheriting some of the drawbacks of the unconditional variance mea-

sure. Moreover, the earlier studies that employed the VaR criterion simply ranked

models by the size of their VaR. Such an application of VaR is grossly inaccurate.

A model may have a small portfolio VaR, but may also produce portfolio returns

that continuously violate such VaR. Such models will be considered inadequate for

risk management because they fail to accurately protect investors from downside

risks. Lastly, while the certainty equivalence measure does not necessarily favor the

OLS, Lien and Lee (2012) shows that, similarly to the variance method, the certainty

equivalent measure is biased.

In the light of all of these, this study adopts a different approach for evaluating hedg-

ing strategies, therefore, making a significant contribution to the literature. Since

hedging itself is a financial risk management tool, we employ the conditional VaR,18

which is a risk management loss function that is widely accepted as a gold standard

among financial practitioners, and constitutes an important tool within several fi-

nancial regulatory compliance frameworks. No other studies in the literature, to the

18The use of VaR in this study is different from the way it has been applied in the hedging literature.
The literature so far has simply ranked models based on the size of their unconditional VaR,
thereby favoring the model with the smallest VaR. This approach is rather inadequate as shall
be argued later.
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best of our knowledge, have employed the conditional VaR as a measure for hedging

effectiveness. A portfolio VaR quantifies, in monetary terms, the maximum expected

loss (or worst case scenario) on the hedged portfolio, over a given time period, t, and

given a specified degree of confidence, α. Recall from Equation (2.3) that the return

on the hedged portfolio is Rh. Then the VaR measure at time t, of model g with

confidence level, α%, is defined as the conditional quantile,F g
t|t−1(α), where

F g
t|t−1(α)|Ωt−1 = µg + Φ−1(α)σgt (2.39)

where Φ(.) is a cumulative distribution function and σgt is the conditional portfolio

volatility estimate for model g. With α = 0.05, Φ−1(α) = −1.64.19 For example if

Ft|t−1(0.05) = $10, it means with 95% confidence level, the maximum expected loss

on the portfolio value is $10. Also, note that the conditionality of the VaR is very

important here. Unlike earlier studies in the futures hedging literature, the VaR here

is time varying, and is dependent on the available information in the previous period.

When the value of a hedged portfolio drops below the VaR level, a failure is said to

occur. The accuracy of a hedging strategy can be easily verified by recording the

failure rate of its VaR. If the number of empirical violations significantly exceeds the

predicted failure rate, a model is said to be inadequate because the predicted VaR is

too low and the available capital would not be sufficient to cover future losses. For

example, with a 95% confidence level, if the number of times a model violates its VaR

is more than 5% of the sample, then the model is considered inadequate. Conversely,

if the number of empirical violations is significantly lower than the predicted failure

rate, the model is equally considered inadequate because the estimated VaR is too

19For the VaR purpose, it is assumed that returns follow a normal distribution. The normality
assumption simplifies the VaR calculations because all percentiles are assumed to be known
multiples of the standard deviation. Thus, the VaR calculation requires only an estimate of the
standard deviation of the portfolios change in value over the holding period.
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conservative (too high), which leads to unprofitable tie down of capital. Therefore,

a VaR that is either too high or too low is equally detrimental to an investor. A

model is deemed adequate if its proportion of violations is close to the nominal value

of α%.

But how close enough should the violation rate be to the nominal value? To answer

this question, Kupiec (1995) introduced a simple likelihood ratio test. Uncondition-

ally, a VaR is said to be efficient if E(It) = α, where It = 1 when there is a failure,

and 0 otherwise. In other words, a VaR is said to be efficient if the proportion of

portfolio returns less than the VaR is equal to α. Under the assumption that the fail-

ure rate is iid and binomially distributed, the likelihood ratio test of unconditional

coverage is

LRuc = −2 ln

[
αn1(1− α)n0

α̂n1(1− α̂)n0

]
∼ χ2(1) (2.40)

where α is the nominal failure rate chosen (usually 1% or 5%), α̂ = n1/(n0 + n1) is

the maximum likelihood estimate of α, n1 is the number of 1’s in It and n0 is the

number of 0’s in It. The null and alternative hypotheses are

H0 : E(It) = α (2.41)

H1 : E(It) 6= α

Therefore, when the null hypothesis is rejected, a model is deemed to be inadequate.

The null hypothesis will be rejected either when the empirical violation rate is too

high, or too low compared to the nominal violation rate.

Christoffersen (1998) however suggests that a correctly specified VaR model should

generate pre-specified violation rates conditionally at every point in time, a property
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referred to as conditional coverage. The author contends that given the well doc-

umented clustering of volatility in financial markets, a VaR forecast should be an

interval forecast, rather than a point forecast. The interval forecast should be wide

in volatile periods and narrow in tranquil periods. Also, the VaR violations should

be spread independently over the entire sample rather than clustered. The author,

thus, presents a framework that combines the test of the independence of violations

with the test conditional coverage. Under the null hypothesis of an independent

violation process with violation probability α, against the alternative of a first order

Markov violation process, the likelihood ratio statistic is

LRcc = −2 ln

[
αn1(1− α)n0

(1− π̂01)n00 π̂n01
01 (1− π̂11)n10 π̂n11

11

]
∼ χ2(2) (2.42)

where nij is the number of i values followed by a j value, for i, j = 0, 1. πij = P(It =

i|It−1 = j), π̂01 = n01/(n01 + n00), π̂11 = n11/(n10 + n11), and π̂ = (n01 + n11)/(n01 +

n00 + n10 + n11). A model is deemed to fail the test of conditional VaR coverage if

the null hypothesis is rejected. Note that the test of conditional coverage is stronger

than the test of unconditional coverage, in that the former encompasses the latter.

A model may pass the test of unconditional coverage, but fail the test of conditional

coverage. In other words, even if a model records VaR violations that are close to

the nominal violation rate α, the model may be deemed inadequate if such violations

occur in clusters.

To assess the the performance of the different hedging strategies considered in this

study, we employ the two VaR based tests discussed above. Specifically, we consider

the 99% and the 95% VaR and perform the likelihood ratio tests outlined in Equations

(2.40) and (2.42) for each asset. Recall from Equation (2.4) that the portfolio variance

is given by

σ2
h,t = σ2

s,t + ĥ2σ2
f,t − 2ĥσsf,t (2.43)
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Table 2.5: In-Sample Hedging Effectiveness of Alternative Models

Model WTI Heating Corn Wheat Gold Silver CAD GBP S&P 500

Unconditional Coverage of 99% Value-at-Risk Assessment

VECM - MSM
PF 0.0414 0.0101 0.0099 0.0062 0.0246 0.0228 0.0097 0.0076 0.0194
LRuc 72.9220 0.0028 0.0014 2.7369 25.4379 20.1870 0.0140 1.2071 10.4446

(0.0000) (0.9576) (0.9700) (0.0981) (0.0000) (0.0000) (0.9058) (0.2719) (0.0012)
MRS - GARCH
PF 0.0622 0.1460 0.0663 0.1133 0.1300 0.0959 0.0252 0.0730 0.0668
LRuc 163.712 679.373 228.2174 572.840 737.957 449.502 28.573 311.199 214.857

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
GARCH
PF 0.0353 0.0125 0.0266 0.0180 0.0377 0.0312 0.0206 0.0184 0.0388
RLuc 50.9575 0.7436 30.9715 8.3553 76.0592 48.3291 15.1546 10.5157 72.3704

(0.0000) (0.3885) (0.0000) (0.0038) (0.0000) (0.0000) (0.0001) (0.0012) (0.0000)
OLS
PF 0.0215 0.0164 0.0254 0.0192 0.0168 0.0108 0.0132 0.0162 0.0307
LRu 13.0716 4.4335 27.0837 10.8665 6.4317 0.1013 1.5953 6.0780 41.9152

(0.0003) (0.0352) (0.0000) (0.0010) (0.0112) (0.7503) (0.2066) (0.0137) (0.0000)
Naive
PF 0.0223 0.0164 0.0229 0.0142 0.0204 0.0102 0.0126 0.0157 0.0321
LRuc 14.6609 4.4335 19.9189 2.5938 13.9474 0.0058 1.0859 5.1328 46.5814

(0.0001) (0.0352) (0.0000) (0.1073) (0.0002) (0.9394) (0.2974) (0.0235) (0.0000)

Conditional Coverage of 99% Value-at-Risk Assessment

VECM - MSM
LRc 72.9220 2.4367 0.0014 2.7369 25.4379 20.1870 0.0140 1.2071 10.4446

(0.0000) (0.2957) (0.9993) (0.2545) (0.0000) (0.0000) (0.9930) (0.5469) (0.0054)
MRS - GARCH
LRc 163.712 695.513 228.4201 806.690 754.974 463.270 28.573 325.610 214.857

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
GARCH
LRc 50.9575 0.7436 30.9919 8.3553 76.0592 48.3291 15.1546 10.5157 72.3704

(0.0000) (0.6895) (0.0000) (0.0153) (0.0000) (0.0000) (0.0005) (0.0052) (0.0000)
OLS
LRc 13.0716 24.1669 32.3867 16.1545 6.9024 6.1982 2.6347 6.0780 41.9152

(0.0015) (0.0000) (0.0000) (0.0003) (0.0317) (0.0451) (0.2678) (0.0479) (0.0000)
Naive
Lc 14.6609 24.1669 26.5955 6.7386 14.0726 1.9412 1.0859 5.1328 46.5814

(0.0007) (0.0000) (0.0000) (0.0344) (0.0009) (0.3788) (0.5810) (0.0768) (0.0000)

Unconditional Coverage of 95% Value-at-Risk Assessment

VECM - MSM
PF 0.0767 0.0336 0.0502 0.0279 0.0803 0.0665 0.0417 0.0373 0.0515
LRuc 16.9861 8.1941 0.0008 19.7040 27.4517 8.7142 2.6566 6.8647 0.0675

(0.0000) (0.0042) (0.9772) (0.0000) (0.0000) (0.0032) (0.1031) (0.0088) (0.7950)
MRS - GARCH
PF 0.0913 0.2217 0.1034 0.1684 0.2019 0.1642 0.0635 0.1449 0.1103
LRuc 38.0560 448.420 75.1385 303.055 476.592 294.283 6.1742 237.325 86.5220

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0130) (0.0000) (0.0000)

Continued on next page
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Table 2.5 – Continued from previous page

Model WTI Heating Corn Wheat Gold Silver CAD GBP S&P 500

GARCH
PF 0.0560 0.0406 0.0563 0.0440 0.0851 0.0695 0.0560 0.0459 0.0635
LRuc 0.9599 2.5432 1.3179 1.2895 36.0578 11.9803 1.2916 0.6572 5.3097

(0.3272) (0.1108) (0.2510) (0.2561) (0.0000) (0.0005) (0.2558) (0.4175) (0.0212)
OLS
PF 0.0368 0.0242 0.0477 0.0402 0.0336 0.0204 0.0366 0.0335 0.0575
LRuc 5.2094 21.9976 0.1861 3.4549 10.6962 39.3701 7.2698 11.9171 1.6876

(0.0225) (0.0000) (0.6662) (0.0631) (0.0011) (0.0000) (0.0070) (0.0006) (0.1939)
Naive
PF 0.0376 0.0242 0.0502 0.0458 0.0359 0.0234 0.0349 0.0330 0.0608
LRuc 4.5923 21.9976 0.0008 0.6103 7.6568 30.8011 9.3753 12.7684 3.4649

(0.0321) (0.0000) (0.9772) (0.4347) (0.0057) (0.0000) (0.0022) (0.0004) (0.0627)

Conditional Coverage of 95% Value-at-Risk Assessment

VECM - MSM
LRc 16.9861 11.5577 0.9036 19.7626 36.3170 18.2880 4.6459 8.1985 0.0675

(0.0002) (0.0031) (0.6365) (0.0001) (0.0000) (0.0001) (0.0980) (0.0166) (0.9668)
MRS-GARCH
LRc 54.8782 476.660 75.9555 305.072 522.389 345.477 9.3867 264.102 119.278

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0092) (0.0000) (0.0000)
GARCH
LRc 0.9599 3.3228 1.4757 1.2949 38.9983 22.8796 7.2150 1.8844 5.3097

(0.6188) (0.1899) (0.4781) (0.5234) (0.0000) (0.0000) (0.0271) (0.3898) (0.0703)
OLS
LRc 5.2094 38.4000 8.7138 7.0251 11.2227 41.1005 8.3259 11.9203 4.1775

(0.0739) (0.0000) (0.0128) (0.0298) (0.0037) (0.0000) (0.0156) (0.0026) (0.1238)
Naive
LRc 4.5923 38.4000 5.1011 2.4367 7.6695 31.8300 9.3838 13.4297 6.7671

(0.1006) (0.0000) (0.0780) (0.2957) (0.0216) (0.0000) (0.0092) (0.0012) (0.0339)
Unconditional Portfolio Variance

VECM - MSM
2.4576 4.7494 4.0366 4.8498 1.3400 5.0886 0.0800 0.1904 0.1408

MRS-GARCH
2.6027 6.3678 4.4911 5.1834 1.4924 5.6221 0.0835 0.1940 0.1415

GARCH
2.7155 7.0320 4.4762 5.0352 1.3818 6.6002 0.0824 0.1918 0.1394

OLS
2.5989 5.0831 4.2110 5.5480 1.3395 4.8494 0.0810 0.1904 0.1423

Naive
2.6076 5.0831 4.4593 7.4393 1.4441 4.9607 0.0846 0.2010 0.1527

Notes: This table displays the frequency of in-sample hedged portfolio returns that exceed the 1-day VaR forecasted
by the alternative hedging strategies. The VECM-MSM specification uses k = 8 components. For quantile α%,
PF reports the frequency of hedged portfolio returns below quantile α predicted by the model. That is PF is the
proportion of Rgh,t+1, R

g
h,t+2, ...R

g
h,t+n < F g

t|t−1
(α)|Ωt−1, for model g. LRuc and LRc report the likelihood ratios

of the test of unconditional and conditional coverage, respectively. The values in parentheses are the corresponding
p-values. If the VaR forecast is correct, the observed failure rate PF should not be statistically different from the
predicted failure rate α, where α = 1% and 5% for 99% and 95% VaR, respectively. A boldface number indicates a
rejection of the null hypothesis at the 5% significance level, that PF = α. Note that PF = E(It).
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For the conditional models (VECM-MSM, MRS-GARCH and GARCH), we com-

pute Equation (2.43) using their in-sample conditional volatility estimates. For out-

of-sample analysis, conditional volatility forecasts are used instead. For the OLS

and the naive model, we use the unconditional sample variance of spot and futures

returns. For out-of-sample analysis, the unconditional variances of spot and futures

returns (hence portfolio variance) are updated for each week after adding the new

observation. Once the portfolio variance is calculated for each model, this can then

be substituted into Equation (2.39) to derive the portfolio VaR. Although, we con-

tinue to report the unconditional portfolio variance for the sake of completeness, we

do not rank models based on the unconditional variance criterion. The results for

the hedging effectiveness assessment are reported in Table 2.5

Two conclusions can be drawn from Table 2.5. First, the VECM-MSM hedging

strategy is more conservative in terms of futures risk hedging, because it tends to

fail less. This is indicated by the proportion of hedge portfolio returns that were

below the 99% VaR level, under the VECM-MSM strategy. The average failure rate

across the 9 portfolios is 0.0169 for the VECM-MSM model. This is smaller than

the average failure rate for the other strategies: 0.0865 for MRS-GARCH, 0.0266 for

GARCH, 0.0189 for OLS and 0.0185 for the naive strategy. Second, the VECM-MSM

hedging strategy has a more accurate VaR prediction, compared to other strategies.

For example, when the predicted failure rate is 1%, actual portfolio losses exceed

the VECM-MSM VaR forecast more than 1% of the time for 4 (WTI, gold, silver

and S&P 500) out of 9 portfolios. The numbers are 9, 8, 7 and 6 portfolios for the

MRS-GARCH, GARCH, OLS and the naive hedging strategies, respectively.

As discussed earlier, an excessively conservative model does not necessarily lead to

superior risk management. It rather leads to sub-optimal capital allocation to in-

vestments. For each portfolio, we test the null hypothesis that the empirical failure
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rate, PF , is equal to the expected failure rate, α. The likelihood ratio test statistics

for both the unconditional coverage and conditional coverage are also reported in

Table 2.5. For the VECM-MSM model, the failure rates are statistically different

from the 1% prediction for 4 out of the 9 hedged portfolios, both unconditionally

and conditionally. The numbers are 9, 8, 7 and 6 portfolios for the MRS-GARCH,

GARCH, OLS and the naive hedging strategies, respectively, for unconditional cov-

erage. The numbers are 9, 8, 6 and 6 portfolios for the MRS-GARCH, GARCH, OLS

and the naive hedging strategies, respectively, for conditional coverage . The sta-

tistical tests therefore suggest that the VECM-MSM hedging strategy is not overly

conservative. In other words, investors who care about downside risks will be better

off adopting the VECM-MSM hedging strategy because it provides better hedging

against downside risks.

Looking at the 95% VaR however, the results are slightly different. It can be observed

that the GARCH portfolio performs better, in that it records failure rates that are

closest to the predicted failure rates. The GARCH hedge portfolio failure rates

are statistically different from the 5% prediction for only 3 out of the 9 hedged

portfolios, both unconditionally and conditionally. The corresponding value for the

VECM-MSM is 6 out of 9 hedged portfolios. The average failure rates for the OLS

and the naive strategies are 0.0367 and 0.0384, respectively, for the 95% VaR. These

indicate that these strategies are too conservative. This is further corroborated by

the likelihood ratio tests. The OLS and naive hedge portfolios failure rates are

statistically different from the 5% prediction for 6 out of the 9 hedged portfolios,

both unconditionally and conditionally. The MRS-GARCH hedged strategy is the

least performing model in that it records VaR failure rates that are too large to be

reliable, both at the 99% level and 99% level, and for all assets.

Lastly, the unconditional portfolio variances are also reported in Table 2.5. It can
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be observed that the VECM-MSM records the least portfolio variance in 5 out of 9

portfolios, while the OLS strategy produces the least portfolio variance in 2 out of 9

cases. But this is limited to the in-sample analysis.

The in-sample analysis of the various hedging strategies is only indicative of historical

performances. However, investors are more concerned with how well they can do in

the future using different hedging strategies. Consequently, we conduct an out-of-

sample hedging analysis using data from January 2011 to December 2012. For the

OLS hedge ratios, we re-estimate the regression model for each out-of-sample week

after adding the new observation.

In the case of the GARCH based model, the BEKK-GARCH model is re-estimated

each week and the optimal hedge ratios are computed from the one-week ahead

forecast of the variance-covariance matrix. For the MRS-GARCH and the VECM-

MSM models, the models are estimated each week after adding the new observation.

The parameters are used to back out the conditional filtered probabilities Πt and the

transition matrix P for time t. Using, the filtered probabilities and the transition

matrix, we compute a one-week ahead forecast of the regime probabilities at time t+1

as Πt+1 = ΠtP . The forecasted regime probabilities are then used to compute the

one-week ahead forecast of the variance-covariance matrix, from which the dynamic

hedge ratios are computed. The process is repeated every week with new observation

added to the data set. The out-of-sample results are reported in Table 2.6.

Table 2.6: Out-of-Sample Hedging Effectiveness of Alternative Models

Model WTI Heating Corn Wheat Gold Silver CAD GBP S&P 500

Unconditional Coverage of 99% Value-at-Risk Assessment

VECM-MSM
PF 0.0098 0.0000 0.0000 0.0097 0.0291 0.0097 0.0098 0.0000 0.0097
LRuc 0.0004 2.0704 2.0704 0.0009 2.5126 0.0009 0.0004 2.0503 0.0009

(0.9841) (0.1502) (0.1502) (0.9762) (0.1129) (0.9762) (0.9841) (0.1522) (0.9762)

Continued on next page
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Table 2.6 – Continued from previous page

Model WTI Heating Corn Wheat Gold Silver CAD GBP S&P 500

MRS-GARCH
PF 0.0000 0.0000 0.0000 0.0194 0.0291 0.0194 0.0294 0.0000 0.0194
LRuc 2.0503 2.0704 2.0704 0.7236 2.5126 0.7236 2.5519 2.0503 0.7236

(0.1522) (0.1502) (0.1502) (0.3950) (0.1129) (0.3950) (0.1102) (0.1522) (0.3950)
GARCH
PF 0.0000 0.0000 0.0097 0.0097 0.0388 0.0388 0.0392 0.0000 0.0097
LRuc 2.0503 2.0704 0.0009 0.0009 5.0012 5.0012 5.0608 2.0503 0.0009

(0.1522) (0.1502) (0.9762) (0.9762) (0.0253) (0.0253) (0.0245) (0.1522) (0.9762)
OLS
PF 0.0000 0.0000 0.0000 0.0485 0.0194 0.0000 0.0392 0.0000 0.4175
LRuc 2.0503 2.0704 2.0704 8.0154 0.7236 2.0704 5.0608 2.0503 257.281

(0.1522) (0.1502) (0.1502) (0.0046) (0.3950) (0.1502) (0.0245) (0.1522) (0.0000)
Naive
PF 0.0000 0.0000 0.0000 0.0291 0.0194 0.0000 0.0196 0.0000 0.0000
LRuc 2.0503 2.0704 2.0704 2.5126 0.7236 2.0704 0.7429 2.0503 2.0704

(0.1522) (0.1502) (0.1502) (0.1129) (0.3950) (0.1502) (0.3887) (0.1522) (0.1502)

Conditional Coverage of 99% Value-at-Risk Assessment

VECM-MSM
LRc 0.0041 3.0704 3.0704 0.0046 2.5126 0.0046 0.0041 3.0503 0.0046

(0.9980) (0.2154) (0.2154) (0.9977) (0.2847) (0.9977) (0.9980) (0.2176) (0.9977)
MRS-GARCH
LRc 3.0503 3.0704 3.0704 0.7237 2.5126 0.7237 2.5519 3.0503 0.7237

(0.2176) (0.2154) (0.2154) (0.6964) (0.2847) (0.6964) (0.2792) (0.2176) (0.6964)
GARCH
LRc 3.0503 3.0704 0.0046 0.0046 5.0012 5.0012 5.0608 3.0503 0.0046

(0.2176) (0.2154) (0.9977) (0.9977) (0.0820) (0.0820) (0.0796) (0.2176) (0.9977)
OLS
LRc 3.0503 3.0704 3.0704 9.5775 0.7237 3.0704 5.0608 3.0503 261.013

(0.2176) (0.2154) (0.2154) (0.0083) (0.6964) (0.2154) (0.0796) (0.2176) (0.0000)
Naive
LRc 3.0503 3.0704 3.0704 2.5126 0.7237 3.0704 0.7430 3.0503 3.0704

(0.2176) (0.2154) (0.2154) (0.2847) (0.6964) (0.2154) (0.6897) (0.2176) (0.2154)

Unconditional Coverage of 95% Value-at-Risk Assessment

VECM-MSM
PF 0.0196 0.0000 0.0291 0.0291 0.0680 0.0680 0.0490 0.0196 0.0291
LRuc 2.5538 10.5664 1.1046 1.1046 0.6320 0.6320 0.0021 2.5538 1.1046

(0.1100) (0.0012) (0.2933) (0.2933) (0.4266) (0.4266) (0.9637) (0.1100) (0.2933)
MRS-GARCH
PF 0.0000 0.0000 0.0291 0.0583 0.0485 0.0583 0.0686 0.0098 0.0485
LRuc 10.4638 10.5664 1.1046 0.1406 0.0046 0.1406 0.6709 5.1126 0.0046

(0.0012) (0.0012) (0.2933) (0.7077) (0.9457) (0.7077) (0.4127) (0.0238) (0.9457)
GARCH
PF 0.0098 0.0194 0.0194 0.0583 0.0583 0.0777 0.0980 0.0392 0.0291
LRuc 5.1126 2.6169 2.6169 0.1406 0.1406 1.4309 3.9190 0.2689 1.1046

(0.0238) (0.1057) (0.1057) (0.7077) (0.7077) (0.2316) (0.0477) (0.6041) (0.2933)
OLS
PF 0.0000 0.0000 0.0097 0.0971 0.0291 0.0000 0.0882 0.0098 0.4175
LRuc 10.4638 10.5664 5.1956 3.8162 1.1046 10.5664 2.5828 5.1126 123.819

(0.0012) (0.0012) (0.0226) (0.0508) (0.2933) (0.0012) (0.1080) (0.0238) (0.0000)

Continued on next page

88



Table 2.6 – Continued from previous page

Model WTI Heating Corn Wheat Gold Silver CAD GBP S&P 500

Naive
PF 0.0000 0.0000 0.0291 0.0485 0.0291 0.0000 0.0490 0.0000 0.0194
LRuc 10.4638 10.5664 1.1046 0.0046 1.1046 10.5664 0.0021 10.4638 2.6169

(0.0012) (0.0012) (0.2933) (0.9457) (0.2933) (0.0012) (0.9637) (0.0012) (0.1057)

Conditional Coverage of 95% Value-at-Risk Assessment

VECM-MSM
LRc 2.5538 11.5664 1.1046 1.1046 0.6320 0.6320 0.0021 2.5538 1.1046

(0.2789) (0.0031) (0.5756) (0.5756) (0.7291) (0.7291) (0.9990) (0.2789) (0.5756)
MRS-GARCH
LRc 11.4638 11.5664 1.1046 0.1406 0.0046 0.1406 0.6709 5.1163 0.0046

(0.0032) (0.0031) (0.5756) (0.9321) (0.9977) (0.9321) (0.7150) (0.0774) (0.9977)
GARCH
Lc 5.1163 2.6170 2.6170 0.1406 0.1406 1.4309 3.9190 0.2689 1.1046

(0.0774) (0.2702) (0.2702) (0.9321) (0.9321) (0.4890) (0.1409) (0.8742) (0.5756)
OLS
LRc 11.4638 11.5664 5.1992 3.8167 1.1046 11.5664 2.5828 5.1163 127.550

(0.0032) (0.0031) (0.0743) (0.1483) (0.5756) (0.0031) (0.2749) (0.0774) (0.0000)
Naive
LRc 11.4638 11.5664 1.1046 0.0046 1.1046 11.5664 0.0021 11.4638 2.6170

(0.0032) (0.0031) (0.5756) (0.9977) (0.5756) (0.0031) (0.9990) (0.0032) (0.2702)

Unconditional Portfolio Variance

VECM-MSM
0.1344 0.2174 2.2698 7.0960 0.9763 1.4524 0.0918 0.0562 0.0608

MRS-GARCH
0.1526 0.2638 2.3485 6.9473 0.0576 1.4760 0.0895 0.0576 0.0508

GARCH
0.1817 0.2254 2.3056 7.0073 0.9983 1.5805 0.0885 0.0550 0.0532

OLS
0.1290 0.2163 2.3024 7.9108 0.9452 1.4393 0.0887 0.0560 0.0633

Naive
0.1261 0.2167 2.1967 7.2513 1.0646 1.5721 0.0860 0.0518 0.0469

Notes: This table displays the frequency of out-of-sample hedged portfolio returns that exceed the 1-day VaR
forecasted by the alternative hedging strategies. The VECM-MSM specification uses k = 8 components. For quantile
α%, PF reports the frequency of hedged portfolio returns below quantile α predicted by the model. That is PF is the
proportion of Rgh,t+1, R

g
h,t+2, ...R

g
h,t+n < F g

t|t−1
(α)|Ωt−1, for model g. LRuc and LRc report the likelihood ratios

of the test of unconditional and conditional coverage, respectively. The values in parentheses are the corresponding
p-values. If the VaR forecast is correct, the observed failure rate PF should not be statistically different from the
predicted failure rate α, where α = 1% and 5% for 99% and 95% VaR, respectively. A boldface number indicates a
rejection of the null hypothesis at the 5% significance level, that PF = α. Note that PF = E(It).

The out-of-sample analysis further corroborates the results in Table 2.5. First, the

VECM-MSM hedging strategy is more conservative in in that it tends to fail less,

with an average failure rate of 0.0087 for the 99% VaR. This is smaller than the
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average failure rate for the other strategies: 0.0130 for MRS-GARCH, 0.0162 for

GARCH, 0.0583 for OLS and 0.0076 for the naive strategy. Second, the VECM-MSM

hedging strategy has a more accurate VaR prediction, compared to other strategies.

For example, when the predicted failure rate is 1%, actual VECM-MSM portfolio

losses exceed the 99% VaR forecast for only 1 (gold) out of the 9 portfolios. The

actual portfolio losses exceed the 99% VaR for 5, 3, 4 and 3 portfolios in the case of

MRS-GARCH, GARCH, OLS and the naive strategies.

For each portfolio in the out-of-sample analysis, we also test the null hypothesis that

the empirical failure rate, PF , is equal to the expected failure rate, α. For the VECM-

MSM model, the null hypothesis cannot be rejected for all the 9 hedged portfolios,

both unconditionally and conditionally. The same holds true for the MRS-GARCH

and the naive hedge strategy, indicating that both strategies perform better in the

out-of-sample analysis. However, they record higher average violation rates than

the VECM-MSM model. On the other hand, the null hypothesis of unconditional

coverage is rejected for the GARCH and the OLS strategies in 3 out of the 9 hedged

portfolios. The statistical tests therefore suggest that the VECM-MSM hedging

strategy is not overly conservative in the out-of-sample VaR forecast.

The results for the 95% VaR show that the naive hedging strategy records the lowest

average violation rates at 0.0140, while the OLS strategy records the highest viola-

tion rate at 0.0724. Also, the naive hedged portfolio losses do not exceed the 95%

VaR for any of the 9 portfolios. Testing the null hypothesis of unconditional and con-

ditional coverages however, we find that naive strategy is overly conservative. The

null hypotheses of unconditional and conditional coverages are rejected for 5 and

4 portfolios, respectively. For the VECM-MSM model, the actual portfolio losses

exceed the 95% VaR for only 2 out of 9 hedged portfolios. The numbers are 3, 4 and

3 for the MRS-GARCH, GARCH and the OLS strategies. Also, the null hypothesis
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of unconditional coverage is rejected for only 1 VECM-MSM hedged portfolio. The

same holds true for the GARCH model. But the null hypothesis is rejected for 3 and

6 portfolios for the MRS-GARCH and the OLS strategies.

Lastly, the out-of-sample unconditional portfolio variances are also reported in Table

2.6. It can be observed that the naive strategy dominates, with the least portfolio

variance in 5 out of 9 portfolios. If the portfolio variance was used as a criterion

for hedging evaluation, the naive model would certainly perform better than other

models. But as discussed earlier on, this approach is inaccurate and theoretically

incoherent for evaluating conditional models.

2.5. Conclusion

This paper applies the VECM-MSM model to the futures hedging decision problem

of a mean-variance investor. We assume that spot and futures returns follow a

VECM-MSM process and derive the dynamic optimal hedge ratios under a mean-

variance framework. The VECM-MSM hedge model was applied to 9 assets from five

different markets: energy, agricultural, metal, foreign exchange and stock markets.

The VECM-MSM model seems to capture the data reasonably well. To evaluate

hedging effectiveness, we adopt the VaR approach because it captures better the

downside risk that investors care about, and it is also an important evaluation metric

used by financial regulators.

In-sample and out-of-sample hedge effectiveness shows the VECM-MSM hedged port-

folio outperforms alternative hedging strategies in terms of providing the best cov-

erage against downside risks. The statistical tests also show that the VECM-MSM

hedging strategy is conservative in terms of protecting portfolio returns against down-

side risk, but not overly conservative. In other words, investors who care about down-

91



side risks will be better off adopting the VECM-MSM hedging strategy because it

provides better hedging against downside risks. Statistical tests of unconditional

and conditional coverages also show that the VECM-MSM model better predicts

an investors downside risk in that the VaR predictions are more accurate than the

predictions from the alternative models.

There is, however, room for improvements in terms of advancing the VECM-MSM

model. The proposed VECM-MSM model only considers regime switching in con-

ditional volatility, not conditional mean. The model could be improved to allow for

the speed of adjustment to long-run equilibrium to be dependent on the state of the

economy. This is consistent with empirical evidence pointing to the regime depen-

dent nature of the speed of adjustment between spot and futures prices (Baillie and

Bollerslev, 2000; Baillie and Kilic, 2006; Beckmann and Czudaj, 2014; Maynard and

Phillips, 2001). Non-linearity in the speed of adjustment of spot and futures prices

arises as a result of high transaction costs, the role of noise traders and the existence

of threshold carrying cost which makes investors indifferent between buying a spot

commodity or a futures contract (Chen and Wuh Lin, 2004; Huang et al., 2009; Lin

and Liang, 2010; Silvapulle and Moosa, 1999). Incorporating this phenomenon into

the VECM-MSM model may yield substantial improvements in hedging performance.
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Chapter 3

Excess Commodity Comovement:
A Multifrequency Approach

3.1. Introduction

One of the stylized facts of commodity prices is their tendency for co-movement. This

observation was first investigated by Pindyck and Rotemberg (1990) (henceforth PR)

who note that the prices of seemingly unrelated commodities tend to move together

beyond what can be attributed to fundamentals such as demand and supply condi-

tions, exchange rates, interest rates, industrial production etc. This phenomenon is

termed excess commodity comovement. PR posit that such excess comovement may

at least partially be explained by herding behaviour among speculators in commodity

markets i.e many traders tend to long or short in all commodities without plausible

reasons.

Excess commodity comovement bears significant welfare and risk management impli-

cations. For instance, a synchronous rise in prices of commodities exerts significant

inflationary pressure on commodity import dependent countries, and limits their

ability to maintain economic stability and resist inflationary pressures. Moreover,
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to the extent that comovement measures, such as correlation and covariance among

commodities, comprise an essential ingredient in risk assessment, pricing, portfolio

management and hedging, failure to account for such excess comovement can lead

to sub-optimal economic decisions. Lastly, the presence of excess comovement also

casts doubts on the efficient market hypothesis and competitive-storage models of

commodity pricing. This would imply that agents act irrationally in markets that

are supposedly competitive.

For these reasons, there has been a plethora of empirical studies directed towards

the analysis of excess comovement in commodity markets, yielding mixed findings

with regards to the presence or otherwise of excess commodity comovement.

Therefore within the the debate on excess commodity comovement, the aim of this

chapter is twofold. First, it analyzes the degree of excess commodity comovement

across a variety of commodities. Second, it analyzes the frequency-dependent nature

of comovement across related (e.g. crude and heating oil) and unrelated commodities

(e.g. copper and corn). To this end, we address the following questions:

i Is there excess comovement across commodities?

ii Is excess comovement a temporary or long term phenomenon, or a combination

of both?

In order to address these questions, we employ the Markov-switching Multifractal

(MSM) model of Calvet and Fisher (2001), Calvet and Fisher (2004) and Calvet

et al. (2006). Therefore, this study makes a significant contribution to the com-

modity comovement literature, by being the first to analyse the problem using the

MSM model. The MSM model was first applied by Calvet et al. (2006) in the

analysis of exchange rate volatility comovement, where it was found that exchange

rate volatility comovement is frequency-specific. In the MSM framework, volatility
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and covariance are scaled multiplicative products of several random and statistically

independent volatility components with heterogeneous cycles. The MSM model is

particularly well-suited for addressing the questions raised in this study because it is

able to decompose pairwise comovement into several frequency-specific components.

Decomposing comovements into frequency-specific components (e.g low, medium and

high frequency) allows us to investigate which components of a pair of series comove

together, and whether excess comovement is a long or short term phenomenon.

The second contribution of this study to the literature is that it employs daily data,

rather than monthly, quarterly or yearly data that has been used in the previous

studies. The use of higher frequency data makes it possible to capture more rapid

cycles of propagation of shocks across seemingly unrelated commodities, an impor-

tant element that has been missing from earlier studies and might have contributed

to some failures to detect excess commodity comovement.

To anticipate the results of this study, we find that there is significant comovement

between commodity prices, beyond what can simply be explained by macroeconomic

fundamentals. Second, decomposing comovements into multiple frequencies, we find

that all commodities exhibit long-run excess comovements which are driven by low

frequency fundamentals such as weather, demographic and macroeconomic factors.

But some commodities also exhibit significant short-run excess comovements that

may be attributable to short-run factors such as liquidity constraints, indexation,

etc. Third, the dynamic correlations show that excess comovements are higher in

periods of high volatility and vice-versa.

The rest of this chapter is structured as follows. Section 2 reviews the literature

on commodity comovement. Section 3 presents the research methodology and the

comovement testing framework, while section 4 presents the data and the empirical

results. Section 5 provides further robustness analyses and section 6 concludes.
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3.2. Literature Review

The excess comovement of commodities as a phenomenon was first analysed by

Pindyck and Rotemberg (1990) in their seminal paper “The Excess Comovement

of Commodity Prices”. They perform a formal analysis by regressing log returns of

seemingly unrelated commodities (wheat, cocoa, lumber, cotton, crude oil, gold and

copper) on a set of U.S. macroeconomic variables (industrial production, consumer

price index, interest rate, exchange rate, money supply and stock index) over the

period April 1960 to November 1985, and compute the simple pairwise correlation

between the residuals. They find the residuals to be highly correlated, which suggests

that commodity prices show a persistent tendency to move together beyond what can

be explained by common macroeconomic shocks. The authors argue that such excess

comovement may be due to herding behaviour among commodity traders. Follow-

ing the work of Pindyck and Rotemberg (1990), however, several other studies have

emerged that sometimes confirmed and sometimes refute such excess comovement

phenomena.

Notably, Deb et al. (1996) suggest that the Pindyck and Rotemberg (1990) approach

fails to control for structural breaks and conditional heteroscedasticity in commodity

returns. In order to control for the time varying conditional distribution of commod-

ity returns, they assume that commodity returns follow a Garch process. Using data

from the same period as Pindyck and Rotemberg (1990) and applying several score

and likehood ratio tests, they document only weak evidence of excess comovement

in commodity prices.

Palaskas and Varangis (1991) test for excess comovement among 42 primary com-

modities, for the period 1959 to 1980. Adopting an Error-Correction Model and

cointegration techniques, they document evidence of excess comovement among 9
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annual commodity prices and 14 monthly commodity prices. They suggest, however,

that the observed comovement may largely be a consequence of the non-normality

of many of the commodity prices. They also observe that the power of macroeco-

nomic variables to explain variations in commodity prices falls as the frequency of

observations increases.

A potential drawback of the aforementioned studies is that they fail to consider

the possibility that commodity prices may be driven by other fundamental factors

beyond macroeconomic indicators. It is, in fact, counterintuitive to assume that most

of the demand and supply shocks that impact commodity prices can be captured

by a few macroeconomic indicators, as is assumed in the above studies. Besides,

macroeconomic indicators are more likely to reflect demand side than supply side

conditions (Ai et al., 2006).

In order to account for this shortcoming, some studies have approached the testing

of excess commodity comovement by adopting a market oriented approach. Ai et al.

(2006) use quarterly time series for five agricultural commodities (wheat, corn, barley,

oats and soybeans) to test for excess comovement in a partial equilibrium setting.

Using data on harvests and inventory levels to control for shared fundamental shocks,

they find that comovements are at best marginal, and nonexistent in some cases.

They therefore rule out the influence of speculation and conclude that supply factors

explain the majority of the comovement observed in commodity prices.

Lescaroux (2009) focuses on the comovement between crude oil and other commodi-

ties. The author’s tests of excess comovement considered are between crude oil and

metals (aluminium, copper, lead, zinc, nickel and tin) for which inventory level data

are available. Moreover, the study focuses on cyclical comovements by decomposing

commodity prices into trend and cyclical components using the Hodrick and Prescott

(1997) filter. The effects of fundamentals are further filtered out by regressing the
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cyclical components of commodities on the cyclical components of their respective

inventory levels. The study documents significant evidence of long term comove-

ment between oil and metals, with only rather weak evidence of short term excess

comovement.

Applying an Error Correction Model to six agricultural commodity futures prices,

Malliaris and Urrutia (1996) test for long-run and short-run comovement among

these commodities. The study finds significant evidence of long-term relationships

between the prices of agricultural commodities. But no evidence of short-term co-

movement was found. Leybourne et al. (1994) combine the Error Correction ap-

proach of Malliaris and Urrutia (1996) and the regression approach of Pindyck and

Rotemberg (1990) in an analysis of fifteen agricultural and metal commodity prices.

They found only weak evidence of comovement among four of the fifteen commodi-

ties. Cashin et al. (1999) test for excess comovement among the same seven seem-

ingly unrelated commodities that were examined in Pindyck and Rotemberg (1990),

using a concordance approach. The concordance statistic measures the extent of

synchronicity between the cycles of two random variables. The application is used

to measure the extent to which the prices of two commodities are concurrently in

a boom or a slump. They found no significant evidence of comovement among the

commodities, with the exception of gold and crude oil.

On the other hand, using nonstationary panel methods combined with a Factor Aug-

mented VAR approach, Byrne et al. (2012) analyzed a set twenty-four commodities

from 1900 to 2008, and document a statistically significant degree of excess comove-

ment among the commodities. Similarly, Le Pen and Sévi (2010) employ approximate

factor analysis to test for excess comovement in both returns and volatility for eight

seemingly unrelated commodities. They document significant evidence of comove-

ment in returns, but also conclude that no such evidence of excess comovement is
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present in volatilities.

Taken together, these studies suggest that the issue of whether there is excess co-

movement among commodities is at best an unsolved puzzle. There are however

several reasons that suggests the presence of significant comovement among com-

modities beyond what can be explained by fundamentals. Some of these factors are,

however, not as easily quantifiable as other macroeconomic factors.

One such factor is weather and other climatological factors. Given that world grain

production is relatively concentrated in certain geographical areas, adverse weather

conditions that lead to disruptions in supply from these areas will induce a simul-

taneous increase in prices of grains. According to the International Grain Council

(IGC), Australia, Argentina, Canada, the EU, Kazakhstan, Russia, Ukraine and the

US accounted for 52% of total world grain production in the 2010/2011 period (In-

ternational Grains Council, 2012). The impact of adverse weather can be seen in

the IGC’s daily grains and oilseeds index which rose by 11% in June of 2012 in re-

sponse to concerns over deteriorating yields prospects caused by overly hot and dry

conditions in the US. Moreover, Stevens (1991) and Anderson and Danthine (1983)

document evidence of weather persistence effects on grain contract prices.

A somewhat related factor that could be important in explaining commodity co-

movement relates to the profit maximizing behavior of farmers. Farmers, like other

economic agents, seek to maximize profit by allocating their limited resources (e.g

land, fertilizers, capital, and fuel etc) to planting the most profitable crops. There-

fore, they respond to relative price movements in commodity markets. For example,

because maize and soybeans can be grown on the same land, a relative increase in the

price of Soybeans in the spring of 2006 led to an allocation of 3.5 million acres away

from planted acreage of maize in favour of soybeans (Simone and Maria, 2008). This

reallocation of crop land would be expected to put upward pressure on the prices of
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maize and such trade-offs between two commodities could be partly responsible for

comovements in their prices.

Another important factor that might be a driver of commodity comovement is the

impact of oil prices. This can happen through two different channels. First, an in-

crease in oil prices will lead to an increase in the cost of production through higher

costs of inputs such as fuels (used for heating, transportation and the operation of

equipments), pesticides and fertilizers. Second, higher oil prices will lead to substi-

tution away from oil to alternative sources of energy such as ethanol and biodiesel,

which are produced from commodities such as maize and oilseeds. For example, the

US Department of Agriculture reports that 33% and 26% of total US corn and grain

production, respectively, were used in ethanol production in 2009. This undoubt-

edly exerts an upward pressure on the demand for grains and oilseed, which will

in turn lead to higher prices across this commodity group. Using time series price

data on several vegetable oils from 1999-2006, Yu et al. (2006) find significant evi-

dence of long term relationships between different vegetable oils and crude oil prices.

Likewise, Campiche et al. (2007) document evidence of increasing comovement be-

tween petroleum and agricultural commodity prices due to increasing diversion of

agricultural products towards the production of ethanol.

Lastly, commodity price comovement can also be attributed to spreading and finan-

cialization of commodity markets. Spreading is a form of arbitrage-based trading

strategy whereby traders buy and sell similar commodities in various proportions

in order to take advantage of perceived mispricing across the commodities. Such

a trading strategy not only serves as a mechanism for restoring price relationships

between a group of commodities but also leads to increased comovement among the

commodities. Second, a combination of the availability of deep and liquid exchange

traded commodity derivatives, and recent findings from academic papers (Egelkraut
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et al., 2005; Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006) pointing to sub-

stantial risk premium from commodity markets, has led to a significant upsurge in

commodity index funds investments. This phenomenon is termed a “financializa-

tion” of commodity markets by Domanski and Heath (2007) and has been blamed

as a major driver of the 2007/2008 commodity market boom (Baffes and Haniotis,

2010). The financialization of commodity markets has also been linked to increased

commodity price comovements, precipitated by the rapid growth of commodity index

investment (Bahattin et al., 2001; Kyle, 2001; Tang and Xiong, 2010).

All of these factors taken together suggest that correlations may exist among com-

modities beyond what can be explained by basic macroeconomic variables such as

exchange rates, interest rates, industrial production etc. Second, some of these fac-

tors are not easily quantifiable in a form that can be employed in direct analysis

of excess commodity comovement. Therefore, a latent variable approach may be

warranted. Third, and perhaps most importantly the impact of these factors on

commodity comovements are likely to differ in their degree of occurrence and persis-

tence i.e. they are likely to be frequency-specific. For example, a fall in the price of

one commodity may cause significant liquidity constraints for speculators which may

cause them to close their positions on other commodities. Such liquidity constraints

can be regarded as a high frequency factor and its effect on commodity comovement

is likely to be short-lived. On the other hand, agricultural commodity comovements

precipitated by the introduction of a biofuel mandate is more likely to be persis-

tent, evidence of which is documented by Campiche et al. (2007). This intuition is

consistent with the results of Calvet et al. (2006) who find that correlation between

certain commodity prices and exchange rate volatility is primarily a low frequency

phenomenon and find no evidence of a long term comovement.

Lastly evidence abounds that points to the dynamic nature of comovement among
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financial assets (Bollerslev et al., 1992, 1988; Erb et al., 1994; Moskowitz, 2003).

Assets that are seemingly uncorrelated in tranquil periods may become excessively

correlated in periods of high uncertainty in the economy. Commodities, in particular,

are viewed as a safe haven during crisis periods when traditional financial assets

become too risky to hold. Besides, price movements of commodities such as gold

and oil are viewed as proxies for global economic and political risk. Therefore, it is

essential to not only consider the cross-sectional comovements among commodities

but also the dynamic and regime-dependent nature of such comovements.

3.3. Research Methodology

In order to address our questions related to the presence and causes of excess co-

movement across commodities, we adopt a two-step methodology that combines the

approach of Pindyck and Rotemberg (1990) with the MSM model. A major draw-

back of the Pindyck and Rotemberg (1990) approach is the failure to account for the

apparent heteroscedasticity and non-normality that characterize commodity returns

(Beck, 1993; Deb et al., 1996; Palaskas and Varangis, 1991). Such heteroscedasticity

emanates, for instance, from the storable nature of commodities. In other words,

price variations in one period are transferred to the next period through variations

in inventory levels. Our two-step approach incorporates these characteristics. Specif-

ically, for each commodity, we estimate a linear regression model as follows

Ri,t = β0Ri,t−1 +
J∑
j=0

βi,jXt−j + εi,t, i = 1, 2....., N, t = 1, 2, ...T (3.1)

where N is the number of commodities, Ri,t is the log-return on commodity i at time

t and X is a vector of macroeconomic variables. The structural relationship specified

in Equation (3.1) was derived by Pindyck and Rotemberg (1990) as a linear approx-
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imation to a theoretical model of commodity prices. The macroeconomic variables

are used as proxies to filter out the influence of shared economic fundamentals on

the return of each commodity. Commodities may share common fundamentals as a

result of movements in macroeconomic variables that affect demand and supply for

commodities. For example, Frankel (2006) stresses the role of interest rate changes

on commodity prices. A rise in interest rates may, for example, cause mineral extrac-

tion firms to intensify their activities in order to invest the proceeds in a high interest

yielding investment. This leads to an increase in the supply of natural resources, and

subsequently to a decrease in price. Moreover, an increase in interest rates leads to

a decrease in inventory demand, and to a drop in commodity prices.

Likewise, prices of industrial commodities such as copper, crude oil, etc, are affected

by the rate of industrial production. An increase in the demand for industrial com-

modities leads to an increase in income. Such an increase in income leads to an

increase in demand for non-industrial commodities, which causes the prices of the

latter to also rise. Global demand and supply shifts as drivers of commodity prices

have also been emphasized by Svensson (2008) and Wolf (2008). They argue that

increasing demand for natural resources from emerging economies contributed to the

recently observed rises in commodity prices.

Lastly, exchange rates are also a significant driver of commodity prices. Recently,

Chen et al. (2010) find that a carefully chosen set of exchange rates (essentially the

market-based floating exchange rates of commodity exporting countries such as Aus-

tralia, New Zealand, Canada, etc) can accurately forecast future global commodity

price movements. The forecasting power of exchange rates in predicting commod-

ity prices has its root in market participant expectations of future commodity price

fluctuations. These expectations are in turn priced into the current exchange rate

through their anticipated impact on future exchange rate values.
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In the second step of our approach, the regression residuals, ε̂i,t, terms derived from

Equation (3.1) are then investigated via an MSM specification to model commod-

ity comovements. We discuss the details of the MSM model and tests of excess

commodity comovement in what follows.

3.3.1. The Markov-Switching Multifractal Model

Under the univariate MSM framework,1 the innovations ε̂i,t are modeled as a function

of k statistically independent random components as follows

ε̂i,t = σi(M
i
t )ηi,t = σi

 k∏
k=1

M i
k,t

1/2

ηi,t (3.2)

where the random variables ηi,t are IID standard Gaussian N (0, 1). The frequency

components M i
k,t are independent across t and k but have the same marginal dis-

tribution M that satisfies E(M) = 1 and M ≥ 0. Each frequency component is

characterized by its own switching and decay frequency parameter, γk. Therefore,

the innovations are defined as a scaled multiplicative product of several stochastic

volatility components, with heterogeneous durations. For example, specifying εi,t as

an MSM(3) implies that it is composed of three volatility components which can be

described as low (M i
1,t), medium (M i

2,t) and high (M i
3,t) frequency components. Such

a frequency decomposition can shed light on the nature of comovements across differ-

ent commodities. Moreover, this approach allows us to distinguish between long-run

and short-run comovements. It is this unique property of the MSM model that we

exploit in answering question (ii) above. This approach was also adopted by Calvet

et al. (2006), where they find that the correlation between crude oil and exchange

rates is mainly a low frequency phenomenon.

1See Chapter 1 of this thesis for a review of of both univariate and bivariate MSM models.

116



The construction of the bivariate MSM model follows a similar setup. Specifically,

for any pairwise innovation structure for commodities i and j, the bivariate MSM is

specified as

ε̂i,t = σi(M
i
t )ηi,t = σi

 k∏
k=1

M i
k,t

1/2

ηi,t

ε̂j,t = σj(M
j
t )ηj,t = σj

 k∏
k=1

M j
k,t

1/2

ηj,t (3.3)

where the vector ηt = [ηi,t ηj,t]
T is bivariate IID Gaussian N (0,Σ) with variance-

covariance matrix:

Σ =

[
1 ρη
ρη 1

]
As in the univariate case, the frequency components for each series are assumed to

be statistically independent across k and t. The frequency dynamics are however

restricted as follows

(γi1, γ
i
2, .....γ

i
k
) = (γj1, γ

j
2, .....γ

j

k
) = (γ1, γ2, .....γk)

Under this specification, the unconditional correlation between volatility components

is given by

Corr(M i
k,t,M

j
k,t) = ρm

(1− λ)γk + λ

2− [(1− λ)γk + λ]
(3.4)

Comovements are quantified by the conditional covariance given by

Covt(ε̂i,t+n, ε̂j,t+n) = ρησiσj

k∏
k=1

Et[(M i
k,t+nM

j
k,t+n)1/2] (3.5)
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and the conditional correlation given by

Corrt(ε̂i,t+n, ε̂j,t+n) = ρη

k∏
k=1

Et[(M i
k,t+1M

j
k,t+1)1/2]

[Et
(
M i

k,t+1

)
Et
(
M j

k,t+1

)
]1/2

(3.6)

These measures of conditional comovement are time varying. Moreover, they are high

in periods of high volatility (when {M i
k}kk=1 and {M j

k}
k
k=1 are high), and vice-versa.

In other words, commodities that are otherwise less correlated in tranquil periods

may become highly correlated in periods of high uncertainty. This is a crucial piece

that has generally been missing from the commodity comovement literature. There

is large evidence pointing to the fact that covariances and correlations across asset

returns change over time, and are high in periods of recessions or financial crises

(Bollerslev et al., 1988; Moskowitz, 2003).

Moreover, commodity comovements are also driven to various degrees by events such

as terrorist attacks on oil rigs, weather disasters affecting a region where multiple

commodities are grown (e.g. drought in the U.S. in summer of 2011), introduction

of economic and political policy instruments (Energy Policy Act of 2007, Renewable

Fuel Standards Program of 2010), etc. Therefore, an accurate measure of commodity

comovement should incorporate the time-varying dynamics of such comovement and

how it is affected by various economic events. This constitutes an innovative part of

this study.

3.3.2. Tests of Excess Comovement

The primary hypotheses of interest are based on comovements between ε̂i,t and ε̂j,t.

To this end, we formulate the following two hypothesis between any pairwise series

based on the innovations ε̂i,t and scaled residuals η̂i,t from the MSM process.
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Hypothesis 1 (Test of zero scaled covariance):

H0 : E(η̂i,t, η̂j,t) = 0 (3.7)

The null hypothesis states that the commodity pair(i, j) displays zero contempora-

neous excess comovement, where η̂i,t is the scaled residual from a univariate MSM

process and is defined as

η̂i,t =
ε̂i,t

σi(M i
t )

(3.8)

Following Deb et al. (1996), the Lagrange Multiplier test of the moment condition

implied by the null hypothesis is given by

LMi,j = T ρ̂2
i,j ∼ χ2(1)

where ρ̂i,j is the correlation between the scaled residuals of commodity pair(i, j). The

Lagrange Multiplier test is implemented as follows:

i Equation (3.1) is estimated for each commodity, and the parameter estimates are

used to generate the residuals ε̂i,t.

ii A univariate MSM model is fitted to each residual vector generated in step i.

iii Using the MSM parameters estimated in step ii, the filtered probabilities are

estimated. Using the algorithm of Kim (1994), the smoothed probabilities

Ψ̂l
t ≡ P(Mt = ml|r1...rT ), for l ∈ {1, 2, ...2k}, are estimated from the filtered

probabilities.

iv The smoothed probabilities are then used to generate Equation (3.2) as follows

for each commodity

E(εi,t) = σ̂(
k∏
k=1

Et[M i
k,t+1]1/2)
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v Lastly, the scaled residual η̂i,t is generated as in Equation (3.8). Then, the scaled

residuals are used to generate the LM statistic for each possible commodity

pair.

Hypothesis 2 (Test of zero conditional covariance):

H0 : Et(ε̂i,t+1, ε̂j,t+1|Ωt) = 0 (3.9)

where Ωt is the information available up to time t. In this test, the conditional

covariance is constant and zero under the null, but time varying under the alternative.

The test is implemented by fitting a bivariate MSM model to a pair of commodity

residual vectors derived from Equation (3.1). Under the MSM framework, the test

of zero conditional covariance implies testing the null hypothesis that ρη = 0 in

Equation (3.5). Note that as long as the conditional variance is not constant, neither

σi nor σj can be substituted for ρη. Since ρη is one of the estimated parameters of

the bivariate MSM, and is reported along with its standard error, conducting the

test is straightforward.

Lastly, it is important to emphasize the difference between hypotheses 1 and 2.

Hypothesis 1 tests for zero scaled covariance. The test assumes that the covariances

of the scaled errors are zero under the null and constant under the alternative. It

makes no distinction between conditional and unconditional covariance. On the other

hand, hypothesis 2 tests for zero conditional covariance. The covariance is assumed

to be constant and zero under the null but is time-varying under the alternative.

Therefore, the test of hypothesis 2 is a much stronger test than hypothesis 1. The

comovement of a pair of commodity may pass hypothesis 1 but fail hypothesis 2.

Also, the LM test of hypothesis 1 is based on the stringent assumption of normal
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errors, which may be violated in practice. When applied to non-normal data, the

LM test based on normality may suffer from size distortion (Deb et al., 1996).

3.4. Empirical Analysis

3.4.1. Data

The data used in this study comprises daily time series for fifteen commodity spot

prices, from January 4, 1994 to December 30, 2011. The sources of the data and the

markets where the commodities are traded are listed in Appendix A. Commodities

is a broad term, and comprises a broad set of products that are heterogenous by

nature. Therefore, we take a disaggregated approach by considering three commod-

ity categories, namely energy, metals and agricultural commodities. This ensures

that our results are not market-specific but apply to a wide range of commodities.

The commodity list comprises six agricultural products (cotton, sugar, corn, wheat,

soybeans, oats) , seven metals products (copper, aluminium, lead, tin, zinc, nickel,

gold), and two energy products (crude oil and heating oil). With the exception of

metals, all commodities are traded in the U.S and quoted in U.S. dollars. Gold is

also traded in the U.S and quoted in the U.S. dollars. All other metals are traded

on the LME and quoted in the U.S dollars. Lastly, this study follows the extant

literature and does not consider any equity or other financial assets in the analysis.

Claessens et al. (2001) provide an excellent review on comovements and contagion

in financial markets.

While previous studies have used low frequency data sets such as monthly and quar-

terly data, we use daily data for two reasons. First, monthly or quarterly data have

the shortcoming of substantially reducing the number of observations. Second, and

perhaps most importantly, monthly or quarterly observations may fail to reflect more
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rapid cycles of propagation of shocks across seemingly unrelated commodities. This

becomes apparent later in the study when we decompose commodity comovements

into different frequencies, ranging from decades to daily. This is an important ele-

ment that has been missing from earlier studies and might have contributed to some

failures to detect excess commodity comovement.

The data on macroeconomic fundamentals consist of variables used in the extant

literature,2 namely the Standard & Poor’s 500 return, the nominal 3-month U.S.

Treasury bill rate, the equally weighted average of the Yen, Deutsche mark3 and

British pound sterling vis-a-vis the U.S dollar and the Baltic Dry Index (BDI). We

also include the Chicago Board Options Exchange (CBOE) Volatility Index (VIX),

which is a measure of the market expectations of short term market volatility and

investment sentiment.4 These macroeconomic variables are used to capture the link

between commodity markets and equity, interest rates, foreign exchange markets

and the level of economic activity. The Baltic Dry Index is published by the Baltic

Exchange in London and measures the cost of maritime transportation for major raw

materials across the world. Changes in the Baltic Dry Index are largely driven by

global demand for industrial commodities. Moreover, a positive correlation between

maritime transportation rates and economic activities is widely documented in the

economic literature (Kilian, 2009; Stopford, 2009). Therefore, the BDI is widely

accepted as an indicator of the level of economic activity, similar to the index of

industrial production. We use the BDI to control for the level of world economic

activity because it is available at higher frequencies than the index of industrial

production, which is only available on quarterly basis. Lastly, the BDI is also used

2These are the standard macroeconomic variables that have been used in the commodity comove-
ment literature. See Pindyck and Rotemberg (1990) and Deb et al. (1996) for example. Money
supply and inflation rates are excluded because they are not available on a daily basis.

3The Deutsche mark was replaced by the Euro at the beginning of 1999. Thus, the Deutsche mark
data ended on December 31, 1998 and the Euro was used in its place.

4Thanks to the comments from a member of the supervisory committee, who pointed this out.
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to control for the effect of the growth surge in the emerging economies, most notably

China. This has been widely cited as a source for the the recent rise in the prices

of commodities (Helbling et al., 2008; Irwin et al., 2009; Silvennoinen and Thorp,

2013; Trostle, 2010). The correlation value between the BDI and the Chinese GDP is

0.4502. Also, Figure 3.1 shows a scatter plot of BDI against the Chinese GDP. The

plot and the positive correlation value clearly show a strong positive comovement

between the BDI and Chinese growth.

Figure 3.1: Comovement Between BDI and Chinese GDP
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Table 3.1 presents summary statistics for the logarithms of commodity returns. The

returns series exhibit significant non-normality in all cases. The Jarque-Bera (Bera

et al., 1997) test statistics are all greater than the critical value of 5.9794, leading

to a rejection of the null hypothesis of normality for all commodity returns. It is

therefore important that we incorporate this observation into our analysis.

Table 3.2 reports the correlations of daily log returns for all commodities used in the

main analyses. The pairwise correlation coefficients range between 0.0499 for oats

and heating oil to 0.6237 for crude oil and heating oil. Moreover, as expected, cor-

relations are stronger between commodities in the same group (agricultural, metals
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Table 3.1: Summary Statistics (Log Returns)

Mean Standard Minimum Maximum Skewness Kurtosis JB-Stat
Deviation

Gold 0.0315 1.0531 -6.2840 7.3820 -0.1415 8.9408 6481
Copper 0.0336 1.7940 -10.4755 11.7259 -0.1666 7.4648 3673
Aluminium 0.0161 1.2474 -12.6752 11.7146 -0.2109 12.3140 15926
Tin 0.0311 1.5581 -13.8094 18.8100 0.1313 17.6951 39576
Zinc 0.0138 1.8889 -12.6185 9.6100 -0.2816 6.7223 2597
Nickel 0.0292 2.3958 -18.3586 22.0072 0.0079 7.9030 4404
Lead 0.0334 2.1086 -13.1992 13.0072 -0.1508 6.3078 2021
Cotton 0.0073 1.9399 -8.6850 12.7701 0.0378 5.1178 823
Wheat 0.0116 1.9490 -12.2987 12.5405 0.0290 6.4516 2183
Oats 0.0167 2.3393 -23.7850 23.3711 0.0324 15.9896 30913
Sugar 0.0177 2.2741 -23.5036 14.2124 -0.5084 8.7451 6236
Soybeans 0.0121 1.6551 -16.7294 8.5180 -0.7294 9.2528 7553
Corn 0.0182 1.9160 -12.1116 10.8879 -0.1549 6.2410 1942
Heating Oil 0.0420 2.7324 -47.5669 23.4507 -1.3271 36.2782 204182
Crude Oil 0.0434 2.5533 -17.0918 19.1438 -0.1331 7.9513 4504
Exchange Rate 36.8653 4.7157 25.7000 49.8500 -0.3266 2.8326 83.3178
T-Bill(3M) 3.1339 2.0362 0.0000 6.2400 -0.2875 1.5063 469
S&P500 Return 0.0225 1.2708 -9.4695 10.4236 -0.2577 10.5207 10409
VIX 2.9884 0.3641 2.2915 4.3927 0.4111 3.0942 125.427
BDI(Log) 7.6204 0.6382 6.4968 9.3753 0.7179 2.7438 390

Notes: For each commodity, this table presents the summary statistics for the percentage logarithmic returns, defined
as ln(Pt−1/Pt)∗100, and the macroeconomic variables. T-Bill(3M) refers to the nominal 3-month U.S. Treasury bill
rate while BDI(Log) refers to the natural logarithm of the Baltic Dry Index. The sample period is from January 04
1994 to December 30 2011, resulting in 4398 observations. JB-Stat refers to the Jarque-Bera Bera et al. (1997) test
of normality statistic. Under the null hypothesis that the variable under consideration is normally distributed, the
test has an asymptotic chi-squared distribution with two degrees of freedom. At 5% level of significance, the test has
a critical value of 5.9794.

and energy) than between commodities in different groups.

The summary statistics indicate that many of the commodities are significantly cor-

related. But such correlations may be driven by shared macroeconomic fundamen-

tals through their effects on demand and supply. The major question is whether

significant comovement exists between these commodities in excess of what can be

explained by fundamental factors. We address this question in the next section.
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Table 3.2: Simple Correlations of Commodity Log Returns

Gold Copper Cotton Wheat Oats Sugar Soybeans Corn Heating WTI

Gold 1.0000 0.2148 0.0643 0.1054 0.0755 0.0612 0.0913 0.1051 0.0779 0.1386
Copper 1.0000 0.1710 0.1813 0.0745 0.1408 0.1982 0.1805 0.1649 0.2446
Cotton 1.0000 0.1550 0.0841 0.1179 0.2348 0.2080 0.1014 0.1300
Wheat 1.0000 0.2300 0.1031 0.3532 0.4630 0.1127 0.1458
Oats 1.0000 0.0697 0.2514 0.3153 0.0499 0.0701
Sugar 1.0000 0.1278 0.1299 0.0848 0.1405
Soybeans 1.0000 0.5748 0.1528 0.1868
Corn 1.0000 0.1424 0.1888
Heating 1.0000 0.6237
WTI 1.0000

Notes: This table presents the simple bivariate correlation coefficients between each commodity pair. The correlation

coefficient r has a test statistic t = r
√
N − 2/

√
1− r2, which has an asymptotic t−distribution with N − 2 degrees

of freedom, where N is the number of observations. For N = 4398, the critical correlation coefficients are 0.0388,
0.0296 and 0.0248 for 1%, 5% and 10% significance levels, respectively. All correlation coefficients are significant at
1%, 5% or 10% significant levels.

3.4.2. Test Of Excess Comovement

The data are divided into two sets. The first set comprises gold, copper , cotton,

wheat, oats, sugar, soybeans, corn, heating oil and crude oil. This set is used in the

main analysis, as they have been widely analysed in previous studies, thereby foster-

ing an easy comparison of our results with previous studies. The other set comprises

crude oil, copper, aluminium, tin, zinc, nickel and lead. With, the exception of crude

oil, all of these are traded on the LME. This set is used for robustness analysis in

section 5. The inclusion of related commodities, such as corn and wheat, is to serve

as useful controls for checking the power of the excess comovement tests.

In order to address the question of excess comovement among commodities, it is im-

perative that the effects of macroeconomic fundamentals be filtered out. We achieve

this by estimating Equation (3.1) by regressing each commodity return on the cur-

rent and one period lag of the macroeconomic variables and one period lag of the

commodity return. The results are reported in Table 3.3. First, the R2 is very low

for all the commodities, ranging from 0.0071 to 0.0734. This is also the case with
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earlier studies as well.5 Palaskas and Varangis (1991) associated this weak power of

the macroeconomic variables to the non-normality of commodity returns. Equation

(3.1) is also estimated using different lags of returns and the macroeconomic vari-

ables, ranging from 2 to 6. The results are not qualitatively different from those

presented in Table 3.3, and the power of the regression does not improve either.

However, to keep the analysis simple and for ease of presentation, we continue the

analysis using only the first lag. Second, the results indicate that the S&P500 re-

turn and the Baltic Dry Index variables are significant for most commodities, while

the exchange rate, interest rate and the VIX index are rarely significant. Likewise,

the sum of the coefficients on each current and lagged macroeconomic variables are

neither statistically nor economically significant. But the variables as a whole have

significant impact on commodity returns, as indicated by the Wald-statistics and the

associated p-values.

Nonetheless, summing the coefficients on current and lagged macro variables, we

observe that when the interest rate is significant the net effect on commodity prices

is negative, consistent with a priori expectations.

An increase in the interest rate leads to an increase in the required rate of return

on storage. This in turn leads to a fall in inventory demand and subsequently to a

fall in commodity prices. Likewise, we observe that the relationship of the equity

market with commodity prices is significant in most cases. This is consistent with the

financialization of commodities hypothesis, which states that the correlation between

stocks and commodities is increasing due to a rapid increase in investor activities in

the commodity market (Juvenal and Petrella, 2011; Masters, 2008; Tang and Xiong,

2010). Moreover, in bad times when stocks become more risky, investors diversify

away to commodities in order to reduce their risk exposure to stocks.

5For example, see Pindyck and Rotemberg (1990) and Palaskas and Varangis (1991).
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Table 3.3: Regression Results For Commodities

Commodity Returns(Ri,t)

Gold Copper Cotton Wheat Oats Sugar Soybeans Corn Heating Oil WTI

Et -0.7581*** -0.0077 0.2260* -0.1585 -0.2327 0.1798 -0.1709* -0.0723 -0.1378 0.0749
(0.0742) (0.1107) (0.1156) (0.1228) (0.1426) (0.1425) (0.1038) (0.1209) (0.1862) (0.1739)

Et−1 0.7608*** 0.0163 -0.2240* 0.1503 0.2252 -0.1894 0.1681 0.0620 0.1428 -0.0689
(0.0744) (0.1104) (0.1151) (0.1225) (0.1425) (0.1427) (0.1038) (0.1209) (0.1872) (0.1729)

It -0.4380 1.2884** 0.9476 0.7725 -0.9980 0.3858 1.3884** 0.8206 -0.4531 0.7129
(0.5192) (0.5828) (0.7086) (0.7268) (1.0338) (0.5877) (0.6668) (0.7676) (0.7283) (1.0622)

It−1 0.4191 -1.3195** -0.9652 -0.7520 1.0102 -0.3863 -1.3897** -0.8100 0.4358 -0.7326
(0.5192) (0.5835) (0.7085) (0.7269) (1.0331) (0.5882) (0.6673) (0.7676) (0.7282) (1.0628)

Bt 4.6849** 4.3605* 3.6300* 3.3024 3.9484 -4.8671* 2.5864 -0.0691 3.6779* 5.5756**
(1.8434) (2.6235) (2.0914) (2.3199) (2.8860) (2.5056) (2.2751) (2.5789) (2.1974) (2.6151)

Bt−1 -4.6614** -4.3062 -3.6136* -3.2761 -3.9101 4.9129* -2.5540 0.1243 -3.6127 -5.5307**
(1.8416) (2.6204) (2.0894) (2.3191) (2.8827) (2.5092) (2.2747) (2.5769) (2.1965) (2.6147)

Vt 0.5035 -1.2231* -0.9044 -1.2218 -0.1763 -0.4189 0.4699 -1.0604 -0.9559 0.9123
(0.4846) (0.6984) (0.7359) (0.8034) (0.8898) (0.8172) (0.6169) (0.7465) (1.0587) (1.0538)

Vt−1 -0.5678 1.0194 0.8573 1.2379 0.1623 0.4272 -0.5135 1.0398 0.7567 -1.0684
(0.4801) (0.6940) (0.7375) (0.8072) (0.8826) (0.8143) (0.6132) (0.7388) (1.0450) (1.0583)

SRt 0.0159 0.2771*** 0.1363*** 0.1174*** 0.0882* 0.0825** 0.1590*** 0.1278*** 0.2022*** 0.3042***
(0.0319) (0.0413) (0.0437) (0.0440) (0.0523) (0.0391) (0.0352) (0.0433) (0.0578) (0.0614)

SRt−1 0.0525** 0.1814*** 0.0579** 0.0035 0.0606* 0.0435 0.0860*** 0.0856*** 0.1167*** 0.1366***
(0.0205) (0.0320) (0.0271) (0.0314) (0.0339) (0.0307) (0.0263) (0.0323) (0.0385) (0.0416)

Ri,t−1 -0.0162 -0.0669*** -0.0077 -0.0301 -0.0461* -0.1021*** -0.0300 0.0049 -0.0236 -0.0220
(0.0246) (0.0231) (0.0187) (0.0231) (0.0249) (0.0187) (0.0193) (0.0204) (0.0512) (0.0224)

N 4,394 4,394 4,394 4,394 4,394 4,394 4,394 4,394 4,394 4,394

R2 0.0492 0.0734 0.0179 0.0144 0.0071 0.0170 0.0203 0.0170 0.0159 0.0252
W − stat 12.3700 19.9000 5.2300 4.3400 1.8900 5.0600 4.7400 4.9300 5.7600 5.5000
Pw − value 0.0000 0.0000 0.0000 0.0000 0.0361 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: This table presents the results from estimating Equation (3.1) for the first 10 commodities. Rt is the percentage logarithmic returns, defined as
ln(Pt−1/Pt) ∗ 100. E, I, SR, V and B refer to the exchange rate, interest rate, S&P500 return, the Vix index and the Baltic Dry Index respectively.
W-stat reports the Wald test statistics of the overall significance of the regressors. Pw reports the corresponding p-values for the Wald tests. These
indicate that the macroeconomic variables and the lagged returns are jointly significant at the 10% level for the commodities under consideration. All
standard errors are heteroscedasticity consistent. *** p < 0.01, ** p < 0.05, * p < 0.1.



Lastly, we observe that commodity returns are positively related to increased eco-

nomic activity. In periods of high economic activity, the demand for raw materials

increases, leading to an increase in prices of industrial commodities. But the prices

of non-industrial commodities also rise through the income effects channel.

3.4.3. MSM Model Estimates

Using the the parameter estimates from Equation (3.1), the regression residuals, ε̂i,t

are extracted and a univariate MSM is fitted to these residuals, for each commodity.

The results are reported in Table 3.4. The results are reported for k varying from 1

to 10, where k is the number of volatility components included in the model.6 When

k = 1, the model is identical to a standard Markov regime-switching model, with

only two possible states of volatility levels. As k increases, the possible number of

volatility states increases by 2k.

Table 3.4: Univariate MSM Estimates

k = 2 3 4 5 6 7 8 9 10
Gold

b̂ 9.7376 43.6951 34.1191 11.2143 11.8105 11.6957 7.2994 4.5044 3.5729
(3.8574) (19.6378) (17.5576) (2.0804) (5.5545) (6.1309) (1.6932) (1.0370) (0.8680)

m̂0 1.6575 1.6054 1.5581 1.4814 1.4594 1.4592 1.4155 1.3634 1.3391
(0.0263) (0.0228) (0.0240) (0.0148) (0.0175) (0.0212) (0.0178) (0.0152) (0.0140)

γ̂k 0.0762 0.7786 0.8416 0.9114 0.9955 0.9950 0.9999 0.9999 0.9999
(0.0276) (0.1680) (0.1034) (0.1378) (0.0257) (0.0317) (0.0007) (0.0008) (0.0009)

σ̂ 1.1664 1.1451 0.9736 1.0030 1.2201 1.0098 0.9907 0.9935 1.0130
(0.0764) (0.0990) (0.0422) (0.0642) (0.0663) (0.0526) (0.0410) (0.0501) (0.1290)

lnL -5533.74 -5484.26 -5457.92 -5450.24 -5443.71 -5444.32 -5443.51 -5442.80 -5442.32

Copper

b̂ 18.1761 8.0713 16.7146 16.7005 9.4039 6.1463 4.1042 4.0322 3.3355
(17.5358) (5.6676) (5.9697) (6.4195) (2.0105) (1.4906) (0.7801) (0.7573) (0.5691)

m̂0 1.5239 1.4477 1.4259 1.4259 1.3806 1.3413 1.2945 1.2938 1.2740
(0.0203) (0.0243) (0.0172) (0.0174) (0.0145) (0.0147) (0.0142) (0.0142) (0.0124)

γ̂k 0.0825 0.0682 0.7050 0.7044 0.9664 0.9855 0.9992 0.9987 0.9997
(0.0318) (0.0383) (0.1721) (0.1829) (0.0529) (0.0481) (0.0046) (0.0068) (0.0023)

Continued on next page

6Though we estimate MSM with k equals 1 to 10 for all commodities, we only report results for k
equals 2 to 10 due to space constraints and ease of presentation.
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Table 3.4 – Continued from previous page

k = 2 3 4 5 6 7 8 9 10
σ̂ 1.9359 2.1938 2.0900 1.7505 1.6935 1.6540 2.0095 1.7670 1.7456

(0.1563) (0.1277) (0.0905) (0.0701) (0.0587) (0.0770) (0.1233) (0.0996) (0.0782)
lnL -8095.35 -8069.11 -8056.25 -8056.90 -8055.56 -8056.51 -8054.34 -8054.69 -8054.77

Cotton

b̂ 28.4112 35.5032 22.4808 13.8977 7.1911 13.9056 4.1975 3.3757 3.3863
(11.1548) (11.2497) (7.2673) (13.7661) (0.7892) (21.8109) (0.5437) (0.3002) (0.3032)

m̂0 1.4767 1.4589 1.4152 1.3698 1.3292 1.3697 1.2819 1.2615 1.2611
(0.0223) (0.0216) (0.0194) (0.0269) (0.0138) (0.0369) (0.0150) (0.0126) (0.0123)

γ̂k 0.1300 0.8529 0.9089 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
(0.0596) (0.0843) (0.1299) (0.0025) (0.0001) (0.0039) (0.0001) (0.0001) (0.0001)

σ̂ 1.9863 1.9996 1.7638 1.8027 1.7983 1.9397 1.9390 1.9008 2.2009
(0.0792) (0.0772) (0.0590) (0.0717) (0.0542) (0.0738) (0.1629) (0.1034) (0.1267)

lnL -8765.62 -8743.22 -8737.14 -8733.37 -8733.01 -8734.02 -8732.82 -8732.84 -8733.34

Wheat

b̂ 22.1850 14.7948 8.9490 5.4685 4.2461 3.8029 3.7169 3.0442 2.4033
(9.9786) (5.3615) (1.7683) (1.0524) (0.8004) (0.8288) (0.6912) (0.7274) (0.2764)

m̂0 1.5437 1.4831 1.4145 1.3616 1.3289 1.3068 1.3055 1.2823 1.2538
(0.0193) (0.0195) (0.0167) (0.0149) (0.0133) (0.0138) (0.0134) (0.0137) (0.0134)

γ̂k 0.1916 0.2148 0.5421 0.6515 0.7897 0.8338 0.8192 0.8836 0.9094
(0.0494) (0.0790) (0.1152) (0.2155) (0.1962) (0.1958) (0.1686) (0.2226) (0.1688)

σ̂ 2.1405 2.5298 2.2642 2.1792 2.0881 2.2495 1.9766 1.9426 2.0308
(0.1530) (0.1408) (0.0979) (0.1244) (0.0883) (0.1149) (0.0918) (0.0745) (0.1561)

lnL -8667.34 -8644.43 -8639.04 -8638.44 -8637.92 -8637.80 -8638.22 -8637.70 -8637.55

Oats

b̂ 11.0794 5.5590 4.7237 5.6225 4.9869 3.8299 3.1850 5.1585 2.4917
(4.1134) (1.2099) (0.9065) (1.0994) (0.9051) (0.3377) (0.1909) (0.9714) (0.1575)

m̂0 1.8899 1.8392 1.7900 1.7527 1.7020 1.6575 1.6312 1.7022 1.5782
(0.0082) (0.0106) (0.0125) (0.0111) (0.0129) (0.0118) (0.0132) (0.0117) (0.0134)

γ̂k 0.5243 0.6102 0.7814 0.9600 0.9996 0.9999 0.9999 0.9998 0.9999
(0.0561) (0.1158) (0.1611) (0.0525) (0.0020) (0.0002) (0.0001) (0.0012) (0.0001)

σ̂ 2.1841 2.1438 2.1477 2.4794 2.0028 2.1704 2.1655 2.1456 2.1849
(0.1907) (0.2365) (0.5418) (0.1510) (0.1083) (0.2516) (0.2479) (0.1239) (0.2139)

lnL -8683.60 -8562.17 -8526.29 -8494.85 -8488.12 -8487.50 -8482.90 -8489.66 -8479.89

Sugar

b̂ 50.0000 49.3590 13.4310 7.1741 13.5595 4.9849 3.9454 3.9968 2.4730
(25.1258) (380.2184) (1.6099) (0.7345) (1.5821) (0.3733) (0.4879) (0.4373) (0.1098)

m̂0 1.5995 1.5219 1.4572 1.4057 1.4554 1.3685 1.3423 1.3431 1.2869
(0.0331) (0.0503) (0.0192) (0.0182) (0.0175) (0.0171) (0.0170) (0.0176) (0.0146)

γ̂k 0.4869 0.9986 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
(0.3078) (0.0936) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

σ̂ 2.1314 2.1611 2.1372 2.1171 2.3892 1.8247 2.6394 2.3344 2.1375
(0.1170) (0.1766) (0.0797) (0.1090) (0.0957) (0.1057) (0.3084) (0.2246) (0.1305)

lnL -9402.69 -9365.23 -9356.70 -9357.38 -9357.71 -9358.31 -9358.13 -9358.09 -9357.22

Soybeans

b̂ 10.8055 37.0169 22.5784 13.4434 6.9186 4.6817 3.6300 3.1028 3.5963
(5.4207) (12.8430) (8.7622) (2.6238) (0.6835) (0.2892) (0.2095) (0.1988) (0.1868)

m̂0 1.5209 1.4965 1.4737 1.4161 1.3682 1.3346 1.3093 1.2907 1.3065
(0.0269) (0.0182) (0.0268) (0.0191) (0.0150) (0.0133) (0.0126) (0.0126) (0.0127)

γ̂k 0.1000 0.8710 0.8285 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
(0.0440) (0.0774) (0.0702) (0.0004) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001)

Continued on next page
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Table 3.4 – Continued from previous page

k = 2 3 4 5 6 7 8 9 10
σ̂ 1.8941 1.9956 1.6809 1.6364 1.6441 1.6491 1.6527 1.6773 1.7531

(0.1320) (0.0853) (0.0636) (0.0591) (0.0609) (0.0603) (0.0796) (0.1170) (0.0847)
lnL -7943.04 -7906.71 -7900.91 -7893.95 -7892.83 -7892.80 -7893.13 -7892.93 -7893.74

Corn

b̂ 9.6358 12.3959 8.5892 7.7915 4.6282 3.6355 3.0340 2.6665 2.4306
(4.5355) (3.8524) (2.7663) (2.1867) (0.9046) (0.5663) (0.4118) (0.3161) (0.2690)

m̂0 1.5561 1.5069 1.4678 1.4145 1.3604 1.3288 1.3055 1.2868 1.2722
(0.0185) (0.0209) (0.0229) (0.0211) (0.0170) (0.0148) (0.0143) (0.0132) (0.0136)

γ̂k 0.1191 0.1649 0.1778 0.7073 0.7704 0.8457 0.8776 0.9019 0.9178
(0.0374) (0.0489) (0.0524) (0.1871) (0.2138) (0.1763) (0.1583) (0.1491) (0.1262)

σ̂ 1.9177 2.4571 1.9889 1.8872 1.8770 1.8954 1.9287 1.9126 1.8853
(0.0544) (0.1291) (0.0854) (0.0712) (0.0864) (0.1113) (0.1397) (0.1478) (0.1529)

lnL -8589.31 -8576.49 -8572.19 -8567.28 -8566.83 -8566.34 -8566.00 -8565.72 -8565.46

Heating Oil

b̂ 7.5072 4.8262 5.4105 9.5907 2.6148 2.7258 1.3548 1.4826 1.8831
(5.1934) (5.0121) (6.4814) (6.6103) (1.2118) (3.5000) (0.3601) (0.7348) (0.6708)

m̂0 1.5124 1.4170 1.4953 1.4538 1.4306 1.4492 1.3640 1.3797 1.2775
(0.0582) (0.0844) (0.0626) (0.0402) (0.0412) (0.0425) (0.0263) (0.0265) (0.0422)

γ̂k 0.0591 0.0370 0.0370 0.2203 0.0234 0.0244 0.0114 0.0127 0.1188
(0.0354) (0.0406) (0.0255) (0.2644) (0.0090) (0.0334) (0.0074) (0.0170) (0.1966)

σ̂ 3.1497 3.1497 3.1497 3.1034 3.1497 2.7650 3.1497 2.8145 3.1497
(0.4389) (0.8360) (0.2809) (0.4054) (0.1890) (0.1518) (0.1883) (0.1619) (0.5350)

lnL -10059.26 -10023.70 -9996.64 -9989.28 -9974.18 -9973.35 -9967.62 -9967.55 -9972.15

WTI Crude Oil

b̂ 24.3817 11.7393 11.5559 9.9917 9.9242 6.8946 3.9963 3.4023 2.9494
(9.7297) (6.5441) (2.9966) (2.2527) (2.6694) (7.2996) (0.7118) (0.6075) (0.5518)

m̂0 1.5323 1.4797 1.4280 1.3913 1.3911 1.3494 1.3008 1.2795 1.2621
(0.0242) (0.0226) (0.0204) (0.0178) (0.0187) (0.0342) (0.0138) (0.0129) (0.0124)

γ̂k 0.2080 0.2150 0.8952 0.9519 0.9501 0.9996 0.9952 0.9994 0.9999
(0.0633) (0.1416) (0.1258) (0.0517) (0.0635) (0.0108) (0.0188) (0.0038) (0.0010)

σ̂ 3.0220 2.7899 2.6732 3.0905 2.6202 2.5723 2.7047 2.6889 2.6667
(0.1399) (0.1739) (0.1089) (0.1117) (0.0889) (0.1175) (0.0983) (0.0857) (0.0873)

lnL -9874.91 -9849.85 -9841.81 -9833.96 -9834.48 -9833.95 -9831.66 -9830.68 -9830.12

Notes: This table reports the maximum likelihood estimates of binomial univariate MSM for each commodity return
residuals. Residuals are extracted after fitting Equation (3.1) to each commodity return series. The univariate
MSM is fitted for k equals 1 to 10, where each column corresponds to the given number of frequency components k
in the MSM specification. Results for k = 1 are omitted for ease of presentation. Besides, MSM(1) is never optimal
for any commodity. Therefore, there is no real loss of information in omitting the results. Asymptotic standard
errors, reported in parentheses, are computed using the Outer Product Gradient estimate of the information
matrix. See Hamilton (1994), page 143.

Several observations from Table 3.4 merit attention. First, looking at the volatility

component parameters, we observe that as k increases, m̂0 tends to decline as the

number of volatility states increases by 2k. The intuition is that less variability is
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required in each individual component in order to match the volatility fluctuation of

the data. Estimates of σ̂ fluctuate across k without any apparent pattern.

Second, as k increases, the switching probability of the highest volatility component

γ̂k increases, while the growth rate b̂ fluctuates without any pattern. From the esti-

mated values of γ̂k, we can infer the duration of the volatility components, defined

as (1/γ̂k). Consider crude oil for example. When k = 1, the single volatility compo-

nent (γ̂1 = 0.2080) switches every 5 days. But when k = 10, the highest frequency

components M10,t switches every day while the lowest frequency components M1,t

has a duration 1,735 days or approximately 5 years. Therefore, the MSM model of

commodity returns is able to capture not only frequent but transient shocks, but

also captures rare and extreme events.

It can be observed from Table 3.4 that the log-likelihood increases non-monotonically

as the number of frequency components increases. This implies that the fit of the

model increases as the number of frequency components increases for most com-

modities, except for soybeans, copper, sugar, cotton and heating oil for which the

log-likelihood peaked at k equals 5, 8, 4, 8 and 9 respectively. Therefore for further

testing purposes, we need to select the value of k that best fits the model for each

commodity.

We formalize this by following Calvet and Fisher (2004) and employ the likelihood

ratio based test of Vuong (1989). For each commodity, and for each k ∈ {1, ...9},

we test the null hypothesis that MSM(k) and MSM(10) fit the data equally well.

The t-ratios and the one-sided p-values for each commodity is reported in Table 3.5.

The results point to MSM(10) as the best model for most commodities, except for

soybeans, cotton, sugar and heating oil. For subsequent analysis, we use MSM(10)

for all commodities, since this is in fact the case for more than half of the commodi-

ties. This simplifies the analysis for frequency correlations that will be examined in
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Table 3.5: MSM Model Selection (Vuong (1989) Test)

k = 1 2 3 4 5 6 7 8 9

Gold 35.4609 36.2907 32.6450 22.1724 24.3488 7.3691 10.1158 10.1200 24.6326
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

Copper 35.4609 36.2907 32.6450 22.1724 24.3488 7.3691 10.1158 10.1200 24.6326
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

Cotton 31.3312 35.1696 26.9191 11.7848 0.2078 -4.2654 4.5933 -73.6646 -122.6326
(1.0000) (1.0000) (1.0000) (1.0000) (0.5823) (0.0000) (1.0000) (0.0000) (0.0000)

Wheat 30.1439 31.6031 15.7399 11.8135 18.8707 18.6051 8.6388 20.6040 8.5423
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

Oats 13.6299 19.1540 24.3873 37.4850 28.3026 40.5632 76.9155 81.5789 36.5245
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

Sugar 12.5601 12.5039 6.8164 -1.3402 1.2103 1.9476 11.8140 27.1674 16.1607
(1.0000) (1.0000) (1.0000) (0.0901) (0.8869) (0.9742) (1.0000) (1.0000) (1.0000)

Soybeans 14.7655 23.4738 18.1866 19.8916 1.4802 -15.7462 -25.0945 -16.0129 -21.5310
(1.0000) (1.0000) (1.0000) (1.0000) (0.9306) (0.0000) (0.0000) (0.0000) (0.0000)

Corn 32.6087 22.2052 19.9819 17.0098 21.0894 63.2952 108.3995 146.4311 230.8582
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

Heating 5.6273 5.1286 4.0475 8.5625 13.2418 3.7506 2.6438 -9.2963 -7.9567
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (0.9999) (0.9959) (0.0000) (0.0000)

WTI 27.1841 36.9773 31.0284 38.6327 24.4031 32.5094 73.0767 145.0490 258.6135
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

Notes: This table reports the t-ratios and the corresponding lower-tail p-values from the test of the null hypothesis
that MSM(k) and MSM(10) fit the data equally well (H0 : lnLkT − lnL

10
T = 0), against the alternative hypothesis

that MSM(k) performed worst (H1 : lnLkT − lnL
10
T < 0). Each column corresponds to the number of frequencies

in the alternative MSM model being compared to MSM(10). For example, column k = 1 compares MSM(1) with
MSM(10), for each commodity. A low p-value indicates that the corresponding MSM model will be rejected in favour
of MSM(10). As the results indicate, all alternative MSM(k) models are rejected in favour of MSM(10) for each
commodity, except for copper, cotton and sugar and heating oil.

Section 4.4. We also note that the comovement results are not sensitive to the choice

of k. The results are very similar, irrespective of the number of frequency compo-

nents included in the MSM model. The question then becomes why isn’t MSM(2)

employed instead? The advantage of using MSM(10) is that it makes it possible to

analyze comovements at greater number of frequencies (at 10 different frequencies,

for MSM(10)), thereby making it possible to discern even the most subtle level of co-

movements. Also, relying on the Vuong test as a guide to model selection eliminates

the arbitrariness of employing other MSM(k) models. The disadvantage however,

is that it is difficult to provide a convincing economic intuition to justify 10 differ-

ent kinds of shocks simultaneously affecting commodity prices, compared to when
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MSM(2) is employed for instance.

We use the parameter estimates from MSM(10) for each commodity to compute the

scaled residuals, η̂i,t and η̂j,t, as defined in Equation (3.8). The correlation coefficients,

E(η̂i,t, η̂j,t), and the associated p-values for the test of hypothesis 1 are reported in

Table 3.6. The statistics show a strong evidence of excess comovement between all

of the commodities. We find that the largest absolute correlation is between crude

oil and heating oil (0.7370), while the smallest absolute correlation is between gold

and sugar (0.0625). More importantly, we find that the pairwise excess correlations

are barely reduced from the simple correlations reported in Table 3.2. Also, note

that the sign of the correlation statistics remain unchanged. All correlation values

are positive, same as the simple correlation values reported in Table 3.6. Therefore,

significant excess comovement remains among the commodities after controlling for

the effects of macroeconomic fundamentals.

Table 3.6: Test of Zero Scaled Covariance (Hypothesis 1)

Gold Copper Cotton Wheat Oats Sugar Soybeans Corn Heating WTI

Gold 0.2106 0.0665 0.0691 0.0748 0.0625 0.0878 0.0877 0.1029 0.1260
Copper 0.0000 0.1097 0.1178 0.0758 0.1181 0.1445 0.1142 0.1568 0.1913
Cotton 0.0000 0.0000 0.1299 0.0906 0.1013 0.2173 0.1762 0.1075 0.1105
Wheat 0.0000 0.0000 0.0000 0.2807 0.0821 0.3555 0.4570 0.1083 0.1170
Oats 0.0000 0.0000 0.0000 0.0000 0.0870 0.3204 0.3764 0.0756 0.0856
Sugar 0.0000 0.0000 0.0000 0.0000 0.0000 0.1014 0.0959 0.0919 0.1199
Soybeans 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5768 0.1551 0.1591
Corn 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1423 0.1542
Heating 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7370
WTI 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: This table reports the correlation statistics, ρi,j = E(ηi,t, ηj,t), and the associated p-values for the test of
hypothesis 1. The correlation statistics are reported in the upper diagonal, while the p-values are reported in the
lower diagonal. For example, corr(Gold, Copper) is reported in row 1 and column 2, while the corresponding p-value
is reported in column 1 and row 2. The null hypothesis is H0 : E(ηi,t, ηj,t) = 0. The Lagrange multiplier test of the

moment condition implied by the null hypothesis is given by LMi,j = Tρ2i,j . This test statistic has an asymptotic
chi-square distribution, with 1 degree of freedom. The associated p-values are reported in the lower diagonal. The
results indicate that the correlation statistics are statistically significant for all commodity pairs.

A few more points are worth noting about the results. First, consistent with a priori

expectations, we find that correlations are stronger between related commodities
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than between unrelated commodities. For example, the largest correlation with gold

is associated with copper as both are precious metals, and the largest correlation

with crude oil is associated with heating oil as both are energy commodities. This

observation is not surprising, as related commodities are more likely to be substitutes,

complements or in the case of agricultural commodities, even grown in the same

geographical area, thereby subjected to the same weather conditions.

Second, we find a significant evidence of comovement between crude oil and other

biofuel commodities (corn, sugar and soybean). Such significant correlations could

arise from the substitution link between crude oil and other biofuel commodities. An

increase in the price of crude oil leads to an increase in the demand for substitute

biofuels. This in turn increases the demand for feedstock, which consequently leads

to an increase in the equilibrium price of commodities such as corn, soybeans and

sugar.

Lastly, we find that our results corroborate those of Pindyck and Rotemberg (1990).

We find significant evidence of comovements between non-energy related commodi-

ties. For example, we find that copper is correlated with corn, wheat, sugar and

cotton. But it is difficult to think of any fundamental links between copper and the

aforementioned commodities, other than the fact that they are traded in the same in-

dex, e.g. Dow-Jones-UBS commodity index. An economically plausible explanation,

however, is financialization and indexation. The indexation of commodities such as

the Goldman Sachs Commodities Index (GSCI) and the Dow-Jones-UBS commodity

index and increasing investments in commodities as a way to diversify risk away from

traditional assets leads to increased comovements among commodities, irrespective

of whether they are related or not (Barberis and Shleifer, 2003; Silvennoinen and

Thorp, 2013; Tang and Xiong, 2010).
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Financialization can induce comovement in commodities in two ways. First, if a large

set of commodities are held by several investors with similar portfolios, in a period of

bad news, these investors are likely to liquidate their asset holdings at the same time,

causing comovement among commodity prices, irrespective of whether or not they

are related by economic fundamentals. Second, Barberis and Shleifer (2003) argue

that investors often allocate funds based on asset categories, a phenomenon they

term “style investing”. The investment problem of allocating funds across many

individual assets is often complex and difficult. To overcome this, investors make

decisions by first splitting assets into categories, and then allocating funds across

these asset categories. Furthermore, investors choose their investment levels across

asset categories by moving funds away from categories that have recently performed

poorly, and into categories that have recently done well. Such a “style” investment

approach exerts pressure on the demand for the performing asset categories, thereby

causing their prices to comove beyond what can be explained by fundamentals.

In order to test hypothesis 2, we fit a bivariate MSM to each possible commodity pair,

for k equals 1 to 8.7 Using the Vuong (1989) test, we select the best MSM(k) model,

which is MSM(8).8 The results are reported in Table 3.7.9 The estimates of ρ̂η and

their corresponding standard errors corroborate the evidence of excess comovement

reported in Table 3.6. Recall that the test of hypothesis 2 is a much stronger test than

hypothesis 1. The commovement of a pair of commodity may pass hypothesis 1 but

fail hypothesis 2 because the former makes no distinction between conditional and

unconditional comovement. The results indicate that there is significant evidence

of conditional covariance between all the unique commodity pairs. Similar to the

7Due to computational constraints, k > 8 was not considered for any commodity pairs.
8As in the univariate model, the best MSM(k) model varies across commodity pairs, ranging from
5 to 8. But we use k = 8 for all commodity pairs, since this is in fact the case for 53% of the
possible commodity pairs.

9Only the estimates and the corresponding p-values for ρη are reported in this Table. The full
parameter estimates of the bivariate MSM models are reported in Appendix B.
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results of the test of zero scaled covariance, the values in Table 3.7 are barely lower

than the simple correlation values reported in Table 3.2.

Table 3.7: Test of Zero Conditional Covariance (Hypothesis 2)

Gold Copper Cotton Wheat Oats Sugar Soybeans Corn Heating WTI

Gold 0.2250 0.0719 0.0730 0.0890 0.0675 0.0969 0.0945 0.1101 0.1365
Copper 0.0155 0.1149 0.1229 0.0852 0.1253 0.1536 0.1205 0.1670 0.2051
Cotton 0.0164 0.0161 0.1378 0.1052 0.1077 0.2311 0.1889 0.1128 0.1167
Wheat 0.0160 0.0154 0.0156 0.3204 0.0904 0.3763 0.4837 0.1123 0.1245
Oats 0.0172 0.0170 0.0172 0.0156 0.1000 0.3607 0.4267 0.0908 0.0977
Sugar 0.0167 0.0161 0.0166 0.0160 0.0173 0.1095 0.1035 0.0974 0.1269
Soybeans 0.0163 0.0157 0.0156 0.0149 0.0153 0.0167 0.6047 0.1647 0.1720
Corn 0.0164 0.0157 0.0158 0.0133 0.0144 0.0165 0.0114 0.1503 0.1639
Heating 0.0162 0.0164 0.0156 0.0154 0.0169 0.0162 0.0152 0.0159 0.7689
WTI 0.0167 0.0156 0.0160 0.0158 0.0170 0.0162 0.0156 0.0157 0.0058

Notes: This table reports the estimates of ρη , and the associated p-values for the test of hypothesis 2. For each
commodity pair, ρη is reported in the upper diagonal, while the associated p-value is reported in the corresponding
lower diagonal. The null hypothesis is H0 : Et(ε̂i,t+1, ε̂j,t+1) = 0. The null implies that the conditional covariance
between commodities i and j, Covt(ε̂i,t+n, ε̂j,t+n), is constant and equal to zero. This implies that ρη = 0 in
Equation (3.5). ρη is estimated by fitting a bivariate MSM(8) model to each commodity pair. The results indicate
that the correlation statistics are statistically significant for all of the unique commodity pairs.

The correlation matrix from the scaled residuals only present the unconditional cor-

relations at a snapshot in time. It does not show how the correlation dynamics

evolve over time, and how they are affected by events in commodity markets. In or-

der to see this, we use the parameter estimates from the bivariate MSM to compute

the conditional correlations among the different commodity pairs. Figure 3.2 shows

the conditional correlations for selected commodity pairs, namely corn - crude oil,

heating oil - crude oil, soybeans - corn, copper - crude oil, gold - sugar and gold -

cotton.

Looking at the corn - crude oil and copper crude - crude oil correlation dynamics,

the graphs shows a major spike between 2007 and 2008. These periods coincide with

periods of significant increases in oil prices, from $51.91 in Jan 2007 to $145.31 in

July 2008, and from $33.14 in Dec 2008 to $112.38 in April 2011. Since crude oil is

an essential input in the production of other commodities, an increase in the price

of crude oil will lead to an increase in the price of other commodities. Moreover,
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Figure 3.2: Dynamic Conditional Correlations Between Commodity Pairs
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the spikes in correlation between corn and crude oil may also be explained, to some

extent, by the substitution link between corn and crude oil. Since biofuels are made

from corn (among other commodities), an increase in the price of crude oil will lead

to an increase in the equilibrium quantity demanded for crude oil alternatives. An

increased supply of biofuels requires an increase in the demand for inputs such as

corn. Therefore, increase in crude oil prices will consequently lead to an increase in

the price of corn.

Figure 3.2 also shows that the correlation between other non-energy commodity pairs

increased significantly in 2008. This can be observed on the soybeans - corn, gold -

cotton and gold - sugar conditional correlation charts. This spikes coincide with the

2008 financial crisis that led to a sustained period of high uncertainty in the global

economy. Commodities are often viewed as a safe haven during crisis periods when

traditional financial assets become too risky to hold. Moreover, the observation cor-

roborates existing evidence that points to the dynamic nature of comovement among

financial assets (Bollerslev et al., 1992, 1988; Erb et al., 1994; Moskowitz, 2003). As-

sets that are seemingly uncorrelated in tranquil periods may become excessively

correlated in periods of high uncertainty in the economy. High comovements during

periods of high volatility can be as a result of correlated information that arises in

attempts by rational agents to infer information from price changes in other markets

(King and Wadhwani, 1990). Also, high comovements can also be as a result of cor-

related liquidity shocks that arise as uninformed but rational investors try to extract

information from informed investors that are liquidating their existing asset holdings

(Calvo, 1999). For example, the possibility that informed investors are forced to sell

securities in a particular market due to margin calls may be perceived by uninformed

investors as a signal of low returns in such market. Consequently, the uninformed
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investors may also follow suit by liquidating their existing positions in such market.10

Lastly, we also observe that the conditional correlation between crude oil and heat-

ing oil is consistently high, consistent with a priori expectations. Heating oil is

a by-product of crude oil, hence the strong comovement between the two energy

commodities.

3.4.4. Frequency Decomposition

The analysis so far only addresses the question of whether or not significant excess

comovement exist among commodities. Having established that excess comovement

does exist among commodities, we then address the question of whether such co-

movement is a short term or long term phenomenon, or a combination of both. In

order to address this question, the maximum likelihood estimates from the univariate

MSM(10) models are used to compute, for each of the commodities, the smoothed

state probabilities and the conditional expectations of each frequency component i.e.

M̂ i
k,t = E(M i

k,t|r1, r2, ...rT ), for i = 1, 2, ..., N and k = 1, 2, ..., 10. This approach is

similar to the band-pass filter of Baxter and King (1999) or the H-P filter of Hodrick

and Prescott (1997). The difference between these filters and the MSM frequency

decomposition is that the band-pass and the H-P filters decompose a time-series into

only a trend and cyclical components, while the MSM frequency decomposition is

able to decompose the series into many frequencies, as may be inferred from the

data.

To illustrate our findings, we present results for several pairs heating oil - crude

oil (related commodities), soybeans - corn (related commodities), copper - crude oil

10Several other explanations have been proposed for the reasons why comovements increase in
periods of high volatility (De Gregorio and Valdes, 2001; Eichengreen et al., 2001; Forbes and
Rigobon, 2002; Lagunoff and Schreft, 2001; Van Rijckeghem and Weder, 2003).
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(unrelated commodities), soybeans - cotton (unrelated commodities), gold - sugar

(unrelated commodities) and heating oil - cotton (unrelated commodities).11 The cor-

relations of smoothed frequency components, Corr(M̂ i
k,t, M̂

j
k,t), for i, j = 1, 2, ..., N

and k = 1, 2, ..., 10 are presented in Table 3.8.

First, we observe that correlations are stronger at lower frequencies, and tend to

decline as k increases. For example, consider soybeans and corn. The correlation

between their lowest volatility frequencies (Corr(M̂ soybeans
1,t , M̂ corn

1,t )) is 0.9428 (the

element at the intersection of row Soy1 and column Corn1), while the correlation

between their highest volatility frequencies (Corr(M̂ soybeans
10,t , M̂ corn

10,t )) is 0.3890 (the

element at the intersection of row Soy10 and column Corn10). Similarly, consider

copper and crude oil. Although categorized as unrelated, they are both industrial

commodities, whose prices tend to fluctuate with the level of economic activities. The

correlation between their lowest volatility frequencies (Corr(M̂ copper
1,t , M̂ crude−oil

1,t )) is

0.6745 (the element at the intersection of row cop1 and column WTI1), while the

correlation between their highest volatility frequencies (Corr(M̂ copper
10,t , M̂ crude−oil

10,t )) is

0.0839 (the element at the intersection of row cop10 and column WTI10).

Table 3.8: Correlation of Smoothed Frequency Components

Gold - Copper

Cop1 Cop2 Cop3 Cop4 Cop5 Cop6 Cop7 Cop8 Cop9 Cop10

Gold1 0.8822 0.7754 0.3269 0.1117 0.0424 0.0663 0.0329 0.0144 0.0071 0.0060
Gold2 0.8818 0.7776 0.3324 0.1142 0.0473 0.0687 0.0345 0.0151 0.0074 0.0062
Gold3 0.8553 0.7739 0.3804 0.1672 0.1067 0.0921 0.0475 0.0213 0.0101 0.0085
Gold4 0.3275 0.3565 0.3775 0.3363 0.2997 0.1652 0.0892 0.0428 0.0201 0.0166
Gold5 0.0167 0.0482 0.1539 0.2941 0.2870 0.1752 0.1034 0.0511 0.0243 0.0202
Gold6 0.0943 0.1137 0.1280 0.2240 0.2624 0.2577 0.1816 0.0941 0.0460 0.0384
Gold7 0.0767 0.0869 0.0820 0.1206 0.1527 0.1956 0.1773 0.1135 0.0626 0.0536
Gold8 0.0320 0.0360 0.0318 0.0461 0.0620 0.0878 0.1022 0.0955 0.0745 0.0692
Gold9 0.0135 0.0150 0.0124 0.0190 0.0275 0.0405 0.0538 0.0707 0.0842 0.0855
Gold10 0.0113 0.0125 0.0103 0.0160 0.0234 0.0348 0.0473 0.0662 0.0848 0.0874

Continued on next page

11Although we report results for only a few commodity pairs, the results are similar across the other
pairs not reported.
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Table 3.8 – Continued from previous page

Soybeans - Corn

Corn1 Corn2 Corn3 Corn4 Corn5 Corn6 Corn7 Corn8 Corn9 Corn10

Soy1 0.9428 0.8414 0.6391 0.2880 0.1593 0.0999 0.0566 0.0280 0.0142 0.0084
Soy2 0.9147 0.8159 0.6319 0.2903 0.1654 0.1059 0.0605 0.0304 0.0156 0.0092
Soy3 0.8513 0.7537 0.6406 0.3216 0.1999 0.1342 0.0792 0.0418 0.0221 0.0130
Soy4 0.2062 0.3334 0.5480 0.4745 0.3603 0.2673 0.1714 0.0984 0.0544 0.0326
Soy5 0.1512 0.2860 0.5464 0.6562 0.6084 0.5027 0.3358 0.1984 0.1118 0.0675
Soy6 0.0889 0.1865 0.4187 0.6289 0.6739 0.6483 0.4854 0.3108 0.1849 0.1147
Soy7 0.0445 0.0925 0.2198 0.3509 0.4183 0.4966 0.4907 0.4082 0.2926 0.2015
Soy8 0.0211 0.0447 0.1026 0.1622 0.2011 0.2680 0.3362 0.3920 0.3930 0.3377
Soy9 0.0110 0.0218 0.0474 0.0743 0.0935 0.1316 0.1873 0.2720 0.3636 0.3924
Soy10 0.0095 0.0188 0.0405 0.0633 0.0799 0.1134 0.1646 0.2473 0.3464 0.3890

Heating Oil - Crude Oil

WTI1 WTI2 WTI3 WTI4 WTI5 WTI6 WTI7 WTI8 WTI9 WTI10

Ht1 -0.2057 0.4554 0.6170 0.2853 0.0731 0.0267 0.0112 0.0062 0.0037 0.0034
Ht2 0.0628 0.6086 0.6836 0.3120 0.0948 0.0445 0.0227 0.0125 0.0076 0.0070
Ht3 0.3175 0.7220 0.7130 0.3703 0.1590 0.0905 0.0499 0.0269 0.0159 0.0146
Ht4 0.5619 0.7515 0.6635 0.4880 0.2999 0.1892 0.1067 0.0568 0.0330 0.0302
Ht5 0.5617 0.6173 0.5510 0.5902 0.4338 0.2825 0.1601 0.0855 0.0495 0.0454
Ht6 0.4593 0.5025 0.4980 0.6535 0.5391 0.3599 0.2076 0.1124 0.0655 0.0600
Ht7 0.3340 0.3920 0.4339 0.6387 0.6102 0.4428 0.2687 0.1493 0.0881 0.0809
Ht8 0.2172 0.2646 0.3209 0.5311 0.6026 0.5202 0.3497 0.2032 0.1224 0.1126
Ht9 0.1143 0.1471 0.1992 0.3751 0.5218 0.5727 0.4471 0.2775 0.1720 0.1588
Ht10 0.0623 0.0787 0.1150 0.2437 0.4015 0.5557 0.5169 0.3520 0.2275 0.2112

Copper - Crude Oil

WTI1 WTI2 WTI3 WTI4 WTI5 WTI6 WTI7 WTI8 WTI9 WTI10

Cop1 0.6745 0.0192 -0.3064 -0.1514 0.0052 0.0253 0.0182 0.0089 0.0051 0.0047
Cop2 0.5808 -0.0439 -0.3460 -0.1384 0.0293 0.0399 0.0251 0.0120 0.0066 0.0061
Cop3 0.3472 0.0217 -0.1791 0.0636 0.1186 0.0860 0.0473 0.0225 0.0122 0.0111
Cop4 0.2409 0.1527 0.0649 0.2628 0.2267 0.1490 0.0784 0.0377 0.0209 0.0190
Cop5 0.1493 0.1475 0.1241 0.2698 0.2954 0.1983 0.1046 0.0522 0.0299 0.0274
Cop6 0.1275 0.1154 0.0963 0.1753 0.2490 0.2108 0.1238 0.0659 0.0389 0.0357
Cop7 0.0643 0.0609 0.0547 0.0990 0.1530 0.1556 0.1055 0.0661 0.0441 0.0412
Cop8 0.0301 0.0305 0.0291 0.0520 0.0772 0.0850 0.0759 0.0764 0.0667 0.0644
Cop9 0.0144 0.0144 0.0139 0.0254 0.0378 0.0447 0.0520 0.0762 0.0835 0.0832
Cop10 0.0120 0.0119 0.0115 0.0211 0.0316 0.0379 0.0464 0.0727 0.0837 0.0839

Soybeans - Cotton

Cot1 Cot2 Cot3 Cot4 Cot5 Cot6 Cot7 Cot8 Cot9 Cot10

Soy1 0.9369 0.9058 0.8159 0.1674 0.0810 0.0374 0.0297 0.0138 0.0078 0.0068
Soy2 0.9423 0.9287 0.8609 0.2111 0.0688 0.0402 0.0362 0.0167 0.0089 0.0078
Soy3 0.5940 0.5834 0.5493 0.3864 0.2485 0.1230 0.0764 0.0335 0.0161 0.0138
Soy4 0.1373 0.1324 0.1607 0.3273 0.3343 0.1840 0.0874 0.0363 0.0166 0.0142
Soy5 0.0961 0.0958 0.1090 0.2081 0.3037 0.2173 0.1073 0.0468 0.0214 0.0183
Soy6 0.0394 0.0411 0.0560 0.0989 0.2044 0.1970 0.1127 0.0531 0.0257 0.0221
Soy7 0.0135 0.0149 0.0254 0.0651 0.1192 0.1228 0.0827 0.0584 0.0371 0.0332
Soy8 0.0051 0.0059 0.0113 0.0312 0.0556 0.0598 0.0569 0.0757 0.0704 0.0669
Soy9 0.0028 0.0032 0.0060 0.0152 0.0274 0.0304 0.0362 0.0689 0.0876 0.0879
Soy10 0.0025 0.0029 0.0054 0.0133 0.0239 0.0267 0.0328 0.0658 0.0879 0.0889
Continued on next page
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Table 3.8 – Continued from previous page
Heating Oil - Cotton

Cot1 Cot2 Cot3 Cot4 Cot5 Cot6 Cot7 Cot8 Cot9 Cot10

Ht1 -0.7188 -0.4807 -0.2460 0.0277 0.1606 0.1622 0.1182 0.0746 0.0354 0.0195
Ht2 -0.6152 -0.3572 -0.1168 0.1389 0.2353 0.2117 0.1425 0.0884 0.0408 0.0223
Ht3 -0.2990 -0.0966 0.0678 0.2106 0.2642 0.2493 0.1802 0.1120 0.0511 0.0236
Ht4 -0.0774 -0.0144 0.0376 0.0930 0.1453 0.1630 0.1259 0.0803 0.0407 0.0190
Ht5 0.0008 0.0444 0.0672 0.0612 0.0379 0.0219 -0.0032 -0.0144 -0.0042 0.0004
Ht6 -0.0058 0.0135 0.0293 0.0416 0.0447 0.0424 0.0300 0.0284 0.0488 0.0488
Ht7 -0.0012 0.0051 0.0123 0.0222 0.0286 0.0306 0.0295 0.0366 0.0526 0.0427
Ht8 -0.0004 0.0020 0.0054 0.0111 0.0153 0.0168 0.0168 0.0199 0.0257 0.0189
Ht9 -0.0004 0.0007 0.0025 0.0058 0.0082 0.0092 0.0095 0.0112 0.0144 0.0121
Ht10 -0.0003 0.0006 0.0022 0.0051 0.0073 0.0082 0.0084 0.0100 0.0128 0.0109

Gold - Sugar

Sug1 Sug2 Sug3 Sug4 Sug5 Sug6 Sug7 Sug8 Sug9 Sug10

Gold1 0.6201 0.5678 0.3062 0.1385 0.0554 0.0297 0.0166 0.0092 0.0061 0.0058
Gold2 0.6163 0.5660 0.3070 0.1394 0.0557 0.0300 0.0169 0.0093 0.0062 0.0059
Gold3 0.5774 0.5524 0.3118 0.1443 0.0597 0.0334 0.0191 0.0104 0.0068 0.0065
Gold4 0.0908 0.1341 0.0933 0.0622 0.0365 0.0248 0.0159 0.0090 0.0058 0.0054
Gold5 -0.0211 0.0408 0.0813 0.0937 0.0694 0.0416 0.0253 0.0150 0.0104 0.0099
Gold6 0.0160 0.0824 0.1537 0.1662 0.1350 0.0892 0.0534 0.0303 0.0209 0.0199
Gold7 0.0132 0.0481 0.0995 0.1331 0.1277 0.1014 0.0694 0.0413 0.0286 0.0273
Gold8 0.0073 0.0220 0.0443 0.0605 0.0661 0.0674 0.0583 0.0383 0.0269 0.0255
Gold9 0.0047 0.0112 0.0202 0.0264 0.0302 0.0342 0.0326 0.0225 0.0153 0.0144
Gold10 0.0042 0.0097 0.0172 0.0224 0.0257 0.0294 0.0282 0.0194 0.0128 0.0119

Notes: This table reports the correlations from a frequency decomposition of univariate MSM with k = 10
components for commodity pairs heating oil - crude oil, soybeans - corn, copper - crude oil, soybeans - cotton
and heating oil - cotton. First, a univariate MSM(10) is fitted to each commodity residual vector derived from
Equation (3.1). Second, using the parameter estimates for each commodity, the smoothed state probabilities

and the conditional expectations of each frequency component i.e. M̂ i
k,t = E(M i

k,t|r1, r2, ...rT ) are calculated,

where M̂ i
k,t is a T (number of observations) by 10 matrix and i = 1, 2, ...N . Each element in the table corresponds

to Corr(M̂ i
k,t, M̂

j
k,t) for i, j commodity pair. For example, consider heating oil and crude oil. The correlation

between M̂1,t for heating oil and M̂1,t for crude oil is 0.1880. This is the element under Ht1 and WTI1. The

correlation between M̂1,t for heating oil and M̂10,t for crude oil is 0.0376. This is the element under Ht1 and
WTI10. Note that the correlation matrix for each pair is not symmetric. Again, consider heating oil and crude
oil. Corr(M̂1,t, M̂2,t) (the element under Ht1 and WTI2) does not equal Corr(M̂2,t, M̂1,t) (the element under

Ht2 and WTI1). The former is the correlation between M̂1,t of heating oil and M̂2,t of crude oil, while the

latter is the correlation between M̂2,t of heating oil and M̂1,t of crude oil.

This observation also applies to commodities that exhibit weak correlations in Table

3.6, such as gold and sugar. Although the correlation between gold and sugar prices

reported in Table 3.6 is statistically significant, it is economically small in absolute

value compared to other commodity pairs. The results of the frequency decomposi-
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tion further reveals that such correlation is driven by low frequency fundamentals,

and that the correlations are significantly small at higher frequencies.

Second, we find that high frequency correlations are stronger between related com-

modities (soybeans - corn, heating oil - crude oil and gold - copper) than between

unrelated commodities (soybeans - cotton, heating - oil cotton and gold - sugar),

which is consistent with a priori expectations. Such high frequency correlation may

be driven by high frequency factors such as spreading and liquidity constraints.

Lastly, we observe that all commodity pairs exhibit strong low frequency correlations,

irrespective of whether they are related or not. For example, the gold - sugar corre-

lation (0.0625) is economically weak in Table 3.6. Their low frequency correlations

is high (0.6201), although it rapidly declines from k = 4 to k = 10. Therefore, we

infer that all commodities exhibit strong long-run comovements which are driven by

low frequency fundamentals which may involve factors such as weather, demographic

and macroeconomic variables. But related commodities also exhibit strong short-run

comovements that may arise from liquidity constraints, indexation, etc.

These results corroborate the findings of Lescaroux (2009) and Malliaris and Urrutia

(1996), who also find significant evidence of long term comovement between the prices

of commodities. But our results differ from theirs in terms of short term comove-

ment. While we document the presence of short term comovements between related

commodities, Lescaroux (2009) find only a weak evidence of short term comovement

and Malliaris and Urrutia (1996) find no evidence of short term comovement.

3.5. Robustness Analysis

The tests of excess comovement conducted in section 4 are based on the standard ap-

proach for testing excess commodity comovement. Moreover, the R2 values reported
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in Table 3.3 indicate that the fundamental variables do not explain much of the

observed variations in commodity prices.12 This suggests that there might be other

factors driving the observed correlations, but that are not captured in the regression

model. As mentioned in Section 2, these include such factors as weather, the profit

maximizing behaviours of farmers, and supply side factors such as inventories, yields,

etc.

In order to ensure that this is not driving our results, we adopt a second approach

for filtering out the effects of shared fundamental factors. The approach is based

on the theory of storage.13 The Kaldor (1939) theory of storage states that the

spread between futures and spot prices is driven by fundamental demand and supply

factors. In other words, the dynamics of spot and futures prices should reflect the

convenience yield, cost of storage and stock levels, where the convenience yield is a

decreasing function of the stock level and the storage cost is an increasing function

of the stock level. By implication, macroeconomic fundamentals should affect com-

modity prices through their effects on stock levels in the short run. Furthermore, the

distinction between short and long run variations in commodity prices dynamics are

stressed by Schwartz and Smith (2000) by modeling commodity prices as comprising

an equilibrium factor and a mean-reverting stochastic factor.

This implies that the excess comovement hypothesis can be tested by filtering out

the effects of shared fundamentals through the stock levels. To achieve this, we

decompose the logarithm of commodity prices and stock levels into a trend and

cyclical component using the Kydland and Prescott (1990) filter. Equation (3.1) is

reformulated in terms of log-prices and re-estimated as follows

12This is also the case with earlier studies in the literature.
13A similar approach was used by Lescaroux (2009) and Ai et al. (2006) but arrived at different

conclusions from ours.
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P c
i,t = β0P

c
i,t−1 +

J∑
j=0

βi,jS
c
t−j + εi,t (3.10)

where P c
i,t is the cyclical component of the log-price of commodity i and Sci,t is the

cyclical component of the logarithm of the stock level for commodity i. We do this

for commodities for which daily stock level data are available, namely, WTI crude oil,

copper, aluminium, tin, zinc, nickel and lead. All of these commodities are traded on

the London Metal Exchange and quoted in U.S. dollars. The stock level data do not

correspond to global stock levels, which are unknown. Rather, the metal stocks are

stocks in LME warehouses and the oil stock corresponds to the U.S. oil stock level.

To serve as a benchmark for interpreting the excess comovement tests, the simple

correlations between the commodities are reported in Table 3.9. As expected, there

are strong correlations between the metal commodities as well as between metals and

crude oil. All correlations are significant at the 1% level, ranging from 0.5940 (tin

and zinc) to 0.9220 (copper and lead).

Table 3.9: Simple Correlations of Metals and Crude Oil

WTI Copper Aluminium Tin Zinc Nickel Lead
WTI 0.9171 0.8428 0.8791 0.6821 0.7602 0.8718
Copper 0.9117 0.9050 0.8335 0.8460 0.9220
Aluminium 0.7640 0.8055 0.8141 0.8036
Tin 0.5940 0.6872 0.8830
Zinc 0.8967 0.7532
Nickel 0.8134
Lead

Notes: This table presents the simple bivariate correlation coefficients between each

commodity pair. The correlation coefficient r has a test statistic t = r
√
N − 2/

√
1− r2,

which has an asymptotic t−distribution with N − 2 degrees of freedom, where N is the
number of observations. For N = 4397, the critical correlation coefficients are 0.0388,
0.0296 and 0.0248 for 1%, 5% and 10% significance levels, respectively. All correlation
coefficients are significant at 1%, 5% or 10% significant levels.

In order to test for excess comovement, we estimate Equation (3.10) for the com-

modities and calculate the residuals. The regression result are presented in Table

3.10. As can be observed from the results, the R2 increased significantly compared

146



Table 3.10: Regression Results For Commodities With Stocks

Cyclical Components of Log-Commodity Prices (P ci,t)

WTI Copper Aluminium Tin Zinc Nickel Lead

P ci,t−1 0.9936*** 0.9961*** 0.9976*** 0.9970*** 0.9982*** 0.9967*** 0.9942***
(0.0027) (0.0017) (0.0017) (0.0021) (0.0020) (0.0018) (0.0024)

Sci,t 0.0826* -0.0704*** -0.0222 -0.0365*** -0.1008** -0.0583*** -0.0734***
(0.0497) (0.0179) (0.0302) (0.0122) (0.0405) (0.0180) (0.0193)

Sci,t−1 -0.0826 0.0695*** 0.0235 0.0367*** 0.1015** 0.0581*** 0.0712***
(0.0503) (0.0179) (0.0302) (0.0123) (0.0403) (0.0179) (0.0192)

N 4,397 4,397 4,397 4,397 4,397 4,397 4,397

R2 0.9872 0.9949 0.9945 0.9932 0.9957 0.9940 0.9929

R
2

0.9872 0.9949 0.9945 0.9932 0.9957 0.9940 0.9929
F − stat 55863 205305 135803 183562 202118 146887 145544
P − value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: This table presents the results from regressing the cyclical components of the logarithm of commodity
prices on the cyclical components of the logarithm of stock levels, where P ci,t and Sci,t are the cyclical
components of the logarithm of price and the logarithm of stock level respectively. The cyclical components
are derived by applying the Hodrick and Prescott (1997) filter to the logarithm of commodity prices and the
logarithm of stock levels. The smoothing parameter λ is determined using the Ravn and Uhlig (2002) rule
that sets λ to 1600p4q , where pq is the number of periods per quarter. Standard errors are heteroscedasticity
and autocorrelation consistent. *** p < 0.01, ** p < 0.05, * p < 0.1.

to those reported in Table 3.3. Consider copper for example. The same copper price

series used in Table 3.3 are also used in Table 3.10. The R2 increased from 0.0531

to 0.9949. This indicates that this approach is better able to filter out the effects of

shared macroeconomic fundamental factors, including the effects of the supply side

factors. Ceteris paribus, we should observe a lower level of comovement between the

commodities in this group.

In the next step, we fit univariate MSM models to the residuals from Equation (3.10)

and repeat the tests of zero scaled covariance for the commodities. The pairwise cor-

relation results are reported in Table 3.11.14 The results are in fact identical to those

in Table 3.6. The null hypothesis of zero-comovement is strongly rejected in all of the

possible cases. Although, the pairwise correlations decreased substantially from their

original levels in Table 3.10 ranging from 0.1107 (crude oil and tin) to 0.6291 (copper

14A univariate MSM is fitted for all the commodities for k = 1 to k = 10. The Vuong (1989) tests
point to optimal k = 10 for all the commodities.
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Table 3.11: Robustness Analysis (Test of Zero Scaled Covariance)

WTI Copper Aluminium Tin Zinc Nickel Lead

WTI 0.1914 0.1552 0.1099 0.1599 0.1561 0.1638
Copper 0.0000 0.5144 0.2710 0.6287 0.5612 0.5327
Aluminium 0.0000 0.0000 0.1837 0.4683 0.3926 0.3852
Tin 0.0000 0.0000 0.0000 0.2616 0.2550 0.2272
Zinc 0.0000 0.0000 0.0000 0.0000 0.5213 0.5903
Nickel 0.0000 0.0000 0.0000 0.0000 0.0000 0.4522
Lead 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: This table reports the correlation statistics, ρ̂i,j = E(η̂i,t, η̂j,t), and the asso-
ciated p-values for the test of hypothesis 1, for commodities with stock level data.
The correlation statistics are reported in the upper diagonal, while the p-values are
reported in the lower diagonal. The null hypothesis is H0 : E(ηi,t, ηj,t) = 0. The
Lagrange multiplier test of the moment condition implied by the null hypothesis is
given by LMi,j = T ρ̂2i,j . This test statistic has an asymptotic chi-square distribution,
with 1 degree of freedom. The associated p-values are reported in the lower diagonal.
The results indicate that the correlation statistics are statistically significant for all
commodity pairs.

and zinc), they remain strongly significant. Therefore, the results corroborate our

initial findings from Section 4 that there is significant excess comovement between

commodities. We note, however, that our results contradict those documented by

Lescaroux (2009) and Ai et al. (2006) who adopted similar approaches but find weak

or no evidence of comovement. While they used monthly and quarterly data, we

employed daily data. Therefore, our data is able to accommodate more frequent

propagation of shocks between the commodities. Hence, the difference in results.

In order to test hypothesis 2, we fit bivariate MSM(8) to all the residuals from Equa-

tion (3.10). The results from the test of zero conditional covariance are reported

in Table 3.12. The results essentially corroborate the initial evidence of significant

comovement between commodities, beyond what can be explained by shared macroe-

conomic fundamentals. All the estimates of ρη are significant at the 5% significance

level, indicating that the conditional covariance between the commodity pairs are

significantly different from zero, and time varying.
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Table 3.12: Robustness Analysis (Test of Zero Conditional Covariance)

WTI Copper Aluminium Tin Zinc Nickel Lead

WTI 0.2046 0.1635 0.1214 0.1738 0.1642 0.1770
Copper 0.0155 0.5374 0.3059 0.6609 0.5902 0.5690
Aluminium 0.0159 0.0113 0.2079 0.4925 0.4135 0.4137
Tin 0.0168 0.0156 0.0168 0.2915 0.2880 0.2591
Zinc 0.0159 0.0082 0.0120 0.0171 0.5422 0.6193
Nickel 0.0158 0.0100 0.0133 0.0159 0.0118 0.4758
Lead 0.0156 0.0111 0.0137 0.0158 0.0102 0.0121

Notes: This table reports the estimates of ρη, and the associated p-values for the
test of hypothesis 2. For each commodity pair, ρη is reported in the upper diagonal,
while the associated p-value is reported in the corresponding lower diagonal. The
null hypothesis is H0 : Et(ε̂i,t+1, ε̂j,t+1) = 0. The test implies that the conditional
covariance between commodities i and j, Covt(ε̂i,t+n, ε̂j,t+n), is constant and equal
to zero. This implies that ρη = 0 in Equation (3.5). ρη is estimated by fitting
a bivariate MSM(8) model to each commodity pair. The results indicate that the
correlation statistics are statistically significant for all commodity pairs.

3.6. Conclusion

This study addresses the question of whether there is excess comovement among

commodity prices, as described by Pindyck and Rotemberg (1990). We adopt a two-

step approach that combines the Pindyck and Rotemberg (1990) structural model

with an MSM model that accounts for heteroscedasticity, non-normality and the

multi-frequency nature of volatility in commodity prices. Moreover, unlike earlier

studies, we use daily commodity prices that are able to capture more rapid propaga-

tion of shocks among different commodity markets. Our findings suggest that there

is significant comovement between commodity prices, beyond what can be explained

by shared macroeconomic fundamentals.

Furthermore, decomposing comovements into multiple frequencies, we find that all

commodities exhibit strong long-run excess comovements which are driven by low

frequency fundamentals such as weather, demographic and macroeconomic factors.
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But some commodities also exhibit significant short-run excess comovements that

may be attributable to short-run factors such as liquidity constraints, indexation,

etc.

These findings have significant welfare and risk management implications. On the

welfare side, Runge and Senauer (2007) warn that increasing comovement between

oil and food prices, as a result of the diversification of resources away from food

to biofuel, could profoundly disrupt the relationships between food producers and

consumers in the long run, with potentially devastating implications for both global

poverty and food security. On the risk management side, when the comovement

structure between assets are ignored in a portfolio allocation or dynamic hedging

process, investors tend to allocate more resources to risky assets, thereby exposing

them to more risk.

150



Bibliography

Ai, C., Chatrath, A., and Song, F. (2006). On the comovement of commodity prices.

American Journal of Agricultural Economics, 88(3):574–588.

Anderson, R. W. and Danthine, J. P. (1983). The time pattern of hedging and the

volatility of futures prices. Review of Economic Studies, 50(2):249–66.

Baffes, J. and Haniotis, T. (2010). Placing the 2006/08 commodity boom into per-

spective. Policy Research Working Paper Series 5371, The World Bank.

Bahattin, B. A., Michael, H. S., and Michel, R. A. (2001). Contagion as a wealth

effect. The Journal of Alternative Investments, 56(4):1401–1440.

Barberis, N. and Shleifer, A. (2003). Style investing. Journal of Financial Economics,

68(2):161–199.

Baxter, M. and King, R. G. (1999). Measuring business cycles: Approximate band-

pass filters for economic time series. The Review of Economics and Statistics,

81(4):575–593.

Beck, S. E. (1993). A rational expectations model of time varying risk premia in com-

modities futures markets: theory and evidence. International Economic Review,

pages 149–168.

Bera, A. K., Garcia, P., and Roh, J. (1997). Estimation of time-varying hedge ratios

151



for corn and soybeans: Bgarch and random coefficient approaches. Sankhya: The

Indian Journal of Statistics, Series B (1960-2002), 59(3):pp. 346–368.

Bollerslev, T., Chou, R. Y., and Kroner, K. F. (1992). Arch modeling in finance : A

review of the theory and empirical evidence. Journal of Econometrics, 52(1-2):5–

59.

Bollerslev, T., Engle, R. F., and Wooldridge, J. M. (1988). A capital asset pricing

model with time-varying covariances. Journal of Political Economy, 96(1):116–31.

Byrne, J., Fazio, G., and Fiess, N. (2012). Primary commodity prices: co-movements,

common factors and fundamentals. Journal of Development Economics.

Calvet, L. and Fisher, A. (2001). Forecasting multifractal volatility. Journal of

Econometrics, 105(1):27 – 58.

Calvet, L. E. and Fisher, A. J. (2004). How to forecast long-run volatility: Regime

switching and the estimation of multifractal processes. Journal of Financial Econo-

metrics, 2(1):49–83.

Calvet, L. E., Fisher, A. J., and Thompson, S. B. (2006). Volatility comovement: a

multifrequency approach. Journal of Econometrics, 131(1-2):179–215.

Calvo, G. A. (1999). Contagion in emerging markets: when wall street is a carrier.

Working papers, University of Maryland.

Campiche, J. L., Bryant, H. L., Richardson, J. W., and Outlaw, J. L. (2007). Ex-

amining the evolving correspondence between petroleum prices and agricultural

commodity prices. 2007 Annual Meeting, July 29-August 1, 2007, Portland, Ore-

gon TN 9881, American Agricultural Economics Association (New Name 2008:

Agricultural and Applied Economics Association).

152



Cashin, P., McDermott, C., and Scott, A. (1999). The myth of comoving commodity

prices, volume 99. International Monetary Fund.

Chen, Y.-C., Rogoff, K. S., and Rossi, B. (2010). Can exchange rates forecast com-

modity prices? The Quarterly Journal of Economics, 125(3):1145–1194.

Claessens, S., Dornbusch, R., and Park, Y. (2001). Contagion: Why crises spread and

how this can be stopped. In Claessens, S. and Forbes, K., editors, International

Financial Contagion, pages 19–41. Springer US.

De Gregorio, J. and Valdes, R. O. (2001). Crisis transmission: Evidence from the

debt, tequila, and asian flu crises. In International financial contagion, pages

99–127. Springer.

Deb, P., Trivedi, P. K., and Varangis, P. (1996). The excess co-movement of com-

modity prices reconsidered. Journal of Applied Econometrics, 11(3):275–91.

Domanski, D. and Heath, A. (2007). Financial investors and commodity markets.

BIS Quarterly Review.

Egelkraut, T. M., Woodard, J. D., Garcia, P., and Pennings, J. M. (2005). Port-

folio diversification with commodity futures: Properties of levered futures. 2005

Conference, April 18-19, 2005, St. Louis, Missouri 19047, NCR-134 Conference on

Applied Commodity Price Analysis, Forecasting, and Market Risk Management.

Eichengreen, B., Hale, G., and Mody, A. (2001). Flight to quality: investor risk

tolerance and the spread of emerging market crises. In International financial

contagion, pages 129–155. Springer.

Erb, C. B. and Harvey, C. R. (2006). The tactical and strategic value of commodity

futures. Financial Analysts Journal, 62(2):69–97.

153



Erb, C. B., Harvey, C. R., and Viskanta, T. E. (1994). Forecasting international

equity correlations. Financial Analysts Journal, 50(6):pp. 32–45.

Forbes, K. J. and Rigobon, R. (2002). No contagion, only interdependence: measur-

ing stock market comovements. The journal of finance, 57(5):2223–2261.

Frankel, J. A. (2006). The effect of monetary policy on real commodity prices. NBER

Working Papers.

Gorton, G. and Rouwenhorst, K. G. (2006). Facts and fantasies about commodity

futures. Financial Analysts Journal, 62(2):47–68.

Hamilton, J. D. (1994). Time-series analysis. Princeton Univerity Press, 1 edition.

Helbling, T., Mercer-Blackman, V., and Cheng, K. (2008). Riding a wave. Finance

and Development, 45(1):10–15.

Hodrick, R. J. and Prescott, E. C. (1997). Postwar U.S. Business Cycles: An Em-

pirical Investigation. Journal of Money, Credit and Banking, 29(1):1–16.

International Grains Council (2012). Grain market report.

Irwin, S. H., Sanders, D. R., and Merrin, R. P. (2009). Devil or Angel? The Role

of Speculation in the Recent Commodity Price Boom (and Bust). Journal of

Agricultural and Applied Economics, 41(02).

Juvenal, L. and Petrella, I. (2011). Speculation in the oil market. Federal Reserve

Bank of St. Louis Working Papers.

Kaldor, N. (1939). Speculation and economic stability. The Review of Economic

Studies, 7(1):1–27.

Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply

shocks in the crude oil market. The American Economic Review, 99(3):1053–1069.

154



Kim, C. J. (1994). Dynamic linear models with markov-switching. Journal of Econo-

metrics, 60(1-2):1–22.

King, M. and Wadhwani, S. (1990). Transmission of volatility between stock markets.

Review of Financial Studies, 3(1):5–33.

Kydland, F. E. and Prescott, E. C. (1990). Business cycles: Real facts and a monetary

myth. Federal Reserve Bank of Minneapolis Quarterly Review, 14(2):3–18.

Kyle, A. S. (2001). Contagion as a wealth effect. Journal of Finance, 56(4):1401–

1440.

Lagunoff, R. and Schreft, S. L. (2001). A model of financial fragility. Journal of

Economic Theory, 99(1):220–264.
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3.7. Appendix

3.7.1. Data Description

Table 3.13: Data Description

Commodity Exchange Price Category Source

West Texas Intermediate Crude
Oil

NYMEX $US/Barrel Energy Energy Information Adminis-
tration

New York Harbor No. 2 Heating
Oil

NYMEX $US/Gallon Energy Energy Information Adminis-
tration

Raw Sugar, ISA Daily Price NYBOT Cents/LB Soft Datastream Database
Cotton NYBOT Cents/LB Soft Datastream Database
Corn, No.2 Yellow CBOT Cents/Bushel Grains Datastream Database
Soybeans, No.1 Yellow CBOT Cents/Bushel Grains Datastream Database
Oats, No.2 Milling Minneapolis CBOT Cents/Bushel Grains Datastream Database
Wheat, No.2 Hard Kansas KCBT Cents/Bushel Grains Datastream Database
Gold, Handy & Harman COMEX $US/Troy Oz Metals Datastream Database
Copper, High Grade COMEX $US/LB Metals Datastream Database
Copper , Grade A LME $US/Metric Ton Metals Datastream Database
Aluminium LME $US/Metric Ton Metals Datastream Database
Zinc LME $US/Metric Ton Metals Datastream Database
Nickel LME $US/Metric Ton Metals Datastream Database
Lead LME $US/Metric Ton Metals Datastream Database
Tin LME $US/Metric Ton Metals Datastream Database

3.7.2. Model Selection

To apply the Vuong test, we assume two non-nested models MSM(k) and MSM(k′),

with densities f and f ′ respectively. The log-likelihood difference is given by

LRv = T−1/2(lnLfT (θ̂T )− lnLf
′

t (θ̂′T )) =
1√
T

T∑
t=1

ln
f(rt|Rt−1)

f ′(rt|Rt−1)

We consider the null hypothesis that models MSM(k) and MSM(10) have identical

unconditional expected log-likelihood (MSM(k) and MSM(10) fit the data equally
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well), against the alternative that MSM(k) performed worst. Specifically, we test the

following conditions

H0 : lnLkT − lnL10
T = 0, for k ∈ 1, 2, ..., 9

H1 : lnLkT − lnL10
T < 0

Under the null hypothesis,

T−1/2(lnLfT (θ̂T )− lnL10
t (θ̂′T ))

d→ N(0, σ2
∗)

where

σ2
∗ = V ar

(
ln

[
fk(rt|Rt−1)

f 10(rt|Rt−1)

])

3.7.3. Bivariate MSM Parameter Estimates

Table 3.14: Parameter Estimates from Bivariate MSM(8) for All Com-
modity Pairs

Commodity Pairs m̂0,1 m̂0,2 σ̂1 σ̂2 γ̂k b̂ ρ̂η λ̂ ρ̂m

Gold-Copper 1.3947 1.3220 0.9886 1.8490 0.9946 5.4959 0.2250 0.9504 0.3454
(0.0128) (0.0142) (0.0420) (0.0889) (0.0125) (0.7104) (0.0155) (0.3231) (0.1954)

Gold-Cotton 1.4167 1.3305 0.9887 1.9026 0.9999 7.7193 0.0719 0.0001 0.6042
(0.0105) (0.0153) (0.0365) (0.0722) (0.0001) (1.2974) (0.0164) (0.8268) (0.4264)

Gold-Wheat 1.3903 1.3118 0.9871 1.9954 0.9798 4.9001 0.0730 0.2394 0.1666
(0.0128) (0.0153) (0.0452) (0.1107) (0.0344) (0.6069) (0.0160) (0.5185) (0.2000)

Gold-Oats 1.3803 1.6994 1.1335 2.7822 0.9998 5.0348 0.0890 0.0001 0.0461
(0.0121) (0.0100) (0.0561) (0.1597) (0.0004) (0.5079) (0.0172) (0.7625) (0.1186)

Gold-sugar 1.3816 1.3689 1.1346 2.2657 0.9999 5.2349 0.0675 0.0001 0.1557
(0.0121) (0.0135) (0.0551) (0.1344) (0.0001) (0.7333) (0.0167) (0.7546) (0.1698)

Gold-Soybeans 1.4162 1.3694 0.9852 1.7716 0.9999 7.5624 0.0969 0.3617 0.0514
(0.0104) (0.0135) (0.0367) (0.0639) (0.0001) (1.2490) (0.0163) (0.4636) (0.1337)

Gold-Corn 1.4108 1.3680 0.9985 1.9995 0.9844 6.0174 0.0945 0.6629 0.0117
(0.0114) (0.0161) (0.0416) (0.0924) (0.0268) (0.9140) (0.0164) (0.6157) (0.1251)

Gold-Heating 1.3888 1.3224 1.0024 3.3156 0.9338 4.6383 0.1101 0.9999 0.1629
(0.0364) (0.0306) (0.0452) (0.2357) (0.0299) (1.0666) (0.0162) (0.3900) (0.1165)

Gold-WTI 1.3793 1.3045 1.1191 2.7081 0.9997 4.6818 0.1365 0.9999 0.1400

Continued on next page
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Table 3.14 – Continued from previous page

Commodity Pairs m̂0,1 m̂0,2 σ̂1 σ̂2 γ̂k b̂ ρ̂η λ̂ ρ̂m

(0.0122) (0.0128) (0.0576) (0.1419) (0.0011) (0.6405) (0.0167) (0.5075) (0.1254)

Copper-Cotton 1.3155 1.3102 1.7005 2.3920 0.9999 5.8278 0.1149 0.0647 0.6392
(0.0134) (0.0148) (0.0737) (0.1218) (0.0002) (0.9447) (0.0161) (0.3005) (0.2510)

Copper-Wheat 1.3134 1.3096 1.7852 1.9887 0.9330 4.3495 0.1229 0.8484 0.2582
(0.0247) (0.0202) (0.1717) (0.0987) (0.0182) (0.4988) (0.0154) (0.6935) (0.2771)

Copper-Oats 1.2931 1.6451 1.8714 2.1403 0.9999 3.7731 0.0852 0.0001 0.2824
(0.0121) (0.0122) (0.0895) (0.1601) (0.0000) (0.3357) (0.0170) (1.5242) (0.2833)

Copper-Sugar 1.2994 1.3673 2.0696 2.2499 0.9999 4.8785 0.1253 0.0001 0.4467
(0.0134) (0.0139) (0.1171) (0.1412) (0.0001) (0.6958) (0.0161) (0.6999) (0.2520)

Copper-Soybeans 1.2985 1.3335 2.0537 1.4341 0.9999 4.7285 0.1536 0.2276 0.6377
(0.0133) (0.0134) (0.1168) (0.0703) (0.0001) (0.6994) (0.0157) (0.2397) (0.2251)

Copper-Corn 1.2898 1.3105 1.9760 1.9392 0.9719 3.4766 0.1205 0.4521 0.5340
(0.0212) (0.0170) (0.1138) (0.1720) (0.0036) (0.3239) (0.0157) (0.2842) (0.2807)

Copper-Heating 1.3709 1.3670 1.7988 2.9418 0.7575 6.7712 0.1670 0.9999 0.3046
(0.0194) (0.0269) (0.0708) (0.1945) (0.1345) (1.4517) (0.0164) (0.3338) (0.1739)

Copper-WTI 1.3119 1.3041 1.6650 2.7165 0.9946 4.3968 0.2051 0.5015 0.6659
(0.0146) (0.0133) (0.0996) (0.1516) (0.0154) (0.6555) (0.0156) (0.3252) (0.3248)

Cotton-Wheat 1.2813 1.2896 1.9391 2.2170 0.9998 4.1392 0.1378 0.5109 0.3776
(0.0143) (0.0138) (0.1031) (0.1375) (0.0012) (0.5983) (0.0156) (0.3886) (0.2354)

Cotton-Oats 1.2787 1.6395 1.8335 2.1434 0.9999 3.6205 0.1052 0.5523 0.2589
(0.0133) (0.0121) (0.0905) (0.1679) (0.0000) (0.3219) (0.0172) (0.7128) (0.0977)

Cotton-Sugar 1.2848 1.3674 1.9552 2.2508 0.9999 4.8910 0.1077 0.9999 0.2646
(0.0145) (0.0139) (0.0945) (0.1420) (0.0001) (0.7107) (0.0166) (0.3924) (0.1677)

Cotton-Soybeans 1.2784 1.3119 1.8373 1.6652 0.9999 3.9507 0.2311 0.6985 0.4981
(0.0138) (0.0128) (0.0966) (0.0926) (0.0001) (0.5722) (0.0156) (0.3672) (0.2705)

Cotton-Corn 1.2765 1.3112 1.8946 1.9073 0.9978 3.7496 0.1889 0.4428 0.6314
(0.0143) (0.0139) (0.1119) (0.1230) (0.0078) (0.4907) (0.0158) (0.3172) (0.2941)

Cotton-Heating 1.3177 1.3307 1.8930 3.2807 0.9537 5.2129 0.1128 0.3244 0.4030
(0.0189) (0.0262) (0.0858) (0.2948) (0.0058) (0.5282) (0.0156) (0.5369) (0.4316)

Cotton-WTI 1.2840 1.3035 1.9561 2.6924 0.9999 4.5196 0.1167 0.2314 0.4475
(0.0142) (0.0126) (0.1003) (0.1390) (0.0001) (0.6710) (0.0160) (0.2652) (0.2618)

Wheat-Oats 1.2868 1.6375 2.0425 2.1292 0.9999 3.5524 0.3204 0.4978 0.5457
(0.0123) (0.0121) (0.0918) (0.1688) (0.0000) (0.3032) (0.0156) (0.3303) (0.1702)

Wheat-Sugar 1.2866 1.3262 2.0629 2.1415 0.9999 3.6863 0.0904 0.6569 0.1565
(0.0127) (0.0122) (0.0979) (0.1455) (0.0001) (0.4604) (0.0160) (0.5360) (0.1171)

Wheat-Soybeans 1.2881 1.3126 2.1902 1.7229 0.9994 3.8062 0.3763 0.3840 0.9999
(0.0137) (0.0137) (0.1385) (0.1124) (0.0027) (0.5130) (0.0149) (0.1925) (0.2540)

Wheat-Corn 1.2843 1.3064 2.1703 1.9355 0.8857 3.0893 0.4837 0.6370 0.9999
(0.0189) (0.0175) (0.0756) (0.1406) (0.0651) (0.3344) (0.0133) (0.2178) (0.3551)

Wheat-Heating 1.3588 1.3541 2.0025 2.9594 0.5386 5.0878 0.1123 0.0001 0.8472
(0.0203) (0.0277) (0.1340) (0.2136) (0.1399) (1.3642) (0.0154) (0.3893) (1.0742)

Wheat-WTI 1.2873 1.2973 2.2007 2.7074 0.9738 3.5488 0.1245 0.4589 0.1973
(0.0197) (0.0169) (0.0705) (0.1422) (0.0077) (0.2947) (0.0158) (1.0243) (0.4328)

Oats-Sugar 1.6295 1.3211 2.1306 2.1410 0.9999 3.3269 0.1000 0.9999 0.1879
(0.0114) (0.0110) (0.1731) (0.1127) (0.0000) (0.2676) (0.0173) (0.3575) (0.0864)

Oats-Soybeans 1.6359 1.3082 2.1426 1.6442 0.9999 3.5192 0.3607 0.5562 0.5932
(0.0120) (0.0120) (0.1715) (0.0805) (0.0000) (0.3006) (0.0153) (0.2489) (0.1336)

Oats-Corn 1.6396 1.3072 2.1433 1.8631 0.9999 3.6227 0.4267 0.7788 0.5097
(0.0123) (0.0128) (0.1681) (0.1012) (0.0000) (0.3201) (0.0144) (0.2399) (0.1330)

Oats-Heating 1.7030 1.3065 2.7655 3.5335 0.9893 4.2118 0.0908 0.0412 0.5163

Continued on next page
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Commodity Pairs m̂0,1 m̂0,2 σ̂1 σ̂2 γ̂k b̂ ρ̂η λ̂ ρ̂m

(0.0112) (0.0094) (0.1682) (0.1352) (0.0129) (0.3815) (0.0169) (0.2793) (0.1827)
Oats-WTI 1.6369 1.2898 2.1433 2.7976 0.9999 3.5452 0.0977 0.0001 0.4337

(0.0120) (0.0116) (0.1707) (0.1432) (0.0000) (0.3159) (0.0170) (0.6112) (0.2036)

Sugar-Soybeans 1.3244 1.3087 2.1511 1.6445 0.9999 3.5865 0.1095 0.9999 0.2376
(0.0119) (0.0123) (0.1373) (0.0816) (0.0001) (0.4362) (0.0167) (0.4455) (0.1549)

Sugar-Corn 1.3435 1.3126 1.9048 1.8833 0.9999 4.1662 0.1035 0.5017 0.5244
(0.0134) (0.0136) (0.1203) (0.1083) (0.0001) (0.5578) (0.0165) (0.2651) (0.1590)

Sugar-Heating 1.4521 1.3769 2.6699 2.9385 0.9975 11.4826 0.0974 0.0001 0.4870
(0.0136) (0.0099) (0.0978) (0.0767) (0.0064) (2.0314) (0.0162) (0.5314) (0.3069)

Sugar-WTI 1.3682 1.3057 2.2577 2.7015 0.9999 5.0163 0.1269 0.0001 0.4850
(0.0140) (0.0130) (0.1433) (0.1344) (0.0001) (0.7693) (0.0162) (0.5614) (0.2648)

Soybeans-Corn 1.3098 1.3086 1.6761 1.8804 0.9983 3.5685 0.6047 0.8651 0.9999
(0.0132) (0.0138) (0.1108) (0.1250) (0.0056) (0.4259) (0.0114) (0.1098) (0.1623)

Soybeans-Heating 1.4054 1.3709 1.5164 2.9438 0.8802 7.8755 0.1647 0.0001 0.2633
(0.0180) (0.0268) (0.0674) (0.1781) (0.0495) (1.0776) (0.0152) (0.4641) (0.3012)

Soybeans-WTI 1.3113 1.2919 1.6600 2.9114 0.9999 3.9023 0.1720 0.0001 0.2789
(0.0127) (0.0123) (0.0906) (0.1549) (0.0001) (0.5758) (0.0156) (0.5463) (0.2691)

Corn-Heating 1.4039 1.3635 1.7387 2.9417 0.5671 6.0213 0.1503 0.0001 0.2001
(0.0225) (0.0294) (0.0794) (0.1928) (0.1919) (1.6651) (0.0159) (0.7247) (0.6726)

Corn-WTI 1.3102 1.2958 1.9464 2.7097 0.9563 3.4047 0.1639 0.0001 0.7456
(0.0181) (0.0168) (0.1793) (0.1640) (0.0039) (0.3451) (0.0157) (0.3113) (0.4346)

Heating-WTI 1.3692 1.3888 2.9668 2.8588 0.7728 7.0866 0.7710 0.8866 0.9999
(0.0272) (0.0284) (0.1635) (0.1840) (0.1287) (1.6782) (0.0069) (0.0126) (53.0079)

Heating-Cotton 1.3713 1.3562 2.9678 1.6627 0.8526 7.6960 0.1162 0.3650 0.3737
(0.0265) (0.0188) (0.1566) (0.0722) (0.0675) (1.2419) (0.0156) (0.6866) (0.5844)

Heating-WTI 1.3024 1.2972 3.5079 2.7113 0.8754 3.4517 0.7689 0.8657 0.9999
(0.0287) (0.0208) (0.2692) (0.0912) (0.0815) (0.4108) (0.0058) (0.1374) (0.2130)
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Chapter 4

Forecasting Hourly Electricity
Prices: A Multifrequency
Approach

4.1. Introduction

Following the liberalization of many power markets in the late 1990s, several electric-

ity markets have experienced fundamental changes in the behavior of wholesale spot

prices. This liberalization has been characterized by a transfer of highly regulated

government controlled electricity systems to competitive and deregulated wholesale

markets. This in turn has led to the emergence of energy exchanges such as the Eu-

ropean Energy Exchange in Germany and The Energy Exchange of the UK, where

electricity spot and futures prices as well as forward and swap contracts are traded.

One implication of this restructuring is the exposure of producers and consumers to

increased risks arising from price fluctuations.

Moreover electricity, unlike other commodities, is a pure flow commodity that can-

not easily be stored and generally requires instant deliveries. The demand side of
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the market is highly variable and depends strongly on weather, business cycles and

macroeconomic uncertainty. On the supply side, low marginal cost of production,

limited storability, system breakdown and outages, limited interconnection between

markets, transmission (un)reliability and even speculative pressures induce substan-

tial price volatility. The resultant spot prices are characterized by seasonality, mean-

reversion, high volatility and transient and unexpected extreme price movements

known as spikes in the electricity energy literature.

Electricity, like most other commodities, is traded on both regulated markets and over

the counter. In the wholesale markets or power pools, buyers and sellers participate

in a uniform price auction, where they submit their price and quantity bids 24 hours

ahead. Since bids are accepted in ascending orders, a generator for example that is

better able to anticipate the future prices can adjust its price/quantity schedule to

maximize profit. But electricity is also traded either bilaterally (over the counter) or

centrally on an exchange such as the Natural Gas Exchange (NGX) or the Chicago

Mercantile Exchange (CME). Participants in these markets range from producers

and consumers of energy who are interested in physical delivery and hedging of risks,

to speculators and energy day traders who trade in the market to earn profit by

speculation or by providing insurance, but want to avoid any physical delivery. For

example, a day trader might take a long position in the futures market by buying

a 3-month futures contract, with the hope that the value of such contact would

appreciate by the end of the day, and liquidate his position for profit. For these high

frequency traders, the knowledge of the hourly dynamics of spot and futures prices is

of paramount importance. Hence, short-term price and load forecasting has become

a valuable tool in this regard. This is the focus of the models proposed in this paper.

Several approaches have been proposed for modeling and forecasting electricity spot

prices. These include simple mean-reverting processes, jump-diffusion mean-reverting
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processes and Markov regime switching processes. However, none of these classes of

models has been able to characterize electricity prices effectively, with each class

suffering from one or more deficiencies.

The objective of this paper is to apply a new class of model to the forecasting

problem that can effectively characterize electricity prices, yet remain tractable for

pricing and managing electricity price risk. In particular, we propose the Autore-

gressive Markov switching multifractal model, for forecasting spot electricity prices.

Three variants of the model are examined. The first variant, the ARX-MSM, is a

simple mean-reversion model that allows for a Markov switching multifractal (MSM)

volatility process. This model already incorporates several of the main characteristics

of electricity prices, namely mean-reversion, conditional volatility and price spikes.

Price jumps with heterogeneous durations are introduced through switches in the

volatility components with heterogeneous frequencies. This second variant allows for

regime switches in both drift and volatility. This is motivated by earlier empirical

findings that electricity prices are characterized by regime dependent drifts (Deng,

2000; Ethier and Mount, 1998). The last variant of the model introduces a risk

premium into the mean equation to capture the impact of volatility on prices.

Therefore, this study makes significant contributions into the electricity pricing lit-

erature. First, we propose a new class of model for forecasting electricity prices

that simultaneously incorporates several characteristics of electricity prices notably,

mean-reversion, conditional volatility, jumps, multiple cycles and regime switches in

both mean and volatility. The Markov-regime switching model inherits the parsimo-

nious and long memory properties of the MSM model of Calvet and Fisher (2004),

and can therefore accommodates many states in both mean and volatility. This con-

stitutes a substantial improvement over previous regime switching models that have

been proposed in the electricity literature (De Jong and Huisman, 2002; Deng, 2000;
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Ethier and Mount, 1998; Huisman and Mahieu, 2003; Weron et al., 2004), that can

only accommodate two or three states in either mean or volatility.

Second, while the MSM model has been applied to study the exchange rate market

(Calvet and Fisher, 2004; Calvet et al., 2006; Lux, 2008) and equity markets (Calvet

and Fisher, 2007, 2008; Chuang et al., 2013; Lux et al., 2011), no application of the

model has been conducted in electricity markets. Hence, given the ability of the MSM

model to accommodate many cycles, we extend the MSM literature by applying it

to the forecast of electricity prices. Third, while several studies have analysed the

various characteristics of Alberta electricity prices (Gogas and Serletis, 2009; Hinich

and Serletis, 2006; Serletis and Andreadis, 2004; Serletis and Shahmoradi, 2006) and

the Alberta electricity market structure (Doucet et al., 2013; Serletis and Bianchi,

2007), no attention has been paid to providing actual forecast of prices in Alberta.

This study is the first, to the best of our knowledge, to provide hourly forecast

of Alberta electricity prices, and compared the effectiveness of several time-series

models in doing so.

Employing hourly prices from the AESO market over the period of January 1, 2011 to

December 31, 2012, the parameters of the ARX-MSM models are estimated, and one-

step-ahead hourly forecasts are obtained. To put the performance of the ARX-MSM

models into perspective, the results are compared to those of other notable models

that have been applied in the literature, namely the AR(1), ARX, ARX-GARCH,

mean-reverting jump, and the 2-state independent Markov regime switching models.

Goodness-of-fit tests indicate that the ARX-MSM models fit the data significantly

better than the competing models. Likewise, out-of-sample results show that the

ARX-MSM models provide better forecast accuracy than the existing models.

The structure of the remainder of this study is as follows. Section 2 explores the

main characteristics of electricity prices in deregulated markets. Section 3 reviews
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the relevant literature on electricity price models. Section 4 presents the three vari-

ants of the ARX-MSM model and the estimation approach. Section 5 presents the

data, the ARX-MSM estimation results, in-sample goodness-of-fit tests and out-of-

sample forecast exercises, as well as a comparison of the ARX-MSM models to other

competing models. Section 6 concludes.

4.2. Stylized Facts of electricity Prices

Some common characteristics of electricity prices are summarized in what follows.

Volatility - The fact that electricity is not easily storable implies that demand and

supply have to be balanced instantaneously. This induces high volatility, in ranges

well beyond the levels observed in other commodities and other financial assets.

Comparing the annualized historical volatility of electricity markets with natural gas,

oil and stock markets, the U.S. Federal Energy Regulatory Commission (2004) find

volatility in electricity markets in the range of 300%, compared to 100% in commodity

markets and less than 20% in equity markets. Similarly, Booth (2004) finds volatility

in the Australian electricity market in the range of 900%. Booth (2004) also finds

that a large proportion of the observed volatility is driven by price spikes that occur

for less than 1% of the total hours in a year. Such levels of volatility in the electricity

market are also driven by unforeseen factors such as power plant outages, fluctuating

production capacity of renewable energy generators and other unexpected capacity

constraints. Electricity prices are also characterized by volatility clustering that is

largely attributed to instantaneous production processes, highly variable demand

and non-storability.

Seasonality - Spot electricity prices exhibit substantial seasonality due to the cycli-

cal nature of demand and supply (Knittel and Roberts, 2005). Cyclicality in demand
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arises due to variation in weather and other climatological conditions (e.g. daylight

hours) and changing levels of economic activities. On the supply side, seasonal varia-

tions in output can arise when there is heavy reliance of power generators (e.g power

dams) on precipitation and flooding which themselves exhibit seasonal variations. A

combination of seasonal variations arising from demand and supply sides translates

to seasonal fluctuations in electricity prices beyond what is observed in any other

commodity.

Price spikes - Electricity prices are also characterized by both small and extreme

price jumps (Geman and Roncoroni, 2006). This is due to a combination of instanta-

neous balancing of demand and supply and the non-storability of electricity output.

Often, electricity price jumps occur due to power plant outages and other capacity

bottlenecks, as well as peak loads which can sometimes result in demands in excess

of power generator capacities.

Mean-reversion - In addition to jumps, electricity prices are also characterized by

fast rates of mean-reversion (Bhanot, 2000; Knittel and Roberts, 2005; Lucia and

Schwartz, 2002). In an equilibrium setting, when there is an increase in demand,

supply is increased by turning on high marginal cost power generators, putting up-

ward pressure on prices. This upward price pressure dissipates as demand returns

to normal and high cost generators are turned off. This kind of demand-supply

interaction is what induces mean-reversion in electricity markets.

4.3. Literature Review

These peculiar characteristics of electricity prices have led to a multitude of studies

attempting to develop useful models of electricity price processes for the purpose of

risk and portfolio management. These models can be categorized into three classes,
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namely: mean reverting models, jump models and Markov regime-switching models.

Each of these classes of models is motivated by one or more statistical properties

exhibited by short term electricity prices. We provide an overview of each of these

models in what follows.

4.3.1. Mean Reverting Models

Mean-reversion models have been applied widely in the electricity price modeling

literature (Bhanot, 2000; Knittel and Roberts, 2005; Lucia and Schwartz, 2002).

Weather is a dominant driver of electricity demand, and to some extent, the supply.

Since weather dynamics are cyclical and mean reverting (Alaton et al., 2002; Richards

et al., 2004), such tendency to revert back to the mean level will also be reflected in

the demand and prices of electricity. Therefore, one of the most documented charac-

teristics of electricity prices is mean-reversion (Bhanot, 2000; Knittel and Roberts,

2005; Lucia and Schwartz, 2002). For this reason, a standard specification for mod-

eling electricity prices is the first order autoregressive process, AR(1), which can

be shown to be a discrete time version of the Ohrstein-Uhlenbeck mean-reverting

process. The AR(1) process for electricity prices is specified as,

pt = α + βpt−1 + εt (4.1)

εt ∼ N(0, σ2)

where pt is the price of electricity at time t and εt is a Gaussian white noise shock.

The AR(1) process can be extended to accommodate higher autoregressive orders

and moving average components (hence, an autoregressive moving average process or

ARMA). The mean-reversion model can also be generalised to include fundamental

variables such as demand, weather, hourly, weekly and seasonal dummy variables.
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In this case, we have an ARX or ARMAX process, where the X represents the

fundamental regressors.

While these models are able to reproduce the mean-reversion and some of the au-

tocorrelations inherent in electricity prices, they suffer from two major drawbacks.

First, they cannot accommodate the spikes that characterize electricity prices. Elec-

tricity is not storable, except in the presence of substantial hydropower capacity.

Therefore, there is little opportunity to smooth price spikes. Second, the model

assumes that the error structure is homoscedastic. But electricity prices are also

characterized by volatility clustering that is largely attributed to instantaneous pro-

duction processes, highly variable demand and non-storability.

4.3.2. Mean Reverting Jump Diffusion Processes

An important characteristic of electricity prices is the presence of price spikes. To

capture this feature, mean reverting jump models are widely used for modeling and

forecasting electricity prices (Crespo Cuaresma et al., 2004; Knittel and Roberts,

2005) because they are able to address the mean-reversion and spiky nature of elec-

tricity prices. The discrete time version of the mean-reverting jump diffusion process

is given by

pt = α + βpt−1 + εt,i (4.2)

where i can be either 0 (if no jump occurred in time t) or 1 (if there was a jump),

with εt,1 ∼ N(0, σ2) and εt,2 ∼ N(µ, σ2 + γ2). Note that the mean reverting jump

model can also be extended to include fundamental regressors.

Mean reverting jump models are, however, limited in two respects. First, these jump

models assume that all jumps have the same decay rate. But this is not likely to be
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the case in electricity markets. Economic intuition will suggest that larger shocks

will revert back to normal price levels faster, due to the forces of demand and supply.

On the other hand, smaller jumps are more likely to persist longer. Second, the jump

process is usually assumed to be constant over time. But electricity prices typically

exhibit jumps of varying magnitudes and of heterogeneous durations.

4.3.3. Markov Regime Switching Models

There are two types of Markov regime switching (MRS) models that have been ap-

plied in the electricity price modeling literature: dependent regime and independent

regime MRS models. The dependent regime MRS model was first applied to elec-

tricity price modeling by Deng (2000) and Ethier and Mount (1998).

In a two-state dependent regimes MRS model, prices are assumed to follow a mean

reverting AR(1) process in both states, with shared innovations but different param-

eters in each state. Generally, the model is specified as

pt = αi + βipt−1 + σi|pt−1|γiεt (4.3)

εt ∼ N(0, 1)

where i = 1 for the “low” price regime and i = 2 for the “high” price regime. The

two-state MRS model was extended by Huisman and Mahieu (2003), who propose

a three-state MRS model, where it is assumed that any initial jump regime will

be immediately followed by the reversing regime, and then by the normal regime.

This is a very strong assumption that is uncharacteristic of electricity prices. This

assumption was further relaxed by Andreasen and Dahlgren (2006), who assume that

prices could jump up or down. But any jump is immediately followed by a reversion

to the normal regime.
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This class of MRS models suffers from the restrictive assumption of non-consecutive

jumps in electricity prices. First, as shall be seen in the empirical section, electricity

prices often exhibit consecutive price jumps and vice-versa. Second, such jumps

are often characterized by heterogeneous durations. For example, heat waves or

cold spells can last from several hours to several days. Also, plant outages and

transmission congestions that often lead to price spikes can be very short lived.

Therefore, it is not surprising that this class of MRS models have been found to

perform poorly in modeling and forecasting electricity prices (Christensen et al.,

2009; De Jong, 2006; Heydari and Siddiqui, 2010).

A second class of MRS models relaxes a restrictive assumptions of non-consecutive

jumps by assuming independent regimes. De Jong and Huisman (2002) propose a

two-state independent regime MRS model, where the base regime is modeled as an

AR(1) mean-reverting process. The spike regime is modeled as a normally distributed

random variable with higher mean and variance than the base regime. Generally,

this class of MRS model for electricity prices is specified as

pt,1 = α + βpt−1,1 + σ1|pt−1,1|γεt (4.4)

pt,2 ∼ N(µ, σ2
2)

εt ∼ N(0, 1)

Such a model was applied to electricity prices from the European Energy Exchange

(EEX), and was found to produce a significantly better fit and forecast accuracy

than the dependent regime models, in terms of both short and medium term fore-

casts. Since introduced, several extensions of the model have been considered. These

extensions center around the distribution of the random variable that characterizes

the spike regime. Weron et al. (2004) models the spike regime as log-normally dis-

tributed. Bierbrauer et al. (2007) consider exponentially distributed spikes, while
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De Jong (2006) selects autoregressive poisson distributed spikes. Using daily average

spot and futures price data from the German EEX power market, for the period

of 2002 to 2003, Bierbrauer et al. (2007) find that the independent regimes MRS

models outperform the mean-reverting and jump models in terms of data fitting and

forecast accuracy.

Despite the empirical successes of the MRS models, however, they all suffer from

a common limitation: the separation of base from jump regimes. The consequence

of this is often a misclassification of prices into regimes (Janczura and Weron, 2010;

Weron, 2009). From an intuitive point of view, gradations in size and frequency exist

in the context of electricity price spikes. Hence, simply classifying prices as being

in normal or spike regimes is inconsistent with the empirical data. For example,

price spikes caused by temporary transmission lines congestion, thermal limits or

voltage constraints tend to be temporary, but frequent. But price spikes caused by

heat waves, cold spells or other extreme weather conditions can often last from a few

hours to several days. Therefore, models that simply separate normal prices from

spike prices will miss such regularities. As a consequence, Weron (2009) finds the

MRS models discussed above often generate negative expected price spikes, especially

when log prices are fitted.

To conclude the literature review, it is important to also review other studies that

have been conducted on the Alberta electricity market, on which this study focuses.

Hinich and Serletis (2006) employ a Randomly Modulated Periodicity model pro-

posed by Hinich (2000), to test for the presence of periodic signals in hourly price

and loads from the Alberta’s spot wholesale electricity market. Using hourly spot

data over the period from 1996 to 2003, the study documents the presence of a rel-

atively stable weekly and daily cycles in electricity loads, but finds that such cycles

are less stable in prices. Serletis and Shahmoradi (2006) investigate the relationship
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between Alberta electricity and natural gas price changes and their volatilities, using

a multivariate GARCH-M model. Employing daily data over the period from Jan-

uary, 1996 to November, 2004 from Alberta’s (deregulated) spot power and natural

gas markets, they find that there is bidirectional (linear and nonlinear) causality

between natural gas and electricity prices. They further interpret the evidence of

the bidirectional causality as an indication of an effective arbitrage mechanism in Al-

bertas natural gas and power markets, raising questions about the efficient markets

hypothesis.

In a bid to explain the fluctuations in electricity prices in Alberta, Serletis and

Andreadis (2004) apply various tools from dynamical system theory to average daily

on-peak prices, from 1996 to 2002. They find that Alberta electricity prices exhibit a

multiscaling behavior of hurst exponent, consistent with a persistent fractal structure

with long memory. The authors also find that Alberta electricity prices exhibit

a homogeneous random multifractal behaviour. Therefore, an adequate model of

Alberta electricity prices should incorporate these multifractal characteristics.

The foregoing discussion suggests that there is still a need for a model that better

matches electricity price characteristics and produces accurate forecast of electricity

prices. From the existing literature, it is evident that an adequate model of electricity

spot prices should incorporate the following characteristics:

1. Mean-reversion

2. Conditional volatility and volatility clustering

3. Daily, weekly and seasonal effects

4. Jumps of multiple frequencies

Therefore, this study improves on the existing literature by proposing a new class

of model for forecasting electricity prices that simultaneously incorporates several
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characteristics of electricity prices notable, mean-reversion, conditional volatility,

jumps, multiple cycles and regime switches in both mean and volatility. The Markov-

regime switching model inherits the parsimonious and long memory properties of

the MSM model of Calvet and Fisher (2002), and can therefore accommodate many

states in both mean and volatility. This constitutes a substantial improvement over

previous regime switching models that have been proposed in the electricity literature

(De Jong and Huisman, 2002; Deng, 2000; Ethier and Mount, 1998; Huisman and

Mahieu, 2003; Weron et al., 2004), that can only accommodate two or three states

in either mean or volatility.

4.4. Autoregressive Markov Switching Multifrac-

tal Model

In an attempt to simultaneously incorporate all of the characteristics discussed in

section 2, this study proposes the use of an Autoregressive Markov Switching Mul-

tifractal (ARX-MSM) model. In its most basic form, the ARX-MSM assumes that

the mean equation follows a mean-reverting AR(q) process, while the variance equa-

tion is specified as a Markov Switching Multifractal (MSM) process. Specifically, the

ARX-MSM process is specified as

pt = α0 +

Q∑
q=1

βqpt−q +
J∑
j=1

αjXt,j + εt, (4.5)

εt ∼ N(0, σ2(Mt))

where pt is the logarithm of electricity price, Xt is a matrix or fundamental controls

whose elements are to be discussed later in section 4, q is the order of the autoregres-

sive process. When q is equal to 1 and εt is a standard normal Gaussian variable,
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the model simplifies to the discrete time version of the Ohrstein-Uhlenbeck mean-

reverting process. Hence, the ARX-MSM model nests a mean-reverting process with

homoscedastic variance. Consistent with the conditional volatility observed in elec-

tricity prices however, we assume that the error structure is governed by a MSM

process (Calvet and Fisher, 2002). The volatility equation is specified as

σ(Mt) = σ

 k∏
k=1

Mk,t

1/2

(4.6)

Under the MSM specification, volatility is driven by a first order Markov state vector

Mt, with k volatility components:

Mt = (M1,t;M2,t; ...;Mk,t)

Each volatility component, Mk,t, can take one of two possible values at each point in

time t.1 Each Mk,t will equal m0 ∈ (1, 2) or m1 = 2−m0, with equal probabilities. At

time t, Mk,t will switch and take on a new value with probability γk, where switching

events and new draws are assumed to be independent across k and t.

Each volatility component is mutually independent but all components are drawn

from the same marginal distribution M . The switching probabilities of the volatility

components are related as follows

γ1 < γ2 <, .... < γk,

γk = 1− (1− γk)b
k−k

where γk and b are parameters to be estimated.

1For simplicity, we assume a binomial distribution for the volatility components. But the MSM
model can accommodate any distribution that satisfies M ≥ 1 and E(M) = 1.
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For illustration, when k is equal to 1, there is only 1 volatility component, Mt =

M1,t = [m0, m1]. Therefore, volatility can either be in a low state, σ(m1)1/2 or high

state σ(m0)1/2. This corresponds to a standard 2-state Markov process. Likewise,

when k = 2, there are two volatility components and each volatility component can

take one of two possible values at each time t. Consequently, volatility can take four

possible values at each time t, [σ(m0m0)1/2; σ(m0m1)1/2; σ(m1m0)1/2; σ(m1m1)1/2].

Continuing this pattern, when there are k volatility components, Mt (hence volatility)

can take 2k possible values.

The MSM specification of volatility implies that volatility is stochastic and is hit

by shocks of heterogeneous frequencies indexed by k ∈
{

1, 2, ..., k
}

. Switches in

low-frequency volatility components (e.g prolonged heat waves or cold spells) cause

volatility to vary discontinuously and exhibit strong persistence, while switches in

high-frequency components (e.g, generator outages, transmission line congestion etc.)

produce substantial outliers in prices.

The model discussed above is a simple mean reverting process, with conditional

volatility. It already accommodates the salient characteristics of electricity prices:

mean-reversion, conditional volatility and volatility clustering, multiple jumps of

heterogenous frequencies and seasonality. Note that as discussed so far, the model

allows for regime switching only in the variance equation, not in the mean equation.

But Ethier and Mount (1998), among others, find strong empirical support for the

existence of regime dependent drift and volatility in electricity prices. This earlier

finding motivates the following extension of our electricity price model. Specifically,

we allow for regime shifts in both drift and volatility as follows
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pt = α0 +

Q∑
q=1

βq(Mt)pt−q +
J∑
j=1

αjXt,j + εt, (4.7)

εt ∼ N(0, σ2(Mt)),

βq(Mt) = βq

k∑
k=1

(Mk,t − 1)

We refer to this model as the ARX(M)-MSM model, where the ARX(M) indicates

regime shifts in mean. When βq > 0, a high Mk,t implies both a higher volatility

and a higher rate of mean-reversion. Therefore, the further away price is from its

long-run equilibrium level, the faster the speed of mean-reversion, and vice-versa.

In the regime switching parlance, the model is characterized by different drift and

volatility dynamics under the 2k different regimes. But this is achieved in a much

smoother and parsimonious manner than in previous regime switching models that

have been applied in the electricity literature. Yet, the ARX-MSM model is able to

accommodate finitely many states as may be inferred from the data, compared to

previous MRS models that are only able to accommodate two or three states.

The final extension we propose for the ARX-MSM model is the introduction of a

time varying risk premium into the conditional mean equation. Risk averse economic

agents (e.g, generators, hedgers and speculators) require adequate compensation for

holding risky assets. Therefore, as the degree of uncertainty in asset returns varies

overtime, so does the premium required for holding the assets. Although electric-

ity is not storable, a substantial amount of evidence has been documented on the

presence of risk premia in electricity markets. Longstaff and Wang (2004) analyze a

high-frequency data set of hourly spot and day-ahead forward prices from the Penn-

sylvania New Jersey Maryland (PJM) Interconnection LLC electricity market, and

find evidence of significant risk premia in the forward prices. Likewise, Torro and

Lucia (2008) analyze a decade of weekly closing prices data from the Nordic Power
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Exchange, and find that there are significant positive risk premia in short term elec-

tricity prices. They further document that the risk premia they identify are related

to the variance and skewness of future spot prices.

Motivated by these findings, we consider the ARX-MSM(M) model, where the M

stands for MSM-in-Mean . The model is specified as

pt = α0 +

Q∑
q=1

βqpt−q +
J∑
j=1

αjXt,j + θσ(Mt) + εt, (4.8)

εt ∼ N(0, σ2(Mt))

where θ is the risk premium parameter, and measures the impact of volatility on

the conditional mean of prices. Note that when θ = 0, this model reduces to the

ARX-MSM model presented in equation (4.5).

4.4.1. Estimation and Inference

Since there exist a finite number of volatility states, standard filtering methods apply

for the estimation process (Calvet and Fisher, 2002). Suppose there are k volatility

components included in the model.2 Then Mt = (M1,t∗M2,t.....∗Mk,t) can take 2k = d

possible values (m1,m2, ....md) ∈ Rd
+. The dynamics of Mt are then characterized by

a dxd transition matrix A, with elements (Calvet and Fisher, 2002)

aij = P(Mt+1 = mj|Mt = mi) =
k∏
k=1

[
(1− γk) 1{mik=mjk}

+
1

2
γk

]

Note that the econometrician only observes the set of past prices, but not the volatil-

ity state vector. The vector Mt is therefore latent and must be inferred by Bayesian

updating. Let Πt = (Π1
t ,Π

2
t , ....Π

d
t ) ∈ Rd

+ be the vector of state probabilities, where

2The choice of k is a model selection problem to be discussed later.
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Πj
t = P(Mt = mj|Pt) (4.9)

where Pt = [p1, p2, ..., pt−1]′ is the price vector. The conditional probability state

vector is computed recursively by Bayes updating. By Bayes rule, Πt can be expressed

as a function of the previous belief Πt−1 and the Gaussian density as follows

Πt =
f(pt)� Πt−1A

[f(pt)� Πt−1A]1′
, (4.10)

where

1 = [1, 1, ...1] ∈ Rd, (4.11)

The Gaussian density function is given by

f(pt) =
1

σ(m)
√

2π
exp{− ε2

t

2(σ(m))2
} (4.12)

where εt is defined by either equation (4.5), (4.7) or (4.8), and σ(m) = σ(m1,m2, ...md).

The Bayes recursion is initiated with the ergodic distribution Π0, with Πj
0 = 1/d,∀j.

The log-likelihood then has a closed form expression and is given by

lnL(p1, ....pT ; Φ) =
T∑
t=1

ln[f(pt) · (Πt−1A)], (4.13)

where Φ indicates the vector of parameters to be estimated.

4.5. Empirical Analysis

The empirical analysis focuses on hourly prices from the Alberta Electric System

Operator (AESO) pool. The AESO pool was established in 1996 as the first com-

petitive energy market in Canada, with the primary function of enabling the sale
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and purchase of electric power 24 hours a day, 7 days a week in Alberta. The non-

storability nature of electricity implies that demand and supply have to be balanced

instantaneously. The AESO plays a vital role in ensuring this, while at the same

time is responsible for ensuring that the market operates in a fair, efficient and

competitive manner (Alberta Electric System Operator, 2010; Market Surveillance

Administrator, 2010).

The scale of the AESO energy markets and the system’s reputation for reliability

and competitiveness have helped to attract many market participants. As at the end

at 2012, the market had 170 participants and handled approximately $6.4 billion in

annual energy transactions.

4.5.1. The AESO Market Structure

The AESO market system consists of three types of markets in which participants

may trade electricity. The first is the spot or real time market, also referred to as the

AESO pool. In the AESO pool, generating units (producers or owners of electricity

generators) offer their power supply into the pool at their own chosen hourly prices,

up to a ceiling of $999.99 per megawatt hour (MWh) on a day-ahead basis (Alberta

Electric System Operator, 2010). The ask prices for each hour are then sorted in

ascending merit order, on a daily basis. Power from the lower-priced supply offers

are dispatched before those with the higher price, moving up the merit order until

total dispatched volume equals total demand for that hour. The price of the last

megawatt that clears the market is the System Marginal Price (SMP). The hourly

electricity spot price is then the average of the 60 SMPs in an hour.

The second market in the AESO system is the forward physical market. In the

forward physical market, the delivery of electricity from sellers to buyers still passes

through the pool in real time, as with the spot market. But the payment from buyers
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to sellers takes place outside the pool. The third market is the forward financial

market, which only involves the flow of financial transactions and no physical delivery

of electricity takes place.

The contracts traded on the forward financial markets are referred to as “Contract

for Difference” (CFD). The CFD is similar to financial swaps in that, at settlement,

the two parties involved only exchange the difference between the strike price and

the hourly pool price. Therefore, the hourly pool price also serves as the index for

settling financial transactions in the forward financial markets. As such, the forward

financial market provides a mechanism for managing price risks and speculating in

the Alberta electricity markets. The participants in the forward financial markets

include not only power producers and consumers, but also include power marketers,

proprietary traders, speculators, hedge funds and other financial institutions. There-

fore, compared to the forward physical market, the forward financial market is more

liquid and provides a consensus view on market expectations of future pool prices.

Examples of the forward financial markets are the Natural Gas Exchange and the

Chicago Mercantile Exchange.

4.5.2. Data

The data used in this empirical analysis consist of hourly spot electricity prices

(measured in dollars per megawatt hour or $/MWh) from the AESO pool,3 for the

period from January 1, 2011 to January 30, 2012. We also collect data on hourly

electricity load forecasts, measured in megawatt hours. The use of load forecast data,

rather than actual load data is motivated by the fact that actual load observation is

an ex-post observation that does not become available until the bidding process for

the corresponding hour has already taken place. Therefore, market participants do

3The data is publicly available at www.ets.aeso.ca.
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not bid based on the actual load. Bids are submitted based on hourly load forecast,

which is publicly available.

Table 4.1 presents summary statistics for the electricity spot prices. The table shows

that the average spot price varies throughout the day, ranging from $18.98 for the

early morning hour of 04:00 to $178.93 for the peak4 evening hour 18:00. This is

further corroborated by Figure 4.1 that shows the average hourly prices over the

sample period. Prices begin to increase at about 6:00, as the workday begins. The

price increase continues throughout the day as demand increases, peaking at about

18:00 and prices begin to decline thereafter. The right axis of Figure 4.1 plots the

average hourly electricity load. The figure shows that variation in prices closely

follows the variation in demand.

Figure 4.1: Average Hourly Prices and Demand
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Electricity prices are also characterized by strong seasonal fluctuations. This is driven

4Peak hours in AESO market are defined as hours ending 08:00 to 23:00, Monday through Saturday.
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Table 4.1: Summary Statistics of Hourly Electricity Prices and Load

Hour Mean Std.Dev Min Max Skewness Kurtosis

1 25.0168 26.4118 3.0800 412.6700 10.9374 145.5075
2 22.2191 19.1225 0.0000 331.5200 12.6263 198.5459
3 19.7653 7.7895 0.0000 90.2200 2.7471 21.6851
4 18.9812 6.4420 0.0000 45.0100 0.8428 4.1894
5 19.4388 7.3126 0.0000 69.6900 1.8087 11.2975
6 21.0625 8.9468 0.0000 97.1700 3.0957 22.3647
7 37.1181 86.4106 3.4100 869.5000 8.0771 71.1821
8 52.7935 113.4922 11.7500 898.2800 5.7185 37.2122
9 57.0934 110.0719 12.2800 968.7900 5.8225 40.4848
10 76.2794 153.6131 12.0800 992.0000 4.3494 22.3751
11 91.5535 173.0606 12.7600 999.9900 3.6210 15.7923
12 124.2897 224.3982 13.0700 999.9900 2.6798 8.9784
13 113.2924 207.7717 17.5500 996.4100 2.9764 10.7885
14 114.0870 206.2437 17.3000 998.5200 2.9428 10.6453
15 116.9569 218.8147 14.9600 999.9900 2.9112 10.3561
16 117.5065 215.4235 12.5500 999.9900 2.8882 10.4358
17 147.5311 241.8015 13.3300 999.9900 2.2971 7.1098
18 178.9307 285.3624 18.0900 999.9900 1.9308 5.1735
19 139.1089 244.8205 13.6800 999.9900 2.4396 7.7206
20 110.0023 199.5562 13.0400 999.9900 2.9391 11.0354
21 93.9884 163.5084 12.7000 999.2800 3.3132 14.2238
22 74.4680 131.9267 12.8400 941.0200 4.3145 23.1360
23 37.5310 38.2148 12.5100 358.5800 6.8110 53.2789
24 30.6114 27.9486 12.0100 333.9900 6.8264 59.7609
Overall 76.6575 165.3511 0.0000 999.9900 4.0489 19.1976

Hourly AESO Load

1 8.9601 0.0536 8.8378 9.0761 0.0826 2.3064
2 8.9399 0.0555 8.8169 9.0621 0.1020 2.3043
3 8.9290 0.0569 8.8069 9.0553 0.1232 2.2932
4 8.9245 0.0579 8.8037 9.0542 0.1303 2.2724
5 8.9277 0.0587 8.8096 9.0602 0.1213 2.2409
6 8.9419 0.0633 8.7982 9.0792 -0.0245 2.2745
7 8.9773 0.0721 8.7989 9.1201 -0.1777 2.3715
8 9.0260 0.0821 8.7972 9.1768 -0.2541 2.4338
9 9.0496 0.0738 8.8374 9.1938 -0.2634 2.5577
10 9.0649 0.0637 8.8736 9.1940 -0.2825 2.6742
11 9.0759 0.0580 8.8975 9.1989 -0.2920 2.7338
12 9.0816 0.0544 8.9130 9.2015 -0.3018 2.7692
13 9.0812 0.0519 8.9211 9.1977 -0.3071 2.7672
14 9.0810 0.0518 8.9217 9.1957 -0.3357 2.7692
15 9.0792 0.0519 8.9212 9.1930 -0.3368 2.7383
16 9.0804 0.0528 8.9240 9.1931 -0.3113 2.6861
17 9.0896 0.0576 8.9333 9.2085 -0.1422 2.5298
18 9.0985 0.0671 8.9377 9.2425 0.0952 2.2966
19 9.0881 0.0713 8.9240 9.2329 0.0480 2.1070
20 9.0814 0.0710 8.9177 9.2210 -0.0604 2.1632
21 9.0768 0.0673 8.9121 9.2063 -0.2261 2.3316
22 9.0641 0.0584 8.9220 9.1802 -0.2179 2.4373
23 9.0343 0.0501 8.9174 9.1448 0.0195 2.3233
24 8.9939 0.0506 8.8772 9.1062 0.0644 2.3278
Overall 9.0311 165.3511 8.7972 9.2425 -0.2545 2.4320
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Figure 4.2: Average Hourly Prices by Season
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by demand fluctuations that reflect seasonal heating or cooling needs, as well as

seasonal variations in day light savings hours. This feature is reflected on Figure 4.2,

which plots average hourly prices for each of the four seasons. It is worth noting that,

contrary to most other electricity markets that have been analysed in the literature,

AESO peak prices are higher in the Fall than in the summer. Summer peak prices

occur only between the hours 12:00 and 16:00, reflecting the timing of high summer

temperature levels in Alberta, therefore cooling needs. Winter prices are higher

between the hours of 01:00 and 10:00 and fall prices are the highest seasonal prices,

between the hours of 18:00 and 24:00.

This unusual pattern of seasonal electricity price fluctuation reflects the extremely

cold weather conditions that characterize Alberta. Extremely negative weather con-

ditions are more prevalent in Alberta than extremely positive weather conditions.

Therefore, the high winter and fall prices reflect the need for heating during those

periods. Table 4.1 also shows that there is substantial difference in price variation
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throughout each day. For example, the standard deviation of prices are higher for

the peak hours, with hour 18:00 being the highest at $285.36.

Figure 4.3: AESO Hourly Prices

0
20

0
40

0
60

0
80

0
10

00
$/M

Wh

01/2011 04/2011 07/2011 10/2011 01/2012
Date

Figure 4.4: Autocorrelation Function for AESO Prices
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The entire set of hourly prices for the sample period is plotted in Figure 4.3. Two

points are worth noting from the figure. First, electricity prices exhibit spikes and the

spikes tend to occur in clusters. This is often due to demand approaching or exceeding

generator supplies. Therefore, models that don’t allow for consecutive price jumps

will miss this feature. Second, electricity prices can be zero. This is often due to

a combination of significant start up costs for generators and the inability to freely

dispose off electricity (Knittel and Roberts, 2005).

Figure 4.4 plots the autocorrelation function for prices. The correlogram shows that

intraday and weekly cycles are present in electricity prices. Although not reflected

on this plot for ease of presentation, the autocorrelation functions remain significant

beyond l000 lags. It can also be observed that prices do not appear to be explod-

ing despite their long memory characteristics. The t-statistics from the Augmented

Dickey-Fuller test of the presence of a unit root in log prices,5 for lags 0 to 2 are

-24.2274, -26.3571 and -26.6331, respectively. These are lower than the 1% critical

value of -3.96, therefore, rejecting the null hypothesis that log prices are not station-

ary. Likewise, the t-statistics of log demand, for lags 0 to 2 are -12.3586, -36.8673

and -26.6088, respectively. These are also lower than the 1% critical value of -3.96,

therefore, rejecting the null hypothesis that log demand are not stationary.

Lastly, Figure 4.5 plots the correlogram of squared returns. The figure shows that

electricity price volatility is time varying and exhibits strong persistence. The figure

also shows that the correlogram of squared prices exhibit cyclical patterns similar

to those of prices, indicating that volatility variation is also characterized by several

cycles ranging from intraday to seasonal cycles.

5The test includes a constant and a trend component.
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Figure 4.5: Autocorrelation Function for AESO Squared Prices
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4.5.3. ARX-MSM Parameter Estimates

The parameters for the ARX-MSM, ARX(M)-MSM and the ARX-MSM(M) models

are estimated using the maximum likelihood approach. The dependent variable is

the logarithm of electricity prices. The regressors include the logarithm of AESO

load forecast and dummy variables for peak hours, weekday, winter, spring and

summer.6 The parameter estimates from the ARX-MSM , ARX(M)-MSM and the

ARX-MSM-M are presented in Tables 4.2, 4.3 and 4.4 respectively. The three models

are estimated for k equals 1 to 8. In the mean equation, only lags 1, 24 and 25 are

included.7

6We define Fall season as months of September to November, winter as December to March, spring
as April to May and summer as June to August.

7Several other specifications incorporating other lags were considered. While the estimated coeffi-
cients are statistically significant, their contributions to the forecast accuracy are either negative
or positive but insignificant.
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Table 4.2: Parameter Estimates for ARX-MSM Model

ARX-MSM Model

k = 1 2 3 4 5 6 7 8

Constant -5.4196 -2.0054 -3.2178 -2.4429 -2.6362 -2.0610 -2.4488 -2.3695
(0.4153) (0.4568) (0.6351) (0.8623) (0.7392) (0.6707) (0.8473) (0.8523)

AR(1) 0.7989 0.9259 0.8809 0.9043 0.8940 0.9206 0.9012 0.9030
(0.0047) (0.0087) (0.0180) (0.0274) (0.0214) (0.0094) (0.0256) (0.0254)

AR(24) 0.1639 0.1522 0.1611 0.1545 0.1629 0.1578 0.1595 0.1591
(0.0044) (0.0134) (0.0156) (0.0148) (0.0158) (0.0122) (0.0167) (0.0159)

AR(25) -0.1485 -0.1348 -0.1448 -0.1392 -0.1451 -0.1409 -0.1424 -0.1419
(0.0046) (0.0134) (0.0148) (0.0129) (0.0138) (0.0113) (0.0147) (0.0141)

Log Load 0.6701 0.2438 0.3954 0.3009 0.3252 0.2518 0.3019 0.2924
(0.0470) (0.0527) (0.0766) (0.1055) (0.0895) (0.0775) (0.1032) (0.1037)

Weekday -0.0373 -0.0168 -0.0236 -0.0189 -0.0189 -0.0148 -0.0172 -0.0167
(0.0062) (0.0049) (0.0062) (0.0061) (0.0057) (0.0071) (0.0060) (0.0057)

Peak 0.0499 0.0209 0.0295 0.0247 0.0258 0.0221 0.0247 0.0247
(0.0062) (0.0069) (0.0072) (0.0069) (0.0069) (0.0073) (0.0068) (0.0065)

Winter -0.0371 -0.0196 -0.0293 -0.0228 -0.0242 -0.0195 -0.0224 -0.0221
(0.0058) (0.0075) (0.0077) (0.0094) (0.0081) (0.0072) (0.0092) (0.0090)

Spring 0.0015 -0.0006 -0.0059 -0.0045 -0.0053 -0.0012 -0.0043 -0.0043
(0.0064) (0.0125) (0.0065) (0.0064) (0.0061) (0.0055) (0.0067) (0.0062)

Summer -0.0029 -0.0039 -0.0101 -0.0086 -0.0101 -0.0016 -0.0088 -0.0088
(0.0056) (0.0080) (0.0060) (0.0068) (0.0064) (0.0047) (0.0067) (0.0065)

b̂ 7.0795 2.8785 2.0331 1.7137 9.6216 1.3898 1.3139
(0.9551) (0.3038) (0.2375) (0.2134) (1.3459) (0.1221) (0.1078)

m̂0 1.9332 1.9164 1.7965 1.7576 1.7135 1.8975 1.6329 1.6049
(0.0016) (0.0078) (0.0106) (0.0141) (0.0174) (0.0086) (0.0131) (0.0142)

γ̂k 0.1240 0.4746 0.5125 0.5435 0.5168 0.5070 0.5255 0.5198
(0.0072) (0.0288) (0.0477) (0.0453) (0.0479) (0.0349) (0.0607) (0.0658)

σ̂ 0.5342 0.4867 0.4358 0.4122 0.4674 0.5342 0.4253 0.4362
(0.0042) (0.0171) (0.0339) (0.0265) (0.0711) (0.0228) (0.0172) (0.0224)

lnL -386 -19 -68 -36 -37 4 -27 -29

R2 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79

Notes: This table reports the maximum likelihood parameter estimates for the ARX-MSM model. The
models are fitted for k equals 1 to 8, where each column corresponds to the given number of frequency
components k in the MSM variance equation. When k = 1, the model corresponds to a standard Markov-
switching model, with only two possible states of volatility and γk = γ1. b is therefore unidentified
and omitted. Heteroscedasticity and Autocorrelation consistent (HAC) standard errors are reported in
parenthesis. Italicized figures are insignificant at 10% significance level.

Starting with the ARX-MSM model, it can be observed that all the autoregressive pa-

rameters are strongly significant. The AR(1) parameter measuring the rate of mean-

reversion is significant and positive across all k. This indicates that prices return

rapidly from extreme positions to their equilibrium level. The half-life (ln 0.5/| ln β1|)

of the autoregressive process ranges from 3 hours for k = 1 to 9 hours for k = 2.
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Table 4.3: Parameter Estimates for ARX(M)-MSM Model

ARX(M)-MSM Model

k = 1 2 3 4 5 6 7 8

Constant -12.3646 -37.8687 -43.9437 -37.7848 -33.3335 -31.1634 -30.0524 -32.7572
(0.9083) (3.3140) (1.8822) (1.9410) (3.5303) (1.6558) (1.4161) (2.4881)

AR(1) 0.9217 0.0666 0.1064 0.1337 0.1677 0.1389 0.1262 0.1126
(0.0156) (0.0520) (0.0109) (0.0153) (0.0244) (0.0086) (0.0063) (0.0097)

AR(24) 0.3315 0.0140 0.0071 0.0413 0.1000 0.0432 0.0359 0.0404
(0.0128) (0.0157) (0.0062) (0.0139) (0.0232) (0.0104) (0.0072) (0.0124)

AR(25) -0.2718 0.0170 -0.0089 -0.0375 0.1000 -0.0766 -0.0649 -0.0489
(0.0129) (0.0287) (0.0100) (0.0142) (0.0221) (0.0123) (0.0084) (0.0104)

Log Load 1.4301 4.5969 5.2703 4.5858 4.0390 3.8053 3.6652 3.9812
(0.1023) (0.3691) (0.2094) (0.2174) (0.3949) (0.1851) (0.1591) (0.2765)

Weekday 0.0094 -0.0515 -0.0921 -0.0501 -0.1141 -0.0883 -0.0818 -0.1139
(0.0197) (0.0344) (0.0225) (0.0251) (0.0463) (0.0179) (0.0168) (0.0399)

Peak -0.0273 0.0189 -0.0231 0.0056 -0.0276 0.0292 0.0267 0.0309
(0.0163) (0.0295) (0.0203) (0.0177) (0.0477) (0.0193) (0.0196) (0.0268)

Winter -0.0908 -0.2421 -0.1990 -0.3593 -0.2355 -0.2903 -0.2913 -0.2798
(0.0159) (0.0632) (0.0285) (0.0474) (0.0620) (0.0214) (0.0245) (0.0375)

Spring 0.0281 0.1334 0.2193 0.1130 0.5106 0.1097 0.0901 0.1563
(0.0188) (0.0670) (0.0353) (0.0296) (0.0474) (0.0207) (0.0201) (0.0626)

Summer 0.0216 0.0617 0.0929 0.0838 0.0882 0.0766 0.0589 0.0559
(0.0168) (0.0796) (0.0578) (0.0361) (0.0543) (0.0359) (0.0235) (0.0338)

b̂ 3.4669 1.4630 1.4163 3.0316 2.0622 2.1763 1.6384
(1.2147) (0.2433) (0.1573) (0.1802) (0.1116) (0.1046) (0.0683)

m̂0 1.8708 1.7616 1.6229 1.4941 1.2643 1.5544 1.5641 1.4750
(0.0150) (0.0543) (0.0188) (0.0320) (0.0157) (0.0149) (0.0135) (0.0156)

γ̂k 0.0001 0.1480 0.1274 0.1280 0.1649 0.1779 0.1871 0.1891
(0.9998) (0.0164) (0.0151) (0.0152) (0.0072) (0.0101) (0.0096) (0.0142)

σ̂ 0.2932 0.5342 0.4051 0.2923 0.2230 0.1863 0.1479 0.1552
(0.2445) (0.0924) (0.0188) (0.0102) (0.0039) (0.0054) (0.0040) (0.0082)

lnL -4421 -3549 -2870 -2246 -3111 -1450 -1230 -1182

R2 0.80 0.68 0.77 0.86 0.93 0.87 0.87 0.89

Notes: This table reports the maximum likelihood parameter estimates for the ARX(M)-MSM model.
The models are fitted for k equals 1 to 8, where each column corresponds to the given number of
frequency components k in the MSM variance equation. When k = 1, the model corresponds to a
standard Markov-switching model, with only two possible states of volatility and γk = γ1. b is therefore
unidentified and omitted. Heteroscedasticity and Autocorrelation consistent (HAC) standard errors are
reported in parenthesis. Italicized figures are insignificant at 10% significance level.

The coefficient estimate for load is positive and significant, consistent with a priori

expectations. Likewise, the weekend and peak hour effects on electricity prices are

strongly significant and are rightly signed. Electricity prices are higher during peak

hours than off-peak hours, and are higher during weekdays than weekends.8 Also,

8The weekday dummy variable equals 0 for weekdays and 1 for weekends. Hence the negative sign.
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Table 4.4: Parameter Estimates for ARX-MSM-M Model

ARX-MSM-M Model

k = 1 2 3 4 5 6 7 8

Constant -6.2460 -2.1984 -4.1683 -3.9911 -5.0720 -3.9481 -4.0805 -3.7117
(0.4155) (0.4672) (0.6639) (0.7505) (1.2678) (0.9186) (0.7911) (0.9608)

AR(1) 0.7528 0.9197 0.8424 0.8436 0.8083 0.8466 0.8373 0.8524
(0.0051) (0.0106) (0.0220) (0.0235) (0.0750) (0.0333) (0.0222) (0.0338)

AR(24) 0.1548 0.1500 0.1555 0.1490 0.1531 0.1542 0.1506 0.1561
(0.0044) (0.0165) (0.0138) (0.0122) (0.0144) (0.0126) (0.0124) (0.0132)

AR(25) -0.1399 -0.1359 -0.1462 -0.1411 -0.1465 -0.1468 -0.1430 -0.1474
(0.0045) (0.0145) (0.0136) (0.0121) (0.0144) (0.0127) (0.0122) (0.0135)

Log Load 0.7707 0.2679 0.5146 0.4951 0.6269 0.4895 0.5070 0.4608
(0.0470) (0.0550) (0.0801) (0.0911) (0.1588) (0.1128) (0.0944) (0.1181)

Weekday -0.0438 -0.0188 -0.0313 -0.0301 -0.0338 -0.0297 -0.0334 -0.0285
(0.0061) (0.0053) (0.0071) (0.0075) (0.0144) (0.0084) (0.0083) (0.0087)

Peak 0.0550 0.0223 0.0374 0.0347 0.0382 0.0348 0.0388 0.0344
(0.0062) (0.0067) (0.0084) (0.0080) (0.0140) (0.0107) (0.0094) (0.0105)

Winter -0.0403 -0.0208 -0.0322 -0.0288 -0.0324 -0.0306 -0.0281 -0.0292
(0.0057) (0.0067) (0.0075) (0.0081) (0.0221) (0.0083) (0.0087) (0.0084)

Spring 0.0036 -0.0003 -0.0026 -0.0034 0.0015 -0.0034 -0.0027 -0.0040
(0.0064) (0.0066) (0.0066) (0.0074) (0.0154) (0.0076) (0.0069) (0.0068)

Summer -0.0012 -0.0047 -0.0088 -0.0098 -0.0071 -0.0099 -0.0084 -0.0101
(0.0056) (0.0062) (0.0068) (0.0072) (0.0140) (0.0072) (0.0073) (0.0069)

α̂ 0.4938 0.0897 0.2493 0.2398 0.3240 0.2396 0.2639 0.2226
(0.0309) (0.0310) (0.0550) (0.0580) (0.2297) (0.0771) (0.0649) (0.0745)

b̂ 7.2955 2.9978 2.1296 7.4331 1.6257 2.7764 1.3752
(0.9605) (0.3124) (0.2072) (4.7713) (0.1611) (0.3475) (0.0933)

m̂0 1.9309 1.9126 1.7831 1.7390 1.8680 1.6642 1.7254 1.5867
(0.0020) (0.0086) (0.0106) (0.0144) (0.0731) (0.0160) (0.0175) (0.0158)

γ̂k 0.1183 0.4820 0.4599 0.4730 0.3200 0.4675 0.5314 0.4869
(0.0071) (0.0296) (0.0457) (0.0393) (0.1938) (0.0548) (0.0413) (0.0625)

σ̂ 0.5342 0.4834 0.4474 0.3907 0.5342 0.4444 0.3894 0.4223
(0.0058) (0.0174) (0.0328) (0.0204) (0.1754) (0.0226) (0.0120) (0.0237)

lnL -264 -9 -21 6 -40 13 -8 5

R2 0.81 0.79 0.80 0.80 0.81 0.80 0.80 0.80

Notes: This table reports the maximum likelihood parameter estimates for the ARX-MSM-M model. The
models are fitted for k equals 1 to 8, where each column corresponds to the given number of frequency
components k in the MSM variance equation. When k = 1, the model corresponds to a standard Markov-
switching model, with only two possible states of volatility and γk = γ1. b is therefore unidentified
and omitted. Heteroscedasticity and Autocorrelation consistent (HAC) standard errors are reported in
parenthesis. Italicized figures are insignificant at 10% significance level.

the winter effect is negative and strongly significant. Generally, relative to the fall

season, prices are lower in winter. The summer and spring effects, although rightly

signed, are mostly insignificant.

The estimated MSM parameters for the variance equation are all strongly significant
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across all k, indicating that the conditional variance equation does belong in the

model of electricity prices. Lastly, looking at the volatility multiplier parameters

m̂0, they tend to decline as the number of frequency components increases. The

intuition is that less variability is required in each individual component in order

to match the volatility fluctuations of the data. Estimates of the other volatility

parameters fluctuate across k without any apparent pattern.

Turning to the ARX(M)-MSM results on Table 4.3 , we note that the results gener-

ally mimic those of the ARX-MSM discussed above. For the ARX(M)-MSM model,

the load variable and winter effect are strongly significant while the weekday effect

is mostly significant, with only a few exceptions. The spring effect, although signif-

icant, has the wrong sign for all k. The peak hour and summer effects are mostly

insignificant.

Also, the ARX-MSM-M results on Table 4.4 follow closely those of the ARX-MSM

discussed above. Most importantly, the risk premium parameter α̂ is positive and

strongly significant across k. This observation indicates the presence of positive risk

premium in the AESO electricity market. This is a subject that requires further

investigation, but is outside the scope of this study.

It can be observed from the results in Tables 4.2 to 4.4 that the log-likelihood changes

non-monotonically as the number of frequency components increases. For example,

with the ARX-MSM model, the log-likelihood increases by more than 390 when k

goes from 1 to 6, but begins to decline afterwards. This implies that the fit of the

model increases as the number of frequency components increases only up to a certain

point. Likewise, for the ARX-MSM-M model, the maximum log-likelihood occurs at

k = 6, whereas it occurs at k = 8 for the ARX(M)-MSM model.

Therefore for forecasting purposes and for subsequent analysis, we use k = 6 for the

ARX-MSM and the ARX-MSM-M models. But for the ARX(M)-MSM model, even
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though the model fit increases as k increases, the out-of-sample forecast accuracy

actually declines with k. This indicates a tell-tail sign of the classical data over-

fitting problem. Therefore for forecasting purposes and for subsequent analysis, we

simply use k = 1 for the ARX(M)-MSM model. This corresponds to a 2-state Markov

regime switching model.

4.5.4. Comparisons With Alternative Models

Next, we compare our three models from section 5.3 to the various models proposed

in the previous literature in terms of in-sample goodness-of-fit and out-of-sample

forecast accuracy. The simplest model proposed for electricity prices is the AR(1)

model, specified in equation (4.1). This model is often considered the benchmark

model used to judge other potential models. The second model considered is the ARX

(1, 24, 25) model which extends the AR(1) model by including the same exogenous

variables included in the ARX-MSM models. This model is specified as

pt = α0 +

Q∑
q=1

βqpt−q +
J∑
j=1

αjXt,j + εt, (4.14)

εt ∼ N(0, σ2)

Next, we consider the jump diffusion model, that have been widely applied in the

electricity pricing literature (Crespo Cuaresma et al., 2004; Kaminski, 1997; Knit-

tel and Roberts, 2005; Weron and Misiorek, 2008). The jump models are popular

because they incorporate the basic characteristics of electricity prices (spikes and

mean-reversion) and are tractable for deriving electricity derivative prices. The dis-

cretized jump diffusion model is specified as in equation (4.2). But we also augment

the model by including the same set of exogenous regressors included in the ARX-

MSM models
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Another notable model of electricity prices we consider is the Markov regime switch-

ing (MRS) model, with two independent regimes. Several variants of the MRS model

have been applied in the electricity pricing literature, with varying degrees of success

(De Jong, 2006; Higgs and Worthington, 2008; Janczura and Weron, 2010; Mount

et al., 2006). The 2-regime model we consider is specified as in equation (4.4). Note

that unlike the first three models considered, the MRS model allows for conditional

volatility.

Lastly, we consider the ARX-GARCH(1,1) model that is also popular in the extant

literature. Several variants of GARCH models have been applied to electricity prices

(Bowden and Payne, 2008; Garcia et al., 2005; Hickey et al., 2012; Liu et al., 2011),

with indistinguishable successes among the different variants. For simplicity, this

study considers only the ARX-GARCH (1,1) model. The ARX-GARCH (1,1) model

is specified as follows

pt = α0 +

Q∑
q=1

βqpt−q +
J∑
j=1

αjXt,j + εt, (4.15)

εt ∼ N(0, νt)

νt = θ + ωνt−1 + φε2
t−1 (4.16)

All models are estimated by maximum likelihood, and the parameter estimates are

presented in Table 4.5.

In-Sample Comparison

The objective of this section is not to evaluate the performance of the alternative

models considered, as this has been done in the earlier studies cited in section 3.

Instead, we evaluate the performance of the proposed ARX-MSM models, relative
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Table 4.5: Parameter Estimates for Comparison Models

AR(1) ARX MRJD MRS ARX-GARCH(1,1)

Constant 0.4360 -13.1422 -0.0003 -0.0355 -8.4965
(0.0188) (0.8705) (0.0003) (0.0020) (0.7053)

AR(1) 0.8790 0.7892 0.8239 0.8625 0.7556
(0.0051) (0.0070) (0.0297) (0.0072) (0.0076)

AR(24) 0.2890 0.2470
(0.0110) (0.0096)

AR(25) -0.2322 -0.1996
(0.0109) (0.0093)

log Load 1.5199 0.3931 0.3931 1.0193
(0.0983) (0.0032) (0.0032) (0.0801)

Weekday 0.0100 -0.3527 -0.3527 -0.0317
(0.0162) (0.0292) (0.0292) (0.0085)

Peak -0.0301 0.8770 0.8770 0.0340
(0.0151) (0.0208) (0.0208) (0.0105)

Winter -0.0962 -0.1044 -0.1044 -0.0902
(0.0212) (0.0241) (0.0241) (0.0110)

Spring 0.0280 -0.4153 -0.4153 -0.0100
(0.0174) (0.0285) (0.0285) (0.0106)

Summer 0.0231 -0.1624 -0.1624 -0.0460
(0.0142) (0.0255) (0.0255) (0.0099)

σ̂2
1 0.2047 0.1756 0.4720 0.0376

(0.0032) (0.0029) (0.0782) (0.0007)
µ̂ -0.0015 0.8044

(0.0004) (0.0035)

σ̂2
2 1.4742

(0.0525)
γ̂ 1.0000 -0.0361

(0.1666) (0.1900)

λ̂ 0.0118
(0.0083)

θ̂ 0.0287
(0.0015)

ω̂ 0.5892
(0.0270)

φ̂ 0.4108
(0.0185)

lnL -5285 -4638 -5186 -2101 -2878

R2 0.77 0.80 0.75 0.56 0.80

Notes: The table presents the maximum likelihood parameter estimates for the
comparison models. For the ARX and ARX-GARCH models, all parameters are
estimated simultaneously. For the Markov regime switching (MRS) and the mean-
reversion jump-diffusion (MRJD) model, the load and seasonal effects parameters
are first estimated, and the residuals from the first stage are then used in the main
estimation routine. All standard errors are HAC. Italicized figures are insignificant
at 10% significance level.

to the alternative models. We achieve this by comparing the in-sample goodness-of-

fit and out-of-sample forecast accuracy of the ARX-MSM models with those of the
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alternative models.

Table 4.6: In-Sample Model Comparison

AR(1) ARX MRJD MRS ARX-GARCH(1,1)

ARX-MSM -13.2728 -10.4185 -47.6225 -12.4887 -6.9253
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ARX(M)-MSM -6.9957 -1.6628 -6.1811 6.9730 5.1939
(0.0000) (0.0482) (0.0000) (1.0000) (1.0000)

ARX-MSM-M -14.0375 -10.9967 -58.6611 -14.0981 -7.2257
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Notes: The table presents t-ratios and one-sided p-values for the test of likelihood
difference between the model in each column and the corresponding model in each
row. A low p-value indicates a rejection of the null hypothesis of no likelihood
difference, in favor of the alternative hypothesis that the model in each column
performed worse than the model in the corresponding row.

As suggested by Vuong (1989), we compare the in-sample goodness-of-fit of all mod-

els by evaluating the statistical significance of their log-likelihood differences. We

consider the null hypothesis that models f(pt, β) and g(pt, β
′) have identical uncon-

ditional expected log-likelihood (e.g, that ARX-MSM and AR(1) fit the data equally

well), against the alternative that model g(pt, β
′) performed worst.

Specifically, we test the following conditions

H0 : lnLg − lnLf = 0

H1 : lnLg − lnLf < 0

Under the null hypothesis,

tLR =
LRT (β̂′, β̂)√

T σ̂T

d→ N(0, 1),

where

LRT (β̂′, β̂) = lnLg − lnLf −
(
n1 − n2

2

)
lnT,

σ̂2
T =

1

T

T∑
t=1

(
ln

(
g(pt, β̂

′)

f(pt, β̂)

))2

−

(
1

T

T∑
t=1

ln

(
g(pt, β̂

′)

f(pt, β̂)

))2
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where T is the number of observations in the sample, n1 and n2 are the number of

parameters in model g and model f respectively. The t-ratios and corresponding

one-sided p-values are reported in Table 4.6. Generally, the three ARX-MSM models

dominate the alternative models. In other words, the ARX-MSM models provide

better goodness-of-fit than their counterparts for the AESO prices. The exceptions

are the MRS and ARX-GARCH models that provide better fit than the ARX(M)-

MSM model. Lastly, comparing the different variants of the ARX-MSM models, we

find that the ARX-MSM(6)-M provides the best goodness of fit overall.

Out-of-Sample Forecasts

To investigate the out-of sample forecast accuracy, we conduct one-step-ahead hourly

forecasts for electricity prices from January 1 to 31, 2012 (720 point forecasts). First,

the forecast accuracy of the competing models is evaluated using the diebold-mariano

(DM) test (Diebold and Mariano, 2002) of equal predictive accuracy. Second, we

evaluate the different models based on the standard measures used in the electricity

literature. The DM test is based on the forecast errors from two different models

defined as

ε1
t+h|t = yt+h − ŷ1

t+h|t

ε2
t+h|t = yt+h − ŷ2

t+h|t

The accuracy of each model is measured by a particular loss function L(εit+h|t). For

the purpose of this study, we adopt the most popular loss function, which is the

squared error loss, specified as

L(εit+h|t) = (εit+h|t)
2, i = 1, 2 (4.17)

To determine if one model predicts better than another, we test null hypothesis of

equal predictive accuracy as follows

196



H0 : E(dt) = 0, (4.18)

H1 : E(dt) 6= 0, (4.19)

where

(4.20)

dt = L(ε1
t+h|t)− L(ε2

t+h|t) (4.21)

Under the null hypothesis, the DM test statistic has an asymptotic student-t distri-

bution as follows

td =
dt
σd

d→ N(0, 1) (4.22)

Table 4.7: Diebold-Mariano Test of Equal Predictive Accuracies (Winter)

ARX-MSM ARX(M)- ARX- AR(1) ARX ARX- MRS MRJD
MSM MSM(M) GARCH

ARX-MSM 1.6391 0.7918 -2.8969 1.1177 -0.3644 -9.5848 -4.5211
ARX(M)-MSM 0.0508 -1.5117 -2.4283 -0.2981 -1.3474 -10.2342 -4.3633
ARX-MSM(M) 0.2144 0.0655 -2.8200 0.9444 -0.5414 -9.7647 -4.5520
AR(1) 0.0019 0.0077 0.0025 2.4910 0.8760 -9.2999 -3.3470
ARX 0.1320 0.3828 0.1727 0.0065 -1.6235 -10.0212 -4.6623
ARX-GARCH 0.3578 0.0891 0.2942 0.1907 0.0525 -10.0451 -3.0849
MRS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 8.9936
MRJD 0.0000 0.0000 0.0000 0.0004 0.0000 0.0011 0.0000

Notes: The table presents results from the diebold-mariano test of equal predictive accuracy between the different
models considered. The null hypothesis is that the forecast errors from model A are not statistically different from
those of model B, i.e. H0 : E(dt) = 0 against H1 : E(dt) 6= 0. The t-statistics are reported on the upper diagonal of
the table, while the associated one-sided p-values are reported in the corresponding lower diagonal. For example, the
t-statistic from the comparison of the forecast errors from ARX-MSM and ARX(M)-MSM is on the cell corresponding
to row 1 and column 2, while the associated p-value is on column 1 row 2. A negative t-value in cell(i,j) suggests that
the model on row i provides better forecasts than the model on column j. A positive t-value suggests the opposite.
The associated p-value on cell(j,i) indicates whether the t-value is statistically significant.

The results from the DM test are presented in Table 4.7. Results from all models are

compared on a pairwise basis. The t-statistics are reported on the upper diagonal of

the table, while the associated one-sided p-values are reported in the corresponding

lower diagonal. For example, the t-statistic form the comparison of the forecast
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errors from ARX-MSM and ARX(M)-MSM is on the cell corresponding to row 1 and

column 2, while the associated p-value is on column 1 row 2.

A few points are noteworthy from the table. First, we observe that the ARX(M)-

MSM model provides the best out-of-sample forecast among all the models. At the

10% significance level, it provides a significantly better forecast than most other

models, except the ARX model. Second, the predictive accuracy of the ARX-MSM

and the ARX-MSM(M) models are not statistically different at any conventional

significance level. Likewise, both models do not provide significantly better forecast

than the ARX and the ARX-GARCH models. But they both provide significantly

better forecasts than the AR(1), MRS and the MRJD models. Third, the MRS and

the MRJD models provide the lowest forecast accuracy based on the DM test. Even

the relatively simpler AR(1) model possesses better predictive accuracy than the

MRS and the MRJD models. It is also noteworthy that the ARX model produce

forecast errors that are not statistically different than those of all the MSM models,

despite that it is relatively less complex.

This conclusion however changes when we consider more traditional approaches of

forecast evaluation used in the electricity price forecasting literature. The mean

absolute error (MAE), mean absolute percentage error (MAPE), root mean square

error (RMSE) and the Theil’s inequality index (TIC) are defined as follows

MAE =
1

N

N∑
n=1

|p̂n − pn|,

MAPE =
1

N

N∑
n=1

| p̂n − pn
pn

|,
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RMSE =

√√√√ 1

N

N∑
n=1

(p̂n − pn)2,

T IC =

√
1
N

∑N
n=1(p̂n − pn)2√

1
N

∑N
n=1 p̂

2
n +

√
1
N

∑N
n=1 p

2
n

where N is the number of observations in the forecast sample.

The results on Table 4.8 show that the ARX-MSM model dominates other models in

terms of MAE and MAPE , while the ARX(M)-MSM model dominates in terms of

RMSE and TIC, although by a small margin. The MAE and MAPE for the ARX-

MSM are 0.2161 and 0.0550. These are followed closely by the MAE of ARX(M)-

MSM (0.2253) and MAPE of ARX-GARCH (0.0580). ARX-MSM(M) has both the

least RMSE of 0.4270 and TIC of 0.0568. These are followed closely by the RMSE

and TIC of the ARX model, 0.4230 and 0.0571. These results further corroborate

the goodness-of-fit results from section 5.4.1, indicating that the ARX-MSM models

are superior to the other models in forecasting electricity prices. The MRS model is

the worst performing model, followed by the jump model.

Table 4.8: Other Evaluations of Out-of-Sample Forecasts (Winter)

Model MAE MAPE RMSE TIC

ARX-MSM 0.2161 0.0550 0.4321 0.0588
ARX(M)-MSM 0.2376 0.0619 0.4207 0.0568
ARX-MSM(M) 0.2253 0.0580 0.4301 0.0583
AR(1) 0.2353 0.0606 0.4472 0.0608
ARX 0.2373 0.0620 0.4230 0.0571
ARX-GARCH 0.2296 0.0571 0.4363 0.0596
MRS 0.4758 0.1252 0.6867 0.0925
MRJD 0.2768 0.0730 0.4750 0.0643

Notes: The table presents results from the out-of-sample
forecast evaluations. Under the columns for MAE, MAPE,
RMSE and TIC, the smallest value for each column ap-
pears in bold. This signify the best model based on the
criteria corresponding to that column.

The out-of-sample results presented in Tables 4.7 and 4.8 are for the predictions for
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Table 4.9: Diebold-Mariano Test of Equal Predictive Accuracies (Sum-
mer)

ARX-MSM ARX(M)- ARX- AR(1) ARX ARX- MRS MRJD
MSM MSM(M) GARCH

ARX-MSM 0.0756 0.2758 -0.4073 1.5981 0.7255 -4.9166 -0.2696
ARX(M)-MSM 0.4699 -0.0062 -0.2869 1.0965 0.4433 -5.1273 -0.2817
ARX-MSM(M) 0.3914 0.4975 -0.7419 2.2378 0.8878 -5.0610 -0.5219
AR(1) 0.3420 0.3871 0.2292 2.5875 1.0070 -5.0652 0.0371
ARX 0.0553 0.1366 0.0128 0.0049 -1.6476 -5.3986 -3.2606
ARX-GARCH 0.2342 0.3288 0.1875 0.1571 0.0499 -5.2937 -1.0976
MRS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5.2459
MRJD 0.3938 0.3891 0.3009 0.4852 0.0006 0.1364 0.0000

Notes: The table presents results from the diebold-mariano test of equal predictive accuracy between the different
models considered. The null hypothesis is that the forecast errors from model A are not statistically different from
those of model B, i.e. H0 : E(dt) = 0 against H1 : E(dt) 6= 0. The t-statistics are reported on the upper diagonal of
the table, while the associated one-sided p-values are reported in the corresponding lower diagonal. For example, the
t-statistic from the comparison of the forecast errors from ARX-MSM and ARX(M)-MSM is on the cell corresponding
to row 1 and column 2, while the associated p-value is on column 1 row 2. A negative t-value in cell(i,j) suggests that
the model on row i provides better forecasts than the model on column j. A positive t-value suggests the opposite.
The associated p-value on cell(j,i) indicates whether the t-value is statistically significant.

the month of January (Winter) 2012. As a robustness check and to ensure that the

results are not specific to any season, we also conduct out-of-sample predictions for

the month of June (summer) 2012. The results are presented in Tables 4.9 and 4.10.

The results from the DM test on Table 4.9 are less clear cut than the results in Table

4.7. The forecast accuracy of the MSM models are not statistically different from

the results of most other models, except the ARX model. The ARX model actually

produces significantly better forecasts than the ARX-MSM and the ARX-MSM(M)

models. The MRS model is the worst performing of all the models. Considering the

more traditional measures of forecast accuracy on Table 4.10, the ARX-MSM model

produces the least MAE and the least MAPE, while the ARX model produces the

least RMSE and the least TIC.

Lastly, Figures 4.6 to 4.13 depict the price forecasts from the different models. It

can be observed that both the ARX-MSM models are able to forecast price more

accurately in both low and high volatility regimes. The MRS model on the other

hand generates prices that are too high in low regimes and too low in high regimes.

200



Table 4.10: Other Evaluations of Out-of-Sample Forecasts (Summer)

Model MAE MAPE RMSE TIC

ARX-MSM 0.4559 0.1759 1.1276 0.1735
ARX(M)-MSM 0.4999 0.1867 1.1253 0.1735
ARX-MSM(M) 0.4760 0.1820 1.1254 0.1722
AR(1) 0.4943 0.1888 1.1337 0.1742
ARX 0.4983 0.1858 1.0961 0.1691
ARX-GARCH 0.5034 0.1849 1.1134 0.1725
MRS 0.9474 0.3144 1.8102 0.2710
MRJD 0.5277 0.1972 1.1333 0.1742

Notes: The table presents results from the out-of-sample
forecast evaluations. Under the columns for MAE, MAPE,
RMSE and TIC, the smallest value for each column ap-
pears in bold. This signify the best model based on the
criteria corresponding to that column.

Similarly, the MRJD and the ARX-GARCH models generate too many price jumps

than are required to adequately forecast future prices.

Figure 4.6: ARX-MSM Price Forecast
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Figure 4.7: ARX(M)-MSM Price Forecast
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Figure 4.8: ARX-MSM-M Price Forecast
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Figure 4.9: AR(1) Price Forecast
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Figure 4.10: ARX Price Forecast
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Figure 4.11: MRJD Price Forecast
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Figure 4.12: MRS Price Forecast
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4.6. Conclusion

This paper introduces a new class of model, the Autoregressive Markov switching

multifractal model, for forecasting spot electricity prices. Three variants of the model
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Figure 4.13: ARX-GARCH Price Forecast
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are examined. The first variant, the ARX-MSM, is a simple mean-reversion model

that allows for a Markov switching multifractal (MSM) volatility process. This model

already incorporates the main characteristics of electricity prices, namely mean-

reversion, conditional volatility and price spikes. Price jumps with heterogeneous

durations are introduced through switches in the volatility components with hetero-

geneous frequencies. The second variant allows for regime switches in both drift and

volatility. This is motivated by earlier empirical findings that electricity prices are

characterized by regime dependent drifts. The last variant of the model introduces

risk premium into the mean equation.

Employing hourly prices from the AESO market, the parameters of the ARX-MSM

models are estimated, and one-step-ahead hourly forecasts are obtained. To put the

performance of the ARX-MSM models into perspective, the results are compared

to those of other notable models in the literature, namely the AR(1), ARX, ARX-

GARCH, mean-reverting jump and the 2-state independent Markov regime switching

models. The goodness-of-fit tests indicate that the ARX-MSM models fit the data
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significantly better than the competing models. Likewise, out-of-sample results show

that an ARX-MSM models provides always the best forecast accuracy, although by

small margins.

There are however, rooms for for improvements in terms of advancing the ARX-

MSM models and the empirical analysis. First, none of the variants of the ARX-

MSM model incorporates the inverse leverage effect that is widely documented in the

literature (Bowden and Payne, 2008; Hickey et al., 2012; Knittel and Roberts, 2005).

The intuition is that positive price shocks tend to have a larger impact on volatility

than negative price shocks, due to convex marginal cost curves. Second, although

not present in the sample used in this study, electricity prices can be negative due

to a combination of non-trivial start-up costs associated with generators and the

inability to freely dispose electricity. Third, on the empirical side, the focus of this

study has been on the AESO market. But the models need to be applied to other

markets with different characteristics in other to generalise the validity or otherwise

of the models. Fourth, this study employs hourly data for hourly price forecasting.

Although this is relevant for day traders and speculators, it is of limited relevance for

day ahead generators and consumers. Therefore, another potential extension of this

study will be the application of the models to day ahead and multi-step forecasts.

Lastly, besides forecasting prices, the other most important application of electricity

pricing models is for derivatives pricing and risk management. In the latter case, a

measure conditional volatility is readily available after the estimation of the ARX-

MSM models, and the filtered and transition probabilities can be used for one-step

or multi-step-ahead volatility forecast for risk management purposes. For deriving

derivative prices, the models are tractable and naturally generalize to both discrete

and continuous time frameworks used for asset pricing.
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