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Abstract

As chemical processes become more and more complex, one of the significant goals in process
industries is to increase the safety and reliability of such processes. Significant effort has
gone into the development of quality control and process monitoring methodologies. Equally
important in the control of chemical processes is a fast and efficient means of detecting and
isolating faults.

Multivariable statistical analysis methods, e.g., Principal Component Analysis (PCA),
Partial Least Squares (PLS) and Canonical Variate Analysis (CVA) have widely been ap-
plied to chemical process monitoring. However, few recursive monitoring techniques have
been developed for fully dynamic and time-varying multivariate processes. Recursive PCA
has been proposed and successfully applied to the monitoring of static time-varying pro-
cesses but it is not congenial for fully dynamic processes. Dynamic PCA has been developed,
however its recursive variant is not available. Many processes operate in dynamic states
and are often time-varying. The time varying property includes not only the variation of
parameters but also the process structure.

In this thesis, two main issues are investigated. First, a novel approach to the adaptive
monitoring of multivariable dynamic and time-varying processes by the use of recursive
multi-channel lattice filter is presented. The lattice filter algorithm is derived from a geo-
metric point of view. The effectiveness of the newly proposed approach is demonstrated on
a simulated system and a pilot scale plant, respectively.

Second, detection, identification and reconstruction of faulty sensors in fully dynamic
systems is studied. To generate the primary residual vector for fault detection, the error-
in-variables (EIV) subspace model is used for the identification of the residual model from
the noisy measurement data, without the need of any priori knowledge of the system under
consideration. To identify the faulty sensor, a dynamic structured residual approach with
maximized sensitivity (DSRAMS) is used. In this methodology a set of structured residuals
where one residual is most sensitive to one specified subset of faults but immune to others

are generated. Fault magnitude is then estimated based on the model and faulty data



and the faulty sensor is reconstructed. DSRAMS is applied on a simulated system for
the isolation of single and simultaneous multiple sensor faults. Also DSRAMS has been

successfully applied on-line on a pilot scale plant for the isolation of single sensor faults.
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Chapter 1

Introduction

On-line process monitoring, fault detection and diagnosis (FDD) of industrial processes
is crucial to operational safety and monitoring product quality. The early indication of
incipient failures can help avoid major plant breakdowns and catastrophies, ones that could
otherwise result in substantial material damage and even human fatalities. Similarly, fault
detection and isolation has become a critical issue not only in chemical process industries
but also in the operation of high-performance systems such as ships, submarines, air planes
and space vehicles, where safety and significant material value are at stake. The faults
are basically classified into additive faults and multiplicative faults. Sensor and actuator
faults are the typical additive faults as they do not affect the model of the process under
consideration. Process faults are typical multiplicative faults as they affect the process
model parameters. A typical procedure for process monitoring, sensor fault detection and
diagnosis consist of three steps: (1) residual generation, (2) analysis of residuals for fault
isolation and (3) reconstruction of faulty sensors or actuators. The first two steps are also
referred to as fault detection and isolation (FDI), in which the residual generation is the
most important step. The residuals of a process are the linear combination of outputs and
inputs. To generate residuals for process monitoring and diagnosis, an adequate knowledge
either of the process or system identification techniques is essential.

A process model can be obtained from first principles if the mechanism is simple and
fully understood. However, as most industrial processes are quite complicated, the process
model is often obtained by using system identification techniques from the sampled input
and output data. System identification, thus, plays an important role in process monitor-
ing and FDD. A number of models structures such as transfer function model with: AR
(auto-regressive), ARMA (auto-regressive moving average), ARMAX (auto-regressive mov-
ing average exogenous) and FIR (finite impulse response) structures or state-space models
may be identified.

Most industrial processes, e.g., chemical processes, are multivariate in nature. When
using classical system identification techniques to build the above mentioned models, the
process variables are divided into two groups: the inputs and the outputs. Also it is



implicitly assumed that there is some cross correlation between the two groups and that the
variables are independent within each group. Since processes are heavily instrumented, the
sampled variables within a group can be dependent and such a dependency can cause severe
numerical problem for the model estimation. In fact only few variables are independent,
called latent variables, which can basically characterize a process. To overcome the problems
of linear dependency or redundancy among the entire sampled variables, latent variables
based system identification techniques, e.g., Principal component analysis (PCA), Canonical
variate analysis (CVA) and Partial least square (PLS), have been widely applied to chemical
processes for monitoring and diagnosis (Larimore 1983, MacGregor 1989, Kresta et al. 1991,
Piovoso et al. 1992, Schaper et al. 1994, Kourti and MacGregor 1995, Lakshminarayanan
et al. 1995, Wise et al. 1996, Dunia and Qin 1998). Recently, the subspace methods of
identification (SMI) have become very popular among the system identification community
and have been widely applied towards modeling and monitoring of industrial processes
(Larimore June 1997, Basseville et al. 2000).

1.1 Scope of the thesis

Many industrial processes operate in dynamic state and are often time-varying. The time-
varying property includes not only the variation of parameters but also the variation of
process structure, e.g., the change of the process order. However, for such dynamic and time-
varying processes, few recursive techniques are available. Recursive PCA (W. Li and Qin
2000) has been proposed and successfully applied to quasi-steady state process monitoring
but it does not work for fully dynamic processes. Dynamic PCA has also been developed
for process diagnosis (Ku et al. 1995), however its recursive variant is not yet available.

In this thesis a novel approach to the adaptive monitoring of multivariate dynamic
time-varying processes via the use of multi-channel lattice filters is presented. Lattice
filters have been extensively applied to signal processing and system identification (Lee
et al. 1981, Friedlander 1982, Kummert et al. 1992). Their main advantage is that they
are recursive both in time and in order. They also have the attribute of allowing fast
convergence and good tracking of time-varying process variables (Honig and Messerschmitt
1981, Lev-Ari et al. 1984).

It is believed that errors-in-variables (EIV) state space model can represent a multivari-
ate dynamic process in the presence of process noise and measurement noise in the inputs
and the outputs. The identification algorithm for the EIV state space model has been pro-
posed by Chou and Verhaegen (1997), and can be directly applied to residual generation for
process monitoring and fault detection (Qin and Li 1999). However, this algorithm is based
on the assumption that the process is time-invariant. More recently, Gustafsson proposed
a recursive version of the algorithm (Gustafsson et al. 1998). However this algorithm is
only recursive in time. By showing the relationship between the process EIV state space
representation and the multi channel lattice filter, the lattice filter is used to generate a



residual vector for process monitoring. By making use of the lattice filter’s ability of recur-
sively updating the process model both in time amd order, an on-line algorithm to update
the residual vector with the newly sampled process data is proposed. A practical approach
to determine the process model order is also inclu-ded. Hotelling T2 statistic, constructed
from the sequence of residual vectors, is used as thwe monitoring index.

The second part of the thesis is concerned with the sensor or actuator fault detection,
isolation and reconstruction in fully dynamic processes. A subspace model is obtained by
the use of the EIV system identification algorithm to generate residuals for fault detection.
Further, for the isolation of faulty sensors, a dyreamic structured residual approach with
mazimized sensitivity (DSRAMS) is used to generate a set of structured residuals where
one residual is designed to be most sensitive to a given subset of faults but immune to
others (Qin and Li 2000). After the isolation, the fault magnitude is estimated based on
the model and the faulty data, and the faulty sensors are reconstructed.

1.2 Organization of this thesis

As outlined in the earlier section, Chapter 2 starts with a brief overview of various existing
techniques in the area of multivariate statistical analysis based process monitoring and fault
detection and diagnosis. Chapter 3 is associated with the lattice filter based multivariate
time-varying dynamic process monitoring, starting: with a brief introduction of the lattice
filter. After showing the equivalence between the lattice filter and a multivariate dynamic
process, a detailed derivation of the lattice filter algorithm, including the time and order
update equations, is presented from a geometric point of view. Further, a lattice filter
based process monitoring scheme is proposed and two case studies are presented to show
the effectiveness of the proposed scheme for adapti-ve process monitoring.

Chapter 4 deals with the detection and isolation of faulty sensors in fully dynamic
systems. Applications of DSRAMS are illustrated for single and simultaneous multiple
sensor faults. Finally the thesis ends with conclusions and directions for future work in
Chapter 5.



Chapter 2

Methods for Process Monitoring
and Fault Diagnosis: A survey

2.1 Introduction

Advances in the areas of instrumentation and data acquisition have made it possible to
collect large amount of data in process industry. Previously, univariate statistical pro-
cess control (SPC) charts such as Shewhart charts, Exponential weighted moving average
(EWMA) trends, Cumulative sum (CUSUM) etc., were applied to monitoring key process
variables in multivariate processes in order to detect the occurrence of abnormal conditions,
where interaction among different variables was not taken into account. As most chemical
processes are multivariate by nature, the use of univariate SPC charts not only result in
misleading process information but also makes the interpretation and diagnosis difficult.

Recently, multivariate statistical methods such as PCA, PLS and CCA are finding in-
creased use in the analysis of multivariate processes. MacGregor and his coworkers (Kresta
1992, Nomikos and MacGregor 1995) and Wise (Wise 1991) have done pioneering work
in applying PCA and PLS to monitoring chemical processes. The usefulness of PCA and
PLS for preliminary data analysis, process monitoring and control system designing has
also been demonstrated on the Shell Standard Control Problem (Kasper and Ray 1992).
The use of EWMA filters in conjunction with PCA and PLS has been discussed in Wold
(1994). A multi-way PCA approach to monitoring batch processes has been reported by
Nomikos and MacGregor (1995) and an extension to continuous processes has been made
by Chen and McAvoy (1998). Non-linear PCA (Shao et al. 1999) has been proposed for
process monitoring, where the data is first pre-processed to remove noise and spikes through
wavelet de-noising. Process monitoring by Multiscale PCA, where wavelet analysis is used
to extract deterministic features, is reported in Bakshi (1998).

Studies bases on PCA and PLS based process monitoring and diagnosis are also pre-
sented in Wold et al. (1987), Kourti et al. (1995) and Wise et al. (1996). The use of
PCA scores, that are recursively summed up, for process monitoring and enhanced distur-
bance resolution is presented in Wachs et al. (1999). Application of PCA to high frequency



information, obtained from wavelet decomposition of a signal, to detect a faulty sensor is
reported in Luo et al. (1999). Also, the feasibility of sensor fault detection using noise
analysis, with the help of power spectrum density estimation and PCA, is carried out in
Ying et al. (2000). The use of CCA for chemical process modeling and fault detection ap-
plications is reported in Schaper et al. (1994), Lakshminarayanan et al. (1995) and Wang
et al. (1997).

While the PCA, PLS and CCA are mainly used for process monitoring, significant work
regarding the detection and isolation of faults has been done in terms of the analytical
models of the system. Beard (1971) and Jones (1973) have proposed the use of fault detec-
tion filter where a fault is detected when one or more of the residual projections along the
known fault direction are sufficiently large. A Dedicated observer approach has been used
where the outputs of the system are reconstructed from the measurements with the aid of
Kalman filters. The estimation error or innovation are used as a residual for the detection
and isolation of faults (Clark et al. 1975, Mehra and Peshon 1971). Isermann (1984) has
proposed the use of parameter identification approach where the faults are detected via the
estimation of parameters of the mathematical model. The Parity state space approach has
been used where the consistency of mathematical equations of the system is checked by
using the actual measurements (Frank 1990, Gertler and Singer 1990). The statistical local
approach, which is more suitable for process faults, has also been proposed for detecting
parametric changes (Benveniste et al. 1987, Basseville and Nikiforov 1993). Input-Training
Neural Networks have also been used for dimensionality reduction allowing process mon-
itoring tasks such as missing sensor replacement, sensor error detection and rectification
(Reddy and Mavrovouniotis 1998).

Multivariate statistical analysis approaches, e.g., PCA, PLS and CCA and the analytical
redundancy approach seem to belong to two different categories. Recently, after investigat-
ing the relationship among the two frameworks, Gertler et al. (1999) proposed the isolation
enhanced PCA, combining the advantages of PCA for multivariate process monitoring and
the analytical redundancy for fault isolation together.

In the following sections, the basic concepts of PCA, PLS and CCA are briefly outlined
which is followed by a brief review of some analytical redundancy based approaches for FDI.

2.2 Principal Component Analysis (PCA)

The goal of PCA is to model a single block of data, X € RV*P with N observations and
p variables, using orthogonal components. It is concerned with explaining the variance-
covariance structure through a few linear combinations of the original variables. The total
variability of the data set is explained by the p — variable space. However if the original
variables are correlated, then most of the variability in the data set can be summarized by
a lower n — dimensional subspace (n < p). The n principal components (also called latent
variables) can then replace the initial p variables and be used for further analysis purposes.



Consider the following p linear combinations (Johnson and Wichern 1998)

t1 = luxi+ligxe+---+lipx
t‘z = loixy +looxp + -+~ +lopxp @.1)
t-p = Ipix1 + lpox2 + -+ - + LppXp
where x1,X3,...,Xp are the p variables of the data matrix X. Also
Var(t;) = UIZL i=12,...,p @.2)

Cov(ti,tr) = 2L 4,k=1,2,...,p

where 3 is the covariance matrix of X. The principal components are those uncorrelated
linear combinations t, ta, . . ., t, whose variances are as large as possible. The first principal
component, t;, has the maximum variance, the second principal component, t2, accounts
for the maximum variance that has not been accounted for by ti, and so on. The following
constraints

]-;Tl'z =1 (i:':l:"'rp)

and
Ul =0 (#k)

are placed to achieve the above objective.

The principal component weights matrix, P which consists of weight vectors 1; to L, is
obtained by performing singular value decomposition (SVD) on the data matrix X (Laksh-
minarayanan 1997). In the presence of correlation among the variables, some of the singular
values and the corresponding principal components will be insignificant. Noise and redun-
dancies present in the data are contained to these insignificant PCA dimensions (from n-+1
to p). PCA can also be considered as a technique which decomposes the data matrix X as
follows:

X =t +told +--- + t, L + Epy1 = TPT + E,y (2.3)

In the above equation, the matrix P is the loading matriz which consists of weights associ-
ated to the original variables in the construction of the principal components. Also, matrix
T is the scores matriz which consists of sample projections on to the lower n-dimensional
subspace. Matrix E is the error matrix which consist of the insignificant information in the
data set.

2.2.1 Application

The PCA model, built from the data collected during normal plant operation, can be
used for online process monitoring, fault detection and diagnosis. The tools to achieve the
objective are the score plots and loading plots.



Score Plots

A score plot is obtained by plotting any two principal component scores for the correspond-
ing PCA dimension, e.g., t; vs t. It is used to find relationships between the data points.
Points that fall close to each other represent similar data points. Under normal operating
conditions, the points in the score plots lie within a control limit contour which is an ellipse.
When the points begin to fall outside the normal operating region, it is an indication of
abnormal shift in the process variables. The score plots can thus be used to detect abnormal
process behaviour. However, the score plots are unable to detect the faults if there is no
abnormal shift in the process variables and yet the correlation structure break downs. To
overcome this, the squared prediction error (SPE) statistic can be used for process monitor-
ing. The SPE can be considered as a measure of the plant-model mismatch. A large value
of SPE indicates that the PCA model no longer represents the current plant correlation

structure.

Loading Plots

A loading plot is obtained, in a similar manner as the score plot, by plotting any two loading
vectors. The loading plot is used to find relationships between the original variables. All
variables sharing the same information are clustered together in a loading plot. Loading
plots help in visualizing the cluster of variables responsible for any unusual event.

Figures 2.1 and 2.2 show the results of application of Dynamic PCA for process moni-
toring. Dynamic PCA model is used to monitor a slowly time varying 4 input - 4 output
simulated second order dynamic system (refer Section 3.7.1 for the details of the simulated
system). Figure 2.1 is the T2 plot which shows a number of false alarms as the Dynamic
PCA model, which consist of 10 principal components, is unable to track the slowly time
varying system. Figure 2.2 is the scores plot obtained by plotting principal component PC
10 against PC 1. Even though the process is operating normally, a number of points lie
outside the normal operating region triggering false alarms. The same slowly time varying
system is monitored via the use of multi channel lattice filter and comparative results are
presented in Chapter 3.

2.3 Canonical Correlation Analysis (CCA)

Canonical correlation analysis is a powerful technique to identify and quantify the asso-
ciations between two set of variables, say X and Y. Here X can be considered as an
independent block and Y as the dependent block of data. In canonical correlation analysis,
the goal is to relate the linear combination of the variables in set X and Y. The idea is first
to determine the pair of linear combinations having the largest correlation. Next, the pair
of linear combinations having the largest correlation among all the pairs uncorrelated with
the initially selected pair is determined. The pairs of linear combinations are called the
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canonical variables and the correlations are called canonical correlations. In order to obtain
the solution for the required linear combinations, the variance of the canonical variates is
constrained to unity. The mathematical details of CCA algorithm are presented in Johnson
and Wichern (1998).

2.4 Partial Least Squares (PLS)

Partial least squares is used as an algorithm for computing a solution B for the regression

coefficients in a linear model
Y=XB+E

where X and Y are the known data matrices and E is the noise. The purpose of using the
PLS algorithm for computing B is to handle the multicollinearity problems where there are
linear dependencies among the columns of X matrix.

Partial least squares has a conceptual similarity to canonical correlation analysis in
that the relationship between two blocks of data are modeled to find highly correlated
combination of variables. The principal components or the latent variables for the X block
are constructed with reference to the Y block. The goal of PLS is to form components that
capture most of the information in the variables of X block that is useful for predicting
the Y block variables while reducing the dimensionality of the regression problem by using
fewer components than the number of variables in X block.

In PLS, the input (X) and output (Y) data is expressed as a sum of series of rank 1
matrices as follows:

X = t;p] +topl + -+ topl + EBnp1 =TPT +Eqy
2.4
Y = uqulp-{—uzqg'—%---—i-unqg-i—Fn_H=UQT+F,,+1 &9

where n is the number of PLS dimensions, E,+; and F,4; are the residual portion of the
input and output data respectively. In the above equations, T and U represent the score
matrices or the latent variables while P and Q represent the loading matrices. The first set
of loading vectors is obtained by maximizing the covariance between X and Y. Projection
of the data onto these vectors gives the first score vectors, t; and u;. Matrices X and Y
are related through their scores by the inner relation which is just a linear regression of t;
on u; giving
a; =t16;

In the above equation ;7 can be interpreted as the part of Y data that has been predicted
by the first PLS dimension and in doing so the tlpf of U has been utilized. This process is
repeated until all necessary components have been calculated based on the portion of the
covariance between X and Y that is explained. The PLS based regression model can be



written as

Y = TBQT+F.u

where B = dia.g(b1,b2,---,bn)-

The PLS model obtained from the data colllected during normal plant operation, can be
used for online process monitoring, fault detection and diagnosis in the same way as the
PCA model is used.

2.5 Kalman Filter based Residual Generation

The Kalman filter was originally proposed ffor the estimation of the state of the system
having known system matrices {A(k),B(k),C(k),D(k)} and covariance matrices Ro(k)
and R, (k) of the measurement and process noise. Consider the following state space model:

x(k+1) = A(k)xCk)+Bk)u(k) + p(k)
y(k) = C(k)x(k)+D(k)u(k) + o(k)

where p(k) and p(k) are assumed to be Ga.ussian distributed white noise. The Kalman
filter algorithm is as follows

%(k+1k) = A)x(Kkk)+Bk)u(k)
x(klk) = x(k|k~—1) +K(k)e(k)

where K(k) is the Kalman filter gain matrix which can be recursively computed and &(k)
is the innovation sequence which is computed as

e(k) =y (k) — D(k)u(k) — C(k)x(klk — 1)

It can be shown that the innovation £(k), givem by above equation, is a Gaussian distributed
zero mean random vector under normal operating situation. However, in the presence
of sensor or actuator faults the mean of the innovation deviates from zero. Hence the
occurrence of faults can be detected by monitoring the mean of the innovation sequence.

2.6 The Local Approach

The local approach was first proposed to detect parametric changes in single-input single-
output (SISO) AR processes (Benveniste et .al. 1987). It has been later extended for de-
tecting additive and multiplicative faults (B=asseville and Nikiforov 1993) in multivariate
processes. The core of this approach is the reeduction of fault detection and isolation prob-
lem to that of monitoring the mean of a sufficient statistic vector. The basic idea of the
local approach is presented below for an AR [process.
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Consider the following scalar AR process
y(k) — aiy(k — 1) = -~ — any(k — n) = (k)
where e(k) is Gaussian distributed white noise with variance 2. Denoting
0*=atas - a)T eR”
as a vector consisting of true parameters of the process and
oK) = [y(k —1) y(k —-2) - y(k —n)]" e R

as the regressor, the AR process equation is rewritten as

y(k) = @7 (k)8" + e(k)
As 6* is usually unknown, it is replaced by the estimate 8¢ and the prediction error then is

&k) = yk)— T (k)8o
= @7 (k) (6" — o) +€(k)

If there is a sudden change in some elements of 8y, then
AG =(0—-6")VN

where N is the length of training data used for identifying 6g, and the prediction error
becomes

&) = ¢T(k)—j% + 6T (k) (8" — 80) + (k)

It should be noted that A8 can contain one (single fault) or more than one (multiple faults)
non-zero element. In order to detect such a parametric change, the following terms are
defined:

K (8,60, 0(k) = o(k)é(k)
¢(A)¢T(A) \/— + p(k)pT (k) (6™ — 80) + p(k)e(k) € R™  (2.5)

and

N
Env(9) = \/—IJ_V: > K (8,60, p(k))
k=1

N N
= 3 2 (BRI A6+ oS (BT (6 0 + =S S e
k=1 k —1
(26)
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As N tends to infinity, the estimated parameters tend to the true parameters, the second
term on the RHS of Equation 2.6 vanishes. Denoting

N
1 n
=5 E (p(k)@T (k) € B>
k=1
Equation 2.6 can be rewritten as

L X
En(0) =RsA6 + ﬁ; P(k)e(k)

Under the assumption that ¢(k) is a Gaussian distributed white noise, it can be deduced
that
& (8) ~ X (RyA0, Ry0?)

Hence, detecting any parametric change in the model is equivalent to checking whether &
is zero mean. The occurrence of faults make the associated elements of the mean vector
non zero. Therefore, fault isolation is reduced to finding out the non-zero elements in the
mean vector.

2.7 Summary

A brief review of various multivariate statistical analysis approaches, e.g., PCA and PLS
have been presented. Also few analytical redundancy based approaches for FDI have been
discussed briefly. Dynamic PCA when applied to monitor a slowly time varying system
triggers a number of false alarms. It highlights the need to have a recursive technique
which can adapt to such small variations in the processes.
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Chapter 3

Adaptive process monitoring via
multi channel Lattice Filter

3.1 Introduction

Lattice filters were originally proposed by Itakura and Saito (1971) for speech analysis and
synthesis. Since then lattice filters have been widely applied to adaptive signal processing,
joint process estimation, e.g., fast startup equalizers and noise cancelling, adaptive control
and system identification (Honig and Messerschmitt 1981, Lee et al. 1981, Friedlander 1983,
Lev-Ari et al. 1984, Ljung 1987, Jabbari and Gibson 1988) for a number of reasons. The
main advantage of the lattice filter is that it is recursive not only in time but also in order.
Also, it is numerically efficient requiring a finite number O(n) operations per time-update,
where n is the order of the lattice filter algorithm.

As originally proposed (Itakura and Saito 1971), lattice filter can only be used for the
identification of AR models. In the following years, the lattice filter has been extended
for the identification of multivariate ARMA models (Lee et al. 1982, Jabbari and Gibson
1988, Kummert et al. 1992). Lee et al., (1982) depended on the embedding technique with
the input and output processes being treated as a joint AR process. Jabbari and Gibson
(1988) developed the vector channel lattice filter where the input signals are included in
some channels in a specific manner. Kummeret et al., (1992) introduced a unified signal for
the representation of input and output signals so that the ARMA model parameters can
be estimated by applying the least squares criterion to the unified signals. The lattice filter
extended least squares algorithm for the identification of scalar ARMAX model has been
proposed by Friedlander (1983). However, as most industrial processes, e.g., chemical pro-
cesses are multivariate in nature it is imperative to use vector ARMAX models to describe
the dynamics of such processes. Also, Friedlander’s algorithm is based on the assumption
that input signals are noise free which is not applicable to the EIV based state space model
case.

The EIV based state space model is the most generalized representation of any dynamic
system. The benefit of using such a model is that the measurement noise in both the inputs
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and outputs and the process noise can be taken into account. The EIV based state space
model can be shown to be equivalent to a vector ARMAX model. The multi-channel lattice
filter can be used for the identification of the vector ARMAX model and for the generation
of residuals for process monitoring. Any change in the parameters or the structure of the
process model is reflected as a change in the mean of the residual vector. As many industrial
processes are fully dynamic and are often time varying, the residuals generated need to be
updated recursively in time as well as in order to reduce the number of false alarms. The
process monitoring is equivalent to checking if the mean of the recursively updated residual
vector deviates from zero. By making use of the multi-channel lattice filter, residuals can
be generated recursively in time and in order from the sampled data without estimating
the model parameters explicitly. Multi-channel lattice filters can thus be used for adaptive
process monitoring of slowly varying dynamic systems.

In the following sections the lattice filter algorithm, for the identification of vector
ARMAX model and for the update of the residual vector in time and order simultaneously, is
proposed. A unified signal is used to represent the input and output signals and accordingly
a unified signal subspace is defined. The lattice filter algorithm has been derived from a
geometric point of view by performing non-symmetric projection operations in the unified
signal subspace. The computed residual vector is used for constructing the Hotelling 7'
statistic which is used as the monitoring index. The proposed approach is evaluated by
monitoring a simulated process and a time-varying pilot plant.

The subject matter of this chapter is outlined as follows. The chapter starts with a
brief introduction to lattice filter in Section 2. Lattice filter is discussed as it was originally
proposed, i.e., for the identification of AR models. Section 3 outlines the problem formula-
tion. Equivalence between the EIV based state space model and multi-channel lattice filter
with respect to the generation of residual vector is presented in Section 4. Section 5 deals
with the complete lattice filter algorithm for the recursive update of the residual vector in
time and order. The order determination of the lattice filter and the computation of the
T? statistic for process monitoring is considered in Section 6 which is followed by two case
studies for the evaluation of the proposed algorithm in Section 7. The chapter ends with
concluding remarks in Section 8.

3.2 Lattice Filter

The lattice filter is simply a result of performing a Gram Schmidt orthogonalization proce-
dure on the data samples entering into the prediction. This section provides a brief overview
of lattice filters for the identification of scalar AR models (Honig and Messerschmitt 1984).
A geometric approach is taken for the derivation of the algorithms. The geometric ap-
proach lends an intuitive interpretation of many of the results which would otherwise seem
to be merely mathematical manipulations. The section starts with the review of some
mathematical preliminaries which are essential to the understanding of the later geometric
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Figure 3.1: Illustration of projection theorem

derivations.

3.2.1 Mathematical Preliminaries

e A linear space consisting of infinite dimensional vectors is defined as

Y — (- - .'y(—l),y(O),'y(l), .- ')
under the assumption that
> y3(T) <
T
which signifies that the total energy in the given data samples is finite.

e Inner product of two vectors is defined as

k3
<X, Y>= inyi
i=1

e Hilbert Space - Linear space on which inner product is defined and has the property
of completeness.

e Orthogonal Vectors - Two vectors are said to be orthogonal if their inner product is
a zero (scalar), i-e.,
<X, Y>=0

e Subspace - Subset of a linear space which itself is a linear space.

e Two subspaces M; and M3 are said to be orthogonal subspaces if every pair of vectors,
one taken from Af; and the other taken from M, are orthogonal.

e The projection theorem is the basis for the derivation of lattice filter structure later
in the chapter. It states that : Given a subspace M of a Hilbert space H and a vector
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X in H there is a unique vector PpX in M called the projection of X on M which

has the property that
<X-PuyX,Y>=0

for every vector Y in M. The concept of projection is illustrated in Figure 3.1 where
the subspace M is the plane formed by the z-axis and y-axis and X is an arbitrary
vector. A consequence of the projection theorem is that the projection Py X is the
unique vector in M which is closest to X, i.e.,

[ X-PuX|<l[|X-Y|
forevery Y # Py X in M.

Given two orthogonal subspaces M; and M of Hilbert space H and an arbitrary
vector X in H, the projection of X on M; & M; can be expressed uniquely as

PumoreX =P X +Pu, X
or in words the sum of the projection on M; and the projection on Ms.

Recalling the definition for the signal vector, the following notation is defined for the
new vector obtained by delaying the signals by ¢ samples,

z—iY — (‘ .- ay(—l _Z)ay(_”')ay(l —?’)) .. ')'

In this notation, z~%Y is a new vector obtained by delaying the samples in the Y
vector by i samples.

The prediction error of the n-th order, also termed as forward predictor error, is
defined as follows

es(T | n) =y(T) = > fi(n)y(T —j)
j=1

where a fixed filter coefficient vector f(n) has been assumed. The above in a vector
form can be rewritten as

Ef(n) =Y — z"‘: fi(n)z7IY. (3.1)

i=1

In a prediction problem, given a signal vector Y, the objective is to minimize the length of
the n-th order prediction error vector. The predictor is a vector in the subspace spanned
by 2~1Y,--- ,z7™Y. This motivates us to define more generally the subspace spanned by
zkY,... z7™Y, k< m,as M (k,m). The summation term on the right hand side of
Equation 3.1 (the forward predictor) is a general vector in M(1,n), since it consists of a
linear combination of the spanning vectors in M(1,n). From the projection theorem, the

16



vector of the subspace M (1,n) which is closest to Y is the projection of Y on M(1,n), and

thus
Ef(n) =Y —PuanY (3.2)

is the error corresponding to the optimum predictor which has the property that
<Ef(n),z7Y>=0,1<j<n

3.2.2 Derivation of Lattice filter

This section deals with the derivation of lattice filter structure using the mathematical tools
of the previous section, and the projection theorem in particular.

The prediction problem at hand is to find the projection of Y on the subspace M(1,n).
The lattice filter is simply the consequence of finding a new set of vectors which also span
the subspace M (1,n), but which have the valuable property of being mutually orthogonal.
A set of n vectors which satisfy this need is

E)0) = Y
Ey(m) = z7™Y — PM(O,m—-l)(z_mY): 1<m<n-1. (3.3)

In particular, it will be shown later that Ey(m), 0 < m < n, is an orthogonal basis for
M(0,n — 1), or equivalently that z~'Ey(m), 0 < m < n is an orthogonal basis for M (1,n).
Each of the vectors in Equation 3.3 can be written in the form

m
Es(m) =z""Y — ) _bi(m)z7 Y (3.4)
i=1
for some particular constants bj(m) corresponding to the projection in Equation 3.3. The
time domain equivalent of the above equation is

es(T | m) = y(T —m) = > _bi(m)y(T —j +1). (3.5)
j=1

Figure 3.2 illustrate the realization of m-th order forward and backward predictors. In
Figure 3.2.1, ef(T | m) is the error in predicting a current sample in terms of a linear
combination of m past samples. In Figure 3.2.2, e,(T | m) is the error in predicting a
sample m sampling intervals in the past in terms of a linear combination of m more recent
samples, up to and including the current sample. For this reason, the predictor of Foquation
3.4 is called a backward predictor; ep(T | m) is called the m-th order backward prediction
error; and the b;(m) are called the backward prediction coefficients. The vectors in Eiquation
3.2 are simply the consequence of applying Gram-Schmidt orthogonalization procedure to
the vectors Y,z~1Y,...,z~"t1Y. These different orders of backward predictors form an
orthogonal basis for M(0,n — 1) as explained below.
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Figure 3.2: Realization of m-th order predictors
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e The successive orders of backward prediction error span M (0,7 — 1). It can be ex-
plained by the fact that Ey(m) contains as one component 2~ ™Y, and hence each of
Y,271Y,...,z7"*1Y is included in one or more of the backward prediction errors.

e The backward prediction errors are mutually orthogonal. By definition of the projec-
tion, Ep(m) is orthogonal to M (0,n — 1). But E,(0) through Ey(m — 1) are vectors
in the subspace M(0,n — 1), since they can be written as linear combinations of
Y,...,2~™*1Y. Since each Ey(m) is orthogonal to E(0) through Ey(m —1), it follows
that the different orders of prediction error are mutually orthogonal.

The backward predictors have no important direct physical significance, except as an inter-
mediate signal in the construction of the lattice filter. It can be seen later that the lattice
filter realizing the n-th order forward predictor generates all lower orders of backward pre-
diction error. Also the backward and forward prediction errors have the same norm, i.e.
they have the same length,

[Ef(m)||? = [Es(m)||*, 1 <m < m.
The lattice structure is defined by the equations

Ef(m) = Ep(m—1)-kbz'By(m—1), Ef(0) =Y
Ey(m) = z lEy(m—1)—kLEf(m—1), E,(0) =Y

for 1 < m < n where n is the order of the desired forward predictor and k2, and kL, are
appropriate constants. These are called order update equations since they relate higher
order forward and backward prediction errors to lower order prediction errors. In the time
domain, the order updates become

ef(T|m) = ef(T|m—1)—kbes(T—1|m—1)
es(T10) = y(7T)
es(Tim) = e(T—1|m—1)—kle;(T|m—1)
es(T0) = y(T).

The lattice filter structure is shown in Figure 3.3. In Figure 3.3.1, the successive stages
of the filter develop the successive higher order forward and backward prediction errors.
In finally developing an n-th order forward predictor at the final output, all lower order
prediction errors are developed as intermediate signals between the stages. A single stage
of the lattice filter is shown in Figure 3.3.2. The inputs to a lattice filter stage are the
forward and backward prediction errors from the (m — 1)-th stage and outputs are the
forward and backward prediction errors using an m-th order filter. The inputs to the first
lattice stage are Y, which also corresponds to both prediction errors of order 0.
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3.3.1: Overall structure

E(m-1) E (m)

E,(m-1) o2t} " O—>E (m)

3.3.2: Single stage

Figure 3.3: Lattice filter based n-th order predictor

The coefficients k2, and kL, are called partial correlation or PARCOR coefficients. The
PARCOR coefficients are independent of the filter order . Successive lattice stages may
therefore be added or existing stages subtracted without the necessity of recalculating al-
ready existing PARCOR coefficients. The fact that lower orders of prediction error are
developed in realizing an n-th order filter can be used when the order of the predictor is
not known in advance. Successive stages can be added and order determination techniques
can be applied on the respective error vectors for the determination of the order. Once the
order has been determined, additional stages can be removed without affecting the lower
stages of the filter.

3.3 Problem Formulation

Having presented a conceptual and geometric introduction to the lattice filter, the following
sections deal with the identification of vector ARMAX model using multi channel lattice
filter. This section starts with the problem formulation for the identification purpose.

Assume that the normal behaviour of the process under consideration be represented
by the unknown discrete state space model, as follows: (Chou and Verhaegen 1997)

x(k+1) = Ax(k)+ Bu(k)+ Kp(k)
v(k) = Cx(k)+ Dua(k) (3.6)
where (k) € ®! and (k) € R™ are noise-free inputs and outputs, respectively, and x(k) €

R™ is the state vector. In addition, p(k) € R? is the process noise, and A, B,C,D and K
are system and noise gain matrices with appropriate dimensions respectively.
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It is assumed that the observed input u(k) and output y(k) are corrupted by zero-mean
Gaussian distributed noise vectors v(k) and o(k), respectively, i.e.

k) = ak) + v(k) (3.7)
y(k) = yk) + o(k)
Substituting Equation 3.7 into Equation 3.6 and performing a straightforward algebraic
manipulation, the following equation is obtained

Yn(k) = Tox(k —n) + Hpug (k) — Hova(k) + Grpr(k) + on(k) (3.8)
where
y (k)
Yn(k) = : c R
y(k—n) |
is the augmented output vector,
CA™
Pn — E e g?_mnxn.
C

is the extended observability matrix with rank n,

D CB ..- .-- CA™1B ]

0 D CB :
H, = : . . e%mnxb;
D CB

and

"0 CK --- --- CA™ K]

0 CK :
G’nz E ',' '.. G%mnan
o CK
- 0 e 0 -

are two upper triangular block Toeplitz matrices with m, = (n + 1)m, [» = (n + 1){ and
d, = (n + 1)d. The vectors v,(k) € R, 0,(k) € R™, pn(k) € R, and u,(k) € R» are
defined in the same format as y, (k). Assuming that the characteristic polynomial of A — AL
is as follows:

det(A —AI) = A"+ o A" 14 -+ dapi A+ a, =0

According to the Cayley-Hamilton theorem, pre-multiplying both sides of Equation 3.8 by
the following matrix

(PrJ{>T = [Im a1lm -+ - Onlm | € R
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leads to

y(k) +ary(k — 1)+, -+, ton1y(k —n + 1) + ony(k —n) =
T T T T
(T#)" Haua(k) + (T3) onlk) = (T2) Hava(k) + (T2) Gapalt)  (3.9)
where T is a subspace of the orthogonal complement of .

According to the model definition given by Ljung (1987), Equation 3.9 is a typical
ARMAX process. Denoting

1 T n—1 -
(I‘n> Hn = D CB -+ alD CAB + aICB + a2D cee Z QJCA."— —]B + anD
j=0
= [L(O) LA ... L(ﬂ)] € Rpmxin
and
T n—1 )
(F#) G, = 0 CK CAK +a;CK ...ZajCAn—-l—-]K
i=0

= [0 g ... \p(n)] € pmxin

Equation 3.9 can be rewritten as

ealt) = y(B)+ Dyl —s) = 3 Lu(k - w)
s=1

w=0
n

= ok)+ > aok—5)—> Lvk—s)+ €)pk-s) (3.10)
s=1 s=0 s=1
where e, (k) is defined as the residual vector and will be used for process monitoring. The
first line on the right hand side (RHS) in Equation 3.10 is the computational form of e, (k),
showing how e,(k) is computed based on the sampled data {y(k) u(k)} and their time-
lagged values {y(k —1) u(k —1) ---y(k —n) u(k —n)}; the second line on the RHS is
the internal form, showing how e.(k) depends on the measurement noise [o(k) v(k)| and
the process noise p(k) and their time-lagged values.
Apparently, Equation 3.10 can be decomposed into m independent equations, e.g., the
it* residual equation for i =1---m is

(k) = w(k) - (85)" €L(k)
= Y a0k —s) =D 190G vk —s) + > ¥W@E,)pk —s)  (3.11)
s=1

s=0 s=0

where ag = 1; ¥;(k) and o;(k) are the i*# element of the vectors y (k) and o(k), respectively;
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in addition,

) ]
yi(k—1)
ulk—1)
. (k—2
&n(k) = Zf,((k _ 2)) € Rhntm (3.12)
y,-(k.— n)
| u(k—n) |

and 65 = [19(;,:) —a; 13,2 —an 13(4,2)--- —a, 109, :)]T € R+ with 14 (4,
) and ¥(*) (4, :) symbolizing the it* row of the matrices L(*) and ¥(®, respectively.
Using Equation 3.11, Equation 3.10 can be rewritten into

en(K) (83)7 € (k)
2(k 2 2,
et = | " | oy | @) &0
e (k) O™ € (k)

= o(k) — LOv() + zn: (aso(k —8) —LOv(k —s) + ®Epk — s)) (3.13)

s=1
The following remarks are in order, on the basis of the examination of the above residual
vector:

1. e,(k) consists of m elements {el(k)---e™(k)}. To generate e,(k), an m-channel
lattice filter is needed. However, since each element of e,(k) is independent of the
other, in practice the algorithm of the lattice filter has to be derived for the i** channel
with 7 € [1,--- ,m].

2. The model parameters of e, (k) are

O,.=| | ernlnin
o™
However, it is proposed to generate e, (k) recursively in time and order by using the
sampled data [yZ (k) uZ (k)]T without estimating the model parameters explicitly.

3. en(k) will be a vector moving average (MA) process with the zero mean noise vector
[o(k) v(k) p(k)] as input and its covariance matrix is

Ri(k) = >_ofE{o(k)(o(k))"}+

s=0
f: LEE{v(k) (v(k)T} (L‘”)T + fj TIE{p(k) (p(k))"} (‘I’(s))T € g
s=0 s=1
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4. The residuals, properly normalized, as in the local approach (see Section 2.6) will
indicate any change in process parameters or the process structure.

Therefore, process monitoring is equivalent to checking if the mean of the recursively up-
dated e,(k) deviates from zero.

3.4 Residual generation using multi-channel Lattice filter

In this section, the residual vector e, (k) is generated, by the use of the multi-channel lattice
filter, directly from the sampled data. The following section starts with the introduction of
a unified signal and the associated subspace of the signal.

3.4.1 Notations and definitions

It follows directly from Equation 3.11 that ei,(k) is a linear combination of following signals:
{ye(k) ur(k) --- w(k) ye(k—1) wa(k—1) - w(k—1)--- yi(k—n) va(k—n) --- w(k—n)}

where, u;(k) for j = 1---[ also stands for the j** element of the input vector u(k).

The key step for the multi-channel lattice filter to generate the residual e (k) is to
introduce a unified notation to represent all the input and output signals so that they can
be handled in a unified frame work. The unified signal (Kummert et al., 1992) is defined as

i — oy — 4 Wik, =1.

Z(kM —s) = { us—1(k), $=2---M, where M =[+ 1. (3.14)
With Equation 3.14, each of the aforementioned signals has a one-to-one unique correspon-
dence to the unified signal z*(tM —s) for {s=1---M, ¢t =k---k —n}, e.g.,

[ FeM-1) ] [ wk) ]
(kM — 2) u(k)

2 (kM — 3) ug(k)
(kM — M) w(k)
Z((k-1)M —-1) yi(k—1)
Z((k—1)M — 2) ui(k —1)
Z((k—1)M — 3) ug(k — 1)

: = : (3.15)
Z((k —1)M — M) ui(k —1)
F((k —m)M — 1) vk —n)
2((k—n)M — 2) uy1(k —n)
2((k —n)M — 3) uz(k —n)
| 24 ((k —n')M — M) | A uz(k.— n) |
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A signal vector with infinite length is defined as
Zipr_s = [FF(kM — ) 24((k — 1)M —5s)---2* (1M —5) O- --o]T

which belongs to the Hilbert space, e.g., the vector zi,,__ has real elements only, and for
Zi 01—, 80d ka_#) Mg their inner product is

k
< ZiMor Bip s >= D NI (M — 5)2H((t — p)M — 5) < 00
t=1

where s =1---M, 2*(t) =0fort <0, and 0 < A <1 is a forgetting factor.
Again defining a subspace as
hi (k) = Span{ziss_s—1,Zkar—s—2: " ZM—s—n} (3.16)
which is spanned by columns of the following matrix
Zhpf s 1kM—s—n = |ZkM—s—1 BeM—s—2 " ZhM—s—q] E RN, p=1---M, —1. (3.17)
where M,, = M(n + 1). Further, defining
£on(k) = Zips—s — Zing—slui 6y, M=1""Mn—1; 5=1---M. (3.18)

as the forward error vector of the IV (Instrument Variable) lattice filter, which is the
difference between the vector z};M_s and its non-symmetric projection onto the subspace
hfw(k). As will be shown later, while the conventional least squares lattice filter can be
derived by performing a symmetric projection onto the subspace hfw(lc), to derive the IV
lattice filter, a non-symmetric projection on the subspace has to be performed.

The non-symmetric projection of zi,,_, onto the subspace h{ (k) is

i : ; T . -1
T . — T z 1
zch—slh;,,,(k) = ZiM-_s—1:kM—s—n ((Z(k—p)M—s-u(k_,‘)M_s_,,) sz—s—l:kM—s—q) .

. T .
(zzk—p)bf—s—lz(k—p)M—s—r]) zfcM—s (319)

Geometrically, fZ (k) is perpendicular to the subspace hi ,(k — 1) where u is a positive in-
teger. Note that the non-symmetric projection defined above is reduced to the conventional
symmetric projection when p = 0.

Denote the first element of f; (k) by

gin(k) = @76, (k) (3.20)

with ¢ =[1 0---0]F € R®
In addition to the forward error vector f_.f,,,(k), the complete lattice filter algorithm also
includes other quantities.
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Define
b} (k) = Ziag—s—n — ZiM-s-qlhg_m(k)v n=1---M,—1; s=1---M. (3.21)

as the backward error vector, which is the difference between the vector zjs_,_, and its non-
symmetric projection onto the subspace hi_ly,,(k). Geometrically, biy,,(k) is perpendicular
to the subspace hi_; ,(k — p).

Similarly, denote the first element of b (k) by

Yom(k) = &Tb (k) (3.22)
Furthermore, define
Pni (k) = P — Plui %) (3.23)

which is orthogonal to the subspace hj ,(k — ).
More general, for any two vectors ax € R and by € R located in the afore-mentioned
Hilbert subspace, their inner product is defined by

< ag,bg >=al Ab;

where
1 0 0 0
0o X o --- 0
A=1]10 0 A2 .- € RoOX
o --- A

Also for any vector a; € R*® belonging to the afore-mentioned Hilbert space, its non-
symmetric projection aklh,,(k) onto the following subspace

h,,(lc) = Spa.n{sk_l, e, Sk—r]} € R*®
is computed as
~-1
alc|h,,(k) = Sk—1:k—q (SZ—“—hk—y—quk—l:k-—n) sz—-y.—lzk—p.—r/Aak (3.24)

where
Sk—1:k—m = [Sk—l T Sk—n]
consists of vectors located in the Hilbert space. Further, the difference between a; and

ak|h,,(k) is defined as the projection error, e.g.,
(aE)n,) = 2 — Aln,k) (3.25)

Finally, there is a need to define several scalar quantities, which are inner products of

the associated vectors,

O!i,,,(k) =< f;,ﬂ(k - ,U:), f.;,r,(k) > 8=1--- M. (326)
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B (k) =< b} (k—p), bl (k) >, s=1---M. (3.27)

e.t;,,l:](k) =< f:,n(k - ”)7 ¢h§',1(k) >, §= 1---M. (3-28)
. <bl . (k—p),du > s=1---M-—1.
L) s+17m 3.n(k)
s (k) { <bj,(k—-1-p), ¢l:§’,l(k) >, s=M. (3.29)
W‘i'”‘*'l(k) =1-< ¢hi—1,n+1(k"’#)’ ¢hi—1,n+1(k) > s=1---M. (3.30)
: <fi__(k—-p),bi, ., _(k)> s=1---M—1.
z AN s,1—1 ' Ms+1l,mp—1 !
ws’n(k) B { < f;,n-l(k _u)v bi,r]—l(k - l) >, s=M. (331)
and
3 <fi—(k)vbi —-(k—.u)>1 §=1---M-—1.
1 = s,m—1 s+1,n—1
Venlk) = { < B (k) bl y(k—1—p) >, 5= M. (3:32)

Note that for p > 0, generally (Box and Jenkins, 1976),
@ (k) # V5 o (K)
3.4.2 Associating the Lattice Filter with Parameters 6 (k)

After introducing the notations and definitions for lattice filter, in this subsection, lattice
filter is associated with the parameters e,(k).
From Equations 3.18, 3.20, 3.24 and 3.25, it follows

i N i i T, i
61,M(n+1)—-1(1") = kM —1)— (ZkM—l) Az(k—p)M—-2:(k—p.)M—M,, ®
(kM —2)
i T, i - .
((sz—zsz—-Mn) Az(k—y)M—2:(k—y.)M—Mn) o
kM — M,)
On the other hand, it follows from Equations 3.12 and 3.14 that
(kM —1) = yi(k)
and
[ Zi(kM —2)
&n(k) = :
2 (kM — My,)
then it can be inferred that
i 2 i T o i
e mmi)—1(B) = k) — (Zhpr—1)” AZ(popyM—2:(k—p)M -0,

i T i -1 ise
<(sz_2:kM—Mn) Az(k—p.)M—2:(k—;z)M—Mn) fn(h?) (3'33)
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Moreover, from Equation 3.11, it can be concluded that for i =1---m,
&1 M(mi1)-1(F) = € (k) (3.34)

and

i . T . -1 T .
g, = <(z2k—p.)M—2:(k—;z)M—Mn) Az;cM—2:kM—Mn) (sz-,;)M-z:(k-ﬂ)M_M,.) Az pr(3.35)
Equations 3.34 and 3.35 establish the link between the ** residual €i (k) of the system
and the lattice filter, making the generation of e, (k) possible by the use of the lattice filter
without identifying the parameters Bf, explicitly.

3.5 Lattice filter Algorithm

This section is the core of the chapter, where the complete IV lattice filter algorithm includ-
ing the order-recursion, time-recursion, and parameter recursion equations are developed.
The section starts with associating the IV lattice filter with the ARMAX model parameters

6%, (k).
3.5.1 Order Recursion Equations

The complete IV lattice filter contains three parts, in which the order-recursion equations
must be derived first.
Using Equations 3.16 and 3.21 results in the following decomposition:
hi (k) = hi,_1(k) & Span{b},, ,_1(k)} (3.36)

S,

where the symbol @ stands for the sum of two subspaces. Subsequently, in terms of the
projection formula given by Equation 3.24, it can be shown that

f;,r](k) = Zipfos — ZLM""[hi,,,-x(k)@SPan{bi+1,,,_1(k)}
Ysa(k)

AB:‘+1,77—— 1 (k) stla=

The detailed derivation of Equation 3.37 is given in Appendix A.1.
It follows from re-using Equations 3.16 and 3.18 that

= fi, (k) — k), s=1---M—1. (3.37)

S, 71—

hi_ (k) = £, 1 (k)@h: ,_; (k) (3.38)

Then, following the similar steps to derive Equation 3.37,

bf;,fl(k) = Z;;M—s—r, _Z;'cM—s—nlhim_l(k)@fjm_l(k)
: wt (k) .
bi k) — —2am ey g = 1...M —1. 3.39
S+1,Tl—1( ) a;,n—-l(k) s,r]—l( ), 8 3 )
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The proof of Equation 3.39 is included in Appendix A.2.
In terms of Equations 3.22 and 3.23, Equations 3.37 and 3.39 can be further reduced

into
; ; s (B)Ver1,0—1(K)
e (k) =&, (k) — =L o7 , §=1---M—1. (3.40)
" =t B 1,9-1(K)
and
: : @i (K)Ed ()
(k)= k) — =20 50 , §s=1---M—1. 3.41
’75,17( ) ’Ys—i-l,n—l( ) a; a1 (k) s ( )
respectively.

The combination of Equations 3.26, 3.27, 3.31, 3.37 and 3.39 lead to

3 : ( k— #) i
asr"l(k) = S 77—1(}" ,LL) ﬁ;+1 :-1(1" ) s+1:17—1(k - ,U),
k .
,n-l(l") ,3;_!_1 Z_-(-l_—zl") b;-{—l,n—l(k) >
; e (B)PE o (K)
= o _(k st T s 1.--M—-1
an-1(R) = '3§+1 ae1(R)
and
. . w: (k
Bonl) = < Bhargah =) = T2l )
s (F)
b m—1(F) — “’%l(k)‘ 3,1,_1 (k) >
: o T EELR)
:H.;-f-l.ﬂ—l(k) - (:i,.,-,__l(g) , §=1 M -1

However, the above order-recursion equations do not apply to the specific case s = M.
With s = M, it turns out from Equations 3.16, 3.18 and 3.21 that

(k) =his, (k) ® Span{b}, ,(k —1)}

%l—l,n(k) = Spa‘n{fl (l")} @ h'M n—1 (k)
Using the above two equations in Equations 3.18 and 3.21, respectively, lead to

Yt (K)

W—_ﬁbim_l(k —1

Firn(k) = fig,_1(k) —
and

_ . (k)
iak) = bl (k—1)— —f_—m + 1 (E)
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which can be further reduced to
VitV per (B — 1)

ey (k) = &y, (k) — d

M,17( ) Mn—-1 ) '3; n—l(k — 1)
and

X ) @y ()R 1 (K)

1 k — T E—1) — 77 77

’7M,n( ) 71,n—1( ) a;/ln—l(k)

Similarly, the order recursion equations for o (k) and Bjy,(k) can be given by

; : Virn(k— 1)
Ahra(k) = <Figqoa(k—p) — lnf&—l ik —n—1),
; ) Vara (k)
flM,n—l(l")—m:l_) iao1(k—1) >
Tht,n (B) Vi (F)

= ojy1(k) — —
and

Birn(k) = <b§”’_1(k_”_l)_aM,,_1(l» i Eip o1 (k — ),
i (k)
im—1(k—1) — ﬁ _1(k) >
; & Mrﬂ(k)wM,n(l")
™ VR

Finally, the order recursion equation for Wi.n +1(k), which is defined in Equation 3.30, is
derived as follows. As shown by Equation 3.36,

hi—l,r]-{-l (k) = -1 17(]") © Span{b r/(,")}
therefore, substituting ar = ¢ and h,(k) = h}_; (k) ® Span{b{,(k)} into Equations 3.24
and 3.25 results in
(@R)n, (k) = Phi_, 000 = Pui_, (y@Spanibi ()}
Further, following the same step to derive Equation 3.37, the following equation is obtained

. —— . < A g-.:.’,n(‘l“:)
¢h:—1,7)+1(k) - ¢h:_1’n(k) - bs,ﬂ(l") ‘Bg,n(k) (3-42)

where Equations 3.27 and 3.29, and the orthogonality between Ab? 5n(k) and hi_; n(k—p) are
utilized. Therefore, substituting Equations 3.42 into 3.30 and performing a straightforward
manipulation results in

Vem(K)Ss (k)

7‘-};‘,17-{-1 (k) = 7!':;,,7(13) + ,3,. (k) ’
1

30



where the order-recursion equation of ¢ . (k) is

wi,r](k) 6:;,11—1 (k)

i E) = k) — ) 3.43
gs—l,r]( ) gs,r]—l( ) ats,r/-l(k) ( )
with
i AN wj, (kk:+1, —l(k) —_1... -
‘ €5 n—1(k) 234-1,',—1'(,") §=1---M—1.
) =  n(R)st oy (B=1) e

i AN @, ok i, —1(k-1 —_
€5n—1(k) ’é‘i,q-xr(’k-l) s=M.

The derivation of Equations 3.43 and 3.44 is given in Appendix A.3, where another order
recursion equation

R — ) 3 A efr,n(k)
Pri_spea®) = Puiqc0 ~Bn(R)G 7 (3.45)

is derived. Accordingly, by substituting Equations 3.45 into 3.30 and performing a straight-
forward manipulation the following equation is derived
T y1 (k) + 21 éf),,s(;k)(k) s=1---M-1L

77.1;,714-1(1'7) = et
m (k= 1) + 222%20 5y,

3.5.2 Time Recursion Equations

To compute the quantities {e ;,(k), 7%, (k), o ;,(k), BE (k) €& (k) 6% ,(k), 75 ,(k)} recursively
in order, = (k) and % (k) must be known. The order-recursion equations for w3 (k) and

%n(k) can not be developed. However they can be computed in a time-recursive manner,
and the following equation is crucial for the derivation of the time-recursion equations. For
any vector ar and subspace h,(k) in the Hilbert space,

@) mwreg) = ((20)0) (a0 ) (3.46)

The proof of Equation 3.46 is given in Appendix A.4.
With Equation 3.46, selecting ax = z},,_, and hy(k) = hi, (k) and applying Equations
3.18, 3.24 and 3.25 give

oo = | ooy, |

i
L Z(k—1)M—s

. _ [ 0
(hs,rl(l"))qb - i hf;’n(k—l) }
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(@hae-s)g) ((a00)g) ([ zé"“?’M_s D ([ ; D

hi (k—1)
- { f;',,,(lg -1) ]

hi (k) ® ¢ =hi_ (k)@ Pni (k)

On the other hand, noting that

and re-applying Equations 3.18, 3.24 and 3.25, it can be observed that
£5n(k)

(ZkM—s) h":"l(k)e¢h§’n(k) = f;,ﬂ(k) 1— ﬂ’

(L)¢h£.n(k)’ s=1---M —1. (3.47)
s+1,;7

where the derivation is exactly similar to that of Equation 3.37 as derived in Appendix A.1.
Therefore, according to Equation 3.46, it is concluded that

" k
f;,ﬂ(k) = [ f;,q(]‘?_ 1) ] + —¢)(k—)¢h‘ (k) $= 1---M—1. (348)

In the specific case s = M, using the similar steps shown above, it can be proved that

[0 Sanlt)
PM,W(I\') = [ fk[,n(k —1) J + 1 _ﬂ_in(k 1) ¢h}w,q(k) (3.49)

s—i—l g/

The choice of ar = zf,s_,_, and hy(k) = hi_, (k) gives

(ziM—s—n)¢ = [ i 0 }

Z(k—1)M—s—n

(b5 1K) g = [ hi_ll,,(()k —-1) }

((ziM-s-n)qb) ((h:;_l,,,<k>)¢) N ([ Zf""’i‘s"’ D([ 0 D

(k—1)
[ bj;,,,(z —-1) }

where Equation 3.21 has been taken into account. Since

s—l 7

hi_1,(k) ®@ ¢ =hi_; (k) ® s _ )
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using Equations 3.24 and 3.25 again, it can be easily shown that

; i oy Yan(R) _
(sz—s—n) hi—l-’l(k)e¢b§_lm(k) = bs,fl(]\:) 1— W};,q(k) ¢h:_1',,(k)

where the detailed derivation is similar to that of Equation 3.37. Further, Equation 3.46
leads to

z AN 0 ’Yg,r[(k) ] 1.
bs,f](k) - [ bim(l{,‘ _ 1) J + 1 _w‘g’n(k) ¢h:_1,q(k), S = 1 M- (3-50)

With Equations 3.48, 3.49 and 3.50, deriving the time-recursion equations for afm(k),
B (k), @t (k), and 9% (k) is straightforward. For instance, using Equation 3.48 in Equa-
tion 3.26 results in

3 T 0 i .
O (Enb=1=m)7IA | g 2 | = dedali-)
. el _(k—p)
= £_(k— — 20 i
< sﬂ(k “) 1- 7r.zs+1,17(k — 1) ¢h""(k—#),
: gk a(k)
£ (k) — — M Ty >
»77 1 —_ ﬂ—;.*.l,ﬂ(k) hs,q(k)
. i k i k
= (k) - ConFesn®) o1

1 - W.i—{-l,r](k) , -

where Equations 3.28 and 3.30 and < ¢y; J(k—p) f;',,,(k) >= s‘;'ﬂ(k) are utilized. Therefore,

. ; et _(k)et (k)
ag (k) = Ao (kK — l)+-—f”’—i'"——, =1---M—1.
177 77 l _— 7r3+1’7’(k)
Similarly, following equation is also obtained
Ehtn (k) €hr n(K)

Qg n(k) = A (k —1) + T _W{,q(k )

Moreover, using Equation 3.50 in Equation 3.27 gives

. . §(R)si(k
G (k) = MG (k—1) + ll—’é% s=1---M. (3.51)
S,77

Finally, substituting Equations 3.48, 3.49 and 3.50 into 3.31 and 3.32 respectively, the
following time recursion equations are obtained

At (k= 1) + SamtTns® oy

1=y, n-1(F)

w;,n(k) =

i Gy (k=)
A o (k — 1)+ nl'-lﬂ"l',,i:(kl—l) s=M.

33



Mpi o (k — 1) + Sttamt @t ® gy g

. 1=7g i 1,0—1(F)
Yom(k) =

i E—1 g;:,n—l(k—l)e:,n—l(k) =M.
A"‘b-'?-rl( ) + l—ri,n_l(k—l) $

where the relationship

< bf;+1,r]—-1(k)a ¢h§,,,—1(k—'l‘) > = ’Y.§+1,n—1(k)

< g,n-—l(""):‘bhiﬂ_l(k) > = €§'n_1(k‘)
and the definitions of {€ ,(k), <Z,(k), and =%, ;(k)} have been utilized.

3.5.3 Parameter Recursion Equations

With the above order and time recursion equations, algorithm for recursive identification

of the parameter vector 8% (k) can be readily derived as follows.

Introducing two auxiliary parameter vectors: 19;,,(1.:) € R7 and gim(k) € R7 for ¢ =

l---mandn=1.---M, — 1, it follows that

[ 2 (kM —5 —1)
gf (k) = 25 (kM — ) — (9% (k)" : (3.52)
| (kM —s—n)
and
[ 2H(kM — s)
i i i T .
’Ys,n(k') =z (kM — 5= 77) - (Qs,n(k)) : (353)
| (kM —s—n+1)
where
I mta-1(K) = 6,,(k)
Using Equations 3.52 and 3.53 in Equations 3.40 and 3.41 result in
; ; T 17 s (k) ; T T
9 (k) = [(9%, _,(k - =1 (g: : -1 =1---M-1.
1) = | (8h0-a9) 10 = 5200 [(ahua )1 1) s
and
i i T\ @iq(k) i T
@in(®) = [0 (@hna() ] = 22 [ Bhpa )], s =10 M -1,
8,71

Similarly, with s = M

Vs (k)

i L) — i )T T -
(k) = | (Fhr1() 1 0] B (k-1

34

5 (@il —1)T1 —1]"



and

_ . ok .
Ghtn(®) = 01 (e}patk —1)7]" - :JM—”EUZ) (1l @hmak)7]”
FL et

Finally, the complete lattice filter algorithms for the recursive identification of 8% (k) are
listed in Appendix E for easy reference.

3.6 Lattice filter based Process Monitoring

As discussed previously, the proposed IV lattice filter can recursively compute

5%,M,,—1(k)
eq(k) = : = e1,M.—1(k)

el r,—1(R)
This residual error signal is now used to construct a statistic for process monitoring.

3.6.1 Inmitialization

The process data is assumed to be available only for £ > 0. Therefore, there is a need
to initialize the lattice filtering algorithms at a certain time instant. This can be done by
assigning initial values to the quantities of o(k), @? ,(k), and % (k).

The initialization procedure is listed as follows:

1. Assign initial values to the quantities of, o(Int ($)+u—1), @ (Int (—*ﬂ——s M—l) +2u—1),
and ¥ ,(Int (&X'[—l) +2u—1)fors€[l---M]andnpe[l--- M, —1].

2. For any 2u < k < Int (44+Ma=2) 4 2/, and s = 1--- M, execute the complete lattice
filtering algorithm forp € [1---(k —2u)M — s+ 1].

3. When k > Int (M+Ma=2) 1 9, execute the complete algorithm for n € [1--- M, — 1].
Note that the operator Int(-) means that the argument has to be converted into an integer.

3.6.2 Monitoring Index

As shown by the last line of Equation 3.13, under the normal case e, (k) is a moving average
process with simultaneous excitation by noise vectors o(k), v(k) and p(k). If any of these
noise vectors is a multivariate zero-mean Gaussian process, it follows that

en(k) ~ R(0, Ry (k)

and consequently
ey, (k) (R5(K)) ™! en(k) ~ x*(m)
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However, the true value of R (k) is usually unknown. To work around this issue, Hotelling
T? statistic is used as the index for process monitoring, which is based on the estimated
covariance matrix. Moreover, e,(k) being an nt* order MA process, it is auto-correlated
with e, (k+7) for any 0 < T < n. Therefore, at the kt* time instant, the following residual
vectors sequence

{en(0) en(1)---en(k — 1) en(k)}

can not be directly used to compute the T2 statistic (Johnson and Wichern, 1998). To work
with a series of uncorrelated signals from the aforementioned sequence, a series of lagged
signals are considered, i.e.,

{ea(0) en(r) - --en(nt(Z —

)7) en(Int(é)'r)}
for the computation of the 72 statistic. Clearly the disadvantage of this approach is the time
delay in detecting a fault during monitoring. For instance, if the process has an abnormal
variation at time instant &, then such s variation will not be detected until the time instant
k + 7. Generally, since 7 is selected to be n 4 1, if the process order n is not high, a time
delay of this magnitude can be tolerated.

At time instant kg, assume that a sequence of uncorrelated residual vectors:

{en(0) ea(r) - enlint(2)r —7) en(nt(-2)r))

has been computed when a process is normal. Now the goal is to use this residual sequence
to determine a nominal operation or control region as a template for comparing with future

residuals: . . k
{ea(Int(2)7 + 7) ea(Int(2)7 +21) - - - en(Int(2)7)}

Denoting k1 = I nt(%ﬂ)‘r and selecting I nt(%?) uncorrelated residual vectors to compute

Int(52)—1 ]
; en(ri1+ (i — Int(%) +1)7) (3.54)

€n(k1) M

with 7 = n + 1. According to Johnson and Wichern (1998),

Int(%?)

~ -1 o
Tnt(R) + 1 (en(k) —&n(r1))T (R;(m)) (en(k) — &n(x1))  (3.55)

TZ(k)

is distributed as
(Int(%2) — 1)m

I’rzt('—:?-) —m m,Int(ETQ-)—m

where (1) F_ Int(52)—m stands for an F-distributed random variable with degrees of freedom
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m and Int(£2) —m; and (2)

L Int(52)—1 L
Rie) = o=y O (en<m+<z'—fnt(7°>+1)r)—én(m))-

( . ko © i '
enlier + 6 = Int(2) +1)7) — &alir)
(3.56)

is the estimate of covariance matrix of e,(¢) based on a sequence of I nt(%ﬁl) uncorrelated
residual vectors.
Therefore, given a level of significance ¢, the confidence limit of 72(k) for process mon-
itoring will be
(Int(%) — 1)m
Int(2) —m

m,Int(E_,_'l)—m (¢)

which is a function of I’ nt("f}) and m, the dimension of the residual vector e, (e).

As each newly computed residual vector becomes available, T2(k) can be computed
and checked whether it stays within the control region. In this way the process under
consideration can be effectively monitored.

3.6.3 Treatment of Some Practical Issues

When the proposed approach to monitoring a practical process is applied, some practical
issues need to be considered.

Pre-processing of Process Data

The process variables sampled at the t* instant are denoted by z(¢) which includes both
inputs and outputs. First of all, outliers in the data should be removed. Many data sets
may contain unusual observations that do not seem to belong to the pattern of variability
produced by the other observations. These unusual observations are referred to as outliers.
For data with a single characteristic, outliers are those that are either very large or very
small relative to the others. The situation can be more complicated with multivariate
data. Outliers are best detected visually whenever this is possible. When the number of
observations k is large, scatter plots are not feasible. When the number of variables m + {
(number of inputs and outputs) is large, the large number of scatter plots (m+1)(m+I1—1)/2
may prevent viewing them all. But still it is suggested to have visual inspection of the data
whenever possible. If the process variables are high-dimensional, outliers can not be detected
from the univariate or bivariate scatter plots easily. However, in this case, a large value of
(z(t) —2)T (S) 1 (z(t) —2) fort € [0, k] will suggest an unusual observation (Johnson and
Wichern, 1998), even though it can not be seen visually, where Z and S are the mean and
covariance matrix of z estimated over t € [0, k.
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Secondly, some process data may be missing. Since correlations exist among multivariate
data of process variables, these correlations can be used to reconstruct the missing data.
For example, the approach proposed by Dunia et al. (1996) and Burnham et al. (1999) can
be used for data reconstruction.

Finally, there is a need to ensure that each output variable is linearly independent of the
others. For real data, if some elements of y(k) are correlated, data pre-processing should
be carried out. For example, PCA can be performed on the sampled y(k) to remove its
correlated elements. Consequently, instead of y(k), the scores ﬁfy(k) will be the inputs to
the lattice filter, where p, are the principal eigenvectors of the covariance matrix of y(k).
Similarly the sampled input, u(k), can be pre-processed if it has correlated elements so that
not u(k) but its scores pLu(k) will be the to the lattice filter, where p,, are the principal
eigenvectors of the covariance matrix of u(k). Alternately, data pre-filtering can also be
used to remove the correlation.

On-line Recursive Order Determination for Lattice Filters

When applying the proposed lattice filter-based approach to the monitoring of a process,
since the process order n is usually unknown e priori and can vary, the process order has
to be estimated in real time and on-line.

The correct choice of a process order is very important. If the chosen order is too low,
the process will be underparameterized, and as a consequence, the unmodeled dynamics
of the process may destabilize. This means that in practice there maybe a tendency to
overparameterize the process. However, with overparameterization, there is a danger of
ill-conditioning in the lattice filter algorithm and the convergence of the algorithm can not
be guaranteed (Xia and Moore, 1989).

Chen and Guo (1987) have proposed an approach based on Bayesian Information Crite-
rion (BIC) for the consistent estimation of the order of a class of stochastic systems given a
batch of data. BIC approach is adopted for the on-line recursive determination of the order
of the lattice filter.

From e, (k) = e;,p,,-1(k), it turns out that the process order n corresponds to the order
index n = M, — 1 of the lattice filter. Therefore, the determination of n is in a one-to-one
correspondence with the determination of 7 = M,, — 1.

With an available sequence of residual vectors {€1,ar,-1(0) - - - €1,0m,-1(k) }, define a func-
tion

k n+1
Qi(n) = klog ( E s{n(t)sl,,,(t)> +2 <7 — 1) log(k) log (log(k)) (3.57)
t=0

Then the lattice filter order 19 will be determined by minimizing Qx(n) with respect to
ne[M-1,--- ,M; —1], eg.,

o = argmin (Qk(n)), nE€[M ~1--- ML —1] (3.58)
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where L can be a large positive integer and My = M (L + 1). Moreover, since the process
order n can vary, there is a need to develop a recursive scheme for order determination as
new data become available.

Intuitively, for a time-varying process, its order change is less frequent than its parameter
change. Therefore, a batch-wise approach is proposed for recursive order determination.
Define an intermediate variable

E
Ze(k) =) _el,(tern(t) (3.59)
t=0
Rewriting Equation 3.57 into
Q —_ n+1
() = klogZe(k) + 2 - 1} log(k) log (log(k)) (3.60)

If at time instant k+ng41, & new sequence of residual vectors {e1 ar,,—1(k+1) - - - €1 pm—1(k+
Tg+1)} becomes available (ng4+1 > 1), then in terms of Equation 3.59

k+ngp1
Ze(k+ i) =Zek)+ D el ,(t)e1n(t) (3.61)
t=k+1
Therefore,
ktnge
Q (n) = (k+nee)log | Ec(k) + el _(t)e1 (L)
k+nk+1 n k+1 g £ 1,7 1,m
t=k-+1
n+1
+ 2 I 1) log(k + ng1) log (log(k + 141)) (3.62)

Using Equation 3.61, Qg4n, ., (n7) is recursively computed. Eventually, as shown in Equation
3.58 if the 7o corresponding to the minimum of Qkyn,_ ;(n) is found, then the new process

order will be updated to:
M

Update of the Covariance Matrix

Since the process under surveillance is time-varying, the covariance matrix RE ([ nt(iff_l)'r)
is recursively updated based on the newly sampled process data. This will provide the
proposed monitoring scheme an adaptive capability. As the time instant k& progresses,
some old data should be discounted and the most recent data should be weighted heavily
in the recursive updates. When the covariance matrix is updated using a sequence of w;
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uncorrelated residual vectors at one time, at the time instant k2 = k1 +wiT,

Re(m) = B Re() + o (@n(s1) — 8(k2) (Bnln) — &5(2))"
a(K2) = %—IR"KI =1 (K1 n (72)) (8n(rK1 n (K2
=2
1 < . Ko _ _
+ =7 2 (enlrir + (G — 2 +1+w)7) ~&a(1)) ®
T i=ﬁ_,_z—w;
. K2 _ T
(en(fsl + (i — = +14+w)T) — en(m)) (3.63)
and the mean update equation is
22
Balra) = ep(m)+— Y ealkat(E— 4+ 1+w)7) (3.64)
K2 K2 i='—‘2-—wl T

The derivation of Equations 3.63 and 3.64 is simple and straightforward.

3.6.4 Adaptive Process Monitoring

Once the data pre-processing is completed, the sequence of steps required for real-time and
on-line adaptive process monitoring is as follows.

1. Choose an initial data block with do samples and apply the proposed lattice filtering
algorithm given in Appendix A.5 to the first segment of the block to generate residual
vectors. Determine the order of the lattice filter from the generated residual vectors
using the index given in Equation 3.60.

2. With the determined n, let T be » + 1. Apply the lattice filter to the remaining data
in the initial data block. Select I nt(%?) uncorrelated residual vectors to estimate the
covariance matrix RS (I nt(‘%_‘l)'r) according to Equation 3.56.

3. As new data samples become available, calculate the residual vectors based on the
lattice filters. Select w;, and Calculate T:2(k) and compare it with its pre-determined
confidence limit. If T2(k) is within its confidence limit, recursively update the covari-
ance matrix with w; uncorrelated residual vectors and the order with mxy; residual
vectors, according to Equations 3.62 and 3.63, respectively. Otherwise, stop updating,
announce alarm, and take a further action for diagnosis if necessary.

4. The aforementioned monitoring procedure is repeated for each new data sample.

3.7 Case Studies

In this section, two case studies are carried cut to illustrate the application of the proposed
lattice filter algorithm to dynamic process monitoring. The objective of the studies is to
show the lattice filter’s ability to adapt to slow, normal process changes and detect abnormal
operations. The first case study is based on a simulated process, and the second one is based
on a real pilot scale plant.
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3.7.1 Case Study One- Simulation Example

A second order dynamic process with four inputs and four outputs, e.g.,

) B 0.67 0.67 —0.4326 0.1253 —1.1456 11892 ] ., ]
x(k+1) = | 67 0.67]’°(k)Jr [ ~1.6656 0.2877  1.1909 —0.0376J“(’“)+p(‘°)
T 0.3273 —0.5883 1.0668 0.2944 —0.6918 —1.4410
o 0.1746  2.1832 ) 0.0593 —1.3362 0.8580 0.5711 | ...
&) = | _o1g67 —01364 | P | _o09s6 07143 1.2540 —0.3099 | 2F)
0.7258  0.1139 —0.8323 1.6236 —1.5937  0.6900

(3.65)

is used to generate simulated data. Further, according to Equation 3.8, Equation 3.65 is
converted into the following input-output equation:

1.0668 0.2944 —-0.6918 —1.4410

- _ . 0.0593 —1.3362 0.8580 0.5711 | -
y(k) —L34y(k—1) + 08978F(k—2)=| 4956 (7143 1.2540 —0.3999 | 2K)

—0.8323 1.6236 -—1.5937  0.6900

[ —0.5912 —0.5227 —0.1485  2.3423 ]
L | 37913 24405 12502 —0.6397 | L.
04361 —1.0198 —1.6289  0.3190
| 06116 —2.0519 1.4397 —0.0658 |
[ —0.1396  0.4627 —0.0909 —1.1088 ]
29781 —1.7848 0.9774 —1.3153 | _
t | 01233 06587 08377 —0.1003 | 2E—2)
| —1.1867 15051 —0.2981 —0.0650 |
[ 0.3273 —0.5883  0.1749  0.6135 ]
. 0.1746  2.1832 —1.5797 —1.3458 | [ p(k—1) (3.66)
—0.1867 —0.1364 0.2165 —0.0337 | | p(k—2) .
0.7258  0.1139 —0.5626  0.4100 |

A combination of sinewaves with different frequencies as the noise-free input sequence
{@(%)} is selected. Also it is assumed that the observed inputs u(k) and outputs y(k) are
corrupted by noise vectors o(k) and v(k) respectively, e.g.,

u(k) = (k) +v(k)
y(k) = ¥y(k)+o(k) (3.67)

where o(k), v(k) and p(k) are zero mean Gaussian distributed random vectors whose means
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and variances are as follows:

[ [015% 0 0
o(k) ~R | 0,
\ | o o o o
/ [ 0.042 0 0

0

0 0042 0O 0

v(k)~R10,| 4 0 0042 O
\ | o 0 0 0042

p(k) ~ R (0’ [ 0'%)52 0.1)72 D

An initial block containing the first 300 input and output data points is selected as training
data. Multi channel lattice filter is applied to this block for the generation of the residual
vector €1,,(k). Since the process has four inputs and four outputs, M =5andnp=1---5(n+
1) —1.

The initial process order n, which is two, is determined using the first 100 data points
in the block. Then, the initial value of the covariance matrix, RS (Int(32)r) with r = 3, is
estimated using In£(32) = 100 uncorrelated residual vectors.

Two scenarios of parameter variation are considered. First, starting at the time instant
k = 1501 until k£ = 6000, the parameters of the following state matrix

0.67 0.67
A= [ ~0.67 0.67 ]

are continuously changed at each time instant. For example, at the k** time instant and
thereafter at each time step, the first, second, and fourth elements decrease by 0.01%, but
the third element increases by 0.01% of their respective values at the (k — 1)t time instant.
Consequently, at the time instant & = 6000,
A= [ 0.4272 0.4272 J
—0.4272 0.4272

Such a parametric variation is considered as a normal process drift because its magnitude
is tiny.

Secondly, at £ = 8001 time instant (No parametric changes are made during the period
of time from & = 6000 until & = 8000.), the order of the system is changed from two to
three, and at the same time additional parameters and process disturbance are introduced
to the system. For instance, after such a change, matrices A, C and the process disturbance
p(k) are as follows

0.4272 0.4272 —a
A= |: —0.4272 0.4272 a }
a —Q a
—0.4326 0.1253 -—1.1456 1.1892
B = [ —1.6656 0.2877 1.1909 —0.0376 }
by bo b3 bs
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Figure 3.4: T2 statistic for the Constant Model-based Process Monitoring on the Simulated
System

0.3273 —0.5883 0.2225
0.1746  2.1832 —0.4532
—0.1867 —0.1364  0.2132
0.7258  0.1139 0.5674

0.152 0 0
pk)~x[0,| 0 0172 0
0 0 0.082

where @ = 0.44, b; = —1.2332, by = 0.4532, b3 = 0.0987, and b4 = —0.9987.

Two approaches are used to monitor the above-mentioned time and order-varying pro-
cess simultaneously, and the associated results are shown in Figures 3.4 and 3.5, respectively.
Note that in both figures, (1) 95% and 99% confidence limits for T?(k) are selected; (2) the
covariance matrix is updated based on w; = 100 uncorrelated residual vectors if no alarm
is announced; and (3) after every nz+1 = 100 samples, an on-line order re-determination is
carried out.

In Figure 3.4, the residual vector e,(k) is generated according to Equation 3.10 based
on the known state space model matrices {A, B, C,D}. Since the model is constant, the
calculated T?(k) frequently exceeds its confidence limit after the time instant k£ = 1500 even
though the process is operating normally, giving a lot of false alarms. Such false alarms

C=

would not be tolerated in industry.

Figure 3.5 shows the T2(k) calculated from the residual vector generated by the adaptive
multi channel lattice filter with a forgetting factor A = 0.99. Since the lattice filter can
adapt to the process variation, the T2 statistic is basically within its 99% confidence limit
for £ < 6000, significantly eliminating false alarms. Further, when the order of the system
changes at the time instant & = 8001, the new order is determined at the time instant
k = 8100 using the index given by Equation 3.62. As shown clearly in the figure, the lattice
filter-based T2(k) triggers its control limit during the transient period of time and drops

43



Process monitoring using lattice filter
v r T

ry P TNy N Yy s
1800 2100 3300 3800
Sample instants

Figure 3.5: T2 statistic for the Adaptive Lattice Filter-based Process Monitoring on the
Simulated System

back to the limit after the system enters its new steady state, tracking the operational state
of the system effectively.

Finally, note that on the x-axis of Figures 3.4 and 3.5, each point is not equal to each
sample of the original data. Since the computed T?(k) is based on a sequence of uncorrelated
residual vectors, before (including) point 2700, each point in the x-axis corresponds to three
data samples (7 = 3), and after point 2700, each point corresponds to four data samples
(r=4).

Also the parameters of the AR part in the ARMAX process are calculated to demon-
strate the effective tracking by lattice filter. It is seen from Equation 3.66 that the initial
values of the AR parameters are ;1 = —1.34 and a2 = 0.8978, respectively. When there
is a change in the parameters of the A matrix, the two parameters are also subject to a
slight variation, e.g., at the instant & = 6000, a; = —0.8544 and as = 0.3650. Moreover,
at the instant & = 8001, when the order of the simulated process is changed from 2 to 3
suddenly, besides an extra parameter ooz = —0.326 being introduced to the AR part, a; and
a become —1.294 and 0.3650, respectively. Figure 3.6 plots the ratios of the estimated a;,
a2 and a3 over their respective true values. It can be deduced that the slowly time-varying
parameters 1 and @2, and a3 are effectively tracked.

3.7.2 Case Study Two- Pilot scale plant

In this study, the proposed scheme is used to monitor a real continuous stirred tank heater
system (CSTHS). The system is located in the Computer Process Control Laboratory, in
the Department of Chemical and Materials Engineering, University of Alberta, Canada. A
schematic diagram of the CSTHS is given in Figure 3.7, where the cold water continuously
flowing through the tank is heated by high temperature steam passing through a coil and
four thermocouples (e.g., TT1, TT2, TT3 and TT4 in Figure 3.7) installed at different
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Figure 3.6: Tracking the Parameters of the AR Part of the Simulated System
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Figure 3.7: Schematic diagram of the CSTHS

locations of the long exit pipe provide temperature signals. The ultimate purpose of the
CSTHS is to control the level and temperature of the water in the tank. There are three
PID controllers included in the system. Two of them control the level and the temperature
of the water in the tank respectively, and the third one controls the cold water flow rate.

In Figure 3.8, the lower subplot illustrates the flow rates of steam and cold water. As
mentioned above, these are the manipulated variables for controlling temperature and level
of the water in the tank. The upper subplot shows the corresponding level and temperature
of the cold water.

The purpose of this case study is twofold. First, we would like to show again that our
proposed adaptive monitoring scheme will not cause any false alarms when applied to a
real pilot plant with a normal drift. Then, we show that in the event of a real fault, the
proposed scheme can immediately detect the fault.

First 300 samples are collected from the CSTHS as the initial data block. Since the
lattice filter converges very quickly, only the first 100 samples are used in the block to
identify the order and coefficients of the lattice filter. The result of order determination is
illustrated in Figure 3.11, where apparently the order is selected to be three based on the
previous analysis. Further, the initial value of the covariance matrix of the residual vectors
is estimated based on the whoie block of data.

After time instant & = 1500, a slight drift is introduced into the system by adding a
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small ramp to the level output, which is fed back to the level PID controller. Then, after
time instant £ = 2000, the setpoint of the water level is increased several times, after every
400 sampling intervals, by a magnitude 0.25 each time. Further, the setpoint is changed
with a magnitude 0.40 after the time instant 3600. These setpoint changes in the level result
in significant overall changes to the process. For example, when the level changes each time,
the temperature to steam loop gain and time constant also change, making the CSTHS a
time-varying system. However, it is required that these setpoint changes and a slight process
drift should be considered as normal and not process faults from an engineering point of
view.

As in the previous case study, two schemes are used to monitor the CSTHS simulta-
neously, where again, (1) uncorrelated residual vectors generated from the lattice filter are
used to compute T2(k); (2) w; = 100 uncorrelated residual vectors are used to update the
covariance matrix; and (3) ng+1 = 100 residual vectors are employed to on-line re-determine
the order at one time. In the first scheme, the lattice filter identified from the 100 samples
in the initial block is used as a fixed model to generate the residual vector, and the corre-
sponding result is given in Figure 3.9. Since the residuals are produced from the constant
model, when the CSTHS is subjected to a normal variation, the computed T2(k) exceeds
its confidence limit, especially its 95% confidence limit, frequently. These limit violations
would clearly sound many false alarms.

Figure 3.10 depicts the result of multi channel lattice filter-based process monitoring
and fault detection, where as compared with Figure 3.9, the number of false alarms are
greatly reduced. Also between k = 5200 and k£ = 5260, a real fault is introduced into the
CSTHS by choking the cold water exit pipe, and this fault is instantly detected by the
statistic T2(k).

3.8 Conclusions

A multi-channel lattice filter scheme has been proposed for adaptive process monitoring of
fully dynamic and time-varying processes.

The proposed scheme had been successfully applied to two case studies, a simulated pro-
cess and a real pilot plant. In comparison with a constant model-based process monitoring
technique, our proposed approach can adapt to a normal process drift, with significant re-
duction in the number of false alarms and yet at the same time is sensitive to any real faults.
Also the proposed scheme can effectively track the slowly varying process parameters.
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Figure 3.9: T2 statistic for the Constant Model-based Process Monitoring on CSTHS (using
every 4th sample period)
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Figure 3.10: T? statistic for the Adaptive Lattice Filter-based Process Monitoring on
CSTHS (using every 4th sample period)
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Chapter 4

Sensor validation

4.1 Introduction

The detection and diagnosis of faults in complex process plants is an important task in
the manufacturing and process industry. A process fault is understood as any kind of mal-
function in the actual dynamic system or the plant that leads to an unacceptable anomaly
in the overall system performance (Frank 1990). Such malfunctions may either occur in
the sensors (instruments), or actuators, or other components of the process. It is desired
that such faults be detected as early as possible and the root cause of the fault be iden-
tified before it evolves into a catastrophic event. In terms of the occurrence of the faults,
they can basically be classified into additive faults and multiplicative faults (Gertler 1988).
Sensor and actuator faults are the typical additive faults as they do not affect the model
of the process under consideration. Process faults are typical multiplicative faults as they
affect the process model parameters. The task of sensor fault detection, identification and
reconstruction is referred as sensor validation.

The work in dynamic sensor validation falls into two categories: gross error detection in
data reconciliation and sensor fault detection. Mah et al. (1976), Stanley and Mah (1977,
1981), and Romagnoli and Stephanopoulos (1981) are among the early researchers in gross
error detection and rectification in chemical processes. More recent work provides advances
in the use of dynamic models, nonlinear models, neural networks and additional statistical
tests for the gross error detection (Crowe 1996). The work by Tong and Crowe (1995)
is among the first to apply PCA to analysis of the model residuals. Dynamic gross error
detection has also been studied by many researchers (Albuquerque and Biegler 1996, Karjala
and Himmelblau 1996, Liebman et al. 1992). Kramer (1991) proposed the use of auto-
associative neural networks for sensor fault detection, identification and reconstruction.
Statistical process control (SPC) approaches, e.g., contribution plots (Miller et al. 1993)
and dynamic principal component analysis techniques (Ku et al. 1995, Yoon and MacGregor
1998) have also been applied to sensor validation.

Deckert et al. (1977) have applied redundant hardware sensors to detect and identify
abnormal sensors in the F-8 airplane . Other methods for sensor fault detection and isolation
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(FDI) include the use of parity equations models (Chow and Willsky 1984), the parity
equation-based structured residuals (Gertler and Singer 1985, Gertler and Singer 1990,
Gertler 1991, Gertler and Kunwer 1995) and the use of observers and kalman filters (Clark
1979, Frank and Wunnenberg 1989). In addition, Basseville, based on the Chow-Willsky
scheme, proposed a unified framework to handle the fault detection and isolation for a class
of additive faults which can also be used for the detection and isolation of sensor faults
(Basseville 1997, Basseville 1998).

Recently a new optimal method, dynamic structured residual approach with mazimized
sensitivity (DSRAMS), for the detection and identification of faulty sensors in fully dynamic
systems has been proposed by Qin and Li (2000). The original concept of structured
residuals has been the work of Gertler and his coworkers (Gertler and Singer, 1985, 1990).
DSRAMS makes use of a normal process subspace model which can be identified using the
EIV subspace identification algorithms. This method can also be directly applied to other
dynamic models built either by the first principles or via system identification techniques
such as state space, FIR, ARMAX, ARX, dynamic PCA or PLS models. Residuals, which
are the linear combination of output and input variables, are generated making use of the
process model for process monitoring. In order to reduce the rate of false alarms due to
noise, an EWMA (exponentially weighted moving average) filter is applied to the residuals.
For the identification of faulty sensors, DSRAMS is used to generate a set of structured
residuals. All the structured residuals are then subjected to EWMA filter to reduce the
effect of noise. For the identification of faulty sensors and for a reliable decision, the following
three indices, the filtered structured residuals (FSRs), the cumulative sum (Qsum) and the
cumulative variance (Vsum) are used. After the faulty sensor has been identified, the
magnitude of the fault is estimated based on the model and the faulty data and the faulty
sensor is reconstructed.

The subject matter of this chapter is organized as follows. The chapter starts with
the model and fault representation in Section 2 which also deals with the derivation of
fault detection index. Details of DSRAMS are outlined in section 3. It also discusses the
conditions for detectability, attainability and isolability of sensor faults. Details of fault
identification indices is carried out in Section 4 and the reconstruction of faulty sensor is
presented in Section 5. Section 6 deals with the application of DSRAMS on a simulated
example and a pilot scale plant. DSRAMS is evaluated experimentally by an on-line appli-
cation to a pilot scale plant for the detection, identification and reconstruction of a single
sensor fault. DSRAMS is also applied to a simulated system consisting of 5 outputs and 2
inputs where four different types of sensor faults: bias, drift, complete failure and precision
degradation are introduced. The above method is then used for the identification of single
and simultaneous multiple (two) sensor faults.
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4.2 Residual Generation and Fault Detection Index

The section starts with the representation of a dynamic system by an EIV state space model
which is followed by sensor fault representation. As will be seen, for residual generation only
a subspace model needs to be identified. The section ends with the derivation of filtered
fault detection index.

4.2.1 Fault Representation and Residual Generation

Model Representation
Again, as in Chapter 3, the dynamic process is represented by the state-space system:

x(t+1) = Ax(t)+Bi(t) + p(t)
§(t) = Cx(t)+Di(t) (4.1)

where @(t) € ®! and (t) € R™ are noise-free inputs and outputs respectively, and x(t) € R
is the state vector. In addition, p(t) is the process noise, and A, B, C and D are system
matrices with appropriate dimensions.

The observed inputs u(t) and outputs y(t) are assumed to be corrupted by zero-mean
Gaussian distributed noise vectors v(t) and o(t) respectively, i.e.

u(t) = a(t) + v(t)
~ 4.2
y®) = $&) + o) *2)
Substituting Equation 4.2 into Equation 4.1 yields
x(t+1) = Ax(Z)+ Bu(t) —Bv(t) +p() (4.3)
y(t) = Cx(t) + Du(t) — Dv(t) + o(t) ’
By performing algebraic manipulation in Equation 4.3, the following equation is obtained
ys(t) = rsx(t - S) + Hsus(t) - Hsvs(t) + G’sps(t) + 0s (t) (4'4)
where
y(t—s)
ys(t) = : € R™
y(¢)
is the augmented output vector,
C
L = : € Rmax"
CA?®
is the extended observability matrix with rank n,
D o --- O
CB D .-- 0
s = ) ) . € §Rm,xl.
CA*'B --- D
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and
0 0 0
C o --- O
G’s — ] ) ] € RMmaXns
CAs-! .-+ 0

are two lower triangular block Toeplitz matrices with ms = (s + 1)m, s = (s + 1)l and
ns = (s + 1)n. In fact H, is the Hankel matrix with the impulse response coefficients as its
elements. The vectors vs(t) € Rb, 0,(t) € R™*, p.(t) € R, and u,(t) € R!* are defined
in the same manner as ys(t). Also it is to note that s is the extended observability index
which should be selected at least to be equal to the process order n (Ding et al. 1999).

In addition, define

2) = | 728 | e et

and
H = [Im,| — Hg] € ®mex(meth)

where I,,,, € R™+*™= is an identity matrix. Consequently, Equation 4.4 can be rewritten as
H,zs(t) = Tox(t — s) — Hyv(t) + Gsps(t) + 0s(t) (4.5)

Fault Representation

Now if a sensor becomes faulty, then its measurement will contain the normal value
of the measured process variables and the unknown fault magnitude . Therefore, in the
presence of sensor faults, inputs and outputs can be represented as follows:

ue) = WO + Susfus) 46

y(E) = y(6) + Eyfy)
where u*(t),y*(t) are fault free input and output values respectively, =, ; € R*% and
Ey: € R™*k are matrices of fault directions, and £, j(t) € R4 and £, :(t) € Rk are fault
magnitude vectors. To represent a single sensor fault in the i** output sensor, for i =
1,---,m,&Ey; = [00---1- --0]T € ®™, which is the #** column of the identity matrix
I.. In the presence of simultaneous multiple sensor faults, ,; will simply consist of the
corresponding columns of the identity matrix. For instance, consider a dynamic system of
five sensors of which sensors 1 and 3 become simultaneously faulty. In such a scenario,

0
0
1 | € ®5*2
0
0

m

b
-
i
coocor

In terms of zs(t), as defined earlier, the sensor fault can be represented as

zs(t) = z5(t) + E;:F;,:(%) (4.7)
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where

m

for output sensor faults

[1]

o

o

e §R(m, Hls)x(s+1);

E() = [t —9), - £:()] € RO

€ Rlms+la)x(s+1)k

fz,i(t) = [f,f,—(t —8),-, E,f,-(t)]T e Ris+Dk

for actuator or input sensor faults and

—
by
(=

Y.t

0

Y =T

0
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0 0
Zyi 0 -
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Residual Generation
Substituting Equation 4.7 in Equation 4.5 gives
H,ze(t) = H.zi(t) +H.E.:f:()
= T.x(t — 8) — Hyvs(t) + Gsps(t) + 0s(t) + HE, :f, :(2) (4.8)

The residual vector is generated by eliminating the state vector, x(t — s), from the above
equation. This is achieved by pre-multiplying the above equation by the orthogonal comple-
ment of the extended observability matrix I';. As the range subspace of I's is n-dimensional,
its orthogonal complement is (ms — n)-dimensional.

Denoting the matrix I't € R(™s~™)X™s o be the orthogonal complement of T, the

primary residual vector is generated as follows
e(t) = DrH,z,(t) € R (4.9)
Pre-multiplying Equation 4.8 by the matrix '} leads to
e(t) = -TrH,vs(t) +T7G,ps(t) + Ty0s(t) + TrHE:E::(2)
= e*(t) + I'iH,E, f,:(t) (4.10)

where
e*(t) = —TEH,v,(t) + TFG,ps(t) + Tos(t)

In the absence of faults, e(t) = e*(t) is a zero-mean noise vector. However, in the presence
of faults, the mean of e(t) changes to I‘;LI:IsSz,,-fz,i(t). Therefore, by observing the mean of
e(t), any faults can be detected.
4.2.2 Fault Detection Index
From Equation 4.10, in the absence of faults,

e(t) =e*(t)

is a moving average (MA) of the noise vectors v(t), p(t) and o(t). Under the assumption
that v(t), p(t) and o(t) are zero-mean Gaussian distributed, it follows that

e*(t) ~ R(0, Re)

or equivalently,
e TR e (t) ~ x*(ms —n)

where R, is the covariance matrix of €*(¢) which can be estimated from the normal process
data.
The fault detection index is defined as

dt) = eT@)Rte(t)
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and its confidence limit is d, = x2(ms — n), where a is a pre-selected level of significance.
The presence of a fault is indicated whenever the fault detection index, d(t), exceeds its
confidence limit.

Filtered Detection Index

If the process data is too noisy, then the use of d(t) as the fault detection index might result
in a number of false alarms. To overcome this problem, an exponentially weighted moving
average (EWMA) filter is applied to e(t) and the filtered residual vector is

&(t) =&t —1) + (1 —7)e(t)
where 0 < v < 1. Hence the filtered fault detection index
d(z) = e ()R;'&(t)

is used for monitoring the process where R, is the covariance matrix of &(t). It should be
noted that &(t) is no longer an uncorrelated time series. However, if we assume that €(t) is
still gaussian distributed then d(t) is still x? distributed with a reduced degree of freedom
governed by the rank of the covariance matrix. If R. is ill-conditioned, indicating highly
time correlated measurements, then one can perform Singular Value Decomposition on the
residuals and work with the reduced transformed set of residuals.

4.3 Fault Identification with DSRAMS

After the detection of faults by the fault detection index, the root cause of the faults
need to be investigated. This is referred to as fault isolation (FI). There are a number of
approaches available for fault isolation. This section deals with one such approach called
dynamic structured residual approach with mazrimized sensitivity (DSRAMS).

4.3.1 Concept of Structured Residuals

The primary residual vector, e(t), can only be used for the detection of faults. For the
isolation of faults, there is a need to transform e(t) into a new residual vector r(t), i.e.,
r(t) = We(t). The residual vector r(f) is termed as the structured residual vector where
one element is structured to be insensitive to a specified set of faults while sensitive to the
others.

The design of structured residual vector is equivalent to the calculation of the trans-
formation matrix W. The structure of the transformation matrix, W, is characterized by
an incidence matrix which consists of binary code ”1” and "0”. The rows in the incidence
matrix correspond to each element of r(t) while the columns correspond to faults in sensors
or actuators. The procedure for the design of structured residual vector can be explained
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by considering the following 2 input - 2 output second order dynamic system

e(t) = y()+A1y(t—1)+ Axy(t —2) — Bou(t) — Byu(t — 1) — Bau(t — 2)
[ y(t—2) ]
y(t—-1)
= [A-2 Al AO - B2 —_ B]. —_ BO] u(}tr(j)2)
u(t—1)
u(t)

where Ag = Iz and A;, B;, ¢ = 0, 1, 2 are the matrices consisting of the coefficients of output
and input variables respectively. For the isolation of sensor or actuator faults, a structured
residual vector r(t) containing four elements is designed according to the following incidence

matrix

Y1t —2) | y2(t—2) | 5t —1) | yo(t—1) [ y1(2) | ya(t)
) 0 1 0 1 0 1
T2() 1 0 1 0 1 0
3(t) 1 1 1 1 1 1
Ta(t) 1 1 1 1 1 1

ur(t—2) | ua(t —2) | ur(t—1) | u2(t —1) | wa(2) | u2(t)
T1(t) 1 1 1 1 1 1
) 1 1 1 1 1 1
73(t) 0 1 0 1 0 1
T4(t) 1 0 1 0 1 0

where ”0” indicates an element in r(t) to be insensitive and ”1” indicates an element that
is sensitive to a fault. In the above incidence matrix, each element of r(¢) is unaffected
by one specified fault and its time shifted values. For instance, r;(t) is designed to be
insensitive to y1(t), y1(t — 1) and y;(t — 2) but sensitive to the faults in others. The design
of transformation matrix W to obtain the structured residual vector r(t) for fault isolation
is based on such a incidence matrix, as above, and the residual model. Therefore, after the
detection of a fault, by observing the response of r(t) to fault via time, one can correctly
pinpoint the faulty sensor or actuator. For instance, after the alarm, if 7;(t) is unaffected
but all other elements in r(t) are affected by the fault, then it can be concluded that the
sensor measuring y;(t) is faulty.

In the case of multiple sensor faults, the th structured residual is designed to be insen-
sitive to a group of sensors, g;, where i € g;, and most sensitive to the faults in other sensors
with index g;. For instance, for the case of four sensors, one can design the incidence vector
for the first residual as [0 1 0 1], which makes the residual insensitive to faults in sensors 1
and 3. However one must ensure that, for the desirable incidence matrix, attainability and
isolability conditions are satisfied.
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4.3.2 Detectability, Attainability and Isolability

Detectability, attainability and isolability are important issues for any fault detection and
isolation scheme. There are certain conditions that should be satisfied for the faults to
be detectable, the selected structure for r(¢) to be attainable and for any two faults to be
isolable. In order to investigate the conditions for Detectability, Attainability and Isolability,
the above example of 2 x 2 second order system is considered in the following subsections.

Detectability

After the occurrence of a fault, the residual vector is,

( Dyi(t — 2)
[Age; Aje; Age;] | Ayu(t—1) If itk sensor is faulty, i = 1,2
— e Ayi(t)
e(t) =e (t)+4 At — 2)
[-Bee; —Bie; —Bgez] | Aui(t—1) | If i** actuator is faulty, 1 = 1,2
L Auy(t)

where e; is the i column (i=1,2) of identity matrix I,. The sufficient condition for a fault

to be detectable is that none of the rows of

[Age; Aje; Agey

Ayt —2)
li Ayt —1) }
Ay;(t)

are orthogonal to the fault vector

or none of the rows of
[-B2e; — Bie; — Bgey]

Aug(t ~2)
[ Ayt —1) }
Dus(t)

Hence detectability depends on the model of the process.

are orthogonal to the fault vector

Attainability

The transformation matrix W should have a non-trivial solution for a given incidence
matrix. For instance, if 71(t) = we(t) is designed to be insensitive to y1(t), y1(t — 1) and
y1(t — 2), where wi € R!*2 is the first row of matrix W, then geometrically, w; should be
orthogonal to the columns of [Age; Aie; Agei, ie.,

wl[Agze; Aje; Age] =0
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A non-trivial solution to wi exists only if rank([Aze; Aie; Agei]) = 1, otherwise wT

only has a trivial solution. Similar conditions apply for the other rows of W. The selected
structure for r(t) is said to be attainable only if a non-trivial solution to W exists.

The attainability condition for a selected incidence matrix is that the rank of columns
in the residual model, e.g., [Aze; Aje; Age;], corresponding to the ”0s” in the incidence
matrix, should be less than the number of columns of W. Therefore, to ensure a selected
structure for r(t) to be attainable, the number of ”0s” in each row of the incidence matrix
should at most be

number of columns in W —1

Isolability

After the computation of the transformation matrix, W, the model for structured residual
vector is

P EW[AQ A1 Ao —B2 —-B1 —Bo]
If two or more columns in P are linearly dependent, then the faults corresponding to those

columns are not isolable.

4.3.3 Dynamic Structured Residual Approach with Maximized Sensitiv-
ity (DSRAMS)

The determination of the structure for r(f) has been discussed in the previous sections.
This section deals with the calculation of the parameters of transformation matrix, W, for
dynamic processes.

For multi-dimensional faults, the matrix, Fi‘fIsEz,i can have linearly dependent columns.
Under such circumstances the sensor faults associated with the linearly related columns will
not be isolable. Hence singular value decomposition (SVD) is used to remove the corre-
lations between the columns of the matrix. Performing SVD on matrix T+ H,E, ; results
in

.2, ; = U;D;VT
where U; € R(ma—m)xbi D; e Rlsixlei V; € Rls.ixlai and lsi is the number of non-zero
singular values of rjf{srz_i. Consequently, Equation 4.10 can be rewritten as

e(t) = e*(t)+ U:D;VTE, i (t)
e*(t) + U:fi(t) (4.11)
where
£:(t) = D;VTE, :(¢)

is the magnitude of fault projected on Uj.
For the identification of faulty sensor, a set of structured residuals are generated in which
the i** residual r;(¢) is insensitive to the current and past values of £, ;(¢), - - - , £2,:(f — s) but
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most sensitive to the faults in other sensors. Making use of Equation 4.11, the i*# structured
residual is generated as follows,

ri(t) = wle(t)
= wie*(t) +wi Usfi(t) (4.12)

where the vector w; € R™=—" should be orthogonal to the columns of U; while minimizing
its angles with the columns of the matrix Uj for j # .

The above criterion of designing w; for ¢ =1,--- ,my, where my is the total number of
faults, is equivalent to

my
Teor. 112
max ) _ || U7 ws || (4.13)
i=1
subject to U7w; = 0 and || w; [|= 1. Selecting w; in the orthogonal complement of Uj, i.e.,
wi = (I-U;UT) w;

Equation 4.13 is then re-phrased as

my my
m;,axz,: I UT (1 - U:UT) wi 2= muaxz; | UG |12 (4.14)
i= i=

subject to

| T-UUT) wi (=1
where Uj; = (I — UiUlT) U; is the projection of Uj on the orthogonal complement of Uj;.
The solution to the above equation reduces to solving the following eigenvalue problem:

my

Z UjiUg;;Wi = Aw;

j=1
The eigenvector of Z;"zfl U,-,-U;‘-:- corresponding to the largest eigenvalue is the required
vector w;. The largest eigenvalue only satisfies the sufficient condition for Equation 4.14 to
achieve the maximum.

4.4 Fault Identification Indices

The following subsections define three types of fault identification indices: (1) EWMA
-filtered structured residuals (F'SR), (2) Cumulative sum (Qsum) and (3) Cumulative vari-
ance (Vsum). The motive behind using more than one identification index is to make a
reliable decision when dealing with different types of faults.
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4.4.1 Filtered Structured Residuals (FSR)

In the absence of sensor failures, ideally, each structured residual should be equal to zero.
However, due to uncertainties such as modeling errors, measurement noise etc., 7;(t) is
never equal to zero. So there is a need for determining non-zero confidence limit for each
ri(t),i = 1,2,--- ,my, using statistical techniques.
From Equation 4.11 it can be inferred that
Y A 2 > __
ri(t) =w;e*(t) ~ R(0,0%), 1=1,2,--- ,myg.
and,
2
r£(t)
=8 L e
o3
where 02 = E {wIR.w;}. The confidence limit for rZ(t) is n¢ = 02x2(1). When an EWMA
filter is applied to 7;(t), the filtered structured residual is as follows:

Ti(t) = 7t — 1) + (1 —7)r:(t)
and the threshold for 7#2(t) is
'ﬁ? = 5?)((?;(1), 1=1,--- Mg

where 52 = E {wIRe.w;}. For better visualization an identification index based on filtered
structured residual is then defined as follows

2
; ri(t)
Ipsp(t) = =
n:
Under normal condition, Ikgp(t) (2 = 1,---,m +1[) is less than one. However, if a sensor

i € g; is faulty, Ikggr(t) <1 but all other I}SR(t) >1 (5 € g:)-

4.4.2 Cumulative Sum (Q.um)

The Cumulative sum index, which is based on the generalized likelihood ratio, is sensitive
to sensor faults that incur significant changes in mean such as bias, drift and complete
failure. As r;(t) is finitely autocorrelated, a sequence of uncorrelated signals {ri(t;y + kA)}
for £ =0,1,---,t — 5, where ty is the fault detection time, is used from the sequence
{ri(tg),--- ,ri(t)}. The cumulative sum index, Qsum, is defined as follows

t—t A
A

qum(ta i) = Z ri(tf + kA)

k=0
A normalized index for Q... for the identification of faults is then defined as

. . qum(t’ Z)
15, () = ((RL)ywTRew;x2 (1)
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4.4.3 Cumulative Variance (Vi)

The Cumulative variance index is sensitive to sensor faults that cause variance to change,
e.g., a precision degradation fault. The V., index is calculated as follows

t—tE

Voum(t,9) = D (rilts + kD) — ps)?
k=0

where e

. Zk:AO Ti(t_f + kA)
- t—t
1+ —%-

Hi
Again the normalized index for Vi, is defined as follows

Veum(t,7)
wIR.wix2(55L)

B (t) =

4.5 Reconstruction of Faulty Sensors

After the isolation of faulty sensors, the next and the last step in FDD is the reconstruction
of the sensors or actuators. Reconstruction of faulty sensor values is also an important
step. In many industrial processes, on-line advanced control or optimization is based on the
sensor values. Feeding of faulty sensor values to control loops affect the process performance,
significantly degrading performance in most cases.

The basis for sensor reconstruction are the correlations among process variables. Based
on the normal values of other sensors, normal readings of the faulty sensors can be estimated.
The first step in sensor reconstruction is the estimation of fault magnitude based on the
fault direction and the faulty data. After the occurrence of sensor fault the primary residual
vector, from Equation 4.11, is

e(t) = e*(t) + U:D: VI, ;(t)

As the fault direction is known after the identification of faulty sensor, the fault magnitude
is estimated by minimizing

J =l e*(t) I*=] e(t) — U:D: VI £.:(2) |12
A least square solution to the above problem gives
£.:(t) = (U:D: V) T et)

where ()T stands for the pseudo inverse.
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4.6 Case Studies

This section considers the application of DSRAMS for the detection and identification of
single and simultaneous multiple sensor faults in a simulated second order dynamic system.
Experiment evaluation by an on-line application of DSRAMS on a pilot scale plant for the
detection and identification of single sensor faults is also included.

4.6.1 Case Study One - Simulation Example

The second order dynamic system consists of 2 inputs and 5 outputs. A combination of sine
wave, pulse wave and random sequence are used as noise free inputs ti(t) for the generation
of noise free outputs ¥(¢). The state space model used is as follows

0.67 0.67 —0.4326 0.1253 | .

x(t+1) = [-0.67 0.67Jx(t)+[—1.6656 0.2877]“(t)+p(t)
0.3273 —0.5883 1.0668  0.2944
0.1746  2.1832 0.0593 —1.3362

F) = | —0.1867 —0.1364 | x(t) + | —0.0956  0.7143 | @(z)
0.7258  0.1139 ~0.8323  1.6236
0.1324 —0.6890 —0.0845  1.2342

where p(t) € R2 is a normally distributed random vector having a zero mean and a variance
of 0.01 for each element. The measured inputs and outputs are

u(t) = a(@) + v
y(t) = y() + o)

where v(t) € R2 and o(t) € R® are normally distributed noise vectors with zero mean and
the covariance matrix as 0.12I, and 0.12I5 respectively. The above state space model is
used for generating a data set of 1500 points. The first 800 data points are used as the
training data set. The EIV-subspace algorithm is used for the identification of the residual
model TEH, € Rms—m)x(matls),

For the design of the transformation matrix, the following incidence matrix is used

y1(t) | y2(t) | ya(@) | ya(®) | ys(t) | wi(?) | ua(t)
r@) | O 0 0 0 1 1 1
ro(t) | 1 0 0 0 0 1 1
ra(t) | 1 1 0 0 0 0 1
ra(t) | 1 1 1 0 0 0 0
rs(£) | 0 1 1 1 0 0 0
re(t) 0 0 1 1 1 0 0
re(t) | O 0 0 1 1 1 0
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The structure of the incidence matrix is same for the time lagged values, (£ —1),--- ,(t—s).
In order to achieve the required transformation matrix, based on the above incidence matrix,

the following condition
m x (§+1) —n > (Number of zeros in a single row of incidence matrix) +1  (4.15)

must be satisfied. As the single row of the incidence matrix contains 4 x (s + 1) zeros and
,as n =2and m = 5, s is chosen to be 2 for the above condition to be satisfied. The
transformation matrix is then designed for the generation of structured residuals, i.e.

wi
W=| : | eR™Y

T
w3z

The transformation matrix contains 7 rows corresponding to seven output and input vari-
ables. The sensors are numbered from 1 to 7 where sensor 1 to 5 correspond to the output
variables and sensors 6 and 7 correspond to the input variables 1 and 2 respectively.

Faulty data is generated by introducing four types of faults: bias, drift, complete failure
and precision degradation. The faults are simulated as follows:

bias : fi(t) =a
drift - fi(t) =b(t —ty)
complete failure : () =c
precision degradation : fi(t) ~ R(0, 0?)
fori =1,---,7 and t > £y where ¢y is the fault introduction time. The parameters a, b,c

and o are constants.

An EWMA filter with a coefficient v = 0.9 is applied to the residuals for fault detection.
After the alarm is triggered by the fault detection index, d(t), three indices, Irsr, Q..
and Iy, ., are used for the isolation of faulty sensor.

Single sensor Fault

The following table shows the fault time, fault size and the fault detection time.

Faulty sensor 1 2 6 7
Fault magnitude | ¢ =0.5 | a =0.75 | 6=.0033 | c= —1
Fault time(y) 1001 1001 1001 1001
Detection time 1002 1002 1032 1001

Figures 4.1 to 4.4 show the fault detection, isolation and reconstruction results for single
sensor faults. In each of the figures, sub-plot (a) shows the fault detection index, sub-plot
(c) the faulty data, sub-plot (e) the estimated fault and sub-plot (g) the reconstructed data
respectively. In addition, sub-plots (b), (d) and (f) show the response of the three indices
to the fault in a single sensor.
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The fault is identified based on the three indices. A binary code is constructed based
on the response of one index to the fault. A ”0” is assigned to an element of the code if
the corresponding index value is less than 1 and ”1” is assigned if it is greater than 1. For
instance, in Figure 4.1, the binary code corresponding to the index Irsgis (001100 0. In
addition, binary codes corresponding to I, and Iv,, are[0010000]and [0111000]
respectively. In order to isolate the faulty sensor, a logic ”OR” operation is performed on
the three binary codes and the the resulting binary code is [0 1 1 1 0 0 0]. Since such a
code matches the incidence vector for y; (£), it can be inferred that the sensor 1 is faulty.
Similarly, one can use the same logic to analyze the isolation results given by Figures 4.2
to 4.4 respectively.

From Figures 4.1 to 4.4, it can be observed that the indices Irsg and Ig,,,, are effective
at faults like bias, drift and complete failure. The index Iy, , is particularly effective at
precision degradation which incurs variance change only. Therefore, to identify different
types of sensor faults effectively, one needs to use all the three indices jointly.

Simultaneous multiple sensor faults

The following table shows the fault time, fault size and the fault detection time.

Faulty sensor land 7 [3and 6 [4and 5| 2and 7
Fault magnitude | b = .004 =5 a=2 | b=0.002
a=1 c=05]|0=05 c=3
Fault time(ty) 1001 1001 1001 1001
Detection time 1001 1001 1001 1002

Figures 4.5 to 4.8 show the fault detection, isolation and reconstruction results for simulta-
neous multiple (two) sensor faults. In each of the figures, the sub-plot (a) shows the fault
detection index, sub-plots (e) and (f) the faulty data, sub-plots (g) and (h) the estimated
faults and sub-plots (i) and (j) show the reconstructed signals respectively. In addition,
sub-plots (b), (¢) and (d) show the response of the three indices when there are faults in
two sensors simultaneously.

Again, in order to isolate the faulty sensors, a logic ”OR” combination of all the three
binary codes, corresponding to the three indices, is used. For instance, in Figure 4.5, the
binary code corresponding to the index Irpsg is [0 1 1 1 0 0 0]. Similarly, binary codes
corresponding to Ip,.,.. and Iy, are[1 111000} and {001 10 0 0] respectively. The
resultant binary code, which is obtained by performing an "OR” operation on the three
binary codes, is [1 1 1 1 0 0 0]. From the incidence matrix, it can be inferred that the
resultant binary code is a logic ”OR” combination of the incidence vectors corresponding
to y1(¢) and us(t). Hence the faulty sensors are identified as 1 and 7. The sub- plots for the
fault estimates indicate that there is a drift in sensor 1 and a bias in sensor 7 respectively.
The same logic is used for analyzing the sensor fault isolation results given by Figures 4.6
to 4.8.
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4.6.2 Case Study Two - Pilot Scale Plant

In this case study, an On-line application of DSRAMS on a pilot scale continuous stirred
tank heater system is considered (refer to Figure 3.8 for schematic diagram of the process ).
However, in this study, DSRAMS is applied to an open loop system which consists of two
output variables and two pre-determined input variables. The two output variables are the
level and the temperature which are designated as sensors 1 and 2 respectively. The two
input variables are the cold water valve and steam valve positions which are designated as
sensors 3 and 4 respectively.

The level and the temperature are measured with a sampling period of 2 seconds. The
first 350 data points are used as the training data set. Again, as in the previous case
study, EIV-subspace algorithm is used for the identification of the residual model I‘i'I:Is €
R(ms—n)x(ms+ls)

For the identification of single sensor faults, the following incidence matrix is used

y1(t) | ya(t) | wi(t) | ua(¥)
T1 (t) 0 1 1 1
ro(t) | 1 0 1 1
r3(t) 1 1 0 1
ra®) | 1 1 1 0
The structure of the incidence matrix is same for the time lagged values, (t—1),--- ,(t —s).

The order of the system, n, is 3 and, in order to satisfy the condition in Equation 4.15, s
is taken as 3. The following table shows the fault time, fault size and the fault detection
time.

Faulty sensor 1 2 3 4
Fault magnitude | a =1 =02|c= b= .01
Fault time(ty) 401 401 401 401
Detection time 401 404 402 420

Figures 4.9 to 4.12 show the fault detection, isolation and reconstruction results for single
sensor faults. In each of the figures, sub-plot (b), (d) and (f) show the response of the
three indices to the fault in a single sensor. The sub-plot (a) shows the fault detection
index, sub-plot (c) shows the faulty data, sub-plot (e) is the plot of the estimated fault and
sub-plot (g) shows the reconstructed data.

From Figures 4.9 to 4.12, as in the previous case study, it can be observed that the indices
Ipsg and Ig,,.. are effective in case of bias, drift and complete failure in the sensors. The
index Ivy,,,, is particularly effective when there is a precision degradation in the sensor.

Application of DSRAMS on fully dynamic experimental data

In the above case study on the experimental data, DSRAMS was applied on the pilot scale
plant under steady state conditions. In this section, an off line evaluation of DSRAMS on
the same pilot scale plant is carried out but under fully dynamic conditions.
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A total of 1000 data points are collected with a sampling period of 2 seconds under
fully dynamic conditions. The first 650 data points are used as the training data set. The
following table shows the fault time, fault size and the fault detection time.

Faulty sensor 1 2 3 4
Fault magnitude [a=2|c=5|a=5|oc=4
Fault time(tf) 701 701 701 701
Detection time 701 701 702 704

Figures 4.13 to 4.16 show the fault detection, isolation and reconstruction results for single
sensor faults. The same logic, as in the above case study, is used to analyze the sensor fault
isolation results. DSRAMS is able to isolate the faulty sensor when the fault magnitude
is large but is ineffective for small fault magnitude. For instance, DSRAMS is effective in
isolating the bias of magnitude 5 in the 3rd sensor (Figure 4.15) but is unable to isolate
the faulty sensor when there is a bias of magnitude 2 in sensor 1 (Figure 4.13). Also the
reconstruction of faulty sensors is poor as can be seen in Figures 4.14 and 4.16.

4.7 Summary

The EIV subspace algorithm has been used for the identification of the residual model
from the noisy input and output data. Filtered residuals are used for the detection of
faults. DSRAMS has been used for the generation of structured residuals. For the isolation
of faults, three indices Irsg, Ig,... and Iv,,,., have been jointly used. Fault detection and
isolation scheme has been successfully applied to a 2 x 5 second order dynamic system where
four different types of faults are simulated. Also an on-line application of DSRAMS on a
pilot scale pilant has been successfully carried out where single sensor faults are detected
and identified. Also DSRAMS when applied to fully dynamic experimental data gave mixed
results. A further investigation needs to be carried out to improve the effectiveness of
DSRAMS for the isolation of faults in fully dynamic real systems.
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Chapter 5

Summary and Conclusions

Process monitoring and fault detection and diagnosis is extremely important for plant safety
and for maintaining good product quality. Many chemical processes vary slowly with time
which makes it imperative to have an effective technique for adaptive process monitoring
to reduce false alarm rates. Equally important is the proper functioning of sensors which
provide a crucial link to the process status. Sensor failures can cause process disturbances,
loss of control or catastrophic accidents. Hence, a reliable sensor fault detection and isolation
mechanism is of prime importance to the control systems that rely solely on the information
provided by the sensors for decision making.

This thesis proposes a novel method for adaptive process monitoring of multivariate
dynamic systems via the use of multi channel lattice filter. The most important advan-
tage of using a lattice filter is that it is recursive not only in time but also in order. The
multivariate dynamic process is represented by EIV state space model where input and
output measurement noise as well as process noise are taken into account. By showing the
relationship between EIV state space representation and multi channel lattice filters, the
latter is used to generate a residual vector for adaptive process monitoring. The computed
residual vector is used for constructing the Hotelling T2 statistic which is used as a monitor-
ing index. The effectiveness of the proposed scheme has been demonstrated on a simulated
process and a real pilot scale plant. The proposed scheme not only tracks the slowly time
varying parameters of the process effectively but is also sensitive to faults.

For the detection of faulty sensors, the EIV subspace algorithm is used for the identi-
fication of the residual model. The sensor fault isolation is carried out using the dynamic
structured residual approach with mazimized sensitivity (DSRAMS) as proposed by Qin and
Li (2000). The DSRAMS approach was proposed for the isolation of single sensor faults.
Their approach has been extended to the isolation of simultaneous multiple (two) sensor
faults. DSRAMS has been applied successfully on a simulated process for the isolation of
four different types of faults. DSRAMS has also been applied on-line on a real pilot scale
plant and encouraging results have been obtained.

In summary, the main contribution of this thesis are:

85



5.1

A novel method for adaptive process monitoring via the use of multi-channel lattice
filter has been proposed. The effectiveness of the proposed scheme has been demon-
strated on a simulated process and on a pilot scale plant.

Evaluation of DSRAMS for the isolation of single and multiple sensor faults has been
carried out on a simulated process. DSRAMS is applied on-line on a pilot scale plant
for the isolation of single sensor faults under steady conditions.

Directions for Future Work

In the proposed scheme, residuals generated via multi channel lattice filter are up-
dated at each data sample. In practical situation particularly for slowly time varying
chemical process, the process model need not be updated at each data sample. Instead
it is suggested that the model be updated based on a non-overlapping data blocks of
user specified window lengths.

A fixed forgetting factor, A = 0.99, has been used for adaptive process monitoring
via multi channel lattice filter. The effect of time varying forgetting factor on the
adaptive process monitoring needs to be investigated.

A further investigation is needed to improve the effectiveness of DSRAMS for the
isolation of sensor faults in fully dynamic real systems.

The results for isolation of single and multiple sensor faults have been presented for
open loop systems. In open loop systems a fault in one sensor does not propagate
through out the system i.e., the sensor fault is localized. The real challenge lies in
isolation of sensor faults under closed loop conditions where a fault in one sensor
propagates throughout the system.
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Appendix A

A.1 Derivation of Equation 3.37

Based on the definition of f;',,,(k) given by Equation 3.18 and the non-symmetric projection
formula given by Equation 3.24, Equation 3.37 is derived as follows
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where on the right hand side (RHS), in addition to the first and second equations, (1) the
third equation is derived by using the orthogonality between Ab%, (k) and hi (k — u)
and the definition of 5 +1,7-1(K); (2) the fourth equation is reached in terms of the formula

A o] A1 0
B C| ~|-Cc'BA! C!

for any non-singular matrices A and C and a straightforward manipulation; (3) the defi-
nition of f;, (k) is employed twice in the derivation of the fifth equation; and (4) the final

equation arrives by the use of the definition of wj,,,(k).

= f:,n—l (k) +

frn-1(k) — 1(k)
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A.2 Derivation of Equation 3.39

The derivation of Equation 3.39 is similar to that of Equation 3.37. From the definition of
b: (k) and Equation 3.24 it follows that

b;,-r](k) = z;::M—-s—n zch—s-—-th: n—

1(k)@sp3-n[ £} r)—L(k)}

- zfcM—s—n - [sz—s—l:kM—s—-‘rH-l 3,17—1(1")] hd

. T -1
( { (z(k—u)M—-s—l:(k—y.)M—s—r]+1) } A [z;-cM—s—I:kM—s~11+1 fj,n—l(k)]) d

(€, 1k —m)T

. T .

(Z?k—p.)M—s—l (Ic—,u)M—s—n-f—l) AzZipr s n }
( 87]-1(1" #)) Asz——a—n

= ZZM—s-n — (2o 1kM—s—nt1 Esp1(K)]

-1
( (k—y.)M—s—-l (k—u)M—s—rH-l) Azl:M—s-—l kM~—s—m+1 0 :l o
( s n—l(l" /1')) Asz—s—l kM—-s—n+1 a;,r]—l (k)

(z"(:k"ll)M—’S—l (k—p.)M—s—n+1) ;::M—s—'r]
(P,ﬂ— (A' u)) A'sz—s—n

. . . T .
— T 1 T T
= ZppM—s—n ~ ZkM-—s5—1:kM—s—7+1 ((z(k—/.;)M—s—1:(k—p)M—s—n+1) Azch—s—l:IcM—s—r]+1>

. T .
(zr('lc—u)M—s—l:(k—p.)M-s—n-{-l) AZ;CM—s—q
t:xi,‘q—l (k)

. T i
m (f;(k - ,LL)) Asz—s—l:kM—s—n+1 ot
S, 1—

+

. T ; -1
i i
( (z(k—p.)M—-s—lz(k—p.)M—-s—ﬂ-{-—l) Asz—s—-l:kM—s—q—l—l > .

(fz,r]—l(l" /-L)) Asz_

T 1 s—n o
(Z(k—y)M——s—lz(k—p)M—-s—q-{-l) kM —s—n — s 1 (Is,) f; n—1 (A')
. T 1.
i (f;,n—l(k - ,U,)) A (zkA'I—s—r/ - bs+1,n—1(l")>
= bs-{-l,r]—-l(k) + a‘f; 1 (k) s n—1 (k)
£ (k—w)T Az .
_( 8,17 1( 'U')) /cM—s—nf;n—l(k)
3 17—1(1") !
= bi-i-l n—l(k) -71( ) 11—1 (A')
’ s,r]—l(l")

where the definitions of of (k) and @? (k) have been used.

A.3 Derivation of Equations 3.43 and 3.44

In order to prove Equations 3.43 and 3.44, in addition to Equation 3.42, there is a need to
derive another order-recursion formula for Pni _ L (O)° Based on Equatxons 3.16 and 3.18,
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the subspace hi_,; .. ;(k) can be decomposed into

hi_1,4+1(k) = b, (k) © £, (k)
Subsequently, from the non-symmetric projection formula given by Equation 3.24,
P
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where Afjm(k)J_him(k — 1), the identity for computing the inverse of a composite matrix
given at the end of Appendix A, and the definitions of ¢p; (&), o%,(k) and €t ,(k) have
been utilized.

A.3.1 Derivation of Equation 3.43
The substitution of Equation 3.39 and the following equation
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into Equation 3.29 gives
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where the definitions of of , (k), 9%, (k) and €; (k) have been considered. Similarly, it can

be proven that ) ]
-1 () Vag,n(K)

Shm(k) = Sipa(k—1) ~

A.3.2 Derivation of Equation 3.44
The substitution of Equations 3.37 and 3.42 into Equation 3.28 leads to
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where we have used the definitions of esyn(k), wi_,,(k), and z/)_f,,,,(k). Similarly, we have
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A.4 Proof of Equation 3.46
According to Equation 3.25,
ho(k)@ @ = (hy(k))gp ®by(k)lp @ @
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because ¢ is a constant vector. Therefore,
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where GJé denotes the direct sum of two subspaces. Subsequently,
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where Equation 3.25 and the orthogonality between (a) | & and (h,(k)) ¢ have been used.
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A.5 The Complete Algorithm for the Recursive Identifica-
tion of ©% (k)
The complete lattice filter algorithm for the recursive identification of @y, is listed as follows,
where unless otherwise stated, s =1---M,n=1---M, —1,and k >=2u + Int (&7‘14:_1.)
Ei,o(k) = ’Yi,o(k) =zZ'(kM —s), k > 0.
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Note that to compute the parameters

6. (k)
On(k) =
o7 (k)

the above algorithm should be executed from ¢ = 1 until ¢ = m, and taking into account
the initialization procedure given before.

98



