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Abstract

Theory indicates that, to fully describe the ground motionsof a particle,
translational motions, strain and rigid rotational motions are all needed, where
the rst includes particle displacement, velocity and/or aceleration and the
second includes normal and shear strain. Traditional seishogy is based on
the measurement of only translational motions and strain wdreas rigid ro-
tational motions have been ignored for a long time. This is loause current
inertial seismic sensors, such as geophones and seismorsedee only sensitive
to translational motions and strain; rotational sensors vih enough sensitivity
are not widely available. The recent development of rotatial sensors makes
the combined analysis involving all three types of motionsgssible. The main
contribution from rotational motions is that they directly provide information
about the spatial gradients of wave elds, which have been ed by geophysi-
cists to improve current geophysical techniques, such asweaeld separation,
reconstruction, ground roll removal and moment tensor inveion. In this the-
sis, we investigate the possibility of involving spatial grdient information in
waveform based microseismic event localizations.

Microseismic event localization, as an essential task of ecroseismic mon-
itoring, can provide important information about undergraind rock deforma-
tion during hydraulic fracturing treatments. Microseismtc event localization
using time reversal extrapolation is one of the most powetfwaveform based
localization methods that back-propagates seismic recands to source loca-
tions and avoids the need of picking individual rst arrivak. The latter could
be challenging for data with a low signal-to-noise ratio (SNR such as the

one obtained during microseismic monitoring, whereas tinreversal extrapo-



lation can enhance the SNR of source images through stackirig.this thesis,

we propose two new representation theorem based time-resadrextrapolation

schemes such that wave elds and their spatial gradients ajeintly analyzed

for an improved microseismic source image, namely acoustiod elastic ap-
proaches. Pressure wave elds and particle velocities cespond to wave elds
and spatial gradients in the acoustic scheme and likewisearficle velocities

and rotational rate wave elds in the elastic scheme. With nely proposed fo-
cusing criteria, the source location and origin time of a mioseismic event are
determined automatically.

However, all time-reversal extrapolation schemes su er fno high compu-
tational costs because this technique is based on solvingatiete two-way wave
equations using the nite di erence or nite element method We propose a
reduced-order time-reversal extrapolation scheme usingoper orthogonal de-

composition which can be used for the real-time microseistr@vent localization.
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Chapter 1

Introduction

1.1 Background

Microseismic monitoring involves the acquisition of comiuous seismic data for
the purpose of locating and characterizing seismic actiyiinduced by human
activities, such as mining and hydraulic fracturing (Van deBaan et al., 2013).
In the mining industry, microseismicity is often acquired & monitor in-situ
stress changes around tunnel walls, preventing possibleptsive rock failure
(Maxwell, 2009). The most common application of this techrogy in the hy-
drocarbon industry is to monitor hydraulic fracturing treatments for increasing
oil and gas production. During this process, high pressurelid is injected into
a treatment well (Figure 1.1). When the e ective pressures @come the rock
strength, cracks are created in the formation, leading to mioseismic emis-
sions. Sensors are deployed in the borehole or on the surféégure 1.1) to
detect resulting wave motion. Accurate microseismic evenbdations aid in
understanding reservoir development, estimating simulaed rock volumes and
determining future drainage strategies (Maxwell, 2009).

In this thesis, we introduce an event localization technigai based on the
representation theorem involving a new type of measurement rotational mo-
tion.
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1.1.1 Rotational seismology

In classic seismology, for a solid body, general motion ofrpeles is divided
into three kinds: translational motion (alongXx, y, z axis), rotational motion
(around x, y, z axis) and deformation (Bath, 1979, Lee et al., 2009a).

Rotational seismology is concerned with measuring and anaigg rota-
tional particle motion. Such motion has been ignored for a g time, with
a widespread belief that rotational motions are insigni cat and negligible
(Richter, 1958, Lee et al.,, 2009a). Also there is a lack of imgtnents with
required sensitivity.

Recently, new instruments have been developed that diregtmeasure the
rotational motion in vertical and horizontal directions. Those measurements
indicate that, for far eld earthquakes with small ground déormation, observed
rotational motion agrees well with simulated results (Igeét al., 2007, Suryanto
et al., 2006),while for near eld or strong earthquakes (Tado, 1998), observed
rotational motion is one or two orders of magnitude larger thn the theoretical
expectation.

In other words, rotational motion is not only signi cant but can also aid
in our understanding of the earth. Moreover, measurementsofn rotational
instruments agree with predictions of rotational motion fom arrays of trans-
lational instruments, providing con dence in both the rotdional instruments
and the theoretical predictions (Huang, 2003, Lee et al., 204).

The potential of rotational seismology has been realized agtually by en-
gineers and geophysicists. Much research points to the nesigy of recording
rotational motion of particles (Aki and Richards, 2002). Tako and Ito (1997)
estimate the rotational strain tensor and the spatial variion of slip veloc-
ity through observed rotational ground motion. These quaiities will be large
when there are spatially rapid changes caused by slip on theuft and/or the
generation of fractures. Graizer (2005) point out that rotdonal ground mo-
tion should be recorded in order to reduce its possible conténation to signals
recorded by horizontal components of traditional 3-comp@mt sensors in strong
or near- eld earthquakes. Otherwise, it will result in longperiod errors, espe-
cially for residual displacement calculation. Pham et al.2009) show that P-SH
scattering could explain observed rotational motion in P-awve coda which in



turn could be used to constrain crustal scattering propemis.

Moreover, the importance of rotational seismology also a#cts the atten-
tion of the oil and gas industry. | give a detailed review of tational seismology
and several possible applications iohapter 2 .

1.1.2 Methods for Microseismic event localization

Broadly speaking, microseismic event localization methedre categorized into
two types: travel-time based and waveform-migration basechethods. Travel-
time based event localization methods were most commonly @@d to locate
the hypocenter and the origin time of an earthquake in globaeismology, in-
cluding grid search (Aldridge et al., 2003) and double di emce approaches
(zhang and Thurber, 2003,Castellanos and Van der Baan, 20Q13n which
either P- or S-wave arrivals or both are picked before furthgrocessing. How-
ever, event picking can often be a challenging and time-camsing task for low
quality data (Artman et al.,, 2010). Both mispicks and missig picks nega-
tively in uence event locations (Kocon and Van der Baan, 2@, Castellanos
and Van der Baan, 2013, Castellanos and Van der Baan, 2015). v&wer, due
to its fast calculation speed and easy implementation, thesype of methods
are widely used for microseismic event localization.

Migration based methods

Migration based methods avoid arrival time picking, possli rendering them
more suitable for low signal-to-noise ratio data (Artman et i, 2010).
Emission tomography is one of the simplest forms, in whichavel-time ta-
bles are created for each possible grid location. A semblangnalysis over the
forward predicted travel-times then yields potential micoseismic event loca-
tions (Duncan and Eisner, 2010). In this method, a 3D grid vame is created
in which each grid represents a possible microseismic evémtation. Then
time shifts that correspond to the travel time from each pogsle location to all
receivers are applied to the microseismic records followbg semblance anal-
ysis of the time-shifted microseismic records. The grid pdiwith the highest
semblance energy can be considered as the most likely pdssévent location



(Duncan et al., 2008, Duncan and Eisner, 2010, Chambers anéhdall, 2008).

An alternative approach is called time-reversal extrapolain (Fink et al.,
2000). Reverse time extrapolation has been applied for elagquake source imag-
ing (McMechan, 1983, McMechan, 1985). This method is similt reverse time
migration (RTM) (McMechan, 1983, Whitmore, 1983, Baysal et la, 1983). In
traditional RTM, the receiver-side particle displacemenior particle velocity)
wave eld is injected into a smoothed velocity model, folload by application
of an imaging condition. The smoothed velocity model e ectely removes re-
ections during backpropagation which may cause artifactsn images. RTM
has been used for earthquake fault imaging (McMechan, 198%us showing
promise for determining event hypocenters.

For microseismic event localization, it is the same proceckibut with re ec-
tion data replaced by transmission data. This procedure care described under
the framework of the adjoint-state method, where it turns ito a minimization
problem (Fleury and Vasconcelos, 2013, Tarantola, 1984). |éast-square mis t
function J, de ned as

J = jid(r;rs;tte)  d™o(r;t)jj? (1.1)

is minimized by calculating theFr echetderivatives with respect to the source
parameters (Tarantola, 1984), i.e. the source locatiar? and the origin time g,
where in equation 1.1r are the receiver locationsd is the simulated particle
displacement elds given an estimated source location anah arigin time, d"°
are the observed datajj jj? is the L? norm. The recorded direct wave eld is
seen as a perturbed wave eldd due to a perturbation source S(r*®;tg). To
determine the perturbation source, the data mis tjd(r ;rs;t;tg) d"°(r;t)j is
back-propagated into the velocity model (Tarantola, 1984Tromp et al., 2005),
using
I
drlty=  &(r%r;t) Sar (1.2)

where d” is the back-propagated particle displacement wave eld;° is an ar-
bitrary observation point on the back-propagation image@GY is the adjoint of
the particle displacement (velocity) Green's function from receivers atr, SY is



called the waveform adjoint source, representing the timeversed data mis t.
With an accurate velocity model, the back-propagated waveld collapses at
the source location. However, if only a particle displacemear velocity wave-
eld is used, artifacts will appear on the borehole back-ppmagation image.

In this thesis, | will introduce enhanced microseismic everocalization
methods using the spatial gradient of the wave elds througlhe acoustic and
elastic representation theorems. Detailed derivation cape found in Chapter
3 and 4.

1.2 Motivation and contribution

Microseismic event localization is the most important taskor microseismic
monitoring. Accurate event locations directly reveal geonwy and the prop-
agation directions of stimulated fractures, which furtheiprovides valuable in-
formation about geomechanical processes during productioWith this infor-
mation, a better production strategy could possibly be detenined for future
usage. Most of the current localization methods merely useavel time infor-
mation, obtained from P- and S-wave rst arrival pickings. Havever, picking
can be inaccurate especially when the SNR is too low that therasals can not
be identi ed easily.

Moreover, waveforms of microsesimic data contain importaimformation
about the types and orientations of fractures, which neceatstes the involve-
ment of full waveforms in microseismic event localizations Also, the sem-
blance of microseismic recordings in migration process lgig a higher SNR
source image which may help in identifying microseismic eus with small
magnitudes. Time-reversal extrapolation has been prove tbe a promising
waveform-migration based method for locating earthquakesnd microseismic
events. Traditionally, only a single type of wave eld is use in this method
which may still lead to biased source locations when the maseismic data
have very low SNR.

Representation theorems indicate that both particle velotes/displacements
and their spatial gradients should be used for more accurag@ent locations. In
the acoustic case, wave elds are pressure and the spatiahdrents are related



to particle velocities, whereas in the elastic case, wavéds are particle veloci-
ties and the spatial gradient are related to rotational motn. So in this thesis,
we investigate enhanced time-reversal extrapolation bak®n representation
theorems.
The main contributions of this thesis can be summarized as:

introduce the basic theory of rotational seismology and seral possible
applications in the eld of exploration geophysics.

derive time-reversal extrapolation using acoustic and elfic representa-
tion theorems for microseismic event localization.

propose two focusing criteria based on the Hough transform dmenergy
ux to automatically determine event locations and origin imes.

propose a time-reversal extrapolation scheme based on thedel order
reduction technique to greatly speed up calculations in theld with the aim
of obtaining event locations in real time.

1.3 Thesis structure

Chapter 2 introduces the basic theory of rotational seismology, inatling
its mathematical description and physical meaning, folloed by an introduction
of current instruments that may be suitable for explorationpurpose. Theory
and measurements show that rotational rate recordings camqvide information
about the spatial gradient of particle velocities which is sually not included
in exploration geophysics. Then several applications arésdussed to illustrate
that the combination of the wave elds and their spatial gradents could improve
current seismic processing methods.

Chapter 3 derives a time reversal extrapolation scheme based on an
acoustic representation theorem which combines the pressueld and its spa-
tial gradient for microseismic event localization. The chater also provides a
theoretical proof that the proposed method can remove ghosbcuses which
normally exist if only a single type of data is used. Then a fasing criterion
based on the Hough transform is proposed to evaluate the matyde of the
back-propagated source image in order to automatically datmine the loca-



tion and origin time of each microseismic event. Two exam@ere shown to
illustrate the good performance of the proposed method.

Chapter 4 is the extension ofchapter 3 to the elastic case. We rst de-
rive a general elastic representation theorem using the sed-order wave equa-
tions in a homogeneous medium. An elastic time-reversal eapolation scheme
is constructed based on the theorem which combines both pate velocities
and rotational motions. With the new scheme, P- and S-waves rtde back-
propagated into the medium separately. We choose to simplyatk-propagate
S-wave recordings since S-waves are usually dominant in rageismic monitor-
ing. We also propose an improved focusing criterion that elveates the energy
ux of the back-propagated source image, with which the lo¢emns and origin
time are determined.

Chapter 5 introduces a real-time time-reversal extrapolation schesrbased
on model order reduction. To perform this scheme, high ddli simulation is
done rst with a pre-de ned velocity model and all resulting wave elds are
vectorized and saved into a large matrix. An adaptive randomed QR decom-
position is applied to the matrix to get an orthonormal basisvhich is used to
construct an order-reduced system. The system is small emgbuto run in real-
time, such that a complete work ow is proposed for continuaal microseismic
event localization.

Chapter 6  presents the concluding remarks of this research thesis.



Chapter 2

Tutorial on rotational

seismology and its applications

in exploration geophysics 1

Traditionally, seismological interpretations are basedrothe measurement of
only translational motions, such as particle displacementelocity and/or ac-

celeration, possibly combined with pressure changes; yéebry indicates that
rotational motions should also be observed for a complete sieiption of all

ground motions. The recent and ongoing development of rotahal sensors
renders a full analysis of both translational and rotationlground motion pos-
sible.

In this tutorial, we rst explain the basic mathematical theory related to
rotational motion. And then we brie y introduce several instuments used to
directly measure the rotational ground motion which may be @plicable for
exploration geophysics. Finally, several applications obtational motion in
exploration geophysics are introduced, namely 1) P- and Save eld separa-
tion, 2) wave eld reconstruction, 3) ground roll removal, 4 microseismic event
localization and re ection seismic migration by wave eld gtrapolation, and 5)

LA version of this chapter has been published as Li, Z. and van der Baan, M.2017,
Tutorial on rotational seismology and its applications in exploration geophysics: Geophysics,
82(5),W17-W30, doi: 10.1190/ge02016-0497.1.



moment tensor inversion. The cited research shows that in giular the infor-

mation on the spatial gradient of the wave eld obtained by rtational sensors is
bene cial for many purposes. This tutorial is meant to (1) ehance familiarity
with the concept of rotational seismology, (2) lead to addibnal applications
and (3) fast track the continued development of rotational ensors for both
global and exploration geophysical usage.

2.1 Introduction

In classical linear elastic theory, general motion of soligarticles is divided
into three kinds (Figure 2.1): pure translational motion (abng X, y, z axis),
rigid rotational motion (around x, y, z axis) and deformation (Bath, 1979, Aki
and Richards, 2002, Lee et al., 2009b). Pure translationalation and rigid
rotational motion are only related to the relative change irthe position of solid
particles, whereas deformation implies relative change ihe shape of solid
particles. Deformation is also known as strain in classicismology, including
volumetric/normal strain and symmetric shear strain; stran is the most fun-
damental component in the elastic wave equation. Particle ation includes 12
degrees of freedom, including 6 degrees of strain, 3 degrefggure translations
and 3 degrees of pure rotations. Traditional exploration g@mology studies pure
translational motion and deformation measured by three-coponent (3-C) par-
ticle displacement (velocity) sensors (geophones) and/pressure changes with
hydrophones.

In this tutorial we will use the term 'particle displacementvelocity)' sen-
sors for the traditional sensors such as geophones and seisraters following
Barak et al. (2014), instead of the term translational senss as used by Igel
et al. (2015) to di erentiate this type of sensor from rotatonal ones. The
term 'particle displacement(velocity)' sensor refers togpphones and such which
measure both translational motion and deformation (straiparound a point,
whereas the term 'translational' sensor implies only coreit shifts in positions
are captured.

The rotational motion has been theoretically discussed sia the 1950s (Lee
et al., 2009b). However, not until recently has such motion le@ measured by
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Figure 2.1: Three types of motions for solid particles in clag elasticity. a)
translational motion; b) rigid rotational motion; c) deformation. Dots: Original
body; solid line: new body shape. Only a) translational matn and c) deforma-
tion are detected by current three-component particle disacement(velocity)
sensors whereas b) rigid rotational motion is ignored.

earthquake seismologists due to the lack of rotational sems with su cient
sensitivity and bandwidth for geophysical usage (Lee et al2009b). Rota-
tional sensors have existed for at least three decades; yeeir development for
geophysical applications has been intensi ed since ringsker gyroscopes rst di-
rectly measured rotational ground motion from teleseism#cleod et al., 1998;
Pancha et al., 2000; Igel et al., 2005; Schreiber et al., 20@&nn et al., 2009;
Schreiber et al., 2009a). We will describe various existirmgnd proposed sensors
in the following sections.

In this tutorial, we introduce the concept of rotational moion and pos-
sible applications for exploration geophysics. Complem@any articles can be
found in the special issue on Rotational Seismology and Engering Appli-
cations of the Bulletin of the Seismological Society of Amea in May 2009
(Lee et al., 2009b) and the special issue on Advances in rotatal seismology:
instrumentation, theory, observations and engineering dournal of Seismology
in October 2012. A more general review in the elds of globaksmology and
engineering applications is by Igel et al. (2015).
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2.2 Rotational Motion

In classical in nitesimal elasticity, to completely desdbe particle motion, we
need translational motion, strain deformation and rigid rtation (Van Driel
et al.,, 2012). The spatial gradient of particle velocity is @nposed of strain
deformation and rigid rotation, representing particle defrmation. Traditional
three-component displacement receivers can only measuranslational motion
and strain deformation along three orthogonal directionsRigid rotation has
been ignored for a long time (Lee et al., 2009a). Recently,dldevelopment of
new instruments provides an opportunity to directly recordand study the rigid
rotational rate in vertical and horizontal directions (Leeet al., 2012). Because
rotational rate measurements also include information orhe spatial gradient
of particle velocity, it will aid in representation theorembased reverse time
extrapolation.

Figure 2.2 illustrates the distortions of a random particle dring deforma-
tion. In Figure 2.2, O is the origin. P is an arbitrary particle in the medium,
and vectorr shows the spatial position oP. Q is another particle quite close
to P, whose spatial position i + r . u describes the displacement eld. In
our notation, bold symbols indicate vectors. After in nitesmal deformation,
PY%is the nal position of P, expressed as + u(r), and Q°is the nal po-
sition of Q, expressed ag + r + u(r + r ). PM is parallel to PQ, and
there is an angle betwee®™ and P%Q° indicating a rotation occurs during
the deformation. Any distortion is liable to change the relate end position of
line-element r (Aki and Richards, 2002). If this change isr , we express the
deformation using their end pointP°and Q° as follows,

u=u(r+ r) u(r): (2.2)

Becauser isin nitesimal, we can expandu(r + r )asu(r)+( r r )u,
wherer = @@)j + @@j in the two dimensional case as in Figure 2.2, andndj are
orthogonal unit vectors. Then equation 2.1 can be simpli eds u (r r)u.
Next, according to tensor calculus of continuum mechanics @&zales and Stu-
art, 2008),(r r )u can be writtenasr +r , where and are the
strain and rotation second order tensor respectively, and= %(r u+(r u)’);
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Figure 2.2: Displacement of particle boundary under the assytion of in-
nitesimal deformations. P Q shows the original status of a particle boundary
denoted by r . r andr + r are coordinates of pointsP and Q. Point P
goes toP? after deformation denoted byu(r). Similarly, the deformation of Q
isu(r + r). PQ%denotes new status after deformationPM is parallel to
P Q. represents the boundary rotation that exists during deforiation.
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= %(r u (r u)™). Here we can see clearly the physical meaning of the
deformational change, namely as a combination of strain amdtational motion.
The rotational motion of a particle can also be expressed bje curl of the

particle displacement,

(r;t)= %r u(r;t): (2.2)

By applying a time derivative to either side of equation 2.2ywe obtain
1
—(r;t) = ér v(r;t); (2.3)

where _(r;t) is the time derivative of (r;t), also called rotation rate, and
v(r;t) = @(r;t)=@twhich is the particle velocity vector. Equation 2.3 is
important since most rotational instruments used today areneasuring rotation
rate instead of the rotation itself (Igel et al., 2007, Schieer et al., 2006).

In Cartesian (x,y,z) coordinates, the components of the rotation vector in
an unlimited medium are given by

_ 104 @y
2@y @z)’
_ 1 @u @u,.
=@z @) @4
_ 1@y @u,
== 2lex @y’

Equation 2.4 also embodies the principle of array-derivedtational seis-
mology, as the rotational motion can be computed from the spial derivatives
of the particle displacement/velocity wave eld (Suryantoet al., 2006). Anal-
ogous to equation 2.2 and 2.3, we can express the rotationabtion rate —
by simply replacing the particle displacementi with the particle velocity v in
equation 2.4.

Next we consider plane P- and S-wave propagation in a two dinganal ho-
mogeneous isotropic elastic medium (Figure 2.3). When the Pave arrives, the
particle body ABCD becomesA®B CDOdue to the wave motion. This change
can be decomposed into two parts: horizontal displacemergure translation)
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Figure 2.3: Particle motion for horizontally propagating a)P-wave and b) S-
wave. a) P-wave particle motion is composed of longitudinghere horizontal)
displacement (pure translation) and Extension (deformatin). b) S-wave parti-
cle motion is composed of transversal (here vertical) digigement (pure trans-
lation), shear strain (deformation) and rigid rotation. Dds: Original shape of
body; solid lines: New shape. Only S-waves generate rotatoaround a point.

and extension (deformation) (Figure 2.3a). No rigid rotatioroccurs for plane
P-waves in homogeneous, isotropic media. When the S-wavegess the particle
body ABCD becomesA®B T Pdue to the wave motion, which is composed
of vertical displacement (pure translation), shear straiffdeformation) and rigid
rotation (Figure 2.3b).

Following the de nition in Aldridge and Abbott (2009), the plane-harmonic-
displacement wave eldu(r;t ) at position r and time t is generally written as

rn
u(r;t) = umW(t T); (2.5)
where u is a scalar displacement amplitudem is the dimensionless unit po-
larization vector, W is the normalized waveform, with an absolute maximum
amplitude of 1, normaln contains the propagation direction of the planar wave
which travels with velocity c. The corresponding particle velocity vectow(r ;t)
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v(r;t) = umW(t %); (2.6)
whereW. = €.
It follows that the rotation rate —= %r Vv is given by
u rn
—(r;t) = —n mW(_{t —): 2.7
(= o t ) (27)

The divergencer v(r;t) associated with the plane wave is
rov(rit)= %n m W (t %): (2.8)

In a homogeneous medium, the propagation directiam of a P-wave is par-
allel to the polarizationm, som = n, andc= v,, the P-wave velocity, which
means P-waves are rotation free sinade m = 0. For S-waves, the propaga-
tion direction n is perpendicular to the particle polarizationm, son m =0
and c = vs, the S-wave velocity. In other words, for a homogeneous, tisipic,
linear elastic medium, rotational motion is entirely embeded in S-waves, which
are divergence free. These characteristics can help idénthe type of incident
elastic wave at positionr g in a homogeneous and isotropic medium (no free
surface): (1) rotation rate = 0 and divergences 0 ) incident P-wave; (2)
rotation rate 6 O and divergence = 0) incident S-wave. This is important
because theoretically translational motion is not detecteby rotational sensors
as shown next, indicating a natural separation between P- dnS-waves in an
isotropic, homogeneous medium. The separation of S and P wawalso works
in heterogeneous isotropic media.

We create a synthetic example to illustrate di erences beteen particle dis-
placement and rotational motion from a single point sourceoasisting of a
force applied in thex-direction. Synthetic sections are computed using a 2D
staggered-grid nite di erence algorithm (Pitarka, 1999) We use a homoge-
neous velocity model with a P- and S-wave velocity of respaeatly 5525m/s and
3320m/s. The source is a Ricker wavelet with a 30 Hz dominant freency.
Figure 2.4 is the snapshot of the x and z components of particlelocity as
measured on conventional geophones as well as particle timtaal rate at 0.2
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Figure 2.4: Wave propagations due to a single force in thedirection in a
homogeneous, isotropic medium. Snapshots at time = 0.2s f@) x- and (b)
z-components of particle velocity wave elds and (c) rotatioal rate wave eld
along the y-direction. Star: source (point force in thex-direction). Both P-
and S-wave are shown on a) and b), whereas only the S-wave isible in c),
indicating that displacement sensors record both P- and Sawes but rotational
sensors are insensitive to P-waves in this medium.

second. We see both P- and S-waves in the particle velocityagishots, whereas
there are only S-waves in the rotational rates. The waveformi erences be-

tween the particle velocity wave elds (Figure 2.4a,b) and th rotational rates

(Figure 2.4c) re ect the fact that rotational motion incorporates information

from the spatial gradients of the displacement wave elds.

The above example is mainly for conceptual illustration ogl In reality, the
underground medium always has properties of heterogene#gd/or anisotropy,
which shows complex behavior in the generation of particl®tational motion
(Pham et al., 2010; Van Driel et al., 2012). In general anisapic P-waves
generate rotational particle motions due to the non-orthagnality of the po-
larization direction n of quasi-P-wave (qP-wave) and the wave propagation
direction m (Crampin, 1981; Pham et al., 2010). Moreover, rotational ntmn
may also be associated with an incident P-wave due to strarptation coupling
caused by strong near-surface heterogeneity and topogrgpfvan Driel et al.,
2012).

2.2.1 Rotation related to the free surface

Broadly speaking free-surface related rotational motionsan be divided into
those associated with surface waves and those due to incidand converted
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body waves.

Surface waves

Surface waves include Love and Rayleigh waves. A Love wavegigneral is an
SH wave type with particle motions perpendicular to the proggation direction
in a horizontal plane. The particle motion of a Love wave oftedecrease rapidly
with increasing depth. Love waves contribute to rotationamotions around a
vertical axis in spherically or strati ed media.

Rayleigh wave motion needs additional clari cation, becae its particle
motion is the superposition of elliptical motion and rigidbody rotational mo-
tion, the latter of which is ignored in the classical de niton. For instance,
when a Rayleigh wave impinges on a patrticle, it will cause thgarticle to both
rotate (spin) around its center of mass due to particle deforation as well as
orbit along an elliptical path around its original location (Shearer, 2009). It
is the rigid-body rotation that is responsible for the horinntal components of
recorded rotational motion, rather than the elliptical motion (Lin et al., 2011).
We illustrate the di erences between elliptical particle notion and rotational
motion using a Ferris wheel analogy. Each cabin is orbitindang the red dotted
circle without self-spinning (Figure 2.5). No rotational sigal will be detected
if we place a rotational sensor in the cabin; yet the cabins gplay elliptical
motion since they circulate around a point. The motion of edcspoke consists
of two parts: self-rotation around its internal centreH and elliptical motion
around the centre of the Ferris wheeD. Both motions have the same velocity.
Self-rotation is characteristic of a rotational signal whih will be detected if
a rotational sensor is attached to the spoke. For example, ghmotion of the
spokeOB may be interpreted as an elliptical motion of angle; around centre
O followed by a self-rotation of angle , around internal centreH, where ;
equals ».

It has been shown that, in case of strong or near- eld earthgkes, particle
displacement measurements from three-component seismoeng may be con-
taminated by rotational motion, in particular tilt, linked to surface waves (lgel
et al., 2005; Lin et al., 2011) which must be removed, prior tudicious analy-
sis. In exploration geophysical applications, tilt and raitional contamination
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of displacement measurements is unlikely to be an issue; yaeasurement of
rotational motion associated with surface waves may faddite ground roll re-
moval, as will be shown later.

Body waves

Rotational motion can also be caused by both P- and S-wavespinging and
then converting at the free surface. Here we give a simple dation of rota-
tional motion generated by an incident plane P- or S-wave nethe elastic free
surface. This is important for seismic interpretation. As sbwn in gure 2.6a,
PP and PS conversions exist on the free surface in the incidéwave scenario.
An arbitrary particle A is right below the free surface where lte up-going and
down-going plane waves interfere. Then the complete parecvelocity of parti-
cle A is a combination of both the up- and down-going plane Pawves and the
down-going converted S-wave, expressed as

Ve(r;t)=vp (r;t)+ ve«(r;t)+ vs. (r;t)

Up rn, Upr rng
= P2 p Wt —P)+ P prw(t
Vpp ( v ) Vpp ( ) (2.9)
+
P S grwe Dy,

where superscript represents the up-going wave; superscript + represents the
down-going wavep and s are P-wave and S-wave polarization vectors respec-
tively, previously denoted by polarization vectorm in equation 2.6, andn is
propagation direction; the downgoing scalar displacemeaimplitude u,+ and
Us+ equal the multiplication of the upgoing scalar displacemém@amplitude u,

and corresponding PP and PS re ection coe cientsRp, and Ry, respectively.
On the right hand side, the rst two terms represent up-going ad down-going
P-waves, satisfying the relationshipp = n, and p* = ng respectively,
whereas the third term satis ess® n{ = 0, representing the down-going S-
wave. Combining these relationships with equation 2.7 andé de nition of

rotational rate, we write the rotation rate — of the particle A as
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Figure 2.5: A sketch of a Ferris wheel to illustrate the di erace between
an elliptical motion and a rigid-body rotation. Cabins moveclockwise from
location A to C along the red dotted path. Large red dot: center of the cabin.
The cabins display elliptical motion but are rotation free gce up is always
up. Because the Ferris wheel forms a ring, the path of the calsi is also
circular. O is the centre of the motion path of the spokedH is the centre of a
spoke, denoted by a black dot. The center point H of the spokesglays both
self-rotation and elliptical motion. Black dotted half circle: elliptical motion
path around centreO. Black dashed lines: spoke locations after motion.;:
elliptical motion angle. ,: self-rotation angle. In a similar fashion, P-waves
can display elliptical polarizations but are rotation free whereas S-waves can
have both. see also Figure 2.3.
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where the particle rotational motion generated by the incidnt P-wave on the

free surface comes from P-to-S-wave conversion.

Similarlye can get the

particle rotational motion by an incident S-wave on the freesurface, given by

Us
— (r;t)= =—n s W(t
S 2Vs s
Ug+ r nt
+ >n!f  sTW(t 5)
S S
Ug rng
= n s Wit ———
2Vs S ( Vs )

r

ng Up+

)+ n' TWL(t ' np)
Vs v, P P Vp
(2.11)
Us+ + r n; .
+ —n sTW(t :
2VS S ( Vs )

where the particle rotational motion generated by the incidnt S-wave on the

free surface comes from the superposition of incident and eeted S-waves.

Equations 2.10 and 2.11 imply that both incident P- and S-waas are able to

generate rotational motions which are detectable by rotathal sensors.

Rotational motion right on the free surface is a special casince the zero

traction boundary condition needs to be ful lled. Assuming ahomogeneous

and isotropic medium, we have the following free surface bmdary condition

(Cochard et al., 2006),

Then, from equation —= 1r

@y_ ou
@z @y 212
eu_ @u (242
@z @X

v, the rotation rate vector becomes
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Figure 2.6: Incident P- and S-waves and their correspondingeé-surface re-
ections for illustration of a particle's rotational motion near the free surface.
Horizontal solid lines indicates free surface. Black boxes &n arbitrary particle
at a depth (denoted by dashed line) right below the free surda. a) Up-going
P-wave (P ) and re ected down-going P-wave P*) and S-wave §"). In this
case, rotations are due to re ected down-going S-wav&¥). b) Up-going S-
wave (S ) and re ected down-going S-wave $") and P-waveP ™). In this
case, rotations are due to the superposition of the upS() and down-going
(S*) S-waves.

_ @y
@y.

4= Gy (2.13)
- 1@y @y,
-z = 2 @X @ )

where the horizontal components of rotational motion on théree surface di-
rectly represent the spatial gradient of vertical displagaent in the horizontal
directions. A similar relationship can be obtained for rotkonal displacement
by replacing rotational rate _and particle velocity v with rotational displace-
ment and particle displacement u in equation 2.13. This equation is impor-
tant for the application of wave eld interpolation or recorstruction which is
introduced in a later section.

In reality, both rotational rate and particle velocity sen®rs are normally
shallowly buried to be better coupled with the ground. We the can approxi-
mate —, and —, in equation 2.13 using the recorded particle velocities agsing
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that the buried sensors are adjacent to the free surface.

2.3 Acquisition

In this section we brie y describe several portable rotatio sensors with possi-
bilities for exploration geophysical usage. More detaile@view and references
about other existing instruments for global seismologicglurpose, such as the
ring laser gyroscope can be found in Igel et al. (2015). Infoation on detailed
laboratory and eld testing of several commercial rotatioal sensors can be
found in Nigbor et al. (2009) and Lee et al. (2012).

2.3.1 Fiber optic gyroscope

Fiber optic gyroscopes are widely applied in navigation andontrol of mis-
siles, planes, submarines and unmanned underwater vehscéince they measure
pitch, roll and yaw. They are based on the Sagnac e ect, wheteo beams of
light traveling in an enclosed ber-optic loop in opposite dections display in-
terference phenomena. When there are rotational motions, @be changes and
beat frequencies can be observed between two counter progagy light beams.
The phase shift is proportional to the rotation rate. The egipment sensitivity
can be improved by increasing the number of loops (Schreibet al., 2009Db).
Also three ber optic gyroscopes can be assembled togethethvwerpendicular
normal vectors, to create a three-component sensor, measgrrotation rate in
all directions (Velikoseltsev et al., 2012).

Many eld and laboratory tests have shown the ability of ber optic gyro-
scope in measuring ground rotations with high sensitivitywide bandwidth and
good stability (Schreiber et al., 2009b; Jaroszewicz et a012; Kurzych et al.,
2014). Igel et al. (2015) note that a high performance ber dg gyroscope
has a resolution ranging from 4 10 © to 0.004 rad/s with a bandwidth from
0.01 to 500 Hz. Bernauer et al. (2016) introduces a single coomgnt commer-
cial rotational sensor based on an interferometric ber-dg gyroscope (IFOG).
They show the feasibility of application of this sensor forngloration purposes,
due to its portability, low power consumption, good time steping stability
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and wide dynamic range. With such encouraging test resultsevare expecting
a real application of ber optic rotational sensors for exmration geophysics in
a near future.

2.3.2 Electrokinetic sensor

The Electrokinetic sensor is the most widely deployed rotatnal sensor in the
eld (Kozlov et al. (2006), Pierson et al., 2016). This type bsensor is based on
the molecular-electronic transfer (MET) technique, whictconstitutes a hollow
toroidal dielectric tube fully lled with an electrolyte solution and a conversion
cell assembled inside the tube where the solution can freqigss. A voltage
di erence is applied to the conversion cell to generate a e¥ence electrical
current in the solution. An external angular acceleration vl generate a con-
vection ow in the tube which leads to a variation of electrial current through
the conversion cell. Eventually a voltage change is measdrand transformed
proportionally into the angular acceleration. More techrdgal details including
descriptions of eld testing are given by Lee et al. (2012), gorov et al. (2015)
and Zaitsev et al. (2015).

However, drawbacks are their strong dependency on tempereguBernauer
et al., 2012; Lee et al., 2012) and wide variations betweendigidual sensors
(Pierson et al., 2016).

2.3.3 Magnetohydrodynamic sensor

The Magnetohydrodynamic sensor is another promising rotainal sensor for
seismic eld applications. These types of sensors geneyationsist of a con-
ductive liquid in a ring or cylindrical shell, with a static magnetic eld applied
along the axis of symmetry. When there is rotational motion onhe ground,
the sensor rotates and the conductive liquid move in the sheklative to the
magnetic eld due to inertia. A current is then generated in he uid, whose
potential is proportional to the rotation rate. Three-compnent sensors consist
of three orthogonal rings measuring ground rotation in thre directions. More
technical details including descriptions of eld testing an be found in Pierson
et al. (2016).
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The size of a magnetohydrodynamic sensor is generally of theer of ten
centimeters depending on the manufacturer, which is similéo the ber-optic
gyroscope (Pierson et al., 2016). Also, the power consumptics low (Pierson
et al., 2016). These features make them attractive for apphtions in explo-
ration seismology.

2.3.4 Magnetometer

Barak et al. (2015) proposed that rotational data can be dered from Induction-
Coil Magnetometer (ICM) recordings. The initial conceptuéidea is by Kappler
et al. (2006) to explain the coseismic signal detected by theectromagnetic
components due to ground rotations. The basic idea is whenrde orthogo-
nal ICMs are rotating as a result of an incident seismic wavehe projection
of the local Earth's magnetic eld on the three components dfiCMs change,
resulting in a change of ux through the coils and consequedgtthe generation
of a current. Copper wire is wound around a magnetically pemable core in
ICMs. Barak et al. (2015) compute the associated ground rdtans then from
the measured current and found a good match between deriveatations and
measured rotations by a rotational sensor.

Their results are encouraging. However, the method is conidibal to sta-
tionary magnetic eld during experiments.

2.3.5 Microelectromechanical gyroscope

The microelectromechanical gyroscope, known as MEMS gytoge, is based
on measuring Coriolis acceleration (Allen, 2009). This tenigque has been
widely used in civilian purposes, such as mobile phone gegtuecognition (Li
et al., 2013), automotive crash detection (Mizuno et al., B®) and hard-drive
read-write heads localization (Gola et al., 2003).

The small size, low cost and power consumption of the MEMS gscope
also make them strong candidates for seismic applicatiorni3:ALessandro et al.
(2014) build a seismic network of densely distributed stains in urban area,
where each station is a combination of a capacitive accelareter, a MEMS
gyroscope and a magnetometer, all tri-axial. Using this netwk, they success-
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fully recorded the rotational and the translational motionsimultaneously from
a moderate-magnitude earthquake. Furthermore, D'ALessamd and A'Anna

(2014) retrieve the orientations of ocean bottom seismonst and downhole
seismic sensors by directly measuring the rotational diggements using in-
tegrated low cost MEMS gyroscopes. The above two applicati® are both

based on strong rotational motions. Exploration geophys¢ however, requires
MEMS gyroscopes with much higher sensitivity to in nitesinal deformations.
Projetti et al. (2014) develop a prototype of a new capacitey MEMS rotation

sensor (R-MEMS) with low self-noise and high bandwidth whiccan be used
for hydrocarbon-related applications.

2.3.6 Array derived rotations

Seismologists also use arrays of traditional translatiohaeismometers to derive
rotational signals (Huang, 2003). This is clearly also an ojoin for applied geo-
physical applications. In practice, a nite di erencing mehod is applied to cal-

culate ground rotation from particle displacement measuneents (Brokevsova
et al., 2012; Lin et al., 2012). The second order approximat of the relation-

ship —= 3r  v(r) is often used, given by

~(%y;2) % vy * dTy;Z)d v:(6y 312 wxyiz+ %Z)d wxyiz %)
y z

oy LMYz E) wyiz F) v+ Fiyid) vax  Fvi2)
-y 1 Y 2 dz dx

Loyiz) LW Zvid wix Sivid) wley+ §i2) wixy  342)
2 dx dy

(2.14)

where ;y;z) is the spatial coordinate;dx, dy and dz are spatial intervals
between adjacent seismometers in each axis. A conceptuastmmment has
been built according to Equation 2.14, consisting of 6 paicf single-component
geophones. Rotational motion is then computed by di erenog the recordings
from each pair of geophones (Brokevsova et al., 2012). ltzesiof roughly a
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cubic foot excludes commercial use.

Better approximations may be obtained by two enhanced apgftions of
equation 2.14, namely 1) higher-order nite di erence to— = %r v(r), or
2) an L2 norm inversion based approach, called the Seismodetic method
(Spudich et al., 1995).

However, the nite di erencing approach sometimes faces sacritical chal-
lenges (Cochard et al., 2006). For example, strain-rotatiocoupling is a signi -
cant nonlinear e ect due to strong near-surface heterogeities and topography
near the array area (Van Driel et al., 2012). Array derived rations in this
case are linear approximations of the true rotational motiowith possibly large
error (Spudich et al., 1995). Another problem comes from ne@€ontamination.
Suryanto et al. (2006) rst compared array-derived rotatims with direct mea-
surements from a ring laser gyroscope. They nd that even lolevels of noise
may considerably in uence the accuracy of the array-derigerotations when
the minimum requirement of three 3-component sensors is okeed. Increasing
the number of particle displacement(velocity) sensors eahces the accuracy,
but also the cost, in particular since the distance betweeré sensors has to be
considerably smaller than the smallest wavelengths to prent spatial aliasing.

Muyzert et al. (2012) conduct a small eld test using severdtlectrokinetic
rotational sensors and an array of densely distributed gelpnes installed on a
free surface. A relatively good match is shown in gure 2.7 beeen the directly
measured horizontal rotation rate using the rotational sesors (black traces)
and the approximated horizontal spatial gradient (blue traes) by di erencing
the vertical displacements between two adjacent geophonfesm the eld test.
The result con rms that on the free surface the horizontal rtation rate equals
the spatial gradient of the vertical displacement in the harontal direction, as
shown in equation 2.13.
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Figure 2.7: Comparison betweer-component rotation rate data on the surface
obtained from rotational sensors (black traces) and the spal gradient in the
x-direction of the wave eld recorded byz-component velocity sensors (blue
traces). A time-squared gain has been applied for visual cparison (Muyzert
et al., 2012). A good match exists between the directly measa rotations
and reconstructed spatial gradients, indicating that on tk free surface the
horizontal rotation rate can be approximated by the spatialgradient of the
vertical particle velocity.
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2.4 Possible applications in exploration geo-

physics

2.4.1 Collocated observations of rotations and displace-
ments

Traditionally, geophysicists use spatially-distributedarrays of three-component
sensors measuring particle velocity or acceleration to éetmine wave eld char-
acteristics such as type (body or surface wave), propagatiairections and ap-
parent or true velocities (Figure 2.8a). These sensors meesthe wave eld but
not its spatial derivatives. The latter may be approximatedrom the di erences
between individual sensors.

However, various investigations demonstrate the possilyliof a collocated
observations of rotations and displacements fsicomponent sensor) as in Fig-
ure 2.8b, and compare predictions with eld data (Igel et a).2005; Aldridge
and Abbott, 2009). They show that a combination of a three-coponent parti-
cle velocity seismometer and a three-component rotationsénsor in one single
point receiver is su cient to measure the full wave eld and ts spatial gradi-
ents. The back-azimuth and the S-wave phase velocity can thée accurately
calculated even with only one si-component sensor under the assumption of
incident plane waves. Collocated displacement and rotatial sensors can thus
be used for natural separation of P- and S-waves.

The six-component sensor is thus the most elegant solution to capéuthe
full wave eld and its spatial derivatives; yet no such sengoexists currently.
The premise of recording the wave eld and its spatial gradmgs is the basis for
most following applications.

2.4.2 Seismic wave eld interpolation

One important application of rotational seismology is sefsic trace interpola-
tion in order to remove spatial aliasing. In marine and landessmic acquisition,
strong aliasing arises due to a limited number of sensors arde spatial sep-
aration between cables or nodes. If the sampling interval larger than the
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Figure 2.8: Comparison of (a) a circular array (centered aty) of 3-component
seismometers with (b) a 'point seismic array' consisting @ 3-component dis-
placement sensor co-located with a 3-component rotations¢énsor at position
re. Atrain of plane seismic wave fronts propagates with speedrcthe direction
of unit vector n. Measurement of rotation vectorw (r g;t) identi es the type
(P and S) of the incident wave. A single 6-component sensorrcdetermine
the back-azimuth and the S-wave phase velocity which traddnally requires
measurements by a circular array of 3-component seismonrste

spatial Nyquist interval, aliased replicas of the original ignal are generated.
Superposition of replicas may appear more than once, gerterg rst-order or
higher order aliasing. First-order aliasing means superptisn of the original
signal and one replica; in higher-order aliasing multipleeplicas are superposed.
The amount of aliasing is determined by the incident wave fgeiency and the
sampling wavenumber. For a xed sampling wavenumber, the iaking order
increases with increasing incident wave frequency.

In order to remove aliasing, Linden (1959) proposed a multiannel sam-
pling theorem using the recorded signal and its derivativeotinterpolate the
wave eld. Although originally proposed for signal interpadtion in the time
domain, it can also be used for spatial interpolation (Vas#ia et al., 2010,
Muyzert et al., 2012). Rotational sensors can provide suclpatial derivatives
as they measure the curl of the wave eld.

Vassallo et al. (2010) propose a gradient-based interpalat method for
multicomponent data, speci cally for marine seismic acqaition. The basic
idea is that the whole multichannel wave eld and its derivaives are considered
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a linear combination of continuous functions of space and wanumber. Next
they determine the dominant basis functions iteratively with are then used
for wave eld reconstruction at any point in space and time. n each itera-
tion, a new dominant function is determined through minimiation of weighted
combination of the residual data signals and their gradiesf which are then
added to the previous iteration, and so on. When the energy ofie¢ residuals
is su ciently reduced, the iterations are ended. This way, acombination of
continuous functions is determined which is used for wave Iereconstruction.
In their implementation, no rotation sensors are used to gehe derivatives.
The derivatives are obtained from di erentiation between imgle sensors.

Muyzert et al. (2012) show the feasibility of using rotatiorsensors for inter-
polation of elastic land data. The basic idea of their methow that inthe f  k
domain, the measured vertical component of wave eld and spal derivative
with respect to the x direction are the linear sum of the aliaad and nona-
liased wave elds, denoted by, and un,. A linear inversion then solves for the
aliased and non-aliased wave elds. They demonstrate thahé combination of
the wave eld and its spatial derivative allows for reconsuiction of the non-
aliased wave eld up to twice the geophone spacing applicabto non-gradient
based wave eld interpolation methods. An example is given iNuyzert et al.
(2012) (Figure 2.9). In their example, originally the datass are aliased due
to sparse spatial sampling (Figure 2.9a and b). After combinghwith spatial
derivative recordings, nonaliased wave elds are obtainedith the help of the
interpolation method (Figure 2.9c).

2.4.3 Ground roll removal

In exploration geophysics, ground roll is the general namerfboth Rayleigh and
Love waves which exist in almost all land datasets. These wes/travel along
the free surface and hold limited information on the reseruo Ground roll is
considered as noise in re ection seismology, since it does gontain informa-
tion regarding the deep subsurface. Part of the standard seinic processing
ow is to remove it. Two di erent approaches involving rotational recordings
for ground roll removal are proposed by Edme et al. (2013) arf8larak et al.

31



Figure 2.9: (a) and (b) Thef k spectra with strong aliasing for the wave eld
v, and its spatial derivative with respect to the x direction. § Thef k spectra
after dealiasing. (Muyzert et al., 2012). By combining theacorded wave eld
and its spatial derivative, spatial aliasing is greatly redced. Red circles show
remaining aliased signal. Note extended wavenumber scale foterpolated

wave eld v,.
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(2014).

Edme and Muyzert (2013) derive from equation 2.13 and verifysing eld
data that on the free surface, recordings of horizontal rot@nal rate can be
approximated by the slowness-scaled vertical componentgarticle acceleration
recordings, as

_ _ @y
-~ = pyAz = _@y, (2.15)
_ _ @y '
5= PA=

wherep, = @t=@>nd p, = @+=@yare the local horizontal slownesses artgl
is the travel time of the surface wave under consideratio®, = @Y=@t is the
vertical component of acceleration. Equation 2.15 impliethat slowly propa-
gating waves (typically ground rolls), are ampli ed wherea fast propagating
waves (typically body waves) are weakened in rotational readings. Thus the
derived horizontal rotational data provide a noise model fothe ground roll
(Edme and Muyzert, 2014). Then the ground roll is removed bysing an
adaptive subtraction of the noise model from the vertical coponent geophone
data. A real data example is shown in Figure 2.10, where groumndll removal is
clearly visible by comparing datasets before and after apphg their proposed
method (Edme et al., 2013).

Barak et al. (2014) use a di erent approach. They select a pton of the
six-component data that contain ground roll energy. They use rsgular value
decomposition to identify the 6C polarization of the groundoll, and then
search for similar polarizations in the entire dataset. Wher the data have
similar polarization to the ground roll, the rst eigenimage is weighted down.
This results in an attenuation of the ground roll energy on &kix components.

2.4.4 Time-reversal extrapolation

Wave eld extrapolation is a fundamental step of many wave egtion based
migration algorithms. The inclusion of both the wave eld anl its spatial gra-

dients holds promise for both re ection seismic imaging asell as microseismic
imaging (Li and Van der Baan, 2016, Vasconcelos, 2013).
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Figure 2.10: Comparison of real data before and after groumdH removal.

(a) Real data acquired in United Arab Emirates before groundetl removal.

Ground-roll denoted by the area within the two red lines, whah is a low-
velocity, low-frequency and high-amplitude coherent nagsgenerated by sur-
face waves. (b) With the use of rotational motion information ground-roll is
removed signi cantly. (Edme et al., 2013).
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Event localization is a fundamental step in microseismic nn¢toring. Broadly
speaking, event localization methods can be categorizedoitwo types: travel-
time based and migration based methods. The travel-time bad localization
methods require event picking, which can often be challemg for low quality
data. Migration based methods avoid picking by backward ppagating the
microseismic energy to the hypocentre location.

Reverse time migration (Whitmore, 1983, McMechan, 1983) cdoe used for
microseismic source localization by extrapolating the obs/ed three-component
particle displacement/velocity eld back in time using thewave equation. Even-
tually, the backward propagating energy will collapse at te source location
assuming the velocity model is accurate. Li and Van der Baar2@Q16) demon-
strate that using the combination of the wave eld and its sp#al gradient
enhances quality of the location images by suppressing femg artefacts. For
acoustic wave eld imaging this is achieved by using both pssure (hydrophone)
and particle-velocity data (Li and Van der Baan, 2016), whexas both particle-
velocity and rotational sensors are used for elastic wavéceimaging (Li and
Van der Baan, 2015). Figure 2.11 is an acoustic example in a hogeneous
medium comparing the event localization image for three datcombinations,
all with strong noise contaminations. Estimated source lation is selected us-
ing a maximum magnitude criterion. When we use only one type afata, a
ghost event appears on the extrapolated source image (foligspoints on the
left in Figure 2.11a,b), due to the lack of directivity of seisiic wave equations.
Only the true event location remains present when combiningoth pressure
and particle velocity recordings (Figure 2.11c). Moreovethe estimated source
location is the same as the true source location when usingth@ressure and
its spatial gradient (right panel in Figure 2.11c), whereashe estimated loca-
tion is away from the true location when either pressure orstspatial gradient
is used (right panels in Figure 2.11a and b). This demonstragehat the source
localization based on the combination of both pressure ant igradient is more
stable than the one using only a single type of data. Althougheir work deals
explicitly with microseismic event localization, the inalision of spatial gradient
information is likely to enhance the performance of wave-agtion based re ec-
tion imaging too, for instance, by reducing the in uence ofgatial aliasing or
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aperture-related artefacts.

2.4.5 Moment tensor inversion

Seismic moment tensor is a useful mathematical tool to re@ment a seismic
point source (Aki and Richards, 2002). The point source is anspli cation
of a seismic event, such as an earthquake due to natural fradhg (Jost and
Herrmann, 1989) or microseismicity due to human activitiesHyre and Van der
Baan, 2015). The seismic moment tensor is written as

0 1
MXX MXy MXZ
MZX sz MZZ

where each element is a force couple used to describe the seunechanism.
The diagonal elements represent normal strain changes wbas the o -diagonal
elements represent shear strain changes. Each pair of oagonal elementdv;;
and M;; (i, ] = x;y;zandi 6 j) form balanced double-couples. The moment
tensor can help seismologists understand the seismic everdgnitude, fracture
type and fracture orientation (Jost and Herrmann, 1989, Eyre ahVan der
Baan, 2015).

Traditionally, moment tensor inversion is performed usingarticle displace-
ment recordings from an array of sensors on the surface oride boreholes,
according to equation 5 in Jost and Herrmann (1989)

Oa(r;t) = Mpq [@Grp(r;t) s(B)]; (2.17)

where the Einstein convention is used of summation over regted indices;
d.(r;t) is the n-component of the particle displacement recordings from &+
ceiver located atr ; Mg is a scalar form of the moment tensoiG,,.4(r ; t) is the
scalar form of the spatial gradient of thex-component of the Green's function of
either body waves or surface waves(t) is a wavelet in time domain; denotes
the temporal convolution. Traditional Moment tensor invesion often su ers
from some critical problems, such as the lack of an accuratelocity model, a
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Figure 2.11: Comparison of the event image obtained by timewersal extrap-
olation of three data combinations, namely pressure recongs only, particle

velocity recordings only and both pressure and particle \atity recordings (gra-
dient). Small black dots in right column shows true microssemic event location.
Hot colors are high amplitudes. Estimated and true event lotians are denoted
using the white arrows. With either (a) pressure or (b) spatiagradient only,

back-propagated energy focuses at both ghost (left mostdis) and near true
locations (right most circles). (c) With the combination of pessure and spatial
gradient data, the ghost event is canceled and the estimatezlent location
coincides with the true location.
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sparse distribution of sensors with limited coverage and tegmely low SNR es-
pecially for surface-array recorded microseismicity. Allhiese problems lead to
the non-unigueness and inaccuracy in inverted source menfsms (Bernauer
et al., 2014). Study shows that a joint inversion of rotatioal and particle

displacement data can better constrain earthquake momenensor solutions
(Bernauer et al., 2014; Donner et al., 2016; Reinwald et ak016).

Bernauer et al. (2014) compare the results using two combimnans of syn-
thetic recordings in a Bayesian probabilistic nite sourcenversion, namely 1)
20 stations of particle velocity recordings only; 2) ten pécle velocity and
ten rotational recordings at the same locations as before. h&y found that
the source properties are much better constrained when ugiboth rotational
and particle velocity data. Similarly, Donner et al. (2016)get an improved
estimation of moment tensors and centroid depth for a shallg medium-sized
strike-slip earthquake at a regional distance using the cdmmation of particle
velocity and rotational recordings of surface waves, comeal to results using
particle velocity recordings only.

The bene t from adding rotational recordings can be shown bg rotational
moment tensor relationship, derived by taking half the curlof the equation
2.17, given by

(10 = Mol 1ka @@Gip(r0) S (2.18)

where ((r;t) is the [-component of rotational recordings. This equation could
be used as an extra constraint in the moment tensor inversiamcluding the ro-
tational motions. On the free surface, the spatial gradienbformation provided
by rotational recordings, which cannot be directly obtaine from traditional 3-
C displacement recordings (Bernauer et al., 2012), are adt® the traditional
moment tensor inversion as new a priori, with which an imprad result can
be expected.

2.4.6 Other possible applications

Another intriguing application may be in vertical seismic po le (VSP) data
that are not acquired on the free surface or seabed. Pham et é1010) demon-
strate theoretically and numerically, that rotational motions of gP-waves in
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homogeneous anisotropic elastic media can be signi canthieh could be used
to extract these rock properties. They compute maximum peatotation rates
as a function of Thomsen parameters and (Thomsen, 1986), and nd a
general trend in that the peak qP rotation rates are higher wit increasing
values of and . It is especially worth mentioning that the rotation rates
simulated under two realistic scenarios, namely (1) a madgade O microseismic
event at a 1km hypocenter distance and (2) a magnitude 7.0 ¢agquake at a
100km epicenter (Figure 2.13), indicate that the gP rotatiomates even in weak
anisotropic materials are in the order of rad/s, which are signi cant enough to
be detected by current instruments (Bernauer et al., 2009, &sermann et al.,
2009). The possibility of using qS-waves to constrain the Bimsen parameter
is also of interest (J. Gaiser, personal communication, 2016

Moreover, numerical tests show that rotational motion is &lo subject to am-
plitude variations with o set (AVO), as shown in Figure 2.12 ©. F. Aldridge,
personal communication, 2016). The model is a 25m thick sastdne with 25%
porosity, saturated with di erent percentages ofCO,. When increasing the
content of CO, from 25% (Figure 2.12a) to 75% (Figure 2.12b), di erences in
AVO response increase signi cantly emphasized by the reddes in the gure.
These numerical results imply that rotational AVO may hold sibstantial infor-
mation on the subsurface geological properties which suppients traditional
displacement based AVO analysis.

Finally, readers are referred to a review paper by Igel et al2Q15) for some
other seismological and engineering applications, inclingd velocity tomography
and structure response to strong earthquakes.

2.5 Discussion

All of the measurements mentioned in this tutorial can be intgreted by linear
elasticity under assumption of in nitesimal strain (Igel & al., 2015), which is
justi ed in exploration geophysics. However, the assumptio of in nitesimal
strain may not be valid for the source area of a large earthgka or a medium
with microstructure (Lee et al., 2009b; Igel et al., 2015). nl these cases, the
micropolar elasticity is introduced for a more accurate desgption of particle
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Figure 2.12: Amplitude di erences of rotational recordings ary with o set
due to variations in CO, content. Red circles emphasize signi cant amplitude
changes. Top: 25%C0O,. Bottom: 75% CO,. (personal communication with
D. F. Aldridge, 2016)
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Figure 2.13: The maximum peak rotation rate caused by gP-wasen a full
space Tl medium as a function of the Thomsen parametersand . Every
point in the plot depicts the maximum gP rotation rate among & propagation
directions for a given combination of and . a) A magnitude O reservoir
microseismic event at 1km hypocenter distance: maximum peegotation rate.
Vertical P velocity = 3928m/s, vertical S velocity = 2055 m/s and =
2590kg=n? , b) a magnitude 7.0 earthquake at 100km epicenter: P velogit
= 6600m/s, vertical S velocity = 3700m/s and = 2900kg=m?. Both cases
are in order of 10° rad/s.

motion, though no recordings have seen this kind of motiondel et al., 2015).
In this tutorial, we mainly focus on the linear elasticity whch su ces for explo-
ration geophysics. For readers interested in the micropol&lasticity we refer
to Pujol (2009); Kulesh (2009); Grekova et al. (2009); Greka (2012); Lakes
(1995).

The contribution to the improvement of current exploration geophysical
methods from the measurement of rotational motion is mainlgue to the in-
formation of the spatial gradient of the particle displacerant eld.

Currently rotational sensors are not a proven technology @nmany sensors
are still in a development phase. We thus anticipate that the sensitivity,
recording quality, bandwidth and robustness will be enhamd substantially.
We thus refrain from comparing and contrasting individual ensor technologies.
Interested readers are referred to Bernauer et al. (2012)hieh introduces a
detailed comparison of several rotational sensors.

Likewise, the above tutorial shows only some of the possiblemications
of rotational sensors in exploration geophysics. We antpate that many more
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will be found.

2.6 Conclusion

In classic elasticity, twelve degrees of freedom are neededully describe the
motion of an elastic body in a 3D world - six degrees of straithiree degrees
of linear motions and three degrees of rotations. Current nitcomponent
recording systems measure particle velocity/acceleraticonly, which only in-
cludes information on strain and linear motions. Rotationdiave mainly been
ignored for a long time, despite the fact that they contain a ealth of informa-
tion, in particular on the gradient of particle displacemenwave elds.

In this paper we describe a select few possible applicatipnamely wave eld
reconstruction, ground roll removal, source imaging, mometensor inversion,
VSP analysis and rotational AVO. Nonetheless we are con denhat there are
many other applications of the rotational sensor waiting tde discovered.
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Chapter 3

Acoustic time reversal

extrapolation using pressure and

particle velocities 1

Traditional ray-based methods for microseismic event lozation require pick-
ing of P- and S-wave rst arrivals, which is often time consuing. Polarization
analysis for each event is often also needed to determine aissolute location.
Location methods based on reverse time extrapolation avaide need for rst-
arrival time picking. Traditional reverse time extrapolaion only incorporates
particle velocity or displacement wave elds. This is an inamplete approxima-
tion of the acoustic representation theorem, which leads totefacts in the back-
propagation process. For instance, if the incomplete apptimnation is used
for microseismic event locations using three-componentiehole recordings, it
produces a ghost event on the opposite side of the well, whielads to ambigu-
ous interpretations. We propose representation-theorebased reverse time
extrapolation for microseismic event localization, comhing both the three-
component particle velocities (displacements) and the psure wave eld. The
unwanted ghost location is removed by explicitly incorpoting both a wave-

LA version of this chapter has been published as Li, Z. and van der Baan, M.2016,
Microseismic event localization by acoustic time reversal extrapolabn, Geophysics, 81(3),
KS123-KS134, doi: 10.1190/ge02015-0300.1.
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eld and its spatial derivative. Moreover, polarization aralysis is not needed,
because wave elds will focus at its absolute location durgnback-propagation.
Determination of microseismic event locations using waveld extrapolation

also necessitates a robust focusing criterion. The Hough tisform allows for
accurate determination of source timing and location by suming wavefront
energy in the time-space domain. Synthetic examples demtmase the good
performance of the wave eld extrapolation scheme and fodng criterion in

complex velocity elds for borehole acquisition geometrse

3.1 Introduction

Generally, microseismic event localization methods are tegorized into two
types: travel-time based and migration based methods. Therst method
requires accurately picking P- and S-wave arrivals beforarther processing.
However, event picking can often be a challenging and timersuming task for
low quality data (Artman et al., 2010). Both mispicks and missg picks neg-
atively in uence event locations (Kocon and Van der Baan, 2l2; Castellanos
and Van der Baan, 2013; Castellanos and Van der Baan, 2015).

Migration based methods avoid arrival time picking, posslip rendering
them more suitable for low SNR data (Artman et al., 2010). In the sim-
plest form, traveltime tables are created for each possiblgrid location. A
semblance analysis over the forward predicted traveltimeisen yields potential
microseismic event locations (Duncan et al., 2008). In thimethod, a 3D grid
volume is created in which each volume cell represents a pbks microseismic
event location. Then time shifts that correspond to the trael time from each
possible location to all receivers are applied to the micreismic records fol-
lowed by semblance analysis of the time-shifted microseismecords. The grid
point with the highest semblance energy can be consideredths most likely
possible event location for a relatively accurate velocitsnodel (Duncan et al.,
2008; Chambers and Kendall, 2008).

In this paper we explore time reversal extrapolation for dermining mi-
croseismic event locations. This method is similar to reves time migration
(RTM) (McMechan, 1983; Whitmore, 1983; Baysal et al., 1983)n traditional
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Figure 3.1: Map view of vertical observation geometry for mioseismic event
localization. Approximate angular range in normal vectors (solid black ar-
rows) is determined by locations of perforation shots. Blaadashed lines denote
2D planes de ned by the vertical observation well and correending normal

vectors.
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RTM, the receiver-side particle displacement (or particleelocity) wave eld is
injected into a smoothed velocity model, followed by applation of an imaging
condition. Sharp contrasts in the model will generate artatts due to sec-
ondary re ections, which are avoided by smoothing. RTM has den used for
earthquake fault imaging (McMechan, 1985), thus showing pmise for deter-
mining event hypocenters.

Traditional time reversal extrapolation uses a nite di erence operator for
extrapolation (Artman et al., 2010; Fleury and Vasconcelos,023). In this
paper we introduce an alternative migration based algorith based on the
acoustic representation theorem, allowing us to use eithpressure data, three-
component particle displacement or velocities, or both pssure and displace-
ment. This has the advantage that it incorporates both a waveld and its
derivatives in the imaging (Vasconcelos, 2013), therebydecing uncertainty
by mitigating ghost focusing.

We also introduce a new focusing criterion based on the Hougtansform
(Yip et al., 1992) to better determine both the origin time andthe hypocenter
of recorded microseismic events. The advantage of the Houghrisform is that
it conveniently assesses focusing continuously in the tirspace domain during
back-propagation through spatiotemporal stacking, instel of only at a specic
instant in time.

In the paper, we rst derive the acoustic representation-teorem-based
microseismic-event-localization algorithm and then desbe the new focusing
criterion. Finally we demonstrate performance with severatxamples, com-
paring estimated event locations and their origin time usip individual (either
pressure or particle velocity elds) and multiple wave elsé (both pressure and
particle velocity elds).

3.2 Theory

The traditional RTM procedure involves back-propagation bre ection data
into the subsurface velocity model followed by an imaging ndition (McMechan,
1983). For microseismic event localization, it is the sameabk-propagation
procedure but with re ection data replaced by transmissiordata. In the next
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Figure 3.2: lllustration of the domains used for the represation theorem
(a) and back-propagation (b and c). The enclosed domain casis of a volume
D with boundary @. The vector n is the outward unit normal vector to the
boundary @. (a) States A and B are wave elds generated by sources locdte
at r® and rB. The solid black arrows denote the wave path from source A or
B (stars) to the receiver (triangle) located atr on the boundary. (b)r” : the
microseismic event location.r® : an arbitrary location in back-propagation
image. Solid black arrows : the wave path from the microseigtevent (star)
to the receiver (triangle) located atr on the boundary. Dashed black arrow
: the wave path in the back-propagation. Circle with two sotl arrows : both
pressure wave eld and its gradient are recorded. (c) Circleith two dashed
arrows: when either pressure or particle displacement/\agdity wave elds are
used, wave elds focusing at true event location” is Gingoing whereas wave elds

focusing at ghost location iﬁoutgomg .

section we derive the general acoustic representation tmem for wave eld
back-propagation.

3.2.1 General Acoustic Representation Theorem

Two independent states A and B are de ned in the same 2D spatemporal
domain D R, with boundary @ R (Figure 3.2a). The normal vector
pointing outward of @ is represented byn. States here simply mean a com-
bination of material parameters, eld quantities, source @tributions, bound-
ary conditions and initial conditions that satisfy the releyant wave equation
(Van Manen et al., 2006). Here we assume that all other paranses in both
states are the same except the sources. So, state A and B arpressed by the
following rst-order wave equations in the space-frequegadomain:
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State A/B:
8 A=B
30 PAB( )+l ()R ) = ()
5 (3.1)
rooeAB )+l (r)PAB(r ) = B (rt);

where A=B means equation 3.1 is valid for both state A and B, is the
spatial gradient operator; hattindicates a frequency-doain variable; PA=B rep-
resents the pressure wave eld of state A/B; is medium density; is medium
compressibility; ¢~ denotes particle velocity of state A/B. The source of
force £~ and the source of injection ratef™™® are used for sources of state
A/B. Then, we apply the complex conjugate to state A of equatio 3.1 to get
a time-reversed state A (Baysal et al., 1983; Fink et al., 200®Vapenaar and
Fokkema, 2006), yielding

8 A

3 rPA@) i ()t ()= (),

S (3.2)
roeA () it ()PA @)= () ):

A correlation type of representation theorem is derived byatdculating the
surface integral of the interaction quantityr  (P* vB® + PBv# ) proposed by
De Hoop (1988), whose expression in the frequency domain igegi by

Z
r(PA 0B+ PBoA )dV =
Z°n i (3.3)
(r PAY 0B+ PAr 0B +(r PB) ¢* + PBr oA dv:
D

For brevity, we omit the parameter dependence on frequendy and spatial
location r. The surface integral on the left hand side of equation 3.3 mde
expressed by a line integral around the enclosed arBausing Stokes' theorem,
producing
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n (P 0B+ PBYA )ds=
7%, i (3.4)
(r PAY 0B+ PAr 0B +(r PB) ¢* + PBr oA dv;
D

wheren is the outward unit normal vector to the boundary. Combiningequa-
tions 3.1 and 3.4, we get

I Z i
n (PA 08+ PBYA )dS = hf“A 0B + 0 9A +ePPA 4o ps av-
@ ° (3.5)

Equation 3.5 is a general correlation type representatiorhéorem without
any boundary conditions and source assumptions. This typd representation
is often used for wave eld backward extrapolation to get theharacteristics of
the seismic source (Aki and Richards, 2002).

In the above derivation, we link two independent wave elds Y the general
representation theorem without any assumptions on the soce types. Next we
apply the correlation type representation theorem for timeeversal extrapola-
tion.

3.2.2 Time-reversal extrapolation

First we simplify the correlation type representation by cosidering assump-
tions on sources. We arbitrarily choose state A as the phyaicstate, in other
words that the recorded wave eld comes from an actual sourc true loca-
tion r”, such as a microseismic event due to a hydraulic fracturingetatment.
Then we replaceP” with the more general formP (r;r”*). Then state B is
the Green's state representing the wave eld from an impulge explosive source
at location r B inside the integral area.

We assume a homogeneous medium exists outside of donfainThe source
&F is denoted by a Kronecker delta (r rB). The pressure wave eld cor-
responding to this source is the Green's functiofs(r;r8). State B is also
called the Green's state. For simplicity, we assume the vahe source of force
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f* in both states equals zero (Wapenaar and Fokkema, 2006). Tiparti-
cle velocity in both states can be written in the form of a presire eld, as
¢h = Lr P (r;rA)and9® = Lr G(r;rB) (Curtis and Halliday, 2010).
Moreover, both states A and B share the same medium propesievithin the
boundary, giving a de nition of state A and B,

State A:

8

SrP ()=l (r)e(r;!);

(3.6)
S N
o) it OP @) =sM)Nr rA);

State B:

8

3 rG(r;t)y= il (r)ve(r;!);

(3.7)

B N
roOc(r;l)+ il (NG(r;1)="(r rB);

wheres' (! ) represents the source signature in the frequency domaindaig (r ;! )
represents the particle velocities corresponding to the €en's state B.

Under these assumptions, we get a further simpli ed correlan type rep-
resentation theorem, given by

| |
P(r:r®) (r r®dv+ s)Er:r®r rMdv=

DZ D

n é(r;rB)ilir P (r;r*)+ P (r;rA)ilir G(r;rB8) ds;

@
(3.8)

where the rst part on the left hand side equals toP (rB;r”) according to
the delta function property and G(r;r8) is replaced with G(r B;r) through
source-receiver reciprocity(Wapenaar and Fokkema, 2006)

The second term on the left hand side of equation 3.8 is callad acoustic
sink. During time-reversal it ensures that a wave eld collpsed onto its source
location disappears. Normally it cannot be calculated dirély, so the converged
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wave eld diverges again (Fink et al., 2000). Therefore a fosing criterion is
generally used, such as the Hough transform in the next sectido determine
wave eld convergence onto the source location.
The left-hand-side of equation 3.8 can be written aB;r = P (r8;r?) +
bS8 (! YG(rB;rA)dV for simplicity, where I5TR Is the time-reversed pressure
wave eld without acoustic sink. Then, we get the time-revesed extrapolation
formula, given by

Pre(r®;r*) =

' 1 1 (3.9)
@Dn ( G(rB;r)Tr P(r:r*)+ P (r;rA)Tr G(r®:r))ds:

Figure 3.2b illustrates the physical meaning of equation 3.9A circle con-
nected with arrows means both the pressure wave el(r ;r*) and its gradient
r P(r;r”) are recorded on the boundary@ from the microseismic event lo-
cated atr”. The two types of wave elds are back-propagated separatelising
a given velocity pro le. The pressure wave eld at arbitrarylocation r B within
the boundary is calculated through combination of the backropagated parti-
cle velocity¢ (r;r?)= -Lr P (r;r*) and pressure wave eld® (r;r*). The
location with the highest focus is considered as the most dily possible event
location assuming a relatively correct velocity model.

3.2.3 Ghost focus cancellation

Traditional reverse time extrapolation only injects diretarrivals of particle dis-
placement/velocity wave elds. Seismic waves focus not gnht the true event
location but also on a false location especially for limitedorehole observation
geometries. We call the false source location a ghost focluechuse it does not
exist in reality.

In the following, we prove that the representation-theorerbased reverse
time extrapolation can remove the ghost focus as long as a @mt normal vector
n is chosen. We rst write G(r8;r) = Gin(r8;r) + Gou(r8;r), where the
subscriptsin and out refer to waves propagating towards true and false event's
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locations from the source at on @ (Figure 3.2c). P (r;r*) is then written
as Iﬂin(r :r™), denoting that the seismic records come from true microsanic
event. Equation 3.9 becomes

|
PR(rB:rA) = n (( Gn(r®;r) éout(rB;r))“ir P.(r:r?)

1 @ 1 (3.10)

+ P (rir M)t Gn(r®in)+ o Gau(r®;r)ds:

We approximate the normal derivatives of the Green's funain with their

high frequency approximations by replacing with ik(r) kcoq (r))k, where
k(r) is the local wave number at@ and (r) is the angle between pertinent
rays and the normal on@, assuming the medium is smooth in the vicinity
around @ (Wapenaar and Fokkema, 2006). The ingoing waves propagating
towards the true event location get a minus sign in the high équency ap-
proximation, whereas the outgoing waves propagating towds the false event
location have a plus sign. Equation 3.10 then becomes

Pre(r®;r?) = ( Gn(r®r)
@

Gour®) LA (1)

() ke al)Kpy (. ay
! In !

(3.11)

lﬁm(r;rA)k(r)kC?S( o (MK, (r8:r)

+ B, () Gou(r®;r)))ds;

k(r) kC(;S( g (r))k
!

where angle A(r) is for the true event atr” and angle g(r) for an arbitrary
locationr B. Stationary phase analysis shows that the contribution tohe inte-
gral comes from those stationary points o@D, at which the absolute cosines
of A(r)and g(r) are identical (Schuster et al., 2004; Wapenaar et al., 2004
Wapenaar and Fokkema, 2006; Snieder, 2004; Snieder et al0&). Besides,
the signs of the rst and the third terms are identical, but reversed for the sec-
ond and forth terms. In other words, the back-propagated pécle velocity and
pressure elds have the same polarities when they are progiung towards the
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true location, but an opposite polarities in the directionsf the ghost location.
Thus, the second and forth terms of equation 3.10 cancel eaather, leaving
the rst and third terms, meaning the waves only focus at theue event loca-
tion when using the representation-theorem-based reversme extrapolation,

giving

I
Prr(r®;r?) = n ( éin(rB;r)ilir P, (r;r?)

L @ (3.12)
+ P (rir )G Gin(r®;r))ds:

3.2.4 Implementation

For implementation we use the discrete equivalent of equati 3.9 given by

Prr(r®;r?) =

X (3.13)

n. ( G(rB;r)“ir P(r;r’)+ P (r;rA)ilir G(r8:r));
r

where n, is the outward pointing normal of the integration boundary. The
product in the rst term on the right-hand side represents tle forward mod-
eling process in the frequency domain. A wave el®(r B;r) predicted at lo-
cation r® by an explosive monopole source located at is multiplied with
the time-reversed spatial gradient of the observed pressuwave eld denoted
by %r P (r;r*). The product in the second term on the right hand side
also represents a forward modeling process in frequency dom r G(r8;r)
represents the predicted wave eld ar B from a dipole source at locatiorr,
convolved with the time-reversed observed pressure waviele® (r;r*).

Figure 3.3 shows the processing ow of representation theanebased time-
reversal extrapolation. For simplicity we explain the proem under 2D im-
plementation. Practical issues when extending to 3D will bentroduced in
a separate section. Both the pressure wave eld and two commpents of the
particle velocities are recorded. Before reverse-time pagation, the data are
rst bandpass ltered to the range of interest. Then the proessed, complex
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conjugates of the pressure and two-component particle-gelty wave elds are
multiplied with respectively the dipole and monopole Greés functions. This
corresponds to convolution of the time-reversed, observegve elds with the
appropriate Green's functions in the time domain. After bothresults are com-
bined, a normal vector is used to control the contribution fsm each component
(x and z). The choice of normal vecton, depends on the prede ned integration
boundary.

In practice, we use the observed processed pressure wawk al each re-
ceiver, reverse its time axis and then forward propagate theesulting data into
the medium using a nite di erence algorithm. Likewise, we lack propagate
the observed two-component velocity eld. The nal image igshen obtained by
stacking all corresponding wave elds for all receivers. Té allows us to back-
propagate only the pressure or two-component wave elds inddually but also
stack their combined images. A focusing criterion, descel next is applied to
the wave eld at each time slice to determine the origin time rad hypocenter of
the microseismic event.

3.2.5 Focusing criterion

A source focusing criterion is needed due to the absence ofamoustic sink in
equation 3.9 and 3.13. In traditional reverse time imaginghe zero-lag cross-
correlation imaging condition determines focusing. But fomicroseismic event
localization, we only have a receiver wave eld but no knownosirce wave eld.
The most straightforward focusing criteria use amplitudegnergy or semblance
thresholding to determine possible event locations and gm times (Artman
et al., 2010).

We use a modi cation of the Hough transform (Yip et al., 1992) tadeter-
mine wave eld focusing. In essence, we assume that the wawet is approxi-
mately circular around the source location point just befa and after focusing,
and maximum energy concentration occurs at the origin timenal location (Fig-
ure 3.4). Thus as in Figure 3.4, if we sum the energy on the warait at time
to tandtp+ t, as well asthe energy at source location at tintg, we should
get a maximum value compared to the summation value at di erg locations
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Figure 3.3: Processing ow of representation theorem basedne-reversal
extrapolation.
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Figure 3.4. Wavefront in the back-propagation imagesz and x are spatial
coordinates.t is back-propagation time. The black dot in the center time gte
denotes source location anth is source origin time. Circles: wavefront with
radius r ; right before and after origin timet,. During back-propagation, the
wavefront collapses at the source location and then divergagain due to the
lack of an acoustic sink.

and times. The modi ed Hough transform turns a back-propaga&d pressure
wave eld image into a summation image in the spatiotemporadlomain, from
which we extract the source origin time and location. We namthis summation
image the Hough map. A back-propagated pressure wave eld ige is called
the wave eld map for comparison.

The rst step is to do spatially circular summation. We sum tte envelope
of the back-propagated pressure wave elé; along circles with local radius
R around grid pointsr at time instancety, that is

X
Pu(rxitn) = EvN(Prg(ritn)); (3.14)

r

wherer satisesjr ryj = R and Evn represents the envelope of a time series.
Grid points r, represent generally a coarser grid than that used for the al
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wave simulation. The time axisty is sampled every t seconds. Variable t is
a prespeci ed time interval, such that the largest radii beeame approximately
equal to half a dominant wavelength. Radiu® is equal to local velocityV (r y)
times interval t. For small time intervals t, the actual wavefronts become
circles with radii R. This way, we turn the back-propagation imagé>; into a
summation imagePy .

The next step is to do a temporal summation, which combines sumed
image Py with back-propagation imageP;, yielding a Hough map using

P (rx;tn) =
(3.15)
Pu(raity O+ Pu(ritu + 0+ J(EVA(Pra(ry: )]

Hough mapP3'™ is evaluated for determining the most likely source locatio
and origin time.

We then assume that only a single microseismic event couldcoc at each
time instant t, . We save the spatial coordinates of the maximum value in the
Hough map as a function of time&y and compute its shortest distance to the
receivers. This greatly condenses the information and als us to select the
most likely source locations and origin times without havig to save either the
Hough map or the back-propagation image at all time instances

Next, a magnitude thresholdTy, is set to determine the most likely source
positions and origin times. A thresholdTy for the minimum distance to the
receivers is also sometimes needed. In the back-propagatithe highest mag-
nitude of P3"™ may appear at locations near the receivers due to uncancdlle
noise and signal interferences. These points thus generakpresent artefacts
and have to be excluded from the selection pool. Finally, thed¢al maximum
above the magnitude threshold in both time and position is ésacted to nd
the most likely source positions and origin times.

3.2.6 3D Application

Implementation of the representation-theorem-based renge time extrapola-
tion becomes more complex in a 3D setting. Figure 1.1 shows twommon
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observation systems for microseismic monitoring, namelyréace and borehole
acquisitions. Either has its own advantages and uncertaieis when applying
our proposed method.

Similar to conventional reverse time migration, a large stace array has a
better coverage of microseismic events, producing locatedcroseismic events
with higher horizontal resolution. In this case the normal &ctor is perpendic-
ular to the 2D plane spanned by the receivers, in other wordsomts upward
(Figure 1.1).

Borehole observations are more challenging for reverse éraxtrapolation.
Normally less than 20 geophones are used in a borehole scendeading to a
very limited aperture. Also, no immediate choice of normal wtor is available
for this acquisition setup for a priori unknown event locatins because an in -
nite number of 2D plane pass through a 1D borehole. Fortundye we obtain
a range of possible normal vectors from the borehole geonyeénd the loca-
tions of perforation shots (Figure 3.1b). First the normal veiors are always
perpendicular to the borehole. Only the azimuth of the normlavectors are
to be determined. The range of azimuths can be further narr@d down by
rst locating several events for each hydraulic fracturingstage using ray-based
methods, which provides a more appropriate range of azimhoefore applying
the representation-theorem-based reverse time extraptén. The nal choice
of the azimuth of normal vector then ultimately varies with the actual ac-
quisition geometry. If multiple boreholes exist, normals ith back-azimuths
pointing to the centroid of the expected microseismic cloudill likely work
well. Likewise, for strongly deviated wells a normal perpélrcular to the well
with back-azimuth pointing to the cloud's centroid should & ce. It is only in
case of a single horizontal or vertical well that the choicd the optimal azimuth
becomes truly challenging. These are the least optimal adggiion geometries
for wave eld-extrapolation based event localization. Onenight have to take
recourse to automated polarization analyses (De Meersmaha., 2006) for
each event to estimate the azimuth of the required normal, ®i the possible
advantage that only 2D planes are needed for wave eld extrafadion.
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3.3 Examples

In this section, we apply the representation-theorem-basemverse time ex-
trapolation to synthetic examples using deviated boreholacquisitions as a
challenging test situation. We use second order in time anadurth order in

space nite dierences to do forward modeling and back extyolation. We

smooth the velocity model during the back-propagation to (Lmimic a par-

tially unknown velocity eld and (2) prevent the generation of re ections. We

wish to explore the possibilities of this method in di erentvelocity structures,

namely a layered-model and the Marmousi velocity model. A hwmgeneous
velocity example can be found in Li and Van der Baan (2014).

3.3.1 Four-layer model

A deviated borehole is set in a four-layer velocity model wit 43 receivers
(Figure 3.5a), providing a good coverage of signal. The veitycof each layer
can be found in Figure 3.5a. The source is an explosive sourdéhva Ricker
wavelet with a peak frequency of 60 Hz, located on the right ohé well with
coordinates (X, Z) of (650m , 530m). It simulates an event at @in time
0.02 s. Both the pressure and particle velocities in the haontal and vertical
directions are measured at each receiver, with total recand) time of 0.2 s. The
numerical simulation grid spacing is 2.8 m with 0.18 ms timeniervals. The
synthetic, Gaussian white noise contaminated data are shovin Figure 3.6.
Next we inject three di erent combinations of the total wave elds using
equation 3.13, namely (1) using only the pressure data, (2)oth particle ve-
locity elds but not pressure, (3) using both pressure and Vecity elds into a
smoothed version of the exact velocity model (Figure 3.5b). hE normal vec-
tors are perpendicular to the well, pointing to the left side Figure 3.7 displays
the back-propagated source image for all three cases. Fig®&a is the case
when we only back-propagate the pressure data. Two high eggrimages ap-
pear on both sides of the well at=0.2s. The left location is a ghost focusing,
whereas the right one is the true source location. Even tholghe energy of
the ghost focus is slightly less than the true focus, it stilbring ambiguity to
the interpretation for the true location of the microseisng event. Figure 3.7b
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is the case when we only back-propagate the two-componentripele velocity
data. The focusing features in this case are similar to the gvious case, only
the focuses have an opposite polarity from the previous cas&'hen all data are
back-propagated, the energy of the ghost focus is signi céyreduced. Only
the true event location stands out clearly (Figure 3.7c). In@dition, the com-
bination of both pressure and velocity elds for microseisio event localization
leads to an improved SNR in the nal image (3.7c), in particulaaround the
receiver area, compared with the use of individual wave efd(3.7a,b).

We then test the ability of the focusing criterion for origintime and event
location detection when both pressure and velocity elds arused (the combi-
nation 3). During back-propagation, we apply equations 34land 3.15 to the
wave eld map P to get the Hough mapPy at time t . The back-propagation
grid spacing is 1.25 m and time intervals for focusing critem is 2.8 ms. We
then save the spatial coordinates of the maximum value in blothe Hough map
P and the envelope of the wave eldP ¢ as a function of timety and compute
its shortest distance to the receivers before apply thresldoTy, and Tp (Fig-
ure 3.8). Maxima with distances less than 200 m are discard@eigure 3.8a,c).
The local maximum in the Hough map occurs at 0.02 s at the true igin time
(Figure 3.8b), whereas the maximum in the wave eld envelopeappens at 0.03
s (Figure 3.8d). Moreover, the Hough criterion is better behadein the sense
that the variations are smoother and with a larger dynamic nage, indicating
that it is less sensitive to noise and imaging artefacts. Fige 3.9 displays the
Hough mapPy and the envelope of the wave eld magP; at their respective
detected origin times, showing that the Hough map is indeed mestable and
accurate with less imaging artefacts.

3.3.2 Marmousi acoustic model

Next we test the representation-theorem-based reverse tire&trapolation and
focusing criterion under a more realistic situation with a eamplex structure
and a more complex source. In this example, the synthetic seiic records are
created using the true Marmousi model (Figure 3.10a) with a Rdle-Couple
(DC) source. The synthetic data from 14 borehole receiverssasshown in Figure
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Figure 3.5: 2D acoustic layered velocity model. Red up-sidiewn triangles:
receivers. Blue cross: source. a: true layered velocity nedbdb: smoothed
velocity model.

Figure 3.6: Seismic records for four-layer model includinggssure and two-
component particle velocity wave elds.
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Figure 3.7: Comparison of the back-propagated pressure wald via three
data combinations when using smoothed layered velocity meld (a) pressure
eld only. (b) particle velocity elds only. (c) both pressure eld and particle
velocity elds. The ghost location focusings (pointed by fack arrows) exist in
the rst two cases; The ghost focusing is signi cantly suppessed in the third
case when we combine all data.

3.11. A DC source with a Ricker wavelet with a dominant frequey of 10 Hz
is located on the right of the well with coordinates (X, Z) of (600m , 2500m).
Its origin time is at 0.1 s. The simulation grid spacing is 24 nwith 1.8 ms time
interval.

We apply the focusing criterion in this example to a smoothedgersion of the
exact velocity model (Figure 3.10b) for back-propagation #h both pressure
and velocity elds (combination 3 in the previous example).The time inter-
val for focusing criterion is 12.6 ms. Figures 3.12 displaykd results for the
focusing criteria using either the Hough map or the envelopéd the wave eld
in case of the smoothed velocity model, similar to Figure 3.8or simplicity,
we only show the magnitude points with reasonable distance teceivers. The
Hough criterion predicts an origin time of 0.1 s and the envgle maximum
occurs at 0.22 s. The appearance of noise introduces largeeto the origin
time determined by the envelope of the wave eld (Figure 3.13pbwhereas an
accurate origin time is provided when using the Hough map basécusing cri-
terion (Figure 3.12a). Figure 3.13 shows the comparison of lagropagation
images for corresponding origin times derived from the Houghiterion (Figure
3.13a) and the envelope maximum (Figure 3.13b). The envelopaximum fails
to locate the source properly because the radiation patterof the DC source
makes the magnitude of focus equal to zero. On the contrarysy¢ Hough map
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Figure 3.8: Event detection criteria using maxima in Hough maga and b) or
maxima in wave eld envelopes (c and d) for layered velocity adel. (a) and
(c): Distance of detected maximum to nearest receiver as anfttion of time. A
minimum threshold Tp of 200m is set (black solid line). All smaller distances
are discarded. (b) and (d): Maximum value as a function of tim. Black stars:
maxima exceeding minimum distance. Local Hough maximum (b} iclose to
true origin time of 0.02 s, contrary to maximum of wave eld ewelope (d).
Extracted maxima from the Hough map (b) also display smoothevariations
with a larger dynamic range than those from the wave eld envepe (d).
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Figure 3.9: Comparison of the Hough map and envelope of the waald at
respective estimated origin times for the layered velocitpodel. (a) Hough map
at 0.02 s; (b) Wave eld envelope at 0.03 s. Black star: True ent location.

leads to a more accurate event location, with less imaging afacts.

3.4 Discussion

In this paper we have shown the advantages of combining thegssure and
three-component particle displacement/velocity wave als in microseismic event
localization. Therefore, we advocate combined usage of hngpghone and three-
component receivers in microseismic monitoring. The spatiderivatives of the
pressure wave eld contain directional information which &n aid in the back-
propagation process. The acoustic-representation-theon based reverse time
extrapolation naturally utilizes the two types of data. Moeover, all wave elds
are back propagated to the source location independently @combined in the
nal step. The two types of wave elds generate an opposite parity image at
the ghost location and the same polarity image at the true ewelocation. By
adding the two wave elds, the opposite polarization portias cancel each other
whereas the energy at true location is boosted. This suppses image artefacts
compared with implementations when only the pressure waveld or the spatial
gradients are used. Moreover, the particle velocity and pgsure records may
have di erent signal-to-noise ratios, e.g., due to contamation with di erent
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Figure 3.10: 2D acoustic Marmousi velocity model. Red up-siedown trian-
gles: receivers. Red star. source. From upper to bottom: (artual velocity
model, (b) smoothed velocity model. Velocities are in m/s.
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Figure 3.11: Synthetic noisy seismograms for Marmousi testoael. The
complex waveforms are due to the complex velocity structur@: Pressure eld
records. b and c: X and Z components of particle velocity eklrecords.
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Figure 3.12: Zoom in from time Os to 0.35s for event detectiomiteria using
maxima in Hough map (a) or maxima in wave eld envelopes (b) fasmoothed
Marmousi velocity model. See Figure 7 for labels. Detectedigin times are
respectively (a) 0.1 s (Hough map) and (b) 0.22 s (wave eld eelope). True
origin time is at 0.1 s.
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Figure 3.13: Comparison of the Hough map and envelope of the wald at
respective estimated origin times for the smooth Marmouselocity model. (a)
Hough map at 0.1 s; (b) Wave eld envelope at 0.22 s. Black staifrue event
location.
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types of noise or di erent bandwidth sensitivities. Judicias weighting may
thus enhance the nal imaging quality of the reconstructed @ambined wave-
elds as well as the Hough images even further compared to theages from
the individual wave elds. The combined use of pressure andagicle velocity
wave elds may equally improve migration of re ection seisne data (Vasconce-
los, 2013).

The back-propagated wave eld does not collapse to a point iaur tests
due to the limited acquisition aperture but leaves an area Wi high energy
concentration. This area provides the uncertainty in eventocation. A vi-
sual comparison for homogeneous and complex velocity madshows that the
anticipated uncertainty in event locations using the propsed method is simi-
lar to those from travel-time based methods as obtained ugjrthe sensitivity
analysis of Feroz and Van der Baan (2013). Location uncertdgies may also
result from velocity model error. The back-propagated waweld may focus to
a misplaced location under an incorrect velocity model. Ingsticular system-
atic biases from the true model may be problematic. Howeverse of a much
more strongly smoothed velocity model than shown in Figure B0b still leads
to acceptable locations. In case of erroneous velocitiebetproposed Hough
Transform based focusing criterion can still nd the most foused points, but
possibly at an incorrect location. Location uncertaintiesan be decreased with
a more accurate velocity model and/or larger acquisition agtures. To increase
the acquisition aperture, a combination of borehole and siace receivers may
work best. Indeed even though our example include purely kadrole acquisi-
tions, the methodology is readily applicable to surface readings.

In the representation theorem, a normal vector to the boundg of the
enclosed volume is needed in the calculation. That means thermal vector
n, should be specied prior to combination of the various waveelds. This
leads to various possible choices especially if the recesvare located in a single
borehole. For traditional surface land acquisition systepthe normal vector is
generally set as pointing upward, but for a straight well trgectory the azimuth
of the normal vector is not easily determined. So we suggest approximate
the normal vector according to the spatial relationship beteen observation well
and treatment well. The property of ghost focusing canceli@an can also help
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determine the azimuth of microseismic events by nding the dpmal focusing
for di erent normal vectors. This is mainly because at the awect azimuth, the
back-propagated pressure and particle velocity eld shodiloptimally align at
one side of the borehole and fully cancel at the opposite side

The performance of the modi ed Hough transform depends sigoantly
on the ratio between acquisition aperture and source-reger distance. The
ratio has to be su ciently large for successful focusing. Areall ratio makes
the back-propagated receiver-side wave eld diverge raththan converge where
the assumption of circular wavefronts breaks down. Moreavethe distance
from treatment well to observation well determines thelp threshold. The
microseismic events must exist beyond reasonable rangelard the treatment
well. High focusings inside of this range are not considere@he selection of
the Ty threshold comprises a trade-o between risk of detecting ifse events
and missing true events. A high threshold lowers the risk oflentifying false
events but also increases the chance of missing true ever@ the contrary, a
low threshold increases the number of detected events busalthe number of
false alarms.

Finally, the computational time of the focusing criterion vaies with respect
to discrete time interval ty. The computational time of the back-propagation
processTy, is proportional to NtNg¢, where Nt is the number of time steps,
Nyx is the number of gridpoints in dimensiord (Van Manen et al., 2006). For
simplicity we omit the number of ops needed for calculatiorof the discrete
derivatives. The computational time for the focusing criteon T¢. iS propor-
tional to Nt= tyN¢ because we only calculate a Hough image for everyy
time points. The additional computational time of the focusg criterion is
di erent with dierent  ty but generally it is smaller than 10% of the back-
propagation time.

3.5 Conclusion

Representation-theorem-based time-reversal extrapoiah o ers much promise
for obtaining microseismic event locations without the nekto rst pick in-
dividual arrivals, in particular if both the pressure waveeld and its spatial
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gradients are available. The latter may require the combimeusage of both hy-
drophones and three-component particle-velocity sensadsiring microseismic
acquisition to get improved microseismic event locationg.he Hough map pro-
vides a convenient and stable criterion for automatically etecting both event
locations and origin times.
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Chapter 4

Elastic passive source

localization using rotational

motion 1

As a complement to traditional particle velocity recordingsrotational motion
provides information on the spatial gradient of particle dplacement motion
which aids in imaging passive sources using elastic wavesiefi localization
is for instance important in earthquake seismology and detgon of microseis-
mic events during hydraulic fracturing treatments of hydr@arbon reservoirs
or injection of carbon dioxide CO,) in depleted reservoirs. We propose an
elastic reverse time extrapolation technique for passiverent localization in-
corporating a new representation-theorem-based expressthat explicitly uses
recordings from rotational and particle velocity sensorsitber simultaneously
or separately, leading to enhanced imaging results. We alsgroduce a novel
focusing criterion based on the energy ux which is insensre to polarity re-
versals due to non-isotropic source mechanisms. Energy agmbined with the
Hough transform leads to a convenient and stable criterion fautomatically
detecting both event locations and origin times.

LA version of this chapter has been accepted as Li, Z. and van der Baan, M., 2017 dstic
passive source localization using rotational motion, Geophysical Journalrternational.
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4.1 Introduction

Object or event localization is a widely applied techniqueniboth civilian and
national defense usage. Receivers detect acoustic or etastaves radiated from
a source followed by an analysis technique to remotely detema the distance
and location of the source. Di erent types of waves are usedrfvarious pur-
poses. For example, acoustic sound in water detected by spisaused to locate
submarines for military usage (Ainslie, 2010). Medical ulasound is nowadays
a common imaging technique to observe internal human bodyrstture for
health examinations (McKeighen, 1998). Seismologists éet and analyze elas-
tic waves radiated from a natural earthquake to accuratelyolcate the event and
better understand the subsurface tectonics and geology (Mechan, 1985). We
focus on another application, namely microseismic eventcalization (Artman
et al., 2010). Microseismicity commonly refers to elasticaves created by rock
failure induced by human activities, such as mining and hydulic fracturing,
whose magnitudes are generally smaller than zero on the Guiberg-Richter
scale (Van der Baan et al., 2013). Nonetheless, the describiethging tech-
niques are general and can be applied to both recorded acacisind elastic
waves.

Microseismic event localization and characterization atienportant tools for
understanding in situ rock deformation due to human activies. Microseismic
event localization methods generally are categorized intavel-time based and
migration based types. Picking of longitudal P- and shear ®ave arrivals is
required for the travel-time based method before further pcessing. However,
event picking can often be a challenging and time-consumitask for low qual-
ity data (Artman et al., 2010). Both mispicks and missing pick negatively
in uence event locations (Kocon and Van der Baan, 2012; Cadlanos and
Van der Baan, 2013; Castellanos and Van der Baan, 2015).

Migration based methods are more suitable for low SNR data (Artan
et al.,, 2010) by avoiding P- and S-wave picking. Time reversaxtrapola-
tion is one of the most important methods in this category, wich has been
applied in locating earthquakes (McMechan, 1985) and mi@eismic events
(Artman et al., 2010). Following a similar procedure as revee time migration
(McMechan, 1983), the time-reversed transmission wavecklis extrapolated
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(Artman et al., 2010), followed by an auto-correlation imagig condition to
identify the event location and origin time.

Ravasi and Curtis (2013) built an exact wave eld extrapolabn algorithm
based on the elastic representation theorem. The method recgs the measure-
ments of both particle velocity and its spatial gradient in he extrapolation.
The combination of the wave eld and its spatial gradient albws for removing
those non-physical artifacts due to explicit inclusion of idectivity (Wapenaar
and Fokkema, 2006). Also this method avoids the creation oflé® wave modes
due to the conventional adjoint state elastic extrapolatin. Because the mea-
surement of the spatial gradient of particle velocity/disppcement is not always
directly available, a high frequency approximation is ofte needed to avoid
using the spatial gradient term (Wapenaar and Fokkema, 20D6This approx-
imation may introduce artifacts to the extrapolated images An alternative
modi cation is to combine particle velocity and elastodynanic traction in the
extrapolation (Wapenaar and Fokkema, 2006,Ravasi and Cist 2013). This
modi ed version is especially suitable for processing dusénsor-streamer data
in marine acquisition where particle velocity and pressurare measured simul-
taneously in an acoustic medium (Ravasi and Curtis, 2013).nlland acquisi-
tion, two scenarios are considered separately, namely witkceivers on the free
surface, or shallowly buried or deeper placed geophonesksas in boreholes.
In the rst scenario, only particle velocity is retained in the elastic represen-
tation theorem since both normal and shear stresses on thesdr surface are
assumed to be negligible, whereas the latter scenario regsi both measure-
ments, because stress does not vanish. Since spatial waie gradients in all
three directions are rarely measured with su cient accurag, we propose using
rotational rate recordings as a replacement of the spatiakagdient of particle
velocity/displacement in this paper. The developed methaxogy is applicable
to both surface and borehole recordings but may be most perént to bore-
hole acquisitions because in this case spatial gradientsnoat be ignored in
representation-based wave eld extrapolation.

In classical in nitesimal elasticity, to completely desdbe particle motion,
we need translational motion, strain deformation and rigidotation (Van Driel
et al., 2012, Li and Van der Baan, 2017). The spatial gradiewtf particle veloc-
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ity is composed of strain deformation and rigid rotation, rpresenting particle
deformation. Traditional three-component inertial geopbnes and seismome-
ters can only measure translational motion and strain deforation along three
orthogonal directions, which is not sensitive to rotationmotion. Recently,
the development of new instruments provides an opportunitio directly record
and study the rigid rotational rate in vertical and horizontal directions (Lee
et al., 2012). Because rotational rate measurements alsalide information
on the spatial gradient of particle velocity, it will aid in representation theorem
based reverse time extrapolation.

In this paper, we rst introduce the basic concept of rotatimal motion.
Then we derive the representation theorem from the secondder elastic wave
equations in a homogeneous medium which can be applied to gitaneously
extrapolate both rotational and particle velocity recordngs. Next we describe
the implementation scheme especially for passive event ddization. Then a
new energy ux based focusing criterion is introduced, badeon the Hough
transform (Li and Van der Baan, 2016). Finally, we use two exaptes to show
that the proposed method also works well in an inhomogeneonmgedium.

4.2 Theory

4.2.1 Isotropic elastic Representation theorem

In this section we derive the elastic representation thearefor wave eld back-
propagation based on a similar procedure as in Knopo (1956)'he homoge-
neous isotropic second-order elastic wave equation for pele velocity vector
v(r;t) in the time domain is used, given by

@v(r;t)

W:( +2 ) v(r;t) r r v(r;t)+ f(t) (r r3); (4.1)

wherer represents spatial location; is the medium density; and are the
Lanme parameters;f_is the temporal waveform of the body force rate;(r r?3)
is a kronecker delta with a non-zero value only at*® indicating the source
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location. We further simplify equation 4.1 by dividing bothsides by density ,
giving

@v(r;t) _

—a@t rre v(r;t) ’r r v(r;t)+ E(t) (r r®); (4.2

where and are P- and S-wave velocityFE(t) is the applied body acceleration
rate represented byf_(t)= .

Two independent states A and B are de ned ful lling equation4.2 in the
same spatiotemporal 3D domai® R, with boundary @ R. States here
simply mean a combination of material parameters, eld qudities, source dis-
tributions, boundary conditions and initial conditions that satisfy the relevant
wave equation (Van Manen et al., 2006,Li and Van der Baan, 26}l Here we
assume that all other parameters in both states are the same&cept for the
sources and the wave elds. For simplicity, we write the eléis wave equation
for state A and B in the frequency domain, given by

1208 (rat)y= 2 0Bty % r AB(rn )+ IQ_A:B(!) (r r®);
(4.3)
where”represents variables in the frequency domain;angular frequencyA=B
state A or B.

According to the de nition of particle rotational motion in t he previous
section, we replace the curl of the particle velocity  ¢*=® in equation 4.3
. . . A=B . .o
with the particle rotational rate 2 — (equation 2.3), giving

_ _ N A=B ANA=B
P2AB(r1 )= 2r 9%B(r;1) 22t 0 (rt)+RE (1) (r rAB):

(4.4)

We arbitrarily choose state A as the wave eld from real recalings, such
as an actual event. State B is the Green's state of a point imfae source
of the body acceleration rate of unit strength and exerted irthe direction
of Cartesian coordinatex, with n = 1, 2 or 3. We denote this unit point
source ask, (r rB), where®, is the unit vector pointing in the direction of
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Cartesian coordinatex,,. ¥ then becomes the Green's functioé\,;n(r rBin)

(Wapenaar and Fokkema, 2006), and the corresponding Gregriunction for
B

" is expressed byG _alr :rB:1). With the above assumptions, the vector

form of equations 4.4 for state A and B become

F20(r;r0)= 2 0(rr®1) 2 %r i(r;rA;!)+ Ié\_(!)(r r’*y;
(4.5)
and

12G,n(rsrB;t)= 2m Gun(rsrB1) 22 G _ (rirB1)+ %, (r
(4.6)

Next, a time-reversed wave eld can be derived by taking the amplex con-
jugate of equation 4.6 (Wapenaar and Fokkema, 2006), givey b

126, (rsrBy= 2 G (rirBt) 22 G (rirB 1)+ %, (r rB):
4.7)
where represents the complex conjugate. We then multiply equatis 4.7 and
4.5 with¢(r;r”;!)and év;n(r ;1B 1) respectively to construct the correlation
type of the elastic representation theorem (Wapenaar and kkema, 2006, Li
and Van der Baan, 2016). Subsequent subtraction of the reSof equations
produces

0=0(r;r™1) 2w G (rirBil) G (rir®il) 2 e(rirfn)
+Gy(r;r®;t) 27 TorAin) oAy 2 % G _.(r;rB;n)
HO(rrAL) R (1 1B) Gun(rir®il) B(1) (1 rA):

(4.8)

We move the 3 and 6" term on the right-hand side of equation 4.8 to the
left-hand-side and apply a volume integral withinD to both sides, yielding
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Z Z

Gyn(r;r®;1) E() (r rA)dv C(rir?it) R, (r rB)dv =
ZDh D i
C(r;rAl) 2 Gua(rir Bty Gun(rirBir)y 2 e(rirAir) av
PZ h )

R i
+ Gun(rsrBit)y 22r  _(rr™0) o(rsr™t) 22r 0 G (r;rB1) dv:
D

(4.9)

The rst term on the left-hand side is simpli ed as follows,

Z Z
G (rirBy E() (r rMydvi= G, (rArBir) B )dv

bz Z D Z

= BB NE)AV Gy (B E()dV + Gy (A B )Es(! )dV
ZP ZP ZP

= BB RNV GLrBrA B )dV G (rBirA ) Es()dv

D D D
=&, (rB;rA;1);
(4.10)

whereéi;n(rA;rB;! ) (i =1, 2 or 3) is the i component of the time-reversed
Green's functionév;n(r A-rB; 1), which satis es the reciprocity theorem (Knopo
and Gangi, 1959) thatG,, (r*;r8;1) = G, (r®;rA;1).

The second term on the left-hand side of equation 4.9 is a fawl extrapo-
lation term which can be simpli ed to %, (r 8;r”;! ) according to the de nition
of the delta function. In reality, this term can not be calcufted because it
requires the knowledge of the source locations, which arekmown as they
are the objective of any localization method. Without this tem, the back-
propagated wave elds diverge again after they converge aheir source loca-
tions. To compensate for the missing calculation of the foewd propagation
term, we introduce a focusing criterion for automatic eventocalization in a
later section.

The rst and second volume integration terms on the right-had side of
equation 4.9 are replaced by the surface integrations withid> according to
the Green's theorem (equations 4 and 5 in Knopo (1956)), ging
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Oi(rB;rA;!) O (rB;rA1) =
h i
no200rl) 1 Gua(rirBil)  Gun(rirBil) ro (rir®l) ds
@z h, i
+ o 22 (rirfMr)y Gua(rrBit)y G (rr Bty e(rirAit) ds;
@
(4.11)

wheren is the outward pointing normal of the integration boundary (i and
Van der Baan, 2016). Equation 4.11 indicates we can calcuathe back-
propagated particle velocity eld inside of volumeD when we have the mea-
surements of rotational motions and the particle velocity elds on the boundary
@. All bold symbols are vectors depending on the, y and z components in
the 3-D case. This equation allows us to locate the source aftchtion r” if
we have the measurements of the rotational rate wave eld. and the particle
velocity elds v on the boundary @D

We write equation 4.11 into a form with a much clearer physi¢aneaning,
given by

Oi(rB;rA;!) O (rB;rA1) =
h i
N2 0P(rrAt) 1 Gun(rrBil) G (rrBit) 1o 0P(rir®)  ds
@z h, i
+ n 22 (r;r’) Guan(rsrBy G (rirBit) 0%(r;rAt) ds;
@
(4.12)

where the rst line on the right-hand side of equation 4.11 ithe back-propagated
P-wave eld whereas the second line is the back-propagateewave eld, as in-

dicated by the symbols p and s in the Green's functions and garle velocities.

A detailed derivation is shown in appendix A. The rst and secod terms on

the right-hand side of equation 4.12 mean the P- and S-wavéds can be re-
constructed separately, using
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G rorm ) ArErhi =
h i
N2 0P(rrA) 1 Gun(nrBit)  Gn(rrBil) 1o 0P(rirAt)  ds;
@
(4.13)

and

Ozf(rB;rA;!)+’vﬁ(rB;rA;!):
h. i
n 22 _(r;r’t) Guan(rsr®iy G (rirBit) 0%(rrAt) ds;
@
(4.14)

essentially because P- and S-wave elds are decoupled in loaneous isotropic
media. Note that equations 4.13 and 4.14 indicate that P/S-we eld separa-

tion is required at the receiver level. Various P/S wave eldseparation tech-
nigques exist (Schalkwijk et al., 1999, Schalkwijk et al., 23, Al-Anboori and

Kendall, 2005, Van der Baan et al., 2013).

4.2.2 Implementation

In this section, we introduce more details on the practicaimplementation of

our proposed methods for passive event localization. Thew&we energy of a
microseismic event or earthquake is often several timesatger than their P-

wave energy, even in case of non-double-couple moment teag&aton et al.,

2014). For simplicity, one could therefore use expressioril4 involving solely
the S-wave patrticle velocity. We thus assume that P/S waveld separation

may not be required. Unfortunately, equation 4.14 also invalsG,, the S-wave
only Green's function. Computation of an S-wave only Grees'function for

elastic media is likely to be cumbersome. If we replace thengve only Green's
function G,s with the full Green's function G, then we obtain
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%s(rB;rA;!)“Vﬁ(fB?rA?!) '

|
n 2°? /\_(r;rA;!) év;n(r;rB;!) é‘_;n(r;rB;!) O‘(I‘;I’A;!) ds;
@

(4.15)

where the full recordings of particle velocitie®(r;r”;!) is used to replace
S-wave recordings¢(r;r”;!) in equation 4.14. Rotational rate recordings
N

—(r;r”;1) can be obtained from rotational sensors.

Implementation of equation 4.15 by expanding its right-hath side into a
scalar form for the 3-D case, producing

Yﬁ (rB;rA )+ AS(rB;rA)
B2 MG e i) G (e Yt
g6 (rrBn)(rir®it) G (B (rir i)
+n,(G (B (rirt) G (B )(rr ) (4.16)
nx(ﬁy(r;rA;! )Gy, (r;rB;1) A )8y, n(r;r8;1)
ny (o (rir A )8, a(rirBit) Surir A8, (%)

(St )8, a(rirBit)  S(rirt)G, L (%) ds;

wherex, y and z are the Cartesian coordinates. In the right-hand side of equ
tion 4.16 there are 12 multiplications in the frequency domia within the square
bracket, which represent cross-correlations in the time dwmin. Considering for
instance the termnxﬁy(r rA;l )GVZ;n(r :rB;1), it represents they component
of rotation rate _ recorded atr from an event atr #; it is cross-correlated with
the z component of the time-reversed Green's function of the paete velocity
G,, ., recorded atr from an impulse source at ® in the n™ direction. Like-
wise, the term nxéﬂ;n(r 1B 1)0,(r;rA; 1) represents thez component of the
back-propagated particle velocityv, from the event atr”* as cross-correlated
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with the y component of the time-reversed Green's function of the rdianal
rate G_y;n from the same impulse source at®. The sum of the contribution
of both terms is controlled by thex component of the normal vecton. Other
terms at the right-hand side of equation 4.16 have similar raaing but involve
di erent combinations of particle velocity and rotation rate components. The
orientation of normal vectorn depends on the pre-de ned integration boundary
@ (Li and Van der Baan, 2016).

In practice, a forward modeling scheme such as a nite di eree algorithm
(Pitarka, 1999) is used instead of cross-correlation. Silai to implementation
for standard acoustic or elastic reverse time migration, threcorded three com-
ponents of particle velocities are time-reversed and theorfvard propagated
into the medium (McMechan, 1983). Likewise, the recorded tee components
of the rotational rate are back-propagated.

The nal image is then obtained by stacking all back-propagad images
for all receivers. This allows us to backpropagate only théhtee-component
particle velocity or three-component rotational rate indvidually as well as also
stack their combined images. A focusing criterion, descel next is applied to
the wave eld at each time slice to determine the origin time rad hypocenter of
the microseismic event or other passive source.

4.2.3 Energy based focusing criterion

In this section we propose a focusing criterion based on theatiation of the
energy ux in the back-propagated image. The entire procede is based on the
Hough transform as proposed by Li and Van der Baan (2016) but pjed to
energy ux instead of summation of amplitudes. In essencegvassume that the
wavefront approximately converges towards the source ld@n as a spherical
wavefront in 3-D implementations or a circle in 2-D ones. Inhe illustrated
2-D case, we consider a circle centered at the source locatiand measure
the total energy E going into and out of the circle during a time period t
(Figure 4.1). The radius of the circleR is determined by local medium velocity
V(r) times the time interval t. Variable t is a pre-specied time interval,
expressed as t = m dt. dt is the sampling time interval andm is an integer
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Figure 4.1: Wavefront of each time slice during the back-pragation. z and
X are spatial coordinates.t is back-propagation time. The black dot in the
center time slice denotes source location ang is source origin time. Circle
is wavefront with radius R right before and after origin timety. During back-
propagation, the wavefront collapses at the source locaticand then diverges
again due to the lack of an elastic sinkE is the total energy on the wave front.

selected to make the largest radiR become approximately equal to or a little
smaller than half a dominant wavelength. If we sum the energyoing through

the prede ned circle during the period between time, % t and to + % t,

we should get a maximum value corresponding to the true eveldcation r g

and origin time to compared to the summation value at di erent locations and
times. The summation is done through the Hough transform (Lirad Van der

Baan, 2016).

To calculate the total energy, we apply the concept of energux (Synge,
1995), denoted byEF , which is the rate of energy transport per unit area.
Energy ux is a vector whose components are determined by thermal direc-
tion of the measurement area. The rst step is to calculate ®i"" component
of the energy ux EF;(r) at an arbitrary time t using

EFi(r;t) = (r;tv(r;t); (4.17)

where j (r;t) is theij ™ component of the second order stress tensor at location

83



r and time t; v; is the j"™ component of the particle velocity vector (Synge,
1995). We use a staggered grid nite dierence code for bagkopagation

(Pitarka, 1999), where the second order stress tensqgf(r;t) is easily calcu-
lated. The absolute value of the energy ux EF (r;t) j provides the magnitude
of energy passing through the point ar and time t. This way we turn the

back-propagated particle velocity map into an energy map. His procedure
further justi es use of equation 20 instead 19 for back-pr@gation since both
P- and S-wave energy should collapse onto the event locati@ssuming correct
velocity models. Equation 4.16 is however simpler to impleant and thus faster
than use of equations 4.12 or 4.13 and 4.14.

Then using the Hough transform, we apply spatially circulariemmation (Li
and Van der Baan, 2016). We sum the back-propagated energyxu EF 1 ]
along circles with local radiusR centered at grid pointsr at every discrete time
point t,, that is

X
Eq(r;ty) = JEF +r(rostn) I (4.18)

b
wherer, satises jr, rj = R. Physically this step means that we calculate
the energy going through the circle centered at with radius R at time instant
th.
The next step is to do a temporal summation of imagey for a time period
t yielding a Hough map for an arbitrary discrete time pointt using

th=bg+ 3 t
ER™(rity) = En(rita): (4.19)

th=ty 3 t

where the summation is done at sampling time stegit. The Hough mapEZ'™
is evaluated for determining the most likely source locatiband origin time.
Physically, equation 4.19 determines the total energy ganthrough the pre-
de ned circle centred atr with radius R during the period t. This way, we
turn the back-propagation energy image E y j into a summation Hough image
E3™.

We assume that only a single (passive) event occurs duringetiperiod t.
We save the spatial coordinates of the maximum value in the Hgh map as
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a function of time t and compute its shortest distance to the receivers. This
greatly condenses the information and allows us to selecttimost likely source
locations and origin times without having to save either thédough map or the
back-propagation image at all time instances.

Next, similar to the focusing criterion proposed by Li and Varder Baan
(2016), we set a magnitude threshold, and a distance thresholdl'p to auto-
matically select the source position and the origin time. Tédistance threshold
is used to exclude those locations with unreasonable smabtdnces to the re-
ceivers, even though the highest magnitude may appear at t® locations.
In practice, a reasonable distance threshol@ly is determined by the relative
location between the observation well and the treatment wiah for instance hy-
draulic fracturing treatments. Then, tests of the magnitu@ are often required
to determine a proper magnitude threshold’, which balances the number of
missed events (false negatives) versus number of false msr(false positives).
Finally, the location and corresponding time of all Hough maxrna above the
magnitude and distance thresholds are extracted as the mdstely source po-
sitions and origin times.

4.3 Examples

In this section, we apply the proposed method to synthetic da acquired in
a borehole and at the surface. We apply temporal second ordend spatial
fourth order nite di erences to do elastic forward modelirg and back extrapo-
lation. To mimic a realistic scenario, we use a smoothed velty model during
the back-propagation. This can also prevent the generatiaf secondary re ec-
tions. We wish to explore the possibilities of this imaging sthod in complex
structures, namely the elastic Marmousi velocity model (\fsteeg and Grau,
1990, Versteeg and Grau, 1991) and a subduction slab model.

4.3.1 Elastic Marmousi model

The P-wave Marmousi model is shown in Figure 4.2a. The S-wavelocity is
1:p 3 of the P-wave velocity and a constant density of 2.4=cn? is used in
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this example. The model is based on a pro le through the North @nguela
trough in the Cuanza basin (Mora, 2002). A vertical boreholés simulated
with two scenarios, namely 1) 12 receivers measurirg and z-component par-
ticle velocities only at depths from 500m to 1600m with a spe interval of
100m (Figure 4.2a) and 2) 8 three-component receivers measgrboth x- and
z-component particle velocities and/-component rotational rate, whose loca-
tions coincide with some of the 12 receivers in the previousenario except the
ones at depths of 700m, 1000m, 1300m and 1500m. The purpode isep the
total number of traces identical in the two scenarios as wedls the same aper-
ture. The source is an double-couple (DC) source with a Rigkevavelet with
a peak frequency of 20Hz, representing a horizontally oriext fault plane with
horizontal slip direction, located on the right of the well vith coordinates (,
z) of (8000m, 1500m). It simulates a microseismic event, cadsir instance
by an hydraulic fracturing at origin time 0.2s. The total reording time in both
scenarios is 3s. The numerical simulation grid spacing isrf@4vith 1.8ms time
intervals. To show the property of the rotational motion reordings, the syn-
thetic data without noise are shown in Figure 4.3. In a homogenus, isotropic
and elastic medium P-waves are rotation free and S-waves baero divergence
(Aldridge and Abbott, 2009). Therefore rotational instrumens are signi cantly
less sensitive than particle velocity sensors to P-wave asals (Figure 4.3).

For back-propagation, we add Gaussian white noise with a SNRjuwal to 1
to the original synthetic dataset to test the robustness ofwr algorithm (Figure
4.4). The SNR is such that most P-waves are barely visible. Nexte inject
two di erent combinations of the total wave elds correspomling to di erent
scenarios using equation 20 into a smoothed version of theaekvelocity model
(Figure 4.2b). The normal vectors are perpendicular to the We pointing to
the left side. Figure 4.5 displays a part of the back-propagadl source image
starting from 2800m in horizontal direction at the real orign time for the
two scenarios. Figures 4.5a correspond to the and z components of the
back-propagated S-wave elds using only the particle veldg data. The back-
propagated S-wave elds focus on the true source locationgshed arrow in
Figure 4.5a). But at the same time, weaker but still noticealel concentrations
can be found on the left side of the well (black arrows in Figurd.5a). Li
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and Van der Baan (2016) de ne these artefacts as ghost foci daeise they
do not actually exist in reality. The ghost foci with such stong magnitudes
will bring ambiguity to the interpretation of the true event location. Besides,
artifacts in the vicinity of the receivers are also strong del to the existence
of noise combined with use of only a few borehole instrumentg/hen we use
both the rotational rate and the particle velocity recordirgs, the ghost foci
are signi cantly suppressed and only the true event locatiostands out clearly
(Figure 4.5b). In addition, the combination of both types of vave elds leads
to improved SNR in the nal image, in particular around the reeiver area.

We then test the ability of the energy ux based focusing creerion for origin
time and event location detection when both rotational motin and particle
velocity elds are used. During back-propagation, the staggered-grid nite
di erence modeling algorithm automatically provides the sess eld j and
the particle velocity wave eld v; required to calculate energy uxEF . Then
we apply equations 4.18 and 4.19 to the absolute energy ux m@yeF 5 j to
get the Hough mapEy at time t. The back-propagation grid spacing is 24 m
and time period t for temporal summation is 90 ms. We then save the spatial
coordinates of the maximum value in both the Hough mag, and the envelope
of the back-propagated particle velocity map s, as a function of timet and
compute its shortest distance to the receivers before applg the magnitude
threshold Ty, and the distance thresholdTp (Figure 4.6). In this example,
we manually setTp as 1500m according to the known receiver locations and
the approximate event location on the maxima-to-receiveristance plot for the
Hough map (Figure 4.6a) andk and z components of back-propagated particle
velocities (Figure 4.6¢,e). In the example, we save the powith the maximum
magnitude on each summation map instead of setting the madunde threshold
Tw for simplicity. The curve of the maximum magnitude for the Hogh image
is much smoother than that of the envelop of both componentd the particle
velocity wave elds, indicating that the Hough image is lessegisitive to noise
and imaging artifacts. We then zoom in the magnitude plot to amaller range
(Figure 4.7). The local maximum in the Hough map occurs at 0.2 & ¢he
true origin time (Figure 4.7a), whereas the maximum in the paicle velocity
wave elds envelope happens at 0.27s and 0.225s respecyi{€ligure 4.7b and
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Figure 4.2: 2D elastic P-wave Marmousi velocity model. triagles: receivers.
Cross: a double-couple (DC) source. a: true velocity moderfforward mod-
eling, b: smoothed velocity model for back-propagation.

c). Performance of the Hough transform to detect microseismevent locations
and origin times improves further with an increasing numbeof instruments
since this eliminates acquisition footprints and wave eldliasing.

4.3.2 Subduction slab model

Our second example simulates an earthquake within a subdug slab recorded
at the surface. Here we test the ability of the focusing critesn for earthquake
imaging with a highly noisy and sparsely acquired dataset. He subduction
slab normally has a higher velocity than its surrounding lagrs (Stern, 2002).
Based on this property, we build a simpli ed subduction slabmodel for this
example. Figure 4.8a is the true velocity model with P- and Sawve velocities
indicated in the gure. The model size is 30km by 30km, with awsface record-
ing array buried 10m below free surface. Similar to the presiis example, two
combinations of receivers are compared, namely 1) 42 reees/ measuringx-
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Figure 4.3: Synthetic seismic records without noiseRot° is the short form
of rotational motion around y direction in this example. %2 and %/ are the
particle velocities inx and z directions. Thin dashed arrow denotes the absence
of the P-wave arrival in rotational recordings. Short solidines denote the main
P-wave arrivals in the particle velocity recordings. The log dashed lines denote
the principal S-wave arrivals in all three recordings.
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Figure 4.4: Synthetic seismic records with Gaussian white ise. ‘Rot° is the
short form of rotational motion around y direction in this example. %2 and
%0 are the particle velocities inx and z directions. The P-wave is barely seen

in %2 and % due to the presence of the noise.
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Figure 4.5: Comparison ok (top row) and z (bottom row) components of the
back-propagated S-wave particle velocity wave elds usingvo combinations of
recordings. a): onlyx and z components of particle velocity recordings. b):
both particle velocity and rotational motion recordings. Tiangle: receivers.
Black star: true event location. Ghost focusings appear in) @ointed by black
solid arrows whereas only true event location is revealedl. Artefacts (black
ellipses) in vicinity of receivers in b) are more suppressdidan in a).
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Figure 4.6: Event detection criteria using maxima in Hough maga and b)
or maxima in wave eld envelopes (c, d, e and f). a): Distancef aetected
maximum to nearest receiver as a function of time from Hough eges; c)
and e): Distance of detected maximum to nearest receiver asfunction of
time from x and z components of back-propagated particle velocity images. A
minimum threshold Tp of 1500m is set. All smaller distances are discarded. b):
Maximum value as a function time from Hough images; d) and f): Bkimum
value as a function of time fromx and z components of back-propagated particle

velocity images.
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Figure 4.7: Zoom in of magnitude plot in Figure 4.6 from Os to 063. a): Hough
image; maximum is right at 0.2s; b):x component of particle velocity image;
maximum is at 0.27s; c¢): z component of particle velocity inge; maxiumum
is at 0.225s.
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and z-component particle velocities with spatial interval of 5t (Figure 4.2a)
and 2) 28 three-component receivers measuring both and z-component par-
ticle velocities andy-component rotational rate. The white area in the model
represents the subduction slab, with a double-couple eatthake happening on
top of the slab. The sliding plane of the earthquake is coird@nt with the
top plane of the subduction slab for simplicity. The earthqake is located at a
depth of 21.5km and in the center of the modelx(= 15km), with a dominant
frequency of 10Hz and origin time of 1s. Both the rotational mmn around the
y axis and the particle velocities in thex and z direction are measured at each
receiver, with a total recording time of 15s. We add strong alpassed white
noise to the original synthetic data to create noise contamated data with a
SNR of 0.1dB (Figure 4.9). Contrary to the previous example th€®-waves
remain visible on thez-component. This allows us to test the performance of
equation 4.16 in the absence of P/S-wave eld separation.

In the back-propagation stage, two combinations of reconays are injected
into a smoothed velocity model (Figure 4.8b) using our proped method, fol-
lowed by a comparison between the resulting source imagesditie 4.10). It
can be seen that the source images obtained from the back-pagation of the
combination with rotational rate (Figure 4.10b) is highly smilar to the one
using two-component particle velocities only (Figure 4.10awhich indicates
that rotational component can aid in the passive source imayy even when the
number of receivers are largely reduced.

We then test the proposed focusing criterion. We rst compa the max-
imum magnitude plots of the Hough image and the two-componeriiack-
propagation wave elds (Figure 4.11). The corresponding estated time point
of the peak on the Hough image plot appears at 1s, which is thecacate origin
time, whereas the corresponding time points on the wave efalots are 1.32s and
1.05s respectively, due to the noise disturbance. We showethack-propagated
S-wavex- and z-component particle velocity wave elds at the estimated tne
point (Figure 4.12a). Even though noisy data are used, we geidusing at the
true location for both the x- and z-component particle velocity images. We
also show the estimated particle velocity wave elds basechoonly the maxi-
mum magnitude criterion of the envelop of the particle veloty maps (Figure
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Figure 4.8: 2D elastic subduction slab velocity model. triagles: receivers.
Star: a double-couple (DC) source. a): true velocity modebif forward model-
ing; P- and S-wave velocities are denoted on the model, b): sathed velocity
model for back-propagation.

4.12b). The estimated event locations in both the- and z-component wave-
elds are shifted from the true event location leading to a pdicted source
location 1km above the true one (Figure 4.11 middle and botton This would
place the event above the subducting slab.

4.4 Discussion

Rotational motion recordings are a strong supplement to thparticle velocity
recordings (Li and Van der Baan, 2017). The combined analgsof both rota-
tional motion and the particle displacement/velocity has many applications in
exploration geophysics, such as wave eld reconstructioM(yzert et al., 2012)
and ground roll removal (Barak et al., 2014). It is likely tha it may also nd
application in other elds where elastic waves are used fomaging (Li and
Van der Baan, 2017). A practical challenge is the current saaty in suitable
recording equipment (Van Driel et al., 2012).

Rotational rate recordings provide information on the spaal derivatives of
the particle velocity wave eld, which aids in wave eld extrapolation. Elastic-
representation-theorem based reverse time extrapolatioequires the spatial
gradient of the particle displacement/velocity eld, which could either be ap-
proximated by nite di erentiation between sensors using eceiver groups or a
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Figure 4.9: Synthetic seismic records with noise for subdumh slab velocity
model. Rot is the short form of rotational motion around y diection in this
example.Vy and V; are the particle velocities inx and z directions.

96



Figure 4.10: Comparison ox (top row) and z (bottom row) components of the
back-propagated S-wave particle velocity wave elds usingvo combinations of
recordings. a): onlyx and z components of particle velocity recordings. b):
both particle velocity and y-component rotational rate recordings. Triangle:
receivers. Black star: true event location. Both a) and b) ha similar back-
propagated source images, even though the number of recesvan b) is less
than that in a).
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Figure 4.11: Event detection criteria using maxima in Hough nm(a) or
maxima in wave eld envelopes (b and c). Maximum value as a fation of
time. a). Extracted maxima from the Hough map. b) and c): Extrated
maxima from the back-propagated particle velocity, and V, images. Local
Hough maximum is at the true origin time of 1s, contrary to maxnum of the
particle velocity wave elds.
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Figure 4.12: The back-propagatec- (left column) and z-component (right

column) particle velocity wave elds using (a) the energy bsed focusing crite-
rion at the estimated origin times 1s and (b) the magnitude derion at the

estimated origin time 1.32s Yx) and 1.05s ¥,) . Star: true event location.
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far- eld approximation is included to remove this term (Wapenaar and Fokkema,
2006). Equation 4.11 provides the required gradient inforation by directly in-
cluding rotational motions which can be recorded separatel This makes the
technique in principle less sensitive to recorded noise. &nd Van der Baan
(2016) discuss in general terms the e ect of both the acquigin geometry and
precision of the velocity eld on image quality.

In this paper, we build the elastic representation theoremdsed on the ho-
mogeneous isotropic elastic wave equation (Equation 4.1¢t¢ause it is a simple
wave equation that directly involves rotation rate as S-waw potential r V.
The theorem shows that in an isotropic, homogeneous mediuR, and S-waves
can be back-propagated separately. The measurements ofatoanal rate only
contribute in the construction of shear wave elds, which isiormally dominant
in passive seismic recordings. In some cases, such as Mggsasc monitoring
using vertical-component surface arrays, the P-wave is tldominant recorded
wave (Duncan and Eisner, 2010), which could then be back-pagated with
equation 4.13 where we use the full Green's functidd, and the full wave eld
v instead of the P-wave equivalents, analagous to the substitons to obtain
equation 4.15 from 4.14. Moreover, although the proposed thed is derived
under homogeneous circumstances, examples indicate thasialso applicable
for inhomogeneous velocity models. Yet, it remains an opemegtion if the
procedure is also applicable to anisotropic media. Pham et. §2010) have
numerically shown that the magnitude of rotation rates in arsotropic media is
large enough to invert for medium properties, indicating ta rotational sensors
are likely to pick up P-waves in anisotropic media.

Furthermore it is important to emphasize that recorded datashould only
consist of body waves; that is, all surface and interface wes must be removed
rst. For instance, tube waves may be generated due to body was imping-
ing on a borehole(Dayley et al., 2003, Vaezi and Van der Baarf015). If
left untouched these will generate undesirable artifacts ithe back-propagated
images. The same holds true for unremoved surface waves imface-array
data.

The energy ux based focusing criterion is a more promisingegeral focus-
ing criterion than amplitude-based ones. Di erent from theparticle velocity
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Figure 4.13. Amplitudes for a) energy ux and b) vertical compoent of
particle velocity. Black star: Double-couple source (shedailure). triangles:
receivers. Energy ux has the same polarization along the & wavefront,
whereas the amplitudes of the up and downgoing wave elds hawopposite

polarity.

wave eld, the energy ux is directly related to the wave prop@ation direction,
which is physically more pertinent for event localization Also amplitude-based
summation may fail because of the non-isotropic source mactisms, invoking
polarity changes depending on radiation directions (Chandos et al., 2010,
Chambers et al., 2014,Li and Van der Baan, 2016). The magnita of the
back-propagated wave elds may have opposite polarizatiomhich cancel each
other during summation along the wavefront as shown in Figur&13b. Because
energy ux is only sensitive to wave propagation directionfor a xed acqui-
sition system, the back-propagation results are the samethvidi erent source
mechanisms, providing more stable results compared to antpte-based sum-
mation (Figure 4.13a). Energy ux can be used for both elastiand acoustic
data. In the acoustic case, equation 4.17 is replaced BF; = p v; with p
is pressure andy; is the i"" component of the particle velocityv. The Hough
transform procedure remains otherwise unchanged.

4.5 Conclusion

Rotational motion provides information on the spatial gratent of the particle
velocity wave elds. The introduced elastic representatio-theorem-based time-
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reversal extrapolation equation uses explicitly recordgs from rotational and
particle displacement/velocity sensors simultaneouslyr separately, leading to
enhanced imaging results. The energy ux based Hough map prdgs a conve-
nient and stable criterion for automatically detecting boh event locations and
origin times.

4.6 Appendix: Derivation of Equation 4.12

Since for a homogeneous, isotropic medium, P- and S-waves éecoupled when
radiated from a source, the elastic wave equation 4.5 can betten into a pair
of equations corresponding to P- and S-waves, given by

h, |
L20P(r;r™ )= 2 OP(rir™ 1)+ E(1)  (r ), (4.20)
p

h, i
120%(rsrA )= 2% rird) e B (0 Ay (420)

Whereiop andhoS are P- and S-wave particle velocities, satisfying = OP + ¢,

Ié\_(! ) and Ié\_(! ) are the decoupled source terms contributing solely to P-
P s h [ h [

and S-waves respectively, ful lingE(! )= E(1) + E()
p
Likewise, equation 4.6 can be written into

S

12G on(rir 1) = 2 G (rsr®i 1) +[Ra], (r rB);  (4.22)

126 e (rsrB1)= 22 G _ (rirB 1) +[Ra]s (r rB); (4.23)

where évp;n and Gvs;n are the Green's functions for P- and S-wave particle
velocities from a unit force®, at the n™ direction; [Rn], and Rq]; are the
portions of the unit force ®, exciting P- and S-waves only. They also satisfy
G, = Gop+ Gopy and R, = [R0], +[ R,

We use the denotation ], and [:]s around the force terms to indicate that P-
and S-wave separation is applied immediately upon excitat of the speci ed
force within the brackets. These terms can thus be identi edvith the resulting
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wave elds due to P- and S-wave force potentials as used in Wamaar and
Haime (1990).

We then start deriving equation 4.12 from the left-hand-sid of equation
4.9, given by

Z h . i
é‘v;n(r;rB;!) E(') (r r?) o@r;r®1) R, (r rB) adv
bz h, i h, i
= Gme(r;rB;! )+ Gvs;n(r;rB;! ) () + E() (r rMav
ZP p s

CP(r r A )+ 05(rr i) Rnl, +[Rnls  (r r®ydv
z hy i
= Guon(rsrB1) E(1) (r r®) ¥P(rirAn) [®Ra], (r r®) dV
2 hy i i
+ Guan(r;rB;1) E(1) (r ) 05(r;r™1) [Rol, (r rB) av
Zh hy i i
+ Guon(rsrB;1) E(1)  (r r®) 0P(r;r™1) Ralg (r rB) av
ZD .S

h, i
+ Guon(rsr®i1) R(1) (r r?) 0(r;rft) Roly (r r®) dv;
D p

(4.24)

where the cross terms mixing P- and S-waves equal zero, bessaB- and S-wave
sources have no contributions to S- and P-waves respectiwal a homogeneous,
isotropic medium, yielding

Z h i

Gun(rir®it) Q) (r A 0@l R (r rB) dv
DZ |

h
= Cua(rir®) R rh) (Al [R], (0 rB)av
ZP P

h/\
+ Guan(rsrB1) R() (o r®)y 0(rir®t) Ralg (r rB)av

D S

(4.25)

Then, we multiply equations 4.20 and 4.22 witls ., (r;r &;1 ) and 0°(r;rA; 1)
respectively, followed by a subtraction of the resulting egtions and a body
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integration, given by

YA h i
Guon(r;r;1) Ié\_(!) (rr®) OP(rrA) Rl (r r®) av
© Zp P |
= 2 0Pty o Gun(nrBit) G (rrBil) o P(rir A dv:
D

(4.26)

Similarly, we multiply equations 4.21 and 4.23 Withévs;n(r;rB;! ) and

5(r;rA; 1) respectively, and follow a similar procedure as before td@in

Z i

h
Guon(rirBil) EQ) (r rA)

eS(r;r1) Rolg (r rB) dv
D 7 s
=2 2 Guen(r;r®1) v TrorAiry eS(rirAny G _,(r;rB;1) dv:
D
(4.27)

Then, equation 4.12 is derived by substituting equations 26 and 4.27 into
equation 4.25, followed by an application of the Stokes' theem, giving

Oi(rB;rA;!) G (rB;ri) =
i
no20P(rrA) 1 Gun(rrBil) G (rrBit) 1o wP(rirAl)  ds
2z h, i
N 22 (M) G (rrBity G (e By 03(rir At ds;
@
(4.28)

where the left-hand side is again obtained using equationld.and the de nition
of the delta function, identical to the derivation of equaton 4.11.

It worth emphasizing that all derivations above are only stable for a ho-
mogeneous, isotropic medium. For an inhomogeneous mediUPr,and S-wave
force potentials should be invoked for P-/S-wave eld sepation at the source.
Details can be found in Wapenaar and Haime (1990).
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Chapter 5

Real-time microseismic event
localization based on fast

time-reversal extrapolation

Traditional time-reversal extrapolation is a promising tehnique for microseis-
mic event localization. However, the technique is based onhgag discrete
two-way wave equations using the nite di erence or nite elenent method,
which makes it very time-consuming and not suitable for redlme applica-
tions. The generated wave elds have information redundagcsuch that only
a small amount of information is enough to represent the whmlextrapola-
tion process. Proper orthogonal decomposition is used tomeve information
redundancy and create a much smaller extrapolation systerfipm which real-
time microseismic event localization is possible. In thisgper, we create a new
extrapolation system by applying proper orthogonal decongsition to the rst-
order two-way elastic wave equations. The new extrapolatiosystem is used
to build a continuous waveform based microseismic event llization scheme
that can rapidly locate multiple seismic events and determe their origin time.
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5.1 Introduction

Event localization is one of the most important tasks for mioseismic moni-
toring, including locating earthquakes in global seismaly (Fehler, 2008) and
microseismicity in hydraulic fracturing treatment (Van de Baan et al., 2013,
Li and Van der Baan, 2016). Time-reversal extrapolation is promising event
localization technique using full waveform information (MMechan, 1985, Art-
man et al., 2010), which can also be called backward wave e&xtrapolation.
In traditional time-reversal extrapolation, receivers ag treated as sources and
the three-component wave elds are time-reversed and dirthc propagated to-
ward its source location using a two-way elastic wave modedj operator and
a known velocity model (McMechan, 1983). This method couldebmore ac-
curate compared to traditional travel-time based methodsirsce no picking of
P- and S-wave rst arrivals is required. Location results mabe badly a ected
by mispicking and inaccurate picks (Castellanos and Van d@&aan, 2015, Li
and Van der Baan, 2016). Li and Van der Baan (2016) introducenamproved
time-reversal extrapolation scheme, in which both partiel velocity and pres-
sure are extrapolated separately followed by their combitian according to
the acoustic representation theorem. For the purpose of cpurtational e -
ciency, the same type of data can be extrapolated simultanesly. However,
these methods are still both impractical for application ircontinuous real-time
monitoring because solving a very large simulation systermmposed of several
spatially discretized elastic wave equations is computatnally intensive.
Pereyra and Kaelin (2008) rst propose a fast acoustic waveld propaga-
tion simulation procedure by constructing an order-reduecemodeling operator
using a technique called proper orthogonal decompositioRQD), which pro-
vides a possible solution to the issue of high computationabst mentioned
above. Essentially, they speed up simulation by projectinthe spatially dis-
cretized wave equations from a higher dimensional systemaomuch lower di-
mensional system, still keeping su cient accuracy (Perew and Kaelin, 2008).
POD is a promising technique aimed at reducing the compleyibf a numer-
ical simulation system using mathematical insights, whichas been widely ap-
plied in many dynamic system simulations in a common form ab@wn in Chat-
terjee (2000) and Schilders (2008). Applications include rdeling of uid ow,
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real-time control, heat conduction (Lucia et al., 2004), wae eld propagation
(Pereyra and Kaelin, 2008, Wu et al., 2013), aircraft desigfLieu et al., 2006),
arterial simulations (Lassila et al., 2013) and nuclear retor core design (Sar-
tori et al., 2014), etc. POD is based on the observation thatiraulations with
a high computational load often repeatedly solve the same gislem (Benner
et al., 2015). For instance, in the case of time-reversal eapolation for micro-
seismic event localization, the continuously recorded datre back-propagated
through an unchanging velocity model. Thus the wave propagan 'engine’
does not change, only the recorded data vary. Also, informatial redundancy
exists in most of the traditional simulation processes (Siters, 2008), which
means the discretized wave equations can be represented darge but sparse
matrix which can be compressed into a small but denser systdhmat is much
faster to solve.

In this paper, we introduce an adaptive randomized QR decomsgition
(ARQRd) (Halko et al., 2010) based POD procedure, balancing egracy and
computational e ciency. Similar techniques, such as randmized SVD and
randomized QR, have been applied as rapid rank approximatianethods for
geophysical purposes (Gao et al., 2011, Oropeza and Sacgbi 1, Cheng and
Sacchi, 2015), especially when dealing with large datasetShe basic idea is
to project the original data in a high-dimensional space to &w-dimensional
data space using randomly selected vectors. However, the émsion of the
new space is usually unknown (Halko et al., 2010) and sometisneeeds to be
pre-tested before the new matrix can capture the demanded aomt of features
in the original data. In our case, ARQRd can automatically preide the new
projected data which not only have the minimum dimension buglso capture
the most amount of information without the needs of pretestig.

We then build a reduced-order two-way elastic wave modelirgystem that
can be used for time-reversal extrapolation using the proped POD process.
We also propose a POD-based energy ux based focusing crider rstly pro-
posed by Li and Van der Baan (2017) to t in the low-order modehg scheme.
The new wave eld extrapolation approach is more computatimally e cient
which makes real-time automatic seismic event localizahopossible. Finally,
we compare the ARQRd results with the results from traditionbtime-reversal

107



extrapolation in the example section.

5.2 General Theory

POD generally has two steps, namely an o -line training partvhere the smaller
simulation system is learned and created, and an on-line calation where the
data are repeatedly generated with little cost and high accacy. We briey
introduce the two parts in the following content respectivy.

5.2.1 O -line training

O -line training is the key aspect of POD which includes the dllowing steps:

(1) Compute training data and construct a snapshot matrix, Wich is formed
from high- delity simulations. A high- delity simulation is calculated by nu-
merically solving a group of spatially discretized partiatli erential equations
(PDEs), given by

@) _
@t

where u is a time dependent state variable, which is spatially disete but

Lu (t) + f (1); (5.1)

continuous in time; L is a matrix of partial di erential operators, f is a time
dependent source term, the total discretized simulationmie isNt. Equation
5.1 is a general form of discretized PDEs that is applicable i.D, 2D or 3D
wave simulations. Finite di erence or nite element methodsare the two most
common methods to solve equation 5.1. Since equation 5.1 negents a time-
varying system, a snapshot means one time slice of a high-ldg simulation

of the system. A series of snapshots extracted during the fgimulation are
put into snapshot matrix A, in chronological order, given by

As =[ulubiugnug ], (5.2)

wheres; means thei™ simulation; each columnu! corresponds to a vectorized
shapshot at timet and the subscript indexN; is the total number of time slices
used for training, whereN; 6 Nt and the sampling time interval between any
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two adjacent slices has to satisfy the Nyquist sampling theem. For multi-
ple simulations, an even larger snapshot matriA is constructed comprising
multiple snapshot matrices, given by

A =[As A A iinAg L (5.3)

wheren is the number of simulations. Each simulatios; can represent di erent
aspects, for instance, dierent source positions or di erg source radiation
patterns.

(2) Compute and compress a left orthogonal basis of snapshuoatrix A.
The basic assumption of POD is that matrixA can be approximated by a new
matrix Q whose rank is much lower than the size of either dimension ofinix
A, while still keeping most of the key information ofA , denoted by

Rank(Q) << Minimum (m;n); (5.4)

where m and n are the row and column numbers of snapshot matriA re-
spectively. The selection ofQ is non-unique. In this paper, we de neQ as
an orthonormal basis such that each column of the matriA can be expressed
by a combination of columns inQ with su cient accuracy. Since Q is an
orthonormal matrix, it also satis es the condition

Q'Q=1; (5.5)

wherel is an identity matrix (Strang, 2006).

Singular value decomposition (SVD) or QR decomposition (QRdare the
two most commonly used methods to compute the left orthonorah basis Q
and the singular values of the snapshot matriXA. The approximated rank
Ra is determined by choosing the largest singular values andetltorrespond-
ing columns are grouped intdQ which is only a small portion of the full left
orthonormal basis, as long as the selected ba€j)sis enough to span the col-
umn space of the snapshots matrik , mathematically satisfying the evaluation
criterion

A QQTAji (5.6)

109



wherejj jj denotes thel, norm and is a positive error tolerance (Halko et al.,
2010). We call the selected basi® the reduced orthonormal column basis.

We use ARQRd to calculate the left orthonormal basi€). It can be seen as
a randomized Gram-Schmidt method embedded with the evaluah criterion
(equation 5.6), where the reduced orthonormal column basi of the snapshot
matrix A is calculated in an iterative scheme (Halko et al., 2010).

In the i iteration, a new column vectorc; is rst calculated through a
projection of snapshot matrixA using

ci = Al g, (57)

where! ; is a random column vector with a Gaussian distribution. Thert;
is orthonormalized to all previously generated 1 columns using the Gram-
Schmidt method before it is added to the desired bas{@ . Equation 5.6 is
evaluated in each iteration so that the calculated basi® has a minimum num-
ber of columns satisfying the evaluation criterion with a gen error tolerance

, When iteration stops. This makes ARQRd more computationall e cient
than traditional randomized QR or SVD (Halko et al., 2010).

(3) Construct a new reduced simulation system. The new reded system
approximates the full system (5.1), as long as the source jtass are un-
changed. The source waveforms can be di erent but must hava averlapping
frequency content. The state variableu(t) can then be expressed as a linear
combination of the reduced orthonormal column basi®, using

u(t) = Qa(t); (5.8)

where a(t) is a coe cient vector at time t. Note equation 5.8 is the key as-
sumption that makes this method successful. Equation 5.8 ssibstituted into
equation 5.1 giving

@a(t) _ .
ot = LQa )+ () (5.9)

Given that matrix Q is time independent, we can further rephrase the equation
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by multiplying its both sides with Q T, rendering

t
L= QLea (v + QTH( (5.10)
where QTLQ is a reduced-order partial di erential operator matrix of $ze
[No.Ngl; Q'f(t) a reduced-order source term. We can see from equation 5.4
that the dimensions of the new simulation system is much sntat than the
original one (equation 5.1), which ensures the repeated sitations can be

done on-the-y.

5.2.2 On-line simulation

Equation 5.10 is solved on-the-y using a nite di erence méod, where both
spatial and temporal axes are discretized, given by

aj;1 aj 1= La;+ QTfi; (5.11)

wherelL is the reduced nite di erence operatorQTLQ scaled bydt; aj.1, a;
and a; ; are coe cient vectors at discrete time pointi +1, i andi 1;Q is
the basis matrix scaled bydt.

At each time iteration, the coe cient vector a is updated using equation
5.11 and saved for wave eld construction. Then, any snapsha; at time point
i can be reconstructed using equation 5.8.

5.3 Reduced-order time-reversal extrapolation

In this section, we start with the 2D stress-velocity two-wg elastic wave equa-
tions, given by
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where ,, and ,, are thex and z components of the normal stress elds;y,
is the shear stress eld,v, and v, are the horizontal and vertical components
of particle velocity elds; f,, and f,, are single forces and, is an external
pressure source.

We write equation 5.12 into the matrix form of equation 5.1 byassigning
that

0 1 0 1 0 1
Vy 0 0 ll—x 0 1|—Z fvx
v, 0 0 0 L, L, f,
u= XX 1L: ( +2 )LX LZ 0 O O lf = fp ’
. L, (+2), 0O 0 O f
) V4 Lz I—x O O O 0
(5.13)

whereLy, L, and L, represent the matrix form of the spatial derivatives@@x
@@yand @@1' u andf are the vectorized wave elds and source term respectively.
A staggered grid nite di erence method is used to discretieg the 2D model,
where wave eld variablesvy, V,, x, 2, and , are assigned to the grid
according to Figure 5.1 (Zeng and Liu, 2001), with the correspding grid size
[N2,Nx 1], [N, IN4], [N2,Ny], [Nz,Ng]and [N, 1Ny 1]. Sinceu is a
vector composed of ve vectorized wave eld variables, itehgth is the sum of
their total grid numbers, denoted byN,,. Likewise,L is a sparse matrix with

the size of Ni,, Np].
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Figure 5.1: The relative locations of wave elds components ia staggered
grid.
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Next, we introduce a procedure to build a reduced-order systeof two-way
elastic wave equations for time reversal extrapolation. Tdugh the derivation
is in the 2D space for simplicity, it can be extended to the 3Dpsce without
di culty. Moreover, two assumptions are needed for this dewation, namely
(1) receiver locations and approximated velocity model ateown; (2) the same
nite di erential operator is used in both forward and time-reversal extrapola-
tions.

The idea of traditional time-reversal extrapolation is basgally the same as
wave propagation simulation using equation 5.12. The onlyi drence is that
the source termf ,, and f,, in equations 5.1 and 5.13 are replaced with the
time-reversedx- and z-component of particle velocity recordings, which means
in this method receivers are turned into sources from whereaordings are
injected into the medium (McMechan, 1983).

5.3.1 O ine Training

According to the previous description, the size of the snapshmatrix A is

directly determined by the number of receivers. For geneml, we assume
there areNs receivers located at coordinate{; z;], [X2; Z], ..., [Xn.; 2Zn,] fOF

microseismic monitoring, wherex and z are horizontal position and depth
respectively. Since in 2D reverse-time extrapolation, tihe are horizontal and
vertical components of recordings to be extrapolated, sifations from sources
with a single component, horizontal and vertical, are both @eded to generate
both P- and S-wave elds, and all of these are included in on@apshot matrix

A for training (Equation 5.3). The snapshot matrix for aj " horizontal single-
force sources; located at [x;; z] is

Ug =[uluz;ug ] (5.14)

where superscriptx refers to the horizontal direction of a single-force source
N; 6 N1, where Nt is discrete total simulation time. A similar expression
holds forU ? where superscriptz denotes vertical direction. Then the complete
shapshot matrix for training is grouped as
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A =[Ug UG mUg sUGUEmUg ] (5.15)

Syt SN !

Then we apply ARQRd to the snapshot matrixA to get a basisQ with
the grid size of N, Ng] following the step (2) in the last section. Likewise,
we construct a reduced-order partial di erential operatorQ'LQ , which can
be used in time-reversal extrapolation for real-time micseismic localization.
The size of the new partial di erential operator is Ng, Ng]. SinceNg<<N ,,
we have a reduced-order extrapolation system whose size iscimsmaller than
the original one.

Based on the previous derivation, the reduced-order timeversal extrapo-
lation system can be built by rst replacing the source ternf in equation 5.13
with the time-reversed horizontal and vertical componentsf particle velocity
recordingsRY and RY respectively, given by

0 1
RY

D"=B 0 ¢; (5.16)

where the total temporal sampling number of recordings M. Equation 5.1

becomes
@ Lu"+ D" 5.17
=Lu" + ; .
@t 1 ( )
whereu are the time-reversed wave elds, denoted by
0 1
M
vy
u" =B r¢; (5.18)

Analogous to the derivation of equation 5.10, equation 5.18 written into

115



a reduced-order form

@" (1)

ot Q'LQa"()+ Q'D"; (5.19)

whereal (t) is the coe cient vector at time t for time-reversal extrapolation;
Q"D are the reduced-order recordings as a source term. Equat®n9 is the
reduced-order equation for time-reversal extrapolation.

5.3.2 Continuous online time-reversal extrapolation

With the previously derived reduced-order system, we now irgduce the im-
plementation of continuous online time-reversal extrapation. In this step,
since the total discrete simulation time in the o ine training step isNt, which
is likely substantially less than the total sampling numberof recordingsNp,
a discrete temporal window of lengthN+ is used to select the reduced-order
recording segments for extrapolation, using equation 5.5hd 5.19.

Then similar to equation 8, an equation

U" = Qat (5.20)

is used to reconstruct the complete time-reversed wave eddwhere the struc-
ture of the basisQ is 0 1

Qu,
Q.,
Q=E8Q _ (5.21)
Q..
Q .:
However, sometimes it is only necessary to reconstruct the weeelds within a

target area (Figure 5.2), which means only the portion of thedsis correspond-
ing to the area is used in wave eld reconstruction, leadingot

u' = Q" ; (5.22)

whereQ,.,, represents the portion of basi§ we used for reconstruction.
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Figure 5.2: Geological settings for microseismic monitogn Triangles: re-
ceivers in a borehole. Three hydraulic fracturing stages armat the end of a
treatment well. Outer box: the model used for training. Innebox: target area

in which wave elds are reconstructed.
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This describes the procedure of reduced-order extrapolati for a single seg-
ment of data, whereas for continuous extrapolation, a paragter N+, is used
to move the temporal window of time-reversed dat®" to the next segment,
followed by the same extrapolation process.

During back-propagation, a source focusing criterion is aded due to the
absence of the zero-lag cross-correlation imaging conalitiwhich is normally
applied in time-reverse extrapolation based source locadtion methods (Art-
man et al., 2010). An energy ux based focusing criterion canebapplied to
each time slice of the back-propagated source image to autatically determine
the source location based on the Hough transform. Full detailcan be found
in Li and Van der Baan (2017).

5.4 Example

In this section, we apply the proposed reduced-order systeim two examples,
namely wave eld extrapolation and continuous microseisroievent localization.
Both examples use the Marmousi velocity model (Figure 5.3),hich is based
on a pro le through the North Quenguela trough in the Cuanza bsin (Mora,
2002). The model is 2928m in depth and 9216m in length. The diste velocity
model we used in this section has grid numbers of 122 in depthda384 in
length, with a grid spacing of 24m and time interval of 1.8msThe size of the
nite di erential operator ( L in equation 5.11) for the high- delity simulation
is [233229, 233229], where 233229 is the number of rows @f equation 5.13.

In both examples, the high- delity simulations are conduatd by solving
the traditional two-way wave equations using a staggeredid nite di erence
method, in which a fourth-order spatial and a second-orderemporal nite
di erence operator are applied.

5.4.1 Reduced-order Wave eld Extrapolation

This example is used to illustrate that input source time funtions used for the
on-line simulation can be di erent from the one used for o ihe training step.
For simplicity, we use only one source denoted by the secortdrsfrom the top
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Figure 5.3: a) Marmousi velocity model for microseismic madoring simulation.
Stars: microseismic events. b) Smoothed Marmousi velocitgodel for time-
reversal extrapolation. Triangles: receivers in a borehole

in Figure 5.3a and the smoothed Marmousi velocity model (Figar5.3b).

In the o -line training step, an explosive source with a Rickr wavelet with
a peak frequency of 10Hz is used, which originates at 0.01s (kg 5.4a). The
source locates on the right of the well with coordinatesx( z) of (1900, 5500).
The total simulation time is 1.5s, with a temporal interval ¢ 1.8ms. We save
every snapshot of both particle velocity and stress wave @ obtained from the
high- delity simulation to a snapshot matrix A according to equation 5.13 and
5.15. The size ofA is [233229, 834], where 834 is the total number of discrete
times N;.

In order to illustrate the information redundancy of matrix A, we display
the singular values ofA in Figure 5.5, obtained by applying SVD toA . Figure
5.5 shows a sharp drop in the singular values, showing infaation redundancy
exists in the traditional simulation process. We then apply ARQRd to auto-
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Figure 5.4: Source time functions a) used for o -line trainig. b) used for
on-line simulation

matically calculate basisQ of the snapshot matrixA, where the value of is
10 8. The size of the basi®Q is [233229, 216]. The reduced-order extrapola-
tion system is constructed according to equation 5.10, in Wit the size of the
reduced-order partial di erential operator is [216, 216].The size of the new
system is about 2 10 ° times of that of the original extrapolation system.

In the online simulation step, a new source time function (Fige 5.4b) is
applied as forcef (t) in equation 5.10, using the reduced-order matrixQ as
obtained from the simpler source, as shown in Figure 5.4a. Waelds are
calculated using equations 5.8 and 5.10. As a comparison, wsoacalculate
the wave elds from the new source time function (Figure 5.4)sing the high-
delity simulation. The resulting wave elds from the two simulation systems
are shown in Figure 5.6.

The pressure wave elds in Figure 5.6 at 0.71s and 0.99s arectddted us-
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Figure 5.5: Singular value plot of the snapshot matriA .

ing the reduced-order (Figure 5.6a and 5.6b) and the high- dé&y simulations
(Figure 5.6c and d). Figures 5.6e and 5.6f show that the averageerences
between the pressure wave elds constructed by the two sination schemes
deviate less than 0.1% of the largest negative amplitudes. gdire 5.7 shows
a trace extracted from an arbitrary spatial location to compre the simulated
waveforms in detail. The waveforms of pressure amxd and z-component of par-
ticle velocities from two simulation schemes overlap eachher perfectly. The
above results show that the reduced-order simulation is iessitive to changing
source time functions in the on-line simulation step as longs the frequency
contents overlap and the source position remains xed. Waedds derived from
the reduced-order simulation are near-identical to the oseobtained from the
high- delity simulation.

We then compare the computational costs of 1.5s of both higtelity and
reduced-order simulations, where the latter includes theosts of the oine
training, online calculation of coe cients and wave eld canstruction, displayed
in Table 5.1. For a fair comparison, we calculate the compketwave elds in-
cluding two-component particle velocities and normal anchear stresses in both
cases. The total computation time for the reduced-order suation is 575.73s,
which is much longer than the cost of the high- delity simulaion, 190s. How-
ever, approximately 99% of computation costs are due to o ia training in
order to obtain an order-reduced simulation system wheredke calculation
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Figure 5.6: Left and right panel: Snapshots at 0.71s and 0.9@spectively from
the source waveform in Figure 5.4b. a) and b): Pressure wavéds constructed
by reduced-order simulation derived from a snapshot matriA including all
the time snapshots. c) and d): Pressure wave elds construet by high- delity
simulation. e): Di erence between a) and c). f): Di erence btween b) and d).
The max errors on the all snapshots are less than 0.03%. g) and Rressure
wave elds constructed by reduced-order simulation. In tis case only one third
of the snapshots are selected to build the snapshot matr. i): Dierence
between a) and g). j): Dierence between b) and h). The max eors on the
all snapshots are less than 2%.
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Figure 5.7: Comparison of the waveforms calculated by reduterder and
high- delity simulations, denoted by stars and triangles espectively. a) pres-
sure. b) and c)x and z-components of particle velocity. They overlap with
max 0.03% di erence.

cost of coe cients only takes 0.04 of the total computational cost. These
results indicate suitability of time-reversal extrapolaton for continuous mi-
croseismic event localization, since we only need to do théne training once
using a limited total simulation duration whose computatimal cost is xed and
then it can be used repeatedly to extrapolate various recardys with extremely
fast speed, which eventually takes less computational tintean high- delity
simulations for longer recording time.

Also the oine training can further be sped up by reducing the mumber
of time snapshots in matrix A, equation 5.2 and 5.3 at the expense of less
accurate reconstructions. For instance by including onlyre out of every three
consecutive snapshots in time we obtain a much smaller snhps matrix A.
The o ine training time becomes 480s instead of 575.73s andhé maximum
reconstruction errors are less than 2% (Figures 5.6i and 956y the same test
setup. This is permissible as long as the down-sampled snlapis matrix still
actually re ects the frequency content of the complete data
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Table 5.1: Computation costs of 1.5s high- delity and redusd-order simula-
tions

high- delity Total cost 190 s
O ine training 574 s
Reduced order| Online calculation of coe cients 0.03 s
Wave eld construction 1.7 s

5.4.2 Continuous microseismic event localization

We simulate a microseismic monitoring setup in this exampleas shown in
Figure 5.3a. In the model, a vertical borehole is simulated thi four receivers
at depths approximately from 1000m to 2900m to record acoustemissions
from three double-couple sources. Particle velocities it x and z direction
are measured at each receiver, with a total recording time 86 (Figure 5.8).

Figure 5.3b shows a smoothed Marmousi velocity model used frline
training and wave eld extrapolation. The model has the samédiscrete size as
the non-smoothed model. The smoothed velocity model is usedmimic the
usual case in which a true velocity model is often not availé and also to
prevent secondary re ections.

Sincex and z-component recordings of four receivers are to be extraptad,
eight sources corresponding to each component of the foucee/ers are used for
simulations in the o -line training step. They are all singk force sources, four in
the x direction and four in the z direction and all have a simulation time of 2s.
Ricker wavelets with peak frequencies of 10Hz are used in th@e training.
The wave elds corresponding to the eight sources are calatéd separately.
To reduce memory issues in the ARQRd procedure, we only saveegvother
snapshot in time obtained from each simulation té&\ using the ordering shown
in equation 5.15. After applying ARQRd to matrix A, a basisQ is obtained
including all information of the wave elds radiated from the eight sources. The
size of basiQ is [233229, 779]. The size of the new system is about 1@imes
of that of the original extrapolation system, whereas if oglcounting the non-
zero elements of equation 5.1, the size of the new system bmes 0.4 times
that of the original extrapolation system.

In the on-line extrapolation step, data are rst segmented ¥th a 2s temporal
window Nt, denoted by AB in Figure 5.8. The window is sliding along the
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Figure 5.8: x (left panel) and z-component (right panel) recordings from
simulated three microseismic events. Black box: temporaliding window.
Black arrow: temporal window sliding direction.
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Table 5.2: Computation costs of continuous high- delity ad reduced-order
simulations

92‘1212‘;3;3 . | high- delity Total cost 1140 s
14 overlapping
2s segments high- delity Total cost 3546 s
(total 9s)
14 overlapping O ine training 4146 s
2s segments | Reduced order| Online calculation of coe cients 0.36 s
(total 9s) Wave eld construction 28 s

time axis in the direction of the black arrow in Figure 5.8, wih a sliding step
N1, Of 0.5s. We choose 0.5s simply to balance the number of evesesected
and total online extrapolation cost as for simplicity we assne there can be
at most a single microseismic event in each data segment. Sibhvthe time
window sliding along the recordings, the 9s data are dividenhto fourteen
segments. Each segment is injected into the reduced systesspectively to
calculate coe cients a. Full wave elds are reconstructed using equation 5.8.
We only reconstruct wave elds within a prede ned area den@&d by the red
boxes in Figure 5.9, assuming that microseismic events sglelccur here. All
maps in Figure 5.9 are absolute energy ux maps using the foéug criterion
described in Li and Van der Baan (2017), for a better illustr#on.

We then compare the computation times in three scenarios tisl in Ta-
ble 5.2, namely 1) direct back-propagation of 9s recording®ntinuously us-
ing the high- delity simulation system; 2) direct back-prgagation of fourteen
2s segments of recordings using the high- delity simulatiosystem; 3) o ine
training and back-propagation of fourteen 2s segments ofc@dings using the
reduced-order system. We can see that the time-reversal egtolation based
the reduced-order system of 9s recordings takes more totahgputational time
than direct extrapolation using the high- delity simulation system. But the
computational costs of calculation of coe cients and recastruction increase
much slower than that when using the high- delity system. Wecan expect a
much smaller relative computational cost if much longer recdings are pro-
cessed, for instance, minutes, hours, or even days of conbusly recorded
microseismic data.
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Figures 5.9a, b and c display the three snapshots of normalizenergy
ux maps using the high- delity reconstructions for the three focusing maxima
whose coordinatesX, z) are (2042,4950) (1898,5506) and (2100,6007) in me-
ters. The locations of the maxima on each snapshot are almadlse same as the
locations of the three prede ned sources (blue star in Figure.9), whose coor-
dinates (x, z) are (2040,4960) (1900,5500) and (2100,6000) in meters.osh
side lobes on the maps are due to the very limited number of meers. The
corresponding time of these three snapshots are 1.1s, 2.@88l 5.68s, which
are close to the true origin times of 1.1s, 2.8s and 5.6s. Weethcompare the
high- delity reconstructions with the ones obtained usingthe reduced-order
systems (Figures 5.9 d, e and f) and nd that the two results aressentially
identical. This indicates that it is possible to do continuas microseismic mon-
itoring using the reduced-order system real-time and obtaisimilar results as
for the high- delity system but with substantially reduced online computation
times.

5.5 Discussion

In this chapter, we show that proper orthogonal decompostn is a powerful
tool to create a substantially reduced simulation system bgemoving redundant
information which normally exists in traditional two-way wave equation based
simulations. The reduced simulation system is signi cangl faster with good
reconstruction quality. However, this comes at the cost of aomputationally
intensive o ine training step, which could be even more expesive than direct
high- delity simulations. Generally, the cost of o ine tra ining is determined by
the calculations of snapshot matrixA and its left orthonormal basisQ, where
the size ofA is directly determined by the numbers of both high- delity smu-
lations corresponding to the included di erent sources antime slices selected
from each simulation for training. A snapshot matrixA is called a complete
shapshot matrix when it includes high- delity simulationswith sources at every
grid point within the model. Yet this may not be required for d applications.
For instance, a su cient snapshot matrix for time-reversalextrapolation only
includes those simulations with source locations corregmiing to receiver loca-
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Figure 5.9: Snapshots of normalized energy ux map correspding to the
estimated origin time of three microseismic events. Left a@nright panels: en-
ergy ux maps corresponding to results from reduced-ordemd high- delity
systems respectively. Top to bottom row: energy ux map coesponding to
origin times of 1.1s, 2.75s and 5.68s. Triangles: Receivessars: Microseismic
events. Red box: Interested area, inside which wave eldsercalculated. The
snapshots are color coded. Warm color represents high enewmhereas code
color represents low energy.
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tions in the real world, which is a small portion of a completsnapshot matrix
A. Conversely for fast forward modeling of waveforms due tows@es at any
possible position (Pereyra and Kaelin, 2008), a near-corep¢ snapshot matrix
is required. Whether it is desirable to apply the proposed miedd to a certain
application depends on the online versus o ine computatiortimes as well as
the computational resources available in the online stage.

Two characteristics of microseismic monitoring permit anéncourage the
creation of a reduced-order time-reversal extrapolatiomf real-time microseis-
mic event localization, namely a limited number of receiverand long monitor-
ing/recording time (usually from several hours to days). B@hole acquisitions
typically use up to a dozen geophones, whereas surface astjons can be
substantially larger (Duncan and Eisner, 2010; Van der Baapt al., 2013).
Yet it is not required to simulate a source at every possiblepatial position
in depth, greatly reducing the number of simulations whichentually leads
to a more interesting snapshot matrixA. Combined with the long recording
times, this ensures that the overall computational time ofeduced-order time-
reversal extrapolation, including both o ine and online cdculation, is much
smaller than the time required when using a high- delity simlation system.
Figure 5.10 shows a qualitative sketch of computation versuscording time.
The starting computation time for reduced-order extrapolaon (dash-dot line)
IS not zero because of o ine training (dashed line) which cdd be more than
direct high- delity extrapolation (solid line). The added computation time per
reduced-order simulation is substantially smaller than tat for the high- delity
ones. Hence at some recording length the two approaches use same total
computation times and reduced-order extrapolation usesse computation time
if recording time further increases.

To obtain both good performance and reasonable computatidime, several
items need to be addressed during the implementation of thegposed method
for continuous time-reversal extrapolation. First, it is nomally not necessary
to include every time slice obtained from high delity simu&tions in snapshot
matrix A as long as the time interval between selected two adjacenirte slices
satis es the Nyquist sampling theorem. Second, the compuian of the left
orthonormal basisQ is controlled by the positive error tolerance. With a
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Figure 5.10: Sketch of computation versus recording time fdrigh- delity

and reduced-order extrapolations. Horizontal axis: recoirtg time. Vertical
axis: computational time. Both axes start from zero. Dottedine: online
computational time increases slowly when using reducedder extrapolation.
Dashed line: computational time of o ine training is constant with increasing
recording time because simulation time for o ine training 5 xed. Dashed
doted line: overall computational time of reduced order exapolation is the
sum of o ine and online computational times. Solid line: corputational time
increases linearly with recording timet,: point when the overall computational
time of reduced-order simulation become less than that ofrdct high- delity

extrapolation.
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lower error tolerance , the left orthonormal basisQ creates a more accurate
but larger reduced-order system since it captures more imfoation in snapshot
matrix A, whereas conversely, a higher error tolerance leads to aslescurate
but smaller reduced-order system. Finally, real data shoulde divided into
segments where the total time of each segment for online eagbolation is not
longer than the simulation time Ty for o ine training. Because no wave eld
information at time over Ty is included neither in snapshot matrixA nor in
the reduced-order system, the computation of coe cient vedor a(t) becomes
unstable when extrapolation time is longer thanTy .

5.6 Conclusion

Traditional simulation/extrapolation based on the two-ware wave equation is
a high- delity but time-consuming process which has substdial information
redundancy because discrete wave elds are similar withimgcent spatial grids
and temporal slices. It also repeatedly solves the same slation problem since
only the recorded data change but the velocity eld remainsanstant. Proper
orthogonal decomposition is a promising technique to turnhe high- delity
simulation into a much smaller system by removing the redurashcy, which
can be used to build a fast time-reversal extrapolation scme. A work ow
using this new scheme is proposed, which may permit real-&mwaveform-
based microseismic event localization using feasible cangtional resources in
the eld.
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Chapter 6

Conclusions and suggested

future research

6.1 Conclusions

In this research, we introduce rotational seismology to elgration geophysics
in a systematic manner, including concepts and possible digations. Dier-
ent from traditional seismology, rotational seismology ibased on a combined
analysis of both translational motions, such as particle gplacements, veloci-
ties and/or accelerations and ground rotational for a betteunderstanding of
subsurface structures or passive source mechanisms, coragawith the case
when only a single type of data is analyzed. Rotational motiocan provide in-
formation about the spatial gradient of translational motons which is normally
not directly available in traditional seismic observatios. We have seen some
improvements to current techniques for both exploration ash global geophys-
ical purposes due to the involvement of spatial gradient infmation, which
inspired us to extend the application to waveform based migseismic event
localization.

Time-reversal extrapolation is one of the most popular watem based
techniques for microseismic event localization, where tewreversed recordings
are injected into a medium and waveforms are expected to fccat source loca-
tions. However, we nd that when using only the translationalmotions in the
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back-propagation through a borehole array of receivers, gt events appear on
the back-propagated source images which introduce ambityin the selection

of source locations. We propose two representation theordrased time rever-
sal extrapolation schemes, namely acoustic and elasticy faicroseismic event
localization, which utilize both wave elds and their spatal gradients, provided

by pressure wave elds and particle velocities in the acoustcase and particle
velocities and rotational rate wave elds in the elastic cas | have shown that

the proposed methods can provide better results with caneel ghost focuses
and boosted energy concentrations, compared with the trdatinal time-reversal

extrapolation of only the translational recordings.

We also propose two focusing criteria to automatically detmine the loca-
tions and origin time of microseismic events, namely based magnitude sum-
mation for acoustic case and energy ux based for elastic @sThe proposed
focusing criteria perform better over the traditional autecorrelation imaging
condition since our proposed methods determine both the goa locations and
origin time during back-propagation without saving snapstts whereas the lat-
ter can only determine the source locations by saving the Hapropagated
snapshots followed by an application of the imaging condatn.

The proposed methods are promising, but they still su er frm a high com-
putational cost because they are two-way wave equation sitation based meth-
ods which requires to discretize a model with ne spatial antemporal grids
for the purpose of computational stability. The discretizdon method normally
has substantial information redundancy because the numbef grid points is
often larger than needed. We propose a proper orthogonal degposition based
work ow such that a smaller simulation system, known as a raected-order sim-
ulation system, is built from a time-intensive o ine traini ng process. A fast
extrapolation scheme based on the reduced-order systemlii proposed for
real-time microseismic event localization. We conclude d&h the method is
suitable for continuous monitoring where the total computaon time (o ine
and online) is shorter than that of traditional two-way wave equation based
extrapolation.
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6.2 Suggested future research

The research presented in this thesis can be extended to gaeVelirections.

Earthquake engineering Earthquake engineering studies the perfor-
mance of structures and equipment during earthquakes, whids traditionally
based on the analysis of only ground translational motion cerdings and the
corresponding seismic response spectra for a structure ¢k, 1974; Rayhani
and Naggar, 2008). Teisseyre et al. (2006) suggests that @nt theory cannot
explain the strong rotational motions recorded during an ethquake and the
resulting failure of structures, indicating the necessityf taking into account
ground rotational motions in seismic response analysis. ffdoer research on
the mechanisms of ground rotational motions and the correspding structure
responses is needed.

Source location inversion In this thesis, | suggest that the recordings
of particle velocity and rotational rate should be combinedhrough the elas-
tic representation theorem based time-reversal extrapdian to obtain an im-
proved source image by removing ghost focusing. One possialternative is to
use a least-square inversion scheme that incorporates bdte wave eld and
its spatial gradient, which may provide a source image withigher resolution
compared with a time-reversal extrapolation scheme.

Two approaches can be used to build the cost functions, nametaveform
inversion and Bayesian joint inversion. In the rst approab, the elastic wave
equations for an inhomogeneous medium should be modi ed touple rota-
tional motions, whereas in the second approach, rotationaiotions are treated
as a priori constraints satisfying equations 2.2 or 2.3. Bypalying a spar-
sity constraint, a more focused source image should be obtad. Also further
research is required to investigate the possibility of incporating rotational
motion in a moment tensor inversion scheme for better resolons of both
source locations and moment tensors.

General elastic representation theorem The derivation of the elas-
tic representation theorem and the corresponding time-revsal extrapolation
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scheme in this thesis is valid only in an isotropic homogengo medium, even
though examples in chapter 4 show that it works ne in an inhomgeneous
medium. However, to understand the underlying physics, it imecessary to
derive a general elastic representation theorem, which catcount for both
homogeneous and inhomogeneous cases.

Parametrized model order reduction The o ine training step in the
tradition model order reduction scheme in this thesis reques xed model pa-
rameters, such as a certain acquisition geometry and a pretdrmined medium
velocity model. Each time these parameters change, new otraining is
needed to obtain the corresponding order-reduced model, kirag its applica-
tion in seismic inverse problems extremely ine cient becase those parameters,
especially velocity models, are updated in each iteration.

A possible solution to the previous problem is parametrizetiodel order re-
duction (pMOR), in which geometric and physical propertiesre parametrized
so that a general order-reduced model can be used for varigasameters (Sam-
path et al., 2009). Research needs to be done about how to aphlis technique
in seismology, when the degrees of freedom for those paraengtare in the order
of millions.
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