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Abstract

A real-time OLAP system caches previous queries’ results to accelerate the pro-

cessing of future queries. On such a system, whenever an update happens, affected

cached values must be invalidated, or re-calculated, to maintain their consistency.

Several different invalidation policies are used in real-time OLAP system. For all

these policies, during the invalidation, the system must perform synchronization

to ensure the consistency of cached values. Such synchronization can lead to poor

scalability and may, therefore, dramatically degrades the throughput of the OLAP

system.

A synchronization-free invalidation policy was introduced in previous work to

improve scalability. Such a policy results in stale cached values that can lead to

incorrect query answers. To reduce the level of inconsistency in the system, this

policy relies on independent threads, called fresheners, to recompute stale values.

This thesis evaluates this policy with a manufacturer data set. It introduces new

metrics to measure the level of inconsistency in the system. Based on these metrics,

it measures the throughput improvement and number of incorrect results generated

with this policy.

Invalidation incurs high overhead even when the system is not performing syn-

chronization. An alternative is to skip invalidation and to rely solely on fresheners

to update incorrect results. This thesis introduces such a policy. This policy re-

quires a more sophisticated strategy to keep the number of stale cached values to

an acceptable level.

This thesis also develops a framework to monitor the current status of the OLAP

system and adjusts the number of fresheners. The goal of this framework is to deliver

a stable, and acceptable, probability of incorrect results, due to stale cached values,

under various workload.
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Chapter 1

Introduction

Caching is widely used in query systems to accelerate the response time of future

queries by reusing the values produced for previous queries. Invalidating cached val-

ues when an update occurs in data that was used to compute such values is essential

to ensure the correct operation of the query system. Unfortunately, the invalidation

procedure is non-trivial on some system and can incur significant overhead. This

thesis investigates several widely accepted invalidation policies on real-time on-line

analytical processing (OALP) systems. Given the limitations in existing policies,

we propose an innovative policy that eliminates invalidation during update. The

elimination of invalidation leads to incorrectly cached values and the policy relies

on separate threads to fix the cached values. However, some incorrect cached val-

ues may not be fixed in a timely manner, and thus the user may still get incorrect

answers for queries calculated using cached value. A new framework that manages

the tradeoff between the number of fresheners used in the system and the level of

incorrectness that is tolerated while adapting to various workload.

Business intelligence(BI) systems are an essential tool to support decision making

and play a crucial role in many organizations. Such systems have evolved very

significantly since they were first introduced.

Traditionally, an OLAP system, which is an important components of BI sys-

tems, works based on a data mirror that is usually extracted from on-line transaction

processing (OLTP) systems. Limited by the time needed, the extraction procedure

can only be performed periodically instead of on demand. Periodical extraction of

data from an OLTP system leads the OLAP system to answer user’s query based

on stale data. The time lag between the data extraction and the OLAP queries can

become an obstacle to reacting to changes in an organization in a timely fashion.
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Real-time OLAP systems are becoming more broadly used [31]. White points

out the need for real-time OLAP systems that allow users to make decision based on

almost-current information [31]. On such system, the OLAP part can no longer be

separated from the OLTP part because the time required to extract data from the

OLTP system leads to stale OLAP query answers. In other words, a real-time OLAP

system must include features that traditionally exist only in OLTP systems (e.g.,

update on data). Significant effort has gone into the design of integrated OLAP

and OLTP system with acceptable performance on both types of operations [26].

Real-time OLAP systems must concurrently answer complex queries and execute

updates into very large data-set.

Individual queries can be quite complex and time consuming. Therefore cache

systems that record previous answered queries’ results are implemented to improve

the responding time and throughput of some current real-time OLAP systems such

as the IBM cognos TM1. Including OLTP features (e.g., update operation) in such

systems requires that the designer deal with the cache-invalidation issue. Then, a

crucial question must be investigated: will benefit of cache system, under certain

workload, be sufficient to pay for overhead of the invalidation procedure? The cache

system should work well on a system without frequent updates. However, is there

an invalidation policy that make the cache system advantageous on various types of

workload?

Research effort has been directed toward lowering the overhead on invalidation,

especially on many-thread system. Ungar et al. found that the synchronization dur-

ing invalidation generates larger mount of overhead and that this overhead increases

with the number of threads the system uses[30]. They proposed to eliminate the syn-

chronization during invalidation and found throughput benefits on small-size data

sets [30]. Then how would their synchronization-free approach performs on larger

data set with much more complex queries?

Ungar et al. propose that inconsistency could be tolerated in some OLAP ap-

plications. An interesting research question is whether it is possible to go one step

further and eliminate the whole invalidation procedure instead of just the synchro-

nization part? This paper implements such invalidation-free policy for the update

procedure and compares its performance with exist policies.

Both synchronization-free policies and invalidation-free policies lead to inconsis-

tency. Thus, it is important to have metrics to measure this inconsistency. Also,
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an important question is how bad the inconsistency issue becomes and can it be

somehow controlled? The thesis proposed metrics to measure the level of inconsis-

tency in the system. The thesis also introduces a framework to adjust the amount

of resources dedicated to freshening stale cached cells, thus affecting the level of

inconsistency in the OLAP system.

This dissertation aims to provide support to the following thesis statement:

The elimination of invalidation during cell update, on real-time OLAP

systems, may provide significant performance benefits at the cost of pro-

ducing inconsistency results for queries.

This thesis is introduced based on assumption that, in some application domains

for real-time OLAP, come level of inconsistency is tolerable.

To contribute to the state of the art of real-time OLAP systems this thesis:

• Compares the throughput of synchronized invalidation policies with the through-

put of the synchronization-free invalidation policy. Then it measures the in-

consistency level for Ungar’s synchronization-free approach [30] .

• Proposes a new invalidation-free policy for that is based on the approach

proposed by Ungar [30]. Independent threads, named freshener, keep incon-

sistency at an acceptable level. The number of fresheners used in the system

affect the cached-value stale rate.

• Proposes the Adaptive Inconsistency Level Framework (AILF) to monitor the

inconsistency level dynamically and to adapt the number of fresheners to the

current workload.

• Builds a real-time in-memory OLAP system prototype. This prototype is able

to load in data from an IBM Cognos TM1’s dumped file. It builds a data cube

according to the dimension hierarchy and TM1 rules. TM1 rules allows a cell in

a data cube to be calculated from any other cells using an arbitrary equation.

This prototype includes the cache system that stores previous queries’ results

to be used in future calculations.

The rest of the thesis is organized as follows. Chapter 2 provides essential back-

ground knowledge and reviews related work. Chapter 3 describes the synchroniza-

tion policies and motivates the need for synchronization to maintain the consistency

3



of cached values. Chapter 4 introduces Ungar’s synchronization-free policy and our

new invalidation-free policy and presents a new freshening strategy, most-recent-

query(MRQ) freshening, to meet the requirement on efficiency in an invalidation-

free policy. Chapter 5 proposes the AILF that adaptively adjusts the number of

fresheners to maintain an acceptable possibility of generating incorrect results while

adapting to various workload. Chapter 7 concludes this thesis and describes future

work.
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Chapter 2

Background

This chapter starts with a brief history of the evolution of decision-support systems

(DSS). Then it presents an overview of On-Line Analytical Processing (OLAP) and

On-Line Transaction Processing (OLTP) applications. One of the most important

concepts to understand OLAP is the structure of a data-cube model, including

relation of the values stored in multiple cells and the mechanism used to store and

update the value of the cells. Thus, the chapter presents the necessary background

to understand the data cube model. The chapter ends with related research in the

areas of OLAP, approximate computing, and incremental computation.

2.1 Decision-Support Systems

Decision-Support Systems (DSS) became essential tools for the management of data

and for decision making in large corporations [23]. The development of the IBM

System 360 and other “powerful” mainframe systems made it realistic to build Man-

agement Information Systems (MIS), which were considered very expensive prior to

1965. With data from accounting and transaction system, MIS is able to provide

managers with structured, periodic, reports for decision making.

In 1971, a seminal book by McKenney and Scott introduces the idea of DSS [19].

The development of the theory to support DSS starts in the late 1970s. For instance,

Sprague and Carlson’s seminal book is regarded as a crucial milestone in the history

of DSS because it provides practical guidance to build a DSS [28].

Beginning in about 1990, data warehousing and On-Line Analytical Processing

(OLAP), which can be categorized as Data-Driven DSS, gain popularity [23]. At

the time, Bill Inmon, who is often referred to as “the father of data warehouse”

defined DSS as “a system used to support managerial decisions.” A key aspect of
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DSS processing — which distinguishes it from the on-line systems that came later

— is that a DSS does not provide support for the update of the data set. In other

words, DSS is only concerned with providing analytic results for a given static data

set. DSS does not support collecting or updating data and therefore has no control

on the quality of the data used for the analysis.

2.2 OLAP and OLTP applications

On-Line Transaction Processing (OLTP) applications deal with tasks that are es-

sential for the daily operation of an organization such as recording order entry and

banking transactions. These tasks are structured and repetitive and they are exe-

cuted through a series of short transactions that are both atomic and isolated [9].

Each transaction must be recorded and updated on time. For large organizations

a huge amount of transactions must be processed simultaneously. Therefore con-

sistency, recoverability and high throughput are key requirements for the design of

databases to support OLTP applications.

As an essential tool for decision support system, On-Line Analytical Process-

ing (OLAP) applications aim to help managers make decisions. While the focus

of OLTP applications is fast throughput in the processing of detailed individual

records, the focus of OLAP applications is historical, summarized and consolidated,

data. Therefore, a typical OLAP query requires much more data access and com-

putation compared to an OLTP query. For example, a manager in Audi, a car

manufacturer, is more likely to need the answers for queries such as how many cars

the company has sold last year and which car model sold best last month than the

details of an specific car-sale transaction recorded by an OLTP application. Such

complex queries may be related with a large number of individual transactions se-

lected by specific features (e.g. model, year or color). Data-driven decision making

leads to more sophisticated OLAP queries such as “what is the best-selling car for

buyers between twenty and thirty year olds in cold climate?” In general, each query

in an OLAP application is non-trivial to answer, but both the response time to

individual queries and the throughput processing of queries are very important cri-

teria to measure the performance of an OLAP application. In summary, the aim of

an OLAP system is to provide fast answers to multi-dimensional analytical (MDA)

queries [12].

Traditionally, OLAP applications are maintained separately from an organiza-
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tion’s operating database that is designed to support (OLTP) applications. The

difference of workload and requirements between OLTP and OLAP applications

makes it difficult for a single database to support both of them with acceptable

performance. A concrete example should illustrate the optimization dilemma for a

database intended to support both OLTP and OLAP. To answer an OLAP query

about the sales for a specific model (e.g. A4 of Audi), the database either needs

to build an index on column “model” or it has to iterate over all records. Unfor-

tunately, building indexes on all features that could possible appear in an OLAP

query results in significant overhead on insertion and deletion into the database.

Insertions and deletions are frequently executed by OLTP applications.

Therefore OLAP applications usually work on separate databases that are op-

timized for OLAP queries’ requirements. OLAP applications rely on an Extract-

Transform-Load (ETL) tool to extract data from OLTP applications’ operating

databases and then re-format the data to an structure that is optimized for OLAP

applications. This solution has been widely accepted by the community and applied

by industry since early 1990s when data warehousing and OLAP were defined.

Using separate databases for OLAP applications leads to the data freshness

problem. The ETL procedure is time consuming and therefore can only be executed

periodically (seasonal, monthly or weekly). Therefore, OLAP applications that rely

only on ETL would answer user queries with out-of-date data and thus generate

reports with stale results. Early in the history of OLAP such stale results were re-

garded to be acceptable because it was the only practical solution for the technology

of the time.

However, with the support of current technology that with much more power-

ful processors and more memory space than the machines of the IBM System 360

vintage, it is no longer an unrealistic goal to build a “real-time” OLAP application

that generates results based on data that is very close to up-to-date. IBM Cognos

TM1 and icCube are the pioneers of real-time OLAP applications [3, 4]. A real-

time OLAP application is either an integrated OLAP and OLAP system which is

able to deal with OLAP transactions by itself to keep the data freshness or imple-

mented with efficient tool to extract data from OLTP system on real-time. Both

the transaction processing and the extraction brings overhead to the OLAP applica-

tion. The design decision for both the IBM Cognos TM1 and icCube solutions is to

store all the operating data in memory to reduce the overhead incurred for real-time
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processing. The in-memory approach makes the responding time and throughput

acceptable but imposes constraints on the size of the data.

On traditional OLAP applications, pre-computation on all the possible queries

is a popular strategy to accelerate the query response time because each individual

query could be quite complex and thus time consuming. Such strategy only makes

sense if the whole dataset needed to answer a query remains stable for a period of

time. Therefore this strategy is not very useful for a real-time OLAP application

where the data changes continuously. Fortunately, even though any portion of the

dataset may be changed at any time, some of the query answers remain stable over

a period of time. A query previously answered whose data has not changed should

not be re-calculated when issued a second time. For this case, IBM Cognos TM1

implements a cache system that stores prior queries’ answers to accelerate future

query’s response time.

2.3 Data cube

In OLAP, a high-dimensional hierarchical cube is used as an abstraction to present

and discuss the organization of the data. This cube can be understood as a n-

dimensional generalization of a two-dimensional spreadsheet, but with the added

capacity of aggregating multiple points in a dimension, which are equivalent to rows

or columns in a two dimensional structure, into aggregated coordinate. For instance,

January, February, and March may be aggregated into a First Quarter coordinate.

2.3.1 Cube Overview

OLAP uses a multi-dimensional dataset, often called a data cube, as its logical model.

A data cube is an array of data understood in terms of its dimensions. Figure 2.1,

reproduced from website of Datanova[2], depicts a simple data cube that consists

of 3 dimensions: Time dimension on vertical axis, Measure dimension on horizontal

axis and Product Category dimension on the depth axis [2]. The members in each

dimension (e.g. January in Time dimension) are named coordinates. A coordinate-

tuple consists of n coordinates, one from each dimension of the n-dimensional data

cube and it uniquely identifies a cell. Conceptually, each cell of the cube holds a

value. Some cells hold the value entered by a user and are thus called entered cells.

Other cells are calculated from those entered ones and are thus called computed

cells. The cube’s persistence storage may not contain the computed cells because
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Figure 2.1: Simple OLAP Cube (reproduced from [2])

the values of them may always be calculated on the fly.

2.3.2 Hierarchical Dimension

The dimensions can be much more complex compared to the simple ones in Fig-

ure 2.1 because there can be a hierarchical relation between coordinates within

a single dimension. Figure 2.2 shows a data cube with hierarchical dimensions

and Figure 2.3 shows the hierarchical relation among Time dimension. Figures 2.2

and 2.3 are reproduced from a blog post by Jagadish Chaterjee in ASP/free, an

online community focused on the Microsoft web framework [1]. As shown in Fig-

ure 2.3, the coordinates in a hierarchical dimension are organized as directed acyclic

graph (DAG). It is clear that January 1st is the child coordinate of January, which

has parent coordinate Quarter 1, and grandparent coordinate 1990. The hierarchi-

cal relation among coordinates is usually, but not necessarily, designed with logical

meaning. This relation specifies that the cell with non-leaf coordinate can be cal-

culated from the cells with the child coordinates. For instance, for the cube in

Figure 2.2, if we take the cell at South America for Route dimension, 1st half in

Time dimension and air in Source dimension — such coordinate is denoted as [South

America, 1st half, air] — the query aggregation(sum) of [South America, 1st quar-

9



ter, air] returns 600 and [South America, 2nd quarter, air] returns 490 which equals

1090, because of the hierarchical relation between 1st quarter, 2nd quarter and 1st

half. Sum is not the only operation that can be applied to calculate the value of

a cell from its child cell’s values. Any other aggregation operation — for instance

average or standard deviation — can be computed.

Cell Hierarchy : Let cells A and B be two cells that belong to the same cube C.

Cell A is an ascendent of cell B(or Cell B is an descendent of cell A ) if and only if:

1. The coordinates of A on each dimension of C are ascendents of or same as the

corresponding coordinates of B, and

2. at least one of the coordinates of A is an ascendent of a corresponding coor-

dinate of B.

Given cells A and B, both belonging to a cube C, cell A is a parent cell of B, or

B is a child of A, if and only if:

1. There exist a dimension in which the coordinate of A is a parent of the coor-

dinate of B.

2. A and B have exactly same coordinate in all other dimensions.

With hierarchical dimensions, the cells can be categorized into leaf cells and

consolidated cells. A cell is a leaf cell if none of its coordinates has descendents,

otherwise it is a consolidated cell. A consolidated cell is one kind of computed cell

– computed by consolidation.

2.3.3 Rules

Most data-cube models only allow a user to define relations among cells within a

dimension hierarchy as discussed previously in Section 2.3.2. However, TM1 intro-

duces a more flexible way to defined cell relations. In TM1, besides aggregation from

child cells, a computed cell may also be calculated following pre-defined rules. A rule

defines how a group of cells that satisfies certain constraints should be calculated.

For example, the following rule can be applied to the cube in Figure 2.1.

[ProfitMargin%] = N :([SalesAmount]− [SalesCost])/[SalesQty]

10



Figure 2.2: Cube with hierarchical dimensions (reproduced from [1])

Figure 2.3: Time Dimension (reproduced from [1])
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The left part of the rule states that it applies to cells on the ProfitMargin% coor-

dinate in the Measure dimension. The N : on the right part makes the rule only

apply to leaf cells. Thus, this rule results on the following equation:

[R, J,ProfitMargin%] =
([R, J, SalesAmount]− [R, J, SalesCost])

[R, J, SalesQty]
(2.1)

Where R stands for Regular and J stands for January. This rule also applies to

cells with all different leaf coordinate in category and time dimension.

2.3.4 Cached Cell and Staleness

A lazy computation strategy is adopted by real-time OLAP applications such as the

IBM Cognos TM1. The system does not calculate the value of a computed cell until

such value is queried. To reduce the response time and improve the throughput, once

a computed cell value is calculated that value is cached to answer future queries. A

computed cell that holds a cached value from prior queries is called a cached cell.

Intuitively, the cached value will be stale (out-of-date) if it is dependent on a cell

whose value has changed after the cached value was computed. A cached cell is also

stale if a new cell that it depends upon has been inserted into the data cube.

Cell Dependency : Cell A depends on Cell B if

1. cell B is a descendent cell of A; or

2. there exist a rule r that applies on A and use the value of B to calculate the

value of A; or

3. there exist a rule r that applies on A and use the value of a cell D to calculate

A and D is depends on B.

Cell A directly depends on cell B if

• cell B is child cell of A; or

• there exist a rule r that applies on A and use the value of B to calculate A.

On TM1, the value of a empty entered cell (i.e. the entered cells has not been

updated) is regarded to be zero. Therefore, the insertion and deletion of entered

cells can be regarded as special cases of value update of the entered cell. In general

a cached cell A is stale if cell A depends on a cell B and the value of cell B has
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changed after the cached value of cell A was calculated. The value of a cell may

change through recalculation, data entry, cell deletion, or cell insertion.

A OLAP application running on a system that caches calculated values must

either have a mechanism to detect and refresh stale values or it must tolerate stale

answer to queries. Chapters 3 and 4 introduce existing policies to maintain the

correctness of cached values during update and policies that require the application

to tolerate stale cached values.

2.4 Related Work

The investigation presented in this thesis is related to previous work in the areas of

OLAP, approximate computing, and incremental computation.

2.4.1 OLAP

Throughput and latency are two key metrics to measure OLAP application’s per-

formance. Research on different aspect of OLAP and data warehousing has been

focused on the improvement of throughput and on the reduction of latency.

The design of efficient data structures to store data on disk is an important focus

of previous research on OLAP. Such research often investigates different specialized

multidimensional data structures, leading to what is called multidimensional OLAP

(MOLAP) [22]. Zhao et al. propose variety optimization on multidimensional arrays

to handle sparse arrays and to improve performance [29, 32]. Relational OLAP (RO-

LAP) applications use a relational database source and rely on tools to access data in

that database through SQL queries that calculate the information requested by the

user. Compared to OLTP applications, which are also based on relational database,

ROLAP employs specialized index structures to achieve good performance. Sub-

stantial research effort has been directed toward optimizing relational databases for

OLAP workloads [17, 14, 13, 27, 10]. On one hand, ROLAP scales better with the

amount of data and is better at handling models with very high cardinality dimen-

sions when compared with MOLAP[5]. On the other hand, MOLAP is regarded

to have faster “query response times” [22]. Hybrid OLAP (HOLAP) which “allows

storing part of the data in a MOLAP store and another part in ROLAP store” pro-

vide both scalability on size of data and performance advantage on specified part of

data in MOLAP area.

Traditionally, an OLAP application works with an independent database and
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uses an extract-transform-load (ETL) tool to import data from OLTP applications.

The requirement of real-time OLAP application is gradually drawing more and more

attention and thus leading many researchers and companies to devote resources

toward the implementation of OLAP and OLTP integrated systems [31]. Santos

et al. propose an integrated OLTP and OLAP framework to respond to OLAP

queries in real-time [26]. To solve the dilemma mentioned in Section 2.2, they use

a temporary table to hold records inserted after the last integration phase to avoid

expensive insertions in the original tables due to the indexes for OLAP queries on

it. Their approach merges the temporary table with the original table when the

temporary table is too large to yield a performance benefit.

2.4.2 Approximate Computing

An important issue in the development of real-time OLAP systems is the synchro-

nization between changes caused to the database system by the processing of trans-

actions and the calculation of cell values to respond to user queries. Ungar et al.

propose a synchronization-free invalidation policy that does not synchronize trans-

action processing with query processing [30]. This policy leads to inconsistent cell

values in the database. They introduce the concept of fresheners to reduce the level

of inconsistency and to provide more accurate answers to the queries. A freshener is

an asynchronous thread that recalculate the value of a stale computed cell. Several

scheduling policies can be used for freshener threads. They built a simple prototype

and evaluated the performance and level of inconsistency on a simple data set. Their

limited experimental evaluation pointed to promising scalability improvement and

acceptable levels of inconsistency. This thesis is inspired by Ungar’s work and the

research reported here was performed in collaboration with the same IBM team.

We developed a new prototype to investigate the levels of inconsistency and the

performance effects of the synchronization-free invalidation policy. Compared to

Ungar’s prototype, our prototype is implemented with a lower-level program lan-

guage (Ungar et al. use smalltalk and we use C++) that gives us more control over

the data structures. Additionally, our prototype is able to load the dataset along

with rule files dumped by TM1 to enable us to experiment with a dataset from the

daily operation of a very large corporation. Finally, we propose to use freshener to

collect inconsistency level while the program is running and to adjust the number

of fresheners according to the collected information.
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Kiviniemi et al. propose a real-time OLAP that tolerates inconsistency and

attempts to reduce recalculation [18]. Their approach skips re-computation when

the difference between the result after update does not exceed an user-specified

toleration range. This mechanism reduces the overall recalculation effort and thus

improves throughput. In contrast, the approach investigated in this thesis removes

part of the synchronization overhead to improve scalability, which is not a central

concern for their mechanism. Kiviniemi et al. assume that an update will not cause

significant difference to a cell A if it does not cause significant difference for A’s child

cell B. Therefore, their system reduces overhead by skipping the computation of

the difference of all cells whose child cell is not significantly affected by the update.

Such assumption only holds when computed cells may only be calculated with a

very limited set of functions(e.g. sum, average). In our prototype where user are

allowed to define rules with arbitrary functions, their assumption is not valid.

Chen et al. implements a near-real-time data warehousing system [11]. They

define metrics to measure the affect of update on pre-computed results and then

decide if a fresh computation is needed. Similar to Kiviniemi’s lazy-aggregation

approach, this implementation reduces the computation needed but does not affect

scalability.

Relaxing synchronization requirements is not an exclusive domain of database-

related applications. Rather, it is also a major concern for general-purpose parallel

programming and automatic parallelization of sequential programs and it becomes

more important with more processers you have. Renganarayana et al. and Mis-

ailovic et al. present frameworks to relax the synchronization in general programs

for better scalability [25, 21]. The system developed by Renganarayana et al. al-

lows users to select a profitable degree of relaxation to determine the frequency of

synchronization avoidance. We may apply a similar idea in the future to select a

degree of synchronization relaxation in our approach to control the inconsistency

level where the lower degree of synchronization results in higher level of throughput

and chance to get incorrect results. Misailovic et al. define an accuracy metric

and use statistic analysis to understand the effect of synchronization relaxation.

Later they introduce QuickStep, a system to parallelize sequential programs [20].

Different from standard parallelizing compilers, QuickStep tolerates certain level of

inconsistency, in the sense that the output could be different from the output pro-

duced by a sequential program to some acceptable level, and thus generate code
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with more parallelism. The study in this thesis is focused specifically on eliminat-

ing synchronization on the invalidation procedure of OLAP application with cache

system, and thus has more opportunity for specialized improvements that cannot

be easily applied to the relaxation of synchronization on a general program.

The metric used by Misailovic et al. to measure accuracy is based on the value

of the output [21, 20]. Such metric may be the most reasonable choice for a gen-

eral program but is not the best for an OLAP application. This thesis defines a

probability-based metric to measure the inconsistency level.

2.4.3 Incremental Computation

Incremental computation is a research area that deals with the problem of how to

update the result of a computation in an efficient manner in the face of changes to the

input of that computation [24]. Implementations of incremental computation rely

on function caching to obtain incremental evaluation [24, 6, 16] . Acar et al. intro-

duce dynamic dependency graphs (DDGs) and combine DDGs with a memorization

technique to create what call self-adjusting computation [8, 7]. Recently, Hammer

proposed a composable, demand-driven, incremental computation approach. Their

prototype, named ADAPTON, further improves efficiency by taking advantage of

lazy evaluation in the propagation algorithm [15].

Unfortunately, it is non-trivial to apply existing incremental computation tech-

niques to a real-time OLAP cache system because of the constrained memory space

and the large volume of data processed by real-time OLAPs used by large cor-

porations. Incremental computation and self-adjusting computation systems rely

on some form of dependency graph to record the relation between nodes for re-

computation. In an OLAP application, each cell must be regarded as a node in such

graph because each cell may affect the value of other cells. Often the number of cells

is so large that a dependency graph, either static or dynamic, is too large to fit in

memory. It is possible to group the cells into areas, to record the dependency graph

of those areas, and then to apply an incremental-computation technique to this area

graph to reduce the time needed for individual re-computations. But such an ap-

proach would not produce the scalability that synchronization elimination attempts

to achieve and therefore is not considered in this thesis.
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Chapter 3

Synchronized Policies to
Maintain Consistency of Cached
Cells

Real-time OLAP applications use a type of memorization. They rely on a cache

system to store the results of previously answered queries on computed cells to

accelerate future queries and to improve overall throughput. The value cached

for a computed cell is stale if it depends — either directly or indirectly, via other

computed cells — on the values of entered cells that have been updated since the

last time that the cached value was computed. To maintain the correctness of

cached values, stale cached cells must be either invalidated or re-calculated, re-

calculating the value based on recent updates is also called refreshing. This chapter

reviews several cached-value maintenance policies. Then the performance of an

OLAP application using each of these policies will be compared with an OLAP

application that does not use a cache system in Chapter 6.

3.1 Motivating the Need for Synchronization

This section motivates the need for synchronization in OLAP by presenting an

example where invalidating the value of cached cells without synchronizing leads

to stale values in computed cells that appear to be updated. First, we present

a synchronization-free invalidation policy. In this policy, whenever an update —

insertion, deletion or value change — occurs on an entered cell A, the application

enumerates all the positions of the cube that could contain computed cell that

depend on the value of A and invalidates those cached cells.

Algorithms 1 and 2 show the procedure to update the values of entered cells and
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Table 3.1: Illustration of Thread Safety Violation

Thread 0 Thread 1
A.cached value ← calculated()

B.value ← new value
A.is valid ← false

A.is valid ← true

computed cells. The calculation of the new cached value in line 1 of Algorithm 2 uses

the most up-to-date values. These algorithms are not thread safe because they could

allow a stale value in a cached cell that appears to be valid. Consider the scenario

illustrated in Table 3.1 where computed cell A depends on entered cell B. Assume

that thread 0 is processing a query on A at the same time that thread 1 is updating

the value on B. Assume that initially thread 0 is at line 1 in Algorithm 2 and has

already retrieved the value of B. Then thread 1 finishes updating the value of B

and executes the for loop in algorithm 1 thus changing the value of the is valid

flag to false before thread 0 finishes the calculation. After that, thread 0 finishes

the calculation and changes the is valid flag to true. Now the cached value of A

is stale because it is not using the most up-to-date value of B that thread 1 just

updated. However the value of A is marked to be valid.

Algorithm 1 Entered Cell::update(double new value) Sync-Free Invalidation Pol-
icy

1: value ← new value;
2: cell array cells to invalidate ← enumerate cells();
3: for i in cells to invalidate do
4: i.is valid ← false;
5: end for

Algorithm 2 Computed Cell::cache value()

1: cached value ← calculate();
2: is valid ← true;

Enumerating all the cached cells that depend on a given entered cell, as required

by the statement in line 2 of Algorithm 1, is not trivial and results in significant

overhead. The combination of the coordinates and its direct and indirect parents of

all dimensions may result in a very large set of coordinate tuples. Thus, it is time

consuming to iterate over this set for all cached cells and holding a lock during this

long time procedure is extremely harmful to the scalability. Specially designed data
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Algorithm 3 Entered Cell::update(double new value) Synchronized Invalidation
Policy with Global RW-Lock

1: global rwlock.acquire wrlock();
2: value ← new value;
3: cell array cells to invalidate ← enumerate cells();
4: for i in cells to invalidate do
5: i.is valid ← false;
6: end for
7: global rwlock.release wrlock();

Algorithm 4 Computed Cell::cache value() Synchronized with Global RW-Lock

1: global rwlock.acquire rdlock();
2: cached value ← calculate();
3: is valid ← true;
4: global rwlock.release rdlock();

Algorithm 5 Entered Cell::update(double new value) Synchronized Invalidation
Policy with Per-Cell Lock

1: value ← new value;
2: cell array cells to invalidate ← enumerate cells();
3: for i in cells to invalidate do
4: i.acquire percell lock();
5: i.is valid ← false;
6: i.release percell lock();
7: end for

Algorithm 6 Computed Cell::cache value() Per-cell Lock Policy

1: acquire percell lock();
2: cached value ← calculate();
3: release percell lock();

Table 3.2: Illustration of Thread Safety Violation with Per-cell Lock

Thread 0 Thread 1
A.value ← new value
C.is valid ← false

C.cached value ← calculate();
B.is valid ← false C.is valid ← true
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structures and optimizations may reduce the overhead on this procedure, but such

optimizations were not explored in this thesis.

3.2 Synchronized Invalidation

A global read-write lock can be used to prevent the update of the value in an entered

cell and the calculation of the value in a dependent computed cell from happening

simultaneously. The policy, named Synchronized Invalidation(SI), described in this

section allows multiple calculations, or a single update, to execute simultaneously.

This policy is suitable for application workloads with more queries than updates.

In Algorithm 3 for update, the thread acquires a write lock on the global read-

write lock at line 1 and releases that lock at line 7. In line 3, all the cells that are

dependent on this entered cells are enumerated and added to the array of cells to

be invalidated. In Algorithm 4 for cached value, the thread acquires the read lock

at line 1 and releases it at line 4. The calculation of the new value to be caches in

line 2 uses the most up-to-date data.

Managing the global lock is the main bottleneck for scalability. An alternative

is to use a separate lock for each cell (Algorithms 5 and 6) to allow multiple non-

conflicting computations and updates to happen at the same time without resulting

in incorrect stale cells. But separate locks could not prevent the staleness caused by

indirect dependency — dependencies through other computed cells instead of direct

dependency on entered cells.

Suppose we have entered cell A and computed cells B and C. B depends on A,

C depends on B and thus depends on A indirectly. Assume that the value of B is

already calculated and cached. Then, for the scenario demonstrated in Table 3.2,

thread 0 updates A and thus invalidates C and B. Assume that thread 0 changes

the value and invalidates C first. Then thread 1 calculates the value of C. It uses

B’s old cached value because it appears to be valid, but B’s cached value is actually

stale because of the update on A. Thread 1 then finishes the calculation and caches

a stale result but records it as fresh. Thread 0 then invalidates B. As the result,

cell C is calculated using out-of-date value of cell B and appears to be valid.

Algorithm 7 solves the incorrect bookkeeping of staleness illustrated above by

locking all the dependent cells first at line 3 to line 5 and then invalidating them

one by one. But this policy leads to the dead-lock scenario described in Table 3.3.
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Algorithm 7 Entered Cell::update(double new value) Alternative Per-cell Lock
Policy

1: value ← new value;
2: cell array cells to invalidate ← enumerate cells();
3: for i in cells to invalidate do
4: i.acquire percell lock();
5: end for
6: for i in cells to invalidate do
7: i.is valid ← false;
8: end for
9: for i in cells to invalidate do

10: i.release percell lock();
11: end for

Algorithm 8 Entered Cell::update(double new value) Synchronized Cache Clear-
ing Policy

1: global rwlock.acquire wrlock();
2: value ← new value;
3: delete all cached cells();
4: global rwlock.release wrlock();

Algorithm 9 Computed Cell::cache value() Synchronized Cache Clearing Policy

1: global rwlock.acquire rdlock();
2: cached value ← calculate();
3: global rwlock.release rdlock();

Table 3.3: Illustration of Die Lock with Per-cell Lock

Thread 0 Thread 1
A.value ← new value
B.acquire percell lock();

C.acquire percell lock();
C.acquire percell lock() B.acquire percell lock();

inside C.cached value ← calculate();
Dead Lock!
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3.3 Clear All the Cached Values

An alternative approach, to avoid the complexity of enumerating all dependent

cached cells for a given entered cell, is to clear the cached cell set, i.e. to delete all

cached values when any update happens. This policy still requires a global read-

write lock that needs to be acquired while the deletion of all cached values takes

place (line 1 and 4 in Algorithm 8). During the computation of a cached value a

read lock must be acquired (line 1 and 3 in Algorithm 9) to avoid using the cached

cells that are deleted.

This chapter introduced several invalidation policies used during update to main-

tain the correctness of cached values. It also discussed the necessity for a synchro-

nization mechanism to prevent the use of stale values in the computation of query

responses. Unfortunately these mechanisms, such as the global read-write lock, lead

to significant overhead and thus reduce scalability dramatically. The next chapter

introduces inconsistency-tolerating approaches that eliminate the synchronization

mechanism to achieve better scalability.
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Chapter 4

Inconsistency-Tolerating
Policies

Inconsistency-tolerating policies are introduced to reduce synchronization overhead

and improve the throughput in OLAP systems at the cost of introducing some level

of inconsistency. This chapter examines two classes of inconsistency-tolerating poli-

cies: a synchronization-free policy and an invalidation-free policy. The idea is to

allow the use of cached values to compute the query results without requiring that

these values be synchronized with the most recent data entered into the OLAP sys-

tem. The drawback of this approach is that many queries could return stale results.

A proposed solution to reduce the occurrence of stale query results, while keeping

the synchronization cost low, is to introduce specialized threads that periodically re-

compute the cached value for cells. These specialized threads are called Fresheners.

There are several parameterized policies that can be used to determine how many

fresheners should be used in a system and what is their approach to select cells to be

recomputed. This chapter introduces inconsistency-tolerating invalidation policies

and fresheners, discusses freshening policies, and introduces metrics that are useful

for the measurement of the level of inconsistency in the system.

4.1 UI Policy

Sections 3.2 and 3.3 established that synchronization during invalidation gener-

ates heavy overhead in a system operating with multiple threads. Ungar et al.

propose an approach to tolerate inconsistency that aims to achieve scalability on

massively-parallel low-latency systems[30]. This approach uses an Unsynchronized

Invalidation(UI) policy. This policy performs invalidation without synchronization,
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as described in Section 3.1, while updating a cell. Then the policy relies on fresh-

eners to reduce the number of cells that are stale and the number of queries that

return an incorrect result.

4.1.1 Freshener

While motivating the need for locks, Section 3.1 described a scenario where an

invalidation procedure fails to invalidate a cached cell because of a lack of synchro-

nization. As the result, a valid cached cells that is used to accelerate future queries

may contain stale value. To address this problem, we use the idea of Ungar et al.

and introduce freshening threads to recompute the value of cached cells that are

marked valid in case they in fact hold stale values and then freshen stale ones as

shown in Algorithm 10.

Algorithm 10 Cell::fresh()

1: if is valid() then
2: tmp ← recompute();
3: if cached value 6= tmp then
4: cached value ← tmp;
5: stale num ← stale num + 1;
6: end if
7: total freshned ← total freshned + 1;
8: end if

Ungar et al. describes two policies that can be used by a freshener to select the

order in which cached cells are recalculated: round-robin and random [30]. In the

round-robin policy, the freshener thread visits the cells in the cached-cell set one

by one and recalculates the ones that have the valid flag. In the random policy,

each time the freshener selects a valid cell randomly from the set of cached cells,

and recalculates value. The prototype that we built for this thesis uses the round-

robin policy along with UI policy, which appeared to be efficient enough to fix the

staleness issue introduced by lack of synchronization.

4.2 NINS Policy

The previous section introduced the UI policy proposed by Ungar et al. Their

policy dramatically increases the scalability of OLAP systems when compared to the

synchronized policies discussed in Chapter 3. But even without synchronization, it is

still time consuming to locate the computed cell to be invalidated. To further reduce
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the overhead, we propose the No Invalidation and No Synchronization(NINS) policy

that entirely eliminates the invalidation procedure, to avoid its overhead, when an

entered-cell value is updated.

Unfortunately, without invalidation a very large number of valid cached cells

would have to be stored in the system. Therefore, fresheners would not be able to

visit all valid cells, within a reasonable time frame, using a round-robin policy to

re-calculate the values of valid cells. Moreover, it may take more time for a freshener

to re-compute the value of a cell than it would take a worker to compute the value

of the same cell because a freshener does not use any cached value to ensure the

result’s correctness.

4.3 Most-Recently-Queried (MRQ) Freshening Policy

Therefore, we propose a Most-Recent-Queried (MRQ) policies to be used by fresh-

eners. The idea is that only the cached cells that have been queried by the K most

recent queries should be recalculated. Cells that were not queried recently may ei-

ther remain valid but not be freshened, or else they may be invalidated, depending

on the specific variation in the refreshing policy. With different definition of ‘recent’

access cells, we proposed an Access-Counter-Based MRQ policy and the Time-Based

MRQ policy in the rest of this section.

With the MRQ freshening policy, fresheners focus on recomputing the value

of recently queried cells hence more frequently accessed cached cells have a higher

chance of being re-computed. A cached cell that has not been accessed for a long

time has higher probability of becoming stale, and thus of being invalidated by the

freshener, to both reduce the possibility of generating stale results and reduce the

size of the set of valid cells that fresheners have to visit.

4.3.1 Access-Counter-Based MRQ

In Access-Counter-Based MRQ policy, a global counter, global access counter, records

the total number of access on all cached cells. And the local counter, local mr access,

is a per cell counter that for a cached cell CC, local mr access records the number

of access on all the cached cells when CC is accessed last time. Whenever a worker

uses the cached value of cell, it increase the global access counter by one. This in-

crementation and fetching requires an atomic operation, fetch and add, and can be

a concern for scalability in large-scale shared-memory systems. The query thread
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then stores the result in cached cell’s local mr access after divide it by K. To reduce

the cost of this computation the value of K is an integer power of two, thus allowing

the division to be performed as a logical shift-right operation(Algorithm 11).

Algorithm 11 Cell::get cached value()

1: local mr access← fetch and add(global access counter ,1) � log(K)
2: return cachedvalue

A freshener thread repeatedly randomly selects a cell in the cached-cell sets, and

checks the cells local mr access. There are three possible actions for the freshener:

(1) invalidate the cell; (2) do nothing; and (3) recalculate the value of the cell. It only

freshens a cell if its local mr access equal to the global access counter divided by K

(line 1 in Algorithm 12). For the sake of efficiency, K must be an integer power of two

and thus the division can be implemented as a logic right shift of log(K). A cached

cell is invalidated if the difference between local mr access and global access counter

divided by K is larger than M/K, where M is an algorithm parameter that is a

multiple of K (line 2-4 in Algorithm 12). In the current implementation of the

prototype the value of M/K is set to 16.

Algorithm 12 Cell::fresh()

1: if local mr access <> global access counter/K then
2: if global access counter/K − local mr access > M/K then
3: invalidate();
4: end if
5: Return
6: end if
7: if is valid() then
8: tmp ← recompute();
9: if cached value 6= tmp then

10: cached value ← tmp;
11: stale num ← stale num + 1;
12: end if
13: total freshned ← total freshned + 1;
14: end if

4.3.2 Time-Based MRQ

This approach uses a time interval T instead of K and still keep the global access counter

and local mr access. But the global access counter is no longer increased by the

worker when a reference to a cached cell happens. Instead it automatically increases
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by one for every T time. In this approach, only the Master thread is responsible

to update the global access counter periodically and workers and freshener threads

only read from the global access counter . The goal is to improve scalability, in

comparison with the access-counter based approach described in Section 4.3.1, on

large-scale shared-memory machine. The local copy of global access counter in each

worker remains coherent, and thus can be read multiple times without any need for

synchronization or communication, as long as the value of the global access counter

does not change. Whenever the value of the global access counter is changed by

the master thread, this write operation will invalidate all the local copies of the

global access counter. Therefore, on the next read of global access counter each

worker will fetch the new value.

Algorithm 13 details how the master thread increments the global access counter

every T time. In this approach, during the freshening, the freshener thread checks

if a cached cell was accessed within the last T time by comparing its local mr access

and global access counter, as shown Algorithm 14, and then decides whether the cell

should be freshened, invalidated or left alone.

Algorithm 13 Master::update gac()

1: while TRUE do
2: sleep(T)
3: global access counter++
4: end while

Algorithm 14 Cell::fresh()

1: if local mr access <> global access counter then
2: if global access counter/K − local mr access > M then
3: invalidate();
4: end if
5: RETURN
6: end if
7: if is valid() then
8: tmp ← recompute();
9: if cached value 6= tmp then

10: cached value ← tmp;
11: stale num ← stale num + 1;
12: end if
13: total freshned ← total freshned + 1;
14: end if

Both Access-Counter-Based MRQ and Time-Based MRQ require each cached
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cell to store the local mr access that generate extra space requirement. In our

current experiments, such space overhead had no significant impact on memory

consumption.

The MRQ is a simple heuristic for the selection of cached cells to re-calculate.

It assumes that the most-recently queried cached cells are more likely to be used

in the future. Therefore, the MRQ policy is only reasonable for workloads where

such assumption holds most of the time. The investigation of alternative policies

for systems where this assumption does not hold is left for future work.

4.4 Measuring Inconsistency

Inconsistency-tolerating policies result in stale cached values. Therefore, from a

user’s perspective it is crucial to measure the level of inconsistency in a system that

allows stale values to be used to satisfy queries. Intuitively, a user wants to know

how often does the system answer a query based on stale values? To answer this

question, we define the metrics Query Stale Rate (QSR) and Cached-Value Stale

Rate (CVSR).

4.4.1 Query Stale Rate

The QSR metric indicates the proportion of queries that returned a stale value.

QSR is computed as the following ratio:

QSR =
Number of stale query results

Total number of queries
(4.1)

Unfortunately, it is non-trivial to detect the staleness of results accurately with-

out a time-stamp based log system. In order to obtain a good estimate for QSR, our

prototype implements an auto-recomputing mode to allow workers to automatically

recompute the value of a query without using any cached values after answering each

query. The drawback of this implementation is that the computation of the value

to verify if it was stale changes the throughput of query processing and thus alters

the operation of the system. It also changes the order between queries and updates

because the queries take longer to be processed. In all experiments in Chapter 6, the

prototype only uses auto-recomputing mode when measuring the query stale rate.

Given that more updates may arrive while the same number of queries is pro-

cessed because of the lower query processing throughput, the QSR measured using
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this method is likely to be higher than the actual QSR for the normal operation of

the system.

4.4.2 Cached-Values Stale Rate

The CVSR metric indicates the proportion of cached cells that have a stale value.

It is computed as the following ratio:

CVSR =
Number of stale cached cells

Number of valid cached cells
(4.2)

Theoretically, the CVSR is computed for a given snapshot of the system. Its

value can be used to compute the probability of getting a stale result if a cached-cell

value is used. Given that a query on the value of a single computed cell could use

the value of k cached cells, the probability that an answer to such a query is stale

is 1− (1−CVSR)k because the answer will be stale if any of the cached values that

it uses is stale.

Stopping the entire OLAP system to calculate the CVSR is not realistic. There-

fore, we propose a sampled CVSR where fresheners collect the information to com-

pute CVSR. This sampling technique has a much lighter overhead. In Algorithm 14,

the freshener records the number of stale cached cells and the total number of cached

cells that are freshened (lines 11 and 13). The sampled CVSR is defined as the ratio

between these numbers according to the following equation:

sampled CVSR =
Number of stale freshened cached cells

Number of freshened cached cells
(4.3)

Herein CVSR refers to sampled CVSR because it is the only one available while

the system is running.

4.5 Summary

This chapter introduces two inconsistency-tolerating policies along with metrics to

measure the level of inconsistency in the system. The fresheners play a key role in

fixing stale cached values. The chapter then discussed two MRQ freshening policies

to improve the freshener efficiency.
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Chapter 5

Adaptive Inconsistency Level
Framework

The NINS policy in Chapter 4 delivers throughput improvement at the cost of in-

correct query results. The number of incorrect results generated has a close relation

with the workload processed by the OLAP system. This chapter presents the Adap-

tive Inconsistency Level Framework (AILF) that aims to maintain the inconsistency

to an acceptable level, specified by the user, under various workload. It collects

information about the inconsistency level in the last period and adjusts the number

of fresheners to affect the inconsistency level in the next period.

5.1 Framework Description

As in Figure 5.1, the AILF consists of three parts: a Master, a groups of Workers

and a group of Fresheners. Each individual thread is executed by either a worker or

a freshener. Each worker is responsible to answer user queries and execute update.

Fresheners keep re-computing the cached values to update stale values among them.

The Master monitors CVSR and adjusts the number of fresheners to affect the

inconsistency level.

5.1.1 Worker

A worker answers user’s query and executes update. The worker executes an infinity

loop where it listens to commands from the Master by checking its working phase

parameter (line 2 in Algorithm 15). The worker executes jobs whenever Master sets

its state to Working. When a worker receives a Pause command from the Master, it

changes its working phase to Paused to let the Master know that has paused. Then
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Figure 5.1: AILF structure

Algorithm 15 Worker::run()

1: while True do
2: switch ∗my working phase do
3: case Working
4: execute next job(); . Answer Query or execute update.

5: case Pause
6: ∗my working phase← Paused;
7: continue;

8: case Paused
9: continue;

10: case End
11: ∗my working phase← Ended;
12: return;

13: end while
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the worker continues to busy waiting until a different command is received. The

worker terminates when it receives an End command.

5.1.2 Freshener

Algorithm 16 Freshener::run()

1: i← 0;
2: cached cell list← get all cached list();
3: while True do
4: switch ∗my working phase do
5: case Working
6: if i > cached cell list.size() then . Get new list of cached values to

refresh if current list are done.
7: free(cached cell list);
8: cached cell list← get all cached list();
9: i← 0;

10: end if
11: cached cell list[i].fresh();
12: i+ +;

13: case Pause
14: ∗my working phase← Paused;
15: continue;

16: case Paused
17: continue;

18: case End
19: ∗my working phase← Ended;
20: return;

21: end while

As described in Algorithm 16, similar to a worker, the freshener receives and

reacts to commands from the Master in every iteration of the infinity while loop.

Compared to the worker, the freshener would select the next value from the current

cached cells set to re-compute and get a new set of cached cells when it gets to the

end of current list. The number of cached values been freshened and the number of

stale ones among them are recorded to report current inconsistency level.

5.1.3 Master

The Master is able to add or remove, start, pause or end individual worker or

freshener threads. It can also get statistic information about performance from

workers or inconsistency information (CVSR) from fresheners.

The Master controls workers and fresheners through the content of shared arrays
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thread idx status and thread work phase. Both arrays are initialized to be all zeroes.

When creating either a worker or a freshener, the Master looks for the first element

i in array thread idx status which is zero (denote that the index is available) and

set it to special value (e.g. 1 for worker, 2 for freshener). The worker or fresh-

ener will keep the address of its thread idx status element (&thread idx status[i])

for future usage. As described in Algorithms 15 and 16, once it is started, a worker

or freshener runs an infinite loop and executes jobs according to the state set in

thread work phase[i], a local copy of which is maintained in my working phase. The

Master controls existing workers and fresheners by changing the content of array

thread work phase. It could change thread work phase[i] to Pause which let the cor-

responding worker or freshener keep busy waiting after finish current on-going job

and change thread work phase[i] to paused to notify the Master. It could also change

it back to working thus it would continue to perform querying and updating or re-

computing. Ending makes a worker or freshener exit after it finishes the current

job. The Master is responsible for deleting the ended worker or client instance and

to set the corresponding element in thread idx status and thread work phase back to

zero for future usage. The Master can only create or delete worker and freshener

sequentially because no synchronization techniques are applied on thread idx status

and thread work phase.

Algorithm 17 Master::add a worker

1: for i← 1 to MAX THREAD NUM do
2: if thread idx status[i] = 0 then
3: new worker ← new Worker(i); . New instance of worker with thread

index i
4: workers list.push back(new worker);
5: Return;
6: end if
7: end for

5.2 Adaptive to various workload

As its name implies, the AILF can adapt to various workloads with a predefined

level of inconsistency by adding or removing fresheners and workers (Figure 5.2).

The user sets a target CVSR T and tolerance range ε. Then the AILF system

tries to keep the average CVSR between T ± ε. The Master in the AILF system

initially creates several workers and fresheners. Then it let all the workers and
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Algorithm 18 Master::remove a worker

1: worker to delete← workers list.pop();
2: i← worker to delete.get thread idx();
3: thread work phase[i]← End;
4: while thread work phase[i]! = Ended; do
5: ; . Busy wait until the worker finished current job and Ended
6: end while
7: thread idx status[i]← 0;
8: thread work phase[i]← Nul;

Figure 5.2: AILF Work Flow
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fresheners start their infinity loop in their run() function. After that, the Master

sets all workers and fresheners’ state to Working so that the system can answer

queries and execute updates required by user. The Master runs in a loop: 1) sleeps

for pre-defined time interval, 2) gets statistic result of CVSR from fresheners for the

interval during which Master was sleeping, 3) replaces a worker with a freshener if

CV SR > T +ε, 4) replaces a freshener with a worker if CV SR < T −ε. The infinity

loop may terminate at the beginning of every iteration.

Currently, AILF, as a self-regulating system, only allows the master thread to

add or remove a single freshener on each iteration. Future extensions of this proto-

type may allow more sophisticated controlling strategy for AILF.

The user of this system cares more about QSR than CVSR but we still choose

to control the CVSR for following two reasons. Firstly, it is hard to measure QSR

on running system because there is no way to detect a stale query result without

extra overhead. Other than that the QSR is related with CVSR and stable CVSR

helps to maintain a stable QSR. On the other hand, it is also possible to implement

an on-line sample QSR system that randomly selects some queries and rechecks

them without using any cached values to obtain a sample QSR. On such system,

the program may use the sample QSR instead of CVSR to control the inconsistency

level.
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Chapter 6

Evaluation

This chapter presents a performance evaluation of the policies studied or introduced

in this thesis. When studying these policies, an important issue to investigate is how

much inconsistency is actually introduced by the inconsistency-tolerating policies.

It is also important to know wether the elimination of synchronization overhead

delivers scalable performance in OLAP systems while keeping inconsistency to ac-

ceptable levels. The effectiveness of the adaptive framework presented in Chapter 5

to control the inconsistency level in an OLAP system is also of interest to researchers

and practitioners. This performance evaluation study confirms some of the expected

performance trends for the policies, and yields two important findings. The main

results of this evaluation can be summarized as follows:

• Confirming expected performance trends:

– Synchronized policies scale poorly and fail to provide acceptable perfor-

mance under random access pattern. In contrast, inconsistency-tolerating

policies dramatically improve the scalability.

– The policy that performs no invalidation and no synchronization further

reduces the synchronization overhead in comparison to the policy that

performs unsynchronized invalidations, but the elimination of invalida-

tion does introduce higher levels of inconsistency.

• Adding more fresheners reduces the inconsistency level. This finding

is true for the policy that does no invalidation and no synchronization (NINS

policy). Unfortunately, the NINS policy’s ability to affect the inconsistency

level through management of the number of fresheners is limited. Thus the

NINS policy does not achieve the same level of inconsistency as the policy that

36



does unsynchronized invalidation (UI policy). But the NINS policy produces

better throughput, even when using fewer workers, than the UI policy.

• Inconsistency Level Stability: While the Adaptive Inconsistency Level

Framework (AILF) needs some time to collect information about the incon-

sistency level — and thus cannot adapt at the start of the operation of the

system, after it has collected enough feedback it is able to maintain the incon-

sistency level stable.

The remainder of this chapter describes the experiments and presents the exper-

imental results that support these observations. First the experimental evaluation

platform is described in Section 6.1. Section 6.2 describes the update policies and

Section 6.3 presents the data sets used for the experimental evaluation. After that

the chapter presents the experimental results that support the findings listed above.

6.1 Experimental evaluation platform

This experimental evaluation uses an IBM 8233-E8B system that has 32 3.55 GHz

POWER 750 processors with SMT disabled and 512 GB memory running AIX

7.1.0.0. The program is compiled by xlC with optimization level O5 and -qarch=pwr7

-qtune=pwr7 options to allow the compiler to optimize the prototype for the POWER

7 architecture.

6.2 Update Policies

All the update policies that appear in this evaluation are listed below. The short

names in parenthesis are consistently used as legend in all the graphs.

• No Cache (NC). The system does not record any results of queries and thus

does not need any invalidation or recalculation during update.

• Synchronized Cache Clearing (SCC). When an update occurs on an en-

tered cell, clear the whole set of cached cells. All threads are synchronized

with a read-write lock — described in Section 3.3.

• Synchronized Invalidation (SI). When an update occurs on an entered

cell, invalidates only the cache entries for the computed cells whose value is
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affected by the updated entered cell. All threads are synchronized with a

read-write lock — described in Section 3.2.

• Unsynchronized Invalidation (UI). In this synchronization-free policy,

when an update occurs on an entered cell, invalidate the cached computed

cells whose value is affected by the updated entered cell. Threads are NOT

synchronized and the system relies on fresheners to ammeliorate staleness —

described in Section 4.1.

• No Invalidation and No Synchronization (NINS). In this synchronization-

free policy, when an update on an entered cell occurs, do not invalidate or re-

calculate any cached cell and completely rely on fresheners to reduce staleness

— described in Section 4.2. Three different legends appear in the graphs for

this policy because there are three different freshening policies (Round-Robin,

Access-Counter-Based MRQ and Time-Based MRQ ):

– NINS - R denotes the use of the round-robin freshening policy;

– NINS - C with K=256 denotes the use of the Access-Counter-Based MRQ

policy with K equal to 256; and

– NINS - T with ti=0.5 denotes the use of the Time-Based MRQ policy

with a time interval equal to 0.5s.

In the current prototype there is no attempt to optimize these policies beyond

the description provided in this document. There is room to improve these policies

through optimizations, but this is left for future work.

6.3 Data Sets

Two different data sets are used for the experimental evaluation. The first one is

a simple data set that is useful to study properties of the policies. The second

data set contains actual data collected from the operation of a major manufacturing

company. Due to confidentiality issues we cannot disclose the name of the company

that provided the data.

• Simple Data Set

This data set contains two data cubes that are part of an IBM Cognos TM1

demo data set named s data. The first data cube contains stable data that

38



does not change throughout the experiments. This cube has four dimensions,

and each dimension may have from three to fifty one coordinates. The average

depth (average of each leaf nodes’ height in the dimension tree) of these four

dimensions is 3.5. This cube contains 8355 entered cells that feed values to

43,964 computed cells.

The second data cube is where the program performs update and queries in

the experimental evaluation presented in this chapter. This cube contains one

additional dimension compared to the previous data cube which has six coor-

dinates. This cube has 16,786 entered cells that feed 298,568 computed cells.

This cube also uses data from the first cube described above for calculation.

• Manufacturer Data Set

This data set contains two data cubes that are part of a manufacturing com-

pany’s product information management system. The experiments reported

in this thesis use one tenth of the entered cells in the actual data set. Cur-

rently, the prototype is not able to load all data cubes that we received from

the company in a reasonable amount of time because it needs to pre-process

the data to accelerate the calculation of cell values. The prototype requires

more than twenty minutes to load the two cubes that we use and would require

much more than two hundred minutes to load all the cubes that we received

— the time required to load the cubes grows super-linearly with the number

of entered cells. Moreover, in the current prototype setup the entire data set

must be loaded in order to run each experiment.

In this data set, one data cube contains the stable data with no change in all

the following experiments. It has two dimensions one with two coordinates

and another with 51 coordinates with depth equal to six. It contains only ten

entered cells and one computed cell.

Another data cube is where the program performs updates and queries. It

includes five dimensions that contain from 2 to 2719 coordinates in each of

them (2, 420, 478, 1190 and 2719 coordinates). The average depth of them

is 4.1. This cube has 26598 entered cells that related with 9287049 computed

cells.
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For the experiments that use these data sets, we use synthetic workload where we

can control the update ratio and the locality of reference of access in the data cubes.

It would be desirable if future research could use workload that is representative of

actual production usage of these data sets. However, such workload was not available

for our evaluation.

6.4 Experiments Confirming Expected Trends

This section reports the results of two experiments that study the scalability of the

various policies and the impact of inconsistency-tolerating policies on throughput

and inconsistency level in the system. These results confirm expectations in relation

to the performance of the various policies.

6.4.1 Scalability Study

The results of the experiment described in this section confirm that synchronized

policies scale poorly while inconsistency-tolerating policies maintain close-to-linear

scalability under random access pattern.

This experiment evaluates the throughput of the policies listed in Section 6.2

with a random access pattern where a worker randomly picks an entered cell to

update or a computed cell to query. The prototype uses a linear pseudo-random

number generator to pick the random cell to query or update. Therefore, the pro-

totype executes the same action sequence if the same seed for the random number

generation are used. The update rate (ur below the graphs in Figures 6.1 and 6.2)

is the probability that a worker will execute an update rather than a query in the

selected cell. The same experiment is run three times on both the simple data set

and the manufacturer data set. In each run a different seed is used for the random

generator. We report the average throughput along with the minimum and maxi-

mum throughput. The difference between minimum and maximum is so small that

the interval is almost invisible in the figures. This experiment does not use any

fresheners.

Figure 6.1 presents the results for the simple data set. We use up to 32 threads

on this data set. We let the OLAP system run 6 seconds with different number of

threads and report the throughput, measured as the number of queries answered,

of them under various update rates.

In Figure 6.1a, each policy has similar performance compared to the NC policy
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(a) ur = 0 (b) ur = 5

(c) ur = 10 (d) ur = 15

(e) ur = 20

Figure 6.1: Simple Data Throughput
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for thread count lower than 16 threads. In other words, they all have close-to-

linear scalability when there’s no update happening on the simple data set. The

SCC policy and the SI policy scale poorly when using more than 16 threads. This

poor performance is attributed to the poor scalability of the pthread read-write

lock. With 32 threads, the OLAP system caches enough cells to accelerate future

queries under the UI policy and the NINS policy and hence achieved the super linear

scalability.

Figures 6.1b, 6.1c, 6.1d and 6.1e show the effect of the update rate on all the poli-

cies that use a cache system on the simple data set. The slightly worse performance

of the UI policy compared to the NC policy is explained by the overhead for in-

validation. Other policies with read-write lock cannot benefit from multi-threading

at all because updates require the acquisition of a global write lock which stalls

all other queries and updates. The NINS policy has almost no overhead compared

to the NC policy for thread counts below 32. The performance benefits that the

NINS policy brings by using cached values to accelerate computation are offset by

the overhead of maintaining the cached cell set. Again, with 32 threads, the system

cache enough cells under the NINS policy to achieve a super-linear scalability and

to outperform the NC policy.

Figure 6.2 presents the results for the manufacturer data set. We use up to 16

threads on this data set. We let the OLAP system run for 60 seconds with different

number of threads and report the throughput of them under various update rate.

Figure 6.2a also demonstrates the poor scalability issues for thread counts above

16 for policies with read-write lock. The UI policy in this figure is slightly worse

than the NC policy. This phenomenon means that, in this experiment, the overhead

of inserting cells into the set of cached cells with the UI policy is more significant

than the benefit of using cached cells.

The results presented in Figure 6.2b indicate that policies with read-write lock

still scale poorly. The SCC policy performs slightly better compared to the SI policy.

In Figures 6.2c, 6.2d and 6.2e, the difference between the SCC policy and the SI

policy increases as the update rate increases. The increase of the difference is due

to the significant overhead of invalidation even without synchronization on some

workload. With the SCC policy, updating is less time consuming compared to the

SI policy, as we explained in Section 3.3. Therefore, the system holds the write lock

for a shorter time. As a result, the SCC policy scales better than the SI policy.
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The NINS policy performs better than all other policies with cache system but

slightly worse than the NC policy in Figure 6.2a, 6.2b, 6.2c and 6.2d due to the

overhead of maintaining a cached cell set. When the update rate increases, fewer

queries are calculated and thus fewer cells are inserted into the cached cell set.

Therefore, the overhead of maintaining the set decreases. With an update rate of

20 (Figure 6.2e), the invalidation-free approach finally catch up with the NC policy.

This experiment confirms the heavy overhead of synchronization technologies,

such as read-write locks, on a multi-threaded cache system. In all these experiments

the OLAP system queries and updates randomly selected cells. Therefore none of the

approaches with cache performs better than the NC policy. This is result is expected

because a random access pattern does not exhibit the locality characteristics that

are necessary for a caching system to perform well. The UI policy and the NINS

policy bring only slight overhead and thus dramatically outperform other approaches

with a cache system. Unfortunately, these policies generate stale results that will

be discussed later in this chapter.

6.4.2 Comparison between Inconsistency-Tolerating Policies

The results presented in this section confirm the expectation that the NINS policy

provides better throughput while generating more stale query results compared to

the UI policy.

The first experiment explores the throughput of inconsistency-tolerating policies

under various workloads. This experiment mixes access patterns: a worker either

picks a cell randomly from all data cubes or it picks a cell from a pre-selected set of

hot cells to query. An input parameter to the experiment is the Hot-Cell Probability

(HP) that specifies the probability that a worker would pick a cell from the hot-cell

set to query.

Different from previous experiments, in this experiment fresheners update stale

values of cached cells. For all policies, the system uses fifteen workers and a single

freshener. Additionally, different freshening policies are evaluated in this experi-

ment. This experiment is only run on the manufacturer data set. For each eval-

uation point, the prototype executes the OLAP system for three minutes for the

throughput experiment for ten minutes for the experiment that measures the query

stale rate. After each minute statistics are collected. For box plots the distribution

used to create each box is formed by the individual statistics collected at each of
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Figure 6.2: Manufacturer Data Throughput
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Figure 6.3: Distribution of number of queries answered for the manufacturer data
set

these points. For instance, in Figure 6.3 each of the boxes is built from the number

of queries answered measured at each of the statistic collection points during the

execution.

Figure 6.3 confirms that the NINS policy answers more queries than the UI

policy under various workloads especially when the update rate is high. This result

confirms our expectation that the NINS policy further reduces the update overhead

compared to the UI policy.

In Figure 6.3, both policies generate better throughput when HP is higher. This

is obviously reasonable because the cache system performs well when the system

is querying hot cells. The figure also shows that the UI policy throughput is more

sensitive to the update rate. The overhead of invalidation during update dominates

when the update rate is high and thus the UI policy does not benefit from higher

HP.

The next experiment studies the level of inconsistency in the system, in terms

of Query Stale Rate (QSR), when inconsistency-tolerating policies are used for the

same set of workloads. This experiment confirms that the NINS policy results in

higher levels of inconsistency compared to the UI policy.
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Figure 6.4a shows the query stale rate of different policies under the same work-

loads used for the experiments in Figure 6.3. This figure shows nine plots organized

on a 3×3 array. Each row corresponds to a value for the hot-cell probability (25,

50 or 75) and each column corresponds for a value for the update rate (5, 20 or

50). For this experiment, after each minute running, the system is paused to collect

the query-stale-rate data and report in the graph. Therefore the time shown in the

horizontal axis is not actual wall-clock time, but rather system running time be-

cause the pause time needed to collect the data is not shown. The graph shows that

when combining the NINS policy with the round-robin freshening policy, the query

stale rate gradually increases. This phenomenon confirms the conjecture, made in

Section 4.3, that the freshener with round-robin freshening policy cannot efficiently

control the inconsistency level especially when some cells are queried significantly

more frequently than others.

It is also clear that the stale rates for queries are higher under this policy when

both the probability that a worker will pick a hot cell and the update rate are higher.

It is obvious that the stale rate should increase as the update rate increases because

the update may make a cached value stale. When the probability of selecting a

hot cell is high, the OLAP system has more chance to use cached value to answer

future query. Therefore, the system is more likely to generate incorrect query result

because it is more likely to use a stale cached value.

Figure 6.4b presents a box-plot graph summarizing the results for all the values

of update rates with a fixed hot-cell probability (HP).

The NINS policy with a round-robin freshening policy has a high standard de-

viation because of the increasing query stale rate as time advances. For the NINS

policy with an Access-Counter-Based MRQ freshening policy, the query stale rate

increases as the update rate increases and k does not have any noticeable impact on

the results. For the same policy with the Time-Based MRQ freshening policy, the

query stale rate also increases when the update rate increases, but the time-interval

choice affects the inconsistency level: a 0.1s time interval results in smaller query

stale rate in comparison to a 0.5s time interval.

None of the freshening policies results in the NINS policy having as low a rate

of stale queries as the UI policy when the update rate is high.

Overall, the NINS policy provides better throughput with more incorrect results

compared to the UI policy. However, the MRQ freshening policy may not be the
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(a) Actual Query Stale Rate variation over time

(b) Distribution of the Query Stale Rate

Figure 6.4: Query Stale Rate for the Manufacturer Data Set
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Figure 6.5: Distribution of Query Stale Rates for Manufacturer Data Set with HP
= 75

best heuristic to select cached cells to re-calculate and invalidate. There’s potential

to explore more sophisticated heuristics to help the NINS policy achieve a better

trade-off between inconsistency level and throughput.

6.5 Relationship between Number of Fresheners and
Query Stale Rate

This section reports on an experiment that shows that, with the NINS policy, adding

more fresheners has a positive but limited effect on reducing the query stale rate.

The additional fresheners help reduce the inconsistency level but its effect is only

significant when the inconsistency level is relatively high. A second experiment

reveals that the NINS policy can answer more queries, even when it uses fewer work

threads, compared to the UI policy.

These two experiments use four fresheners and twelve work threads and compare

the result with the one in Section 6.4.2, which used one freshener and fifteen work

threads. Additionally, we fix the probability of selecting a hot cell to 0.75, which

results in a relatively high query stale rate.
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Figure 6.5 clearly demonstrates the effect, on the query stale rate, of replacing

work threads with fresheners. In each of these two box plots, the left one for an

update rate of 20 and the right for an update rate of 50, a horizontal black line

shows the level of the query stale rate for the Unsynchronized Invalidation policy

with a single freshener. This query stale rate is the baseline for the comparison.

For each of the policies, as the number of fresheners increases, the query stale rate

drops. It is relatively efficient to add fresheners when the query stale rate is high.

But the efficiency of additional fresheners drops when the query stale rate is low.

For instance, for the NINS policy with the Time-Based MRQ freshening policy ti

= 0.5s, the median of the query stale rate drops from 0.15 to 0.11 when the update

rate is 50% but only drops from 0.06 to 0.04 when the update rate is 20% with 3

additional fresheners.

The Cached-Value Stale Rate (CVSR) was defined in Chapter 4 as the proportion

of cached cells that contain a stale value. A low CVSR results in a low query

stale rate and in a low freshener’s efficiency because in this case a freshener spends

most of its time rechecking correct cached value rather than updating stale ones.

Therefore, the marginal benefits of query-stale-rate reduction for each additional

freshener drops as the total number of fresheners increases. As a result, the ability

to control the query stale rate through the adjustment of the number of fresheners

is limited. At such a point a different policy, such as the UI policy, must be selected

to further reduce the query stale rate.

The graph in Figure 6.6 is built in a similar fashion to the graph Figure 6.5,

but it is reporting the throughput, instead of the query stale rate, for each of the

policies with one and four fresheners. The total number of threads remains constant

at sixteen. Therefore, with more freshener and fewer workers, the OLAP system

answers fewer queries in the same amount of time. This finding is reasonable because

workers are the only threads who can answer a query.

Nonetheless, the NINS policies still dramatically outperforms the UI policy on

throughput. For instance, when the update rate is 50%, the NINS policy with

Time-Based MRQ freshening policy (ti=0.01) uses 12 workers achieving 7.6x speed

up compared to the UI policy which uses 15 workers.

The results for these two experiments reveal the possibilities and limitations to

control the query stale rate by adjusting the number of fresheners with the NINS

policy. Even when it uses more fresheners, the NINS policy cannot achive query
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Figure 6.6: Distribution of Number of Queries Answered for Manufacturer Data Set
with HP = 75

stale rates as low as the ones achieved by UI policy. However, the NINS policy does

provide extra space to trade-off between the inconsistency level and the throughput

in the system.

6.6 Effectiveness of AILF to Control Inconsistency Level

Chapter 5 introduces the Adaptive-Inconsistency-Level Framework (AILF) to dy-

namically adjust the number of fresheners according to the Cached-Value Stale Rate

(CVSR). This section presents the results of an experiment that demonstrates the

ability of AILF to control the inconsistency level in the long run and its limited

ability to reduce short-run inconsistency-level variations.

This experiment uses the NINS policy with the Time-Based MRQ freshening

policy (ti=0.5s). The goal is to compare AILF with non-adaptive strategies that

keep the number of fresheners constant. In all strategies used in the experiment the

total number of threads is sixteen. The experiment compares AILF is compared with

a strategy that uses a single freshener (W15F1 in the graphs) and with another that

operates with four fresheners (W12F4). In this experiment, every minute the update
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(a) Distribution of Query Stale Rates

(b) Query Stale Rates variations over time

Figure 6.7: Query Stale Rates for Manufacturer Data Set with HP = 75 and ti=0.5s

51



Figure 6.8: Number of Fresheners used by AILF

rate increases by 5%, starting at 0.5 and going up to 0.45. The experiment consists

of five simulations with different random-number-generator seeds. Each simulation

is run six times. The results are reported win the boxplot graph in Figure 6.7a and

in the collection of line graphs in Figure 6.7b. In the array of graphs in Figure 6.7b,

each column represents a different strategy and each row is for a different simulation.

The results shown in the graph of Figure 6.7a indicate that AILF reduces the

query stale rate in comparison to the strategy with a single freshener, and maintains

it below 5%. But with AILF, we observe several outliers especially when UR is 25.

To understand these outliers, we list the query stale rate for each simulation and

each run in Figure 6.7b. There outliers appear only in particular simulations (3

and 5) and are caused by variations in the query stale rate. Such vibrations also

appear in the strategy with a single freshener. Such vibration can easily caused

by keep updating and querying on related cells in a short period. Unfortunately,

the AILF cannot efficiently reduce such vibration. AILF adjusts the number of

fresheners according to the history. Therefore it cannot react to an abrupt changes

on workload in time.

Figure 6.7b also shows that AILF is not more effective than the strategy with four

52



fresheners regarding to query stale rate. Figure 6.8 shows the number of fresheners

used by AILF. AILF uses less than four fresheners when the update rate is less than

25. In other words, it allocates more workers to execute queries and updates. When

the update rate is 25, the AILF also uses less than four freshener in most cases.

When the update rate is larger than 25, the number of fresheners increases much

faster. There is only a marginal benefit to adding freshener as the total number of

fresheners increases. A future study could investigate a strategy that stop adding

freshener when its benefit becomes indistinctive.

From this experiment, it is clear that the current AILF is helpful to keep the

query stale rate stable in the long run but can hardly smooth the vibration.

6.7 Conclusion

The experiments reported in this chapter quantify the improvements that come from

the use of a cache system in a real-time OLAP system under specific workloads. The

results also reveal the poor scalability of the strategy that maintains the consistency

of cached values through the use of synchronization. Next, the experimental eval-

uation provided support to the proposal that the elimination of synchronization

improves the performance of the OLAP system while resulting in an acceptable

level of inconsistency for a manufacturer data set. Moreover, an innovative policy,

the NINS policy, allows for trading consistency level for higher throughput, i.e. if

higher levels of inconsistency are tolerable the policy can increase the throughput

of the system. Finally, the AILF can be used to control the inconsistency level.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis explores the cost of synchronization in real-time OLAP systems with

updates, and proposes new policies to trade consistency for lower synchronization

overhead.

A cache system with read-write lock can only bring benefit to the OLAP applica-

tion with very limited set of workload due the heavy overhead during the invalidation

procedure. Elimination of synchronization during invalidation, and relying on fresh-

eners to maintain acceptable level of inconsistency (proposed by Ungar), reduces the

overhead and dramatically improves the scalability of the system. Hence, this ap-

proach significantly broaden the scope of suitable workloads [30]. This thesis takes

this approach one step further and proposes the complete elimination of invalida-

tion. The idea is to rely on fresheners to both refresh stale values of cached cells

and perform invalidation. The experimental results indicate that this new approach

further reduces the update overhead. However it may introduce a high inconsistency

level that may not be acceptable for most applications.

We propose to collect inconsistency level information, using a newly defined

Cache-Value Stale Rate metric, while freshening cached cells. Based on this in-

formation, we proposed the Adaptive Inconsistency Level Framework (AILF) that

dynamically adjusts the number of fresheners to control the inconsistency level. The

experimental results indicate that AILF is able to controlling the inconsistency level

in the long term but has limited ability to deal with short-term variations in the

inconsistency level.

This preliminary evaluation using this new prototype signals to significant promise

for the proposed scheme. A key investigation for future research is to use actual
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recorded workloads from the operation of large organizations to study the trade-

off between synchronization costs and inconsistency level. The new framework to

measure this tradeoff presented in this thesis should be useful for such studies.

7.2 Future Work

This thesis uses a portion of a manufacturer data set obtained from a global manu-

facturing company to evaluate the throughput and inconsistency level on different

consistency policies in a real-time OLAP system that processes updates. This initial

prototype is not able to load the entire data set that we received from the company.

Moreover, most of the experiments reported in this thesis use a random-access work-

load and a limited query set workload. These workloads are certainly different from

workloads that would be produced by the actual use of this data set in the daily op-

eration of the company. Future experimental evaluations should use workload that

more closely simulate the real workload and should also use the whole manufacturer

data set.

Currently, all invalidation policies iterate over all computed cells that may be

affected by a changed entered cell in the cube in order to discover the cells that need

to be invalidated. As indicated in Section 2.4.3, it is possible to group the cells and

record the relations among cell groups using a dependency graph to achieve better

performance.

In the current prototype all the fresheners apply the same freshening policy (ei-

ther round robin or MRQ) and they do not cooperate efficiently with each other. An

interesting line of research is to investigate the effect of allowing different fresheners

to focus on different groups of cells to avoid repeatedly freshening the same cell in a

short time interval. Such cooperation strategy may help to improve the freshening

efficiency.

Alternative adaptation strategies can be investigated for the AILF. For instance,

the AILF should be allowed to add or remove more than one freshener at a time

according to the current status. With more sophisticated adjustment strategies, the

AILF may be able to maintain a much more flat QSR curve compared to the results

presented in Section 6.6.

Finally, the AILF should be able to do more than adjusting the number of

fresheners. With the current run-time information, including the inconsistency level

information, it should be able to decide: 1) what’s invalidation policy to apply, 2)
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how many fresheners are needed, 3) how should each freshener select cells to fresh?
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