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Abstract

Vision is one of the essential means for humans to perceive the world. Similarly,

today’s intelligent robot agents rely on camera images to perform complex

tasks in the real world. Due to the ever-changing nature of the real world,

intelligent robot agents must continually learn from high-dimensional images

to adapt to new environments. Such capabilities entail learning from images

on-the-fly as they interact with the environments, which we call vision-based

real-time learning.

Recently we have seen many successful applications of Reinforcement Learn-

ing (RL). It is natural to extend the scope of RL to vision-based real-time

learning of robotic control tasks. However, a vision-based real-time robotic

RL agent faces some practical issues oft-ignored in conventional RL research.

The first issue is that robots deployed in the real world are usually tethered to

a resource-limited computer, while vision-based RL algorithms are expensive.

A prominent difference between real-time RL in the real world and conven-

tional RL is that the time in the real world does not pause while the agent

computes actions and updates policies. Given such a setup, it is unclear to

what extent the performance of a learning system will be affected by resource

limitations. Fortunately, in most cases, a powerful workstation can be wire-

lessly connected to the robot to provide extra computation resources. How-

ever, there is no systematic study of efficiently using the wirelessly connected

powerful computer to compensate for performance loss. To shed some light

on this issue, we propose and implement a real-time learning system called
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the Remote-Local Distributed (ReLoD) system to distribute computations of

two deep reinforcement learning (RL) algorithms, Soft Actor-Critic (SAC) and

Proximal Policy Optimization (PPO), between a local computer and a remote

computer. The performance is evaluated on two vision-based robot tasks de-

veloped using a robotic arm and a mobile robot. Our results show that SAC’s

performance degrades heavily on a resource-limited computer. Strikingly, dis-

tributing all computations of SAC on a wirelessly connected workstation fails

to improve performance. However, a carefully chosen distribution consistently

and substantially improves performance on both tasks. On the other hand, the

performance of PPO remains largely unaffected by the distribution of compu-

tations. In other words, without careful consideration, using a powerful remote

computer may not improve performance.

The second issue a real-time robotic RL agent faces is that designing dense

rewards for vision-based real-robot tasks requires hand-engineering or pre-

training, which can be unsuitable for unforeseen tasks. When formulating

a real-world robotic task as a reinforcement learning (RL) task, it is crucial

to determine a reward function that is convenient to specify, accurately cap-

tures the intended problem, and facilitates the agent with learning. Many

designers of real-world robot tasks use domain knowledge to design informa-

tive dense rewards to facilitate training. However, designing task-dependent

reward functions for real-time learning tasks, including non-vision- and vision-

based tasks, are difficult since the domain knowledge is generally unavailable

for non-stationary and unforeseen environments. Moreover, hand-crafting a

dense reward function for vision-based tasks is more problematic due to the

need for effective image encoders, which are generally unavailable prior. For

so-called goal-reaching tasks, there is a simple way of designing the reward

function independent of domain knowledge and prior image encoders but still

aligning well with our intention: giving a −1 reward every time step. Goal-
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reaching tasks are formulated as episodic RL tasks with termination upon

reaching the terminal state as soon as possible. We call them minimum-time

tasks or vision-based minimum-time tasks if images represent terminal states

since maximizing the undiscounted sum of these −1s leads to reaching the

terminal state as soon as possible. Unfortunately, minimum-time tasks are

usually avoided in practice, as they are considered difficult and uninformative

for learning. In this thesis, we demonstrate that non-vision and vision-based

minimum-time tasks can be learned quickly from scratch. We also provide

guidelines that practitioners can use to predict if the minimum-time task for-

mulation is appropriate for their problems based on the performance of the

initial policy. Following our guidelines on minimum-time tasks, we first demon-

strate using a single reinforcement learning system to achieve real-time learning

of pixel-based control for several different kinds of real robots from scratch.
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Preface

The first part of the work (Chapter 4 and Chapter 5) was accepted at the

2023 International Conference on Robotics and Automation (ICRA). It was

inspired by Yufeng Yuan’s paper (Yuan & Mahmood, 2020). Our work origi-

nated when Professor Rupam Mahmood realized that components of a learn-

ing system could be distributed between two computers to allow robots with

limited onboard computation resources to leverage expensive state-of-the-art

reinforcement learning algorithms. For this purpose, I developed the Remote-

Local Distributed (ReLoD) system.

In a meeting with Rupam, we realized that hand-crafting a dense reward

function is difficult for vision-based tasks. This discussion inspired the second

part of this work: to use a reward function of −1 for each step as an alternative

reward function for tasks that try to reach terminal states as soon as possible.

This part of the work (Chapter 6 to Chapter 8) was submitted to the 2023

International Conference on Intelligent Robots and Systems (IROS). The SAC

learning system used in this work was initially developed by Yufeng (Yuan &

Mahmood, 2020), and I extended it to support the ReLoD system we proposed.

The UR5-VisualReacher task was also initially developed by Yufeng (Yuan &

Mahmood, 2020), and I modified its reward function to −1 for each step.

We call the modified task UR5-VisualReacher-MinTime. I also developed the

Create-Reacher task and the Reacher simulation task.

The first part of this work (Chapter 4 and Chapter 5) was done in coop-

eration with Gautham Vasan and Rupam Mahmood. The second part of this

work (Chapter 6 to Chapter 8) was done in cooperation with Gautham Vasan,

Fahim Shahriar, and Rupam Mahmood. Gautham developed the tasks Vector-

ChargerDetector, Ball-in-Cup, and Dot-Reacher in Chapter 6 and Chapter 8.
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He also implemented the learning system used in the second part of this work

to solve simulation tasks. He ran experiments for Vector-ChargerDetector in

the real world and Dot-Reacher in simulation. In addition, he extended SpinUp

PPO (Achiam, 2018) to support the ReLoD system. Fahim Shahriar devel-

oped the task Franka-VisualReacher in Chapter 8 and ran experiments for it

in the real world. I performed the Create-Reacher experiments, the UR5-

VisualReacher experiments, the UR5-VisualReacher-MinTime experiments,

the Ball-in-Cup simulation experiments, and the Reacher simulation exper-

iments for this work. Gautham, Rupam, and I discussed and finalized the

experiment setups in this thesis. We also wrote, edited, and submitted the

two above papers about this work.
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Chapter 1

Introduction

Building intelligent robotic agents capable of learning useful skills from real-

world interactions is one of the long-standing goals of embodied artificial in-

telligence. Vision is a powerful sensory modality for extracting information

about the real world. Therefore, intelligent robotic agents are generally ex-

pected to learn from camera images. Indeed, today’s real-world robots rely on

images taken from cameras to perform complex tasks. For example, an autopi-

lot system relies on the critical information provided by camera images, such

as the locations of pedestrians and other vehicles, to generate proper driving

commands. Furthermore, intelligent robotic agents who perform in the real

world also need to adapt to ever-changing or unseen environments, as the real

world is intrinsically non-stationary. As a result, the adaptive capability en-

tails vision-based learning on the fly as the agent interacts with the physical

world, also known as real-time learning of vision-based tasks. However,

classic control methods are often less effective in non-stationary environments.

Thanks to the progress of deep neural networks, Reinforcement Learning (RL)

(Sutton & Barto., 2018) has been successfully applied to many fields, including

robotic control tasks. Researchers have demonstrated many remarkable works

in simulation (Berner et al., 2019; Li et al., 2020; Mnih et al., 2016) and in the

real world (Levine et al., 2016; Tian et al., 2020; Tzeng et al., 2020). Thus,

real-time RL is promising for vision-based robotic learning tasks under unseen

or changing environments.

But extending conventional RL methods to vision-based real-time learning
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is difficult due to the discrepancy between simulation and the real world. For

example, when learning in real-time, the real world does not pause while the

agent computes actions or makes learning updates (Mahmood et al., 2018a;

Ramstedt et al., 2019). Moreover, the agent obtains sensorimotor information

from various onboard devices and executes action commands at a specific

frequency. Given these constraints, a real-time learning agent must compute

an action within a chosen action cycle time and perform learning updates

without disrupting the periodic execution of actions (Yuan &Mahmood, 2022).

Unfortunately, there has been relatively little interest in studying real-time

learning in the real world.

1.1 Problem Statement

As a step toward robust real-time learning of vision-based robotic tasks in the

real world with RL, we aim to investigate two main hurdles in this thesis:

• Most real-time robotic applications have a resource-limited computer

available locally. But vision-based deep RL is expensive. This is a sig-

nificant reason why real-time RL is difficult for vision-based robot tasks.

• Current deep RL tasks are mainly based on dense rewards, which require

hand-crafted functions such as calculating Euclidean distance between

the current and the terminal state or shaping through a procedure. Re-

liance on such an expensive and domain-knowledge-dependent method

impedes the application of RL to unseen tasks. Besides, designing a

dense reward function for vision-based tasks is generally difficult due to

the lack of effective image encoders.

Details about the two hurdles are described in the following sections.

1.2 Limited Onboard Computations

State-of-the-art RL algorithms and image encoders are computationally in-

tensive, and hence for real-time vision-based robotic control, they go together
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with a computationally powerful computer tethered to the robot (Yuan &

Mahmood, 2022). However, a robot agent deployed in the real world typically

uses a resource-limited tethered computer, while a powerful workstation is of-

ten wirelessly connected to the robot (Haarnoja et al., 2019; Bloesch et al.,

2022). In this thesis, we use local to refer to the computer tethered to the

robot and remote to refer to the wirelessly connected computer.

Unlike learning in the simulation, where the agent performance is measured

against environmental steps, we should measure the performance against wall

clock time in real-time learning. That is because training on real robots is

expensive and may be dangerous. We desire a learning system to solve the

given task as fast as possible. Since resource-limited computers need more

wall clock time to compute actions and update policies, the policy update fre-

quency will be reduced on resource-limited computers. On the other hand, the

policy update frequency will be unaffected in simulation environments because

simulators used in RL research often pause the time march while the agent

computes actions and updates policies. In this thesis, we evaluate the perfor-

mance against wall clock time instead of total environmental interactions.

It is unclear how much resource limitations impact the performance of a

learning system due to the reduced policy update frequency. Moreover, com-

putations of a vision-based learning system using these two computers can be

distributed in different ways. Unfortunately, prior works do not systematically

study distributions of computations between local and remote computers nor

suggest how to achieve an effective distribution to compensate for the perfor-

mance loss. 1

To better understand this problem, we develop two vision-based tasks using

a robotic arm and a mobile robot and propose a real-time RL system called the

Remote-Local Distributed (ReLoD) system. Similar to Yuan and Mahmood’s

(2022) work, ReLoD parallelizes computations of RL algorithms to maintain

short action-cycle times and reduce the computational overhead of real-time

learning. But unlike the prior work, it is designed to utilize both a local and

1The study of this problem resulted in a paper accepted at the 2023 International Con-
ference on Robotics and Automation (ICRA).
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a remote computer. ReLoD supports three different modes of distribution:

Remote-Only which allocates all computations on the remote computer, Local-

Only which allocates all computations on the local computer, and Remote-

Local which carefully distributes the computations between the two computers

in a specific way.

Our results show that the performance of SAC on a tethered resource-

limited computer drops substantially compared to its performance on a pow-

erful workstation. Surprisingly, when all computations of SAC are deployed

on a wirelessly connected powerful workstation, the performance does not

improve notably. This observation contradicts our intuition as this mode fully

utilizes the resources of a workstation. On the other hand, SAC’s Remote-

Local mode consistently improves its performance by a large margin on both

tasks, which indicates that a careful distribution of computations is essential

to utilize a powerful remote workstation. However, the Local-Remote mode

only benefits computationally expensive and sample-efficient methods like SAC

since the relatively simpler learning algorithm PPO performs similarly in all

three modes. We also notice that the highest average return attained by PPO

is about one-third of the highest average return attained by SAC, which indi-

cates that SAC is more effective in complex robotic control tasks.

The ReLoD system in the Local-Only mode can achieve a performance that

is on par with a system well-tuned for a single computer (Yuan & Mahmood

2022), though the latter overall learns slightly faster. This property makes our

system suitable for conventional RL studies as well.

1.3 Difficulty of Designing Dense Rewards

In reinforcement learning, the task designer implicitly specifies the desired be-

havior using the reward function. Task designers often rely on task-specific

domain knowledge to hand-craft a dense reward signal with state-to-state dif-

ferences that facilitate faster learning and guide the agent to a reasonable

solution. For example, the reward function of the Reacher environment from

OpenAI Gym (Brockman et al., 2016) depends on the Euclidean distance of
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the fingertip of a robot arm from a target. In this thesis, we call these guiding

rewards as they go beyond specifying what task to solve and guide the agent

on how to solve the task.

Although guiding rewards have many advantages, they need to be revised

in real-time vision-based learning. First, since a guiding reward function de-

pends on the environment’s domain knowledge, it is difficult, if not impossible,

to design a guiding reward function capable of capturing the ever-changing

characteristics of a non-stationary environment. Besides, an intelligent agent

cannot rely on a human instructor to provide domain knowledge beforehand

to solve unforeseen tasks. Second, hand-crafting a guiding reward function

based on images is often tedious and error-prone, as effective image encoders

for extracting useful information from pixels are usually unavailable prior.

Third, guiding rewards often bias the learned control policy in a potentially

sub-optimal way. Since hand-crafted rewards reflect the task designer’s do-

main knowledge and preferred behaviors, it could bias the solutions that the

agent can find (Riedmiller et al., 2018). Thus, in the vision-based real-time

learning setting, it is beneficial to work with reward signals independent of

domain knowledge and prior image encoders without biasing the solution in

undesirable ways.

For most goal-reaching problems, there is a simpler alternative to guiding

rewards that is easy to specify but still incorporates our intended goal accu-

rately. If we consider goal-reaching problems as episodic tasks with termina-

tion upon reaching the terminal state, the reward can be simply a constant

negative scalar every time step. We call them minimum-time tasks, and

they can be seen as a special case of sparse-reward tasks. Similarly, if tasks

are vision-based and terminal states are represented as images, we call them

vision-based minimum-time tasks. Using the minimum-time formulation,

the task designer can easily avoid the aforementioned problems by focusing

solely on recognizing task success rather than trying to guide the learned policy

with domain knowledge. This specification is also simpler than the standard

sparse rewards, where a positive discounted reward is only given when the

terminal state is reached because minimum-time tasks can be undiscounted.
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Unfortunately, sparse-reward tasks, including minimum-time tasks, are

generally hard to solve, not to mention the vision-based minimum-time tasks.

With guiding rewards, we get state-by-state reward differences, which can

be informative for policy improvement. In addition, with guiding rewards,

there are early signs of learning so that we can quickly determine whether

the learning is happening. On the other hand, sparse-reward tasks may take

much longer to show any sign of learning as informative signals are given only

sparsely.

In this thesis, we take the first step towards efficiently designing a reward

function for real-time learning of vision-based robot tasks. More specifically,

we propose guidelines to determine if a minimum-time task is solvable by the

state-of-the-art RL algorithm SAC before the actual training. We identify

that SAC can reliably solve complex vision-based tasks in the minimum-time

formulation if the agent can reach the terminal states represented by an im-

age often enough using its initial policy. In this work, the initial policy is

the Gaussian distribution N (0, 1) for all tasks, including visual and non-visual

tasks. We empirically demonstrate that the performance of the initial policy

can be used to predict whether a minimum-time task, including non-vision

and vision-based tasks, can be learned quickly and reliably using SAC. We es-

tablish that the time limit should be treated as a tunable solution parameter

that an agent can tweak rather than a part of the problem specification. Prac-

titioners can utilize our proposed guidelines to determine if a minimum-time

task formulation is appropriate for their problems. Following our guidelines on

minimum-time tasks, we produce the first demonstration of real-time learning

of pixel-based control for several kinds of physical robots from scratch.

1.4 Contributions

The main contributions of the first part of this thesis include the following: 2

• We developed and publicized a system called ReLoD to distribute com-

2The first part of this thesis was accepted at the 2023 International Conference on
Robotics and Automation (ICRA).

6



putations of an RL algorithm between a local computer and a remote

computer. As far as we know, ReLoD is the first publicly available system

for real-time RL that applies to multiple robots for vision-based tasks.

The source code can be found at https://github.com/rlai-lab/relod

• We developed three simulated tasks and four real robotic tasks that can

be used as benchmarking tasks for real-time learning of minimum-time

tasks. The four real robotic tasks are all vision-based and developed

with four different physical robots to provide diversity.

• We used the ReLoD system and a vision-based task to systematically

study how much limited onboard computations impact the performance

of SAC.

• We used the ReLoD system and two vision-based tasks to systemati-

cally investigate how best to distribute computations of SAC and PPO

between a resource-limited local computer and a powerful remote com-

puter to compensate for the performance loss.

The main contributions of the second part of this thesis include the following:

• We formulated minimum-time tasks and demonstrated that, under cer-

tain conditions, SAC could effectively solve real-time non-vision and

vision-based minimum-time tasks in both simulation and the real world.

The real-world demonstration uses the four vision-based minimum-time

robotic tasks mentioned above. As far as we know, this is the first

demonstration of the feasibility of using a single system to solve mul-

tiple real-time vision-based minimum-time robotic tasks across several

different robots in the real world.

• We proposed and tested guidelines to determine whether SAC can effec-

tively solve a real-time learning problem in the minimum-time setting

based on the performance of the initial policy.

7
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Chapter 2

Literature Review

This chapter briefly discusses different approaches to vision-based robotic con-

trol tasks, from classic control to real-time RL.

2.1 Visual Seroving

Conventional non-vision robot controllers suffer control errors induced by un-

certainties in robot models and environments (Weiss et al., 1987). To reduce

the control error, researchers explored using images to compensate for the

inaccurate robot models and environments. Such methods are called visual

seroving control.

Weiss et al. (1987) proposed the design of an adaptive image-based vi-

sual servo controller (IBVS) where image feedback was used in the dynamic

closed-loop control. They evaluated the proposed controller’s performance

on one-, two-, three-, and five-DOF systems in simulation. Although their

simulated results show that the adaptive image-based visual servo controller

can improve control accuracy and speed compared to the traditional position-

based controller, deploying an adaptive image-based visual servo controller in

the real world is still challenging. One will have to overcome practical issues

such as the computation of the image Jacobian matrix for real tasks, camera

calibration, and image processing delay.

Koivo et al. (1991) showed the real-world use of adaptive image-based

visual servo controllers to grasp a moving object with an industrial robotic

arm. However, their methods assume the mapping between the image coordi-
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nates and the world coordinates is known, which requires careful calibration

of cameras. As a result, cameras must be fixed in known locations, limiting

the real-world deployment of their method.

Conkie et al. (1990) focused on an approach that does not require careful

calibration of cameras since their method measures the displacement from the

object to the target in the image coordinates. It estimates the image Jacobian

matrix by running a few extra small movements of each joint that are not

meant to solve tasks and recording the changes of a reference image feature in

the image coordinates. A similar approach was also described by Yoshimi et

al. (1994). The main limitation of their approaches is that they assume the

image Jacobian matrix is smooth and flat, which may not hold in real-world

tasks.

Martin Jägersand (1996) proposed a trust region method to continuously

update the image Jacobian matrix along a trajectory. Unlike previous works, it

uses an MSE-alike update rule to enable estimating from arbitrary movements.

As a result, it does not need extra movements. It does not strictly assume the

image Jacobian matrix is smooth and flat since the trust region optimization

enforces the validity of the current estimation.

Although visual seroving methods are effective in robot control tasks, they

share some common problems. First, they require domain knowledge to design

an image encoder to extract image features manually. As the image encoder

is not learned, it may not work in other tasks nor adapt to changing envi-

ronments. Moreover, visual seroving methods require a predefined target, and

the target has to be inside the camera view all the time, which is not al-

ways possible in real-world applications. More difficulties of IBVS, such as

singularities of the image Jacobian matrix, were discussed in the paper by

Chaumette et al. (1998). Although researchers proposed new methods (Malis

et al., 2001, Corke et al., 2001, and Collewet et al., 2002) to handle the prob-

lems of IBVS, they still use fixed image encoders and predefined targets. In

addition, some new methods also require offline procedures such as 3D models

of targets to estimate the depths of image features. In conclusion, since visual

seroving methods use domain knowledge and offline techniques to design ef-
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fective controllers, they are unsuitable for real-time learning in ever-changing

environments.

2.2 Supervised Learning from Demonstration

Learning from Demonstration refers to the methods that teach robots new

skills by imitating expert behaviors (Ravichandar et al., 2020). It has many

categories. In this thesis, we only focus on vision-based Learning from Demon-

stration with machine learning methods.

Pomerleau first developed ALVINN (Autonomous Land Vehicle In a Neural

Network) for the task of road-following on a test vehicle. The network takes

camera images and a laser range finder as the inputs, and produces directions

to follow as the output. They used backpropagation to train the network

on simulated image data. Bojarski et al. (2016) described an end-to-end

approach to learning from human demonstration for autonomous driving on

roads. They trained a Convolutional Neural Network (CNN) to map camera

images to steering commands. To increase the robustness of the learned pol-

icy, they augmented the training images with three cameras facing at different

angles. The weights of the CNN are adjusted to minimize the mean square

errors between the outputs and the sheering commands provided by a human

driver. One major issue with this method is that the policy learned in this way

does not consider the passenger’s intention. To address this problem, Codev-

illa et al. (2018) proposed Conditional Imitation Learning in a more recent

paper. In conditional imitation learning, the driver’s intentions are recorded

in the demonstration and fed into the neural network in training. Similarly,

the policy is optimized by minimizing the mean square errors between the

network outputs and the driver’s commands. All those methods are examples

of the simplest form of learning from demonstration, called direct behavior

cloning, as they try to learn actions provided by experts directly.

However, direct behavior cloning has yet to be widely used in robotic arm

manipulation tasks due to visual artifacts such as human hands in demonstra-

tion images (Young et al., 2020). Zhang et al. (2018) proposed a VR system
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to collect demonstration data for robotic arm manipulation tasks to minimize

visual artifacts. This system ensures that humans and robots share the same

observation and action spaces. They showed that direct behavior cloning could

be used to solve complex robotic arm manipulation tasks, including grasping

and placing. Sharma et al. (2019) proposed a decoupled hierarchical con-

troller to allow robots to learn robotic arm manipulation tasks from human

demonstration from the third-person view. In their methods, the observation

spaces of humans and robots are different. They trained two levels of modules

independently to separate what to do and how to do the task. The higher-

level module is a goal generator that takes as input the human demonstration

images in the third-person view and the robot demonstration images in the

first-person view. The goal generator is trained to output image goals in the

first-person view k frames later. The lower-level controller takes as input the

goal images and the robot demonstration images in the first-person view. It

is trained with kinesthetic teaching to output actions to achieve the generated

goal images. They showed that the learned goal generator and the controller

could be generalized to unseen objects and tasks.

Another problem of direct behavior cloning is the distribution mismatch

between demonstration and training. Researchers have proposed many meth-

ods to correct distribution mismatch. Ross et al. (2011) proposed a dataset

aggregation method called DAgger. DAgger is a human-in-the-loop method

that asks an expert to label actions for states visited under the training distri-

bution. The policy is optimized to match expert actions. It can be proven that

DAgger can significantly reduce distribution mismatch. Although DAgger is

simple, it is not generalizable to robotic applications in the real world as it as-

sumes the availability of expert-labeled actions. Pervez et al. (2017) proposed

Deep Dynamic Movement Primitives (D-DMP) to increase generaliza-

tion without asking for more expert-labeled actions. They used expert data

to train a DMP controller for a robotic arm to perform object manipulation

tasks. A CNN was trained offline to predict the locations of various objects

and targets for the DMP controller with ground truth. They claimed that the

trained policy could be generalized to unseen objects and targets.
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Although learning from demonstration has been successfully applied to

many fields, such as assembly line operations (Zhu et al., 2018, Vogt et al.,

2017), physical rehabilitation (Vasan et al., 2017), and UAV control (Ross

et al., 2013), it has major problems limiting their application. First, it is

not always intuitive for humans to provide demonstrations to robots. For

example, providing demonstration data to humanoid robots is difficult due to

the fundamental difference in kinematics. Second, it relies on the availability

of human demonstration. Third, it assumes that expert data are optimal,

which often does not hold in reality. Therefore, learning from demonstration

is not suitable for the real-time learning setting.

2.3 RL for Robot Control

Recently RL methods has been applied by researchers to solve complex robot

control tasks. As one of the earliest works, Kohl et al. (2004) proposed a ’pol-

icy gradient method’ to train an Aibo robot to walk forward as fast as possible.

Their method aims to find the best parameters for higher-level control. Due

to the problem formulation, their proposed method differs significantly from

today’s policy gradient approach and only applies to other robots and tasks.

2.3.1 Sim-to-Real Methods

Since collecting samples in the real world is expensive, researchers developed

many techniques to accelerate the training. For example, sim-to-real methods

collect samples and train agents in high-fidelity simulators and transfer learned

policies to real robots.

Krishnan et al. (2019) introduced an open-source simulator and a gym

environment for quadrotors to train agents in the simulator. Since onboard

computing is scarce and updating RL policies with existing methods is com-

putationally intensive, they carefully designed policies considering the power

and computational resources available onboard.

Zhu et al. (2017) introduced a 3D simulator called AI2-THOR framework

to generate high-quality 3D scenes to train agents to reach specific targets.
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Then the trained policy was deployed to the real robot with fine-tuning training

to achieve the same task in similar real-world scenes. James et al. (2016) also

developed a 3D simulator to train a robotic arm to lift a cube. The simulator

was carefully crafted to resemble the real-world setup They showed that the

trained policy could be directly transferred to the real robot. However, these

two works require high-fidelity simulators to minimize the discrepancy between

simulation and the real world.

More advanced methods were proposed to mitigate the inaccuracy of sim-

ulation. For example, Tzeng et al. (2015) suggested a novel method to align

simulated and real-world observations. In this method, two additional losses,

domain confusion loss and pairwise loss, were added to the task loss to allow

a more robust transfer of learned policies from simulation to the real world.

Another work (Rusu et al., 2016) used progressive networks to close the gap

between simulation and the real world. They first train a policy in a simulator

and then train the second policy in the real world using the outputs of the

first policy as the inputs.

Although sim-to-real methods are impressive in solving complex tasks, they

do not apply to real-time learning as they need prior knowledge to model robots

and tasks in simulation.

2.3.2 Offline Learning Methods

Another popular way to tackle difficulties in collecting samples in the real

world is to use offline RL methods. In offline RL, agents learn policies exclu-

sively on previously collected data without any online interactions with the

environments. Offline RL is appealing for robotic learning tasks since agents

can learn new skills from previously collected data.

Pinto and Gupta (2016) trained a CNN model with offline data to predict

angles for grasping. They showed that model could have better generalization

with more data. Levine et al. (2018) proposed a framework to collect data on

a large scale from multiple robots and used offline dynamic programming to

train a CNN to predict the outcome of a grasping action. They also showed

that data collected from other robots could improve networks’ generalization
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ability, which revealed the value of offline RL. Kalashnikov et al. (2018) also

demonstrated a similar approach.

Besides grasping tasks, Finn et al. (2016) presented a model-based offline

RL approach based on the deep dynamics approach introduced by Wahlström

et al. (2015) to train a spatial autoencoder and a simple Linear-Gaussian

controller to perform various tasks on real robots. This method pretrains a

non-visual controller to facilitate effective exploration with offline data. Later

the same author introduced the visual foresight method for motion planning

(Finn et al., 2017). They trained a video-prediction model offline that predicts

the possible consequence of actions in the image space from a batch of stored

videos. Motion is then planned on the learned video-prediction model to move

an object to a destination. Followup works (Ebert et al., 2018; Dasari et al.,

2019; Tian et al., 2021) showed the effectiveness of the visual foresight method

in solving diverse tasks. In the navigation field, Mo (2018) presented a dataset

of real-world scenes for offline training of navigation systems, and Kahn et

al. (2020) demonstrated the effectiveness of offline RL in learning navigation

policies from data collected with random exploration.

Although offline RL methods are very effective in training robot controllers,

they are not suitable for real-time learning for two reasons. The first reason is

that offline RL does not allow online interaction with environments once data

are collected, which contradicts the requirement of real-time learning that

agents must adapt to ever-changing environments. Another reason is that all

offline RL methods suffer from the same intrinsic problem: distribution shift.

Although many methods, such as importance sampling correction (Liu et al.,

2018; Zhang et al., 2020a; Zhang et al., 2020b), policy constraint (Fujimoto

et al., 2019; Kumar et al., 2019), and conservative Q learning (Kumar et al.,

2020), have been proposed to mitigate distribution shift, their effectiveness

has not been tested on real robots.
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2.4 Real-time Reinforcement Learning

This section describes works exploring real-time learning of robot tasks with

reinforcement learning methods. Real-time learning means agents continu-

ally learn on the fly as they interact with environments. However, there are

surprisingly few works that focus on real-time learning.

One early work from Mahmood et al. (2018a) proposed six benchmarking

tasks developed with three physical robots for real-time learning in the real

world. They compared the performance of four reinforcement learning algo-

rithms on the six tasks and showed that real-time learning of robot tasks is

possible if the learning system is carefully set up. They also showed that de-

lays in communicating actions over WiFi could significantly worsen an agent’s

performance. The desire to minimize WiFi latency inspired this work.

Later Haarnoja et al. (2019) showed the feasibility of real-time learning of

robot tasks with distributed reinforcement learning systems. They proposed

a parallel learning system tailored to learn a stable gait using SAC and the

minitaur robot (Kenneally et al., 2016). Their system collects samples with

the onboard computer and updates policies with a powerful wirelessly con-

nected computer. The policies are periodically synchronized between the two

computers. A recent paper by Smith et al. (2022) demonstrated real-time

learning of walking gait from scratch on a Unitree A1 quadrupedal robot on

various terrains with model-free methods. Their learning system is sequential

and runs solely on the onboard computer, which requires many resources. The

above works focus on non-vision tasks and do not address real-time learning

issues. Instead, we focus on vision-based tasks in this work, which is signifi-

cantly harder, and address two important real-time learning issues.

A system comparable to ReLoD is SenseAct, which provides a computa-

tional framework for real-time robotic learning experiments to be reproducible

in different locations and under diverse conditions (Mahmood et al., 2018b).

This paper shows that many factors such as action space definition, communi-

cation latency, order and concurrency of computations, and action cycle time

have significant impacts on the performance of real-time learning tasks. Al-
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though SenseAct enables the systematic design of real-time robotic tasks for

RL, it does not address how to distribute computations of a real-time learn-

ing agent between two computers, and the original work does not contain

vision-based tasks. But we use the guiding principles of SenseAct to design

vision-based robotic tasks and systematically study the effectiveness of differ-

ent distributions of computations of a learning agent.

The work from Yuan and Mahmood (2022) investigated the policy update

delay problem in the real-time learning setting. Unlike the previous works in

this section, this work uses vision-based robotic tasks. Based on their results,

a short action cycle time could not be properly maintained in sequential RL

learning systems as the policy updates would take a long time to complete.

They proposed to use a separate process to perform expensive policy updates

(asynchronous learning) so that the agent-environment interaction would not

be blocked. Note that asynchronous learning in their work and this thesis does

not mean using multiple environment instances to improve sample collection

efficiency. Instead, it means using concurrency to parallelize the computations

of a learning system to reduce computational overhead. Their results showed

that an asynchronous learning system could effectively maintain short action

cycle times. Their work focuses on efficiently parallelizing computations of a

learning system on a single computer given enough resources.

This thesis is the first one that combines Yuan’s work (2022) and Mah-

mood’s work (2018a, 2018b) since we used vision-based robotic tasks to sys-

tematically study how to set up a real-time learning system using two comput-

ers. More especially, we extended their work by evaluating the performance

loss of a real-time learning system on a resource-limited computer and investi-

gating how to compensate for the performance loss with a wirelessly connected

powerful computer.

2.5 Distributed Reinforcement Learning

This section describes works that run RL learning systems in a distributed

manner on different computers to allow more effective learning.
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Nair et al. (2015) proposed a distributed learning architecture called the

GORILA framework that mainly focuses on using multiple actors and learners

to collect data in parallel and accelerate training in simulation using clusters

of CPUs and GPUs. GORILA is conceptually akin to the DistBelief (Dean

et al., 2012) architecture. In contrast to the GORILA framework, our ReLoD

system focuses primarily on how best to distribute the computations of a learn-

ing system between a resource-limited local computer and a powerful remote

computer to enable effective real-time learning. In addition, the GORILA

framework is customized to Deep Q-Networks (DQN), while our ReLoD sys-

tem supports two policy gradient algorithms using a common agent interface.

A work similar to GORILA is the asynchronous methods proposed by Mnih

et al. (2016). Their asynchronous methods, such as A3C and asynchronous Q

learning, use multiple actors and environment instances to accelerate sample

collection and decorrelate samples. Actors periodically update their policies

with a globally shared set of parameters. Since actors run in parallel, their

policies are updated in an asynchronous manner. However, like the GORILA

framework, their asynchronous methods do not focus on how best to distribute

the computations of a learning system between a resource-limited local com-

puter and a powerful remote computer to enable effective real-time learning.

Unlike our ReLoD system, their asynchronous methods run all components on

a single computer.

Lambert et al. (2019) used a model-based reinforcement learning approach

for high-frequency control of a small quadcopter. Their proposed system com-

putes actions and updates policies on a remote computer. Bloesch et al. (2021)

used a distributed version of Maximum aposteriori Policy Optimization (MPO)

(Abdolmaleki et al., 2018) to learn a vision-based control policy that can walk

with Robotis OP3 bipedal robots. The robot’s onboard computer samples ac-

tions and periodically synchronizes the policy’s neural network weights with

a remote learning process at the start of each episode. Those papers aim

at solving tasks instead of systematically comparing different distributions of

computations of a learning agent between a resource-limited computer and a

powerful computer. In addition, their systems are tailored to specific tasks
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and algorithms and are not publicly available, while ReLoD is open-source,

task-agnostic, and compatible with multiple algorithms.

2.6 Sparse Reward

This section describes works that aim at solving sparse reward problems. The

main idea is to improve exploration by providing external reward signals that

are not part of the problem.

Riedmiller et al. (2018) proposed SAC-X, a method capable of learning

from sparse rewards. It simultaneously learns policies on a set of auxiliary

tasks by actively scheduling and executing those tasks to explore its obser-

vation space in search of sparse rewards of externally defined target tasks.

Hertweck et al. (2020) also focused on learning from sparse rewards. To facil-

itate effective exploration, they propose using agent-internal auxiliary tasks.

Their work can be viewed as an extension of Riedmiller et al. (2018), where

they proposed a way to define auxiliary tasks which can be integrated with

SAC-X to solve complex tasks like Ball-in-Cup from scratch. Only raw sensor

streams were used for controller inputs and the auxiliary reward definition.

However, the choice of auxiliary tasks depends on domain knowledge and is

not transferable to other tasks or robots, making their methods not suitable

for real-time learning tasks.

Andrychowicz et al. (2017) proposed Hindsight Experience Replay (HER),

a technique that enables an agent to learn from failed episodes by treating

the previously seen states as a pseudo-goal. It can be seen as an exploration

strategy that helps the agent learn from sparse reward feedback. However, it

only applies to environments where every reachable state can be considered

a terminal state. If the task specification involves only one or a small set of

terminal states, HER will not help improve the sample efficiency of the agent.

In addition, it cannot be directly extended to all vision-based tasks where the

presence of distinct visual features often characterizes terminal states. While

Nair et al. (2018) extended HER to solve vision-based tasks like Reaching and

Pushing using a 7-DoF Sawyer arm, their approach relies heavily on a setup
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involving a fixed arena with an overhead camera that can always view the

target. It is also only applicable to environments where every single reachable

state on a 2D plane can be considered a terminal state. As a result, HER-based

methods are not suitable for real-time learning tasks.

All these works propose methods to improve exploration in sparse reward

tasks and thus facilitate fast learning. Our work does not focus on novel

strategies for exploration. Instead, we propose guidelines that help to predict

whether a minimum-time task can be learned quickly and reliably using SAC

based on the performance of the initial policy.
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Chapter 3

Background

In this chapter, we first discuss the components of the Reinforcement Learning

framework and how an RL problem is modeled with the Markov Decision Pro-

cess. Then we introduce two state-of-the-art RL algorithms, Soft Actor-Critic

and Proximal Policy Optimization, used in this thesis to solve vision-based

real-time learning tasks. As most of our tasks are image-based, we also pro-

vide details about our image-processing architecture, including the network

design, image representation, and data augmentation. Finally, we briefly de-

scribe the SenseAct framework, which enables a unified and systematic design

of our real robot tasks.

3.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning whose goal is

to learn the optimal behavior from trial and error to obtain the maximum

long-term numerical return (Sutton & Barto, 2018). A typical RL system

has two major components: the learning agent and the environment. In the

conventional RL setting, the agent and the environment interact at discrete

timesteps, as shown in Fig. 3.1.

The agent-environment interaction is often modeled with a Markov Deci-

sion Process (MDP). An MDP can be characterized by a tuple with 1) the

state space S, 2) the action space A, 3) the initial state distribution µ: 4) the

transition dynamics P : 5) the reward function R, and 6) the discount factor γ.

That is, an MDP is represented as M = (S,A, µ,P ,R, γ). At the beginning of
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Figure 3.1: The agent-environment interaction loop in reinforcement learning

the agent-environment interaction, the environment is reset to an initial state

by sampling from the initial state distribution: s0 ∼ µ. For each timestep t,

the agent uses a function called policy π : St → ∆(A) to map the transition

history to an action distribution π(·|S0, S1, ..., St). Here, the notation ∆(A)

denotes the set of all probability distributions over the action space A. Since

the entire transition history is hard to handle in practice, we further assume

that MDPs satisfy the Markov Property, which says:

π(·|S0, S1, ..., St) = π(·|St)

The policy π is said to be deterministic if all the probabilities of the resulting

action distribution are concentrated on a single action or stochastic other-

wise. In this thesis, we exclusively use stochastic policies modeled by Gaus-

sian distributions. Then an action is sampled from the action distribution:

a ∼ π(·|St = s). After receiving the action a, the environment transits to the

next state by sampling the transition dynamics: s′ ∼ P(.|St = s, At = a) and

computing the immediate feedback called reward with the reward function

r = R(St = s, At = a). The learning agent improves the policy based on a

series of transition samples (s, a, r, s′).
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Some MDPs have a special set of states called terminal states. In this

case, the sequence of the current agent-environment interaction ends when the

environment reaches the terminal states, leaving a complete sequence called

episode:

(S0, A0, R1, S1, A1, R1, ...ST−1, AT−1, RT , ST )

In this thesis, we only focus on finite horizon MDPs, or episodic MDPs

in other words, in which the lengths of episodes are guaranteed to be finite.

In practice, an agent often interacts with the environment for a fixed

amount of time, called time limit, before resetting itself and starting a new

episode. This is often done to diversify the training experience of the agent by

preventing the agent from being stuck in uninformative states for a long time

(Pardo et al. 2018). In this setting, there are two kinds of terminal states—the

goal state(s) and the states where termination is due to the time limit. Pardo

et al. (2018) showed that it is necessary to distinguish these two kinds of ter-

minations and handle them appropriately for correct value estimation. Their

work suggests that we should continue bootstrapping at early terminations

due to time limits. Thus, in this thesis, we consider goal states as the only

true terminal states of a task.

The return of an episode starting from timestep t is defined as:

Gt :=
T−1X
t′=t

γt′−tRt′+1 (3.1)

The capital letters in the above definition denote random variables since the

reward at each timestep is random. The randomness comes from the uncer-

tainty in the initial distribution µ, the transition distribution P , and the policy

π. Given the above return definition, the goal of RL for episodic MDPs can

be formulated as maximizing the expected value of G0:

Jπ := Eπ[G0] = Eπ[
T−1X
t=0

γtRt+1] (3.2)

Note that the expectation is taken over the policy π, which is the only ran-

domness that an agent can control.
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Many RL algorithms use the state-value function or the action-value func-

tion to implicitly determine policies. For example, the policy of Q-learning

chooses the action with the largest action value with the probability 1− ϵ and

chooses a random action with the probability ϵ. The state-value function is

defined as:

vπ(s) := Eπ[Gt|St = s] = Eπ[
T−1X
t′=t

γt′−tRt′+1|St = s] (3.3)

and the action-value function is defined as:

qπ(s, a) := Eπ[Gt|St = s, At = a] = Eπ[
T−1X
t′=t

γt′−tRt′+1|St = s, At = a] (3.4)

The superscript t indicates that the timestep t is included in the definitions

in order for the Markov property to hold. Alternatively, they can also be

recursively defined as:

vπ(s) := Eπ[Rt+1 + γvπ(St+1)|St = s] (3.5)

and

qπ(s, a) := Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At = a] (3.6)

with the assumption that v(ST ) = 0 and q(ST , ·) = 0.

A group of RL algorithms called Policy Gradient Methods explicitly

model a parameterized policy and try to maximize the objective 3.2 directly.

According to the Policy Gradient Theorem (Sutton et al., 1999), the ob-

jective 3.2 can be converted to the following objective:

Jθ := Eπ

"
(
T−1X
t=0

log πθ(At|St))(
T−1X
t′=t

γt′−tRt′+1)

#
(3.7)

If the expected return Eπ[
PT−1

t′=t γ
t′−tRt′+1] from time t is estimated by

Monte Carlo methods, no value function is required for both policy parameter

learning and action selection. A typical example is the REINFORCE algo-

rithm (Williams, 1992). On the other hand, a value function can still be used

to estimate the return from time t for policy parameter learning. Methods that

learn value functions to estimate returns during policy training are collectively
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called Actor-Critic methods. The two algorithms, Soft Actor-Critic (SAC)

and Proximal Policy Optimization (PPO), used in this thesis are examples of

Actor-Critic methods.

3.2 Soft Actor-Critic

Inspired by the maximum entropy RL, Haarnoja et al. (2018) proposed a new

model-free off-policy policy gradient algorithm called the Soft Actor-Critic

algorithm (SAC). Instead of maximizing the standard policy gradient objec-

tive 3.7, SAC aims to balance the maximization of the expected return and

the expected policy entropy. The inclusion of policy entropy entails the use

of stochastic policies. Stochastic policies have many advantages, including

improved exploration (Haarnoja et al., 2017) and more stabilized training

(Haarnoja et al., 2018).

As mentioned above, SAC is an actor-critic algorithm where the critic

learns a parameterized entropy-augmented action-value (Q-value) function

qθ(St, At), and the actor learns a parameterized stochastic policy πϕ(At|St).

Here θ and ϕ represent the learnable parameters of models. In this thesis,

the Q-value function and policy are approximated by neural networks. The

entropy-augmented action-value (Q-value) function, or the Soft Q function for

short, is defined as:

qπ(s, a) := E [r(St, At) + γv(St+1)|St = s, At = a] (3.8)

where vπ(s) := E [qπ(St, At)− α log π(At|St)|St = s].

The Soft Q function is optimized by minimizing the following mean-square

error:

Jq(θ) := E (qθ(St, At)− (r(St, At) + γE[vθ̃(St+1)]))
2 (3.9)

In practice, training samples are sampled from the replay buffer and the target

Q value should be estimated with another target network whose parameters

are represented by θ̃. Using a separate target network significantly increases

the stability of training (Mnih et al., 2015). In addition, SAC also uses the

double Q-learning trick (Hasselt et al., 2010) to reduce the positive bias.

24



The policy is optimized by minimizing the expected KL divergence between

the new policy and the exponential of the Q function:

Jπ(ϕ) = E DKL πϕ(·|St)||
exp(qθ(St, ·))

Zθ(St)
(3.10)

It can be further simplified into the following entropy-augmented objective:

Jπ(ϕ) := E[α log πϕ(At|St)− qθ(St, At)] (3.11)

Here α weights the importance of the entropy, and it is called the tempera-

ture parameter. The objective 3.11 can be optimized with the Policy Gradient

Theorem. However, since our actions are continuous, it is convenient to use

the reparameterization trick instead to reduce the estimation variance. SAC

with reparameterization trick defines the policy as:

At = fϕ(ϵt;St) (3.12)

where ϵt is a sampled noise from a certain distribution N . Given the above

policy representation, we can transform the objective 3.11 into:

Jπ(ϕ) := E [α log πϕ(fϕ(ϵt;St))− qθ(St, At)] (3.13)

To keep the policy optimization tractable, possible policies are limited to a pol-

icy set
Q
. In this thesis, policies are limited to the multi-dimensional Gaussian

distribution. The complete algorithm is given in Algorithm 1 (Haarnoja et al.,

2018).

3.3 Proximal Policy Optimization

The Proximal Policy Optimization algorithm (PPO) is a model-free on-policy

policy gradient method proposed by (Schulman et al., 2017). It is based on the

Trust Region Optimization (TRPO) method (Schulman et al., 2015) that aims

to maximize a ”surrogate” objective subject to a KL divergence constraint:

max
θ

Et
πθ(At|St)

πθold(At|St)
Ht (3.14)

subject to Et [KL[πθold(·|St), πθ(·|St)]] ≤ δ (3.15)
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Algorithm 1 Soft Actor-Critic

Input: θ1, θ2, ϕ ▷ Initial parameters

θ̄1 ← θ1, θ̄2 ← θ2 ▷ Initialize target networks
for each iteration do

for each environment step do ▷ Collect samples
a ∼ πϕ(·|St)
s′ ∼ pϕ(St+1|St, At)

end for
for each gradient step do ▷ Update Q network and policy

θi ← θi − λq∇̂θiJq(θi) for i ∈ {1, 2}
ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2}

end for
end for

Output: θ1, θ2, ϕ

Here θold denotes the old policy parameters, and θ denotes the current policy

parameters. Ht is the advantage estimation of the current action, which is

computed as:

δt = rt + γv(St+1)− v(St) (3.16)

Ht = δt + (γλ)δt+1 + · · · (γλ)T−t+1δT−1 (3.17)

Nevertheless, TRPO is computationally expensive since it uses conjugate gra-

dient ascent and a line search to enforce the hard KL divergence constraint,

which makes it hard to use in the real-time learning setting.

PPO simplifies objective 3.14 to reduce the computation cost. It has two

variants. The first variant treats the KL divergence as a penalty, modifying

objective 3.14 into the following unconstrained objective:

max
θ

Et
πθ(At|St)

πθold(At|St)
Ht − βKL[πθold(·|St), πθ(·|St)] (3.18)

This approach is called Adaptive KL Penalty Coefficient. The second ap-

proach does not explicitly include the KL divergence penalty in the objective

but instead implicitly respects the KL divergence by removing samples whose

action probabilities are significantly different from the current policy. Specif-

ically, this approach maximizes a Clipped Surrogate Objective defined
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as:

LCLIP (θ) = Et [min(rt(θ)Ht, clip(rt(θ), 1− ϵ, 1 + ϵ)Ht)] (3.19)

Here the probability ratio rt(θ) =
πθ(At|St)

πθold
(At|St)

for state St and action At. The

clipped surrogate loss function Lclip(θ) clips the probability ratio to be no

more than 1 + ϵ if the advantage is positive and no less than 1 − ϵ if the

advantage is negative. The policy is optimized by running several iterations

of stochastic gradient ascent at each update. In this thesis, we only use the

second approach.

PPO is also an actor-critic method since it trains a value network to esti-

mate the advantage of the current action At. The complete algorithm is given

in Algorithm 2 (Schulman et al., 2017)

Algorithm 2 Proximal Policy Optimization

for each iteration do
for each environment step do ▷ Collect samples

Run policy πold to collect samples
Compute advantage estimates H1, H2, H3 · · · , HT

end for
Optimize the clipped surrogate objective L with respect to θ forK epochs

end for

Output: θ1, θ2, ϕ

3.4 Neural Networks

In this thesis, we employ two types of neural networks: Fully Connected Neu-

ral Networks and Convolutional Neural Networks. The subfield of reinforce-

ment learning that exploits the capability of neural networks to map high-

dimensional states such as images to actions and values is referred to as Deep

Reinforcement Learning.

A neural network is a series of connected layers. The first layer is called

the input layer, and the last layer is called the output layer. All layers

in between are collectively called the hidden layers. Each layer consists of

multiple nodes called neurons. If each neuron in the previous layer is connected
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to each neuron in the next layer, we call this network a fully connected neural

network. Fig. 3.2 shows an example of a fully connected neural network.

Figure 3.2: A fully connected neural network. It has two hidden layers with
five neurons each, one input layer with four neurons, and an output layer with
three neurons. Each arrow corresponds to a trainable parameter.

A neuron computes its output by summing up the outputs of connected

neurons from the previous layer, weighted by the corresponding weights. Thus,

a fully connected neural network can be mathematically modeled as a series of

matrix multiplications where each layer is modeled as a matrix whose elements

are weights. However, this architecture does not allow non-linear mapping as

the matrix multiplication is a linear operator. To solve this problem, we often

append a non-linear function called activation to the outputs of neurons.

Some common non-linear activations used in deep learning are the Sigmoid

function, Tanh function, and ReLU function. Theoretically, a fully connected

neural network with non-linear activations can approximate any continuous

functions to arbitrary precision (Cybenko et al., 1989; Leshno et al., 1993;

Pinkus et al., 1999).

However, fully connected neural networks are often inefficient for structured

data like images as it needs to be more scalable. Inspired by the structure of

the animal visual cortex, Lecun et al. (1999) proposed a scalable network

architecture called Convolutional Neural Networks (CNNs) to handle image

inputs. CNNs exploit image data structure to reduce the number of weights
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and improve performance in computer vision tasks such as image classification

and object localization. Besides the reduced number of weights, the main ad-

vantage of CNNs is the automatic extraction of features from images without

human effort. Since CNNs share weights for different pixels, they can eas-

ily discover translational invariant features in images, which is important in

computer vision tasks.

Each layer of a CNN consists of multiple kernels that transform the input

volume into an output volume. A kernel is an image-alike structure contain-

ing shared weights. It performs the convolution operation on the input volume

along the height and width dimensions to produce a so-called activation map

containing the extracted features. Activation maps produced by different ker-

nels are stacked along the depth dimension to form the output volume that

will be used as the input volume for the next convolutional layer. By stacking

multiple convolutional layers, the network can discover important hierarchical

features for the task.

CNNs often use successive pooling operations to down-sample output vol-

umes to discard positional information since it is usually irrelevant for com-

puter vision tasks (Levin et al., 2016). However, positional information is

important for the control policy to solve goal-reaching tasks. Thus, we do not

use pooling in our image processing module.

3.5 Spatial Softmax Layer

The Spatial Softmax Layer is proposed by Levin et al. (2016) to extract

positional information from the last activation map produced by a CNN, which

is necessary for successfully solving target-reaching tasks. It also filters out

erroneous low activations due to noise so that the training is more robust to

background distractors.

The spatial softmax layer consists of two components: a spatial softmax

function and an expected position function. The spatial softmax function:

scij =
eacijP

i′j′ eaci′j′
converts an activation map to a probability distribution

over locations of image features. Here, acij is the activation at the loca-
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tion (i, j) of the channel c, and scij is the feature probability at the loca-

tion (i, j) of the channel c. Then the expected position function converts

the probability distribution to the expected image positions of features by:

(fcx, fcy) = (
P

ij scijxij,
P

ij scijyij), where xij and yij are the coordinates of

the pixel (i, j) in the image space. The feature positions (fcx, fcy) from dif-

ferent channels form a vector that captures all the information retrieved from

images. Later, this vector, along with additional robots’ proprioception, is

used as the input to the following fully connected neural networks.

3.6 Reinforcement Learning with Augmented

Data

Kostrikov et al. (2020) shows that image-based RL may significantly suffer

from overfitting due to a large number of parameters of the image encoders.

Hence we adopted the technique called Reinforcement Learning with Aug-

mented Data (RAD) proposed by Laskin et al. (2020) to mitigate the overfit-

ting problem. Based on their results, we use the Crop augmentation method

that performs the best in most tests.

The Crop augmentation method randomly extracts a smaller image patch

from the original image and feeds the extracted image patch to neural networks

as the image observation. For example, if the original image size is H×W ×C

(height, width, channel), the Crop augmentation randomly crops it into an

image of the size H ′ ×W ′ × C. In this case, the starting point (cy, cx) for

cropping is sampled from the uniform distribution (U(0, H − H ′),U(0,W −

W ′)). For the convenience of discussion, we define the height cropping margin

hy =
H−H′

2
and the width cropping margin hx = W−W ′

2
). In this work, we use

cropping margin hy = 0.1×H and hx = 0.1×W . Fig. 3.3 demonstrates the

cropping process.

A caveat is that image augmentation is only applied to training samples to

increase sample diversity and reduce overfitting during learning. We always

use the central image patch to compute actions for the agent-environment

interaction, i.e., the starting point for cropping is always (hy, hx). For sim-
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Figure 3.3: The cropping augmentation

plicity, cropping is consistent within a mini-batch and random across different

mini-batches.

3.7 SenseAct

SenseAct is an implementation of the computational framework for designing

real robotic tasks proposed by Rupam et al. (2018a). Unlike discrete simula-

tion timesteps, the time of the real-world marches during action computation

and policy update, which imposes additional challenges to real-time learning

since the agent will have to work with delayed observations. The SenseAct

framework mitigates this problem by carefully ordering and parallelizing com-

putations of agent-environment interactions.

Since Python does not support true multi-threading parallelism, concurrent

computations are implemented with processes.

Fig. 3.4 shows the high-level architecture of SenseAct. Each robotic task

has at least three concurrent processes. Please note that a robotic task can

have more than one communicator process for complex control.
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Communicator Process

Sensor Thread
Loop until Termination:
1. Wait for new sensory packages
2. Store sensory information into 

a buffer 

Loop until Termination:
1. Wait for new actuation packages
2. Send new actuation packages to 

robots

Actuator Thread

Environment Process

Loop until Termination:
1. Construct observation packages 

and rewards from sensory 
packages 

2. Receive actions and construct 
actuation packages

3. Sleep until the next action 
cycle

Sensory 
packages

Actuation 
packages

Figure 3.4: The architecture of SenseAct
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Chapter 4

Distribution of Computations

In this chapter, we investigate the first issue of real-time learning of vision-

based robotic tasks in the real world: How much the performance of a learn-

ing system will be affected by limited by resources limitations and how to

distribute computations of a learning system to best compensate for perfor-

mance loss due to limited onboard resources. Our hypothesis is two-fold.

First, the performance of resource-demanding learning systems will

degrade substantially on the resource-limited computer compared to

that of the powerful workstation. Second, carefully chosen distribu-

tions of computations will substantially compensate for performance

loss, especially for resource-demanding learning systems. To test our

hypotheses, we proposed the Remote-Local Distributed (ReLoD) system and

developed two visuomotor robotic tasks.

4.1 ReLoD System

Most deep RL systems have three computationally expensive components: 1)

Action Computation, 2) Policy Updating, and 3) Minibatch Sampling. ReLoD

spawns parallel processes for each of the three components and runs them in

a distributed manner to better utilize the computational resources of the local

and remote computers. In addition, it creates additional inter-process commu-

nication sockets to enable this distributed and parallel architecture (described

later). ReLoD supports three different modes of operation: Remote-Only,

Remote-Local, and Local-Only. The mode of operation determines how the
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various processes are distributed between the local computer and the remote

computer.

ReLoD is designed to work with various RL algorithms. Users can easily

add more RL algorithms to the system by implementing the agent interface.

In this thesis, we implement two state-of-the-art RL algorithms: SAC and

PPO. We call the resulting agents SAC-agent and PPO-agent, respectively.

4.1.1 Description of Remote-Local SAC-agent

Local Agent Processes in Remote-Local Mode

Agent Interface Process

1. Sync hyper-parameters, args, and policy with 
remote computer

2. Forever:
a. Compute action from policy 𝜋
b. Send action to environment
c. Get next obs, reward, done and metadata
d. Send transition to the Local-Sample queue
e. Receive and apply new policy weights if 

available 

1. Receive transitions from 
the Local-Sample queue

2. Send transitions to the 
remote computer

Local-Send Process

Local-Sample 
queue

Local-Policy 
queue

Local-Receive Process
1. Receive new policy 

weights
2. Send new policy weights 

to the Local-Policy queue

Remote Agent Processes in Remote-Local Mode

Learner Interface Process
1. Sync hyper-parameters, args, and policy with remote 

computer
2. Forever:

a. Receive transition from local computer
b. Send transition to Replay Buffer
c. Send policy weights to local computer every k 

iterations 

Internet 
communication 

over TCP 
sockets

Buffer-Sample 
queue

Replay Buffer Process

Sampling Thread
(Sample mini-batches and send 

them to the )

Push Thread
(Add new samples to the buffer)

Minibatch queue

(Update weights of all 
trainable parameters)

Update Process

Share policy 
weights over 

shared memory

Figure 4.1: The architecture of the Remote-Local mode of SAC-Agnet

Fig. 4.1 outlines the structure of the SAC-agent in the Remote-Local mode.

There are three processes, called Agent-Environment Interface, Local-Send,

and Local-Receive, that run in parallel on the local computer. The Agent-

Environment Interface process computes the actions to take in the environment

(except in Remote-Only mode given in Table 4.1). The Local-Send process

sends the agent-environment interaction sample (St, At, Rt+1, St+1) at timestep

t to the remote computer via a TCP connection.

Three more processes, called Learner Interface, Replay Buffer, and Up-

date, run in parallel on the remote computer. The Replay Buffer process
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samples mini-batches, and the Update process updates policies. Considering

that neither the asynchronous SAC described in 4.2 nor PPO requires heavy

operations in the Learner Interface process, we do not use a separate process

to receive samples from the local computer for simplicity since such a process

will not significantly increase the reception rate. Please remember that the

term asynchronous in this thesis and asynchronous SAC means using con-

currency to parallelize the computations of a learning system. By distributing

the three most computationally expensive components of SAC on two different

computers, ReLoD takes advantage of both computers. On the other hand,

in the Remote-Only mode, all computations happen on the remote computer,

including action computation. The local computer, in this case, only relays

observations and actions between the remote computer and the robot. More

details about the process distribution for all three modes of the SAC-agent are

given in Table 4.1.

Note that the learning algorithm determines what processes to use in each

mode. For example, the Replay Buffer and the Update processes are specific

to our asynchronous SAC implementation adapted from the system proposed

by Yuan and Mahmood (2022). The PPO-agent does not have them due to the

nature of the algorithm. It updates policies in the Learner Interface process

instead. Please note that in the Remote-Local mode, allocating expensive

operations on the resource-limited computer is impractical. Since the local

computer is usually the resource-limited computer and policy updating is way

more expensive than action computation, the only meaningful distribution in

the remote-local mode is deploying policy updating on the remote computer

and deploying action computation on the local computer.

The Remote-Local mode is especially suitable for real-world applications

where sufficient onsite computational power is hard to achieve. A typical use

case is deploying robotic arms in a rural warehouse to pick up items automati-

cally. Although the Remote-Local mode has been widely used in the industry,

no systematic study in the literature shows that this mode will significantly

improve performance.
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Remote-Local Remote-Only Local-Only Period of Iteration
Agent Interface Process (AIP) Local Local Local action cycle time

Action computation Included in AIP Included in LIP Included in AIP action cycle time
Local-Send Process Local N/A N/A action cycle time

Local-Receive Process Local N/A N/A Every k iterations of LIP’s loop
Learner Interface Process (LIP) Remote Remote Included in AIP action cycle time

Replay Buffer Process Remote Remote Local hardware dependent
Update Process Remote Remote Local hardware dependent

Table 4.1: A list of all processes and their distributions between the local and
the remote computers in various operational modes of the ReLoD system.

4.1.2 Inter-Process and Internet Communication

Due to Python limitations, ReLoD is designed with multi-process parallelism,

which imposes additional technique difficulties on efficient Inter-Process com-

munications (IPCs). For simplicity, we use the shared queue for IPCs exclu-

sively within the same computer. As Fig. 4.1 shows, ReLoD creates four

shared queues for the Remote-Local SAC-agent. The Local-Sample queue on

the local computer and the Buffer-Sample queue on the remote computer are

created with length = time limit to prevent losing samples and blocking the

agent-environment interaction. The Local-Policy queue on the local computer

and the Minibatch queue on the remote computer are configured to the non-

blocking mode since policy update is asynchronous. Their lengths can be any

value larger than 1. In this work, we arbitrarily set their lengths to 2.

ReLoD uses TCP sockets for Internet communications. The main benefit

of using TCP sockets is that the TCP protocol guarantees packets’ deliv-

ery and the order of arrival, allowing a more efficient way of transmitting

samples. Since St is just a duplicate of the previous sample, if the order of

arrival of packets can be guaranteed, the local computer only needs to send

compact samples (At, Rt+1, St+1) at every timestep to reduce the bandwidth

requirement by approximately half compared to transmitting complete sam-

ples (St, At, Rt+1, St+1). The initial state s0 of a new episode is sent before the

new episode starts. This is a very appealing feature in practice because images

take more than 90% of the total observation data. However, the drawback is

that ReLoD will only work efficiently with good networking quality due to the

nature of TCP connections.
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It is also possible to use UDP sockets instead of TCP sockets at the cost of

increased bandwidth. That is because the UDP protocol does not guarantee

packets’ delivery and the order of arrival. As a result, we will have to send

both the previous and the next states, even if they are duplicates. Considering

that terminal states are critical for learning correct value functions and may

be sparse in practice, it is better to use TCP sockets to transmit samples

involving terminal states to avoid losing them.

4.2 The Learning System

In this thesis, ReLoD system was used to distribute two state-of-the-art real-

time reinforcement learning systems: 1) the asynchronous SAC proposed by

Yuan and Mahmood (2022), and 2) the spinup PPO (Achiam, 2018). The two

learning systems were extended to support our ReLoD system. In addition,

we modified the asynchronous SAC implementation to allow bootstrapping on

the time limit states when updating the value function. For example, if an

interaction sequence (S0, S1, · · · , St) terminates prematurely at the state St

due to time limits, the original implementation updates the value of the state

St−1 with v(St−1) = Rt. That is, the value of the state St is assumed to be 0.

Instead, our modified implementation updates the value of the state St−1 with:

v(St−1) = Rt + γv(St). That is, the estimated value of the state St is used

to update St−1. The spinup PPO already supports this update in the original

implementation. This modification is necessary since we define an episode to

be a sequence from an initial state S0 to a terminal(target) state ST . In this

setting, the time limit states are not the real terminal(target) states, and thus

their state values should not be assumed to be 0.

We used the same neural network architecture proposed by Yuan and Mah-

mood (2022) to parameterize policies. It includes three networks: Image

Encoder Network, Actor Network, and Critic Network. The image en-

coder network is only used for image-based tasks. For tasks that do not use

images, we remove the image encoder to save resources. The interaction of the

three networks is shown in Fig. 4.2. The design details of the three networks
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Figure 4.2: The structure of the neural networks

are discussed in the following subsections. The weights of neural networks are

adjusted by the learning systems to improve policies. Their relationship is

shown in Fig. 4.3.
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Algorithm

Updates

Figure 4.3: The interaction between neural networks and the learning system

4.2.1 Image Encoder Network

The image encoder network extracts information from images. It consists

of two components: a CNN and a spatial softmax layer. The CNN has four

layers, each containing 32 kernels of the size 3×3. The input layer and the two

hidden layers use stride = 2, and the output layer uses stride = 1. During the

training phase, images are randomly cropped according to the RAD technique

described in section 3.6. The activation map of the last layer is then fed into
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the spatial softmax layer.

The spatial softmax layer computes the expected feature positions (fx, fy)

for each channel of the final activation map, resulting in 32 pairs of (fx, fy).

Finally, the 32 pairs of (fx, fy) are flattened into a vector of size 64 and con-

catenated with the robot’s state vector for the actor and critic Networks.

4.2.2 Actor and Critic Networks

In this work, the actor and the critic networks share the same architecture

except for the input and output layers for simplicity, though they can have

different architectures in general. Specifically, they have two fully connected

hidden layers with 1024 neurons each.

Obviously, the size of the input layer will vary with tasks. The critic

network has a simple output layer in which there is only one neuron since it

is used to estimate either the state value or the Q value. The size of the actor

network’s output layer depends on the number of actions and the model of

action distribution. We use the multivariate normal distribution in this work

to model the action distribution:

exp(−1
2
(x− µ)TΣ−1(x− µ))p

(2π)k|Σ|
(4.1)

Since we assume that action components are independent of each other, the

covariance matrix Σ is diagonal. In this case, each action component needs

two parameters: the mean µ and the variance σ. Therefore, the output layer

size of the actor network is 2 × k, where k is the action dimension. In this

work, we initialize the weights of the last layer of the actor network to zeros

so that the initial policy is the Gaussian distribution N (0, 1) for all tasks.

4.3 Tasks

We developed two visuomotor robotic tasks, named UR5-VisualReacher and

Create-Reacher, to test our hypotheses in this chapter. The two tasks are not

easy to solve using simple RL approaches since they require tens of thousands

of images to learn good state representations and control policies. The robots
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we used are the UR5 industrial robot arm and iRobot Create2 mobile robot.

Please note that, the two robotic tasks require SenseAct (Rupam et al., 2018a)

to run. They are designed using the guidelines proposed by Mahmood et al.

(2018a) to reduce the computational overhead and take advantage of the multi-

processing capability of modern computers for handling different transmission

rates. Task details are given below.

4.3.1 UR5-VisaulReacher

UR5 is an industrial robotic arm manufactured by Universal Robotics. It has

six joints, and each joint can be controlled individually. We do not actuate

the end-effector joint as there is no gripper attached. UR5 uses conventional

TCP/IP protocol to communicate packets with the host computer every 8ms.

A state packet contains the six controllable joints’ angles, velocities, target

accelerations, and currents. UR5 can be configured to use either the velocity

control or the angular control modes. Users can send low-level control com-

mands directly to the six joints in both modes, making UR5 an ideal platform

for reinforcement learning studies. In this thesis, we used the velocity control

mode.

Since a UR5 robotic arm does not come with a camera, we attached a

Logitech RGB camera to the tip of the arm to enable image-based tasks. This

task is the same one proposed by Yuan and Mahmood (2022). Fig. 4.4 shows

the task setup. It is an image-based task that aims to move a UR5 arm’s

fingertip to a random target designated by a red (the target color) blob on a

monitor. The movement of the UR5 arm is restricted within a bounding box

to prevent collisions and accidental damage. The action space is the desired

angular velocities for the five joints between [-0.7, 0.7]rad/s. The observation

vector includes joint angles, joint angular velocities, three consecutive images

of dimension 160× 90× 3 taken by a camera, and the previous action. Every

40ms, the SenseAct environment process actuates the five joints and receives

the next observation by sending low-level control commands. The SenseAct

communicator process transmits joint data every 8ms and image data every

33.¯3ms to the environment process. Since this environment is inherently non-
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Figure 4.4: UR5 VisualReacher

Markovian, we stack three images to provide the partial history to the learning

agent. Each episode lasts 4 seconds (i.e., 100 timesteps). The reward function

is designed to encourage the following behaviors: 1) moving the fingertip closer

to the target while keeping the target centralized, and 2) avoiding abrupt

twisting of the joints. Specifically, the reward function is defined as follows

(Yuan & Mahmood, 2022)

rt = α
1

hw
M ◦W − β

 
π −

3X
n=1

ωn +
5X

n=4

ωn

!
,

where h is the height and w is the width of the image observation, M is a

mask matrix whose element Mi,j is 1 if the target color is detected at location

(i, j) and 0 otherwise, W is a constant weight matrix whose elements range

from 0 to 1 to encourage centralization of the target, and ω is the vector of

the five joints’ angles. The coefficient α and β weigh the importance of the

two behaviors. In this paper, we set α = 800 and β = 1. During a reset, a

new random target will be displayed on the monitor for the next episode, and

the UR5 arm will be set to a predefined posture. The environment runs on a

Lenovo Ideapad Y700 laptop.
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4.3.2 Create-Reacher

Create2 is a robotic development platform based on a commercially available

iRobot Roomba vacuum cleaner. Unlike Roomba, Create2 has an open in-

terface to allow custom applications, including reinforcement learning studies.

Create2 has two controllable wheels and various onboard sensors. It has six

wall sensors to measure the distances to walls, three infrared sensors to lo-

cate its charger, four cliff sensors to detect falling edges, two bump sensors

to detect bumping into obstacles, and one charging sensor to detect success-

ful docks. The iRobot Create2 Open Interface streams its sensory data and

internal states to the host computer every 15ms. Users can send the desired

speeds of the two wheels to Create2 via the open interface. Like UR5, we

attached a Depstech 4K camera and a Jetson Nano 4GB computer to it to

enable image-based tasks and onboard inference.

Create-Reacher is an image-based task that aims to move Create2 as soon

as possible to one of the two targets designated by green papers attached to

walls. The setup is shown in Fig. 4.5. The target is thought to be reached if it

Figure 4.5: Create Reacher

occupies more than 12% pixels of the current image. The size of the image is

160× 120× 3. The movement of Create2 is limited by an arena of size 220cm

× 140cm built of wood and cardboard. The action is the desired speed for
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the two wheels, limited to [-300, 300]mm/s The observation vector includes the

values of the six wall sensors, three consecutive images taken by a camera, and

the previous action. Every 45ms, the SenseAct environment process actuates

the two wheels and receives the next observation by sending low-level control

commands. The SenseAct communicator process transmits the sensory data

every 15ms and the image data every 33.3̄ms to the environment process.

Similar to UR5-VisualReacher, we stack three images to give the partial history

to the learning agent. The reward is −1 per step to encourage shorter episodes.

The current episode will terminate earlier if Create2 reaches the target. If

Create2 does not reach a target within the time limit, the reset routine will

bring Create2 to a random location in the arena. During a reset, Create2 first

moves backward and reorients itself in a random direction. Our reset routine

also handles recharging when the battery life falls below a specified threshold.

This environment runs on a Jetson Nano computer.

4.4 Experiment Setup

We first compared the performance of Local-Only SAC between a resource-

limited local computer and a powerful local workstation, referred to as Local-

WStation-Only, to evaluate the impact on performance due to resource limita-

tions. We used the IdeaPad Y700 laptop as the resource-limited computer. It

has an Intel i7-6700HQ CPU, an NVidia GTX 960M GPU, and 16GB mem-

ory. We reduced SAC’s mini-batch size to 64 and the maximum allowed buffer

size to 16000 on the laptop to fit the hardware constraints. We empirically

found that a buffer size larger than 16000 would not significantly improve

performance.

In addition, we also aimed to investigate how SAC would have performed

on a Jetson Nano embedded computer since heavily resource-limited comput-

ers like Jetson Nano are commonly used as the local controlling computers for

small robots. However, when ReLoD was configured to Local-Only SAC, Jet-

son Nano could not run the system fully onboard as its hardware and software

architectures were not optimized for updating network weights. Jetson Nano
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took about half a second to complete one network update on average and be-

came unresponsive after a couple of updates. To overcome the architectural

limitations and get an empirical upper bound of performance on such a heav-

ily resource-limited computer, we emulated the capability of Jetson Nano with

the IdeaPad Y700 laptop by restricting its update rate and available memory.

Thus, two Local-Only variants of SAC were tested on the laptop:

• Local-Laptop-Only : This variant fully utilizes the computational resources

of the laptop. The policy is updated at the fastest allowable speed, that

is, back-to-back.

• Local-JNanoEm-Only : This variant emulates the capability of Jetson

Nano. Since the average time required for one SAC update on Jetson

Nano is 500ms and the action cycle time of UR5-VisualReacher is 40ms,

the policy is updated once per 12 steps on the laptop to best match the

capability of Jetson Nano. The buffer size is set to 16000, a maximum

that fits Nano’s 4GB RAM.

We used UR5-VisualReacher for this comparison, as mounting the laptop to

Create2 was impractical. The workstation for UR5-VisualReacher has an

AMD Ryzen Threadripper 2950 processor, an NVidia 2080Ti GPU, and 128G

memory.

Then we investigated how to utilize the resource of a remote workstation to

compensate for the performance loss due to the resource-limited local computer

since tethering a workstation to a mobile robot is inconvenient in practice.

We used the most common setting in practice in which the robot is tethered

to a small resource-limited computer and wirelessly connected to a powerful

workstation. Two typical algorithms, SAC and PPO, were tested to get better

coverage of different types of RL algorithms.

SAC is resource-demanding since it updates the policy at every step and

requires a large replay buffer to store all its past experiences. PPO is relatively

simpler since it only updates the policy every few thousand steps, and its buffer

needs to hold only a few episodes generated on-policy. The SAC-agent was

tested on UR5-VisualReacher and Create-Reacher, while the PPO-agent was
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only tested on UR5-VisualReacher. We used a Jetson Nano 4GB for Create-

Reacher and the laptop for UR5-VisualReacher as the local computer. The

workstation for Create-Reacher has an AMD Ryzen Threadripper 3970 CPU,

an NVidia 3090 GPU, and 128G memory.

Finally, on a powerful tethered workstation, we compare the performance

of Local-Only SAC to that of the system proposed by Yuan and Mahmood

(2022), which is well-tuned for a single computer. This test is to determine

if the performance of the Local-Only mode of our system is comparable to

the off-the-shelf RL algorithm implementation given adequate resources. The

testing environment is UR5-VisualReacher, and five independent runs were

performed for each system.
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Chapter 5

Results of Distribution of
Computations Experiments

In this chapter, we show and discuss the results of the computation distribution

experiments. Most importantly, our results confirm the two-fold hypothesis

proposed in chapter 4 1

5.1 Performance of SAC on Resource-Limited

Computer

The results of SAC on resource-limited computers are shown in Fig. 5.1. It

shows that the performance of SAC on the resource-limited laptop dropped

by about 28% on average compared to that of SAC on the workstation.

Moreover, the Local-JNanoEm-Only variant struggled to learn a compara-

ble policy within the same time frame. Note that SAC’s Local-WStation-Only

configuration attained the highest return among all our results. Our re-

sults confirmed our hypothesis that the performance of resource-

demanding learning systems would degrade substantially on the

resource-limited computer compared to that of the powerful work-

station.
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Figure 5.1: The comparison of the learning performance of the SAC-agent.
The wide lines for each mode are averaged over five independent runs. The
real experience time in our plots does not include any additional components
required to run an experiment, such as resetting the environment or recharging
the robot

5.2 Performance of SAC and PPO across Three

Distribution Modes

The learning curves of the three modes of the SAC-agent on UR5-VisualReacher

and Create-Reacher are shown in Fig. 5.1 and Fig. 5.2, respectively. Note that

due to the hardware limitations of Jetson Nano, SAC-agent’s Local-Only mode

was not run for Create-Reacher. Fig 5.1 reveals a counter-intuitive result that

SAC’s Remote-Only mode, referred to as Remote-WStation-Only in the Fig-

ures, barely improved its performance over the Local-Only mode, which used

a resource-limited laptop. Meanwhile, the Remote-Only mode also exhibited

higher variance in the overall learning performance on both tasks. This is sur-

1Eexperiment videos can be found at https://youtu.be/7iZKryi1xSY
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Figure 5.2: Comparison of learning performance across two modes of SAC-
agent on Create-Reacher. The wide lines for each mode are averaged over five
independent runs

prising since this mode fully utilizes all resources of the remote workstation.

We attribute the relatively poor performance of the Remote-Only mode to the

variable latency in communicating actions over WiFi, which will not occur in

the other two modes, as the Remote-Only mode computes actions on a remote

computer. Although the Remote-Local mode also encounters latency due to

WiFi communication, the effect is much less severe as it only involves the

transfer of policies and buffer samples, while action computation still happens

locally. Our results align with Mahmood et al.’s (2018a) results showing that

delays occurring closer to robot actuation can be substantially more detrimen-

tal to performance than delays occurring further from actuation. A real-time

learning system can get affected by delays at least through two pathways:

inference for action computation and learning update. When a delay occurs

within the system, it may spare the more important inference pathway, as in
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our case. When a delay occurs closer to the robot actuation, that is, at the

periphery of the learning system, it affects both pathways. Our results reveal

that without careful consideration, using a powerful remote computer may not

result in performance improvement.

Fig. 5.1 and Fig. 5.2 suggest that SAC-agent’s Remote-Local mode, re-

ferred to as Remote-WStation-Local-Laptop and Remote-WStation-Local-JNano

in the Figures, consistently compensated for the performance loss on both

tasks. As Fig. 5.1 indicates, the highest average return attained by SAC-

agent’s Remote-Local mode is more than 90% of the highest average return

attained by SAC in the Local-WStation-Only configuration, whose perfor-

mance is the best. However, the Remote-Local mode only benefits computa-

tionally intensive algorithms like SAC, as Fig. 5.3 shows that PPO’s perfor-

mance is nearly the same across the three modes. Our results confirmed

our hypothesis that carefully chosen distributions of computations

would substantially compensate for performance loss, especially for

resource-demanding learning systems.

By comparing Fig. 5.1 and Fig. 5.3, we notice that SAC significantly out-

performed PPO on complex robotic tasks. All distribution modes of the SAC-

agent except the Local-JNanoEm-Only attained more than twice the return

attained by PPO in a shorter time frame. Nevertheless, when all computa-

tions of SAC happen on a computer incapable of performing frequent policy

updates, as indicated by Local-JNanoEm-Only, SAC’s performance degrades

substantially to a degree comparable to that of PPO on the same computer.

The poor performance of PPO can be partially attributed to the fewer policy

updates. As Fig. 5.3 shows, PPO’s learning curves did not plateau at the

end of training. Thus, it is possible that PPO’s performance would eventually

match SAC. Our results indicate that SAC learns faster but needs powerful

machines to be effective. On the other hand, PPO learns slower but does not

require powerful computers. There is a clear trade-off between the learning

speed and the availability of computational resources. In practice, the choice

of learning algorithm should depend on the availability of training time and

computational resources.
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Figure 5.3: Comparison of the learning performance of the PPO-agent.
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5.3 Comparison of Local-Only SAC and Off-

the-Shelf System

0 20K 40K 60K 80K 100K
Timesteps

0

50

100

150

200

Average
Episodic
Return

SAC using only a local workstation
on UR5-VisualReacher

Yuan and Mahmood (2022)
ReLoD

0.0 13.3 26.7 40.0 53.3 66.7
Real Experience Time (mins)

Figure 5.4: comparison of the Local-Only mode of the SAC-agent with an off-
the-shelf asynchronous SAC implementation proposed by Yuan and Mahmood
(2022) on a powerful workstation.

The comparison results are shown in Fig. 5.4. Both methods achieved similar

overall learning performance. Thus, our proposed system can leverage the

power of deep RL algorithms effectively, and as a result, it is also suitable for

conventional RL research.
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Chapter 6

Minimum-Time Tasks

In this chapter, we provide a primitive investigation into the second issue of

real-time learning of vision-based robot tasks in the real world: How to design

a reward function that is easy to define but still captures the desired behavior.

It is a primitive investigation because we limit the scope to propose guidelines

to determine if a minimum-time task is solvable by SAC using the performance

of the initial policy before the actual training.

6.1 Minimum-Time Formulation

First of all, we formulate Minimum-Time tasks in this section. For all minimum-

time tasks, an episode is said to be completed when the agent reaches the

terminal state. More specifically, we define an episode as a set of transitions

{(St−1, At, St)|1 ≤ t ≤ T ′}, where S0 is the initial state of the episode and ST ′

is the terminal state. If the agent does not reach the terminal state within a

given time limit, we reset the agent and environment in such a way that the

terminal state remains the same, but the agent moves to a different starting

state. In this thesis, we used the random reset function to move the agent to

an arbitrary random state. Resetting the agent to an arbitrary random state

instead of predefined initial states will benefit exploration since the agent will

have more chances to start from states closer to the terminal states. It is easy

to show that the simple exploration strategy with a random reset function and

N (0, 1) initial policy have a non-zero probability of finding the solution if it

exists. It is possible to use other reset functions. Although smarter reset func-
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tions may improve learning performance, searching for better reset functions is

not our focus. In this thesis, we focus on showing that simple reset functions,

such as the random reset function with a proper time limit, can solve complex

minimum-time tasks.

In this thesis, the invocation of the reset function is called timeout, and

the maximum allowable steps before a timeout is called the time limit. Since

resetting the agent has an associated time cost in the real world, we penalize

the agent when it fails to reach the terminal state within the time limit. The

penalty is the negative of the number of timesteps required to reset the agent.

In addition, we include reset steps into the total steps of the current episode.

Including all reset steps instead of treating reset as a single step allow us to

alter the time limit without changing the problem MDP. The episodic returns

and lengths are adjusted appropriately. For example, consider a task where

the reward is −1 each timestep, the time limit is 100 steps, and reset penalty =

−20. If an agent times out thrice consecutively and finally reaches the terminal

state in 25 steps since the last timeout, then the return of the episode, in this

case, is −100− 20− 100− 20− 100− 20− 25 = −385, and the length of the

episode is 385. Our learning curves use undiscounted returns calculated in this

manner.

6.2 Learning of Minimum-Time Tasks

In this section, we show the preliminary results of using SAC to solve minimum-

time tasks. We developed three simulated minimum-time tasks for this thesis.

They are named Ball-in-Cup, Reacher and Dot-Reacher. Details about the

Ball-in-Cup task and the Dot-Reacher task will be given in the next chapters.

The minimum-time Reacher task was derived from the Deepmind Control Suite

(Tassa et al., 2018). The original Reacher uses guiding rewards to encourage

a shorter distance between the fingertip and the target. It is important to

note that episodes do not end when the agent arrives at the terminal state.

The agent can continue accruing rewards for the duration of the episode (i.e., a

fixed time limit of 1000). We converted it into the minimum-time formulation,
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(a) Reacher - Easy (b) Reacher - Hard (c) Reacher - Extreme

Figure 6.1: Three variants of the Reacher task from DeepMind Control Suite

i.e., a reward of −1 will be given to the agent each timestep until termination.

Besides the necessary changes to the reward functions and termination condi-

tions, we also modified the task formulations to reflect typical setups of real

robot tasks. Minimum-Time Reacher has three sub-tasks with different tar-

get sizes representing three difficulty levels. Each sub-task has two variants:

visual and non-visual tasks. Visual tasks require the agent to learn useful

information from images, which are more challenging than non-visual tasks.

6.2.1 Minimum-Time Reacher Task

This task aims to move the fingertip of a planar arm with two degrees of

freedom (DoF) to a random spherical target on a 2D plane. It has three sub-

tasks: easy, hard, and extreme. They differ in the sizes of the target and

the fingertip of the arm (see Fig. 6.1). Since the fingertip and the target are

reduced to two virtual points in the Reacher-Extreme task, they are invisible

in Fig. 6.1c.

For the non-visual task, the observation includes the position of the finger-

tip, the speed of the fingertip, and the vector from the fingertip to the target.

For the visual task, we remove the vector from the fingertip to the target from

the observation space since this information should be inferred from images.

Because the visual task is intrinsically non-markovian, we stack three consec-

utive images of the size 70 × 100 × 3 to provide histories to the agent. The

action space is the torques to be applied to the two joints, scaled to the range

−1 to 1. The reward function is modified to give −1 for each step to encourage

shorter episodes. After each 1000 steps, we reset the agent by moving the fin-
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Figure 6.2: Performance of SAC on the minimum-time formulation of the two
Reacher sub-tasks. Each solid curve is an average of 30 independent runs. The
shaded regions represent a 95% confidence interval.

gertip to a random location on the plane while keeping the target unchanged.

This process continues until the fingertip reaches the target within the target

size. Once the target is reached, the current episode terminates. At episode

terminations, we reset the agent and randomly generate a new target for the

next episode.

6.2.2 Learning Performance

As shown in Fig. 6.2, SAC can solve the minimum-time Reacher-Easy task ef-

fectively within 200k steps. While there are signs of learning with the Reacher-

Hard task, the learned policy after 200K timesteps isn’t quite as successful.

One possible explanation is that the initial policy N (0, 1) can stumble upon

the target more frequently in Reacher-Easy compared to Reacher-Hard.

To test the explanation, we used SAC to solve the non-visual Reacher-

Extreme task, whose target is virtually a point on the plane. Since the

Reacher-Extreme task is significantly more difficult than Reacher-Hard, we

suspect that no learning will happen for this task. As expected, SAC failed

to learn an effective policy on Reacher-Extreme. There were only one or two

episodes finished within the 200k training steps for all 30 seeds. As a result,
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no meaningful learning curves can be plotted. At least, the preliminary re-

sults confirm that SAC can reliably solve complex vision-based tasks in the

minimum-time formulation. Based on the results, we define the difficulty of

a minimum-time task by counting the number of target hits with the initial

policy N (0, 1) exploration in 20k steps.

6.3 Time Limit as a Solution Parameter

We then investigated what factors would impact the difficulty of a minimum-

time task. One evident factor is the exploration strategy. As discussed in

Section 2.6, many works have proposed novel methods to improve exploration

in sparse reward tasks in an effort to increase the chances of encountering the

terminal state. In this thesis, we focus on an oft-ignored parameter in task

specification, the time limit. Existing minimum-time tasks, such as Mountain

Car (Moore, 1990; Sutton & Barto, 2018), use fixed time limits to improve

exploration efficiency. Intuitively, a large time limit will increase the chance of

reaching the target since it gives the agent more time to explore the environ-

ment. However, a large time limit will only hurt the exploration if the agent

gets stuck in uninformative states due to a sub-optimal policy. In essence,

the choice of time limit could drastically impact the frequency of reaching

the terminal state. Thus, the optimal time limit should be a task-dependent

parameter.

Moreover, time limits play a significant role in task design as well. For

example, most OpenAI Gym environments treat time limits as an intrinsic

property of their task formulations. In such environments, time limits are

often used to separate episodes. That is, those environments define an episode

as: {(St−1, At, St)|1 ≤ t ≤ T}, where S0 is the initial state of the episode and

T=Time Limit.

We hypothesize that the choice of time limit can directly affect overall

learning performance, as there exists a direct correlation between the frequency

of reaching the terminal state and the final learning performance. Since our

definition of an episode includes reset steps and is independent of the choice
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of time limit in the minimum-time formulation, we can safely modify the

time limit of a task without altering the problem formulation. In short, we

treat the time limit as a tunable parameter that a learning system

can tweak. Using our difficulty definition, we evaluate the difficulties of the

minimum-time Ball-in-Cup and Reacher for a set of time limits {1, 2, 5, 10, 25,

50, 100, 500, 1000, 5000}. Finally, based on the performance of SAC under

different difficulties, we propose guidelines that practitioners can use to predict

the performance of SAC on their own minimum-time tasks before the actual

training.
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Chapter 7

Minimum-Time Experiments

In this chapter, we show and discuss the results of the minimum-time exper-

iments. Most importantly, we propose guidelines to determine if a minimum-

time task is solvable by SAC before the actual training in this chapter.

7.1 Minimum-Time Ball-in-Cup Task

The tasks used in this chapter are Reacher and Ball-in-Cup. The Reacher task

has been described in the previous chapter. The minimum-time Ball-in-Cup

task was derived from the Deepmind Control Suite (Tassa et al., 2018). The

original Ball-in-Cup is designed with the conventional sparse-reward formu-

lation in which the agent receives a reward of 1 once it reaches the terminal

state. We converted them into the minimum-time formulation, i.e., a reward

of −1 will be given to the agent each timestep until termination. Besides the

necessary changes to the reward functions and termination conditions, we also

modified the task formulations to reflect typical setups of real robot tasks.

Minimum-time Ball-in-Cup has two variants: visual and non-visual tasks. Vi-

sual tasks require the agent to learn useful information from images, which are

more challenging than non-visual tasks.

This task aims to put a small ball into a receptacle. The ball is attached to

the receptacle with an elastic string. Fig. 7.1 shows a screenshot of this task.

The receptacle moves in the vertical plane (x-z plane) to swing and catch the

ball.

For the non-visual task, the observation includes the ball’s position and
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Figure 7.1: Ball in Cup Task from Deepmind Control Suite

velocity and the receptacle’s position. For the visual task, we remove both the

ball and receptacle positions from the observation space since this information

should be inferred from images. Because the visual task is intrinsically non-

markovian, we stack three consecutive images of the size 100×120×3 to provide

histories to the agent. The action space is the force applied to the receptacle,

scaled from −1 to 1. The reward function is modified to give −1 for each step

to encourage shorter episodes. Once the receptacle catches the ball, the current

episode terminates. The reset function moves the receptacle to a predefined

location and the ball to a random location on the vertical plane upon timeout

or episode terminations.

7.2 Relationship Between Time Limit & Learn-

ing Performance

We plotted the number of target hits versus time limits for Ball-in-Cup and

Reacher with the initial policy N (0, 1) in Fig. 7.2. It reveals that time limits

indeed affect an agent’s exploration. It also demonstrates that the optimal

time limit is task-dependent. Note that Reacher-Extreme has significantly

fewer target hits than Reacher-Easy and Reacher-Hard for all time limits.

Fig. 7.2 applies to both visual and non-visual tasks since their initial policies
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Figure 7.2: A histogram plot of the choice of time limit versus the number
of target hits, that is, the number of times the agent reaches the terminal
state using an initial policy within 20K timesteps. The error bar indicates the
standard error estimated over 30 seeds.
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and termination conditions are the same and independent of images.

Then we tested whether the number of target hits affects training per-

formance. The tasks we used for this purpose are Non-Visual and Visual

Ball-in-Cup, Non-Visual Reacher-Easy, and Non-Visual Reacher-Hard. The

learning curves of each task across multiple time limits are shown in Fig. 7.3.

It shows a clear relationship between the learning performance and the num-
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Figure 7.3: Learning performance of SAC on three non-visual and one visual
task in simulation for multiple choices of the time limit. Each solid curve
is averaged over 30 independent runs. The shaded regions represent a 95%
confidence interval.

ber of target hits. Since the agent of Reacher-Extreme failed to reach the

target during training for all time limits, no meaningful learning curves can be

plotted here. Thus, the results confirm our hypothesis that the choice of

time limit can directly affect overall learning performance, as there is a direct

correlation between the frequency of reaching the terminal state and the final

learning performance.
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7.3 Guidelines for Effective and Robust Learn-

ing of Minimum-Time Tasks

Although all the time limits lead to successful learning, the learning rate and

stability differ. Our simulation results show that short time limits give early

success. However, using them for learning runs the risk of achieving a subop-

timal policy if the minimum time to reach the terminal state is longer than

the time limit. Therefore, it seems preferable to choose a long time limit. Un-

fortunately, Fig. 7.2 reveals that long time limits may also reduce the chance

of reaching the target, which means learning can also be unreliable or even

unsuccessful in a given amount of time, as is evident from the learning results.

Based on our observations, one strategy for time limit selection is to choose

a time limit as small as possible as long as there is a sufficient number of hits

and it is larger than the expected minimum steps to reach the target. Since

the terminal state is defined to have a state value of 0, a sufficient number of

target hits will give the agent enough information to learn the state values of

other states along the same episode so that policy improvement can happen. If

there are not enough hits, we can modify the time limit and measure the initial

performance again. Once we have sufficient hits, we can attempt learning with

that time limit. For example, time limits 1, 2, 5, 10, and 25 are not suitable

for our simulation tasks since the minimum steps to the terminal state are

about 25 to 30 for each task.

Based on our simulation results, we consider 10 to be a sufficient number

for the average target hits per 20K steps. Hence, it allows for 50 hits on

expectation in a replay buffer of 100K steps. For example, according to this

heuristic, we can try a time limit of 100 for Ball-in-Cup, a time limit of 50 for

Reacher-Easy, and a time limit of 50 for Reacher-Hard. Our learning curves

show that the agent can learn with each choice of time limit. One caveat is

that the chosen time limit is not necessarily the optimal time limit to solve

the task.

To summarize, our guidelines for solving a minimum-time task are:

• Initialize the weights of the last layer of the policy network to all zeros
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so that the initial policy is the Gaussian distribution N (0, 1).

• Collect the number of target hits for a set of time limits using the initial

policy.

• Select the time limits under which the number of target hits is larger

than 10. The selected time limits should be larger than the expected

minimum steps to reach the terminal state.

• Start from the smallest selected time limit and use our chosen hyperpa-

rameters and network initialization to train the task with SAC.

We will show the tests of the guidelines in the next chapter.
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Chapter 8

Tests of Guidelines for
Minimum-Time Tasks

We tested our guidelines by following them on seven held-out tasks: four real

robot tasks and three simulation tasks. The three simulation tasks are vi-

sual Reacher-Easy, visual Reacher-Hard, and non-visual Dot-Reacher. The

visual Reacher tasks are described in the previous chapters and the non-

visual Dot-Reacher task will be described in this chapter. The four real robot

tasks are Create-Reacher, UR5-Min-Time-Reacher, Vector-ChargerDetector,

and Franka-Min-Time-Reacher. Details are given in the next section.

8.1 Tasks

We aim to investigate real-time learning of minimum-time real robotic tasks.

For this purpose, we developed three real robot tasks with three robots and

reused the Create-Reacher task. Unlike simulation tasks, all robotic tasks

except Franka-VisualReacher require SenseAct (Rupam et al., 2018a) to run.

Task details are given below.

8.1.1 UR5-VisaulReacher-MinTime

This task is the minimum-time formulation of UR5-VisaulReacher. We espe-

cially changed the reward function to −1 for each timestep to convert it into a

minimum-time task. The modified task aims to move its fingertip to the target

(red blob) on the screen as soon as possible. The current episode terminates
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once the target occupies more than 1.5% pixels of the current image. If the

current episode does not terminate within the time limit, the reset function

will move the arm to a predefined posture. During a reset, the target location

remains unchanged. Like Reacher, once an episode terminates, we reset the

arm and generate new random targets for the next episode. We also increased

the maximum joint speed and movement bounds for better explorations.

8.1.2 Franka-VisualReacher

The Franka Emika Panda robot is a 7-DOF robot arm with a 3kg max payload

and full torque sensing at each joint. Similar to the UR5, we do not control

the arm’s end-effector, and a Logitech Camera is attached to the tip of the

arm. The agent controls the arm by sending velocity commands for each joint

at 25Hz. The agent’s task is to move the camera close to a randomly placed

bean bag on the table using the images taken from the attached RGB camera.

Fig. 8.1 shows the task setup. We provide the agent with three consecutive

Figure 8.1: Franka VisualReacher

images of the size 160× 90× 3 for a better sense of direction. We also provide

the agent with the current positions of the joints, current joint velocities, and

the previous velocity commands. The agent receives this information at 25Hz.

At the beginning of an episode, we place the arm and the bean bag in random
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positions. The reward is −1 at every step until the episode ends. The episode

ends when the bean bag covers more than 12% of the image captured by the

camera. If the agent does not reach the bean bag within the time limit, we reset

the environment by putting the bean bag and the arm at random positions.

8.1.3 Vector-ChargerDetector

Anki Vector is a low-cost mobile home robot approximately 10 cm in length

and augmented with a 3D-printed bulldozer-like end-effector. It has two con-

trollable wheels, a tiltable head with an LCD screen and camera, and an arm

that can be used to lift or flip a cube. It also has a proximity sensor, four

cliff sensors to detect falling edges, IMU for orientation and position tracking,

and encoders to provide feedback on motor rotation. In this thesis, Vector is

configured to use velocity control over WiFi.

We propose a novel vision-based benchmark task called Vector-ChargerDetector.

Fig. 8.2 shows the task setup. The observation space consists of four stacked

Figure 8.2: Vector ChargerDetector

160 × 120 × 3 images to give the learning agent temporal history, proximity

sensor values, wheel velocities, and the previous action. The agent receives a

new image every 200ms, and the robot state information every 60ms. The

agent sends an action to the robot every 100ms over WiFi. The episode ter-
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minates when the charger symbol is centered and occupies roughly 25% of the

image. Our reset routine brings Vector to a random location in the arena if

the current episode does not terminate within the time limit. During a reset,

Vector first moves backward and reorients itself in a random direction. Our

reset routine can also handle re-charging when the battery level falls below a

specified threshold and recovering from a failure mode like flipping over.

8.1.4 Minimum-Time Dot-Reacher

We also developed a simple environment called Minimum-Time Dot-Reacher

with NumPy and Python as an additional simulation task for testing our

guidelines. In this task, a blue dot tries to reach a stationary red target in a

2D plane (see Fig. 8.3). In addition, the blue dot has to reach the target within

a specific velocity threshold. The observation space consists of the position

(a) Dot-Reacher

Figure 8.3: Dot-Reacher developed with Numpy and Python. The red area
represents the target, and the blue dot represents the agent

and velocity of the blue dot, and the action space is the acceleration applied
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to the blue dot in the 2D plane, scaled to the range −1 to 1. At the start

of a new episode, the blue dot starts in a random location of the 2D plane,

excluding the target region. We use only the non-visual variant of this task in

our experiments.

8.2 Experiment Setup

For simulation tasks, we tested three time limits, 50, 100, and 500, to see if

learning could happen for at least one of the time limits. For each time limit

and task, 30 runs were performed. But data collection is expensive and time-

consuming for real robot tasks. Hence, we only tested three time limits on

Franka-Min-Time-Reacher and heuristically chose one time limit for the other

tasks. We deliberately chose the time limits for each robot task to have enough

target hits with the initial policy. The time limit selection is summarized in

Table 8.1. For Franka-Min-Time-Reacher, we performed five runs. For Create-

Reacher, we performed three runs since the hardware was worn out after three

complete runs. Due to the time limit and unstable WiFi connection, only two

runs were performed for Vector-ChargerDetector. We used the ReLoD system

to facilitate effective learning on all robot tasks.

8.3 Results

In this section, we show and discuss the results of the tests of our guidelines

for minimum-time tasks. Most importantly, our results confirm the usefulness

of our guidelines in practice. 1

8.3.1 Results on Simulation Tasks

The number of target hits versus time limits for Dot-Reacher is shown in Fig.

8.4. The same plot for Reacher and Ball-in-Cup can be found in Fig. 7.2.

1Real robot experiment videos can be found at https://sites.google.com/view/

minimum-time-rl
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(a)

Figure 8.4: A histogram plot of the choice of time limit versus the number of
target hits using an initial policy within 20K timesteps for Dot-Reacher. The
error bar indicates the standard error estimated over 30 seeds.

Fig. 8.4 and Fig. 7.2 show that all simulation tasks used for testing

have enough target hits for at least one of the three time limits, which means

learning should happen for at least one of the three time limits.
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Figure 8.5: Learning performance of SAC on three held-out simulation tasks
for three choices of time limit. Each solid curve is averaged over 30 independent
runs. The shaded regions represent a 95% confidence interval.

We observed successful learning of all four simulation test tasks in Fig.

8.5., though the visual variants have slower and more variant learning curves.

Fig. 8.5 confirms the usefulness of our guidelines in predicting the learning

of simulation minimum-time tasks.

8.3.2 Results of Real Robot Tasks

The time limits and the target hits for each robot are summarized in Table

8.1.
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Task Time Limit(s) Average Target Hits Training Steps Wall Clock Time
Franka-Min-Time-Reacher 3s, 6s, 30s 12.6± 1.0, 13.0± 2.08, 7.8± 0.87 60k 2h ∼ 3h

Create-Reacher 15s 18.8± 3.92 100k 5h ∼ 7h
UR5-Min-Time-Reacher 6s 14.4± 2.5 100k 3h ∼ 4h
Vector-ChargerDetector 30s 11± 1.1 160k 16h ∼ 24h

Table 8.1: Robot experiment setup details. The average target hits are calcu-
lated using 20K samples of real-world data for each task. The standard errors
for the average target hits are estimated using five independent runs.

From Table 8.1, we can see that Franka-Min-TimeReacher and Vector-

ChargerDetector have just about sufficient target hits. Create-Reacher and

UR5-Min-Time-Reacher have more than enough target hits. According to our

guidelines, SAC should be able to learn effective policies on all tasks.

8.6.
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Figure 8.6: Learning performance of SAC on four vision-based policy learning
tasks with robots. Each thin learning curve here represents an independent
run. The bold learning curves of the same color are the average of all inde-
pendent runs.

The volatility in the learning curves of Vector-ChargerDetector is due to
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the variable WiFi latency. This problem is inherent to Vector because Vector’s

WiFi adapter struggles to establish a stable WiFi connection with our WiFi

router. The successful learning curves of the four robot tasks shown in Fig. 8.6

confirm the usefulness of our guidelines in predicting the learning performance

of real robot minimum-time tasks.
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Chapter 9

Conclusion

In this thesis, we empirically investigated two oft-ignored issues of real-time

learning of robotic tasks: 1) How limited computation resources impact the

performance of a learning system and how to use a wirelessly connected power-

ful computer to compensate for the performance loss; 2) how to design reward

functions for vision-based real-time learning tasks.

To address the first issue, we introduced the ReLoD system for learning

to control robots by a real-time RL agent that distributes its computations

between a local and a remote computer. In our experiments with ReLoD, we

demonstrated that when SAC ran on a resource-limited computer, its perfor-

mance could be dramatically reduced. Moreover, solely deploying all compu-

tations of SAC on a wirelessly connected remote workstation may not improve

performance due to latency. On the other hand, our results suggest that per-

forming local action computation and remote policy updating compensates

substantially for SAC’s performance loss. However, this distribution may not

benefit all RL algorithms since PPO’s performance was nearly unaffected by

the distribution mode. In addition, ReLoD’s Local-Only mode is suitable for

conventional RL research as its performance was shown to be on par with

a well-tuned single-computer system. Due to the latency in communicating

actions, ReLoD’s Remote-Only mode should only be used when the local com-

puter cannot compute actions within the action cycle time. We conducted 60

independent runs in our experiments, which took nearly 185 hours of usage on

real robots.
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For the second issue, we focused on effectively solving minimum-time tasks

with a reward of −1 for each step. Through an empirical investigation of the

performance of SAC on multiple complex vision-based simulations and real

robotic control tasks in the minimum-time formulation, we identified that an

agent could achieve successful learning performance if it can reach terminal

states often enough using its initial policy. Contrary to popular belief, we

showed that it is possible to have robust, reliable learning from scratch on

complex, vision-based robotic control tasks using only sparse rewards. We

established that the time limit should be a tunable solution parameter instead

of a problem parameter in the minimum-time formulation. We also outlined

useful guidelines that practitioners can use to determine if the minimum-time

formulation is suitable for their tasks and described the conditions under which

they can be solved by SAC effectively. Our work is the first demonstration of

using a single reinforcement learning system to achieve real-time learning of

pixel-based control of multiple physical robots from scratch in the minimum-

time formulation. In total, we conducted 1200 independent runs in simulation

and 28 independent runs in the real world, which took about 340 hours.

9.1 Limitations

This work has several limitations. First, although we gave a possible explana-

tion as to why the remote-only mode of the SAC-agent performs worse than

the remote-local mode in the first part, we still do not fully understand how

the remote-local mode reduces action latency. Second, the learning curves of

PPO in the first part are not plateau. Thus, more steps are needed to test

PPO’s performance. Third, in the first part, we only implemented SAC and

PPO and tested them on two tasks, which may limit the generalizability of

our results to other tasks. Fourth, we only tested our guidelines on seven tasks

in the second part. Our guidelines could be more reliable if they were tested

on more tasks. And finally, in the second part, we performed a linear search

for the time limit parameter, which can be inefficient.
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9.2 Future Work

A natural extension to the first part of this work is to study how the remote-

local mode reduces action latency in wireless networks. We could decompose

action latency into multiple delay components and evaluate which components

impact performance significantly. Then a detailed investigation can be carried

out to evaluate how and to what extent remote-local mode reduces those de-

lays.

In the second part of this work, we showed that the performance of the

initial policy is important to solve minimum-time tasks. However, the perfor-

mance of the initial policy depends on how the weights of the policy network

are initialized. Studying how different initialization methods impact learning

performance is interesting. Furthermore, since we treat the time limit as a

solution parameter in the minimum-time setting, it will be more efficient to

search for the optimal time limit with Bayesian optimization or Luby search

instead of linear search.
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