
ON FLEXIBLE TUBES CONVEYING A MOVING FLUID:

VARIATIONAL DYNAMICS AND SPECTRAL ANALYSIS

by

Mitchell Harrison Canham

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Applied Mathematics

Department of Mathematical and Statistical Sciences

University of Alberta

�Mitchell Harrison Canham, 2017



Abstract

This study focuses on the motion of a hollow flexible tube conveying a flowing fluid, also

known as the garden-hose instability. This system becomes unstable when the fluid moving

through the pipe exceeds a critical flow rate. This non-linear dynamical system involves

complex fluid-structure interactions. As the fluid travels down the pipe it can cause defor-

mations to the pipe structure, which consequently changes the flow dynamics. Research into

this system began with the work of Ashley and Haviland (1950), who were attempting to

explain vibrations which show up in pipelines. It has since garnered considerable interest

in scientific literature as it has numerous practical applications. It can be used to model

biomechanical systems such as blood flow through arteries or airflow through alveoli in the

lungs. It also has applications to aerospace designs as early stage rocket engines require

rapid transfer of enormous quantities of fuel through relatively thin and lightweight pipes.

My research involves creating a simple model of a hollow tube conveying a fluid and

investigating the ordinary differential equations that get produced. This model uses a geo-

metrically exact theory that takes into consideration a tube that has a variable cross section

in space and time. This theory is derived in a Lagrangian variational framework.

I will also present a physical experiment I created of a flexible tube conveying water. Data

is collected from the experiment using a stereoscopic camera set up and a centerline detection

algorithm. I suggest a means to analyze this type of data using a Koopman operator, which

has never been previously used to investigate the dynamics of the garden hose instability.
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Preface

This thesis is an original work by Mitchell Canham. An image used in this thesis was

presented at the Gallery of Fluid Motion during the 67th Annual Meeting of the APS Division

of Fluid Dynamics in San Francisco, California.
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1 Introduction

When a fluid passes through a tube or pipe at a high enough flux it causes instability. This

instability can be directly observed. If the tube is flexible enough, one can observe an erratic,

almost chaotic looking motion of the tube, or if the tube is more stiff like a steel pipe, small

vibrations can be observed. This instability is commonly referred to as the Garden Hose

Instability. This system involves complex fluid-structure interactions. When the fluid flows

through the tube, the walls of the tube get deformed, which consequently affects how the

fluid is flowing through pipe, which in turn deforms the wall again in a different manner.

Work in this field began when vibration problems arose in the transportation of oil through

pipelines. This has obvious environmental considerations as vibrations can cause the pipeline

to burst or leak. Ashley and Haviland [1] first investigated this system in 1950 using a simple

supported horizontal beam to look at the vibrations. This system has many other real world

extensions. Models of blood flowing through arteries could rely on this theory, or air flowing

through the structures of the lungs. It also has important applications to rocket engine

design, as launch vehicles for space ships require huge quantities of fuel passing at high

speed through thin walled pipes to get to the rocket engines. Vibrations in these pipes could

lead to catastrophic failure of the rocket so these applications provided some motivation for

developing the theory.

There has been extensive research done in this field. In 1961 Benjamin [2, 3] utilized a

variational method to describe the dynamics of a chain of articulated pipes in what was one

of the most important contributions to the study of this system. Paidoussis [13–16] has also

done extensive work into this system of axial flow through slender structures.

This thesis is broken down into 2 main parts. The first part of this thesis lies in Section 3

and is an original contribution. It consists of the derivation and analysis of a simple discrete

model of a stretching tube using a variational framework. In this part, we utilize the contin-

uous variational theory developed in [5, 6]. These articles lay out the Lagrangian structure

and utilize a geometrically exact approach that can deal with a dynamically changing cross-

sectional area which changes in both space and time. One of the main issues with previous

approaches was how to describe the change in cross-sectional area of a collapsable tube.
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Previous works have considered a quasi-static approximation of the change in cross-sectional

area by uA = constant, where u is the flow rate of the fluid and A is the cross-sectional

area of the tube [8,12,15,18]. In general, this approximation does not correctly describe the

dynamics.

Gay-Balmaz and Putkaradze [7] derive the discrete conservation laws from the geomet-

rically exact theory using variational integration. The discrete conservation laws form a

closed system and are discrete analogs of the continuous conservation laws. This discretiza-

tion allows for consistent approximations of numerical solutions. It is with these discrete

conservation laws that we base the model. After obtaining the equations of motion from the

model, we linearize the system and study the linear stability.

The second part of this thesis is in Section 5 with the experiment I created and analysed

using a novel method that has never before been used to investigate tube dynamics. This

section is also an original contribution. The experiment consists of a vertically suspended

flexible tube connected to a water source where the flow rate of water can be controlled

and measured. The collection of data involves using stereoscopic imaging and a simple

object recognition algorithm to obtain the 3D shape of the tube. After that, I will explain

the Koopman operator, an infinite dimensional linear operator which allows one to perform

spectral analysis on a non-linear dynamical system without linearization. Although the

operator is linear it still captures the full non-linear dynamics of the system. A thorough

review of the Koopman operator is available in [4]. This framework allows one to analyse

dynamical systems that are otherwise poorly described using observable data. Previous

work [9–11, 17] has been done utilizing the Koopman operator to analyse flow dynamics by

breaking down the flow structures into modes. These modes automatically identify coherent

structures in flows. This method requires no knowledge of the Koopman operator, as the

modes of decomposition can be calculated using snapshots in time of empirical data from

observable quantities in the system. In some of the previous works, the observable quantity

has been flow fields obtained through particle image velocimetry (PIV). I present a method

that instead uses the position vectors of the tube, obtained via a stereoscopic camera, as

the empirical snapshots. This has never been done before to analyse the dynamics of a

fluid-conveying flexible tube.
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1.1 Variational Integrators

Variational integration is a numerical method that can be used to approximate the solutions

to ordinary differential equations (ODE). Variational integrators are geometric integrators

of a discretized Lagrangian. Numerical integration refers to using numerical methods to find

approximations to the solutions of differential equations. Mathematical models that model

how physical systems change in time are called dynamical systems and they are typically

a system of differential equations. Variational integrators are useful in that they conserve

momentum and are symplectic. Symplectic integrators preserve energy in the system as

they conserve a Hamiltonian. This is useful for long term behaviour as one does not want

large changes in energy which can cause the approximation to diverge from the actual so-

lution. Geometric integrators use the geometric structure of the dynamical system to find

a numerical solution. If we look at the dynamics of the system in a variational way using

a Lagrangian or Hamiltonian, then we can use a variatonal integrator which discretizes the

variational representation of the system. This can provide a solution for many mechanical

systems. This information is best described using examples. However, we will first look at

variational Lagrangian dynamics in the continuous case before we consider examples of the

discrete case for variational integration.

To create a simple variational integrator, we first construct the Lagrangian to describe

the mechanical system, typically the kinetic energy subtracted by the potential energy. Take

for example this simple mechanical system:

L (q, q̇) = K (q̇)− U (q) =
1

2
mq̇2 − U (q) (1.1)

Where K and U are functions for the kinetic and potential energy resepectively, m is the

mass and q is a coordinate of the system, for example the spatial position. Next we must

consider the action of the system. In mechanics the action of a physical system is a functional

from which the equations of motion can be derived. In this case the action takes the form

of a time integral of the Lagrangian over the path q (t):

S (q) =

∫ T

0

L(q (t) , q̇ (t) , t) dt (1.2)

Hamilton’s principle states that the true path of the system is a stationary point of the

action functional. In other words, the action integral of the true evolution of the system

3



remains unchanged to first order perturbations of the coordinates.

δS = 0 (1.3)

Using this principle we can create the famous Euler-Lagrange equations which can be used

to find the equations of motion of a dynamical system. We first must calculate the variations

of the action functional δS for variations δq of q (t). Let q (t) be the true evolution of the

system, we define a function p (t, ε) that parameterizes variations from the true path. If we

say δq (t) is defined for all t and δq (0) = δq (T ) = 0 then:

p (t, ε) = q (t) + ε · δq (t) (1.4)

S [ε] =

∫ T

0

L (p (t, ε) , ṗ (t, ε) , t) dt (1.5)

When ε = 0 we get a stationary point of the action S [ε] by Hamilton’s principle and con-

struction of p, therefore we know that:

δS [ε]
∣∣∣
ε=0

= 0 (1.6)

Computing δS [ε]:

δS [ε]
∣∣∣
ε=0

=
∂S

∂ε

∣∣∣
ε=0

=

∫ T

0

[
∂L

∂p

∂p

∂ε
+

∂L

∂ṗ

∂ṗ

∂ε

]
dt
∣∣∣
ε=0

(1.7)

∂p

∂ε
= δq (t) ,

∂ṗ

∂ε
= δq̇ (t) (1.8)

Since ∂L
∂p

∣∣∣
ε=0

= ∂L
∂q

we get:

δS [ε] =

∫ T

0

[
δq

∂L

∂q
+ δq̇

∂L

∂q̇

]
dt (1.9)

Now we perform integration by parts on the term δq̇ ∂L
∂q̇

to arrive at:

δS [ε] =

∫ T

0

δq
∂L

∂q
dt+ δq

∂L

∂q̇

∣∣∣T
0
−

∫ T

0

δq
d

dt

(
∂L

∂q̇

)
(1.10)

Since δq (0) = δq (T ) = 0, the middle term vanishes and we are left with:

δS [ε] =

∫ T

0

δq ·
(
∂L

∂q
− d

dt

∂L

∂q̇

)
dt (1.11)
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δS [ε]
∣∣∣
ε=0

= 0 must hold true for any choice of the arbitrary δq. This is the case if and only

if:
∂L

∂q
− d

dt

∂L

∂q̇
= 0 (1.12)

The above equation is known as the Euler-Lagrange equation and it provides the continuous

equations of motion for the variable q.

We now turn our attention away from continuous variational dynamics to discrete vari-

ational integration. We first must form the discrete Lagrangian. The discrete Lagrangian is

a simple numerical approximation of the action of the system over a short time step. Since

the action in the continuous case is a definite integral, it is typical to use quadrature to get

a discrete Lagrangian. Different numerical methods can be used to discretize certain parts

of the Lagrangian, such as the trapezoid method or the Euler method with finite difference

approximations. Here we use the trapezoidal method to approximate the action integral:∫ ti+1

ti

L(q (t) , q̇ (t) , t) dt ≈ hi

2
(L [ti, qi, q̇i] + L [ti+1, qi+1, ˙qi+1]) (1.13)

Where hi is the time-step between ti and ti+1. We can then use the finite difference approx-

imation:

q̇i ≈ qi+1 − qi
hi

(1.14)

Assuming that (1.14) is the constant velocity between ti and ti+1 we arrive at our discrete

Lagrangian:

L̂ =
hi

2

(
L

[
ti, qi,

qi+1 − qi
hi

]
+ L

[
ti+1, qi+1,

qi+2 − qi+1

hi+1

])
(1.15)

The choice of numerical method used for discretization will result in a different variational

integrator. The accuracy of the variational integrator will depend on the accuracy of the

numerical scheme used to approximate the action. To find the equations of motion over a

long time interval, the discrete Langrangians are summed over many short time steps. This

is called the discrete action. We will now see how a variational integrator preserves the

energy of a system compared to an implicit Euler method. We will look a the simple system

of a particle in a potential with the Lagrangian:

L (x) =
1

2
mẋ2 − 1

2
kx2 (1.16)
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This is the well known mass-spring model or harmonic oscillator with linear restoring force

and no damping force. Applying the Euler-Lagrange equation we get:

mẍ = −kx (1.17)

Converting the second-order ordinary differential equation (ODE) into a system of first-order

ODEs:

ẋ = v (1.18)

v̇ = −kx

m
(1.19)

Using a forward Euler method we get:

xi+1 = xi + hvi

vi+1 = vi − hkxi

m

(1.20)

Hamilton’s principle states that the correct path of a dynamical system is one where the

path is a stationary point. In other words small first-order variations to the coordinates

leave the action unchanged, where the variation is 0 at the endpoints. This holds true in the

discrete case as well.

Now, let us construct a variational integrator and compare it to (1.20). The first step to

create the variational integrator is to construct the discrete Lagrangian.

Ld (xi) =
m

2

(
xi+1 − xi

h

)2

− k

2
x2
i (1.21)

Next, we use the discrete Euler Lagrange equations to get the equation of motion:

m

h2
(xi+1 − 2xi + xi−1) + kxi = 0 (1.22)

xi+1 =

(
2− kh2

m

)
xi − xi−1 (1.23)

Now we will compare the trajectories of these two systems in Figure 1.1. For these simula-

tions, m = 1, k = 1, and h = 0.5. They were run over 1000 timesteps with initial conditions

(x0, v0) = (0, 1). One can see how the variational integrator oscillates as expected with con-

stant amplitude, while the Euler method begins to explode as it oscillates with increasing

6



Figure 1.1 Numerically computed trajectory of a harmonic oscillator with linear restoring

force and no damping force, comparing a variational integrator to an Euler method.
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x

(a) Trajectory of a variational integrator.

0 25 50 75
−120

−60

0

60

120
Euler Method

Time (s)

x
(b) Trajectory of an Euler method.

amplitude over a relatively short time interval. This is further illustrated in Figure 1.2. The

total energy of this system should be conserved. Although the energy is not conserved for

the variational integrator, it oscillates with small unchanging amplitude. Over long enough

time intervals the average energy of the system is constant. The Euler method on the other

hand quickly gains energy and explodes, which is not a desirable result.

1.1.1 Variational integration with holonomic constraints

Holonomic constraints provide a relation between the coordinates of a mechanical system and

take the form: F (q) = 0. Let’s consider the 2-dimensional case of a particle in a potential

U (x, y) where q = {x, y}. If we let F (q) = x2 + y2 − 1, then the system is constrained to a

circle like a pendulum. The continuous Lagrangian of this system becomes:

L =
m

2

(
ẋ2 + ẏ2

)− U (x, y)− λ
(
x2 + y2 − 1

)
(1.24)

where λ is a Lagrange multiplier. Applying the Euler-Lagrange equations to this Lagrangian

we get:

mẍ+
∂U

∂x
= −2λx

mÿ +
∂U

∂y
= −2λy
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Figure 1.2 Total energy of a numerically computed harmonic oscillator with linear restoring

force and no damping, comparing a variational integrator to an Euler method.
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(b) Total energy of an Euler method.

If we let U = k
2
(x2 + y2) then the equations of motion become:

mẍ+ kx = −2λx (1.25)

mÿ + ky = −2λy (1.26)

If we multiply (1.25) by x and (1.26) by y we get:

mxẍ+ kx2 = −2λx2 (1.27)

myÿ + ky2 = −2λy2 (1.28)

Combining these equations and the fact that x2 + y2 = 1 from the constraint:

m (xẍ+ yÿ) + k = −2λ (1.29)

We want to try to remove second derivatives, so we take the 2nd time derivative of the

constraint x2 + y2 = 1:

2xẋ+ 2yẏ = 0 (1.30)

2ẋ2 + 2xẍ+ 2ẏ2 + 2yÿ = 0 (1.31)

xẍ+ yÿ = − (
ẋ2 + ẏ2

)
(1.32)
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If we take (1.32) into (1.29) and solve for λ we get:

λ =
1

2

(
m

(
ẋ2 + ẏ2

)− k
)

(1.33)

We also get a conservation law if we instead multiply (1.25) by ẋ, (1.26) by ẏ and combine

the equations:

m (ẋẍ+ ẏÿ) = − (xẋ+ yẏ) (k + 2λ) (1.34)

The left-hand side of this equation is the time derivative of the kinetic energy T , and the

right hand side of this equation becomes 0 using (1.30), therefore:

dT

dt
= m (ẋẍ+ ẏÿ) = 0 (1.35)

Therefore kinetic energy is conserved in this system.

Next we will compare different numerical schemes to variational integration. First we

convert (1.27) and (1.28) to a first order system of differential equations by letting:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

x

y

ẋ

ẏ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Y1

Y2

Y3

Y4

⎞
⎟⎟⎟⎟⎟⎟⎠

(1.36)

Differentiating and using (1.27) and (1.28):

dY

dt
=

⎛
⎜⎜⎜⎜⎜⎜⎝

Y3

Y4

− 1
m
(2λ+ k)Y1

− 1
m
(2λ+ k)Y2

⎞
⎟⎟⎟⎟⎟⎟⎠

= F (Y ) (1.37)

Where:

λ =
1

2

(
m

(
Y 2
3 + Y 2

4

)− k
)

(1.38)

Simplification of (1.37) leads to:

F (Y ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Y3

Y4

−Y1 (Y
2
3 + Y 2

4 )

−Y2 (Y
2
3 + Y 2

4 )

⎞
⎟⎟⎟⎟⎟⎟⎠

(1.39)
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An explicit Euler method to solve this system numerically is as follows:

Y n+1 = Y n + h · F (Y n) (1.40)

We will also look at a 4th-order Runge-Kutta method:

Y n+1 = Y n +
h

6
(k1 + 2k2 + 2k3 + k4) (1.41)

Where:

k1 = F (Y n) (1.42)

k2 = F

(
Y n +

h

2
k1

)
(1.43)

k3 = F

(
Y n +

h

2
k2

)
(1.44)

k4 = F (Y n + hk3) (1.45)

We will compare these 2 well known numerical schemes to a variational integrator. The

first step is to set up the discrete Lagrangian from the continuous one in (1.24), letting

qi = (xi, yi) and using a general potential energy U (xi, yi):

Ld

(
qi,

qi+1 − qi

h

)

=
m

2

[(
xi+1 − xi

h

)2

+

(
yi+1 − yi

h

)2
]
− U (xi, yi)− λi

(
x2
i + y2i − 1

) (1.46)

with holonomic constraint:

F (qi) = x2
i + y2i − 1 = 0 (1.47)

A forward difference method was used to approximate the time derivative. Next we use the

discrete Euler-Lagrange equations and a central difference approximation for the 2nd-order

time derivative to get the equations of motion:

m

h2
(xi+1 − 2xi + xi−1) +

∂U

∂xi

+ 2λixi = 0 (1.48)

m

h2
(yi+1 − 2yi + yi−1) +

∂U

∂yi
+ 2λiyi = 0 (1.49)

Multiplying (1.48) by xi, (1.49) by yi, and adding together we get:

m

h2
[(xi+1 − 2xi + xi−1) xi + (yi+1 − 2yi + yi−1) yi] = −∂U

∂xi

xi − ∂U

∂yi
yi − 2λi

(
x2
i + y2i

)
(1.50)
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Simplifying using (1.47):

2λ = −m

h2
(xi+1xi + xi−1xi + yi+1yi + yi−1yi − 2)− ∂U

∂xi

xi − ∂U

∂yi
yi (1.51)

Substituting (1.51) into (1.48) and (1.49) we get:

m

h2
(xi+1 − 2xi + xi−1) +

∂U

∂xi

− m

h2
xi (xi+1xi + xi−1xi + yi+1yi + yi−1yi − 2)

− ∂U

∂xi

x2
i −

∂U

∂yi
xiyi = 0

(1.52)

m

h2
(yi+1 − 2yi + yi−1) +

∂U

∂yi
− m

h2
yi (xi+1xi + xi−1xi + yi+1yi + yi−1yi − 2)

− ∂U

∂yi
y2i −

∂U

∂xi

xiyi = 0

(1.53)

Simplifying:

m

h2

(
xi+1

(
1− x2

i

)− yi+1 (xiyi) + xi−1

(
1− x2

i

)− yi−1xiyi
)
+

∂U

∂xi

(
1− x2

i

)− ∂U

∂yi
xiyi =0

(1.54)

m

h2

(
yi+1

(
1− y2i

)− xi+1 (xiyi) + yi−1

(
1− y2i

)− xi−1xiyi
)
+

∂U

∂yi

(
1− y2i

)− ∂U

∂xi

xiyi =0

(1.55)

Using the constraint, y2i = 1− x2
i and x2

i = 1− y2i :

m

h2

(
xi+1y

2
i − yi+1 (xiyi) + xi−1y

2
i − yi−1xiyi

)
+

∂U

∂xi

y2i −
∂U

∂yi
xiyi =0 (1.56)

m

h2

(
yi+1x

2
i − xi+1 (xiyi) + yi−1x

2
i − xi−1xiyi

)
+

∂U

∂yi
x2
i −

∂U

∂xi

xiyi =0 (1.57)

Solving for xi+1 and yi+1:

xi+1 =
yi+1xi

yi
− xi−1 +

yi−1xi

yi
+

h2

m

(
∂U

∂yi

xi

yi
− ∂U

∂xi

)
(1.58)

yi+1 =
xi+1yi
xi

− yi−1 +
xi−1yi
xi

+
h2

m

(
∂U

∂xi

yi
xi

− ∂U

∂yi

)
(1.59)

Now, either (1.58) or (1.59) can be substituted into x2
i+1 + y2i+1 = 1 to get a quadratic

equation for yi+1 or xi+1 respectively:

x2
i+1 +

(
xi+1yi
xi

− yi−1 +
xi−1yi
xi

+
h2

m

(
∂U

∂xi

yi
xi

− ∂U

∂yi

))2

− 1 = 0 (1.60)

y2i+1 +

(
yi+1xi

yi
− xi−1 +

yi−1xi

yi
+

h2

m

(
∂U

∂yi

xi

yi
− ∂U

∂xi

))2

− 1 = 0 (1.61)
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An interesting characteristic of this scheme is that we get degeneracy, i.e. disappearance of

the step-size h, when we have a central potential U(ri) at the origin, where ri =
√

x2
i + y2i .

For example, looking at the last term of (1.58) with a central potential U (ri) we get:

∂U (ri)

∂yi

xi

yi
− ∂U (ri)

∂xi

=
∂U (ri)

∂ri

∂ri
∂y

xi

yi
− ∂U (ri)

∂ri

∂ri
∂xi

=
∂U

∂ri

yi√
x2
i + y2i

xi

yi
− ∂U

∂ri

xi√
x2
i + y2i

= 0

(1.62)

A similar argument follows for the last term in (1.59). To investigate this further, we can

look at the exact solution for the central potential. If we write the Lagrangian in polar

coordinates we get:

L =
m

2
θ̇2 − kr2

2
− λ

(
r2 − 1

)
(1.63)

Applying the Euler-Lagrange equation in terms of θ:

mθ̈ = 0 (1.64)

Solving this differential equation:

θ (t) = c1t+ c2 (1.65)

Since we know that r = 1, we can see that the particle will move with constant velocity in

a circle, with the velocity depending on the initial conditions. This will be useful later.

A much simpler scheme involves converting this variational system to polar coordinates.

First, rewriting (1.56):

xi+1y
2
i − yi+1xiyi + xi−1y

2
i − yi−1xiyi +

h2

m

(
∂U

∂xi

y2i −
∂U

∂yi
xiyi

)
= 0 (1.66)

If we define xi = ri cos (θi) and yi = ri sin (θi) and substitute that into the constraint we get

r2i cos
2 (θi) + r2i sin

2 (θi) = 1. Using the Pythagorean trigonometric identity we will define

ri = 1. Converting (1.66) into polar coordinates we get:

cos (θi+1) sin
2 (θi)− sin (θi+1) cos (θi) sin (θi) + cos (θi−1) sin

2 (θi)

− sin (θi−1) cos (θi) sin (θi) +
h2

m

(
−∂U

∂θi
sin3 (θi)− ∂U

∂θi
cos2 (θi) sin (θi)

)
= 0

(1.67)
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Where we used:

∂U

∂x
= cos (θ)

∂U

∂r
− 1

r
sin (θ)

∂U

∂θ
, r = 1

∂U

∂y
= sin (θ)

∂U

∂r
+

1

r
cos (θ)

∂U

∂θ
, r = 1

with r=1. We can see that sin (θi) is common to all terms so we can pull it out of the

equation and rearrange to get:

cos (θi+1) sin (θi)− cos (θi) sin (θi+1)+

+ cos (θi−1) sin (θi)− cos (θi) sin (θi−1)− h2

m

∂U

∂θi
= 0

(1.68)

Using the angle-difference trigonometric identity this simplifies to:

− sin (θi+1 − θi) + sin (θi − θi−1)− h2

m

∂U

∂θi
= 0 (1.69)

sin (θi+1 − θi) = sin (θi − θi−1)− h2

m

∂U

∂θi
(1.70)

θi+1 = θi + arcsin

(
sin (θi − θi−1)− h2

m

∂U

∂θi

)
(1.71)

We now have an explicit solution for θi+1. Let U be a center potential defined as U (xi, yi) =

k
2
((xi − L))2 + y2i ) where the center is at point (x, y) = (L, 0). In polar coordinates this

becomes U (ri, θi) = k
2
(r2i + L2 − 2Lri cos (θi)). Since ri = 1 for all i we get U (θi) =

k
2
(1 + L2 − 2L cos (θi)). Using this potential in (1.71) we get:

θi+1 = θi + arcsin

(
sin (θi − θi−1)− h2kL

m
sin (θi)

)
(1.72)

For the case of the potential centered at the origin, i.e. L = 0, (1.72) becomes:

θi+1 = 2θi − θi−1 (1.73)

As stated earlier, we can see that the step size h disappears from the equation. However,

this is acceptable since the exact solution, (1.65), shows that for the central potential the

particle moves with constant velocity. This is exactly the case in (1.73) as well. Therefore,

this variational scheme will perfectly conserve energy for the origin-centered potential. Let’s

look at the exact solution for the off-origin center potential to see how (1.72) should behave.
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We will use the Lagrangian in (1.63) except now the potential is defined as U (r, θ) =

k
2
(r2 + L2 − 2Lr cos (θ)). Applying the Euler-Lagrange equation for coordinate θ we get

the equation of motion:

mθ̈ +
∂U

∂θ
= 0 (1.74)

mθ̈ + kL sin (θ) = 0 (1.75)

This is exactly the same as the equation of motion for a simple pendulum, so we should

expect a periodic solution. This variational scheme is first order accurate in h since the

approximation of the velocity is first order accurate. We used a finite difference method for

the velocity which can be derived using a Taylor series expansion.

f (x+ h) = f (x) + hf ′ (x) +
h2f ′′ (x)

2!
+ · · · (1.76)

f (x+ h)

h
=

f (x)

h
+ f ′ (x) +

hf ′′ (x)
2!

(1.77)

f ′ (x) =
f (x+ h)− f (x)

h
− hf ′′ (x)

2!
(1.78)

f ′ (x) =
f (x+ h)− f (x)

h
+O (h) (1.79)

We can now see that the local truncation error is directly proportional to step size h. Com-

paring this to the other 2 numerical methods we investigated, the local truncation error for

the forward Euler method is O (h2) and the Runge-Kutta method is O (h5).

Now we will compare the trajectories of these 3 schemes for the origin-centered potential,

L = 0, with m = 1 and k = 1. As seen in Figure 1.3, the Euler method trajectory quickly

explodes away from the unit circle, here we used stepsize h = 0.1. This graph shows the

trajectory after 58 time steps.

For the Runge-Kutta method and our variational integrator in Figure 1.4, a stepsize of

h = 0.5 was used. These trajectories are taken after 20000 timesteps. The Runge-Kutta

method deviates from the constraint of the the unit circle, while the variational integrator

stays close to the circle. This level of precision can be achieved with the RK4 method but

at the cost of a decreased stepsize which means an increased number of computations if we
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Figure 1.3 Numerically computed trajectory using an Euler method of a particle in an origin

centered potential constrained to the unit circle with the starting position at (x0, y0) = (1, 0).

−1 0 1 2 3

−1

0

1

Explicit Euler Method

x

y

Trajectory
Unit Circle

want the simulation to cover the same time interval. Comparing the energy of the two

methods in Figure 1.5 we can see how the variational integrator conserves energy over long

time intervals. This is due to the symplectic nature of variational integrators. The energy

in the RK4 method on the other hand begins to oscillate with increasing amplitude as time

increases. It also drifts and doesn’t oscillate around a fixed center.

Now, let us look at the case with the off-center potential. For this case we set L = 1.

Figure 1.6 shows the results. We can see that the trajectory is oscillating in the positive x

hemisphere. This is an expected result as the exact solution to this problem showed that it

should behave like a pendulum. Turning our attention to the total energy in Figure 1.6b we

can see the symplectic nature of this integrator. Although the total energy oscillates, it does

not drift or increase in amplitude like the Runge-Kutta method did. The rolling average was

taken with a window size of 100 timesteps. One can see how the rolling average is constant

and does not drift.

Conclusion

In conclusion, we have shown that variational integrators are effective for long-term

simulations, including systems with holonomic constraints. This is because the total energy

and momentum of the system is conserved over long time periods due to the symplectic

nature of variational integrators. Variational integrators were compared to other well-known
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numerical methods such as the Euler method and the 4th order Runge-Kutta method. These

schemes were shown to not conserve energy over long time spans.
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Figure 1.4 Numerically computed trajectory of a particle in an origin centered potential

constrained to the unit circle. Comparing the numerical schemes of a fourth-order Runge-

Kutta method and a variational integrator.
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(a) Trajectory of RK4 method.
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(b) Trajectory of variational integrator.

Figure 1.5 Total energy of a numerically computed particle in an origin centered potential

constrained to the unit circle, comparing an RK4 method to a variational integrator.
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(b) Total energy of variational integrator.
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Figure 1.6 Numerically computed trajectory and total energy of a particle constrained to

a unit circle in a center potential with center (x, y) = (1, 0).
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(a) Trajectory of variational integrator.
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(b) Total energy and its rolling average of the

variational integrator.
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2 Variational Derivation of Garden Hose Model

In this section, we will review the variational integrator formulation of a garden hose model

for discrete space and continuous time outlined in [7].

2.1 Fluid-conveying Tube with Dynamic Cross-sectional Area

First, we follow [5,6] which provides the basis to the variational derivation in the continuous

case and takes into consideration the change in the cross-sectional area of the tube as it

deforms. The dynamics of the tube are described using the geometric exact rod theory

in [19]. The position of the tube of length L in 3-dimensional space is defined by 2 properties.

First, the position of the geometric center or center of mass of the tube using the map

(s, t) �→ r (s, t), where s ∈ [0, L] and t is time. Second, the orientation of the cross sections

of the tube at the points r (s, t) are defined by the moving orthonormal basis ei (s, t) =

Λ (s, t)Ei, i = 1, 2, 3, where Λ (s, t) ∈ SO (3) and Ei is the fixed frame of reference. SO (3)

is also known as the special orthogonal matrix group or 3D rotation group, and is the set of

square matrices with orthonormal columns and determinant 1.

Let the fluid passing through the tube be inviscid and incompressible. We define the

position of the fluid particles, using the Lagrangian description of the fluid, by the one-

dimensional mapping:

s = φ (a, t) (2.1)

a is the initial position, or original label, of the fluid particle and s is the position of the

fluid particle located at r (s, t) at time t. We define the inverse of this mapping as the

back-to-label map:

ψ (s, t) := φ−1 (s, t) = a (2.2)

Therefore, using the Eulerian description of fluid flow, the fluid moves with velocity relative

to the tube:

u (s, t) = φt ◦ φ−1 = ∂tφ (ψ (s, t) , t) , s ∈ [0, L] (2.3)

The centreline of the tube has velocity vr = ∂tr and the fluid has velocity vf = ∂tr+ u∂sr.

Therefore, the physical variables defining the motion of the tube in the tube’s frame are the

19



local angular velocity, ω, and the local linear velocity γ:

ω = Λ−1∂tΛ (2.4)

γ = Λ−1∂tr (2.5)

We also get the angular deformation or strain, Ω, and linear deformation, Γ:

Ω = Λ−1∂sΛ (2.6)

Γ = Λ−1∂sr (2.7)

We now consider the changing cross sectional area of the tube. Let A (s) = A (Ω (s) ,Γ (s))

define the cross sectional area of the tube at point r (s). As the tube bends or twists and

changes area, the local frame rotates hence the dependence on Ω. Also, when the tube

stretches and compresses the cross sectional area decreases and increases respectively, so the

dependence on Γ is justified.

The amount of fluid entering the tube must equal the amount leaving the system for con-

tinuity. We constrain the system so that the fluid completely fills the space inside the

tube. In order to formulate this constraint, we first must define the initial cross-sectional

area Q0 (a) := A0 (a) |Γ (a)| where |Γ| takes into account that s does not necessarily define

the arclength of the tube. If we assume the fluid is incompressible, we get the quantity

(Q0 ◦ φ−1) ∂sφ
−1 which we call the mass density. Therefore, we get the constraint:

Q0 (ψ (s, t)) ∂sψ (s, t) = A (Ω,Γ) |Γ| := Q (Ω,Γ) (2.8)

Differentiating the above with respect to time leads to the continuity equation or fluid volume

conservation law:

∂tQ+ ∂s (Qu) = 0 (2.9)

The Lagrangian used is derived in [6] and is as follows:

	 =
1

2

∫ (
α |Γ|2 + 〈Iω,ω〉+ ρA (Ω,Γ) |γ + Γu|2 − 〈JΩ,Ω〉 − λ |Γ− χ|2) |Γ| ds (2.10)

where α is the linear density of the tube, I is the local moment of inertia, ρ is the fluid

density, J is the linear elasticity tensor, λ is the coefficient of stretch and let χ = E3 where

20



χ is a fixed vector that points along the axis of the tube. The first 2 terms in the equation

correspond to the kinetic energy of the tube, the third term corresponds to the kinetic energy

of the fluid, and the last 2 terms come from the elastic potential energy of the tube.

The equations of motion are derived using a critical action principle where the constraint

in (2.8) is enforced using Lagrange multiplier μ:

δ

∫∫
[	 (ω,γ,Ω,Γ, u)− μ (Q (Ω,Γ)−Q0 (ψ) ∂sψ)] dtds = 0 (2.11)

The variations can be computed as:

δω = ∂tΣ+ ω ×Σ (2.12)

δΩ = ∂sΣ+Ω×Σ (2.13)

δγ = ∂tΨ+ γ ×Σ+ ω ×Ψ (2.14)

δΓ = ∂sΨ+ Γ×Σ+Ω×Ψ (2.15)

δu = ∂tη + u∂sη − η∂su (2.16)

Where:

Σ = Λ−1δΛ, Ψ = Λ−1δr, η = δφ ◦ φ−1 (2.17)

The variation of the first term of the critical action principle in (2.11) is defined as:∫∫ [〈
δ	

δω
, δω

〉
+

〈
δ	

δγ
, δγ

〉
+

〈
δ	

δΩ
, δΩ

〉
+

〈
δ	

δΓ
, δΓ

〉
+

〈
δ	

δu
, δu

〉]
dtds = 0 (2.18)

Using integration by parts we get the variations in ω and Ω:〈
δ	

δω
, δω

〉
=

〈
δ	

δω
, ∂tΣ+ ω ×Σ

〉

=

〈
∂t

δ	

δω
+ ω × δ	

δω
,Σ

〉 (2.19)

〈
δ	

δΩ
, δΩ

〉
=

〈
δ	

δΩ
, ∂sΣ+Ω×Σ

〉

=

〈
∂s

δ	

δΩ
+Ω× δ	

δΩ
,Σ

〉 (2.20)

The variations in γ and Γ are:〈
δ	

δγ
, δγ

〉
=

〈
δ	

δγ
, ∂tΨ+ γ ×Σ+ ω ×Ψ

〉

=

〈
γ × δ	

δγ
,Σ

〉
+

〈
∂t

δ	

δγ
+ ω × δ	

δγ
,Ψ

〉 (2.21)
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〈
δ	

δΓ
, δΓ

〉
=

〈
δ	

δΓ
, ∂sΨ+ Γ×Σ+Ω×Ψ

〉

=

〈
Γ× δ	

δΓ
,Σ

〉
+

〈
∂s

δ	

δΓ
+Ω× δ	

δΓ
,Ψ

〉 (2.22)

The variation in u is: 〈
δ	

δu
, δu

〉
=

〈
δ	

δu
, ∂tη + u∂sη − η∂su

〉

=

〈
∂t
δ	

δu
+ u∂s

δ	

δu
+

δ	

δu
∂su, η

〉 (2.23)

We now have variations of the first term, variations of the second term can be written as:

δ

∫∫
μ (Q (Ω,Γ)−Q0 (ψ) ∂sψ) dtds

=

∫∫ [
δμ (Q (Ω,Γ)−Q0 (ψ) ∂sψ) + μ

∂Q

∂Ω
· δΩ+ μ

∂Q

∂Γ
· δΓ+

+ μ∂s (Q0 (ψ) ∂sψ) (δφ (ψ))

]
dtds

=

∫∫ [
δμ (Q (Ω,Γ)−Q0 (ψ) ∂sψ)−

(
(∂s +Ω×)μ

∂Q

∂Ω
+ Γ× μ

∂Q

∂Γ

)
·Σ

− (∂s +Ω×)μ
∂Q

∂Γ
·Ψ−Q∂sμη

]
dtds

(2.24)

We have now computed all the variations. If we collect terms proportional to Σ, Ψ, and η,

we get the conservation law for angular momentum, linear momentum, and fluid momentum

respectively:

(∂t + ω×)
δ	

δω
+ γ × δ	

δγ
+ (∂s +Ω×)

(
δ	

δΩ
− μ

∂Q

∂Ω

)
+ Γ×

(
δ	

δΓ
− μ

∂Q

∂Γ

)
= 0 (2.25)

(∂t + ω×)
δ	

δγ
+ (∂s +Ω×)

(
δ	

δΓ
− μ

∂Q

∂Γ

)
= 0 (2.26)

∂tm+ ∂s (mu− μ) = 0, m =
1

Q

∂	

∂u
(2.27)

2.2 Spatial Discretization

We can now discretize the previous variational system in space but leave time continuous.

Here we review the framework laid out in [7]. Let the distance between space steps be
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constant si+1 − si = h. We discretize the angular strain, Ω, and linear strain, Γ, by:

λi = Λ−1
i Λi+1 (2.28)

κi = Λ−1
i (ri+1 − ri) (2.29)

The local linear and angular velocities are discretized as:

ωi = Λ−1
i Λ̇i (2.30)

γi = Λ−1
i ṙi (2.31)

Next, we must formulate a discretization for the fluid velocity ui = u (si, t) by discretizing

the back-to-labels map ψ (s, t) := φ−1 (s, t) = a. Now, I discretize ψi := ψ (si, t) using linear

interpolation between si and si+1.

ψ (s, t) = ψi +
s− si

si+1 − si
(ψi+1 − ψi) = a, si < s < si+1 (2.32)

Inverting the above equation leads to the Lagrangian mapping:

φ (a, t) = si +
a− ψi

ψi+1 − ψi

(si+1 − si) = s, ai < a < ai+1 (2.33)

This inversion works if a stays between ψi and ψi+1, which holds true if the step size is

sufficiently small enough. The linear interpolation is simple to invert, however, higher order

interpolation is also possible. Next, we compute the Eulerian fluid velocity in (2.3):

u (s, t) = φt ◦ ψ = ∂tφ (ψ (s, t) , t) = −
(s− si)

(
ψ̇i+1 − ψ̇i

)
+ (si+1 − si) ψ̇i

ψi+1 − ψi

(2.34)

Leading to the discrete relative fluid velocity:

ui = − si+1 − si
ψi+1 − ψi

ψ̇i (2.35)

We now turn our attention to discretizing the constraint in (2.8). For simplification, one

makes the assumption that the tube is straight and the cross-sectional area is constant when

the tube is at rest, in other words Q0 is constant. Substituting (2.32) into (2.8), we get the

discrete constraint:

Q0
ψi+1 − ψi

si+1 − si
= F (λi,κi) := Fi (2.36)

23



Differentiating the above equation with respect to time and using si+1 − si = h we get:

ψ̇i+1 − ψ̇i =
d

dt

h

Q0

Fi (2.37)

From (2.35) and (2.36) the following holds true:

ψ̇i = − Fi

Q0

ui (2.38)

Therefore, using (2.37) and (2.38), the discrete fluid conservation law can be written as:

d

dt
(hFi) + Fi+1ui+1 − Fiui = 0 (2.39)

In the following sections, we utilize the above discretization with linear interpolation. How-

ever, we can still formulate a more general discretization of the fluid without linear inter-

polation. One must first rewrite the relative fluid velocity in terms of the back-to-labels

map:

u (s, t) = ∂tφ ◦ ψ (s, t) = −∂tψ (s, t)

∂sψ (s, t)
(2.40)

Define the discretization of the derivative ∂sψ (si, t) using the linear operator Di acting on

the vector ψ = (ψ1, ψ2, . . . , ψn):

Diψ (t) :=
∑
j∈J

ajψi+j (t) (2.41)

Where J is a finite set of integers in some neighbourhood of j = 0. For the linear interpolation

case:

Diψ =
ψi+1 − ψi

si+1 − si
(2.42)

The fluid velocity is then discretized by:

ui = − ψ̇i

Diψ
(2.43)

and the fluid constraint becomes:

Q0Diψ = F (λi,κi) := Fi (2.44)

Differentiating the above equation with respect to time and using (2.43) we get the conser-

vation law:

Ḟi +Di

(
uF

)
= 0 (2.45)
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Now, using the above discretizations and the continuous Lagrangian in (2.10), the discrete

Lagrangian reads:

	 =
∑
i

1

2

(
α |γi|2 + 〈Iωi,ωi〉+ ρF (κi, λi)

∣∣∣γi +
κi

h
ui

∣∣∣2 − 〈Jλi, λi〉 − ξ
∣∣∣κi

h
− χ

∣∣∣2) ∣∣∣κi

h

∣∣∣
(2.46)

We now impose the critical action principle to find the equations of motions:

δ

∫ ∑
i

[
	 (γi,ωi,κi, λi, ui) + μi

(
Q0Diψ̄ − F (λi,κi)

)]
dt = 0 (2.47)

Here the Lagrange multiplier μi enforces the holonomic constraint of the fluid completely fill-

ing the interior of the tube. Computing the variations we arrive at the discrete conservation

law for linear momentum,(
d

dt
+ ωi×

)
δ	

δγi

+

(
δ	

δκi

− μi
∂F

∂κi

)
− λT

i−1

(
δ	

δκi−1

− μi−1
∂F

∂κi−1

)
= 0 (2.48)

the discrete conservation law for angular momentum,(
d

dt
+ ωi×

)
δ	

δωi

+ γi ×
δ	

δγi

+

[(
∂	

∂λi

− μi
∂F

∂λi

)
λT
i − λT

i−1

(
∂	

∂λi−1

− μi−1
∂F

∂λi−1

)]∨

+ κi ×
(

∂	

∂κi

− μi
∂F

∂κi

)
= 0 (2.49)

and the discrete conservation law for fluid momentum:

d

dt

(
1

Fi

δ	

δui

)
+

1

h

(
ui

Fi

δ	

δui

− ui−1

Fi−1

δ	

δui−1

+ μi − μi−1

)
= 0 (2.50)

Along with (2.39), these equations form the discrete analogs of the continuous conservation

laws in (2.9), (2.25), (2.26), and (2.27). The terms proportional to μi utilize the dynamically

changing cross sectional area property.

Conclusion

In conclusion, in this section we laid out the variational formulation of a fluid-conveying

tube with dynamic cross-sectional area. This was achieved in both the continuous case as

well as in the case with discrete space but continuous time. In the following section, we will

make use of the spatial discretization derived above. More specifically we will utilize the

discrete linear momentum conservation law as well as the discrete fluid volume conservation

law (2.39).
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3 Discretization of a 1-Dimensional Stretching Tube

The main result of the thesis lies in this section and it contains new material. Using the

variational method derived in the previous section, we will create a simple model of the tube

and study the ordinary differential equations it produces. For ease of calculations, let the

tube be constrained to motion in one dimension with no rotation. This is equivalent to a

tube being stretched and compressed along the length of the tube. First, we discretize the

tube using 3 points and find the equation of motion analytically. Next, we study the linear

stability of the resulting ODE. Last, we provide a discretization using N -points.

3.1 3 - Point Discretization

Let us discretize the tube into 3 points. The first point is fixed in place while the second

point stretches away from the first point. The last point has free end conditions so we let

it stay a fixed distance away from the second point. The first step is to form the discrete

Lagrangian:

	 =
∑
i

1

2

(
α |γi|2 + 〈Iωi,ωi〉+ ρF (κi, λi)

∣∣∣γi +
κi

h
ui

∣∣∣2 − 〈Jλi, λi〉 − ξ
∣∣∣κi

h
− χ

∣∣∣2) ∣∣∣κi

h

∣∣∣
(3.1)

	 =
∑
i

Li

∣∣∣κi

h

∣∣∣ (3.2)

Where:

κi = Λ−1
i (ri+1 − ri) (3.3)

λi = Λ−1
i Λi+1 (3.4)

ωi = Λ−1
i Λ̇i (3.5)

γi = Λ−1
i ṙi (3.6)

Now let us define the variables. Since this tube only moves in the E1 direction it will have

no rotation. So we define the local frame Λi as:

Λ0 = Λ1 = Λ2 = Id (3.7)
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The subscript indicates the corresponding point along the tube. Since we restricted the

system to one dimension, the vectors defined above are now scalars. The position of the

points along the tube are as follows:

r0 = 0

r1 = h+ hx

r2 = 2h+ hx

(3.8)

The rest of the variables follow from the above set-up:

κ0 = h+ hx, κ1 = h (3.9)

λ0 = λ1 = Id (3.10)

ω0 = ω1 = ω2 = 0 (3.11)

γ0 = 0, γ1 = γ2 = hẋ (3.12)

The cross sectional area of the tube is defined as:

Fi = Fa − β

2
|κi − h|2 (3.13)

where Fa is the cross sectional area of the tube with no deformation. Therefore, we get:

F0 = Fa − β

2
h2x2, F1 = Fa (3.14)

The more the tube gets stretched, the smaller the cross sectional area becomes.

3.2 Conservation Laws

We can now create the equations of motion using the conservation laws derived above. Since

the tube is restricted to motion in one dimension and it is not allowed to twist, the angular

momentum equation has a trivial solution.

3.2.1 Fluid Volume

The discrete analogue of conservation of fluid volume defined by (2.39) is given by:

d

dt
(hF0) + F1u1 − F0u0 = 0 (3.15)
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We use the previous equation to solve for u1 and u̇1 to close the system in the following

derivation.

u1 = u0
F0

F1

+
βh3xẋ

F1

(3.16)

u̇1 =
βh3 (ẋ2 + xẍ)

F1

− βh2u0xẋ

F1

(3.17)

3.2.2 Linear Momentum

The discrete equivalent of the linear momentum conservation law is given by:(
d

dt
+ ωi×

)
δ	

δγi

+

(
δ	

δκi

− μi
∂F

∂κi

)
− λT

i−1

(
δ	

δκi−1

− μi−1
∂F

∂κi−1

)
= 0 (3.18)

Since there are only 3 points in this simple system, we only have to look at the equation

with i = 1. Also, since there is no rotation or twist, (3.18) can be simplified to:

d

dt

(
δ	

δγ1

)
+

δ	

δκ1

− μ1
∂F1

∂κ1

− δ	

δκ0

+ μ0
∂F0

∂κ0

= 0 (3.19)

We begin by solving for the first term involving δ�
δγ1

:

δ	

δγi
=

[
αγi + ρF (κi, λi)

(
γi +

κi

h
ui

)] ∣∣∣κi

h

∣∣∣ (3.20)

∣∣κ1

h

∣∣ = 1, so we get:
δ	

δγ1
= (αh+ ρF1) ẋ+ ρF1u1 (3.21)

Therefore, the first term of (3.19) can be written as:

d

dt

(
δ	

δγ1

)
= (αh+ ρF1h) ẍ+ ρḞ1hẋ+ ρḞ1u1 + ρF1u̇1

= (αh+ ρF1h) ẍ+ ρF1u̇1

(3.22)

Where we used Ḟ1 = 0. Next we solve for δ�
δκi

:

δ	

δκi

= Li
κi

h2
∣∣κi

h

∣∣ + δLi

δκi

∣∣∣κi

h

∣∣∣ (3.23)

We start by finding L0 and L1. :

L0 =
1

2

[
ρF0

∣∣∣κ0u0

h

∣∣∣2 − Tr J− ξ
∣∣∣κ0

h
− χ

∣∣∣2] (3.24)

L1 =
1

2

[
α |γ1|2 + ρF1

∣∣∣γ1 + κ1u1

h

∣∣∣2 − Tr J− ξ
∣∣∣κ1

h
− χ

∣∣∣2] (3.25)
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L0 =
1

2

[
ρF0u

2
0 (1 + x)2 − Tr J− ξx2

]
(3.26)

L1 =
1

2

[
αh2ẋ2 + ρF1 (hẋ+ u1)

2 − Tr J
]

(3.27)

We then calculate δLi

δκi
:

δLi

δκi

=
ρ

2

∂Fi

∂κi

∣∣∣γi + κiui

h

∣∣∣2 + ρFiui

h

(
γi +

κiui

h

)
− ξ

h

(κi

h
− χ

)
(3.28)

Where we have:

∂F0

∂κ0

= −βhx (3.29)

∂F1

∂κ1

= 0 (3.30)

Therefore, we arrive at:

δL0

δκ0

= −1

2
ρβhu2

0x (1 + x)2 +
ρF0u

2
0

h
(1 + x)− ξ

h
x (3.31)

δL1

δκ1

=
ρF1u1

h
(hẋ+ u1) (3.32)

We can now put (3.31) and (3.32) back into (3.23), where we have
∣∣κ0

h

∣∣ = 1 + x,
∣∣κ1

h

∣∣ = 1,

and L0, L1 are defined in (3.26) and (3.27) respectively.

δ	

δκ0

=
L0

h
− 1

2
ρβhu2

0x (1 + x)3 +
ρF0u

2
0

h
(1 + x)2 − ξ

h
x (1 + x) (3.33)

δ	

δκ1

=
L1

h
+

ρF1u
2
1

h
+ ρF1u1ẋ (3.34)

All terms in the linear momentum conservation law, (3.19), have now been calculated, so

using (3.22), (3.29), (3.30), (3.33) and (3.34), we get the equation of motion:

(αh+ ρF1h) ẍ+ ρF1u̇1 +
L1

h
+

ρF1u
2
1

h
+ ρF1u1ẋ

−
(L0

h
− 1

2
ρβhu2

0x (1 + x)3 +
ρF0u

2
0

h
(1 + x)2 − ξ

h
x (1 + x)

)
− μ0βhx = 0

(3.35)

We would like this equation to be in terms of x, derivatives of x, and u1, so we can expand

the following term:

L1 − L0

h
=

1

2h

[
αh2ẋ2 + ρF1 (hẋ+ u1)

2 − Tr J− (
ρF0u

2
0 (1 + x)2 − Tr J− ξx2

)]
=

1

2h

[
αh2ẋ2 + ρF1h

2ẋ2 + 2ρF1u1hẋ+ ρF1u
2
1 − ρF0u

2
0 (1 + x)2 + ξx2

] (3.36)
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Substituting (3.17) for u̇1 and using the above equation, the linear momentum conservation

law can be written in terms of x, ẋ, ẍ and u1:

(αh+ ρF1h) ẍ+ ρβh3xẍ+

(
ρβh3 +

1

2
αh+

1

2
ρF1h

)
ẋ2 − ρβh2u0xẋ+

+ 2ρF1u1ẋ+
3

2

ρF1u
2
1

h
− 3

2

ρF0u
2
0

h
(1 + x)2 +

3ξx2

2h
+

ξx

h
+

1

2
ρβhu2

0x (1 + x)3 +

− μ0βhx = 0

(3.37)

Now we divide equation (3.37) by ρF1h and multiply by T 2, where τ = t
T
and ( )′ = d

dτ
, to

get the simplified equation of motion for the 1-dimensional stretching tube:

(A+ 1 + βZx) x′′ +
(
βZ +

1

2
A+

1

2

)
x′2 − βZV0xx

′ + 2V1x
′ +

3

2
V 2
1 +

− 3

2
V 2
0

F0

F1

(1 + x)2 +
3

2
Px2 + Px+

1

2
V 2
0 βZx (1 + x)3 − μ0βT

2

ρF1

x = 0

(3.38)

where:

A =
α

ρF1

, Z =
h2

F1

, Vi =
uiT

h
, P =

ξT 2

ρh2F1

The fluid volume conservation can be rewritten as:

V1 = V0
F0

F1

+ βZxx′ (3.39)

We can now solve (3.38) numerically in MATLAB and observe the behaviour of the 3 point

stretching tube system. Figure 3.1 shows different trajectories as the initial velocity, x′
0, is

varied. The parameters used are:

h = 0.1, T = 1, μ0 = 1, ρ = 11, F1 = 2, α = 1, β = 3, ξ = 1, u0 = 0.5 (3.40)

It is clear that the system quickly stabilizes to 2 equilibria. We have 2 stable nodes around

x = 8 and x = −2.5. We notice that there are a couple unstable equilibria as well. The

solutions repel away from x = 0 and somewhere in x < −5 the solutions begin to explode.
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Figure 3.1 Trajectories of the 1-dimensional stretching tube system, where x (t) is the

displacement of the center point from the resting position. The initial conditions are x0 = 0

and x′
0 varied from 10 to -25.
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3.3 Stability Analysis

3.3.1 Steady State Solutions

Let us now analyse and study the stability of this system. First, we will look for steady state

solutions. So let us write (3.38) with x′ = x′′ = 0

3

2
V 2
0

(
F0

F1

)2

− 3

2
V 2
0

F0

F1

(1 + x)2 + P

(
3

2
x2 + x

)
+

1

2
V 2
0 βZx (1 + x)3 − μ0βT

2

ρF1

x = 0 (3.41)

Now, we want to find x0 which is a solution of this steady state equation. So let us expand

(3.41):

3

2
V 2
0

[(
1− βZx2

2

)2

−
(
1− βZx2

2

)
(1 + x)2

]
+ P

(
3

2
x2 + x

)
+ Z̃x (1 + x)3 −M0x = 0

(3.42)
3

2
V 2
0

[
−βZx2

2
+

β2Z2x4

4
− 2x− x2 +

βZx2

2

(
2x+ x2

)]
+

Px

(
3

2
x+ 1

)
+ Z̃x (1 + x)3 −M0x = 0

(3.43)
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Figure 3.2 Real-valued equilibrium points of the 1-dimensional stretching tube as the fluid

velocity, u0, is increased from 0 to 2. x = 0 is an equilibrium point for all u0.
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For simplification, let us take:

Z̃ =
1

2
V 2
0 βZ, M0 =

μ0βT
2

ρF1

We can see that x is common to all terms in (3.43). Therefore, we know that one solution

to the steady state equation is x0 = 0.

x

(
3

2
V 2
0

[
−βZx

2
+

β2Z2x3

4
− 2− x+

βZx

2

(
2x+ x2

)]
+

P

(
3

2
x+ 1

)
+ Z̃ (1 + x)3 −M0

)
= 0

(3.44)

The remaining equation is a cubic polynomial that can be rewritten as:(
Z̃

(
3

4
βZ +

5

2

))
x3 +

(
6Z̃

)
x2 +

3

2

(
P − V 2

0 + Z̃
)
x+

(
P + Z̃ −M0 − 3V 2

0

)
= 0 (3.45)

This equation can now be solved to find the remaining 3 steady state roots, x0. The analytical

solutions for this equation turn out messy, so the roots were calculated numerically. If we

vary one parameter of the system and observe how the non-zero real roots change, we can

see that saddle-node bifurcations occur where three real roots turn into one, or in the case

of Figure 3.2 where one root turns into three.

The location of these bifurcations can be determined analytically. Let the left-hand side

of (3.45) be p (x). Since p (x) is a cubic polynomial function, it will have either 1 or 3 real

roots. Also, p (x) will have a local maximum and a local minimum, p (xmax) and p (xmin).
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The bifurcation occurs when either p (xmax) or p (xmin) crosses the x-axis, i.e. p (xmax) = 0 or

p (xmin) = 0. Therefore, to determine this analytically we first must find the local extrema

by taking the derivative of p (x) with respect to x and finding the roots of the resulting

quadratic equation.

dp (x)

dx
= 3Z̃

(
3

4
βZ +

5

2

)
x2 + 12Z̃x+

3

2

(
P − V 2

0 + Z̃
)
= 0 (3.46)

Therefore, the local extrema of (3.45) are:

xext =

−8Z̃ ±
√

−2Z̃
[
(P − V 2

0 ) (3βZ + 10) + Z̃ (3βZ − 22)
]

Z̃ (3βZ + 10)
(3.47)

Now, if we substitute xext into (3.45) we will get conditions depending on the parameters of

the system that will show when the bifurcation occurs. Namely, when the following equation

is satisfied:

Z̃

(
3

4
βZ +

5

2

)
x3
ext +

(
6Z̃

)
x2
ext +

3

2

(
P − V 2

0 + Z̃
)
xext +

(
P + Z̃ −M0 − 3V 2

0

)
= 0 (3.48)

For the simulation in Figure 3.2, u0 was varied and the constant parameters used were:

h = 0.1, T = 1, μ0 = 1, ρ = 11, F1 = 2, α = 1, β = 3, ξ = 1 (3.49)

When we use these parameters in (3.48) for xmax and solve for u0 we get 4 imaginary solutions.

On the other hand when we use xmin we get 2 real solutions: u0 = ±0.300895. Looking at

Figure 3.2 we can see that indeed the saddle-node bifurcation occurs at u0 = 0.300895.

3.3.2 Linear Stability

We can now analyse the stability of the system around the critical points x0. In order to do

this, we will linearize the ODE around the critical points and study the linear stability. Let

us take x → x0 + εerτ and only keep terms that are O (ε) so that we will get a characteristic

equation in terms of r = r (x0). Let equation (3.38) be a function F (x, x′, x′′) = 0. We

know that, x = x0 + εerτ , x′ = rεerτ , x′′ = r2εerτ , so we have F (x0 + εerτ , rεerτ , r2εerτ ) = 0.

We also know that F (x0, 0, 0) = 0 because x0 is a steady state solution. Therefore, the

linearization looks like:

∂F

∂x

∣∣∣
(x0,0,0)

· εerτ + ∂F

∂x′

∣∣∣
(x0,0,0)

· rεerτ + ∂F

∂x′′

∣∣∣
(x0,0,0)

· r2εerτ = 0 (3.50)
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Computing the individual parts we get:

∂F

∂x

∣∣∣
(x0,0,0)

= 6Z̃x0 (1 + x0)
2 − 3V 2

0 (1 + x0)+

3Z̃x2
0 (1 + x0) + P (3x0 + 1) + Z̃ (1 + x0)

3 −M0

(3.51)

∂F

∂x′

∣∣∣
(x0,0,0)

= 2V0βZx0 + 2V0 − V0βZx
2
0 −

3

2
β2Z2x3

0 (3.52)

∂F

∂x′′

∣∣∣
(x0,0,0)

= A+ 1 + βZx0 (3.53)

This equation can be solved analytically if we use the critical point x0 = 0 in (3.50). We get

the characteristic equation:

(A+ 1) r2 + (2V0) r +
(
P + Z̃ − 3V 2

0 −M0

)
= 0 (3.54)

Using the quadratic equation to solve for r:

r1,2 =

−V0 ±
√

V 2
0 − (A+ 1)

(
P + Z̃ − 3V0 −M0

)
A+ 1

(3.55)

We can now get conditions on when x0 = 0 is stable, which occurs when the real part of

both values of r are less than zero: Re (r1,2) < 0.

Next, let us analyse the stability of the remaining equilibrium points. Using the same

parameters as earlier (3.49), we increase u0 and plot the location of the equilibrium points

as a function of u0. Then, we linearize around each equilibrium point for each value of u0,

find the characteristic equation and its roots, and plot the real parts of the 2 roots. This

procedure can be seen in Figure 3.3, where the color of the lines of the equilibrium points

correspond to the same color in the stability plot. We know that the equilibrium point is

stable when the real part of both roots is less than 0. Therefore, we can look at Figure 3.3b

and easily see where the stable equilibrium points, which is when either the single point or

both points is completely under the line Re (r) = 0.

Take for example the black line in Figure 3.3b which corresponds to the permanent equi-

librium point x0 = 0. We can see that for values of u0 = 0.01 to around u0 = 0.125, the

equilibrium point is stable. However, after u0 = 0.125 the real part of one of its roots becomes

greater than zero, so it is no longer stable. Furthermore, at the same point near u0 = 0.125
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Figure 3.3 Stability analysis of the stretching tube system as the fluid velocity, u0, is

increased from 0.01 to 0.5, with the parameters defined in (3.49).
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the equilibrium point corresponding to the blue line turns from an unstable equilibrium to

a stable one. We can see that this occurs in Figure 3.3a when the blue line intersects the

black line at x0 = 0. Therefore, there is always a non-negative stable equilibrium point for

all positive u0 for this choice of parameters.

Figure 3.3 agrees with the behaviour observed in Figure 3.1 and confirms the stability anal-

ysis. Looking at u0 = 0.5 in the left subfigure of Figure 3.3, we see the stable equilibria at

x = 8 and x = −2.5, and unstable equilibria at x = 0 and x = −8.

Let us now look at how the other parameters affect the stability. When we vary F1 or ρ,

a similar graph to Figure 3.3 is produced. However, when α is varied a different behaviour

occurs. If we look at Figure 3.4, we can see that α has no effect on the position of the

equilibrium points. Also, the stability of the equilibrium points do not change since no lines

in Figure 3.4b ever cross Re (r) = 0. This is an expected result. Since the cubic polynomial

(3.45) is independent of α, any change to α will not affect the position of the roots.

Next, we look at ξ in Figure 3.5. As ξ is varied, we observe a behaviour opposite to

when u0, F1, and ρ were varied. That is, the equilibrium point u0 = 0 begins as an unstable

equilibrium for low values of ξ and as ξ is increased it turns into a stable point.

To further investigate this behaviour, let us plot the equilibrium points as a function of

several parameters and observe the resulting surfaces. First, in Figure 3.6 we look at the
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Figure 3.4 Stability analysis of the stretching tube system as the linear mass of the tube,

α, is increased from 0.01 to 100, with the parameters defined in (3.49) and u0 = 1.
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equilibrium points as a function of u0 and ξ. We can observe that if ξ is increased, u0 must

also be increased for a bifurcation to occur. The bifurcation can be observed in the bottom

right corner with the two blue coloured surfaces. We also can look at Figure 3.7, which shows

the surfaces of the equilibrium points as a function of ρ and u0, to see a mirrored behaviour

to Figure 3.6. As ρ is increased, the bifurcation occurs for smaller values of u0.

We can also investigate the loss of stability of the equilibrium points as a function of

2 parameters. In Figure 3.8, the real roots of the characteristic equation are plotted as a

function of u0 and ξ. The equilibrium points in question are from the upper green and

red surface in Figure 3.6. Stability occurs when the surface is completely below the plane

Re (r) = 0. We observe that as ξ is increased, u0 also must increase for the equilibrium point

to become stable.

In Figure 3.3 and Figure 3.5, as the equilibrium point x0 = 0 either gains or loses its

stability another equilibrium point changes stability as well as it passes through x = 0. Let’s

look at this behaviour further by investigating the stability surfaces of the equilibrium points

x0 = 0 and the non-bifurcating equilibrium points that passes through x = 0 in Figure 3.9.

The two surfaces intersect in a line inside the plane Re (r) = 0. This intersection happens

at the same point when the non-bifurcating equilibrium points passes through x = 0. We

can conclude from this that there is always a stable non-negative equilibrium point for all
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positive ξ and u0. As ξ is increased, the stable equilibrium point stays at x0 = 0 for higher

values of u0 before it increases away from x = 0.

Conclusion

In closing, in this section we derive the equations of motion of a discrete fluid-conveying

tube constrained to stretch in 1-dimension. This model consisted of a tube with 3 discrete

points. The trajectory of the system was investigated and the stability was analyzed, includ-

ing the location of saddle-node bifurcations. This model made use of a variational integrator

that took into account a geometrically exact, dynamically changing cross sectional area of

the tube.
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Figure 3.5 Stability analysis of the stretching tube system as the stretch coefficient, ξ, is

increased from 0.01 to 150, with the parameters defined in (3.49) and u0 = 1.
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Figure 3.6 Surface of equilibrium points of the stretching tube system with the parameters

defined in (3.49) as u0 is varied from 0.01 to 1, and ξ is varied from 0.01 to 15. x0 = 0 is an

equilibrium point for all values.
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Figure 3.7 Surface of equilibrium points of the stretching tube system with the parameters

defined in (3.49) as u0 is varied from 0.01 to 1, and ρ is varied from 3 to 20. x0 = 0 is an

equilibrium point for all values.
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Figure 3.8 Surface of stability with the parameters defined in (3.49) as u0 is varied from

0.01 to 1 and ξ is varied from 0 to 15. The gray surface corresponds to Re (r) = 0.
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Figure 3.9 Surfaces of stability as u0 is varied from 0.01 to 1 and ξ is varied from 0 to 15.

The gray surface corresponds to Re (r) = 0. The blue surface corresponds to the equilibrium

point x0 = 0 and the red surface is the same as in Figure 3.8.
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4 m - Point Discretization

Now, we will extend the 3-point discretization defined above, using all the same assumptions

and constraints, to m-points. Again, since there is no twist λi = Id and ωi = 0 for all i.

The tube position is now defined as:

r0 = 0

r1 = h+ hx1

r2 = 2h+ hx2 + hx1

...

rn−1 = (n− 1)h+ hxn−1 + · · ·+ hx1

rn = nh+ hxn−1 + · · ·+ hx1

(4.1)

The linear strain is defined as:

κ0 = h+ hx1

κ1 = h+ hx2

...

κn−2 = h+ hxn−1

κn−1 = h

(4.2)

The linear velocity is defined as:

γ0 = 0

γ1 = hẋ1

γ2 = hẋ2 + hẋ1

...

γn−1 = hẋn−1 + · · ·+ hẋ1

γn = hẋn−1 + · · ·+ hẋ1

(4.3)
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The cross-sectional area of the tube is defined as:

F0 = Fa − β

2
h2x2

1

F1 = Fa − β

2
h2x2

2

...

Fn−2 = Fa − β

2
h2x2

n−1

Fn−1 = Fa

(4.4)

4.1 Conservation Laws

We will use the same discrete Lagrangian defined earlier:

	 =
∑
i

1

2

(
α |γi|2 + 〈Iωi,ωi〉+ ρF (κi, λi)

∣∣∣γi +
κi

h
ui

∣∣∣2 − 〈Jλi, λi〉 − ξ
∣∣∣κi

h
− χ

∣∣∣2) ∣∣∣κi

h

∣∣∣
(4.5)

	 =
∑
i

Li

∣∣∣κi

h

∣∣∣ (4.6)

4.1.1 Fluid Volume

Using the fluid volume conservation law we can solve for ui and u̇i.

ui = ui−1
Fi−1

Fi

+
βh3xiẋi

Fi

, i = 1, 2, ..., n− 1 (4.7)

u̇i =
βh3 (ẋ2

i + xiẍi)

Fi

− βh2ui−1xiẋi

Fi

(4.8)

4.1.2 Linear Momentum

The linear momentum conservation law, taking into account that the tube doesn’t twist,

reads:

d

dt

(
δ	

δγi

)
+

δ	

δκi

− μi
∂Fi

∂κi

− δ	

δκi−1

+ μi−1
∂Fi−1

∂κi−1

= 0, i = 1, 2, .., n− 1 (4.9)
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Solving this equation analytically in terms of xi becomes messy. We can however write the

conservation law in terms of the above defined variables:

d
dt

[
αγi + ρF (κi, λi)

(
γi +

κi

h
ui

)] ∣∣κi

h

∣∣+[
1
2
ρ ∂Fi

∂κi

∣∣γi +
κiui

h

∣∣2 + ρFiui

h

(
γi +

κiui

h

)− ξ
h

(
κi

h
− 1

)] ∣∣κi

h

∣∣+
Li

κi

h2|κi
h | − Li−1

κi−1

h2|κi−1
h | + μi−1

∂Fi−1

∂κi−1
− μi

∂Fi

∂κi
−[

1
2
ρ ∂Fi−1

∂κi−1

∣∣γi−1 +
κi−1ui−1

h

∣∣2 + ρFi−1ui−1

h

(
γi−1 +

κi−1ui−1

h

)− ξ
h

(κi−1

h
− 1

)]∣∣κi−1

h

∣∣ = 0

(4.10)

Conclusion

In this section we briefly laid out the framework for a more complex model than the

model in Section 3. This could be used to further analyze the behavior and stability of this

system.
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5 Experiment

In this section, we empirically investigate the motion of a vertically suspended tube. This

section contains new material.

5.1 Experimental Set-up

An experiment was created to investigate the physical behaviour of the garden hose insta-

bility. The apparatus consists of a vertically suspended latex tube that is fixed in place at

the top. Tap water was used as the fluid to pass through the tube. In order to achieve a

smooth and steady flow of water with as little turbulence as possible a pressure tank was

used to force the water through the tube. The pressure tank was filled with water and then

was connected through a pressure regulator to a compressed air outlet in the lab. The reg-

ulator made sure that there is constant pressure inside the tank. The pressure differential

between the pressure tank and the room pressure causes the water to be pushed through

a valve located at the bottom of the pressure tank towards the flexible tube. This set-up

was used to try to produce a smoother and more continuous flow of water through the tube,

as opposed to a regular electric pump or a peristaltic pump. The turbulence from a pump

might cause vortices or other structures which could affect how the tube behaves and we

wanted to try to remove as many uncontrollable variables as possible. After the water leaves

the tank is passes through an in-line flow meter before it reaches the flexible tube. The flow

meter served to accurately control and measure the flow-rate of water.

The end of the latex tubes were connected to a fitting that could be screwed into a fixture

at the top of the apparatus. Therefore, different tubes could be easily swapped into the

apparatus. This allowed for observation on the effects of changing the parameters of the

tube, such as wall thickness, cross sectional diameter and length.

The apparatus was fitted with a black backdrop to provide high contrast to the tube which

was a lighter color. See Figure 5.1 for an image of the experiment.
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Figure 5.1 Photograph of experimental apparatus. The water tank and regulator can be

seen in the lower right of the image.

5.2 Centerline Detection Algorithm

An algorithm was designed in MATLAB to detect where the centerline of the tube was

using a photograph of the tube. A photograph is a matrix where each pixel of the photo

is an element of the matrix. In color photos, each element is given 3 values for every pixel

corresponding to the intensity of the colors red, green, and blue. The image is then converted

to grey scale, which removes all the hue and saturation information for each pixel but retains

the luminance. This cuts down the 3 values on each element to a single value, where the

higher the value the brighter the pixel is. So the black background in the experiment will

have a low value, around 1-6, while the tube which is a lighter color will have a value around

100. The picture is cropped so it only shows the tube and the black background.

Now we want to find where the tube is for every value of z, which we define as the vertical

axis. If we take a single row of pixels from the picture and look at the intensity it will look

similar to the Figure 5.2a. The difference in intensity of the black background compared to

the light tube is obvious. One can also observe that the center of the tube is not necessarily

where the brightest pixel is, so we can not use the highest value pixel to find the center point.

Instead, to accurately find the center point of the tube we perform a least-squared quadratic

fit over the range of the tube width. This produces a quadratic equation P (x) = ax2+bx+c
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Figure 5.2 Pixel intensity from a single row of a grey-scale photograph of a latex tube.

Higher values indicate brighter pixels.
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(a) Pixel intensity from a single row of an ex-

perimental photograph.
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(b) Quadratic best-fit of pixel intensity repre-

sented by the red line.

and so we assumed the center-point of the tube to be the vertex of the parabola.

P (x) = ax2 + bx+ c

P ′ (x) = 2ax+ b = 0

xcenterline = − b

2a

(5.1)

An example of the quadratic best fit can be seen in Figure 5.2b. One can observe that the

fit is a close approximation and the vertex provides a more accurate estimate of the center of

the tube. This process repeats for every row of the photo until we get a curve which follows

the centerline of the tube.

The output of the centerline detection algorithm can be seen in Figure 5.3. A photograph

was always taken of the tube at rest before the experimental trial began. This ensured that

the vertical axis of the output graph was parallel with gravity. The algorithm being run on

the resting tube can be seen in Figure 5.3b. In this case, we see that the resting tube which

should hang straight down is at a slight angle. If we subtract the values of this graph from

the values of the unadjusted graph, then the final result in Figure 5.3c is the true orientation
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Figure 5.3 Results of the centerline detection algorithm. The middle image of the resting

centerline is used to adjust for potential rotation of the camera.

0

(a) Before adjustment.

0

(b) Resting centerline.

0

(c) After adjustment.

of the tube, with gravity parallel to the y-axis. This adjustment also works to center the top

fixed end of the tube at exactly zero in the x-dimension.

5.3 Stereoscopic Camera

If only one camera is used to record the tube motion, then there is only information of

the tubes orientation in 2-dimensions. In order to observe and record the 3-dimensional

behaviour of the tube, a stereoscopic camera method was employed. Figure 5.4a provides a

top-down view of the 2-camera system. The cameras had to be positioned with these exact

specifications or else the following calculations will have large error.

An infra-red remote was used to trigger both cameras to take a photo simultaneously.
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Figure 5.4 Schematic of the stereoscopic camera apparatus from the top and looking down.
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Even though the cameras used were the same model, they still have small time differences

between when they received the signal to take a photo and when the photo actually gets

taken. The difference between the 2 cameras was measured to be less than 0.01 seconds.

5.3.1 3D - Coordinates

After we get a photo from each camera at the same time, we run the centerline detection

algorithm on each photo. Since the cameras are not orthogonal to each other, we must

perform calculations to determine the position of the tube in terms of the standard orthogonal

basis (x, y, z), where z is the dimensional parallel with gravity. Figure 5.4b shows another

top-down view of the axes we will use for the upcoming calculations. The blue dot represents

the centerline of the tube at rest at a certain value of z, the height component. We define

a line coming straight out of the right camera towards the tube to be the y-axis, and a

perpendicular line going through the tube to be the x-axis. The line coming out of the left

camera through the center of the tube is perpendicular to another axis that will be called

the w-axis. These 2 sets of axes are offset by 30◦ by construction of the apparatus. The

origin of both axes is the resting centerline of the tube.
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In the following calculations we will assume infinite parallax, that is, we assume that the

camera is infinitely far away from the tube so that all rays coming from the camera cross the

respective axis at right angles. This can be visualized in Figure 5.5a. Similar to the above

figure, the 2 cameras can be seen at the bottom of the illustration, at an angle of 30◦. Now

for this particular slice in the z-dimension, let the blue dot in the upper left quadrant be the

current position of the tube after being deflected away from the resting position. The grey

line coming from the left camera and intersecting the center of the tube is the true behaviour

of light in the system. The blue line shows infinite parallax. One can imagine as the left

camera gets pulled back away from the origin, the grey line approaches the blue line as the

distance goes to infinity. The gray line crosses the w-axis at a point we define as P , and the

blue line crosses the w-axis at a point we call Q. The distance from point P to the origin

is the value of displacement that gets measured from the left camera using the centerline

algorithm at this particular z. The infinite parallax assumption is that the distance from P

to the origin is the same as the distance from Q to the origin. A similar assumption follows

for the right camera.

d (P,O) = d (Q,O) (5.2)

While it looks like there is quite a difference between these values in this diagram, in

actuality the camera is much farther back and the tube deflection is small so the error in

this assumption is much less.

With these assumptions in place, we can now begin the calculation. See Figure 5.5b for

reference. First, we extend the line that is perpendicular to the w-axis through the center of

the tube until it reaches the y-axis. Define this point of intersection as yintercept. The point

where this line intersects the w-axis is the value measured through centerline detection for

the left camera for this particular z and we call this value wd. We now draw a line that

is perpendicular to the x-axis through the center of the tube. The point at which this line

crosses the x-axis is the displacement computed through the centerline detection algorithm

for the right camera for this particular z, we call this value xd. The value we are trying to

calculate is yd so that we can write the position of the tube as (xd, yd, z) in terms of the

orthogonal coordinate system relative to the right camera.
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Figure 5.5 Top-down illustration of the 3-dimensional coordinates of the tube. The blue

line is the behaviour of light if the camera was infinitely far away from the tube, and the

grey line is the true behaviour of light coming into the camera.
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(b) Diagram used to calculate yd.

We first must calculate yintercept using simple trigonometry:

sin (30◦) = − wd

yintercept

yintercept = −2wd

(5.3)

Where the negative sign ensures the correct sign of yintercept. For the example in Figure

5.5b, wd will have a negative value and yintercept needs to be positive. Next, using simple

trigonometry again, we need to compute ya and add it to yintercept to find the desired value

yd:

tan (30◦) =
xd

ya

ya =
√
3xd

(5.4)

Again looking at the example in Figure 5.5b, we see that xd is negative so using the above

equation ya is negative as well. Therefore, we need to sum ya and yintercept to get the correct

value of yd:

yd = ya + yintercept

yd =
√
3xd − 2wd

(5.5)
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Figure 5.6 Photograph of the rotating nozzle and motor used in the experiments to rotate

the flexible tube conveying water.

This simple calculation can be quickly repeated for each z and we will get a set of points

(xd, yd, z) that represent the position of the tube in 3-dimensional space.

5.4 Stable Rotation

In observations of the experiment we noticed that during instability the tube would tend

to twist back and forth with a constant frequency along the vertical axis of the tube. So

we wondered if spinning the tube at a matching frequency would counteract this twist and

stabilize the tubes instability. The apparatus used to rotate the tube can be seen in Figure

5.6.

A small DC motor attached to a gearbox with a large wheel attached on it was placed

next to a rotating water nozzle. The rotating water nozzle was attached to the tube and

allowed for free rotation of the tube without obstructing the flow of water. As the motor

spun the wheel it would spin the rotary nozzle through friction alone. The gearbox increased

the torque of the motor and also decreased the angular speed. In electric DC motors, the

more voltage potential across the motor results in faster rotation speeds. Therefore, the

motor was equipped with an LED dimmer switch that controls the voltage so that the speed

of rotating could be controlled. In this set up, the motor could spin the tube anywhere

from 0 Hz - 2 Hz. After running many tests with different flow rates and rotation speeds we

noticed some interesting behaviour, namely stable fixed shape rotation. In Figure 5.7, one
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Figure 5.7 Composite photographs demonstrating the rigid, fixed shape rotation of tube.

can observe this rigid rotation through composite photos. The tube rotates with relatively

fixed shaped and depending on the parameters such as flow rate and rotation speed, it would

either have 1, 2, or 3 fixed nodes.

Another example of this stabilization can be seen in Figure 5.8. The parameters in all

3 photos are the same except for the rotation speed. The left photo shows the normal

behaviour of the tube with no forced rotation. The middle image shows small stabilization

after being rotated since the deflection of the tube from the centerline is decreased. The

right image shows the stable fixed rotation which occurs at a critical rotation speed. Any

rotation speed higher or lower than the critical value will result in behaviour similar to the

middle image.

5.5 The Koopman Operator

We now investigate if it is possible to predict what parameters will cause the stable rotation

to occur. To do this, we take advantage of a linear operator known as the Koopman Operator.

The Koopman operator is extensively discussed in [4]. For the following derivation, we closely

follow the framework set out in [17].

The Koopman operator is an infinite-dimensional linear operator that exists for any

non-linear dynamical system. It captures all the information of the non-linear dynamics of

the system. This allows us to take advantage of linear spectral analysis without having to
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Figure 5.8 Composite photographs of 3 tubes and rotational stabilization. The left image

shows no forced rotation, the middle image shows some stabilization after forced rotation,

and the right image shows rigid rotation at a critical rotation speed.

linearize the system. The Koopman operator allows one to decompose the motion of the

tube in numerous modes. Say we have a time-discrete dynamical system on a manifold X

such that:

xm+1 = T (xm) , xm ∈ X, T : X → X (5.6)

Then the Koopman operator, K, for this dynamical system is defined by:

K (f (x)) = f (T (x)) (5.7)

where f is any scalar function f : X → R. One can confirm that this is a linear operator as

well as an infinite-dimensional operator.

Now, we want to analyse the behaviour of the tube system using only the data obtained

experimentally by finding the eigenvalues and eigenfunctions of K. Let φk : X → R be the

eigenfunctions and λk ∈ C be the corresponding eigenvalues of K.

Kφk (x) = λkφk (x) (5.8)

Now, say we have some observable quantity of interest for the system, such as velocity at

different points or, in the case of the experiment, the displacement from the resting centerline.
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Let the observable be f , where f is a vector valued function f : X → Rn. If we assume that

each component of f is in the span of the eigenfunctions φk, then we can write f as a linear

combination of the Koopman eigenfunctions with vector coefficients vk.

f (x) =
∞∑
k=1

φk (x)vk (5.9)

It should be noted that if f is not in the span of eigenfunctions, then we have to split the

operator up into its singluar and regular components and project these components of f

onto the span of eigenfunctions φk. See [9].

We define vk as the Koopman modes for the dynamical system map T for observable

quantity f . We also define φk as the Koopman eigenfunctions and λk as the Koopman

eigenvalues. The Koopman modes will allow us to find the stable rotation shapes. The

eigenvalues provide important information as they describe the temporal behaviour of their

respective Koopman mode. From (5.6) and (5.7) we deduce that:

Kφ (xm) = φ (xm+1) (5.10)

In other words, applying the Koopman operator to the eigenfunction at a certain time step

gives the eigenfunction at the next time step. So if we take the eigenfunction and Koopman

mode decomposition equation in (5.9) of the observable f and use the previous equation:

f (xm) =
∞∑
k=1

φk (xm)vk =
∞∑
k=1

Kφk (xm−1)vk (5.11)

Applying the Koopman operator m times:

f (xm) =
∞∑
k=1

Kmφk (x0)vk =
∞∑
k=1

λm
k φk (x0)vk (5.12)

From this, we can conclude that the Koopman eigenvalues affect the temporal behaviour of

the Koopman modes. The problem now is that we don’t explicitly know what the map T is

for our dynamical system, and therefore we don’t know what the Koopman operator is.

5.5.1 Arnoldi Algorithm as an Approximation for Koopman Modes

The algorithm laid out in [17] shows that one can get close estimates to the actual Koop-

man modes and eigenvalues without explicitly knowing the Koopman operator. All that is
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required is snapshots of the system evolving in time, which is exactly the data we have for

the rotating tube. The algorithm is as follows.

Let us define a linear dynamical system, xm+1 = Axm, xm ∈ Rn. Let n be so much greater

than m that the eigenvalues of A can’t be calculated exactly. We will calculate estimates of

these eigenvalues using a Krylov method. Starting with an initial vector, one computes the

iterations m − 1 times so we get a set of m vectors. The span of these vectors is called a

Krylov subspace. We can take these m vectors, which are the observable data for each time

step, and create a matrix K.

K =
[
x0 Ax0 A2x0 ... Am−1x0

]
(5.13)

K = [x0 x1 x2 ... xm−1] (5.14)

The idea is that if we project A onto the Krylov space, we will then be able to calculate the

eigenvalues of the much smaller m dimensional matrix. In other words, we are trying to find

the eigenvectors of A as linear combinations of the columns of K. So we define this linear

combination as:

Kc = c0x0 + · · ·+ cm−1xm−1, c = [c0, · · · , cm−1] (5.15)

If the mth iteration is not a linear combination of the previous iterations, we get a residual:

r = xm −Kc (5.16)

If xm is a linear combination of the previous iterations, then c can be chosen such that

xm = Kc. Otherwise this residual is minimized if we choose c such that r is orthogonal to

the span of the Krylov space. Now, we define a companion matrix C, where the last column

contains the coefficients c we found that minimize the residual.

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 c0

1 0 0 c1

0 1 0 c2
...

. . .
...

0 0 . . . 1 cm−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.17)

The eigenvalues of this companion matrix are an approximation of the actual eigenvalues of

A. Note that if the residual is 0 then the eigenvalues of C are no longer approximations and
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are instead a subset of the eigenvalues of A.

Now, we need to calculate the eigenvectors. The following equation holds true:

AK = KC+ reT , e = [0, · · · , 1] ∈ R
m (5.18)

So if Cu = λu, then:

AKu = KCu+ reTu (5.19)

A (Ku) = λ (Ku) + reTu (5.20)

Therefore the approximate eigenvectors of A, called Ritz vectors, are v = Ku and the

approximate eigenvalues, called Ritz values, are λ. To put this algorithm to use we must

find the c that minimizes the residual, in other words, we want r ⊥ span {x0, · · · ,xm−1}. If
2 vectors are orthogonal then their dot product is 0. We want r orthogonal to each vector

in the span, so we get a system of m equations:

x0 · (xm −Kc) = 0

x1 · (xm −Kc) = 0

...
...

xm−1 · (xm −Kc) = 0

(5.21)

This system can be reduced to:

(KTK)
c =

⎛
⎜⎜⎜⎜⎜⎜⎝

x0 · xm

x1 · xm

...

xm−1 · xm

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.22)

We now can solve this system for c, form the companion matrix C, and get approximate

eigenvalues and eigenvectors of A. [17] demonstrates that even for non-linear systems these

eigenvalues λ are approximations of the true Koopman eigenvalues, and the eigenvectors v

are approximations of the true Koopman Modes.

Before we can apply this to the data set of the rotating tube, we need to slightly modify

the tube centerline data. When we take a picture of the tube at different times, where the
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z component is in terms of the rows in the photo matrix doesn’t necessarily correspond to

the same physical point on the tube. We want to know how each physical point is evolving

in the system in order to use the above algorithm. To do this we have to find the arc length

of the tube position function using the following parametric arc length function.

L (s) =

∫ n

0

√
[x′ (s)]2 + [y′ (s)]2 + [z′ (s)]2 ds

L (s) =

∫ n

0

√
[x′ (s)]2 + [y′ (s)]2 + 1ds

(5.23)

The parameter s corresponds to the row number in the photo matrix where there are n rows.

Since the z-coordinate is equivalent to the row number, z′ (s) = 1. We now have a discrete

function for the arc length as a function of the row number. Next, we must interpolate the

inverse arc length function so that for equal increments of arc length, we can find what the

corresponding z-coordinate is. For example, if we choose equal increments of 1, we can find

z-coordinates by:

L−1 (0) = 0

L−1 (1) = z1
...

L−1 (1) = zn

(5.24)

With these new zi we interpolate again to find the new xi and yi. If we take a series of photos

of the tube motion, we now know how the specific physical points on the tube are evolving in

time. We now can form the Koopman matrix K using this data. Since we have information

of the tubes displacement in 3 dimensions, we choose to stack the position vectors of x, y,

and z in a column for each time step, seen in (5.25).
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K =

⎛
⎜⎜⎜⎝
x0 x1 · · · xm−1

y0 y1 · · · ym−1

z0 z1 · · · zm−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
1 x1

1 · · · xm−1
1

...
...

...

x0
n x1

n · · · xm−1
n

y01 y11 · · · ym−1
1

...
...

...

y0n y1n · · · ym−1
n

z01 z11 · · · zm−1
1

...
...

...

z0n z1n · · · zm−1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.25)

5.5.2 Results

We can now begin to look for the Koopman modes and Koopman eigenvalues of the rotating

tube system. For this example, we took 69 photos of the tube motion, at a time interval of

1 second. Following the algorithm above, we obtain the Koopman eigenvalues, Figure 5.9,

and the Koopman modes, Figure 5.10. We see that most of the eigenvalues lie close to the

unit circle. [9] states that the Koopman eigenvalues stay on the unit circle if the dynamical

system is evolving on an attractor. This is true for the tube system as gravity and elasticity

want to pull the tube back to a straight resting tube position. We can sort the modes and

their respective eigenvalues by the magnitude of the mode, ||v||. The first Koopman mode

with the largest magnitude corresponds to the time-averaged mean position of the tube,

which we are not interested in. It can be seen as the pink dot in Figure 5.9. The next 4

leading Koopman modes and eigenvalues are shown in Figure 5.9 and 5.10 as the blue, red,

green, and black dots or lines. The eigenvalues come in complex conjugate pairs for each

leading mode.

As stated earlier, the eigenvalues define the frequency of oscillation for each Koopman

mode. The Koopman modes can be thought of as shapes or structures of the tube that

oscillate with their respective frequencies. The frequency is defined as follows:

ω =
Im [log (λ)]

Δt
(5.26)
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Figure 5.11 shows the frequencies and magnitudes of the leading Koopman modes. It is

observed that the highest magnitude modes oscillate between 1 - 2 Hz. The main goal

of this method is to see if stable rotation can be predicted by looking for shapes in the

Koopman modes that match the shape and frequency of the stable rotation in experimental

observations. In this example, it might be worth looking for stable rotation modes in the 1

- 2 Hz range. Further investigation is required.

Conclusion

To conclude, in this section we presented an experiment that was used to investigate

the behaviour of a vertically suspended latex tube conducting water. Most interestingly, a

stable rigid rotation was observed when the tube was forced to spin at a critical frequency. A

stereoscopic camera along with a centerline detection algorithm was employed to obtain data

on the motion of the tube in 3-dimensional space. We showcased a method to analyze the

motion of a tube using the Arnoldi algorithm. The Arnoldi algorithm used empirical data of

the motion of the tube and found the eigenvalues and eigenvectors of the Koopman operator.

These can be used to find structures in the motion of the tube. Further investigation is

required to determine the effectiveness of this procedure.
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Figure 5.9 Koopman eigenvalues obtained using the Arnoldi algorithm and empirical data

from the rotating tube.
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Figure 5.10 Four leading Koopman modes obtained using the Arnoldi algorithm and em-

pirical data from the rotating tube.
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Figure 5.11 Frequency and magnitude of leading Koopman modes obtained using the

Arnoldi algorithm and empirical data from the rotating tube.
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6 Conclusion

6.1 Discretized Stretching Tube

I have created a simple mathematical model of a flexible tube conveying a fluid using a

variational approach that discretizes space. In my model, the tube’s motion was restricted

to one dimension and was not allowed to twist. The linear stability of this system was

analyzed and conditions for stability were calculated analytically, including the location

of equilibrium point bifurcation. This model utilized a geometrically exact, dynamically

changing cross-sectional area theory which overcame previous shortcomings in other works.

Further work could be done by experimentally investigating how well this model agrees with

physical behavior. In the future, one could use the same variational integrator and relax

the constraints used here, such as allowing the tube to move in 2 or 3 dimensions and also

allowing twist. The conservation law for angular momentum would have to be used if twist

was allowed. In the model above, the angular momentum equation had a trivial solution.

One could also use the variational method discretizing both space and time set up in [7] and

study the resulting equations. I briefly described the set up for an n-point discretization,

but did not analyse the resulting behavior for this general case.

6.2 Empirical Analysis of Fluid-conveying Tubes

I have presented a method for studying the dynamics of the garden hose instability using

empirical data. An experiment was designed and created that allowed for the motion of a

vertically suspended flexible tube to be measured. The data collection method consisted of a

stereoscopic camera to obtain the position coordinates of the tube in three dimensions, as well

as a centerline detection algorithm which found the centerline of the tube from photographs.

The tube could also be forced to spin axially using a rotary nozzle. The appearance of

rigid, fixed shape rotation was observed if the tube was spun with a specific rotation speed.

Further investigation is required to quantify when this rigid rotation occurs in terms of flow

rate and forced rotation speed. I then presented a means to analyse the collected data using

spectral analysis of the Koopman operator. While this method has gained popularity in
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studying flow dynamics in the field of fluid mechanics, it has not been used to analyse the

garden hose instability. Further analysis is required to determine how effective this method

is to study the dynamics of flexible tubes.

There are a few aspects of the experimental design that could be improved upon. It was

not possible to get large sets of data which would improve the Koopman analysis. Currently,

the experiment can only be run for a few minutes before the water tank runs out of water.

This and the fact that the photos could not be taken at an interval faster than 1 second

leads to around 60 time steps per experimental trial. This could be solved by using a more

continuous source of water, or by increasing the size of the water tank. Also, a mechanism

that allows the photos to be taken at faster intervals would allow for a greater amount of

data to be collected.
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