
Distributional Losses for Regression

by

Ehsan Imani

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Ehsan Imani, 2019

Abstract

In this thesis we introduce a new loss for regression, the Histogram Loss. There

is some evidence that, in the problem of sequential decision making, estimat-

ing the full distribution of return offers a considerable gain in performance,

even though only the mean of that distribution is used in decision making.

A parallel line of research in classification has found that converting hard

one-hot targets to soft targets, distributions that contain information about

the relationship between classes or ambiguity in the label, can improve accu-

racy. These findings have given rise to questions about the underlying reasons

that are still left unanswered. Our proposed loss function is influenced by

these two ideas and involves learning the conditional distribution of the tar-

get variable by minimizing KL-divergence between a target distribution and

a flexible histogram prediction. Experiments on four datasets show that the

Histogram Loss often outperforms commonly used regression losses. We then

design theoretical and empirical analyses to determine why and when this per-

formance gain appears, and how different components of the loss contribute to

it. Through this investigation we also provide additional insights about open

questions and hypotheses posed in previous works.

ii

Preface

Parts of this thesis have been published by Imani and White (2018). New

results in the thesis are to be submitted as a journal paper.

iii

To my family.

iv

Be less curious about people and more curious about ideas.

– Marie Curie

v

Acknowledgements

First and foremost, I would like to thank my supervisor, Martha White, whose

continuous support and feedback throughout this project helped me stay on

course and make consistent progress. Other projects she advised me on were

no less exciting and, altogether, working with her was a great opportunity

for me to develop in both research and character. Second, I am thankful to

my examining committee for taking the time to read this thesis and provid-

ing insightful comments and constructive criticism. Finally, I am grateful to

the members of RLAI and AMII for creating such a positive and thriving

atmosphere for research and collaboration.

vi

Contents

1 Introduction 1

2 Distributional Losses for Regression 7
2.1 The Histogram Loss . 7
2.2 Target Distributions . 9

3 Theoretical Analysis 13
3.1 Stable gradients for HL . 14
3.2 Connection to Reinforcement Learning 17
3.3 Bias of the Histogram Loss . 18
3.4 Bound on Prediction Error . 23

4 Experiments 26
4.1 Overview of Empirical Study 26
4.2 Datasets and Pre-Processing 27
4.3 Algorithms . 29
4.4 Overall Results . 31
4.5 Bias and the Choice of Target Distribution 36
4.6 Representation . 44
4.7 Optimization Properties . 51
4.8 Robustness to Corrupted Targets 56
4.9 Sensitivity to Input Perturbations 57
4.10 Summary of Empirical Study 60

5 Conclusion 62
5.1 Contributions . 62
5.2 Future Work . 63

References 65

vii

List of Tables

4.1 Overview of the datasets used in the experiments. 28
4.2 Overall results on CT Scan. HL-Gaussian achieved the lowest

Test MAE. Among the other methods, `2+softmax yielded an
error rate close to that of HL-Gaussian, and the rest of the
baselines performed worse. There was a large gap between the
performance of HL-OneBin and HL-Gaussian. 31

4.3 Overall results on Song Year. On this dataset, `1 outperformed
HL-Gaussian in terms of Test MAE, there was not a substan-
tial difference between the performance of HL-OneBin and HL-
Gaussian, and the rest of the methods had higher error rates
than HL-Gaussian. The differences in error rates were small on
this dataset and even Linear Regression worked well. 31

4.4 Overall results on Bike Sharing. HL-Gaussian had the lowest
Test MAE on this dataset and `2 performed the worst among
neural network methods. 32

4.5 Overall results on Pole. HL-Gaussian achieved the lowest Test
MAE. The other methods did not achieve a Test MAE close to
that of HL-Gaussian, and there was a noticeable gap between
the performance of HL-OneBin and HL-Gaussian. 32

4.6 Discretization bias experiment on CT-Scan. HL-Projected achieved
a Test MAE close to that of HL-Gaussian, and performed no-
ticeably better than HL-OneBin. 38

4.7 Discretization bias experiment on Song Year. While the Test
MAE of HL-Gaussian was slightly lower than the other meth-
ods on average, there was no substantial difference between the
performance of the the three methods. 38

4.8 Discretization bias experiment on Bike Sharing. HL-Projected
performed better than HL-OneBin and worse than HL-Gaussian.
We conducted a paired t-test on individual runs and found the
difference between the Test MAE of HL-Projected and HL-
Gaussian significant (p < 0.05). 38

4.9 Discretization bias experiment on Pole. There is a noticeable
difference between the error rates of HL-Projected and HL-
OneBin. We conducted a paired t-test on individual runs and
found the difference between the Test MAE of HL-Projected
and HL-Gaussian significant (p < 0.05). 38

viii

4.10 Representation results on CT Scan. We tested (a) swapping
the representations and re-learning on the last layer (Fixed),
(b) initializing with the other’s representation (Initialized),
(c) and using the same fixed random representation for both
(Random) and only learning the last layer. Using the HL-
Gaussian representation for `2 (first column, Fixed) caused a
sudden spike in error, even though the last layer in `2 was
re-trained. This suggests the representation is tuned to HL-
Gaussian. The representation did not even seem to give a boost
in performance, as an initialization (second column, Initializa-
tion). Finally, even with the same random representation, where
HL-Gaussian cannot be said to improve the representation, HL-
Gaussian still obtained substantially better performance. . . . 44

4.11 Representation results on Song Year. We tested (a) swapping
the representations and re-learning on the last layer (Fixed),
(b) initializing with the other’s representation (Initialized),
(c) and using the same fixed random representation for both
(Random) and only learning the last layer. The differences
were small on this datasets, but still `2 underperformed HL-
Gaussian in all the three settings. Using HL-Gaussian’s fixed
representation only made the performance of `2 worse. As an
initialization, it did not result in a considerable improvement. 45

4.12 Representation results on Bike Sharing. We tested (a) swapping
the representations and re-learning on the last layer (Fixed),
(b) initializing with the other’s representation (Initialized),
(c) and using the same fixed random representation for both
(Random) and only learning the last layer. On this dataset,
`2 underperformed HL-Gaussian in all the three settings. Using
HL-Gaussian’s representation only made the performance of `2
worse as shown in the Fixed and Initialized columns. 45

4.13 Representation results on Pole. We tested (a) swapping the rep-
resentations and re-learning on the last layer (Fixed), (b) ini-
tializing with the other’s representation (Initialized), (c) and
using the same fixed random representation for both (Random)
and only learning the last layer. On this dataset, `2 under-
performed HL-Gaussian in all the three settings. Using HL-
Gaussian’s representation only made the performance of `2 worse
as shown in the Fixed and Initialized columns. 46

ix

List of Figures

2.1 (a) A sample histogram with 25 bins, and (b) a neural network
with a softmax output layer that represents a histogram with
seven bins. 8

4.1 Histograms of the target values for the four datasets. Each plot
shows a histogram with 30 bins, where the area of a bin is the
ratio of targets in the dataset that fall in that bin. 29

4.2 HL-Uniform results on CT Scan. Dotted and solid lines show
train and test errors respectively. The parameter ε is the weight-
ing on the uniform distribution and raising it only impaired
performance. 33

4.3 HL-Uniform results on Song Year. Dotted and solid lines show
train and test errors respectively. The parameter ε is the weight-
ing on the uniform distribution and raising it only impaired
performance. 33

4.4 HL-Uniform results on Bike Sharing. Dotted and solid lines
show train and test errors respectively. The parameter ε is
the weighting on the uniform distribution and raising it only
impaired performance. 34

4.5 HL-Uniform results on Pole. Dotted and solid lines show train
and test errors respectively. The parameter ε is the weighting on
the uniform distribution and raising it only impaired performance. 34

4.6 MAE between the means of HL targets and the original labels.
It can be seen that extreme values of σ on either side biased the
mean of the target distributions. 37

4.7 Changing the number of bins on CT Scan. Dotted and solid
lines show train and test errors respectively. A small number of
bins resulted in high train and test errors, indicating high bias.
A higher number of bins generally did not result in a rise in test
error, with the exception of HL-OneBin’s test RMSE. 39

4.8 Changing the number of bins on Song Year. Dotted and solid
lines show train and test errors respectively. A small number
of bins made the train and test MAE in both HL-Gaussian and
HL-OneBin slightly higher. Increasing the number of bins did
not worsen the test performance. 40

4.9 Changing the number of bins on Bike Sharing. Dotted and solid
lines show train and test errors respectively. Both train and test
errors were high with a small number of bins. Increasing the
number of bins had little affect on HL-OneBin’s test erros and
no effect on the performance of HL-Gaussian. 40

x

4.10 Changing the number of bins on Pole. Dotted and solid lines
show train and test errors respectively. A small number of bins
resulted in high train and test errors in both HL-Gaussian and
HL-OneBin. High numbers of bins did not make the perfor-
mance worse. 41

4.11 Changing the parameter σ on CT Scan. Dotted and solid lines
show train and test errors respectively. Extreme values of σ
resulted in bad performance. The error rates for train and test
followed each other when changing this parameter. 41

4.12 Changing the parameter σ on Song Year. Dotted and solid lines
show train and test errors respectively. On this dataset, with
higher values of σ the gap between train and test errors kept
increasing in terms of RMSE. This trend is less noticeable in
Test MAE. 42

4.13 Changing the parameter σ on Bike Sharing. Dotted and solid
lines show train and test errors respectively. Changing σ on this
dataset had little effect on the performance, and the difference
between train and test errors remained constant. 42

4.14 Changing the parameter σ on Pole. Dotted and solid lines show
train and test errors respectively. A high value of σ on this
dataset resulted in considerably higher error rates. The dif-
ference between the train and Test MAE was similar across
different values of σ. In terms of RMSE, small values of the
parameter slightly increased this gap. 43

4.15 Multi-Task Network results on CT Scan. The loss function is
the mean prediction’s squared error plus the distribution predic-
tion’s KL-divergence multiplied by a coefficient. The horizontal
axis shows the coefficient for KL-divergence. Dotted and solid
lines show train and test errors respectively. There was not a
substantial drop in the error rate when increasing the coefficient
in the loss and the performance only became worse. 47

4.16 Multi-Task Network results on Song Year. The loss function is
the mean prediction’s squared error plus the distribution predic-
tion’s KL-divergence multiplied by a coefficient. The horizontal
axis shows the coefficient for KL-divergence. Dotted and solid
lines show train and test errors respectively. There was not a
substantial drop in the error rate when increasing the coefficient
in the loss and the performance only became worse. 47

4.17 Multi-Task Network results on Bike Sharing. The loss func-
tion is the mean prediction’s squared error plus the distribu-
tion prediction’s KL-divergence multiplied by a coefficient. The
horizontal axis shows the coefficient for KL-divergence. Dotted
and solid lines show train and test errors respectively. There
was not a substantial drop in the error rate when increasing the
coefficient in the loss and the performance only became worse. 48

4.18 Multi-Task Network results on Pole. The loss function is the
mean prediction’s squared error plus the distribution predic-
tion’s KL-divergence multiplied by a coefficient. The horizontal
axis shows the coefficient for KL-divergence. Dotted and solid
lines show train and test errors respectively. There was not a
substantial drop in the error rate when increasing the coefficient
in the loss and the performance only became worse. 48

xi

4.19 Higher Moments Network results on CT Scan. The horizontal
axis shows the number of moments (including the mean). Dot-
ted and solid lines show train and test errors respectively. There
was no substantial decrease in error when predicting higher mo-
ments. With four moments, there was a slight reduction in error
but the new model still performed worse than HL-Gaussian in
terms of Test MAE. 49

4.20 Higher Moments Network results on Song Year. The horizontal
axis shows the number of moments (including the mean). Dot-
ted and solid lines show train and test errors respectively. There
was no substantial decrease in error when predicting higher mo-
ments on this dataset. The new model consistently performed
worse than HL-Gaussian. 50

4.21 Higher Moments Network results on Bike Sharing. The hori-
zontal axis shows the number of moments (including the mean).
Dotted and solid lines show train and test errors respectively.
There was no substantial decrease in error when predicting
higher moments on this dataset. The new model consistently
performed worse than HL-Gaussian. 50

4.22 Higher Moments Network results on Pole. The horizontal axis
shows the number of moments (including the mean). Dotted
and solid lines show train and test errors respectively. There was
no substantial decrease in error when predicting higher moments
on this dataset. There was a slight reduction in error but the
new model still performed worse than HL-Gaussian in terms of
Test MAE. 51

4.23 Training process on CT Scan. A logarithmic scale is used in
the Y axis of the rightmost plot. HL-Gaussian reduced the
train errors considerably faster than `2. The gradient norm of
`2 was highly varying through the training. 52

4.24 Training process results on Song Year. A logarithmic scale is
used in the Y axis of the rightmost plot. HL-Gaussian reduced
the train errors faster than `2 although it settled on a worse
training errors at the end. The gradient norm of `2 was highly
varying through the training. 52

4.25 Training process results on Bike Sharing. A logarithmic scale is
used in the Y axis of the rightmost plot. HL-Gaussian reduced
the train errors faster than `2 early in the training and slower
than `2 after around 100 epochs. The gradient norm of `2 was
highly varying through the training. 53

4.26 Training process results on Pole. A logarithmic scale is used
in the Y axis of the rightmost plot. HL-Gaussian reduced the
train errors considerably faster than `2. The gradient norm of
`2 was highly varying through the training. 53

4.27 Annealing results on CT Scan. Dotted and solid lines show train
and test errors respectively. There was no noticeable benefit in
starting with a higher σ and reducing it though the training. . 54

4.28 Annealing results on Song Year. There was a small benefit in
starting with a higher σ and reducing it though the training in
terms of MAE. 54

4.29 Annealing results on Bike Sharing. There was no noticeable
benefit in starting with a higher σ and reducing it though the
training. 55

4.30 Annealing results on Pole. There was no noticeable benefit in
starting with a higher σ and reducing it though the training. . 55

xii

4.31 Corrupted targets on CT Scan. The lines show test errors. The
`1 loss was robust to corrupted targets, and the `2 loss was
affected the most. 56

4.32 Corrupted targets on Song Year. The `1 loss was robust to
corrupted targets, and the `2 loss was affected the most. . . . 56

4.33 Corrupted targets on Bike Sharing. The `1 loss was robust to
corrupted targets, and the `2 loss was affected the most. . . . 57

4.34 Corrupted targets on Pole. The `1 loss was robust to corrupted
targets, and the `2 loss was affected the most. 57

4.35 Sensitivity results on CT Scan. The horizontal axis shows the
sensitivity of the model’s output to input perturbations (left
means less sensitive) and the vertical axis shows the test error
(lower is better). HL-Gaussian showed less sensitivity and lower
test errors than `1 and `2. 58

4.36 Sensitivity results on Song Year. The horizontal axis shows the
sensitivity of the model’s output to input perturbations (left
means less sensitive) and the vertical axis shows the test error
(lower is better). HL-Gaussian showed less sensitivity than `1
and `2, while it had a higher Test MAE than `1. 59

4.37 Sensitivity results on Bike Sharing. The horizontal axis shows
the sensitivity of the model’s output to input perturbations (left
means less sensitive) and the vertical axis shows the test error
(lower is better). HL-Gaussian showed less sensitivity and lower
test errors than `1 and `2. 59

4.38 Sensitivity results on Pole. The horizontal axis shows the sensi-
tivity of the model’s output to input perturbations (left means
less sensitive) and the vertical axis shows the test error (lower
is better). HL-Gaussian showed less sensitivity and lower test
errors than `1 and `2. 60

xiii

Chapter 1

Introduction

A fundamental problem in machine learning considers predicting a continuous

output variable from a set of input variables. Examples of applications range

from predicting the price of a house to predicting the mortality of a disease

in a region. Although solutions to this problem are often evaluated by sim-

ple measures like absolute error, the loss that is directly minimized can be

different. Properties like ease of optimization, improved generalization, and

robustness to outliers motivate designing surrogate losses or reductions be-

tween problems. This thesis introduces a new surrogate loss for this problem,

and provides theoretical and empirical analysis regarding the properties of this

loss and its performance in comparison with traditional approaches.

A core idea in the proposed loss function is learning a full distribution

instead of its expected value. In regression, it is common to use the squared-

error loss, or `2 loss. This corresponds to assuming that the continuous target

variable Y is Gaussian distributed, conditioned on inputs x ∈ Rd: Y ∼ N (µ =

f(x), σ2) for a fixed variance σ2 > 0 and some function f : Rd → R on the

inputs from a function class F , such as a linear function f(x) = 〈x,w〉 for

weights w ∈ Rd. The maximum likelihood function f for n samples {xi, yi},

corresponds to minimizing the `2 loss

min
f∈F

n∑
j=1

(f(xj)− yj)2 (1.1)

with prediction f(x) ≈ E[Y |x].

Alternatively, one could consider learning a distribution over Y directly,

1

and then taking the mean of that distribution—or other statistics—to provide

a prediction. This additional difficulty seems hardly worth the effort, consider-

ing only the mean is required for prediction. However, the increased difficulty

could beneficially prevent overfitting and promote generalization. Several pre-

vious studies have found benefit in learning distributions. Below we overview

some recent works in Supervised Learning and Reinforcement Learning that

motivate this idea.

In the problem of estimating the age of a person, labels are often whole

numbers from 0 to 100. Deep Expectation of Apparent Age (DEX) (Rothe et

al. 2015) treated this problem as multi-class classification, where the classes

were the natural numbers of labels. This method parameterizes the distribu-

tion as a softmax output layer in a convolutional neural network. The network

is trained with the commonly used negative log-likelihood loss in classification.

The authors considered using the mode and the mean of the learned distribu-

tion, and the mean resulted in a lower error.

Another successful application of learning distributions is in Reinforcement

Learning (RL). Value-based methods in RL estimate the expected return (sum

of discounted future rewards). It has been known that these methods can be

modified to estimate the full distribution of return rather than its expected

value (Morimura et al. 2010; Morimura et al. 2012). A recent algorithm called

C51 (Bellemare, Dabney, et al. 2017) restricts the return distribution to a cat-

egorical distribution which is modeled with a softmax output layer in a neural

network and shows considerable improvements over Q-learning (its well-known

counterpart that directly estimates the expected value of return). Although

C51’s superior performance has made it a component of choice in various

RL architectures (Barth-Maron et al. 2018; Gruslys et al. 2017; Hessel et al.

2017; Rowland et al. 2018), it is still unclear why it often outperforms Q-

learning. Bellemare, Dabney, et al. (2017) conjectured several reasons for this

phenomenon. For example, it has been hypothesized that the extra challenge

of predicting the probability of different values in a categorical distribution can

encourage a neural network to learn a better representation as in multi-task

learning.

2

The second idea behind our loss function is using soft targets. This idea

is popular in classification and the motivation is to inject prior knowledge or

to improve generalization or optimization. Conventional classification models

are trained with hard one-hot targets indicating to which class each data point

belongs. Soft targets, in contrast, are labels whose values can range from zero

to one and represent a probability distribution over classes. Here we describe

some previous works on soft targets, and later in Chapter 2 we will draw links

between our loss function and some of these works.

A simple modification of targets called Label Smoothing (LS) was intro-

duced by (Szegedy et al. 2016) to prevent overfitting in neural networks. If a

data point belongs to class k, raising its likelihood under the predicted distri-

bution amounts to minimizing the cross-entropy between the prediction and

a Kronecker delta distribution q(y) := δk,y. LS transforms this latter distribu-

tion to a mixture of p and a distribution u that does not the depend on the

class:

q′(y) := (1− ε)δk,y + εu(k)

where ε is a hyper-parameter between 0 and 1 that controls the level of smooth-

ing. The new distribution q′ is then used for training. An alternative inter-

pretation for this method is that, with probability ε, the data point’s class

is replaced with a class drawn from u. Szegedy et al. (2016) used a uniform

distribution over classes as u.

Soft targets have also been successfully used for model compression. Some-

times achieving high performance on a task requires resource-consuming mod-

els (like deep convolutional neural networks) that cannot be implemented on

a small device. For neural networks, a popular method to resolve this conflict

is distillation (Hinton et al. 2015). In this approach, first a large “teacher”

model is trained with little concern regarding resources. This model’s output

layer, a softmax function with a variable temperature parameter initially set

to one, models the predicted distribution as a categorical distribution. Intu-

itively, a higher temperature makes the predicted distribution less confident.

The temperature parameter is raised from one to a higher value after training

3

the teacher, and the model’s predictions on the training data are extracted. A

smaller “student” network is then created with a temperature matching the

teacher network. A mixture of the teacher’s predictions and the original one-

hot labels in the dataset are used to train the student network, and, finally,

the student network’s temperature is set back to one. It has been observed

that a student network trained with this procedure, or even one trained with

a small ratio of teacher’s predicted distributions, outperforms one trained on

the one-hot targets (Hinton et al. 2015). The claim is that soft targets cap-

ture the teacher model’s knowledge about relationships among outcomes. For

example, in image classification, if the correct label is “dog”, the teacher is

likely to assign a higher probability to “cat” than to “cabbage”. This extra

information is absent in one-hot targets.

Label Distribution Learning (LDL) (Geng 2016) is a paradigm that deals

with ambiguity in labels. Unlike single-label learning (where a single label is

provided for a data point) and multi-label learning (where each data point

has a set of labels), in LDL, each data point is given a distribution over all

possible labels. LDL paradigm gives rise to new models, as well as adaptations

of single- or multi-label models. A successful approach focused on computer

vision applications is Deep Label Distribution Learning (DLDL) (Gao et al.

2017) which uses a neural network with a softmax output to model the label

distribution and trains it by reducing the KL-divergence between predictions

and label distributions. Different methods were proposed by Gao et al. (2017)

to construct label distributions from ambiguous labels in multi-label classifi-

cation, semantic segmentation, age estimation, and pose estimation.

These successes and open questions underlie the work in this thesis. Our

contributions are summarized as follows:

1. We propose a new loss for regression, called the Histogram Loss (HL).

The targets are converted to a target distribution, and the KL-divergence

taken between a histogram density and this target distribution. The

choice of histogram density provides a relatively flexible prediction dis-

tribution, that nonetheless enables the KL-divergence to be computed

4

efficiently. The prediction is then the expected value of this histogram

density.

2. A theoretical analysis of the HL is provided. First we show a bound

on the gradient norm of the loss, which helps generalization and pro-

tects against abundance of abrupt changes in the gradient through the

optimization. We then highlight a relationship between minimizing the

HL and learning a policy in an entropy-regularized policy optimization

framework. The bias of the loss is also characterized and bounded under

a mild assumption regarding the support of the prediction distribution.

Finally, we show that minimizing the HL reduces an upper bound on the

difference between the predictions and the targets in the training data.

3. We compare the HL with several baselines on four regression datasets.

In our experiments we find that the loss often improves and never harms

performance. The baselines are designed to test effectiveness of various

properties that distinguish the HL from the `2 loss. These properties

include learning a flexible distribution, using a softmax nonlinearity in

the output, robustness to outliers, and data augmentation in the labels.

4. We design other experiments to test hypotheses regarding the perfor-

mance of the HL. We test

(a) if the choice of target distribution has a major impact on the bias

of the HL that can explain the difference in error rates,

(b) if properties of the histogram prediction and target distribution give

rise to a bias-variance trade-off,

(c) if the challenge in the task of predicting a full distribution forces

the model to learn a better representation,

(d) if switching from the `2 loss to the HL helps gradient descent’s

search for a good solution,

(e) if the HL is more robust to corrupted targets in the dataset, and

5

(f) if the HL finds a model whose output is less sensitive to input

perturbations.

This thesis consists of 5 chapters. In Chapter 2 we introduce the Histogram

Loss along with a discussion on the choice of target function. Chapters 3 and 4

provide extensive theoretical and empirical analyses of the proposed method.

Finally, Chapter 5 concludes the thesis.

6

Chapter 2

Distributional Losses for
Regression

In this chapter, we introduce the Histogram Loss (HL), which generalizes be-

yond special cases of soft-target losses used in recent work (Gao et al. 2017;

Norouzi et al. 2016; Szegedy et al. 2016). We first introduce the loss and how

it can be used for regression. We then relate it to other objectives, including

maximum likelihood for regression and other methods that learn distributions.

2.1 The Histogram Loss

Consider predicting a continuous target Y with event space Y , given inputs x.

Recall that directly predicting Y is possible by minimizing the squared error on

samples {xj, yj} where input xj ∈ Rd is associated with target yj ∈ R. Instead

of directly predicting Y , we can learn a distribution on Y |x whose expected

value will be used as the prediction. Assume we have samples {xj, qj}, where

each input xj is associated with a target distribution with pdf qj : Y → [0, 1].

We would like to learn a parameterized prediction distribution hx : Y → [0, 1],

conditioned on x, by minimizing a measure of difference between hx and q.

Three choices have to be made to learn a distribution on Y |x in this setting.

First, we need a parameterization for hx which is a continuous probability den-

sity function. Second, we require a function that measures how the prediction

distribution is different from the target distribution. Third, we need a method

to convert a regression dataset with samples {xj, yj} with real-valued outputs

7

to one with samples {xj, qj} whose outputs are target distributions. Below we

detail the first two choices and in the next section we describe several methods

for constructing target distributions.

We propose to restrict the prediction distribution hx to be a histogram den-

sity. Assume an interval [a, b] on the real line has been uniformly partitioned

into k bins, of width wi, and let function h : X → [0, 1]k provide k-dimensional

vector h(x) of the coefficients indicating the probability the target is in that

bin, given x. The density hx corresponds to a (normalized) histogram, and

has density values hi(x)/wi per bin. A sample histogram is depicted in Figure

2.1a. The histogram prediction distribution hx can be parameterized with a

softmax output layer in a neural network. The softmax layer has k units and

the value of unit i represents hi(x). Figure 2.1b shows a sample neural network

whose output represents a histogram.

(a)

(b)

Figure 2.1: (a) A sample histogram with 25 bins, and (b) a neural network
with a softmax output layer that represents a histogram with seven bins.

8

For the measure of difference, we use the KL-divergence. Suppose the

target distribution has CDF F and the support of this distribution is within

the range [a, b]. The KL-divergence between q and hx is

DKL(q||hx) = −
∫ b

a

q(y) log
hx(y)

q(y)
dy

= −
∫ b

a

q(y) log hx(y)dy −
(
−
∫ b

a

q(y) log q(y)dy

)
Because the second term only depends on q, the aim is to minimize the first

term: the cross-entropy between q and hx. This loss simplifies, due to the

histogram form on hx:

−
∫ b

a

q(y) log hx(y)dy = −
k∑
i=1

∫ li+wi

li

q(y) log
hi(x)

wi
dy

= −
k∑
i=1

log
hi(x)

wi
(F (li + wi)− F (li))︸ ︷︷ ︸

ci

.

In the minimization, the width itself can be ignored, because log hi(x)
wi

=

log hi(x)− logwi, giving the Histogram Loss

HL(q, hx) = −
k∑
i=1

ci log hi(x). (2.1)

This loss has several useful properties. One important property is that it is

convex in hi(x); even if the loss is not convex in all network parameters, it is

at least convex on the last layer. The other two benefits are due to restricting

the form of the predicted distribution hx to be a histogram density. First, the

divergence to the full distribution q can be efficiently computed. This contrasts

previous work, which samples the KL for a subset of y values (Norouzi et al.

2016; Szegedy et al. 2016). Second, the choice of q is flexible, as long as its

CDF can be evaluated for each bin. The weighting ci = F (li + wi) − F (li)

can be computed offline once for each sample, making it inexpensive to query

repeatedly for each sample during training.

2.2 Target Distributions

The Histogram Loss requires a target distribution for each input. The method

for constructing a target distribution from the target yj in the dataset can

9

be chosen upfront. Different choices simply result in different weightings in

HL. Below, we consider some special cases that are of interest and highlight

connections to previous work.

Truncated Gaussian on Y |x and HL-Gaussian. Consider a truncated

Gaussian distribution, on support [a, b], as the target distribution. The mean

µ for this Gaussian is the datapoint yj itself, with fixed variance σ2. The pdf

q is

q(y) =
1

Zσ
√

2π
e−

(y−µ)2

2σ2

where Z = 1
2
(erf

(
b−µ√
2σ

)
− erf

(
a−µ√
2σ

)
), and the HL has

ci = 1
2Z

(
erf

(
li + wi − µ√

2σ

)
− erf

(
li − µ√

2σ

))
.

This distribution enables smoothing over Y , through the variance param-

eter σ2. We call this loss HL-Gaussian, defined by number of bins k and

variance σ2. Based on positive empirical performance, it will be the main HL

loss that we advocate for and analyze.

Soft Targets and a Histogram Density on Y |x. In classification, such

as multinomial logistic regression, it is typical to assume Y |x is a categorical

distribution, where Y is discrete. The goal is still to estimate E[Y |x] and

when training, hard 0-1 values for Y are used in the cross-entropy. Soft labels,

instead of 0-1 labels, can be used by adding label noise (Norouzi et al. 2016;

Pereyra et al. 2017; Szegedy et al. 2016). This can be seen as an instance of HL,

but for discrete Y , where a categorical distribution is selected for the target

distribution. Minimizing the cross-entropy to these soft-labels corresponds to

trying to match such a smoothed target distribution, rather than the original

0-1 categorical distribution.

Such soft targets have also been considered for ordinal regression, partic-

ularly for age prediction (Gao et al. 2017; Rothe et al. 2018). The outputs

are smoothed using radial basis function similarities to a set of bin centers.

This procedure can be seen as selecting a histogram density for the target

distribution, where the coefficients for each bin are determined by these ra-

dial basis function similarities. The resulting loss is similar to HL-Gaussian,

10

with slightly different ci, though introduced as data augmentation to smooth

(ordinal) targets.

Dirac delta on Y |x. Finally, we consider the relationship to maximum

likelihood. For classification, Norouzi et al. (2016) and Szegedy et al. (2016)

used a combination of maximum likelihood and a KL-divergence to a (uni-

form) distribution. Szegedy et al. (2016) add uniform noise to the labels and

Norouzi et al. (2016) sample from an exponentiated reward distribution, with a

temperature parameter, for structured prediction. Both consider only a finite

set for Y , because they both address classification problems.

The relationship between KL-divergence and maximum likelihood can be

extended to continuous Y . The connection is typically in terms of statistical

consistency: the maximum likelihood estimator approaches the minimum of

the KL-divergence to the true distribution, if the distributions are of the same

parametric form (Wasserman 2004, Theorem 9.13). They can, however, be

connected for finite samples with different distributions. Consider Gaussians

centered around datapoints yj, with arbitrarily small variances 1
2
a2:

δa,j(y) =
1

a2
√
π

exp
(
− (y−yj)2

a2

)
.

Let the target distribution have q(y) = δa,j(y) for each sample. Define function

ci,j : [0,∞) → [0, 1] as ci,j(a) =
∫ li+wi
li

δa,j(y)dy . For each yj, as a → 0,

ci,j(a) → 1 if yj ∈ [li, li + wi] and ci,j(a) → 0 otherwise. So, for ij s.t.

yj∈ [lij , lij+wi],

lim
a→0

HL(δa,j, hxj) = − log hij(xj).

The sum over samples for the HL to the Dirac delta on Y |x, then, corresponds

to the negative log-likelihood for hx

argmin
h1,...,fk

−
n∑
j=1

log hij(xj) = argmin
h1,...,fk

−
n∑
j=1

log hxj(yj).

Such a delta distribution on Y |x results in one coefficient ci being 1, reflecting

the distributional assumption that Y is certainly in a bin. In the experiments,

we compare to this loss, which we call HL-OneBin.

11

Using a similar analysis to above, q(y) can be considered as a mixture

between δa,j(y) and a uniform distribution. For a weighting of ε on the uniform

distribution, the resulting loss HL-Uniform has ci = ε for i 6= ij, and cij =

1− kε.

12

Chapter 3

Theoretical Analysis

This chapter assembles our theoretical results on the Histogram Loss. The first

section considers the behavior of gradient descent optimization on HL and the

`2 loss. Gradient descent is a local search method, and problems like the ex-

istence of highly varying regions, unfavorable local minima and saddle points,

and poorly conditioned coordinates can hinder the search. A complete charac-

terization of the loss surface is a hard problem. Instead, we provide an upper

bound on the norm of the gradient of the HL which suggests that the gradient

varies less through the training and provides more reliable optimization steps.

We also point out how this norm relates to the generalization performance of

the model. The second section shows a similarity between minimizing the HL

and entropy-regularized policy improvement based on recent work by Norouzi

et al. (2016). The third section discusses the bias of the minimizer of the

HL. The mean of the distribution of targets can be different from a coarse

histogram prediction distribution that approximates it. We show that, when

KL-divergence to data points with Gaussian target distributions is minimized,

this difference is bounded by half of the bin width as long as the target dis-

tribution has negligible probability beyond the support of the histogram. The

last section shows that minimizing the HL on the data reduces an upper bound

on the difference between the targets and the mean of prediction distributions.

13

3.1 Stable gradients for HL

Hardt et al. (2015) have shown that the generalization performance for stochas-

tic gradient descent is bounded by the number of steps that stochastic gradient

descent takes during training, even for non-convex losses. The bound is also

dependent on the properties of the loss. In particular, it is beneficial to have a

loss function with small Lipschitz constant L, which bounds the norm of the

gradient. Below, we discuss how the HL with a Gaussian distribution (HL-

Gaussian) in fact promotes an improved bound on this norm, over both the `2

loss and the HL with all weight in one bin (HL-OneBin).

In the proposition bounding the HL-Gaussian gradient, we assume

hi(x) = exp(φθ(x)
>wi)∑k

j=1 exp(φθ(x)
>wj)

(3.1)

for some function φθ : X → Rk parameterized by a vector of parameters θ.

For example, φθ(x) could be the last hidden layer in a neural network, with

parameters θ for the entire network up to that layer. The proposition provides

a bound on the gradient norm in terms of the current network parameters. Our

goal is to understand how the gradients might vary locally for the parameters,

as opposed to globally bounding the norm and characterizing the Lipschitz

constant only in terms of the properties of the function class and loss.

Proposition 1 (Local Lipschitz constant for HL-Gaussian) Assume x, y

are fixed, giving fixed coefficients ci in HL-Gaussian. Let hi(x) be as in (3.1),

defined by the parameters w = {w1, . . . ,wk} and θ, providing the predicted

distribution hx. Assume for all i that w>i φθ(x) is locally l-Lipschitz continu-

ous w.r.t. θ

‖∇θ(w>i φθ(x))‖ ≤ l (3.2)

Then the norm of the gradient for HL-Gaussian, w.r.t. all the parameters in

the network {θ,w}, is bounded by

‖∇θ,wHL(q, hx)‖ ≤ (l + ‖φθ(x)‖)
k∑
i=1

|ci − hi(x)| (3.3)

14

Proof Let bi = φθ(x)>wi and ei = exp(bi). Then, since hj(x) =
ej∑k
l=1 el

, for

j 6= i

∂

∂bi
hj(x) =

∂

∂bi

ej∑k
l=1 el

= − ej(∑k
l=1 el

)2 ei
= −hj(x)hi(x)

For j = i, we get

∂

∂bi
hj(x) =

ei∑k
l=1 el

− ei(∑k
l=1 el

)2 ei
= hi(x)[1− hi(x)]

Consider now the gradient of the HL, w.r.t bi

∂

∂bi

k∑
j=1

cj log hj(x) =
k∑
j=1

cj
1

hj(x)
hj(x)(1i=j − hi(x))

=
k∑
j=1

cj(1i=j − hi(x))

= ci − hi(x)
k∑
i=1

ci

= ci − hi(x)

Then

∂

∂wi

k∑
j=1

ci log hi(x) = (ci − hi(x))φθ(x)

∂

∂θ

k∑
j=1

ci log hi(x) =
k∑
i=1

(ci − hi(x))∇w>i φθ(x)

where Jφθ(x) is the Jacobian of φθ.

The norm of the gradient of HL in Equation (2.1), w.r.t. w which is

composed of all the weights wi ∈ Rk is∥∥∥ ∂

∂w

k∑
j=1

cj log hj(x)
∥∥∥ ≤ k∑

i=1

∥∥∥ ∂

∂wi

k∑
j=1

cj log hj(x)
∥∥∥

=
k∑
i=1

‖(ci − hi(x))φθ(x)‖

15

≤
k∑
i=1

|ci − hi(x)|‖φθ(x)‖

Similarly, the norm of the gradient w.r.t. θ is

∥∥∥ ∂
∂θ

k∑
j=1

cj log hj(x)
∥∥∥ =

∥∥∥ k∑
i=1

(ci − hi(x))∇θw
>
i φθ(x)

∥∥∥
≤

k∑
i=1

∥∥(ci − hi(x))∇θw
>
i φθ(x)

∥∥
≤

k∑
i=1

|ci − hi(x)|l

Together, these bound the norm ‖∇θ,wHL(q, hx)‖.

The results by Hardt et al. (2015) suggest it is beneficial for the local Lip-

schitz constant—or the norm of the gradient—to be small on each step. HL-

Gaussian provides exactly this property. Besides the network architecture—

which we are here assuming is chosen outside of our control—the HL-Gaussian

gradient norm is proportional to |ci−hi(x)|. This number is guaranteed to be

less than 1, but generally is likely to be even smaller, especially if hi(x) rea-

sonably accurately predicts ci. Further, the gradients should push the weights

to stay within a range specified by ci, rather than preferring to push some to

be very small—close to 0—and others to be close to 1. For example, if hi(x)

starts relatively uniform, then the objective does not encourage predictions

hi(x) to get smaller than ci. If ci are non-negligible, this keeps hi(x) away

from zero and the loss in a smaller range.

This contrasts both the norm of the gradient for the `2 loss and HL-OneBin.

For the `2 loss, (f(x) − y)
[
∇θw

>φθ(x)
φθ(x)

]
is the gradient, giving gradient norm

bound (l+‖φθ(x)‖)|f(x)−y|. The constant |f(x)−y|, as opposed to
∑k

i=1 |ci−

hi(x)|, can be much larger, even if y is normalized between [0, 1], and can vary

considerably more. HL-OneBin, on the other hand, shares the same constant

as HL-Gaussian, but suffers from another problem. The Lipschitz constant

l in Equation (3.2) will likely be larger, because ci is frequently zero and so

pushes hi(x) towards zero. This results in larger objective values and pushes

16

w>i φθ(x) to get larger, to enable hi(x) to get close to 1.

3.2 Connection to Reinforcement Learning

The HL can also be motivated through a connection to maximum entropy re-

inforcement learning. In Reinforcement Learning, an agent iteratively selects

actions and transitions between states to maximize (long-term) reward. The

agent’s goal is to find an optimal policy, in as few interactions as possible. To

do so, the agent begins by exploring more, to then enable more efficient con-

vergence to optimal. Supervised learning can be expressed as a reinforcement

learning problem (Norouzi et al. 2016), where action selection conditioned on

a state corresponds to making a prediction conditioned on a feature vector.

An alternative view to minimizing prediction error is to search for a policy to

make accurate predictions.

One strategy to efficiently find an optimal policy is through a maximum

entropy objective. The policy balances between selecting the action it believes

to be optimal—make its current best prediction—and acting more randomly—

with high-entropy. For continuous action set Y , the goal is to minimize the

following objective∫
X
ps(x)

[
− τH(hx)−

∫
Y
hx(y)r(y, yi)dy

]
dx (3.4)

where τ > 0; ps is a distribution over states x; hx is the policy or distri-

bution over actions for a given x; H(·) is the differential entropy—the ex-

tension of entropy to continuous random variables; and r(y, yi) is the reward

function, such as the negative of the objective r(y, yi) = −1
2
(y − yi)2. Mini-

mizing (3.4) corresponds to minimizing the KL-divergence across x between

hx and the exponentiated payoff distribution q(y) = 1
Z

exp(r(y, yi)/τ) where

Z =
∫

exp(r(y, yi)/τ), because

DKL(hx||q) = −H(hx)−
∫
hx(y) log q(y)dy

= −H(hx)− τ−1
∫
hx(y)r(y, yi)dy + logZ.

17

The connection between the HL and maximum-entropy reinforcement learning

is that both are minimizing a divergence to this exponentiated distribution p.

The HL, however, is minimizing DKL(q||hx) instead of DKL(hx||q). For exam-

ple, Gaussian target distribution with variance σ2 corresponds to minimizing

DKL(q||hx) with r(y, yi) = −1
2
(y−yi)2 and τ = σ2. These two KL-divergences

are not the same, but a similar argument to Norouzi et al. (2016) could be ex-

tended for continuous y, showing DKL(hx||q) is upper-bounded by DKL(q||hx)

plus variance terms. The intuition, then, is that minimizing the HL is pro-

moting an efficient search for an optimal (prediction) policy.

3.3 Bias of the Histogram Loss

Different forms of bias can be induced by components of the Histogram Loss,

namely using histogram densities, using the KL-divergence, and due to the

chosen target distribution. This section explores the effects of these compo-

nents on the bias. First we characterize the minimizer of HL and the effect

of target distribution on it. Then we show to what extent the mean of the

minimizer differs from the distribution of targets.

Through this section, we assume that the model is flexible enough so

that the predicted distribution for each input can be optimized independently.

Therefore we consider one input and drop the subscripts that show dependence

on x. In the data, each input can be associated with one or multiple targets.

More generally, we consider a distribution of targets with pdf p : Y → [0, 1]

for an input. Note that this is different from the target distribution that is

used in the HL. Targets yj are sampled from p and each one is turned into

a target distribution with pdf qj (e.g. a truncated Gaussian centered at yj if

we use HL-Gaussian, or a Dirac delta at yj if we use HL-OneBin) which is

then used to train the model with the HL. We use qy to denote the pdf of the

target distribution obtained from the target y. Finally, the model’s predicted

distribution for the input is denoted by h.

We first define a function s:

s(z) :=

∫
p(y)qy(z) dy

18

The function s is a proper pdf since it is positive at each point and sums to

one: ∫
s(z) dz =

∫ ∫
p(y)qy(z) dy dz

=

∫
p(y)(

∫
qy(z) dz) dy

=

∫
p(y) dy

= 1

Recall that HL is the cross-entropy between the predicted distribution and

the target distribution. We denote the cross-entropy between qy and h as

H(qy, h). We now find the expected value of the cross-entropy under p, and

the prediction distribution that minimizes it:

Ey∼p[H(qy, h)] =

∫
p(y)

∫
qy(z) log h(z) dz dy

=

∫
(

∫
p(y)qy(z) dy) log h(z) dz

=

∫
s(z) log h(z) dz

= H(s, h)

So, as long as s is in our function class for the prediction distribution, the

prediction distribution that minimizes the average cross-entropy is not p, but

s. In the case of the Dirac delta target distribution, s is the same as p and for

a Gaussian target distribution, s is the result of Gaussian kernel smoothing

on p.

If s is within our function class, although a Gaussian target distribution

will change the minimizer from p to s, it will not bias the predicted mean, as

we show below. Suppose g(.|µ, σ2) is the pdf of a Gaussian distribution with

mean µ and variance σ2.

Es[z] =

∫
zs(z) dz

=

∫
z

∫
g(z|y, σ2)p(y) dy dz

=

∫
p(y)

∫
zg(z|y, σ2) dz dy

19

=

∫
p(y)y dy

= Ep[y]

However, the prediction function h is restricted to a histogram in HL-Gaussian.

This restriction can bias the predictions in at least two ways. The first source

of bias is due to the fact that s is truncated to match the support of h. We do

not explore truncation here, and assume that h has a sufficiently wide support

so that there is negligible probability in tails of s beyond this range. The

second source of bias is a result of using discrete bins for prediction. We call

this bias discretization bias and quantify it.

The histogram density that minimizes the cross-entropy to s is one where

the probability in each bin is equal to the probability of s in the range of

that bin. We call this density h∗ and find the difference between the expected

values of h∗ and p.

We consider the case where all bins have equal width w. The center of bin

i and the probability of h∗ in bin i are denoted by mi and h∗i respectively and

Si := [mi − w
2
,mi + w

2
) is the range of bin i.

Eh∗ [z]− Ep[y] =
∑
i

mi

∫
Si
s(z) dz −

∫
yp(y) dy

=
∑
i

mi

∫
Si

∫
p(y)qy(z) dy dz −

∫
yp(y) dy

=

∫
p(y)

∑
i

mi

∫
Si
qy(z) dz dy −

∫
yp(y) dy

=

∫
p(y)

(∑
i

mi

∫
Si
qy(z) dz − y

)
dy

The factor inside the parantheses is the difference between y and the expected

value of the histogram density with the lowest KL-divergence from qy. We will

find this difference for the case of a Gaussian target distribution. This error

depends on y and, once this error is known, the highest discretization bias can

be found by choosing a distribution p that has all its probability on the value

of y that results in the highest error. Also note that, if qy is chosen so that

the closest histogram density to it has the expected value of y, this error is

zero and the whole discretization bias becomes zero. The proof below shows

20

that discretization bias of HL-Gaussian is bounded by ±w
2

and depends on the

choice of the parameter σ.

We will denote with m0 the center of the bin that contains y. Other bin

centers will be denoted by mi where mi := m0 + iw. Also, δ := (y − m0).

Note that δ ∈ [−w
2
, w
2
). Finally, CDF of a Gaussian with mean µ and variance

σ2 is denoted by Φµ and Fµ(a, b) := Φµ(b) − Φµ(a). (Subscripts to show the

dependence of Φ and F on σ are dropped for convenience.)

∞∑
i=−∞

mi

∫
Si
g(z|y, σ2) dz − y

=
∞∑

i=−∞

(m0 + iw)

∫
Si
g(z|y, σ2) dz − y

= m0

∞∑
i=−∞

∫
Si
g(z|y, σ2) dz + w

∞∑
i=−∞

i

∫
Si
g(z|y, σ2) dz − y (3.5)

Recall that intervals Si are disjoint and
∞⋃

i=−∞
Si = (−∞,∞). So the series in

the first term of (3.5) becomes one. Therefore

(3.5) =(m0 − y) + w

(−1∑
i=−∞

i

∫
Si
g(z|y, σ2) dz +

∞∑
i=1

i

∫
Si
g(z|y, σ2) dz

)

=− δ + w

(−1∑
i=−∞

iFy(m0 + iw − w

2
,m0 + iw +

w

2
)

+
∞∑
i=1

iFy(m0 + iw − w

2
,m0 + iw +

w

2
)

)
=− δ + w

(∞∑
i=1

(−i)Fy(m0 − iw −
w

2
,m0 − iw +

w

2
)

+
∞∑
i=1

iFy(m0 + iw − w

2
,m0 + iw +

w

2
)

)
=− δ + w

(∞∑
i=1

i(Fy(m0 + iw − w

2
,m0 + iw +

w

2
) (3.6)

− Fy(m0 − iw −
w

2
,m0 − iw +

w

2
))

)
Due to the symmetry of Gaussian distribution, Fµ(a, b) = Fµ(2µ− b, 2µ− a).

21

We define ai := iw − w
2

and bi := iw + w
2

and the series in (3.6) becomes

∞∑
i=1

i(Fy(m0 + ai,m0 + bi)− Fy(m0 − bi,m0 − ai))

=
∞∑
i=1

i(Fy(m0 + ai,m0 + bi)− Fy(2y −m0 + ai, 2y −m0 + bi))

δ:=y−m0
=

∞∑
i=1

i(Fy(y − δ + ai, y − δ + bi)− Fy(y + δ + ai, y + δ + bi))

=
∞∑
i=1

i(Φy(y − δ + bi)− Φy(y − δ + ai) + Φy(y + δ + ai)− Φy(y + δ + bi))

=
∞∑
i=1

i(−Fy(y + bi − δ, y + bi + δ) + Fy(y + ai − δ, y + ai + δ))

=−
∞∑
i=1

iFy(y + bi − δ, y + bi + δ) +
∞∑
i=1

iFy(y + ai − δ, y + ai + δ)

(3.7)

Since iw + w
2

= (i+ 1)w − w
2
, we can replace bi by ai+1 and have

(3.7) =−
∞∑
i=1

iFy(y + ai+1 − δ, y + ai+1 + δ) +
∞∑
i=1

iFy(y + ai − δ, y + ai + δ)

=−
∞∑
i=2

(i− 1)Fy(y + ai − δ, y + ai + δ) +
∞∑
i=1

iFy(y + ai − δ, y + ai + δ)

=
∞∑
i=2

Fy(y + ai − δ, y + ai + δ) + Fy(y + a1 − δ, y + a1 + δ) (3.8)

=
∞∑
i=1

Fy(y + ai − δ, y + ai + δ)

=
∞∑
i=1

F0(ai − δ, ai + δ)

=
∞∑
i=1

F0(iw −
w

2
− δ, iw − w

2
+ δ) (3.9)

where we used the method of differences to obtain (3.8). We can now plug

(3.9) into (3.6) to have

(3.6) =− δ + w

(∞∑
i=1

F0(iw −
w

2
− δ, iw − w

2
+ δ)

)
(3.10)

The sum in (3.10) consists of the area under a Gaussian pdf in some intervals.

Since δ ∈ [−w
2
, w
2
] the sum in the second term can be at most 0.5 (when δ = w

2

22

and the intervals connect to each other to form the positive half of a Gaussian

pdf) and at least −0.5 (when δ = −w
2

and the interval bounds are reversed).

So, given the bounds on δ and the sum, we can see the overall error cannot

exceed [−w,w].

However, as long as δ > 0, each term in the sum is positive and the sum

is positive (because it is a part of a Gaussian pdf) and, when δ < 0 the terms

in the sum become negative (because the integral bounds are flipped). So

the two terms in the sum will have opposite signs and will not add to each

other, and the error is bounded by (−w
2
, w
2
). This is a tight bound since the

worst case is when σ → 0 (and the loss becomes HL-OneBin) and δ = ±w
2
.

Then h∗ will have all its density on the bin that contains y and the error is

m0 − y = −δ = ∓w
2
.

This analysis characterizes the bias of the mean of the distribution that

minimizes HL-Gaussian and provides an upper bound on it that can be arbi-

trarily reduced by using smaller bins, assuming that the target distributions

have negligible probability exceeding the support of the histogram. Note that

the variance parameter affects both the quantified bias and the extent to which

the assumption is satisfied. We empirically investigate this effect in Chapter

4.

3.4 Bound on Prediction Error

An often-sought property of surrogate loss functions is reducing an upper

bound on the original objective. In this section we provide a result that shows,

if the prediction distribution and the target distributions have a similarly

bounded support, minimizing the KL-divergence between them reduces an

upper bound on the difference between the means. This result motivates

minimizing HL and using the mean of the prediction distribution as the final

prediction.

Proposition 2 Assuming that for a data point, the target distribution q and

23

the model’s prediction distribution hx have supports bounded by the range [a, b],

(E[q]− E[hx])2 ≤ (b− a)4

32
DKL(q||hx) (3.11)

Proof

|E[q]− E[hx]| =|
∫ b

a

(q(y)− hx(y))y dy|

=|
∫ b

a

(q(y)− hx(y))(
a+ b

2
) dy +

∫ b

a

(q(y)− hx(y))(y − a+ b

2
) dy|

=|0 +

∫ b

a

(q(y)− hx(y))(y − a+ b

2
) dy|

=|
∫ b−a

2

− b−a
2

(q(y +
a+ b

2
)− hx(y +

a+ b

2
))y dy|

=|
∫ 0

− b−a
2

(q(y +
a+ b

2
)− hx(y +

a+ b

2
))y dy

+

∫ b−a
2

0

(q(y +
a+ b

2
)− hx(y +

a+ b

2
))y dy|

=| −
∫ b−a

2

0

(q(−y +
a+ b

2
)− hx(−y +

a+ b

2
))y dy

+

∫ b−a
2

0

(q(y +
a+ b

2
)− hx(y +

a+ b

2
))y dy|

=|
∫ b−a

2

0

((q(y +
a+ b

2
)− hx(y +

a+ b

2
))

− (q(−y +
a+ b

2
)− hx(−y +

a+ b

2
)))y dy| (3.12)

where we have the difference between p and hx at y + a+b
2

minus the differ-

ence between these two distributions at −y + a+b
2

. Since this value is always

multiplied by a positive number, we can replace it by twice the supremum of

pointwise difference between p and hx and have

(3.12) ≤2(sup
t
|q(t)− hx(t)|)

∫ b−a
2

0

y dy

=(sup
t
|q(t)− hx(t)|)(b− a)2

4

≤(b− a)2

4
√

2

√
DKL(q||hx)

where we used Pinsker’s inequality on the last step.

24

A model trained with HL reduces DKL(q||hx) for each training data point and,

if the mean of the target distribution is close to the original label, the bound

above shows that the mean of predicted distribution is a good predictor for

the original labels in the training set if the model achieves a low training loss.

25

Chapter 4

Experiments

In this chapter, we investigate the utility of HL-Gaussian for regression, com-

pared to using an `2 loss. We particularly investigate why the modification to

this distributional loss improves performance by first comparing to baselines

to test if it is due to each of the various ways in which the two losses differ

and then designing experiments to explore other properties of the HL.

4.1 Overview of Empirical Study

The purpose of our experiments is to first show proof of concept studies and

then provide insights on the role of factors that differentiate the HL from the

`2 loss. The main goal is to understand when and why one would opt for the

HL. The datasets and the algorithms used in our experiments are described in

Sections 4.2 and 4.3 respectively.

Section 4.4 compares HL-Gaussian, `2 and several baselines, each of which

is designed to differ in a particular aspect from HL-Gaussian or `2. The com-

parison shows the importance of each of these factors. These experiments

attempt to clarify (a) if HL-Gaussian is a reasonable choice for a regression

task in practice, (b) whether the difference between the performance of HL-

Gaussian and `2 is merely because HL-Gaussian is learning a flexible distri-

bution, (c) if sensitivity of `2 to outliers can explain the difference the per-

formance of the two losses, and (d) if this difference is the result of data

augmentation in the output space when using HL-Gaussian.

In Section 4.5, we investigate the impact of discretization bias on both

26

HL-Gaussian and HL-OneBin. Previously we offered a theoretical discussion

on the effect of the target distribution and the variance parameter on this

bias in Section 3.3. The results in 4.5 show that this is indeed an important

factor at play, and can explain most of the difference between the behaviors of

HL-OneBin and HL-Gaussian. We further evaluate the models with different

numbers of bins and variance parameter to see if a bias-variance tradeoff is at

work.

In Reinforcement Learning, learning the full distribution has been likened

to auxiliary tasks that improve the performance by providing a better repre-

sentation (Bellemare, Dabney, et al. 2017). Experiments in section 4.6 test this

hypothesis in a regression setting in three ways: (a) comparing the representa-

tions of a model that learns the distribution and one that learns the expected

value, (b) evaluating a model with the main task of learning the expected

value and the auxiliary task of learning the distribution, and (c) adding the

auxiliary tasks of learning higher moments to a model that learns the expected

value.

In Section 4.7 we compare the behavior of `2, HL-OneBin, and HL-Gaussian

during the training to find if the difference in final performance is the result

of different loss surfaces. This hypothesis is related to the gradient norms of

different losses (described in Section 3.1) and has been posited by Imani and

White (2018).

Finally, Sections 4.8 and 4.9 measure the sensitivity of the HL to target

corruption and the sensitivity of the model to input perturbations. The first

experiment tests to what extent the performance of a loss deteriorates in the

presence of corrupted targets in the training data. The second experiment

studies the sensitivity of a model’s output to input perturbation, which, in

classification problems, has been closely associated with poor generalization.

4.2 Datasets and Pre-Processing

Experiments are conducted on four large-scale regression datasets. We include

an overview of the datasets in Table 4.1 and show a histogram of their targets

27

in Figure 4.1.

The CT Position dataset is from CT images of patients (Graf et al. 2011),

with 385 features and the target set to the relative location of the image.

The Song Year dataset is a subset of The Million Song Dataset (Bertin-

Mahieux et al. 2011), with 90 audio features for a song and target correspond-

ing to the release year.

The Bike Sharing dataset (Fanaee-T and Gama 2014), about hourly bike

rentals for two years, has 16 features and target set to the number of rented

bikes.

The Pole dataset (Olson et al. 2017), describes a telecommunication problem

and has 49 features.

All datasets are complete and there is no need for data imputation. All

features are transformed to have zero mean and unit variance. We randomly

split the data into train and test sets in each run. Root mean squared error

(RMSE) and mean absolute error (MAE) are reported over 5 runs, with stan-

dard errors. Other ways of processing these datasets may result in a higher

performance. The goal of this study, however, is comparing different methods

and testing hypotheses rather than achieving state-of-the-art results on these

tasks.

Dataset # train # test # feats Y range

Song Year 412276 103069 90 [1922,2011]
CT Position 42800 10700 385 [0,100]
Bike Sharing 13911 3478 16 [0,1000]

Pole 12000 3000 49 [0,100]

Table 4.1: Overview of the datasets used in the experiments.

28

Figure 4.1: Histograms of the target values for the four datasets. Each plot
shows a histogram with 30 bins, where the area of a bin is the ratio of targets
in the dataset that fall in that bin.

4.3 Algorithms

We compared several regression strategies, distribution learning approaches

and several variants of HL. All the approaches—except for Linear Regression—

use the same neural network, with differences only in the output layer. The

architecture for Song Year is 90-45-45-45-45-1 (4 hidden layers of size 45), for

Bike Sharing is 16-64-64-64-64-1, for CT Position is 385-192-192-192-192-1,

and for Pole is 49-24-24-24-1. All units employ ReLU activation, except the

last layer with linear activations. Unless specified otherwise, all networks us-

ing HL have 100 bins. The support of the histogram is chosen by the dataset

target range and 10 bins are kept for padding on each side to minimize the

effect of truncation. Meta-parameters for comparison algorithms are chosen

according to best Test MAE. Network architectures were chosen according to

best Test MAE for `2, with depth and width varied across 7 different values.

Linear Regression is included as a baseline, using ordinary least squares

with the inputs.

Squared-error `2 is the neural network trained using the `2 loss. The targets

are normalized to range [0, 1], which was needed to improve stability and ac-

29

curacy.

Absolute-error `1 is the neural network trained using the `1 loss.

`2+Noise is the same as `2, except Gaussian noise is added to the targets as

a form of augmentation. The standard deviation of the noise is selected from

{10−5, 10−4, 10−3, 10−2, 10−1}.

`2+Clipping is the same as `2, but with gradient norm clipping during train-

ing. The threshold for clipping is selected from {0.01, 0.1, 1, 10}.

HL-OneBin is the HL, with Dirac delta target distribution.

HL-Uniform is the HL, with a target distribution that mixes between a delta

distribution and the uniform distribution, with a weighting of ε on the uniform

and 1− ε on the delta, where ε ∈ {10−5, 10−4, 10−3, 10−2, 10−1}.

HL-Gaussian is the HL, with a truncated Gaussian distribution as the target

distribution. The parameter σ is set to the width of the bins.

MDN is a Mixture Density Network (Bishop 1994) that models the target

distribution as a mixture of Gaussian distributions. The original model uses

an exponential activation to model the standard deviations. However, inspired

by Lakshminarayanan et al. (2017), we used softplus activation plus a small

constant (10−2) to avoid numerical instability. We selected the number of

components from {2, 4, 8, 16, 32}. Predictions are made by taking the mean of

the mixture model given by the MDN.

`2+Softmax uses a softmax-layer with `2 loss,
∑k

i=1(fi(xj)mi − yj)2 for bin

centers mi, with otherwise the same settings as HL-Gaussian.

We used Scikit-learn (Pedregosa et al. 2011) for the implementations of

Linear Regression, and Keras (Chollet et al. 2015) for the neural network

models. All neural network models are trained with mini-batch size 256 using

the Adam optimizer (Kingma and J. Ba 2014) with a learning rate 1e-3 and

the parameters are initialized according to the method suggested by LeCun

et al. (1998). Dropout (Srivastava et al. 2014) with rate 0.05 is added to the

input layer of all neural networks for CT Scan and Song Year tasks to avoid

overfitting. We trained the networks for 1000 epochs on CT Position, 150

epochs on Song Year and 500 epochs on Bike Sharing and Pole.

30

4.4 Overall Results

We first report the relative performance of different baselines compared to

HL-Gaussian on the the four datasets in Tables 4.2 to 4.5. The error rates of

HL-Uniform are plotted separately in Figures 4.2 to 4.5 to show that, regardless

of the choice of the parameter in the loss, a uniform target distribution cannot

help performance. We focus on Test MAE as the evaluation criterion and

present Train MAE, Train RMSE, and Test RMSE to provide a complete

picture.

Method Train MAE Train RMSE Test MAE Test RMSE
Lin Reg 6.073(±0.007) 8.209(±0.006) 6.170(±0.025) 8.341(±0.025)

`2 0.140(±0.036) 0.183(±0.048) 0.176(±0.034) 0.267(±0.039)

`2+Noise 0.114(±0.011) 0.152(±0.015) 0.152(±0.010) 0.311(±0.076)

`2+Clip 0.111(±0.004) 0.143(±0.005) 0.148(±0.004) 0.231(±0.006)

`1 0.121(±0.007) 0.164(±0.007) 0.162(±0.006) 0.389(±0.038)

MDN 0.114(±0.004) 0.152(±0.005) 0.153(±0.004) 0.308(±0.035)

`2+softmax 0.065(±0.006) 0.094(±0.008) 0.105(±0.006) 0.301(±0.067)

HL-OneBin 0.309(±0.000) 0.364(±0.006) 0.335(±0.004) 0.660(±0.099)

HL-Gauss. 0.061(±0.006) 0.164(±0.090) 0.098(±0.005) 0.274(±0.090)

Table 4.2: Overall results on CT Scan. HL-Gaussian achieved the lowest Test
MAE. Among the other methods, `2+softmax yielded an error rate close to
that of HL-Gaussian, and the rest of the baselines performed worse. There
was a large gap between the performance of HL-OneBin and HL-Gaussian.

Method Train MAE Train RMSE Test MAE Test RMSE
Lin Reg 6.793(±0.003) 9.547(±0.003) 6.796(±0.007) 9.555(±0.014)

`2 5.758(±0.026) 8.137(±0.014) 6.016(±0.022) 8.690(±0.015)

`2+Noise 5.697(±0.023) 8.124(±0.006) 5.959(±0.015) 8.682(±0.022)

`2+Clip 5.749(±0.032) 8.130(±0.012) 6.009(±0.032) 8.687(±0.015)

`1 5.423(±0.010) 8.640(±0.016) 5.673(±0.006) 8.987(±0.025)

MDN 5.858(±0.020) 8.530(±0.008) 5.935(±0.025) 8.640(±0.020)

`2+softmax 5.651(±0.015) 8.067(±0.009) 5.947(±0.012) 8.685(±0.012)

HL-OneBin 5.810(±0.010) 8.487(±0.002) 5.906(±0.020) 8.636(±0.020)

HL-Gauss. 5.789(±0.004) 8.440(±0.004) 5.903(±0.010) 8.621(±0.016)

Table 4.3: Overall results on Song Year. On this dataset, `1 outperformed
HL-Gaussian in terms of Test MAE, there was not a substantial difference
between the performance of HL-OneBin and HL-Gaussian, and the rest of the
methods had higher error rates than HL-Gaussian. The differences in error
rates were small on this dataset and even Linear Regression worked well.

31

Method Train MAE Train RMSE Test MAE Test RMSE
Lin Reg 106.047(±0.215) 141.854(±0.192) 105.788(±0.738) 141.617(±0.757)

`2 14.453(±0.258) 19.487(±0.116) 31.029(±0.258) 48.205(±0.545)

`2+Noise 20.577(±0.270) 28.604(±0.325) 28.486(±0.278) 44.777(±0.747)

`2+Clip 13.221(±0.676) 18.011(±0.783) 29.404(±0.188) 46.309(±0.403)

`1 12.764(±0.250) 21.456(±0.356) 27.550(±0.258) 44.717(±0.674)

MDN 15.406(±0.192) 27.593(±0.348) 26.268(±0.342) 43.679(±0.605)

`2+softmax 11.991(±0.277) 16.799(±0.445) 27.827(±0.253) 45.825(±0.431)

HL-OneBin 15.822(±0.198) 26.065(±0.335) 26.689(±0.280) 45.150(±0.857)

HL-Gauss. 14.335(±0.152) 23.178(±0.309) 25.525(±0.331) 43.671(±0.796)

Table 4.4: Overall results on Bike Sharing. HL-Gaussian had the lowest Test
MAE on this dataset and `2 performed the worst among neural network meth-
ods.

Method Train MAE Train RMSE Test MAE Test RMSE
Lin Reg 26.523(±0.018) 30.424(±0.010) 26.662(±0.066) 30.567(±0.038)

`2 0.767(±0.016) 1.441(±0.026) 1.131(±0.024) 2.579(±0.073)

`2+Noise 0.700(±0.031) 1.406(±0.039) 1.062(±0.027) 2.529(±0.054)

`2+Clip 0.714(±0.018) 1.424(±0.024) 1.069(±0.017) 2.551(±0.103)

`1 0.637(±0.013) 1.661(±0.029) 0.938(±0.029) 2.584(±0.034)

MDN 0.648(±0.026) 1.712(±0.078) 0.895(±0.013) 2.480(±0.095)

`2+softmax 0.634(±0.017) 1.445(±0.019) 0.950(±0.016) 2.481(±0.055)

HL-OneBin 0.899(±0.015) 1.442(±0.033) 1.264(±0.019) 2.760(±0.116)

HL-Gauss. 0.347(±0.018) 1.299(±0.049) 0.714(±0.024) 2.673(±0.141)

Table 4.5: Overall results on Pole. HL-Gaussian achieved the lowest Test
MAE. The other methods did not achieve a Test MAE close to that of HL-
Gaussian, and there was a noticeable gap between the performance of HL-
OneBin and HL-Gaussian.

32

(a) RMSE (b) MAE

Figure 4.2: HL-Uniform results on CT Scan. Dotted and solid lines show train
and test errors respectively. The parameter ε is the weighting on the uniform
distribution and raising it only impaired performance.

(a) RMSE (b) MAE

Figure 4.3: HL-Uniform results on Song Year. Dotted and solid lines show
train and test errors respectively. The parameter ε is the weighting on the
uniform distribution and raising it only impaired performance.

33

(a) RMSE (b) MAE

Figure 4.4: HL-Uniform results on Bike Sharing. Dotted and solid lines show
train and test errors respectively. The parameter ε is the weighting on the
uniform distribution and raising it only impaired performance.

(a) RMSE (b) MAE

Figure 4.5: HL-Uniform results on Pole. Dotted and solid lines show train
and test errors respectively. The parameter ε is the weighting on the uniform
distribution and raising it only impaired performance.

34

The overall conclusions are that the HL-Gaussian does not harm perfor-

mance and can often considerably improve performance over alternatives.

Another observation is that modeling the output distribution is not the

reason behind HL-Gaussian’s performance. This is made clear by comparing

HL-Gaussian and MDN. MDN learns the output distribution but as a mixture

of Gaussian components rather than a histogram. In our experiments MDN

consistently underperformed HL-Gaussian. Note that the error rate reported

for MDN is the one observed after fixing numerical instabilities and tuning the

number of components.

A related idea to learning the distribution explicitly is to use data augmen-

tation as an implicit approach to minimizing divergences to distributions. We

therefore also compared to directly modifying the labels and gradients, with

`2-Noise and `2-Clipping. These model do perform slightly better than Re-

gression for some settings, but do not achieve the same gains as HL-Gaussian.

The conclusion is that HL-Gaussian’s performance cannot be attributed to

data augmentation in the targets.

A well-known weakness of the `2 loss is its sensitivity to outliers. To find

if the difference between the performance of the `2 loss and HL-Gaussian can

be explained by the presence of outliers in the dataset, we can compare HL-

Gaussian with the `1 loss which is robust to outliers. The model trained with

`1 still underperformed HL-Gaussian on three datasets, which suggests that

the gap between the performance of HL-Gaussian and the `2 loss is not merely

due to the presence of outliers in the dataset. Further experiments with other

robust losses can provide a clearer conclusion.

Choices of target distribution other than a Gaussian distribution are not

effective. HL-OneBin and HL-Uniform appear to have less advantages, as

shown in the results, and both can actually do worse than `2. A uniform

target distribution on all the datasets only worsened the error. An important

artifact of label smoothing in HL-Uniform is that it biases the mean of the

distribution. Since the mean of a uniform distribution is the center of the

range, mixing the target distribution with a uniform distribution pulls the

mean towards the center of the range.

35

Finally, `2+softmax performed close to HL-Gaussian on the CT Position

dataset and slightly worse on the other tasks. While this model does not esti-

mate the target distribution by minimizing the KL-divergence, it still benefits

from the softmax nonlinearity in the output layer like HL-Gaussian. The com-

parison between `2+softmax and HL-Gaussian shows that this softmax non-

linearity appears to be beneficial but it cannot totally explain HL-Gaussian’s

performance.

The comparisons in this section address several questions regarding HL-

Gaussian’s performance. HL-Gaussian can often work better than `2, and this

rise in performance cannot be solely attributed to learning a flexible distri-

bution, using data augmentation in the labels, being robust to outliers in the

dataset, or employing a softmax nonlinearity in the model.

4.5 Bias and the Choice of Target Distribution

Characterizing the discretization bias in Chapter 3 showed a link between the

bias of the loss and the choice of σ in HL-Gaussian. This parameter can also

affect the bias from truncation as it controls the probability in the tails of the

target distribution that exceeds the support of the histogram. This section

empirically investigates the effect of the target distribution on the bias of the

loss. We first show how different values of σ result in different levels of bias.

Then, we compare the target distributions of HL-Gaussian and HL-OneBin

with another target distribution which reduces the bias to zero. Finally, we

evaluate HL-OneBin and HL-Gaussian using different parameter values to find

if these parameters control a bias-variance trade-off.

Weightings in HL-Gaussian (which represent the area under of the target

distribution’s pdf in the range of each bin) are computed before the training,

and the histogram is trained to mimic these weightings. To obtain a low

training error, we want the mean of the trained histogram to be close to the

original target. To analyze how close the loss is to this situation in practice,

we plot the mean absolute error between the original targets in our datasets

and the mean of the histograms that perfectly match weightings obtained from

36

those targets. Figure 4.6 shows this error for HL-Gaussian with 100 bins and

different choices of σ.

Figure 4.6: MAE between the means of HL targets and the original labels. It
can be seen that extreme values of σ on either side biased the mean of the
target distributions.

This simple analysis suggests that choosing a Gaussian target distribution

with a carefully tuned variance parameter (rather than Dirac delta) can come

with the extra benefit of reducing bias. To see to what extent the gap between

HL-OneBin and HL-Gaussian’s performance is because of this bias and to find

if histogram losses in general are suffering from a large bias, we introduce

a target distribution that reduces the discretization bias to zero (regardless

of the number of bins) and compare it to HL-OneBin and HL-Gaussian in

the ordinary setting of 100 bins. As we showed in Chapter 3, if the target

distribution qy is chosen so that, for each sample, the expected value of the

closest histogram density to it is exactly y, discretization bias is zero. Assume

mi is the last bin center before y (so y is somewhere between mi and mi+1).

The idea is to use a histogram density with probability 1 − y−mi
w

in bin i and

probability y−mi
w

in bin i + 1 as the target distribution.1 The expected value

1This is close to the projection operator by Bellemare, Dabney, et al. (2017), although
that projection was introduced to fix the problem of disjoint support for discrete distribu-
tions. Rowland et al. (2018) also studied this projection operator and found its ability of
preserving the expected value to be beneficial in Reinforcement Learning.

37

of this target distribution is always y so this target distribution eliminates

discretization bias. We call the Histogram Loss with this choice of target

distribution HL-Projected and compare it with HL-OneBin and HL-Gaussian

on the four datasets.

Method Train MAE Train RMSE Test MAE Test RMSE
HL-OneBin 0.309(±0.000) 0.364(±0.006) 0.335(±0.004) 0.660(±0.099)

HL-Gauss. 0.061(±0.006) 0.164(±0.090) 0.098(±0.005) 0.274(±0.090)

HL-Projected 0.053(±0.001) 0.074(±0.002) 0.103(±0.003) 0.462(±0.065)

Table 4.6: Discretization bias experiment on CT-Scan. HL-Projected achieved
a Test MAE close to that of HL-Gaussian, and performed noticeably better
than HL-OneBin.

Method Train MAE Train RMSE Test MAE Test RMSE
HL-OneBin 5.810(±0.010) 8.487(±0.002) 5.906(±0.020) 8.636(±0.020)

HL-Gauss. 5.789(±0.004) 8.440(±0.004) 5.903(±0.010) 8.621(±0.016)

HL-Projected 5.815(±0.012) 8.477(±0.003) 5.917(±0.019) 8.629(±0.016)

Table 4.7: Discretization bias experiment on Song Year. While the Test MAE
of HL-Gaussian was slightly lower than the other methods on average, there
was no substantial difference between the performance of the the three meth-
ods.

Method Train MAE Train RMSE Test MAE Test RMSE
HL-OneBin 15.822(±0.198) 26.065(±0.335) 26.689(±0.280) 45.150(±0.857)

HL-Gauss. 14.335(±0.152) 23.178(±0.309) 25.525(±0.331) 43.671(±0.796)

HL-Projected 14.885(±0.169) 24.329(±0.329) 26.180(±0.348) 44.982(±0.845)

Table 4.8: Discretization bias experiment on Bike Sharing. HL-Projected per-
formed better than HL-OneBin and worse than HL-Gaussian. We conducted
a paired t-test on individual runs and found the difference between the Test
MAE of HL-Projected and HL-Gaussian significant (p < 0.05).

Method Train MAE Train RMSE Test MAE Test RMSE
HL-OneBin 0.899(±0.015) 1.442(±0.033) 1.264(±0.019) 2.760(±0.116)

HL-Gauss. 0.347(±0.018) 1.299(±0.049) 0.714(±0.024) 2.673(±0.141)

HL-Projected 0.364(±0.020) 1.340(±0.055) 0.741(±0.018) 2.753(±0.068)

Table 4.9: Discretization bias experiment on Pole. There is a noticeable differ-
ence between the error rates of HL-Projected and HL-OneBin. We conducted
a paired t-test on individual runs and found the difference between the Test
MAE of HL-Projected and HL-Gaussian significant (p < 0.05).

38

The comparison shows that using this target distribution instead of HL-

OneBin often results in a noticeable reduction in the errors, but the perfor-

mance of HL-Gaussian remains unbeaten. Average Test MAE for HL-Gaussian

is generally lower than HL-Projected. Although HL-Projected removes dis-

cretization bias, it still does not have HL-Gaussian’s desirable property of

punishing faraway predictions more severely.

The parameters in the loss, namely the number of bins and σ, can affect

the bias. A hypothesis is that a good choice of parameters for the HL can

reduce overfitting and place the method in a sweet spot in a bias-variance

trade-off. Two experiments were designed to find if there is a bias-variance

trade-off at work. In the first experiment we changed the number of bins while

keeping the padding and target distribution σ fixed. The second experiment

studies the effect of changing σ on the performance of HL-Gaussian. Figures

4.7 to 4.10 evaluate HL-Gaussian and HL-OneBin with different numbers of

bins, and Figures 4.11 to 4.14 show the effect of changing σ on HL-Gaussian.

(a) RMSE (b) MAE

Figure 4.7: Changing the number of bins on CT Scan. Dotted and solid lines
show train and test errors respectively. A small number of bins resulted in high
train and test errors, indicating high bias. A higher number of bins generally
did not result in a rise in test error, with the exception of HL-OneBin’s test
RMSE.

39

(a) RMSE (b) MAE

Figure 4.8: Changing the number of bins on Song Year. Dotted and solid
lines show train and test errors respectively. A small number of bins made
the train and test MAE in both HL-Gaussian and HL-OneBin slightly higher.
Increasing the number of bins did not worsen the test performance.

(a) RMSE (b) MAE

Figure 4.9: Changing the number of bins on Bike Sharing. Dotted and solid
lines show train and test errors respectively. Both train and test errors were
high with a small number of bins. Increasing the number of bins had little affect
on HL-OneBin’s test erros and no effect on the performance of HL-Gaussian.

40

(a) RMSE (b) MAE

Figure 4.10: Changing the number of bins on Pole. Dotted and solid lines show
train and test errors respectively. A small number of bins resulted in high train
and test errors in both HL-Gaussian and HL-OneBin. High numbers of bins
did not make the performance worse.

(a) RMSE (b) MAE

Figure 4.11: Changing the parameter σ on CT Scan. Dotted and solid lines
show train and test errors respectively. Extreme values of σ resulted in bad
performance. The error rates for train and test followed each other when
changing this parameter.

41

(a) RMSE (b) MAE

Figure 4.12: Changing the parameter σ on Song Year. Dotted and solid lines
show train and test errors respectively. On this dataset, with higher values
of σ the gap between train and test errors kept increasing in terms of RMSE.
This trend is less noticeable in Test MAE.

(a) RMSE (b) MAE

Figure 4.13: Changing the parameter σ on Bike Sharing. Dotted and solid
lines show train and test errors respectively. Changing σ on this dataset had
little effect on the performance, and the difference between train and test errors
remained constant.

42

(a) RMSE (b) MAE

Figure 4.14: Changing the parameter σ on Pole. Dotted and solid lines show
train and test errors respectively. A high value of σ on this dataset resulted
in considerably higher error rates. The difference between the train and Test
MAE was similar across different values of σ. In terms of RMSE, small values
of the parameter slightly increased this gap.

Evaluating different numbers of bins shows that, although the quality of

solution deteriorates when the bins are too few, there is no sign of overfitting

in HL-Gaussian with a higher number of bins. In the experiment on the σ

parameter, we observe a v-shaped pattern previously shown by (Gao et al.

2017). Increasing σ at first reduces both the train and test errors and, after

a point, both errors begin to rise. Target distributions with higher σ have

heavier tails and these high errors can be the result of truncation. Still, if a

bias-variance trade-off was present, changing this parameter would generally

result in decreasing the train error while increasing the test error in regions of

low-bias and high-variance. This trend rarely exists in the results.

The analysis in this section shows the effect of the target distribution and

the parameters of HL on the bias of the loss. Most of the gap between the

performance of HL-Gaussian and HL-OneBin can be explained by the high

bias of HL-OneBin. Both the number of bins and σ can affect the bias of the

HL, but reducing this bias generally does not result in overfitting.

43

4.6 Representation

Learning a distribution, as opposed to a single statistic, provides a more dif-

ficult target—one that could require a better representation. The hypothesis

is that amongst the functions f in the function class F , there is a set of func-

tions that can predict the targets almost equally well. To distinguish amongst

these functions, a wider range of tasks can make it more likely to select the

true function, or at least one that generalizes better. We conducted three

experiments to test the hypothesis that an improved representation is learned.

First, we trained with HL-Gaussian and `2, to obtain their representations.

We tested (a) swapping the representations and re-learning only the last layer,

(b) initializing with the other’s representation, (c) and using the same fixed

random representation for both. For (a) and (c), the optimizations for both

are convex, since the representation is fixed. If the challenge of predicting a

distribution in HL results in a better representation, one would expect the

gap between `2 and HL-Gaussian to go away when each one is trained on or

initialized with the other’s representation. Tables 4.10 to 4.13 show the results.

Loss Default Fixed Initialized Random
Train MAE `2 0.140(±0.036) 2.490(±0.094) 0.148(±0.013) 9.233(±0.157)

Train MAE HL-Gauss. 0.061(±0.006) 0.153(±0.020) 0.063(±0.002) 2.604(±0.103)

Train RMSE `2 0.183(±0.048) 3.465(±0.158) 0.205(±0.022) 12.247(±0.172)

Train RMSE HL-Gauss. 0.164(±0.090) 0.219(±0.027) 0.085(±0.004) 5.756(±0.232)

Test MAE `2 0.176(±0.034) 2.537(±0.089) 0.185(±0.013) 9.305(±0.191)

Test MAE HL-Gauss. 0.098(±0.005) 0.187(±0.019) 0.101(±0.002) 2.727(±0.113)

Test RMSE `2 0.267(±0.039) 3.551(±0.143) 0.299(±0.025) 12.315(±0.216)

Test RMSE HL-Gauss. 0.274(±0.090) 0.287(±0.024) 0.183(±0.005) 6.065(±0.234)

Table 4.10: Representation results on CT Scan. We tested (a) swapping the
representations and re-learning on the last layer (Fixed), (b) initializing with
the other’s representation (Initialized), (c) and using the same fixed random
representation for both (Random) and only learning the last layer. Using
the HL-Gaussian representation for `2 (first column, Fixed) caused a sudden
spike in error, even though the last layer in `2 was re-trained. This suggests
the representation is tuned to HL-Gaussian. The representation did not even
seem to give a boost in performance, as an initialization (second column,
Initialization). Finally, even with the same random representation, where
HL-Gaussian cannot be said to improve the representation, HL-Gaussian still
obtained substantially better performance.

44

Loss Default Fixed Initialized Random
Train MAE `2 5.758(±0.026) 6.268(±0.055) 5.743(±0.015) 8.060(±0.024)

Train MAE HL-Gauss. 5.789(±0.004) 5.682(±0.014) 5.781(±0.010) 7.942(±0.021)

Train RMSE `2 8.137(±0.014) 8.797(±0.030) 8.131(±0.003) 10.730(±0.016)

Train RMSE HL-Gauss. 8.440(±0.004) 8.130(±0.010) 8.396(±0.007) 10.691(±0.026)

Test MAE `2 6.016(±0.022) 6.338(±0.063) 5.997(±0.028) 8.069(±0.029)

Test MAE HL-Gauss. 5.903(±0.010) 5.954(±0.011) 5.900(±0.016) 7.952(±0.017)

Test RMSE `2 8.690(±0.015) 8.901(±0.046) 8.666(±0.021) 10.748(±0.014)

Test RMSE HL-Gauss. 8.621(±0.016) 8.723(±0.013) 8.603(±0.013) 10.712(±0.010)

Table 4.11: Representation results on Song Year. We tested (a) swapping
the representations and re-learning on the last layer (Fixed), (b) initializing
with the other’s representation (Initialized), (c) and using the same fixed
random representation for both (Random) and only learning the last layer.
The differences were small on this datasets, but still `2 underperformed HL-
Gaussian in all the three settings. Using HL-Gaussian’s fixed representation
only made the performance of `2 worse. As an initialization, it did not result
in a considerable improvement.

Loss Default Fixed Initialized Random
Train MAE `2 14.453(±0.258) 39.101(±1.054) 18.214(±1.154) 106.376(±0.569)

Train MAE HL-Gauss. 14.335(±0.152) 30.171(±0.469) 12.571(±0.250) 99.251(±1.069)

Train RMSE `2 19.487(±0.116) 53.545(±1.264) 23.833(±1.137) 142.523(±1.052)

Train RMSE HL-Gauss. 23.178(±0.309) 42.140(±0.664) 20.320(±0.518) 136.065(±1.283)

Test MAE `2 31.029(±0.258) 42.834(±0.983) 31.119(±0.906) 106.429(±0.982)

Test MAE HL-Gauss. 25.525(±0.331) 37.696(±0.360) 25.470(±0.202) 99.311(±1.486)

Test RMSE `2 48.205(±0.545) 59.890(±0.674) 46.735(±0.387) 143.052(±1.472)

Test RMSE HL-Gauss. 43.671(±0.796) 56.350(±0.525) 43.809(±0.593) 136.941(±1.639)

Table 4.12: Representation results on Bike Sharing. We tested (a) swapping
the representations and re-learning on the last layer (Fixed), (b) initializing
with the other’s representation (Initialized), (c) and using the same fixed
random representation for both (Random) and only learning the last layer.
On this dataset, `2 underperformed HL-Gaussian in all the three settings.
Using HL-Gaussian’s representation only made the performance of `2 worse as
shown in the Fixed and Initialized columns.

45

Loss Default Fixed Initialized Random
Train MAE `2 0.767(±0.016) 4.218(±0.325) 1.109(±0.024) 28.936(±0.176)

Train MAE HL-Gauss. 0.347(±0.018) 1.218(±0.052) 0.312(±0.010) 18.428(±0.969)

Train RMSE `2 1.441(±0.026) 6.184(±0.412) 1.836(±0.042) 33.642(±0.231)

Train RMSE HL-Gauss. 1.299(±0.049) 2.899(±0.143) 1.212(±0.027) 26.795(±0.959)

Test MAE `2 1.131(±0.024) 4.396(±0.329) 1.437(±0.053) 29.221(±0.254)

Test MAE HL-Gauss. 0.714(±0.024) 1.398(±0.021) 0.645(±0.009) 18.285(±1.062)

Test RMSE `2 2.579(±0.073) 6.423(±0.415) 2.882(±0.109) 33.944(±0.299)

Test RMSE HL-Gauss. 2.673(±0.141) 3.441(±0.093) 2.373(±0.055) 26.621(±1.043)

Table 4.13: Representation results on Pole. We tested (a) swapping the rep-
resentations and re-learning on the last layer (Fixed), (b) initializing with
the other’s representation (Initialized), (c) and using the same fixed random
representation for both (Random) and only learning the last layer. On this
dataset, `2 underperformed HL-Gaussian in all the three settings. Using HL-
Gaussian’s representation only made the performance of `2 worse as shown in
the Fixed and Initialized columns.

The results above are surprisingly conclusive. Using the representation

from HL-Gaussian does not improve performance of `2, and even under a

random representation, HL-Gaussian performs noticeably better than `2.

In the second experiment, we tested a network that predicted both the

expected value (with the `2 loss) and the distribution (using HL-Gaussian).

The predicted distribution was not used for evaluation and was only present

during the training as an auxiliary task to improve the representation. If

predicting the extra information in a distribution is the reason for the superior

performance of HL-Gaussian, a regression network with the auxiliary task

of predicting the distribution is expected to achieve a similar performance.

Figures 4.15 to 4.18 show the results on the four datasets.

46

(a) RMSE (b) MAE

Figure 4.15: Multi-Task Network results on CT Scan. The loss function is
the mean prediction’s squared error plus the distribution prediction’s KL-
divergence multiplied by a coefficient. The horizontal axis shows the coefficient
for KL-divergence. Dotted and solid lines show train and test errors respec-
tively. There was not a substantial drop in the error rate when increasing the
coefficient in the loss and the performance only became worse.

(a) RMSE (b) MAE

Figure 4.16: Multi-Task Network results on Song Year. The loss function
is the mean prediction’s squared error plus the distribution prediction’s KL-
divergence multiplied by a coefficient. The horizontal axis shows the coefficient
for KL-divergence. Dotted and solid lines show train and test errors respec-
tively. There was not a substantial drop in the error rate when increasing the
coefficient in the loss and the performance only became worse.

47

(a) RMSE (b) MAE

Figure 4.17: Multi-Task Network results on Bike Sharing. The loss function
is the mean prediction’s squared error plus the distribution prediction’s KL-
divergence multiplied by a coefficient. The horizontal axis shows the coefficient
for KL-divergence. Dotted and solid lines show train and test errors respec-
tively. There was not a substantial drop in the error rate when increasing the
coefficient in the loss and the performance only became worse.

(a) RMSE (b) MAE

Figure 4.18: Multi-Task Network results on Pole. The loss function is the mean
prediction’s squared error plus the distribution prediction’s KL-divergence
multiplied by a coefficient. The horizontal axis shows the coefficient for KL-
divergence. Dotted and solid lines show train and test errors respectively.
There was not a substantial drop in the error rate when increasing the coeffi-
cient in the loss and the performance only became worse.

48

It can be seen from these results that raising the coefficient for the auxiliary

task does not improve the performance, and the new model generally has

higher errors than HL-Gaussian. The conclusion is that the extra information

required for predicting the distribution cannot explain the gap between the `2

loss and HL-Gaussian.

It might be argued that learning a histogram is not a suitable auxiliary task

for regression, and the negative results above can be due to the incompatibility

between predicting the mean with the `2 loss and predicting the distribution

with HL-Gaussian. We trained the `2 model with another auxiliary task in

the third experiment. For the new task, predicting higher moments of the

distribution, the target is raised to higher powers and the extra outputs try to

estimate it by reducing the `2 loss. The results are shown in Figures 4.19 to

4.22.

(a) RMSE (b) MAE

Figure 4.19: Higher Moments Network results on CT Scan. The horizontal axis
shows the number of moments (including the mean). Dotted and solid lines
show train and test errors respectively. There was no substantial decrease in
error when predicting higher moments. With four moments, there was a slight
reduction in error but the new model still performed worse than HL-Gaussian
in terms of Test MAE.

49

(a) RMSE (b) MAE

Figure 4.20: Higher Moments Network results on Song Year. The horizontal
axis shows the number of moments (including the mean). Dotted and solid
lines show train and test errors respectively. There was no substantial decrease
in error when predicting higher moments on this dataset. The new model
consistently performed worse than HL-Gaussian.

(a) RMSE (b) MAE

Figure 4.21: Higher Moments Network results on Bike Sharing. The horizontal
axis shows the number of moments (including the mean). Dotted and solid
lines show train and test errors respectively. There was no substantial decrease
in error when predicting higher moments on this dataset. The new model
consistently performed worse than HL-Gaussian.

50

(a) RMSE (b) MAE

Figure 4.22: Higher Moments Network results on Pole. The horizontal axis
shows the number of moments (including the mean). Dotted and solid lines
show train and test errors respectively. There was no substantial decrease in
error when predicting higher moments on this dataset. There was a slight
reduction in error but the new model still performed worse than HL-Gaussian
in terms of Test MAE.

There is little gain in predicting higher moments and the new model still

underperforms HL-Gaussian. Like the previous experiment, predicting this

extra information about the output distribution does not appear beneficial as

an auxiliary task.

The experiments in this section consistently reject the hypothesis that

the challenge of predicting the distribution is the main factor behind HL-

Gaussian’s performance. The performance cannot be achieved by exploiting

HL-Gaussian’s representation or by predicting the histogram or higher mo-

ments of the distribution as auxiliary tasks.

4.7 Optimization Properties

In Chapter 3 we provided a bound on the gradient norm of the HL that

suggested ease of optimization with gradient descent. In this section we show

two experiments that study the optimization of the `2 loss and HL empirically.

First, we recorded the training errors and gradient norms during training

without dropout to see if using HL-Gaussian is beneficial for optimization.

Each gradient norm value was normalized by the difference between the train-

51

ing loss observed at that point in the training of the model and the minimum

possible value for the loss.2 The goal was to find which model trains faster and

has a smoother loss surface. Without the normalization of gradient norms, a

simple scaling of the loss would shrink the fluctuations of gradient norms in

the plot without making the optimization easier. Figures 4.23 to 4.26 show

the results.

(a) RMSE (b) MAE (c) Gradient norm

Figure 4.23: Training process on CT Scan. A logarithmic scale is used in the
Y axis of the rightmost plot. HL-Gaussian reduced the train errors consider-
ably faster than `2. The gradient norm of `2 was highly varying through the
training.

(a) RMSE (b) MAE (c) Gradient norm

Figure 4.24: Training process results on Song Year. A logarithmic scale is used
in the Y axis of the rightmost plot. HL-Gaussian reduced the train errors faster
than `2 although it settled on a worse training errors at the end. The gradient
norm of `2 was highly varying through the training.

2The minimum value of the `2 loss is zero. HL, however, is the cross-entropy to the target
distribution and its minimum value is the entropy of the histogram that best estimates the
target distribution.

52

(a) RMSE (b) MAE (c) Gradient norm

Figure 4.25: Training process results on Bike Sharing. A logarithmic scale is
used in the Y axis of the rightmost plot. HL-Gaussian reduced the train errors
faster than `2 early in the training and slower than `2 after around 100 epochs.
The gradient norm of `2 was highly varying through the training.

(a) RMSE (b) MAE (c) Gradient norm

Figure 4.26: Training process results on Pole. A logarithmic scale is used in
the Y axis of the rightmost plot. HL-Gaussian reduced the train errors con-
siderably faster than `2. The gradient norm of `2 was highly varying through
the training.

The results above show that HL-Gaussian shows more stable gradients

than `2 and generally needs a smaller number of steps for optimization. As

discussed in Chapter 3, these properties can explain the performance of HL-

Gaussian. In comparison with HL-OneBin, however, HL-Gaussian does not

show a noticeable benefit in optimization.

The second experiment explores the role of σ in HL-Gaussian. The benefit

of the parameter σ in HL-Gaussian can be twofold: (1) improving the final

solution and (2) improving optimization process. To compare the effect of

these two properties, we design a network, called Annealing Network, that

starts with a high σ and gradually reduces it to a small σ during the training.

The initial σ is 8 times the bin width, and during the first 20% of epochs the

current value of σ is multiplied by a constant τ at each epoch. The training

53

continues without further annealing once 20% of the epochs are finished. The

assumption is that the effect of σ on optimization shows up during the training,

unlike the effect on final solution. Therefore, if the effect on optimization is

substantial, the model that has a high σ earlier in training can benefit from it

despite its small σ at the end. Results are shown in Figures 4.27 to 4.30.

(a) RMSE (b) MAE

Figure 4.27: Annealing results on CT Scan. Dotted and solid lines show train
and test errors respectively. There was no noticeable benefit in starting with
a higher σ and reducing it though the training.

(a) RMSE (b) MAE

Figure 4.28: Annealing results on Song Year. There was a small benefit in
starting with a higher σ and reducing it though the training in terms of MAE.

54

(a) RMSE (b) MAE

Figure 4.29: Annealing results on Bike Sharing. There was no noticeable
benefit in starting with a higher σ and reducing it though the training.

(a) RMSE (b) MAE

Figure 4.30: Annealing results on Pole. There was no noticeable benefit in
starting with a higher σ and reducing it though the training.

Generally, there was little difference between the performance of a model

that started with a small value of σ and one that reached that value through

annealing. So the parameter σ does not seem to have a considerable impact

on the optimization.

The results in this section show that using the HL instead of the `2 loss

helps with optimization, which confirms the previous observation by Imani

and White (2018). However, the choice of the target distribution and the

parameter in the loss do not have a major effect on the optimization.

55

4.8 Robustness to Corrupted Targets

We tested `2 loss, `1 loss, HL-OneBin, and HL-Gaussian on datasets with

corrupted targets. At each level, we replaced a ratio of training targets with

numbers sampled uniformly from the range of targets in the dataset. Results in

Figures 4.31 to 4.34 show that HL-Gaussian and HL-OneBin are more robust

to corrupted targets than `2 but not as robust as `1.

(a) RMSE (b) MAE

Figure 4.31: Corrupted targets on CT Scan. The lines show test errors. The
`1 loss was robust to corrupted targets, and the `2 loss was affected the most.

(a) RMSE (b) MAE

Figure 4.32: Corrupted targets on Song Year. The `1 loss was robust to
corrupted targets, and the `2 loss was affected the most.

56

(a) RMSE (b) MAE

Figure 4.33: Corrupted targets on Bike Sharing. The `1 loss was robust to
corrupted targets, and the `2 loss was affected the most.

(a) RMSE (b) MAE

Figure 4.34: Corrupted targets on Pole. The `1 loss was robust to corrupted
targets, and the `2 loss was affected the most.

These results show a situation where the difference between the perfor-

mance of the HL and the `2 loss is more pronounced. Interestingly, the HL

can work worse than the `1 loss in the presence of corrupted targets. This

analysis is exploratory, and further studies on the effect of corrupted targets

in training can lead to a better understanding the differences between these

loss functions.

4.9 Sensitivity to Input Perturbations

We compared the sensitivity of the outputs of models trained with `2 loss, `1

loss, HL-OneBin, and HL-Gaussian to input perturbations. The measure we

57

used was the Frobenius norm of the Jacobian of the model’s output w.r.t. the

input. Predictions in a regression problem are scalar values, so the Jacobian

becomes a vector whose elements are the derivative of the output w.r.t. each

input feature. A high value of this measure means that a slight perturbation

in inputs will result in a drastic change in output. For a classification problem,

there are theoretical and empirical results on the connection of this measure

and generalization (Novak et al. 2018; Sokolić et al. n.d.). Also, a representa-

tion that is less sensitive to input perturbations with this measure has been

shown to improve the performance of classifiers (Rifai et al. 2011). Following

Novak et al. 2018, we evaluated this measure at the test points and reported

the average. Figures 4.35 to 4.38 summarize the results.

(a) RMSE (b) MAE

Figure 4.35: Sensitivity results on CT Scan. The horizontal axis shows the
sensitivity of the model’s output to input perturbations (left means less sensi-
tive) and the vertical axis shows the test error (lower is better). HL-Gaussian
showed less sensitivity and lower test errors than `1 and `2.

58

(a) RMSE (b) MAE

Figure 4.36: Sensitivity results on Song Year. The horizontal axis shows the
sensitivity of the model’s output to input perturbations (left means less sensi-
tive) and the vertical axis shows the test error (lower is better). HL-Gaussian
showed less sensitivity than `1 and `2, while it had a higher Test MAE than
`1.

(a) RMSE (b) MAE

Figure 4.37: Sensitivity results on Bike Sharing. The horizontal axis shows
the sensitivity of the model’s output to input perturbations (left means less
sensitive) and the vertical axis shows the test error (lower is better). HL-
Gaussian showed less sensitivity and lower test errors than `1 and `2.

59

(a) RMSE (b) MAE

Figure 4.38: Sensitivity results on Pole. The horizontal axis shows the sensitiv-
ity of the model’s output to input perturbations (left means less sensitive) and
the vertical axis shows the test error (lower is better). HL-Gaussian showed
less sensitivity and lower test errors than `1 and `2.

The results show a recurring pattern that predictions of the models that

are trained with HL are less sensitive to input perturbations than the ones

trained with `1 or `2. Further analysis is required to know why this difference

in sensitivity happens and to what extent it impacts the performance in a

regression setting.

4.10 Summary of Empirical Study

Through this section, we tested several hypotheses about the performance of

the HL. We found that

1. HL-Gaussian is a viable choice in regression and can often outperform

the `2 loss,

2. learning a flexible distribution is not why HL-Gaussian outperforms the

`2 loss,

3. data augmentation in the labels cannot explain the difference between

the performance of HL-Gaussian and the `2 loss,

4. robustness to outliers is not the reason why HL-Gaussian performs bet-

ter,

60

5. the softmax nonlinearity in HL-Gaussian is beneficial but it cannot wholly

explain its superior performance,

6. the choice of target distribution affects the bias of the loss and HL-

OneBin can suffer from a high bias,

7. there is not a considerable bias-variance trade-off controlled by the num-

ber of bins and the σ parameter,

8. predicting the full distribution does not force HL-Gaussian’s model to

learn a better representation,

9. using HL-Gaussian instead of the `2 loss helps gradient descent’s search

for a good solution,

10. the HL is more robust to corrupted targets in the dataset than the `2

loss and less robust than the `1 loss, and

11. the HL finds a model whose output is less sensitive to input perturbations

than both the `2 loss and the `1 loss.

61

Chapter 5

Conclusion

This chapter summarizes the contributions in the thesis and highlights some

future directions for research on this topic.

5.1 Contributions

Our main contribution is proposing a new loss for regression, called the His-

togram Loss, which consists of the KL-divergence between a flexible histogram

prediction and target distributions. Experiments on four datasets showed that

this loss function does not harm performance and, in fact, it often outperforms

the oft-used `2 loss without a need for careful hyper-parameter tuning.

Besides providing a solution for regression, the Histogram Loss offers a

testbed for analyzing some of the open questions in previous works. A ques-

tion that we explored in depth was one of the hypotheses put forward by

Bellemare, Dabney, et al. (2017): whether the performance gap between a

model that learns the full distribution and one that only estimates the mean

can be attributed to their representations, in a manner analogous to multi-task

learning. Our experiments suggest that this is not the case in regression. In-

stead, the bound on the gradient norm of the HL as well as its stability during

training hint at a better-behaved loss surface as an important factor in effect.

An additional factor in the HL’s performance is the softmax nonlinearity that

models the histogram distribution as we found that a minimizing the `2 loss

between the target and the mean of a histogram distribution could yield an

error rate close to that of the HL.

62

Another question was the impact of label distribution on performance,

previously mentioned in Deep Label Disribution Learning (Gao et al. 2017).

They found that, in age estimation, their particular choice of label distribution

can result in a considerably lower error compared to both one-hot targets of

DEX and label smoothing. We pointed out the similarity between the label

distribution of DLDL and a special case of HL-Gaussian in Chapter 2, and

later revealed an undiscussed factor that can explain most of this gap. The

choice of label distribution has an effect on bias of the loss, and a Gaussian

target distribution with a reasonable bandwidth can result in a lower bias than

one-hot targets. However, it is also important to note that this is not the only

benefit of a Gaussian target distribution, since even the HL with an unbiased

target distribution underperformed HL-Gaussian.

5.2 Future Work

Our results on the behavior of different models during optimization are still

preliminary and a more in-depth investigation is needed for a crisp conclu-

sion. There is a growing literature on understanding loss surfaces of neural

networks. Theoretical analyses are often insightful but require strong assump-

tions on data or model (Choromanska et al. 2015; Soltanolkotabi et al. 2018).

There is an alternative line of research that compares loss surfaces empirically

by techniques like projection on lower dimensions or slightly perturbing the

parameters in random directions (Ahmed et al. 2018; Li et al. 2018). There

are two important challenges in performing such comparison. First, intuitions

about optimization in low-dimensional surfaces do not necessarily transform

to higher dimensions. Second, sometimes (as in our setting) the surfaces com-

pared are of different dimensionalities, and this difference can be a confounding

factor.

The experiment settings and baselines in this thesis were focused on sin-

gling out and studying the points of difference between the HL and the `2

loss. Further experiments can be designed to evaluate intersections of these

factors. As a simple example, one could switch the `2 loss to the `1 loss in our

63

`2+softmax baseline. The new model can benefit from robustness to outliers

and the nonlinearity in the softmax output layer.

Another topic for future work considers the hyper-parameters of the HL.

Most of our experiments are done with the default settings of 100 bins and a

σ parameter equal to the bin width. Exploratory results on the effect of these

parameters showed that higher performance can be achieved by tuning them.

An interesting future work would be finding problem-specific or even adaptive

values for the hyper-parameters in the loss. Two other unexplored directions

are the support of the histogram and the discretization method. We chose

the range of targets in the dataset plus a padding of 10 bins on each side to

realize our assumption that the target distribution has negligible probability

beyond the support of the histogram, and discretized the range evenly. This

choice might not be reasonable in some cases. For example, consider the task of

predicting the number of views of an online video. Presence of viral videos that

heavily stretch the range of targets in the dataset will face a model designer

with a trilemma: (1) choosing a wide support that covers the targets and

finely discretizing it which results in a network with an enormous last layer, (2)

lowering the number of bins and turning to a coarse discretization which loses

information about small differences between the targets, and (3) truncating

the support which requires drawing a line between informative data points

and outliers and may also excessively limit the range of values the network

can predict. Finding a reasonable support and the best way to descretize it

are left for future work.

64

References

[1] Z. Ahmed, N. L. Roux, M. Norouzi, and D. Schuurmans, “Understanding
the impact of entropy in policy learning,” arXiv preprint arXiv:1811.11214,
2018. 63

[2] Anonymous, “Visualizing the loss landscape of neural nets,” Interna-
tional Conference on Learning Representations, 2018. [Online]. Avail-
able: https://openreview.net/forum?id=HkmaTz-0W.

[3] L. J. Ba and R. Caruana, “Do Deep Nets Really Need to be Deep?” In
Advances in Neural Information Processing Systems, 2013.

[4] J. T. Barron, “A More General Robust Loss Function.,” arXiv, 2017.

[5] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan,
A. Muldal, N. Heess, and T. Lillicrap, “Distributed distributional deter-
ministic policy gradients,” arXiv preprint arXiv:1804.08617, 2018. 2

[6] V. Belagiannis, C. Rupprecht, G. Carneiro, and N. Navab, “Robust op-
timization for deep regression,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2830–2838.

[7] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspec-
tive on reinforcement learning,” arXiv preprint arXiv:1707.06887, 2017.

2, 27, 37, 62

[8] M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshmi-
narayanan, S. Hoyer, and R. Munos, “The cramer distance as a solution
to biased wasserstein gradients,” arXiv preprint arXiv:1705.10743, 2017.

[9] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The mil-
lion song dataset.,” in Ismir, vol. 2, 2011, p. 10. 28

[10] C. M. Bishop, “Mixture density networks,” Technical Report, 1994. 30

[11] R. Caruana, “Multitask learning,” in Learning to learn, Springer, 1998,
pp. 95–133.

[12] F. Chollet et al., Keras, https://github.com/fchollet/keras, 2015. 30

[13] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surfaces of multilayer networks,” in Artificial Intelligence and
Statistics, 2015, pp. 192–204. 63

65

https://openreview.net/forum?id=HkmaTz-0W
https://github.com/fchollet/keras

[14] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y.
Bengio, “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization,” in Advances in neural informa-
tion processing systems, 2014, pp. 2933–2941.

[15] K. De Brabanter, K. Pelckmans, J. De Brabanter, M. Debruyne, J. A. K.
Suykens, M. Hubert, and B. De Moor, “Robustness of Kernel Based
Regression: A Comparison of Iterative Weighting Schemes,” in Interna-
tional Conference on Artificial Neural Networks, 2009.

[16] A. Dubey, O. Gupta, R. Raskar, I. Rahwan, and N. Naik, “Regularizing
prediction entropy enhances deep learning with limited data,”

[17] H. Fanaee-T and J. Gama, “Event labeling combining ensemble detectors
and background knowledge,” Progress in Artificial Intelligence, vol. 2,
no. 2-3, pp. 113–127, 2014. 28

[18] C. D. Freeman and J. Bruna, “Topology and geometry of half-rectified
network optimization,” arXiv preprint arXiv:1611.01540, 2016.

[19] B.-B. Gao, C. Xing, C.-W. Xie, J. Wu, and X. Geng, “Deep label dis-
tribution learning with label ambiguity,” IEEE Transactions on Image
Processing, vol. 26, no. 6, pp. 2825–2838, 2017. 4, 7, 10, 43, 63

[20] X. Geng, “Label distribution learning,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 28, no. 7, pp. 1734–1748, 2016. 4

[21] A. Ghosh, H. Kumar, and P. Sastry, “Robust loss functions under la-
bel noise for deep neural networks.,” in AAAI Conference on Artificial
Intelligence, 2017.

[22] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, 2010, pp. 249–
256.

[23] F. Graf, H.-P. Kriegel, M. Schubert, S. Pölsterl, and A. Cavallaro, “2d
image registration in ct images using radial image descriptors,” Medi-
cal Image Computing and Computer-Assisted Intervention, pp. 607–614,
2011. 28

[24] A. Gruslys, M. G. Azar, M. G. Bellemare, and R. Munos, “The reactor: A
sample-efficient actor-critic architecture,” arXiv preprint arXiv:1704.04651,
2017. 2

[25] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better: Sta-
bility of stochastic gradient descent,” arXiv preprint arXiv:1509.01240,
2015. 14, 16

[26] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W.
Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Com-
bining improvements in deep reinforcement learning,” arXiv preprint
arXiv:1710.02298, 2017. 2

66

[27] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015. 3, 4

[28] P. J. Huber, “Robust statistics,” in International Encyclopedia of Sta-
tistical Science, Springer, 2011, pp. 1248–1251.

[29] E. Imani and M. White, “Improving regression performance with dis-
tributional losses,” in Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018, 2018, pp. 2162–2171. [Online]. Available: http:
//proceedings.mlr.press/v80/imani18a.html. iii, 27, 55

[30] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014. 30

[31] D. E. Knuth, The Art of Computer Programming, Volume I: Fundamen-
tal Algorithms. Addison-Wesley, 1968.

[32] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances in
Neural Information Processing Systems, 2017, pp. 6405–6416. 30

[33] J. Langford, R. Oliveira, and B. Zadrozny, “Predicting Conditional Quan-
tiles via Reduction to Classification.,” in Conference on Uncertainty in
Artificial Intelligence, 2006.

[34] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural networks: Tricks of the trade, Springer, 1998, pp. 9–50. 30

[35] S. Lee, S. P. S. Prakash, M. Cogswell, V. Ranjan, D. Crandall, and D.
Batra, “Stochastic multiple choice learning for training diverse deep en-
sembles,” in Advances in Neural Information Processing Systems, 2016,
pp. 2119–2127.

[36] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss
landscape of neural nets,” in Advances in Neural Information Processing
Systems, 2018, pp. 6389–6399. 63

[37] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii, “Distri-
butional smoothing by virtual adversarial examples,” in International
Conference on Learning Representations, 2016.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[39] T. Morimura, M. Sugiyama, H. Kashima, H. Hachiya, and T. Tanaka,
“Nonparametric return density estimation for reinforcement learning,” in
27th international conference on machine learning (ICML), 2010, pp. 21–
25. 2

67

http://proceedings.mlr.press/v80/imani18a.html
http://proceedings.mlr.press/v80/imani18a.html

[40] T. Morimura, M. Sugiyama, H. Kashima, H. Hachiya, and T. Tanaka,
“Parametric return density estimation for reinforcement learning,” arXiv
preprint arXiv:1203.3497, 2012. 2

[41] M. Norouzi, S. Bengio, N. Jaitly, M. Schuster, Y. Wu, D. Schuurmans, et
al., “Reward augmented maximum likelihood for neural structured pre-
diction,” in Advances In Neural Information Processing Systems, 2016,
pp. 1723–1731. 7, 9–11, 13, 17, 18

[42] R. Novak, Y. Bahri, D. A. Abolafia, J. Pennington, and J. Sohl-Dickstein,
“Sensitivity and generalization in neural networks: An empirical study,”
arXiv preprint arXiv:1802.08760, 2018. 58

[43] R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H.
Moore, “Pmlb: A large benchmark suite for machine learning evaluation
and comparison,” BioData Mining, vol. 10, no. 1, p. 36, Dec. 2017, issn:
1756-0381. doi: 10.1186/s13040- 017- 0154- 4. [Online]. Available:
https://doi.org/10.1186/s13040-017-0154-4. 28

[44] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent
neural networks,” arXiv preprint arXiv:1601.06759, 2016.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011. 30

[46] G. Pereyra, G. Tucker, J. Chorowski, L. Kaiser, and G. Hinton, “Reg-
ularizing neural networks by penalizing confident output distributions,”
arXiv preprint arXiv:1701.06548, 2017. 10

[47] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in Proceed-
ings of the 28th International Conference on International Conference
on Machine Learning, Omnipress, 2011, pp. 833–840. 58

[48] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Ben-
gio, “FitNets: Hints for Thin Deep Nets,” in International Conference
on Learning Representations, 2014.

[49] R. Rothe, R. Timofte, and L. Van Gool, “Dex: Deep expectation of ap-
parent age from a single image,” in Proceedings of the IEEE International
Conference on Computer Vision Workshops, 2015, pp. 10–15. 2

[50] ——, “Deep expectation of real and apparent age from a single image
without facial landmarks,” International Journal of Computer Vision,
vol. 126, no. 2, pp. 144–157, 2018. 10

[51] M. Rowland, M. G. Bellemare, W. Dabney, R. Munos, and Y. W. Teh,
“An analysis of categorical distributional reinforcement learning,” arXiv
preprint arXiv:1802.08163, 2018. 2, 37

68

https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1186/s13040-017-0154-4

[52] C. Rupprecht, I. Laina, M. Baust, F. Tombari, G. D. Hager, and N.
Navab, “Learning in an uncertain world: Representing ambiguity through
multiple hypotheses,” arXiv preprint arXiv:1612.00197, 2016.

[53] W. Shen, Y. Guo, Y. Wang, K. Zhao, B. Wang, and A. Yuille, “Deep
regression forests for age estimation,” arXiv preprint arXiv:1712.07195,
2017.

[54] W. Shen, K. Zhao, Y. Guo, and A. Yuille, “Label distribution learning
forests,” arXiv preprint arXiv:1702.06086, 2017.

[55] K. Sohn, H. Lee, and X. Yan, “Learning structured output representa-
tion using deep conditional generative models,” in Advances in Neural
Information Processing Systems, 2015, pp. 3483–3491.

[56] J. Sokolić, R. Giryes, G. Sapiro, and M. R. Rodrigues, “Robust large
margin deep neural networks,” IEEE Transactions on Signal Processing,
vol. 65, no. 16, pp. 4265–4280, 58

[57] M. Soltanolkotabi, A. Javanmard, and J. D. Lee, “Theoretical insights
into the optimization landscape of over-parameterized shallow neural
networks,” IEEE Transactions on Information Theory, 2018. 63

[58] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014. 30

[59] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
2018.

[60] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818–2826. 3, 7, 9–11

[61] Y. Tang and R. R. Salakhutdinov, “Learning stochastic feedforward neu-
ral networks,” in Advances in Neural Information Processing Systems,
2013, pp. 530–538.

[62] G. Urban, K. J. Geras, S. E. Kahou, Ö. Aslan, S. Wang, R. Caruana, A.
Mohamed, M. Philipose, and M. Richardson, “Do Deep Convolutional
Nets Really Need to be Deep and Convolutional?” In International Con-
ference on Machine Learning, 2016.

[63] L. Wasserman, All of Statistics: A Concise Course in Statistical Infer-
ence. Springer, 2004. 11

[64] L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian, “DisturbLabel: Regular-
izing CNN on the Loss Layer,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition, 2016.

69

	Introduction
	Distributional Losses for Regression
	The Histogram Loss
	Target Distributions

	Theoretical Analysis
	Stable gradients for HL
	Connection to Reinforcement Learning
	Bias of the Histogram Loss
	Bound on Prediction Error

	Experiments
	Overview of Empirical Study
	Datasets and Pre-Processing
	Algorithms
	Overall Results
	Bias and the Choice of Target Distribution
	Representation
	Optimization Properties
	Robustness to Corrupted Targets
	Sensitivity to Input Perturbations
	Summary of Empirical Study

	Conclusion
	Contributions
	Future Work

	References

