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Chapter 1

Introduction

The thesis consists of three independent parts. The first part, Chapter 2, is 

based on the paper - Jan Rychtaf: Pointwise uniformly rotund norms, accepted 

for publication in the Proceedings of the American M athem atical Society. The 

second part, C hapter 3, is based on the paper Jan Rychtaf: On biorthogonal 

systems and M azur’s intersection property, Bulletin of Australian M athem atical 

Society, vol. 69 (2004), pages 107-111. The th ird  part, C hapter 4, is based 

on the paper Jan Rychtaf: On Gateaux differentiability o f convex functions  

in WCG spaces, accepted for publication in Canadian M athem atical Bulletin. 

Only minor changes of format or presentation were made to the above papers 

to  fit them  bette r into this thesis. Appendices contain additional m aterial and 

remarks not covered in the final versions of the above papers.

The main concept of this thesis is a concept of renorming. Renorming a 

Banach space means replacing the original norm by a norm th a t generates the 

same topology. Usually, and this is the reason why renorming is so im portant, 

the new norm has certain additional “desirable” properties, for example a cer­

tain  type of convexity or smoothness. We refer to  [7], [10], [12] and [18] as to 

excellent books and survey articles on renorming.

An im portant tool for introducing a new equivalent norm is a notion of

1
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Markushevich basis. This relatively weak notion of basis allows us to  use co­

ordinates which is particularly useful when we are introducing a formula for a 

new equivalent norm.

Chapter 2 studies topological properties of compact sets. The main idea is 

th a t topological properties of a compact set K  influence geometrical properties 

of C ( K )  and M ( K ) =  C(K)*.  And, since A  is in a natural way a subspace of 

(C ( K ) * , w *), properties of K  are influenced by properties of C ( K )  and M ( K ) .

The problem of finding a property of K  th a t can be characterized by a 

convexity property of C ( K )  goes back to  Dashiell and Lindenstrauss, [6 ]. They 

investigated renorming by a strictly convex norm. Since then, a lot of work has 

been done trying to  find a necessary and sufficient condition on K  for C ( K )  to 

adm it an equivalent strictly convex norm (see e.g. [5, Notes for Chapters 6  and 

7]). However, all “reasonable” properties were either too strong - like carrying 

a strictly positive measure, see [2] and [5, Chapter 6 ]; or too weak - like having 

a property ccc, see [3] and [5, Chapter 7]. It is unclear, whether an existence of 

an equivalent strictly convex norm on C ( K ) implies some “natu ra l” topological 

property of K  a t all.

The work of Rosenthal, [17], suggested th a t stronger convexity property of 

norm on C ( K )  (being uniformly convex in every direction) can imply topolog­

ical property of K  (having property ccc) - see Appendix A.2 for details. This 

led to  the characterization of compacts carrying a strictly positive measure by 

renorming a space C ( K )  by a pointwise uniformly rotund norm, which is prob­

ably the most significant result of the Chapter 2  and the only known result of 

this type.

There are several natural topological properties of compact sets from the 

view of functional analysis. The fundamental ones are being Eberlein compact,

i.e. homeomorphic to a weakly compact set in a Banach space, and being uni­

form Eberlein compact, i.e. homeomorphic to a weakly compact set in a Hilbert 

space. The work of Amir and Lindenstrauss, [1], Benyamini and Starbird,[4],

2
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and Fabian, Godefroy and Zizler, [9], clearly illustrates the relationship be­

tween smoothness of a Banach space X , convexity of its dual X*  and the type 

of compactness of the dual unit ball in X*  equipped with weak* topology.

In C hapter 3 we study biorthogonal systems. In particular, we are trying to 

find connections between the following three properties of a Banach space X:  

the existence of a shrinking Markushevich basis, being an Asplund space, and 

having an equivalent Frechet smooth norm. It was known th a t all the above 

properties are equivalent if a dual unit ball of X*  is a Corson compact in weak* 

topology, see [18]. The main result of this chapter reads th a t the spirit of the 

above equivalence is preserved even when we drop the condition on the dual 

unit ball. More precisely, existence of a subspace of X  having one of the above 

property implies an existence of a (possibly different, yet “of the same size” ) 

subspace of X  having all of the above properties simultaneously. We refer to 

[7] and [18] for more results on this subject.

We also use biorthogonal systems to  show th a t a “big” subspace with a 

Frechet smooth norm can be renormed and the resulting norm can be extended 

to the whole space to  a norm with M azur’s intersection property. Norms with 

the above property were extensively studied in [15] and [11]. In [13] authors 

used biorthogonal systems and results from [1 1 ] to  find a sufficient condition for 

a Banach space to adm it an equivalent norm with M azur’s intersection property.

In C hapter 4 we study the differentiability of convex functions on a Banach 

space X .  Our aim is to prove th a t the set of G ateaux differentiability points of 

any convex function is “big” . Heuristically, the bigger the set of differentiability 

points the “bette r” the function and the easier to handle such function, for 

example for a purpose of finding a minima or maxima. It is known (see e.g.

[16] and [8 ]) th a t the set of G ateaux differentiability points of convex functions 

on a separable or even weakly compactly generated space is norm dense. T his 

reads th a t for every x 0 £ X  and every closed ball B  C X  there is a point of 

differentiability in the set Xq +  B.  Our main result extends naturally this notion

3
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of density - instead of using balls, we use any weakly compact convex symmetric 

and linearly dense set B.  Thus our result extends naturally a result of Klee, see

[14], from separable spaces - where he used compact sets - to  spaces th a t are 

weakly compactly generated.

4
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Chapter 2

Pointwise uniformly rotund 

norms1

2.1 Definitions

Let X  be a Banach space. If F  is a closed, weak* dense subspace of X *, then a 

norm ||.|| on X  is said to  be F-uniformly rotund (URF)  if lim f ( x n — yn) =  0
n —►00

for every f  £ F  and every x n, yn G X  such th a t ||a;n || =  \\yn \\ =  1 and 

lim \\xn +  yn 11 =  2. The norm is called pointwise uniformly rotund (p-UR) if it
n — >oo

is URF for some weak* dense F  C  X*, (see [20],[19]). In particular, the norm 

on X  = Y*  is called weak* uniformly rotund, if it is URy with the canonical 

embedding Y  C X* = Y**. The norm ||.|| is called uniformly rotund in every 

direction (URED) if lim \\xn — yn \\ =  0 for every x n,y n G X  such th a t ||xn || =
n —>00

||y„|| =  1, lim ||a:n + yn || =  2, and x n -  yn £ span{z0} for some z0 E X .
71—> 0 0

A measure n  on a compact space K  is said to  be strictly positive if y(U)  > 0 

for every nonempty open set U C K.  A compact space K  is called a uniform  

Eberlein compact if K  is homeomorphic to  a weakly compact set in a Hilbert

1A version of this chapter has been accepted for publication in Proceedings of the American 
Mathematical Society.
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space, [3]. A family 91 of subsets of a compact space K  is said to  be a network 

if every open set in i f  is a union of members of 91 A compact space K  is
OO

descriptive if there are closed sets A n C K  and a network 91 =  9l„ such
n—1

that, for all n  G N, 9Tn consists of relatively open and pairwise disjoint sets in 

A n, [18, Lemma 3.1]. A compact space (K , r )  is fragmentable, if there is a metric 

g on K  such th a t for every e >  0 and every nonempty subset M  C K  there 

exists a r-open set 12 C K  such th a t M  n  (A  is nonempty and has p-diameter 

less then e, [7],[16]. A Banach space X  is weakly compactly generated if there 

is a weakly compact set K  C X  such th a t X  =  span K . For unexplained term s 

used in this paper we refer to [7] and [9].

2.2 R esults

Clearly, every p-UR norm is URED. URED norms are used in fixed point theory, 

see e.g. [5]. It turned out th a t p-UR norms can be used in characterizing some 

properties of compact spaces as follows.

T h e o re m  2 . 1  Let K  be a compact space. The following are equivalent.

(1) The space C ( K ) o f continuous functions on K  admits an equivalent point- 

wise uniformly rotund norm.

(2 ) K  carries a strictly positive Radon probability.

T h e o re m  2.2 Let K  be a compact space. The following are equivalent.

(1) The space C(K)* admits a pointwise uniformly rotund (in general non­

dual) norm.

(2) The space Li{p)  is separable fo r  every Radon probability p  on K .

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The following theorems show how are other properties of compact sets re­

lated to p-UR renorming of C(K)*.

T h e o re m  2.3 I f K  is a descriptive compact space, then C(K)* admits an equiv­

alent dual pointwise uniformly rotund norm.

T h e o re m  2.4  There exists a non-descriptive compact space K  such that C(K)*  

admits an equivalent dual pointwise uniformly rotund norm.

T h e o re m  2.5 I f  K  is a fragmentable compact space, then C(K)* admits an 

equivalent pointwise uniformly rotund norm. Consequently, the space L\ (p)  is 

separable fo r  every Radon probability p. on a fragmentable compact K .

It also turned out th a t renormings by pointwise uniformly rotund norms are 

im portant in the class of L x-spaces.

T h e o re m  2.6 Let p  be a finite measure. Then L] (p) admits an equivalent 

pointwise uniformly rotund norm i f  and only i f  Li (p)  is separable.

Finally, the next theorem shows how is p-UR renorming of a Banach space 

X  related to the topology of weakly compact subsets X .

T h e o re m  2.7  I f  a Banach space X  admits an equivalent pointwise uniformly 

rotund norm, then every weakly compact subset o f X  is a uniform Eberlein 

compact.

10
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2.3 Proofs

P r o o f  o f  T h e o re m  2.7. By Smulyan’s type theorem [5, Theorem 2.6.7], if the 

norm ||.|| on a Banach space X  is URF , then the limit

ii i i / + m i ' - i i / i i ’ (21)

exists for every g G X*, ||g||* =  1 and is uniform in f  G F, \\f\\* =  1, where 

||.||* is the dual norm to ||.||. In particular, the norm ||.||* is uniformly G ateaux 

smooth on F.  By [8 ], the dual unit ball B F« is a uniform Eberlein compact 

in weak* topology of F*. Hence, by [2], F  is a subspace of weakly compactly 

generated space C ( B F*)•

For a given weak* dense subspace F  C X * , let an operator T  : X  —> F* 

be given by T  = r o i, where i : X  —► X** is the canonical inclusion and 

r  : X** —> F* is the canonical restriction. The operator T  is one-to-one and 

cr(X,X*)  — a(F* , F)  continuous. Since B F* is a uniform Eberlein compact 

in u(F*, F)  topology, T ( K ) is a uniform Eberlein compact for every weakly 

compact set K  c l .  Hence K  is a uniform Eberlein compact and the proof of 

the Theorem 2.7 is finished. □

Note, th a t if F  adm its a uniformly G ateaux smooth norm then F* adm its a 

weak* uniformly rotund norm (see [5, Theorem 2.6.7]), and thus the norm |||.||| 

on X  defined by

IIMII2 =  IMI2 +  l l ^ l l 2

is an equivalent URF norm.

P ro o f  o f  T h e o re m  2.1. Let g  be a strictly positive Radon probability measure 

on K .  Then the identity map I : C ( K ) —> L^ip) is one-to-one and with a dense

11
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range. Thus the norm |||.||| defined on C( K)  by

+  IIA/IILm

is an equivalent URF norm, where F  =  span /* (L 2 (/t)) C C(K)*.

Conversely, if C( K )  adm its an equivalent URF norm, then F  is a subspace of 

a weakly compactly generated space (see the proof of Theorem 2.7). Thus ^i(T) 

is not a subspace of F  for any uncountable set T, see [9, Chapter 11], By [17, 

Lemma 1.3], there is a Radon probability //o n  K  such th a t F  C Zu(/t) C C(K)*.  

Note th a t the measure // is strictly positive as F  is weak* dense in C(K)*.  This 

concludes the proof of Theorem 2.1. □

P r o o f  o f  T h e o re m  2.6. If L i(/t) is separable, then it adm its an equivalent 

p-UR norm with the same proof as of [5, Corollary 2.6.9]. Assume th a t L i(/t) 

is nonseparable and adm its an equivalent URF norm. We claim th a t F  is norm 

separable. This means th a t L\{p)*  is weak* separable, which is a contradiction 

with [9, Theorem 11.3].

To prove our claim, let us identify L \ (//)*= L ^ p )  w ith C(f2) where 12 is 

a Stonian space for measure q (see [4, Appendix B] for details). Since the 

measure //, is finite, the space Li(ji)*  admits an equivalent weak* uniformly 

rotund norm. By Theorem 2.1, 12 carries a strictly positive probability measure. 

In particular, 12 has a property ccc, th a t is every collection of pairwise disjoint 

open sets of 12 is countable. Thus we only need to  prove the following fact, 

which is a version of [17, Theorem 4.5. (a) and Proposition 4.7].

F ac t 2.8 Let 12 be a compact space with a property ccc and X  c  C(12) be iso­

morphic to a subspace o f weakly compactly generated space. Then X  is separable.

P ro o f . By [7, Theorem 7.2.2], there exists a Markushevich basis of X , i.e. 

a biorthogonal system {x 1, / 7}76r C X  x X*  such th a t span{rr7 ; 7  6 T} =  I

12
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and { /7; 7  G F} separates points of X .  We may and do assume th a t ||x7 || =  3.
OO

By [10], there exists a decomposition of T =  (^J Tn such tha t, for every n  G N,
n=  1

0 ^  {x7 ; 7  €  r n}CT(X } \  {z7 ; 7  G r„ }  C B x **• (2 .2 )

Take n  such th a t Tn is uncountable and define open sets C/ 7  C 11 by 

U1 — {w G fl; |x7 (o;)| >  2} for 7  G Tn.

OO

Since Q, has ccc, there is a sequence {7 *}^! C Fn such th a t n  V . *  8 . [17,
i = 1

00

Lemma 4.2], Thus there is w G f |  Ult such th a t (r7t (cj) >  2 for every i G N, a
i = 1

contradiction with (2.2). Thus X  is separable. This concludes the proof of Fact 

2.8 and the proof of Theorem 2.6 is complete. □

R e m a rk . After a subm ittion of the original paper to Proceedings of the Amer­

ican M athem atical Society, we have learned th a t Theorem 2.6 was proved by a

different m ethod in [6 ]. See also Appendix A for another proof.

P r o o f  o f  T h e o re m  2 .2 . Theorem follows easily from Theorem 2.6 and the

K akutani’s Theorem, see e.g. [15]. □

P r o o f  o f  T h e o re m  2.3. Let ||.||i be the canonical dual norm on C(K)*.  Fix
OO

the family =  [ J  given by the definition of descriptivity of K.  Consider
n—1

m  C C{K)** by the action N(fi)  =  /j, ( N )  for N  G Tt and n  G C(K)*.  Let

F  =  span fit. We will show th a t there is an equivalent dual URF norm on

C(K)*.

We claim th a t F  is weak* dense in C(K)**.  Indeed, p(G ) =  0 for all open

G C K  whenever p(Ar) =  0 for all N  G 01, as At is a u-isolated network

consisting of relatively open pairwise disjoint sets.

13
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Define a norm ||.|| on C(K)*  in four steps, similarly as in [18, Proof of 

Theorem 3.3]. First, for every n  £ N, define a convex function Fn on C(K)*  by

F M * =  E  M  W 2-

The function Fn is weak* lower semi-continuous on C ( A n)*. Second, for every 

n, m  £ N, define a weak* lower semi-continuous seminorm ||.||m,n on C(K)*  by

M \ m,n =  in fjllM -w lli + m ~ 1Fn(u)2;u  £ C(An)*J.

Third, define an equivalent dual norm on C(K)*  by

iicin = m i ; + E
m,n€  N

C la im  2.9

lim -  vu)(N) =  0, (2.3)OJ—*00

fo r  all n  £  N, N  £  9ln and all positive measures pLu ,uu £ C( K) * , lv £ N such

that ]|Huj111 <  1 , |K | | i  <  1 ; and

lim 2|KII+ +  2IMI+ -  IK  +  ^ ||+  =  0. (2.4)
CO— * 0 0  1

Once the claim is proved, finally define a norm ||.|| by

INI2 =  inf{|K II+ +  IKII+; & e  M(K),Hi > o,/i =  ^  ~ ^ 2}- (2.5)

Using the compactness argument, it follows from the weak* lower semicontinuity 

of ||.||+ that the infimum in (2.5) is attained for every n £ C(K)*  and that the 

norm ||.|| is an equivalent dual norm on C(K)*.  Thus (2.3) holds whenever

IK| |  =  1 — IK||  and lim |K  +  vu\\ =  2. Hence, the norm ||.|| is URF.

14
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P ro o f  o f  C la im  2.9. Fix n £  N and N  £  Tln. From (2.4) and a convexity 

argument,

lim 2 \\^ \ \2 +  2 \\u J 2 -  {In,, +  u j 2 =  0 , (2 .6 )
U) —►OO

for every m  £  N. From a compactness argument, for every oj, m  £  N, there are 

positive measures u™,n,v™,n £ C{A^)* such tha t

11 AC \ \m,n =  11^ -  *C "lli +  m - 'F n itC * )2, ^ d  (2.7)

\ Kf m, n  = \ K - v 7 n \\5 +  m - 1F „ ( C " ) a. (2 .8 )

Consequently,

Fn(iC 'n) <  m||po,|U,n <  m \\nw\\i < m  

and similarly Fn{v™’n) <  m. By passing to  a subsequence, we may assume th a t

lim ||/^a)||m,n dmn lim 11 11 m,ri •
D —►OO LO— >OC

The sequence {||p||m,n}m=i is nonincreasing for every measure p  £ C(K)*.  Thus

there is dn =  lim dm n . Choose e > 0 and let m 0 G N be such th a t dmnn <m—>00 ’ *
dn + e. We will estim ate \{fiw — uu)(N)\  by

|(pw -  vZ°’n) (N )| +  | ( C ° ’" -  v™ ’n)(N )| +  -  uu ) ( N )|.

By a convexity argument and (2.6), (2.7), (2.8),

Jim  2F n « ° ’n ) 2 +  2Fn(v™0,n)2 -  Fn(u™°’n +  v ^ nf  =  0.

Since u™°’n and are positive measures, by a convexity argument again

lim \(u™°'n -  v™°’n)(N)\  = 0 .
10—+OO 1

15
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In order to estimate |(p,w — u™0,n)(N)  |, consider a measure

u  =  ^  \n  +u™0,n \k \n

in the definition of ||/iu,||m,n, where ji means the restriction of /x on A  C K . 

We get

I M m,n <  IK/C -  U™°'n ) \k \N  II? +  m ~ XFn (Hu \N  + U ™ °’n \K \ N ) 2

<  \ \ ( ^ - u ™ ° ’n) \k \ n  I I ? + m - 1(F n ( ^  W + F n ( C n k w ) ) 2

<  IK/C -  < ° ’n) firw  II? +  + Fn(u™°’n))2

<  ||(nw - i C ° ’n) \K\N ||? +  m _1(l + m 0)2.

Thus, for all m  € N,

lim sup ||(>w -  fk \n  ||? >  lim ||/c||™,„ “  m _ 1 ( 1 +  m o)2,
w—>oo >oo

lim sup IK/iy -  u™°’n) \K\N ||? >  d2mn -  m ~ 1( 1 +  m 0)2, and
U/—»00

lim sup IK/r^ — u™0,n) \k \n  ||? >  d2n.
u>—>oc

For all w G N we have

| ( ^ - < ° ’n)(iV)| <  \ \ ( ^ - u T ' n) M i

=  l l / c - t C ’1 I M K / c - < M  M I K

<  ||/C|Lo,n ~  IK/C ~U™°'n) \K\N Hl

Thus

lim m f|(/C  -  u™°’n)(N)\  <  dTOo,n - d n < e .

The same estim ate holds for \{vw -  v™°'n) (N )|. The proof of Claim 2.9 and 

Theorem 2.3 is now complete. □

16
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P ro o f  o f  T h e o re m  2.4. First, we prove the following claim, which is a version 

of [11, Theorem 7.1].

C la im  2.10 Suppose that on a tree T  there is an increasing function g : T  —>• M 

which is constant on no strictly increasing sequence in T . Then there is an 

equivalent dual p-UR norm on Cq(T)*.

P ro o f  o f  C la im  2.10. The space Co(T)* can be identified with t \ (T )  w ith 

the canonical dual norm \\p\\i =  YhteT I^Wi- Let us define T + as the set of 

successors and T0 as the set of all t  E T + such th a t g(t) > g(t~).  We may 

modify the function g so th a t it takes rational values at all points of T0.

We will show, th a t there is an equivalent dual U RF norm where

F  =  span {{{»};« 6  T+} U {[»,oo); s €  To} U {T}} c  U T ) .

We claim th a t F  is weak*-dense in Cq(T)**. To prove it, let p  E C(T)*  be 

such th a t p ( f )  =  0 for all /  E F.  We want to  show th a t p{{t})  — 0 for 

all t  E T.  Choose t  E T  and put Aft )  =  { u \ u  E (t ,oo),g(u)  =  p(t)} and 

B(t )  =  min{« E (t , oo); g(u) > g(t)}. We have

(t, oo) =  (J {u}U (J [«,oo).
u£A(t) u€B(t)

The union above is a union of disjoint open sets and \p\ is non zero at most 

on countable many of them. Hence p((t ,  oo)) =  0. Thus p([t, oo)) =  0 for all 

t  E T +. Since

( 0 , t ] = T \ U (  U  I’- '00))-
s< t  r£s+ \(0 ,t]

we have th a t /r((0, t]) =  0 for all t  e T.  Every limit element t  e T  is a limit of a 

sequence (of elements of T0), thus p((Q,t)) = 0 for all t  E T.  Hence /n({t}) =  0 

for all t E T.

17
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For every q G Q, the wedges [s, oo ), with s G T0 and o(s) = q are disjoint, 

so we can define an equivalent dual norm on C(T)* by

11/ ^11+ =  I N I ?  +  1 1 ^  I ' m  H i +  X / c « (  I I a 4 t b . o o )  H i ) )
seT +  qe Q seX o flg -q g )

where cq are some positive constants.

Let n n,v n G C'o(T)* be positive elements such th a t ||/in || <  1, \\un \\ < 1 and

lim 2 ||/in ||^ +  2\\un \\2+ -  \\nn +  un \\2+ = 0 .
n—+oo

A standard  convexity argument shows tha t

lim 0 „  -  vn)(T) =  0, lim (/in -  vn)(s) =  0,
n—>oo n—>oo

for all s G T +, and

lim (/i„ -  i/„)([s,oo)) =  0 ,
n —> 0 0  v /

for any s G T0. Thus the norm ||.|| defined by (2.5) is URF . This concludes the 

proof of Claim 2.10. □

Now, let A be a tree defined in [11, Section 10] and K  be its Alexandroff 

compactification. Then C(K)*  adm its an equivalent dual p-UR norm by Claim 

2.10. The space C(K)*  does not admit any equivalent dual locally uniformly 

rotund norm, since C ( K ) does not adm it an equivalent Frechet smooth norm 

[11, Corollary 10.9]. Thus K  is not a descriptive compact space by [18, Corollary 

4.9]. The proof of Theorem 2.4 is complete. □

P ro o f  o f  T h e o re m  2.5. Let AT be a fragmentable compact. By [7, Theorem 

5.1.9 and Proof of Theorem 5.1.12(iii)], there is a family i t  =  (J^ =1 iU  of subsets 

of K  such th a t

18
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1. i l  is a separating family, i.e. if x  y £ K  then there is U G i i  such th a t 

#17 n  { x , y }  =  1.

2 . i i  is a network.

3. for every n  €  N, il„  is an open partitioning, i.e. i ln =  {U^: £ <  £„} is well

ordered such th a t is contained and is relatively open in K  \  (U u *)
v<£

for every £ <  £n and K  =

4. for every U €  iin+i there is V C il„ such th a t U C V.

As U n  is an open partitioning, it follows th a t

E  m = ^ k ).
t/eiti

Define equivalent norms on C(K)*

OO

iw ii  =  w 2 w + E 2' ” E
n = l Ueiin

and

M \ 2 =  in f d l / i ! ^  +  H//2 II+; fM G C(K)*,  M i > 0 , f i  = fii1 -  /^2>• (2.9)

Prom a definition of a norm ||.||+ it follows th a t \\fx\\2 =  ||/U+ ||+ +  ||//“ || + . Let 

F  — span{bT; U S il} C C(K)**.  We will show th a t the norm ||.|| is URF . Note 

th a t F  C C(K)** is weak* dense. Indeed, assume n(JJ) =  0 for all U E i i  and
OO

let G  C K  be an open set. Since i l  is a network, we have G  =  [ J  ( ( J i 4 ) ,
n= 1

where for every n  e  N, il^ is a subfamily of i V  Moreover, by the condition (4),

19
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we may assume th a t 11̂  fl l l 'rt =  0 for rn ^  n. Thus

OO OO OO

mg)=dlJdK)) = E d lK )=E  E  M£0=o,
n = 1  n = l  n = l  C / e i l '

where the th ird  equality hold as iX^’s are relatively open partitioning. Thus, by 

a convexity argument, the norm ||.|| is URF .

The proof of Theorem 2.5 is complete. □

2.4 Remarks

For any finite measure q, the space L] (/i) admits an equivalent URED norm by

[13], see also [5, Theorem 2.7.16]. Consequently, by Theorem 2.6, nonseparable 

Li{n)  adm its an equivalent URED norm and no p-UR norm. This is connected 

to [20, Problem 1], Moreover, every weakly compact subset of L 1(p) is a uniform 

Eberlein compact [1, Section 4], Thus the converse of Theorem 2.7 does not 

hold even in WCG spaces. This is connected to [1, Problem 2.9].

There are fragmentable compact spaces such th a t C(K)*  adm its no dual 

strictly convex norm (e.g. [0, oq], see [5, Theorem 7.5.2]) and thus no dual p- 

UR norm (cf. Theorem 2.5). It was proved in [21, Theorem 2] th a t Li(fi)  is 

separable for every Radon probability n  on a compact subset of first Baire class. 

Thus split interval S ( I ) is a nonfragmentable compact satisfying the conclusion 

of Theorem 2.5. By [13] and K akutani’s Theorem, C{K)*  adm its an equivalent 

URED norm for every compact K.  The space U7([0,1]I0’1!)* does not adm it 

an equivalent p-UR norm, as Ti(A) is nonseparable, where A is a product of 

Lebesgue measures on [0,1].

By [18], if C(K)*  adm its a dual weak* locally uniformly rotund norm, then 

K  is descriptive. Thus by Theorem 2.3, C(K)*  adm its an equivalent dual p-UR 

norm. By [7, Theorem 5.3.1], if C(K)*  adm its a dual strictly convex norm, then

20
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K  is fragmentable and thus, by Theorem 2.5, C(K)*  admits an equivalent p-UR 

norm. We do not know if C(K)*  adm its an equivalent dual p-UR norm.

As shown in [14], there is a reflexive Banach space th a t does not adm it any 

equivalent norm th a t is uniformly rotund in every direction. Thus this space 

does not adm it any equivalent p-UR norm, although it adm its an equivalent 

dual locally uniformly rotund norm.

21
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Chapter 3

On biorthogonal systems and 

Mazur’s intersection property1

3.1 Definitions

A biorthogonal system  in a Banach space X  is a subset (rcT, / 7}7er  C X  x X*  

such th a t / 7 (x7') =  Sjy' for 7 , 7 ' G T. The biorthogonal system {a;7, / 7}7er  in 

X  is called fundam ental if X  =  span{.x7; 7  g  T}. A Markushevich basis is a 

fundamental biorthogonal system {cc7, / 7}7<=r in X  such th a t { /7}7er separates 

points of X .  A Markushevich basis {x 1 , / 7}7£r  C X  x X*  is called shrinking if 

X*  =  span{ /7; 7  G T}. In this note we use T as a cardinal number.

A Banach space X  is said to  be an Asplund space, if every separable subspace 

of X  has a separable dual. A Banach space X  has M azur’s intersection property 

if every bounded closed convex set can be represented as an intersection of closed 

balls. A density of a topological space is the least cardinality of a dense set. We 

refer to  [2 ] for undefined terms used in this paper.

1A version of this chapter has been published in Bulletin of the Australian Mathematical 
Society, vol. 69 (2004), pages 107-111.
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3.2 Introduction

It is known, [9, Theorem 7.18, Theorem 7.12], th a t if a dual unit ball of a Banach 

space X  is a Corson compact, then densA" =  tc*-dens X*  and the following are 

equivalent.

(i) X  has a shrinking Markushevich basis,

(ii) X  is an Asplund space,

(iii) X  adm its a Frechet smooth norm.

Let us rem ark th a t if a norm on X  is Frechet smooth, then X  has M azur’s 

intersection property, [1, Proposition 4.5].

W hen we do not assume th a t the dual unit ball is a Corson compact, then 

the above equivalence is no longer true. For example, the Banach space C (K ), 

where K  is a K unen’s compact (see e.g. [8 ] and [5]), is an Asplund space without 

a shrinking Markushevich basis and without M azur’s intersection property, [6 ].

3.3 M ain Result

The aim of this note is to prove a theorem in the spirit of equivalences above 

but w ithout assuming anything about a dual unit ball.

T h e o re m  3.1 Let E  be a Banach space. Then the following are equivalent.

(i) There is a space Y  C E  with a shrinking Markushevich basis { x 7 , / 7 } 7er-

(ii) There is an Asplund space X  C E  with densX  = w*-densX* =  T.

(iii) There is a subspace Z  C E  that admits a Frechet smooth norm and such 

that densZ  = w*-densZ* =  T.

Moreover, i f  one from  the above occurs with F =  densE*, then

26
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(iv) E  admits a norm with the M azur’s intersection property.

Remark. The condition dens E  =  dens E* is necessarily for renorming with 

M azur’s intersection property due to [3].

3.4 Proof

Proof. Implications (i) => (iii) =7 (ii). If Y  has a shrinking Markushevich 

basis, then Y  adm its a Frechet differentiable norm [2, Theorem 11.23]. Thus it 

is an Asplund space [2, Theorem 8.24], It remains to  show th a t ub-densT* =  

densT  =  T. Let {ga; a  G A }  C Y*  be a weak* dense set. As the basis 

{;x1, / 7}7er  is shrinking, we may assume without loss of generality th a t {ga; a  G 

A }  C span { /7; 7  6  T}. For a contradiction, assume th a t \A\ <  T. Thus there 

is T' <  T such tha t

{.ga ; a  G A }  C span { /7; 7  G T'}.

Hence, for 7  G T \  T' and all a  G A

l ( / 7  - 0 a ) ( ® 7 ) |  =  1 ,

a contradiction with the density of {ga \ a  G A}.

Implication (i) => (iv). Due to  [6 , Theorem 2.4], to show th a t E  adm its 

a norm with the M azur’s intersection property, it is enough to  construct a 

fundamental biorthogonal system {<27, xy}7er C E* x E. As we assume tha t 

Y  C E  has a shrinking Markushevich basis, th a t is a fundamental biorthogonal 

system { /7, .x7}7er  C Y *  x Y ,  we only need to show the following.

Lemma 3.2 Let E  be a Banach space with densE* — T and Y  C E  be a closed 

subspace. Assum e that there is a fundamental biorthogonal system  { /7, £7}7er  C 

Y* x Y . Then there is a fundamental biorthogonal system  {g7, x7  }7€r  C E* x E .
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P ro o f . By a relabeling and rescaling, we may have a fundamental system 

{ /" , £” }7 er,neN C Y * x Y  such th a t for every 7  G T, limn | | / ” || =  0. By the Hahn- 

Banach theorem, consider / "  G E*. Let {<?7}7er  be a dense set of B e * H Y ± .

We claim, th a t A  = {g 7 +  / 7 } 7er>eN  is linearly dense in E*. Indeed, let G  G 

E** be such th a t G ( f )  =  0 for every /  G A. Then G(g^) =  lim„ G(g7  +  / ” ) =  0 

and thus G  G { Y ^  =  F**. Hence G  =  0 as { /?}  7er,neN are linearly dense in
Y*

Hence {g1 +  / " ,  £” }7 6 r,neN C E* x  E  is a fundamental biorthogonal system.

□

R e m a rk . As c0 (T) C C([0, T]), Lemma 3.2 provides a direct proof of the 

fact th a t there is a fundamental biorthogonal system { /7, x 1 }7er C C([0, T])* x 

C([0, T]). Thus C([0, T]) adm its a norm with M azur’s intersection property, see 

also [6 , Lemma 3.5].

It remains to  prove the implication (ii) (i).

The proof goes in the spirit of [7, Theorem l.a.5] and [4], We will use the 

concept of the Jayne-Rogers selector, see [1, Chapter 1], The Jayne-Rogers 

selection map V x  on an Asplund space A  is a multi-valued map th a t satisfies 

the following.

(i) V x {x) =  {D x ( x ); n  G N }  U D x (x) C X*,

(ii) D x , for n  G N , are continuous functions from X  to X*,

(iii) D ^ ( x )  =  lim D x (x) for every x  G X ,
71—>00

(iv) D x (x)(x)  =  ||:r | | 2 =  ||T»^(x)||2,

(v) A* =  span V x {X).

Such selector exists by [1, Theorem 1.5.2].
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In order to  construct Y  C X  we will define, by a transfinite induction, 

vectors x 0+i G X ,  subspaces Ya C X  and subsets Fa C X*, for all a  <  T. P u t 

Fo =  0 and F0 =  0 and pick arbitrary nonzero x x G (F0)± = {x  G X : f ( x )  — 

0 for all /  G F 0}. Then put Yx =  span{xi}, and Fx =  {T>x (x ) \x  G Vi}. Let 

Ya and Fa for a  < P have been chosen. Notice th a t densFa <  T and thus 

dens Fa < H0 .densFa <  T. Thus Fa is not u!*-dense and we can pick a nonzero 

vector x a+1 G (Fa)±. Set Ya+1 =  span {Ya U {rra+i}} and Fa+1 = {T>x ( x ) \ x  G 

Fa+1}.

If a  < T is a limit ordinal, define Ya = span U Yp and Fa = { V x (x), x  G
/3<c«

F*}.

P u t Y  =  span [ J  Ya. We will show th a t Y  has a shrinking Markushevich
a<r

basis {x a+i, f a+i} a<r, where {x a+x } 0<r have been already chosen and their 

biorthogonals / a+ 1  will be defined by projections.

Clearly Y  =  span { x a+x; a < T}. Let us define projections Pa : Y  —> Ya for 

all a  < T. First define projections Pa : span{xQ+i; a  < T} —> Ya by letting 

Pa(xp) = xg if fj < a  and 0 otherwise. Pa are well defined and once we show 

th a t they all have norm 1 , they will extend naturally onto desired projections 

on Y.

Take x  G span{xQ+i; a  < T } and fix  a  < T. Then by the properties of the 

Jayne-Rogers selector and due to  the choice of { x a+i\ a  < T} we have

\\Pa( x ) f  =  D i ( P a(x))(Pa(x)) = D^(pa(x))(x) <

< IMI- D^(P„(x)) =  | |i | | . | |F0(i) | | .

Thus ||jPa || =  1-

Pick f a+x G Y*, for a  < T, such th a t | | / a+i|| =  1 and fa +i ^  (Pa+i ~ P a)*y*- 

Clearly {a:a+i , / a+i} a<r is a biorthogonal system.

We will show th a t the projection {PQ}0<r are shrinking. Prom th a t it follows
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th a t s p a n { /a+i;Q! <  T} =  Y*.

Let a  < T be a fixed limit ordinal and set Z  =  P0Y . Let f  £  Z* be arbitrary. 

We need to  show th a t there exist a sequence of ordinals > a  and gn £ PgnZ* 

such th a t gn —>• /  in Z*. Fix e > 0. Denote V z  the restriction of V x  on Z , th a t 

is D z (z ) =  D x (z)\z  for all z  £ Z.  Clearly V z  is the Jayne-Rogers selection 

map for Z.  As Z  C X  is an Asplund space, Z* =  span V z {Z).  Thus

n m

f -  ( J 2 D U zi ) + D
i — 1 i= n + 1

< £ ,

where fc* £ N, for i =  1 , . . . ,  n  and Zi £ Z , for i =  1 , . . . ,  m. Because D ^  is 

pointwise limit of D z , there are ki £ N. i = n + 1 , . . .  ,m, such th a t

/ -  E d£m
i = 1

<  S.

Because D z  are continuous, there is j3 < a  such tha t

i—1
< e,

for z[ £ PpZ.

Thus it remains to  show th a t V z (Pp(Z))  C P^Z*  for f3 < a. Let z  £ PgZ. 

By the choice of {x a+i ;a  < T} we know th a t V z (z)(x1) =  0 for 7  > (3. Thus

P„'(Z>z (z))(x ) = V z (z)(Pex) = D z (z)(x),

for all x  £ Z,  and it was exactly what we needed to prove. □
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Chapter 4 

On Gateaux differentiability of 

convex functions in WCG spaces1

4.1 Introduction

The well known M azur’s theorem says th a t a continuous convex function /  on 

a separable Banach space X  is G ateaux differentiable on a dense G$ set, [4, 

Theorem 8.14]. A function /  on X  is said to  be Gateaux differentiable a t x  € X  

if there is F  E X*  such tha t

/ ( *  +  a ) - / ( x )  
t- 0  t  y h

for all h £ X .  A Banach space is called a weak Asplund space if every continuous 

convex function /  on it is G ateaux differentiable a t the points of a dense Gg 

set. It is known th a t weakly compactly generated spaces are weak Asplund 

spaces, [3, Theorem 1.3.4], Recall th a t a Banach space X  is called weakly 

compactly generated (WCG) if there is a weakly compact set K  C X  such th a t 

span K  =  X .

1A version of this chapter has been accepted for publication in Canadian Mathematical 
Bulletin.
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It is proved in [5] tha t, for a separable Banach space X ,  the set of points of 

G ateaux differentiability of a convex continuous function /  is even bigger than  

dense in the following sense. If K  C X  is a norm compact convex symmetric 

set such th a t span iii =  X  and x 0 E X ,  then there is x  E x 0 +  K ,  a point of 

G ateaux differentiability of / .  A set C  C X  is called symmetric if —C  = C.

4.2 M ain result

We will extend the above result to  weakly compact set in WCG spaces.

Theorem  4.1 Let X  be a WCG space and K  be a weakly compact convex sym ­

metric set such that span K  = X .  Let f  be a continuous convex function on X  

and xq E X .  Then there is x  E x 0 + K  such that f  is Gateaux differentiable at 

x.

4.3 Definitions

Let us define term s used in the proof. For a closed convex symmetric set C  let 

He denote a Minkowski functional of C  defined by

Hc(z0 =  inf{A >  0; x  E  AC}.

It is known th a t He '■ X  —»• l U  {oo} is a convex lower semicontinuous function. 

A function /  : X  —> K U {oo} is said to  be lower semicontinuous if its level sets 

{x E X ; f ( x )  <  r} are closed for every r E  M. This is equivalent to saying th a t 

the epigraph of / ,

eP i ( / )  =  {(z, r) E X  x  R; f ( x )  < r},
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is closed in X x R .  Thus the epigraph of a convex lower semicontinuous function 

is a closed convex set. The subdifferential, d f ( x ) ,  of /  at x  G X  is the set of all 

cp G X*  such th a t

<p(y -x )  <  f ( y )  -  f ( x ) ,

for all y  G X .  A functional ip G X*  is called a supporting functional for a set K  

at a point ko G K  if

ip(ko) =  sup{p(k);  k  G K} .

A function /  : X  —> M. is called a Gateaux smooth bump if it is a G ateaux 

differentiable function with a bounded support. A system {x7, x*}7er C X  x X*  

is called a Markushevich basis for X  if x*p(x7) = Sg7 (the Kronecker’s delta) for 

all /3,7  G T, span{.x7; 7  G T} =  X ,  and if for every O ^ x G l  there is 7  G T 

such th a t x*(x) ^  0. A norm ||.|| on X  is called strictly convex, if x  — y 

whenever

2\\x\\ = 2\\y\\ = \\x + y\\.

4.4 Proof

P roof o f Theorem  4.1. The proof will be divided into three steps. F irst we 

will show th a t there is a “smooth” weakly compact set L  C K .

Lemma 4 .2  There is a weakly compact convex symmetric set L  C 2~1K  such 

that i f  <p, ip G X* are supporting functionals o f L  at a point I G L such that 

ip(l) =  ip{l), then ip = ip.

Second, we will use a variational principle to touch the graph of /  by a 

“smooth” function. We may assume th a t f ( x 0) =  - 1 .  By the continuity of / ,  

we may assume th a t \ f (x)  -  f ( x 0)\ < 1, for \\x -  x0|| <  1 . Let g be a function
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on X  defined by

g(x)  =  —f{x)\  for ||x — #o|| <  1 ,

=  oo; for ||x — x0|| >  1 .

Then g is lower semicontinuous and g >  0. Set u L(x) =  g L(x  — x 0).

Lemma 4.3 There is a Gateaux smooth function v : X  —> R and a point x  G X  

such that x  e  xq + 2L C xq + K , 0 < ||:r — xo|| <  1 and g + u l  — v attains its 

m inim um  at x.

Finally, we will show th a t /  is G ateaux differentiable at x.

Lem ma 4.4 Let V  denote a Gateaux derivative o f v at x . Then there is a  G 

M \{0} such that <p + V  is a supporting functional fo r  xo + a L , fo r  all <p 6  d f ( x ) .  

Consequently, f  is Gateaux differentiable at x.

P roof o f Lemma 4.2. Let {x7, / 7}7er C K  x X*  be a Markushevich basis 

of X ,  see [4, Theorem 11.12]. There is a one-to-one operator T  : X* —> co(T) 

defined by

T(x') =  (x‘ (x ,) )7 e r

Let {e7}7£r denote the standard unit vector basis of G(r). The dual operator 

T* : 4 ( r )  —>• X** satisfies

T*(e1)(x*) = e ^ T x * )  =  x*{xf),

for all 7  G T. Thus T*(e7) =  x 1 and T*(Bil(r^  C K.  Moreover T* is a 

weak*-weak continuous operator from c0(r)* to X .

Let a norm ||.|| on c0(r) be (a strictly convex) D ay’s norm (see [2, Theorem 

II.7.3] and let B  C 4 ( r )  be its dual unit ball. P u t L  =  T*(B).  We may assume
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th a t ||.|| is small enough to  have 2L  C K.  Clearly L  is a symmetric convex 

set. As T* is weak*-weak continuous, L  is weakly compact. Now assume th a t

ip, ip £ X*  are supporting functionals of L  a t I £ L  such th a t tp(l) = tp(l). We

claim th a t ip — ip. Pick b0 £ B  such th a t T*(b0) =  I and put x  =  T(ip) and 

y  =  T(ip). Then for all b £ B

b(x) = b(T{<p)) = <p(T*(b)) <  p(l) = bo(x).

Thus x, y  6  c0 ( r )  are supporting functionals of B  a t bo. Moreover

||x|| =  swp{b(x)] b e  B }  =  b0(x) = b0(y) =  ||y||, and

2II*II =  11*11 + Ill/ll =  bo(x +  V) <  II* + V\\ <  11*11 + Ill/ll-

Thus x  = y  as the norm ||.|| is strictly convex. Hence, as T  is one-to-one, ip =  ip.

□

P roof o f Lem ma 4.3. We will use the Deville-Godefroy-Zizler version of the 

Borwein-Preiss smooth variational principle, see [1] and [2, Theorem 2.3].

Theorem  4.5 Let X  be a Banach space that admits a Lipschitzian bump func­

tion which is Gateaux differentiable. Then fo r  every lower semicontinuous 

bounded below function F  on X  and every e > 0, there exist x  E X  and a 

function G : X  —> R ; which is Lipschitzian and Gateaux differentiable on X  

and such that ||G|| =  sup{|G(a:)|; x  £ X }  < e, ||G"|| <  e and F  +  G attains its 

m inim um  on X .

We can use it, as X  adm its a G ateaux smooth norm [4, Theorem 11.20] and 

thus it adm its a Lipschitzian G ateaux smooth bump. Let us fix £ £  (0 ,1 /4). 

To assure th a t a point x  we get by the variational principle is different from x 0,
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we will first modify the function g +  u i .  Let x x E X  be such th a t

(,g +  u L)(xi) < ( g  + u L)(x0) +  e/4:.

Let V\ : X  —► K. be a continuous G ateaux smooth bum p function such th a t

|M | <  e /2  and

(g + u L -  ui)(a;i) < {g  + uL -  vi)(a;o) -  e/4.

By applying the variational principle with e' =  e / 8  on g +  ul — V\, we 

get a G ateaux smooth function v2, ||u2 || <  e/% and a point x  G X ,  such th a t 

g + ul — (vi +  u2) attains its minimum at x.  Thus

(g + uL - v l -  v2){x) < {g + ui -  v i ) {xx) -  v2{xi)

< (g + uL - v i  -  v2)(x0) < oo.

It means th a t x  ^  x 0, g{x) < oo, and thus 0 <  ||x — a?o|| <  1. P u t v = V i +  v2. 

Then ||u|| <  e and thus g(x) — v(x) > —e. We claim th a t u l (x ) <  1 +  3e < 2. 

Indeed, if we assume a contrary, then

1 +  2 e <  u L(x) -  e < (g +  uL -  v)(x) < (g +  u L -  u )(^0) <  1 +  e,

a contradiction. Thus x  £ x Q +  2L C x$ +  K.  □

P r o o f  o f  L em m a 4.4. As /  is a continuous convex function, d f ( x )  /  0 and

we only need to  show th a t there is only one ip e  d f ( x ) ,  see [6 ], For the rest of 

the proof we will assume without loss of generality th a t g + u L —v = g — (v — u L) 

a ttains its minimum at x  =  0, g{0) =  0 and <7(0 ) — (v — u L)(0) =  0. In particular, 

0  < ||xo|| <  1 and u l (0 ) =  u(0 ).
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Pick any ip £ d f ( 0). Let 6 > 0 be small enough to  have g ( t y ) =  — f ( t y ) < oo 

for y  £  Sx ,  | £ |  <  S. Then

-<p(ty) > -  f ( t y ) = g(ty) > (v -  u L){ty).

Let V  be a G ateaux derivative of v a t 0. Then

v(ty) = v(0) + V (t y ) + oy(t), t  -*■ 0 ,

for all y £ Sx,  [t <  5, where oy(t) is a function (depending on y),  such th a t 

oy(t ) / t  —>• 0, as t  —»• 0. Thus

for all y £ S x  and all t £ R. Indeed, if (4.2) does not hold, then there is 

yo €  Sx ,  0 EM. and e0 >  0  such tha t

(p + V) ( t 0y0) -  £0 > u L(t0y0) -  u(0 ).

By a convexity of u L, we may assume th a t 0 <  |t0| <  5. Because

(<p + V)( ty)  + os(t) < u L{ty) -  i>(0), ( - *  0. (4.1)

From th a t it follows th a t

(if + V)<ty) < u L(ty) -  v(0) = uL(ty) -  u L(0) (4.2)

i f  +  V)(0) =  0 =  (uL -  ti)(0 ), (4.3)

one has th a t for all t £  (0 , |£0|]

uL(tyo) ~  w(0) < t uL(toyo) - v ( Q)  
to

^ t  ((P + V) ( t oy o ) - £o
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a contradiction with (4.1).

Notice th a t (4.2) says th a t (p + V)  G duL{0) and thus (p +  E)(£o) =  ^l(O) 

as u l  is linear on half-lines emanating from x q .

Thus, by (4.2) and (4.3), (p + V )  is a support functional of x 0 + v(0)L  a t the 

point x  =  0. Indeed, by an assumption « l(0 ) =  v(0) and thus 0 € £o +  v(0)L.  

Moreover (p +  E)(0) =  0 and by (4.2)

(p + V)(z)  < uL(z) -  u(0) <  0,

for all z £ x o +  v(0)L.  Equivalently, (p + V)  is a support functional of v(G)L 

a t — x 0 w ith ( p  +  V )(—x 0) =  —u L{0). Because x$ ^  0, u(0) =  U l { 0) ^  0, 

by Lemma 4.2, there is only one support functional i p  of v(0)L  a t — x q  with 

i p ( 0) =  — u l ( 0). Thus there is only one p  E  <9/(0). This concludes the proof of 

Lemma 4.4 and the proof of the Theorem 4.1. □
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Chapter 5 

General Discussion and 

Conclusions

The area of renorming Banach spaces is a very rich and active area of functional 

analysis. There are numerous methods used to  introduce a new equivalent norm 

on a given Banach space. Many of these methods rely on facts and theorems of 

classical analysis, measure theory, topology and set theory.

Using renorming techniques, one can get results tha t are of interest of re­

searches working in the area of Banach spaces as well as ones working in other 

fields of mathematics, such as topology or optimization. Clearly, results con­

nected to  optimization can find application even outside m athematics, for ex­

ample in economics.

As shown in the Chapter 2, there is a direct connection between weak topol­

ogy of a Banach space and an existence of certain convex renorming of th a t 

space. Also, there is a duality argument, hidden in the proofs, th a t connects 

convexity of Banach space with a smoothness of its dual. The main contribu­

tion of C hapter 2 is the characterization of compact spaces carrying a strictly 

positive measure.

The main contribution of Chapter 3 is the proof of the fact th a t every As-
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plund space A  such th a t dens A  =  w* — dens A* contains a subspace with 

shrinking Markushevich basis. Also, a relatively simple Lemma 3.2 on extend­

ing fundam ental biorthogonal systems was useful as it allowed us to  “extend” a 

Frechet smooth norm from a subspace to  a norm having a M azur’s intersection 

property (only slightly weaker than  Frechet smoothness) on the whole space.

In the Chapter 4 we showed th a t the set of G ateaux differentiability points 

of convex functions on a weakly compactly generated Banach space is big - it 

is dense in certain topology (see Appendix C). Any result about the size of the 

set of differentiability points is im portant for optimization.

There still several open problems and question related to  the subject of the 

thesis. Let us mention few of them.

Problem 1. Is there a reflexive Banach space tha t adm its an equivalent 

URED norm bu t no p-UR norm?

Problem 2. Does result similar to  the Theorem 3.1 (ii) =>- (i) hold without 

an assumption dens A  =  w* — dens A*? (for example under some additional 

set-theoretical assumptions.)

Problem 3. Is the set of points of G ateaux differentiability of convex function 

on W CG spaces even bigger than  described in theorem 4.1? (see Appendix C 

for precise formulation.)
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Appendix A

More on p-UR

A .l  Short proof of Theorem  2.6

In this section we will present a short proof of Theorem 2.6. We thank Professors 

W. B. Johnson and G. Pisier for suggesting this type of the proof.

T h e o re m  2.6 Let p  be a finite measure. Then L 1(p) admits an equivalent 

pointuiise uniformly rotund norm i f  and only i f  L i (p)  is separable.

P ro o f . Assume th a t L fip )  adm its an equivalent URF norm. We show th a t F  

is separable. By the proof of the Theorem 2.7 we know th a t F  C Z  where Z  is a 

weakly compactly generated subspace. We also know th a t F  C L ^ i p )  =  L fip )* . 

Since L ^ i p )  is injective, see [9], the identity map id : F  —> L ^ p )  can be 

extended to the map id : Z  —> L00(/i). It yields the existence of a weakly 

compactly generated space X  — id(Z)  such th a t

F  c X  C  LooGu).

Now we can use [9, Theorem 4.8] to  conclude th a t X  is separable. However, we 

show it directly as follows. Let K  C X  be a weakly compact convex set such
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th a t span K  = X .  Since the identity operator

I d  .

is integral and therefore compact, see [3, Corollary 6 , p. 109], K  is separable. 

Indeed, K  is weakly compact in X ,  hence weakly compact in Loc,(/r). Thus 

I d ( K ) is weakly compact in Li{n).  In particular, I d ( K ) is weakly closed and 

thus norm closed. Hence Id ( K)  is norm compact and separable. Since I d  : 

K  —> I d ( K)  is a homeomorphisms, K  is separable.

Consequently, X  and F  are separable. We conclude in the same way as in 

the C hapter 2 th a t L\  (fj,) is separable, since it is a weakly compactly generated 

space. □

A .2 U RED versus p-U R

It is easy to  see th a t any pointwise uniformly rotund norm is URED. In this 

section we will discuss the reverse implication, i.e. under w hat conditions on a 

Banach space the existence of an equivalent URED norm implies the existence 

of an equivalent pointwise uniformly rotund norm.

Let us remark, th a t many standard URED renormings (see [2]) actually 

produce p-UR norms. The only exception known to the author is the URED 

renorming of the space Li(/x) done in [7].

Let us observe, th a t if the space C( K)  adm its an equivalent URED norm, 

then c0(r) for uncountable set T is not isomorphic to  a subspace of C ( K )  (by 

[2, Proposition 2.7.9]) and thus K  is ccc and moreover every weakly compact 

subset of C ( K )  is separable (see [9, Theorem 4.5.(a)]). In particular, every 

weakly compact subset of such C( K)  is metrizable (see [5, p.417]) and hence a 

uniform Eberlein compact.

We note, th a t, assuming Continuum Hypothesis (see [6 ]), there is a compact
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space K  such th a t K  has ccc and C( K)  does not adm it any equivalent strictly 

convex norm (see [1, Theorem 1.7]). In particular, the condition ccc does not 

imply the existence of URED norm on C(K) .  Moreover, the above space C ( K )  

is another example showing th a t the converse of the Theorem 2.7 is not true in 

general.

On the other hand, a compact space K  carries a strictly positive measure, 

if K  is ccc and C ( K ) is isomorphic to  a conjugate space (see [9, Theorem 4.1]), 

thus we have the following.

T h e o re m  A . l  Assume that C ( K ) is isomorphic to a conjugate Banach space. 

Then C ( K )  admits an equivalent URED norm i f  and only i f  C ( K )  admits an 

equivalent p- UR norm.

Let us note th a t we do not know, whether the above equivalence is true for 

every space C(K) .  However, the following holds (we refer to  [10] for the original 

statem ent and more details.)

T h e o re m  A .2  Let X  be a Banach space with an unconditional Schauder basis 

{.x7}7 er. Then the following is equivalent.

(a) X * admits an equivalent URED norm.

(b) X * admits an equivalent dual URX norm.

It is known th a t the above result does not hold for an arb itrary  Banach 

space X  even if we do not require a dual renorming. It is enough to  assume

space X  =  C ( K )  for K  = [0, l]r , where T has a cardinality continuum. By

K akutani’s Theorem and result on URED renorming by K utzarova ([7]), X*  

adm its an equivalent URED norm. On the other hand, the space Li (K, X) ,  

where A is the product Lebesgue measure is not separable, hence C(K)*  does 

not adm it an equivalent p-UR norm by Theorem 2.2.
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Appendix B

More on Mazur’s intersection 

property

B .l  Definitions

Let X  be a Banach space with a density character H and fi be the minimal 

ordinal of cardinality M. A transfinite sequence of bounded linear projections 

{Pa, 0 <  a  < fi} of X  is called a projectional resolution of identity (PRI) on X  

if

(i) ||Pa || =  1 for all a  >  0,

(h) PaPp PpPa Pp.iin{(>./:/} ■ Po =  0, P^ — Identity,

(iii) the density character of PaX  is less than  or equal to  m axjdo, | o r | }  for all 

a , and

(iv) the map a  —> Pax  is continuous from the ordinal segment [0, /j] in its order 

topology into X  in its norm topology for every x  € X .

A  point /  in a dual unit ball B x * is called a weak* denting point if it is 

contained in weak* slices of B x * of arbitrarily small diameter. Precisely, if for
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every e  >  0 there exist x E X  and 5 >  0 such th a t /  £  S(x ,8)  =  { g  E 

B x *;g(x) >  5}, and d iam S(x,  8) < s.

As shown in [1], a Banach space X  has a norm with M azur’s intersection 

property if and only if the weak* denting points of the unit ball B x * of X*  are 

norm dense in the unit sphere of X*.

B.2 Theorem

T h e o re m  B . l  Let X  be a Banach space with P R I  {Pa }a<Ni and, such that every 

subspace o f X  has the Mazur intersection property. Then X  has a shrinking 

Markushevich basis. In  particular, X  is WCG and has an equivalent Frechet 

norm.

P ro o f . We will show, th a t { P /} a<Ni is a PR I on X*. Let g  <  Mi be a 

limit ordinal. Set Y  = P ^X  and choose x* E Sy* and e >  0. As 7  has 

M azur’s intersection property, there is a weak* denting point f  E S y » such th a t 

11̂ * — /II* <  £• Thus there is £ £ <SV and <5 £ (0 , f ( x ) )  such th a t diam-fg £ 

By*,g(x)  > 5} <  e.

Set 8' =  2~1( f ( x ) —5) and pick a 0 < g  and x ' E PaoX  such th a t ||a:—x'|| <  S'. 

Then f ( x ' )  > 8  + 8', and g(x)  >  8 provided g(x') > 8 + 8'. Thus diam{g £ 

B y*, g(x') > 8 +  5'} <  e.

For a  >  a 0, P*f{x ' )  = f {x ' )  > 8  + 8'. Thus ||P * / -  / ||*  <  e and ||P * /  -  

:r*||* <  2s. Hence { P /} q<Ni is a PR I on X*.

For every a  < Ni, Y  = (Pa+i — Pa) (X)  is separable and with Mazur in­

tersection property. Thus Y*  =  (P*+1 -  P*)(X*)  is separable and there is a 

shrinking Markushevich bases { « > /« )} n e n  on Y.  Thus { « , //)}a<Hi,neN is 

a shrinking Markushevich bases on A . □
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Appendix C

More on Gateaux 

different iability

Given a convex symmetric set C  in a Banach space space X ,  consider the 

following topology t c  on A : The set A  C X  is r^-open iff for every a  E A  there 

exists a  > 0 such th a t a  +  a C  C A.

Note th a t a choice C  =  B x ,  the unit ball of X ,  gives exactly the norm 

topology on X .

Theorem 4.1 reads as follows. Given any weakly compact convex symmetric 

set A  C X ,  such th a t span K  =  X ,  the set of points of G ateaux differentiability 

of any convex function /  on X  is r^-dense in X .

An interesting and still open question is, whether under the above assump­

tions the set of G ateaux differentiability points of convex function is t k - G s , or 

at least contains a  dense t^ -G s  set.
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