National Lib
Bl ™

Acouisitions and

Bibliothéque nationale
du Canada

Directiop (l@s acquisitions et

Bibliographic Services Branch  des selvices bibfipgraphiques

395 Wellington Streel 395:aue Wellingion

QOttawa. Ontano Ottawa (Onlario)

K1A OnN4 K1AON4
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1570, c. C-30, and
subsequent amendments.

| Canad'él'

Your file  Volre télécence

Owr hie  Notre 1éférence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a -
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si 'université nous
a fait parvenir uUne photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses ameiideinents subséquents.



University of Alberta

:ors of Large Subgroups of General Linear Groups over Group Rings

by

Gregory Thomas Lee @

submitted to the Faculty of Graduate Studies and Research in partial
\filment of the requirements for the degree of Master of Science

in

Mathematics.

Department of Mathematical Sciences

Edmonton, Alberta
Fall 1995



.* l National Library Bibliothéque nationale
. of Canada du Canada
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch  des services bibliographiques
395 Wellington Stréet 395, rue Wellington
Ottawa Onlario Ottawa {Ontario)
AON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT MAKING THIS THESIS

‘ABATL ABLE TO INTERESTED

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-06496-4

Canad4

Yout tile  Volire rélérence

Our tile  Notre 1élérence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.



University of Alberta

Library Release Form

Name of Author: Gregory Thomas Lee

Title of Thesis: Generators of Large Subgroups of General Linear Groups over
Group Rings

Degree: Master of Science

Year this Pegrée Granted: 1995

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly

or scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis
nor any substantial portion thereof may be printed or atherwise reproduced in
any material form whatever without the author’s prior written permission.

o1
(Signed) .7yl o, . oL
Gregory Thomas Lee
311 Tunis Street
Ingersoll, Ontario
N5C 1W9
Canada

......



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Generators
of Large Subgroups of General Linear Groups over Group Rings sub-
mitted by Gregory Thomas Lee in partial fulfilment of the requirements for the
degree of Master of Science in Mathematics.

Skge{z_/ ......

Dr. S. K. Sehgal (Supervigor)

M Wv‘x

................

e s

< ",,..——"""

S 23,557



Abstract

Let ZG be the integral group ring over a finite group, G. This thesis is a
discussion of the problem of constructing generators of a subgroup of finite index
in GL.(ZG), for positive integers n.

First, we consider the unit group, U(ZG). We begin by obtaining a result
due to Jespers and Leal, which states that if QG has no exceptional Wedderburn
components, and G has no nonabelian fixed point free homomorphic images,
then the Bass cyclic and bicyclic units generate a large subgroup in U(ZG).
When G is nilpotent, we obtain a result due to Giambruno and Sehgal, which
gives generators of a large subgroup of U(ZG), provided QG has no exceptional
components.

Finally, we present a new result. Namely, the elementary matrices over G,

together with the matrices bl,, for Bass cyclic units b, generate a large subgroup

in GL.(ZG), when n > 3.
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Chapter 1

Introduction

Let G be a finite group, and ZG its integral group ring. The unit group of
this group ring, U(ZG), is our object of study in this thesis.

In [Hi), Higman classified the finite groups for which #(ZG) = +G. In a
few other isolated cases, U(ZG) has been completely determined. However, in
general, the problem of determining ¥(ZG) precisely has proven to be quite
intractably difficult. Another problem has arisen, and it is this: can we construct
generators of a subgroup of finite index in #(ZG)? This is the problem with which
we shall concern ourselves.

We will concentrate primarily on nilpotent groups, G. There are two main
approaches in the literature. One, which was introduced by Ritter and Sehgal
in [RS2], involves establishing results for odd p-groups, and many 2-groups, and
then extending these results to the direct product of these groups. Another,
which was begun by Ritter and Sehgal in [RS1], and strengthened by Jespers and
Leal in [JL2], allows us to obtain a result without the nilpotency assumption.
However, if we assume that the group is nilpotent, some strong results can be
obtained. The first of these approaches gives results which involve slightly fewer
generators, but the second gives results which hold a little more generally. The
first of these methods is presented in Chapter 3 of [Se2]. We will focus upon the

second method here.
We now present a brief overview of the thesis. We will prove nothing at this

time.

Chapter 2 contains some results of a preliminary nature. Various results about
Wedderburn decompositions, primitive central idempotents, representations, re-
duced norms, and the like are presented.

In Chapter 3, we present some results, without requiring that G be nilpotent.
We will begin by introducing the Bass cyclic units, which are of the form

o(lG
(l+z+z2 4+ + zi—l)qﬂ(lGl) + ]'__%SEI__I_).@,
wherez € G, 1 < i< |z|, (hle]) =1, & =1 +2+---+zI¥71, and ¢ is the
Euler function. We will make use of a theorem of Bass and Milnor, which states
that under the natural map j : Y(ZG) — K;(ZG), the images of the Bass cyclic
units generate a subgroup of finite index in K;(ZG), in order to obtain a major
reduction in our problem. This result allows us to concentrate our investigations
on the elements of U(ZG) which map onto subgroups of finite index in the group
of invertible matrices of reduced norm one in My, (©;), where O; is an order in
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D;, and My, (D;) is a Wedderburn component of QG, and which map to the
identity matrix in all of the other components. If we can find these units, then
combining them with the Bass cyclic units, we will have found generators of a
subgroup of finite index in U(ZG). It will follow easily that the Bass cyclic units
generate a subgroup of finite index in U(ZG), if G is abelian.

Next, we will introduce the bicyclic units, which are of the form

14 (1 —g)hg, 1+ gh(1-9)

for g,h € G. We will prove that if G has no nonabelian fixed point free homo-
morphic images, and if QG has no exceptional components (that is, components
for which the Congruence Subgroup Theorem fails), then the Bass cyclic and
bicyclic units will generate a subgroup of finite index in U(ZG).

In Chapter 4, we introduce the assumption that G is nilpotent. Under this
assumption, we classify all of the possible fixed point free homomorphic images,
and discover that these groups are either cyclic, or the direct product of a gen-
eralized quaternion group and a cyclic group of odd order. The Wedderburn
decompositions of these groups are well-known. It follows that if QG has no
exceptional components, or components of the form H(Q(&,)), for odd primes
p, then the Bass cyclic and bicyclic units generate a subgroup of finite index in
U(ZG). From this, it follows immediately that we need only worry about those
nilpotent groups which have nonabelian Sylow 2-subgroups. In particular, the
problem has been solved for all nilpotent groups of odd order (or, indeed, all
groups whose orders are not divisible by eight). We also present an example of
a group, G, of order 16, for which the bicyclic and Bass cyclic units generate a
subgroup of infinite index in U(ZG).

We then introduce some new units, which were designed by Giambruno and
Sehgal to deal with homomorphic images of the form Qs x Ch, for odd integers
n > 1. These units, together with the Bass cyclic and bicyclic units, will gener-
ate a subgroup of finite index in U(ZG), provided that QG has no exceptional
Wedderburn components.

In Chapter 5, we generalize the problem. Instead of just considering the unit
group of ZG, we consider the unit group of Ms(ZG), namely GL,(ZG), for
positive integers n. When n > 3, we can bypass the exceptions to the Con-
gruence Subgroup Theorem. Further, we have a new class of units in this ring.
Specifically, we may consider the elementary matrices over ZG. Dropping the
nilpotency assumption, we will present a new result. To wit, the units b/, for
Bass cyclic units b, together with the elementary matrices in M, (ZG), will gen-
erate a subgroup of finite index in GLn(ZG), for any finite group G, and any
n > 3.

In Chapter 6, we mention some open problems in this area, and some related
results.



Chapter 2

Preliminaries

In this chapter, we will present some definitions and results from several dif-
ferent areas of mathematics. As all of the results are well-knowr, we shall simply
supply references, except when the proofs are short.

§2.1 Basic Definitions

Let us agree that by a ring, we will mean a ring with identity, and that
by a field, we will mean a commutative field. Let us further assume that ring
homomorphisms map the identity element to the identity element. Throughout,
we reserve the symbols Z, Q, R and C for the integers, the rational numbers, the

real numbers, and the complex numbers respectively.
Let G be a group, and R a ring. Then the group ring, RG, is defined to be

the set of all formal sums
D o9

g€G
with @, € R for all g € G, and all but finitely many oy = 0, together with the

operations
Doagg+ ) ahg=D (ag+ag)g
9eG geG g€EG
and :
(3 as9) (3 o59) =D (D anaies,)g.
9€G 9€G gEG h€G

To express the latter another way,
(3 a0g)- (3 ep9) =Y 3 ascigh.
g€EG 9€G 9€G hEG

It is easily seen that RG is a ring with additive identity - .5 Og and multiplica-
tive identity ) g 999, where & =1 and dy = 0 for all g # 1. In the case where
R is a field, we may also refer to RG as a group algebra. We will often drop
the terms with zero coefficients, and write the elements of RG as

o19i + - QrGk
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with a; € R, gi € G for all i. We identify the ring R with the set of elements
{r1 : r € R} and the group G with the set {1g : g € G}. In this sense, we sec
that the elements of R commute with the elements of G in RG.

It is easily seen that the map € : RG — R defined by (X gec agg) = dea ag
is a ring homomorphism. We let Ag(G) denote the kernel of this map. We call
¢ the augmentation map, and Ar(G) the augmentation ideal of RG. We
have

Proposition 2.1.1. The ideal Ar(G) consists precisely of the finite sums of
terms of the formr(g—1),r € R, g€ G.

Proof. Certainly e(g — 1) = 0 for each g € G, so these elements are all in the
kernel. Conversely, take a € Ar(G). Then 3 g @y =0, so in particular,

a=a—0=Zagg—Zag,

g€G g€G

Y aglg-1)

g€G

and this is

which is of the correct form. O

Similarly, if K is a normal subgroup of G, then the projection G — G/K
extends R-linearly to a ring homomorphism ef : RG — R(G/K). We denote its
kernel by Ag(G, K). Note that Ar(G) = Ar(G,G). The proof of the following
result is similar to that of the above proposition, and we omit it.

Proposition 2.1.2. The ideal Ar(G, K) consists of the finite sums of terms of
the form rg(k — 1), withr € R, g € G and k € K. Equivalently, it consists of
finite sums of terms of the form r(k — l)g,reR,geG, kEK.

In any ring R, by a unit of R, we mean an element with a two-sided multi-
plicative inverse. These elements form a group under multiplication, which we
denote by U(R). The group U(ZG) will be our primary object of study. We
observe that if g € G, then the elements +g € ZG are units, with inverses £g7!.
We call these the trivial units.

We now introduce some basic definitions from representation theory. For more
information, see, for instance, [CR1]. Let F be a field, and G a finite group. Then
a representation of G over F is a homomorphism T : G — GLp(V), where
GLF(V) is the group of invertible F-linear transformations of an F-vector space
V # 0. Evidently, the map T extends F-linearly to a ring homomorphism T :
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FG — Endp(V), where Endp(V) denotes the ring of F-linear transformations
of V. If we define an operation of FG on V via a-v = T(a)(v), it is plain that
V becomes an F'G-module.

When V is finite-dimensional over F, say of dimension n, we may identify
Endp(V) with M,(F), the n x n matrix ring over F, by choosing a basis for V
and identifying each linear transformation with its matrix with respect to that
basis. We say that two representations T and U (both mapping G to GLr(V))
are equivalent if there exist bases X and Y for V' such that for each g € G,
the matrix corresponding to T(g) with respect to X is the same as the matrix
corresponding to U(g) with respect to Y. The representation T is said to be
reducible if there exists a subspace 0 # W # V such that T{(g)(w) € W for all
g € G, w € W. T is irreducible if it is not reducible. Finally, we define the
character ¥ of a representation via x(g) = trace(T(g)). The trace of the matrix
does not depend upon the basis which is chosen, so that the character is also
independent of this choice. Some easy examples of representations are given in

Ezample 2.1.9. (a) Let V be the one-dimensional F-vector space. Define T via
T(g)(v) = v for all g € G, v € V. This is known as the trivial representation.
(b) Let V=FG. This is a |G|-dimensional vector space. Define T via

T(g9){(e) = ga, for all g € G,a € FG.

This is known as the regular representation.

The last thing we need to define is a nilpotent group. First, if G is a group,
and g,k € G, then the commutator of g and b is [g,h] = g'h7'gh. ¥ H
and K are subgroups of G, we let [H, K] be the subgroup of G generated by all
clements of the form [k, k], with h € H and k € K. Now, let G(;) = G. Then,
for i 2 1, let G(i+1) = [G(i), G]. We say that G is nilpotent if G(;) = 1 for some
i. The results we need are contained in the following proposition.

Proposition 2.1.4. (a) Every subgroup and homomorphic image of a nilpotent

group is nilpotent.
(b) A finite group is nilpotent if and only if it is the direct product of its Sylow

subgroups.

Proof. (a) [Hup, Satz III.2.5a]
(b) [Hun, Proposition IL.7.5] O

It follows from the definition that every abelian group is nilpotent, and from
part (b) of the above proposition that every p-group is nilpotent.

5



§2.2 Wedderburn Decompositions and Renresentations

If F is a field, then by an F-algebra, we mean a ring A containing F (or an
isomorphic copy thereof) in its centre, with 17 = 14.

We say that a nonzero ring R is simple if its only two-sided ideals are (0)
and R. We say that R is left (resp. right} Artinian if there is no infinite, strictly
descending sequence of left (resp. right) ideals

I12I22I32

of R. R is said to be Artinian if it is both left and right Artinian. If A is a
finite-dimensional F-algebra (for any field F), then it is clear that any left or
right ideal is a vector subspace of A. Thus, in any descending sequence as above,
we have dimrlj+; < dimpl; for all j > 1. We conclude that we must eventually
reach dimension zero; that is, some I; = (0), at which point the sequence stops.
That is, A is Artinian. The structure of simple Artinian algebras is given by

Theorem 2.2.1 (Wedderburn-Artin). Let A be an Artinian F-algebra. Then
F is simple if and only if F is isomorphic to My (D), the ring of n x n matrices
over an F-division algebra D. In this case, the natural number n is uniquely
determined, and D) is uniquely determined up to an F-algebra isomorphismn.

Proof. The first part is [Hun, Theorem IX.1.14]. The uniqueness is [Hun, Propo-
sition IX.1.17ii}. O

If R is any ring and M is an R-module, then M is said to be simple if M # 0
and its only submodules.are 0 and M. M is said to be semisimple if it is the
direct sum of some collection of simple modules. We have the following result,
which is Theorem 2.4 in [La].

Proposition 2.2.2. M is semisimple if and only if for every submodule N of
M, there ezists a submodule N' of M such that M =N @& N "

A ring R is said to be semisimple if the left regular module rR is semisimple.
(We should make two observations at this point. First, strictly speaking, this is
the definition of a left semisimple ring. However, left semisimplicity and right
semisimplicity are equivalent conditions (see, for instance, [La, Corollary 3.7]),
so this is not a problem. Second, this definition is not used in all sources. For ex-
ample, Hungerford’s definition (in [Hun]) actually describes a weaker condition,
and our semisimple rings would be called semisimple Artinian rings in his ter-
minology. Since we are interested in finite-dimensional algebras, the difference is
unimportant, an:4 we follow [La]). The most important result on semisimplicity
is



Theorem 2.2.3. For an F-algebra A, the following are equivalent:
(1) A is semisimple;
(2) Every left A-module is semisimple;
(3) A is isomorphic (as an F-algebra) to @_; Mn;(D;) for some natural num-
bers n;, and F-division algebras D;.
When these conditions hold, the r is uniquely determined, and the My, (D;)
are uniquely determined up to order and isomorphism.

Proof. The equivalence of (1) and (2) is [La, Theorem 2.5]. The equivalence of
(1) and (3) is [Hun, Theorem IX.3.3]. The uniqueness is [La, Theorem 3.5. O

The equivalence of (1) and (3) in the above result is known as the Wedderburn-
Artin theorem. We call the isomorphism of (3) the Wedderburn decompo-
sition of A4, and the My, (D;) its Wedderburn components. The reason for

our interest in semisimple algebras is

Theorem 2.2.4 (Maschke). If F is a field of characteristic zero and G is a
finite group, then F'G is a semisimple algebra.

Proof. We let M be the left FG-module FG, and N any submodule. Clearly, N
is an F-subspace of M. Hence, we may take an F-basis {z1,... ,24} of N, and
extend it to an F-basis {r1,...,2)g|} of M. Let N' = span{z41,... , 2|61}
Then M = N & N’ as F-modules. We need to find a complement for N as an

FG-module.
We have the F-linear projection map = : M — N, corresponding to M =

N & N'. Define r: M — N via
1 —
T(m)='lglzg tom(g-m)

9€G

where - is the FG-module action on M. Now, 7 is certainly F-linear, and if
h € G, then

hr(m) = T > b xlg-m)

- Z k™Y w(kh - m)

Gl 5

= 7(hm)

(where k = gh~! runs through G as g does). That is, 7 is F'G-linear. Further,
sincew : M —» N, m(g-m) € N for all g, and N is an FG-module. Hence,
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g~! . w(g-m) € N. We conclude that 7 is an FG-linear map from M to N as
promised. Next, if n € N, we have g-n € N, and the projection map = fixes N.
Thus, g~! - n{g - n) = n, and we conclude that 7(n) = TéTlGI" =n.

Let K = kerr. Since 7 is an FG-module homemorphism, K is an FG-
submodule of M. Take m € M. Then 7(m) € N, and 7(m — 7(m)) = 7(m) —
7(r(m)). Since 7 fixes N, 7(r(m)) = 7(m), so that m — 7(m) € K. Thus,
m=r(m)+(m—7(m)) € N+ K. Thatis, M=N+K. fmeNNK, then
since T fixes N, 7(m) = m. By definition of K, 7(m) = 0. Thus, m = 0. We
conclude that M = N @ K (as FG-modules), and by Proposition 2.2.2, we are
done. O

There is an equivalent formulation of Maschke’s Theorem, the proof of which
is basically identical to the one we have just presented. Namely, every finite-
dimensional representation of a finite group, G, over a field, K, of characteristic
zero is the direct sum of irreducible representations.

We observe that the restriction on the characteristic of F' is needed only to
guarantee that 1/|G| exists. Thus, the result also holds if the field has a nonzero
characteristic which does not divide |G|.

Maschke’s Theorem tells us that if K is any subfield of C, and G is a finite
group, then KG & @)_, My, (D;) for some natural numbers n; and division
algebras D;, which must be finite-dimensional over K, since KG is.

Let us examine these division algebras for a moment. If D is a finite-dimen-
sional K-division algebra, then it is easy to see that its centre, F', is an extension
field of K, and D is a finite-dimensional division algebra over F. An important
result is

Lemma 2.2.5. Let D be a finite-dimensional division algebra over its cenlre,
F, a field of characteristic zero. Let E be a mazimal subfield of D containing
F (which must ezist by finiteness of dimension). Then dimpE =dimgD. In
particular, dimpD is a perfect square.

Proof. [CR2, Corollary 7.22] 0

We call the value dimpE = +/dimrD the Schur index of D, and denote it
by s(D). We also call this value the Schur index of a Wedderburn component
of the form M,(D). Of immense value to us will be the following result, whose
proof can be found in [CR2, Theorem 27.11].



Theorem 2.2.6. Let G be a finite group, and let QG = P My, (D;) be the
Wedderburn decomposition. Then for each i, n;s(D;) divides the order of G.

It follows, for example, that if G is a group of odd order, then each n; and

each s(B;) must be an odd number.
We need to explore the connection between the irreducible complex repre-

sentations of a finite group G, and the Wedderburn components of QG. If T
is an irreducible complex representation of G, and Y is its character, we write
Q(x) = Q(x(9) : g € G). Recall that T : CG — Endg(V') for some vector space
V, and observe that QG is embedded in CG in an obvious way. We have

Proposition 2.2.7. Given G and T as above, if QG = @ A; is the Wedderburn
decomposition of QG, with each A; & My, (D;), then there ezists a unique t such
that T(A;) # 0. The centre of A; (which is also the centre of D;) is isomorphic

to Q(x)-
Proof. [Hup, Hilfssatz V.14.7] O

On the other hand, if, for some i, we had T'(A;) = 0 for all irreducible complex
representations T, then since 4; C QG C CG, we would have a nonzero element
a € CG such that T(a) = 0 for all irreducible complex representations T'. Let
p be the regular representation of G over C. (See Example 2.1.3(b)). Then
p(a)(1) = a # 0. However, by Maschke’s Theorem, p is the direct sum of some
irreducible complex representations Tj. But each Tj(a) = 0 by assumption,
contradicting the fact that their direct sum is nonzero. Hence, for each ¢, there
exists an irreducible complex representation T such that T'(A;) # 0. It follows
immediately that the next result holds.

Corollary 2.2.8. If QG = @ M,,(D:), then the centre of each D; may be taken
to be Q(x), where x is the character of some irreducible complez representation

of G.

Finally, we say that a complex representation T is realizable over a subfield
K if under some choice of basis, T(g) € M, (K) for all g € G. We conclude with
the following celebrated theorem.

Theorem 2.2.9 (Brauer). PEvery irreducible complez representation of a finite
group is realizable over Q(€|g|), where || is a primitive |G|** root of unity.

Proof. [CR2, Theorem 15.16] O



§2.3 Primitive Central Idempotents

An element e of a ring R is said to be an idempotent if e = e. Two
idempotents e and f are said to be orthogonal if ef = fe = 0. For example, if
e is an idempotent, then (1 —e)? =1—2e+e?=1—c,ande(l—¢)=e—¢€* =
0 = (1 — e)e, which means that e and 1 — e are orthogonal idempotents.

If e is a central idempotent in R, we can see that Re is a ring with identity
element e. (I R is an F-algebra for some field F, then so is Re). Suppose
that a central idempotent e can be written as the sum of orthogonal central
idempotents, e = f + f'. Then f = f2 = f2 + ff' = f(f + f') = fe. That is,
f € Re and similarly, g € Re. We say that a nonzero central idempotent e € R
is a primitive central idempotent if it cannot be expressed as the sum of two
orthogonal central idempotents, unless one of these is 0. We have

Proposition 2.3.1. If e is a central idempotent of R, and Re & My(D) for
some natural number n and some division ring D, then e is a primitive central

idempotent.

Proof. Suppose this is false. Then write e = f + g, with f and g orthogonal
central idempotents in R (and hence elements of Re by our earlier remarks).
Since f is central in R, it is certainly central in Re = M,(D). That is, f = zIy,
a scalar multiple of the identity matrix, for some z in the centre of D. Since
f2 = f, we have 22 = z. But in a division ring, this means that z=0or z = 1.
Hence, f is the zero element or the identity element of Re, namely e. In the
. latter case, e = e+ g implies g =0. O

Let us take a group algebra KG, with G a finite group, K a field of character-
istic zero. Then we have the Wedderburn decomposition KG = @i, Ai, with
each A; = M,,(D;). I we let e; be the identity element of 4;, it is immediate
that e; is a central idempotent in KG, and KGe; 2 My, (D;). By the above
result, e; is a primitive central idempotent. Further e;e; = 0 for ¢ # j (since the
sum is direct), and 1x¢ = €; + --- + er. Thus, we have written 1 as a sum of
pairwise orthogonal primitive central idempotents. This expression is unique, as
seen in

Proposition 2.3.2. Suppose we can write 1 =¢; + -+ + ¢, in a ring R, where
the c; are pairwise orthogonal primitive central idempotents. Then the central
idempotents of R are precisely the sums of subsets of {ci,... ,ct}, and the only
primitive central idempotents of R are c1,... ,¢ct. In particular, the ezpression
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of 1 as a sum of pairwise orthogonal primitive central idempotents is unique up

to order.

Proof. Let e be a central idempotent in R. Then for each i, ec; is a central
idempotent of R contained in Rc;. If 0 # eci # ci, then we write ¢; = eci +
(¢ci — eci). Now,

eci(ci — ec;) = ec? — e*c? = eci — ec; =0,

and similarly, (c; — eci)ec; = 0. Further,
(ci — ec;)? = ¢ —2ec? + ec? = ¢; — eci.

Sinee c; and ec; are central, so is ¢; —ec;, and we conclude that ec; and ¢; —ec; are
orthogonal central idempotents summing to e, a contradiction. Thus, for each i,
ec; = 0 or ec; = c¢;. Hence,

e’—‘e(ci+"'+Cg)=ec1+u-+ec,

is a sum of a subset of {c1,+-- ,ct}. Since the c; are pairwise orthogonal, if
F1,... ,Jk are distinct values in {1,...,t}, then

(ciy+o-tep)? =cf 4o+ 6 = ¢+ +

and the centrality of each c¢; implies the centrality of their sum. Hence, each sum
of a subset of {¢1,... ,¢t} is a central idempotent, completing the proof of the

first statement.

Now, if we have ¢ = ¢j, + - + ¢j,, k = 2, then ¢j, and ¢j, +--- + ¢j, are
orthogonal central idempotents. We know that ¢;, # 0 by definition, and if
¢j, + - +¢j, =0, then

0 = Ocj, = ¢jzCj, +** + CjuCia = Ciz
by orthogonality, a contradiction. Thus, ¢ is not primitive central. This gives
us the second statement. To get the last part, suppose we have an expression
1 =z,¢; + * -+ + 2s¢1, for non-negative integers z;. Then for each ¢,

Ci = 21€1C;i + * * + + 2tCeCi = 2iCi

by orthogonality. Thus, our expressionis 1=c; +---+¢:. O

Hence, in our group algebra, the primitive central idempotents are precisely
the identity elements of the Wedderburn components.
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Suppose € is a primitive central idempotent in QG, for a finite group G. Then
e commutes with all elements of G, which means that e is a central idempotent of
CG (but not necessarily primitive central). By Proposition 2.3.2, we may write
e= fi + -+ + fm for some distinct primitive central idempotents fiseeoy fm of
CG. Now, CGf; is a Wedderburn component of CG. Since C is the only finite-
dimensional division algebra over C, we have CGf; = My(C) for some natural
number n. It follows immediately that the map g — gfi € My(C) is a complex
representation of G. Let x be its character. Then, by [Ya, p.4],

fi= Klg—l) > x(g™")g-
9€q@

Thus, all coefficients of f; are in Q(x). Let G be the Galois group of Q(x) over
Q; that is, the group of field automorphisms of Q(x) fixing Q elementwise. Then
[Ya, Proposition 1.1] gives us

Theorem 2.3.3. Under the above conditions,

=X 5 olxta ™.

o€G g€CG

This is particularly important to us, in that we may deduce the following
result.

Corollary 2.3.4. Let e be a primitive central idempotent of QG, and write
e= fi + + fm, a sum of primitive central idempotents of CG. If for some
h € G, there is an i such that hf; = fi, then he = e.

Proof. Let x be the character defined in the discussion preceding Theorem 2.3.3.
We write a; = x(g71), 8 = x(1)/|Gl. Then fi = B g as9- Now, hfi = fi

implies that
B Z aghg = Z ayg.

g€G g€G
Hence,
BY an-1,9=8) a9
9€G 9€G

Since B # 0, ap-14 = g for all g € G. Therefore, o(ay-1,) = o(ay) for all
g€ G, o €@ Thatis,

BY olan-1,)9=8 olag)g.

e g€CG
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In other words,

B Z o(ag)hg=p Z o(ay)g.

geG geG

That is,
hBY  alag)g=8)_ a(ay)g.

9€G 9€G

Since e is the sum over o € G of these terms, we have he = e, as required. [

§2.4 Reduced Norms

For any ring R, and any natural number n, we may consider GL,(R) =
U(M,(R)), the group of invertible n X n matrices over R. If R is commutative, we
also have SL,(R), the subgroup of GL,(R) consisting of matrices of determinant
1. In the noncommutative case, however, determinants do not exist. Since we
will be interested in studying G L, (D) for division rings D, we would like to have
an analogue of the determinant.

We assume familiarity with the basic properties of tensor products of algebras
over a field. (For instance, let M be a right R-module, and N a left R-module,
for some ring R. (When R is a field, R-algebras will suffice. This is the case
which interests us.) If K is any abelian group, then a map A : M x N —
K is said to be middle linear if A(m; + m2,n1) = A(mi,n1) + A(mz,n1),
A(my,n1 + n2) = A(my,n1) + A(ma, n2), and Amyr,ny) = Amy,rn;), for all
my,ma € M, ny,nz € N, and r € R. We recall that a middle linear map induces
a group homomorphism ) : M ®r N — K, given by M'(m ®n) = A((m,n)). (See
[Hun, Theorem 1V.5.2].))

Recalling that the Schur index s(D) was defined in §2.2, we have

Lemma 2.4.1. Suppose that D is a division algebra which is finite-dimensional
over its centre, F', which is an algebraic number field. Suppose further that E is
a mazimal subfield of D containing F. Then DQr E & M,p)(E) as E-algebras.

Proof. [Re, Theorem 7.15] O

Call this isomorphism 8 : D @ r E — Myp)(E). For a natural number n, we
want to define a map v : Mn(D) ®F E — Mpyp)(E). Let us regard matrices in
M, yp)(E) as n x n grids of s(I?) x s(D) matrices. If « € My(D) has entries a;,j,
then for e € E, we define a map 7 : My (D) X E — My p)(E) by letting n((e, €))
be the matrix whose (i, 7)*" s(D) x s(D) matrix is f(c;,; ® €). This is clearly a
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middle linear map, so that we get a homomorphism v, as required, with y(a ®¢)
being the matrix whose (i,7)'® s(D) x s(D) matrix is B(c,; ® €). It is perfectly
straightforward to verify that < is surjective, so by comparing dimensions, it is
injective as well. It is also clear that v is a homomorphism of E-algebras. In
summary,

Proposition 2.4.2. If D, F, and E are as in Lemma 2.4.1, then
9 Mn(D) ®F E — A’Ins(D)(E)

is an isomorphism of E-algebras.

Since « is an isomorphism of E-algebras, we observe that 7(f ® 1) will be the
matrix
f

f

for each f € F.
We define the reduced norm on M,(D) via nr(a) = det(y(a ® 1)). It is
important to state

Proposition 2.4.3. With the same notations as above, nr(a) € F, for all a in

M,(D).
Proof. [Re, Theorem 9.3] O

It is clear that the reduced norm preserves multiplication. Thus,
nr : GL,(D) — F*
is a group homomorphism, where F* = U(F). We write SLy(D) for the sub-

group of GLn(D) consisting of matrices of reduced norm one. When D is a field,
~ is simply the identity map, and SL.(D) agrees with our original definition.

§2.5 Algebraic Number Theory

Let A be a Q-algebra. An element a € A is said to be integral over Z, if it
satisfies a monic polynomial in Z[z]. A basic result about integrality is
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Proposition 2.5.1. For an element a in ¢ Q-algebra A, the following are equiv-
alent:
(1) a is integral over Z;
(2) (Z[a),+) is a finitely generated abelian group;
(3) Z[a] is contained in a subring R of A, where (R,+) is a finitely generated
abelian group.

Proof. [Re, Theorem 1.10} O

*When A is a subfield of the complex numbers, the elements which are integral
over Z are called the algebraic integers. It is clear that every rational integer
is an algebraic integer. We also have the following result, which is [ST, Theorem

2.15).

Proposition 2.5.2. If K is a subfield of C, then its algebraic integers form a
subring, Ok, of K containing Z. If K is an algebraic number field, then Ok has
a finite integral basis; that is, a subset {z1,... ,Zn} of Ok which is a Z-basis of
Ok, and a Q-basis of K.

The next result is an important one.

Theorem 2.5.3 (Dirichlet’s Unit Theorem). Let Q(a), @ € C, be an alge-
braic number field. Let m(z) be the minimal polynomial of o over Q. Let s be the
number of real roots of m(z), and let 2t be the number of non-real roots. Then
the unit group of the ring of algebraic integers of Q(a) is a finitely generated
abelian group which is isomorphic te C X F, where C is a finite ¢yclic group, and
F' is free abelian of rank 5+t —1.

Proof. [ST, Theorem 12.6] 0O

We note that the number of non-real roots of a polynomial in Q[z] must be
even, since if 8 € C is a root, then so is its complex conjugate.

We say that a subfield F of C is an imaginary quadratic extension of the
‘rationals if [F : Q] = 2 and F € R. It is easy to see that this holds if and only
if F = Q(v/—n), for some natural number n. We deduce
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Corollary 2.5.4. Let F = Q(a) be an algebraic number field, and OF its ring
of algebraic integers. Then U(OF) is finite if and only if F = Q, or F is an
imaginary quadratic eztension of the rationals.

Proof. Clearly, the group C x F described in Dirichlet’s Unit Theorem is finite
if and only if the rank of F is zero. Thus, this is true if and only if either
s=1,t=0,0rs =0, = 1. In the former case, @ € Q; hence, F = Q. In the
latter, [F' : Q] = 2, and since a is among the roots of m(z), « ¢ R,so FZ R. O

Suppose, now, that £, is a primitive nth root of unity, in C. Then &, is
certainly an algebraic integer, and therefore, Z[{,] is contained in the ring of
algebraic integers of Q(£,). In fact, more is true, and we give this well-known
result, which is [CR1, Theorem 21.13].

Theorem 2.5.5. The ring of algebraic integers of Q(€x) is Z[¢y).
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Chapter 3

General Results

In this chapter, our goal is to obtain some units (specifically, the bicyelic
and Bass cyclic units) which, under appropriate restrictions on the Wedderburn
components of QG and the homomorphic images of G, will generate a subgroup
of finite index in U(ZG), for a finite group G.

Here is our plan of attack. In the first section, we will prove some easy
(but extremely useful) results about orders in Q-algebras. In the second and
third sections, we introduce the Bass cyclic umits, and use a result of Bass and
Milnor to obtain a reduction in the problem, due to Ritter and Sehgal. In the
fourth section, we demonstrate that certain Wedderburn components of QG are
harmless. We deduce from this that for any abelian group, the Bass cyclic units
alone generate a subgroup of finite index in A(ZG). In the fifth and sixth sections,
we present the results of Jespers and Leal, which give conditions under which
the Bass cyclic and bicyclic units suffice.

§3.1 Orders

We say that a subring R of S is a unital subring if 1z = 1s.

Let A be a finite-dimensional Q-algebra. Then a unital subring, A, of 4, is
said to be an order {or Z-order), if (A,+) is a finitely generated group, and
QA = A. Let us give some easy examples of orders.

Ezample 8.1.1. () If K is an algebraic number field, then its ring of integers is
an order in K. This is immediate from the existence of the integral basis, which
we pointed cut in Proposition 2.5.2.

(b) For any finite group G, ZG is an order in QG. No comment is necessary.

In fact, if A is an order in A, then (A, +) is a free abelian group of rank dimgA.
Indeed, if for some natural number n, and A € A, we had n) = 0, then (working
in A), 0 = (1/n)nX = A. Thus, (A,+) is torsion-free, and since it is a finitely
generated abelian group, it is free of finite rank. Let {A;,... ,An} be a Z-basis
for A. If n > dimgA, then this set is linearly dependent over Q. That is, there
exist q1,..., gn € @, not all zero, such that g1 A; +-+ -+ gnAn = 0. If t is the least
common multiple of the denominators of the g;, then tg1 Ay + -+ 4+ tgnAp = 0,
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with each tq; € Z, and not all zero. This contradicts freeness. Thus, n < dimgA.
But since QA = A, A1,... , A generate A as a vector space, so n > dimgA.

Suppose A is an order in A. Take a € A. Because QA = 4, there exist q1,...,
gn € Qand Ay, ... ,\n € A such that a = 1M1 + -+ + qnAn. Let ¢ be the least
common denominator for the g; terms. Then, we actually have an expression of
the form

1
a= ;(21/\1 + -+ 4 zpAn)

with each z; € Z. That is, the expression in brackets on the right hand side is in
A. Thus, there exist u € A, and a nonzero integer ¢, with @ = (1/t)u. Conversely,
if for every a € A, there exist a nonzero integer t and 1 € A with a = (1/t),
then the condition A = QA is obviously satisfied. Thus, we may substitute this
condition, when it is convenient.

Some obvious facts are given in

Proposition 3.1.2. (a) IfA is an order in A, then M, (A) is an order in M,,(A),
for any natural number n.

(b) If 7 : A — B is a homomorphism of Q-algebras, and A is an order in A,
then m(A) is an order in w(A).

(c) If A; is an order in A;, 1 < i < n, then A @ -- B Aq is an order in
A1 ®- - D An.

Proof. (a) If the set {A1,... ,Ar} generates (A, +), and if we let E; ; be the n xn
matrix with & 1 in the (3,) position, and 0 elsewhere, then it is clear that the
set {MEij:1 <k <71 <4j < n} generates My(A). f @« € M,(A) has
coefficients ;,j, then by our above remarks, there exist nonzero integers t;,;, and
Aij EA such that a; ; = (1/ti,;)Mi,j. That is, t; ;04,5 € A for each pair (3,7). If
we let ¢ be the product of all of the ¢; ; terms, then ¢ is a nonzero integer, and
ta; ; € A for each pair (z,7). That is, ta € Mn(A). Again, by our above remarks,
we have QM,(A) = M,(A). We are done.
Parts (b) and (c) are completely trivial. O

As we will be dealing with orders in division algebras, we had better make
sure that we are not talking in a vacuum.

Lemma 3.1.3. Let D be a division algebra, which is finite-dimensional over its
centre, F, an algebraic number field. Then D has an order. In fact, this order
may be chosen such that it contains the ring of algebraic integers Of of F.

Proof. Using the terminology of Lemma 2.4.1,let 8 : D@r E — M,(p)(E) be the
isomorphism. By Example 3.1.1, the ring of integers O of E is an order in E.
Thus, by Proposition 3.1.2, My(p)(OE) is an order in My p)(E). We identify D
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with D@1 C D@rE. Let A = 8~ (Myp)(O£))N(D®1). Since (My(p)(OE), +)
is a finitely generated abelian group, so is (87! (M,(p)(OF)), +), and therefore,
so is any subgroup, such as (A, +). If we take d € D, then 8(d®1) € Mypy(E),
which means that there exist a nonzero integer ¢, and & € My(p)(Ok), satisfying

B(d @ 1) = (1/t)a. Hence,
d@1=p7((1/t)e) = (1/t)87(a)
(by Q-linearity). Since d®1 € D®1,s0ist(d®1) = 87 (a). Thatis, 87 (a) € A,
and d @ 1 = (1/t)8~1(a) for a nonzero integer ¢. Therefore, A is an order in D.
Now, let A be any order in D. If the set {\;,... ,An} generates (A, +), and

{it1,... ,tm} generates (OF,+), then since Oy centralizes A, it is clear that the
set {\ipj: 1 <i<n,1<j<m} generates (AOF,+), where

AOF = {a161 + "'+atbt L ag € A,bi € OF,t > 0}
Since QA = D, QAOr = D. Again, since OF centralizes A, AOF is easily seen
to be a unital subring of D. Therefore, it is an order containing both A and
Or. O

Proposition 3.1.4. Let D be a division algebra which is finite-dimensional over
Q. Then for any natural number n, My(D) has an order.

Proof. Combine Lemma 3.1.3 and Proposition 3.1.2(a). O

We will have occasion to use
Proposition 3.1.5. Every element of an order A, in A, is integral over Z.

Proof. If a € A, then Z[a] C A, where (A, +) is finitely generated. By Proposi-
tion 2.5.1,  is integral over Z. O

Now, suppose A; and A are two orders in A. Then, it is clear that A;NAs is
a unital subring of A, and since (A;,+) is finitely generated, so is its subgroup,
(A1 N Ag,+). If a € A, then we may choose nonzero integers t; and ¢z, A1 € Ay,

and A2 € Ao, such that
1 1
==\ = —A.
a 5 A1 . 2
That is, t;a € A;, and t2a € Ap. Thus, t1t2a € A; N Az. In other words, there

exists A € A; N A satisfying

We have proved
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Proposition 3.1.6. If A; and A; are orders in A, then so is A N A
Perhaps the most useful result of all will be

Theorem 3.1.7. Let A; and Ay be two orders in A, with Ay € Aa. Then
(a) |Az : A1] < o0;
(b) {U(A2) : U(A1)]| < oo.

Proof. (a) We know that (A2, +) and (A1, +) are finitely generated abelian groups
of the same rank. Thus, the index of one in the other is finite.

(b) From part (a), we may choose a natural number m such that mA, C A;.
Suppose that z,y € U(A2) are in different left cosets of (A, ). That is, 2U(A,) #
yU(A;). Suppose, on the other hand, that = and y are in the same coset of mAs
in Ag. That is, z — y € mAz. Since y € Ay, it follows that

ylz 1=y Yz —y) €mAz C A
Since 1 € A;, y~'z € A;. Interchanging the roles of z and y, we find out that
z-ly € A;. Therefore, 7'y € U(A1), which means that U(A) = yU(My),

a contradiction. That is, different left cosets of U(A1) in U(A2) yield different
cosets of mAz in A,. Thus,

[U(A2) : U(AL)] < |[A2: mAg| = m < oo,

where k is the rank of (A2, +). We are done. O
A final observation is

Proposition 3.1.8. If A; C Az are orders in A, u € Ay, and u € U(A3), then
u e U(Al)

Proof. Since u € U(Az), we have uAz = Az. Thus, |A; : uly| = |ulz : uly].
Now, if z1, 22 € Az, and uzx), uzz are in different cosets of uA; in Az {that is, if
u(zy — z2) ¢ uly), then certainly 1 — z2 ¢ Ay. Thus,
IAz :uA1| = |uA2 : uA1| < |A2 : A]I < o0
(by Theorem 3.1.7(a)). However, uA; < A and, therefore,
Az : Aq] S Azt uly| < A2 Al < 0.
It follows that uA; = A;, and therefore, u € U(A;). O
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§3.2 The Bass Cyclic Units

For a natural number m, let £&m = €2%/™, a primitive m*? root of unity. Let
¢ be the Euler function; that is, p(m) is the number of natural numbers, less
than or equal to m, which are coprime to m. We begin with a useful lemma.

Lemma 3.2.1. Let C, = (z) be a cyclic group of order n. Then the Q-algebra
homomorphism

K : QCn — @D Q&a),

din

given by k(z) = (€d)ajn s an isomorphism. In particular, @dln Q(&4) is the
Wedderburn decomposition of QCj.

Proof. Suppose & is not injective. Then there exist ¢i1,...,qn € @, not all zero,
such that
n-1 . n-1 .
0=r(D_ az') = (D 6€dan-
i=0 i=0

That is, Z:-:Ol gt} = 0, for each d dividing n. Now, if 1 <r < d, and (r,d) =1,
then £ is a primitive d*® root of unity. Thus, there is a field homomorphism
a : Q&) — C, with a(£s) = €], and a(q) = g, for all ¢ € Q. Hence,

n—1 n—1
0=a() el =) ati"
=0 1=0

Now, if 1 < m < n, write 2 = %, in lowest terms. That is, ¢t divides n,
1< s <t, and (s,t) = 1. Thus, taking d =¢, and r = s, we have

n—1 n—1
— § : g8l __ § : emi
0"‘ qicy = dicn
i=0 i=0

for all natural numbers m < n. Hence, if we let M be the n X n matrix whose
(4,7)t" entry is ¢8I then M is singular. But M is a Vandermonde matrix,
which is always invertible. We have a contradiction; hence, & is injective.

We further observe that dimgQCr = n, and dimg(D g, Q1)) = 2og)a 2(d) =
n. Thus,  is surjective as well, as required. That & dn Q(&4) is the Wedderburn
decomposition follows from uniqueness. 0O
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Let (z) be a cyclic group of order n. Fix a positive multiple, m, of p(n). Let
1 < i < n, where i is coprime to n. Then, by Fermat’s Little Theorem, we know
that :™ = 1 (mod n). Henceforth, let us write

g=1l4z+z24. ... 42"
Let k be the integer such that i™ = 1+ kn. Then the elements of the form
(14+z42%+---+27 )™ — ki € Z(z)

are called Bass cyclic units. They were introduced by Bass in [Ba2]. Notice
that if n = 1 or 2, there are no Bass cyclic units.
It is not transparently obvious that the Bass cyclic units are, indeed, units.

We must prove
Proposition 3.2.2. The Bass cyclic units are in U(Z(z)).

Proof. Let G = (z). By the definition of £ in Lemma 3.2.1, it is clear that
K(ZG) € Dgyjn Zl€d). Now, Z[¢4) is an order in Q(£4), so Proposition 3.1.2(c)
tells us that Dy Z[£4) is an order in Py, Q(éa). Since Z@G is an order in QG,
we know that «(ZG) is also an order in £(QG) = @ 4y, Q(éa). Let

u=1+z+---+2 )" — ki

Then, by Proposition 3.1.8, if £(u) is a unit in ), Z[£4), it must be a unit in
£(Z@G). Since & is an isomorphism, in this case, u would be a unit in ZG.

Now, x(u) is a unit in Py, Z[¢4] if and only if its projection into each com-
ponent is a unit. That is, we wish to show that

(L4 Ea+ &4 +ETH™ — k(1 +&a+---+£77) €UZ[)),

for each d dividing n. Now, the polynomial 1 +y + y? + .-+ +y""! may be
rewritten ll:_%- Thus, if y # 1 satisfies y" = 1, then1+y+--- + y"~ 1 = 0.
Hence, if d # 1, then

(L+€ate - +ETH ™ k(1 +bat - +E571) = (LH€at-+67)" = (i :2) :

Since (i,n) = 1, we have (i,d) = 1. Thus, there exists an integer h such that
hi =1 (mod d). (Since adding multiples of d has no effect, we may assume that
h > 0). Thus, we have {4 = ¢hi. Hence,

1—¢ 1§k

- iy g2 ... o glh=D)i
1_63_ 1_62 =1+&+6++&g € Z[t4).
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But this is the inverse of i—:g‘; hence, i—:% is invertible in Z[£4], as required.
Whend=1, (1+12+---+1"1)™ —k(1+4.--4+1""1) = i™ — kn = 1, which

is certainly invertible. We are done. [

For a finite group G, the Bass cyclic units corresponding to each z € G, with
m = ¢(|G]), are called the Bass cyclic units of ZG. (We observe that if z € G,
e(Iz])|¢(IGl), since |z|||G]). The subgroup of #(ZG) generated by these units is
denoted B;. That is,

1 —3#(GD _

By={((1+z+- -+ 1) 4 t:z€G1<i<l|z,(5le]) =1).

A result of Bass and Milnor, which we present next, involves algebraic K-
theory. We shall assume it as the starting point of our investigations, but to
understand it, we will need some terminology. We refer the reader to [CR3,
Chapter 5] for more information.

For any ring R, and natural number n, we let GLn(R) be the group of invert-
ible n X n matrices over R. We see that, if m < n, then GL(R) is embedded in

GL,(R) under the map
A~ A 0
0 In-m )’

where In—m is the (n — m) x (n — m) identity matrix. We let GL(R) (with no
subscript) denote the set of equivalence classes of the set | J;2; GLn(R), where the
m xm matrix A and the n xn matrix B are in the same equivalence class provided:
)m=n,, A=B;2)m>n, A= g,mo_");or3)n>m, B = ‘:,ﬂgm).
Clearly, this is an equivalence relation.

Now, GL(R) is a group, where the multiplication of two equivalence classes [A]
and [B] is defined as follows. Choose 2 natural number n such that [A] contains
some n X n matrix A;, and [B] contains some n x n matrix B;. (This is certainly
possible, if we take n to be sufficiently large). Then we let [A][B] = [A1B1]. It
is obvious that the choice of n is irrelevant, since adding more ones down the
diagonal in each of A; and B; will simply add more ones down the diagonal in
their product. The verification that this is a group operation is entirely trivial.

Now, it is clear that the derived subgroup [GL(R), GL(R)] consists of equiv-
alence classes containing, for some natural number m, an m X m matrix 4 in

[GLm(R), GLm(R)]. We define
K:(R) = GL(R)/[GL(R), GL(R)].

This is an abelian group, known as the Whitehead group of R. If [4] is an
equivalence class in GL(R), we will write [A]* for the element [A]{GL(R), GL(R))
of K1(R).
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Now, we identify #(R) with GL,(R), and so we may define the natural
homomorphism j : #(R) — Ki(R) via j(u) = [(u)]*. (We may denote this
map by jr, when the ring is in question).

Let R be a unital subring of S. Then, any commutator in GLn(R) is certainly '
a commutator in GLn(S). Thus, the inclusion map GLn(R) — GL,(S) induces
a homomorphism eg s : Ki(R) — Ki(S). If we let tp s : U(R) — U(S) be the
inclusion map, then it is completely clear that eg,s 0 jr = js 0 tR,s-

If R is commutative, then the determinant map is a homomorphism,

det : GLn(R) — U(R),

for each natural number n. Since elements of an equivalence class in GL(R) have
the same determinant, the map det induces a map

u: GL(R) — U(R),
where u([A]) = detA. Now, if A, B € GLa(R), then
det([4, B]) = (detA)~!(detB)™!(detA)(detB) = 1,

by commutativity. It follows that [GL(R), GL(R)] < keru. Thus, p induces a

homomorphism
v: Ki(R) = U(R),

where v([A]*) = detA. We define SK1(R) = kerv. Take an equivalence class
[A] € GL(R), and let us say Aisn x n, withdetd =r € U(R). Then, then xn
diagonal matrix

1
also has determinant r, and [M] = [(r)]; hence, [M]* = [(r)]* € j(U(R)). Further,

v([M~AP*) = v([M7]")v([A])
= v([(r~)]")v((A]")
-1

=1
That is, [M~1A]* € SK;(A). But [A]* = [M]*[M~1A]*, implying that SK;(R)

and j(U(R)) together generate K;(R). It is time to state the results which we
will have to assume.
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Lemma 3.2.3. Let (z) be a finite cyclic group, and let m be a multiple of o(|z}).
Then the Bass cyclic units corresponding to the z*, 1 < i < |z|, using m as the
fized multiple of ¢(|z*]), generate a subgroup of finite indez in U(Z(z)).

Proof. See [Ba2, Theorem 4], and the remark which follows it. O
We will also assume the following lemma, which is [Ba2, Theorem 2].

Lemma 3.2.4. Let G be a finite group. Then the subgroup
(ez(z).26(K1(Z(x))) : = € G)

of K1(ZG), is of finite indez in K,(ZG).
These results give us

Theorem 3.2.5 (Bass-Milnor). Let G be a finite group. Then j(B1) is of
finite indez in K1(ZG).

Proof. Take z € G, and let m be any positive multiple of ¢(|z|). Then, we let
B be the group generated by the Bass cyclic units described in Lemma 3.2.3,
which is of finite index in U(Z(z)). By [CR3, Theorem 48.1], SK1(Z(z)) = 1.

Thus, by our above remarks,
Jzzy U(Z(z))) = E1(Z(z)).

Therefore, jzz)(Bz) is of finite index in K;(Z(z)). Let us say that this index is

nz.
By Lemma 3.2.4, the subgroup

(€z(z),26 (K1(Z(z))) : = € G)

is of finite index in K1(ZG). Let us say that this index is g. Then, since K1(ZG)
is abelian, it follows that the images under ezz)zc © jzs) of the various B
generate a subgroup of index at most ¢[],cqn: in K1(ZG); 2 finite number.
Now, if we take m = ¢(|G|), then all of the Bass cyclic units we have described
are among the Bass cyclic units of ZG. Since €z(s) zG © jz(z) = J2G © L%z),ZG»
the images of the Bass cyclic units of ZG under jzg generate a subgroup of finite
index in K;(ZG). We are done. []
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§3.3 The Main Reduction

Let us establish some notation, which we will keep for some time. For a finite
group G, let e;, 1 < i < ¢, be the primitive central idempotents of QG. Then
QGe; = My, (D;), for some natural number n;, and some finite-dimensional
Q-division algebra D;. Let 6; : QGe; — My, (D;) be this isomorphism. Let
m; : QG — My, (D;) be the projection map; that is, mi(n) = 6;(nei), for all
n € QG. Let F; be the centre of D;, which will be an algebraic number field.
Let O; be the ring of algebraic integers of F;. Let A; be any order in M, (Ds),
containing m;(ZG). (For example, taking A; = mi(ZG) will suffice). Let O; be
any order in D; which contains O;. (The existence of such an O; is guaranteed
by Lemma 3.1.3). Thus, My, (O;) will be an order in My (D;). In addition, we
name the isomorphism 7 : QG — @ My, (D;). That is, 7(n) = (mi(n))i. Recall
that SLn;(D;) denotes the group of invertible n; x n; matrices over D; which
have reduced norm one. We write SLn,(0;) = SLn;(Di) N GLn,(O;).

We should point out that in most of the literature in this area, the orders are
assumed to be maximal; that is, not properly contained in any other orders. This
assumption is not, however, required. Also, by Proposition 3.1.5, every element
of an order is integral over Z. Thus, when D; is commutative, O; C 0O;. However,
we are assuming that O; C O;. Therefore, in this case, we are forcing the choice
O; = 0;.

Note that for any group or ring A, we denote the centre of A by Z (A). Let
us begin by proving

Lemma 3.3.1. The group Z(U(ZG)) is finitely generated.

Proof. Clearly, Z(QG) is a Q-subalgebra of QG. Since (ZG, +) is finitely gen-
erated, its subgroup (Z(ZG),+) is finite generated. If o € Z(QG), then there
exists a natural number m such that ma € ZG, and therefore, ma € Z(ZG).
Thus, Z(ZG) is an order in Z(QG). It follows that 7(Z(Z@)) is an order in
(Z2(QG)) = Z(m(QG)) = @ Z(My;(D;)). Now, the centre of My, (D;) con-
sists of scalar multiples of the identity matrix, where the scalar is in Z(D;) =
F.. That is, 7(Z(QG)) = @ Filn;. Since O; is an order in F;, Proposition
3.1.2 tells us that @ Oil, is an order in 7(Z(QG)). Therefore, by Proposi-
tion 3.1.6, so is 7(Z(ZG)) N @ Oiln;. Now, U(P Oiln,) = [[U(0i)In;, and
each U(0;) is a finitely generated abelian group, by Dirichlet’s Unit Theorem.
Thus, [JU(0:)I,; is a finitely generated abelian group, and so is its subgroup,
U((P Oiln;) N 7(Z(ZG))). Therefore, by Theorem 3.1.7,

U(+(2(ZG))) : U(ED Oiln; N T(Z(ZG)))| < 0.
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Hence, U(7(Z(Z@))) = 7(U(Z(ZG))) is finitely generated. Since 7 is an isomor-
phism, it follows that U(Z(ZG)) is finitely generated.

It remains only to show that U(Z(ZG)) = Z(U(ZG)). Suppose that « is in
U(Z(ZG)). Then ™! € Z(ZG), which certainly implies that a € Z(U(ZG)). If
B € Z(U(ZG)), then B commutes with each g € G. Thus, 8 commutes with all
of ZG, and similarly for 8~1. It follows that § € U(Z(ZG)). O

Another useful fact is

Lemma 3.3.2. Let A be a subgroup of finite indez in SLy,;(O;). Let B be a
subgroup of finite indez in GLn,(0;) N Z(GLy;(D;)). Then A and B generate a
subgroup of finite indez in GLyn,(O;).

Proof. Let a € My, (O;). Let v be the map defined in Proposition 2.4.2. Since
M, (0;) is an order in Mpy,(D;), a is integral over Z (by Proposition 3.1.5).
Let m(z) be a monic integral polynomial which is satisfied by a. Since v is Q-
linear, m(y(a ® 1)) = 0 as well. Therefore, the minimal polynomial, ever C, of
v(a ® 1) € Myyp,)(E), divides m(z). (The notation is taken from Proposition
2.4.2). Since the roots of the characteristic polynomial of y(a ® 1) are the same
as those of the minimal polynomial, up to multiplicity, all roots of the charac-
teristic polynomial are roots of m(z). But, by definition, the roots of m(z) are
algebraic integers. Thus, all roots of the characteristic polynomial, and there-
fore, all of its coeficients, are algebraic integers. However, the constant term of
the characteristic polynomial is -det(y(a ® 1)). Thus, nr(a) = det(y(a ® 1))
is an algebraic integer. By Proposition 2.4.3, nr(a) € F;. Hence, nr(a) € O;.
If we take a € GLy,(O;), then everything we have just said about « could be
said about a~1. Therefore, nr(a)™! = nr(a™?) € 0;. That is, nr(a) € U(O;).
Therefore, we have a homomorphism

nr : GLn, (0;) — U(O5).
Since U(0;) is abelian, it has a subgroup U(0;)"*(P), Let
P GLni(0:) = U(0:)[U(0:)™*P?
be the map obtained by applying the reduced norm, and then projecting onto

U(0)U(0:)*(P.
Suppose a € kerp. Let us say nr(a) = w™*P9) with w € U(0O;). Then we

have the n; x n; matrix
w
( ) € GL,,(0:) N Z(GLy,(Dy)).
w
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Further, since « is F-linear,

01 (( T, ) ®1) = ( .. ) € GL,,.-,(D..)(O,').

Thus,
w
nr ... = w™3(Di)
()
Hence,
w ~1
nr ( ) al=1;
w
that is,
w -1
( ) a € SL,,(0;).
w
But

. w)"‘a ,

so we conclude that
ker p < (SLay(O5), GLa, () N Z(GLn, (DY),

where we have used the fact that O; € O; to see that GL;(0;) € GLy,(O;).
Now, GL,,(0;)/ ker p is isomorphic to a subgroup of U(0;) /U(0;)™*(P) . By
Dirichlet’s Unit Theorem, U(0O;) is a finitely generated abelian group. Thus,
U(0:)/U(0;)™*(P9) is finite. We conclude that GLy,(0;)/ker p is finite, and
therefore,
|GLn,(0s) : (SLn;(Os), GLn;(Oi) N Z(GLni(Di)))| < o0
Since B is central in GLy;(0;), if |GLn;(0;) N Z(GLy,(Dy)) : B| = r1, and
lSLm(oi) : AI = rg, then
{GLni(0:) N Z(GLn(Di)) SLni(0:)) : (A, B)| < rara.

We conclude that |GLn,(O;): (A4,B)| <oco. O

Now, we will give a condition under which we get a subgroup of finite index

in ZU(ZG)).
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Lemma 3.3.3. Let C be a subgroup of U(ZG), such that for each i, C contains
a subgroup Ci, satisfying w;(C;) = 1, if i # j, and such that w;(C;) contains a
subgroup of finite indez in SL,;(O;). Then C, together with the Bass cyclic units
of ZG, will generate a group containing a subgroup of finite indez in Z(U(ZG)).

Proof. Take z € Z(U(ZG)). Then j(z) € K1(ZG), so by Theorem 3.2.5, there
exists a natural number [ such that j(z)! € j(B1). That is, there is a b € By
such that j(z'6~!) = 1. Since we are in K;(ZG), this means that there exists a

natural number a, such that the a X a matrix

2lp1!

1

is in [GL.(ZG), GL4(ZG)]. Now, we extend the map 7; : QG — My, (D;), to a
map (i : My (QG) — Myyn,(D;), in the following manner. We regard matrices in
M, (D;) as a x a grids of n; x n; matrices. Then, if @ = (@p4)p,q € Mn(QG),
we let the (p,q)t" n; X n; matrix of {;(a) be mi(ap,4). Clearly, (; is a Q-algebra
homomorphism. We also observe that

2ib~1 mi(2'671)
1 I,
1 In,

is in [GLan;(D;), GLqan;(D;)], since the homomorphic image of a commutator is
a commutator. Now, nr : GLgp;(D;) — U(F;). Since U(F;) is commutative, the

reduced norm of a commutator is 1. That is,
mi(2'071)

nr .. = 1.

By the definition of the map v in Proposition 2.4.2, we see that
mi(2'571)
l1=nr ! .. = nr(m(2'671)1%7! = nr(mi(2'071)).
' 1
That is, 7;(2'b~1) € SLy,(D;), for each i.
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We further observe that
m(zlb_l) € m(ZG) C A,
and similarly, mi(z'%™1)"! = m(bz~') € Ai. Thus, m(z'd™?) € U(A;). Since
M, (0;) and A; are both orders in Mpy,(D;), Proposition 3.1.6 tells us that
M,..(O;) N A; is another order in My, (D;). Therefore, by Theorem 3.1.7,

U(A;) : U(A; N M, (Oi))] = 1i < 0.
Let r = [[ri. Then, mi(2'671)" € GLn,(O;), which, by centrality of =, means

that
m(zlrb—r) € GL,,(0;) N SLyp,(D;) = SLyp;(0;).
We are given that m;(C;) contains a subgroup of finite index, let us say &;, in

SLn,(0;). Let k = [[ ki. We conclude that m;(2*7d~*) € mi(C;). Thus,

a,...,1, mi(2¥Tb7F),1,...,1) € (C),
for each i. Multiplying these together for the various i, we get

(w1 (2*7dF7), my (2M707FT),. . ) € 7(C).
That is, 7(2¥'"b~*") € 7(C). Since T is an isomorphism, zMrp=kr ¢ C. Since
b*" € By, we have 2} € (B;,C). To wit, the group

ZU(ZG))/(ZU(ZG)) N (B1,C))

is torsion. By Lemma 3.3.1, Z(Y(ZG)) is a finitely generated abelian group.

Therefore, every quotient of the group is finitely generated and abelian. Hence,

the grou
e ZU(ZG))/(ZU(ZG)) N (B1,C))

is finite. O

In fact, a much stronger result holds. We will need to use this lemma a couple
of times.

Lemma 3.3.4. Let A be a finite-dimensional Q-algebra. Let W, and W2 be two
orders in A, If N is a subgroup of U(A), and N contains a subgroup which is of
finite indez in U(W)), then N also contains a subgroup which is of finite indez

in U(Wa).

Proof. Let M be the subgroup of N which is of finite index in U(W,). Since
W; N W, is an order in A (by Proposition 3.1.6), it follows from Theorem 3.1.7
that [U(W2) : U(W1 N Wa)| < co. Now, U(W1 NWp) = U(W)) NU(W?). That is,
U(W,) : U(Wy) NU(W?)| < oo. Furthermore,

lU(W1) ﬂu(Wz) : MQU(Wz)I < IU(Wl) : MI < 00.
We conclude that M NU(W?) is of finite index in U(W;). O

We are now in a position to give our main reduction.
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Theorem 3.3.5 (Ritter-Sehgal). Let C be a subgroup of U(ZG), such that for
each i, C contains a subgroup C; satisfying 7;(C;) = 1 if i # j, and such that
7;(C;) contains a subgroup of finite indez in SL,,(O;). Then (By,C) is of finite
indez in U(ZG).

Proof. By Lemma 3.3.3, (B),C) contains a subgroup which is of finite index in
Z(U(ZG)). Therefore, 7({B1,C)) contains a subgroup which is of finite index
in 7(Z(U(ZG))). At the end of the proof of Lemma 3.3.1, we demonstrated
that Z(U(ZG)) = U(Z(ZG)). Therefore, 7((B;,C)) contains a subgroup of finite
index in T(U(Z(ZG))) = U(T(Z(ZG))).

Since Z(ZG) is an order in Z(QG), it follows that 7(Z(ZG)) is an order in

7(2(QG)) = Z(r(QG)) = Z(ED Mn,(D;)) = P Z(Ma.(D:))-

Now, Z(May,(D;)) consists of those matrices which are of the form zIn;, for
z € Z(D;) = F;. Hence, 7(Z(QG)) = @ Fil,,. Since O; is an order in Fj,
Proposition 3.1.2 informs us that @ O;ln; is an order in 7(Z(QG)). There-
fore, by Lemma 3.3.4, 7({B;,C)) contains a subgroup which is of finite index in
U(D Oil,;) = [JU(O:i)n;. Hence, 7({B1,C)) contains a subgroup of the form
[1 K:, where each K; is of finite index in U(0;)I5,. Now, if @ € Z(GLn,(Ds)),
then A = al,,,, for some a € Z(U(D;)) =U(Z(D;)) = U(F;). ¥ A € GLn,(O;:) as
well, then a € U(O;)NU(F;) = U(O; N F;) <U(0;), by Proposition 3.1.5. There-
fore, K; contains a subgroup of finite index in GLyn;(0;)NZ(GLy,(D;)). Further,
by our choice of C;, each 7;(C;) contains a subgroup of finite index in SLyp;(05).
Therefore, by Lemma 3.3.2, 7({B1,C)) contains a subgroup of finite index in
[1GLA;(O:) = U(D M, (O;)). Since @ My;(O;) is an order in @ Mn, (D),
and so is @ A, it follows from Lemma 3.3.4 that 7((B1,C)) contains a subgroup
of finite index in U(EP As).

However, we know that
T(U(ZG)) = U(r(ZG)) C U(ED m:(2G)) S U(EPD Av)-
Since 7((B1,C)) is of finite index in the unit group of the larger order, it is cer-

tainly of finite index in the unit group of the smaller order. Therefore, 7({B;,C)
is of finite index in 7(U(ZG@G)). Since 7 is an isomorphism, we are done. 0O

It is, perhaps, worth mentioning that in certain cases, the Bass cyclic units
are extraneous. In fact, we can see immediately that they were only required to
obtain a subgroup of finite index in Z(U(ZG)). We deduce
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Corollary 3.3.6. Let C satisfy the same conditions as in Theorem 3.3.5. Sup-
pose further that Z(U(ZG)) is finite. Then C is of finite indez in U(ZG).

Going a little further, we obtain

Corollary 3.3.7. Let C satisfy the same conditions as in Theorem 3.3.5. Sup-
pose that each F; is either Q, or an imaginary quadratic eztension of the ratio-
nals. Then C is of finite indez in U(ZG).

Proof. The assumption assures us that Z(U(Z@G)) is finite, and the result follows
from Corollary 3.3.6. O

§3.4 The Trivial Case

In general, Wedderburn components of QG which are division rings (that is,
components where n; = 1), will cause us a lot of trouble. In fact, the problem of
finding a finite set of generators for SL;(0;), where O; is an order in a division
algebra, remains open. However, there are certain cases in which we will discover
that SL;1(O;) is finite. Clearly, in this case, we may take C; = 1 in Theorem
3.3.5. Thus, we need not worry about such components. We adopt the same
notation that we introduced at the beginning of §3.3.

The following result is obvious, but it must be stated.

Lemma 3.4.1. If n; =1, and D; is a field, then SLn,(O;) = SL:1(0;) = 1.

Proof. When D; is commutative, the reduced norm is simply the determinant.
In the 1 x 1 case, the determinant is the identity map. O

We have presented all of the machinery which is necessary to prove

Theorem 3.4.2 (Bass-Milnor). Let G be a finite abelian group. Then we have
U(ZG) : B,| < oo.

Proof. Since QG is commutative, every Wedderburn component must be com-
mutative. That is, each n; = i, and each D; is a field. By Lemma 3.4.1, we may
take C = 1 in Theorem 3.3.5. O
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As an application of Corollary 3.3.7, let us find some groups G such that zG
has only trivial units. In the following lemma, let us denote the trace of a matrix

M by tr M.

Lemma 3.4.3 (Berman-Higman). Let G be a finite abelian group, and sup-
pose that @ = ) g 0q9 € ZG satisfies a™ = 1, for some natural number n.

Then a = +g, for some g € G.

Proof. Let T be the regular representation of G over C. That is, T(z)(y) = zy,
for all z,y € CG. Now, CG has G as a basis. If g € G, the matrix of T(g) with
respect to this basis will have exactly one 1 in each column, and zeroes elsewhere.
In particular, the position of the 1, in the column corresponding to y € G, will
be the position corresponding to gy € G. If g # 1, then gy # y, forall y € G.
Thus, the 1 will never occur on the diagonal of T(g). Therefore, tr T(g) =0, if

g # 1. However, tr T(1) = tr Ijg| = |G|.

Now, a™ = 1. Therefore, since T is a homomorphism, T(a)® = 1. Thus, the
minimal polynomial of T(a) divides z" — 1. Since the roots of this polynomial
are distinct, T'(e) is diagonalizable. Thus, T(a) is similar to a matrix

11
n

i|G|
n

for a primitive n** root of unity é», and integers i1,..., {|G|- (The diagonal
elements must be n*h roots of unity, since T(a)® = 1). Since the trace function
is invariant under change of basis, we observe that tr (T'(a)) = Z'J-_G____Il €5, and
tr (T(@)) = 3 e tr T(g) = a1|G|, by our above remarks. Thus, &, |G| =

SI6l gis
j=15n"
Let us suppose that a; # 0. Then, since a3 € Z, ||Gl| 2 |G|. But

|G| IG Gl

1> ei1 < lgh=)_1=1Gl,

j=1 Jj=1 j=1
with equality holding if and only if all of the Ef{ are equal. Thus, T'() is similar
to ,
€n
&
for some integer i. This matrix is central in M,(C), so it follows that

&
T(a)=
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This means that ay = €.y, for all y € G. In particular, o = al = €i. However,
a € ZG. Thus, a = +1.
In general, since a # 0, we may take h € G, satisfying ap # 0. Then, since G
is abelian,
(ah—l)anl = an|G|h—|G|n — 1|G|1n =1.

From the result we have just shown, either (ah™'); = 0, or ah™! = +£1. But
(ah~1); = ap # 0. Therefore, ah™? = %1, which means that a =+h. O

This allows us to prove

Proposition 3.4.4 (Higman). Let G be a finite abelian group of ezponent
1,2,3,4, or 6. Then ZG has only trivial units.

Proof. As we pointed out in the proof of Theorem 3.4.2, the Wedderburn compo-
nents of QG are algebraic number fields, F;. Recalling that m; is the projection
QG — F;, we see that F; is generated, as a field, by Q and the elements m;(g),
for g € G. Since 7;(G) is a finite subgroup of F*, i(G) must be cyclic. Thus,
F; = Q(m;(h)), for some h € G. Now, hexp G = 1. hence, w;(h) is also an
(exp G)*® root of unity. We conclude that m;(h) is a primitive kY root of unity,
for k = 1,2,3,4, or 6. Now, if & = 1 or 2, then F; = Q. Ifk = 3,4, or 6,
then [Q(ék) : Q] = w(k) = 2. Thus, since & ¢ R, Fi is an imaginary quadratic
extension of the rationals. Therefore, by Corollary 3.3.7, we do not need the
Bass cyclic units. By Lemma 3.4.1, we do not need any other units. That is,
U(ZG) is finite. By Lemma 3.4.3, the torsion units of ZG are trivial. Thus,
UZG)=xG. O

There is another type of division ring which will yield a finite SL;(0;), and
we will introduce it now. A subfield, K, of C, is said to be totally real if
o(K) C R, for all embeddings o : K — C. An element a € K, where K is totally
real, is said to be totally positive if o(a) > 0 for all embeddings ¢ : K — C.
Let D be a finite-dimensional algebra over its centre, K, which is an algebraic
number field. Then D is called a totally definite quaternion algebra provided
K is totally real, and there exist z,y € D, such that the elements of D are
uniquely of the form a; + a2z + a3y + @azy, with each a; € K, and the following
operational rules are satisfied: 1) z? = —a, for a totally positive element a of K;
2) y? = —b, for a totally positive element b of K; and 3) zy = —yz. We write
D = K+Kz+Ky+Kzy.

It is clear that the centre of D is, indeed, K. Further, if

0 # a1 + a2z + a3y + auzy € D,
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then

o +la§b sy (a1 — a2z — a3y — aazy)(oa + azz + azy + aszy) = 1.
(The fact that o? + afa + ab + ofab # 0 is guaranteed by the total reality of
K, and the total positivity of @ and b). Thus, D is a division algebra. It is clear
that dimgD = 4, and that the Schur index of D is 2. We also observe that
E = K+Kz is a maximal subfield of D. We wish to compute the reduced norm
on D. To do this, we must construct the isomorphism 8 : D @ E — Mz(E).
We define a map A : D x E — M3(E) via

(e + 022 + asy + cazy, a5 + asz))

_ a) + aszx a3 + oy as + agx 0
“\ —baz +basz ai —axzx 0 as +agz )’

This map is easily seen to be middle linear. Hence, it inducesamap § : D@k E —
M (E), namely
B((e1 + a2z + azy + aszy) ® (a5 + asz))

_ ) + azz a3+ a4 as + agzx 0
T\ =baz +basr a1 —az 0 as+agr /°

A straightforward (albeit, messy) computation is all that is required to verify that
B is an E-algebra homomorphism. To see that 3 is onto, let us take oy, a2 € K.

Then

@, @ (= 0\ _[(=z 0 z 0\ _ f(a1 O
A5 el 2a”®”)‘(o *-;x) (o -gg;«:)(o z)_(O o)'
Similarly,

az az (% 0 z 0 Fz 0 _[oaz O
aostgron=(F 2) (5 2)+ (% -5)=(7 o)

Thus,
ar+az 0 .

In a similar fashion, we can put arbitrary entries of ¥ in the other four positions in
the miatrix. That is, 8 is surjective. Since dimj{D @k E) =dimg(M2(E)) =8,
B is an isomorphism. Therefore,

nr(a; + ao + azy + agzy) = detf((aq + a2z + azy + ayzy) ® 1)

_ a1 + ax o3 + a4z
= det (—ba;; +bagz a — azz)

= a? + aZa + a3b + alabd.

At this point, we shall prove
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Proposition 3.4.5. Let D be a totally definite quaternion algebra. Let its centre
be K = Q(n). If O is any order in D, then SLy(O) is finite.

Proof. I A is another order in D, then [U{(O) : U(O N A)| < oo, by Proposition
3.1.6 and Theorem 3.1.7. Thus,

ISLy(O) : SL1 (O N A)| = [U(O) N SL1(D) : U(O N A) N SLy(D)] < oo.

Therefore, it will be sufficient if we show that SL;(A) is finite. We observe
that it makes no difference if we replace z or y in the definition of D by nz or
ny, respectively, for some natural number n. (We see that nzy = —ynz, and
(nz)? = nz? = —n?a. If o : K — C, then o(n%a) = n%c(a) > 0, since o(a) > 0.
The proof for ny is similar.) Let O be the ring of algebraic integers in K. Since
a € K, and O is an order in K, there exists a natural number n;, such that
nia € O. Similarly, there is a natural number ny such that nzb € O. Thus,
we will assume that a,b € O. Under this assumption, it is easy to see that
A = 0+0z+0y+0zy is an order in D.

Suppose a € SLi(A). Let us say that a = a3 + a2 + a3y + aszy, with each
a; € 0. Then

1 = nr(a) = a? + ofa + a3b+ ajad.

Hence, for each o : K — C, we have
1= 0(1) = o(01)? + o(az)?0(a) + o(as)?a(b) + o(as)2o(a)a(b).

Now, since K is totally real, each o(a;)? > 0. Since a and b are totally positive,
each of o(a),o(b), and o(a)o(b) is positive. Thus, we conclude that each of the
summands in the above equation is at least zero. It follows that, for each o,
o(a1)? < 1, a(a)? < 1/o(a), olas)? < 1/0(b), and o(as)® < 1/(a(a)o(b)):
Let M = max{l,0(a),0(b),o(a)o(b)|c : K — C}. Then, for each 7, and each
o : K — C, we have o(a;)? < M. Thus, since M > 1, |o(a;)] < vM < M.

Let m(z) be the minimal polynomial of a; over Q. Let k(z) be the minimal
polynomial of n over Q(c;). Then, the roots of m(z) are precisely 7(a;), for
the various embeddings 7 : Q(a;) — C. Let L be a splitting field for k(z) over
Q(a;), which we may choose so that it contains K. Then, by a basic property
of splitting fields (see, for instance, [Hun, Theorem V.3.8]), 7 extends to an
embedding p : L — C. Thus, letting o be the restriction of p to K, we have
an embedding ¢ : K — C extending 7. Thus, the roots of m(z) are of the
form o(a;), for embeddings o : K — C. Let n be the degree of m(z). Then
the coefficient of z!, for 0 < [ < n, in m(z) will be the sum of (7) products
of n — 1 roots of m(z) (up to sign). Thus, the magnitude of this coefficient is
at most ('{)M"" < n®M" (since M > 1). Now, a; € K, which means that
deg m < [K : Q). Thus, the magnitude of any coefficient of m(z) is at most
([K : QIM)IEQ 3 fixed number. The coefficients of m(z) are rational integers
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(see, for instance, [ST, Lemma 2.12]). There are only finitely many integral
polynomials of degree at most [K : Q], with coeflicients of bounded magnitude.
Each of these polynomials has only finitely many roots. Therefore, there are only

finitely many choices for each ;. ]

Thus, we may feel free to ignore any Wedderburn components of QG which
are commutative, or totally definite quaternion algebras. An example of a totally
definite quaternion algebra, which we will encounter is

Ezample 3.4.6. Let K be an algebraic number field. Then, if we create two
symbols, z and y, and let

D = K+Kz+Ky+Kzy,
with 22 = y%2 = —1, zy = —yz, and let z and y commute with the elements
of K, then it is easily seen that D is an algebra over K. It is known as the
(Hamiltonian) quaternion algebra over K, and is denoted H(K). In general,

it need not be a division ring. (If we take K = Q(v/—1), then it is easy to see
that H(K) will have zero divisors). However, if K is totally real, then since 1 is
totally positive, H(K) is a totally definite quaternion algebra.

§3.5 Exceptional Components and Another Reduction

Let R be any ring. Working inside M, (R), let E;,; be the n x n matrix which
has a 1 in the (3, 7)*? position, and zeroes elsewhere. By an elementary matrix
over R, we will mean a matrix which differs from the identity matrix by one non-
diagonal entry; that is, a matrix of the form I, + rE;j, with i # j, 0# r € R.
It is easy to see that such a matrix is invertible, with inverse I, — rE; ;. In fact,

observing that E; ;Ex 1 = d;xE;, we obtain

Lemma 3.5.1. Take r,s € R. Then

(a) If j # i # k, then (In +7E;;)(In + sEix) = In + 7E; j + sE; k. Similarly,
(In + rEj;i)(In + $Ey ;) = In + 7Ej; + sEg,i.

(b) Ifi, j, and k are pairwise distinct, then [In+rE; j, In+3E; ] = In+rsEi.

Proof. Part (a) is trivial. For part (b), we write
In + 7Eijy In + sEjk] = (In — rEi j)(In — sEj,k)(In + rEij)(In + sEjp)
=I,+ TE.',,' + sEj,k + rsE.-,k - 'I‘E,',j
—rsEjr — sEjy +rsE;
=Ip+rsE;x. O
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We write En(R) for the subgroup of GL.(R) generated by all elementary
matrices over R. If W is an ideal of R, then we call a matrix W-elementary
if it is of the form I, + wkE; j, for some 0 # w € W, ¢ # j. The subgroup
of GL.(R) generated by these matrices is denoted by En(W). We denote by
E.(W) the normal closure of E,(W) in Eq(R); that is, E,(W) is the smallest
normal subgroup of E,(R) containing En(W).

Let us suppose that our ring is an order, O, in a finite-dimensional Q-division
algebra D. Then, we claim that any elementary matrix over O has reduced
norm one. Indeed, any such matrix, a, obviously satisfies (r — 1)? = 0. Thus,
if we let v be the map defined in Proposition 2.4.2, we have (v(a ®1) — 1) =
0. That is, the minimal polynomial of y(a ® 1) divides (z — 1)2. Since the
characteristic polynomial has the same roots as the minimal polynomial, up
to multiplicity, the characteristic polynomial is (z — 1)™, for some m. Thus,
its constant term is (—1)™. However, the constant term of the characteristic
polynomial is (—1)™det(y(a®1)). That is, det(7(a®1)) = 1. Hence, nr(a) = 1.
Therefore, En(0O) < SLn(0). It will be necessary for us to make use of a
celebrated theorem, known as the Congruence Subgroup Theorem. It was
frst established, in the commutative case, by Bass, Milnor, and Serre, in [BMS],
and later extended to the noncommutative case. We refer the reader to [Se2,
Theorem 19.32].

Theorem 3.5.2 (Bass-Milnor-Serre-Vaserstein). Letn 2 3, with D and O
as above. Let W be any nonzero ideal in O. Then |SLy(O) : En(W)} < 00.

In fact, we need to strengthen this result slightly. A lemma is required.

Lemma 3.5.3 (Vaserstein). Let D, O, W, and n be as in Theorem 3.5.2.
Then En(W2'" ") < Ea(W).

Proof. Let Q be any ideal in O. Suppose B € GL,(O) is of the form
A 0
5-(5 1)
where A € GLn—1(0). Then, we claim that B™'E,(Q*)B C En(Q). It will

suffice if we can show this for the generators of E,(Q?); namely, matrices of the
form C = I, + 12 E; j, with g1, € @, 1 < i# j<n. Ui=n, then

-1
B™C = (AO (1)) + 0192En j,
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implying that
B7CB=1,+qqE, ;B

n~—1

=In+ Z Q19201 En &
k=1

n—1
= H(In + 12 Ba k) € En(QZ)’
k=1

where ay, is the (j, k) entry of A, and each qigeax € @2, since @Q*> « 0. In the
same manner, it is easy to see that if j = n, then B"!CB € En(Q?). Otherwise,
i, j, and n are pairwise distinct. In this case, Lemma 3.5.1 tells us that

C = In + @1 Ein, In + @2En j]-

Thus, B-1CB = [B~(I. + q1 Ei,;n) B, B~ (In + q2 En ;) B]. Taking Q in place of
Q? in the argument which we have just made, we see that each of the terms of
this commutator is in En(Q). Therefore, B"1CB € E,(Q), for all C € E»(Q?),
and all B of the appropriate form.

Now, examining this argument, it is clear that the only condition which was
required of B was that the n'" row and n*® column contain zeroes, except in
the (n,n) position, where we have a 1. However, the nt* row and column are
not distinguished. Let I, + zE;; be an elementary matrix in En(O). Since
n > 3, we may choose k such that 1 < k < n, and ¢ # k # j. Then the
k*h row and column of I, + zE; ; contain zeroes, except for a 1 in the (k,k)
position. Thus, we conclude that for any z € O, and 1 <1 # j < n, we have
(I — 2E: ;) En(Q*)(In + B 5) € En(Q).

We will need to make use of a well-known result due to Bass. Specifically, O
has stable range 2. That is, if, for some r > 2, and some y3,... ,yr € O, we have
Oyy + -+ - + Oy, = O, then there exist z;,... ,zr~1 € O such that

Oy + z1yr) + O(y2 + T2yr) + - + O(Yr—1 + Tr-1yr) = O.

(See [CR3, Theorem 41.22]).
Take M € GL,(O), and let the last column of M be

(ml )

Ma

If the bottom row of M~ is (I;---1,), then Iym; + -+ + lm, = 1. Thus,
Om, + -+ + Om, = O. Hence, we may choose by,... ,b, € O such that

O(mz + bzml) + O(ms + baml) e O(mn + bnml) = O.
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Let 1 = In + Y5, biEi;1. Then the last column of 1 M is

mi
ma + bzml
m3 + bsm,

mp + baymy

Since O(mg2 + bomy) + - + O(mn + bamy) = O, let us choose ¢z,... ,cn € (@
such that cz(mg + bamy) + -+- + en(mn + bym;) = 1. For each ¢, let d; =
(mn + bami —my — 1)ci. Let 2 = In + Y, diEy ;. Then, the last column of
o1 M is

m + E?:z di(mi + bim1) my +mp+bymy —my =1
ma + bomy ma + bam,
my + bnm1 my + bymy
mn + bnml - 1
ma + bamy
7nn + bnm]_

Let 73 = I, — En1. Clearly, the last column of 131 M is

mp +bymy —1
ma + bam,

Mp—1 + b1y
1

Now, let 74 = In + (Z::;(-—m,- — bimy)Ein) — (Mn + bamy — 1)Ey,. We see
that the last column of ym3me M is

0
0
1
Therefore, let us write
TaT3ToTI M = N0
amnnM =, )

for some N € GLn—1(0), and a 1 x (n — 1) vector, u, over O. Now, ~uN~'isa

1 x (n — 1) vector. Let
- In—] 0
Ts = (—pN—l 1) .
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Then, we have
N 0
TsTaTsTeTI M = ( 0 1) )

or, in other words,

_ 1 (N O
M=1'111'2131‘r4151(0 1).

Now, ;! = [[%.;(In —biEip), a product of n — 1 elementary matrices (where
we allow I, to be an elementary matrix). Similarly, 75~ ! and 7;! are products
of n — 1 elementary matrices. Further, 737! = I, + Ep; is elementary, and if we
write p=!N = (A1 -+ An1), then 752 = [[%5'(In + XiEn i), which is a product
of n—1 elmentary matrices. We conclude that M is a product of 4n —2 matrices,
each of which is elementary, or of the form

N O
0 1)°
with N € GLp-1(0).
Take any v € En(W?' 2), and any B € En(0O) < GL,(0). Write 8 =
B1Bz -+ Ban—2, where each B; is of one of the two types of matrices discussed
above. Then, as we pointed out earlier in this proof,

BB =Bz B3 (B ¥P1)Bz - - Ban—2
€ Bin—z B3 (B LEn (W2 "")82)Bs - - Ban 2
< ﬂ4,,_2 B Ea(W?"")Bs -+ Ban—2
C Bin—2En(W?)Ban—2
g En(W)

The elements B~'vf generate En(Wzm_z), which means that E,(W2"™") <
E,(W). O

247!-2

Thus, for any ideal W in O, we know that E,(W ) is of finite index in

SLa(0), and En(W?"""*) < En(W). Therefore, we obtain

Theorem 3.5.4 (Bass-Milnor-Serre-Vaserstein). Let D be a finite-dimen-
sional Q-division algebra, and O any order in D. Let 0 # W be an ideal in O,
and let n > 3. Then |SL,(O) : Ex(W)| < 0.

When n = 2, the situation is not quite as good. In general, the index of

E3(W) in SLy(O) may be infinite. However, there is a partial recovery. We refer
the reader to the main theorem of [Val] for the proof.
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Theorem 3.5.5 (Vaserstein). Let K be an algebraic number field, and O its
ring of integers. Let W be a nonzero ideal in O. If K is neither Q nor an
imaginary quadratic extension of the rationals, then |SL2(O) : E2(W)| < co.

(We should, perhaps, point out that Vaserstein’s criterion is that #(0) must
be infinite. By Corollary 2.5.4, the criterion in the above result is correct.) Let
us adopt the same notation that we introduced at the beginning of §3.3. The
Wedderburn components which will cause us problems are those which are not
covered by the above results. We say that a Wedderburn component, My, (D;)
of QG is exceptional if

(1) n; = 1, and D; is neither commutative, nor a totally definite quaternion
algebra; or,

(2) ni =2, and D; is Q, an imaginary quadratic extension of the rationals, or
a noncommutative division algebra.

Otherwise, the component is said to be nonexceptional. (The reason fer
excluding fields and totally definite quaternion algebras should be obvious from
the results in §3.4).

Now, let R be a ring. A set of elements {e;; : 1 < i,j < n} in R, for some
natural number n, is said to be a set of matrix units if e; jer, = §; k€1, for all
i,j,k,1, and 37, €;i = 1. The obvious example is the set {Ej;j:1<1,5 < n}
in M,(R).

Lemma 3.5.6. Let {e;j : 1 < i,j < n} be a set of matriz units in R. Let
B be the subring of R consisting of those elements which centralize all of the
matriz units. Then, the elements of R can be expressed uniquely in the form
Yoy Xj bijjei, with bij € B. Further, the map ¥ : R — My(B), given by
$(X; T;bijeii) = 2 25 biiBij is an isomorphism. Also, B = e;1Re; 1.

Proof. Take r € R. For any i and j, let b;; = > ;_, ex,irejk. Then, for any
! and m, we have b; jerm = enirejm = €imbij. Thus, each b;; € B, and
Yixjbijeii = Y i¢ii(r(X; €j,)) = r. That is, every element of R may be
expressed in the form 3,37, bijei;j. Suppose this expression is not unique.
Then there exist c; ; € B, not all zero, such that 3,3 ; cijeij = 0. Then

0= Z €kp Z Z ci,jeilje‘hk = Cp,q»
k i j

for any p and q. This gives us uniqueness.

Now, the map % is well-defined by the uniqueness which we have just shown,
and it is obviously a ring homomorphism. It is easily secen to have an inverse
map, namely 3, 3, bi;Eij — 2; 20 ; bijei,j. Thus, it is an isomorphism. To
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verify the last assertion, we observe that since elements of R are of the form
> 2 ;bijeij, the elements of e1,1Rey,; are of the form 3 ;5" e11bijei 5610
Since elements of B commute with the e;,j, this equals 37, >, b; je1,1. That is,
e;,1Re1,1 C Bey,1. Evidently, the reverse inclusion holds, so that e; 1Re;; =
Be,,. Since the expression of elements in the form be; 1, b € B, is unique, we

have Be,;,; & B, under the map bey1 — b O

Note that if R is a Q-algebra, then so is B, and the isomorphisms may be
taken to be Q-algebra isomorphisms.

We will assume familiarity with some basic facts about modules over division
rings, and their similarities to vector spaces over fields. We need to know that a
finitely generated module over a division ring is free of finite rank (and therefore
has a finite basis). Further, the rank of such a module is well-defined. (For proofs
of these results, see Theorems IV.2.4 and IV.2.7 in [Hun]). Also, suppose we let M
be a free left D-module of rank n. Then, choosing a basis for M, we may identify
M with the set of 1 X n vectors over D. Thus, to every D-endomorphism, a, of
M, there corresponds a matrix in M,(D). The action of a on M corrresponds
to right multiplication by this matrix. Conversely, right multiplication by an
element of M,(D) constitutes a D-endomorphism. In addition, two matrices X
and Y in My(D) correspond to the same D-endomorphism, over different bases
of M, if and only if there exists P € GLn(D), such that P71XP =Y. (See

[Hun, Corollary VIIL.1.7)).
The following lemma is taken from [JL2], but the proof is a variation due to

Sehgal (in [Se2]).

o

Lemma 3.5.7. Let e; be a primitive central idempotent of QG, such that QGe; =
M, (D;), with n; > 2. Suppose f; is an idempotent in QGe;, with 0 # fi # e;.
Then there ezist matriz units {ejr : 1 < j,k < n;} in QGe;, such that fi =
e1,1 + -+ e, 0 <l < n;. Further, we may take D; to be the centralizer of all
of the ejx in QGe;, and the isomorphism 6; : QGe; — My, (D;) to be given by

0:(3; Lr dikeik) = 30; 2ok dik Bk

Proof. Since 6; is an isomorphism, 8;(f;) is an idempotent in My, (D;), satisfying
0 # 6i(fi) # In,. Welet M be the le™ N;-module consisting of 1 x n; vectors over
D;. Let My = M6;(f;), and My = M(I,; — 0i(f;)). These are D;-submodules
of M. Clearly, if a € M, then a = abi(f;) + a(In; — 6i(fi)), which means that
M = My + M,. I abi(fi) + B(In; — 6i(fi)) =0, for a,8 € M, then multiplying
on the right by 8;(f;), we get af; = 0. Multiplying on the right by (I, — 6:(f)),
we get B(In; — 0:(fi)) = 0. Thus, M = M; & M,. The action of 6;(f;) on M
is clearly the identity function, as a8;(f;)0i(fi) = a8i(f;). The action of 6;(f;)
on M; is to send everything to zero, since a(In; — 6i(fi))0i(fi) = 0. Thus, if we
choose a basis {A1,... , A1} for Mi, and a basis {\i41,... ,Am} for Ma, then we
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have \.0;(f;) = Ar, if r < I; otherwise, A 0;(f;) = 0. Now, {A,...,Am} isa
basis for M. Thus, m = n;, and the matrix of the D;-endomorphism to which
8:(f;) corresponds, in this new basis, will be

o \

\ 0/
Hence, there exists P € GLy;(D;) such that P~10;(f;)P = A. Since 6;(fi) #

0, we cannot have M; = 0. Therefore, I > 1. Since 6;i(fi) # In;, we have
I, — 0;(f;) # 0. Thus, M; # 0, which means that [ < n;. That is,

P710:(fi)P = Ey 1 +--- + Eyy,
with 0 < ! < n;. Hence,
0:(f;) = PEy P74+ ---+ PE, P

Now, we can see immediately that {PE;P~! : 1 < j,k < n;} is another set of
matrix units in My, (D;). Since 6; is an isomorphism,

{67 (PE;jxP71):1< 4,k <ni}

is a set of matrix units in QGe;. Let ¢j = OFI(PE i xP~1), for each j and k.
Then, we observe that

fi = 071(0:(f:)) = 6, (PE1a P + - -+ PEP ) =e1n+ - +e,

with 0 < ! < n;. Applying Lemma 3.5.6, the only thing left to verify is that B,
the centralizer of the € k, is isomorphic to D;. By Lemma 3.5.6,

B = e;1QGe;ie1,1 = 0i(e1,1)0:(QG)bi(e1,1)
= PE; 1P~ M,,(D;)PEy P~ = PE; 1My, (D;)Ey P~

D; 0 --- 0 D; 0 .- 0
0 0 .-- 0 - 0 0 --- 0

=Pl . . . P=1 . . . = D;.
0 0 .- 0 0 0 --- 0

We are done. O
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Of course, if QGe; = My, (D;), and n; > 2, thereis always an idempotent other
than 0 or e; (the identity element of QGe;), namely the element E,,; of My, (Ds).
Thus, for any Wedderburn component QGe;, with n; > 2, we may choose such
an f;. Since f; € QG, there is a natural number ny, such that ny, f; € ZG. Thus,
for any g € G, we have 1+ n"}..f,-g(l — fi) € ZG. Since (1 — f;)fi =0, it follows
immediately that the inverse of this element is 1 — n% fig(1 — fi) € ZG. Thus,
1 4 n2 fig(1 — i) € U(ZG). Similarly, 1+ n,(1 - fi)gfi € U(ZG). Let

Hj =(1+n%fig(l - fi),1+n%(1 - fi)gfi : 9 € G).

For the remainder of this section, we will assume that D; is as described in
Lemma 3.5.7, and assume the other notations from §3.3.
The major reduction in this section is

Theorem 3.5.8 (Jespers-Leal). Let G be a finite group, and e; a primitive
central idempotent of QG, such that QGe; = My, (D;), with n; > 2. Suppose
QGe; is a nonezceptional component. Then Hjy, contains a subgroup K, such
that w;(K) = 1, for j # i, and =i(K) is of finite indez in SL4,(O;).

Proof. For g,h € G, and z € Z, we have
(1 +n% figl - £))* =1 +n}, fizg(1 - £i),
and
(1+n% fizg(1 — fi))(1 + n%, fik(1 — f3)) = 1 +n}, filzg + A)(1 - £i).

It follows that 1+ n3ZG(1 — fi) C Hy,. Similarly 1+ n} (1 — f;)2Gf; C Hy,.
Since e; € QG, we may choose a natural number r; such that r;e; € ZG. Then,
1+ n% fiZGriei(1— fi) C Hy,. Sincee; is central in QG (and certainly, so is any
integer), we may write

14 r,'ni.fiZG(l - fi)ei C Hf...

Similarly,
14 T‘in%‘.(l — fi)ZGfie; C Hy,.

Now, if o € ZG, we have
(1 + r,-n"‘;..f,-a(l — fi)ei) = In; + 9,’(7‘,'17.%'.&(1 — fi)eiej),

for each j. If j # 1, then e;e; = 0. Therefore, 7;(1 + r;n"}‘f,-a(l — fi)ei) = In;.
Similarly 7j(1 +rin%, (1 - fi)afie;) = In;, for all j # i. Thus, it will be sufficient
if we can show that

H=m({(1+ r.-n‘zf'.f,-ZG(l — fi)ei, 14 r;ni}l.(l — f[i)ZGfiei))
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contains a subgroup of finite index in SLy,(O;).
Take any w € O;. Let 1 Su < l, and I < v < n;. Then, using the definitions
from Lemma 3.5.7, we have

fiwey o(l = fi) = (€10 + -+ + erg)wen,o(l — €10 — - —€r).
Since w € D;, which centralizes the ej i, we have

fiweu (1= fi) =wlern + - +e)eu(l —e10 - - enr)
= weu,u(l —€11— """ c'I,l)

= WEy,v,

since v > l. Therefore, fiOiey (1 — fi) = Oieuy. Now, (O;,+) is a finitely
generated subgroup of (QG, +), and therefore, so is (Oieu,v, +). Let us say that
it is generated by {di,...,d,}. Since each d, € QG, we may choose natural
numbers z,, such that each z,d, € ZG. Let gy = [1,2s- Then, we have
quvOieu,y C ZG. We also observe that since ey » € QGe;, which has identity
element e;, we have ey y€; = €y,y. Therefore,

Tin_zf,-Qu,voieu,v = rin%q'u.voieu,vei
= Tin.zfl-fiQu,voieu.v(l - fi)ei
C r,-n?. FiZG(1 - fie;.

Similarly, for any w € O;, we observe that

(1-filwesufi=(1—€10—— er)wep,ul€rn + -+ ery)
=w(l—ey1 —  —enl)evu

Thus, (1— f:)Oievufi = Oiey,u- Proceeding as above, we obtain natural numbers
gv,u such that

rin%.gv,uOi€u,u = rin%, (1 — fi)av,uOiev,u fiei C ring, (1 - fi)ZG fiei.

Let g; be the product of all of the gu,y 2nd all of the gy u, with1 S u <l < v < n;.
Then, we know that

rinZ,giOieuy C rin}, iIZG(1 ~ fi)e:

and
rgn}iq;Oge,,_u - r,-n?-'_(l — f)ZG fie;.
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Take an arbitrary w € O;. Then
mi(1 + rin% qiwey v) € mi(1 + ring, fi G(1 - fi)e:) C H.
But, by Lemma 3.5.7,

mi(1 + rin% qiwey,y) = In; + 6:(rin%, qiwey,ve;)

=In + r,-ni.q,-wE’u,v
(where e; maps to the identity matrix). Similarly,
(1 + r;ni_q,-we.,,u) € mi(l+ r,-n.zf‘.(l — fi)ZGfiei) C H,

and
mi(l+ r,-n"}'. giwey y) = In; + r,-n‘zf.. qiwEy y.

We still have to deal with the restrictions on u and v. Suppose that 1 < u,v </,
and u # v. Then, since | < n;, we have

In; +7in}, QCwEy y = [In; + r,-n%. qiwEy n;, In; + Ta'n%,. giEn; ] € H.
If ] < u,v < n;, with u # v, then since 1 < [, we have
In; + 1204 Q}wEyy = [In; +rin%,qiwBu 1, In; + rin%, g Er ] € H.
Thus, for all u and v, with u # v, and any w € O;, we have
In; + rfn‘}‘.q?wEu,v € H.

That is, En,(r?n}.q?0;) < H, where rin}.q?0; is a nonzero ideal in O;. Thus,
by Theorems 3.5.4 and 3.5.5, H contains a subgroup of finite index in SLn,(0:),
as required. O

We conclude this section by stating

Corollary 3.5.9. Let G be a finite group, such that QG does not have any
ezceptional Wedderburn components. For each Wedderburn component Mn,(D;),
with n; > 2, we create an Hy, as above. Then all of the Hy,, together with B,
generate a subgroup of finite indez in U(ZG).

Proof. We wish to apply Theorem 3.3.4. By Theorem 3.5.8, we obtain the ap-
propriate subgroup of finite index in SL,,(0;), when n; > 2. By the results of
§3.4, no units at all are required when n; = 1, and D; is commutative or a totally
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definite quaternion algebra. Any other Wedderburn components are forbidden,
by assumption. We are done. O

§3.6 The Bicyclic Units

While Corollary 3.5.9 is a very useful result, it is not our ultimate goal. We
wish to compute the generators explicitly, not in terms of idempotents inside
Wedderburn components, which can be difficult to determine.

Henceforth, if g is an element of a finite group G, we will write

§=1+g+gz+...+glgl—1'

We observe that §(1 —g) = 0, and §% = |g|§. In particular, ‘;757 is an idempotent
in QG.

Let G be a finite group. If g,h € G, it is clear that 1 + §h(1 — g) is a umit in
ZG, with inverse 1 — gh(1 — g). Similarly, 1 + (1 — g)hg has inverse 1 ~ (1 - g)ha.
We call the units of this type the bicyclic units. We write

By =(1+§h(1—g),1+ (1 —g)hi: g,h €G).

The bicyclic units were introduced by Ritter and Sehgal, and their usefulness
was explored in a series of papers (see, for instance, [RS1] and [R32]). We should
note that in these papers, and in [Se2], only the units of the form 14(1—g)hg are
called bicyclic units, and some of the results we will obtain for nilpotent groups
can be deduced without using the units of the form 1 + gh(1 — g). We will call
the units of the form 1+ (1 — g)kg, the one-sided bicyclic units. Our goal will
be to show that, under favourable circumstances, the groups Hjy, defined in the
last section may be chosen in such a way that they lie within Ba.

A finite-dimensional representation of a finite group, G, over a field, K, is
said to be fixed point free if for all 1 # g € G, T(g) does not have 1 as an
eigenvalue. A finite group, G, is said to be a fixed point free group provided
it has a fixed point free, irreducible complex representation. We will now present
some basic facts about fixed point free groups.

Lemma 3.6.1. Let G be a finite group. Then

(a) G is fized point free if and only if G has a (not necessarily irreducible)
fized point free complez representation.

(b) If G has a fized point free representation over Q, then G is fized point free.

Proof. (a) To prove sufficiency, suppose T is a fixed point free complex rep-
resentation of G. By Maschke’s Theorem, we may write T as the direct sum
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of irreducible complex representations of G, T' = T1 @ --+- @ Ti. K, for some
1 # g € G, Ti(g) has 1 for an eigenvalue, then certainly, so does T'(g), con-
tradicting the choice of T. Thus, T} is an irreducible fixed point free complex
representation of G. Necessity is tautological.

(b) Let T be a fixed point free representation over Q, say T : G — Endg(V),
for a Q-vector space V. Choose a basis for V. Then, we have T : G — M,(Q)
for some n. We define U : G — M,(C) via U(g) = T(g). Then U is a complex
representation of G. H, for some g € G, U(g) has 1 as an eigenvalue, then 1 is
a root of the characteristic polynomial of U(g). But U(g) = T(g), which means
that the characteristic polynomial of U(g) is that of T'(g). Thus, T'(g) has 1 as an
eigenvalue, forcing g = 1. Hence, U is a fixed point free complex representation

of G. Now apply part (a). O

Proposition 3.6.2 (Amitsur). Let D be a division algebra which is finite-
dimensional over Q. Let G be a finite subgroup of D* =U(D). Then G is fized

point free.

Proof. We regard D as a Q-vector space. Let us define T : G — Endg(D) via
T(g)d = gd, for all g € G, and all d € D. This is obviously a finite-dimensional
representation of G over Q. Suppose there exists g € G such that T(g) has 1 as
an eigenvalue. Then gd = d for some 0 # d € D. Thus, (g — 1)d =0. Now, this
is a computation.inside D, which has no zero divisors. Since d # 0, we must have
g = 1. Thus, T is a fixed point free representation of G over Q. Apply Lemma

3.6.1. O

This result is useful to us in the following form: if e; is a primitive central
idempotent of QG, and QGe; = D, a division ring, then Ge; is a fixed point free
group. Let us describe a condition under which Hy, C Bz. We assume the same
notations as in the last section.

Lemma 3.6.3. Let G be a finite group, and e; a primitive central idempotent
of QG, such that Ge; is not fized point free. Then there ezists some g € G such
that ]—;Tge,- is an idempotent in QGe;, with 0 # ]%Tg}e,- # ei. In this case, if we
take f; = l—;—lge,-, then we may assume that Hy, C B;.

Proof. Since we observed earlier that 'I?lz_l-a is always an idempotent, and e; is a

central idempotent, it is clear that for any g € G, llﬁge,- is an idempotent in
QGe;. The difficulty lies in finding a g such that this idempotent is neither 0 nor
€.
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In §2.3, we pointed out that e; is a central idempotent in CGe;, and that we
may write e; = €} + - + €}, where e},..., €, are primitive central idempotents
of CG, contained in CGe;. That is, CGe; = CGe} @ --®CGe,.. Now, if all of the
CGe}; are commutative, then so is CGe;, and therefore, QGe; is commutative.
That is, QGe; = D;, for a Q-division algebra D;. But, in this case, Ge; is fixed
point free, a contradiction. Thus, some CGe'; is noncommutative. Since CGe}; =
M, (C), for some natural number n, we must have n > 2. Let A : CGe; — M,(C)
be this isomorphism. ’

Since €} € CGe;, we have eie}; = e}. Thus, the map T : Ge; — M, (C), which
we define via right multiplication by ej; namely, T(ge;) = A(gej), is a complex
representation of Ge;. Since Ge; is not fixed point free, there exists some h € G
such that he; # e;, and T(he;) has 1 as an eigenvalue. Now, (he;)ltl = hitle; = ¢;,
since e; is a central idempotent. Thus, T(he,-)"'I = I,. Therefore, the minimal
polynomial of T(he;), over C, divides z" — 1. The roots of this polynomial are
distinct, which means that T'(he;) is diagonalizable over C. Since T(he.-)"‘l = 1I,,
the diagonal entries must be ||*" roots of unity. Let us assume that we are using
the appropriate basis, and write

in
T(he,-) = . )
Ejh]

where £ is a primitive |R|tt root of unity, and each aj is an integer satisfying
0 < ax < || Since T(he;) has 1 as an eigenvalue, at least one of the diagonal
entries is 1. Purther, if T(he;) = I, then this means that A(he}) = In. But A
is an isomorphism, so he}; = e;-. By Corollary 2.3.4, he; = e;, a contradiction.
Thus, at least one of the diagonal entries of T'(he;) is not 1. Without loss of
generality, let us say a; = 0 and an # 0.

Now, each of the entries £|“,f| is a root of the polynomial zl* — 1. Thus, if

ar # 0, it also satisfies zlfl=1 _ plhl-1 4 glkl=2 4 ... 4 1, That is,

z=-1

(Jh|=1)e
14 €0+ € oo+ gD =0,
If ax = 0, then, of course,
L €+ €0 oo+ ETI < 1R,
We observe that, for any natural number p, we have
i
T(hPe;) = T(he;)? =

anp
§\h]



Thus,
14 Elahll 4o+ §|(l|z?l—1)al
T(he;) =
A RRERE T 4 (e

Therefore, we conclude that

1 a
T‘lh—l"e‘)=< T )

where each di is either 0 or 1, and we know that d; =1, and d, = 0. However,
T(0) = 0, and T'(e;) = M) = In. Thus, 0 # I—,I;The,- # e, as required. Let
f,‘ = IlTlilei.
For any g1,92,93 € G, and any z € Z, we have
(1 +§192(1 — 91))*(1 + §193(1 — 91)) = 1 + G1 (=292 + g3)(1 — 91)-

Thus, 1 + §ZG(1 — g) C By, for all g € G. Similarly, 1+ (1 - g)ZG§ C Be, for
all g € G. Choose a natural number n.; satisfying n.;e; € ZG. It is easy to see
that |k|ne, fi € ZG, so we set ny; = |h|ne,. Now, for any natural number g, we
have 1 —h? = (1+h+h%+---+h?1)(1 — h) € ZG(1 — h). Therefore,

|hj—1
[h|—h= Y (1-h%)€ZG(1-h).

g=0
Hence, n2,e;ZG(Jh] - ) € ZG(1 — h), which means that
1 4 hn?. &;ZG(|h| — k) C Bo.
Now, e; = €?, and e; is central. Thus, we may write
1+ n? he;ZGei(|h| — k) C Bo.
Since he; = |h|f;, we have
1+ [h|n? fiZG|R|(1 - fi) € Bs.

That is,
1+ n% fiZG(1 - fi) C Bs.

Similarly, 1 + n?_(l — fi)ZGf; C B,. Hence, Hy; C By, as required. O
This allows us to complete our goal for this chapter. Specifically, we wanted
to find some conditions on the Wedderburn components of QG, and on the

homomorphic images of G, under which (B, B2) will be of finite index in U(ZG).
Let us give these conditions now.
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heorem 3.6.4 (Jespers-Leal). Let G be a finite group, such that QG does
ot have any Wedderburn components which are 2 x 2 matriz rings over Q, an
naginary quadratic eztension of the rationals, or a noncommutative division
gebra. Suppose that G does not have any nonabelian, fized point free homomor-
2c images. Then [U(ZG) : (By,Bs)| < co.

roof. If, for any i, QGe; = D;, a division algebra, then by Proposition 3.6.2,
e; is fixed point free. But Ge; is a homomorphic image of G (under the map
> ge;), forcing Ge; to be abelian. Thus, QGe; is commutative. Therefore, QG
ses not have any exceptional Wedderburn components. By Corollary 3.5.9, B,
1d all of the Hy; together generate a subgroup of finite index in U(ZG). Since
»ne of the Ge; can be fixed point free, except in the case where QGe; is a field,
emma 3.6.3 tells us that each Hy, C B,. O

Actually, if the order of G is odd, then by Theorem 2.2.6, QG cannot possibly
ave any 2 x 2 matrix rings among its Wedderburn components. Thus, in this
1se, we have a rather strong condition.

'orollary 3.6.5. Let G be a group of odd order which has no nonabelian fized
sint free homomorphic images. Then [U(ZG): (B1,B2)| < oo.
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Chapter 4

Nilpotent Groups

In this chapter, we will restrict our attention to group rings over nilpotent
groups. The results which we presented in the last chapter will have strong
consequences in this case.

In the first section, we will show that the fixed point free nilpotent groups
have very nice forms. In the second section, we will present some facts about
Wedderburn decompositions. Combining this information, and the results in
the last chapter, the third section will give some conditions on the Wedderburn
components of G, under which the Bass cyclic and bicyclic units generate a
subgroup of finite index in U(ZG). In the fourth section, we will show that
that this property does not hold for all nilpotent groups. In the fifth and sixth
sections, we will introduce some new units, and give a result due to Giambruno
and Sehgal. This result will tell us that if QG has no exceptional Wedderburn
components, then these new units, together with the Bass cyclic and bicyclic
units, generate a subgroup of finite index in U(ZG).

§4.1 Fixed Point Free Nilpotent Groups

From the results in §3.6, it is evident that a classification of all fixed point
free groups would be useful. In fact, such a classification was completed by
Zassenhaus, in [Za]. (For a discussion of this work, see Chapters 5 and 6 of [Wo]).
In general, the structure of these groups can be fairly complicated. However, we
will obtain a very strong condition on the Sylow subgroups of fixed point free
groups. This will lead to a strong condition on nilpotent fixed point free groups.
Here is a useful reduction.

Lemma 4.1.1. Let G be a fized point free group. If p and q are (not necessarily
distinct) primes, and H is a subgroup of G such that H has order pq, then H is

cyclic.

Proof. Let T : G — GL¢(V) be a fixed point free, complex irreducible repre-
sentation of G, where V is some nonzero complex vector space. If 1 # K is a
subgroup of G, then the restriction of T' to K is a fixed point free representation
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of K. Take 1 # ko € K. Then, if v € V, we have

> Tk = )" T(kok)v = T(ko) 3 T(k)e.

keK keK kER

Therefore, if ;g T(k)v # 0, then T(ko) has 1 as an eigenvalue, contradicting
the assumption on T'. Thus, Y ;e T(k)v =0, forallv e V.

Suppose that H is a subgroup of G, such that |H| = pg, but H is not cyclic.
Let us suppose that the subgroups of H are {1,H, H,,... ,H;}. Now, if p # q,
then H has a Sylow p-subgroup and a Sylow g-subgroup. If p = g, then since
H is not cyclic, H must be the direct product of two cyclic groups of order p.
Thus, either way, H has more than one proper subgroup. That is, r > 2. Now,
each H; must have order p or g. Since distinct groups, each of prime order, must
intersect trivially, each 1 # h € H is in at most one of the H;. However, H is
not cyclic, which means that (k) = Hj, for some i. Thus,each 1# h € H is in
exactly one H;. Hence,

3 N T(ew=( Y T(hy)+rT(Q)v.

i=1 geH; 1#heH

Further, we demonstrated that /.y, T(g)v = 0 for each ¢. Thus,

( Y. T(hy)+rT(1)v =0.

1#heH

Also,

Z T(h)v =0.

heH
Subtracting, we find that (r — 1)T(1)v = 0, for all v € V. Since r 2> 2, we may
divide by r — 1. Since T(1) = 1, we conclude that v = 0. That is, V =0, which
is not permitted. O

In particular, every subgroup of order p? in a fixed point free group is cyclic.
This is clearly a condition on the Sylow p-subgroups of the group. Therefore, we
will concentrate on p-groups. We will assume that the reader is acquainted with
the basic properties of finite p-groups. In particular, they have nontrivial centres,
and if H < K < G are finite p-groups, then there exist subgroups Hy,... , Hr of
K, such that H = Hy < Hz <+ <« H, = K, with each H; of index p in Hiyy. In
particular, a maximal subgroup of a finite p-group is normal. (See [Su, Theorems
2.1.4 and 2.1.9]).

We denote the cyclic group of order n by C,,. We have
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Lemma 4.1.2. Let 1 # G be a p-group, and assume that every subgroup of order
p? is cyclic. Then G has ezactly one subgroup of order p, and it is central.

Proof. Since Z(G) # 1, and Z(G) is a p-group, we may take g € Z(G) such that
g has order p. Now, if A € G has order p, then since g and h commute, either A
is a power of g, or (g, h) > C, x Cp. The latter is not ;zimitted, so we conclude

that (g) is the only subgroup of order p. U
Some general facts are contained in

Lemma 4.1.3. Let G be a group, satisfying G' = [G,G] < Z(G). Take g,h € G,
and a natural number n. Then

(a) [g", ] = [g,h]".

(b) (gh)™ = [h, g]"("~1)/2g"h",

Proof. (a) Our proof is by induction on n. When, n = 1, there is nothing to do.
Assume that [g"~1, k] = [g,h]*"?, for some n > 2. Then
[g",7] = g""h g™k =g~ (g" "R g" T h)g(g T R gh) = g7 [g" ", Rlglg, ].
Since G' £ Z(G),
[gnah] = [gn—lah][g’ h] = [99 h]n_llg’h] = [gs h]n’

by our inductive hypothesis.
(b) Once again, our proof is by induction on n. When n =1, there is nothing

to prove. Suppose that (gh)*~! = [A, g(n—(n=2)/2gn—=1pn—1_for some n > 2.
Then
(gh)" = (gh)*"*(gh)

= [h,g](n—l)(n—z)/zgn—lhn—lgh

= [h,g]("'l)(""z)/zg”‘lgh""l[h”'l,g]h.
Since G’ < Z(G), this means that

(gh)n = [h,g](n—l)(n-z)/z[hn—l,g]gnhn.

- By part (a), this implies that
(gh)n = [h,g](n—l)(n—z)/Z[h,g]n—lgnhn = [h’g]n(n-—l)/zgnhn,

as required. O

Let us recall the definition of the generalized quaternion group,
Qam =(g,h|g*" =h% At =1,k gh=g7"),
for m > 3. This is a group of order 2™. (When m = 3, this is just the quaternion

group, Qs).
The last in our series of lemmata is
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Lemma 4.1.4. Let G be a finite p-group such that every subgroup of order p* is
cyclic. Suppose that G has distinct cyclic subgroups, H and K, each of indez p

in G. Then p=2, and G =~ Qs.

Proof. Let B = HNK. Since H and K are maximal subgroups, they are normal
in G. Therefore, B is normal iniG. Further, since H and K are distinct maximal
subgroups, G = HK. Thus,

_ HIE] _ (IGI/»)(Gl/p)
[HNK| B

|G| = |HK]

which means that |G : B| = p?. In particular, G/B is abelian. Therefore,
G' < B. Since H and K are cyclic, let us write H = (z), K = (y). Again, since
G = HK, the elements of G are of the form z'y?, for integers ¢ and j. f b € B,
then b = z" = y°, for integers r and s. Thus, b commutes with every element of
the form z'y’. That is, B < Z(G). Since G’ < B, Lemma 4.1.3 is in effect. Let
us take any g1,92 € G. Since |G : H| = |G : K| = p, we have ¢f € HN K = B,
and gf € B. Thus, g is central, which implies that [¢7,¢2] = 1. By Lemma

413’ [glag2]p =1
Suppose that p is an odd prime. Then p divides p(p — 1)/2, which means that

(9192)° = 92, 1]PP~ /2 g0gh = ¥ g8

Thus, the map p : G — B, given by p(g) = g*, is a homomorphism. Its kernel
consists of elements of order 1 and p. By Lemma 4.1.2, there are precisely p such
elements. That is, |G/ ker p| = ]%1 > |B|. Since imp < B, this is impossible.
Therefore, p = 2.

In this case, Lemma 4.1.3 tells us that (g1g2)* = [g2,01]%0193 = 9193, since
[92,91]> = 1. Thus, the map o : G — B, given by o(g) = g*, is a homomorphism.
Let f be an element of maximal order in G. Suppose that f? = f}, for some
fi € G. Let us say that the order of f is 2l with I > 0. Ifl > 2, then
1= 12' = 27", contradicting the maximality of the order of f. Thus, |f| =1
or 2. If |f| = 1, then G = 1. If [f| = 2, then the exponent of G is 2, forcing
G ~ C3 x --- x Cz. Since G has just one element of order 2 (by Lemma 4.1.2),
G ~ G,. Either way, G does not have two cyclic subgroups of index 2, contrary
to our assumption. Thus, f2 is not a fourth power in G. We demonstrated
above that f2 € B, but we now know that f? ¢ imo. Thus, o is not surjective.
Therefore, |G/ kero| < |B| = Lg-l. Hence, | kero| > 4. Let g be the element of
order 2 in G (which must be inside ker o, by definition of o). Then the elements
of ker o, aside from 1 and g, have order 4. Take a € kero, with 1 #a#g. Then
(@) = {1,a,9,ag}. Since |kero! > 4, let us take b € kero, with b ¢ (a). Then
(a) and (b) are distinct subgroups of G' which have order 4.

Suppose |H| > 8. Then |B| > 4; therefore, B contains a subgroup of order 4.
That is, we might as well take a € B. Since B < Z(G), a and b commute. As
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a? = b2, we must have {a)(b) ~ Cs x C>. This group has two elements of order
2, contradicting Lemma 4.1.2. Thus, |H| < 4, which means that |G| < 8. Of the
2-groups of order at most 8, the only one with two cyclic subgroups of index 2,
and such that every subgroup of order 4 is cyclic, is @s. O

This allows us to present a strong condition which must be satisfied by the
Sylow subgroups of a fixed point free group.

Theorem 4.1.5. Let G be a finite p-group, such that every subgroup of G which
has order p? is cyclic. If p is odd, then G is cyclic. If p = 2, then either G is

cyclic, or G =~ Qam, for some m > 3.

Proof. Let us dispense with the case where p is odd. Let |G| = p™, and proceed
by induction on n. If n = 0 or 1, there is nothing to do. Let H be a subgroup
of index p in G. Every subgroup of H which has order p? is cyclic, so by our
inductive hypothesis, H is cyclic. Since H is a maximal subgroup of G, H is
normal in G. Since |G/H| = p, G/H is cyclic. Let H = (h), and let g be an
element of G which is not in H. Then, (g,h) = G. If (gh) # G, then taking a
chain of subgroups, (gh) = G14G24- - -94G,4Gr41 = G, with each Gi41/G; having
order p, we have (gh) < Gy, with |G/G,| = p. By our inductive hypothesis, G,
is cyclic. By Lemma 4.1.4, G has only one cyclic subgroup of index p. Thus,
H = G,, forcing gh to be inside H. But h € H, hence g € H, contradicting the
choice of g. Thus, G = (gh).

Therefore, we may assume that p = 2. Let K be a maximal abelian normal
subgroup of G. If K is not cyclic, then the Fundamental Theorem of Finite
Abelian Groups tells us that K must contain at least two elements of order 2,
contradicting Lemma 4.1.2. Thus, K is cyclic. Further, it is well-known that
under these conditions, the centralizer of K, Cg(K), is actually K. (See, for
instance, [Su, p.91]).

If G is cyclic, there is nothing to prove. Otherwise, G # K, so since G/K is a
2-group, let us take g € G such that gK € G/K has order 2. Then g? € K. Let
K = (k). Suppose k = g° for some i. In this case, g and k would commute. Thus,
g € Cg(K) = K, a contradiction. Therefore, k ¢ (g). Hence, (¢%) < K, which
means that there exists Kj, such that (g2) < K; < K, with |K; : (¢%)] = 2.
Since K is cyclic, so is every subgroup of K. Thus, we write K; = (k"), for some
r. Since K is a nontrivial cyclic 2-group, it has exactly one subgroup of index
2. That is, (g2) = (k%7). Let H = (g,K;). We claim that the elements of H
are of the form k%", or k%"g, for various integers a. Indeed, all such elements are
certainly inside H, and, in fact, they generate H. Hence, it will be enough if we
can show that these elements form a group. First, k%17k%2" = k(t1+c2)” which
is of the correct form. It follows that k%17k%2"g = k's1te2r)g which is of the
correct form. Next, k%17 gk®" = k®1"(gkg~!)*2"g. Since K 4 G, gkg™! = k?, for
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some b. Thus, kei17gho2" = k(a1tba2drg which is of the correct form. It follows
that k®1"gho2"g = k(®1+be2drg?  Since g2 € (k?7), this is of the correct form.
Thus, these elements form a set which is closed under multiplication. Since they
are contained in a finite group, G, they form a subgroup, as required. Therefore,
|H : K| = 2. Further, H = (g) Uk"(g), implying that |H : (g)| = 2. Now, g ¢ K,
so (g9) # K;. Thus, H has two distinct cyclic subgroups of index 2. By Lemma
4.1.4, H~ Qs.

Let us say that the order of k is 2™~2, for a natural number m. Now, ¢° € K,
so let us say g® = k¥, with v > 0. Since |H| = 8, we have |(g)| = 4, which means
that the order of k? is 2. The only element of (k) which has order 2 is k2™,
Hence, g% = k2™ . Further, if kg € K, then g € K, which is a contradiction.
Thus, kg ¢ K, and (kg)? = kgkg = k(gkg~)g®. Since K is normal in G, each of
k, gkg™!, and g2 is in K. Thus, (kg)?> € K. That is, kgK has order 2 in G/K.
This means that we could have taken kg in place of g, to begin with. Hence,
(kg)? = k2™™" = g?. Therefore, kgkg™! =1, and g~1kg = k~*. That is,

™ m-—1 - -
(I\,g)z(g,k|k2 =92’g4=1ag lkg=k 1>=Qi"n.

Suppose we take another element g; € G, such that ¢; K € G/K has order
2. Then, repeating our argument, we find that (K, g:) ~ Q2m. It follows that
g~ lkg = k™! = g{'kg:. That is, gg7 'k = kgg;'; that is, gg7' centralizes
K. Since Cg(K) = K, g9 € K. Thus, g1 € (K,g), and gK = g1 K. That
is, gK is the only element of order 2 in G/K. Now, if f € G, but f ¢ K,
then since G/K is a 2-group, some power of fK has order 2, implying that gK
is a power of fK. Let us point out a well-known (and easily verified) result.
Namely, for any group X, and subgroup X;, if N is the normalizer of X; in
X, and C is the centralizer of X; in X, then we have a homomorphism 7 :
N — Aut(X;). We define 7 via n(n)(z1) = nzin~!, for all n € N, and all
z; € X;. The kernel of 5 is C. We take X = G, and X; = K. Then N =G,
and C = K. Thus, n induces a monomorphism A : G/K — Aut(K). Further,
n(g) (k') = gkig™! = (gkg™!)! = k%, for all i. Thus, MgK)(k*) = k%, for all
i. Therefore, A(gK)(MgK)(k*)) = MgK)(k™*) = k', for all i. Hence, A(gK) has
order 2. It follows that every element of im A (except the identity) has A(gK)
among its powers. Thus, either |G/K| = 2, or there exists g¢' € G, such that
Mg'K)? = MgK). Suppose the latter holds. Then, since A(¢'K)(k) = kJ, for
some j, we must have A(gK)(k) = ki*. Therefore, j2 = —1 (mod 2™~!). Since
|K1| = 4, we know that 4|2™~1. Thus, j2 = 3 (mod 4), an impossibility. Hence,
|G/K| = 2. Therefore, G = (K,g) ~ Q2m. O

Thus, if G is a fixed point free group, then by Lemma 4.1.1 and Theorem
4.1.5, the Sylow subgroups of G are cyclic or, in the case where p = 2, possibly
generalized quaternion groups. If G is nilpotent, then it is the direct product of
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its Sylow subgroups. Recalling that the direct product of finitely many cyclic
groups of pairwise relatively prime order is cyclic, we obtain

Corollary 4.1.6. A fized point free nilpotent group is either cyclic, or isomor-
phic to Qam x Cy, for some m > 3, and some odd natural number n.

§4.2 Some Wedderburn Decompositions

Let us gather together some useful facts about the Wedderburn components
of various group algebras. We begin with a basic result.

Lemma 4.2.1. Let G and H be finite groups, and let K be any field. Then
KG@®xg KH = K(G x H).

Proof. Let us define a map u: KG x KH — K(G x H), via

w3 aga, S Bun) = Y- 3 agBnle,h).

geG heH 9€EG heH

This map is obviously middle linear, so it induces a map v : KG ®x RH —
K(G x H), which is given by

v((D_agg) ® (D Brh)) =D D agbr(g,h).

9€G heH gEG heH

This is clearly a K-algebra homomorphism. It is also entirely cbvious that v is
onto. Since dimyx(KG ®x KH) = |G||H| = dimg(K(G x H)), it follows that v

is an isomorphism. 0O

Let us make a couple of observations about this result. First, we can see
that we are free to extend it, by induction, to the direct product of finitely
many groups. Second, if we identify G with {(9,1) : ¢ € G}, and H with
{(1,h) : h € H}, then the map v is given by v(a ® 8) = af, for all a € KG,
B & KH. In particular, if the direct product of G and H is internal, then this is
the case.

Some more useful information is contained in
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Lemma 4.2.2. Let G and H be finite groups, such that (|G|, |H|) = 1. Suppose
that M,(D) is a Wedderburn component of QG, and M,,(D') is a Wedderburn
component of QH, for natural numbers m and n, and Q-division algebras D
and D'. Then, for any natural numbers a and b, M,(D) Q¢ My(D') is a simple
algebra.

Proof. Let F be the centre of D, and F' the centre of D’. (Of course, F and F’ are
algebraic number fields). By [CR2, Theorem 3.60], the ideals of M, (D)QgMs(D')
are in one-to-one correspondence with the ideals of F ®¢ F'. In particular,
M, (D) ®g My(D') is simple if and only if F ®q F' is simple. Since F ®¢ F'
is commutative, this holds if and only if F ®g F” is a field. Let us write F =
Q(a), and F' = Q(B), with a,8 € C. By Corollary 2.2.8, F = Q(x), where
x is the character of some irreducible complex representation of G. Call this
representation T. By Theorem 2.2.9, T is realizable over Q({g|), where §g is
a primitive |G|** root of unity. Since characters are invariant under a change
of basis, we must have Q(x) < Q(§|¢|). That is, Q(a) < Q(§G}). Similarly,
Q(8) < Q&)

Now, since (|G|, |H|) = 1, §gjé|x is a primitive (|G||H|)'" root of unity. Thus,
if we let ¢ be the Euler function, then Q(¢g, §ja|) = Q(éjG) 1)), and

dimg(Q(¢ie)#y)) = (IGIH]) = »(IG))¢(|H|) = dimg(Q(&c)))dima(Q(&) #)))-

We define 2 map 7 : Q(a) x Q(8) — Q(a, B), via n((¥1,y2)) = Y1y, for all
1 € Q(a), y2 € Q(B). It is clear that n is middle linear; hence, it induces
a map ) : Q(a) @ Q(B) — Q(a,B), which is given by A(ys ® y2) = yiy:,
for all y; € Q(a), and all y, € Q(B). It is also clear that A is a Q-algebra
homomorphism, and that it is surjective. Thus, to show that Q(a) @g Q(8) is
a field, and thereby complete the proof, it suffices to show that dimgQ(«e,8) =
dimgQ(a) dimgQ(B). Or, writing this in terms of the degrees of field extensions,
we must show that [Q(a,8) : Q] = [Q(a) : Q][Q(B) : Q). We will have to use

this basic fact several times: if K7 < K; < K3 are fields, and =z € K, then
[K2(z) : K2] < [Ki(2) : Ki). (This is obvious, since the minimal polynomial of =
over K is a polynomial over K, which is satisfied by z). Thus,
[Q(e, 8) : Q] = [Q(e, ) : Q(a)][Q(e) : Q] < [Q(B) : QJ[Q(a) : Q.
Now, Q(8) < Q(&#|), which means that [Q(8, @) : Q(8)] 2 [Q§jx|, @) : Q& ny)]-
Suppose that [Q(§a, @) : Q(€1x))] < [Q(e) : Q). Then
[Q§1x)> @) : Q] = [Q(&a), @) : QUEHDIQEay) = Q) < [Q() : Q|[Q(E#)) : Q).
Thus, in this case,
[Q& ) &) : Q = [QUa): éi61) : QEay @)][QEj s @) : Q)
< [Q¢a): §ic)) : QUé ) @)][Q(e) : QJQ(€x)) : Q
< [Q¢6)) : Q)][Q(e) : Ql[Q(&x)) : Q)
= [Q(¢6)) * QAQE ) : Q)
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a contradiction. Therefore, [Q(&jx. ) : Q(§a))] = [Q(a) : Q]. Thus,

[Q(B,a) : Q] = [Q(8, ) : Q(B)][Q(B) : Q]
> [Q€apy @) - QEH)IQB) : Q]
= [Q(a) : QJ[Q(B) : Q.

We already showed that [Q(e, 3) : Q] < [Q(a) : QJ[Q(8) : Q). so we are done. O

A consequence of fundamental importance is

Proposition 4.2.3. Let G and H be finite groups of relatively prime orders.
Let the primitive central idempotents of QG be ei, 1 < i < d, and let QG =
@D, QGe; = @B; My, (D;) be the Wedderburn decomposition of QG. Let the prim-

itive central idempotents of QH be e}, 1 < j < d', and let QH = @ QHe; =
@D; Mn; (D) be the Wedderburn decomposztzon of QH. Then the Wedderburn

decomposztzon of (G x H) =2 QG ®q QH 15
&5 @(QGe, 8¢ QH¢}) = @ ED(Mn,(D:) 8¢ Mn; (D).

i i J

In particular, if we identify G and H with the sets of elements {(g,1) : g € G} and
{(1,R) : h € H} respectively, ther ike primitive zentral idempotents of Q(G x H)
are {eje;:1<i1<d, 1< <d}.

Proof. We have
QG x H) = QGooQH = (D QGe:)eo(EP QHe;) = P ED(QG8QH¢;)).
i 7 i 7

By Lemma 4.2.2, each QGe; ® QH e’ is simple, so this is the Wedderburn de-
composition. The primitive central 1dempotents are the elements which map to
the identity element of each QGe; ® QGe); (namely, e; ® €;). But under the
isomorphism v: QG ReQH — Q(Gx H), which was defined in Lemma 4.2.1, we
have e; ® €', ;e eie J Thus, e; e maps to e; ® e , under the inverse isomorphism,
as required. O

Once again, this result can be extended to a direct product of finitely many
groups. However, if we drop the assumption that (|G|, |H|) = 1, then this result
may fail. (Take G = H = C4. Then, by Lemma 3.2.1, QC,; = Q(:) 8 Q& Q,
where i = y/—1. If the result held in this case, then Q(i) ®g Q(:) would be
a simple algebra. Since it is commutative, it would be a field. But {1,¢} is a
Q-basis for Q(i), so that {1®1,1®1,:® 1,7 ® ¢} is a Q-basis for Q(i) ®g Q(7).
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Thus, 1Qi+i®1#0#18i—i® 1. However, (10i+iQ1)(10:—-i®1) =0,
a contradiction.)

Clearly, when G is nilpotent, this allows us to deduce the Wedderburn decom-
position of QG from the Wedderburn decompositions of QS;, where the S; are
the Sylow subgroups of G.

For any subgroup, K, of a group G, let us write K= Y ker k- (Then @ = g,
for any g € G). The results of §3.6 show us that the homomorphic images of a
group are of particular interest. Thus, we state

Proposition 4.2.4. Let G be a finite group, and K a normal subgroup of G. Let
H = G/K. Let & be a central idempotent of QH. If p: QG — QH is the natural

homomorphism, then let e be any preimage of & under p. Then elf‘—\:| is a central
idempotent of QG, and p restricts to an isomorphism p : QGel_ﬁ;i — QHE. Ife s

a primitive central idempotent of QH, then el—% is a primitive central idempotent
of QG. In particular, if Mp(D) is a Wedderburn component of QH, then it is
also a Wedderburn component of QG.

Proof. Since K? = |K II:.' , it follows that I;\\_l is an idempotent in QG. Further,
since K is normal in G, g”'Kg = K; hence, g“lfx"g = K, forall g € G. Thus, I—;—:-l-
is a central idempotent in QG. Now, p(e)? = €% = & = p(e), which means that
e? — e is in AQ(G, K), where this notation was defined in §2.1. By Proposition
2.1.2, €2 — e is a sum of terms of the form gg(k — 1), with g € Q, g € G, and
k € K. But, fm any k € K, kK = K, w.hich means that gg(k — 1)K = 0.
Thus, (.e2 - 5)1—115" = 0., which means that (e|7’}'—|)2 = el_;::—l' Further, if g € G, then
g™ (e)g = g egifs;, by the centrality of K. Now, p(g~'eg) = p(g) ™ &p(g) =
& = p(e), by the centrality of & in QH. That is, g”'eg — ¢ € Ag(G, K). Once
again, applying Propesition 2.1.2, we have g"legl—ﬁ-| = el_;:;l' That is, el—;:%l is a
central idempotent in QG. _ _

Now, we have p(e) = &, and p(Tib\T) = 1. Thus, p: QGeT% — QHé is a
homomorphism of Q-algebras. Since p(gel—ﬁ:—l) = gK'e, for each g € G, the map
is surjective. Suppose that we have a € QG such that p(ael—,'::-f) = 0. Then
p(ce) = I, which means that ae € Ag(G,K). Thus, ael—% = 0. Therefore,
p: QGe T!f}_l — QHE is an isomorphism. If € is a primitive central idempotent,

then QHE is a simple algebra, and therefore, so is QGeT%:-T. By Proposition 2.3.1,

elTI:;l is a primitive central idempotent. The last statement of the theorem is an
immediate corollary. O
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We need to compute some Wedderburn decompositions explicitly. In particu-
lar, recalling that

me2 _. .
QZ"‘ =(g,h|92 =h23h4=1ah lgh=g l)a

we state

Proposition 4.2.5. We have

2 2
Q0s = 02:(*5L) © QQs(“ L) = HQ) 940

(where 4Q means QHQBQBQ), and H(Q)D4Q is the Wedderburn decomposiiion
of QQs.

Proof. Since g? is a central element of order 2, it is clear that (1 — g%)/2 and
(1 + g?)/2 are orthogonal central idempotents which sum to 1. Thus,

QQs = QQs((1 +¢%)/2) ® QQs((1 — ¢°)/2).

Now, 1 + g2 = (g/?) Since g? is central, (g?) is normal. Thus, taking G = Qs,
K = (g?), and & = 1 in Proposition 4.2.4, we have QQs ((1+¢%)/2) = Q(Qs/(g?)).
It is easy to see that Qg/(g?) ~ C, x C2. Now, by Lemma 4.2.1, Q(Cz x Cp) =
QC:; ®g QC:2. By Lemma 3.2.1, this is isomorphic to (Q® Q) R (QL® Q), which
is isomorphic to 4Q.

Let us write H(Q) = Q+Qz+Qy+Qzy. We define a map 4 : QQs — H(Q),
by letting §(g) = = and &(h) = y. It is clear that this uniquely defines a homo-

morphism of Q-algebras. Now,

§((1-g%)/2)=(1-2%)/2=(1+1)/2=1
Hence, restricting &, we get § : QQs((1 — g%)/2) — H(Q). Since §((1 — g*)/2) =
1, 8(g(1 — g%)/2) = =, 8(h(1 — g%)/2) = y, and &(gh(1 - ¢°)/2) = =y, it follows
that this map is surjective. Now, dimgQ@s = 8, and dimg4Q = 4, implying that
dimgQs((1 — ¢2)/2) = 4. Since dimgH(Q) = 4, we conclude that

QQs((1 - ¢%)/2) = HQ).

Now, Q is a field, and H(Q) is a totally definite quaternion algebra, which is
necessarily a division ring. Thus, each of these is a simple Q-algebra, which
means that we have found the Wedderburn decomposition. O

We need another Wedderburn decomposition. Let

1

Dg = (o,7lo* =2 =1,77tlor =07 1),

the dihedral group of order 8. Then, we have
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Lemma 4.2.6. The Wedderburn decomposition of QDs is M2(Q) & 4Q, where
the projection QDg — M>(Q) s given by

o 01 T 10
-1 0)° 0 -1)°
Proof. Since o2 is a central element of order 2 in Dg, it follows ‘hat

QDs = QDs((1 - 0%)/2) ® @Ds((1 + 0%)/2).

Now, 1 + 02 = (g?). Thus, if we take G = Dg, K = (¢*), and &€ = 1 in
Proposition 4.2.4, then we find that QDs((1 + 0%)/2) = Q(Ds/(0?)). Clearly,
Dg/{0?) ~ C2 x Ca. Just as in the proof of Proposition 4.2.5, we obtain

QD5 ((1+ 0%)/2) = (2Q) ¢ (2Q) = 4Q-
We define a map 6 : QDg — M,(Q) as described in the statement of the lernma.
It is easy to verify that this definition uniquely determines a Q-algebra homo-
morphism. Further,

o= (F 1)-(F 5)=( )

Therefore, restricting §, we obtain a homomorphism & : QDs((1 — a?)/2) —
M,(Q). It is also easy to see that this map is surjective. (If g € Q, then

§((3r - 2071~ a)/2)) = (qé‘z _3/2) - ( RE ..2,/2) = (é 3) :

Similarly, we can put arbitrary elements of € in each matrix position.) Now,
dimgQDs((1 — 02)/2) = dimgQDs— dimgQDs((1 + ¢2)/2) =8 — 4 = 4. Since
dimgM(Q) = 4, it follows that QDs((1— 0?)/2) = M2(Q). Since Q and M2(Q)
are simple Q-algebras, we have found the Wedderburn decomposition. O

We should point out that D is not particularly interesting to us, per se. It is,
however, a homomorphic image of some groups which are interesting to us. We
have

Proposition 4.2.7. For all m > 4, the group algebra QQzm has M, (Q) among
its Wedderburn components.

Proof. Let & : Qam — Djg be defined via (g) = 0, k(h) = 7. Since ¢* = 1 =12,
and 7~ 1o = o™, k is a homomorphism. Clearly, « is surjective. Thus, by

Lemma 4,2.6 and Proposition 4.2.4, we are done. (]

Cine last result is required.
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Proposition 4.2.8. Let G be a finite group, and let e be a primitive central
idempotent of QG. Let K be the kernel of the homomorphism from G to Ge,
given by g — ge. Let H = G/K. Let & be the image of e under the natural
map QG — QH. Then € is a primitive central idempotent of QH, and the
induced map QGe — QHE is an isomorphism. In particular, if QGe = My (D),
then M,(D) is ¢ Wedderburn component of QH. Further, the map h +— he, for
h € H, is injective.

Proof. Let n : QG — QH be the patural homomorphism. Since & = n(e?) =
n(e) = & we know that € is an idempotent. Further, if @ € QG, then since
ae = ea, we have n{ae) = n(ea), which means that n(a)é = én(a). Since 7 is
surjective, 2 is central in QH. It is clear that the restriction 7 : QGe — QHe
is an epimorphism. We must show that this map is injective. Suppose that
n(ae) = 0, for some a € QG. Then, by the definition of Ag(G, K ), we have
ae € Ag(G, K). Thus, by Proposition 2.1.2, ce is a sum of terms of the form
qg(k —1), with ¢ € Q, g € G, and k € K. It follows immediately that ael—g—‘ =0.

However, ke = e, for each k € K, which means that Ke = |K|e. Thus, ae = 0.
Therefore, QGe = QHE. & .ce QGe is simple, Proposition 2.3.1 tells us that €
is a primitive central idempotent of QH. Now, suppose that hé = €, for some
h € H. Writing h = gK, with g € G, we have 7(ge) = hé = & = n(e). That
is, ge — e € Ag(G, K). Thus, (ge — e)-l%I = 0, and by our previous argument,
ge = e. Therefore, g € K, which means that h=1. O

§4.3 Cases Where the Bicyclic and Bass Cyclic Units Suffice

At this point, we have the pleasant task of drawing some conclusions from the
results in previous sections. In fact, the results of §§3.6 and 4.1 are sufficient to

give us a rather surprisingly strong result.

Theorem 4.3.1 (Ritter-Sehgal). Let G be a finite nilpotent group of odd or-
der. Then the Bass cyclic and bicyclic units of ZG generate a subgroup of finite

indez in U(ZG).

Proof. By Corollary 3.6.5, we need only show that G has no nonabelian fixed
point free homomorphic images. By Corollary 4.1.6, the only nonabelian fixed
point free nilpotent groups are of the form Q2m x Cp, where m > 3, and n is
an odd natural number. Since any homomorphic image of a nilpotent group is
nilpotent, any fixed point free nonabelian homomorphic image of G is of the
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form Qsm X Cn. No such group can be the homomorphic image of a group of
odd order. We are done. O

However, we can obtain a stronger result. Perhaps the simplest condition on
the Wedderburn components of QG, under which the Bass cyclic and bicyclic
units will suffice, is given in

Theorem 4.3.2 (Jespers-Leal). Let G be a finite nilpotent group. Suppose
that QG does not have any Wedderburn components of the following types:
(1) HQ;
(2) a 2 x 2 matriz ring over Q, an imaginary quadratic estension of the ratio-
nals, or a noncommutative division algebra.

Then [H(ZG) : (B, B2)] < co.

Proof. By Theorem 3.6.4, it will be sufficient if we can show that G has no
nonabelian fixed point free homomorphic images. Since G is nilpotent, any such
homomorphic image would be nilpotent. Thus, by Corollary 4.1.6, G would have
a homomorphic image of the form @am X Ch, for some m > 3, and some odd
number n. Thus, G wouid have Q= as a homomorphic image, for some m > 3. If
m > 4, then by Proposition 4.2.7, QQ2m has M2(Q) as a Wedderburn component.
By Proposition 4.2.4, it follows that QG has M(Q) as a Wedderburn compconent.
This is forbidden. Thus, we may assume that G has Qs as a homomorphic image.
By Proposition 4.2.5, QQs has H(Q) as a Wedderburn component. Therefore,
Proposition 4.2.4 tells us that QG has H(Q) as a Wedderburn component, which
is not permitted. O

It seems, somehow, a little strange that the absence of a totally definite quater-
nion algebra as a Wedderburn component should be a determining condition,
since the results of §3.4 show that this component is innocuous. In fact, we can
deduce a slightly stronger result, namely

Theorem 4.3.3. Let G be a finite nilpotent group. Suppose that QG does not
have any Wedderburn components of the following types:
(1) H(Q(&,)), for some odd prime p, and a primitive ptt root of unity, &;
(2) a2 x 2 matriz ring over Q, an imaginary quadratic eztension of the ratio-
nals, or a noncommautative division algebra.

Then [U(ZG) : (B3, B2)| < oo.

Proof. We wish to apply Corollary 3.5.9. To do so, we must verify that QG has
no exceptional Wedderburn components. Since 2 x 2 excepticnal components
are forbidden, let us suppose that e; is a primitive central idempotent of QG,
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and QGe; = D;, where D; is some division algebra. By Proposition 3.6.2, Ge;
is fixed point free. Since Ge; is the homomorphic image of a nilpotent group,
it is nilpotent. By Corollary 4.1.6, either Ge; is cyclic, in which case QGe; is
commutative, and therefore nonexceptional, or Ge; =~ Qam X Cyp, for somem > 3,
and some odd number n. If m > 4, then just as in the proof of Theorem 4.3.2, we
discover that QG has M,(Q) as a Wedderburn component, which is not allowed.

Suppose Ge; ~ Qs x Cp, where n > 3, Then, if p is any prime dividing
n, we know that C, projects onto Cp. Therefore, G has @3 x Cp as a homo-
morphic image. Now, by Proposition 4.2.5, QQs has H(Q) as a Wedderburn
component. By Lemma 3.2.1, QC, has Q({,) as a Wedderburn component. It
follows from Proposition 4.2.3 that Q(Qs x C,) has H(Q) ®¢ Q(¢,) = H(Q(&;))
as a Wedderburn component. This is unacceptable.

Thus, we must conclude that Ge; ~ Q3. By Proposition 4.2.8, Q@3 has QGe;
as a Wedderburn component. By Proposition 4.2.5, this Wedderburn component
must be Q or H(Q), neither of which is exceptional. Therefore, QG has no
exceptional Wedderburn components. Thus, the Hy, defined in §3.5, together
with B;, generate a subgroup of finite index in U(ZG).

By Lemma 3.6.3, we may assume that Hy, < Bj, provided Ge; is not fixed
point free. We just finished showing that if Ge; is fixed point free, then Ge; ~
Qs, and then Ge; is a division algebra. The Hj, are only defined when the
Wedderburn component is not a division algebra. Thus, we may always assume
that Hy, < B,. Hence, [U(ZG): (B;1,B2)| < 0. O

A special case of this result allows us to improve Theorem 4.3.1.

Corollary 4.3.4. Let G be a finite nilpotent group. Suppose that the Sylow
2-subgroup of G is abelian. Then |U(ZG) : (By,B2)| < oo.

Proof. By Theorem 4.3.2, it will be sufficient if we can show that the Wedderburn
components of QG do not include any noncommutative division rings, or any
2 x 2 matrix rings. Let S; be the Sylow 2-subgroup of G, and let S> be the direct
product of all of the other Sylow subgroups. Thus, G ~ S; X S;. Since S is
abelian, QS; is commutative, which means that its Wedderburn decomposition
is a direct sum of fields, @S; = @; Fj. Now, Sz has odd order. Thus, applying
Theorem 2.2.6, the Wedderburn decomposition of QS is ; My, (D;), for various
division algebras D;, and odd numbers n;. By Proposition 4.2.3, the Wedderburu
components of QG are of the form Fj @ My,(D;). By Lemma 4.2.2, F; ®q D;
is a simple algebra. Thus, F; ®q D; & M (D), for some natural number k and
division algebra D. That is, Fj ®Q Mn,(D;) & Mgy, (D). If kn; < 2, thenn; < 2.
Since n; must be odd, n; = 1. Now, if €} is a primitive central idempotent of QS
such that QS;e} 22 D;, then Proposition 3.6.2 tells us that Sz€! is fixed point free.
That is, S2¢€ is a fixed point free nilpotent group, which is a homomorphic image
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of S,. If Sz€! is nonabelian, then Sze] =~ Qam X Cp, for some m > 3, and some
odd number n, which is impossible for a group of odd order. Therefore, Sae! is
abelian, forcing QSze} to be a field, F. It follows that F; ®g F is commutative.
We are done. 0O

Since the 2-groups of order less than 8 are abelian, we have

Corollary 4.3.5. Let G be a finite nilpotent group. If the order of G is not
divisible by 8, then |[U(ZG): (B1,B2)| < 0.

Remark 4.9.6. In fact, the work of Ritter and Sehgal, in [RS2], tells us that
Theorem, 4.3.1, and Corollaries 4.3.4 and 4.3.5 remain true if we substitute the
one-sided bicyclic units for the bicyclic units. It is not presently known whether
or not Theorem 4.3.3 would hold with the one-sided bicyclic units.

§4.4 A Counterexample

Unfortunately, there are nilpotent groups, G, which do not satisfy
[U(ZG) : (By,Bs3)] < co.
For the remairider of this section, let
G=(g,h|lg*=h*=1,h"gh=g"").

This a well-known group of order 16, and exponent 4. Since h? € Z(G), we know
that (h?) is a normal subgroup of G. Further,

G/(h?) ~ (g,k|g* =k* = 1,h"'gh =§~') = Ds.

By Lemma 4.2.6, QD3 has M2(Q) as a Wedderburn component. Therefore,
Proposition 4.2.4 tells us that QG has M;(Q) as a Wedderburn component.
Thus, the results of §4.3 do not apply. This is not, however, sufficient to guarantee
that |U(ZG) : (B, B:)| is infinite, since Dg has an exceptional component, but
{U(Z Ds) : (B1,Bz)] < co. (See [Se2, Theorem 23.1]). However, in [RS2], Ritter
and Sehgal showed that the Bass cyclic and one-sided bicyclic units generate a
subgroup of infinite index in U(ZG). It turns out that the inclusion of all of the
Bass cyclic units does not improve our situation at all, as we shall prove at this
time.
Let us begin by eliminating the Bass cyclic units from consideration.
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Lemma 4.4.1. The Bass cyclic units of ZG are all equal to 1.

Proof. Take z € G. Proposition 3.2.2 tells us that the Bass cyclic units corre-
sponding to z are in U(Z(z)). Since the exponent of G is 4, Proposition 3.4.4
tells us that these Bass cyclic units are in %(z). Further, the augmentation of
any Bass cyclic unit is easily seen to be 1, which means that these Bass cyclic
units are in (z). Now, if |z| = 1 or 2, there are no Bass cyclic units. Thus, we
may assume that [z| = 4. In the definition of these units, from §3.2, the only
possible value for i is 3. Since we take m = ¢(|G|) = 8, our Bass cyclic unit can

only be
u=(1+z+2%)>® - ki,

for a suitable integer k. Let i = v/—1. Then, let p : Q(z) — Q(¢) be the usual
projection, given by z ~ i. We have

plu)=(1+i—-1°—k(Q+i-1-i)=#=1

However, p(z) =1, p(z%) = —1, and p(z3) = —i, which means that we can only
haveu=1. 0O

For any z,y € G, let us write
uzy =1+ (1—z)ys, and uy , =1+ 2y(1 — z),
for the bicyclic units of ZG. For any Z,j € Dg, we will write
vz =14 (1 — Z)§z, and v; 3 = 14 Z§(1 - %),

for the bicyclic units of ZDs. Let n : QG — QDs be the usual map induced
from the projection G — Dg. (Thus, n(z) = Z, for all x € G). We observe that
N(uz,y) = 1+ (1 — Z)gn(£). We note that n(z) is not necessarily equal to z, since
the order of z in G need not be the order of Z in Ds. Certainly, the latter divides

the former. Thus, n(£) = %;Jl:‘?: Therefore,

lz]

z le/12],
|z

n(uzy) =1+ (1 —Z)Fi=z = (vz,5)
Similarly, n(uf,,) = (v'i,g)l”'/'il. Taking %, € Ds, it easy to see that if ¥
normalizes the subgroup (), then vz g = 1. Since (g*) is normal in Ds, for all
integers k, we may assume that ¥ = G*h, for some k. The order of any such
element Z is 2, whereas the order of any x satisfying n(z) = Z is 4. (These are
the elements of the form g*h/, 0 < k <3, j = 1 or 3). Thus,

n(B2) < ((vz,5)% (V5 3)? : § € Dy, % = §*h,0 < k < 3).
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Further, we observe that for any natural numbers j and %, we have
vgnhgih =L+ (1= g R)F7R(1 +5"R)
=1+ (1-g*R)g"*(g*R(1 + g*R))
=1+(1-g*h)g*(g*h +1)

= ‘ngil,gj—k .
Similarly, we obtain
Vup gih = L+ (1 +3R)FR(1 - 5*R)
=1+ ((1+g"R)g"R)g* (1~ 5*R)
= Uguf ghei-

Since 1 and g2 are central, we have

— — A
Vg1 = Vg g2 = Uz,

ad
I
<

for all ¥ € Dg. It follows that
n(Bz2) < ((ve,3)% (vhg)? : E=§"R,0<k <3,§=gorg").

Let us write

and
Y = ((vz,9)% (vig) : 2= §*h,0< k < 3,5 =g or g°).

We wish to compute T'(X) and T(Y'), where T : QDg — M>(Q) is the projection
which we defined in Lemma 4.2.6. That is,

ro=(% 5)rm=(5 &)
Since T(g?) = —I, it follows that
T(vs,gs) = T(1+ (1 — )5°%) = T(1 ~ (1 - £)g) = T(vz,5) ™",
for any # € Ds. Similarly, T(v} ;s) = T(v; )™, for any Z € Ds. Thus,
T(X) = (T(vz2,3), T(vs,5) : £=§*h,0 S k < 3),

and )
T(Y) = (T(v2,5)%, T(v},5)* : £ = §*h,0 < k < 3).



Some simple computations tell us that

g
Topis) = (5 §) =T0ke) Topis) = (2 1) =T0a)

)
Topr = (5 %)) =T0s) ad 7o) = (T3 §) =Tloma)

roo=((% 9).(3 9.3 (5 )
and
-3 0.6 (3 (5 4)

where these are, of course, subgroups of SL3(Z).
A little terminology is required. We write PSLy(Z) = SLy(Z)/{£Iz). For

any integer n > 2, we define
I'(n) = {(Z b) (£I,) € PSL:(Z): a =d=+1 (mod n),b=c=0 (mod n)}.

It is clear that I'(n) is a normal subgroup of PSLy(Z). Further, it is well-known
that I'(2) is a free group of rank 2, for the proof of which we refer the reader to
[Ne, p. 149].

Let us suppose that [U(ZG) : Bz| < oo. Then, since ZG is an order in QG,
T(n(ZG)) is an order in T(n(QG)) = M(Q), and T(n(B;)) is of finite index
in the unit group of this order. However, M>(Z) is another order in M2(Q).
By Lemma 3.3.4, T(n(B2)) contains a subgroup of finite index in GL2(Z). We
showed above that T(n(B2)) < SLz(Z). Thus, T(n(B2)) is of finite index in
SL2(Z). Therefore, T(n(B2)){+12)/(+1;) is of finite index in PSLy(Z). In fact,

since

T(n(B2))(£L)/(£h) < T(Y)(xh)/(£]h) < T(2),

it follows that T(Y)(x1I;)/(x12) is of finite index in I'(2). Let us say that this
index is m. Now, Schreier’s Theorem tells us that if F is a free group of finite
rank a, and F) is a subgroup of F of index b < oo, then Fj is a free group of
rank ab—b+1. (See [Su, p. 185]). Thus, T(Y ){(+I2)/(£I2) is free of rank m + 1.
But this group is generated by four elements. Therefore, m < 3. Now, we have

T(Y)xR)/ (L) < T(X)(+L)/(+ L) S T(2).
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Suppose that any two of these three groups are the same. Then, taking the
groups generated by each of these groups, together with I'(4), we would still have
identical groups. Now, it is obvious that T(Y)(+I,)/(+l;) < T'(4). However,
T(X)(+L)/{x L) contains the element (_} 2)(£J,), which is not in I'(4).

Let us suppose that

(T(X)(+L)/(£]2),T(4)) = T'(2).

Then, modulo I'(4), these groups are still the same. However, modulo I'(4), we

have
TR (eh) = (3 3 ) e/ (kn)

Thus, this group does not contain ( (1) f)(iIz) [{£I2). It follows that
T(YXxLR)/(£]) £ T(X)(+£L)/(£]z) £ T(2).

Thus, the index of each group in the next is at least 2. Therefore, the index of
T(Y)(+I.)/(£Iz) in T'(2) is at least 4, a contradiction.
In summary, we state

Theorem 4.4.2 (Ritter-Sehgal). There are finite nilpotent groups (indeed,
2-groups), G, such that |[U(ZG): (B, B2)| = oo. Indeed,

(g,h|g* =h*=1,R"1gh=g7")

is such a group.

§4.% Tixed Poii¢ Fr :6 Homomorphic Images

For this section, let us write ¢ = v/—1. In Theorem 4.3.3, we had to exclude
Wedderburn components of the form H(Q(&,)), for odd primes p. However, these
components need not be exceptional, since they need not be division algebras.
Proposition 4.2.5 tells us that the Wedderburn decomposition of QQs is H(Q) &
4Q. Lemma 3.2.1 informs us that the Wedderburn decomposition of QC,, is
) djn Q(£4), for any integer n. Thus, by Proposition 4.2.3, it follows that for any

odd number n, the Wedderburn decomposition of Q(Qs x Cy) is

(€D H(Q(&4))) & (6D 4Q(64))-

din din .
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In particular, H(Q(&.)) is a simple Q-algebra. Clearly, it is 4-dimensional over
its centre, Q(£,). Any 3 x 3 or larger matrix ring would be at least 9-dimensional
over its centre, and M,(D) is 4-dimensional over its centre, if and only if D
is commutative. That is, either H(Q(£,)) is a division ring, or H(Q(&,)) =

M,(Q(¢r)). We have

Lemma 4.5.1. Let n be an odd natural number. Then H(Q(.)) = M2(Q(€,))
if and only if there ezist o, B,v € Q(€n) such that a® + B2 + 42 = —1.

Proof. Suppose there exist a, 8,7 € Q(£a) such that a?® + 3% + 4% = —1. Then,
writing H(Q(én)) = Q(£r)+Q(én)z+Q(6n)y+Q(én )2y, We have

(a+Bz+yy+zy)la—Pz~qy—zy)=a?+p2+92+1=0.

A division algebra has no zero divisors; hence, H(Q(&,)) & M>(Q(&r)). Suppose
that H(Q(&,)) = M2(Q(&,)). For any 6;,62,683,84 € Q(§n), we have

(61 + 8o + 83y + b4zy) (61 — 82z — 83y — Sazy) = 67 + 6% + 6% + 67,

Thus, if 62 + 62 + 83 + 67 # 0, except when all of the §; are 0, then every nonzero
element «§ H(Q(&,)) is a unit, contrary to our assumption. Thus, there is a
nontrivial solution to 82 4 62 + 6% + 62 = 0 in Q(é,). Without loss of generality,
let us say that &; # 0. Then, taking a = 887}, 8 = 837", and v = 8,67}, we
have the desired solution. O

It is clear that it would be helpful to know the minimum number of squares
which sum to —1 in a given field, K. We will denote this value by S(K’), when
it exists. (If, for instance, K < R, then we are definitely not going to find
any number of squares summing to —1). In fact, this problem has been solved
for the cyclotomic fields. Evidently, if 4|n, then ¢ € Q(£,), which means that
S(Q(én)) = 1. K n is even, but not a multiple of 4, then —§,,/; is a primitive
n*t root of unity; hence, Q(é») = Q(én/2). Thus, the following result is reduced
to the case where n is odd. The proof of that case is given in [Mo, Théoréme 1].
Let us observe that if n > 1 is an odd number, then by the order of 2 mod n, we
mean the order of 2 as an element of U(Z /nZ).

Lemma 4.5.2 (Moser). Let n > 2 be a natural number.
(a) If 4|n, then S(Q(¢r)) = 1.
(b) Ifn =2 (mod 4), then S(Q(n)) = S(Q(n/2))-
(c) If n is odd, then S(Q(é,)) = 2 if the order of 2 mod n is even; otherwise,

S(Q(6n)) = 4.

Combining these two results, we obtain
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Proposition 4.5.3. Let n > 1 be an odd natural number. The following are
equivalent:

(1) H(Q(én)) = M2(Q(&));

(2) there ezist a,B € Q(€r) such that o® + 5% = —

(3) the order of 2 mod n is even.

Let (d) be a cyclic group of order n. If v = 3" n_g ¥ad® € C{d), then we write
R(7) = 1" Re(7a)d?, and S(v) = Sr s Im(y.)d®. We will denote complex

conjugation by a bar; thus, ¥ = 3 Fade.
Some technical facts are contained in

Lemma 4.5.4. Take v,d € C(d), where (d) is cyclic of order n < oo. Then
(1) 3+5=7+3,
(2) ¥ =74,
(3) R(y+6) = R() + R(3),
(4) S(v+6) = () + (),
(5) 7+ =2R(7),
(6) 7 —7 = 2iS(7), and
() ¥7 =R + ().

Proof. Given that these properties hold for the coefficients. all of the parts except
for (7) are trivial to verify. Let us write vy = Sy Yad®. ¥or any k, we have

(7xd®)(vedk) = 7 7ed**
= ((Re(1:))? + (Im(~x))?)d?*
= (R(7xd¥))? + (S(xd¥))?.

Proceeding by induction, let us assume that

j-1 -1 j-1 j-1
O 7d*)(Q 7ad®) = (RO 7ad®))* + (3D 1d))’,
a=0 a=0 a=0 a=0
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for some j, with 1 < j < n. Then we have

(Z 'rad“)(z Yad?) = ((Z Yad®) + ’r;d’)((z Yad?) + T3 d)
a=0 a=0 a=0 a=0
j=-1
= (R()_ 7d*)* + (“(Z 7ad®))?
a=0 a=0
. j—l j—l .
TS 1ad®) + (5d9)(D_ vad®) + 15750
a=0 a=0
j=—1 j-1
= (R 7ad*)? + (3 _ 1d*))*+
a=0 a=0
j=1
2R((F5d) (D 1ad®)) + 75754
a=0

Now, F;d’ = (Re(v;) — ilm(v;))d’, which tells us that
-1 j-1

R((T5") (Z Yad")) = (Re(%)d’)(ék(z Y¥ad*)) + (Im(7;)d YS(D_ 7ad®)).

a=0 a=0 a=0

It follows that (3 1=07a d*) (37 _, 4.d°) is equal to

j—1 j-1
R 7ad®))* + (%(Z 7ad®))? + (2Re(7;)d)(R(D_ 7ad®))+
a=0 a=0 a=0
j=1
(2Im(v;)d? (SO 7ad®)) + 75754
a=0

On the other hand,

-1 j—1
(R(M))? +(S(M)* (%(Z 7ad®) + Re(7)d?)? + (S(D_ 7ad®) + Im(y;)d)*.
. a=0 a=0

Expanding this, and comparing with our computations above, it remains only to
verify that ((Re(v;))? + (Im(v;))?)d?* = v;7;d%*. But this is obvious. O

Given this result, we would like to find solutions to the equation z2 +y% = —1.
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Proposition 4.5.5. Let p be an odd prime, such that the order of 2 mod p is
2m, for some natural number m. Then 2™ = —1 (mod p). Let C; = (d) be a
cye¥ic group of order p. Let

m-—1
v= [] (1 +id®) € Z[|C;
a=0
Let o = dR(y), and B = dS(y). Then, o, € ZCp, and if p : QCp — Q(§;) i
the usual epimorphism, given by d— &p, then ple? + 6% +1)=0.

Proof. Since Z/pZ is a field, the only square roots of 1 are +1. It follows that
9™ = —1 (mod p). Since v € Z[i]C,, it follows immediately that a,8 € ZC).
Then, by Lemma 4.5.4(7), it follows that

a? + 8% = d*((R(1))* + (S())*) = &*(v%).
By Lemma 4.5.4(2), we have

—e
m—1 m—1

3= [[@+ia) =[] -id).
a=0 a=0
Therefore,
m—1 m—1 .
o? + 2 =[] 1 +id®)1-id ) =P([J 1+ d>*y).
a=0 a=0
Hence,

(1-d®)(a? + %) = d*(1 - d®)(1 + )1+ d*) - (14 &)
=d(1—-db)---(1+d)
= =B1-d").
Now, 2m+1 = 2(2™) = —2 (mod p). Thus,
A-d) P +p)=d*(1-d?)=d" -1,

Hence, (1 — d®)(e® + %+ 1) =d? —141—d* = 0. Since a? 4+ B2 + 1 € Z(d),
let us write o + 82+ 1= Y g zd', for various integers z;. Then, since

o+ 8% +1=d*a? +p*+1),

-
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it follows that S zid' = Yy 2id"+?, which means that zp = 23 = -+ =
Zpes = In—] =2} = 23 = -+ = Zn—3. That is, a® + 82 + 1 = zd, for some z € Z.

Hencea p(a2 +ﬂ2 + 1) = 2p((i) = z(l +£p +ee +€£—1) =0. O

Since we will be interested in homomorphic images of the form Qg x Ch, for
odd numbers n > 1, let us write

Qs x Cr = (#.h,&| g% = h%,g* =1,e" =1,k 'gh =571, [g,8] = [h,T] = 1).

Then, recalling that we have already given the Wedderburn decomposition of
Q(Qs x Ch), for an odd number n > 1, we have

Proposition 4.5.6. The primitive central id&mpotent:)i Q(Qs xCy) correspond-
ing to the component H(Q(¢,)) is ((1—3*)/2) [1(1 — (¢*/?)/p), where the product
is over all of the distinct primes p which divide n. If f is any other primitive
central idempotent of Q(Qs x Ch), then there ezists 1 # v € Qg x Ch, satisfying
~f = F. Thus, if G is a finite group, and e is a primitive central idempotent of
@G such that Ge =~ Qg x Cn, then QGe = H(Q(£r)). Let K be the kernel of
the map G — Ge, and let 7 : G/K — Qg X Cp be an isomorphism. Then, let
A : QG — Q(Qs x Cy) be the map obtained by following the odvious epimorphism
QG — Q(G/K) with the isomorphism Q(Ci/\K ) = Q(Qs x Cy) induced by 7. If

u is any preimage of (1 — 32)/2) TI(1 — (E+/7)/p) under ), then e = (Krp.

Proof. By Proposition 4.2.3, the primitive central idempotent corresponding to
H(Q(£r)) is the product of the primitive central idempotent of QQs correspond-
ing to H(Q), and the primitive central idet:potent of QCr corresponding to
Q(f.). By Proposition 4.2.5, the first of ‘tuse is (1 — g%)/2. To determine
the other, we know that it will be the element which projects onto the iden-
tity element in Q(£,), and to the zero element in each of the other Wedderburn
componerits of QCp,. These projections are given in Lemma 3.2.1. If d|n, but

d # n, then let us say that p|%, for some prime p. Thus, 52/ P = 1, which means
that, under the map & — g4, the element 1 — (¢%/?)/p gets mapped to 0. Thus,
TI(1 — (&%/7)/p) — 0, in all components except for Q(£,). In this component

LA © 3 et e ARt o . S
. .

But €177 is a primitive p’“‘\root of unity. Thus, 1+ €27 4 ... 4 £~/ = ¢,
which means that 1 — (¢*/?)/p gets mapped to 1, for each p. Therefore, their
product gets mapped to 1, and this is the primitive central idempotent.
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Again, by Proposition 4.2.3, f will be the product of primitive central idem-
potents fi of Q@s, and f2 of QC Given the restriction on f, we must have

fi#(1-g%)/2,0r f2 #TJ(3 = (€*/7)/p). In the first case, f € QQs((1+35%)/2).
Now, §2(14+3%)/2 = (1 +§*)/2, forcing §2f; = fi1, and therefore, g° f = f. In the
second case, we know that ¢" f2 f2 if and only if the projection of é" into the
corresponding component is the identity element. Since that component is Q(&4),
for some d|n, with d # n, if we it p|5, for a prime p, then e/P 5"/” = 1.
Thus, e*/?f, = f,, implying that */?f = f. Therefore, if Ge ~ Qg x Cy, then
Proposition 4.2.8 tells us that QGe = H(Q(¢,)).

Ti is clear that we must have Me) = ({1 - 3°)/2)TI(1 - (€/%)/p). Since
A( I Kl) = 1, it is obvious that uzy Kl satisfies this property. Further, by Proposition

424, e = ,uI K] is a primitive central idempotent of QG. Suppose that €’ is
another primitive central idempotent of QG, such that A(e’) = A(e). Then
e’ —e € ker A = Ag(G, K). Since ¢’ is a sum of terms of the form qg(k — 1), with

geQ, g€ G and k € K (by Proposition 2.1.2), it follows that (e’ — e)——[ =0.
Now, e = puigr I Kl Since 1o T Kl isa centra.l idempotent (because K is normal in G), we

have elKl =e. Hence, e = ¢’ I Thus, e € QGe'. However, QGe N QGe' =0, a
contradiction. Thus, e is the only primitive central idempotent of QG such that
A(e) has the appropriate value. Our proof is complete. O

The time has come to introduce our new units, which were discovered by
Giambruno and Sehgal, in [GS]. Let € be a finite group. Suppose that G/K ~
Qs x Chy, for some odd number n, wkere n has a prime divisor p’, such that the
order of 2 mod p’ is even. Let 7i : G/K — Qg X Cp, be this isomorphism, and let
Ak : QG — Q(Qs x Cr) be the epimorphism obtained by applying the obvious
map QG — Q(G/K), and then the isomorphism Q(G/K ) - Q(Qs % C,) induced
by k. Let px be a preimage of ((1 — 3%)/2)[I(1 — (¢"/?)/p) under Ax. (in
particular, since the denominator of any coefficient of ((1—g2)/2) [T(1—(¢"/?)/p)
divides 2] p which, in turn, divides IG’/ K| = 8n, we may choose pg such that
|G/K|uk is in ZG). Let ex = pr iz i K| Let p' be some prime divisor of n such

that the order of 2 mod p' is even. Then (¢*/?') ~ Cp. Let &,8 € Z(¢ n /P’y
be the elements which we created in Proposition 4.5.5. Thus, under the map
e/?’ + £y, we have &% + §% + 1+ 0. Let g,h,c € G be preimages of §,k, and
¢ respectively, under the projection G — G/K =~ Qg x Cy. Let z,y € ZG be
preimages of Z and ¥, respectively, under Ag.

By Proposition 4.2.4, ey is a primitive central idempotent of QG. Further,

Ax((a® + B2 +1)ex) = (& + B + )([J(1 - (@7)/p)((1 = 3%)/2).

Since @2 + 3% + 1 ~— 0, under the map v’ &p', which extends to the map
& > &y, it follows that the projection of & + % + 1 into the Wedderburn
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component Q(£,), of QCh, is zero. Thus,
@ + 8+ )1 - @7)/p) =0,
which means that
@ + 7 + )([[(1 - @/)/p)(@ - 3°)/2) =0.

Hence, (o +B%+1)ex € Ag(G, K). But then, as we have seen a few times hefore,
(a? + 6% + 1)€K|-;}'::—[ = 0. Since e;;-l-l% = ey, it follows that (a? + 8% + 1)ex = 0.
Let

nk = |Gl(Bg + h + agh)ek, and ik = |G|(Bg — h + agh)ek.

Each of a, 8,9, and h is in ZG. Further, we have ex = /,LK-l%T. We chose px
such that |G/K|px € ZG. Thus, |Glex € ZG, which means that nk, ) € ZG.
We recall that ey is a primitive central idempotent in QG. Since & and 3 are
central, it follows that, for any ¢ € QG, we have ac — oca € Ag(G, K). Hence,
(ao — aa)T}le, which means that acex = caex. Similarly, since §2 = h?, we
have g2ex = hZex. Write g> = v. Since g2 is central, it follows that vey is
central in QGex. Further g = 1 implies that §teg = ex. In addition, since
hg = g1k, we obtain hgex = g~'hekx = vgher. Bhenefore,

n% = |G>(8%v + Bgh + afvh + Bhg + v + ahgh + aBghg + avg + a*ghgh)ex

= |GI*(eBh(1 + v) + B(L + v)gh + ag(l +v) + (o + B + 1)v)ek.

Now, we already know that (o? 4+ 82 + 1)ex = 0. We also have
A1+ v)ex) = (1 +3%)/2)((1 - 8%)/2) [[(2 - (2*/?)/p) = 0.
Thus, 7% = 0. Similarly,

n? = |G|*(8%v — Bgh + afvh — Bhg + v — ahgh + aBghg — avg + a’ghgh)ex
= |Gl*(aBh(1 + v) — B(1 + v)gh — ag(1 +v) + (a® + B2 + 1)v)ex = 0.

Therefore, for any z € G, we have 1 +nxank € U(ZG), with inverse 1 — nxznK.
Similarly, 1 + niczn) € U(ZG). Our new units are

Bs = (14 ngzni,l + nkznk : z € G, all K),

where we take or= ;5 and one n} for each normal subgroup K of G such that
G/K ~: Qg x Cp, where n is an odd number having a prime divisor p, such that
the order of 2 mod p is even.
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These units will be used in the next section.
§4.6 The Solution to the Case Without Exceptional Components

In this section, we combine much of our previous work to find generators of
a subgroup of finite index in U(ZG), provided G is a finite nilpotent group and
QG has no exceptional Wedderburn components. All of the notations which we
introduced in §§3.3, 3.5 and 4.5 are in effect. The units that we introduced in
the last section are exploited in

Lemma 4.6.1. Let G be a finite group, and let e; be a primitive central idem-
potent of QG, such that Ge; =~ Qg x Cy, where n is some odd number having a
prime divisor p', such that the order of 2 mod p' is even. If K is the kernel of
the map G — Ge;, with ng and ny as before, then let

By = (1 +nxznK,1 + nkank : ¢ € G).

Then, for each j # i, mj(Bx) = 1. PFurther, QGe; = M2(Q(£,)), and we may
define m; such that m;(Bk) contains Ez(aZ€,]), for some natural number a.

Proof. By the definitions of ng and n, we can see that 7x, 7} € QGex. Propo-
sition 4.5.6 tells us that e; = ex. That is, nk,n} € QGe;. For any j # i, we
have 7;(e;) = 8;(eie;) = 0, which means that =;(Bk) = 1.

It follows from Proposition 4.5.6 that QGe; = H(Q(&,)). If the order of 2 mod
n is odd, then let us say that 2" = 1 (mod n), with r odd. Then 2" =1 (mod p),
a contradiction. Hence, Proposition 4.5.3 informs us that QGe; = M2(Q(£.))
Let us construct the projection m;. As we pointed out in Proposition 4.5.6, the
primitive central idegxgotent of Q(Qs x Cy), which corresponds to H(Q(&n)) is

((1—2)/2) [I(1 — (&/7)/p). Let us define a map T': Q(@s x Cr) — M2(Q(¢a));

via
0= (48 #8)).r0=(5 §)r0=(5 ¢)

where p, @, and B are the various things which we defined in Proposition 4.5.5.
Since p(@% + B2 + 1) = 0, it is easy to verify that T is a homomorphism of
Q-algebras. Further,

r@-#=3((5 9)- ("7 sem))=(0 1)
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Also, for any prime divisor p of n, we have

— 14+ €M7 4 gl InIp 0
T(C /p)— ( " 0 1+€:/p+...+£gp—1)n/l’ =0’

since £7/P is a primitive p** root of unity. Thus, T(JJ(1 — (E"‘TP) /p)) = 1, which
means that restricting T', we have a Q-algebra homomorphism

T: Q(Qs x Ca)(1 - 8%)/2) [[(1 — @/7)/p) = Mz(Q(&n)).

Since Q(Qs x Cx)((1 — 32)/2)T1(1 — (¢"/?)/p) is a simple Q-algebra, this map
is injective. Since it is isomorphic to M2(Q(£n)), by comparing dimensions, this
map is an isomorphism. If 7x : G/K — Qs x Cy is an isomorphism, then by
Proposition 4.2.4, we have an isomorphism

¥ : QGex — Q(Qs x Ca)((1 - 72/2) [ (1 - @/7)/),
which is defined via
gex ~ T(gK)((1 - 32/ [[(1 - @/7)/p),
for all g € G. Thus, we may define m; : QG — M3(Q(£n)) via m:(¢) = T((Cer)),

for all { € QG.
Since n%- = 0 = (n)?, it follows that for any z1,22 € G, and any b, b; € Z,

we have
(1 + nxz1nr)? (1 + nxzenk) = 1+ k(b + bza)nx.
(And, similarly for n%). Thus,
(1 +nkZGnk, 1+ nxZGnk) < Bk.

Since Z@G is an order ia QG, it follows that 7;(ZG) is an order in M2(Q(n)). As
M2(Z[¢,]) is another order,

|M2(Zi€,)) : Ma(Z[€n]) N 7i(ZG)| < oo.

(See Theorem 3.1.7). Let us say that this order is . Then, for any «: € Z[,)], we

have
0 lw 0 0 o
(0 0)’(lw o)e”‘\zG)'
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Now,

7i(nx) = |Gl7i(Bg + h + agh)
= |G|T(Bg + h + agh)

='G'((p(oﬁ)_ o5) (%3 )+ (o)
e f,im (59))

IZI (4 ”((‘;5’; )+ o)+ (7 6))
0 0

“\-2lG] 0)°’

since p{a? + B2 + 1) = 0. Similarly,

Ti(nk) = (g -20|G|) .

Thus,

1 0
4|G¥lw 1

0 0\ (0 lw 0 o0 ,
= I + (—QIGI 0) (0 0) (—2|G| 0) € ni(1 + nvZGny) < Br,

and

((1) 4|Gi|21w )

0 —2/G\[(0 0\[0 —2/G
=I2+(0 (1 l) (lw 0) (0 oI |)€7r"(1+'7'l\’chl;()$31{‘

Taking a = 4|G[?!, we are done. [

(We could conclude immediately that we get a subgroup of finite index in
SLy(Z[£,]), except that if n = 3, then Q(€,) is an imaginary quadratic extension
of the rationals; hence, M2(Q(£,)) is an exceptional component).

This allows us to prove
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Theorem 4.6.2 (Giambruno-Sehgal). Let G be a finite nilpotent group. Sup-
pose that for every odd prime p which divides |G|, the order of 2 mod p is even.
Suppose further that QG has no Wedderbuin components which are 2 x 2 matriz
rings over Q, an imgginary quadratic eztension of the rationals, or a noncom-

mutative division algebra. Then

IU(ZG) : (B1,Bz,33)| < Q.

Proof. We wish to apply Theorem 3.3.5. Let e; be a primitive central idempotent
of QG. If QGe; is not a division ring, then since exceptional 2 x 2 matrix rings
are forbidden, the units Hy, which we defined in §3.5 will give us a subgroup of
finite index in SLn,(O:), by Theorem 3.5.8. If Ge; is not fixed point free, then
we may assume that Hy; < B3, by Lemma 3.6.3. Thus, we are left with the cases
where Ge; is fixed point free, or QGe; is a division ring. By Proposition 3.6.2,
the latter case is contained in the former. Therefore, let us assume that Ge; is
fixed point free.

Since Ge; is a homomorphic image of a nilpotent group, it is nilpotent. By
Corollary 4.1.6, Ge; >~ Q2m X Cp, for some m > 3, and some odd number n. If
m > 4, then G has Q= as a homomorphic image. By Proposition 4.2.7, QQ2m
hus M2(Q) as a Wedderburn component. Thus, by Proposition 4.2.4, QG has
M;(Q) as a Wedderburn component, which is forbidden. Therefore, m = 3. If
n = 1, then by Proposition 4.2.8, Q@s has QGe; as a Wedderburn coxsonent.
By Proposition 4.2.5, QGe; is either Q or H(Q). The results of §3.4 tell us that no
units at all are required to deal with these components. Therefore, we will assume
that n > 1. Given the restriction on the order of G, for every prime divisor p,
of n, the order of 2 mod p must be even. By Lemma 4.6.1, QGe; = M2(Q(£)),
and B3 contains a subgroup By such that =;(Bg) = 1, if j # ¢, and m;(Bxk)
contains F2(aZ[&,]), for some natural number a. By Theorem 2.5.5, the ring of
algebraic integers of Q(£x) is Z[€x]. Since exceptional 2 x 2 components are not
permitted, Ez(aZ[£,)) is of finite index in SLy(Z[é,]). We are done. O

It is now easy to obtain

Theorem 4.6.3. Let G be a finite nilpotent group. Assume that QG has no
Wedderburn components of the following types:
(1) a division algebra of the form H(Q(&,)), for some odd prime p, such that
the order of 2 mod p is odd; or,
(2) @ 2 x 2 matriz ring over Q, an tmaginary quadratic eztenszon of the ratio-

nals, or a noncommautative division algebra.

Then U(ZG) : (B1, B2, B3)| < oo.

Proof. We follow the same proof as in Theorem 4.6.2, up to the point where we
assume that Ge; ~ Qg X Cp, for some odd number n > 1. Suppose that, for
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some prime divisor p, of n, the order of 2 mod p is odd. Since C,, has Cp as a
homomorphic image, it follows that G has Qg x Cp as a homomorphic image.
Now, we already know that Q(Qs x Cp) has H(Q(,)) as a Wedderburn compo-
nent. Therefore, by Proposition 4.2.4, so does QG, which is a contradiction. The
remainder of the proof is the same. O

Our desired conclusion is a particular case of this result. Since Q(.) is not
real, for an odd natural number n > 1, it follows that H(Q(£,)) is not a to-
tally definite quaternion algebra. Therefore, we are only excluding exceptional
components in the above result. Hence, we obtain

Corollary 4.6.4. Let G be a finite nilpotent group, such that QG has no ezcep-
tional Wedderburn components. Then

|U(ZG) : (B1, B2, B3)| < oco.

We should, perhaps, perform one concrete example of the construction of Bs,
in order to show that it can be done easily, and, for groups of reasonable size, by
hand.

Ezample 4.6.5. Let G = Qs x C2 x Cs. Since G is the direct product of its Sylow
subgroups, it is nilpotent. Further, by Proposition 4.2.5, QQs = 4Q @ H(Q). By
Lemma 3.2.1, QCg = 2Q. Thus, by Lemma 4.2.1, Q(Qs X Cg) o= QQg @Q QCg &
2H(Q) @ 8Q. Since H(Q) and Q are simple algebras, this is the Wedderburn
decompostion of Q(Qs x C2). By Lemma 3.2.1, the Wedderburn decomposition
of QCs is Q@ Q(és). Hence, by Proposition 4.2.3, the Wedderburn decomposition
of QG is :
2H(Q) @ 8Q & 2H(Q(é5)) © 8Q(&s)-

Since the order of 2 mod 5 is 4, Proposition 4.5.3 tells us that this decomposition

is actually
2H(Q) @ 8Q & 2M2(Q(£5)) ® 8Q(&s).

Since [Q(£5) : Q] = 4, all of these components are nonexceptional. Thus, Corol-
lary 4.6.4 applies here.
Let us write

Qs = (g’hl92 =h2’h4 = l,h"lgh=g"1),Cz = (b|62 =1),Cs = (CICS = 1),

To construct B;, we must find all of the normal subgroups K, of G, sui: that
G/K ~ Qg X Chy, for odd integers n > 1. Since |G| = 80, the only possis vi:
for n is 5. Thus, |[K| = 2. Therefore, K = (k), for some central eler:: - & of
order 2 in G. The elements of order 2 will be of the form (z,y, z), whsxe & ¥,
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and z are each of order 1 or 2 in @s, C2, and Cs respectively, and not all of
z,y,z are 1. This forces z =1,y =l or b, and z = 1 or g?. Now, it is easy

to see that G/{(g%,1,1)) =~ (Qs/(g )) x C2 x Cs =~ C3 x Ca x Cz x Cs. This
is abedfan, and therefore, not isomorphic to @s x Cs. It is also easy to see that
G/({(1,b,1)) ~ Qs x Cs under the map (z, y, 2){(1,b5,1)) — (z, 2), for all z € @s,
y € Cy,'and z € Cs. Also, G/((g%,b,1)) =~ Qg x Cs, under the map given by
(z,1,2){(g%,b,1)) — (z, z), (z,b,2){(g%,5,1)) — (zg°, 2),

for all = € Qs, =z € Cs.
Let us construct &, 3 € ZCs. We have

1
v=JJ(1 +ie®) = (1 +ie)(1 +ic®) = 1 +ic +ie® - &
a=0
Therefore, @ = éR(7) = ¢—¢*, and § = &S(7) = 2+ Let K; = ((1,5, 1))
Then (g,1,1) is a preimage of @, (h,1,1) is a preimage of k, and (1,1,¢) is a
preimage of ¢ under the map (z,y,z) — (z,z). Further, our a will be (1 l,¢)—
(1,1,¢), and our B will be (1,1,¢%) + (1,1,c®). Since g, is a preimage of

((1 = g*)/2)TI(1 — (¢)/5), let us take
k= (G111 - 3¢ LD L1) - 5T L),

Then, by definition, ex, = pk, (1/2)((1,1,1) + (1,5,1)). Therefore,

nx, = 4((1, 17c2) +(L,1, 03))(91 1,1) +(h,1,1) + ((1,1,¢) — (L, 1, 64))(91% 1,1))
((1,1,1) = (63,1, ))(5(1,1,1) = (1,1, ))(2, 1, 1) + (1,5, 1)

Similarly,

M, = 4(((1,1,¢%) +(1,1,6%))(9,1,1) = (R, 1,1) + ((1,1,¢) = (1,1,¢*))(gh, 1, 1))
((L1,1) = (% L), 1L, 1) — (L1, 9)(L,1,1) + (L,5,1)).

Now, let K7 = ((g%,b, 1)) Under the map defined by (z,1,z) — (z,2),
(z,b,z) — (zg?,z), our preimages of g, h, ;& and B still work. Further, we
may take uk, = px,. However, ex, = px,(Kz2)/2, and Kz =(1,1,1)+(g%,b.1).
Therefore, we obtain
7aa = 4(((1,1,¢%) + (1, 3.%))(9,1,1) + (R, 1,1) + ({1,1,¢) — (1,1,¢*))(gh, 1,1))-

((1,1,1) = (g% 1. 1))(5(1, 1,1) — (1, 1,9))((1, 1, 1) + (2,5, 1)),

Similarly,
’f;\'z = 4(((17 1, 02) + (1’ 1, 63))(9, 1, 1) - (h') 1, 1) + ((1’ 1, c) - (la 1, c4))(9,"’ 1, 1))

((1,1,1) - (¢2,1,2))(5(1, 1, 1) — (1, 1,¢))((1,1,1) + (¢*,b, 1)).
Using these values, we can easily write down the generators, 1 + 7k, znx., ,
and 1+ 9k 20}, r =1 or 2, z € G, of B3. Thus, we have explicitly obtained
generators of a subgroup of finite index in U(ZG).
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Chapter 5

Units in Matrix Rings over Group Rings

In this chapter, we consider a problem which is slightly more general than the
one which we have studied up to this point. Specifically, we want to compute
generators of a subgroup of finite index in GLa(ZG), for finite groups G, and
natural numbers n. In fact, we will solve the problem, provided n > 3. (We will
not even require G to be nilpotent). The advantages of working in higher dimen-
sions are twofold: first, we have more room in which to construct units; second,
we will not have to worry about the exceptions to the Congruence Subgroup
Theorem.

In the first section, we will give a reduction which is analagous to the reduction
which we presented in §3.3. In the second section, we will present some new units,
and give our main theorem.

§5.1 A Reduction

The problem to be considered in this chapter is

Problem. Let G be a finite group. Find a finite set of generators for a subgroup
of finite indez in GL,(ZG), for a natural number n.

Obviously, the problem with which we have been dealing is simply the n = 1
case of the above problem.

The following notation will be used for the remainder of this chapter.
Let G be a finite group, and e; the primitive central idempotents of QG. Let us
say 0; : QGe; & M,,(D;), where D; is a division ring with centre F, an algebraic
number field ‘whose ring of integers we denote O;. Let m; : QG — My, (D;) be
the projection map. That is, mi(n) = 8i(ne;), for n € QG. Let A; be an order in
M, (D;) containing 7i(ZG). Let O; be an order in D; containing O;. Then, of
course, My, (O;) is an order in My, (D;).

Now, let m > 3. Then M;,(A;) is an order in Myn,(D;), and so is Mpn, (O;).
We have

Mn(QG) = M (€D QGe:) = M (D Mai(D5))
2 (D Min(Mn,(D1)) = D Munni (Di)
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where the first isomorphism is simply the application of 6; in each component,
and in each matrix position, and the second isomorphism is simply the action
of performing the operations in separate summands separately. To wit, the net
effect of these operations is to map a = (@p,q)p,g € Mm(QG) to ((mi(ap,¢))p.a)i-
Call this isomorphism 7 : M (QG) — @ Mm(Ma,(D;)). The notations GL, SL,
and E have their usual meanings.

Lemma 5.1.1. Let C be a subgroup of GLm(ZG) such that for each i, C contains
a subgroup C; satisfying 7(Ci) = 1 in every component except for the i*h, and in
the i*t component, 7(C;) contains Epnn,(qO;) for some natural number guidiften
the elements of C, together with ByIn, the subgroup of GLm(ZG) gerss,; ’
bl,,, for all Bass cyclic units, b, of ZG, generate a group containingw‘ ;
of finite indez in Z(GLm(ZG)).

Proof. Let z € Z(U(ZG)). Then, just as in the proof of Lemma 3.3.3, it follows
that there exist a natural number [ and b € B; (the subgroup of U(ZG) generated
by the Bass cyclic units) such that for each 7, the reduced norm nr(r; (z!671)) = 1.

Thus,
7;(z'671)
nr . =1"=1

7r,-(zlb"'1)

where this matrix is an m x m grid of n; x n; matrices. That is,

.ﬂ.i(zlb—l)
€ SLpyn; (D;).
";(z'b—l)

Further, mi(z!6~1) € m(ZG) C A, and similarly, (mi(='5" )™ = mi(bz~*) € A
Therefore, m;(2'b~1) € U(A;). Since Mp,(O;) and A; are both orders in My, (D;),

[U(A:) : U(A; N My, (05))] =i < oo.
Let r = []ri. Then m;(2'671)" € GL,,;(0;), which implies that

mi(2'7b7T)
€ SLmn.-(Di) N GLmn.'(Oi) = SLmn.-(Oi)-
wi(zlrb_')

Now, mn; > 3, and therefore, by Theorem 3.5.4,
ISLmn,-(Oi) ; Emn;(qoi)l =k; < o0.
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Let k = [] ki. We now conclude that

wi(zklrb—kr)

€ Emn,(q0i).
7‘.’,(zklrb—-kr) /

Therefore, by assumption,

i (zklrb—kr)

1,...,1, ,1,...,1 ] € 7(C)

ﬂ.'.(“.;,klrb—kr-)

for each i. Multiplying these together for the various components, we find that
™ (zklrb-kr) 7r2(zklrb—kr)
™ (zklrb—kr) Trz(zklrb—kr)

is an element of 7(C). That is,

zkl?b—kr
T .. 1 e r(C),
zklrb—kr

and since 7 is an isomorphism,

«zklrb—kr
.. eC.
zklrb—kr
zklr
-, € (C,ByIn)
Zklr

(where we have simply multiplied by b*” times the identity matrix, which is in
BlIm).
Thus, for each z € Z(U(ZG)), and hence for each

Z
( )EZ(GLm(ZG)),
F4
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there exists a natural number v such that

( )e(slzm,C).

\

That is, Z(GLn(ZG))/(Z(GLn(ZG))N{B1Im,C )) is torsion. However, we krow
that Z(GLm(ZG)) is a finitely generated abelian group. (It consists simply of
the matrices u times the identity matrix, for u € Z(U(ZG)), and by Lernma
3.3.1, Z(U(ZG)) is finitely generated). Thus, any quotient of Z(GL.wm(ZG)) is
finitely generated, so we conclude that

|2(CLm(ZG)) : (Z2(GLm(ZG)) N (BiIm, C))| < 00
which was our desired conclusion. O

Proposition 5.1.2. Let C satisfy the same condition as in the lemma. Then,
in fact, (B1In,C) is a subgroup of finite indez in GLn(ZG).

Proof. We know that M, (ZG) is an order in M, (QG); hence, 7(Mmn(ZG)) is
an order in T(Mm(QG)) = @ Mu(Mn,(D;)). Further, € M.(A;) is an order
in @ My (Mnp,(D;)) containing @ M (7i(ZG)), which contains r(Mn(ZG)), by
definition of 7. Thus,

| T] GLm(As) : U(r (M (ZG)))] = I T] GLm (1) : H(GLm(ZG))| < 0.
Hence,
I TI GLn(A:) N Z(J] GLmni(D:)) : T(GLm(ZG) T Z(J] GLmni DiDl} < oo.

Now, 7(GLm(ZG)) N Z(D GLmn:(Di)) € Z(T(GLnlZGY) = T(Z(GLm(ZG))),
implying that 7(Z(GLm(ZG))) contains a subgroup of finite index in

@D GLn(Ai) N Z(ED GLmn(Ds))-

By Lemma 5.1.1, (B1Im, C) contains a subgroup of finite index in Z (GLnm(ZG)).
Hence, 7({Bilm,C)) contains a subgroup of finite index in 7(Z(GLm(ZG))),
and therefore, in [] GLm(Ai) N Z(T] GLmn,(Di)) which may also be written
[1(GLm(A8) N Z(GLmn(Ds)))-

Since the index of the unit group of one order in another is finite, we see that
|GLmn: (O:) : U(Mm(A) N Mmn, (04))] < oo Therefore,

IGLmn.'(oi) n Z(GLmn:(Di)) :‘U(Mm(At’_) n Mmri.'(oi),) ﬂZ(GLm,,,(D.)N < 0o. '
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We conclude that 7({BiIns,C)) contains a subgroup of finite index in
H(GLmn.-(oi) N Z(GLmn(D:)))-

Hence, 7({B1Im,C)) contains a subgroup [1 K:, with K; a subgroup of finite
index in GLmn;(O:) N Z(GLmn;(Di)). By our choice of C, 7(C) contains '

(1,...,1,Ema,(g0i), 1,... ,1).

Since mn; > 3, it follows from Theorem 3.5.4 that this group is of finite index
in (1,...,1,5Lmn;(0i), 1, , 1). Since O; C O;, Lemma 3.3.2 informs us that
7({B1In,C)) contains a subgroup of finite index in

(1,-.. +1,GLmn;(03), 1, ,1).

Taking the product over the various components, we get a subgroup of finite

index in [T GLmn;(O:)-
Once again, because the unit groups of orders have finite index in each other,

| T] GLm(As) : TTUMum(8:) O Mo (Oi))] < o0

Thus, we know that 7({B1Im,C)) contains a subgroup which is of finite index
in []GLm(A:). We also know that (ByIm, C) is contained in GLm(ZG), which
means that 7({B1lm,C)) € T(GLm(Z@)), which is contained in [1 GLwm(A:).
Since the units 7({B1Im,C)) form a subgroup of finite index in the unit group
of the larger order, they certainly form a subgroup of finite index in the smaller
one, so that |7(GLm(ZG)) : 7({B1In,C))| < oo. Since 7 is an isomorphism,
|GLm(ZG) : (B1Im,C)| < 00. O

§5.2 The Main Result

To present our main result, we shall require several different sorts of matrix
units. (That is, the matrices with a 1 in one position and zeroes elsewhere, and
not the more general objects which we defined in §3.5). We should give them
different notations. First, the (p,q) matrix unit in M, (ZG), we shall denote
E, .. Next, the (p,q) matrix unit in Mn,(D;) shall be denoted E; ;. Now, if
we regard Minn,;(D;) as an m x m grid of n; X n; blocks, we denote by E, , the
matrix which is the n; x n; identity matrix in the (p, q) block, and zero elsewhere.
(This is not, strictly speaking, a matrix unit, but it serves a purpose). Finally, in
Mun, (D;) (ignoring the above block structure), we write the (p, g) matrix unit
as E, ,. We now present the main result.
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Theorem 5.2.1. Let G be a finite group, and m > 3. Let C be the subgroup
of GLm(ZG) generated by the elementary matrices 1 + gEy, g for g € G, p # 4.
Then (B1Im,C) is a subgroup of finite indez in GLn(ZG).

Proof. Fix p # q. We observe that, for g,k € G, u,v € Z, we have
(1 + gEP,Q)u(l + hEP.‘J)v =1+ (ug + vh)Ep.q’

and therefore, (BJ,,,,C) contains 1 + aE,, for all a € ZG. For any 1, choose
a natural number k; such that k;e; € ZG. Certainly, then, (B11n,C) contains
1+ kiae;Ep g forall o € ZG. Now, the j** component of 7(1 + kiceiEy g) is, by
definition, 1+ ;(kiae;)Ey , which is 1 +8;(kiceie;) B, o I 1 # j, then eje; =0,
so this is 1. If 1 = j, then this is

1+ Oi(kice;)EL o = 1+ mi(kia) By g = 1+ kimi(a) By .

Let Cip,q be the subgroup of C consisting of the elements 1 + kjae; Ep g, for
o € ZG. Then we have just observed that

‘T'(C,‘,p,q) =(1,...,1,1+ k,’ﬂ'i(ZG)E}',‘q, 1,...,1).
Now, ;(ZG) is an order in My, (D;) and so is My, (O;), implying that
!Mni(Oj) : M,,,.(O,-) n ﬂ‘i(ZG)I =1; < o0o.

Thus, if A € Mp,(0;), we have t;A € mi(ZG). Hence, kit;A € kimi(ZG). In
particular, (1,...,1,1+kt;AE, 0,1, .. 1) € 7(Cip,q)- Thus, if we takew € O;,
and any r, s with 1 < r,s < n;, then letting A = wE; ,, we have

1,...,L1+ kitin:',E;,’q, 1,...,1) € 7(Cipyg)

At this point, we pause to discuss the meaning of this last statement. By
“Ey,Ep ", we mean “put the n; X n; matrix with a 1 in the (r,s) position and
zeroes elsewhere, in the (p, ¢) block in the m x m grid, and zeroes in all other such
blocks.” In other words, this is actually a matrix unit in Mmn,(D;). There are
1o restrictions on r or s, so we may move this 1 freely about any such block. We
may also vary p and g, subject to the restriction that p # ¢. In other words, the
E} ,E, , can give us any matrix unit in Mnn; (D;), except those which correspond
to a (p,p) block.

Thus, letting C; be the subgroup of C generated by all Ci 4 for p # ¢, we
have that 7(C;) contains (1,...,1,1+ kitwEz,, 1,... ,1) for all w € O;, and all
pairs (r,s), 1 < r,s < mn; which do not correspond to a (p,p) block.

We claim, however, that the pairs (r,s) with r # s, corresponding to a (p,p)
block, come to us gratis. Indeed, suppose that the pair (r,s) corresponds to a
(p,p) block. That is, there exists an integer w, 1 S w < m, such that

(w—1)ni+1<r,s Swn,.
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Since m > 3, it is easy to choose an integer y, 1 < y < mn;, such that y does
not fall between (w — 1)n; + 1 and wn;. (There are at least 2n; values outside
this range). Then for any w € O;, we see that (1,...,1,1 + kitiwE;,,1,... ,1)
and (1,...,1,kit;E} ,,1,... ,1) are in 7(C;). Therefore, so is their commutator,

namely

(1,...,5L,[1 + kitwE},, 1 + kitiEy ), 1,... 4 1)
=(1,...,1,1 +k*wE] 1,...,1),

by Lemma 3.5.1.
Thus, for all pairs r # s, we have

1,...,1,1+ kB! ,1,...,1) € T(C)
for all w € ;. Taking g = []; k2t?, we find that 7(C;) contains
1,...,1,Emn:(g0i),1,...,1).
Apply Proposition 5.1.2 to complete the argument. [

The important thing in this result is that the number of generators is finite.
However, it is always desirable to eliminate any extraneous generators. In an
effort to-do so, it should be noted that {1+ gE, q: g € G,p # g} is by no means
2 minimal set of generators for the group which it generates. Indeed, suppose
we start with the elements 1 4+ Ej g and 1 + E, 1, for p # 1 # q. Then we have,
for 1, p, and g pairwise distinct, [1 + Ep1,1 + E1,4] = 1 + Ep,q. Thus, we have
1+ Ep g forall p # g. Suppose we also allow 1 + gF, 2 for g € G. Then if 1, 2,
and g are pairwise distinct, we have [1 + gE; 2,1 + Es 4] = 14 gE1,4, so that we
have these matrices for all g # 1. Then, if 1, p, and ¢ are pairwise distinct, we
get [1+ E, 1,14 gE1,q] = 1+ gEj,q. Therefore we have all such matrices subject
to the condition p # g # 1. So, given p # 1, choose g distinct from both 1 and p
(which can be done since m > 3). Then we have [1+gEp,q,1+ Eg1] = 14+ gEp,1.
In other words, we now have all of our generators of C. A slightly sharper version
of our theorem is, then,

Corollary 5.2.2. Let C' be the subgroup of GLn(ZG) generated by 1+ gE; 2,
g€G, and by 1+ E1p, p> 2, and by 1 + Eg1, ¢ > 1. Then (B1I,C') is a
subgroup of finite indez in GLm(ZG).

We may also observe that the only place the Bass cyclic units were needed
was to get a subgroup of finite index in Z(U(ZG)). Given that, our next result
is obvious.
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Corollary 5.2.3. If Z(U(ZG)) is finite, then we may omat the units BiI,, in
both Theorem 5.2.1 and Corollary 5.2.2.

In fact, just as in §3.3, we may deduce

Corollary 5.2.4. If each F; is either Q, or an imaginary quadratic extension
of the rationals, then we may omit the uniis Byl in both Theorem 5.2.1 and

Corollary 5.2.2.

It seems appropriate that we should comment upon the m = 2 case, if only to
explain why our proof breaks down. In fact, the proof of Theorem 5.2.1 works
perfectly well, but the sufficiency of the units (1,...,1, F2n;(q0i),1,... ,1) can-
not be guaranteed. In effect, our technique changes the Wedderburn components
of the form Mpy(D;) into Mmpn,(D;). Thus, when m = 2, we find that excep-
tional 2 x 2 matrix rings become 4 X 4 matrix rings. However, certain perfectly
harmless division rings become exceptional 2 X 2 components. The reason why we
were able to get things done in U(ZG), is that for many groups G, QG does not
have any exceptional components. However, let us take A = G in Proposition
4.2.4. Then, since the Wedderburn somponent of Q1 = Q, is Q, we discover that
QG has Q as a Wedderburn component, for any finite group G. Therefore, some
Mun;(D;) will be M2(Q), and the Congruence Subgroup Theorem fails here.
Thus, if any progtess is to be made on the m = 2 case, some new technique will
have to be found.
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Chapter 6

Conclusion

Let wus bring this thesis to a close by briefly mentioning some related work
which has been done in this area, and the work which is still to be done.

We will restrict our attention to finite nilpotent groups, for the moment. Ev-
idently, if G is such a group, then the preblem which remains is to deal with
Wedderburn components My, (D;) which are exceptional, and those components
for which Ge; >~ Qm X Cn, where m > 4, and n is an odd number. (The re-
maining fixed point free nilpotent groups are of the form Qs X Cn, and we have
dealt with all of these except when n > 1, and the order of 2 mod n is odd,
but in this case, the Wedderburn component is already exceptional). Two things
need to be done in these cases. First, generators of a subgroup of finite index in
SLn.(O;) must be found. Second, we must discover enough information: about
the projection map m; : QG — My, (D;), that we might find elements of U(ZG)
which map onto these generators.

In some cases, the first of these tasks is the cause of many difficulties. In
particular, this is true when the Wedderburn component is a noncommutative
division algebra (other than a totally definite quaternion algebra). For example,
we know from §4.5, that if the order of 2 mod m is odd, (for an odd integer

m > 3), then
H(Q((m)) = Qém)+Q(ém ) 2+Q(ém)y+Q(ém)zy

is a division ring. Its centre is Q(£x), whose ring of integers is Z[{m] (by
Theorem 2.5.5). Thus, an obvious order in H{Q((m)), containing Z[&m], is
Z[E ]+ Z[Em]z+E[Emly+Z[Em]zy. In this case, we can actually compute reduced
norms explicitly. (As we pointed out in §3.4,

nr(a + Bz + vy + 6zy) = o + % + 9% + 8%,

for all o, 8,7,8 € Q(£m)). Even so, no finite set of generators of a subgroup of
finite index in SLy(Z[€m]+Z[Em)z+Z[Emly+Z[Emlay) is known.

In other cases, generators of a subgroup of finite index in SL,,(0;) are known,
but inconvenient. A good example would be the exceptional component M2(Q).
Here, it is well-known (see [Se2, Lemma 19.4]) that SLz(Z) = E(Z). Thus,

(62)=2 (3 2)
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are generators of a subgroup of finite index in SL3(Z). The problem is that, in
general, we cannot hope to have elements of U{(Z G) mapping onto these particular
generators. The best we could expect is that for some natural number 7, we could

find elements a, 8 € U{ZG), such that

m‘(a)=((1) ’;), ,—.i'(ﬁ)=(i ‘f)

Since M>(Q) is an exception to the Congruence Subgroup Theorem, this is not
sufficient. However, it is also known that the normal closure of E(qZ) in SL2(Z)
is of finite index in SLy(Z), for 1 < g < 5 (see [Se2, Theoren 22.2]). Again, in
general, this will not be sufficient, but for particular groups, this has been a
great deal of help. We showed, in Lemma 4.2.6, that QDs has M,(Q) among
its Wedderburn components. Each Dj«, k > 3, is easily seen to have Dg as
a homomorphic image. Thus, by Proposition 4.2.4, each QD;« has M,(Q) asa
Wedderburn component. Nevertheless, Ritter and Sehgal have managed to prove
that the Bass cyclic and one-sided bicyclic units generate a subgroup of finite
index in U(ZDzy), for all n > 3 (including the dihedral groups which are not
nilpotent). The proof relies upon the fact that the pro jection maps m; are known
in this case. When n = 2F, the proof involves finding elements of U(Z D,«) which
map onto the normal closure of E3(4Z) in SLy(Z). We refer the reader to [Se2,
Theorem 23.1].

A reduction of the problem was made in a recent paper by Jespers and Leal
([JL3]). In this paper, all of the possible exceptional components M (D;) which
can occur in QG, for a finite nilpotent group G, are listed, and the structures
of the various Ge;, where QGe; is such an exceptional component, are almost
completely classified. In fact, we discover that the only exceptional division rings,
which occur in this way, are those which we have already mentioned; namely,
H(Q(£r)), where n is an odd number, and the order of 2 mod n is odd. Of
course, we have already seen that Mz(Q) is a Wedderburn component of QQ2m,
for m > 4. The only 2 x 2 matrix rings over imaginary quadratic extensions of
the rationals which can occur are My(Q(v=1)), M, (Q(v/=2)), and M2(Q(£3))-
Finally, the only 2 x 2 matrix rings over noncommutative division algebras which
can be obtained are Ma(H(Q(é2n + &5+))), n > 2, and Mp(H(Q(€m))), where m
is odd, and the order of 2 mod m is odd. Further, the groups which can occur in
the form Ge;, in an exceptional component QGe;, are generally well-known. The
only classification which remains to be done is the following. Let L be a 2-group
having a subgroup, H, of index 2, where L = H U Hl. Suppose that H has a
nontrivial normal subgroup, N, such that N NINI~™! =1, and H/N = Q;m, for
some m > 3. All such groups L must be classified.

Given this information, an algorithm is presented which allows one to lift units.
That is, if QGe; = My, (D;), then by Proposition 4.2.8, Q(Ge;) has My, (D;) as
a Wedderburn component. If we can compute generators of a subgroup of finite
index in Uy (Z(Ge;)) = U(Z(Ge;)) N (1 + Az(Ge;)), then these units can be lifted
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to a set of units X in U(ZG), and we will have x;(X) = 1, if j # i, and m(X)
will contain a subgroup of finite index in SLn,(O;). For some of the groups of the
form Ge;, such generators are known. However, there are other groups (including
those of the form Qg X Ch, *here n > 1 is odd and the order of 2 mod n is odd),
where this is not the case. Additionally, when Ge; is fixed point free, one can
use the same algorithm to lift the units up to U (ZG).

Two problems remain. First, there are, unfortunately, infinitely many groups
among the Ge; which fall inside an exceptional component QGe;, for which the
generators of large subgroups of U(Z(Ge;)) are yet to be found. Second, we will
have to define carefully what we mean by “explicitly” constructing the units.
This algorithm will certainly give the units explicitly, but its running time is a
problem. The smallest groups for which it would be useful would be those of
order 32, and even here, the algorithm would take trillions -of years to run on
a fast computer. Clearly, a clever implementation of this algorithm would be a
worthy goal.

Considering the fact that the bicyclic units have such a nice form, another

question arises. We know that these units, together with the Bass cyclic units,
generate a subgroup of finite index in #(ZG) for many, but not all, nilpotent
groups G. It would be nice to obtain a classification of all of the groups for
which this holds. Also, it is not currently known whether or not the one-sided
bicyclic units can always be substituted for the bicyclic units in our results. We
mentioned in §4.3 that they suffice to give us a subgroup of finite index in U(ZG),
when G is nilpotent of odd order, but for some other groups the problem remains
open.
Another problem to consider is this: what happens if we drop the nilpotency
assumption? The results of Chapter 3 do not depend upon the group G being
nilpotent. However, the general structure of fixed point free groups is nof as
nice as in the nilpotent case. Even if we require the group G to be solvable, the
structure of these groups can still be complicated. (See [Wo, Theorem 6.1.11]).
Also, the possibilities for exceptional components expand quite a bit. A few
classes of groups which are not nilpotent have been dealt with, as well as a
number of isolated groups. For example, we have already mentioned the dihedral
groups, and the problem has also been solved for the symmetric groups. (See
[Se2, Theorem 27.8]).

Finally, the author would personally be interested in seeing a solution to the
9.dimensional version of the problem which we considered in Chapter 5.
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