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Abstract 

 

While the common method for diagnosing and monitoring adolescents with 

idiopathic scoliosis (AIS) is X-ray radiographs from which a Cobb angle is measured, 

studies have shown that high radiation exposure is linked to high risk of cancer, 

particularly, for children and women. This thesis describes an algorithm for AIS 

classification based on surface topography analysis which is a radiation-free method. 

We present an approach which improves the user-independence level of the 

previously developed 3D markerless asymmetry analysis using a new asymmetry 

threshold without compromising its accuracy in identifying the progressive scoliosis 

curves. Thresholds, which have been used for separating the deformed area, were 

changed to automatically isolate the deformed area paired with Cobb angles. New 

classification trees were developed to use asymmetry parameters for classifying curve 

severity and progression status. In monitoring of scoliosis curves progression over a 

period of 12±3 months, the sensitivity of curve progression was increased from 68% 

to 75%, while the specificity was decreased from 74% to 59%, compared with the 

original method. Results demonstrate that smaller number of radiographs would be 

saved, however the risk of missing a curve with progression would be decreased, i.e. 

the proposed approach is more conservative in monitoring of scoliosis curves in clinical 

applications. 
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Although using the classification tree method led to promising results, it was 

highly sensitive to threshold values selected in the decision trees. We demonstrate 

another classification algorithm, custom Neighbourhood Classifier, by which the 

accuracy of the curve severity and progression were increased by 17% and 58%, 

respectively.  The new algorithm is based on the idea that curves with close asymmetry 

parameters are likely to belong to the same class. Regarding the contribution of each 

asymmetry parameters, in general, they do not play the same role in decision making, 

thus modification was performed to use such parameters properly. 
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1 
1. Introduction 

1.1 Motivation 

Adolescent Idiopathic Scoliosis (AIS) is the most common form of scoliosis 

affecting children and predominately girls. Studies have shown that high radiation 

exposure is linked to high risk of cancer [1]. Furthermore, such risk is higher for those 

exposed as children or women. Given that the common way to assess the severity of 

the scoliosis or its changes over the time is using radiographs, a practical method was 

required to reduce the exposure to X-ray radiations. Thus, Surface topography (ST) 

has been introduced, a method in which only harmless visible light is used to replace 

radiographs. The ST method has evolved through the contribution of various studies 

resulting in remarkable improvements, however still some limitations exist [2] Recent 

ST analysis is based on the asymmetry of the torso and represents decision trees to 

classify the severity of the curvature and its progression [3]. Due to the limitations of 

the previous studies which caused inaccurate results in evaluating torso asymmetry in 

some cases, to the best of our knowledge, there still exists a considerable need to 

improve the method. The desired method should be fully automated to make the whole 

process repeatable, fast, and easy enabling its full clinical implementation. Once 

implemented, the proposed method would prevent adolescents with a mild AIS status 

or no progression in their spinal curve from being exposed to unnecessarily radiation. 
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1.2 Literature Review 

1.2.1  Scoliosis 

Scoliosis is a 3D deformity of the spine caused by lateral deviation greater than 

10 degrees as measured using the Cobb angle method obtained from radiograph 

scans in the standing position. This deformity is usually combined with axial rotation of 

the vertebrae [4]  

 

Figure 1-1- Idiopathic Scoliosis in an adolescent female [5] (Figure is licensed under 
CC by 4.0) 

 

Scoliosis is classified in different groups based on the age of the patients at the time 

of diagnosing. Infantile, juvenile, and adolescent are detected before 3 years old, 3 to 

10, and 10 years old to skeleton maturity, respectively [6]. The term “Idiopathic” means 

the specific cause of this phenomenon is still unknown, although according to some 

studies, it could be a genetic disorder [6, 7]. 80% of patients with scoliosis are 

diagnosed with adolescent idiopathic scoliosis and most of them are female [9]. For 

instance, for curvatures greater than 30 degrees, girls are affected 10 times more than 

boys. Furthermore, scoliosis curve progression in girls is faster requiring them to 

receive more treatment [6]. 
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1.2.2  Radiographs 

As mentioned before, Cobb angle is the most widely used method in scoliosis 

clinics to assess the severity and progression of AIS based on X-ray radiographs [10]. 

Cobb angle is a “Gold standard” that represents the angle between the most tilted 

vertebras above and below the scoliosis curve [11] (Figure 1-2). Following such 

definition, scoliosis is categorized into three levels: Mild (10°≤ Cobb angle ≤25°), 

Moderate (25°˂ Cobb angle ≤40°), severe (40°˂ Cobb angle). Additionally, progression 

is defined when there is over 5° increase in Cobb angle from baseline to follow-up [12]. 

Patients receive treatments based on the severity condition and progression 

status [13], i.e. mild patients may need check-ups every 3 to 9 months to see if they 

have any changes in their spine curvature. Additional treatments such as bracing are 

recommended for moderate curves to prevent further progression.  In the worst case 

scenario, i.e. severe condition, orthopaedic surgery is the last resort for correction and 

stabilization of the spine [13, 14].  

The main limitation of Cobb angle method is that the measurement is based 

on the posterior-anterior (PA) radiographs in which only the lateral deformation is 

visible. However, some patients may have axial rotation in their spine, so the 3D 

characteristics of the curves is not captured in this two-dimensional method. Another 

major drawback of using X-ray is the increase in the risk of cancer, which is intensified 

by the frequent X-ray monitoring and then young age of patients. Moreover, according 

to Hoffman et al. [1], the risk of breast cancer for women who were exposed to the X-

rays because of scoliosis monitoring is doubled. 
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Figure 1-2- Measuring the Cobb angle [16,17, 18]  

1.2.3  Surface Topography 

Cosmetic deformity and its impacts on the quality of life are the preeminent 

reasons for patients with scoliosis to visit clinicians and seek improvement. The 

asymmetry associated with scoliosis is more annoying for them than having curved 

spine[15, 16]. Hence, these considerations highlighted the importance of assessing 

the appearance of the torso. Furthermore, the limitations of the Cobb angle method, 

as described before, motivated researchers to develop a method in which no X-ray is 

used and the 3D shape of the torso surface is investigated [21]. To that end, Surface 

topography (ST) was introduced as a non-invasive method which uses harmless visible 

light to capture the 3D scans of the torso. Several types of ST have been developed 

and in most of them there is a need to place landmarks in multiple anatomic locations 

to obtain the parameters involved in the analysis. These parameters are based on the 

coordinates of the landmarks with respect to each other and the geometric properties 

of the transvers cross section of the torso [18, 19]. These parameters are then used to 

calculate measures such as cosmetic score [24] and Quantec spinal angle [25] which 

can be used to assess the deformation or progression. ST studies have shown 

promising results in investigating torso deformity, however relying on trained operator 

which results in introduction of human errors in marker placement, is always a 

Cobb 

angle 

Coronal 

Plane 

Transverse Plane 

Sagittal Plane 
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controversial issue. Moreover, the limited number of anatomical points to place 

markers as well as lack of agreements on defining the aforementioned indices does 

not allow for studying the entire torso deformity [4]. These shortfalls prevent utilization 

of ST as a common method for diagnosing and monitoring scoliosis in clinics around 

the world.  

More recently, Komeili et al. [26] introduced a markerless ST analysis method 

based on the asymmetry of the torso along the sagittal plane rather than landmarks, 

overcoming the limitations of marker placements [26]. In this technique, they defined 

a sagittal best plane of symmetry to create a deviation contour map which perfectly 

depicts the asymmetry areas, termed contour patches, affected by scoliosis (Figure 

1-3).  Best plane of symmetry is the plane that minimizes the distances between the 

actual points on the torso and its reflection. Maximum standard deviation (MaxDev) 

and root mean square of deviation (RMS) for each patch were two asymmetry 

parameters that were used to obtain clinical relation between the aforementioned 

parameters and the Cobb angle. Komeili et al. [3] suggested decision trees for 

diagnosing AIS and assessing curve progression based on the MaxDev, RMS and 

curve type. Hong et al. [27] independently validated the diagnostic accuracy of these 

trees for classifying mild curves and non-progression cases using a new set of AIS 

patients [28]. The results imply that patients with mild curves or those whose curves 

do not progress can be spared from being exposed to X-rays. Hong at al. [27] also 

modified the original decision trees to obtain more conservative results. While their 

classification tree has a good accuracy in detecting moderate/severe cases from mild 

patients (SE=73%), the percentage of mild patients who were eliminated from having 

unnecessarily X-rays was still low (SP=44%). In addition, all markerless ST analysis 

processes were automated to eliminate any human errors during the analysis except 

for the patch isolation step which was done manually in all the previous studies. Patch 

isolation was recognized as a complex process since previous attempts to automate 

this process resulted in merging between patches leading to inaccurate asymmetry 

results. However, manual isolation also resulted in varying RMS estimates. Moreover, 

in some patients, patches were extended all around the torso and it was hard to 

distinguish where the exact curvature of the spine is. Therefore, there is a need to 



 6 

modify the process and properly define the patches so that they can be automatically 

isolated. 

 

Figure 1-3- Isolated colour patch of two torsos with the corresponding radiograph [29] 

 

1.2.4  Classification 

The clinical relevance of radiograph measurements in evaluation of patients 

with AIS, in addition to the misperception in defining the degree of the scoliosis curve, 

underlines the necessity for the development of a classification system. Categorizing 

scoliosis patients to different groups helps clinicians better communicate and guides 

them in scoliosis management. Two main factors need to be considered to achieve 

promising classification, the first factor is determination of the most informative 

variables and the second one is the classifier technique itself.  

According to Roudys, the first classification rule was proposed by Fisher in 

1936 in statistical classification literature, after which other classification models were 

proposed and applied [30]. Classification is an example of a machine learning 

algorithm which uses experience to solve a given problem. Classification is defined as 

the process of identifying the group or category to which a new observation belongs, 

based on its qualities or characteristics. There are several classification algorithms, 

common examples include:  
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• Linear classifiers e.g. Logistic regression: A discrete or dichotomous (mild or 

moderate/severe) outcome can be predicated using such method where the 

variables could be continuous, discrete and dichotomous. The main idea of the 

method is that it defines the relationship between dependent variables and the 

dichotomous outcome [30, 31, 32, 33]. 

• Random forests (RF): The random forest as one can expect from the name is 

based on multiple decision trees rather than one tree, in which the training dataset 

is selected randomly, and each tree would work on some subsets of such data. 

The computation feasibility and accuracy of such method for various data domains 

are the significant features of the method [35]. 

• Learning vector quantization (LVQ): The underlying principle of learning vector 

quantization is to classify test data based on a set of pre-trained vectors. Similar 

to other machine learning algorithms first a random set of vectors is picked up and 

then is exposed to training samples. Next the vectors are trained based on the 

level of their similarities to a given pattern and can be further adjusted to acquire 

the desired result. Once the prototype vectors are fully trained they form the 

distribution in input space which can be used to classify samples from dataset [36]. 

• k-nearest neighbour (k-NN): One of the simplest and most common rule is Nearest 

Neighbourhood (NN). The main idea of NN is intuitive, which specifies that points 

with close parameters are likely to have same class, i.e. to classify a new query 

point, the class of nearest stored data points should be chosen. Although it is a 

simple algorithm, it has many advantages compared to the other methods such as 

decision trees and neural nets. For instance, stored data points can be gradually 

increased by adding more data points in the future. However, the main limitations 

of the NN are the dependence on the distance metric for classifying the new point 

and using all the stored data points for the analysis which is time consuming 

especially in a large database. Various approaches have been proposed to solve 

these issues. For example, the k-nearest neighbour (k-NN) algorithm is one of the 

common and simple extensions where input parameters are used to determine the 

𝑘 closest stored data points and then map them to an output through a systematic 

classification or a regression process, i.e. instead of analysing all the training 

instances, the 𝑘 nearest neighbours are used. In this method, the value of 𝑘 is 
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determined by minimizing the overall probability of error and all the independent 

parameters have equal contributions in the decision-making process [37]. k-NN 

algorithm was purposed more than 50 years ago but it got more popular in recent 

years due to the development of computers which can provide large memory for 

computations at a cheaper price [38]. Due to its simplicity, the k-NN is one of the 

most widely used algorithms [39]. Dasarathy is one of the textbook on 

nonparametric estimation and contains many papers using k-NN [40].  

However, in medical diagnosis similar to many other applications the overall 

error probability is not the only or most important target and the key objective is 

increasing the confidence in the classification. Furthermore, for some particular 

classes of interest even higher confidence might be required compared to the rest of 

the classes. For instance, in AIS diagnosis, detecting a moderate/severe case is of 

crucial importance. Regarding the contribution of each independent variable, in 

general they do not play the same role in decision making, thus modification is required 

to utilize such parameters properly. Hence, in this study, the k-NN was modified to 

meet the requirements of the diagnosing and monitoring of AIS patients.  

1.3 Thesis Objectives 

The main objective of the present thesis is to address following problems in 

detail: 

1- To modify the patch isolation method to automate the process of the 

markerless ST analysis  

2- To validate the method using new set of data 

3- To apply k-Nearest Neighbourhood classifier analysis to use markerless 

ST analysis for diagnosing and monitoring AIS  
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1.4 Thesis Outline 

This thesis presents algorithms for AIS classification based on ST analysis and 

is organized as follows.  

The modified 3D markerless asymmetry technique is described in Chapter 2. 

The selection criteria of the examined subjects, the description of our acquisition 

system and the asymmetry analysis technique are described in Section 2.3. The 

results of the asymmetry analysis for the torso of patients with AIS and comparison of 

the results with the original work are given in Section 2.4. 

The Customized k-NN algorithm is given in Chapter 3. Section 3.3.2 presents 

the theoretical framework of the new classification approach. Section 3.4 presents the 

results of the conducted method and the comparison with the results of chapter 2. 

Finally, Chapter 4 reviews the achievements of this study and presents the 

conclusion. This chapter also discusses the future work arising from this study.  
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2 
2. 3D Markerless Asymmetry Analysis in the 

Management of Adolescent Idiopathic Scoliosis1  

 

2.1 Abstract 

In an earlier study, a 3D markerless asymmetry analysis was developed to 

assess and monitor the scoliosis curve. While the developed surface topography (ST) 

indices demonstrated a strong correlation with the Cobb angle and its change over 

time, it was reported that the method requires user input for some patients. Therefore, 

this study aimed at improving the user-independence level of the previously developed 

3D markerless asymmetry analysis using a new asymmetry threshold without 

compromising its accuracy in identifying the progressive scoliosis curves. A 

retrospective study was conducted on 128 patients with scoliosis with baseline and 

follow-up radiograph and ST assessments. The suggested cut point, that separated 

the deformed surfaces of the torso from the undeformed regions, automatically 

generated deviation patches corresponding to scoliosis curves for all analyzed ST 

                                                   

1 This chapter has been submitted to Medical and Biological Engineering and Computing Journal, Maliheh 

Ghaneei, Amin Komeili, Yong Li, Eric Parent, Samer Adeeb. 
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scans. In monitoring of scoliosis curves progression, the sensitivity to curve 

progression was increased from 68% to 75%, while the specificity was decreased from 

74% to 59%, compared with the original method. These results lead to a more 

conservative approach in monitoring of scoliosis curves in clinical applications; smaller 

number of radiographs would be saved, however the risk of missing a curve with 

progression would be decreased.  

Keywords: Scoliosis, surface topography, 3D markerless asymmetry analysis, 

monitoring, curve progression 

 

2.2 Introduction 

Adolescent idiopathic scoliosis (AIS) is the most common form of three-

dimensional (3D) spinal deformity. It affects 2–4% of the population, predominantly 

females [41]. The AIS spine deformity progresses rapidly during the adolescent growth 

period, resulting in a need for frequent follow-ups [42]. The gold standard for assessing 

the spine curve is measuring the Cobb angle on the full torso radiograph, with the Cobb 

angle defined as the angle between the two most tilted vertebrae in each curve [11].  

The conventional scoliosis monitoring using the Cobb Angle has critical 

limitations recognized in the literature. Firstly, the measurement is limited to 2D 

posterior-anterior radiographs, and thus the method fails to address the 3D 

characteristics of AIS [43]. In addition, the use of radiographs in scoliosis clinics has 

several pitfalls of growing concern, such as excessive X-ray radiation exposure, with 

their associated risk of developing cancers [1, 30-33], and the contra-indication of 

radiograph acquisitions for pregnant women.  

Surface topography (ST) was introduced to develop a new approach or 

enhance the existing scoliosis monitoring approach [30, 34, 35, 36]. ST is a method for 

which non-invasive visible light is used for scanning the torso surface in order to assess 

cosmetic deformities often based on some landmarks placed on the patient's torso by 
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trained clinicians and using related indices [3, 16, 18, 37, 38]. Measurements based 

on ST could possibly be used effectively in combination with the radiographs to 

decrease the radiation dose and risk of cancer resulting from the multiple X-ray 

acquisitions. At this point, the ST approach is by no means designed to fully replace 

the gold-standard radiograph measurements, because it is subject to validation with 

the radiograph measurements. Nevertheless, the development of accurate ST 

methods has significantly contributed to the management of scoliosis [3]. 

On the other hand, marker placements can be associated with human errors 

in collecting the raw data [4] and such methods fail to take into account the whole torso 

geometry in the analysis. In contrast, our team has developed a novel markerless ST 

asymmetry analysis approach, which is independent of human interactions, and 

considers the full 3D torso surface for the analysis [53] This technique provides a 

deviation contour map that visualizes the areas affected by AIS corresponding to the 

location of each curve, called deviation patch [3] These patches are isolated to 

calculate ST parameters for such deviations. The method demonstrated the potential 

for reducing 43% of radiograph exposure in the monitoring of scoliosis [29]. 

In the study presented by Komeili et al. [3], areas with deviation less than 3 

mm were considered normal and areas with greater deviations were considered 

scoliosis deformation and separated as deviation patches for further analysis. Further 

application of this proposed ST asymmetry analysis in over 250 AIS patients illustrated 

that in 30 cases the method failed to either locate the curve properly or to correlate to 

the corresponding scoliosis curve, and led to misclassification of the AIS severity or 

progression. For example, in the ST analysis of some patients with a double scoliosis 

curve, a single isolated deviation patch encompassed the entire back torso (see Figure 

2-2), and therefore did not reflect the double scoliosis curve in the corresponding 

radiograph. In some other cases, the deviation patch extended to the anterior part of 

the torso due to the asymmetry introduced by the breasts or axial rotation of the torso. 

Folded skin near the armpits and waist also introduced artifact in the ST analysis. The 

reasons for such lack of correspondence between the surface and the radiographic 

results were traced to the patch isolating stage. So far, these cases have been 

manually handled case by case by a scoliosis professional, which can introduce human 
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errors in the measurements and decrease the correlation between the ST parameters 

and radiograph measurements.  

This study aimed to eliminate patch overlaps by enhancing the patch isolation 

procedure, and to increase the accuracy of the analysis in identifying patients where 

we could prevent unnecessary X-ray exposure (mild patients and those who did not 

experience any progression from the last visit). Our hypothesis is that the modifications 

suggested in this study would eliminate the manual step of isolating the deviation 

patches without compromising the accuracy of the method in monitoring the scoliosis 

curve severity or progression.     

 

2.3 Materials and Methods 

2.3.1  Data Collection  

Full-torso ST scans of 128 AIS patients were collected from the Edmonton 

Scoliosis Clinic database between October 2009 and 2012. In the cohort, 95 patients 

(76 females, 19 males) had both baseline and follow-up ST and radiograph scans 

obtained with an interval of 12±3 months. The inclusion criteria used were patients 

aged 10 to 18 years old (14.4±1.8 years), with Cobb angle greater than 10° 

(26.5°±11.4°) at baseline, with no spine operation.  

To develop a classification tree in order to identify the curve severity, 128 

baseline radiograph and ST scans were used. In this sample, 99 thoracic-

thoracolumbar (T-TL) curves and 98 lumbar (L) curves were measured, with double 

curves accounting for the larger curve count than the number of patients.  

To classify the progression of the scoliosis curve, a sample of 95 ST and 

radiograph scans with corresponding follow-up scans were used, in which the 

progression of 137 curves in total were analyzed. The data sets were randomly divided 

into two groups (i.e., the Training group and the Validation group) as illustrated in 
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Figure 2-1. The training group included 80% of curves and was used in the derivation 

of the classification tree, whereas the validation group included the other 20% of curves 

and was used to examine the validity of the obtained classification tree.  

 

Figure 2-1- The number and location of curves used in the curve severity and curve 

progression analyses 

 

2.3.2 Asymmetry Analysis 

The ST and radiograph scans were taken on the same day for each patient. 

The ST data was collected as described previously [3]. Briefly, four VIVID 910 3D laser 

scanners (KONICA MINOLTA Sensing Inc.) scanned the geometry of the patient’s 

torso from each side, while the patient was positioned inside a custom designed frame 

with the torso in its natural posture. The accuracy of the scanning system was 1.8±0.9 

mm [54]. The outputs of scanners were four binary files including the spatial locations 

(i.e., x, y, z coordinates) of the torso surface, and they were imported as inputs to the 

Geomagic Control software (3D System Corporation, CA, USA) to be merged for the 

whole torso. Unneeded parts of the scan, namely those for the frame, the head, pants, 

and arms, were cropped off to isolate the torso [3]. After smoothing the scanning 

noises, the asymmetry analysis was performed on the torso. The torso was duplicated 

and reflected along the sagittal plane. Then, the torso and its reflection were aligned 

by minimizing the sum of squares of distances between these two geometries[55]. The 
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misalignment between the torso and its reflection, resulting from the asymmetry shape 

of the torso, was measured using the 3D Comparison function and visualized using 

the contour plot in the Geomagic Control software. In our earlier study [3], the threshold 

between normal and abnormal deviations was set to 3.0 mm. However, in this study, 

the threshold, beyond which the asymmetry of the torso was considered scoliotic 

deformation, was varied from 3 mm to 10 mm with a 0.33 mm step until the isolated 

patches matched the curves observed in the radiographs by the clinicians in all 

subjects.  The optimum cut point, which defined the minimum deviation as a scoliotic 

deformation and avoided patch overlap, was found to be 9.33 mm (Figure 2-2). This 

modification was applied only if the ST scan had a maximum deviation greater than 

9.33 mm, otherwise the threshold of 3 mm was used as suggested by Komeili et al. [3, 

22]. To measure the ST parameters, the scoliosis deformations were isolated from the 

other regions creating deformity patches. The macro, that was used by Komeili et al. 

[3], was modified to isolate the asymmetry patches from the other areas in the deviation 

contour map in Wolfram Mathematica (Wolfram Research, Inc., Mathematica 8.0.4.0). 

The process of isolating a deviation patch was as follows: 

Step 1- Identify the point with the maximum deviation in the cloud of points and 

set it as the centre point of a sphere with a radius of 5 mm.  

Step 2- Collect all points inside the sphere with the deviation greater than 9.33 

mm (the optimum cut point) and include them in the isolated deviation patch.  

Step 3- Consider each selected point as the centre of a new sphere. 

Step 4- Repeat Step 2 and 3 to progressively expand the boundary of deviation 

patch. 
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Figure 2-2- (a, c) the deviation patches of two torsos analyzed by Komeili et al. [3], in 

which the 3 mm deviation was defined as the threshold between normal and deformed 

area, and (b, d) the deviation patches of the same torsos analyzed by the modified ST 

analysis proposed in this study with the threshold of 9.33 mm. The arrows point to the 

artifacts in deviation patches, such as continuous deviation patches on the back and 

side of the torso and deviation patches due to the folded skin near the armpits, which 

were resolved after using the suggested modifications in this study. The green regions 

of the torso are considered normal. The blue and red patches represent abnormal 

protruded and indented regions of the torso, respectively, due to the scoliosis 

condition. 
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The maximum deviation (MaxDev) used in step 1 and the root mean square 

(RMS) of deviation patches were calculated, respectively, with the following equations:  

𝑀𝑎𝑥𝐷𝑒𝑣 =  𝑀𝑎𝑥 (|𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖|)                        𝑖 = 1, 2, 3, … , 𝑛                           Eq. 1 

𝑅𝑀𝑆 = √∑ (𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖
2)𝑛

𝑖=1

𝑛
                                     𝑖 = 1, 2, 3, … , 𝑛                           Eq. 2 

where, n is the number of points representing the torso shape included in a 

given patch.  

Figure 2-2 shows a contour-plot comparison between the deviation patches of 

a torso analyzed by Komeili et al. [3] (cut point 3.0 mm) and the deviation patches of 

the same torso analyzed by the modified ST analysis in this study (cut point 9.33 mm). 

In the contour plot shown in Figure 2-2-b, the green represents the area with deviation 

smaller than 9.33 mm, and shades of blue/red (referred to as deviation patches) 

indicate the area that protruded/sunken more than 9.33 mm, respectively. The patient’s 

torso in an ST scan was divided into two parts, namely the lower one-third part was 

considered the lumbar area (L) and the upper two-third was considered the thoracic / 

thoraco-lumbar area (T-TL). The asymmetry parameters were assigned to each 

section, accordingly. The same procedure was repeated for the follow-up ST scans to 

calculate the progression of RMS and MaxDev, i.e. ΔRMS and ΔMaxDev. From the 

corresponding radiographs, progressions of Cobb angles (ΔCA) were retrieved from 

the clinical database. It was assumed that the direction of curve does not change from 

baseline to follow-up. During each patient clinic visit, Cobb angles are measured by 

the clinician and entered in the clinic database along with the end vertebra level and 

the apex for each curve. 

 Based on the Cobb angle, curve severity is classified into three groups in 

clinical practice: mild (10°≤ Cobb angle ≤25°), moderate (25°˂ Cobb angle ≤ 40°), and 

severe (40° ˂ Cobb angle) [56]. An increase of 5 degrees or more in the Cobb angle 

during consecutive follow-up visits is recognized as a curve progression [12]. 
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2.3.3 Classification Analysis 

The classification tree technique implemented in IBM SPSS Statistics 24.0 was 

employed to build a classification model, using the asymmetry parameters (referred to 

as independent variables) to classify the curve severity (dependent variable i.e., Mild 

or Moderate/Severe). On purpose, the criteria in the development of classification tree 

used in this study placed more weight for the false negative error in the cost function 

of the classification tree analysis. The underlying rationale for this preference was to 

prevent classification of moderate or severe scoliosis curves in the mild group as much 

as possible, which could lead to a late diagnosis or an ineffective treatment of the 

scoliosis curve in the clinical application.  

A separate tree was developed to classify progression (i.e., Progression or 

Non-progression) of the radiographic curve measurement (dependent variable). Note 

that the deviation patches in the T-TL and L sections were analyzed together to build 

the classification tree for categorizing the progression of torso asymmetry. The 

underlying motivation was the fact that, if a curve progression is identified by a 

classification system for a patient, a full vertebra radiograph scan is required 

regardless of its location and severity.  

The classification analysis results were reported in Section 3, including the 

tabulated results to show the accuracy, sensitivity, and specificity [57]. In the curve 

severity classification, a positive test represents a moderate/severe curve and a 

negative test represents a mild severity. In the curve progression classification, a 

positive test represents the curve progression of 5 degrees or more and a negative 

test represents any curve progression less than 5 degrees (Non-progression).  

The classification analysis mentioned above was conducted using the Training 

group such that the highest possible sensitivity was obtained, i.e. the false positive test 

was minimized. The obtained classification tree was used to classify the subjects in 

the Validation group. The resulting accuracy, sensitivity, and specificity of the 
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classification for the Training and Validation groups were compared to assess the 

validity of the method. 

2.4 Results 

2.4.1  Curve Severity Classification 

None of patients were excluded from the analysis. Figure 2-3 and Figure 2-4 

shows the severity classification trees for T-TL and L curves with the performance 

indices for the Training and Validation samples. Based on the statistical analysis, the 

RMS was a better independent variable (i.e., predictor) to be used in the classification 

of T-TL curves, i.e. deviation patches with RMS greater than 11 mm in T-TL section 

represented a moderate/severe curve regardless of its MaxDev value. While the 

combination of RMS and MaxDev worked well for identifying the severity of L curves; 

a deviation patch with RMS < 9.6 mm and MaxDev < 9.6 mm represented a Mild curve 

in L section, otherwise it represented a moderate/severe curve.  

Out of 79 T-TL curves in the Training group, there were 35 curves with clinically 

moderate/severe curves, 34 of which were correctly identified with a sensitivity of 97%. 

Half of 44 mild curves were correctly classified in the mild group with a specificity of 

50%. The majority of patients (22 out of 23), who were classified in the mild T-TL group 

based on their deviation patches, had truly a Cobb angle less than 25 in the 

corresponding radiographs, resulting in false negative error of only 3%. The overall 

accuracy of the T-TL curve severity classification was 71%. The classification of the 

20 T-TL curves in the Validation group resulted in similar accuracy and sensitivity, with 

a maximum difference of ±7%, with respect to the Training group. No moderate/severe 

thoracic curves were misclassified by the ST analysis in the validation sample 
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Figure 2-3- The classification trees and the tabulated accuracy (ACC), sensitivity (SE), 

and specificity (SP) values for the curve severity classification of T-TL curves. The (+) 

and (-) illustrate the moderate/severe and mild groups, respectively. RG: radiograph, 

ST: surface topography. 

 

In the Training group of 78 deviation patches analyzed for the L section, 39 

(50%) had moderate/severe curves based on the Cobb angle measurements in 

radiographs. The ST analysis successfully identified 35 of them in the moderate/severe 

group, resulting in a sensitivity of 90%. The mild L curves were correctly identified in 

31% of cases but only 4 of 39 (11%) moderate/severe curves were missed by the ST 

analysis. The overall accuracy of the ST analysis in classifying curve severity in the L 

section was 60%. The classification of the 20 L curves in the Validation group also 

resulted in the same level of accuracy and sensitivity compared with the Training 

group. Only one (10%) moderate/severe lumbar curve in the Validation group was 

misclassified by ST as mild.  
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Figure 2-4- The classification trees and the tabulated accuracy (ACC), sensitivity (SE), 
and specificity (SP) values for the curve severity classification of L curves. The (+) and 
(-) illustrate the moderate/severe and mild groups, respectively. RG: radiograph, ST: 
surface topography.  

 

Figure 2-5 shows the distribution of the RMS and MaxDev of 79 T-TL and 78 L 

deviation patches and the thresholds for defining the severity of the curves in the 

Training group. The ST patches with MaxDev less than 9.33 mm were used in the 

Komeili et al. [3] classification tree to determine the severity of these deviation patches. 

Only one and four subjects with moderate/severe T-TL and L curves, respectively, 

were misclassified in the mild region, but their ST parameters were not far below the 

thresholds. 
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Figure 2-5- The distribution of RMS and MaxDev of (a) 79 T-TL, and (b) 78 L deviation 

patches and the thresholds for defining the severity of the curves. The shaded area 

shows the region corresponding to the Moderate/Severe classification. The open and 

closed symbols represent mild and moderate/severe curves based on the radiograph 

measurements, respectively. The ♦ and ◊ represent the deviation patches with MaxDev 

< 9.33 mm which were classified using the Komeili et al. [3] classification tree. 

 

The performance of the modified ST analysis in identifying the curve severity 

proposed in this study was compared with our previous work [22, 25] in Figure 2-6-a. 

The sensitivity in the classification of curve severity was as high as the sensitivity in 

the work presented by Komeili et al. [26].  
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Figure 2-6- Comparing the performance of the modified ST method in this study for all 

curves (T-TL and L curves in the Training group and Validation group) with previous 

studies in classifying the (a) severity and (b) progression of the scoliosis curves. 

(*):Komeili et al. [26], (**): Komeili et al. [29] 
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2.4.1 Curve Progression Classification 

Figure 2-7 shows the classification tree for the classification of curve 

progression independent of the curve location, since the T-TL and L curves were mixed 

in the classification tree analysis. In the classification tree, a positive change of ST 

parameters between two consecutive visits correlated with more than 5 degrees curve 

progression. In other word, if a curve has positive MaxDev and RMS changes in the 

follow-up visit compared with the corresponding values in the baseline assessment, 

the curve is considered as progression and the patient needs radiography for further 

assessments.  

Figure 2-7- The classification tree for categorizing patients in Progression and Non-

progression groups using the ΔRMS and ΔMaxDev parameters. The (+) and (-) in the 

tables represent the Progression and Non-progression groups, respectively. ACC: 

accuracy, SE: sensitivity, SP: specificity, RG: radiograph, ST: surface topography. 
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Out of 107 curves in the Training group, 22 curves increased at least by 5 

degrees, while there were no clinically important progressions for the other 85 curves. 

Based on the analysis, 17 out of 22 curves were accurately identified in the progression 

group (i.e., sensitivity 77%). Five (22%) of the cases with curve progression were 

missed. The percentage of the non-progressive curves that were detected by the 

asymmetry analysis was 59%. The diagnostic accuracy was 63%. The classification of 

deviation patches in the Validation group also resulted in an accuracy of 63% with a 

sensitivity of 67%, which are close to the corresponding values for the Training group. 

Figure 2-8 illustrates the variation of ST parameters in 107 deviation patches analyzed 

in baseline and follow-up visits, and the thresholds for identifying the scoliosis curves 

having progressed. There were 4 patients for whom both ST parameters improved, 

however their scoliosis curves progressed. 

 

Figure 2-8- The distribution of ΔRMS and ΔMaxDev parameters. The threshold of 

ΔRMS and ΔMaxDev are shown with the dashed lines. The shaded area shows the 

region that is considered as the Progression group. The close and open circles 

represent a progressed (ΔCA ≥ 5 degrees) and Non-progressed (ΔCA < 5 degrees) 

case based on the radiograph measurements, respectively. 
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Compared with the sensitivity and accuracy obtained in Komeili et al. [29] 

study, the sensitivity of the ST method in monitoring curve progression in this study 

was improved by 10.3% (i.e., from 68% to 75%), while accuracy decreased by a 

relatively small percentage, 4.5%, (i.e., from 66% obtained in Komeili et al. [29] to 63%) 

(see Figure 2-6-b).  

 

2.5 Discussion 

The markerless asymmetry analysis developed previously [3] showed 

promising results in identifying curves with progression in the follow-up visits with the 

potential ability of reducing 43% of radiation exposure in the monitoring of AIS. The 

research presented in this study aimed at modifying the markerless asymmetry 

analysis by simplifying the application of the previously developed method while also 

improving the sensitivity and accuracy of the classification in identifying the 

moderate/severe curves and the progression of the scoliosis curve. While the need for 

manual handling of deviation patches was resolved and the sensitivity in identifying 

the progressed curves improved by 10%, the overall accuracy of the method 

decreased by 5%. As a result, the applied modifications on the original method resulted 

in more conservative monitoring and curve severity assessment of scoliosis where 

fewer cases of moderate/severe curves and progression cases were missed (see 

Figure 2-6). 

In this study, the optimum threshold of deviation for isolating the deviation 

patches was found to be 9.33 mm. The isolated deviation patches were generally 

smaller in size than those obtained in Komeili et al. [3, 22] (see Figure 2-2). The 

modified code successfully prevented the extensions of isolated deviation patch to the 

anterior section of the torso and around the armpits, and clearly separated the 

boundaries between the deviation patches in ST scans of patients with a double or 

triple scoliosis curves shown in Figure 2-2. Moreover, we expect that the reliability of 

the method in repeating the analysis would increase by automating the patch isolation 

step and avoiding human intervention in the ST analysis process. 
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The accuracy of 65% and 60% were obtained in categorizing the severity of T-

TL and L curves in the Validation cohort, respectively as show in Figure 2-3 and Figure 

2-4. This level of accuracy was approximately the same as the accuracy obtained for 

the Training group, indicating repeatability of the classification model in the 

classification of T-TL curves severity.  

The distribution of MaxDev and RMS parameters of subjects in Training group 

in Figure 2-5 illustrated that the correlation of ST parameters with the curve severity in 

T-TL region was better than in the L region. In T-TL curves, all ST scans with MaxDev 

less than 9.33 mm in Figure 2-5, which were denoted by ◊ or ♦, had Cobb angle less 

than 15 degrees and were correctly classified using the original method developed by 

Komeili et al. [3]. 

The monitoring of T-TL and L curves progression were analyzed separately 

(results are not shown) and no difference in the sensitivity, specificity, and accuracy 

was obtained if T-TL and L curves were analyzed in one group. Therefore, for the 

monitoring of scoliosis curve T-TL and L curves were mixed and analyzed using only 

one classification tree which is likely more practical clinically (Figure 2-7). The variation 

of ST parameters in this study was correlated with the progression of Cobb angle 

measured in radiographs with a sensitivity of 67% for the Validation group in Figure 

2-6. However, some negative changes in ΔRMS and ΔMaxDev were obtained for 

patients with a positive ΔCA in Figure 2-7. The proposed threshold of 9.33 mm for 

isolating the deviation patches in this study resulted in smaller accuracy and sensitivity 

in monitoring curve progression specifically for patients with mild and moderate curves 

in the baseline. Excluding area with the deviation less than 9.33 mm from the deviation 

patches provided less information about the torso shape for monitoring the deformities 

over time. Therefore, any change in the areas with the deviation less than 9.33 mm 

over time was not included in the analysis, which led to the misclassification of multiple 

curves especially in the patients with moderate scoliosis curves, where relatively small 

portion of torso had deviations greater than 9.33 mm (see Figure 2-8). Our results 

showed that curve progression monitoring appears to be 100% (4/4) accurate for 

patients with severe scoliosis curve in baseline who progressed in the follow-up scans 
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(tabulated results are not shown). Therefore, monitoring mild and moderate scoliosis 

curves that present smaller asymmetry on the torso surface with respect to the severe 

curves, using the modified asymmetry analysis method in this study involves a higher 

risk of false negative. The case-by-case investigation of patients who were incorrectly 

identified in the Progression group (false positive) showed that 55% of the population 

had truly a larger Cobb angle in the follow-up radiographs compared to the baseline. 

However, the positive increase of Cobb angle was not significant enough to be 

considered as a progression, i.e., ΔCA in the range of 0–5 degrees. Although a follow-

up radiograph is not necessary for this group of patients, considering the error in Cobb 

angle measurements and the small degree of progression in many of the participants 

might sufficiently justify taking a radiograph in the follow-up.  

The overall sensitivities in identifying curve severity in this study were similar 

to the corresponding values in Komeili et al. [26], 95% and 94%, respectively (Figure 

2-6). The reduction in the overall accuracy (i.e. 82% to 65%) in identifying the severity 

of the curve using ST parameters in this study with respect to Komeili et al. [26] was 

caused by a larger false positive error rather than false negative error, i.e. classifying 

a considerable number of the deviation patches of patients with mild scoliosis curves 

in the moderate/severe group. One third of the misclassified mild curves had a Cobb 

angle in the range of 20–25 degrees, which is on the margin of the mild/moderate 

severity definition used in the scoliosis clinic. It should be noted that, there is a ±5 

degrees inter- and intra-observer error in the measurements of Cobb angle [44, 45], 

therefore there is a possibility that some of the misclassified mild curves with Cobb 

angle in the range of 20-25 degrees could have been diagnosed as moderate if the 

radiograph assessment had been repeated.  

The overall sensitivity of 95% in Figure 2-6 indicates a high ability to detect 

moderate/severe curves which are more susceptible to progress than mild curves and 

thus do require further attention. Taking full torso radiograph in the follow-up visits is 

the standard for all patients at the scoliosis clinics, hence, subjects whose classification 

was false positive would not get more radiographs than others without ST assessment, 

and we would still prevent radiograph exposure for some truly negative cases. Komeili 

et al. [29] reported a classified 43% reduction in the radiograph acquisition if they 
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combined the ST analysis with the radiograph assessment in the monitoring of curve 

progression. Because of the slightly lower accuracy observed in this study in screening 

for curve progression, we estimate a 5% lower reduction of the need for radiograph 

compared with the work of Komeili et al. [29]. Nevertheless, the asymmetry analysis 

improvements suggested in this study would result to a more conservative monitoring. 

Because of the higher sensitivity obtained (Figure 2-8-b) a lower number of patients 

would suffer from missing the opportunity of an early diagnosis of curve progression 

by using our improved ST analysis.  

We had enough data for statistical analyses, however we have to acknowledge 

that only 39 patients in the Training group had curve progression, which may not 

represent the diversity of scoliosis curve types, such as single and double curves. 

Another limitation of our study is exclusion of trunk axial rotation in our classifications, 

which is an important piece of information for clinicians in prescribing patient specific 

braces. It may be possible to improve the accuracy of curve progression diagnosis if 

more ST parameters, such as curvature of back valley [60] and trunk rotation [61], 

were combined with the RMS and MaxDev parameters included in this study. The 

strong correlation between deviation patches and spinal curve location can also 

provide good information about the kyphosis and lordosis angles obtained from 

radiographs, which, however, may not be necessary if the proposed method is used 

only in scoliosis cases clinics. Our asymmetry analysis is compatible with the ST 

database of those clinics that do not use the same acquisition system in capturing the 

full torso geometry as we do. The markerless feature of the asymmetry analysis 

reduced the common limitations of ST methods, such as dependency of the method to 

specific local marker-based measurements, and data acquisition technique. Having 

the 3D geometry of the torso, in normal posture, is the only required condition for using 

this method. Our strategy in classifying curve severity and curve progression could 

also be followed in other ST classification systems, in which the cosmetic parameters 

of the torso are correlated to the scoliosis curve characteristics. Our conservative 

approach in minimizing the number of false progression and false moderate/severe in 

the classification system may result in a lower overall accuracy, however it would 
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reduce the risk of missing a progressed or moderate/severe curve, which is the main 

concern in replacing radiographs with ST assessments in scoliosis clinics.   

2.6 Conclusion 

The modified thresholds used to define asymmetry patches successfully 

separated the deviation patches in the upper two-third (T-TL) section from the lower 

one-third part (L) section and eliminated the manual work, which was previously 

necessary for isolating the deviation patches in some patients. The modified thresholds 

used in this study, allow automation of the analysis and led to the same level of 

sensitivity in identifying the curve severity as in our previous work. Similarly, the 

modified analysis led to similar sensitivity for monitoring the progression of the scoliosis 

curve as our previous work. Despite the novel method being unfortunately associated 

with a higher risk of misclassification of cases with no progression significant numbers 

of patients (approximately 39%) may be able to avoid radiographs confident that their 

curves did not progress.  
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3 
3. Customized k-Nearest Neighbourhood 

Analysis in the Management of Adolescent 

Idiopathic Scoliosis Using 3D Markerless 

Asymmetry Analysis1 

 

3.1 Abstract 

Adolescent Idiopathic Scoliosis (AIS) is a 3D spinal deformity characterized by 

curvature and rotation of the spine. Markerless surface topography (ST) analysis has 

been proposed for diagnosing and monitoring AIS to reduce the X-ray radiation 

exposure to patients. A total of 128 AIS patients with baseline and follow-up radiograph 

and ST assessments were recruited. This method captures scans of the cosmetic 

                                                   

1 This chapter has been submitted to Journal of Computer Methods in Biomechanics and Biomedical Engineering. 

Maliheh Ghaneei, Ronald Ekyalimpa, Lindsey Westover, Eric Parent, Samer Adeeb, “Customized k-Nearest 

Neighbourhood Analysis in the Management of Adolescent Idiopathic Scoliosis Using 3D Markerless Asymmetry 

Analysis.” 
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deformity of the torso using visible, radiation-free light. The asymmetry analysis of the 

torso, represented as a deviation contour map with deviation patches outlining the 

areas of cosmetic asymmetries, has previously been shown to classify the severity and 

progression of the condition in comparison with radiographs, by using classification 

trees. While the classification results were promising, it was reported that some mild 

curves were erroneously diagnosed. Furthermore, this approach is highly sensitive to 

threshold values selected in the decision trees. Therefore, this study aims to define a 

custom k Nearest Neighbourhood Classifier algorithm for AIS classification to improve 

the accuracy, sensitivity, and specificity of classifying curve severity and curve 

progression in AIS. This method is one of the common and simple machine learning 

algorithms where input parameters are used to determine the 𝑘 closest stored data 

points and then map them to an output through a systematic classification or a 

regression process, 

Curve severity was classified with 80% accuracy (sensitivity = 81%; 

specificity = 79%) for thoracic-thoracolumbar curves and 72% (sensitivity = 93%; 

specificity=53%) for lumbar curves. This represents an improvement over the previous 

method with curve severity accuracies of 77% and 63% for thoracic-thoracolumbar and 

lumbar curves, respectively. Additionally, curve progression was classified with 93% 

accuracy (sensitivity=83%; specificity=95%) representing a substantial improvement 

over the previous method with an accuracy of 59%. The current method has shown 

the potential to further reduce radiation exposure for AIS patients by replacing X-rays 

for mild and non-progressive curves with ST analysis. 

Keywords: Scoliosis, Adolescent Idiopathic Scoliosis (AIS), surface 

topography, 3D markerless asymmetry analysis, monitoring, curve progression, k-

Nearest Neighbour 
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3.2 Introduction 

Spinal deformity is associated with cosmetic abnormality, difficulty in health-

related quality of life, and can result in impairment such as difficulty breathing in the 

most severe cases [2, 18]. Adolescent idiopathic scoliosis (AIS) is a frequent form of 

such deformity [41] which requires repetitive monitoring using X-rays [42]. The Cobb 

angle is measured on radiographs to document the location and the severity of curves 

[43]. This approach has two primary limitations: first, X-ray radiation has harmful 

effects, including an increased risk of cancer for this adolescent population [37, 38] 

and second, the Cobb angle is a two-dimensional measurement of a three-dimensional 

deformity [32, 51].To overcome these limitations, our team developed a markerless 

surface topography (ST) technique with the purpose of evaluating the whole surface 

of the patient’s torso using a 3D laser scanner. The proposed ST monitoring strategy 

suggests that patients presenting with either mild (Cobb angle <  25˚) or non-

progressive (∆Cobb angle (∆CA) < 5˚ increase) curves could avoid an X-ray since the 

typical standard of care for these patients involves only observation or no change in 

treatment, respectively. The ST analysis technique presented in our previous work 

showed the potential to eliminate X-rays for some patients [3].  

The cosmetic deformity associated with AIS involves torso asymmetry. A 

person with no spinal curvature is approximately symmetric across the midsagittal 

plane, which means that the person’s torso and its reflection along this plane are 

almost perfectly aligned [63]. However, for a person with an asymmetric torso, the 

sagittal plane is no longer a plane of symmetry. Our method takes advantage of the 

best plane of symmetry identification method introduced by Hill et al. [55] to assess the 

deformity of the scoliotic spine. The best plane of symmetry is roughly aligned with the 

midsagittal plane; however, the actual plane is determined by minimizing the sum of 

distances between the patient’s torso and its bilateral reflection [3]. The asymmetry is 

then illustrated using a deviation contour map plotted on the patient’s torso. The effects 

of the spinal curvature are visualized in terms of dense colour areas called deviation 

patches containing many points whose colours represent the distance between the 

original and reflected torsos, depicting both areas of protrusion or depression relative 
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to the other side [3]. The maximum and root mean square of these deviations are 

computed as asymmetry parameters (MaxDev and RMS, respectively). These 

asymmetry parameters have been compared with the Cobb angle measured in the 

corresponding region of the torso to create decision trees classifying curve severity on 

a given test day and progression between consecutive examinations [3, 28, 54]. 

 Decision trees were used to classify the curve severity (mild or 

moderate/severe) and to evaluate clinically significant progression of the curves 

(∆CA≥5˚) through one time interval [29]. The results were promising for curve severity 

classification especially in detecting moderate/sever patients (Cobb angle ≥ 25˚; 

sensitivity = 95%, specificity = 35%) [64]. However, the previous work had several 

limitations. Some mild curves were erroneously diagnosed indicating that the method 

showed high sensitivity and low specificity. Furthermore, the decision tree analysis is 

oversensitive to threshold values selected. In other words, a minor change in one 

variable leads to major changes in subtree below or even may destabilize the tree [65]. 

Threshold values can be controlled to achieve the highest possible sensitivity to 

moderate/severe cases, which however may reduce the specificity by identifying mild 

patients as moderate/severe. The other significant drawback of the decision tree 

analysis is that in defining the classification trees it was assumed that as the 

asymmetry parameters increase, the Cobb angle also increases. However, it will be 

shown in this study that as the RMS increases, the MaxDev increases while the Cobb 

angle fluctuates within a wide range. Consequently, this assumption may result in the 

misclassification of the patient status. 

To overcome the limitations of decision tree analysis, an appropriate 

classification model is sought to relate the ST parameters and the Cobb angle, which 

in general exhibit lack of correlation. The first classification rule was proposed by Fisher 

in 1936 in statistical classification literature, after which other classification models 

were proposed and applied [30]. The k-nearest neighbour (k-NN) algorithm is one of 

the simplest machine learning algorithms where input  parameters from a certain 

number (𝑘) of the closest data points within a Training Group are mapped them to an 

output through a systematic classification or a regression process [37]. The output of 
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the classification is a class generated from the k-neighbours.[66] The current study 

aims to use the k-NN method for classifying patients with AIS on the basis of their ST 

asymmetry parameters in terms of curve severity and curve progression to reduce the 

errors of such classification efforts observed when using decision trees [64]. 

 

3.3 Materials and Methods 

3.3.1  Data Collection 

ST scans and X-ray radiographs of 128 AIS patients recruited from the 

scoliosis clinic were used in this study. Patients included in the study had an age range 

of 10 to 18 years (14.4±1.8 years) with a mean Cobb angle of 26.5° (from 10° to 46°). 

100 patients (78%) were female and 28 (22%) were male. Follow-up scans of 95 

patients were available in a 1 year ± 3 month interval. Both baseline and follow-up data 

were used in the curve severity analysis, which resulted in 176 thoracic / thoraco-

lumbar (T-TL) curves and 167 lumbar (L) curves, including patients with multiple 

curves.  To monitor curve progression from baseline to follow-up, 95 ST and 

radiograph pairs with a total of 134 curves were used. 

The raw ST data was obtained by a standard scanning procedure. Images 

were acquired from the front, back, left and right of the patients with four VIVID 910 

laser scanners (KONICA MINOLTA Sensing Inc.) in the clinic on the same day as their 

radiographs [3]. After merging the ST data to create the full 3D model of the patient in 

Geomagic Control (3D System Corporation, CA, USA), the torso was isolated by 

cropping the frame and unnecessary parts such as the lower extremities, head, and 

arms [3]. The full 3D torso was duplicated and mirrored along the sagittal plane. Then 

the original torso and its reflection were aligned such that the deviations between 

corresponding points were minimized. The misalignment between the two torsos was 

visualized in the deviation contour map plotted on the torso [3]. The threshold between 

normal and abnormal deviations was 9.33 mm if the ST scan had a maximum deviation 
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greater than 9.33 mm [64], otherwise the threshold of 3 mm was used as suggested 

by Komeili et al. [3, 25]  (see Figure 3-1).  

 

Figure 3-1- Deviation contour map 

Blue areas indicate that the original torso is outside of the reflected torso, i.e. 

original torso covers the reflected torso, and red areas indicate that the original torso 

is inside of the reflected torso. The shades of blue and red (deviation patches) illustrate 

the areas of deviations corresponding to the level of the existing scoliosis curves. The 

maximum absolute distance between the original torso and its reflection was recorded 

as the MaxDev and the root mean square of all the deviations within each patch was 

recorded as the RMS according to the following equations: 

𝑀𝑎𝑥𝐷𝑒𝑣 =  𝑀𝑎𝑥 (|𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖|)                        𝑖 = 1, 2, 3, … , 𝑛                           Eq. 1 

𝑅𝑀𝑆 = √∑ (𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖
2)𝑛

𝑖=1

𝑛
                                     𝑖 = 1, 2, 3, … , 𝑛                           Eq. 2 

where, n is the number of points within the deviation patch under analysis. The 

ST scan of a patient’s torso was divided into two parts. The lower one-third part of the 

T-TL 

L 

  

  

  

Deviation patch 

MaxDev 
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torso was considered the (L) area and the upper two-thirds was considered the (T-TL) 

area. The asymmetry parameters were classified as L or T-TL according to the location 

of the asymmetry patch from which they were extracted. To study the curve 

progression of those patients who had ST data at a follow-up visit, the differences of 

the MaxDev and RMS from baseline to follow-up were computed, i.e. ΔRMS and 

ΔMaxDev, and It was assumed that the direction of curve does not change from 

baseline to follow-up. 

3.3.2  Data Analysis 

3.3.2.1 Preliminary data analysis 

Preliminary studies on data were performed by plotting charts for asymmetry 

parameters and Cobb angle across the curve IDs (see Figure 3-5).  The correlation 

between parameters was examined through linear trend lines plotted on the charts 

along with corresponding coefficients of determination (𝑅2)  

𝑅2 = 1 −
∑ (𝑦𝑖−𝑓𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

                                         𝑛 = 1,2,3, … , 𝑛                           Eq. 3 

Where �̅�𝑖 =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  is the mean of observed data and 𝑓𝑖 is the corresponding 

point at the fitted trend line.  

3.3.2.2 Classification algorithms  

Traditional neighbourhood classifier: The traditional neighbourhood 

classification method [37] will be introduced, in general. This method consists of two 

phases, namely training and classification. In the training phase, all the features 

(independent and dependent parameters) of the existing data points are stored in a 

group, called the Training group. Next, in the classification phase, a new data point 

can be categorized based on the most frequent dependent variable in the Training 

group who has the smallest difference with the independent variables.  
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Figure 3-2- A Flowchart summarizing the traditional k-NN classification algorithm 

 

To calculate this difference, Euclidean Distances (Eq. 4) between the new data 

point and all of the Training group’s members are first computed using the values for 

each independent variable. Then, the data points within the Training set are ranked in 

ascending order based on their respective distances. Next, the first k numbers of 
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ranked data points are collected as neighbours of the new data point to subsequently 

determine the probability of the output class according to the neighbourhood labels. 

(Figure 3-2) 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯ + (𝑥𝑛 − 𝑦𝑛)2                                        Eq. 4       

                                        

Custom neighbourhood classifier: A custom neighbourhood classifier is 

defined in this study to enhance the classification results such that each of the 

independent variables (e.g. RMS and MaxDev) are used in sequential order starting 

with the one that has the strongest correlation with the output class (e.g. curve severity) 

and ends with that which has the weakest correlation. In other words, the set of first 

neighbours in the first round is used as a Training group to be evaluated for the 

neighbours in the next iteration. This process was repeated until all independent 

variables (e.g. two independent variables in this study) were evaluated. The selection 

of neighbours based on a specific independent variabler is achieved by calculating the 

absolute difference between the data point under study to the points in the dataset 

from which neighbours are to be selected. The rest of the classification phase was the 

same as what has been described in the traditional neighbourhood classification 

section. It should be noted that the value for the number of neighbours in the final 

classification phase is kept odd to facilitate identification of the output class associated 

with the data point under study. 

3.2.2.3 Training classifier models and classification model performance 

evaluation 

In this study, the data points are contour patches associated with individual 

curves and were randomly divided into two groups, namely the Training group and the 

Testing group using common data splitting rules (80:20).  



 40 

 

Figure 3-3- Flowchart of the customized k-NN classification algorithm for curve severity 

classification 
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For the curve severity classification two independent parameters, RMS and 

MaxDev, are used. Hence, only two neighbourhood computation iterations are 

required. The number of neighbours in the first and second iterations are denoted as 

𝑘1 and 𝑘2, respectively. The classification phase starts with RMS rather than MaxDev 

since it has illustrated stronger correlation with the curve severity based on the 

preliminary analysis in this study as well as in the work of Ghaneei et al. [64]. The 

output class is the curve severity classification (either mild or moderate/severe). The 

process described is summarized in the flowchart presented in Figure 3-3. Wolfram 

Mathematica (Wolfram Research, Inc., Mathematica 8.0.4.0) was used to automate 

this process. 

For curve progression, ∆RMS and ∆MaxDev are the independent variables 

used in the first and second classification phases, respectively, and the output class is 

the progression status (either progression or non-progression). 

The performance of the models developed for classifications were assessed 

based on sensitivity, specificity, and total accuracy. For curve severity, a positive result 

represents a moderate/severe curve and a negative result shows mild severity. For 

curve progression, a positive result indicates a progressive curve (increase in Cobb 

angle≥5° over the time interval) and a negative result is a non-progressive curve (<5°). 

The analysis was conducted based on maximizing the sensitivity and minimizing the 

false positive test. The classified results were based on the ST analysis and the actual 

results were based on the radiographic measures. Table 1 presents a matrix that was 

used to determine the performance measures and parameters used in the 

classification process.  

 



 42 

Table 3-1- Calculation of the accuracy, sensitivity and specificity 

 
 Radiograph 

 + − 

Surface Topography 
+ True positive (TP) False positive (FP) 

− False negative (FN) True negative (TN) 

               Accuracy 

(TP + TN)/(TP + FN + FP + TN) 

Sensitivity 

TP/(TP + FN) 

Specificity 

TN/(FP + TN) 

 

3.2.2.4 Parametric studies for the customized k-NN classification 

The accuracy of the results from the customized k-NN class are dependent on 

the number of neighbours (𝑘) selected for each neighbourhood [67]. As such, a 

parametric study was performed to establish the appropriate number of neighbours 

that generates the best results. 𝑘1 and 𝑘2 were each varied sequentially from 1 to 20 

and the optimal values were those that provided the best results (sensitivity, specificity, 

and accuracy). 

 

       Figure 3-4- Simplified sketch of the customized k-NN algorithm 
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3.4 Results 

3.4.1 Curve severity classification 

For L curve, in Figure 3-5-a, the curve parameters RMS, MaxDev, and Cobb angle 

were plotted against the curve ID, where the curve IDs were ordered by increasing 

RMS. While in Figure 3-5-b, the asymmetry parameters were plotted against the Cobb 

angle. 

 

Figure 3-5- Comparing the associations between RMS, MaxDev and Cobb angle 
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Figure 3-5-a reveals that while RMS and MaxDev are closely related to each other, the 

Cobb angle does not follow the same trend and fluctuates within a wide range. RMS 

and MaxDev vary linearly with curve ID with 𝑅2 values of 0.90 and 0.85, respectively. 

Conversely, the corresponding Cobb angles vary widely with curve ID and do not follow 

a linear trend ( R2 =0.12). More clearly, Figure 3-5-b demonstrates that with the 

assumption of linear trend between asymmetry parameters (RMS and MaxDev) and 

Cobb angle, R2 values are almost 0.1 which shows no linear relations exist.  

There were a total of 176 T-TL curves and 20% of them (35 curves) were 

randomly selected to establish the Testing group while the rest (141 curves) were 

considered as the Training group. The ultimate goal of the proposed method is the 

proper detection of moderate/severe patients, which is equivalent to achieving the 

highest sensitivity. With this goal in mind, the optimum values for neighbours in the first 

and second iterations were found to be 3 for both (𝑘1 =𝑘2=3). Thus, it is only needed 

to consider the first three ranked data points from the Training group and the severity 

of the patient under study is decided based on the most frequent class labels (mild or 

moderate/severe) among such ranked data.   

Of the 35 T-TL curves in the Testing group, 16 were moderate/severe and 19 

were mild based on radiographic measures. Table 2 illustrates the curve severity 

classification for the curves in the Testing group. As it can be seen the overall 

sensitivity is 81% which indicates that 13/16 moderate/severe curves were accurately 

classified on the basis of the ST parameters. Moreover, 15/19 mild curves were 

classified correctly with a specificity of 79%. This suggests that 79% of the mild curves 

could have avoided an X-ray examination based on the algorithm introduced in this 

study. Consequently, the overall accuracy in classifying the severity of T-TL curves 

based on this method is 80%. 
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Table 3-2- Severity classification results for the Testing group. The (+) and (-) in the 
tables represent the Progression and Non-progression groups, respectively. 

 

With the same procedure, 20% of L curves were stored in the Testing group 

(32 curves) leaving 136 curves in Training group. The optimum values for the number 

of neighbours in the first and second iterations, respectively, were found to be 𝑘1=18 

and 𝑘2=5.  

Of the 32 L curves in the Testing group, 15 were moderate/severe and 17 were 

mild based on radiographic measures. 14/15 moderate/severe curves were correctly 

identified with a sensitivity of 93% (Table 2). Furthermore, 9/17 of the mild curves were 

diagnosed correctly for a specificity of 53% suggesting that more than half of the mild 

curves could have avoided an X-ray examination. The overall accuracy of the proposed 

method for L curves was 72%. 

3.4.2  Curve progression 

The curve progression was studied for those patients who have follow-up 

scans (134 curves) with ∆RMS and ∆MaxDev being the independent variables. 

Twenty-seven curves were included in the Testing group and 107 curves were included 

in the Training group. The optimum value for 𝑘1 was found to be 17, i.e. 17 curves with 

the lowest absolute difference of ∆RMS with respect to the data point under study were 

used. The optimum value for 𝑘2 was 1, indicating that the closest neighbour in terms 

of ∆MaxDev classifies whether the current curve experienced progression or not. 5/6 

progressive curves were identified correctly (Sensitivity = 83%) and 20/21 non-



 46 

progressive curves were identified correctly (Specificity = 95%) (Table 3.) The high 

sensitivity confirms that the proposed method can accurately distinguish the 

progressive curves (low number missed) giving clinicians confidence in the method’s 

ability to identify patients who could skip radiographs without missing treatment 

opportunities.  

Table 3-3 - Curve progression classification results for the Testing group. The (+) and 
(-) in the tables represent the Progression and Non-progression groups, respectively. 

 

 

The capability to classify the curve severity of AIS curves though using the 

customized k-NN algorithm was compared with previous work [64] in markerless ST 

(Figure 3-6). For the case of T-TL curves, the specificity in the curve severity 

classification showed a substantial increase compared to the previous work [64] from 

58% to 79%. However, our approach failed to distinguish moderate/severe curves as 

well as the traditional classification tree with a decrease in sensitivity from 100% to 

81%. The overall accuracy slightly improved with an increase from 77% to 80%. In the 

curve severity of L curves, we showed an improvement in sensitivity from 87% to 93% 

along with an increase in specificity from 41% to 53% compared to the previous work 

[64].  
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Figure 3-6- Comparing the performance of the customized k-NN with a previous study 

using classification tree analysis [64] in classifying the severity for (a) T-TL and (b) L 

curves in the Testing group 
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Considering curve progression, the current method showed a substantial 

improvement over the previous work [64] (Figure 3-7). Progressive curves were 

identified with 83% accuracy, exhibiting an increase in sensitivity from 67% with the 

other method. Furthermore, the overall accuracy of the classifying curve progression 

significantly increased from 59% to 93%. 

 

 

Figure 3-7- Comparing the performance of the customized k-NN with classification tree 

analysis reported in a previous study [64] in classifying the progression of the scoliosis 

curves 

 

3.5 Discussion and Conclusion 

The motivation of the present study lies in the potential of classifying the 

severity and progression of curves in AIS patients based on ST thereby potentially 

reducing the use of radiographs. More precisely, the k-NN analysis was conducted to 

further minimize the risk of missing moderate/severe or progressive curves and reduce 

the number of mild and non-progressive curves misclassified while maximizing the 

sensitivity compared to the classification tree analysis previously reported in the 

literature [64] .  
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For L curve severity classification, by using the new classification method 

introduced in this study, sensitivity, which represents the probability of identifying 

moderate/severe curves, was improved from 87% to 93% compared to when using 

classification tree analysis. It should be noted that the only misclassification of a 

moderate/severe curve was specific to the only patient with a double curve, in which 

the upper curve in the T-TL area was detected correctly as severe. In a clinical setting, 

the severe T-TL curve would lead the patient to go under further X-ray investigation, 

thus the missed L curve would not have impacted the clinical care of the patient. In a 

double curve spine, having a large curvature in the T-TL section reduces the cosmetic 

deformity in the lumbar area, i.e. the asymmetry parameters corresponding to the L 

curve on the deviation contour map are smaller than they could be if there was no T-

TL curve. Further investigation is required to study the interconnected effects of T-TL 

and L curves on a larger sample set of patients with double curves.  

Another advantage of the proposed technique is the increase in the specificity 

of curve severity classification for lumbar curves from 41% to 53%. This increase in 

specificity would result in a decrease in the number of patients with mild curves being 

exposed to X-ray radiation. The corresponding increase in sensitivity from 87% to 93% 

shows that this would occur while missing even fewer moderate/severe curves 

requiring the clinician’s attention. These results substantiate the fact that the new 

method is better able to diagnose L curves by improving the overall accuracy of curve 

severity classification from 63% to 72%. Hence, L curve severity can be assessed with 

higher confidence.  

For T-TL curve severity, the sensitivity obtained in this study was lower than 

the former classification method (81% compared to 100%).  The three 

moderate/severe curves that were inaccurately identified as mild in the k-NN 

classification analysis belong to patients with high body mass indices (BMI). These 

patients had BMI > 25 which is the standard threshold of overweight. Hence, this 

misclassification likely resulted from a reduction in the torso asymmetry due to the fatty 

tissue masking the underlying deformity. 
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To investigate the effect of BMI>25, all the patients meeting this criterion were 

eliminated from the dataset and the analysis with the same features was performed 

again. The sensitivity and accuracy for patients with BMI≤25 reached to 100% and 

83%, respectively. In particular, all the moderate/severe curves were successfully 

identified by the new analysis. The modified dataset did not reveal any changes on the 

number of mild misclassified curves (4 curves); however, the specificity reduced to 

67% due to the decrease in the number of patients in the modified dataset. The results, 

in particular the significant improvements of sensitivity and accuracy after excluding 

the subjects with BMI>25, suggests that excess body fat can considerably influence 

the asymmetry parameters. 

In a clinical setting, if radiographs were not ordered for patients identified with 

a mild curve, the classification trees presented in Ghaneei et al. [64]  could reduce the 

number of X-rays by 24% (9/37) while the customized k-NN presented here could 

reduce the number of X-rays by 34% (12/37). In this study, the k-NN classification 

correctly identified 55% (12/22) of the mild patients. 

Furthermore, this study proposed a new method for monitoring AIS curves over 

time, which remarkably improved the accuracy of identifying curve progression. Only 

one curve was misclassified and considered as non-progressive after the one-year 

follow-up interval. For this curve, however, the increase in Cobb angle was exactly 

equal to 5 degrees which is on the margin between progressive and non-progressive 

and is within the Cobb angle measurement error. In addition, one curve was 

misdiagnosed as progressive when the increase in Cobb angle was actually less than 

5 degrees. The increase in sensitivity from 67% to 83% compared to the previous study 

by Ghaneei et al. [64] means fewer progressive curves would be missed by using the 

customized k-NN classification approach. The identification of non-progression curves 

(specificity) also increased from 57% to 95%, demonstrating a clear advantage of the 

current method in terms of protecting patients against unnecessary radiographs.  

In a clinical setting, if radiographs were not ordered for patients identified as 

non-progressive, the customized k-NN could reduce the number of X-rays by 74% 

(14/19) while the classification tress presented in Ghaneei et al. [64] could reduce the 
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number of X-rays by 42% (8/19). It is important to note that 100% (14/14) of the non-

progressive patients in the Testing group were correctly identified by k-NN while only 

57% (8/14) were identified correctly using the classification trees  [64]. These are 

clinically important results and indicate that our markerless ST technique, combined 

with the customized k-NN classification method is far superior to previous methods in 

terms of the ability to reduce the X-ray exposure for AIS patients. 

One of the limitations of this study is that some curves came from the same 

patients which may lead to data overfitting. The results presented here can be further 

validated on a larger sample of patients. 

The devised methodology in the present work provided a substantially 

improved accuracy compared to literature. Further improvements may be achieved by 

increasing the Training group size. Future work will focus on further investigation of 

double curve spinal deformities as well as patients with BMI greater than 25. Also, in 

future studies, BMI can be applied as an independent variable along with RMS and 

MaxDev in the analysis. We are confident that our research will serve as a base for 

future studies on AIS analysis based on ST monitoring and we have shown that this 

method has the potential to significantly reduce the number of X-rays required during 

clinical follow-up of patients with AIS. 
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4 
4. Summary and Conclusions 

4.1 Conclusion 

To meet the given objectives as mentioned in the introduction chapter, this 

study proposed a modification to the previously developed 3D markerless asymmetry 

analysis [3, 51] using a new asymmetry threshold. We have succeeded in eliminating 

the manual step which was necessary for isolating the deviation patches in some 

patients. Before automating the isolation step, after creating the deviation contour map 

and isolating the deviation patches, an expert was needed to double check the patch 

isolation results and to isolate the patch manually when it was necessary. That is 

because some of the patches could extend to the anterior section of the torso and 

around the armpits, or the boundaries between the deviation patches in ST scans of 

patients with a double or triple scoliosis curves were not properly separated. To the 

best of our knowledge, no repeatable instructions were provided for the manual 

separation which led to questioning the repeatability of the patch isolation. By using 

the modified method an operator would be able to automatically perform the ST 
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analysis process through repeatable and reliable procedure. The proposed approach 

was able to accurately classify 95% of moderate/severe curves and save 35% of mild 

curves which caused patients to get exposed to X-ray. In this regard, the probability of 

missing a moderate/severe curve is significantly low. The strength of our work lies in 

monitoring curve progression status in which 75% of progressive curves were correctly 

identified, i.e. the probability of missing curves with progression was 10% lower than 

the original method [29]. Also, 59% of curves without clinically progression (∆𝐶𝐴 < 5°) 

during 12±3 months were identified. The results are conservative such that smaller 

number of radiographs would be saved, however the risk of missing a progressed 

curve would be decreased while the probability of diagnosing the moderate/severe 

curves remained as high as before. The findings of this work were submitted in a form 

of journal paper to the Journal of Medical & Biological Engineering & Computing.  

The second chapter was submitted to the Journal of computer methods in 

biomechanics and biomedical engineering which demonstrates the new method, 

Nested attribute neighbourhood classifier, instead of traditional classification trees to 

use the deviation contour map in AIS management. As stated in the Chapter 3, the 

Nested attribute neighbourhood classifier was assessed as a successful approach for 

using markerless ST for decision makers in AIS management. Considerable progress 

has been made in classifying the curve severity of curves located in the L section with 

regard to increase the specificity from 41% to 72% and sensitivity from 87% to 93% 

and compare to applying previous tree method [64].The results show a dramatic 

increase of the sensitivity (from 67% to 83%) and specificity (from 57% to 95%) in 

monitoring curve progression. The customized k-NN method misclassified the curves 

of a few patients. ThreeT-TL curves that were misclassified belonged to patients with 

BMI>25, while one L curve belonged to a double curve patient. Furthermore, the 

corresponding change in the Cobb angle of one progressive curve, which was 

misclassified, was 5 degrees which is on the margin between progressive and non-

progressive and is within the Cobb angle measurement error. 

Overall, if clinicians decided not to expose patients with a mild AIS status or no 

progression in their spinal curve to unnecessarily radiation by applying the customized 

https://mc.manuscriptcentral.com/gcmb
https://mc.manuscriptcentral.com/gcmb
https://mc.manuscriptcentral.com/gcmb
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k-NN, 55% of patients with mild curve and all the patients with no curve progression 

can be saved from being exposed to X-ray. 

In conclusion, the findings of this study indicate that by using the new method 

for the severity classification and monitoring AIS, moderate/severe or progressed 

curves would not be missed if caution is taken in the following conditions: 

- Patients with BMI>25  

- Patients with double curves   

- Changing in Cobb angle is approximately 5 degrees. 

4.2 Limitations and Future Work 

We are aware that our research may have some limitations. Undoubtedly, the 

more data we have, the better accuracy that can be obtained. Despite of having great 

number of data for statistical analysis, it has to be acknowledged that the Training 

group only contained 39 patients with curve progression which may not fully capture 

the full spectrum of scoliosis curve types, such as single and double curves. However, 

using the Nested attribute neighbourhood classifier can be simply improved by adding 

more data to the Training group which would result in decreasing the probability of 

errors in classification output. In our analysis, only the RMS and MaxDev were used 

as variables for classification.  Further studies could consider other ST parameters 

such as curvature of the back valley [60], trunk axial rotation [61]. Given these 

limitations, this research still serves as a base for future studies on AIS analysis based 

on ST monitoring. Our results shown that combining our analysis method with the 

Nested attribute neighbourhood classifier has the potential to significantly reduce the 

number of X-rays required during clinical follow-up of AIS patients.  
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