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Abstract  

 

While the common method for diagnosing and monitoring adolescents with 

idiopathic scoliosis (AIS) is X-ray radiographs from which a Cobb angle is measured, 

studies have shown that high radiation exposure is linked to high risk of cancer, 

particularly, for children and women. This thesis describes an algorithm for AIS 

classification based on surface topography analysis which is a radiation-free method. 

We present an approach which improves the user-independence level of the 

previously developed 3D markerless asymmetry analysis using a new asymmetry 

threshold without compromising its accuracy in identifying the progressive scoliosis 

curves. Thresholds, which have been used for separating the deformed area, were 

changed to automatically isolate the deformed area paired with Cobb angles. New 

classification trees were developed to use asymmetry parameters for classifying curve 

severity and progression status. In monitoring of scoliosis curves progression over a 

period of 12±3 months, the sensitivity of curve progression was increased from 68% 

to 75%, while the specificity was decreased from 74% to 59%, compared with the 

original method. Results demonstrate that smaller number of radiographs would be 

saved, however the risk of missing a curve with progression would be decreased, i.e. 

the proposed approach is more conservative in monitoring of scoliosis curves in clinical 

applications. 
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Although using the classification tree method led to promising results, it was 

highly sensitive to threshold values selected in the decision trees. We demonstrate 

another classification algorithm, custom Neighbourhood Classifier, by which the 

accuracy of the curve severity and progression were increased by 17% and 58%, 

respectively.  The new algorithm is based on the idea that curves with close asymmetry 

parameters are likely to belong to the same class. Regarding the contribution of each 

asymmetry parameters, in general, they do not play the same role in decision making, 

thus modification was performed to use such parameters properly. 
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1 
1. Introduction 

1.1 Motivation  

Adolescent Idiopathic Scoliosis (AIS) is the most common form of scoliosis 

affecting children and predominately girls. Studies have shown that high radiation 

exposure is linked to high risk of cancer [1]. Furthermore, such risk is higher for those 

exposed as children or women. Given that the common way to assess the severity of 

the scoliosis or its changes over the time is using radiographs, a practical method was 

required to reduce the exposure to X-ray radiations. Thus, Surface topography (ST) 

has been introduced, a method in which only harmless visible light is used to replace 

radiographs. The ST method has evolved through the contribution of various studies 

resulting in remarkable improvements, however still some limitations exist [2] Recent 

ST analysis is based on the asymmetry of the torso and represents decision trees to 

classify the severity of the curvature and its progression [3]. Due to the limitations of 

the previous studies which caused inaccurate results in evaluating torso asymmetry in 

some cases, to the best of our knowledge, there still exists a considerable need to 

improve the method. The desired method should be fully automated to make the whole 

process repeatable, fast, and easy enabling its full clinical implementation. Once 

implemented, the proposed method would prevent adolescents with a mild AIS status 

or no progression in their spinal curve from being exposed to unnecessarily radiation. 
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1.2 Literature Review  

1.2.1   Scoliosis  

Scoliosis is a 3D deformity of the spine caused by lateral deviation greater than 

10 degrees as measured using the Cobb angle method obtained from radiograph 

scans in the standing position. This deformity is usually combined with axial rotation of 

the vertebrae [4]  

 

Figure 1-1- Idiopathic Scoliosis in an adolescent female [5] (Figure is licensed under 
CC by 4.0) 

 

Scoliosis is classified in different groups based on the age of the patients at the time 

of diagnosing. Infantile, juvenile, and adolescent are detected before 3 years old, 3 to 

10, and 10 years old to skeleton maturity, respectively [6]. The term ñIdiopathicò means 

the specific cause of this phenomenon is still unknown, although according to some 

studies, it could be a genetic disorder [6, 7]. 80% of patients with scoliosis are 

diagnosed with adolescent idiopathic scoliosis and most of them are female [9]. For 

instance, for curvatures greater than 30 degrees, girls are affected 10 times more than 

boys. Furthermore, scoliosis curve progression in girls is faster requiring them to 

receive more treatment [6]. 
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1.2.2   Radiograph s 

As mentioned before, Cobb angle is the most widely used method in scoliosis 

clinics to assess the severity and progression of AIS based on X-ray radiographs [10]. 

Cobb angle is a ñGold standardò that represents the angle between the most tilted 

vertebras above and below the scoliosis curve [11] (Figure 1-2). Following such 

definition, scoliosis is categorized into three levels: Mild (10ÁÒ Cobb angle Ò25Á), 

Moderate (25Á᾽ Cobb angle Ò40Á), severe (40Á᾽ Cobb angle). Additionally, progression 

is defined when there is over 5° increase in Cobb angle from baseline to follow-up [12]. 

Patients receive treatments based on the severity condition and progression 

status [13], i.e. mild patients may need check-ups every 3 to 9 months to see if they 

have any changes in their spine curvature. Additional treatments such as bracing are 

recommended for moderate curves to prevent further progression.  In the worst case 

scenario, i.e. severe condition, orthopaedic surgery is the last resort for correction and 

stabilization of the spine [13, 14].  

The main limitation of Cobb angle method is that the measurement is based 

on the posterior-anterior (PA) radiographs in which only the lateral deformation is 

visible. However, some patients may have axial rotation in their spine, so the 3D 

characteristics of the curves is not captured in this two-dimensional method. Another 

major drawback of using X-ray is the increase in the risk of cancer, which is intensified 

by the frequent X-ray monitoring and then young age of patients. Moreover, according 

to Hoffman et al. [1], the risk of breast cancer for women who were exposed to the X-

rays because of scoliosis monitoring is doubled. 
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Figure 1-2- Measuring the Cobb angle [16,17, 18]  

1.2.3   Surface Topography  

Cosmetic deformity and its impacts on the quality of life are the preeminent 

reasons for patients with scoliosis to visit clinicians and seek improvement. The 

asymmetry associated with scoliosis is more annoying for them than having curved 

spine[15, 16]. Hence, these considerations highlighted the importance of assessing 

the appearance of the torso. Furthermore, the limitations of the Cobb angle method, 

as described before, motivated researchers to develop a method in which no X-ray is 

used and the 3D shape of the torso surface is investigated [21]. To that end, Surface 

topography (ST) was introduced as a non-invasive method which uses harmless visible 

light to capture the 3D scans of the torso. Several types of ST have been developed 

and in most of them there is a need to place landmarks in multiple anatomic locations 

to obtain the parameters involved in the analysis. These parameters are based on the 

coordinates of the landmarks with respect to each other and the geometric properties 

of the transvers cross section of the torso [18, 19]. These parameters are then used to 

calculate measures such as cosmetic score [24] and Quantec spinal angle [25] which 

can be used to assess the deformation or progression. ST studies have shown 

promising results in investigating torso deformity, however relying on trained operator 

which results in introduction of human errors in marker placement, is always a 

Cobb 

angle 

Coronal 

Plane 

Transverse Plane 

Sagittal Plane 
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controversial issue. Moreover, the limited number of anatomical points to place 

markers as well as lack of agreements on defining the aforementioned indices does 

not allow for studying the entire torso deformity [4]. These shortfalls prevent utilization 

of ST as a common method for diagnosing and monitoring scoliosis in clinics around 

the world.  

More recently, Komeili et al. [26] introduced a markerless ST analysis method 

based on the asymmetry of the torso along the sagittal plane rather than landmarks, 

overcoming the limitations of marker placements [26]. In this technique, they defined 

a sagittal best plane of symmetry to create a deviation contour map which perfectly 

depicts the asymmetry areas, termed contour patches, affected by scoliosis (Figure 

1-3).  Best plane of symmetry is the plane that minimizes the distances between the 

actual points on the torso and its reflection. Maximum standard deviation (MaxDev) 

and root mean square of deviation (RMS) for each patch were two asymmetry 

parameters that were used to obtain clinical relation between the aforementioned 

parameters and the Cobb angle. Komeili et al. [3] suggested decision trees for 

diagnosing AIS and assessing curve progression based on the MaxDev, RMS and 

curve type. Hong et al. [27] independently validated the diagnostic accuracy of these 

trees for classifying mild curves and non-progression cases using a new set of AIS 

patients [28]. The results imply that patients with mild curves or those whose curves 

do not progress can be spared from being exposed to X-rays. Hong at al. [27] also 

modified the original decision trees to obtain more conservative results. While their 

classification tree has a good accuracy in detecting moderate/severe cases from mild 

patients (SE=73%), the percentage of mild patients who were eliminated from having 

unnecessarily X-rays was still low (SP=44%). In addition, all markerless ST analysis 

processes were automated to eliminate any human errors during the analysis except 

for the patch isolation step which was done manually in all the previous studies. Patch 

isolation was recognized as a complex process since previous attempts to automate 

this process resulted in merging between patches leading to inaccurate asymmetry 

results. However, manual isolation also resulted in varying RMS estimates. Moreover, 

in some patients, patches were extended all around the torso and it was hard to 

distinguish where the exact curvature of the spine is. Therefore, there is a need to 
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modify the process and properly define the patches so that they can be automatically 

isolated. 

 

Figure 1-3- Isolated colour patch of two torsos with the corresponding radiograph [29] 

 

1.2.4   Classification  

The clinical relevance of radiograph measurements in evaluation of patients 

with AIS, in addition to the misperception in defining the degree of the scoliosis curve, 

underlines the necessity for the development of a classification system. Categorizing 

scoliosis patients to different groups helps clinicians better communicate and guides 

them in scoliosis management. Two main factors need to be considered to achieve 

promising classification, the first factor is determination of the most informative 

variables and the second one is the classifier technique itself.  

According to Roudys, the first classification rule was proposed by Fisher in 

1936 in statistical classification literature, after which other classification models were 

proposed and applied [30]. Classification is an example of a machine learning 

algorithm which uses experience to solve a given problem. Classification is defined as 

the process of identifying the group or category to which a new observation belongs, 

based on its qualities or characteristics. There are several classification algorithms, 

common examples include:  
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¶ Linear classifiers e.g. Logistic regression: A discrete or dichotomous (mild or 

moderate/severe) outcome can be predicated using such method where the 

variables could be continuous, discrete and dichotomous. The main idea of the 

method is that it defines the relationship between dependent variables and the 

dichotomous outcome [30, 31, 32, 33]. 

¶ Random forests (RF): The random forest as one can expect from the name is 

based on multiple decision trees rather than one tree, in which the training dataset 

is selected randomly, and each tree would work on some subsets of such data. 

The computation feasibility and accuracy of such method for various data domains 

are the significant features of the method [35]. 

¶ Learning vector quantization (LVQ): The underlying principle of learning vector 

quantization is to classify test data based on a set of pre-trained vectors. Similar 

to other machine learning algorithms first a random set of vectors is picked up and 

then is exposed to training samples. Next the vectors are trained based on the 

level of their similarities to a given pattern and can be further adjusted to acquire 

the desired result. Once the prototype vectors are fully trained they form the 

distribution in input space which can be used to classify samples from dataset [36]. 

¶ k-nearest neighbour (k-NN): One of the simplest and most common rule is Nearest 

Neighbourhood (NN). The main idea of NN is intuitive, which specifies that points 

with close parameters are likely to have same class, i.e. to classify a new query 

point, the class of nearest stored data points should be chosen. Although it is a 

simple algorithm, it has many advantages compared to the other methods such as 

decision trees and neural nets. For instance, stored data points can be gradually 

increased by adding more data points in the future. However, the main limitations 

of the NN are the dependence on the distance metric for classifying the new point 

and using all the stored data points for the analysis which is time consuming 

especially in a large database. Various approaches have been proposed to solve 

these issues. For example, the k-nearest neighbour (k-NN) algorithm is one of the 

common and simple extensions where input parameters are used to determine the 

Ὧ closest stored data points and then map them to an output through a systematic 

classification or a regression process, i.e. instead of analysing all the training 

instances, the Ὧ nearest neighbours are used. In this method, the value of Ὧ is 



 8 

determined by minimizing the overall probability of error and all the independent 

parameters have equal contributions in the decision-making process [37]. k-NN 

algorithm was purposed more than 50 years ago but it got more popular in recent 

years due to the development of computers which can provide large memory for 

computations at a cheaper price [38]. Due to its simplicity, the k-NN is one of the 

most widely used algorithms [39]. Dasarathy is one of the textbook on 

nonparametric estimation and contains many papers using k-NN [40].  

However, in medical diagnosis similar to many other applications the overall 

error probability is not the only or most important target and the key objective is 

increasing the confidence in the classification. Furthermore, for some particular 

classes of interest even higher confidence might be required compared to the rest of 

the classes. For instance, in AIS diagnosis, detecting a moderate/severe case is of 

crucial importance. Regarding the contribution of each independent variable, in 

general they do not play the same role in decision making, thus modification is required 

to utilize such parameters properly. Hence, in this study, the k-NN was modified to 

meet the requirements of the diagnosing and monitoring of AIS patients.  

1.3 Thesis  Objective s 

The main objective of the present thesis is to address following problems in 

detail: 

1- To modify the patch isolation method to automate the process of the 

markerless ST analysis  

2- To validate the method using new set of data 

3- To apply k-Nearest Neighbourhood classifier analysis to use markerless 

ST analysis for diagnosing and monitoring AIS  
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1.4 Thesis Outline  

This thesis presents algorithms for AIS classification based on ST analysis and 

is organized as follows.  

The modified 3D markerless asymmetry technique is described in Chapter 2. 

The selection criteria of the examined subjects, the description of our acquisition 

system and the asymmetry analysis technique are described in Section 2.3. The 

results of the asymmetry analysis for the torso of patients with AIS and comparison of 

the results with the original work are given in Section 2.4. 

The Customized k-NN algorithm is given in Chapter 3. Section 3.3.2 presents 

the theoretical framework of the new classification approach. Section 3.4 presents the 

results of the conducted method and the comparison with the results of chapter 2. 

Finally, Chapter 4 reviews the achievements of this study and presents the 

conclusion. This chapter also discusses the future work arising from this study.  
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2 
2. 3D Markerless Asymmetry Analysis in the 

Management of Adolescent Idiopathic Scoliosis 1  

 

2.1 Abstract  

In an earlier study, a 3D markerless asymmetry analysis was developed to 

assess and monitor the scoliosis curve. While the developed surface topography (ST) 

indices demonstrated a strong correlation with the Cobb angle and its change over 

time, it was reported that the method requires user input for some patients. Therefore, 

this study aimed at improving the user-independence level of the previously developed 

3D markerless asymmetry analysis using a new asymmetry threshold without 

compromising its accuracy in identifying the progressive scoliosis curves. A 

retrospective study was conducted on 128 patients with scoliosis with baseline and 

follow-up radiograph and ST assessments. The suggested cut point, that separated 

the deformed surfaces of the torso from the undeformed regions, automatically 

generated deviation patches corresponding to scoliosis curves for all analyzed ST 

                                                   

1 This chapter has been submitted to Medical and Biological Engineering and Computing Journal, Maliheh 

Ghaneei, Amin Komeili, Yong Li, Eric Parent, Samer Adeeb. 
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scans. In monitoring of scoliosis curves progression, the sensitivity to curve 

progression was increased from 68% to 75%, while the specificity was decreased from 

74% to 59%, compared with the original method. These results lead to a more 

conservative approach in monitoring of scoliosis curves in clinical applications; smaller 

number of radiographs would be saved, however the risk of missing a curve with 

progression would be decreased.  

Keywords: Scoliosis, surface topography, 3D markerless asymmetry analysis, 

monitoring, curve progression 

 

2.2 Introduction  

Adolescent idiopathic scoliosis (AIS) is the most common form of three-

dimensional (3D) spinal deformity. It affects 2ï4% of the population, predominantly 

females [41]. The AIS spine deformity progresses rapidly during the adolescent growth 

period, resulting in a need for frequent follow-ups [42]. The gold standard for assessing 

the spine curve is measuring the Cobb angle on the full torso radiograph, with the Cobb 

angle defined as the angle between the two most tilted vertebrae in each curve [11].  

The conventional scoliosis monitoring using the Cobb Angle has critical 

limitations recognized in the literature. Firstly, the measurement is limited to 2D 

posterior-anterior radiographs, and thus the method fails to address the 3D 

characteristics of AIS [43]. In addition, the use of radiographs in scoliosis clinics has 

several pitfalls of growing concern, such as excessive X-ray radiation exposure, with 

their associated risk of developing cancers [1, 30-33], and the contra-indication of 

radiograph acquisitions for pregnant women.  

Surface topography (ST) was introduced to develop a new approach or 

enhance the existing scoliosis monitoring approach [30, 34, 35, 36]. ST is a method for 

which non-invasive visible light is used for scanning the torso surface in order to assess 

cosmetic deformities often based on some landmarks placed on the patient's torso by 
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trained clinicians and using related indices [3, 16, 18, 37, 38]. Measurements based 

on ST could possibly be used effectively in combination with the radiographs to 

decrease the radiation dose and risk of cancer resulting from the multiple X-ray 

acquisitions. At this point, the ST approach is by no means designed to fully replace 

the gold-standard radiograph measurements, because it is subject to validation with 

the radiograph measurements. Nevertheless, the development of accurate ST 

methods has significantly contributed to the management of scoliosis [3]. 

On the other hand, marker placements can be associated with human errors 

in collecting the raw data [4] and such methods fail to take into account the whole torso 

geometry in the analysis. In contrast, our team has developed a novel markerless ST 

asymmetry analysis approach, which is independent of human interactions, and 

considers the full 3D torso surface for the analysis [53] This technique provides a 

deviation contour map that visualizes the areas affected by AIS corresponding to the 

location of each curve, called deviation patch [3] These patches are isolated to 

calculate ST parameters for such deviations. The method demonstrated the potential 

for reducing 43% of radiograph exposure in the monitoring of scoliosis [29]. 

In the study presented by Komeili et al. [3], areas with deviation less than 3 

mm were considered normal and areas with greater deviations were considered 

scoliosis deformation and separated as deviation patches for further analysis. Further 

application of this proposed ST asymmetry analysis in over 250 AIS patients illustrated 

that in 30 cases the method failed to either locate the curve properly or to correlate to 

the corresponding scoliosis curve, and led to misclassification of the AIS severity or 

progression. For example, in the ST analysis of some patients with a double scoliosis 

curve, a single isolated deviation patch encompassed the entire back torso (see Figure 

2-2), and therefore did not reflect the double scoliosis curve in the corresponding 

radiograph. In some other cases, the deviation patch extended to the anterior part of 

the torso due to the asymmetry introduced by the breasts or axial rotation of the torso. 

Folded skin near the armpits and waist also introduced artifact in the ST analysis. The 

reasons for such lack of correspondence between the surface and the radiographic 

results were traced to the patch isolating stage. So far, these cases have been 

manually handled case by case by a scoliosis professional, which can introduce human 
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errors in the measurements and decrease the correlation between the ST parameters 

and radiograph measurements.  

This study aimed to eliminate patch overlaps by enhancing the patch isolation 

procedure, and to increase the accuracy of the analysis in identifying patients where 

we could prevent unnecessary X-ray exposure (mild patients and those who did not 

experience any progression from the last visit). Our hypothesis is that the modifications 

suggested in this study would eliminate the manual step of isolating the deviation 

patches without compromising the accuracy of the method in monitoring the scoliosis 

curve severity or progression.     

 

2.3 Materials and Methods  

2.3.1   Data Collection   

Full-torso ST scans of 128 AIS patients were collected from the Edmonton 

Scoliosis Clinic database between October 2009 and 2012. In the cohort, 95 patients 

(76 females, 19 males) had both baseline and follow-up ST and radiograph scans 

obtained with an interval of 12±3 months. The inclusion criteria used were patients 

aged 10 to 18 years old (14.4±1.8 years), with Cobb angle greater than 10° 

(26.5°±11.4°) at baseline, with no spine operation.  

To develop a classification tree in order to identify the curve severity, 128 

baseline radiograph and ST scans were used. In this sample, 99 thoracic-

thoracolumbar (T-TL) curves and 98 lumbar (L) curves were measured, with double 

curves accounting for the larger curve count than the number of patients.  

To classify the progression of the scoliosis curve, a sample of 95 ST and 

radiograph scans with corresponding follow-up scans were used, in which the 

progression of 137 curves in total were analyzed. The data sets were randomly divided 

into two groups (i.e., the Training group and the Validation group) as illustrated in 
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Figure 2-1. The training group included 80% of curves and was used in the derivation 

of the classification tree, whereas the validation group included the other 20% of curves 

and was used to examine the validity of the obtained classification tree.  

 

Figure 2-1- The number and location of curves used in the curve severity and curve 

progression analyses 

 

2.3.2  Asymmetry Analysis  

The ST and radiograph scans were taken on the same day for each patient. 

The ST data was collected as described previously [3]. Briefly, four VIVID 910 3D laser 

scanners (KONICA MINOLTA Sensing Inc.) scanned the geometry of the patientôs 

torso from each side, while the patient was positioned inside a custom designed frame 

with the torso in its natural posture. The accuracy of the scanning system was 1.8±0.9 

mm [54]. The outputs of scanners were four binary files including the spatial locations 

(i.e., x, y, z coordinates) of the torso surface, and they were imported as inputs to the 

Geomagic Control software (3D System Corporation, CA, USA) to be merged for the 

whole torso. Unneeded parts of the scan, namely those for the frame, the head, pants, 

and arms, were cropped off to isolate the torso [3]. After smoothing the scanning 

noises, the asymmetry analysis was performed on the torso. The torso was duplicated 

and reflected along the sagittal plane. Then, the torso and its reflection were aligned 

by minimizing the sum of squares of distances between these two geometries[55]. The 
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misalignment between the torso and its reflection, resulting from the asymmetry shape 

of the torso, was measured using the 3D Comparison function and visualized using 

the contour plot in the Geomagic Control software. In our earlier study [3], the threshold 

between normal and abnormal deviations was set to 3.0 mm. However, in this study, 

the threshold, beyond which the asymmetry of the torso was considered scoliotic 

deformation, was varied from 3 mm to 10 mm with a 0.33 mm step until the isolated 

patches matched the curves observed in the radiographs by the clinicians in all 

subjects.  The optimum cut point, which defined the minimum deviation as a scoliotic 

deformation and avoided patch overlap, was found to be 9.33 mm (Figure 2-2). This 

modification was applied only if the ST scan had a maximum deviation greater than 

9.33 mm, otherwise the threshold of 3 mm was used as suggested by Komeili et al. [3, 

22]. To measure the ST parameters, the scoliosis deformations were isolated from the 

other regions creating deformity patches. The macro, that was used by Komeili et al. 

[3], was modified to isolate the asymmetry patches from the other areas in the deviation 

contour map in Wolfram Mathematica (Wolfram Research, Inc., Mathematica 8.0.4.0). 

The process of isolating a deviation patch was as follows: 

Step 1- Identify the point with the maximum deviation in the cloud of points and 

set it as the centre point of a sphere with a radius of 5 mm.  

Step 2- Collect all points inside the sphere with the deviation greater than 9.33 

mm (the optimum cut point) and include them in the isolated deviation patch.  

Step 3- Consider each selected point as the centre of a new sphere. 

Step 4- Repeat Step 2 and 3 to progressively expand the boundary of deviation 

patch. 
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Figure 2-2- (a, c) the deviation patches of two torsos analyzed by Komeili et al. [3], in 

which the 3 mm deviation was defined as the threshold between normal and deformed 

area, and (b, d) the deviation patches of the same torsos analyzed by the modified ST 

analysis proposed in this study with the threshold of 9.33 mm. The arrows point to the 

artifacts in deviation patches, such as continuous deviation patches on the back and 

side of the torso and deviation patches due to the folded skin near the armpits, which 

were resolved after using the suggested modifications in this study. The green regions 

of the torso are considered normal. The blue and red patches represent abnormal 

protruded and indented regions of the torso, respectively, due to the scoliosis 

condition. 
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The maximum deviation (MaxDev) used in step 1 and the root mean square 

(RMS) of deviation patches were calculated, respectively, with the following equations:  

ὓὥὼὈὩὺ ὓὥὼ ȿὈὩὺὭὥὸὭέὲȿ                        Ὥ ρȟςȟσȟȣȟὲ                           Eq. 1 

ὙὓὛ
В

                                     Ὥ ρȟςȟσȟȣȟὲ                           Eq. 2 

where, n is the number of points representing the torso shape included in a 

given patch.  

Figure 2-2 shows a contour-plot comparison between the deviation patches of 

a torso analyzed by Komeili et al. [3] (cut point 3.0 mm) and the deviation patches of 

the same torso analyzed by the modified ST analysis in this study (cut point 9.33 mm). 

In the contour plot shown in Figure 2-2-b, the green represents the area with deviation 

smaller than 9.33 mm, and shades of blue/red (referred to as deviation patches) 

indicate the area that protruded/sunken more than 9.33 mm, respectively. The patientôs 

torso in an ST scan was divided into two parts, namely the lower one-third part was 

considered the lumbar area (L) and the upper two-third was considered the thoracic / 

thoraco-lumbar area (T-TL). The asymmetry parameters were assigned to each 

section, accordingly. The same procedure was repeated for the follow-up ST scans to 

calculate the progression of RMS and MaxDev, i.e. ȹRMS and ȹMaxDev. From the 

corresponding radiographs, progressions of Cobb angles (ȹCA) were retrieved from 

the clinical database. It was assumed that the direction of curve does not change from 

baseline to follow-up. During each patient clinic visit, Cobb angles are measured by 

the clinician and entered in the clinic database along with the end vertebra level and 

the apex for each curve. 

 Based on the Cobb angle, curve severity is classified into three groups in 

clinical practice: mild (10ÁÒ Cobb angle Ò25Á), moderate (25Á᾽ Cobb angle Ò 40Á), and 

severe (40Á ᾽ Cobb angle) [56]. An increase of 5 degrees or more in the Cobb angle 

during consecutive follow-up visits is recognized as a curve progression [12]. 



 18 

2.3.3  Classification Analysis  

The classification tree technique implemented in IBM SPSS Statistics 24.0 was 

employed to build a classification model, using the asymmetry parameters (referred to 

as independent variables) to classify the curve severity (dependent variable i.e., Mild 

or Moderate/Severe). On purpose, the criteria in the development of classification tree 

used in this study placed more weight for the false negative error in the cost function 

of the classification tree analysis. The underlying rationale for this preference was to 

prevent classification of moderate or severe scoliosis curves in the mild group as much 

as possible, which could lead to a late diagnosis or an ineffective treatment of the 

scoliosis curve in the clinical application.  

A separate tree was developed to classify progression (i.e., Progression or 

Non-progression) of the radiographic curve measurement (dependent variable). Note 

that the deviation patches in the T-TL and L sections were analyzed together to build 

the classification tree for categorizing the progression of torso asymmetry. The 

underlying motivation was the fact that, if a curve progression is identified by a 

classification system for a patient, a full vertebra radiograph scan is required 

regardless of its location and severity.  

The classification analysis results were reported in Section 3, including the 

tabulated results to show the accuracy, sensitivity, and specificity [57]. In the curve 

severity classification, a positive test represents a moderate/severe curve and a 

negative test represents a mild severity. In the curve progression classification, a 

positive test represents the curve progression of 5 degrees or more and a negative 

test represents any curve progression less than 5 degrees (Non-progression).  

The classification analysis mentioned above was conducted using the Training 

group such that the highest possible sensitivity was obtained, i.e. the false positive test 

was minimized. The obtained classification tree was used to classify the subjects in 

the Validation group. The resulting accuracy, sensitivity, and specificity of the 
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classification for the Training and Validation groups were compared to assess the 

validity of the method. 

2.4 Results  

2.4.1   Curve Severity Classification  

None of patients were excluded from the analysis. Figure 2-3 and Figure 2-4 

shows the severity classification trees for T-TL and L curves with the performance 

indices for the Training and Validation samples. Based on the statistical analysis, the 

RMS was a better independent variable (i.e., predictor) to be used in the classification 

of T-TL curves, i.e. deviation patches with RMS greater than 11 mm in T-TL section 

represented a moderate/severe curve regardless of its MaxDev value. While the 

combination of RMS and MaxDev worked well for identifying the severity of L curves; 

a deviation patch with RMS < 9.6 mm and MaxDev < 9.6 mm represented a Mild curve 

in L section, otherwise it represented a moderate/severe curve.  

Out of 79 T-TL curves in the Training group, there were 35 curves with clinically 

moderate/severe curves, 34 of which were correctly identified with a sensitivity of 97%. 

Half of 44 mild curves were correctly classified in the mild group with a specificity of 

50%. The majority of patients (22 out of 23), who were classified in the mild T-TL group 

based on their deviation patches, had truly a Cobb angle less than 25  ̄ in the 

corresponding radiographs, resulting in false negative error of only 3%. The overall 

accuracy of the T-TL curve severity classification was 71%. The classification of the 

20 T-TL curves in the Validation group resulted in similar accuracy and sensitivity, with 

a maximum difference of ±7%, with respect to the Training group. No moderate/severe 

thoracic curves were misclassified by the ST analysis in the validation sample 
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Figure 2-3- The classification trees and the tabulated accuracy (ACC), sensitivity (SE), 

and specificity (SP) values for the curve severity classification of T-TL curves. The (+) 

and (-) illustrate the moderate/severe and mild groups, respectively. RG: radiograph, 

ST: surface topography. 

 

In the Training group of 78 deviation patches analyzed for the L section, 39 

(50%) had moderate/severe curves based on the Cobb angle measurements in 

radiographs. The ST analysis successfully identified 35 of them in the moderate/severe 

group, resulting in a sensitivity of 90%. The mild L curves were correctly identified in 

31% of cases but only 4 of 39 (11%) moderate/severe curves were missed by the ST 

analysis. The overall accuracy of the ST analysis in classifying curve severity in the L 

section was 60%. The classification of the 20 L curves in the Validation group also 

resulted in the same level of accuracy and sensitivity compared with the Training 

group. Only one (10%) moderate/severe lumbar curve in the Validation group was 

misclassified by ST as mild.  
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Figure 2-4- The classification trees and the tabulated accuracy (ACC), sensitivity (SE), 
and specificity (SP) values for the curve severity classification of L curves. The (+) and 
(-) illustrate the moderate/severe and mild groups, respectively. RG: radiograph, ST: 
surface topography.  

 

Figure 2-5 shows the distribution of the RMS and MaxDev of 79 T-TL and 78 L 

deviation patches and the thresholds for defining the severity of the curves in the 

Training group. The ST patches with MaxDev less than 9.33 mm were used in the 

Komeili et al. [3] classification tree to determine the severity of these deviation patches. 

Only one and four subjects with moderate/severe T-TL and L curves, respectively, 

were misclassified in the mild region, but their ST parameters were not far below the 

thresholds. 
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Figure 2-5- The distribution of RMS and MaxDev of (a) 79 T-TL, and (b) 78 L deviation 

patches and the thresholds for defining the severity of the curves. The shaded area 

shows the region corresponding to the Moderate/Severe classification. The open and 

closed symbols represent mild and moderate/severe curves based on the radiograph 

measurements, respectively. The ǅ and ö represent the deviation patches with MaxDev 

< 9.33 mm which were classified using the Komeili et al. [3] classification tree. 

 

The performance of the modified ST analysis in identifying the curve severity 

proposed in this study was compared with our previous work [22, 25] in Figure 2-6-a. 

The sensitivity in the classification of curve severity was as high as the sensitivity in 

the work presented by Komeili et al. [26].  
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Figure 2-6- Comparing the performance of the modified ST method in this study for all 

curves (T-TL and L curves in the Training group and Validation group) with previous 

studies in classifying the (a) severity and (b) progression of the scoliosis curves. 

(*):Komeili et al. [26], (**): Komeili et al. [29] 
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2.4.1  Curve Progression Classificat ion 

Figure 2-7 shows the classification tree for the classification of curve 

progression independent of the curve location, since the T-TL and L curves were mixed 

in the classification tree analysis. In the classification tree, a positive change of ST 

parameters between two consecutive visits correlated with more than 5 degrees curve 

progression. In other word, if a curve has positive MaxDev and RMS changes in the 

follow-up visit compared with the corresponding values in the baseline assessment, 

the curve is considered as progression and the patient needs radiography for further 

assessments.  

Figure 2-7- The classification tree for categorizing patients in Progression and Non-

progression groups using the ȹRMS and ȹMaxDev parameters. The (+) and (-) in the 

tables represent the Progression and Non-progression groups, respectively. ACC: 

accuracy, SE: sensitivity, SP: specificity, RG: radiograph, ST: surface topography. 
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Out of 107 curves in the Training group, 22 curves increased at least by 5 

degrees, while there were no clinically important progressions for the other 85 curves. 

Based on the analysis, 17 out of 22 curves were accurately identified in the progression 

group (i.e., sensitivity 77%). Five (22%) of the cases with curve progression were 

missed. The percentage of the non-progressive curves that were detected by the 

asymmetry analysis was 59%. The diagnostic accuracy was 63%. The classification of 

deviation patches in the Validation group also resulted in an accuracy of 63% with a 

sensitivity of 67%, which are close to the corresponding values for the Training group. 

Figure 2-8 illustrates the variation of ST parameters in 107 deviation patches analyzed 

in baseline and follow-up visits, and the thresholds for identifying the scoliosis curves 

having progressed. There were 4 patients for whom both ST parameters improved, 

however their scoliosis curves progressed. 

 

Figure 2-8- The distribution of ȹRMS and ȹMaxDev parameters. The threshold of 

ȹRMS and ȹMaxDev are shown with the dashed lines. The shaded area shows the 

region that is considered as the Progression group. The close and open circles 

represent a progressed (ȹCA Ó 5 degrees) and Non-progressed (ȹCA < 5 degrees) 

case based on the radiograph measurements, respectively. 

 






























































