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= 35.217% em at ©=7

N
f

* 8.
[ z4 = 59,4800 cm at @- 8 ‘
zg = 1oo;oooo em at g’ =9

The first and second derivatives of &:with respect to zg can

be evaluated exactly,

aéf _ A" 3 S
T (8.3)
e _a -
A | bl
3 g (1+zg,)2 s

mquation (b 1) is transformed into é) coordinates and becomes,

o0Tg T, > é ‘b Ty 32; )
'a—t“'“*"siag 32 agz )] » (9‘5)

4.3 Equation for-the Sfeady State.
The .equation for the steady state is obtained by-sotting

the time derivative to he}o,~in which case (4.1) reduces to, -

- 1]
: 2 T, .~ . - S
ig=0 (5.6)
o Q zg ,
This implies that,

\ .

3T, o . v : v
2 = constant = C (4.7) .

3% . .

Under steédyfétaté conditions we will obtain a linear

variation in the sbil.temperéture.3

b, L - Time-Dependent Eqpation.

| We will use an implicit finite-dlfference approximation to
the-F}mé—dependent equation so that the cpmputations'will,be absolute-
ly stable. The implicit schemo is the seme as the one for the atnos-

phefic-equations in which the time derivativé is evaluated:at the time
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t + Q-At. We transform (4 5) into a finite-difference equation and

make use of the fact that AE=Ak =1 to got,

T (ko,t +Be)(1+ DY K DD22(ko)] Ty (korto)s Lt X {[T (k +1,0) 41, (k°+1,
t +At)-'l‘ (k “1,t5)"Ta(ko=15 to+A t)) DD2Z(k, )+[T, (k +1,t,) 4T, (k b+
At)-ZT (ko,t )-2Tg(Kosto +At)ﬂ‘,(ko-1 £y)¥Tg(ko-1,t +At)] pDZ3 (x, )'}

(&.8)

where, .. DDZ2(k) =-('§—£ )lk

326 \

DDZZ(R ) *\% (

L,.5 lnitial Soil TemperaturelProfile.

'rhe urban heat ieland'model 1s started at the time of maximum |
temperature because the atmospheric heat flux 1is approximately 76r0 near.

: ’ .
the ground at that time. However, it is probable that the soil heat .
"flux reaches its maximum value near the time of maximum surface tempe-
| rature so that a special initialization-is needed for the s0il tempe-
reture profile. This can be done by integrating the soil equation for .
e'few days of real time, letting the surface temperature Vary according

to a diurnal cyole as given'by a cyclic function like a sine. At the
end of a few days of real time the.eoil temperature profile should have
' adjusted to a value fairly close to the one it should have over a
diurnal eycle. The soil temperature profile computed at the time of
maximum temperature will be used as the initlal soil temperature pPro=-
file in the urban heat ‘Asland model. However, the exact amplitude of
‘the diurnal temperature wave is not generally. known alp ' so that

the derived temperature profile must be put into a form which would
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be useable for any temperature Qifference‘beteeen the surface and the

lower bolelndary, ?rhis is done by computing 25(k) which gives a weight

, to,DiFF; the’tempefature difference between the surfeceiand tﬁe lower |

w ‘boundary, at ‘eacll'\_ grid point. ’ | o S |
 DIFF =T,(0) = T4(9) . (#9)

- And ZS(k) is defined by, L
25(k) = [T, (k) = T (9)]/DIFF (k.10)
?herefore, in the complete program for the steady state, we
uill not compute the temperature profile but assume it to be of the‘““”“*

-

form, . _ _ .
Ty(k) = T,(9) + 25()x [1g(0) = To(N] - (4u11)
mquation (4.11) should give better initial conditions than

(4, 7) which assumes a linear Variation of temperature in the soil,
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| (surfimcz TEMPERATURE -

. . _ o
» : v

The temperaturc at the earth's surface is determined by
a heat-balance equation which 1ncludes long-wgve and short-wuve radia-

tion, heat flux from the ground latont and sensible heat fluxes from

N

the atnosphere and artificial heat input generated by a city._-
, .:- (PC H +P cg S +?LE)-+A ) (s.ﬂ

where, ~ R, = net radiation at the earth s surface’

v ) A

P= atmospheric air density, EE o

‘ Fs ensity of the soil, I .
. . Y

. p = heat capacity at constant pressure of the atmOSphere,

= heat capacity of the soil,v AR R K‘ .

o

= latent heat of vaporization, s

sensible heat flux from- the atmosphere, :
1atent heat flux from the atmosphere,

= sensible heat flux from the soil,.

> v o o
" '

artlficial heat.

i 5.1 Net Radiation. ' ’—f::::::>

The radiation balance at the earfh?s'suffece’ie,

"Ry =I, +RI-RT (5.2)
where, ;t'= net solar radiation, k '
R = Infrared sky radiation,

RT= terrestrial outgoing infrared radiation’

&
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5e101 Outaoinp Terrestrial Infrared Radiation.

4 We will assume that the e1rth s surface radiates 1ike a gray

LT

body,~ 4

| RT €, crr" TR
.Qhere,'l.6:1= emissivitJ of the earth's snrface o
| 10‘; Stefan—Boltzmann constant .
:.TQ= temperature of the earth s‘surface -

L;'

5 f‘Z Sky Infrared Radiation..

Most of the sky infrared radlation is emitted by waﬁeriva—

por and carbon dloxide, The exact radiation transfer equations become
"extremely complex when we dl‘dﬁ the spectrum 1nto many frequency -
bands in order to model the selectiVe absorptivity and emissivity of .
H 0 and 002 In order to keep the nodel simple it is necessary to :
average the 1nfrared radiation over all of the’ spectrum The climato- 11

logical models which use only the obserVed temperature and humidity |
at the observ1na weather station are too simpllstic. A compromisa
between accuracy and reasonable computing uime is. the Brooks (1950)
‘ model as’ descrlbed by Atwater (1906).“ Brooks has presented values

of the* emissiv§ty € and of ITw dE “the slope of the emlssivity curve',f_ff'

for water vapor ‘with respect to the path 1ength w.‘ Haltiner and‘ Aiéfu
' Martin (1957) have modelled the infrared radiation due toxthe: '
pheric carbon dioxide in terns of the infrared emlssion ‘of the earth's ;
surface, | - v "j o | '
Rl (coz) = o 18£ o"r"' e ‘(5.1{)'; ‘.

We will derive the radiat1Ve transfer equatlon for‘eater. o
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'va}’ﬁor:; * our’ a‘t;erting?p‘oint is Sehuarzscl}ild's equition i‘er menoc'h.r‘om-’:
tie i-’;antieh_;.f ST | o
. | | v=-Px,l1, - BJ(T)] as (5.5
Qﬁ‘ere; ~ .' I\, = intenaity of radiution at frequency \1, o
| -'kv = absorption coefficient of water: vapor 1n a thin layer ds,
. .-B_ = blackbody radiance as given by Planck's law, .

\ Now ve. relate ds t.o the abSorber path length du, -
| ds = soo\{' du A ' (5.6)
: .whe \P = zenith angle. ; ) . T '
| ' w° include the integral over the zenith “angle indu and
obtain for {ne downward radiation, T ) | |
| B dx_v (T)] du. PR (5.7)

Me integrate (5 7) over frequency and path length, _

, ?&(u =0) = J d\){ B j.f.{_‘wa.ld ' ,('5..8)
: o )e 9v o . S

) where N‘ft = total path long‘th. : o | |

i ’ The Brooks model transfoms ( 5’.8) into a finite-difference ‘

j , equation, | _
o, (o)=§:1(ar‘*> &L )An NER)
AR

- where A u is the path length in a given lnyer as given by

Aus‘(—o&) 1000q.0.2 A '(5,-‘10) o
: ﬂhere,." a = congtfmt_»‘between 4 and ‘1,> . y
g = gravity, | B
S J =prossure .1n>ﬁ11:ibe'1€s.‘,;v'.' AT

q *."x'nfbdn'g ratio for water vapor.



L
S
SRELN N

Elliot. and Stevens (1961) have derived equations for the

emissivity from the data of Brooks (1950), -and Hales et al, (1963)
have presented an equation for short path lengths. In Tablae 2.ue summa-

‘ rize these equations. “The constant a. which appears in (5.10) has

to bs determined from rpdiation experiments. Atwater (196?) pOints‘/;>‘.

fout that a value of * or 1 is used generally. In our model‘we will:
;chooee the simplest formulation (a—i) because the actual" fonmulation .

i'for ‘the infrared radiation is not a crucial factor in understanding

. the urban heat island Hhen the radiatiVe flux divergence is neglected.

In Appendix D we describe in detail how the computation of

the infrared is done. In that computation we have made the assump-

».
tion that the surface pressure is constant over the’ period ot one

day. This is jgbtified because the actual value of the pressure is

:not used in the computation of the mean wind but only in the compu- .

the synoptic conditions if these are. known.

5.1, 3 Incominc Solar Radiation..jp

.uhere; "R ? solar constant,

tation of the infrared flux. However, this is not a serious restric-

.tion because we can. allow the surface pressure to vary according to ~im'

>

The solar radintion received at the earth s surface is, R

i IV'- =R, (l-a) cos (z) (T )""c z “i;_l»::‘._"(_5.‘1_1)

L~ :
= elbedo of the earth's surface, o

R trensmissivity of the cloudless atn\sphereQ

2

*'éf)

.

n¥”-"

Z= Zenith soler angle determined by,

‘cos Z = sin (?) sin (5) < cos (P) cos (cg) cos (2nﬂt) (5.12) ?



.- 88
TABLE 2. Equations used ror emissivity in the Brooks method, as a
| function of total path lenpth (em). This table is a repro-

duction of Atwater s (1967)-’I‘able 2, p 827, -

. . -’j
. " » . .
£ =70,1579- log(l + 4275 w) o<w.<1o"“
£=003961nw+0389' “<w<1o3"
-8-00565lnw+0506“ -7103<w<1~2
€= 0,065 Inw + 0.546 o  1,0‘,,< w <1071,
€20.,0778 1In w +.0.575. 107 1< w

The first ehtry :Ls from Hales et al al (1963) and the last four

entries are from Elliot and Stevens (1961).
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where; P = 1g£;tudo.;

d’ = solar deolination which depends on the time of year and

S Varies from 23° (summer) to -23° (winter)

fz'e oarthfe angular veloeity, ‘;j

5 2 Sensible Heat Flux from. the AtmoSphere.

The atmospheric héat rlux is, . '_ —_—
lim E% 3y .
é z_azo -(Kt ’ (5.13) L.

This theory is Valid only above the roughness height whereas

the heat-balance equation is applied at the interface between the at-

nmosphera. and the soil, Therefore, we need an equation relating the
temperature at z, to the temperature at the ground level There are

many- possible equations depending mainly on the nature of .the rough-

ness elements. The most eommon assumption is to assume an isothermal
Layor from the earth's aunface up to Zo' This has the’ advantage of
T simplieity and is a justifiable assumption in the case of small rough-

ness elements.g However, in the case of large roughness elements like |

"a forest or a city such an.aesumotion is. certainly'not realistic for

that layer of air. In the case of a thick forest w9 ¢an expect that

. the maximum temperature will be reached at about the level of the
average height of the trees., In that ~case the effective surface
where the radiation balance should be used would not be at the ground
but at the height where the vegetation absorbs most of the incoming
solar radiation. Therefore, we can expect that the modelling of the
layer between the roughness height and the earth's surface will depend

mainly on the physical.situation to be modelled.

i

g g
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‘ Consider an extreme case in which the essumption of constant
: heat flux would be Valid down to the ground. This could be the case -
for a relatively rigid, tall and sparse grase through uhich the air\
could circulate easily and which has a relatively high roughness height.
In this casé we can “apply (5. 13) in the layer below 2,0 We arernge

(5 13) over the layer between 2, and the ground and obtain, &

’

QU

;g =i{: (5014) .

Rz, l,
In a iinite;oifference-form thie is expreesed.as, :

t@(zo) =Q$ (2-0)-+.z° & (5.15)
The coefficient of eddy diffusivity for temperature Ky varies

.linearly near the roughness height so that a good average for Kt over

the leyer is,

. ” R
[xt<z°) + xt<o)] (xt>m°1 : :: C O (5.16)

mol = molecular diffueivity = 0, 18 cmzlsec. o

ﬁhere?‘ (K )

| P In general we can neglect the' molecular diffusivity with

_Arespect to the turbulent diffusivity, in which case (5.15) ‘¢an be. |

;'rewritten as, . o ' e

il“ : Qb(z ) -Q}(z—o) + —XQEE B '(5;1?),

. -ﬁe can generalize (5.17). H is computed near the roughnese

' height and 1s an interesting variable to keep in the formula as well

as the ground temporature and therefore the following can be used,
@z B=0) +3E  (518)

Some special cases of this' formula are,



B ? 0 implies an_isothermal'layer between z_ and the ground.
2 Prt

ko

B =

B <0 implies that the temperature gradient in the layer between Zo .and -

."layer above/7/; This could be the case, for example, for .a dense ﬂam<

"rest. o o o Co : ’ ﬁ;‘

5.3 Sensible Heat‘Flui from the Soil.

The sensible heat flux from the 8oil s simply,

F trzq

li ' 3 T
S—z_;"o (K, s) (5.19)
5.4 Latent Heat Flux from the Atmosphere. =
| "+ The latent heat flux from the atmosphere is,
" o R
n (K,—-g) S (5.20)

.5 5 Artificial Heat Generation.

Artificial heat generation is likely ‘to be-more important

during‘the ﬂinter months than during'the surmer months., In fact, _ ‘

during the summertime we would expect that the man-generated heat would

be insignificant when compared to the high. solar energy input. All of
the numerical simulations will be done for summertime situatione in

‘which artificial»heat is neglected completely.-

_~5.6.’Solution.of the'Surfaee Temperature Eqnation.

We. now have a mathematical expression for each of the terms

in (5 1) ‘and’ the unknown variable is surface temperature. The next

implies a constant heat-flux layer-oetueen zo'and the ground.

.1’1,

-

~ the ground has a different value from the temperature gradient,%n gﬁszr

VS

m };“
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atep is to write down these expressions in finite-differance form,
- The rasulting fourth-dogree oquation 1s then solved exactly yielding

: dirpctly the surface temperature. The numerical solution is describod

in detail 4n Appendix E. - o a :



CRAPTER VI
| NUMERICAL SIMULATION OF THE URBAN HEAT ISLAND
’ ‘ toa ) .

-

6. 1 Steady—Stﬁte Model,

The steady—state model 13 used mainly to»provide initial
conditions for the time-dependent model.: Therefore, wo do not require
a great accuracy in the numerical results because that does hot affeft
greatly the time-dependent model. This 4dmplies that we must be. careful
1n our interpretatlon of amnll differencij between two steady—state '
simulations. Three situations were simulateds ‘

a) small roughness height Cé%m) and moderate, geostrophie wind (10 m/&eo)
b) Small roughness height (1 cm) and strong geostrophic wind (20 m/sec)
¢) Large’ roughneSs height (100 cm) and moderate geostophic uind S
k (10 m/sec)
| Fron theseotpnee cesesfﬁe_sbould be eble to assessythe egfects
" of the geostrophic wind speed'and of the.rougnnessfheight.

 6.1.1 Effect of the Geostrophic Wind Speed.

‘ Fig. 6 represe;ts the'uind hodographs for the three‘cases.
The hodographs for moderate and strong geostrophic winds are virtually
on the same normalized curve, The main difference is the height at
d uhich the relationship between U and V is realized.. Table 3° shows more
clearly the effect of the increasad wind speed. We define ‘arbitrarily

4 the constant—stress 1ayer as the layer close to. the ground'in which the

!
stress doas not vary by more than 20% The constant-stress layer doubles
approximately with a geostroohic wind twice as strong to reach a thickness

3 . , P
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Figure 6, Normalized wind hodograph.

@ for the case Vg

4 for the case V

3 for the ciSe Vg

=

g .

10 m’/«s_ec ’ 2,

20 m/sec., 2g =

o? 08

1em
1 cm._and,

= 10 m/sec, 2z, = 100 cm.

9

1. 1.1

The various S)/mboln ares

¢

.94

U/ Vg

The numbe# inside the parentheses is the height in metars.

Tabley3. Cdmparisch betweer throe

5

steady-state simulations.

pﬁrametercase ;ﬁ*} | h"i A 72 #3

;‘o ._1cx‘n‘ 1 cm 100 em

Vg ; : 10 m)#ec 20 _m/"se;'}’ 10 m/sec

e 17.34° 17, 53° 26.14°

max U/V 1.0477 1,0504 1.0630

max V/Vg 0,205 0.210 0.264
A}ﬁ* 30..}59,-m/89c 56,76 m/sec 45,26 m/sec

Top of,‘z_:.-s. layer|’ 120 m 240 m 180 m
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of 240 m. The roughness angle o is comparable in both cases.” Greater
accuracy in the numerical results wohld.have been noeded in order to
assess with certainty the effect of the increased geostrophic wind on
"o« . From Estoque's (1973) numerical model we woulﬁ‘have expected a
decrease of 1° in o due to the doubling of the geostrophic wind and not
an increase of 0.2° as obtained in our numerical simulation. The\maki-
mum normalized value; for both U and V are larger by about 1% for the
‘case of strong geostrophic wind.

In Fig. 7 wo compare the behavior of e?/ug_for all the situa-
tions. We observe that thewturbulent energy is nearly constant in
the constant stress-layer as indicated by the lower straight line, but
decreases rather rapidly above that layer for the case of moderate geo-
strophic wind and much more slowly for the caie of strong geostrophic
wind, Fig. 8 gives the vertical profile of Kp/k, us. The lower boun~
dary value is 25+ In the constant-stress layer we have a linear relu-
tionsnip between Kmvand 2 as in&icated by the lower straight line in
the nearly log-log graph. The vertical axis in Figs. 7 and 8 is the
ttg/-coordinate expressed in terms of ordinary hoightot therefofe it is
logarithmie in the lowest part and nearly lin=zar in tne upper part.
Both Figs, 7 and 8 indicate that the turbulence 7111 be greatly increa-
sed above the constant-flux layer in the case of‘strong geostrophic
-lwind. This causes a substantial increase in the boundary.leyer depth

which exceeds 1900 m for the Streng wind case as compared to 1300 m

for the moderate wind case. /

6.1.2 Effect of Increased Roughness Height.

In Fig.'6 we observe that the rougher terrain causes an
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Figure 7. Vertical variation of ez/ug 1 a) over 2,=1 cm. Solid line:

Vg=10 m/sec, - Dotted lines Vé=20m/sec. b) Over 2,=100 cm.
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Figure 8. Vertical variation of Kj/k, uy t a) Over 2z,=1 cm., Dotted line

for Vg=20 m/sec and solid line for V=10 m/sec. b) Over z =100 cm.
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iﬁerense in the roughness angle as expected from theoretical conside-
" rations. The increase of 8,5° for a.chhnge in roughness height of 2
orders of magnitude agrees very well with Estoque's (1973) Fig. 6.4,
Ffom Table 3 we can see that the m#ximum values for U and V are,
respoétively,1.5$ and 30% larger over rougher tefrain. The top of the
constant-stress layer 1is increased;by about 50% by a change ih roughness
height of two orders of magniiude. fﬁe friction velocity uyis also
1nciéa§ed by 50%. This is an interesting result because Table 3 ;oems;‘
' to indicate a»linear‘relationship befwoen uﬁ_ana‘tho top of the cons-
tant-stresg.layer under neutral conditions. Houéver, such a relation-
ship would need to be investigated over a wider range of roughness
heights and of geostrophic wind speeds. From the knouledge of uy, we
could estimate the height of'thé'gonsiant-stress layer by a formula
ldker |
—  Top of c.=-s. layer = 400 u,

'From Figs, 7 and 8 we deduce. that both o2 and K are increa-
sed by an increase in 2, Again, the increase in the turbulence is
gfeater-abqve_the'constgnt-stressvlayer than below it. This increases

the depth of the boundary layer by at least 50%.

6.2 Time-Dependent Model.

. The time-dependent model was run with the second fonm of
the equations for the mean quantitios. The model ran smoothly “itht
OMEGA = 0.7. We have supposed that convergencé was roached uhenever
the differences beatween two successsivo iterative valuos for the dif-
fusivity coefficients were all smaller than 10 cmzlsoc. In the cons=.

tant-stress layer, this generally insures an accuracy of 0.1 m/sec-in

Y
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the mean winds and of 0 001°C 1n (ED Above the constant—stress layer
the accuracy iS“gonerally gregtar because the variables are Varying

more slowly with respect to time. The model is sﬁarted at-tﬁe time of _; .

"mxximum temperaturo ug}éﬁ/:::;ra néa; 2 PM. The pafgﬁotera‘comﬁdn fo

all simulations ares ‘ - 3 . |

| Ji= 23° (sdﬁmer solstice) . . | - .
p = 539 (Edmonton's la_titndé) | h
T,= 0,85 | |

€= 0.82

albedo = 0,25

P (zo).' 940 mb (altifudé near 2260‘feet)

Q = 0,006 g/g

- Four simulations re mades
a) yModerate wind, small roughness height and high soil cénductivity. .
.'b) Strong wind, small roughness height and high soil‘conduotivity.
c) Modefafe wind, large roughness height and high soil condﬁgtivit&.
d) ﬁodgrate wind, small roughness height andhléw soil bondﬁétivity,

Table 4 lists the differepnces in the oxﬁérnal parameters'fbr-\ ‘

tﬁeifour éases under study. From these f3 simulations we should be -

able to assess the effect of the geostrophi uind speed, the effect of

the roughness height and the effoct of soil conductiv1ty. Using

simulation a) as a reforenco, wo will compare U, V, ® Kt and we

for the three other cases, Then, we will examine tbe diurnal cycle -
of the other t;xrbulsr;t quantities using model b). _n'od'él S) is chosen

>iﬁ‘this case.Sec;use its d;urnal cyclé is.smoother than the_othérs

due to the increased turbulence caused by the stronger geostrophie

wind,



Table 4. Paramefers for the tinio-dependgnt simulations..

model ¢
parameter

2, [cm)

V8 (_m/soc]

‘s [g/cm3J
k, [_cmz/ aec] |
e, lorgs/ (g )]

Ps ks 04

10

2.6

0,021

1.25x107

4,53x10°

20

2.6

- 0,021

125107

b, 53x10°

100
10

246

| 0.021

1252107

4510

10

- 0.0053 |

8.3x10%

1.9x10° | -

o Prgs/(cm—sec- °C>J




6 2, 1 Geostrophic Wind. Speed. - ) \ |

Fig. 9 ahows the diurnal varintion of the su face. temperatu-,
re. 'Thelincreased geostrophic'wind reduces the amplitude of,the diurnal:
oyclei the minimum'tempernturelis increaSed by 2.92 °C and the seoond-:
day maximum temperature 1s decreaaed by 1, 71 °c. There.io'no deiectunle
,time lag betwoen the two temperature cycles and they both reach their
minimum near 4,30 AM nnd their mnximum near 2 30 PM. The urface_

' cooling rate illustrated in Fig. 10 also shows tne modernting effect of
| the-strongor~wind. Stronger winds increasa the mixing wvhich- allows a
deeper layer to cool down or warm up, thue decreasing the amplitude of ‘
the did‘nal‘tenperatureloycle. We_see in‘Fig.ii'that the.amplitude of
‘ tne.diurnal‘vcrietion of the _roughness angle io’also'reduoeo bf the

* stronger wind. The shape of both curves is similar. We obeerveﬁn rng
pid decrease in o during the first 6 hours after the time of maxirum
temperature. However, the surface cooling rate has reached its maxi-
mnm intensity near 61PM end is decreasing rapiolf beﬂueen‘6 PM and 8

' PM. This reduces the growth rate of‘q‘which.reaches a‘eecondary ma-
ximum near 7 to 8 PM. decreesee after the decreese'in the oooling
rate because the level of maximum cooling rate shifts higher, desta- )
bilizingslightly the layer close to the ground., However, after a .-
while [ deep layer above the .ground becomes so stable as to pernit a

- eontinuous increase in d-,,uhion"is observed between 1i PM and 6 AM,
After 8 AM X exhibits a tend’ency to decrease, However, we. cbserve
a large oscilletion with minimum near 9 AM and mnximum near 11 AM.
This is sinilar t,o the overnight raximum in X, The maximum warming
"rate,occura near 9 AM, Due to enhanced turbulence under unstable

~é%nditione, the slight decrease in the warming rate after 9 AM is

il
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Figufe 9. Diurnal cycle of theisurface potential~tempergture.‘ The -

diffbrent curves represant the followingl
— zo-l cm,
e zo= 100 cm’ Vg

- —1z,% 1 cmy Vg

solar time relatpd to the mountain standard tir

= 10 m/sec, soilkthermal conductivity
= 20 m/sec,. soil thermal conductivity

“ The hour in this and the subse@uen:

= 10 m/sec, soil thermal conductivity’ low,

10 m/sec, soil thermal conductivity high.

high.
high.

rraphs is expressed iu

ny1 LST = MST*O.6;

Sunrise occurs at 3—— AM LST and sunset at &— PM LST.
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Figure' 11, Diurnal variation of the roughness angle. The various

curves ares

—_——z = iem, V '=.10 m/sec, soil thermal conductivity = low,

o g

— z,= 100 cm, Vg =.10 m/sec, soii thermal conductivity = high, .

ceee 2 =1 enm, Vg = 10 m/sec, soil theﬁnal conductivity = high.

[+
---- 2= 1 emy Vg = 20 m/sec, soil thermal conductivity = high,
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almost ibmediately reflected in & which increases auddenly. " The oscil-
lation iL certainly amplified by the finite grid because tnejinversion '

height iI not 1ifted continuously but. by diderete steps. Therefore,*

even if #here are some physitcal reasons for the oscillation in C(

‘near 10 4M the amplitude of the phencmenon is certainly much smaller

than indicated in Fig. i1, . . .

_ Figs. 12 and 13 represent the diurnal cycle'of the,verticai
distribution of QD for strong and moderate geostrophic winds, respecti=
vely., ' With moderate geostrophic winds the nocturnal cooling is only
0,03 °C at 240 m and 0.1 °C at 166 m., However, with strong geostro-
phic windg the orernight cooling'at 166 m, 240 m and 670.n'is, respec-
tively, 12.3 °C, 6 °C and 0.1 °C. This is a rveflection oi‘ the increa-
sed turoul nce and deeper mixing layer. - One interesting feature of thei
Amodel is that it predicts a delay between tbe time at which the surface‘

temperatur atarts increasing after sunrise and the time at which the

atmosphere becomes unstable in the lowest leVelsr* Near sgrrise the

atmospheric heat flux is positive and it will take some time before

it changes ign. The inerease in surface temperature destabilizes
the lower layer which increases'&n turbulence and the coefficient of
eddy diffus vity and therefore permits a slower decrease in the heat '
" flux., That |delay is aboutrone hour for the moderate wind case but
" reaches two ours in the case of strong winds. The surface tempe-
rature warms| up by 0.7 ¢ in the moderate-wind case and by 2.4 °C in
the strong- nd case beforo the lower atmosphere becomes unstable.
The Kansasl eriments have shown an average delay of one hour bet- .

. ween sunrise and the-appearance of an unstable lapse rate at bm

(Wyngaard; 1973). This agrees very well with our results if we
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‘Figure 12, Diurnal cycle of the vertical distribution of potential
temperature for the case z ' = 1 cm,-Vg'= 20 m/sec and high soil conduc-

tivity.. The units are [%K].
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suppose that the average geostrophic wind during these experiments was
1ess than 10 n/sec. - | } y |

The heat flux is represented in Figs. 14 and 15 for the cases .
of high and moderate*winds.' We observe tha& vvg "is more than doubled
'by doubling‘the geostrophic wind speed. The phase difference already
_noted in the surface value of ¥ 0 between the two simulations is also
cpparent up to 50 m. We observe also that the. inVersion height is
lifted more’ rapidly with the stronger winds after ﬁbe instability
‘has been established in the lower grid points.

| By comparing Fig. 16 with Fig. 17 we can say that the nnxi- kS
mum value fpr Kt is increased by a fnctor of 2 to 4 and that the height
at which that maximum occurs is shifted upwards by about 50 m, There-
fo:fe, w e is: larger with strongen, winds,v even if the temperaturo gra-
“dients are smaller, because of the much larger Values for K¢ in
that case.’ The general shape of both curves for Kt is similar:
N very high velues during near- neutral and unstable situations and very

small values everyuhere oVernight during stable situations. we observe

"f:'also a mnrked difference betueen the first day and the second day due

ito the fact that the upper leVels/nave remained stable during the
; Zb-hour cycle uhich caused a decrease in Kt ebove 500 m. ‘The model
s hps a tendency to produce negative Values for Kt under very stable
conditions. Woe reset Kt automatically to a very small number of the
order of 10 -2 cmz/see whenever thet happens. we need that restric- ;
'ﬁ‘tion in order to insure the stability of the finite-difference scheme.
‘Otherwise we would get the formstion of many artificial inversions
i nhich could easily prevent the convergence of the model. This

"problem is more serious in the moderate wind case as 5 to 6 leveis



108

Vs

S L R S T T T
@ 2 - | - :152u

20 : | | N : 1139

16 : | : | . B . j 762

12 : : ok
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Figure 16, Diurnal cycle of the vertical distribution of the coef-
ficient of diffuéivity for témperature for the case z, = 1 cm, Vg =

10 m/sec and high soil conductivity. The units-are\[lOu cmz/seéL
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are computed with negative values by egrly morning. With strong géoé,
atrophic'winds qnly one or two levels exhibit that‘fendendy.A We feel -
that alloui?g heggtives vaiues for‘Kt would not change significantly
the results while coﬁéromising the convergence of the iterative frocesa.
This isvthe justification for not allowing K to become negative. |

| Figs. 18 and 19 show the diurnal variatién of U forymédérate
and strong winds. Both graphs are similar in shape. The maiimum-wiﬁdA
" gradient is near the ground uﬁder unstable or noar-néu?ralllapse rates,
The ;ind gradient decreases over%ight-in both the ﬁppe; boundary Iayéf
and- the lower part of the surfgcé Ilayer. The region of large overnight
'wind gradient is concentrated between 20 m and 50 ﬁ foiithe mbderite
wind éase aﬁ& betvaen 20 m and 166 m for the strong-wind case. DBetween
about 100 m and 300 m, U has maxima near 12 PM.aﬁd 12 AM and minima near
5<AM.and 5 PM. The overnight maximum is caL;ed bj an inertial.osci}lﬂ;c
‘tiqn which takes place some time after the initi;l cooling uhénvthe
friction force decre#ses above 50 m uithin a shortrpériéd of time,
from a relatively large daytime value‘t§ an extremely smail.;nlué._:
There is a tendency for the agnd.to "ovorsﬁoot” its geost}ophic value
which is caused by the non-zero time derivative term in the equations
of motion. Fige. 20 illustrates thé diurngl cycle of‘tﬁe'tot;l wind
speed at different heights for the case of s;rong geostrophic winds. -
Near the ground the first minimum occurs near 8 PM, 5ust after the time
of maximum cqoiing rate, The decreasing cooling rate after 6 PM permits
- a small recovery 1h the surface wind speed which reaches a sécond#ry
maxirmum near 12 AH, The stabiliza{ion of the cooling rate after 10 _

PM causes a further decrease in the surface wind until sunrise, After

sunrise, the surface wind increases to reach its maximum near thé time
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Figure 18. Diﬁrnal cycle of the vertical distribution of U for the

case of z, =1 em, Vg = 10 m/sec and high soil conductivity. The
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of maximum temperature. With strong winds the max4mum amplitude of the
double-maximum~yind cycle is reached near 4O4 m, The overnight'mnximun

‘near 12 AM is due to the inertial oscillation and the maximum near 12

t
ik .

PM is due to the 1nfluence of surface heating,.

Figs. 21 and 22 represent‘the diurnal [cycle of V. In the sur~

faee'layer, v increases generally overnight cau%ing an increase‘in-the
roughness angle. V reaches a secondary maximum near 8 PM in the vici-
' nitj'ef 40 m for noderate winds and of 80 m for strong ﬁinds, V shows
also a daytime.méximum‘nenr 11 AM, The ragion pf ofernight’maximum |

gradient for V is slighly higher than the regioh of maximum gradient

for U, Above that region, V ﬁndergdes a double éyclevwith maxima near

4 PM and 10 AM and?negative mnina near 2 AM ahd 2lPM.V The influence

of the higher ﬁind speed.is to spread out the velocity gfadient over

a larger region andbto ehift the position of the.maximum winds higher |

in the atmosphere. o
- Figs. 23 and 24 represent the diurnal cycle of e. We have

a rough estimate of the constant-stress layer by'looking’at the layer

in which e does not Vary'by.more than 26%. "For the modereﬁe-uind case;

the height of the-conetant-stress layer i: near 120 n under neutral

‘conditions and could be as high as 400 m during unstable situations.

‘It seems more difficult to define a constant.stress layer overnight |

because the stress reaches its maximum value above the ground, near 7 me

. In any case, it»eeems that thellowest overnight constant-stress layer

was around ZP n, and happened Just after sunrise. The strong wind

case i's similar with the turbulent enefgy in-the surface layer being

twice as lnrge during daytlne and 2% times durPng nighttime The height

'e constant-stress layer varies from its value of 240 m
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under neutral conditione'te above 320 m under unstablellapse )
rate and goes doun to 120 m overnight. .The. maximum daytime value of

the constant-stress layer depth depends strongly ‘on the depth of the

[

‘.Unstable layer.

_'6.2.2 Effect of the Eoughnebe'ﬂeight." ;

| .~‘ " We go hack to Fig. 9 and note that the temperatures over
rough terrain1a1uays remain lower than the temperatures over emooth

' terrain.' The initial temperature difference As 1.4 oc, it increases
‘to 1.8 °¢ by sunriee and to 2.7 °C by the time of maximum temperature.
The greater cooling.over-the rough ‘terrain during the-nighttime is
contrary to theoretical expectations because we expect that with

1

the enhanced turbulence over the. rough terrain, a deeper layer will

> cool down, thus inoreasing relatively the eurface temperature. Fig.

10 shows that the cooling rates over smooth and- rough terrain are

almost identical unti 6 AM.; A more detailed analysis of the data

reveals that betueen 2 PM nd 8 PM, the air over the rough terrain

’vcools down more slowly in agreement wit\\the theory. However, this |
:feituation is revereed between 8 PM and 4 ‘AM. . When we- compare Fig. 25

: with Fig..13, we- obeerve that the temperature gradient in both cases’
accumulatee betueen 20 and 100 m. For 2o = 1 cm, the temperaere diffe-
" rence. near sunrise between 20m and 50 m is 10,6 C, and betwden ‘50 m
"and 100 mis 7 C. Similarly, for z, =100 em, the differenc is 6 5 oc
between 20 m: and 50 m, and 9 7 °C between 50 m and 100 M, Th refore,

'Y deeper layer is cooling over the rough €’;rain as indicate by the
“spreading out of the temperature gradient. Now, we compare he heat

e fluxes in the atmosphere as represented 4in Fige. 15 and 26.‘ ln the
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Figure 25. Diurnal cycle of the Atmoépheric potential temperature

L

for the case z°l= 100 cm, Vg =10 m/sec and high soill conductivity, .

“ The units are [°K].
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elo r boundary layer,lthe heat flux is about twice as large over rough
t rain between 4 PM and 8 PM, After 8 PM, the dlfference between the
/kwo heat fluxes diminishes to become negligible by sunrise. The influ-

/ .ence of the larger roughness height is reflected in the fect that the
heat flux has a larger value over a‘de ,er-layer over rough terrain
than over the smooth terrain.‘ There {Zpelso more diffusion over rougher
terrain as demonetrated bv,the higher values of K, in Fig,r27'es com-
pared to Fig. 16, o i ' | . -

' Comparing Figs. 28 and 23, we note that the turbulent energy
.in the surface layer is increased by 50% over rough terrain during
daytime, and only by 25% overnight. . o

, Figs.29 and 18 show thnt the dinrnal cycle of U is similar
_over smooth and rough terrains. The overnight Hind gradient Hhich was
concentrated between 20 n and 50 m over smooth terrain is now. spread |
between 20 m and 100 m over the rougher terrain. The double-wind-
maiima feature above 100 m is also very evident.over rough terrain.
The diurnal cycle of V over rough . terrain is very similar to the one

. overssmooth'terrain as demonstrated.by the.comparison of Fig. 30.with

‘Fig. 21, The rough terrain induces more turbulence which causes a -

o spreading of the wind gradient and a shifting of the maximum wind speed
'higher. The only other ma jor difference i3 in the roughness angle
'which is illustrated in Fig. 11. Tbe roughness angle is generelly

- 10 to 15 degrees greater OVer the rougher terrain. The oscillatibngin
A after sunrise has a'larger emplitude over the rough terrain and.;.
reaches uo°§ » . \\\\' ” W

| ‘Therefore, the rougher terrain“creates n /e~turbulence_at

all times even if the difference in turbulent engrgy and heat flux
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is reduced overnight due to the stability. The greater cooling over

the rougher terrain between 8 AM and 4 PM remains unexplsined.._A plau-
| “eible'exulcnation would be that the tuo simulations have not converged'
sufficiently to their true Values.at eachvtime step, cre;ting’nn arti-
ficiei difference between the two simulations which has persisted‘overb
i night, Therefore, it seems necessnry to require more accuracy than 10 cdz
" [sec overnight because the maximum value of Kt is reduced by an order

of magnitude overnight uhich reduces considerably the relative accu-

racy uith which ve ‘solve the equntions.

- 2.3 Effect of the Soil Conductivity.

. Fig. 9 shows that. the effect of decreasing the soil thermal
conductivity is to amplify the diurnal temperature wave at the sur-'
face of the eartn. The maximum surface temperature is increased by
18.5,°c<and'the\minimum by 2.8 °C. As indicated in Fig. 10, the ware o
~ ming rate is twice as large'over.tne poorly-conductive soil.‘ The grcpna |
efC)cnd " r-y over thetpoorlchonductive‘soil ereiFige. 31 and 32. These
‘areVVery-similar to figs. i3 and 15 which represent the same va- )
riables over a good conductive so0il, The*only major difference is in
the intensity of ‘the cooling uhich is more pronounced over a soil with
low thermal-conductivity. ‘Fig. 33 reveals the influence cf the umpli-
fication of the diurnal temperature wave on the atmospheric"uiffusivi-
ty. Overfa-poorly conductive seil, Kt is larger unuer.unstabie cone
ditions and smaller under stable'conditions.f

The behavior of e over a soil with low conductivity is repre-
sented in Fig. 34 and is basicnlly the same as over a soll with high

eonductivity as represented in Fig. 23. Due to strong cooling¢ the

i
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minimum near 6 PM is 15% lower over a poorly-conductive soil. However,

*. e recovers after 12 AM and has almost the same pﬂﬂfile as over soil

with a high conductivitj.

Figs. 35 and 36 represent the U and V profiles over a. poorly-
_ cond;ctive_soil. These are similar to the profiles over a. good-conduc-
tivé"&oil as fepresented in Figg. 18'and 21. The overnight minimum in '
_ U witiun the Surfacéklayer is r;duced by about 20% over a poorly.conduc-
tive soil. Above the region of mgximum wihdtgradient, the double-wind-
maMma cycle is still.observed but with an amplified;amplitﬂde, As

shown in Fig; 11, the variations hyaare.amﬁlified over a poorly.canduc-

tive soil, with hiéhéf maxima and lower minimas

6.2.4 Examination of the Other Variables.
We will examine very briefly the.behavior of the other

-atmospheric variables.' Only one specificvcase will-bé studiéda Zy =
: i‘cm,‘V.g = 20 m/sec and high soil conductivity. This case was chosen
for the following reasonss
a) the profiles of most of the variables are smoother with strong
ugeostrophic winds, : v -
" b) The overnight gradients in QD; d,.V and e are spread out over a
.few more grid points. n * |
¢) K becomes negative at fewer grid points.

. The diumal variation of K is fairly regular as shown in
Fig. 37, The diurnal variation is negligible close to 29 reaches op
of the mean value at 21 m and exceeds 50% of the mean value near the

top of the boundary layer. Due to its’ definition, P is always increa-



137

- Jous

T T S N NARARI NS RSN RN EAN N R
2 8% 6 8 10 12 2 4 6 8 10 12 2
PH M PM

Figure 37. Di;imal‘ variation of the vertical profile' of,? for the

case _zio_ = 1. cm, Vg = 2‘40 m/§ec and high soil gonducti\?ity. The units

are [m]. .
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: sing upwards. The dij&f 6 to B hours between the time ol“_‘ change in.
stability in the loge;;bdhndary laygr and thé time ﬁf’mihimum for‘I |
indicates clearly thlat the formula which computes { depends to a 1a£ge ‘
degree on the value of e in the ﬁppermost leQels.i | '
As illustréted in Fig. 38, 6—5 re:mches an overnight maximum
in the lower boundary layer Jjust aftér the time of maximum cooling
rate and decreases until the #ir‘becomés unstable near 6 AM. Between
‘ é AM and 12 PM there.is a rabid increase in 55 vhich corresponds to the-
increase in the ﬁgrming rate. Under unstable condxtioné the maximum
value of 55 iSvalwayé naar the surface. However, the témperature.gr§4
'dient‘accumulaﬁeéhovefnight between 20 m and 100 m. This is reflected
in the large overnight maximum 1n.9_2- in that region. -
B - The diurnal cyclo§‘of uo and ;7;H§re shown in Figs, -39 and
.ho. Equations (2.195) and (2.196) indicate that these variables are
proportional.to tﬁe product of the appropriate wind gradient by the
teﬁperaturé gradiént. Tharefquz under stablebcohditions, these va-
riablés are p&sitiveAif the wiﬁd increases with height and negative if
the wind>decreases with height. As fha>uind and temperature gradients
accumulate Avernight between 20 m and 1001m, thg’maximum Value\I;
Feached in that reglon,
| “Figs. 41 and 42 111us£rate the stress in the x and y direc-
tioﬁs. In the lower boundary layer, u w has a iarge negative value
dufing daytime and a@halle necstive value during nighttime.’ This
 ;§ another 1llustratior »f «  affect of e decreasing turbulence

’overnight.' v w decredées between 2 PM and 6 PM but increases after

/

6 PM. . Therefore, the overnight increase in roughness anglé is accome

panied by an intrsase in the stress in the y direction. These vae
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Figure 38. Diurnal variation of the vertical profile of 62 for

the- case z, = 1 cm, \fg = 20 m/sec and high soil conductivity,

The units are ['002].
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Figure 41. Diurnal variation of the vertical profile of U w for the

case z, = 1 cm, Vg

are [m?/sec?].

= 20 m/sec and high soil conductivity. The units ‘
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1
riables depend on the vertical gradient of the mean wind components.,
Fig. L3 illustrates the behavior of K which has lower daytime
‘values than Kt ' However, K has a smaller tendency than Kt to develop
negative values overnight. ,
Figs. LYy to U6 illustrate the behavi;;f;; ;—, ;- and H2 whOSe'
sum is simply 92. Therefore, their behavior is very similar to the

behavior of e. They reach a maximum during daytime and a mini-_‘

o2

mum overnight. The approximate daytime contributions of u2 v and w

to o2 are,‘respectively, 45%, 32% and 23%. Fig. 47 represents the .
behavior of U V. Near the surface;'the minimum is reached just after
| the time of maximum cooling rate and the maximum is obtained just af-
ter the time of maximum earming rate. This varieble is proportio-
nal to the product of the gradients of U and V which explains the‘poe
sitive sign in the lowast 50 m end the negative sign in the region

above 100 m,

6.3, Comparison of the Soil Temperatures.

Figs. 48 to 51 represent the diurnal variation of tha‘soil
temperature for the four simulations.l The features common t- all graphs -
aret . . | / \ . | |
' 1-' There is a timek lag betﬁea’h the upper and lower levels in the time
at which trey repectively reach their maximum and minimum temperatures._ f
2- The temperature variaticn belox 0 5m 13 very small. This indicates.'
that the soil depth of 1 mis appropriate for the numerical simulations
for the periods of the order»of one day.

3~ The temperatures near the bottom increase'almosﬁ continuously

because the surface minimum temperatﬁre is too warme The other levels
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. are not perfectly cyclical.~ The second-day maximum is higher than that
of the first day due to the ﬂecreased soil heat flux from one day to
the other. The surface temperature could be lowered by modifying
either the trénsmissivity factor or the albedo. In this way we could
obtain more cyelical diurnal variations within the soil layer.-

We naw compare é poorly-conductive soil with a good-conduc-
B N ’! "

tive one, The'poorly-qohductive soiliﬁhea

i:?f a iarger temperature variation in the upper layers.
;}%l'lez;alle; temperature variation in éhdlow&r‘i;yors.
3= The time lag between the maximum or minimum temperaturel;ﬁ the
- upper lavelﬁignd the lowef‘levels is éonsidprably increased,
All these differences Qre expected because we expect that
the temperature wave;will#nbt penetrate a poorly-conductive soil
~ as deeply as it would a good-conductive soil. This tends to cen-
‘centrate the teﬁpepature gradienfs very close to the Surface'in the
case of a poorly-conductive sbil. o —

L4 There is almost no difference between the soil temperature
profiles due to a change in roughness height., The Egmperatures are
:ligﬂlywarmer in the case of zo'= 1 cmf A detailed cglcul;tion of
the soil heat flﬁx during the period 8 PM to 2 AM shows that the heatr
flux from the soil is about 10% higher With z, = 100 cm. Therefors,
th; atmOSpheric heat fiﬁx and the spil égat flux are Both larger
overnight in the cuse of z, =.100 cm, which:?hould givé & warmer sSur-
face tempergture in this c‘ase. _The numger of itera-. 4
tions taken by tﬁe model with zo, = 100 cm was approximﬁ}ively 2 to 3

times th9 nunber of iterations required by_the model with Z, = 1 em,

This seens to have caused a significant difference in the ‘convergence
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Table 5. Comparison of the surface potential temperature between

the four simulations of the urban héat jsland/

, ' model # : . .
/pnrmeter 1 2 3 - i
minimum @) (z,) 289,5911  292.5137  287.9182  292.5120
maximm @z,) | 311.9797  310.265%%  309.263% 330,251
time of minimum ‘4—“—9 AM l&-u—o- AM. ' Lbig AM
time of maximum 220 py 230 py 0 P
“% minimun w0 (z,) 3,54 -8.27 -5.49 4,38
"-\";-",._‘:h‘_;j(imum vo (zo) 5.50 1143 6.97 5.80
. bime of minimm 8 PM ey 22 pu 8 PN
"% time of maximum 12 1220 1280 ¥
time of wo (z,) =0 | 6 AM A 7 AM 6 AM 52iAM
| “ wlOpy  u2py - 38 pM 3 py
> S —* ' ‘
‘|Surface warming rates _
‘ : minimum o -3.3.4’ . -2..9 -3.2 -6.0
time of minimm | - 622 PM 622 BM 710 py 620 py
. : 1 2 80 : L ‘
time of maximum . t'&i' AM- 932&4 O ax 2 an
1 : e T
zo- [cm] . . .l m. ) .lj""'.’ . . 100 . . 1
Vg [m/see] | .10, B0 10
soil conductivity |- :.¢high * hign Hx cmigh o low




| | | | i
“of the surface temperature for both simulations. The model usually
converged without any oscillation when we used OMEGA = 0.7, which
increases the probability of a build-up of systematic errors as is -

-

. the case here.

6.4 Assessment of the Urban Heat Island Effect.

We compare the qhantitieghrelated to the behavior of thefaur.

face temperature for the four simulations in Table 5, Usually
the city has a larger roughness height than tne eurrounding countryside.
The city has also a higher soil thermal conductivity because of tHe
abundance of concrete in the city and also because of the fact that
clay, a poer thermal cpnductor, is often present in. the countryside.i
| Therefore, we expect a smaller diurnal amplitude over the city because
of the increasesin roughness height and soil thermal conductivity. ‘
| The results seem to indicate that the countrysiﬂe would be wnrmeqé%
than the city during daytlme. However, another ma jor- factor counﬁ;0
teract s the strong effect of the soil’ thermal conductivityl evapora= '
‘iion. There is generally 'y very importnnt dec{ine in evaporation
. over the city. - This permits P 1arge. part of the solar energy to
go into,latent heat over the countryside. The differenpe—in evapore-
| tion between the city.and the coﬁntryeide neededxln order'to obtainﬂ
a warmer city depende'maini& qn'thetdifferences in‘the soil ‘
..properties. ' _ ’ o . | | _-
- * When the effects of evaporatien and soil thermal properties
_nearLywbalance each other, the influence of other fzctors may become

important in 8 specific case when we wish to’ deterﬁhne which of the

city or the countryside will become warmer during thedhytime. The 99 cm
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v"; ;u i . . .
time. The influence of an increase in the geo§troph wind is to reduce

increase in roughness height cools down the city by 2 .9¢ during day-

thé-amplitude of thgfﬁiurnal tempe}gture cycle and consequently to
reduce the urban heat island effect in absolute value.

There 1is nc significant difference in the times of maximum
and ﬁinimum temperatures for all four simulations. However, the time
of change in stability'in theilo;§f,a£mosphere is retarded by strong

bwinds and by high soil conductivity.



_ CONCLUéION

AR

A numerical model using a more sophisticated approach to tur-
bulence‘modelling than the ordinery K-theory has been epplied_with:some
success\to the problem:of the urban heat island, The unidimensional
modellbesically describesl!he interaction between a soil leyer and"
an atmospheric'layer. Three factors were exsminedt roughness height,
soil conductivity.snd wind speed. The model has demonstrated that the
soil conductivity was an extremely important factor in determining the
amplitude of the diurnal temperature cycle. The maximum temperature was
- considerably increased over a poorly conductive soil, which is
often‘found in the countryside. (Increased roughness height
also reduced the amplitude of the diurnal temperature wave by a small
"amount. When we associete a high roughness height and a high soil con-
»ductivity with a city, we are led to the conclusibn that the city is
considereblyucooler than the countryside during the daytime. The coun-.
terbelancing pffect—;hich was not studied is. the difference in evapore—
tion between the city and the countryside, If we suppose a dry city and
a moist~couhtry$ide{ we expect thet‘the daytime rural temperature will
‘be cooler} - -,. - . : L 7‘ ' |

ﬁany problems are associated Giiﬁ the numerical»solution of
_ the equations; An implicit finite-difference scheme was used in order
to provide numerical stability and to permit 2 time step of 10 minutes.
The equations have to bs written very carbfully in finite-difference

form in order to reduce the round-off errors to which the temperature

computations are very sensitive in the upper boundary layer.‘ Double |

158 v
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precision had to be used for the mean quantitiesvin order to =
obtain reasonable profiles above 1000 m, Iu some cases systematic ,
errors have built up due to insufficient accuracy in the itera-

. tivo procedure within each time step. The accuracy vhich we need in
order to obtain good results must be determined by trial and error.
Thé\disadvantage of requiring more accuracy is the incregse in compu-

5
ior

ting 'time.

-~

‘The most obvious improvement to the model is to inciude the
uoisture computaticns uhich present a few supplementary problems, We
need a balance equatiou between tue soil and atmosuheric moiéﬁure.
There is also the probleu cf water ﬁapor build-up in the atmosphere.
The main source of water vapor in the beundary layer 1s the eVarora-
tion at the surface which is enhanced during daytime, The vater vapor
is also transported fairly high in the atmospherc under unstable lapse
_;tes. However, the main sink of water vapor is not the;cyernight
ccudensation at t¥e surfacecnhich involve only a shallow layer closo
* to the ground uhder sFable conditions, The main sink is the formation,
of cldude an? precipitation. Thei%%ﬁre, we would need tc incorporate
,abpe;g}qug physics ;ﬁtc the model or we could remove artificihlly_
a;';ergecs'water. If we include condensation in thb atmosphero, we heve
to introduce a source ter; in the equation of temperature due to the |
roIease of latent heat. This would. imply also a modification ‘of the.
‘solar anergy received at the surrace of the earth due to reflection by\
the clouds and to absorption uithin the cloud.‘ The 1nfrared balance
would also be affected, . - oo

Other. improvementsguay”ihclude an albedo model which permits



. layers superposed one upon another,
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»

a diurnal variation of the albedo with the solar angle. 'Radiative flux

divergencs could be important in the 1owest 100 m over a city. The dise

- advantage of.thevroughness‘height concept over a city is that the value .

associated with very dense and tail buildings is of the order of a few
meters., Therefore, we do not Qodél thé 1o§est meters over the city
although often this is the layer iﬁ which we are interestgd.‘wb could use
two- and three-dimensional mo&els in uhicb some care has to exeréised-

in order to model properly the change in roughness height. As pointed

out earlier, the forced-convection parameterization of some of the

o

turbulont quantities gives a differbnt result than the one predicted
in the free-convection limit. Therefore,-we must reconcile the two

points of view., We would also like to model more complex soil layers in

which the amount of water influences gréatly'the soil conductivity, -

Alsd, we could investigate the effects of two or-more types of soil .y

-
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APPENDIX A

LOG-LINEAR ATHOSPHERIC GRID

S
o
L

ﬁs explained in Chapter III the best transformation of coor-'
dinates in the lowor boundary layer is,2

o & = Ac{ln (z+zo)/z°] /k +z/17 } ‘. (A.1)
Nwhere, ’ 9’ : g

log-linear coordinate

423}_ z = ordinary vertical coordinate (cm) with o?igfh‘at z°’
N zg = roughness height
- [+ “ . e
5?5 ko = von' Karman's constant - L
!o = length fixing the maximum size of the eddies ' Ca
. AC ;geonstant chosen for our'conVenience. :
: @ - , -
. . The grid is. defined by the following statements,, . .
: = . ) '

- The maximuh nunber of ¢'levels is 40.

- ¥ and z are zero at z, .- - - . }J'

- the top of the boundary 1ayer is’ at 3000 n and corlbspond tog’ 39

the number of, grid-points is fixed at 40 and the index k represen—

ting the height of the grid-point is related to k= ?*’1.

' The constant AC is determinéd when we assign a value to z

_and= jo' ‘) ' h ‘ T ¢' ’ -
39 T (A.2) .
AC = 7ooooo+zo ) + 3000001 (A'Z)_

[ 1@( T

During the transformation of coordinates various derivatives_

'j

of 9’w§¥h respect to 2z appear- thesé deriVatives can'be derived exaét
‘tly from equation (A.l) "“ ‘ S ) "_ R @.
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. Y _ CON. -4
b o7 = ) .
. e (1 Tz C[ko( ﬂj*,Qo : . (A 3)‘ -
‘}J . “‘ZP [T ‘ a . -
S u = - - ST % )
v, '8 2 r.l kQ » . -

o l~ oW - . 9 .
Therefore we only have to solvé the equation for z at each
e L N

Y/ lovel, There are three ite‘r:it ays of solving (A.1) for ‘z.

R

" ‘4ethod 1. . Near 2z, the grid i’s almost logarithmic because of t,'ﬁe aﬂlall

coni:rlbutlon from the linedr term in that ::erridﬁ. The most rapid]% o

i

converging formula is obtalned) by isolating the tem 1nside thet lM ."c%
g i SN o .

grtthm, W K
A {exp[k(v/ﬁcz/? o= 1 S,AQ /

ethod 2 N‘ear the €on of the boundary layer the grid is almoa’crlincar \

Y

N R v
\b&se the logarstm" term has a small influence there. «Therefure
) LA o kg

we - isoﬂ.ate the linear’ term, B S d -
o z? ,{? {?{/Ac-ln[(z*z )/z.o]/k} " ﬂ(A’js)‘!ﬁw
Met"lod 3 ‘ If fognulas (%{Qb angd.’ (A.é) do. qotagnre reasonabh

sults We can use formula (A 1) and do t.he iteratlon orf!y instead 6f

on z. In this case we reaﬂjust the value of z until we gét close L.
enou@h to the integral vélue for a given level. » — {
. . - L - .. N Co ) c. . - /'
’ .‘- )
A1 Determin:ation of INM. o e

i Firstly we replace be X 9+ 1 because most computing

'. syi;tems do not accept an index 0. The level IKM 15 the level repre- 0
| Sentlng the upper lim.t of “the- applicabllity of (A 5) Close to ’d’he : .
roughness helght the initial guess will be. purely exponential, |
zi = zo exp[(k *1)/3\0:] 1} B (A_.?) L

. where, 2y = initial gues'g for z.

4
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LY t'hat level can be considered as the i‘irst on‘g w‘hve the exponential ‘

’ the other 1eVe'fSy

i o
e | : s

oy e . o : 16?

* The initial c;uess is always greate!l than the true value for

2 because we have neglected a negative numbgr 3n the exponential, name-

e

ly -25/,(’0. At some level the initial value dt 2 will be large enough

_to cause. the term inside the exponential in (A 5) to become negati-

initia’lization is inappropriate. Therei‘g_‘re,'IKH is the leiw “tﬁmediate-

ql
'J A .-

- &
.

1y below the firat -level where, ' ~
e (m)/»,c - zi/,? <o »

",‘.A"‘ o L . o S V) v
s Initialization of tbe Other ;@%15... MR '«&"

H

We use ths aSsumo‘gn.@cof - linear spacing t.o 1niti§ize all
u‘.t '_‘m.j o m‘
e ®

I ¥

e gy —g/*(top of the'B, L%(magcimmn y) (%1)*300000/39 (A-9)

That initial guess is very gocd for the top Iev-els where

L' »

“the spacihg is iﬁ'deed almost Iinear but there is a crltical region& 'i

where neit%mer the expo ent{al spacing nor the linear spacln
7 e

expected to be go&i& «One way of rm:ming that region is 1;'3;, input
i into (A 6) in»order to get a seoond guess z' . . _
,Q {‘VIAC - 1n[(zi+zo)/zo] /k } PR (A.1o) :

erestimation in ¢a:l in the lower: ]Jevelb can cause PAS

The

-to become negative which would stop the iterative procedure because

B

‘the next guess would require the estimation of a logarithm c_;f a ne-

\ - /
gative number. Therefore, egch time that z! is negative we readjust"'

n

‘;zi toasmnllernumbg;\ T . SO

" ‘a/B e aD

A

where B is & positiVe constant greater than Te / R <

<

3

/ .
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A.3% ]cheleret?d Gauss-Seidel Process, ) £y

- : s v

We ude the acceélerated Gsuss-Seidel process which cong)z
. s

[ 3
in refining our initial guess by :.ving a weight both to th¥

approximation_' and to the new ccmiruted value, For ex'ample,' e cal ',

“y

= last value of ¢ . : ‘ -
TEMP = comppped Valug' for ¢
TP = TEMP- A = diffyrence bet;ieep two succese;ye iterative values
of z v |
AR A +m> OMEGA = new approximtibn t.o z : °
'OMEBA is AN acceloration fnct,qr which glves a weight“‘both tc:f Z and
¢ TEMP ‘It cgn Vary from 0 to g ;nd, ' o :ﬁ: - ‘,t- &‘&0

\4"

OHEEA 1 1mplies that the computed valie of 2z is TEMP. «

@ 8
: -.OMH.‘:A implies acceleaation, appropriate for the ‘aases 1n Hhich
. F g
2' approachea a valne ‘steagily without. oscillations.,

OMrI‘:A ( 1 implies d%qﬁeration, appropriate for the cases whero

Z' oscillates trdund the real ve.lue of,z. ) e
- 'Y '»3.‘ .
Unfortunately it does ‘not seem possible to devise a genenl
4

formula for the opt:\.mum value of OMEII‘ in our problem.' Some of the

difﬁ.culties agpy . e e T .
(a) close to do, OMEGA -’1 is rairly appropriate bocause the oscilla-
tions aro\md the real: v;;lz?é are Eamped.very rapidly, ; e \

(b) Near IKM large oscillations ~prevail due to the 4101: th'at t.he 4ni~ o

t.ia.l guess 13 p?.r 1n ‘that region and aiso that neit.ﬁer (A 5) nor (A.6) .
¢ . . . ’ : . . . oy
ire really appuropriate there. L. ef. ;;" S

v, -

(e). The level IKM 1s dependént on the roughnoss height 2o and to a

N

g ;eger extent on,( o A
" (d).. Above IKM t.he itorative formula changes and most of the diffi-‘ L
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culties arise near\IKM‘whe.re'OMm:i. {1 ila needed for convergence.‘
" Near the top of the boundary layei‘ the convergence is rather rapid with
OMEGA=1, S - ' <

K

A.l-b Detailed Analxsis of OMEGA in a Qpecifio Caso.

» " With OMEGA = 1 two sqccessive 1terntions wﬂl always giveQ
one value above and the other@e below’ the actual value of z.. 'Phis
phenomenon is due to the form of the aquations.  When tie fomulas are

. applied in thei#ppropxjiate regions the oscillations are dhmped v.ery ‘

‘_rapialx; It would be difficult to determineithe best OMEGA a priord

for all the grid poin’ca. However, atter the solution }}as baen obtai-.

S Q."‘ ‘?.-‘! 2
ed we can oomput .. She bost OMEBA should have b‘eon. ‘:he bogt .

.ew S t
OMIGA’ 18 defined by . o : ’ & ﬂ w2

.‘\

7

‘ e 0MEGA"= (Z'«Z)/(fEHFLZ) 2; 5
“where, z' = actual _height of the grid point

2. ‘last 1terative value for B g ; ‘ - RN

The best OMIGA 1is tberefore defined as the one. which would

give the true valgre in oniy .one 1toration. We w;l.ll study bﬁﬁm in *l:heg
specisl case where z Wcm and aQo = 2?00 cme In this case we ﬁnd

that AC = 0, 26501563308. In Tables 6 and 8 we lis’c the comp}xted values;

wof the grid-point heights nf? various stages of iterﬁidn. In Tables 7

and 9 Ha havo tabulatod the computod bost OMEGA at all stagas of ite. .

ra@ion. ' .

: B . - -~ ‘,, , ,015 ‘\ Y .
13 S ﬂ‘:, “’ . % e n",\v% ue ;—-—Ap-e )

A:ﬂ».i Analysis of t.he Iterativo Pa‘ocess B‘elow IKM: - /4:}

o ',.we note that the initialization is extremely good close to
the ground and .wgrsens corxsiderably near IKM where the’ initial value
- s R ,
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2760 u3367o

11929.065229 2705
1 7279.0B5837 37258492336

. 2148,690295
2088,351785
2104,758060

" 2101,284420

. 2101.230814
2101.245422

2101 241041

21014242526

L 2101.242311 S
©.2101.242289 «5182.995555- 310o9854537»
2:01.242295 5, 5279. 748775 37192.07383

21 1. ”42293

-
Rre

16136.303980  37243.19405
5645.811378. 3720195099 . -

'5115.893194  310.9235327 -
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Table 6 . Computed values £or the grid-point heights z(k) at various
stages of itorqtion. The first entries in each columns aﬁe
the initial values for which fomula (k‘) was used. The sucs-

. cessive values are computed from (A. 5). The levels are in

- terms of k =¥+ 1., | AL

g . )

(2 =), A .S w6 s
2.745382866  13.02799281  51.53982937  195.78177670 - - 736, 03dou60
2.744050185  13.00422248 51 189976 190.08504693 »6‘!.9963#30~¢,7/
2.7“#050832\ 13. 00426545 141923430 190.,09731477 674 .80392
2,744050831 13, oou26538 §h9232702“ 190.097Q0948 7 67k, 291636&

RSN ‘ _51 19232713 190.09701708 = 67433647
- 190,09708689 674232552
- IR N . 674.3328961
S A T Loe Lt gy e 674.3328660
- DR T R e - 67443328686
g S g A TR " 67&.3328684 K

) R - e o W'ﬂh T

£ w®  w®

10337.880¢7 38?23 06763
2705.932184  255.8352926

4023,201229 - 300,3897878
4665.759005  308,9370814"

4972.118966° 310.5985422 -
5425.952268 _ 37193.93929

5325, 744693 37192.37819

5213.79u91u 310,9977602 .+ . . .
98.570325  37192.01848 s
228.131046 311,000168%" .
52#8 805082 37192 00291‘;~'
S 3i1.0007420 0 ¢\
Szuo h3'f109 37192.00009 SN
LR :



Table 7. . Best OW:BA corresponding to the comp

#2)
0.99390

points

10.99845

0;999

at variou.s Stages of 1teration.

Py

ke

JE T ey )
0,9981 0:99327 ' 0.9978
0.9983 T 0499328 -

O R O
. 606679 ° ) t :‘J;‘Q..‘.“l:‘,}“v"
O.5542 = @ v '.n o

C0.576p" g0
'o.spgf o 5
0-60172 o o 7305

045912 SRS

ST ogemY L
o567 T

Q.6261 . . g 4 Q Fy S

2(6)

' 0.9198
0.91948.

L 0.9957 w &7
0.9957 5 .

0459 S TR |

T095

v N
[
S -l
e .
. 3
9
L4
E
e .
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uied values of ‘tfhe grid
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~

- §}L -

stagas .of iteration.

™ S

2(10)

75000, 0000
$087 , 24000

25843,0580

133062064
18426.7500
15915.3529

17045, 5800

16516.3606

16646.8531

- 16698,9450 -

16674 84143
'16685.9853

16680,0833 240X

‘ " 24648,3339
4‘2“0“803281
|, 24048.3303

' 1668245

;2(11)

82500.0000
14538,9041
27930.2370
122893,9750
2480 7900
239275590
240871600
24:035,8800

2405243200 .

24,047 ,0400
24048,7400
24048,1970

24048,3718

| z(12)

$0000.0000

24054, 5795

34233.2230

'31511.1692
'32150,3100

31995.144
32032,6700

3202546900

32025.8500
32025.3300
32025.4599

32025.4291

24048,3160

il

z(13)
97500, 0000

33624,0000

41836,5800
40150.8100
40468,0000
LoL407.43700
40418,9500
L0k16.7400
4ol17,1640

’ ;(145

105000.000
43239.2259

50083.3298"

9.8161
IxbeB.6320
9102.9959

9102.3103

49102,4180
49102.4011
49102.4037
49102.4033

’#9%02 LH034
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N
Taﬁle 8. Computed values. of the grid-point heights z(k) at various
We have used formula (A.10) for the
initial values (first entry in each column) and formula (A.6%
for the other values, ‘

2(15)
112500,000

-58715.5240
" 5§7910,0400

580166000
58002 4190
580043050
58004, C 5k
58004,0877
5&04. 0833
04,0839

Table 9. Best OMEBA corresponding to the computdd grid-point heights'

Q/)

2(10)

0.8340
0.5586

. 0.7306
 0.6590 -
0.6780

z(11)

v 0.8600

0.7100.
0.7700
0.7526

0.7585

. at some of the iteration stepa.

"_z(iz)_.

Y

0.879

<

‘z(iQ)

0.8930
e 068270 .
0, 8421

. 1

ztlﬂ)
0 865

0.8419

"‘“*43.

" z(15)

*o éaz
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i3 too Ylar‘go.by a factor of 3. The number of iterations rises from
3 at'l_ the second grid point to 10 at the sixth grid point, jumps to 60 ’
at the eighth.grid point and would never converge a.t IKM= 9 because
thore is an oscillation between two stable vnluos at this grid point,
"Examining the values of OMEGA at various stages of iterat&on 0 obsor-
ve that a difforent valuo for OMEGA is needed depending on whether wo
start from bolow the actual value or. from above. This phonomonon peaks
'at IKM ‘where tho iteration process broaks down if we used OMEGA = 1.
" At IKM it oonvorges to one value above the actual value for 2 and to _
* “another value %elow tho actual value for z. This points out that there |
ts&no g‘o’.a:ranteo of nn unique answer with this itorat}én proooss. In
fact theri‘o are throo“ solutions to the equation for €/| one using the

c & :
lovost value for % ‘in the linear torm and the highest one in the loga-.

rithmic ter‘ another one using tho lowest Valuo for z in the logarith— 4

"mic tem and the highest one in the linear torm, and Pinally one using
the actual valuo for z in both terms. Obvioualy we are intorostod c
only in the ],ast solution. The only iteration process which would

, give an unigue answer all tho time is tho one on 9/ but: this is o
‘gonorally a fairly alow process and difficult @to implomont. : Now we
vill try to dorivo an anaiyti‘cal function which”will give the best

. OMEI':A at aJ.l levels below IJI;I. The matching can be done with the |

" help of the following ru.los, ‘ |

© (a)t foxact mtch of OMEGA = { at k = 1. .

(b) Hatch tho lowest Valuo for OMK}A at IKM, .e. OME.}A = 0‘2695.' '

(o) Assumo an oxponential variation of OMEGA in terms of Ke .

Thoroforé, we will use an oxprossion liko, |

- OMmA(K) = 1+ A{x-exp[(k-i)/(lmn] } ;(A.‘.lZ) .



wherse A and n are con

yalues fom;a for ON

=g

R }.f'xﬂ GO Qx‘:‘r

'constants were found to be,

\

£8e A = 0,425

n..= 3

I !A'\}»‘a s

[

Various grid points. Good Values for th

(Ae13)
’ (A.1l+)

g&-xwo be- determined by fitting the. actual ,

It is obvious that this fonma W11l not be perfect for all

roughness heights becaise of the arbitrariness in the choice of IKM

and the discreteness of the levels which affect the efficiency of

(A.5) at’IKM. However, 1t is clear that an uniform value -for OMBGA

at all leVels is not acceptable.

gence to the desired value .at IKM, whereas a value of 0.3 would

iga;ease considerably the number of iterations required at the grid

points where cénvergence is rapid with OMEGA 1.

.seems a fair compromise betdben simplicity, general

.convergence.

Adi, 2

that level.

level of the grid point increases.

(

{.

Analysis of the Iterative Process Near and’ Above IKM.

It takes many more iterations nesr IKM than much above

We also note tha

~

he initialization improves as the

In this qaae the best OMBGA_

varies more gently abOVe IXM than below it. Therefore, we try to

fit an analyéical expression of the form,

Whﬁré, .

4

omlm(kL: 1-8 QlS-k)/ S-IKP)

'NS = top of" the boundary layer P

%

w
I

IR =

1 4

I+ PRy

exponent determined to be - about\5

.

DS

: constant deternined to be about O. 32. e

(Re15)

‘4

A value of 1 would not give conver-
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> &

L ﬂ ‘the cases where (A 5) nor (A 6) Have not convorgod within -
the speéified number of iterations, we can complete the. process by the
iteratior on Q/ which uses (A.1) in the form,

t/’ "AC{ln[(z'*'zo /zo}/ko + z'/f } (A.16) ‘

If we dof&e DIFF =Q/ y Then, when DIFF is positive, the
implication ‘is that 2'" 48 too high and similarly, when DIFF is: nagativo,
2! is tga low. Therefore, the next guess will bo, | . ‘

v o “ . ’z" = g' . f(DIFF) . (A.18) ¥ -
where f(DIFF) is a positive function involving DIFF. This funoction a.
ha; to be determined emnirically and will probably vary from grid :

| ‘-A
. !

point tq grid point. S . o 4&,3..;



APPENDIX B

STEADY-STATE ATMOSPHERIC EQUATIONS

B,l uationsa First Form. . |

3".'\

The basic equations in log-linear coordinates are g;iven in

T

Seoﬁn 3 3 1 and simplify t.o, ' o

Q?g x,,,(iﬂﬁ)‘2 3——( '+_xm§-ﬁ) R AR
* gg m( gyz) ;’ ,7—'-’i) M) SRR R »(-B-.z)f-/f‘—ﬁ
-‘}‘ 2( 203262 el 3112 Fype?y . r
° 352 *‘53, bz’ .j a‘%)w) 2("“\ 5 3"«31...

&

"7) (Ba)

«

. - d
PSR _A..\,a,,’ -~

| ' The diffusion operator;ﬁ( ) is defined in (3 30) and used

: :\.n the equation for lgn, R o v
Alf((1-3cf)e3+o 239cuA11 oD (32)) S . | >"(‘B‘.lb) L
seoivhas T

. ‘.'(r‘ \2 .

‘ The oth'er coefﬁcients of di‘ffusivity are not used in »the
! ’ *

,computations but can be evaluated diagnostically\, o .
’ Aif(eB + 4x00 23 All B (o2 6A1 JZK,HT! (iz) )

LY

K =K -
W , 2 .
. R e‘_ _ e L o e (3.5): ,:.
The other‘turbulent moments mvolving G/or ‘q‘yanish,
S e?— q-qz 0 .. ‘.*’(3.6)‘;;-
-l The uie\an mixing ratio and tm mean potential temperature aré,

as wned const.ant throughout the boundary layer and their actual vglues '

N _1‘76;;] R R R



. are. determiried by their values at the surface of th‘?:nqarth.

S V(4

B 2 Mixing Length. -

¥ The fomula for the mixing leng'th is,

S i k(o o)

R Lo z/_dz’ =l 2§y
e e 9..

, woul% havesa large truncation error. Therefore, we will use am o ‘

h

.. ";X’x}' :

o ‘ DELZZ(k) %Cﬁsg%%-;l - (Bo/lZ) -

‘ ';"H’,' oo .‘ ,Q k Zz+z°5 - '(V‘B..?ﬂ)' | ,

: ‘j 2 edz s Lt E

| Q=0 <B¢9>._ ,
. ? o ‘. xs, }bedz‘ﬂ,~ , PR
6‘%:/@’: . A SR i

Tbese iMmls are transfomed 1nto ,d‘inite summatiohs by, !

T 5” 2 du = j 2o d2 ae, f z(k) e(k)/DELZ(k) 4_(3.9).

o oA e
dw/ > z(k)/DmLZ(k) S (R0
k"1f L RN

AR

a’pproximation liEe, L L /

,Q(k’ +1) a-,Q{k -1)
. 391 k_ _ R S N
o g

s

exact fqmulation obtained by taking the derivatj‘ge of (3.7) i h’ f

v

.
U

l

respect to 9‘ ,.'-Ir\ . S | .“ . .; | / ‘ : )'. . »/, ‘- q/ R;_A_
’ Ll = ppzza/Y200 @ L (Ben)

@

N . . ;
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B.3. Vertical Derivative of Kn.
As we know, in the surface layer K, behaves 1like,
. K, = Uy ko(2+z,) " ~ (B.13)

The grid is predominantly logarithmic in-that:re torn, which

implies,
'y oiln[(z+zo)/z°_) - (Bellt)
’ Therefore, '
Ky exp( &) and (B.15)
?bf’/“ x oxp( &) (B.16)

Therefore, a simple finite-difference approximation t;o the
vertical derivative of. Km,

K (k+H)-K (k-1)
9 Kn _ *n )-Ky (B.17)

3y z .

.will be greatly in error in the lower boundary layer. The following

transformation corrects the problems

]

. .
o Oim _ 3 1n Km
. 3(7 Kn ————SZ// = (B.18)
This is better in the surface layer because

InK; & and . (B.19)

\ 31in K ’
s B X constant (B.20)
o -

The finite-difference approximation in the lower boundary .

layer should be

1

(k) -
%;Kﬂ = sz 1n[(xm(kf1)/xm(k-1)] (B.20)
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B.4 Finite-Difference Equations.

B.4J1 Mean bind U..

The appropriate equation for U is (B.1) in which the various
t?rms are approximated by, . ' |
K%(k+f\fKﬁ(k-1) above the constant-flux layer

(B 21)
-Km('k"‘i)

D Eml nrwks
Km(k) ln[f~rE:T7] in the constant- flux 1:yer

1]

A(2)= a’;’ai) ﬂ(mé DINK DELZ2(k)/2+, (k) DEL2Z(k)(B.22)
2 )

M) = k(37 = %, () DELZ2(K)  (Be23)
As) = 20 = [U(er)-U(k-1)] /2 (Bu24)
2

9” U = y(k+1) - 2 U(k) + U(k-1) (B.25)

0y 2 . o

We group all the tarms différent from U(k),
DU = [UCk+1)40(k=1)] A(3)+A(H) A4 (V(K)-Vg) (B.26)
‘Einaily, , ) . \‘ '

A

(k) = pu/[2 A(3)] “ (B.27)

B.4.2 Equation for the Mean Wind V.,
The terms A(2) and A(3) will be used also in the equation

for V. .The other terms are

A(S) = %?1 = (V(x+1)-v(k-1] /2 (B.28)
37V = (k) - 2 V(k) + V(k-1) (B.29)
62/2 _ : .

All the terms except &(k) are grouped into,
= [V(c+r1) + V(k=1)] A(3) + A(5) A(2) = F[UG)=U] (B.30) |
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Therefore,

v =ove A3) (B.31)

Q)

N N
v

B.lte3 Equation for e.

The equation for e is (B.j) in which we have to evaluate the

vertical derivative of (e { )i
‘

9 Ql - 34 de ' l
33’ "032/ +JTQ7 . (Bo32)
We will use a simple centered finite-difference approxima-
tion to the vertical QerivatiVe of e such that | \
%? = [o0+1) - elk-1)]/2 ~ (B.33)

The vertical derivative of<f is given by (B.11) 'and will be
called DL(k). Therefore, (B.22) can be written as |
. DEL = e(k) DL(k) +.0(k) [e(kt1)=c(k-1)]/2  (B.34)

o 302
The coefficient of 2 Eﬂ? becomes :
A(14) = (DEL DELZZ(k)\+ o(k) f(x) DEL22(K)) 0.23/2 (B.35)

fh ffi 1 >t £ 32 °2 1 "
e coefficient of —5——x is
X ‘ ;" 3 Q/

A(13) = e(k),ﬂ(k) DELZ2(k) 0.23 (Bs36)

We call ' .

13712 2 2 o N
A(8) = [ T = [RH AN [ae) aracs) acs)pezzece)
v ' (B.37)
We isolate the terms in 02(k+1) and those in e2(k-1) and
call‘AA and AB their respective coefficients, -
AL = A(13) +A(I8) " (B,38)
AB = A(13) - A(14) (B.39)

Gatheringeall the terms except éz(k), we have
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A(16) = e2(k+1) AA + ez(k-i) AB + 1.2 K (k) A<85 (B.39)
' Finally ve obtein . ‘, h .‘.
U= aae/aas) (ko)
{ w-= SQRT(eZ(k)j}. - (B.41)

o

»

B.l4olt Equation forin

The array B oontains most of the commonly-used variables .
which do not need to be computed each timo that the ﬁrogram is. run.

'In this case we have

B(28) = (1-3¢¢) “eo (Beké)

| B(61) =3 A% . (B.43)

o : © e B(S). = Ay C v (Bol)
o The diffusion'operaﬁoftapplied to o2 1s called A(9) where

CA(9)= b A P b (e%) = 331) Ly [ aa 2(k1) + 43 e2<k-1> - 2 A(13)

R 2(k)] o (B 45)
Ny A(lO)-will represent o3(k) so that L
- A(10) = 62(K) e(k) o (Bu6)
The dénominator becomes
A(12) = 2(k) +2 B(61),Q2(y) A(B) - (B47)
A(11) = A(10) B(28) +A(9) (B.48)
Therefore, Km(k) is expressed as .

k() = B(5) § () A(1/A(12) (B9)

) ~ ) .
BJlte5 Iteration scheme. v

4

The acceleratod Gauss-Seidel iteration process is used for

U, V, Ky and’ e, The'basic scheme has been descnibed in detail in
\ ¥ a X
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Section 3¢5 Some refinements were need in order to prevent divara
gence vhich can eccur very easily in the uppermost levels. Most of
the problems occur when Km drops to a very small value which causes
the wind to become very iarge. Therefore, a minimum value much larger
than the u;ol_ecular diffosivity has to be specified near the top of the
boundary layer. This can be done by specifying a reasonable value
for Km at the top of the boundary layer, say of the order of 100 cmz/
'sec, and devising an analytical function for the minimum value of Ky
cat the uppenmoet grid points., In the lower boundary layer the molecu-
lar value (about 0.15 cmz/sec) can be used as the minimum value for
Km When the top of the boundary layer is fixed at 2 or 3 km it is
necessary generally to compute U and v in double precision in order ’
to- get a good value for,Km However, Km, ] and.k have enough
accuracy’in single’ precision.

The next problem is to determine uhen the iteration proce-
dure has been conpieted.- This 1is done'by comparing two successive o
iterative Valuoe of Ky, We could use a criteria expressing the mi-
br‘nimum percentage that the difference between two successive iterative -
'values must maet in order to have convergence. In our case ‘this is
not desirable because we are more likely to bbtain much greater accu~
racy in the lower boundary layer than. near the top of the boundary
layer. If we used’ a percentage we would have to choose between either
a fairly 1arge percentage with a reasonable number of iterations or
a small percentage and an unnecessarily large number of iterations.
Therefore, it is bettér to use an absolute number of the order of °
_.{1 to 10 cmz/sec as a criterion which would insure high accuracy in

“the region where it is desired, that is, in the lower and middle
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Q

boundary layer.’ Ve will probably have'less accuracy in Kn near the

top of the boundary layer but this ?as only a very small influence on

the wind profile. -~

< . . !

B.5 Finite-Diffeanoo Equation for Ky and_!,. - .

* As and K, aro required in the time-dependent modol they
will be computed diavnostically frém (Be5) which is transformed into

Kt(k) = xw<k) *{s<s> 9<k)[A(1o> + a9} /6200 T (B50)
»

14

-

B.6 Finito-Diffarenco Eqnationsn Second Form.

Tho diffusion terms in the eqdations for U and V can be

written in two'forms, The first form uses (3.26) and (3.27) and
_has been discussed in the proeiohs sections. The second. form uses

(3 26 ) and (3 27 ), and it has the advantage of giving arreasonable .
profile of not only the mean wind but also of the stress. ' The second |
form should be used if the set (3.26') to (3.29° ) is used in the
time-dependent model. The finite-differenoe expressions are much
~more stable near the top of the boundary layer when wo use the second .
form.  This pe;;its a greater OMEGA near the top of the boundary layer

and inaures,a_faster convergence.,

B 6 1 Eqnation for U,

<

The diffnsion term in (3.26° ) can be expanded 83,

{ ej(xm dy )z} (Km )Uﬁ)) - Bi

20U )H
k+%-(&n 37 oL 22
L

(B.51)

In order to evaluate the stress at k+}, we recall that in f'.
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the.surface layer
X - *

Kn -5—.. o ]u*)/(AC ﬂ) = constant (Bs52)

Therefore, it seems justified-to assume the fqllowing arith-

¢

metic average t/;}
XKMP = (K 'Si)[ = 3[K utk*1) Dn.LZ(k+1)*K,,l(k) DELZ(k)] (B.53)

The vertical derivative of U is approximated by a finite-

Fd

: difference ~equation centered at k+

-

= U(k+1) - U(k) (B.54)

}U
Syl

The etress 15 evaluated at k-} by the same procedure,
XKMY = (Km _‘i)! =:%[Km(k-1)'DELZ(k-1)Hgn(k) DELz(k)](B.ss)

= U(k) =U(ke1) (B4 56)

3
%?7 k-3
The coefficient of U(k) ix
| ©A(3) TXKMP 4+ XM (B.57)

»

We group all the terms except'U(k)‘in :

1

- DU = XKMP U(k+1) + XKMM U(l(-I)b +F (V(k) - V-g) (B;58)

"

 Finally, . ‘ |
U(k) = DU/A(3) (Ba59)

B.5.2 Equation for V. | o y
' The diffusion term in (3 2? ) is similar to the one in (3.26')
uith U being replnced by V. Therefore, it is sufficient to mention

the resulting terms. All the terms except V(k) are grouped in -

DV = XKMP V(k+1) + XKMM V(k=1) + F (Ug_- U(k)) '(B.60)

T
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Finally, . . o
V(o =DV/AG) - - (Be61)



APPENDIX C

TIME-DEPENDENT ATMOSPHERIC EQ&ATIONS

C.i Hquations. . | 2 | | o
‘The basic equations for the timq-depeﬁdent model,imxghcoor-',
dihates-aré‘givon in Secti&n 3.3.1 and will noﬁ be repeated hera.
The equation for the mixing length { and for its derivative with res-
pecp to'g have Been derived in'Sectioﬁ B.é. The discussion in Sectlion
' B.3 about the vertical derivative of K in the steady-state nodel is
alﬁoA?aIid for the time-dependenf model. However, in this case tﬁe
thickness of the‘surface layor‘;ill vary according to the diurnal
cycle and may be fairly small during the nocturnal inversion.. There=-

fore, we should use (B.20) only up to the 1eve1 expecfed to represont

the top of the nearly-constant—stress layer during the niphtime.,

C.2 Notation,

In our jmolieit finite-difference scheme all of the varisbles
"in the eﬁuatioqs,which are not diffefenfiated with respect to time |
have to be evaluated at the two time steps t, and t°+-At.’ This would -
imply repéating fwo nearly identical terﬁs differing only in their time
index, In our discussion we will outline how the caléui;tiong are

* done and write,out these terms with a generél time index t. The fol-
lowing arrays are frequently used: | |

A = expressions involving the atmospheric variables,

' B = various constants, -
C = expressions related to the computation of the surface tem- °

186
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.pefature,
D = exprpssions iQVOlyipg'the aimospheriq variables at the
past t1me step t,. | Stomm

The variables startingfwith the le£€er D and containing at |
least three letters indicate a finite-differenco«agproximatiqn to a:

derivative. Terminétion‘withyi 1méiies the first derivative and -
termination with 2 implibs €he sepond derivative, Fér example,

DU = first'deriva;ive of U
DT2 =;second'deriyative on@.
' The name of the variable boing differentiated is found .
between'D and 1.or 2, As the symbol ®1is not generally available
in FORTRAN, T has been substituted for 1it. | |
‘ As pointed out in Sactio; 3.3.2, the diffusion term caﬁ(be

expressed in two forms in g/-cOOrdinates. Equa?ions (B.Zé) to (3.29)
 1nvo1ve differentiation of the coefficient of aday difquivity_and
the first and secondiderivatives of the mean quantities, This fonﬁ

‘ leads to compﬂtatiohal~problems which are described.in Section Ce5e
Equations (3.26') to (3.20') involve differentiation of the flux of
the mean quantity w#th respect to Q/. This second form‘gives a realis-
tic variation of the flux in tﬁe vertical and isvcoqputati§n511y‘ |

more stable. Section C.3 uses the first form whereas Section C.4

uses the sacond form.

C.3 Finite-Differince Eguétiohs: First Form.

C.3.1 Equation for U.

The basic equation is. (3.26). The vertical derivative of

Ky is evaluated as;
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%(Km(k+l;t)-l(m'(k-1,t)) above the constant-flux layer

"i&’zDKMil _ x ) | © o (Ce)
o0 |t t Km(k t) m{kcH t)) in the constant-flux layer

szk 1 ts R -

‘Other terms involved in the diffusion term are,

AQ)~=§(39(—1> Kma A
/ 3 ( m(m\t DELZ2(k) + Kp(k,t) DEL2Z(k)) | (C%{

| o 2 DA

| -A,(i-)lt = Ky (‘a'%) = K (k,t) DELZ2(k) = “(Ci3) ™

The ratio of these two coefficientsiis,
) N N
The geostrophic and Co;*iolis terms Secome, |
FAC = £(V-Vp) = 31(V(k,t,)¥WlintatAt)-2V,)  (C.5)

The firet and second derivative terms are,
U

DU1, =2 -@-- T(k+1, t)-U(k—-i t) /(C;é)
DU2 v a%_ U(k+1,t)-U(k,t)+U(k-1ft)gU(k,t) : (Co?)

The diffusion term at t o 18 ovaluated as,

D(ksil) = (D02|t +Mlt6 Dmlto). o "(C.B)'

If we exclude U(k t +At) in the diffusion term at t +0t,
~We are left wlth, ‘ '

Dl 4 4e= (UKt t +8 )40(k-1,t+ t)+{ah DU1) | ) (C.9)

t, +ot

The coefficient of U(k,to+b t) is,
=1/0t + K1), . " (C.10)
_Therefore, the expression for U(k,t,+At) is, |

U(k,to+At)={U(k,‘to)/_A t_+FAc+A(1)[[DU+D(k,1)j /2}}/6‘1" (Co11)
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C.3.2 Equation for V. |

| The eqhation for V is very similar to the qné for U, There~
fore, the coefficients of the diffusibn term involved in (3.26) are
the same ones as those involved in (3.25). The {;rat and second

" - derivative terms arei -
) .

D\nl,c =2 .5;; = Vi, t)-Vlke1yt) (c.12)
sz| ——2;/—‘25 = V(k+1, t)-V(k t)+V(k—1 t)-V(k t) - (C.13)
‘The,diffusion”tegm at t, becomes, | |
D(k,z) = (DV‘ZI't +AA|, DVLy ) B ."(c.m)‘
_ o o o

A part of ihe diffusion term at t, 4-At is,

=(V(k+,t +Dt)+V(k-1 t +A t)+<AA EVi)

DVle +at ) ,;(C'is). |

7

tod-'A t

The geostrophic and Cdfiolis‘terms are written as,
FAC = f(U -U) = %f{ZVg-[V(k;td)+V(k,€o+_b t)]} (C.16)

Finally,-
V(k t +At) {V(k t )/A t+FAC+A(I){[DV+D(k 2) /zﬂ/wr (c. 17)

C.3. 3 mquation for()

The derivative of Kt with respect to 9’13,

, %(K (k+1 t)-Kt(k-i t)). abore the constant-flux layer _
97t (SDKT1} = .. (ca8)y . .
-y |t It K (K, ), Ky (k*1,t) Ty -
In( ) 4in the constant-flux layer

@ g 2 Ky (k-1, t) \

\

- The coefficien*s involved in the diffusion term at t are,

A(é)lt %(93’;%3%) 3l -

) K¢
d

3 (Dxmlt- DELZ2(k) +-I€t(k,t)" DELzz(k)) (C.19)
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292 . .
A(5)‘ = K (3 z) K (k t) DLLZZ(k) (c.2o)
The first and second deriVatives on@vdth respect to ? are,

. ="57/@=@)(k+1 t)-@(k t)+®(k-1 t)-@(k £)(C.22)

‘The diffusion term ‘ovaluated at toois,
+(A(6)/A(5)DT1)|t) (C.23)
O, 0.

DT2

D(k93) = (Dr2 ‘t

Part:of the diffusion term at t+4t can be written as,

oot |, 2 t"@(kﬂ t +bt)+®(k~ ,t +At)+[A(6)/A(5)DfI‘1]¥t pt
| ¢ ’ : (czu)
The copfficient ot @(k, t +At) 18, - -

| cST2 = pt + MS) | -~ fc.25)

AR Therefore,

@(k £ Jtat)= {@ (kyty)/ A t+A(5)[(DUr+D(k.3)‘/z"/cn'z (c.z6)

—

. Co3 OL} .Equ&tion for_Q.

° The b;sic equation 18 (3,29). The vorticnl-dorivatifo~of

K is,

');.K' o~ g(x‘,(?ka t)K, (k-1,t)), above the constant-flux layer .
S| v, = L (c.27)
L9k, Tt Kw(kt) K, (k+1,t) ' '

o | 2. (Kw(k-i t)) in the constant-f}ux layer
The cuefficients of the diffusion terms are,
5(9)1«;(?’;(—-&) ——‘i> o |
3 (DxmltDELzz(k)’u + Kw(k,t) DEL2Z(k)) (C.28) -
" }L(8)'{= K, (—3—%)2= K (k,t) DELZ2(k)  (C.29)

‘The first and second derivative terms become,
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I;Q}l;C ‘f' 2 %—% = Q(k+1 t) - Q(k-—l t) (C.30) |
mz‘t = %—é% =Q(k+1,t);Q(k.t)*Q<k-1,Lc)-Q(k,t) (C.31)
The diffuston term at t_ is, | '
D(k,u) DQzlt +(A(9)/A(8)DQ1)| (C.32)

The diffusion term at t +-At can be written as follows when
we' exclude Q(k,t +At),
DIQ ¢+ M=Q(k+1,to+at)+q(g-1,to+ nt)+{A(9)/A(8)DQ1)’t°+ At
- ) (c.33)
The cosfficient of Q(k,t +8t) is,
CST3 = 1/pt + A(B) (C.34) .
Finally, : | |

Q(k t o+ At)= {Q(k t )/A t+A(8)\\DDQ+D(k Wl /2 j,usm (C.35)

Cs3.5 Equation for e.
. ‘. 2
Bquation (3.31) is the equation for 2. We define some of
the teqrms '.;h"wich"are. frequently used in the equations, The various

derivatives of the mean quantities are called,

NS P e ‘ :
2 %I =2((-§-.";’)2+(§—‘£)2) = %((DU1)2+<DV1)2) ¢ DELZ2(k)
D’I‘A’t =2 —@ =2 D’I‘1' DELZ(k) : (C.37)
DQA[ =2 3Q=2m1~ DELZ(k) . ’(0-38)~
: t Jz. STt . T

The covariances reﬁreséhtinfé the heat flux and the flux of

water vapor are, respectively,

W, =2¥e =-K(kt)DTA (c.39)

mlt 2%q =- K (k,t) DQA . (cuk0).
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» . . .
These ftwo covariances can be combined through the concept of

virtual temperature,

A(12)| = 2 55 = B(21) WI + B(20) W&~ N- (Cus1)
1Y
where. B(21)_= S/To ‘ ' (Col2) 0
- B(20) = 0.6078 g 2 (C.43)
We define, _ _" \ ; R
RS IR RS S ION (c.s4)

The coofficisnts of the diffusion terms are,
A(13)| = 51‘1-.22 99(5’—%) = B(22) AF,t‘ DELZ2(k)

%}{AF 6EL22(k)+[9(k,t) Da!tfe(kft) DL(k)] DEL2p(k) |

whera, DE’,C= %—2/9 = }o(k+1,t)-0(k-1,t)) ' (C.47)
DL(k) = 3 = DEL2Z(k)/ Jz(k t) : ~ (C.48)

B(zz)=5£§——21 S (C.49)

The terms evaluated at t ara grou,ed in,

D(k,5)= (3——<e )+ Kml——f Wy 2l Lt

(A(13) DE2+A(14) 1>E1+A(1.2))lt Halkoty) A(11) |
o 7o

+ez(k,to) (2/6 t

-B(24) e(k,t )/ f (Kt ) (C.50)
The terns which are different from e2(k,t +At) and which
Are evaluated at t_+8¢t, are, |

[o]
A16) = ( 2222[ 3

t°+at

ACES o’ -] z(xm - V8,)

B(22) (A(13) DE2+A(14) Dz1) + K (k,t) A(11) + A(12) (C.51)
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Finally;
£27 = o2(k, b+ AY) = (DU, 5)44(16))] [2(1/ B 4A(13) g 4 5¢)4B(28)

o(k,t +A t)/J(k,€o+At)] (C.52)

* ollytyt At) = (2(k,t + st =sare(zzr)  (.53)

.

C.3.6 Co@)utation of 0-2.

Equation (3.32) is used. The cosfficients of the diffusion’
. e
term are similar to A(13) and A(14) which were derived for e2. The
 only difference is that the constant E(22) has been replaced by 0.23.

Therefore,

A'(iB)\;‘é 0.6 A(13)

(Cush)

A'(14) |— (C.55)

9

0.6 A(1l4)

(-]
- -
s

The first and secbﬁd derivatives are respectively,

21 lt =2 z/) = 52(c+1,t) - 2(k=1,8)  (Cu56)
=z = = = =
mzlf‘s—fz)' 020k, )= 42(k, £)+ P (k=1,8)= 67 (s t) (Ca57)

"

A term which is encountered in.ez, 3—5 and qz, is,’

-A(21) ¢ = 2(1/4 t-e/(!BZ){ = 2/ h t-B(26) e(k,t )/Q(k t,)(C.58)

[o}
where, © B(26) = 2/B, C(c.59)
| The teyms evaluated at the past time step t, are,
D(k,58) = (A'(13) §:22+A-(14). DT21-WT DQA/Z)!t°+ ?(k,to) A(21) t
(C.60)
The coefficient of' 62 (k t,tAt) 1s,
A(18) = 2(1/At+A(13))+ B(26) e(k,t +At)//? (k,t +m) (C.61)

The ‘temk\different from -é-z(k,t°+A t) at t°+At, are,
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A(19) = [A(13) D122 + A(14) Dr21 - W DQA/ (C.62)

2]‘
to+ at
Finglly,

é-i(k,to+ at) = (A(19) + D(k,6))/A(18)  (C.63)

C.3.7 Computation of q2.

N

¢

The reference equation is (3.33) whose formulation is -
L3 . :
similar to (3.32) . Therefors, the coefficients A'(13); A'(14),. A(18)

and A(?l) remain unchanged.  The first and second derivative terms are,

_50 -
D21 |t =2 %_;L/_ = c-l-z(k-fl,t) - q%(k=1,t) (C.64)
| 2= _ — = -
w2z = 5_;125 q?(m,t>-q2(k-,t)+q2<k-1,t>-q?—(k,c) (C.65)

The terms which aré evalunted at the past time step, are,
D(k,7) = (A'(13) DQ22 + A*(14) DQ2L - W Dea/2) |, + c-;'?_(k,to) A(21)
T ()
¢ .We group together all the terms evaluated at £°+vAt, except
q_z-(k,to+At).
A(22) =A*(13) DQ2 + A*(14) DQ21 -WQ DRA/2  (C.67)

Theréforé,

;—z-(k,’c) = (A(22) + D(k,7))/A(18) . (C.68)

C.3.8 Eguation for ©g.

EQuation,(B.BQ) is used for 0q. Again, the coefficients
‘A'(13), A'(14), A(18) and A’”1) are the same ones as derived for 92.

The first and second derivatives are,
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DTQiIt =2 %%9- = Balkti,t) - gqlk-1,t) (C.69)
"y .
UI‘QZ‘t = 3;——9; = 6q(k+1,t)- 8 qlk,t)+ eq(k-1,t)--5'3(»k,t)
o ~ (€.70)
The terms evalnated at t, are, '
+
eq(k t ) A(21) (c.71)

o .
" The term at t +At which 1s equivalent to D(k,8), 1is,
A(22) -(A (135 DIQ2 + A'(14) DIQ1 -(WQ DTAHT n.ux)/l#)\t At
5 o (C.72)

Tha final.result is that,

Balk,t o) = (A(22) + D(k 8))/1\(18) _ (C.73)

Ce3.9 Equation for Km' ‘

AN
uquation (3‘3&2 is the equation for K . We will drop the} :
time index for the next three sectlons ‘because the coefficients of
diffusivity K, K and Kw are evaluated diagnostically at the time ]
step t;*:et.. Some terms are common a}l three coefficients of,eddy“
" diffusivity and 'ax;e_, o o -
| =03 = 62(k) o(k) (C;?#)
e =uagd $o e 29 . (c7s),
When we use the results which we have obtainéd in the pre-
vious sections, we can rewrite (Cdej) as;

A(zz) 8(31) (A'(13) DE2 - 2 02(k) + A'(11) Dn1)}(k)(c 26)
where, . B(31) =’Q\Ai” '. ' (C977)



a = 5(5) L) T (c.78)
where, B(S) =4, (c.79)
The numerator in (3.3}5)' is expandedﬂ as‘,

A(24) = AR (B(2h8) AG + A(23h) + (B(43) WT + 8(45) m)ﬂ(k)) (c.80)

vwhere, B(28) =1 - 3C4 ~ . (c.81)
=214 g

| 3(43) T (’c.eg)

B(45) = 3155110.60?8 g - (c.83)

The denominator is,

A(25) = e2(k,t) + B(47) (A(11) + 1.5 (B(21) DIA + B(20) DaA)) J2(k)

| . (c.84), ”
whers, . - B(¥?) =3 &% | - © (c.85)
Final};:, I - o ,
K (x) = A(2K)/A(25) (c.86)

C.3. 10 Eguation for Kt

Equation (3 36) is appropriato for Kt A term cormon to

both Kt and Kw is,

=e3+uA1023J?——(e,P—£\)-6AP Km}'é—z

| = 4G + A(23) - D(36) j(kx K(k) AC11) (c.87)

whers, . B(36) = 3 0 . (c.88)
4. The numerator in (3. 36) is, u . |

A(26) 38 = A8 (asn(iie) w4 (-6 4 iy (acan) 92(k>+s(zo) 9q(k))/D'rA) |

| T(c.89)

whoro, _  B(46) =6 0.6078 g L (c90)
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The-denominator becomes,

| A27) = 62(K) + B(58), ijZ(k) . (euot)

where, - B(s8) = 6A1 g/Tb _ (c.92)
Therefore, o RN

K0 = AR AG26)/AC2D) NCE)

0030 11 EcLllation 'fO!" K“. v

Equation (3,3?)'15 used for K, The numerator can be

expressed as,

A(28) AR = AR{Ax+B(63)f(k) Wr-6 o(k) [ B(21) eq(k)+B(20) T(k)]/mA]

. - S o (C 9t) -
where, Y B(63) =6 Ay g/T, (C495)
' The denominator is, o 5
A(29) = ez(k)‘433(33),l?(k) DA (c.?é)
Finally, | | |

K. (k) = AR A(28)/A(29)
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Colt | FinitepDiffefence EqUationsr Sacond Form.

Coltzt Egnation for Us 7 ' .

The diffusion ‘term in (3 26') is expanded as,

Yy J2 z
. _ (C.97)

_l(xmﬂ'u_q [(Km 3y az\k'é(xmr"uw)\ %

In order to evaluate the stress at k + 3, we recall that in

thﬁ surface layer,
Km al: o (fu,)/(ach) = constant | (€.98) |

Thergfore, it seems justified to assume the follewing arith-

metic average,

~

2 X, = (Km 3 Z)J K+, tté(xm(kﬂ t) DmLZ(k+1) + K, (kyt) DF:‘LZ(k;)
C.99

Thé vertical der1Vative of U is approximated by a finite-

difference eqﬁation centered at k+}, ' _ o | N
2 U/ = U(k+1,t) = U(kyt) “(C4100)
Y | k+i,t i ’ '

The stress is evaluated at k-4 by the same proecedure,

2 xm\t— (K 3% 9 =) e 3t '}[Km(k-l t) DELZ(k—1)+Km(k t) Dn.LZ(k)]
’ . : (c 101)
%—} . = U(k,t) = U(k=1,t) (c.102)

We<group all the results and obtain,
3 2 ¢ 3-9) = DELZ(k) [U(kﬂ t) L7 Uk, t ) (XKMMEXKMP ) +U(K 1‘t.)
- a 2 Km a 2 t ) ’ ’ . ., -ly
- XKMM ] (C.103)

We will use the same finite-ﬂiffn snce s~heme as described

in Section 3.4.2., As a result, we group the exoress4ons evaluated at
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the past time step 1n'b(k 1),

D(k,1) = DELZ(K [U(k#1,t)-00k st5)] )ucm>|,C +{UCk- 1,4 )-U(ko o)

xxrm]to} +»F[v(k,to)/z -vg] (Co108)

The coefficient of U(k,t,* At) is,

= 1/A£me+xm)\to+ pt DELZ(K) ©(C.105)
L]

i Finally,l ‘
U(kyto* AL) {{mzplt + at U0+t +At)+XKMM‘t ot U(ket,t+ 5]
DELZ(k)4D(k,1)=F V(k,t RINER Ulksty)/ A t} /cST (Ce106)

The mathematicgl exprassions could have beex condensed but
the condsnsed expressione would not minimize the round-off errors as
woll as the expanded version of the equations, in Section C, 6 we will
discuss in some detail the problem of round-off errors in the determi-

nation of the profile of the mean quantities.

CJdte2 Equation for V.

The diffusion term in (3.,27') is similar t6 the one in (3.26')
with U being replaced by V. Therefore, it is sufficient to-mention .
the resulting terms. The expressions evaluated at t, are,
D(k,2) =‘DELZ(k){[V(k+1,to)-V( k ,toi]XKMPIto+[V(k-1,t°)-V(k,to)]
xm{}t;S* Plug - Wt)/2] o (caon)

Consequently,

V(kyto*rht) {{xmp\t syt V0Lt A L) + XKMM ¢ ot bt V(k-1, to+tAt)]

DELZ(k)4D(1,2)-F Uk, tq# 62)/2 + V(kyt,)/ & 3/%1‘ (C.108)
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C.4.3 Equation for(H).

The diffusion term involved in (3.28') i3 similar to the one
in (3.26') if we replace U by @), and K by K. Therefbro, pafts of

the heat-flux terms are,

g XKTM ‘t (K 5 Z)Ik_% L = (kg (k-1,t) DELZ(k-1) + K¢ (k,t) DiLZ (k)]

. ‘ (C.109)
2 XKTP|¢=(K, —3—%) Kt 3[K, (1e+1,) DELZ(k+1) + Ky (k,t) DELZ (k)]
| (C+110)

When we use the centered finite-difference approximation
to the ei-derivative of ), we obtain,

( g__z_ .Kt %@) . peLz(k)| @ic+1,t) XKTP|¢ = @(k,t) (XKTPAKTH)|

+ @ (k-1,t) XxTM|¢ ) (Ce111)

The expressions computed at the past time step aré_grodped

into,
D(ky3) = DuL&(k){ [@(k+1 ty)- @(k t )] xm\t +[®(k-1 t,) -
@ (orto)] xxm\to} | | (c.112)
The coeffici'-ent of ®('k,to'+At) 1is, '
cST2 = 1/ pt +(xxm+xmp)|to+m’ DELZ(k)  (C.113)
Pinally, |

® (x, t°+At) -@(k t ){ {L()(KTP\t AL (@(k+1 t +at)/®(k t )) +

xxrm\t°+5 ¢ (@ (k-1 sto+ 5 )/ @(k,ty)))-DELZ(K)} JesT2}  (C.114)

C.lteli  Equation for Q.

>

Equation (3.29') is similar to (3.28') if we replace K; by

Kys aﬂd Q} by Q. ‘Therefore, parts of the water-vapor-flux terms are,
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= 4[K,(k+1,t) DELZ(k+1) # Ky(k,t) DELz(k)]
(c. 115)

2 X0P [y = (K, 39)

* - - :
2 XKWM]t (Kw \k_% ¢ = 3l (k-1,t) DELZ(k-1) + K (i, t) DELZ(K) ]
; | (C.116)

The diffusion term_can be-expressed-as,
P OS5 S 23 )\ = DELz(k)[Q(k+1 t) XKWP't-Q(k £) (XKWP+KKWM) |
+ Q(k=1,t) XKWM]t . (Ce117)

in which the centered finite-difference approximation has been used to
evaluate the & ~derivative . of Q. The expressions computed at t, ‘

D(k,4) = ELZ(k){[Q(kﬂ to)=Q(kyty)) xm]t +[Q(k-1,t )-Q(k to)]

XKW | ? - (c.118)
o "” o
The coefficient of Qto+At) 4s,
cST3 = 1/pt + (xrcm»mcwm)\t pELZ(R) . (C.119)
. . . [o]
Finally, W\ -

Qk,t +at) -{[xxwp tota t Q(k+1 t +bt)+XK‘~NIt +am. Q(k- 1,t +At)]

Dh.LZ(k) + D(k,4) +k,yty)/ D t}/csra (c 120)

-

CJ4.5 Other Equations,

The other equations are left unchanged and can be found’

from Section C.3.5 to Section C.3.11.
. >R e L
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C.5 Computational Problems,
| . In this section we will deal with the computational problems
associated with ‘the first form of the diffusion term. We will discuss
_only the problems encountered with (3.28) for the followiné‘reasonsx
1) The computation'of the tempepature profile is tne nost'senaitised
to these problems. =~ . o p
. 2) The equation for'GD‘is simpler to analyse than the ones for;U dnd
v because it does not involve Coriolis or pressure-gradient forces.-
3) The derived oonclusions from the, analysis ofﬁz)are applicable*‘p
the other; 3 main }'quanti’cies because of the similitude of the equations.
‘Tnerefore, it is sufficient tO»anslyse the'behavio?"of
the equation for (). Another simplifying aseumption in tbe‘analysis‘
is the use of the forward=in-time finite-difference approximation
to_(3.28) instead of the finite-difference approximation'used in our

equations ar¥ described in section 3.4.2. Therefore,

- ~

. A B : |
SR j‘“at th . - (c.121)

’
will be approximated in our discussion by,

Alt, +At.) A(t ) +At f(t,+At) o (C.122)
The reasons for that simplification anez_ .
1) The finite-difference equation becomes simpler ss it involves
‘roughly only half the number of terms required by the other time=

-finite-difference approximation.
2) The conclusions which uill be draun from our discussions are almost

fimmediately applicable to the actual finite-differonce equations ‘used

in the program if we look into the effect caused by two consacutive
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time steps.

Coe5ule .Fomation‘ of Artificial Inversionss Ce‘se of no Real Inversion.

The inversion can be generated only.by the earthls surface
in;our‘nodel becauee‘the'tempergtu}e at the top of the ooundary‘layer
is kept fixed'at all times. The top of the inversion will be cafried
upward «with the help of turbulent diffusion. ’l‘he diurnal temperature
cycle has only one maximum and one minimum per day because we neglect
advection ahd cloud formation. ' The model is stanted fromlneutnal -
stability et‘the time.oftmaximun tenpereture.' fher‘fore, the<eagth‘s
surface will'cool down for the first'few hours e;edting a etable

. layer tbroughout the atmospbere without any inversion. If the model
develops any inversion, this will be caused by. numerical problems.
The model ran smoothly until wo obtained a region where Kt was Varying
rapidly due ‘to the increasing stability, and this caused the formation
* of an unstable leyer on top of the eurface-based stable layer. This'
., behavior caused a dederioration of the model and ultimately caused
divergence of the results, The finite—difference version of (3. 28)

becomes,when we neglect the time-derivative term,

| ®(k) = (A(1) + A§2))®(k+1) + %57(1,) - ALZ))@(k-il (C.m)-_f‘

4

where, /-A(1) = K:b(k) DELZZ(k), associated with the: feoond derivative,

- and ‘ A(Z)'=)Kt %345 ——%}(—:i) ’ associated with the firat
‘ _ derivative o:‘ @with respect to 9 .
If we restrict Kt to non-negative values, then A(1) .
is afwnys positive. Aﬂowever,A(Z) can’ be of either,sign depending on

the sign of the Q-derivati\re of K¢o  Some possibiﬁlties are,
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Case 11 o A(2) = A(1)
- In.t}‘)is'oa;o‘wo havet @ (k) = ® (k+1) n
casez . K@) =0 \_ |
Now, we' ob‘tt_a'im ®x) = Bicrt) ;®(k'u

cased A() = - A1)

This implies: @l(k) = (k-1)

Therofore, for - ‘ - _

S A € [,
we have,‘l : @(k) g[@(k 1), @(k+1))
where £ signifies that the term on the left-hand side is within the
range definod y the tenns inside the brackets on the right-hand side.
Conversely i A(Z) is not in the abOVe-defined range, then ﬂD(k) is |

. computed outsi g the range[@%(k-l) GD(k+17] This means that the
diffusion term which normally tends to smooth out any temperature
gradient, would increase the temperature gradient if certain conditiona

are met. We will derive the conditions under which such nonphysioal

i \

: resalts are obtained from the. finite-difference schema. Mathemati.

cally, A(2) [ACD)) implies that,

- 31n Kt 9 Y/ 9 22
| : > : . (Co124)
L ‘L oy 7 _g_';_f L

~ Equation (C.12§> can,be pgi.iﬁto a finite-difference formula
‘ahd,for-tkolgrid uéually usediin our,simulations; requires a variation. -
in K of an order of magnitude between two successive grid points.
Excessive coolihg or warming will be computed woenever condition

~7(C°12“) is met. This problem can be partly cured by imposing that

. A(2) \A(i)\at all time steps. But this is an arbitrary assumption
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O

which interferes with the,computational scheme., The inclusion of the
tims derivative term adds very little, and tha eondition A(2) < A(

insures now that, A

Bkotorat) € (@ oty )y B k-1, +01), @ (kr,e +0 )] (Ca125)

C.5.2. Blocking of the Height of the Daytime Inversion.

“Another prdblehlralated to the use of (3.28) appears a few
hours after sunrise uhen“the inversion height, after rising relati-
vely_weli, suddently refuses to méve higher than about 50 m. This
produces a very unstable surface layer capped by a very stable layer,
‘The causes for that behavior are a complex interaction batween Kt' 55

and ().

" 1. Kt depends stronzly on the sién of the temperature gradient., A
small value of Ky is obtained in stable cases and a lafgehone in un-
stable cases. The difference in sign of ths temperature gradient
means usualiy a fow ordérs of magnitu&e difforence in the computed
value of Ki.

2, 65 should nearly vanish whenever the temparature gradient decreases
to a very small value. Below the inversion, i? the uﬁstable region,
5§ is relatively large. In the stable region above the inversion,

65 is égain imoortant where the temperature gradient is large. There=
‘fore, we expact a minimum in 55 at the inversion, However, the value
of this minimum becomes dominated by the diffusion term and the time-
dependent terms in (3.32) and no lonzer by the tempera£ure gradiént
term, That means that 63 does not vanish in the limit of a very small

temperature gradient, . ‘ ’
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3. The equation forQE)is not solved in terms of the vertical varia-
tion of the heat flux. Consequently, the computed temperaturo profile
cgnnot force alene the 1lifting of the inversion height ‘but permits
very often the existence of a very unstable layer capped off by a very
‘staﬁie layer. V

| In the equation for Kt the product 92 -—g) ppears. Near the

inversion, 92 is larger than expected from the limit,AQD~?0 and TSZD

is positive. This gives a very small value to Kis which in turns
prevents the 1lifting of the inversion height., In order to 1lift the
inversion height we would nemiAQ}(iO , which causes large values for
52 and Ky. This would maintain the inversion height at a relatively
high position. The computétional scheme seems to be able to 1ift

the inversion height under some conditions which are not always met.
One way of curing the problem‘is to neglect the time-dependent and
the diffusion termé in (3.32) near the inversion height. This allows

a smaller value for §2 %@ near the inversion height, which permits

a 1. . . value for Ky and which ultimately will lead to the 1lifting of
ha inve.:ion héight. However, this method of solving the problem

ca itiate séme oscillati&ns_caused by the vhriaﬁions in 52 because

we afe using two'different formulas to cbmpute 55. Therefore, convere

gence 1s not readiiy insured at each time step.
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C.6 Rofinements to the Finite-Difforence Equations.

I'd

C.6.1 Double Precision. ‘

Near the top of the boundary layer, the mean atmospheric
variables vary slowly both in the vertical and in time. Hopever, the
cooefficlents of eddy diffusivity and the other turbulent quantities
vary appreciably in that region and their exact value depend to a
great extent on the gradient of the mean atmospheric variables.  There-
fore, in oreer to get a éood estimate of the turbulent quantities we
need a fairly accurate eValuatioh of the mean vafiables. This implies
that double precision is generally needed for u, Y,Qi)and Q whereas
single precision is probably always eufficient for all‘ef the other
atmospheric variables. The great inconvenience of_double-precisioﬁ is
that it requifes 2 to 4 times the computing time of single'precision.
Consider a specific exemple in which we nssigh 7 deciﬁal digits to
single precision and 14 decimal digits to double precision._ We define
an elementary operation as the operation between two digits. We will
compare the number .of elementary operationsvrequired for adéitien and
@ultiﬁiisation ir single pgeCision‘ﬁith'the number of similar opere-

tions in douole precision} We consider two numbers A and B which ]

consist of n digits each,
£ '\ ‘
A =Xy Xy 00 X, . (C.126)
B=y; ¥y *** ¥y - (Ce127)

The addition A+B involves n elementary addition of the type
X3 4Yy e If X, ¥, y 10 we add 1 to x,_y. There is on the average a 50%
probability that this additional operation has to be done. Therefore,

an addition requires 3 n/2 elementary operations.
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multiplication in single and double precision when we use the decimal

system,

’

precision| single double
operation 7 digits | 14 digits.
“addicion 10 21
multiplication 126 509

m 11, Average number of elementary oparations for addition and

m&ﬁt*plication in single and double prec151on when.wa use thes binary

systenm.

-

double’

: rocision | single
. operation 7 dizits | 14 digits
addition 9 18 -
multiplication 102 399
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By similar reasocink.we can estimate that an averago multi-
plication will require about [(n61)2 + n2]3/2 elamentary operapions.
Tablelo compares the numbsr of elementary operations required in Bingle
" precison and in double precision for the operationa of sddition and’
the oporations of multiplication in the decimal system. Table 11 does
cho same comparieon in the binhry system, Tpe most important conclusion
which can be drawn is that addiﬁioh requires oply about fwioe as much

espeot to single precision, whereas

computing in double precison wi

‘multiplicdtion in doubls, p ision néeds at leost 4 times the compu-

“ ting time)of a single peclsion multiplication. Therefore, if‘wo want
to save computing time, we should try to reduce the numbor of multi.
‘plicetione which are done in double precision. For exanple the tempe-
Trature dlfference GD(k+1‘ -()(k-l) is covputed in double precision
and the resulting valuo is put in a ainglo precibion variable DTI.
This temperature differonce iS~needed,for exqmple,in the computation
of“some of the turbulent variables.‘ ﬁy ceing DT1 we do not lose -
any significant information and we gain by reducing the number of

computations performeg in double precision.

~

C.642 mnimzat'iop of Ro\lnd-o,ff Errors, B
Tﬁe rnund-off‘errors can be very importent.near the top of

the Boundary laysr. During some numerical experiments these ha;e been

observed to add up consistently. ' This effect was most visible on

the temperature profile vhich showed an inoreasinbly large tempera-

ture gradient between the top twp grid points, When the computations"

were done in single precision this was enough.to prevent the convere |

genco of the model. In double precision the problem 15 somewhat



210
reduced but problems can arise if the model is run long enough,
Theréfore, it seems impbftant to devise a finite-difference scheme
which reduces the possible round-off errors. This is achieved mostlj "
”by‘being\careful-in choosing the order of the operationsiins;de an
expression., We will taks the example of a constant 1sent;9p1c atmos-

“phere, for which a rounq;off error will mean a deviation from_the consa
tant value, Ordinérily the cqmpuier transforms the déciﬁnl numbers
into hexadecimal numbers. Thera ar§ a.feﬁ operations in real number
arithmetics which should not glve any round;off errors. These are
1- ‘The hexadecimal representation of a smali real decim#l number
without any decimal part is exact, For example 3. wouidvhave an exact'
hexadecimal.rqﬁrese;tation whereas 0.3x101‘would not. . v

2= The d;fference A-A=0, eiacfly.
 3- The d\:'Lvis‘ion'A/A =1, exactly., °
4. vThe sum A + 0, = A exactly.
5-. The opérations Axt =A and A-1 =A exactly.‘
6~ The addition 6r'sdbtraction'of two small real numbers without any
decimal part is exact.- | | |
| There are other operatlons whicﬁ may give round-off errorss
1= The multiplication between two real numbers A and B, followed by
‘the division by B, gives A with a round~off error. (A x B)/B = A + rqqnd;
: 6ff error. This round-off error could be prevented by changing the
order of the operationas Ax (B/B) =Ax (1) = A without round-off"
error. . \\ '
2- The oporation (A +!A)/A 31Ves 2 with a round-off error. This can

be cured by (A/A + A/A) = 1, + 1, = 2, exactlys ~
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We “‘baék to .(C.26) 1n ‘which D(E,B) is identically zero
-for é constahtéFbmperatufe profile because DTI‘to and . DT2 to are.exac-
+ tly zero according tovoperatién 2 which 1s,the difféfence between two
equal numbers. We note that DTi\t°+_°t;is algo idenficnlly zero for
'the same reason. We are left with o S
. @(k t +At) =[O(k to)/ B+ A(5) H@(kﬂ,tg At)+®{k-1.t_of’3t))}}/
- Waes)] o
The operation é{®(k+1,t°+ pt)+E(x-1,t + a’t)} may or may not
give é‘rbund-off error in the éasé'of an iSentroﬁic atmosphere. For
- example, we suppose a four-digit accuracy and(E) 501, 3. The real sum .
is 1002 6 which is transformed in four-digit accuracy into’ 1003. with
a round-off error of 0 ly. "The. subsequent division by 2 yields 501.5
with a round-off error of 0,2, However if C) 301 3, the sum is 602 6
and the. divison by 2 gives back 301.3 uith no round-off errors. There-

fore, we suppose temporarily that there is no round-off errors for that

operation. We have the ratio . S
® = C @At + AG) @
T1/8t "’A(S)

The operation ®/ bt and A(S)() are . very likely to. have:

D

round-off errors as well as the subsequent addition. Therefore, that -
f8rmlation is very 1ikély to giVe rise to round-off errors.. However,

if we rearf;nge the terms as,

to both the denominator

’ and the numerator .and will give some answer B with round-off errors -
with respect to the true solution. This is not important as B/B

without any round-off error, and {)is computed without any round-off
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_ @TrTOr. Therefore, the best finite-difference equation isolates

and factor A(5). Equation (C 26) is rewritten as

®<k ta+88) =@kt (178 va(5)fpor/ B, o)k, 3)/@<k £,)] /2}

/(1] bt + AN |
Ve have noted that in actual numerical tests DDTAED(R t )

gave exactly 2. with no roend-off errors, This-implies that there is
no need to extend the division inside DDT. The rearrangement of the.
torms 1s effected for all the other finite-difference equations for

the mean QUantities.

4
!

" Cobe 3 Higher-Order Aoproximation to the DeriVatives.

‘ +In Section 3 L we have devised finite-difference approxima-
tioes to the first and sacond deriVatives which were more exact by an
order of approtimation in the Taylor Series. As pointed out
‘ previously ‘thers is no ﬁeed for the improved and time consuming
second~order approximation to the deriVatlves in the regions vwhere
‘the atmospheric variables are varying gently, namely in the sgrface
leyer.and'in the upper boﬁndary layer. The higher-order approximafio?‘
is optional in the time-devendent model and is uEed in the region‘
'determined by the range [m(b),m(?)} where m is an integer varigble

'used in the programe.

Co 6 4 Restrictjon on the Temperature Profile.

As noted in Sectlon CeHy (3-28) has a. tendency to create
'many stable-unstable transitions. We ean devise limits to the tempe=
rature at each grid point based on the principle that there is no

1nternal energy source term and that warming and cooling can only
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.come‘from tha other 1evels. In the program we have called
D(k,s10) =@k +15t,)- () (kyrto)
which roprosents the stability at the past time step above the grid
point ko. At the actual time step, the stability around k is defined
by
stan = @)k +1,t+ B £)=Qlkom1,t,+ A1)

From the knowledge of these two,variablee we want to‘impose'
a restriction on GD(ko’to*iﬁt)' As an example, we suppose that D(k,,
10) is positive, which implies staeility above the grid point k, at
‘the past time step. If SIGN.is also positive, that implies that the
layer'ground'ko at the ectual time step is also stable, The resﬁriction
to @(kystot Bt) is to impose the condition that it must be smailer )
than @(ko*,t,+At). Only wvhen Ek,-15t,) s great'er th;n B (xyoty)
is it possible to expect that the restriction interferes with a.
real change in stability. But this case is certainly rare as 1t ‘would
require very rapid changes in the surface temperature. We tabulate
| all the‘pessible combinatioes ofAD(ko,io) with>SIGN and the restric-
tion 1mposed on C)(ko,t +At) in Table 12, . This restriction on the |
temperature is optional in the time-dependent model. It can be imposed
for any 1ayer that we wish, it can ‘be done durina the computations
at each grid point or after a complete iteration has been completed.
Whenever the restriction is imposed, we rese? ()(ko,to+ﬁ1ﬂ within.§he

range [ @kgtlrto+ 08D, B (kpm1,t,+0 )]



and

\\

Restriction on®(ko»,to+At). We defines

D(k,,10) = B x*15te) Bligyty)

SIGN = @ (ikg#tst _+0t)- @ (komtsto+ BE)

a1 C;:ND( kos10) positive ‘negative
bosiuve/ { ®(k‘°+1,to+"'m)x >‘®(ko-1,t°+m)
negative { @(ko'fl,to-rﬂt) > ®(.ko+1’to+at) 1
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APPENDIX D

INFRARED FLUX DUE TO WATER VAPOR

D1 Hypotheses. ‘

The'fellowing hypot‘eseelare made in erder to eimplif§ the

 computational teskg' | o ,

'.Higothesis 1t the pressure at the roughness heighﬁ‘is constant at all

times. This’im;liee that the pressure at the.pop of the boundary layer

LT vary. | o

H\_@@ sis 21 we neglect the infrared fliux emitted by the layer bet-

weee z; and the ground.‘ Tﬁis layer is,fairly thin' and the infrared

flux raceived at the eerth‘s surface 1is not‘eodifiedbsensibly b& ne-

glocting the contribution from that layer. '
xgoth951s 3 the layer above the boundary layer is not modelled

.and we neglect the infrared'flux ceming from that layer. That assump-

tion is justified by the relativaly rapid decrease in the mixing ratio

with height and by the fact that most of the: infrared flux emitted by

water vapor’ end received at the ground is emitted in the lowest 100

‘meters of the houndary layer.

prothesis s only the mean infrared flux will be considered and con-
sequently ee will use only the mean atmospheric Veriables in our com-
putations. -

Hypothesis 51 the hydrostatic equation will be used to compute“‘tbe
meah'pressﬁre.' , . | .
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D.2 Co@putation of Temperature.

In the computation of the infrared rndiation we need the
temperatnre which can be obtained from the definition of potential
temperatnre. In index form we have : ‘ : ‘ .

: . K
T(k) =®(k)["§‘o-z] : ] I‘“‘(Dol)
-y o .

where K= R/Cp and Po = reference preésure = 1000 mb,
, ' W

D.3 Computation of Pressure,
" We use the hydrostatic approximation
_a._P. .—.‘.- P g ‘ (D.Z)
The perfect gas 1av is ~
| P'(’” o (Ds3)
_ The virtual temperature p 15 relateq to the- temperature T
nnd to the mixing ratio Q by the approximate expression '

T§1+06078Q) _ | -(D.ﬁ)

Combining theee equations wi£h~(D.1) we obtain - O
3 | . o

. BT R®(1+06078Q)

R . '
‘1 3P g Po ~
3z " n®(1+o.6078 A

Equation (D. 6) has isolated the pressure and will be used in

a finite-difference form

2 @imacen) P
p(k)“ [@Cr1)+ @] {1#0:3039 [Q(k+1)+0(k5]

P(k+1) = P(k)[r-

(D.?)
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D.4& Eguation for the Infrared Flux, ‘

The basic equations for the infrared flux | ‘are (5. 9) and

(5.10) which we recall horo,

n

R0 =5 (¢ ]k< 8w (oY
'ﬂu =F6-A-3—P- e (009)

_{ vhere F (0) = 1nfrared flux received at z due to vater vapor

index of- the top level considered

M 3
I

emissivity of water vapor

= average pressure of the layer [mb]

<&
ol
"

_average mixing ratio in the layer (g/g)

ol
"

gravity = 980 em /sec

T, = average temperature of tho layer (9K)
= path length in a given layer (cm)
Stefan-Boltzmann constant.

will consider the layers between grid pointe.v An average

of hat quantity at the upper grid point and of its value at the ﬁower '

‘grid point. For example, the average pressure is,
e '-[P(k+1)+P(k)]/z R
‘ ' Therefors, (D.9) is written in finite—difference form as,.
An -[P(k+1)+P(xc)]EP(kﬂ)-P(k)][Q(k+1)4o(k)]/(u g) (D.10) |
- The total path length w is defzned as the sum of all the <
path lengths contained in the layers between zZ, and the top of the

. layer under consideration,
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' (top) ‘ ’ .
w = 2:‘ A _ (Dall)
| (z5) |
_ The slope of the emissivity curve can be derived from
Table 2, . S -
€ - 0.1579 D e ‘ 4,
3 " THZs e for 0 <w <10 (D 12)‘
. 2€ = 0.0 .,6 _ for 107 <¢w < 10" -3 . (D.13)
u w o N
SE0.0%5 - por 1073 2 ”
v e - for 107w < 107, (D.14)
'g‘% =_9_;Q§§2 . | for 107%w < 10'71 " (Dl15)
2E o 00778 for 10‘1 | L (Da16)
ou W N o 2 _
The‘ finite-difference equation corresponding to (D,.B)-‘ is
F 4(0) ~Z_o—(r‘*(k+1) + TH(k)) (3—% N (Bu) /2 T (D.17)

k—l

D. 5 COMputation of the Infrared Flux.

_ All the quantities can now be comput.ed and the successive
steps in the computation of the infrared flux are,

D.5.1 For the Lower Boundarzt

*

‘ Steg 13 Compute from (D. 1) the temperature at z

' D 5.2 For the Other Levels. : ‘ : ' .

Step 21  the pressure at the grid point k+1 is computed from (D.7). ,
Steg 3 the temperature at the. grid point k+1 is computed from (D 5)

‘ Steg b Au is computed from (D.10).
. .Steg §_sv the total path length W is c}puted from (D.11). o
Sﬁeg 6:l the contribution to the infrared radiation from each layer is
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computed from (D.12)

D.5.3. Integpaied Result.

Steg 7t finally the contribution from each layer to the infrared
|

flux is added up ﬁo glve the total infrared flux received at the

ground.



APP:NDIX B
SOLUTION OF Tuws SURFACE TcHPSRATURE EQUATION

. Woe will use the results obtained in Chapter V and trans-

form the equations into a finite=difference form. Equation (5.20)

becomes, ‘
= KI(2)1(@(3)-2(1) WDILE(2)/2 T ()
where Kw(k) = coefficient of eddy diffusivity for water vapor at
grid point k =9+ 1 | |
pelZ(k) = the derivative of ¢/ with réspect to z at grid-
point k | '
Q(k).= mixing ratio at grid-point K
Equ;%ion (5.19) is transformed into
5 = ks(2) (T5(3)-T3(1)) DDZ(2)/2 - (E.2)
where KS(l) = molecular coefi1c1ent of dlffu51v1ty in the soil

RN

at grid- point l = € + 1

Ts(1) = 3011 temperature at grid-point 1

i ODZ(1) = firstiderivative of € with respect to""z3 at grid-
point 1. o ‘ . | " o

The equation fof the‘atmosnheric-sensible.heat flux involves

. the potential temperature whereas all the other terms in (5.1) contain.

the temperature. This 1s why we transform.(5.13) into a form compati-

ble with the other terms. The'equaﬁion for tﬁe pbtenﬁial temperature |

is
) | |
@ =1 (1000) | O (ED)
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where K= R/C 2/7
Taking tho derivative of the luodrithm of (E, 3), we have

31n(H _d1nT 12
2 = fK%“%‘B (Eo4)

0 Z 2z

v
[§

We use the hydrostatic approximation in (E.4) so that

%@e%?<§§¢g;) e
Equation (E.5) becomes, in a Fifite-difference form,
L\@% (DT +Dz g/Cp)®/T ~(E.Q)
The integral foa_'m—of (5.13)',13 | |
| NG = z+:°) _‘ (E.?)’

We combine the last two equations and obtain:

k u (2)e 1 ]
T n (z+25)/z, %@?%JL[@(?N@(@*E— 2(2)  (E. s)

In tHe last expression we have evaluated.the finite-diffe-

rence equation hetwee z_ and the first grid point. Wéchmbine the

i outgoing~térrest al infrared n&diat;on_uith the'sky infrared radiae

tion due to C02, | ,

 Rf=foT®0) (£.9)

Qneré € =(1-0.18)€ .= effective emissivity of the. ground.
The infrared radiation from water vapor (Fw) has been com-

puied‘in Abpendix D, and the incominé solar fadiation (Ia)‘ﬁas been

defined in Chaéter V. Therefore, the follbuing‘equation resuits if

results; ‘ '

we group all the\\\\

1H0) + c(2) 20) +C(1) =0 (_E.ib)'
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| where, Ks DDZ 2 2 + BB:
are o2 = Ps cs : r'( )/ +‘
¢ o B +®m]
= P Cp PorIn (a¥25020) T(2) + 700 4

I

c(1) = -

(Ta#F,* L K(2) Q(3)Q(1) DsLz(2)/2+88 T(2)+87<2>}
o .

‘ Equation (E.10) caﬂ be solved exactly. We will follow the

_ steps outlined in the 14th Edition of the CRC Abridged Mathematical
Tables (1967), pp. 291-293.. This requires that we solve first a re-
solvent éubic equation, whose solution gives th; desired solution to
the quartic equation afﬁer a few manipuiations. The procedure will be
simplified by making"use‘of the fact that C(1) is always negative and

that C(2) is always a real number.

E.1 Solution of the Resolvent Cubic Equation. .

The quartic equation to be solvad is of the type

“

xb' +ax3 +bx2+ c_:x +d=0 (E.1f.)
wﬁere .b | | a=b=90
c=¢(2)70
Ca=omS o

The resolvent cubic equation is

Prey+f£=0 (E.12)
vhers - - e=-lhd=-=540C(1) 0
| £==c2=- re(2)]?

Now we let

.
|

-(-—+(T °3)>3‘ - (Ea13)
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§ |
= (- L+ (Lt (E.14)

The three solutions are

‘yi =A+B o (E.15)
! oy, == tlamaennfl T @ae)
7y = - Hawr--B)(-]  (Ea7)

Ny
£2 e3
If the disciminant (-~ 5 ) is

>0 we have one real root and two imaginary roots, -
=0 we have three real.roots of which at least two are -equal,
{0 we have three unequal real roots. )

In our case - |

03\> 0 because e 1s always positive, and

" £2 5 0 because f is real.
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Therefore, the discriminant is always positive and the only

real ‘root is Yye We define the following variables:

c(3), =- 4 £ =c(2) c(2)/2  (E.18)

c(k) = £2/4 = ¢(3) ¢(3) (E.19)

=

~c(5) = 3/27 = -[c(1)1/31 64/ 27 - (E.20) _

© The discriminant is
DI = C(8) +C(5) . (Ee21)

The constants A and B are, therefore,
o(7) = &= [c(3) +sarnors) V2 (s.22)
c(8) =B =[c(3) - SQRT(DIS)]1/3 (E.23)
N J * - ) ¢
where SQRT = square root of the function inside the parenthesis.

Therqfore,‘the solution of the resolvent cubic equation 1is

Y1 =.¢(?) + c(9) . - (B.2W)

-~
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We note that B is always negative But smalle; ih absoiuté'

value than A, so that Y1 is always positive. '

Ee2 Solution of the Quartic Equation.:

- We define R aa

= ( az/u “b+ n)* = SQRT(Yi) . (E.25)
. Therefore, R will alwnys be real and positive. In this case

-

we,dqfine D and E as ‘
p=(R2-2eRF  (E.26)
£ = (82 +2 of/R) (Ea27)

We must eliminate.ail of the non-physical roots. o = C(2) 1s
always positive which implies that D is an imaginary number and is
rejected for that reason. B is the only real root for which the follo-

wing 1nequality must be satisfieds

&% +2 c/R L (E.28)
The two possible solutions are
. : + , ) \
x=3+(~-Ra B)" (E.29)
As R and E are both positive, the only positive real solu-
1 tion of the quartic equation is
x=%(-R+E)



APPENDIX F

" LIST OF SYMBOLS

kinematic coefficlent of viscosity for heat -

also roughness angles angle between the lower’ boundary
layer wind and the geostrophic wind '

ratio of the heat capacity at constant pressure over the )
heat capacity at constant volume for air-

°

Kronecker's delta

‘also solar declifation

finite difference operator
partial derivative operator
alternating tensor _ .AJ | &

also ratio of the gas constant for dry air over the one, for

uater vapor

also effective emissivity of the earth's surface -

emissivity of the earth's surface

latitude | :;

ratio of the gas constant over the heat capacity at conse-
tant pressure for the air .

Various length scales '
first and second coefficlents of viscosity

moleeular coefficient of diffusion for heat

kinematic coefficlient of viscosity

density of the air and density of the soil

225



CST2.
CST3

rate of strain

also frequency in the Fourier analysis :
clso Stefan-Boitzmann's constant

stfecs <

mean and flv-~tuating potential temperature

/
. 80il logarithmic coordinates

atﬁosphegic log—i&near coofdinates
zenith:apgle '
eaith's angular velocity
albedo | |

also constant between % and 1 used in the expression for
the path length for water vapor ‘

also departure from isotropy in the ordering of terms

various constants

blackbody'radiance

.- heat capacities of dry air at constant pressure and at
"~ constant volume

heat capacity of water vagg; at constant pressure

set of constants used in the computations of the surface
temporature : :

soil heat capacity a

‘coofficient of U(k,t +At) and V(k,t_+At)

coefficient of B (kyt +a t)
coefficient of Q(k,to+At)
total derivative operator

also half the soil depth in Myrup’s (1969) model

‘ _amplitnde of the Fourier modes;
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DDZ
DD2Z
.DbZZ
'DELZ
DELZZ
. DEL2Z
DELZ2
DIFF

DL

~ DEL
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derivative of e with respect to the soil linear coordinate

‘second derivative of e with respect to Zg

square of DDZ

first deriVative of. €./with respect to 2
ratio of the b{-derivauve of | over §2
second derivetive of q with respect to z
square ofxDELZ‘ .

constant used invva;ious expressions
first ?eﬂva\’tive of § with respect te' &
first deriyetive of e § with respect to &

diffusion eperator

RN

also partial pressure of water vapor
{

also coefficient in the resolvent cubic equation used to
find the surface temperature
«

latent heat flux.

also part of the solution of the quartic equation
Coriolis parameter _

also used to represent aﬂy function B

also one of the coefficientsin the resolvent cubic equation
computed Va}ue of a funpt;on F |

last iterative value of a function F

new iterativewalue of F | |

flux

total infrared sky radiation received at the earth's sur-
face , L.

sensible heat flux from the atmosphere
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_ IXP

K‘Lu

' grid point
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J T

-also an index

net solar radiation -

intensity of radiation at frequ;ncy \Y
level at whi~h the iterative formulé:computing the grid
point height changes -

IKM + 1

a géneral index

. . . . -
wavenumber vector ~'NJ

von Karman's constant

also a specific grid point

‘coefficient of eddy diffusivity for momentum .

molecular soil thermal conductivity

coefficient of eddy diffusivity for heat

‘coefficient of eddy diffusivity for water vapor
absorﬁtion coefficient'of water vapor in a thin layer

fourth-order tensor relating'cg to the gradient of the
mean wind . J() . ‘

Qavenﬁmber

also 'a general index.
mixing length |
maximum size of the eddies
latent heat of vaporization

number . of increments in Taylor's series

represents various exponents
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P .
r¢
q,Q

. "
Rt

"top of the boundary layer in terms of k. = & + {

acceleration factor in the Gauss-Seidel iteration scheme

pressure

~ reference pressure = 1000 mb

‘turbulent Prandtl number,

fluctuating and mean mixing ratio for water vapor

gas constant of the dry atmosphere

. gaé constant of the water vapor
infrared sky radiation

te;restrial~outgoing infrared radiation

solar constant’

net radiation at the sﬁrface of the earth
entropy | |
entropy of dry air. 

entropy of the water vapor

soil heat flux

time -

5.

absoiute temperaiure

virtual tempefaiure

transmissivity of the cloudless atmOSphere;
truncation error

fluctuating and mean winds along the x direction

" friction velocity

fluctuating and mean winds in the y direction

geostrophic wind

L]
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fluctuating and mean winds in the z direction

path length in water vapor’

~ the first Cartesian coordinate in the horizont#l

" the second Qartesian coordinate in the horizontal

also soluticn of the resolvent cubic equatibn
vertical.Cartesian coordinate -

zenith solar angle

roughness height

proportion at eaéh gfidupoint of the total %emperatufo‘
difference between the surface and the bottom of the
soll layer : : o
roughness height

canopy height in Kyrup's (1969) model

top»of the boundary layer in Myrup's model



