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Abstract

Traditionally, reservoir model-based open-loop optimization is used to allocate

an amount of steam to each injector well. In Steam-Assisted Gravity Drainage

(SAGD) recovery, the optimal real-time steam allocation from a shared steam

generator to physically connected multi-pads can significantly improve long-

term performance goals. However, in real-time optimization (RTO), general-

purpose optimization algorithms decide based on short-term responses, unlike

long-term optimization processes. Using economic Key Performance Indica-

tors (KPI) such as Net Present Value (NPV) in a single objective, the RTO

determines the smallest amount of steam allocation that results in the highest

economic returns. Injecting a small amount of steam reduces steam cham-

ber heat loss, growth, and long-term ultimate bitumen recovery. Furthermore,

when the oil price is volatile, maximizing steam allocation and non-condensable

gas (NCG) at the wind-down stage is essential to ensuring a profit while re-

ducing risk. This research addresses the SAGD RTO workflow limitations of

handling oil price volatility and balancing steam chamber development and

economics to achieve long-term goals.

An adaptive data-driven predictive model developed based on typical Athabasca

oil reservoir properties is employed for real-time short-term forecasting of the

KPI, reducing the computational cost. A modified version of Modigliani’s

risk-adjusted performance is proposed and integrated into the workflow as a

tradeoff selector of expected returns and risk when handling oil price volatil-

ity. Additionally, the workflow is tested on multi-pad steam allocation using an
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Alternating Direction Method of Multipliers (ADMM) for single-, multi- and

many-objective optimization problems. Finally, an alternating set of RTO

objectives is proposed to ensure that both short- and long-term KPIs are

achieved.

The performance of the RTO workflow introduced is tested on single and

multi-pad field scale SAGD first principle models. In addition, the cases are

designed to mimic SAGD operations steam availability, wind-down, single,

multi, and many objective RTO. The impact of the developed workflow is the

improved short-term strategies, improved long-term economics, and reduced

carbon footprints
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Chapter 1

Introduction

1.1 Background

According to Natural Resources Canada, Canada's proved oil reserve totals

168.5 billion barrels in 2014, of which 164.1 billion (˜97%) are oil sands (NR-

CAN, 2016). Between 2019 and 2039, the Canadian Energy Research Institute

(CERI) predicts that in-situ thermal recovery, solvent, primary, and EOR cold

bitumen projects will cost CAD200 billion in capital costs. The CERI study

also says that the oil sands are expected to add $1.01 trillion to Canada’s

GDP over the next 11 years (Millington, 2019). Oil sands are made of bi-

tumen, sand, and water, which are mined or heated because of their highly

viscous nature. The main in-situ bitumen recovery methods are cyclic steam

stimulation (Escobar et al., 2000; Frenette et al., 2016; Patel et al., 2005;

Vittoratos et al., 1990) and steam-assisted gravity drainage (Aboorvanathan

et al., 2019; Butler, 1991; Edmunds and Chhina, 2001). This work focuses

on the real-time optimization of the steam-assisted gravity drainage (SAGD)

recovery method.

Even though SAGD has been used successfully in western Canadian oil

reservoirs, many research questions still need to be answered to improve bitu-

men recovery, lower the cost of steam injection, and improve energy efficiency

to reduce the carbon footprint. Achieving the goals require in-depth knowledge

of integrated SAGD process management decision-making under uncertainty.

Uncertainty can arise from the bitumen price, the reservoir’s geology, the wa-

ter supply for steam generation, or technical issues with a steam generator.

1



Improvements in intelligent field technology make it possible to make better

decisions about the SAGD process in real-time.

1.1.1 Data-Driven SAGD Reservoir Models

Management of SAGD reservoirs requires a production forecasting tool for op-

timal decision-making. Typically, a decision-making tool is needed. The tool

can be analytic (i.e., Butler’s model), numerical (i.e., reservoir simulator),

or data-driven models (i.e., system identification, neural network). Histori-

cally, assisted or manual history matching has mainly been conducted using a

reservoir simulator. The computational expense of assisted or manual history

matching with reservoir simulators presents a challenge. Other problems, like

the cost of getting new data to update the model, can make it hard to use

reservoir simulators for making quick decisions. Reservoir simulators are the

most effective tool for long-term screening of different recovery methods. The

dissertation focuses on real-time optimal short-term decision making, which

faces decisions such as bitumen price uncertainties, availability of steam supply,

steam-non-condensable gas injection, single and multiple objective multi-pad

steam allocation (optimized control variable). System identification is selected

as a tool to simulate the dynamic state of the SAGD recovery process. The

selected data-driven tools main advantages are

� Computationally less expensive

� Use of routine data (i.e., temperature, rate) at no extra cost, unlike

the simulator, which requires well logs, seismic data updating, which is

expensive.

� It does not requires highly skilled engineers to operate it in production

operations.

2



Using observed data from a dynamic system to construct a representative

mathematical model is called system identification (Ljung, 1999). Petroleum

reservoirs are dynamic systems because pressure and saturation change over

time and space. System identification techniques can be used to model these

changes. System identification in the SAGD model can be described as an

inverse problem. Identification of the reservoir (system) state is defined as

history matching, a critical step in SAGD process optimization.

A general model structure (Ljung, 1999) for dynamic systems can be rep-

resented as

y(t) = Gp

(
z−1, θ

)
u(t) +Gl

(
z−1, θ

)
e(t) (1.1)

Gp (z
−1, θ) is the process transfer function that relates the input (u(t), steam

injection rate) at any time(t) to the output (y(t), oil or water rate). Gl (z
−1, θ) is

the disturbance transfer function that relates the input noise to the output.

z−1 is the backward shift operator; this allows the process and disturbance

transfer functions to include the effects of the past inputs on the current out-

put. θ represents the vector of parameters to be estimated. The general

prediction error model (PEM) for history matching SAGD reservoir model is

expressed as (Huang and Kadali, 2008);

A
(
z−1

)
y(t) =

B (z−1)

F (z−1)
u(t) +

C (z−1)

D (z−1)
e(t) (1.2)

A
(
z−1

)
= 1 + a1z

−1 + . . .+ anaz
−na (1.3a)

B
(
z−1

)
= b1z

−1 + . . .+ bnbz
−nb (1.3b)

C
(
z−1

)
= 1 + c1z

−1 + . . .+ cncz
−nc (1.3c)

D
(
z−1

)
= 1 + dz−1 + . . .+ dndz

−nd (1.3d)

F
(
z−1

)
= 1 + f1z

−1 + . . .+ fnfz
−nf (1.3e)

The process (Equation 1.4) and disturbance (Equation 1.5) transfer func-

tions are defined as the rational backward shift operator, respectively, as
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Gp

(
z−1

)
=

B (z−1)

A (z−1)F (z−1)
(1.4)

History matching using system identification is conducted by re-writing

Equation 1.2 as a general linear regression model (Equation 1.5).

y(t) = φT (t)θ + e(t) (1.5)

The formulation now reduces the optimal parameter θ, which minimizes

the error between the measured and predicted historical data. The matrix of

Equation 1.5 for a historical measurement is

Y = Φθ + e(t) (1.6)

Where

Y =

y1
...
yN

 Φ =

 φT (1)
...

φT (N)

 e =

 e1
...
eN


The minimization loss function is

J(θ) =
1

N
(Y − Φθ)T (Y − Φθ) (1.7)

The derivative of Equation 1.7 with respect θ and equating to zero reformulates

the loss function with regularization to reduce overfitting as

min
θ

J(θ) = J
(
θ̂
)
=

1

N

[
Y TY − Y TΦ

(
ΦTΦ

)−1
ΦTY

]
+

1

N
λ ∥θ∥2 (1.8)

The SAGD recovery process is developed in stages (ramp-up, regular, and

blow-down). Steam is prioritized for hundreds of well-pairs or pads at vari-

ous stages of maturity. Although the data-driven model can help short-term

SAGD recovery decision-making under uncertainty, it can produce suboptimal

decisions as decision variables grow.
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Over the years, various researchers have presented data-driven models as

a proxy for a high-fidelity first-principle model to make production optimiza-

tion decisions. Ma et al. (2015) studied the uncertainties of parameters of

an artificial neural network SAGD model. Principal component analysis was

used to reduce the size of the problem’s dimensions to avoid overfitting and

make better predictions. SAGD performance is affected by interbedded shale

barriers. Kim and Shin (2017) studied the effects of interbedded shale barriers

on SAGD performance. Their study used linear, linear-log, log-log two-factor

interaction, and two-factor with a log transform regression models to build a

data-driven SAGD model. The study showed that the key parameters affecting

the peak and drop (inflection point) in bitumen production rate and increase

of Steam-Oil-Ratio (SOR) are reservoir thickness, shale width, shale length,

and vertical location of shale barriers. In addition, integrating convolutional

neural networks and data analytic techniques were studied to infer the distri-

bution of shale barrier impedance to steam chamber growth (Ma and Leung,

2019). The data-driven SAGD models use temperature profiles from vertical

observation wells and horizontal SAGD well-pair production profiles to infer

shale barriers' size. Also, the data-driven SAGD model generates an ensemble

of heterogenous SAGD input production and temperature time-series data. In

the same way, Kumar and Hassanzadeh (2021) used random forest regression

to create a data-driven SAGD model to study how random shale barriers af-

fect SAGD performance. Their results showed that shale with a length of less

than 20% of the reservoir and increasing shale distance away from the pro-

ducer had no significant effect on production performance. Yu et al. (2021)

developed a data-driven model for forecasting SAGD cumulative oil produc-

tion. The model is based on an artificial neural network, and the performance

was tested using the Von Bertalanffy indicator with a 0.52% error after 20

years of cumulative oil production forecast. Based on the comparison of ANN,

XGBoost, and LightGBM SAGD data-driven models, Huang and Chen (2021)

showed that training performance improves with increasing sample size and

randomness (i.e. sampling distribution), with LightGBM showing the best

performance. However, the ANN model shows the best performance with the
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worst randomness. A recent study by Huang et al. (2023) of ANN, GRU,

LSTM, CatBoost, XGBoost, and LightGBM SAGD data-driven models on

three sets of PetroChina Canada field data. The test results showed that the

recurrent-based algorithms (GRU, LSTM) have better predictive performance

but require higher training time than boosting-based algorithms (CatBoost,

XGBoost, LightGBM) and ANN, with GRU being the best predictive algo-

rithm. System identification, a recurrent-based algorithm that requires less

training time, will be used in this dissertation.

System identification for data-driven models has been applied over the

years in the petroleum industry for waterflooding design (Hourfar et al., 2016),

oil PVT properties estimation (Salehinia et al., 2016) and production opti-

mization (Elgsaeter et al., 2008). System identification, which will be used

to build a data-driven SAGD model, has proven to be effective in SAGD

operations over the years. Yao et al. (2015) studied the use of system identifi-

cation in developing a data-driven studied the use of system identification in

developing a data-driven SAGD model which showed the Box-Jenkins model

structure has higher accuracy for one-step-ahead predictions of non-recursive

prediction error methods and for a seven-step ahead prediction, recursive au-

toregressive with exogenous input model structure performs better. It was

also observed from the study that, better predictive performance is achieved

when SAGD data-driven model is structured with inputs of steam injection

rates and bottom-hole pressure and outputs of bitumen and water produc-

tion rate. The results from Yao et al. (2015) study informs the choice of

Box-Jenkins model structure as the data-driven model development for this

work. Purkayastha et al. (2018) further showed MIMO system identification of

the SAGD model outperforms a multi-input and single-output (MISO) model

structure. In the study, the MIMO model was used for the steam trap and

oil rate controls, while the steam trap was the control for MISO. MIMO con-

figuration showed a 171% improvement in NPV when compared with MISO.

Sibaweihi et al. (2019) used Output-Error (OE) system identification model

structure as SAGD data-driven model to study the economic performance of

SAGD under different scenarios of steam availability and prioritization.
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Data-driven models using system identification proxy models will learn

the SAGD process parameters for real-time short-term forecasting and opti-

mization in this work. The underlying equations used in building data-driven

models may be applied to multiple decision processes and usually leads to

not honoring the physics of the process under study. Using first-principle

models requires setting boundary conditions or constraints for development

strategy (i.e., minimum or maximum rates, flowing bottom hole pressure) to

ensure feasible solutions are produced. In the reported works using data-driven

models, normalizing historical data aims to improve the data-driven model’s

prediction performance. Constraints are imposed on the first principle model

prediction but not in data-driven models, making them susceptible to pro-

ducing infeasible future production forecasting. In the work of Purkayastha

et al. (2018), the model predictive control (MPC) was used. Using MPC

with system identification means setting many constraints (i.e., 32) to make

the controller moderately aggressive or ensure prediction stays within bounds.

Having many constraints results in poor optimization algorithm performance

because it has to honor all the constraints. The methodology section will

further describe normalization to reduce constraints and ensure improved pre-

diction performance. The following subsection presents a literature review on

using data-driven models in real-time SAGD optimization.

1.1.2 Real-Time Production Optimization

Advances in intelligent field technologies present a unique opportunity for real-

time production optimization. Daily SAGD recovery process monitoring and

surveillance program collects data such as rates, temperature, and pressure

information of well-pairs or pads. The collected data are processed into help-

ful information used in management decision-making. Future development

plans for SAGD reservoirs are designed using life-cycle optimization to max-

imize economic benefit. The dynamic nature of SAGD reservoirs means the

initial SAGD reservoir model used in creating future development plans needs

updating. Decisions such as well-pairs or pad drilling schedules, exploitation

strategy, production, and injection allocations due to changes in market forces
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and geological or operational challenges introduce conflict in long-term and

short-term goals. Short-term (weekly, daily, or monthly) updates and opti-

mization of SAGD reservoir model input parameters in real-time to minimize

deviations from long-term goals become essential.

The life cycle of SAGD recovery projects involves making capital-intensive

decisions and has a high risk of failure. Thermal recovery techniques cost is

affected significantly by steam supply and water handling accounts for more

than half of cost (Edmunds and Chhina, 2001). Traditionally, predetermined

steam is allocated using the reservoir model to optimize the SAGD process.

Allocating steam using proration can lead to a suboptimal return on invest-

ment and, hence, optimize steam allocation to maximize NPV. Unexpected

operational challenges or water availability for a steam generation have a sig-

nificant constraint on the steam amount injected into a well-pair or well-pad or

field SAGD operation. SAGD project life-cycle requires well-pairs or well-pads

added to the production stream at different project stages. Adding well-pairs

or pads introduces an additional steam generation capacity requirement, af-

fecting the project performance . Hence, optimal operation maximizes NPV,

identifying which well-pair or well pad in the SAGD project being allocated

excess steam becomes essential. Environmental and low oil prices constrained

the optimal performance of SAGD. Hence, optimal operation maximizes NPV

and identifying which well-pair or well pad in the SAGD project being allo-

cated excess steam becomes essential. In addition to low oil prices, environ-

mental factors constrains the optimal performance of SAGD. Accordingly, it

becomes essential to coordinate steam supply to each well-pair or well-pad in

real-time steam allocation optimization. Challenges such as steam chamber

conformance control and uniform steam chamber distribution along well-pairs

due to heterogeneity in geological properties further support the need for real-

time production optimization. The geological heterogeneity encountered as the

steam chamber spreads vertically and laterally can positively or negatively af-

fect bitumen production and steam injection. Real-time optimization ensures

the adaptation of injection and production rates to reflect the dynamic state

of the reservoir.
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SAGD data-driven model is coupled with an optimization algorithm and

data acquisition setup to form a real-time production optimization workflow.

The workflow dynamically sets controller setpoints from ramp-up, normal and

wind-down stages of SAGD (i.e., from greenfield to brownfield). Dynamic opti-

mization under uncertainty is performed in real-time to maximize short-term

Key Performance Indicators (KPI). SAGD recovery method KPIs typically

optimized is Net Present Value (NPV), Steam-Oil-Ratio (SOR), water loss or

balance, and recovery factor. For the annual In Situ Performance Presenta-

tions oil and gas companies submit to the Alberta Energy Regulator (AER),

the the in situ recovery method performance is formulated as multi-objective

to balance economic, engineering, and environmental goals (EEE-G).

Presentations in the literature have yet to formulate the real-time workflow

that balances EEE-G submitted to AER annually. As well-pairs and pads

are added to the SAGD reservoir, it can produce sub-optimal decisions as

decision variables grow. Typically, in the literature, the optimization problem

is presented as a single problem. For real-time SAGD production optimization,

the optimization problem can be decomposed into units (well-pair or well-pad),

and each unit can be optimized.

The primary tool in SAGD operations decision-making is utilizing a reser-

voir simulator (first principle model). Improvement in real-time data acquisi-

tion presents an opportunity for real-time short to medium-term SAGD oper-

ations decision-making. Saputelli et al. (2006) define real-time as making de-

cisions at a frequency commensurate with the corresponding level's timescale.

The challenge long-term SAGD operating strategies face is dynamic changes in

the reservoir because heterogeneity requires continuous updating of operating

strategies. Holanda et al. (2015) listed some challenges of reservoir manage-

ment decision-making: high uncertainty of measured data, time-consuming

nature of analyzing data, and expensive data acquisition. Various researchers

have presented workflows demonstrating improved key performance indicators

(KPI) of SAGD real-time optimization. Mohajer et al. (2010) proposed a four

staged workflow that uses artificial intelligence and data mining algorithms

coupled with a thermal reservoir simulator to analyze real-time data from
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SAGD operations. Gonzalez et al. (2012) proposed a real-time workflow to

optimize SAGD well-pairs inflow performance. The workflow uses fiber optic

downhole array temperature measurements and pressure-temperature down-

hole gauges to guide steam injection rates and pressures during the start-up

and production stages of the SAGD process in real-time. Purkayastha et al.

(2015) used MPC with proactive steam injection rates determined recursively

to describe the relationship between subcool temperature difference and in-

put heat rate. The goal was to find the optimal steam conformance, which

resulted in an NPV improvement of 35.7%. Patel and Trivedi (2017) pre-

sented a real-time SAGD production optimization using Adaptive and Gain-

Scheduled MPC. Adaptive MPC recursively estimates model parameters while

Gain-schedule decomposes the subcool control problem into a dynamic non-

linear reservoir system's multiple-controller problem. The economic perfor-

mance of SAGD was optimized in real-time, which realized an NPV increase

of 23.69% and 10.36% for adaptive and gain-Scheduled MPC, respectively.

Kumar et al. (2018) proposed workflow with coupled machine learning and

numerical simulation to predict future SAGD performance. The workflow uses

field surveillance data to determine the optimal field and well steam injection

rate, duration of steam injection, and the rate of reduction of steam injec-

tion to mature ells for redistribution to newly developed regions. When the

workflow was implemented in a middle eastern reservoir, the results showed

that NPV increased by 42.4%, and the cumulative steam-oil ratio decreased by

24%. Vembadi et al. (2018) presented rea-time feedback control of SAGD sub-

cool and steam chamber development optimization under uncertainty. It was

demonstrated that MPC real-time realized an 18% improvement in NPV than

standard open-loop optimum rates typically practice in the field. Hunyinbo

et al. (2022) proposed a real-time SAGD forecast uncertainty workflow with

Monte Carlo sampling to handle uncertainty quantification. The approach to

handling uncertainty is based on the probabilistic approach, while in this dis-

sertation, a scenario-based approach is implemented in a robust optimization

framework.

The SAGD recovery process is developed from single well-pair pilot test-
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ing to multi-well pair pad and multi-pad as field development moves from

greenfield to brownfield. Real-time optimization of SAGD operations results

in increasing optimization problem size with competing demand for steam al-

location between mature and younger well-pairs or pads. The real-time SAGD

optimization workflows presented in the literature assume a single well pair

(Guevara et al., 2018) or well-pad (Guo et al., 2018) or multi-pad (Shahandeh

et al., 2016) over the life-cycle of the project. The formulation of real-time

SAGD optimization as a single problem can be susceptible to producing sub-

optimal results. In this work, real-time SAGD optimization is formulated as

a distributed control optimization.

1.1.3 Decomposition-based Optimization

The decomposition approach can be applied to break large-scale multi-pad

optimization problems into sub-problems and solved either in parallel or se-

quentially. Even in situations where decomposed solution methods are slower

than centralized solutions methods, decomposed solutions are preferred since

it allows coordination of subsystems to achieve global optimality (Boyd et al.,

2008). For the multi-pad steam allocation problem (Equation 1.9), the vari-

able (steam allocation, U) for which Npad is the number of pads, is decomposed

into subvectors u1, . . . ., uNpad
and the sum of the objectives of steam alloca-

tion ui solved in parallel honouring the local constraint to each pad is the

field-wide objective. A coupling constraint (Equation 1.10a) does not allow

the optimization problem to be solved separately. The local constraint can

be the maximum allowable change in steam allocation for controller stability

(Equation 1.10b) and the local bounds constraint for the allocation variable

to each operating well-pair in the pad (Equation 1.10c). Hence decomposi-

tion techniques are applied to solve the sub-problems iteratively in parallel to

achieve an optimal global solution.

max
u

Npad∑
i=1

fi (ui) (1.9)
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s.t.

Npad∑
i=1

ui ≤ U i = 1, . . . ., Npad (1.10a)

∆umin
i,j ≤ ∆ui,j ≤ ∆umax

i,j j = 1, . . . , Nwells (1.10b)

ulb ≤ ui,j ≤ uub (1.10c)

Primal and dual decomposition techniques can be applied to split the op-

timization problem (Equation 1.9) into sub-problems. In this work, the dual

decomposition technique will be used. The dual decomposition of Equation

1.9 is formed by introducing partial Lagrangian to reformulate (Equation 1.9)

as a decentralized problem (Equation 1.11). Where hi (ui) is the vector of the

resource allocated to each pad.

L (u
i
, λ) =

Npad∑
i=1

fi (ui) + λT

Npad∑
i=1

hi (ui) (1.11)

L (u
i
, λ) =

[
f1 (u1) + λTh1 (u1)

]
+, ...+

[
fNpad

(
uNpad

)
+ λThNpad

(
uNpad

)]
(1.12)

s.t. ui ∈ Ci (1.13a)

∆u
min

j
≤ ∆ui,j ≤ ∆u

max

j
j = 1, ..., Nwells (1.13b)

ulb ≤ ui,j ≤ u
ub

(1.13c)

Equation 1.11 can be optimized separately given the dual variable (λ) or

the price vector by forming the dual function (Equation 1.13)

g(λ) = g1(λ)+, . . . .,+gNpad
(λ) (1.14)
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Where g1 (λ) is

max f1 (u1) + λTh1 (u1) (1.15a)

s.t u1 ∈ C1 (1.15b)

∆umin
1,j ≤ ∆u1,j ≤ ∆umax

1,j j = 1, . . . , Nwells (1.15c)

ulb ≤ u1,j ≤ uub (1.15d)

(1.15e)

The master problem (Equation 1.14) updates λ iteratively based on the

subgradient (Equation 1.16) until consensus is reached. Where α is the step-

size and k is the iteration counter.

λ := λ− α(k)

Npad∑
i=1

hi (ui) (1.16)

The concept of distributed optimization dates back to the early 1960s (Ben-

ders, 1962; Dantzig and Wolfe, 1960). The idea behind using a distributed

optimization method for real-time large-scale multi-pad steam allocation is

to optimize a global objective based on local well-pair or well-pad dynam-

ics. The optimization problem is approached using decomposition methods by

decomposing the global optimization problem into subproblems. The global

constraint (maximum Steam generator capacity or gas supply) is imposed on

local KPI, which ensures communication between the local KPI's, which leads

to global optimum KPI. Large-scale optimization problems are solved with

three approaches as summarized from Cheng et al. (2007) work:

� Centralized: explicitly account for all interactions between subprob-

lems. They are designed to be implemented on a single computer. Re-

quire high-efficiency computers and optimization algorithms. As the

SAGD process expands, the optimization problem size grows with the

possibility of hundreds or a thousand well-pairs. Centralized real-time

or life-cycle optimization becomes impossible to solve even with high-

performing computers.
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� Decentralized: Recommended for real-time optimization of decompos-

able problems like multi-pad SAGD operations. High-efficiency opti-

mization algorithms, high-performance computers and subproblem inter-

actions are not a requirement. The decentralized approach is susceptible

to sub-optimal results because of ignoring subproblem interactions.

� Coordinated decentralized: is a trade-off between centralized and

decentralized approaches by accounting for essential subproblem inter-

actions. A coordinated decentralized approach can be modeled using the

following strategies.

– Centralized modeling, decomposition and then coordination.

– Decentralized modeling, linking constraints and then coordination.

The structure of the multi-pad SAGD process can be decomposed into a

series of subproblems. In this case, subproblems refer to individual well-pairs

or well-pads to solve the optimization problem efficiently. Two approaches are

typically used to decompose the large-scale decomposable optimization prob-

lem: primal decomposition (Johansson et al., 2006) and dual decomposition

(Conte et al., 2012; Dantzig and Wolfe, 1960). When the optimization prob-

lem has a coupling or shared decision variable or constraints, primal or dual

decomposition is used (HomChaudhuri, 2013). A survey of the petroleum lit-

erature revealed a little-reported work in applying decomposition techniques

in large-scale optimization. Dual decomposition techniques using Lagrangian

(Foss et al., 2009; Krishnamoorthy et al., 2018) and Dantzig-Wolfe (Gunnerud

et al., 2009) for Troll west oil have been reported for real-time production

optimization.Knudsen et al. (2014) presented a Lagrangian relaxation-based

decomposition for multi-well pad well scheduling for shale-gas systems. The

dual decomposition by the authors assumed a strongly convex optimization

problem and also a constant α(k) was assumed for calculating the price vec-

tors in Equation 15 (Fixed stepsize Gradient method). This work explores

non-strongly convex (Alternating direction method of multipliers (ADMM)

techniques to handle Lagrangian decomposed optimization problem.
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1.2 Multi-Criteria Decision-Making (MCDM)

Multi-criteria (NPV, recovery factor, water balance, steam chamber confor-

mance) optimization of SAGD operations can be challenging with conflicting

objectives. Single objective economic optimization of SAGD projects may not

be safe for the environment or meet safe engineering standards (steam cham-

ber pressure above fracture gradient). NPV is the main criterion that has

been primarily used for real-time SAGD optimization (Mohajer et al., 2010;

Patel et al., 2014; Vembadi et al., 2018). Recently, multi-objective optimiza-

tion of steam alternating solvent (Coimbra et al., 2019) and warm solvent

(Hunyinbo et al., 2021) injection have been presented using the Pareto-based

approach. The works mentioned above on multi-objectives were not imple-

mented in a real-time framework. Implementing multi-objective optimization

in real-time SAGD operations comes with a challenge of non-uniqueness of

the optimal solutions (non-dominated solutions) to be executed the current

prediction horizon. Hence, a mechanism is required to rank and prioritize the

non-dominated solutions. The dissertation uses a compromise programming

method at each control horizon to choose the best control strategy from the

set of non-dominated solutions in a multi-pad, multi-criteria steam allocation.

To the best of my knowledge, this is the first time a multi-pad, multi-criteria,

and compromise programming approach with real-time workflow is presented.

1.3 Problem Statement

The critical challenge in the steam allocation of steam-assisted gravity drainage

(SAGD) projects is evaluating hundreds of wells or pads at different stages of

production (ramp-up, regular, and wind-down). Additional challenges affect

the SAGD project’s efficiency facility constraints, well performance (Steam-oil-

ratio, Water-steam ratio, Water-cut), and the capital competition to drill new

wells. Since steam supply cost significantly contributes to bitumen’s overall

production cost, dynamic and intelligent steam allocation to various wells or

pads in the oilfield deserves further attention. In addition, a comprehensive
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real-time SAGD workflow adaptive to SAGD production stages from greenfield

to brownfield requires additional attention.

Using the first principle model in real-time SAGD operations optimization

is computationally expensive. Data-driven SAGD models are used as a SAGD

reservoir proxy to reduce the computational head. Unlike first principle mod-

els, which have boundary problems, data-driven models do not have constraints

and forecasts outside the feasible region. Minimizing unfeasible data-driven

model forecasting in real-time optimization requires additional constraints,

which increases computational time, as in MPC (Patel and Trivedi, 2017).

Designing data-driven models that ensure feasible forecasting and minimizing

computational time requires further attention SAGD multi-pad recovery sys-

tem can be described as a large-scale interconnected, well-pairs, and well-pads

through shared resource allocation. Individual well-pairs and pads work to

maximize bitumen recovery at well-pair and pad drainage areas to maximize

field-wide ultimate recovery in a coordinated fashion. Thus, the steam allo-

cation optimization problem deals with allocating steam from one well-pair

or pad to another set of well-pair or pads in a multi-pad system to optimally

achieve the overall economic, engineering, and environmental goals. Multi-pad

SAGD steam allocation optimization with different well-pairs or pad steam

requirements at different maturity stages is a high dimensional optimization

problem because of hundreds of well-pairs. Computational complexity in-

creases with a centralized optimization problem with hundreds of well-pairs

and scales poorly for real-time multi-pad steam allocation. In addition, un-

certainty in steam availability, the dynamic nature of SAGD reservoir models,

and uncertainty of its parameters coupled with distributed steam generation

without central control complicate the optimization process. In this proposal,

distributed optimization workflow in real-time operates independently and par-

allel, utilizing local well-pair or pads dynamic state to improve field-wide KPI

in a coordinated manner. Distributed steam allocation optimization reduces

the high dimensionality of current real-time SAGD optimization and mitigates

scalability and flexibility issues. The efficient operations of SAGD reservoirs

require monitoring and optimizing several operating parameters and KPIs.
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Balancing conflicting EEE-G makes the problem a multi-objective optimiza-

tion problem, which results in nondominated solutions. Furthermore, selecting

which solutions to implement in real-time control problems under parameter

uncertainty can further complicate the optimization problem, hence exploring

alternative decision criteria that incorporate expert input.

Based on the gaps and potential room for improvement of the current

approach as enumerated in the current section, the following hypothesis is

proposed:

1. Real-time multi-pad steam allocation optimization can be im-

proved using decomposition-based algorithms to ensure feasi-

ble solutions and better control strategies.

2. Expert knowledge can be incorporated either through the use

of compromise programming or Modigliani risk-adjusted per-

formance to prioritize the efficient control strategy in a real-

time multi-objective steam allocation.

3. Integration of well constraints with a dynamic data-driven

model can improve the quality of history matching and yield

feasible forecasting results.

1.4 Research Objectives

The main objective of this work is the development of a real-time steam alloca-

tion optimization workflow with a data-driven model for the ramp-up, normal,

and wind-down stages of thermal recovery. The research-specific objectives

that address the main goal to be answered are listed below:

1. Develop a real-time steam allocation optimization workflow with a data-

driven predictive SAGD model. Limited steam availability and prioriti-

zation (i.e., adapting steam allocation range based on well-pair or pad

performance) scenarios on SAGD operations performance are investi-

gated for the ramp-up stage.
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2. Integrate risk management into the workflow and investigate the work-

flow performance on mature SAGD reservoir for symmetric and asym-

metric risk-adjusted objectives. Additionally, normalization of past data

based on physical feature range, data-driven model training, and up-

dating are incorporated in the workflow investigation. Using a modified

Modigliani risk-adjusted performance approach to include expert opinion

to select the optimum risk-adjusted control strategy.

3. Extend the real-time workflow to a single objective distributed optimiza-

tion. Investigate the short-long term performance of single objective real-

time multi-pad steam allocation with ADMM distributed optimization

algorithm. A novel alternating cost minimization and steam chamber

growth objective are also investigated.

4. Develop a multi-criteria distributed multi-pad real-time steam allocation

optimization workflow. Investigate two, three, and four joint optimiza-

tion goals that balance short-long term performance objectives. Using a

compromise programming approach, incorporate expert opinion to select

the best control strategy.

1.5 Thesis Structure

The paper-based thesis combines four articles (chapters 2–5). Each chapter

gives a specific introduction, literature review, methodology, and conclusion.

At the end of the thesis is a list of all the sources used. The thesis is made

up of six chapters. Chapter 1 is the introduction; Chapters 2–5 are the main

topics, and Chapter 6 is the conclusion. The thesis is organized as follows:

Chapter 1 presents a general introduction to this study, comprising the

background on the impact of heavy oil on future economic development, ap-

plications of data-driven models and real-time optimization in SAGD recovery

operations, decomposition optimization, problem statement, and research ob-

jectives.

Chapter 2 describes a novel steam prioritization and steam availability real-
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time optimization workflow of SAGD operations with a dynamic data-driven

model. In this chapter, the real-time steam allocation workflow is tested on a

three-well-pair pad with different amounts of shale distribution, which affects

steam chamber conformance.

Chapter 3 investigates the workflow application to mature SAGD oper-

ations. A nine-well-pair pad undergoing NCG steam co-injection is used to

investigate the workflow performance at the wind-down stage. Several sym-

metric and asymmetric risk-adjusted goals are tested for real-time allocation

of NCG steam when the oil price is uncertain. A novel modified Modigliani

risk-adjusted performance is incorporated in selecting the optimum strategy

from a set of risk-return trade-offs.

Chapter 4 investigates the single-objective short-long-term optimization of

real-time steam allocation. Increasing well-pads as the SAGD process matures

means a higher dimensional optimization problem. A multi-pad reservoir for

steam allocation is developed to test the real-time short-long-term optimiza-

tion workflow with high dimensions. Additionally, a novel alternating objective

is investigated.

Chapter 5 explores different joint objectives for real-time optimization,

which balances short-long term performance. A novel approach for a multi-

criteria distributed optimization and selection of optimal control strategy with

compromise programming is investigated using a multi-pad reservoir.

Chapter 6 summarizes the study’s main findings, conclusions, original con-

tributions, and recommendations for future work.
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Chapter 2

Real-Time Steam Allocation
Workflow Using Machine
Learning for Digital Heavy Oil
Reservoirs 1

2.1 Introduction

Cost of thermal recovery techniques is affected significantly by steam supply

and water recycling and treatment costs (Edmunds and Chhina, 2001). The

operating expenses of injecting steam in thermal recovery techniques account

for more than half of the recurrent cost. Traditionally, predetermined steam

is allocated using the reservoir model to optimize the steam assisted gravity

drainage (SAGD) process. Allocating steam using proration can lead to a

suboptimal return on investment and hence optimization of steam allocation

is required to maximize the net present value (NPV). Unexpected operational

challenges or water availability for a steam generation are significant con-

straints on the amount of steam injected for SAGD operations. SAGD project

life-cycle requires well-pairs or well-pads to be added to the production stream

at different project stages. The addition of well-pairs or pads introduces an

additional steam generation capacity requirement which affects the project

performance in addition to reservoir heterogeneity. Hence, for optimal SAGD

performance, identifying a well-pair or well pad for allocating excess steam be-

1A version has been published in Journal of Petroleum Science and Engineering and
proceedings of SPE Western Regional Meeting 2019

20



comes essential. Moreover, the environmental concerns and low oil prices have

triggered an urgent need to optimize overall SAGD performance. Therefore, a

coordinated steam supply to each well-pair or well-pad with real-time steam

allocation is necessary.

The formulation of an optimization problem requires two key features ir-

respective of the optimization algorithm: decision variables to be perturbed

and the objective function to be minimized or maximized. Over the years,

various researchers have formulated different approaches to optimize SAGD

process using different decision variables and objective function. From simu-

lation studies conducted by Edmunds and Chhina (2001), the economic op-

erating pressure decision variable for typical McMurray formations could be

as low as 400 kpa. Yang et al. (2009) used NPV as an objective function

for optimizing the infill SAGD project. NPV was maximized using the steam

injection rate and the liquid withdrawal rate as decision variables for designed

exploration and controlled evolution algorithm. The results from their study

showed significant improvement in NPV when a large amount of steam was

allocated to the injector and high liquid production targets were set at an

early stage. When the desired steam chamber growth was achieved, the steam

and liquid rates were lowered to prevent steam breakthrough in the bottom

water. Manchuk and Deutsch (2013) presented an optimization algorithm to

optimize the placement of surface production pads and drainage-area of the

SAGD project for maximizing economically recoverable bitumen. For SAGD

projects with multiple steam generators, optimizing the efficiency of the gener-

ators presents an additional technical and operational challenge. To optimize

the efficiency of numerous steam generators, Hao and Popa (2015) used a

quantum particle swarm optimization algorithm. The optimization problem

was formulated as a constrained optimization to determine the minimum and

maximum steam contribution for each generator. Additionally, steam quality

and the total steam for all generators were considered as decision variables.

The sum of efficiency curves of the steam generators was the objective func-

tion to be maximized. Normal scheduled SAGD operations usually do not

go as planned and face many interruptions. These interruptions have adverse
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effects on the economics of SAGD projects. Nourozieh et al. (2017) performed

optimization on the Athabasca type oil reservoirs to quantify the impact of

interruptions on SAGD operations. The initial steam injection period, shut-in

period, and steam injection rate after re-initiation were perturbed to maxi-

mize SAGD economics. The study concluded that there is an optimal shut-in

period dependent on the initial steam injection period that maximizes the re-

covery of oil. Mohankumar et al. (2020) studied optimization of SAGD well

pad scheduling. A nonlinear model predictive control was used to find the

optimal development sequence and timing of multiple well-pads by finding the

optimal steam injection profile. Patel and Trivedi (2020) presented a real-time

SAGD production optimization workflow that ensures stable well operations

by controlling subcool setpoint.

Improvement in real-time data acquisition and evolution of machine learn-

ing methods present an opportunity for a near real-time decision making in

SAGD operations. Various researchers have presented workflows that demon-

strate the improvement in key performance indicators (KPI) of SAGD real-

time optimization. Mohajer et al. (2010) proposed a workflow that uses arti-

ficial intelligence and data mining algorithms to analyze real-time data from

SAGD operations. The four staged (surveillance, analysis, optimization, and

control) workflow was coupled with a thermal reservoir simulator for a real-

time decision making. Gonzalez et al. (2012) proposed a real-time workflow to

optimize SAGD well-pair’s inflow performance. The workflow used fibre optic

downhole array temperature measurements and pressure-temperature down-

hole gauges to guide updating of steam injection rates and pressures during

start-up and production stages of the SAGD process in real-time. Kumar et al.

(2018) proposed a workflow of machine learning coupled with numerical sim-

ulation to predict SAGD performance. The workflow used field surveillance

data to determine the optimal field and well steam injection rate, duration of

steam injection, and the rate of reduction of steam injection to mature wells

for redistribution to newly developed regions.

However, the amount of data from the real-time acquisition and large com-

putational cost of first principle models introduce a challenge of effectively
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using them to make short to medium-term decisions. Updating and running

first principle models are computationally expensive. Therefore, reservoir sim-

ulators are inappropriate as a tool for short term reservoir management. As a

result, the use of data analytics to improve real-time intelligent field decision

making in the petroleum industry has grown significantly. Popa et al. (2015)

employed a data analytics model to improve the quality of heavy oil reservoir

management decisions. To get solutions of critical questions such as steam

breakthrough time and redistribution volumes during steam management op-

erations, Jones and Dwivedi (2018) used diagnostic plots and data analytic

workflow. The principal KPI analysis performed during the reservoir man-

agement decision-making process was economic analysis. Ockree et al. (2018)

presented an economic analysis for the Marcellus Shale reservoir in which they

used cognitive analytics to generate economic type curves for decision making.

Reinforcement learning has shown to improve NPV by at least 30% and a

decrease in the computational cost by 60% when used for optimizing SAGD

operations (Guevara et al., 2018).

Over the years, various researchers have presented data analytics models as

a proxy to this high fidelity first principle model to make real-time decisions.

In SAGD, most popular techniques used to create proxy models included linear

and non-linear regression (Kim and Shin, 2017), semi-analytical models (De-

hdari et al., 2017; Vanegas et al., 2008), and neural networks (Fedutenko et al.,

2014; Sun and Ertekin, 2015; Zheng et al., 2016). Ma and Leung (2020) studied

the influence of the shale barrier on SAGD performance using convolutional

neural network and data analytic techniques. System identification for data

analytics has been applied over the years in the petroleum industry for SAGD

(Patel et al., 2018; Patel and Trivedi, 2017; Yao et al., 2015), waterflooding de-

sign (Hourfar et al., 2016; Renard et al., 1998), oil PVT properties estimation

(Salehinia et al., 2016) and production optimization (Elgsaeter et al., 2008).

Various SAGD optimization studies discussed earlier do not account for

the impact of steam availability. Besides, the reported methods formulate

the optimization problem as a life-cycle problem. Hence, the optimization

problem does not account for daily, weekly, or quarterly steam availability
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issues. Also, formulating the optimization problem as the life-cycle problem

ignores the impact of planned activities such well workover operations, well

testing, and low oil price, which interrupts SAGD operations. Excess steam

injection in well-pairs or pad leads to lower KPIs due to reservoir heterogene-

ity or the maturity of the SAGD project. Mature SAGD projects require less

amount of steam allocated to well-pairs or pad. The workflow presented in this

study accounts for steam prioritization by allocating steam from low perform-

ing wells to high performing wells. Another contribution is the formulation

of the optimization problem to simulate possible steam availability scenarios

that may be encountered during SAGD operations. The steam allocation is

optimized in real-time using data-driven predictive models. The workflow is

used for the short-term NPV forecast of the SAGD heavy oil reservoir. The

parameters of the model are continuously updated using a moving horizon ap-

proach for short-term forecasting to maximize NPV. A case study with high,

medium, and low recovery well-pairs is presented in order to show applicability

of the workflow for real-time optimal steam allocation in a SAGD facility under

non-steady-state operating conditions where steam availability changes. Opti-

mization under different scenarios of steam availability such as a) 100% steam

availability, i.e., operations at full capacity, b) 100% or lower steam availability

with continuous injection rates, and c) varying steam availability between 80

to 100% operating capacity with continuous injection rates, is performed.

2.2 SAGD Reservoir Model

In this study, a synthetic reservoir model representative of western Canadian

oilfield with three horizontal well-pairs is used. Well-pair 1 is located in a high-

quality reservoir (high permeability section). Well-pairs 2 and 3 are drilled in

the moderate and low reservoir sections, respectively. The model properties

are typical of the Athabasca oil sands reservoir (Robinson et al., 2005). The

model is built with an average porosity, horizontal, and vertical permeabilities

of 0.31, 2357 md, and 1768 md, respectively. The oil viscosity is modelled to

be 414279 cP at 16oC and 5.7 cP at 250oC. Relative permeability curves are
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adopted from Guo et al. (2018). Initial water saturation and injection steam

quality of 0.2 and 0.9 respectively are used (Guo et al., 2018). The wells are

pre-heated for four months before the production phase starts.

2.2.1 Data Analytics for SAGD Model

The use of observed data of a dynamic system to construct a representa-

tive mathematical model is referred to as system identification (Ljung, 1999).

Petroleum reservoirs are dynamic systems since properties such as pressure

and saturation change with time and space and hence can be modelled us-

ing system identification techniques. In system identification of the SAGD

process, a mathematical model is built based on the historical injection and

production data of a heavy oil reservoir. This data-driven mathematical model

is then used in real-time steam allocation optimization. Steps followed to build

a system identification model for the SAGD process are explained below:

1. The first step is data generation or gathering. Since a synthetic SAGD

model is used in this work, an experiment was designed to generate the

input and output data for the proxy model. The steam injection rate is

created using a random binary signal (RBS) input with MATLAB system

identification toolbox (MATLAB, 2018). The steam injection rate ranges

from zero to 400 m3/day to ensure that the model captures the dynamic

reservoir state during optimization or deployment. The use of RBS is

necessary to ensure that generated input sequence for which output data

(oil rate) will be recorded is persistently exciting and leads to acceptable

model performance. After that, the reservoir simulation model was run

using the RBS signal to measure the response (or output) of the model.

Fig. 2.1[a-c] shows the RBS signal (measured injection rate) and model

response (measured production rate) for well-pairs 1− 3. The data was

taken at one day sampling period and hence 360 data points (days).

The first 90% (i.e. 324 data points) of the data was used for training

and the last 10% (i.e. 36 data points).It is important to note that the

steam injection rate does not follow the RBS sequence in the field. For
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implementation in an oilfield, reservoir injection and production history

should be used.

2. The next step after data generation or gathering is to find a model struc-

ture that gives an acceptable predictive performance for the SAGD pro-

cess. A general model structure (Ljung, 1999) for dynamic systems can

be represented as in Equation 2.1

y (t) = Gp

(
z−1, θ

)
u (t) +Gl

(
z−1, θ

)
e(t) (2.1)

where Gp (z
−1, θ) is the process transfer function that relates the input

(u (t) , steam injection rate) at any time (t) with the output (y (t), oil or

water rate). Gl (z
−1, θ) is the disturbance transfer function that relates the

input noise (e(t)) with the output. z−1 is the backward shift operator; this

allows the process and disturbance transfer functions to include the effects of

the past inputs on the current output. θ represents the vector of parameters

to be estimated. The prediction error model (PEM) is used for this work. The

general PEM (Huang and Kadali, 2008) can be expressed as Equation 2.2

A
(
z−1

)
y (t) =

B (z−1)

F (z−1)
u (t) +

C (z−1)

D (z−1)
e (t) (2.2)

A (z−1) = 1 + a1z
−1 + · · ·+ anaz

−na

B (z−1) = b1z
−1 + · · ·+ bnbz

−nb

C (z−1) = 1 + c1z
−1 + · · ·+ cncz

−nc

D (z−1) = 1 + dz−1 + · · ·+ dndz
−nd
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The formulation now reduces to finding the optimal parameter

θ = [a1, . . . , ana, b1, . . . , bnb, c1, . . . , cnc, d1, . . . , dnd, f1, . . . , fnf ] which min-

imizes the error between the measured and predicted historical data (oil rate).

The process (Equation 2.3) and disturbance (Equation 2.4) transfer functions

are defined as the rational backward shift operator, respectively as

Gp

(
z−1

)
=

B (z−1)

A (z−1)F (z−1)
(2.3)

Gl

(
z−1

)
=

C (z−1)

A (z−1)D (z−1)
(2.4)

Three PEM-based model structures were tested to identify the model with

the best fit for oil and water rate. Huang and Kadali (2008) defined the

structures mathematically as

Autoregressive with Exogenous Input Model (ARX)

y (t) =
B (z−1)

A (z−1)
u (t) +

1

A (z−1)
e (t) (2.5)

Box-Jenkins Model (BJ)

y (t) =
B (z−1)

F (z−1)
u (t) +

C (z−1)

D (z−1)
e (t) (2.6)

Output Error Model (OE)

y (t) =
B (z−1)

F (z−1)
u (t) + e (t) (2.7)

After completing system identification using 350 different models and val-

idation tests were conducted to identify the best representative model. The

model fit (Equation 2.8) is estimated by (Ljung, 1999)

Model fit (%) =

(
1− |y − ŷ|
|y − y|

)
× 100 (2.8)

where y, ŷ and y are measured, predicted, and mean of measured outputs

respectively.
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Figure 2.1: Historical production and injection rates for (a) Well-pair 1 (b)
Well-pair 2 (c) Well-pair 3 in a synthetic SAGD model

2.3 Real-Time Non-linear Optimization

The overall idea is to investigate the future and decide the best course of action

to be taken. As shown in Fig 2.2 and the detailed description in the Algorithm,

the acquired real-time data from the heavy oil reservoir is used to build a data

analytic predictive model based on system identification. The model is used

for a short-term forecast of KPI (NPV in our case). As explained in the

previous section, a predictive data-driven model is generated after recursively

training and validation until the acceptance criteria are met. In this study,

the minimum validation error of 40% is an acceptance criterion. The model

that passes the validation test is then used to determine steam allocation rate

for each well-pair which maximizes NPV. Typically, when an action is taken,

a response from the system is measured for a specified period. In this work,

the forecast period or prediction horizon (P ) is seven days long. It means that
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a constant steam injection rate is set for every seven days, and the heavy oil

production rate is measured for the same period.

To determine the optimal steam to be allocated, non-linear constrained

optimization is performed using the data-driven model. The objective here is

to use the predictive model to take an action which optimizes NPV for the

specified prediction horizon. An approximate NPV formulation was used as

an objective function for optimization. Equation 2.9 shows the NPV objective

maximized for each prediction horizon. The NPV is calculated for each well (j)

at each time (t) by summing up the difference between the revenue (the price of

oil [po] x oil production rate [ŷj (t)]) and production cost (steam processing cost

[pw] x steam injection [uj (t)]) over the prediction horizon. The present value

calculated over the prediction horizon is discounted and then summed over all

wells (Nw) in the model. Various assumptions are made to approximate NPV.

The water produced is recycled, and hence Equation 2.9 factors in the produced

water as part of the steam processing cost. Also, an initial investment cost

term in the NPV formulation is absent. The optimization starts after 200days

of the beginning of the production phase and the facilities are installed already.

The oil price, steam processing cost and the discount factor (D) are considered

as 60$/bbl, 12$/bbl and 10% respectively. NPV optimization is constrained by

minimum (umin
j ) and maximum (umax

j ) steam injection rate (Equation 2.10).

Instabilities in the SAGD operations as a result of changes in steam injection

are controlled by restricting the rate changes between subsequent prediction

horizon to a minimum (∆umin
j ) and maximum (umax

j ) steam injection rate

(Equation 2.11). In this case study, the value is set to 20 m3. This value is

chosen arbitrarily, and an appropriate range based on operating experience

should be used in a field application. The maximum rate change can be set as

a percentage of the previous allocation rate.

After performing non-linear optimization with the predictive model, the

optimally allocated steam is assigned to the heavy oil reservoir. The response

from the reservoir is recorded using a data acquisition system. The predictive

model is then updated with the newly recorded response from the reservoir to

improve its prediction performance. The workflow breaks out of the recursive
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loop when it is not profitable to continue production using SAGD.

Nw∑
j=1

P∑
t=1

(poŷj (t)− pwuj (t))

(1 +D)∆t (2.9)

s.t.umin
j ≤ uj ≤ umax

j (2.10)

∆umin
j ≤ ∆uj ≤ ∆umax

j (2.11)

Nw∑
j=1

uj (t) = U (2.12)

Nw∑
j=1

uj (t) ≤ U (2.13)

0.8U ≤
Nw∑
j=1

uj (t) ≤ U (2.14)

Figure 2.2: Real-Time steam allocation workflow for digital heavy oil reservoirs
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Algorithm: Steam Allocation Optimization
For every time step t = 7 days

1. Set scenario

� Zero (no steam prioritization)

� One (steam prioritization)

2. Set global constraint

� Zero (utilize all available steam)

� One (utilize a fraction or all available steam)

� Two (random steam generator capacity)

3. Read the previous oil production and steam injection rates

4. Identify the structure and parameters of the OE model Equation 2.7

5. If the model passes the validation test continue, else change the model order (step
2)

6. Set umin
j and umax

j

7. Find steam injection rates that will maximize NPV for the prediction horizon 2.9

� If the global constraint equals zero Equation 2.12

� Else If the global constraint equals one Equation 2.13

� Else If the global constraint equals two Equation 2.14

� End If ∆umin
j ≤ ∆uj ≤ ∆umax

j umin
j ≤ uj ≤ umax

j

8. If scenario equals to zero, skip 8 and go to step 9 else

9. Check NPV of individual wells
∑t

k=1

(
poŷkj

−pwukj

)
(1+D)t

10. If a well records negative NPV, set new umax
j (increase umax

j for the wells with
positive NPV and decrease for the well or wells with negative NPV) else repeat 8

11. Apply optimal steam injection rates to the digital heavy oil reservoir

12. Obtain new oil production rates

13. t = t+ 1

14. Repeat steps 2-10 until operating period ends
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2.3.1 Base case

The base was designed to have a constant steam injection rate in each well-

pair (well-pair 1 = 150 m3/day, well-pair 2 = 150 m3/day, well-pair 3 =

100m3/day) which sums up to total steam generation capacity (U) of 400m3/day.

This generation capacity was selected to ensure positive NPV for the base case.

The producers were constrained by a minimum bottom hole flowing pressure

of 600 kpa as a primary constraint and a maximum liquid rate of 900 m3/day

as a secondary constraint. Also, each producer was constrained by the steam

production rate of 1 m3/day to mimic steam trap control.

2.3.2 Case 1: Utilization of full steam generation ca-
pacity

In this case, the total steam supply for all the well pairs in the pad is constant

for the optimization period. The total steam generation capacity is considered

same as the base case. An additional constraint (Equation 2.12) is added

to Equations 2.9 and 2.11 to model this operating strategy. The optimizer

determines the optimal steam allocation for each well-pair in the pad. Case 1

assumes that it is economically and environmentally safe to inject all available

steam. Moreover, this formulation is effective at ramp-up and plateau stage

of SAGD. The lower steam allocation bound is set to 0 m3/day i.e. no steam

injection). The upper steam allocation bound is set at 170m3/day for well-pair

1 and 2 and 120 m3/day for well-pair 3.

2.3.3 Case 2: Underutilization of steam generation ca-
pacity

In this case, the total steam injected into all the well pairs in the pad can be

equal or less than the available steam. Equation 2.12 in Case 1 is replaced with

Equation 2.13 to reformulate the optimization problem for Case 2. This case

models a situation in the field when it is not economically or environmentally

safe to inject all available steam. Technical issues in the well pad such as failure

of downhole equipment is one such scenario. Besides, when SAGD projects
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mature or reach decline stage, steam injection is reduced gradually to avoid

overheating (blowdown phase).

2.3.4 Case 3: Random utilization of steam between 80%
and full steam generation capacity

The total steam supply to wells in the pad at each control interval randomly

changes between 80% to 2.9 of the maximum steam generator capacity in

Case 3. Equation 2.14 is used to model the variable steam supply constraint.

Case 3 models an unstable steam generator or irregular water supply to a

steam generator. The lower bound for steam generating capacity is 2.9 of its

maximum operating capacity.

2.3.5 Steam Prioritization

The optimization problem was formulated to let an algorithm maximizes pad

NPV. The optimization algorithm tends to ignore well-pairs with low KPI

if the cumulative well-pair NPV is positive. The optimization problem for-

mulation does not change; however, the search range of decision variables is

adjusted based on KPI to mimic steam prioritization. After optimizing for

each prediction horizon, the individual well NPV is checked. If it is negative,

the optimization for the prediction horizon is repeated with upper bound of

steam allocation reduced to 10 m3/day for that particular well-pair and in-

creased to 200 m3/day for well-pairs that recorded positive NPV. The upper

steam allocation bound is set based on the maturity of the steam chamber,

well productivity, heterogeneity around the well, etc., from expert opinion. For

RTO, this upper bound is dynamic. Defining simultaneous optimization with

multiple upper steam allocation bounds in RTO is computationally expensive.

For this study, a check is performed at each prediction horizon if it is required

to adjust the upper steam allocation bound to re-run the optimization. In field

operations, steam is allocated to the whole pad at each control horizon. The

operator prorates the steam among the wells-pairs based on their injection ca-

pacity. Excess steam from low KPI well-pairs (i.e. high Cumulative Steam-Oil

ratio (cSOR), negative NPV) is re-allocated to high performing (low cSOR,
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positive NPV) well-pairs/pads. Since data-driven predictive reservoir models

cannot allocate excess steam from low to high performing wells or pads, steam

prioritization is used in this workflow to model such behaviour. Also, in the

field, it is natural to allocate less steam to low performing well-pairs. The

steam prioritization option in this workflow may also be used to detect well-

pairs that require workover operations. In the event workover operations are

planned, it allows predicting the optimal allocation of steam for operating the

other well-pairs. For conventional oil reservoirs, wells can be shut and open

at any time during exploitation. Heavy oil wells will require pre-heating to

mobilize oil around the well before production can be initiated. Events such

as low oil prices, high water cut, and steam production in thermal oil recov-

ery may require wells to be shut and opened when conditions are favourable.

Instead of shutting the injection wells, the proposed steam prioritization work-

flow allows the setting of the steam injection rate at a constant value. The

injection well is heated to keep the oil around it mobile. The opened produc-

tion well is expected to produce mobile oil from neighbouring well-pairs. The

proposed steam prioritization can model mature SAGD recovery techniques

such as wedge well technique (Delamaide, 2018). However, the only difference

here is that the injection well is not shut.

2.4 Results and Discussion

In this section, training and validation results of the models and three different

case studies are presented. All predictions are for seven days prediction horizon

and the workflow is implemented for 535 days in total. Note that the final NPV

reported as KPI for the performance of the workflow is calculated using the

field response (first principle reservoir model in this work). In addition to

NPV, other KPIs such as cSOR and oil production rate are also presented.

2.4.1 SAGD Model Training and Validation

After testing different model structures, the OE model structure was observed

to model the SAGD process with best accuracy. An OE model after train-
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ing and validation is shown for well-pairs 1, 2, and 3 in Equations 2.15, 2.16,

and 2.17 respectively. These models are designed for a specific reservoir and

updated to reflect the dynamic state of the reservoir as new data from the

reservoir are recorded. The challenge with the first principle models is that

the data acquisition and model updating is computationally and financially

expensive. The developed predictive models are resourceful in optimizing pro-

duction operations. Accurate predictive models can practically be used in

lieu of first principle models for weekly, monthly, and quarterly planning and

production optimization to meet annual goals.

y (t) =

[
0.0434 z−1 − 0.07476 z−2 + 0.03134 z−3

1 − 2.129 z−1 + 1.239 z−2 − 0.04967 z−3 − 0.06029 z−4

]
u (t)+ ε (t)

(2.15)

y (t) =

[
0.03467 z−1 − 0.08471 z−2 + 0.06699 z−3 − 0.01696 z−4

1 − 2.871 z−1 + 2.815 z−2 − 1.01 z−3 + 0.06622 z−4

]
u (t)+ ε (t)

(2.16)

y (t) =

[
0.02918 z−1 − 0.04268 z−2 + 0.008716 z−3 + 0.004852 z−4

1 − 1.904 z−1 + 0.9046 z−2

]
u (t)+ ε (t)

(2.17)

Fig 2.3 shows the result of system identification after training and cross-

validation for the three well pairs. The red line is the measured data, and

the blue is the prediction from the system identification model during the

training phase. A green dashed line which represents the model fit on the

validation dataset showed a satisfactory trend when compared to the measured

data. Table 2.1 shows the orders of the polynomials and model fit of all

three models. The OE models of the three well-pairs were validated for 35

days future prediction horizon. In this work, the prediction horizon for real-

time optimization is seven days long. Hence, these models can be used with

minimum uncertainty in their predictions.
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Table 2.1: System Identification Models for All Well Pairs

Well-Pair Orders Fit (%)

Training Validation

1 [3 4] 76.98 75.36
2 [4 4] 80.43 78.49
3 [4 2] 78.37 62

Figure 2.3: fig:Validation of the OE model for (a) Well-pair-1 (b) Well-pair-2
(c) Well-pair-3

2.4.2 Case 1: Utilization of Full Steam Generation Ca-
pacity

In this case, the total steam supply to the entire pad is fixed throughout the

period for SAGD optimization. Fig 2.4 (a – d) in the appendix shows the

evolution of steam allocation for no steam prioritization and steam prioriti-

zation scenarios. The approach of no steam prioritization is similar to the

one used by commercial software like CMOST (CMG, 2018) for optimization.
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The formulation of the optimization problem, as presented by most researchers

and commercial software, is based on the cumulative pad NPV and not the

individual well-pair (Shahandeh et al., 2016). It avoids complications of using

multi-objective optimization. For example, a well pad consists of six well-pairs

with one of them performing good can lead to positive pad NPV. If the op-

timization algorithm gets stuck in a local optimum, it returns this feasible

sub-optimal solution. As seen from Fig 2.4 (a-b), the steam prioritization sce-

nario (pink dashed line) resulted in high steam allocation to well-pair 1 and

2 as compared to the no prioritization (continuous blue line). The extra al-

located steam came from well-pair 3 (Fig 2.4 (c)). Also, Fig 2.4 (a-c) shows

that maximum injection rate change constraint (maximum allowable change

is ±20 m3 between the prediction horizons) was honoured between subsequent

prediction horizons (Equation 2.11). It ensures the stability of the well opera-

tions and wellbeing of the downhole equipments. Unstable operation can lead

to an inefficient steam chamber growth and the poor displacement of bitumen

towards production wells. Honouring this constraint in SAGD optimization

formulation is a critical technical parameter that results in high KPI. Constant

steam allocation to the pad (Equation 2.12) was also honoured in Fig 2.4 (d).

Fig 2.4 (a-c) demonstrates the effectiveness of the steam prioritization scenario

over no steam prioritization in allocating steam to high KPI well-pairs.

As a result of optimal steam allocation to well-pairs, an increase in well-

pair as well as pad oil production rates for both no steam prioritization and

prioritization can be observed when compared with the base case. Fig 2.5

(a-b) indicates steady increase in oil production rates of well-pair 1 and 2

from 40 m3/day to 75 m3/day and 47 m3/day respectively for steam priori-

tization scenario. Steam prioritization ultimately resulted in a higher pad oil

production rate than no steam prioritization scenario (see Fig 2.5 (d)). The

economics of SAGD operations depends on maintaining low cSOR. From Fig

2.6 (a-d), it can be said that steam prioritization scenarios resulted in lower

cSOR as compared to no steam prioritization. Typically, higher cSOR (Fig

2.6 (a-b)) results in lower NPV, but the steam prioritization scenario still had

a higher NPV than no steam prioritization scenario. The case with no steam
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prioritization and the base case yielded a low cSOR but at the cost of lower

oil production rate. Hence, the overall oil volume recovered was lower. The

NPV for well-pair 1 (Fig 2.7 (a)) showed 2.11 and 24.71% increase for steam

prioritization and no steam prioritization case, respectively, compared to the

base case. It can be inferred that the steam prioritization helped to attain

an optimal cSOR that balances between a low cSOR requirement for SAGD

operations and an optimal bitumen production rate that maximizes NPV. It

also implies that low cSOR may not always lead to higher economic benefits

if the oil production rate is sacrificed to attain it. This observation has been

reported in the literature (Guo et al., 2018). The authors observed a 16%

reduction in cSOR, but oil recovery also dropped by 20%. Fig 2.7 (a, c, d)

further demonstrates the better performance of steam prioritization over no

steam prioritization.

Figure 2.4: Case-1 Steam rate performance evolution (a) Well-pair-1 (b) Well-
pair-2 (c) Well-pair-3 (d) Well-pad
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Figure 2.5: Case-1 Oil rate performance evolution (a) Well-pair-1 (b) Well-
pair-2 (c) Well-pair-3 (d) Well-pad
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Figure 2.6: Case-1 cSOR performance evolution (a) Well-pair-1 (b) Well-pair-
2 (c) Well-pair-3 (d) Well-pad

40



Figure 2.7: Case-1 NPV performance evolution (a) Well-pair-1 (b) Well-pair-2
(c) Well-pair-3 (d) Well-pad

2.4.3 Case 2: Utilization of Full or Less Steam Gener-
ation Capacity

Case 2 was designed to find the optimal amount of total steam to be injected

at each prediction horizon. The full steam to be generated or injected is not an

explicit decision variable. In case of steam prioritization (Fig 2.8 (c)), steam is

injected at a small and almost constant allocation to well-pair 3. The expec-

tation for the optimization algorithm was to allocate high amount of steam to

high-quality reservoir areas. While defining the optimization problem, bounds

for the decision variable of the wells were set based on the quality of perme-

ability around the wells. As shown in Fig 2.8 (c), if the optimization algorithm

finds a feasible solution based on the constraints, it terminates the run given

that no improvement in NPV is observed. Fig 2.9 (a-d) shows the evolution

of the oil rate for well-pairs and pad. For well-pair 2 (Fig 52.9 (b)), there

was an average increment of about 10 m3/day and 15 m3/day for no steam

prioritization and steam prioritization scenarios, respectively.
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In case of cSOR, Fig 2.10 (a – d) shows that steam prioritization eventu-

ally results in better pad performance. The NPV Fig 2.11 (b) shows better

performance of no steam prioritization compared to steam prioritization for

well-pair 2. It could be due to the higher than required steam allocation from

excess steam available which did not result into higher oil production due to

moderate reservoir quality around that well-pair. However, NPV of the pad

(Fig 2.11 (d)) demonstrates a better pad performance for steam prioritization

case over no steam prioritization.

Figure 2.8: Case-2 Steam rate performance evolution (a) Well-pair-1 (b) Well-
pair-2 (c) Well-pair-3 (d) Well-pad
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Figure 2.9: Case-2 Oil rate performance evolution (a) Well-pair-1 (b) Well-
pair-2 (c) Well-pair-3 (d) Well-pad
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Figure 2.10: Case-2 cSOR performance evolution (a) Well-pair-1 (b) Well-pair-
2 (c) Well-pair-3 (d) Well-pad
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Figure 2.11: Case-2 NPV performance evolution (a) Well-pair-1 (b) Well-pair-
2 (c) Well-pair-3 (d) Well-pad

2.4.4 Case 3: Random Utilization of Between 80% and
Full Steam Generation Capacity

In this case, the optimization problem was formulated to model variability

in maximum available steam. Technical issues with the boiler, water source

and pumps can result in changing steam availability. Case 3 is modelled to

simulate the variable nature of steam generation process. The available steam

ranges between 80 to 100% of maximum steam generator capacity. Steam

injection rate for the entire pad is below 400 m3/day unlike other cases (Fig

2.12(d)). Fig 62.13 (a–d) shows the evolution of the oil rate after optimization.

The pad oil production rate (Fig 2.13 (d)) displays no significant difference

between no steam prioritization and steam prioritization cases. The changing

steam availability might be the reason for such close results.

The pad cSOR (Fig 2.14 (d)) is the lowest for steam prioritization because

of the significant drop in cSOR of well-pair 3 which had minimal steam allo-
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cated. The NPV for pad (Fig 2.15 [d]) increased by approximately 31% and

46% for no steam prioritization and steam prioritization scenarios, respectively

compared to the base case. Case 3 also demonstrates an improved performance

of steam prioritization over no steam prioritization through all the KPIs.

Figure 2.12: Case-3 Steam rate performance evolution (a) Well-pair-1 (b) Well-
pair-2 (c) Well-pair-3 (d) Well-pad
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Figure 2.13: Case-3 Oil rate performance evolution (a) Well-pair-1 (b) Well-
pair-2 (c) Well-pair-3 (d) Well-pad
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Figure 2.14: Case-3 cSOR performance evolution (a) Well-pair-1 (b) Well-pair-
2 (c) Well-pair-3 (d) Well-pad
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Table 2.2: Change in NPV for Cases 1, 2, and 3 compared to the base case

Cases Change in NPV (%)

Well-pair 1 Well-pair 2 Pad

No steam prioritization Steam prioritization No steam prioritization Steam prioritization No steam prioritization Steam prioritization

1 24.71 42.85 42.04 29.24 25.03 50.12
2 26.24 42.04 38.83 22.91 25.89 47.67
3 23.59 36.78 46.69 30.18 31.4 46.11

Figure 2.15: Case-3 NPV performance evolution (a) Well-pair-1 (b) Well-pair-
2 (c) Well-pair-3 (d) Well-pad

Table 2.2 summarizes the performances of all cases in terms of change in

NPV relative to the base case. In all cases, steam prioritization outperforms

its counterpart if pad NPV is considered. The proposed workflow optimizes

NPV, however, it can be updated to account for other engineering and envi-

ronmental performance indicators of the heavy oil production process. The

workflow is currently designed to work for a single pad and assumes other

scheduled activities such as drilling of new wells/pads does not affect the cur-

rent operations.
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2.5 Conclusions

A workflow for real-time steam allocation under uncertainty for SAGD mul-

tilateral well pad operations is developed and presented in this study. The

workflow comprises of model that continuously updates in real-time for the

short-term prediction horizon which is then used in the nonlinear optimization

to determine the best steam injection sequence for well-pairs. This workflow

was assessed using a field scale model from which following conclusions can be

drawn:

1. After assessing the workflow on different case studies, field NPV in-

creased between 22% to 50% and field cSOR decreased between 5% to

15% for the steam prioritization scenario when compared to the base

case.

2. Considering all KPIs, it can be said that the ultimate pad performance

of steam prioritization outperforms no steam prioritization scenarios.

3. The computational time for real-time steam allocation reduces signifi-

cantly with the replacement of first principle models with data analytic

models.

4. Another advantage of this proposed workflow is the real-time update

of the reservoir predictive model for quick short-term decision-making

process. Unlike the first principle models which are computationally

intensive, the proposed workflow can be easily integrated with the daily

decision-making process in field operations.

The proposed workflow demonstrates significant potential in daily, weekly,

or short-term operational decision-making for heavy oil production. Proposed

data analytic predictive model that uses only steam injection and heavy oil

production rates could be improved to integrate more data attributes that are

recorded daily in the field. The workflow also can be expanded to incorporate

activities such as new well-pair or pad scheduling, uncertainty in steam supply,

and oil price.
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Chapter 3

Risk Management and
Optimization in Real-Time
Non-condensable Gas
Co-Injection Under Economic
Uncertainty1

3.1 Introduction

Despite the successful implementation of SAGD in western Canadian oil reser-

voirs, significant potential research goals remain for improving bitumen recov-

ery, lowering steam injection cost, and improving energy efficiency to reduce

carbon footprint. Non-condensable gas (NCG) injection has been shown in

experimental (Butler, 1999; Mendoza and Kantzas, 2020), numerical simula-

tion (Austin-Adigio and Gates, 2019; Mendoza and Kantzas, 2020), and field

application (MEG, 2017) to alleviate the SAGD drawback of high-water de-

mand and its associated negative environmental repercussions. NCG injection

improves the SAGD process by lowering heat losses to the overburden (Butler,

1999), lowering steam-oil-ratio (MEG, 2017), thereby reducing water and fuel

requirements and greenhouse gas emissions. In addition to lowering green-

house gas emissions, sequestration of NCG such as CO2 or methane positively

impacts the environment. Therefore, one of the vital considerations in the de-

sign of NCG co-injection is the stage of SAGD maturity to start co-injection.

1A version has been published in SPE Reservoir Evaluation & Engineering
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Mendoza and Kantzas (2020) simulation study showed NCG co-injection is

beneficial after three-quarters of the reservoir is swept. A simulation study

of MEG Energy Christina Lake reservoir by Austin-Adigio and Gates Austin-

Adigio and Gates (2019) beginning NCG co-injection at mid to late stages of

SAGD. From the study, an increase in oil rates was observed in the first two

years of NCG co-injection, which displaced already mobilized oil by SAGD but

decreased as the NCG gas accumulates. Therefore, the mole fraction of NCG

co-injection is another critical design parameter considered during the opti-

mization of the scheme. Petro-Canada’s phase B of the Dover field simulation

study showed 0.8 mole % as the optimum (Yee and Stroich, 2004). Hangistone

Demonstration project by JACOS targeted 1 mole % of NCG, resulting in a

15% reduction in steam requirements and an average instantaneous steam-oil-

ratio (ISOR) of 3.7 m3/m3 (Doan et al., 2014). In the Devon Jackfish SAGD

project, NCG injection targeted 1 - 4 mole % , which successfully maintained

steam chamber pressure and reduced ISOR without negatively impacting oil

recovery (Devon, 2017). Detpunyawat (2017) performed an optimization study

of NCG co-injection with injection pressure design parameters, the injection

fluid volume fraction of solvent, methane, and steam. The optimized case re-

turned the injection pressure of 1682 kPa and the injection volume fraction of

0, 0.59, and 0.41 for solvent, methane, and steam. An optimal mole fraction

of 1 mole % was observed in the simulation study of NCG. (Mendoza and

Kantzas, 2020). The proposed real-time workflow optimizes NCG co-injection

total injection phase rate and mole fraction in a synthetic matured SAGD

reservoir under oil price uncertainty.

Additionally, advancements in intelligent field technology enable real-time

SAGD process decision-making optimization. Closed loop reservoir manage-

ment (CLRM) is a concept that leverages advances in smart field technology

to improve real-time decision-making by perturbing control setpoints (i.e., in-

jection rates, bottom hole pressure) to maximize the recovery process KPIs

(Jansen et al., 2005; Wang et al., 2009). The optimal control setpoints for

each prediction horizon are determined using a dynamic predictive model of

the recovery process, the inputs perturbed by a constrained nonlinear opti-
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mizer. The CLRM concepts have been an effective tool in the development of

SAGD reservoirs over the years. Subcooling of SAGD well-pairs is a critical

control parameter of SAGD development for steam conformance. CLRM has

been shown in the literature to be an effective tool for managing subcool con-

trol in SAGD real-time optimization (RTO).(Mohajer et al., 2010; Patel et al.,

2014, 2019; Patel and Trivedi, 2020). Purkayastha et al. (2018) demonstrated

that when compared to the SAGD RTO’s multi-input single-output control

structure (MISO), a multi-input multi-output (MIMO) control structure for

steam trap control and oil rate control significantly improves both oil produc-

tion rate and cumulative steam-oil ratio (cSOR). A MIMO control structure

for NCG co-injection will be adopted in this work. Sibaweihi et al. (2019) also

presented RTO workflow for SAGD steam prioritization with varying steam

generation. One of the critical advantages of RTO is the reduction of com-

putational cost and higher chances of optimal objective function results. The

computational cost reduction is achieved due to the decomposition of life-cycle

optimization into small-scale control horizon (predictive horizon) optimization

sub-problems. Due to the uncertain nature of the economics of SAGD because

of oil price uncertainty, the risk of losing RTO returning sub-optimal objective

is high.

Two main approaches have been shown to handle uncertainty. A probabilistic-

based method (Hanssen et al., 2015; Vembadi et al., 2018) of handling un-

certainty known as stochastic optimization (SO) and a deterministic-based

(Capolei et al., 2015; Siraj et al., 2015; Yang et al., 2011) set of scenarios

of the uncertain variables known as robust optimization (RO). In this work,

the RO approach will be implemented to handle oil price uncertainty. The

main aim of economic uncertainty optimization is to mitigate the risk of oil

price uncertainty. In real-time RO, a bi-objective approach is employed to

minimize risk whiles return is maximized. In the petroleum industry, risk

measures include mean-variance (Capolei et al., 2015; Siraj et al., 2015), max-

min (Chen et al., 2017; Siraj et al., 2015), semi-variance (Santos et al., 2017;

Siraj, 2017), and conditional variance-at-risk (Chen et al., 2017; Siraj et al.,

2015) have been reported. The tradeoff factor of risk-return is an essential
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selection tool for real-time RO solutions. Typically, a set of tradeoff factors in

RO and decision-makers use their judgment to select the best control strategy

(Siraj et al., 2015). Chen et al. (2017) suggested a two-stage lexicographic risk

mitigation approach. First, maximize the expected NPV and set the maxi-

mized expected NPV as a constraint in the second stage of risk minimization.

Capolei et al. (2015) suggested using the Sharpe ratio to select the optimal

tradeoff factor between risk-return in a CLRM. The market solution is con-

sidered the tradeoff factor with maximum Sharpe ratio and the best outcome

for the control horizon. Sharpe ratio does not account for non-normally dis-

tributed returns. The project’s financial performance cannot be compared to

a benchmark for investors. The Anderson-Darling test is used to check if the

returns are non-normally distributed. For non-normally-distributed returns, a

modified Modigliani’s risk-adjusted performance is used for optimal tradeoff

selection.

Multi-criteria (NPV, recovery factor, water balance, steam chamber confor-

mance) optimization of SAGD operations can be challenging with conflicting

objectives. Single objective economic optimization of SAGD projects may not

account for negative environmental impact (i.e. greenhouse gas emissions) or

meet safe engineering standards (steam chamber pressure above fracture gra-

dient). NPV is the main criterion that has been mainly used for real-time

SAGD optimization (Mohajer et al., 2010; Patel et al., 2014; Vembadi et al.,

2018). Implementing multi-objective optimization in real-time SAGD opera-

tions comes with the challenge of the non-uniqueness of the optimal solutions

(non-dominated solutions) to be executed in the current prediction horizon.

SAGD RTO with uncertainty is complicated, and the optimization problem

complexity grows with multi-criteria optimization. In the literature, multi-

criteria decision making (MCDM) optimization problems are formulated as a

weighted sum of criteria (Awotunde and Sibaweihi, 2014), goal programming

(Maremi et al., 2020), Pareto-front optimization (Farahi et al., 2021; Ma and

Leung, 2020) or a single objective with other objectives as constraints. In this

work, the optimization problem is formulated as a financial risk mitigation

problem. A scenario-based approach that characterizes the NCG co-injection
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oil price uncertainty is implemented. In this study the following are proposed

to improve on real-time production optimization workflow:

1. Modigliani risk-adjusted (M2) performance (Modigliani and Leah, 1997)

as an optimal trade-off risk-return contrary to Sharpe ratio in Capolei

et al. (2015).

2. Anderson-Darling normality test is used to determine the normality of

the returns distribution and to adjust M2 performance of non-normally

distributed returns.

3. Normalization of previously recorded data based on the physical or op-

erating range instead of max-min data (Prakash et al., 2020) adds an

advantage of automatic outlier detection and elimination of train-test

split contamination. In addition, defining well constraints for each con-

trol horizon used in MPC (Purkayastha et al., 2018) is eliminated.

4. A compromise online-offline model training based on the concept of for-

getting factor compared to the adaptive scheme using residual analysis

(Siraj et al., 2017).

5. The decision variables and constraints are normalized to each physical

or operating range to give them equal importance, unlike previously

reported (Capolei et al., 2015; Patel and Trivedi, 2020)

The paper deals with uncertainty using four different risk measures: (i) Mean-

Variance optimization (m-VO): mean of the NPV realizations as return and

variance as the risk, (ii) Max-Min Optimization (MMO): risk is defined as

the minimum of NPV realizations, (iii) Mean-Semi-Variance Optimization (m-

SVO): downside risk or variance of NPV realizations below the mean value and

(iv) Mean-Conditional Value-at-Risk (m-cVaR): risk is measured as a weighted

tail end of the NPV realizations below the mean value.
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3.2 Methodology

In this section, a description of the proposed real-time risk mitigation divisions

under uncertainty is presented in detail. Fig 3.1 shows a flowchart of the real-

time workflow. The previously recorded input-output history is normalized at

each prediction horizon based on the physical feature range and not the max-

min recorded. In the initial horizon, the data-driven model is trained based

on the forgetting factor for online parameter estimation to identify the input-

output lags and their coefficients. Robust optimization is then performed with

the identified data-driven model to find the optimal control inputs. The trade-

off with the highest market value is implemented as controller setpoints. The

response from the reservoir is then recorded for data-driven model updating in

the next prediction horizon. In the subsequent steps, the data-driven model

with known lags is updated with the new recorded input-output data to update

the lag coefficients. If the adapted model passes a pre-defined best-fit-ratio,

robust optimization, market-selected controller setpoints and reading of input-

output data are repeated in a recursive loop. Finally, training based on the

forgetting factor concept is implemented if the updated data-driven model does

not pass the pre-defined best-fit ratio to identify a model with new lags and

their coefficients adapting to the current state of the reservoir. The workflow

improves our previous work on SAGD real-time optimization (Sibaweihi et al.,

2019) to account for economic uncertainty and data-driven model training and

validation. Modigliani’s risk adjustment factor is used to select the optimal

risk-return tradeoff as opposed Sharpe ratio used in the work of Capolei et al.

(2015). A detailed description of the proposed real-time workflow is presented

in the following subsections.
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Figure 3.1: Real-Time risk mitigation steam allocation workflow

3.2.1 SAGD Data-Driven Model Development.

The first step is data gathering from the SAGD reservoir. A reservoir simulator

will be used as a data generator or a proxy to an actual field for this work. Zero

mean noise is then added to the recorded data before the data is normalized for

the data-driven model development. Min-max (Equation 3.1) normalization is

then used to transform the observed time-series data between 0 and 100. The

proposed normalization approach does not use the observed min-max of the

feature, but min-max based on engineering, environmental, and equipment

limitations. For the SAGD process, the min-max of features is selected, as

shown in Table 3.1. The proposed normalization approach offers the following

advantages compared to the current approach while keeping the benefits of

normalization or standardization.

1. Reservoir simulators use well constraints to bound the forward model

forecast, and if there is a violation, a set of actions is taken. Data-

driven models lack the option of imposing well constraints. By selecting

the min-max based on the proposed approach, data-driven forecasting is

bound within a feasible range. Thus, defining well constraints as used in
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MPC (Purkayastha et al., 2018) is eliminated and reduces computational

time.

2. Normalizing using the min-max of the previously recorded data or stan-

dardizing with the mean and standard deviation does not offer the op-

tions for prescriptive analysis. The second advantage is automatic outlier

detection, which can be used for prescriptive analytics (suggest a course

of action based analysis of the normalized past recorded data) . For

example, after normalization, if the temperature is below zero for a con-

tinuous period, this indicates possible conning and requires further at-

tention. If the pressure is greater than 100 for a continuous period, that

shows requirement for lowering the injection pressure to avoid possible

formation fracture.

3. The third advantage the proposed approach offers is interpretability for

both linear and nonlinear data-driven models. For example, a percentage

change of an input can be correlated to the corresponding percentage

change of the outputs.

xnorm =
x(t)−min(x)

max(x)−min(x)
× 100 (3.1)

Table 3.1: Feature range for max-min normalization

Feature Min Max

Temperature Initial reservoir temperature Maximum well equipment design temperature
Pressure Bubble point 80% of fracturing pressure
Rate No injection or production Maximum allowable choke rate
Steam Chamber Volume Zero Reservoir or pad pore volume

A Box-Jenkins model structure for dynamic systems can be represented as in

Equation 3.2. Where the input (u (t) : total phase injection rate or mole frac-

tion) at any time(t) to the output (ŷ (t) : Liquid or water cut). z−1 is the back-

ward shift operator; this allows the process and disturbance transfer functions

to include the effects of the past inputs on the current output. Model identifi-

cation is then performed after the pre-processing step (Fig 3.2). The proposed
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identification approach uses an adaptive offline one-step ahead prediction er-

ror minimization approach that estimates the outputs of the SAGD process

model or minimizes the difference between model predictions and recorded

reservoir history. The best fitness is selected based on normalized root mean

square error. First, small-scale optimization is performed to select the best fit

model order. Cross-validation is then performed to determine a regularization

parameter that gives the best fit. If the identified model does not pass a set

threshold training and validation fitness, one percent of the early time dataset

is eliminated from the training dataset. The optimization, cross-validation,

and elimination of the first part of the training dataset are repeated until fit-

ness criteria are met, or 50% of the training dataset is eliminated. As shown

in Fig 3.1, the model is updated to adapt to the current state of the reservoir

after optimized controller setpoints are implemented. The data-driven model

is updated with the previous validation data set and the response of the data-

driven model compared recorded reservoir response of the optimal controller

setpoints. Suppose the data-driven model passes the validation test. In that

case, it is used for the current horizon optimization, and if it fails, model identi-

fication is initiated, as shown in Fig. 3.2, to account for the new reservoir state.

Box-Jenkins Model (BJ)

ŷ (t) =
B (z−1)

F (z−1)
u (t) +

C (z−1)

D (z−1)
e (t) (3.2)

B (z−1) = b1z
−1 + · · ·+ bnbz

−nb

C (z−1) = 1 + c1z
−1 + · · ·+ cncz

−nc

D (z−1) = 1 + dz−1 + · · ·+ dndz
−nd

F (z−1) = 1 + f1z
−1 + · · ·+ fnfz

−nf
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Figure 3.2: Workflow for model identification and updating of the data-driven
model

3.2.2 SAGD Data-Driven Model Forecast Validation.

In Fig. 3.2, the validation step selects the recursively optimal model struc-

tures and parameters. The best fit model to past recorded data is used for

optimal decision-making. After the optimization study, the model’s forecast

and reservoir response performance are compared in this validation section.

The term prediction is used in this study refers to utilization of the model to

estimate output within previously recorded data. Forecasting, on the other

hand, entails estimating future outcomes using the best fit model. Modified

Kling-Gupta (Kling et al., 2012) efficiency will be used to validate the data-

driven model forecast outputs (Equation 3.3 – 3.4). Where yi and ŷi are the

measured and forecasted outputs at the time (t). y and ŷ are the measured

and forecasted mean outputs. A perfect positive correlation is indicated by 1,

no correlation by zero and a perfect negative correlation by −1 for Pearson

correlation (Equation 3.3). The drawbacks of Pearson correlation, as noted

by Legates and McCabe (1999), are sensitive to outliers, not suitable for off-

set error evaluation and when yi and ŷi are proportional Pearson Correlation

(r = 1). In temporal dynamics modelling, the goal is to reproduce the system
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dynamics measured by r while flow distribution is preserved through mea-

suring bias (β) and the variability (γ) ratios. The r in modified Kling-Gupta

Efficiency (KGE ′) represent the Pearson’s r correlation between y and ŷ, while

µ and σ are the mean and standard deviation of the forecast (f) and measured

(m) outputs. The optimum value for each term r, β, γ and KGE ′ is equal

to one. With the performance of the model decomposed with KGE, the rela-

tive contribution of each term can be estimated to understand which term is

contributing to poor or good model performance. The terms under the square

root in Equation 3.4 represent the Euclidean distance, and each term can be

re-scale during model training to improve upon its performance. Using the

mean of the previous recorded data to forecast as a benchmark data-driven

model, theKGE ′ = −0.41. Hence any data driven model withKGE ′ > −0.41

is better forecaster than the mean forecaster model. KGE ′ = −0.41 for the

mean forecaster is derived by assuming µf = µm, σm ̸= 0 and σf = 0 (Knoben

et al., 2019). To asses the adequacy of the data-driven model, skill score (ss)

metric is used (Equation 3.5) as performance of the data-driven model relative

to benchmark model. Positive ss indicates improvement over benchmark and

negative ss indicates model is worse than benchmark. As noted by Knoben

et al. (2019), if the benchmark has KGE ′ = 0.99, then ss = 0.5 might not

indicate a real practical improvement because of the scaled KGE ′ since the

room for improvement is 0.01.

Pearson Correlation

r =

∑Np

t=1 (yt − y)
(
ŷt − ŷ

)√∑Np

t=1 (yi − y)2
√∑Np

t=1

(
ŷt − ŷ

)2 , −1 ≤ r ≤ 1 (3.3)

Modified Kling-Gupta Efficiency (Kling et al., 2012)

KGE ′ = 1−
√
(r − 1)2 + (β − 1)2 + (γ − 1)2, (3.4)

−0.41 < KGE ′≤1

β =
µf

µm

γ =
σf/µf

σm/µm
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Skill score (Knoben et al., 2019)

ss =
KGE ′

model −KGE ′
benchmark

1−KGE ′
benchmark

(3.5)

3.3 Real-time Robust Optimization: NCG Coin-

jection with Steam

In-situ recovery using SAGD techniques goes through three stages (ramp-up,

normal and wind-down). During the wind-down phase, non-condensible gas

such as methane is co-injected with steam to maintain steam chamber pressure

while steam chamber temperature is utilized in bitumen production. The main

KPI for SAGD process optimization is net-present-value (NPV). The NPV for

this work is defined as in Equation 3.6. The optimization algorithm iteratively

perturbs the total injection rate (u) and the mole fraction (ϑ) of the NCG at

each control horizon. The NPV is calculated for each well (j) at each time

(t) by summing up the difference between the revenue (the oil production rate

[ŷo,j (t)]) and cost (steam injection [us,j (t)], gas injection [ug,j (t)], produced

water [ŷw,j (t)], transportation and blending of oil, royalty rate ) over the

prediction horizon. The present value calculated over the prediction horizon

(P ) is discounted and then sum over total wells (Nw) in the model.

J (u, ϑ) =
Nw∑
j=1

P∑
t=1

(poŷo,j (t)− pwŷw,j (t)− prpoŷo,j (t)− psus,j (t)− pgug,j (t)− potbcŷo,j (t))

(1 +D)∆t

(3.6)

Table 3.2 shows the input of the NPV parameters used in the optimization.

They are based on major SAGD projects operating costs in Canada (Alexey,

2018). SAGD co-injection economic uncertainty is accounted for using a finite

set of oil price scenarios (θi, i = 1, . . . , Nθ) by maximizing the expected returns

while minimizing the risk simultaneously.

The expected returns, which are maximized, are approximated over a set

of oil price scenarios as defined in Equation 3.7. Where JMO is the expected

return, θi is oil price realization and Nθ is the total realization.
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Table 3.2: Economic input parameters

Description Value

Price of oil [po] Uncertain parameter
Steam processing cost [ps] 6$/bbl
Gas processing cost [pg] 320$/liqm3

Produced water processing cost [pw] 1.96$/bbl
the transportation and blending cost of oil [potbc] 4.95$/bbl
Royalty rate [ pr] 2%
Discount factor (D) 10%

JMO =
1

Nθ

Nθ∑
i=1

J (u, , ϑ, θi) (3.7)

For each control horizon, the real-time robust optimization problem is formu-

lated as shown in Equation 3.8. Robust optimization is constrained subject to

(s.t.) minimum (umin
j , ϑmin

j ), and maximum (umax
j , ϑmax

j ) total phase (steam

+ methane) and mole fraction injection rate. Because of the normalization

approach proposed, the minimum and maximum design variables and con-

straints cannot be less than zero and greater than 100. The normalization

ensures equal importance be given to each design variable and constraint by

the optimization algorithm. Instabilities in the SAGD operations as a result of

changes in steam injection were controlled by restricting the rate changes be-

tween subsequent prediction horizons to a minimum (∆umina
j ) and maximum

(umax
j ) total phase injection rate. In this case study, the value was set to a

10% maximum rate change of the previous week’s allocation rate. A constraint

violation of 5%or less in addition to the maximum is accepted. The maximum

rate is field-dependent and highly advised to be observed as a function of prior

behaviour or an optimization variable.

max
u,ϑ

JMO =
1

Nθ

Nθ∑
i=1

J (u, , ϑ, θi) (3.8)

s.t. umin
j ≤ uj ≤ umax

j

ϑmin
j ≤ ϑj ≤ ϑmax

j

∆umin
j ≤ ∆uj ≤ ∆umax

j
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∑Nw

j=1 uj (t) ≤ U

Due to uncertain oil prices, the deviation from the expected return can be

largely resulting in uneconomic returns or high-risk optimal controls. There-

fore, mitigating the risk while maximizing the expected returns deserves atten-

tion. Maximizing return while minimizing risk means reformulating Equation

3.8 into a bi-objective optimization problem, increasing the computational

cost. Hence a risk-return tradeoff ωr ∈ [0, 1] is introduced, and the optimiza-

tion problem is reformulated as a single objective. The optimization is then

performed on a pre-defined set of risk-return tradeoff parameters, and the op-

timal tradeoff control setpoints based on risk-adjusted criteria are selected.

Essentially, the goal is to maximize the expected return while ensuring the

defined risk measure does not deviates significantly from the expected returns

or avoid fat-tail return distribution. The following subsection discussed strate-

gies employed to handle risk-return tradeoffs using symmetric and asymmetric

risk management schemes (Aackermann, 2015; Capolei et al., 2015; Siraj et al.,

2015) .

3.3.1 Mean-Variance Optimization (m-VO).

Markowitz (1952) risk-return portfolio selection optimization is employed un-

der this case study. As shown in Equation 3.9, ωr is the risk-return tradeoff

parameter. At each control strategy, an odd-numbered pre-defined set of the

parameter is used. The parameter with the highest risk-adjusted return (M2)

is selected as the optimal control strategy. The motivation for implementing

this approach is to reduce the sampled returns’ variance, hence reducing the

risk of low returns. The use of the m-VO method gives equal preference to

both tails of the return’s distribution.

JMVO = ωrJMO − (1− ωr)
1

Nθ − 1

Nθ∑
i=1

(J (ustf , θi)− JMO)
2 (3.9)
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3.3.2 Max-Min Optimization (MMO).

In this method, the MMO represents the risk of uncertain returns. Equation

3.10 shows the formulation of the tradeoff, maximizing the expectation and the

minimum of the uncertain returns. Thus, MMO is an asymmetric approach

that maximizes the worst cases of returns without penalizing the best returns.

Conservative solutions are generated when the uncertain parameter has a wide

variability (Siraj, 2017).

JWCO = ωrJMO − (1− ωr)min {J1, . . . , JNθ
} (3.10)

3.3.3 Mean-Semi-Variance Optimization (m-SVO).

m-SVO was proposed by (Markowitz, 1952) as a measure of the deviation of

the squared dispersion of returns falling above and below the expectation of

uncertain returns. Equation 3.11 (Siraj, 2017) defines the risk-return tradeoff

optimization. The second term of Equation 3.11 is the risk term which is the

lower tail of the returns mathematically to estimate the downside risk of the

objective function. The objective here is to ignore desirable risk and maximize

the worst returns (returns lower than the mean).

Jm−SV O = ωrJMO − (1− ωr)
1

Nθ − 1

Nθ∑
i=1

min{JMO − J (u, , ϑ, θi) , 0}
2 (3.11)

3.3.4 Mean-Conditional Value-at-Risk Optimization (m-
CVaR).

The m-CVaR approach was introduced by Rockafellar and Uryasev (2002)

as a risk management approach that focuses on α of the worst cases. The

method is asymmetric risk management for focuses on the lower tail of the

distribution, unlike mean-variance, which treats the lower and the upper tail

equally. Aackermann (2015) defines CVaR as the average return given that

the return is smaller than VaR with a certain level of confidence. Hence the

objective function for risk-return optimization is defined mathematically as in
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Equation 3.12.

Jm−SV O = ωrJMO − (1− ωr)
1

α

Nθ∑
i=1

NPVib (3.12)

3.3.5 Simulating Oil Price Uncertainty

. Oil price uncertainty is modelled using geometric Brownian motion. The

model is defined as in Equation 3.13. Where P (t) is the future oil price at

the time (t, month), P (0) is the initial oil price, σ is the oil price volatility, µ

is the drift in oil price, and ∆t is the period selected as monthly in this work.

A finite set of oil price scenarios θi, i = 1, . . . , Nθ of 100 realizations is used

in this study. Fig 3.3 shows the realizations of oil price uncertainty based on

Equation 3.13. The thick brown, black and red line represents the maximum,

mean and minimum of all realizations at each month. This workflow’s RTO

control horizon is set to a weekly optimization period. Generally, significant

oil price uncertainty is not recorded over such a short period. As a result,

monthly average oil price uncertainty is used in this study, as illustrated in

Fig 3.3. Due to the four-week length of each month, the uncertain pricing

range for four consecutive weeks is identical.

P (t) = P (0) exp

[(
µ− σ2

2

)
∆t+ σ ∗ 2

√
∆tε

]
(3.13)
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Figure 3.3: Oil price uncertainty realizations

3.3.6 Risk-Return Trade-off Selection.

After the robust optimization, the optimal risk-return tradeoff is selected us-

ing Modigliani risk-adjusted (M2) performance (Modigliani and Leah, 1997).

Motivation is to find the tradeoff parameter that gives the highest expected

return with lower risk. The Sharpe ratio (Equation 3.14) suggested by Capolei

et al. (2015) as an optimal tradeoff risk-returns compares the uncertainty sce-

narios among themselves. The ratio of the expected returns
(
E
[
J (θi)

Nθ

i=1

])
to the standard deviation

(
σ
[
J (θi)

Nθ

i=1

])
is the Sharpe ratio. However, M2

compares the uncertainty scenarios and a benchmark index.

Based on Capolei et al. (2015) definition for Sharpe ratio (Sh), M
2 for

this proposed work would be defined in Equation 3.15. σM is the standard

deviation of a benchmark (any broad index, possibly S&P 500 energy index),

and rf is the risk-free ratio (3-month treasury bill or Libor rate can be used).

The drawback of Sh as an optimal risk-return tradeoff is the assumption the

E
[
θNθ
i=1

]
will always be symmetric. To ensure the correct optimal tradeoff of

risk-return is selected at each control horizon, the Anderson and Darling (1952)

is used to test the normality of the return’s distribution. If the distribution is
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not normally distributed, M2 is modified using adjusted Sharpe ratio (ASh)

proposed by Pezier and White (2006) to penalize negative skewness and excess

kurtosis. Hence Equation 3.16 is used to calculate the modified Modigliani

risk-adjusted
(
mM2

)
performance. If the returns are normally distributed,

the skewness (s) is zero, and the kurtosis (k) will be three else the penalization

is applied to the Sh.

Sh =
E
[
J (θi)

Nθ

i=1

]
σ
[
J (θi)

Nθ

i=1

] (3.14)

M2 =
E
[
J (θi)

Nθ

i=1

]
σ
[
J (θi)

Nθ

i=1

]σM + rf (3.15)

mM2 =

[
Sh ×

{
1 +

(s
6

)
× Sh −

(
k − 3

24

)
× Sh

2

}]
σM + rf (3.16)

The proposed real-time optimization workflow is summarized as shown in the

Algorithm below.
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Algorithm: Real-Time NCG Optimization
For every time step t = 7 days.

1. Set risk measure.

� The standard deviation of returns: 1
Nθ−1

∑Nθ

i=1 (J (u, ,ϑ,θi)− JMO)
2.

� Minimum of returns: J1, ..., JNθ
.

� Covariance at Risk of returns: 1
Nθ(1−β)

∑Nθ

i=1min {Ji (u, ,ϑ,θi)−α,0}.

� Semi-variance of returns: 1
(Nθ−1)

∑Nθ

i=1 max {JMO − Ji (u, ,ϑ,θi) ,0}
2.

2. Set risk-return trade-off parameters (ωr).

3. Read the previous production and injection rates.

4. Normalize the previously recorded data based on each parameter’s physical or op-
erating constraint (range).

5. Identify the structure and parameters of the data-driven model [Fig. 2].

6. Estimate the recoverable oil.
If the produced oil is less than recoverable oil Go to step seven. Else Go to step 14.

7. Check the status of all wells in the pad. If max (us (t)+ ug (t)) < Umin ∀ (t) <
28 The injection well is shut. Else if max (us (t)+ ug (t)) < Umin ∀ (t) ≥ 28
Open injection well Else The injection well is open.

8. For each tradeoff parameter (ωr ∈ W). Normalize the decision variable and
constraint-based on each parameter physical or operating constraint (range).
Find usteam (k) ∈ Usteam, ugas (k) ∈ Ugas that maximizes expected returns(
E

[
θNθ
i=1

])
.

If the well model’s prediction is out of the physical range or operating range, use
the previous week’s prediction for the well and adjust the forecast by a factor. Test
for normality of returns distribution using Anderson-Darling test. If returns are

normally distributed, Estimate risk-adjusted performance M2 =
E
[
J (θi)

Nθ
i=1

]
σ
[
J (θi)

Nθ
i=1

]σM + rf

Else Estimate mM2 =
[
Sh ×

{
1 +

(
s
6

)
× Sh −

(
k−3
24

)
× Sh

2
}]

σM + rf

9. Select the tradeoff parameters (ωr ∈ W) that have the maximum risk-adjusted
performance (M2)

10. Set the total optimal control setpoints (steam + gas rate) to a specified steam rate
if the total optimal control setpoints are below or equal to a pre-defined value.

11. Apply optimal injection controls of the selected maximum risk-adjusted performance
to the digital heavy oil reservoir

12. Record the response (production and injection rates) of the reservoir to the optimal
control setpoints

13. t = t+ 1

14. Repeat steps 4− 13 until it is not profitable or the end of field life.
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3.4 Case Study

3.4.1 SAGD Reservoir Model.

A synthetic reservoir of the Western Canada oilfield is used in this study and

consists of nine horizontal well-pairs. It was based on available publications

with an average porosity of 0.31 and average horizontal and vertical permeabil-

ities of 4495 mD and 3596 mD. Fig 3.4 displays the permeability (Fig 3.4a)

and shale barrier distribution (Fig 3.4b) of the well-pad. In addition, rock-

liquid properties of CMG SAGD training for NCG were used in fluid reservoir

behaviour (CMG, 2020). With 128000 grid cells, the pad is 800 m x800 m

in size. The cell grid size of the grid is 10 m on average laterally and 2.5 m

vertically.

There are three different SAGD scenarios. The well-pairs for each model

were initially heated for four months. Each injection well was operated at a

maximum steam rate of 750 m3/day (cold water equivalent, CWE) and a max-

imum injection pressure of 2500 kPa. The injection steam quality of 0.9 and

temperature of 223.7oC. The production wells have a primary constraint of

2000 kPa bottom hole pressure and a secondary constraint of 1000m3/day sur-

face liquid rate. In addition, a maximum steam production rate of 10 m3/day

is set to mimic steam trap control. Conventional SAGD operating strategy was

implemented for 14 years for each model. The differences in the models were

based on the operating plan for the last two years and four months. Model 1

(Base SAGD) is the conventional SAGD where steam is continuously injected

at a constant pressure for the rest of the two years. Model 2 (Base SAGD-

NCG) steam and NCG of 2 moles% were co-injected at a constant total phase

rate of 2500 m3/day. Model 3 (SAGD-NCG optimized) an experiment was

designed to generate an initial input and output data to train a data-driven

model using a sinusoidal signal. The training and validation period was the

first four months, and the remaining two years were then optimized. The

control setpoints optimized in real-time at each control horizon are the total

injection phase rate (u) and NCG mole fraction (ϑ) for each injection well.
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Figure 3.4: Permeability and shale barriers distribution

3.5 Results and Discussion

NCG co-injection aims to enhance SAGD economics by lowering water and

fuel consumption, which will lead to a reduction in greenhouse gas emissions

through reducing SOR. Additionally, by decreasing steam losses to overbur-

den and maintaining the reservoir pressure of a matured SAGD process, the

ultimate recovery can be improved. Furthermore, if methane or CO2 gas is

employed as the injection fluid, sequestration provides an extra benefit to the

environment. The section presents the performance of the proposed work-

flow in forecasting reservoir response and the risk-return objective function

formulations for NCG co-injection.

3.5.1 Data-Driven SAGD Reservoir Model Validation.

The calibrated model used during optimization periods for forecasting perfor-

mance statistics is presented for the NCG co-injection process outputs (Table

3.3 through 3.6) in the appendix. The data-driven model is for each unique

well-pair, therefore, there are no substantial local heterogeneities that would

cause poor forecast performance. For all four case studies, the highest per-

forming well model is highlited as green, medium with yellow, and least per-

formance with red in Table 3.3. In addition, the performance metric ss is used

to rank the best well-pair data-driven model for forecasting, which is split into

correlation (r), bias (β), and variability factors (γ). The third, fourth and fifth

columns are the correlation (r), bias (β), and variability respectively for each
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well-pair. The sixth column is theKGE ′ which represent the composite metric

while the seventh is the relative contribution for r, β, and γ. Skill score (ss) is

the last column which shows the KGE ′ of the data-driven model relative mean

benchmark forecaster. From Table 3.3 - 3.6 higher bias relative contribution

leads to higher ss and hence comparing with mean benchmark forecaster. The

data-driven NCG co-injection model has three outputs (Liquid rate, water-cut

and Gas-Oil-Ratio). Figs 3.5 through 3.8 show the evolution of the model

forecasted performance and system response (numerical or digital reservoir)

for the (a) best (b) median and (c) least performance for the duration of the

optimization period, which were highlighted in Table 3.3 through 3.6. The oil

rate is a derived output of the data-driven model of liquid rate and water-cut.
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Figure 3.5: Forecasted (BJ-Model) and response (Numerical) liquid rate during
the optimization period (a) Best (green) (b) Median (yellow) and (c) least (red)
highlighted in Table 3 for all four cases studied.
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Table 3.3: Liquid rate model forecast dimensionless validation performance.

r β γ KGE ′ rc ss

Well 1 0.78 0.86 1.17 0.69 [0.5, 0.2, 0.3] 0.78
Well 2 0.82 0.83 1.18 0.69 [0.35, 0.31, 0.34] 0.78
Well 3 0.91 0.83 1.26 0.68 [0.08, 0.26, 0.66] 0.77
Well 4 0.76 0.86 1.53 0.4 [0.17, 0.05, 0.78] 0.58
Well 5 0.85 0.83 1.25 0.66 [0.19, 0.25, 0.56] 0.76
Well 6 0.76 0.87 1.34 0.56 [0.31, 0.09, 0.6] 0.69
Well 7 0.91 0.84 1.29 0.66 [0.06, 0.22, 0.71] 0.76
Well 8 0.86 0.83 1.29 0.63 [0.16, 0.22, 0.62] 0.74

m-cVaR

Well 9 0.88 0.84 1.3 0.64 [0.11, 0.19, 0.7] 0.74
Well 1 0.87 0.84 1.29 0.64 [0.13, 0.19, 0.68] 0.75
Well 2 0.9 0.84 1.25 0.69 [0.11, 0.26, 0.64] 0.78
Well 3 0.88 0.84 1.4 0.56 [0.08, 0.13, 0.8] 0.69
Well 4 0.75 0.85 1.57 0.37 [0.15, 0.05, 0.8] 0.55
Well 5 0.37 0.88 1.91 -0.11 [0.32, 0.01, 0.67] 0.21
Well 6 0.86 0.86 1.36 0.59 [0.12, 0.12, 0.76] 0.71
Well 7 0.83 0.84 1.23 0.68 [0.27, 0.24, 0.49] 0.77
Well 8 0.87 0.85 1.36 0.58 [0.1, 0.13, 0.76] 0.71

m-VO

Well 9 0.93 0.85 1.32 0.64 [0.04, 0.18, 0.78] 0.74
Well 1 0.96 0.86 1.2 0.76 [0.03, 0.32, 0.65] 0.83
Well 2 0.61 0.93 2.15 -0.22 [0.1, 0.0, 0.9] 0.13
Well 3 0.93 0.85 1 0.83 [0.16, 0.84, 0.0] 0.88
Well 4 0.93 0.86 1.34 0.63 [0.04, 0.14, 0.83] 0.74
Well 5 0.83 0.86 1.25 0.67 [0.26, 0.18, 0.56] 0.77
Well 6 0.85 0.85 1.19 0.71 [0.28, 0.27, 0.45] 0.8
Well 7 0.79 0.86 1.15 0.71 [0.53, 0.23, 0.24] 0.79
Well 8 0.86 0.85 1.21 0.71 [0.22, 0.27, 0.51] 0.8

m-SVO

Well 9 0.95 0.85 1 0.84 [0.08, 0.92, 0.0] 0.89
Well 1 0.94 0.84 1.19 0.75 [0.06, 0.4, 0.54] 0.82
Well 2 0.91 0.84 1.13 0.77 [0.15, 0.52, 0.33] 0.84
Well 3 0.89 0.84 1.2 0.72 [0.16, 0.34, 0.5] 0.8
Well 4 0.95 0.84 1.16 0.77 [0.05, 0.48, 0.47] 0.84
Well 5 0.86 0.83 1.11 0.75 [0.33, 0.46, 0.21] 0.82
Well 6 0.91 0.84 1.23 0.7 [0.09, 0.3, 0.61] 0.79
Well 7 0.92 0.85 1.16 0.77 [0.12, 0.42, 0.46] 0.84
Well 8 0.9 0.84 1.2 0.73 [0.12, 0.32, 0.55] 0.81

mmo

Well 9 0.95 0.85 1.17 0.77 [0.04, 0.43, 0.53] 0.83
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Figure 3.6: Forecasted (BJ-Model) and response (Numerical) oil rate during
the optimization period (a) Best (green) (b) Median (yellow) and (c) least
(red) highlighted in Table 4 for all four cases studied.
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Table 3.4: Oil rate model forecast dimensionless validation performance.

r β γ KGE ′ rc ss
Well 1 0.66 1.13 1.15 0.61 [0.74, 0.11, 0.14] 0.72
Well 2 0.85 1.13 0.78 0.7 [0.25, 0.2, 0.55] 0.79
Well 3 0.9 1.07 0.89 0.84 [0.4, 0.19, 0.41] 0.88
Well 4 0.76 1.09 1.21 0.67 [0.51, 0.08, 0.42] 0.76
Well 5 0.9 1.13 0.84 0.77 [0.21, 0.31, 0.48] 0.84
Well 6 0.65 1.18 0.91 0.59 [0.75, 0.2, 0.05] 0.71
Well 7 0.93 1.08 0.97 0.89 [0.38, 0.54, 0.08] 0.92
Well 8 0.95 1.06 0.85 0.83 [0.09, 0.15, 0.76] 0.88

m-cVaR

Well 9 0.84 1.06 1.1 0.8 [0.64, 0.1, 0.26] 0.86
Well 1 0.92 1.03 0.95 0.9 [0.69, 0.06, 0.24] 0.93
Well 2 0.92 1.04 0.91 0.87 [0.43, 0.09, 0.48] 0.91
Well 3 0.95 1.02 0.89 0.88 [0.2, 0.04, 0.76] 0.91
Well 4 0.78 1.08 1.03 0.77 [0.88, 0.11, 0.02] 0.84
Well 5 0.31 1.16 1.65 0.04 [0.51, 0.03, 0.46] 0.32
Well 6 0.91 1.06 0.85 0.81 [0.23, 0.11, 0.66] 0.86
Well 7 0.9 1.1 0.83 0.78 [0.2, 0.18, 0.62] 0.84
Well 8 0.9 1.11 0.84 0.78 [0.22, 0.26, 0.51] 0.84

m-VO

Well 9 0.92 1.03 0.98 0.92 [0.82, 0.1, 0.08] 0.94
Well 1 0.96 0.96 1.09 0.89 [0.13, 0.13, 0.74] 0.92
Well 2 0.25 1.09 2.88 -1.02 [0.14, 0.0, 0.86] -0.43
Well 3 0.69 1.04 0.97 0.69 [0.98, 0.01, 0.01] 0.78
Well 4 0.94 1 0.92 0.9 [0.38, 0.0, 0.62] 0.93
Well 5 0.72 1.07 0.79 0.65 [0.63, 0.03, 0.34] 0.75
Well 6 0.47 1.08 1.27 0.4 [0.79, 0.02, 0.2] 0.57
Well 7 0.67 1.15 0.73 0.54 [0.53, 0.11, 0.36] 0.67
Well 8 0.78 1.05 0.81 0.71 [0.56, 0.03, 0.41] 0.79

m-SVO

Well 9 0.54 1.03 1.08 0.54 [0.96, 0.0, 0.03] 0.67
Well 1 0.95 0.97 1.14 0.85 [0.14, 0.03, 0.83] 0.89
Well 2 0.88 1.02 1.02 0.88 [0.92, 0.04, 0.04] 0.91
Well 3 0.92 1.03 0.99 0.92 [0.85, 0.15, 0.01] 0.94
Well 4 0.92 0.99 1.19 0.8 [0.14, 0.0, 0.86] 0.85
Well 5 0.82 1.06 0.86 0.76 [0.59, 0.06, 0.35] 0.83
Well 6 0.92 1.02 0.94 0.9 [0.6, 0.03, 0.37] 0.93
Well 7 0.85 1.03 1.2 0.75 [0.35, 0.02, 0.63] 0.82
Well 8 0.85 1.04 1.22 0.74 [0.31, 0.02, 0.67] 0.81

mmo

Well 9 0.92 0.98 1.06 0.9 [0.6, 0.04, 0.35] 0.93

76



Figure 3.7: Forecasted (BJ-Model) and response (Numerical) water cut during
the optimization period (a) Best (green) (b) Median (yellow) and (c) least (red)
highlighted in Table 5 for all four cases studied.
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Table 3.5: Water cut model forecast dimensionless validation performance.

r β KGE ′ γ rc ss
Well 1 0.59 0.81 0.31 1.52 [0.36, 0.07, 0.57] 0.51
Well 2 0.71 0.82 0.63 1.13 [0.64, 0.24, 0.12] 0.74
Well 3 0.71 0.82 0.53 1.33 [0.38, 0.14, 0.47] 0.66
Well 4 0.64 0.83 -0.08 2.01 [0.11, 0.03, 0.87] 0.23
Well 5 0.6 0.82 0.52 1.21 [0.68, 0.14, 0.19] 0.66
Well 6 0.42 0.81 -0.48 2.35 [0.16, 0.02, 0.83] -0.05
Well 7 0.51 0.82 0.15 1.67 [0.34, 0.04, 0.62] 0.4
Well 8 0.62 0.82 0.44 1.36 [0.47, 0.11, 0.43] 0.61

m-cVaR

Well 9 0.74 0.82 0.32 1.6 [0.14, 0.07, 0.79] 0.52
Well 1 0.72 0.83 0.64 1.15 [0.62, 0.21, 0.17] 0.74
Well 2 0.72 0.83 0.59 1.25 [0.45, 0.17, 0.38] 0.71
Well 3 0.71 0.83 0.59 1.23 [0.51, 0.17, 0.32] 0.71
Well 4 0.7 0.83 0.64 1.11 [0.69, 0.22, 0.1] 0.74
Well 5 0.64 0.83 0.53 1.24 [0.6, 0.13, 0.27] 0.67
Well 6 0.72 0.84 0.63 1.19 [0.56, 0.19, 0.26] 0.74
Well 7 0.67 0.83 0.63 1 [0.79, 0.21, 0.0] 0.73
Well 8 0.62 0.83 0.25 1.62 [0.26, 0.05, 0.69] 0.47

m-VO

Well 9 0.73 0.83 0.49 1.39 [0.29, 0.11, 0.6] 0.64
Well 1 0.91 0.86 0.54 1.42 [0.04, 0.1, 0.86] 0.68
Well 2 0.87 0.85 0.56 1.39 [0.08, 0.11, 0.81] 0.69
Well 3 0.86 0.85 0.78 1.05 [0.44, 0.51, 0.05] 0.85
Well 4 0.87 0.85 0.72 1.2 [0.22, 0.29, 0.49] 0.8
Well 5 0.81 0.85 0.7 1.17 [0.41, 0.26, 0.33] 0.79
Well 6 0.88 0.85 0.78 1.1 [0.28, 0.5, 0.22] 0.85
Well 7 0.77 0.85 0.72 1.04 [0.67, 0.31, 0.02] 0.8
Well 8 0.81 0.85 0.7 1.17 [0.4, 0.26, 0.34] 0.79

m-SVO

Well 9 0.92 0.85 0.8 1.1 [0.18, 0.58, 0.24] 0.86
Well 1 0.9 0.83 0.65 1.29 [0.09, 0.23, 0.68] 0.75
Well 2 0.85 0.83 0.73 1.14 [0.32, 0.4, 0.27] 0.81
Well 3 0.57 0.83 0.37 1.42 [0.47, 0.07, 0.46] 0.55
Well 4 0.85 0.83 0.68 1.23 [0.21, 0.28, 0.5] 0.77
Well 5 0.82 0.83 0.74 1.07 [0.49, 0.44, 0.07] 0.81
Well 6 0.74 0.83 0.54 1.34 [0.31, 0.14, 0.55] 0.67
Well 7 0.91 0.83 0.72 1.21 [0.11, 0.35, 0.54] 0.8
Well 8 0.77 0.83 0.5 1.4 [0.22, 0.12, 0.66] 0.65

mmo

Well 9 0.89 0.83 0.69 1.24 [0.12, 0.29, 0.59] 0.78
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Figure 3.8: Forecasted (BJ-Model) and response (Numerical) GOR during the
optimization period (a) Best (green) (b) Median (yellow) and (c) least (red)
highlighted in Table 6 for all four cases studied.

3.5.2 Key Performance Indicators.

Fig 3.9 shows the evolution of cumulative NPV at the end of the two years

of real-time optimization with an uncertain oil price using the various risk-

return objective function. The risk-return objective function formulations are

compared against two unoptimized base cases (i.e. For a field application, it

recommended to optimize the base cases). The first case is continuous con-

ventional SAGD, and the second is constant mole fraction NCG injection. An

average of the oil price realizations was used to estimate the NPV for the

two unoptimized cases. The results show that the risk-return formulation of
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Table 3.6: Gas-oil-ratio model forecast dimensionless validation performance.

r β γ KGE ′ rc ss
Well 1 0.54 0.82 1.08 0.5 [0.85, 0.12, 0.03] 0.64
Well 2 0.55 0.81 1.05 0.51 [0.84, 0.15, 0.01] 0.65
Well 3 0.72 0.81 0.94 0.65 [0.65, 0.32, 0.03] 0.75
Well 4 0.76 0.83 0.93 0.7 [0.62, 0.32, 0.06] 0.79
Well 5 0.62 0.75 0.87 0.53 [0.66, 0.27, 0.07] 0.66
Well 6 0.3 0.75 0.85 0.24 [0.85, 0.11, 0.04] 0.46
Well 7 0.54 0.78 1.05 0.49 [0.81, 0.18, 0.01] 0.64
Well 8 0.79 0.82 1.11 0.7 [0.48, 0.37, 0.15] 0.79

m-cVaR

Well 9 0.71 0.68 0.79 0.52 [0.37, 0.44, 0.19] 0.66
Well 1 0.82 0.82 0.95 0.74 [0.48, 0.47, 0.05] 0.82
Well 2 0.8 0.78 0.92 0.69 [0.42, 0.51, 0.07] 0.78
Well 3 0.83 0.85 1.03 0.77 [0.55, 0.43, 0.02] 0.84
Well 4 0.59 0.84 1.03 0.56 [0.87, 0.12, 0.0] 0.69
Well 5 0.62 0.86 1.03 0.59 [0.87, 0.13, 0.01] 0.71
Well 6 0.37 0.63 0.91 0.26 [0.73, 0.25, 0.01] 0.48
Well 7 0.73 0.91 1.17 0.66 [0.66, 0.07, 0.27] 0.76
Well 8 0.79 0.8 0.94 0.71 [0.51, 0.45, 0.04] 0.79

m-VO

Well 9 0.45 0.49 0.69 0.19 [0.46, 0.4, 0.14] 0.43
Well 1 0.99 0.8 0.94 0.79 [0.0, 0.91, 0.09] 0.85
Well 2 0.91 0.85 0.98 0.82 [0.28, 0.7, 0.02] 0.88
Well 3 0.74 0.87 0.94 0.7 [0.76, 0.19, 0.04] 0.79
Well 4 0.58 0.77 0.87 0.51 [0.72, 0.21, 0.07] 0.65
Well 5 0.83 0.8 0.93 0.73 [0.39, 0.54, 0.07] 0.81
Well 6 0.56 0.77 0.89 0.49 [0.75, 0.2, 0.05] 0.64
Well 7 0.52 0.93 1.11 0.5 [0.93, 0.02, 0.05] 0.64
Well 8 -0.16 0.6 0.7 -0.26 [0.84, 0.1, 0.06] 0.11

m-SVO

Well 9 0.47 0.51 0.62 0.19 [0.42, 0.37, 0.21] 0.42
Well 1 0.81 0.81 0.94 0.73 [0.46, 0.48, 0.06] 0.81
Well 2 0.76 0.81 0.92 0.68 [0.58, 0.36, 0.06] 0.77
Well 3 0.82 0.84 0.8 0.68 [0.33, 0.25, 0.42] 0.78
Well 4 0.64 0.84 0.94 0.6 [0.81, 0.16, 0.02] 0.72
Well 5 0.68 0.89 0.96 0.66 [0.89, 0.09, 0.02] 0.76
Well 6 0.59 0.75 0.96 0.52 [0.72, 0.27, 0.01] 0.66
Well 7 0.33 0.89 1.16 0.3 [0.93, 0.02, 0.05] 0.5
Well 8 0.83 0.83 0.97 0.76 [0.52, 0.47, 0.02] 0.83

mmo

Well 9 0.07 0.38 0.57 -0.2 [0.6, 0.27, 0.13] 0.15
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MMO outperform all formulations. For example, in Fig 3.9, the best NPV ob-

tained was 59 MMUSD which is 78.26% higher than the base case continuous

conventional SAGD. The order of performance is ranked as MMO > m-VO

> m-SVO > m-cVaR > Base-NCG (2.0% mole) in terms of final cumulative

NPV.

Figure 3.9: Cumulative NPV comparison for risk-return cases and base SAGD
and NCG.

In addition, as shown in Fig 3.10a, the low economic performance of the

two base cases can be attributed to the probability density function (PDF’s)

likelihood of getting the expected NPV of 0.4 MMUSD or less. Confirming

from the cumulative density function (CDF) plot Fig 3.10b, there is a 20% and

42% probability that the weekly expected NPV is higher than 0.4 MMUSD

for SAGD and NCG base cases. The optimized cases all have a higher PDF

likelihood of a weekly expected NPV of 0.4 MMUSD (Fig 3.10a). From the

CDF plot (Fig 3.10b), the final cumulative NPV performance can be attributed

to the fact that there is an 80% probability of the weekly expected NPV

of MMO exceeding 0.4 MMUSD. Similarly, the likelihood of the weekly

expected NPV performance exceeding 0.4 MMUSD is ranked as in the order

of cumulative NPV performance as 80% > 70% > 60% > 50% > 42% > 20%.

Hence, the higher likelihood of high expected weekly NPV, the higher the
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cumulative NPV performance.

Figure 3.10: Weekly expected NPV PDF and CDF distribution for different
under oil price uncertainty.

A higher expected NPV is associated with a higher probability of failure.

Thus, the risk is minimized using a tradeoff objective formulation while max-

imizing NPV for each control sequence (week) in the real-time optimization.

The objective is to determine the optimal tradeoff parameter for the current

control sequence that maximizes the expected NPV while minimizing risk. As

shown in Fig 3.11, it can be inferred the MMO optimal tradeoff is dispro-

portionately skewed towards emphasizing maximizing the expected NPV than

the risk. The PDF plot (Fig. 3.11a) shows that the tradeoffs are distributed

around 1 and 0.75. Tradeoff values of 0.6 and above have 80% and above the

probability of being selected as the optimal control strategy (Fig 3.11b). The

opposite of such behaviour is observed with the m-VO, favouring low tradeoffs

or emphasizing minimizing the risk. Thus, optimal tradeoffs of m-SVO tend

to be equiprobable with the m-cVaR compromise between MMO and m-VO.
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Figure 3.11: Optimal weekly tradeoff for each risk-return formulation.

Petroleum recovery operations are high risk investment. However, investors

weigh options on the returns as compared to other investment portfolios. As

noted earlier , the Sharpe ratio was used as an optimal tradeoff for risk-return

(Capolei et al., 2015). Using M2 as an optimal tradeoff for risk-return allows

for the NPV’s uncertain oil price adjusted for the risk of the NPV realizations

to a benchmark (i.e. S&P 500 energy index). This approach makes it eas-

ier for engineers to present their decision to management in language easily

understood by non-technical members. From Fig 3.12, the PDF or density

shows all the risk-return objective function formulation with a high likelihood

of 8− 10% percent higher performance compared to the benchmark S&P 500

energy index performance for the same period. There is a sharp decrease in

the likelihood exceeding 10%, as shown in Fig. 3.12b. The PDF or density

curves show a right-skewed distribution; performance beyond 10% are rare oc-

currences, and eliminating them leads to a normally distributed performance.

The adjusted M2 (Equation 3.16), which is proposed in this work, ensured the

correction of non-normally distributed performance.
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Figure 3.12: Risk-adjusted performance distribution.

Besides the economic performance, cSOR measures the economic and envi-

ronmental performance of the SAGD recovery process. Lowering cSOR leads

to less fuel and greenhouse gas emission and reduce capital and operating

cost. Fig. 3.13 compares the performance of conventional SAGD to NCG co-

injection for two years and four months. The cSOR (Fig. 3.13a) decreased as

the NCG injection was initiated. The drop was from cSOR of 2.21 m3/m3 to ∼

2.06 m3/m3. The reduction in cSOR is consistent with the high expected NPV

performance when compared to conventional SAGD. In terms of the cSOR

performance, m-VO had the highest decrease of 6.65% after two years four

months. The ranking in terms of cSOR performance follows m-VO [−6.65%]

> MMO [−6.11%] > m-SVO [−5.05%] > Base-NCG (2.0%mole) [−5.4%]> m-

cVaR [−4.53%] as compared to conventional SAGD. In addition, the decline

is consistent with SAGD NCG co-injection cSOR goals of reducing steam re-

quirements to improve economics and reduce greenhouse gas footprints. The

ranking does not follow NPV because pore volume of fluid injected and the

processing cost of produced fluids. Since the higher the injection, the higher

the operating cost, which reduces the NPV. The decline in cSOR is consistent

with field reports (Doan et al., 2014) and published worked (Austin-Adigio

and Gates, 2019)
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At the initiation of NCG co-injection as seen from the average reservoir

plot (Fig. 3.13b), there is a lowering of average reservoir pressure; as a result,

average reservoir temperature (Fig. 3.13c) decreased as less steam is injected.

Reduced steam chamber temperature results in less heat lose to overburden

formation due to the injected NCG forming an insulated zone at the steam

chamber’s edges. Figs 3.13 (b and c) show increases in pressure and tem-

perature after an initial decline as the injection volume increases before the

optimization, which started after 127 days of NCG injection. The increases in

temperature and pressure continued in the early days of the optimization and

then stabilized for some months afterwards the drop begun again. The base

constant NCG co-injection and m-CVaR saw an initial average reservoir pres-

sure drop, then pressure increased and stabilized as the conventional SAGD.

This behaviour is typical of NCG co-injection, which maintains reservoir pres-

sure while mobilizing the oil via the excess steam chamber temperature.

Interestingly, constant NCG co-injection and m-CvaR had the lowest NPV

and lowest decrease in cSOR to SAGD performance for the NCG co-injection

cases. This demonstrates that lowering the reservoir pressure towards the

initial reservoir pressure leads to an additional increase in recovery, which

improves NPV. The results are consistent with Detpunyawat (2017) workon

optimization of the NCG co-injection volume fraction. The best NPV case

was obtained in his work when steam injection pressure is slightly higher than

the original reservoir pressure. The final oil recovery (Fig. 3.13d) is and in-

cremental is ranked as MMO [3.13] = m-SVO [4.7082%] > m-VO [4.4632%]

> m-cVaR [] > Base SAGD [4.1911%] ∼ Base-NCG (2.0% mole) [3.7033%].

The oil recovery (Fig 3.13d) performance further supports NPV performance

ranking. As can be observed, the total liquid phase pore volume injected for

conventional SAGD is the highest. The pore volume injected for Base-NCG

(2.0%mole) is lower than m-CVaR, explaining the approximate performance

for both cases even though m-cVaR was optimized. The two best performing

cases (MMO and m-SVO), though they have higher pore volume injected, per-

formance can be attributed to final high steam chamber volume (Fig. 3.13e).

The trend shows that as the NCG accumulates, the average temperature (Fig
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3.13c) and steam chamber volume (Fig 3.13e) decreases, and the previous mo-

bilized oil is displaced towards the producers and translates into an increased

oil production rate initially.

Fig. 3.13f confirms the increase in recovery due to the NCG rising and

displacing mobilized oil. The behaviour is consistent with experiments by

Butler et al. (2000) and numerical work by worked (Austin-Adigio and Gates,

2019). As the NCG accumulates, the relative permeability of oil decreases,

leading to reduced oil production. In Fig. 3.13f, all the NCG co-injection

experienced an initial increase in oil production before lowering. As a result of

optimization effects kick in, the oil production rate was kept mostly above the

conventional SAGD rate, the additional oil recovered. Since the Base-NCG

(2.0%mole) was not optimized, the trend oil production rate became lower

than Base SAGD, similar to observation by Austin-Adigio and Gates (2019).

It can be inferred that proposed workflow was able to balance the steam and

NCG requirement without significantly impeding relative permeability to oil.
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Figure 3.13: Comparison of SAGD and NCG performance (a)decreasing cSOR
for SAGD while NCG decreases (b) average reservoir pressure constant for
SAGD and unoptimized NCG but changes overtime for optimized SAGD be-
cause of changing injection ratio (c) average reservoir temperature following
the changing injection ratio (d) oil recovery changing with injection ratio and
shows higher recovery for optimized NCG (e) steam chamber development and
(f) Oil rate generally higher for SAGD and unoptimized NCG evolution over
time.

One of the significant drawbacks of SAGD is the high-water usage which

can lead to higher feed water requirements and increased capital and operating

costs. Additionally, this leads to high greenhouse gas emissions and possible

competition for water resources for community use. SAGD NCG co-injection

motivation is to mitigate these drawbacks. Two performance criteria are used

to assess the environmental impact of NCG co-injection, as illustrated in Fig

3.14. The water (Equation 3.17) and gas (Eq 3.18) loss defined mathematically
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as:

WaterBalance =
Cum.SteamInjectedCWE − Cum.WaterProduced

Cum.SteamInjectedCWE

(3.17)

GasBalance =
Cum.GasInjected− Cum.GasProduced

Cum.GasInjected
(3.18)

Doan et al. (2014) used the water loss to explain the performance of NCG

co-injection at the Hangingstone Demonstration Project. Zero, almost zero

water loss was achieved, meaning steam injection was balanced against water

production. When NCG co-injection was switched to SAGD, that lead to an

increase in the instantaneous cSOR. The results from Fig 3.14a show a similar

trend as observed in the Hanginstone Demonstration Project of water balance

of almost zero. In addition, no adverse effects on oil rate was also observed. In

this study we are adopting the concept of water balance to gas balance. A zero

loss means of produced water or gas is recycled and re-injected, which com-

plies with environmental requirements of recycling 80% of the water produced.

A positive water or gas loss means sequestration of injected fluids. In the case

of methane or CO2, it results in net carbon stored. Fig 3.14b shows a positive

effect of NCG co-injection on methane sequestration after 130days of initia-

tion. On the other hand, negative balance leads to a negative impact on the

environment because of water disposal and methane flaring impact. The re-

sults show water balance deacrease over time for all scenarios but the decrease

was higher for the optimized cases (Fig. 3.14a). That indicates lowering of

water make-up from other sources for steam injection as the produced water is

completely recycled. For Fig. 3.14b the gas balance started as negative which

means methane production was higher than produced (no sequestration) even-

tually became positive (sequestration). The optimized cases had lower positive

balance compared to unoptimized NCG co-injection because of changing mole

fraction. The workflow maintain a balanced between economics and seques-

tration of methane. The results further demonstrate the proposed workflow

improves the economics of the SAGD recovery process while minimizing the

environmental impact.
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Figure 3.14: Injected fluid balance performance (a) decreasing water require-
ment as injection rate getting closer to production (b) gas (methane) seques-
tration overtime as the gas injection rate higher than produced.

3.6 Conclusion

The study describes a real-time workflow for risk mitigation in the SAGD

NCG co-injection scheme in the presence of oil price uncertainty. The recursive

workflow used to update the data-driven model during real-time production

optimization demonstrates an approach to risk management that is computa-

tionally tractable. The risk management strategies considered in this study

resulted in improved economic performance while minimizing adverse envi-

ronmental impact. The following conclusions were drawn from the workflow

assessment.
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1. After assessing the workflow on different case studies, field NPV in-

creased between 25%− 77%. Field Cumulative SOR decreased between

4.5% − 6.65% of the steam optimized NCG co-injection than the base

conventional SAGD case.

2. In all KPI metrics considered, the ultimate pad performance of NCG

co-injection outperforms the base conventional SAGD case.

3. As shown in the NCG base case, NCG co-injection improves SAGD eco-

nomics without requiring optimization. The proposed real-time opti-

mization workflow improved the economics by an additional 1% incre-

mental oil recovery, keeping oil production rates mostly above SAGD

over a two-year four-month period, while the base NCG case initially

increased and dropped.

4. The results from the optimization studies show that the risk-return for-

mulation of MMO outperform all formulations.

The proposed workflow, in our opinion, has significant potential in daily,

weekly, or short-term operational decision-making for heavy oil production.
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Chapter 4

Distributed Real-Time
Optimization of Multi-Pad
Steam Allocation1

4.1 Introduction

Long-term SAGD performance is challenging to achieve. To achieve long-term

aims and goals in a SAGD recovery life cycle, daily decisions such as steam

chamber compliance, pressure, fluid balance, and subcool control are made.

In addition, it is common for multiple pads with limited steam generating

capacity to be physically linked via pipeline networks in SAGD development.

For example, Fig 4.1 shows a multi-pad sharing a limited steam availability

through a commonly connected flow line. As a result, optimizing operational

decisions is critical if long-term goals are met.

Several SAGD RTO studies have been presented over the years. Vembadi

et al. (2018) applied RTO to optimize steam chamber growth and NPV of

the SAGD process using model predictive control to find the optimum rates

and subcool temperature at each control horizon. Multi-input multi-output

model predictive control of steam trap and oil rate has been shown to out-

perform multi-input single output stream trap control in the RTO of the

SAGD process (Purkayastha et al., 2018). Sibaweihi et al. (2019) presented

the SAGD RTO workflow with varying reservoir quality for each well-pair in

1A version has been submitted to SPE Reservoir Evaluation & Engineering and accepted
for proceedings of SPE Canadian Energy Technology Conference and Exhibition 2023
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the well-pad and variable steam availability. RTO workflow using linear and

nonlinear model predictive control has been shown to ensure steam chamber

conformance by optimizing subcool setpoints (Patel and Trivedi, 2020). In

the above-reported studies, the SAGD process is represented by a data-driven

proxy model to speed up computation. Although the data-driven models re-

ported have a short-term prediction accuracy, (Guevara et al., 2021) proposed

a reinforcement learning approach for long-term production optimization of

the SAGD process. With RTO, the decision-making horizon is typically be-

tween days to weeks (Foss et al., 2009). Our recent work shows excellent

performance when a multi-input multi-output Box-Jenkins data-driven model

in RTO compared with the out-of-train-test response from the first-principle

model (Sibaweihi and Trivedi, 2022). The Box-Jenkins data-driven model for

short-term decision-making will be used in this work.

The RTO method decomposes long-term operational decisions to meet

long-term goals and aims. In addition, the RTO approach reduces the com-

putation cost needed for optimization; through decomposition in time and

data-driven proxy models. However, as the SAGD process progresses, new

well-pads come online with limited steam availability. As a result, the opti-

mization problem complexity grows because of new wells added (optimization

variable) competing for limited steam, increasing computational time. Most

works on SAGD optimization are constrained to a maximum of a single pad

(Guo et al., 2018; Sibaweihi and Trivedi, 2022). Few studies have tried to work

on multi-pad optimization of the SAGD process. Card et al. (2014) presented a

workflow for numerical tuning a multi-pad, multi-million grid cell SAGD model

that reduced the computational time from over a month to seven days. Kumar

et al. (2020) presented an entire field of 15 pads (96 well pairs) of SAGD steam

allocation aided by artificial intelligence and machine learning algorithms to

automate numerical tuning and dynamic gridding of a numerical model which

runs in less than 24 hours for a ten-year simulation. The above workflows

focused on long-term optimization. Multi-pad SAGD operations have a de-

centralized structure with a limited steam availability of coupled well-pads is

suited for decomposition-based optimization approaches. Dantzig-Wolfe de-
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composition approach (Gunnerud et al., 2009) and Lagrangian decomposition

(Foss et al., 2009; Krishnamoorthy et al., 2018,?) are efficient in RTO by de-

composing the original optimization problem into subproblems. Knudsen et al.

(2014) presented a Lagrangian relaxation-based scheme to shut off multi-pad

shale-gas systems. This work will implement the ADMM (Boyd et al., 2010)

inequality constraints version of Maxeiner and Engell (2017).

Optimal ultimate recovery of SAGD operations is achieved by targeting

the strategies of steam chamber growth, conductive heating, and infill wells

production (Strobl et al., 2016). After the pre-heating stage of SAGD, steam

is continuously injected to grow the chamber vertically and horizontally. At

this stage, a low steam injection rate will stall steam chamber growth, which

will affect SAGD performance because of a drop in reservoir pressure and

temperature. RTO optimization decomposes long-term optimization into a

series of short-term prediction horizons, treating each prediction horizon as

a life-cycle optimization of the SAGD process. The economic performance

of SAGD relies heavily on the cost of steam; hence, economic performance

optimization will minimize the required steam to inject. In multi-pad steam

allocation, the steam supply is limited, and if the steam allocation is not

managed correctly, the steam chamber growth will stall and lead to deficient

performance. A stalled steam chamber between a temperature of 80◦C and

100◦C at a barrier enables conductive heating underneath and adjacent to

the steam chamber, resulting in residual oil saturation between 10% and 40%

(Strobl et al., 2016). As a result, it is critical to define the RTO problem that

accounts for the three strategies so that the long-term performance of SAGD

is not jeopardized.

The RTO approach is a short-term technique that dictates the daily to

weekly strategies of reservoir management, which in the medium to long-term

results in a significant decline in recovery technique performance. In a study

by van Essen et al. (2011), bi-objective hierarchical short and long-term perfor-

mances were optimized as secondary and primary objectives while constraining

the short-term performance to the optimal long-term performance. Chen et al.

(2012) used uncertainty in the reservoir description to improve both long-term
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and short-term NPV performance. They did this by optimizing short-term

NPV performance over one or two years while ensuring that the long-term

NPV performance stayed relatively high. Hasan et al. (2013) presented an

approach that optimizes the long and short-term goals based on the prior

ranking of the preference of the long and short-term goal performances using

a multi-objective approach and introducing upper and lower bounds on the

objectives. Shirangi et al. (2017) proposed a bi-objective long- and short-term

NPV optimization alternative based on hierarchical joint optimization of long-

term NPV performance and time-varying well control. The outer loop opti-

mizes NPV while being limited by the modified internal rate of return, keeping

cash flows from decreasing over time to the amount of capital invested. The

inner loop optimizes the well controls. In the studies presented above, the

long-short optimization problem does not apply to the RTO workflow because

the decisions are based on the expected short-term response. The fact that

the formulation is set up in a hierarchy also adds an extra cost to comput-

ing. Finally, Al-Aghbari et al. (2022) investigated different multi-objective

function combinations to optimize waterflood management’s short- and long-

term performance. This study proposed using a single objective approach in

RTO workflow, a short-term operations strategy optimization workflow that

achieves both short- and long-term performance goals. The studies that came

before are long-term optimization workflows made to meet short-term and

long-term performance goals.

The contribution of this study is the multi-pad steam allocation distributed

RTO with limited steam availability that maximizes short-long-term economic

performance, lowering cumulative steam-oil-ratio (cSOR), stabilizing produc-

tion, and leading to longer SAGD production life. The pads are drilled with all

required wells from day one of the start of the operation to account for the infill

production strategy. Six different case studies are presented to implement the

above contribution. In addition, NPV, cSOR, recovery factor (RF), average

temperature, and alternating NPV-RF based on time and temperature KPI

optimization problem formulation that maximizes steam chamber growth and

maximize economic returns are investigated. The formulations are tested on a
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field with four pads with average pad temperature after two years of operation

between 70 to 90oC to mimic the impact of RTO KPI on balancing steam

chamber growth while maximizing long-term economic performance. The rest

of the paper is organized: (1) Data-driven model development, (2) Distributed

real-time multiped steam allocation, (3) reservoir model, (4) results and dis-

cussion (5) conclusion.

Figure 4.1: Schematic topology of multi-pad SAGD production system

4.2 Data-Driven Model Development

The first stage is to collect data from the SAGD reservoir. Next, a reservoir

simulator will be employed as a data generator or surrogate for an actual field.

Next, zero-mean noise is applied to the recorded data before the data is nor-

malized for data-driven model building. Finally, the observed time-series data

is transformed between 0 and 100 using min-max normalization, depending on

the feature min-max engineering, environmental, and equipment limits. After

the data-preprocessing, prediction error minimization is performed to train the

data-driven model using the Box-Jenkins approach. MATLAB system identi-

fication toolbox (MATLAB, 2021) is used to build the data-driven model for

the SAGD process.

Equation 4.1 stands for a Box-Jenkins model structure for dynamic sys-
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tems. Here, the input (u (t) : steam injection rate) at any time (t) is related

to the output (ŷ (t) : Liquid rate or water cut). The backward shift opera-

tor (z−1) enables the process and disturbance transfer functions to consider

the impact of the previous inputs on the current output. Finally, Sibaweihi

and Trivedi (2022) outline the process of training and validating. This work

employs two data-driven models: a multi-input multi-output pad model for

forecasting well-pairs in pad production parameters like liquid rate, water-cut,

gas-oil-ratio, and a single-input single-output pad average temperature fore-

casting data-driven model.

Box-Jenkins Model (BJ)

ŷ (t) =
B (z−1)

F (z−1)
u (t) +

C (z−1)

D (z−1)
e (t) (4.1)

B (z−1) = b1z
−1 + · · ·+ bnbz

−nb

C (z−1) = 1 + c1z
−1 + · · ·+ cncz

−nc

D (z−1) = 1 + dz−1 + · · ·+ dndz
−nd

F (z−1) = 1 + f1z
−1 + · · ·+ fnfz

−nf

4.2.1 Data-Driven Model Forecast Validation.

Data-driven model forecast outputs will be validated using modified Kling-

Gupta efficiency (Equation 4.2–4.3). The first term of the equation uses Pear-

son Correlation (Equation 4.2) with a range between 1 to −1. The data-driven

forecasts (ŷi) and the mean of the forecast
(
ŷ
)
at each time (t) is correlated

with the measured (y) and mean of the measured outputs (y) to determine

the data-driven model performance. The Pearson correlation is sensitive to

outliers (Legates and McCabe, 1999) which requires to be factored in model

performance evaluation. The objective of temporal dynamics modeling is to

mimic the system dynamics measured by r while preserving the flow distri-

bution. The goal is achieved by assessing the bias (β) and the variability (γ)

ratios, with optimum values of each term being 1. The µ and σ are the mean

and standard deviation of the forecast (f) and measured (m) outputs. With

the performance of the data-driven model decomposed with KGE, the rela-

tive contribution of each term can be estimated to understand which term is
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contributing to poor or good model performance. A skill score (ss) metric,

as defined in Equation 4, is used in this work to evaluate the performance of

the data-driven model skill score (ss) metric is used (Equation 4.4). Using

a mean forecaster model as a benchmark with a KGE
′
= −0.41 derived by

assuming µf = µm, σm ̸= 0 and σf = 0 (Knoben et al., 2019). Positive ss in-

dicates a data-driven model preferred to benchmark and negative ss indicates

a benchmark preferred to a data-driven model.

Pearson Correlation

r =

∑Np

t=1 (yt − y)
(
ŷt − ŷ

)
√∑Np

t=1 (yi − y)2
√∑Np

t=1

(
ŷt − ŷ

)2
, −1 ≤ r ≤ 1 (4.2)

Modified Kling-Gupta Efficiency (Kling et al., 2012)

KGE′′ = 1−
√

(r − 1)2 + (β − 1)2 + (γ − 1)2, (4.3)

−0.41 < KGE′′≤1

β =
µf

µm

γ =
σf/µf

σm/µm

Skill score (Knoben et al., 2019)

ss =
KGE

′
model −KGE

′
benchmark

1−KGE
′
benchmark

(4.4)
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4.3 Distributed Real-time Multi-Pad Steam Al-

location

4.3.1 Optimization Problem.

Managing a single pad within a multi-pad SAGD operation involves finding the

optimum steam allocation to individual well-pairs in the pad that maximizes

the return on investment. The main KPI for SAGD process optimization is

net-present-value (NPV), defined in Equation 4.5. Where the steam injection

rate (u) is the manipulated variable at each control horizon. For each well (j)

at the time (t), the sum of the difference between the revenue (the oil produc-

tion rate [ŷo,j (t)]) and cost (steam injection [us,j (t)], produced water [ŷw,j (t)],

transportation and blending of oil, royalty rate) over the prediction horizon

(P ) is discounted and then summed over total wells (Nw) in the model. The

allocation of steam to each well-pair is constrained subject to (s.t.) minimum

(umin
j ), and maximum (umax

j ) steam injection rate. Instabilities in the SAGD

steam allocation changes (∆uj) are constrained between the next prediction

horizons to a minimum (∆umin
j ) and maximum (umax

j ) steam injection rate

for each well-pair in the pad. The steam available umax
j is limited, which is

denoted by u. Table 4.1(Alexey, 2018).

J (u) =
Nw∑
j=1

P∑
t=1

(poŷo,j (t)− pwŷw,j (t)− prpoŷo,j (t)− psus,j (t)− potbcŷo,j (t))

(1 +D)∆t

(4.5)

s.t. umin
j ≤ uj ≤ umax

j

∆umin
j ≤ ∆uj ≤ ∆umax

j∑Nw

j=1 uj ≤ u

Field-wide multi-pad optimization of the SAGD process considers all pads

currently in operation and share the same steam generator through the con-

nectivity of a flow line. Therefore, the RTO for a multi-pad is reformulated as

Equation 4.6. Feasibility is achieved with RTO if the complicating constraint

is honored. The sum of all steam allocations to each pad (ui) should be equal
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Table 4.1: Economic input parameters

Description Value
Price of oil [po] 60 USD/bbl.
Steam processing cost [ps] 6 USD/bbl.
Produced water processing cost [pw] 1.96 USD/bbl.
the transportation and blending cost of oil [potbc] 4.95 USD/bbl.
Royalty rate [pr] 2%
Discount factor (D) 10%

to or less than the maximum available steam (U). A centralized optimization

structure is recommended to solve multi-pad optimization, as shown in ear-

lier works with CMG-CMOST (Card et al., 2014; Kumar et al., 2020). The

challenge with the centralized approach is that as the number of well-pads to

allocate steam increases, the optimization problem becomes too large for a

single computer to handle. Another issue arises with competing demand for

steam because of various stages of SAGD maturity and reservoir heterogeneity,

complicating the optimization problem. A requirement for distributed opti-

mization is communication between a coordinator and the sub-systems with

the aim of the coordinator exchanging information between the sub-systems

to steer the optimization problem toward a feasible solution.

max
ui∈Ui∀i

Np∑
i=1

Ji (ui) (4.6)

s.t.
∑Np

i=1 ui ≤ U

Besides NPV, three other KPIs were used in this study. The recovery

factor, cumulative steam-oil ratio (cSOR), and average temperature. The

optimization problem formulation follows the same as NPV. In the following

subsections, Ji represents any of the KPI for each pad.
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4.3.2 Distributed Optimization.

The iterative ADMM coordination algorithm used in this work for multi-pad

RTO is based on Maxeiner and Engell (2017). For Eqn 3 to be separable,

a slack variable (z|
∑Np

i=1 zi = U) or globally feasible solutions is introduced

as additional constraint. Reformulation of the centralized optimization prob-

lem into a distributed problem is achieved by Lagrangian relaxation (dual

decomposition) of Equation 4.6 complemented with a quadratic penalty term

as mathematically described in Equation 4.7. The complicating constraint

function is multiplied by the dual variable (λk,T ) which is the marginal cost

to relax the constraint at each iteration (k). In addition, a penalty term (ρk)

is added to the distributed reformulation to ensure each pad uses allocated

resource and steer the solution toward global feasibility. Each pad (i) receives

a vector of globally feasible solutions (zki ) as a reference for the individual pads

in addition to the dual vector (λk,T ) and solves the optimization problem in

parallel (Equation 4.8). The procedure for multi-pad real-time optimization

workflow is described in Algorithm 1.

max
ui∈Ui∀i

Np∑
i=1

Ji (ui) + λk,T

Np∑
i=1

(
ui − zki

)
+

ρk

2

Np∑
i=1

∥∥ui − zki
∥∥2

2
(4.7)

max
ui∈Ui

Ji (ui) + λk,T
(
ui − zki

)
+

ρk

2

∥∥ui − zki
∥∥2

2
∀i (4.8)

ADMM iterates between the coordinator and pad after initializing user-

defined convergence thresholds, price vectors, or dual variables. As shown

in Fig 4.2, the coordinator sends the dual variables (λk,T ), penalty (ρk) and

feasible global solutions (zki ) to each pad to optimize KPI. After optimiza-

tion of all pads is done, the coordinator compares the sum of the optimal pad

steam allocations (ui) returned by each pad to available steam (U). The dif-

ference between the available steam and the sum of optimal steam allocations

(Equation 4.9) or primal feasibility from optimization is used to check global

constraint violation at iteration (k). If the primal infeasibility (ϕk+1
primal) is less

than a pre-defined constraint violation tolerance (eps), then feasible steam al-

location has been achieved. The dual infeasibility (ϕk+1
dual) which is a product
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of the last penalty, and the absolute difference of means of steam allocated to

pads between the next prediction horizons, measures convergence of prediction

horizons. Maxeiner and Engell (2017) study used primal and dual feasibility

to check global constraint satisfaction in Equation 4.6. The Equation 4.5 con-

straint for allowable steam allocation changes (∆uj) performs the same role as

the ϕk+1
dual . If primal infeasibility is higher than eps, update (λk,T , ρk, zki ) to im-

prove on the convergence. Equation 4.11-4.13 are used in updating λk,T , ρk, zki

for the next iteration. Since in this study, only the ϕk+1
primal is used as the check

on steam availability violation; only the first condition must be honored. The

study implemented an inequality constraint as in Maxeiner and Engell (2017)

hence λk+1 and zki have to be positive for feasibility to be achieved. Table 4.2

shows the ADMM coordination parameters in this study. Algorithm 1 shows

the steps to solve the multi-pad coordination optimization with ADMM.

ϕk+1
primal =

Np∑
i=1

ui
k+1 − U (4.9)

ϕk+1
dual = ρk

∣∣uk+1 − uk
∣∣ (4.10)

λk+ 1
2 =

{
λk + νρkϕk+1

primal ifϕk+1
primal ≥ 0

λk + ρkϕk+1
primal ifϕk+1

primal < 0
(4.11)

λk+1 = max
(
0, λk+ 1

2

)

z
k+ 1

2
i =

{
uk+1
i +

ϕk+1
primal

Np
, if ϕk+1

primal ≥ 0

uk+1
i else

(4.12)

zk+1
i = max

(
0, z

k+ 1
2

i

)

ρk+1 =


ρkαIncr, if ϕk+1

primal > βϕk+1
dual

ρkαDecr, if ϕk+1
primalβ < ϕk+1

dual

ρk else

(4.13)
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Table 4.2: Coordination parameters

PARAMETER VALUE
Maximum iteration [kmax] 10
Initial dual variables [λ0] 100 ∗ ℵ(0, 1)
Initial feasible global solutions [z0] Previous horizon allocations
Initial penalty [ρ0] 1
Dual variable step-size decrement [v] 0.7
Primal-dual feasibility [β] 2
Penalty increment [αIncr] 1.1
Penalty decrement [αDecr] 0.9
Constraint violation tolerance [eps] 1e− 6

Figure 4.2: Communication scheme between the pads and the coordinator
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Algorithm 1: Alternating Direction Method of Multipliers
Inputs: kmax, eps, αDecr, αIncr, β, v, λ

0, z0, ρ0 .
Initialize: k = 1, Convergence = False.
while k ≤ kmax ∧ ¬Convergence do

For each pad (i), do

ui,opt=max
ui∈Ui

Ji (ui)+ λk,T
(
ui − zki

)
+
ρk

2

∥∥ui−zki
∥∥2

2

end for

ϕk+1
primal=

∑Np

i=1 ui
k+1−Uϕk+1

dual=ρk
∣∣uk+1−uk

∣∣
if ϕk+1

primal< eps then

Convergence = True

else

λk+1
2=λk+vρkϕk+1

primal

λk+1 = max
(
0, λk+ 1

2

)
z
k+1

2
i =

{
uk+1
i +

ϕk+1
primal

Np
, if ϕk+1

primal≥ 0

uk+1
i else

zk+1
i = max

(
0, z

k+1
2

i

)

ρk+1=


ρkαIncr, if ϕk+1

primal> βϕk+1
dual

ρkαDecr, if ϕk+1
primalβ <ϕk+1

dual

ρk else

end if

k← k+ 1

end while
Output: uopt
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4.3.3 RTO Implementation.

Algorithm 2 describes the steps involved in RTO; it uses real-time data from a

heavy oil reservoir to develop a data analytic predictive model using a system

identification approach. First, the digital heavy oil reservoir is represented

using CMG-STARS (CMG, 2021). Next, a distributed optimization is per-

formed for each pad. A constrained genetic algorithm (Blank and Deb, 2020)

is used to optimize each pad. After a distributed nonlinear optimization using

the prediction model, the optimally allocated steam is assigned to the heavy

oil reservoir. Next, a data collecting system records the reservoir’s reaction.

Finally, the predictive model is updated using the freshly recorded reservoir re-

sponse to improve forecast performance. The process exits the recursive cycle

when it is no longer profitable to continue producing using SAGD or stopping

time.

Two proposed RTO implementation is presented. First, with the alter-

nating implementation, the objective of the horizon is alternated either based

on time or pad average temperature. Then, in Algorithm 2, step 4 NPV or

recovery for all pads is optimized for time-based alternation. For example, in

this study, in the first three months, at step 4 of Algorithm 2, NPV is op-

timized by finding the minimum steam injection rates that recover most of

the mobile bitumen saturation at an economical rate. The optimum injected

steam at this stage slows the steam chamber temperature drop due to mo-

bile bitumen depletion. Then, for the next six months, bitumen recovery is

optimized. Recovering more of the bitumen initially in place means injecting

steam at a higher rate for steam chamber growth to mobilize the immobile

bitumen saturation. The steam chamber growth cycle stalling to drain mobile

bitumen saturation and injecting at a high rate to expand the steam cham-

ber is repeated until the end of optimization. The objective is to moderate

steam chamber expansion and minimize heat losses to the surroundings while

economically producing bitumen.

The second proposed implementation is based on the average pad temper-

ature. Therefore, at the start of each horizon optimization (i.e., Algorithm
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2, step 4), a check is done on the past three months of average pad temper-

ature. If the average temperature in the pad stayed above 90 ◦ C for the

past three months, set the objective of optimization to NPV. Else, if the av-

erage temperature in the pad stayed below 80 ◦ C for the past three months,

set the objective of optimization to recovery to expand the steam chamber.

The performance of the proposed implementation hinges on the data-driven

model learning the physics of the SAGD process and optimization problem

formulation. The model response will decrease steam chamber growth, steam

injection, and liquid production rate over time during NPV optimization and

vice versa during recovery optimization. For the first proposed case, all pads in

the reservoir will either be optimizing NPV or recovery independent of steam

chamber maturity. In the second proposed case, either all pads optimize NPV

or recovery simultaneously, or some pads optimize NPV while the rest opti-

mizes recovery. Equation 4.7 is a centralized optimization approach as used in

software like CMG-CMOST. The second proposed case is possible for each pad

with a different objective because the optimization problem has been decom-

posed (Equation 4.8). If a feasible solution is achieved, the second and third

terms of Equation 4.8 will diminish. More importantly, in the ADMM iterative

updating (Equation 4.9 - 4.13), the information required to coordinate is the

optimum allocated steam or resource. Hence a different objective can be set

for each pad, which makes this approach helpful when allocating steam in a

multi-pad system pad with pads at different stages of steam chamber maturity.
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Algorithm 2: Real-Time Multi-Pad Steam Allocation
For every time step t = 7 days.

1. Read the previous production and injection rates.

2. Normalize the previously recorded data based on each parameter’s
physical or operating constraint (range).

3. Identify the structure and parameters or update the parameters of
the data-driven model

4. Perform distributed optimization using ADMM (Algorithm 1)

5. Apply optimal injection controls to the digital heavy oil reservoir

6. Record the response (production and injection rates) of the reservoir
to the optimal control setpoints

7. t = t+ 1

8. Repeat steps 1− 7 until it is not profitable or the end of field life.

4.4 Reservoir Model

A synthetic 3D reservoir representative of the Western Canada oilfield for op-

timizing the multi-pad steam allocation consisting of four SAGD pads with 33

well-pairs is used. The reservoir has an average porosity of 0.31 and average

horizontal and vertical permeabilities of 4372 mD and 3497 mD. Fig 4.3 dis-

plays the well-pad’s permeability distribution, and Table 4.3 lists this study’s

reservoir properties.

During the pre-heating phase, each well-pair is heated for four months.

The constraints for the injection wells were set at a maximum steam injection

rate of 750 m3/day (cold water equivalent, CWE) and a maximum injection

pressure of 4000 kPa. The injection steam quality of 0.95 at a temperature of

250oC. The production wells have a primary constraint of 2000 kPa bottom

hole pressure and a secondary constraint of 1000m3/day surface liquid rate.

In addition, a maximum steam production rate of 10 m3/day is set to mimic

steam trap control. PAD-A consists of nine well-pairs, while PAD B to D

consists of eight well pairs with all well-pairs with a length of 760 m to achieve

an economical oil production rate (Jimenez, 2008). Normal SAGD operation

is initiated after the circulation stage for two years, then RTO is initiated and

lasts for three and half years. For the first two years, the steam injection is
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designed to ensure that the average pad temperature is between 70oC and

100oC to ensure fluid mobility within each pad, like establishing inter-well

fluid mobility and communication during the circulation phase (Shen, 2013).

Pads A to D achieved average pad temperatures of 77oC, 78oC, 72oC, and

90oC, respectively.

Figure 4.3: Permeability distribution

4.5 Results and Discussion

Multi-pad steam allocation optimization aims to enhance SAGD economics by

lowering water and fuel consumption, which will reduce greenhouse gas emis-

sions by reducing SOR. RTO treats each horizon optimization like a long-term

optimization problem. The results for a multi-pad RTO that ensures long-

term goals are met are presented. The first part of this section presents the

validation of the data-driven model forecast performance to reservoir response.

The second part presents the results of the different SAGD KPIs that guar-

antee that the RTO’s long-term objectives are met. Six cases were created to

evaluate the performance of optimization of short-term SAGD KPI that meets
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Table 4.3: Reservoir model properties

PARAMETER VALUE
Formation temperature [oC] 12
Initial reservoir pressure at 210m [Kpa] 1200
Average horizontal permeability [mD] 4372
Average vertical permeability [mD] 3497
Average porosity [fraction] 0.31
Average water saturation [fraction] 0.2
Steam injection pressure [kPa] 4000
Steam quality 0.95
Oil viscosity @ reservoir temperature [cP] 1.42e6
Rock heat capacity [J/m3-C] 2.3e6
Thermal conductivity of Rock [J/m3-day-C] 2.7e5
Thermal conductivity of Gas [J/m3-day-C] 4000
Thermal conductivity of Oil [J/m3-day-C] 1.2e4
Thermal conductivity of Water [J/m3-day-C] 5.4e4

long-term goals. The first two cases (NPV and cSOR) are one of the main

SAGD KPIs reported in the literature for long-term cost minimization opti-

mization. RF and Temp are the other KPIs that indicate process efficiency.

A particular KPI is optimized for each case in a single optimization study.

Each case’s performance relative to all four selected KPIs are compared at

the RTO’s end. The plots for this section are based on the response of the

reservoir except when indicated

4.5.1 Data-Driven Reservoir Model Validation.

Two main models were used in this study. The first model is the pad’s single

input (steam rate) and single-output (average temperature). As shown in Fig

4.4, there is an excellent match between the data-driven model forecast and

the response from the reservoir. The calibrated model used during optimiza-

tion periods for forecasting the average temperature of the pad performance

statistics is presented in Table 4.3. Column one, the correlation (r) indicative

of the model timing errors, is one for all pads, which is the optimum expected.

The bias (β) and variability ratios (γ) are the columns three and four, with

both metrics at one optimum or close to one. KGE greater than 0.6 is consid-

ered to be a good model performance. Table 4.4, column five observed that
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all pads recorded KGE ′ of approximately 0.97. The performance is consistent

with the results in Fig 4.4. Column six, the skill score (ss) benchmarks the

data-driven performance to a mean flow predictor with KGE
′ ≈ −0.4. All

data-driven model forecast in column six is greater than zero or close to one,

indicating a nearly perfect forecast and better than the benchmark.

The second data-driven model is for each unique well-pair, single input

(steam rate) and multi-output (Liquid rate, water-cut). Figs 4.5 and 4.6 show

the evolution of the model forecasted performance and system response (nu-

merical or digital reservoir) for Well 8 of the four pads. The plots show a close

agreement between data-driven forecasted liquid rate and water cut correlates

with the reservoir response. The calibrated data-driven model did not just

pass the train-test threshold but also learned the SAGD process’s physics.

The curves of Figs 4.5 and 4.6 for all the pads show the model responding

to steam rate perturbation during RTO. In Fig 4.5c, at approximately day

800, the data-driven model estimated liquid rate is zero because the model

forecasted a wrong value at the time. The estimate is set to the physical or

operational maximum or the minimum of that input or output. Tables 4.5 and

4.6 in the appendix show the statistical performance for the liquid rate and

water cut forecast for wells within each pad. Similarly, to pad average tem-

perature performance, the liquid rate and water cut forecast performance are

in close agreement with the reservoir response except for the PAD C Well 5

water cut forecast. The KGE and ss values for Well 5 are −1.337 and −0.6572,

respectively, lower than the minimum threshold performance of greater than

0.6 and −0.4 for model acceptance. Even though the bias ratio is close to

the optimum value of one, the KGE value is less than the minimum threshold

because KGE cannot be more than the lowest value of its components (r, β,γ).
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Figure 4.4: Forecasted (BJ-Model) and response (Numerical) average tem-
perature during RTO for (a) PAD A (b) PAD B (c) PAD C (d) PAD D of
bitumen recovery KPI.

Table 4.4: Average temperature model forecast dimensionless validation per-
formance

r β γ KGE ′ ss

PAD A 1.000 0.999 0.98 0.977 0.9836
PAD B 1.000 0.999 0.98 0.977 0.9833
PAD C 1.000 1.000 0.975 0.975 0.9826
PAD D 1.000 1.000 0.974 0.974 0.9816
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Figure 4.5: Forecasted (BJ-Model) and response (Numerical) liquid rate of
well 8 during RTO for (a) PAD A (b) PAD B (c) PAD C (d) PAD D of bitu-
men recovery KPI.

Figure 4.6: Forecasted (BJ-Model) and response (Numerical) water cut of
well 8 during RTO for (a) PAD A (b) PAD B (c) PAD C (d) PAD D of bitu-
men recovery KPI.
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Table 4.5: Liquid rate model forecast dimensionless validation performance

r β γ KGE’ ss

PAD A Well 1 0.996 0.996 1.007 0.991 0.9935
Well 2 0.999 1.000 0.998 0.998 0.9987
Well 3 0.913 1.010 1.043 0.902 0.9306
Well 4 0.949 1.000 0.976 0.943 0.9598
Well 5 0.996 1.000 0.995 0.994 0.9955
Well 6 0.995 1.000 0.989 0.988 0.9917
Well 7 0.658 1.014 1.188 0.610 0.7234
Well 8 0.864 1.000 1.047 0.856 0.8981
Well 9 0.868 0.972 1.018 0.864 0.9034

PAD B Well 1 0.897 1.017 0.974 0.892 0.9236
Well 2 0.912 1.023 0.982 0.907 0.9342
Well 3 0.917 1.018 1.008 0.914 0.9392
Well 4 0.996 0.999 1.007 0.992 0.994
Well 5 0.995 1.000 0.993 0.991 0.9937
Well 6 0.984 1.000 1.015 0.978 0.9844
Well 7 0.945 1.003 0.994 0.945 0.9606
Well 8 0.942 0.989 0.981 0.938 0.956

PAD C Well 1 0.985 1.001 0.981 0.976 0.9828
Well 2 0.926 0.968 1.056 0.902 0.9306
Well 3 0.975 0.994 0.990 0.972 0.9803
Well 4 0.912 0.990 0.993 0.911 0.9372
Well 5 0.981 1.050 1.009 0.946 0.9615
Well 6 0.803 1.060 1.154 0.743 0.8174
Well 7 0.991 1.004 0.997 0.990 0.9927
Well 8 0.910 0.993 0.980 0.907 0.9343

PAD D Well 1 0.968 0.982 1.007 0.963 0.9736
Well 2 0.896 1.047 1.025 0.883 0.9168
Well 3 0.989 1.013 1.030 0.965 0.9752
Well 4 0.979 1.017 0.984 0.968 0.9776
Well 5 0.975 1.076 1.067 0.896 0.9261
Well 6 0.777 0.993 1.079 0.764 0.8323
Well 7 0.926 0.992 1.052 0.910 0.9359
Well 8 0.919 1.014 1.008 0.918 0.9415
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4.5.2 Key Performance Indicators.

Fig 4.7 shows the evolution of cumulative NPV at the end of the RTO for the

individual pads. The optimization started two years after significant steam

chamber development, and immobile bitumen in the pad was mobilized to be

produced. When the optimization is initiated, the mobilized oil is produced,

exposing the immobile bitumen in the pad to injected steam. For example,

it can be observed in Fig 4.7a-c for pads A to C that NPV and cSOR cases

cumulative NPV flattened by day 500 since the start of RTO. Steam sup-

ply is the main cost contributor to SAGD NPV estimation; since the NPV

and cSOR KPI optimization finds the minimum steam that maximizes NPV,

steam chamber growth is stalled. In long-term optimization, the optimizer

finds steam allocation that ensures enough heat is injected to mobilize a sig-

nificant amount of bitumen for the optimization period. In Fig 4.4d, the NPV

flattened by day 700, and the discrepancy is due to the average pad tempera-

ture at the start of RTO. Pads A to D started with average pad temperatures

of 77oC, 78oC, 72oC, and 90oC, respectively. It can be inferred that the higher

the average pad temperature, the higher the amount of mobile oil saturation.

Hence SAGD RTO with cost minimization goal, the mobilized oil is produced

faster than injected steam to expand the steam chamber or mobilize the im-

mobile bitumen.

On the other hand, the NPV for RF and Temp keeps increasing throughout

the RTO because a significant amount of steam is injected to mobilize the

immobile bitumen while depleting the mobilized one. The challenge with the

RF and Temp cases is the high steam requirement to maximize the goals.

This work introduces two additional case studies that alternate the NPV and

RF optimization based on time and average pad temperature. From Fig 4.7,

it can be observed that the two alternating cases resulted in similar NPV

injecting a lower amount of steam for all pads. The drawback of NPV in

selecting the optimum case is the lack of indicating which case requires a

higher amount of steam to achieve the same NPV value. Hence an additional

KPI can differentiate between the resource required and the environmental
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Table 4.6: Water cut model forecast dimensionless validation performance

r β γ KGE’ ss

PAD A Well 1 0.964 1.001 1.048 0.940 0.9575
Well 2 0.854 1.001 1.029 0.851 0.8944
Well 3 0.773 1.001 1.046 0.768 0.8356
Well 4 0.922 1.001 1.027 0.917 0.9414
Well 5 0.951 1.001 1.019 0.948 0.963
Well 6 0.921 1.001 0.993 0.921 0.9438
Well 7 0.887 1.003 1.005 0.886 0.9194
Well 8 0.920 1.002 1.032 0.914 0.9389
Well 9 0.806 1.010 1.269 0.668 0.7648

PAD B Well 1 0.932 1.003 1.020 0.929 0.9498
Well 2 0.765 1.001 1.012 0.764 0.8327
Well 3 0.848 1.001 1.069 0.833 0.8818
Well 4 0.893 1.002 1.051 0.881 0.9157
Well 5 0.957 1.001 1.020 0.953 0.9668
Well 6 0.910 1.001 1.000 0.910 0.9362
Well 7 0.958 1.001 1.019 0.954 0.9675
Well 8 0.973 1.002 1.032 0.958 0.9703

PAD C Well 1 0.889 1.003 1.068 0.870 0.9076
Well 2 0.817 1.002 1.059 0.808 0.8638
Well 3 0.967 1.002 1.073 0.919 0.9429
Well 4 0.565 0.986 1.482 0.351 0.5394
Well 5 0.196 1.041 3.194 -1.337 -0.6572
Well 6 0.862 1.014 1.016 0.861 0.9011
Well 7 0.969 1.001 0.999 0.969 0.9781
Well 8 0.878 1.006 1.048 0.869 0.9069

PAD D Well 1 0.996 1.005 1.013 0.986 0.9899
Well 2 0.998 1.003 1.009 0.990 0.9932
Well 3 0.972 0.999 0.977 0.964 0.9742
Well 4 0.987 1.001 0.993 0.985 0.9896
Well 5 0.991 1.001 1.022 0.976 0.9831
Well 6 0.986 1.004 0.963 0.960 0.9717
Well 7 0.986 1.003 1.037 0.960 0.9719
Well 8 0.993 1.005 1.029 0.970 0.9787
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impact.

Figure 4.7: Cumulative NPV comparison for different KPIs (a) PAD A (b)
PAD B (c) PAD C (d) PAD D

Fig 4.8 illustrates the evolution of cSOR for the four different pads. The

cSOR decreased from the start of RTO for all cases except average pad temper-

ature. cSOR performance stabilized below three for all cases except average

pad temperature, indicative of a low carbon footprint, reduced resource re-

quirements, and improved economic returns.

In contrast, the pad average temperature maximization leads to improved

economic returns but a higher resource requirement and carbon footprint. Sim-

ilar to NPV performance in Fig 4.7, in the NPV and cSOR cases, optimum

cSOR performance was achieved before year two of RTO. The lowering of cSOR

for Pads A-C (Fig 4.7a-c) after year one is due to the lowering steam require-

ment of bitumen production rates over time (i.e., flatlining of the curve). The

RF cases for all pads recorded an elevated cSOR compared to NPV-RF alter-

nation based on either time or temperature. The RF and Temp cases showed

an elevated cSOR relative to cSOR and NPV cases because of the higher steam
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allocation requirement to increase recovery or pad average temperature. RF

case cSOR performance is significantly better than average pad temperature

because it balances steam chamber growth and mobile oil depletion rate. The

proposed scheme of alternating NPV and RF cases based on time and temper-

ature showed a further improvement in cSOR compared to the RF case in all

pads (Fig 4.8). Better cSOR performance should be commensurate with higher

recovery for a SAGD recovery scheme to be recommended. Lower cSOR does

not necessarily mean better performance. Reservoir heterogeneity can impede

steam chamber growth leading to lower cSOR (Guo et al., 2018). Since the

SAGD process goal is to recover proven oil while minimizing carbon footprint

economically, a lower cSOR that achieves those goals is preferred.

Figure 4.8: cSOR comparison for different KPIs (a) PAD A (b) PAD B (c)
PAD C (d) PAD D

As shown in Fig 4.9, recovery performance for all pads follows economic

performance as in Fig 4.7. The temperature values in Fig 4.7 are the recov-

ery during the RTO period and not the cumulative from the start of SAGD

recovery. For all pads, the order of performance can be ranked as Temp >
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RF > NPV RF Time == NPV RF Temp > NPV == cSOR in terms of re-

covery. The recovery performance based on time supports the economic per-

formance, as shown in Fig 4.4. When the recovery performance is compared

with pore volume injected (PVI) of steam indicative of resource requirements,

NPV RF Time == NPV RF Temp > RF > Temp. The recovery performance

to PVI validates the cSOR performance, as shown in Fig 4.8. The NPV and

cSOR recorded high recovery with the least amount of steam injected, as shown

in Fig 4.8 for all pads. The trend validates the NPV performances as in Fig

4.7, which shows a steep increase in NPV and then flattened. As seen in Fig

4.9, the steam injection became too low to mobilize bitumen for recovery. For

all the four pads, the Temp case recorded the highest recovery and amount

of steam injected at the end of RTO. That translates to approximately two

to three times and three to four times steam injected when the Temp case is

compared to RF and proposed alternating cases. When the RF case is com-

pared to proposed alternating cases, an additional recovery is achieved at the

same PVI. For appreciable bitumen recovery, the average pad temperature

must be significantly higher to mobilize the bitumen. Too high temperature

leads to heat losses to the overburden and a high amount of steam produced,

minimizing bitumen recovery efficiency.
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Figure 4.9: Recovery comparison for different KPIs (a) PAD A (b) PAD B (c)
PAD C (d) PAD D

Fig 4.10 shows the pad average temperature indicator of steam chamber

conformance. The reservoir model used in this study is heterogenous in per-

meability but does not have shale barriers that significantly impact steam

chamber growth. The rate of temperature rise, as shown in Fig 4.10, will be

subdued in a reservoir with shale barriers, but the trend will not be differ-

ent. The decreasing temperature pad average temperature explains the early

curtailment of NPV and cSOR cases. The lesson learned here is that, for

cost minimization RTO, the average temperature in the reservoir or the steam

chamber should reach maturity at the start-up phase if RTO is initiated at the

normal phase. The cost minimization optimization will always be preferred

at the blow-down phase, as shown in Fig 4.10. The decreasing temperature

behavior is the goal of the blow-down phase, where steam is co-injected with

non-condensable gas. The temperature performance further supports the use

of the proposed alternating cases at the normal SAGD phase. For those cases,

during the cost minimization or NPV RTO horizons, a decrease in average
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pad temperature and an increase during recovery optimization horizons from

the curves can be observed. In addition, the decrease and increase in temper-

ature further validate the data-driven model that learned the SAGD process’s

physics. Suppose the model had fit the history without learning the physics

of the SAGD process. In that case, the model will not always respond pos-

itively to an increase in temperature when optimizing recovery and average

temperature or a decrease in temperature when minimizing cost, leading to

lower steam injection. For the two proposed cases, the average temperature

initially decreased before increasing for all pads since NPV was optimized for

the alternating based on time in the first few months, followed by RF. Set

optimizing NPV first three months, switch to RF optimization in the next six

months, and repeat till the end of RTO. For the alternating based on tem-

perature, there is a temperature rise in PAD A to C (Fig 4.7a-c), but the

temperature dropped and stabilized at 80oC. When the past six-month the

average temperature is below 80oC, switch to RF optimization and vice versa.

Figure 4.10: Recovery comparison for different KPIs (a) PAD A (b) PAD B
(c) PAD C (d) PAD D
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4.6 Conclusion

In this work, an ADMM-based scheme for multi-pad steam allocation optimiza-

tion has been presented. The RTO workflow has effectively coordinated the

steam allocation to independently operated well-pads. The workflow was im-

plemented in this study to determine the impact of a short-term optimization

problem formulation on the long-term performance of SAGD. The following

conclusions were drawn based on the results of the study.

1. Cost minimization-based RTO is ineffective in meeting long-term normal

phase SAGD operations performance goals.

2. Short-term optimization of recovery and steam chamber growth RTO

can attain long-term SAGD performance goals at a higher resource re-

quirement than cost minimization.

3. RTO with a short-term recovery goal requires less than two to three

times more steam than steam chamber growth optimization.

4. The proposed alternating cost minimization and recovery optimization

outperform individual cost and recovery optimization for the normal

SAGD operations phase by less than three to four times the steam re-

quirement.

The proposed workflow has a significant potential for multi-pad real-time

steam allocation decisions in bitumen recovery.
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Chapter 5

Multi-Criteria Real-Time
Optimization of Multi-Pad
Steam Allocation1

5.1 Introduction

The production of bitumen in situ accounts for a considerable percentage of

Alberta’s main energy output. Therefore, efficient SAGD operations must

adopt decisions, recovery procedures, and technical inputs that reduce oper-

ating costs and greenhouse gas (GHG) emissions-related environmental con-

sequences. Over the years, the expansion of oil sand operations has increased

total emissions but drop in GHG emissions per barrel (Millington, 2020).

Canadian Energy Research Institute (CERI) scenario-based analysis on en-

ergy requirements and GHG emission outlook for 2015 to 2050 showed the

application of technology to increase energy efficiency and process improve-

ments of decreasing reservoir quality could decrease energy requirements by

31.1% and GHG emission by 47.6% of SAGD operations without decreasing

production (Murillo, 2015). Based on these CERI reports, this work presents

technology such as RTO as a short-term SAGD process optimization tool to

improve ultimate recovery and decrease energy requirement GHG emissions in

the long term.

The joint goal of maximizing production and decreasing energy require-

ment requires a multi-objective formulation of the optimization problem. One

1A version has been submitted to Journal of Petroleum Science and Engineering 2022
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approach to multi-objective optimization is aggregating the objectives into a

single weighted objective (Al-Gosayir et al., 2012; Awotunde and Sibaweihi,

2012). However, the main drawback of the weighted aggregation is the selec-

tion of the appropriate weights to balance the objectives. A way to mitigate the

above drawback is to run multiple realizations of the weight distribution and

use a criterion such as the Sharpe ratio (Capolei et al., 2015) or Modigliani’s

risk-adjusted measure (Sibaweihi and Trivedi, 2022) to select the optimum con-

trol strategy. However, the above approach becomes computationally expen-

sive with increasing design variables. In this work, a multi-objective optimiza-

tion approach will be adopted due to recent advances in algorithm efficiency.

Several applications of multi-objective optimization for bitumen recovery pro-

cess optimization have been reported. For example, Coimbra et al. (2019)

generated non-dominated solutions for steam alternating solvent process with

a joint objective of maximizing oil recovery and minimizing solvent usage. Sim-

ilarly, Ma and Leung (2020) investigated the impact of reservoir heterogeneity

and solution gas in maximizing oil recovery and minimizing solvent usage in

optimizing the warm solvent injection recovery process. Mayo-Molina and Le-

ung (2021) optimized bitumen recovery and cumulative steam-oil-ratio (cSOR)

of steam alternating solvent process reservoir with varying shale barrier size,

location, and proportion. Hunyinbo et al. (2021) presented three objectives

of oil recovery, solvent loss, and injected fluid enthalpy of multi-objective op-

timization of a warm vaporized solvent injection process with phase behavior

constraints. In this work, a comparison of combinations of joint objectives

ranging from two to four is studied.

Several SAGD RTO studies have been presented over the years. RTO com-

putation requirements are reduced by using a data-driven model. Therefore,

the critical design questions for the RTO workflow must be addressed: the

type of data-driven model, design variables, and objective. Vembadi et al.

(2018) used model predictive control (MPC) to maximize the joint objec-

tives of steam chamber growth and SAGD process net present value (NPV)

by using optimal rates and subcool temperature as decision variables. The

multi-input multi-output MPC control structure outperformed the multi-input
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single-output control structure for predicting the steam trap of the SAGD pro-

cess with liquid production and steam injection rates as manipulated variables

(Purkayastha et al., 2018). Our most recent research shows that when com-

pared to the first-principle model’s out-of-train-test response, the multi-input

multi-output Box-Jenkins control structure data-driven model RTO achieves

excellent results Sibaweihi and Trivedi (2022). Sibaweihi et al. (2021) pre-

sented the SAGD RTO process with a single input (steam rate), single output

(oil rate), and output-error control structure data-driven model to optimize

an NPV of well-pad of varying reservoir quality and variable steam availabil-

ity. Patel and Trivedi (2020) presented an RTO process that controls steam

chamber conformity by optimizing subcool setpoints using linear and nonlinear

MPC. The data-driven proxy model used in the preceding study accelerates the

simulation of the SAGD process. Guevara et al. (2021) developed a reinforce-

ment learning strategy for long-term production optimization of the SAGD

process. RTO has a decision-making time horizon ranging from a few days

to a few weeks (Foss et al., 2009). In this study, the Box-Jenkins data-driven

model will be used to make short-term decisions to meet long-term goals.

Long-term operational decisions are broken down using the RTO approach

to meet long-term targets. Meanwhile, the RTO method lessens the need

for computational resources during optimization through temporal decompo-

sition and data-driven proxy models. As the SAGD process develops, addi-

tional wells pads come online, reducing available steam. With an increase

in the number of wells (an optimization variable), the optimization problem

becomes more complex, necessitating more computational time. Studies aim-

ing to optimize SAGD are typically conducted on a single pad (Guo et al.,

2018; Sibaweihi and Trivedi, 2022). Very few researchers have tried to find

the optimal number of pads for SAGD. With the method described by Card

et al. (2014), the computational time for a multi-pad, multi-million grid cell

SAGD model can be reduced from nearly a month to just seven days. For

a ten-year simulation, Kumar et al. (2020) presented a workflow for a multi-

pad reservoir model of a SAGD steam allocation that uses 15 pads and runs

in less than twenty-four hours without sacrificing accuracy. The authors em-
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ployed AI and machine learning algorithms to fine-tune the model’s numerical

parameters and gridding it dynamically. Multi-pad SAGD operations with

constrained steam availability of interconnected well-pads benefit greatly from

decomposition-based optimization methods. For example, the Dantzig-Wolfe

decomposition approach (Gunnerud et al., 2009) and Lagrangian decomposi-

tion (Foss et al., 2009; Krishnamoorthy et al., 2018,?) are effective in RTO

because they break the original optimization problem into smaller problems.

We will employ Maxeiner and Engell (2017) inequality-constrained ADMM

(Boyd et al., 2010) version in this study. Our study extends the inequality-

constrained ADMM for multi-criteria optimization, and to the best of our

knowledge, this study is the first application for SAGD RTO.

Optimizing the SAGD process helps determine the operating strategies to

manage SAGD reservoirs. The performance of the management is assessed

based on economic, environmental, and engineering efficiencies. The economic

performance is assessed based on NPV and cumulative steam oil ratio (cSOR).

The cSOR also doubles as the environmental performance measure, with lower

values representing reduced GHG emissions due to lower water and fuel re-

quirements. Finally, steam conformance or temperature distribution is indica-

tive of engineering performance. In addition, ultimate bitumen recovery is

influenced by steam chamber expansion, conductive heating, and infill wells

(Strobl et al., 2016) is also an engineering performance indicator. So, it is es-

sential to define the RTO problem in a way that considers the three efficiency

measures so that SAGD’s long-term performance is not affected.

In the past, there have been studies on different approaches to optimize

short- and long-term optimization. van Essen et al. (2011) investigated bi-

objective hierarchical short- and long-term performance optimization as sec-

ondary and primary objectives, respectively, while constraining short-term per-

formance to optimal long-term performance. Long-term and short-term NPV

were improved by using uncertainty in the reservoir description, as demon-

strated by Chen et al. (2012). To achieve this, they focused on maximizing

NPV performance over the next year or two while maintaining a good NPV

throughout the project’s lifetime. Hasan et al. (2013) provided a strategy
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that optimizes long and short-term goals using a multi-objective approach and

places upper and lower constraints on the objectives based on previous rank-

ings of the preference of long and short-term goal performances. A bi-objective

long- and short-term NPV optimization alternative based on hierarchical joint

optimization of long-term NPV performance and time-varying well control was

put forth by Shirangi et al. (2017). The outer loop keeps cash flows from falling

below the amount of capital invested over time while optimizing NPV within

the bounds of the modified internal rate of return. The inner loop optimizes

the well controls. The long-short optimization problem does not apply to the

RTO workflow in the studies mentioned above because decisions are made

based on the anticipated short-term response. The formulation’s hierarchi-

cal structure also raises the cost of computation. Finally, Al-Aghbari et al.

(2022) investigated various multi-objective function combinations to optimize

waterflood management’s short- and long-term performance. This study sug-

gests that a multi-pad SAGD RTO workflow uses a multi-objective approach

to meet short-term and long-term performance goals. Previous studies used

long-term optimization workflows to meet short- and long-term performance

goals.

The previously reported works have focused on different objective combi-

nations. This work contribution presents a study of different multi-objective

combinations with a recommendation for which combinations are optimal in

RTO in the short-long-term. A compromised programming approach is used

to select the optimal control strategy at each control horizon. A combination

of four different SAGD KPIs will be implemented. The KPIs implemented

are NPV, cSOR, recovery factor (RF), and average pad temperature. Five

unique cases of a combination of two KPIs and three cases of three or four

unique combinations will be optimized in a multi-criteria optimization frame-

work. The remainder of the article is structured as follows: (1) Data-driven

model construction, (2) multi-criteria distributed real-time steam allocation,

(3) reservoir model, (4) findings and discussion, and (5) conclusion.

125



5.2 Data-Driven Model Development

Collecting data from the SAGD reservoir is the first step in using a reservoir

simulator. Next, a zero mean noise is applied to the recorded data and nor-

malized between 0 and 100. This transformation is governed by the feature’s

minimum and maximum engineering, environmental, and device constraints.

Finally, after the data have been cleaned and prepared, the Box-Jenkins ap-

proach is applied to train the data-driven model by minimizing the prediction

error with MATLAB System Identification Toolbox (MATLAB, 2021).

Two data-driven models will be employed in this work. First, at the well

to forecast the production parameters (i.e., liquid rate, water-cut) and at the

pad, to forecast the average pad temperature. The Box-Jenkins polynomial

structure (Equationuation 5.1) is used to model SAGD process dynamics. The

inputs (u (t)) for both models at any time (t) is the steam injection rate and

the output (ŷ (t)) liquid rate or average pad temperature for the well or pad.

The first term of the right-hand side of Equation 5.1 is the process, and the

disturbance transfer functions model is the second term. The backward shift

operator (z−1) of the two terms relates the past inputs to the current output.

The steps followed in training and validating both models have been outlined

in Sibaweihi and Trivedi (2022).

Box-Jenkins Model (BJ)

ŷ (t) =
B (z−1)

F (z−1)
u (t) +

C (z−1)

D (z−1)
e (t) (5.1)

B (z−1) = b1z
−1 + · · ·+ bnbz

−nb

C (z−1) = 1 + c1z
−1 + · · ·+ cncz

−nc

D (z−1) = 1 + dz−1 + · · ·+ dndz
−nd

F (z−1) = 1 + f1z
−1 + · · ·+ fnfz

−nf

5.2.1 Data-Driven Model Forecast Validation.

Three performance metrics will be utilized: Pearson correlation (r) defined in

Equation 5.2, modified Kling-Gupta efficiency (KGE
′
) which is Equation 5.3,

and the skill score (ss) as in Equation 5.4. The KGE
′
mitigates r to outliers
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(Legates & McCabe, 1999). The performance metric KGE
′
is decomposed

into r, bias (β), and variability (γ) ratios. The first term r correlates with

measured (m) outputs (y) and the mean of measured outputs (y) to the data-

driven model’s forecast (f) outputs (ŷi) and the mean of the outputs
(
ŷ
)
.

The second term β is the ratio of the mean (µ) of the forecasted and measured

outputs. The γ term relates to the standard deviations (σ) ratios of the model

outputs to measured outputs.

Pearson Correlation

r =

∑Np

t=1 (yt − y)
(
ŷt − ŷ

)
√∑Np

t=1 (yi − y)2
√∑Np

t=1

(
ŷt − ŷ

)2
, −1 ≤ r ≤ 1 (5.2)

Modified Kling-Gupta Efficiency (Kling et al., 2012)

KGE′′ = 1−
√

(r − 1)2 + (β − 1)2 + (γ − 1)2, (5.3)

−0.41 < KGE′′≤1

β =
µf

µm

γ =
σf/µf

σm/µm

Skill score (Knoben et al., 2019)

ss =
KGE

′
model −KGE

′
benchmark

1−KGE
′
benchmark

(5.4)
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5.3 Multi-criteria Distributed Real-time Steam

Allocation

5.3.1 Optimization Problem.

As established in the introduction, RTO decisions are based on the short-term

response from the reservoir. Hence, balancing steam chamber growth, max-

imizing ultimate recovery, and positive economic returns can be challenging

to manage with a single objective if no significant steam chamber is estab-

lished prior to RTO implementation. Four different SAGD KPIs are jointly

implemented in this work. The first KPI is the NPV (Equation 5.5), a metric

for economic returns. Where the steam injection rate (u) represents the cash

outflows or cost, the decision variable of optimization. For each well (j) at the

time (t), the revenue is estimated from the oil production rate [ŷo,j (t)]. The

other cost terms are produced water [ŷw,j (t)], transportation and blending of

oil, royalty rate at each prediction horizon (P ) for all wells (Nw). The alloca-

tion of steam to each well-pair is constrained subject to (s.t.) minimum (umin
j ),

and maximum (umax
j ) steam injection rate. Instabilities in the SAGD steam

allocation changes (∆uj) are constrained between the next prediction horizons

to a minimum (∆umin
j ) and maximum (∆umax

j ) steam injection rate for each

well-pair in the pad. The steam available umax
j is limited, which is denoted by

u. Table 5.1 shows the input of the NPV parameters used in the optimization.

They are based on major SAGD project operating costs in Canada (Alexey,

2018). The second KPI is the cSOR (Equation 5.6), an economic and envi-

ronmental metric. cSOR is not an alternative to NPV, estimated in this work

as the ratio of cumulative steam injected to oil produced from the start to the

time optimization conducted (T ) during the SAGD process. RF (Equation

5.7) is the ratio of cumulative oil produced to oil initially in place (OOIP).

The last KPI is the average pad temperature indicative of the steam chamber

conformance. In field applications, this can be estimated from thermocouple

readings.
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J (u) =
Nw∑
j=1

P∑
t=1

(poŷo,j (t)− pwŷw,j (t)− prpoŷo,j (t)− psus,j (t)− potbcŷo,j (t))

(1 +D)∆t

(5.5)

s.t. umin
j ≤ uj ≤ umax

j

∆umin
j ≤ ∆uj ≤ ∆umax

j∑Nw

j=1 uj ≤ u

cSOR (u) =

∑T
t=1

∑Nw

j=1 us,j (t)∑T
t=1

∑Nw

j=1 ŷo,j (t)
(5.6)

RF (u) =

∑T
t=1

∑Nw

j=1 ŷo,j (t)

OOIP
(5.7)

Table 5.1: Economic input parameters

Description Value
Price of oil [po] 60 USD/bbl.
Steam processing cost [ps] 6 USD/bbl.
Produced water processing cost [pw] 1.96 USD/bbl.
the transportation and blending cost of oil [potbc] 4.95 USD/bbl.
Royalty rate [pr] 2%
Discount factor (D) 10%

Equation 5.8 is the single objective function for a multi-pad optimization

of the SAGD process. Where (J ) is the optimized KPI for each pad (i). The

pads share the same steam supply and hence the sum of all steam allocations

to each pad (ui) should be equal to or less than the maximum available steam

(U). A centralized optimization structure has been the focus of earlier works

with multi-pad optimization (Card et al., 2014; Kumar et al., 2020). The

multi-criteria optimization in this study reformulates Equation 5.8 as expressed

in Equation 5.9 and optimized to determined a non-dominated solutions set

(Pareto-optimal set). Different combinations of selected KPIs (m) ranging

from two to four will be implemented in this study. An additional constraint

with a slack variable (zi) is added to 5.9 to decompose it to individual pad

scale problems.
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max
ui∈Ui∀i

Np∑
i=1

Ji (ui) (5.8)

s.t.
∑Np

i=1 ui ≤ U

Jm (u) =

{
Np∑
i=1

NPV (u),

Np∑
i=1

1

cSOR (u)
,

Np∑
i=1

RF (u),

Np∑
i=1

Temp (u)

}
, (5.9)

m = 1, 2, . . . ,M

s.t.
∑Np

i=1 ui ≤ U∑Np

i=1 zi = U

5.3.2 Multi-criteria Distributed Optimization.

The maximum steam availability constraint in Equation 5.9 is relaxed by dual

decomposition (second term) and a quadratic penalty term as in Equation

5.10. The average allocated steam at each iteration (k) is multiplied by the

dual variable (λk,T ), the marginal cost to relax the constraint (the first penalty

term or the second term of Equation 5.10). The third term or second penalty

term (ρk) guarantee that each pad utilizes its allocated resource and guides

the solution towards global feasibility. Equation 5.7 is parallelized by the

coordinator sending a vector of globally feasible solutions (zki ) and dual vector

(λk,T ) to each KPI (m) and pad (i) as defined by Equation 5.11. In the classic

ADMM for a single objective optimization, the two penalty terms become

negligible when global feasibility is attained. By this motivation, in a multi-

criteria optimization, the two penalty terms must be added to at least one of

the KPIs being jointly optimized. This study applies the penalty term to all

KPIs optimized for each pad.
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max
ui∈Ui∀i

Np∑
i=1

Ji (ui) + λk,T

Np∑
i=1

(
ui − zki

)
+

ρk

2

Np∑
i=1

∥∥ui − zki
∥∥2

2
(5.10)

Jm,i (u) + λk,T
(
um,i − zkm,i

)
+

ρk

2

∥∥um,i − zkm,i

∥∥2

2
∀m,i (5.11)

ADMM iteratively solves the constrained multi-criteria optimization prob-

lem (Equation 5.9) by a series of unconstrained problems with a penalty (Equa-

tion 5.11). At each iteration, the coordinator communicates the dual variables

(λk,T ), penalty (ρk) and feasible global solutions (zki ) to each pad to perform

unconstrained optimization and return the optimum steam allocation to the

pad (Fig 5.1). The optimum is selected from a set of non-dominated solution

using a compromise programming approach. If the sum of the returned op-

timum steam allocation to each pad (ui) is greater than the available steam

(U) update (λk,T , ρk, zki ) using Equation 5.14 - 5.16, else convergence has

been achieved. Table 5.2 shows the ADMM coordination parameters in this

study. The step-by-step procedure for multi-pad multi-criteria RTO workflow

is described in Algorithm 1.

ϕk+1
primal =

Np∑
i=1

ui
k+1 − U (5.12)

ϕk+1
dual = ρk

∣∣uk+1 − uk
∣∣ (5.13)

λk+ 1
2 =

{
λk + νρkϕk+1

primal ifϕk+1
primal ≥ 0

λk + ρkϕk+1
primal ifϕk+1

primal < 0
(5.14)

λk+1 = max
(
0, λk+ 1

2

)

z
k+ 1

2
i =

{
uk+1
i +

ϕk+1
primal

Np
, if ϕk+1

primal ≥ 0

uk+1
i else

(5.15)

zk+1
i = max

(
0, z

k+ 1
2

i

)
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Table 5.2: Coordination parameters

PARAMETER VALUE
Maximum iteration [kmax] 10
Initial dual variables [λ0] 100 ∗ ℵ(0, 1)
Initial feasible global solutions [z0] Previous horizon allocations
Initial penalty [ρ0] 1
Dual variable step-size decrement [v] 0.7
Primal-dual feasibility [β] 2
Penalty increment [αIncr] 1.1
Penalty decrement [αDecr] 0.9
Constraint violation tolerance [eps] 1e− 6

ρk+1 =


ρkαIncr, if ϕk+1

primal > βϕk+1
dual

ρkαDecr, if ϕk+1
primalβ < ϕk+1

dual

ρk else

(5.16)

Figure 5.1: Communication scheme between the pads and the coordinator
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Algorithm 1: Alternating Direction Method of Multipliers

Inputs: kmax, eps, αDecr, αIncr, β, v, λ
0, z0, ρ0.

Initialize: k = 1, Convergence = False.
while k ≤ kmax ∧ ¬Convergence do

For each pad (i), do

ui,opt= Jm,i (u)+ λk,T
(
um,i − zkm,i

)
+
ρk

2

∥∥um,i−zkm,i

∥∥2

2

end for

ϕk+1
primal=

∑Np

i=1 ui
k+1−Uϕk+1

dual=ρk
∣∣uk+1−uk

∣∣
if ϕk+1

primal< eps then

Convergence = True

else

λk+1
2=λk+vρkϕk+1

primal

λk+1= max
(
0, λk+1

2

)
z
k+1

2
i =

{
uk+1
i +

ϕk+1
primal

Np
, if ϕk+1

primal≥ 0

uk+1
i else

zk+1
i = max

(
0, z

k+1
2

i

)

ρk+1=


ρkαIncr, if ϕk+1

primal> βϕk+1
dual

ρkαDecr, if ϕk+1
primalβ <ϕk+1

dual

ρk else

end if

k← k+ 1

end while
Output: uopt
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5.3.3 RTO Implementation.

The RTO workflow extracts and transforms the reservoir’s last three months’

historical data for data-driven model training and testing at each control hori-

zon. This study represents the heavy oil reservoir using CMG-STARS (CMG,

2021). After the data-driven model passes testing, a multi-criterion distributed

optimization using a non-dominated sorting genetic algorithm (Blank and Deb,

2020) is performed. At the end of the optimization, a series of non-dominating

solutions are returned. Finally, the compromise programming method (Blank

and Deb, 2020) measures the deviation of each KPI from its ideal value. The

non-dominated with the minimum deviation is set as the optimum control

setpoints. Algorithm 2 describes the steps involved in the multi-criteria RTO.

Algorithm 2: Real-Time Multi-Pad Steam Allocation

For every time step t = 7 days.
1. Read the previous production and injection rates.

2. Normalize the previously recorded data based on each parameter’s
physical or operating constraint (range).

3. Identify the structure and parameters or update the parameters of
the data-driven model

4. Perform distributed optimization using ADMM (Algorithm 1)

5. Use compromise programming method to perform multi-criteria
decision making

6. Apply optimal injection controls from compromise programming to
the digital heavy oil reservoir

7. Record the response (production and injection rates) of the reservoir
to the optimal control setpoints

8. t = t+ 1

9. Repeat steps 1− 7 until it is not profitable or the end of field life.
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5.4 Reservoir Model

Fig 5.2 is a fictitious reservoir based on Western Canadian oilfields. The reser-

voir model comprises 33 well-pairs 760 m long that are heated for four months

during the pre-heating phase. The vertical distance between well-pairs aver-

aged 5m, while the aerial distance averaged 80 m. Each production well had a

minimum bottom hole pressure of 2000 kPa and a maximum steam production

of 10 m3/day. The injection wells are set to operate at 0.95 steam quality and

a maximum temperature of 250oC. The ideal temperature for fluid mobility

and well-pair communication is between 70 and 100oC. (Shen, 2013). After

two years of normal SAGD before starting RTO, the average temperatures of

the well-pads ranged from 72 to 90oC, indicating significant steam chamber

growth. The reservoir properties used in this study are summarized in Table

5.3.

Figure 5.2: Permeability distribution
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Table 5.3: Reservoir model properties

PARAMETER VALUE
Formation temperature [oC] 12
Initial reservoir pressure at 210m [Kpa] 1200
Average horizontal permeability [mD] 4372
Average vertical permeability [mD] 3497
Average porosity [fraction] 0.31
Average water saturation [fraction] 0.2
Steam injection pressure [kPa] 4000
Steam quality 0.95
Oil viscosity @ reservoir temperature [cP] 1.42e6
Rock heat capacity [J/m3-C] 2.3e6
Thermal conductivity of Rock [J/m3-day-C] 2.7e5
Thermal conductivity of Gas [J/m3-day-C] 4000
Thermal conductivity of Oil [J/m3-day-C] 1.2e4
Thermal conductivity of Water [J/m3-day-C] 5.4e4

5.5 Results and Discussion

The results of a multi-criteria multi-pad steam allocation proposed approach

performance are presented for different combinations of the SAGD process

KPI. The performance of each KPI combination is assessed on a multi-pad

synthetic western Canadian reservoir. The first part of this section presents the

validation of the data-driven model forecast performance to reservoir response.

The second part presents the results of the different SAGD KPIs combinations.

The first five cases are combinations of two different KPIs, the other three have

two different combinations of three, and the last is the combination of all four.

The KPIs are classified in this work as weak and strong cost minimizer and

steam chamber growth. The NPV is weak (i.e., the same NPV can be due to

high or low steam injection), while cSOR is strong (i.e., low is because of low

steam injection and high is because of high steam injection) cost minimizer. RF

is a weak steam chamber growth KPI because the KPI balances between high

steam injection to mobilize bitumen and the production of mobile bitumen.

At the same time, Average Temperature (aveTemp) only focuses on steam

chamber growth. The plots for this section are based on the response of the

reservoir during the RTO period.
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5.5.1 Data-Driven Reservoir Model Validation.

The forecasted performance of the data-driven model and the reservoir re-

sponse are compared Figs 5.3-5.5. The figures show that the evolution be-

tween data-driven forecasted water cut, liquid, and oil rates correlates with

the reservoir response. The calibrated data-driven model forecasted out of

sample train-test data performance compared to the response model showed

it learned the physics of the SAGD process. Figs 5.3 to 5.5 for all the pads

show the Well 5 performance of NPV-aveTemp joint KPI RTO. The liquid rate

(Fig 5.3) forecast to the r, KGE’, and ss metrics show the model performance

close to the target value of one for each metric. However, for the water cut

(Fig 5.4), from day 1200, the data-driven model estimated water cut for Well

5 (Fig. 5.4b) is wrong, which is reflected in the performance of all three met-

rics. Before day 1200, the water cut performance for all metrics is excellent.

Similarly, in Fig 5.4d, the model overpredicted between days 900 and 1000

compared to the reservoir performance. The below-par performance of the

model in Figs. 5.4b and 5.4d reflected in the oil rate (Fig 5.5) performance of

Well 5 of PAD B (Fig. 5.5b) and PAD D (Fig 5.5d).
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Figure 5.3: Forecasted (BJ-Model) and response (Numerical) liquid rate of
well 5 during RTO for (a) PAD A (b) PAD B (c) PAD C (d) PAD D of bitu-
men recovery KPI.

Figure 5.4: Forecasted (BJ-Model) and response (Numerical) water cut of
well 5 during RTO for (a) PAD A (b) PAD B (c) PAD C (d) PAD D of bitu-
men recovery KPI.
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Figure 5.5: Estimated (BJ-Model) and response (Numerical) oil rate of well 5
during RTO for (a) PAD A (b) PAD B (c) PAD C (d) PAD D of bitumen
recovery KPI.

5.5.2 Key Performance Indicators.

Fig 5.6 shows the evolution of cumulative NPV at the end of the RTO for all

combinations of KPIs that must include NPV for the individual pads. What

Fig 5.6 shows for Figs 5.6a, 5.6b, and 5.6c, the gradient of the cumulative NPV

rise slowed by day 500 for the NPV RF case but slowed by day 800 for PAD D

(Fig 5.6d). The delay in Fig 5.6d is because the average pad temperature was

higher at the start of RTO in PAD D than in PAD A-C. Also, the cumulative

NPV slows because NPV KPI minimizes the amount of steam allocation over

time. The KPI combinations with at least NPV aveTemp show a consistent

steep rise in the gradient of the cumulative NPV for all pads throughout the

RTO. The steep rise of cumulative NPV is due to the higher steam chamber

growth of at least NPV aveTemp compared to NPV RF combinations. The

NPV aveTemp showed the best performance in all four PADS at the end of

RTO. Based on the gradient of the cumulative NPV rise in all four PADs, it

can be inferred that NPV aveTemp KPI combination with or without cSOR
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and RF shows better performance in long-term SAGD process NPV KPI opti-

mization. The NPV performance of the combinations for all pads is ranked as

NPV aveTemp > NPV cSOR RF aveTemp > NPV RF aveTemp > NPV RF.

Figure 5.6: Cumulative NPV comparison for different joint NPV and other
KPIs (a) PAD A (b) PAD B (c) PAD C (d) PAD D

The trend in the evolution of cumulative NPV (Fig 5.7) for KPI combina-

tions with at least cSOR follows that of NPV as expected. However, the lower

performance of the cumulative NPV with cSOR RF is significantly lower than

when the combinations have aveTemp KPI. The above statement is further

confirmed, as shown in Fig 5.8. The performance in Figs 5.6-5.8 confirms the

statement of the problem to optimize NPV that there should be a balance

between the economic and steam chamber growth KPIs. Additionally, what

Figs 5.6-5.8 show that though RF KPI leads to an increase in the steam cham-

ber, its combination with economic KPIs depends on the average temperature

at the start of RTO. The temperature at the start of RTO also affected the

difference in performance between NPV RF and cSOR RF cases. Increasing

average temperature minimizes the difference between the two cases, as shown
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in Fig 5.8. In Fig. 5.8a, the difference looks higher because PAD A has nine

wells while the rest of the PADs have eight wells. The performance of cu-

mulative NPV with at least aveTemp KPI, as in Fig 5.9 shows RTO of NPV

KPI performance, is relatively the same for all joint KPI optimization with

aveTemp.

Figure 5.7: Cumulative NPV comparison for different joint cSOR and other
KPIs (a) PAD A (b) PAD B (c) PAD C (d) PAD D
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Figure 5.8: Cumulative NPV comparison for different joint RF and other KPIs
(a) PAD A (b) PAD B (c) PAD C (d) PAD D
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Figure 5.9: Cumulative NPV comparison for different joint average tempera-
ture and other KPIs (a) PAD A (b) PAD B (c) PAD C (d) PAD D

Fig 5.10 shows the evolution of cumulative NPV at the end of the RTO

for all the joint KPI combinations. It can be inferred from Fig 5.10 that in

all the pads, the economic-aveTemp joint KPI outperforms all KPI combi-

nations. Hence, a combination of either cSOR-aveTemp or NPV-aveTemp

KPIs is preferred over three or four KPI combinations if the objective is

solely NPV optimization. The three or four joint objectives’ performance

is lower than the economic-aveTemp joint KPI because RF and aveTemp in-

crease steam allocation, which is the main cost contributor to lowering cu-

mulative NPV. The NPV performance of the combinations for all pads is

ranked as NPV aveTemp > cSOR aveTemp > NPV cSOR RF aveTemp >

NPV RF aveTemp > RF aveTemp > RF aveTemp > NPV RF > cSOR RF.

The NPV KPI does not show the resource required to achieve the forecast

and the impact of the SAGD process on the environment. Hence, the joint

NPV-cSOR performance of each case helps determine the optimal KPI com-

binations.
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Figure 5.10: Cumulative NPV comparison for different KPIs (a) PAD A (b)
PAD B (c) PAD C (d) PAD D

Fig 5.11 illustrates the evolution of cSOR for joint KPI optimizations of

NPV and other KPI combinations of the four different pads. Lower cSOR per-

formance indicates a low carbon footprint, reduced resource requirements, and

improved economic returns. The performance at the end of RTO cSOR for all

the cases fell between the typical SAGD process range of two to five. All cases

with aveTemp in Fig 5.11 have an elevated cSOR relative to NPV RF. The

elevated cSOR results from the higher steam injection, leading to increased

mobile bitumen saturation. NPV RF case for PADs A - C (Fig. 5.11a, 5.11b,

and 5.11c) saw a decrease in cSOR until about day 500 when it flattened before

an increase and flattened. The behavior is consistent with cumulative NPV

(Fig. 5.6a, 5.6b, and 5.6c), which saw a similar trend. Whenever the cSOR

drops, the joint objective is influenced significantly by the NPV, leading to

mobilized oil production. The rise of cSOR means RF or aveTemp is the main

influencing KPI of the joint objective. The cSOR performance of the combi-

nations for all pads is ranked as NPV aveTemp > NPV cSOR RF aveTemp
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> NPV RF aveTemp > NPV RF. Though lower cSOR is preferred, the low

cSOR of NPV RF is due to decreasing bitumen production by the end of the

RTO.

Figure 5.11: cSOR comparison for different joint NPV and other KPIs (a)
PAD A (b) PAD B (c) PAD C (d) PAD D

The trend in the evolution of cumulative cSOR (Fig 5.12) for KPI combina-

tions with at least cSOR shows that for two joint KPIs, cSOR dominates, while

for three or four, RF aveTemp dominates. However, cSOR RF combinations

had similar cSOR performance as cSOR aveTemp that did not translate into

optimum cumulative NPV (Fig 5.7). It can be inferred that, for a combina-

tion of economic and recovery KPIs, the economic KPI dominates, as further

confirmed in Figs 5.13-5.14. In Fig 5.9, the cumulative NPV performance

for all combinations with aveTemp is relatively the same for all cases, but

there is a clear separation with cSOR performance (Fig 5.14). Based on the

cSOR performance in Fig 5.14, the performance ranking in Fig 5.7 can be re-

arranged as cSOR aveTemp > NPV aveTemp > aveTemp NPV cSOR RF >

aveTemp cSOR RF ≈ aveTemp NPV RF > aveTemp RF. The rankings above
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are based on the required resource and environmental impact. Though both

cSOR and NPV are expected to minimize the required resource for allocation,

what Fig 5.14 shows is that cSOR is a strong KPI for reducing steam alloca-

tion relative to NPV KPI. The combined effect of NPV cSOR can be observed

with the aveTemp NPV cSOR RF case for all pads (Fig 5.14), significantly

lowering the required steam allocation.

Figure 5.12: cSOR comparison for different joint cSOR and other KPIs (a)
PAD A (b) PAD B (c) PAD C (d) PAD D
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Figure 5.13: cSOR comparison for different joint RF and other KPIs (a)
PAD A (b) PAD B (c) PAD C (d) PAD D
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Figure 5.14: cSOR comparison for different joint average temperature and
other KPIs (a) PAD A (b) PAD B (c) PAD C (d) PAD D

Fig 5.15 illustrates the evolution of cSOR for the four different pads. Ex-

cept for cSOR aveTemp, all cases with aveTemp showed an increasing cSOR

over time. NPV aveTemp case showed a median cSOR performance rela-

tive to all cases. Based on the performance in Fig 5.15 the performance

ranking for all cases can be rearranged as cSOR aveTemp > NPV aveTemp

> aveTemp NPV cSOR RF > aveTemp cSOR RF ≈ aveTemp NPV RF >

aveTemp RF > NPV RF > cSOR RF . NPV RF case combines weak resource

minimizer (NPV) and weak steam chamber growth KPIs, leading to better

performance than strong resource minimizer (cSOR) with weak steam cham-

ber growth KPIs. What can be concluded is from Figs 5.10 and 5.15 strong

resource minimizer and steam chamber growth KPIs are required to achieve

an optimal balance between maximizing economic returns and minimizing the

required resource.
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Figure 5.15: cSOR comparison for different KPIs (a) PAD A (b) PAD B (c)
PAD C (d) PAD D

As shown in Fig 5.16, recovery performance for all pads shows NPV RF

recovers more bitumen per pore volume of steam injected. On a per pore

volume injected basis, two joint KPI optimization recovers more bitumen than

three or four joint KPI. At 0.2 PVI, NPV cSOR RF aveTemp case recovers

between 0.5to1.5%more bitumen recovery for all pads. The additional recovery

can be attributed to the addition of the cSOR KPI, which leads to the increased

production of mobilized bitumen. Also, lower cSOR (Fig 5.11) was achieved,

which means a lower steam requirement and emission. The NPV (Fig 5.6) and

cSOR (Fig 5.11) performance at the end of RTO is approximately the same

for all cases. Hence the performance in terms of recovery per pore volume

injected (PVI) shows NPV aveTemp is the best combination. NPV RF shows

better performance for all pads but is not recommended if, at the start of RTO

average pad temperature is 90oC and below.
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Figure 5.16: Recovery comparison for different joint NPV and other KPIs (a)
PAD A (b) PAD B (c) PAD C (d) PAD D

Fig 5.17 trend for recovery performance of KPI combinations of cSOR with

other SAGD KPI is consistent with NPV with other SAGD KPI (Fig 5.16).

cSOR KPI combined with other KPIs of SAGD achieves the same performance

at a lower PVI than NPV combinations, as in Fig 5.16. In Fig 5.18, it can be

seen that RF cSOR recovery performance terminates early because less steam

is injected. The NPV (Fig 5.8) performance evolution of all KPI combinations

with RF aveTemp without cSOR was relatively the same at the end of RTO

following the recovery performance in Fig 5.18. Addition of cSOR KPI to the

combination lowered the steam injected between 0.07 to 0.23 pore volume and

hence cSOR performance in Fig 5.13.
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Figure 5.17: Recovery comparison for different joint cSOR and other KPIs (a)
PAD A (b) PAD B (c) PAD C (d) PAD D
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Figure 5.18: Recovery comparison for different joint RF and other KPIs (a)
PAD A (b) PAD B (c) PAD C (d) PAD D

The recovery performance for all combinations with aveTemp shows that

aveTemp cSOR and aveTemp RF had the minimum and the maximum, respec-

tively, at the end of RTO (Fig 5.19). Ranking by the PVI bases, aveTemp cSOR

> aveTemp NPV ≈ aveTemp NPV cSOR RF > aveTemp cSOR RF

≈ aveTemp NPV RF ≈ aveTemp RF. What can be deduced from the rank-

ings is that a strong cost minimizer can balance the effect of strong steam

chamber growth KPI. Hence at the same PVI combination of cSOR or NPV

with aveTemp and RF recovery is between 1 to 4% higher.
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Figure 5.19: Recovery comparison for different joint average temperature and
other KPIs (a) PAD A (b) PAD B (c) PAD C (d) PAD D

Fig 5.20 shows the recovery performance for all pads at the end of RTO.

The recovery values in Fig 5.20 are the recovery due to the RTO. The order

of performance rankings for all cases RF aveTemp > cSOR RF aveTemp ≈

NPV RF aveTemp > NPV cSOR RF aveTemp > NPV aveTemp >

cSOR aveTemp > NPV RF > cSOR RF. The goal of RTO is to minimize the

amount of steam injected while maximizing recovery and economic returns.

Based on PVI, the recovery performance is re-ordered as cSOR aveTemp >

NPV aveTemp > NPV cSOR RF aveTemp > cSOR RF aveTemp ≈

NPV RF aveTemp > RF aveTemp > NPV RF ≈ cSOR RF . From Fig 5.20,

NPV RF and cSOR RF recorded high recovery with PVI for all pads. How-

ever, both cases are ranked lower because of the NPV performance (Fig 5.10).
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Figure 5.20: Recovery comparison for different KPIs (a) PAD A (b) PAD B
(c) PAD C (d) PAD D

The fluid balance is one of the operational decisions that causes SAGD

to perform below expectation (Yeung, 2019). The cases studied showed the

impact of optimally balancing the injected steam influence on the economic,

thermal efficiency, and environmental impact of the SAGD process. A study

by Edmunds and Chhina (2001) found that the economics of SAGD projects is

more affected by the steam oil ratio than the production rate, consistent with

the results presented in this study. The best combination of cSOR aveTemp

had the optimal economic (Fig 5.10), thermal efficiency, and low greenhouse

gas emission (Fig 5.15) had lower recovery indicative of a low production rate

at the end of RTO. The use of steam oil ratio alone as an objective can lead

to poor performance in heterogeneous reservoirs (Guo et al., 2018), and hence

as shown in this work, a joint goal with steam chamber conformance. The

decreasing temperature in Fig 5.21 pad average temperature explains the poor

performance of the NPV RF and cSOR RF cases due to an imbalance in pro-

duction favor, causing a temperature drop. The recovery performance (Fig

154



5.20) of the NPV RF and cSOR RF cases showed improving performance on

PVI and similar behavior with economic (Fig 5.10) and thermal efficiency (Fig

5.15) performance initially but poor performance after two years of RTO. The

behavior of NPV RF and cSOR RF cases shows that the combinations are not

recommended for the normal phase of SAGD operations. Hence, the lesson

learned here is that the average temperature in the reservoir or the steam

chamber should reach maturity at the start-up phase if RTO will always be

preferred at the blow-down phase. The decreasing temperature behavior is the

goal of the blow-down phase, where steam is co-injected with non-condensable

gas. Another observation from Fig 5.21 is that NPV aveTemp is excellent in

expanding the steam chamber (i.e., higher temperature indicative of higher

steam chamber volume) compared to cSOR aveTemp.

Nevertheless, on average, cSOR aveTemp recovers two percent more oil on

PVI. Additionally, a combination of three or four KPIs performance is lower

than a combination of two SAGD operations RTO considering the aggregated

performance of all KPIs as shown in this study. Therefore, the conclusions

on the rankings in this study will not hold at the blow-down phase. In ad-

dition, starting RTO at a much higher temperature, cSOR RF and NPV RF

combinations will be preferred based on lower resource requirements. Finally,

the study used a heterogenous reservoir with no shale barriers, which impedes

steam chamber growth. However, the authors contend there will be no change

in the order of performance rankings even though there will be a reduction in

each KPI metric.
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Figure 5.21: Temperature comparison for different KPIs (a) PAD A (b)
PAD B (c) PAD C (d) PAD D

5.6 Conclusion

An ADMM-based strategy for optimizing the allocation of steam across mul-

tiple criteria and pads has been presented in this work. Furthermore, the

workflow was set up so that the optimal KPI combination can be identified for

a short-term optimization problem formulation that has the potential to ac-

complish long-term performance goals for SAGD KPIs. Based on the research

findings, the following are the conclusions.

1. cSOR aveTemp combination is the most effective in meeting long-term

normal phase SAGD operations performance goals.

2. KPI combination of three or four RTO can attain long-term SAGD re-

covery and economic performance goals at a higher resource requirement.

3. cSOR aveTemp KPI combination requires approximately less than three

to five times steam than cSOR RF aveTemp, NPV RF aveTemp, and
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NPV cSOR RF aveTemp to generate the approximately same amount

of economic returns optimization.

4. cSOR aveTemp KPI combination requires less than two to three times

more steam than NPV aveTemp to generate the approximately same

amount of economic returns optimization.

The proposed workflow has a significant potential for multi-criteria multi-

pad real-time steam allocation decisions in bitumen recovery.
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Chapter 6

Concluding Remarks and
Recommendations

6.1 Concluding Remarks

RTO workflow has the ability to improve on reservoir management operations

decisions short and long-term goals. Application of RTO to prioritize steam al-

location, robust economic uncertainty management, and multi-pad challenges

have been addressed in this study. Each approach used in addressing the

challenges listed are verified using a field-scale model and the outcome of the

proposed improvements to RTO workflow are presented.

A proactive steam prioritization allocation workflow that can determine

the effect of steam injection pattern on heavy oil recovery by using system

identification to a changing steam availability. The strength of the proposed

method is observable from the results as NPV is increased between 25% to

50% compared to the base case with a constant steam injection pattern in all

cases examined. Due to the efficient use of available steam, the steam-to-oil

ratio was decreased between 5% to 15%. Steam prioritization outperforms no

steam prioritization scenario with an additional NPV increase between 14.7%

to 25% when compared individually to the base case.

The study proposes data-driven input-output normalization to incorporate

operating constraints based on their physical range. The workflow includes

model training-updating based on the concept of forgetting factor to adapt

the data-driven model to the current state of the reservoir. A robust opti-
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mization problem scheme in which economic risk is mitigated by formulating

the objective as a tradeoff of expected returns and risk is managed in real-time.

A modified Modigliani’s risk-adjusted performance has been implemented to

minimize the possibility of selecting the wrong optimal risk-return tradeoff of

non-symmetric return realizations in this work. Application of the proposed

workflow on a synthetic reservoir with steam NCG co-injection showed the

data-driven calibrated model forecast performance shows a reasonable agree-

ment with the synthetic reservoir throughout the optimization period. In

addition, the optimization study with the proposed workflow also showed a

NPV increase of approximately 25%–77% and a decrease in the cumulative

cSOR from 4.5 to 6.7% compared to continuous steam injection base case.

The reduction in cSOR indicates a lower steam requirement. An increase in

methane sequestered demonstrates workflow ability to reduce greenhouse gas

emissions while improving SAGD NCG co-injection KPIs.

In this contribution, ADMM and a dynamic data-driven model to reduce

the computational cost of RTO. ADMM coordinates in real-time field-wide use

of shared steam generation which grows the steam chamber without negatively

affecting the long-term economic performance. A SAGD field with four pads

with 33 well-pairs shows that for all four pads, an economic-based KPI limits

the achievement of long-term goals because it cannot account for the future

state beyond the horizon under consideration due to hindered steam chamber

growth. For the steam chamber expansion and bitumen recovery KPI, high

recovery and economic performance are achieved, but with a high resource re-

quirement, leading to a high carbon footprint. On the other hand, an alternat-

ing economic and bitumen recovery KPI achieves high economic performance

while minimizing resource requirements that decrease carbon footprint.

This work presents a study of multiple combinations of SAGD KPIs for a

multi-pad real-time steam allocation. The KPI combinations used in this study

are NPV, cSOR, RF, and aveTemp. A dynamic data-driven model based on

the Box-Jenkins model structure is used to model the SAGD recovery process

and a first principle simulator as a proxy for an actual reservoir. A multi-

and many-objective optimization of real-time multi-pad steam allocation using
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the ADMM is proposed. A compromise programming approach guides the

decision-maker choice of the optimum control setpoints of the nondominated

solutions at each horizon. At the end of three and half years of RTO, the

optimal KPI combination is ranked based on the aggregated performance of

NPV, cSOR, and RF of SAGD multi-pad steam allocation. A representative

western Canadian reservoir model with four pads and 33 well pairs is used for

this study. The aggregated performance of this study’s results showed that

joint optimization of an economic and a steam chamber growth KPIs of two is

better than a combination of three or four. The choice of the joint economic

and steam chamber growth KPIs depends on the average pad temperature at

the start of RTO to achieve optimal fluid balance in the long term. cSOR

or NPV with RF joint KPI performs optimally at average pad temperatures

above 90oC while cSOR or NPV with aveTemp below 90oC at the start of RTO

to achieve injected and produced fluid balance. Optimum economic return,

recovery, and greenhouse gas emission of the SAGD process are achieved with

cSOR KPI as the primary economic objective.

The contributions towards improving real-time SAGD operations optimiza-

tions in this research is summarized as follows:

1. A steam prioritization approach for real-time SAGD operations opti-

mization that leads to improvement in NPV while reducing cSOR with

varying steam availability at each control horizon.

2. A forgetting factor approach to adapt a data-driven model with input-

output normalized to incorporate operating constraints based on their

physical range.

3. A modified Modigliani’s risk-adjusted performance for selecting the opti-

mal risk-return tradeoff of non-symmetric return realizations in real-time

economic robust optimization.

4. A control framework for multi-pad single and multi-criteria real-time

optimization that leads optimize short-term objectives while achieving
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long-term goals by balancing the steam chamber growth with increasing

bitumen recovery, lowering cSOR, and maximizing economic returns.

5. An alternating single objective real-time optimization based on time and

temperature which leads to balancing the steam chamber growth with

increasing bitumen recovery, lowering cSOR, and maximizing economic

returns as an alternative to multi-criteria real-time optimization.

6.2 Recommendations

Although in this research, attempts were made to improve on the applicability

of RTO workflow on a reservoir management there still remain additional work

to be done. The following recommendations suggested below can improve on

the efficiency of RTO workflow.

� The proposed steam allocation prioritization is based on the individ-

ual well KPI being optimized performance. Application of the well-pair

productivity and injectivity indices can further be explored.

� The data-driven model performance when close to lower limits of the

outputs degrades significantly. Training of the data-driven with a multi-

objective KGE objective which learns the correlation, bias and the vari-

ance of the past data can be an alternative to improve forecasting per-

formance.

� Due to computational resource limitations the validation test for were

tested for normal and wind-down phases separately. Additionally, the

proposed improvements to RTO workflow were tested separately. With

more computational resource, the improvements can be integrated and

tested from the build-up through normal and to wind-down phase.

� In this research it was assumed all well-pairs and well-pads start produc-

ing at the same time. An improvement of the workflow that accounts

different well-pairs and well-pads with different maturity or years of op-

eration competing for a limited resource can be explored.
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� Robust optimization with additional candidate uncertain variables in-

stead of only the oil price as tested in this work can be investigated.
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