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It is not easy to use the geometrical method to discover things.
It is very difficult, but the elegance of the demonstrations after
the discoveries are made is really very great. The power of the
analytic method is that it is much easier to discover things and
to prove things. But not in anyv degree of elegance. It's a lot of
dirty paper. with z's and y's and crossed out cancellations and
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Richard P. Feyvnman.
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Abstract

I argue that the state inside an initially empty box with mirrored
walls being quasistatically lowered from infinity toward a black
hole is the Boulware state for that black hole. Using an expression
for the stress-energy tensor from a moving mirror. which I derive
specifically for this purpose. I find the energy density inside a
box moving with nearly uniform acceleration in Minkowski space-
time. [ then invoke the use of a quantum equivalence principle
to obtain the energy density of the Boulware state inside a box
undergoing equivalent motion in a black hole background. This
programme is successful in 1+1 dimensions, but encounters some

technical difficulties in 341 dimensions.



Acknowledgements

The list of people to whom I owe a debt of gratitude is too long to write
here, but there are a few for whom a lack of acknowledgement would comprise
too great an injustice for me to knowingly commit.

My thanks to my friends and family, with whom I've laughed. cried,
cursed. complained, discussed, argued, played, and generally lived my life
over the past vears. Special thanks go to the hockey gang, the lunch and
coffee crowd, and especially my mom and Angele and Dave.

I have had the great good fortune to learn from and work with some very
gifted people while at the University of Alberta. I would like to thank my
teachers, in particular Bruce Campbell, Valeri Frolov and Don Page. whose
remarkable outlooks on things relativistic I will carrv with me always. I'd
like to thank my relativist colleagues from whom I've learnt and with whom
I've shared, especially Bahman Darian, Serge Droz. Geoff Hayward. Shaun
Hendy, Nemanja Kaloper. Tomas Kopf, Pavel Krtous, Dave Lamb, Sharon
Morsink and Patrick Sutton.

[ owe a special debt of gratitude to two people. Patrick Brady has been
a friend, a colleague, a mentor, and my best man at my wedding. He has
never hesitated to give me a pat on the head or a kick in the but when I've
needed it. Thanks Pat.

My gratitude to Werner Israel. my supervisor, goes beyond words. It is
a rare and wonderful thing to walk in the world of truth and beauty. It is
that much more rare and wonderful to have as a willing and knowledgeable
guide one who makes it his home.

Finally, there is one person without whose faith in me and whose love
I sincerely doubt I would have finished this thesis. She has selflessly set
aside many of her own desires and needs to allow me the luxury of following
this dream. To my wife, Lynda, for this and for so much more, I owe a
debt of gratitude that cannot be repaid in a lifetime. This thesis, and any
accomplishment it might represent, are as much hers as my own.



Contents

1 Introduction
1.1 Historical Context . . . . . . . . . . . ...
1.2 This Thesis . . . . . . . o o v v i e e e e

2 Background Material
2.1 Acceleration in Minkowski Space . . . . . ... ..o oL L.
2.2 Quantum Fields in Curved Space-Time . . . . . .. . ... ..
Perturbations of Green's Functions . . . . . .. ... .. ...
Rindler and Minkowski States . . . . . . . . .. .. ... ...
Black Holes and Their Quantum States . . . . . ... .. ...

!\) 1919
Ut W= W

3 A (141)D Calculation
3.1 Introduction . . . . . . . . . ... o
3.2 Moving Mirrorsin (1+1)D . . . . . ... o000
3.3 Accelerating Mirrors and the Boulware State . . . . . . .. ..
34 Conclusion. . . . . . . . . . e

4 The Perturbed Green’s Function in (3+1)D
4.1 Introduction . . . . . . . . ..o
4.2 The Unperturbed Green’s Function . . . . . .. ... ... ..
4.3 Propagation of Retarded Signals . . . . . .. .. ... .. ...
4.4 The Perturbed Green's Function . . . . . . ... .. ... ...

5 Quantum Flux from a Moving Mirror
3.1 Introduction . . . . . . . . . . . .. ..
5.2 The Method of Means and Differences . . . . . ... ... ..
33 TheQuantum Flux . . . . .. ... ... ... ... .....
5.4 Checksand Balances . . . . . . . ... ... .. ... .....



CONTENTS

6 The Boulware State for Black Holes
6.1 The Flat Mirror Limit . . . . . . .. . .. ... .. ...,
6.2 The Quasi-StaticBoxin (3+1)D. . . . ... ... ... ....
6.3 A Quantum Equivalence Principle? . . . . . ... ... .. ..

7 Conclusions

A The Method of Means and Differences

90
90
92
96

99

103



List of Figures

The worldline of an accelerated particle . . . . . . . . .. ...
Rindler coordinates . . . . . . . . ... ... ... L.
World history of a radially accelerating 2-sphere . . . . . . ..
Singularities of the Euclidean Green’s function . . . . . . . ..
Analvtic continuation of the Euclidean Green's function . . . .
Schwarzschild black hole space-time diagram . . . . . . . . ..

The geometric significanceof 7p . . . . . . . . . ... o

Intersection of the past light cone of an exterior point and the
world history of a sphere expanding with u::iform acceleration
The geometric significanceof tyand z. . . . . . . . . ... ..



Chapter 1

Introduction

1.1 Historical Context

As little as 100 vears ago. physicists thought the vacuum to be empty and
uninteresting. After all. what could be interesting about nothing? Two
major revolutions of modern physics. Einstein’s general theory of relativity
in 1915[1] and the introduction of quantum theory over most of the first half
of the 20th century[2] have forever changed our notion of a vacuum. however,

In general relativity. interesting vacuum solutions arise because only part
of the curvature, and hence gravitation, is coupled to sources (stress-energy).
In this sense. it is not unlike electromagnetism, in which it is possible to have
a ficld even in the absence of sources. However, there is a sense in which vac-
uwum solutions are more generic to gravitation. Consider, for instance. an
electron and positron, inspiralling toward one another, and emitting elec-
tromagnetic radiation. To properly model this situation, one would include
distributional source terms for the electron and positron. An analogous sit-
uation in gravitation would be the inspiral of two black holes which emit

gravitational waves. In this case. the nonlinearity of gravity precludes the
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use of distributional sources. The standard practice is to remove the singu-
lar points at the center of the black holes from the space-time altogether.
The result is a complex and physically interesting system that we d- ~cribe
entirely in terms of properties of the vacuum.

Quantum theorv makes the vacuum interesting in a different way. It turns
out that if one quantizes a field, even one described by a field equation with
no source terms (a free field equation) so that the classical solution vanishes
everywhere, one finds that there is infinite energy contained in the quantum
solution. This energy is tvpically renormalized away, but it iIs not meaning-
less. Rather. it is a mathematical manifestation of the physical reality that
the quantum vacuum is filled with virtual particles which simply need some
physical impetus to acquire reality.

While both gravitational and quantum vacua are interesting in their own
right, much richer and more interesting phenomena occur when one consid-
ers quantum theory on a gravitational background. In these situations, the
different notions of vacua can interact. The gravitational vacuum can cause
virtual particles in the quantum vacuum to become real. The real particles
then act as a source of stress-energy for the gravitational field, changing it.
This bootstrapping process is thought to be responsible for the creation of
at least some fraction of matter in the current universe.

One of the most remarkable and widely studied instances of the interac-
tion of quantum and gravitational fields has been the creation of particles
in the quantum vacuum by black holes. The most amazing feature of these
particles is that they exhibit thermodynamical properties(3]. This discovery

was presaged by the work of Bardeen. Carter and Hawking([4] in which they
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pointed out an analogy between laws governing certain properties of black
holes and the laws of ordinary thermodynamics. In particular. the analogue
of the second law of thermodvnamics is Hawking’s theorem that the surface

area of a black hole is nondecreasing [3], i.e.

d‘:f” > 0. (1.1)

It was based on this analogy between (1.1) and the second law of thermo-
dvnamics that Bekenstein[6] conjectured a generalized second law of thermo-
dynamics (GSL): The sum of the black hole entropy and the ordinary entropy
in the black hole exterior never decreases. \lore precisely, the GSL states that

for any physical process
1
5Smatler + 16-43H Z 0. (12)

(units i=c=G=k=1). where Spau.r is the entropy of the matter outside the
black hole. In (1.2). _-1,-.-13”, one quarter of the black hole’s surface area. plays
the role of the entropy of the black hole. This correspondence between the
surface area and entropy of a black hole has become firmly established in the
context of black hole thermodynamics. beginning with Hawking’s discovery
of the thermal radiation emitted by a black hole[3].

Bekenstein[7] further argued that an entropy bound on matter was re-
quired in order for the GSL to hold. His argument relied on the following
gedankenezperiment. Imagine that a box of linear dimension ¢ with reflecting
walls is filled with ordinary matter of energy E, and entropy S at a very
large proper distance from a black hole. The box is then slowly (adiabati-
cally) lowered toward the black hole of mass M. When the box is opened

and the matter released into the black hole, the energy of the matter will
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have been reduced by the red-shift factor y = (1 —2M/r)!'/2 so that the black

hole’s energy is increased by
E = xE. (1.3)

Since the box can be lowered to approximately the proper distance £ (the
dimension of the box) from the event horizon before releasing the energy
into the black hole. the black hole energy can be increased by as little as
E ~ (£/4M)E,. However, this will lead to a change in the black hole
entropyv of

0Spy = :11-5.-13;1 =87 ME. (1.4)
After the box is emptied. it can be slowly pulled back out to infinity. But
observe that, if { < S/(27E). then dSgy < S and the GSL will be violated.
Therefore, Bekenstein concluded there was a bound on the entropy of matter

with energyv E that could be placed in a box of dimension ¢.
S/E < 2wt (1.3)

Unruh and Wald[8] pointed out, however, that Bekenstein failed to con-
sider quantum effects in his analysis. In particular, they pointed out the
effect of acceleration radiation on the box as it is being lowered. Since, in
the reference frame of the almost stationary (hence accelerated) box, the
black hole is surrounded by a bath of thermal radiation, there will be an
upward pressire on the box. In fact, when this is taken into account, Unruh
and Wald demonstrate that a box of negligible height will float when the
energy contained in the box, E, is exactly the same as the energy of the ac-
celeration radiation displaced by the box. In order to lower the box further,

one will have to do work against this buoyvancy.
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Equivalently, Unruh and Wald explained, in the frame of a freely falling
(inertial) observer, the lowering process removes energy from the box not
just through the classical red-shift, but also through quantum effects. Thus.
before the box reaches the event horizon, all the energy it contained will be
canceled by the lowering process. To lower the box further would induce a
negative energy density in the box. This negative energy bubble in a sea
of zero energy would float upward due to buoyvancy, restoring the internal
energy to zero.

Unruh and Wald went on to show that in order to minimize the entropy
increase of the black hole, the box must be opened at this floating point.
They further showed that the matter released at this point will contribute at

least enough cnergy to the black hole to increase its entropy by an amount
8Sg > S. (1.6)

where S is the entropy of the matter in the box. Thus. they concluded. the
GSL will hold independent of the validity of (1.3).

There was some debate in the literature over the Unruh-Wald result, and
it was in the context of this debate that it was first pointed out in [9] that
the energy draining effects of lowering the box quasi-statically could be un-
derstood in terms of the negative energy density of the Boulware state which
must occupy the interior of the box. The Boulware state is the quantum state
that appears as empty as is possible (more on this in Section 2.3) for static
observers, and is exactly empty for static observers infinitely far from the
black hole. That this is the correct state inside the box in one space and one
time dimension (henceforth denoted (1+1)D) was proven in [9], however the

more interesting (3+1)D result has been delayed due to technical difficulties
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described herein.

1.2 This Thesis

The goals of this thesis are threefold. The first goal is to derive the quantum
flux from a mirror moving with nearly uniform acceleration. While such a
flux has been known for mirrors moving in space-times with one space and
onc time dimension for some time{10], this thesis is the first place such a
result has been presented for three space and one time dimensions to my
knowledge. The second goal is to investigate the possibility that through a
suitable quantum equivalence principle these results for moving mirrors in
Minkowski space-time can be used to deduce something about the quantum
state in a box being quasi-statically lowered toward a black hole. The third
goal is to explicitly construct the stress-energy tensor for a scalar field in this
state and to show that it is that of the Boulware state on a Schwarzschild
black hole background. As mentioned in the last Section, all of these goals
have been explicitly accomplished in one space and one time dimension in a
previous publication(9].

This thesis has been written with the assumption that the reader has at
least a graduate level understanding of the pertinent physics. In particu-
lar. [ assume an understanding of general relativity equivalent to a senior
undergraduate course and of canonical quantum field theory (in Minkowski
space-time) equivalent to a first year graduate level. I have endeavored in
Chapter 2 to supply an elementary introduction to the parts of quantum
field theory in curved space-times necessary to understand the contents of

the remainder of the thesis. Readers who are familiar with quantum fields
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in curved space-times may want to skip most of that Chapter.

Throughout this thesis, whenever I am working in a specific number of
dimensions. it will alwayvs be either 4 or 2. Mlost of the time. I will be
considering Lorentzian metrics with signature (-.+.4+,4) (or in 2 dimensions
(-.+)). For these metrics. I will use the Misner, Thorne and Wheeler[11] sign
conventions for metric and curvature. The 2 dimensional (one space and
one time) space-times [ will denote by (141)D, and the 4 dimensional (three
spacc and one time) by (3+1)D. The only place I will consider non-Lorentzian
metrics will be small parts of Sections 3.2 and 4.2, where I will be working
in Euclidean spaces. with signature (+.4+,+,+) (or in 2 dimensions (+.+)).
In all parts of this thesis [ will use the units in which i=G =c =4k = 1.
where i is Planck’s constant divided by 27. G is the universal gravitational
constant, c¢ is the speed of light, and & is Boltzmann's constant.

The contents of this thesis are as follows: in Chapter 2 I provide some
background material. In Chapter 3. [ provide a (141)D calculation showing
that the goals outlined above can be achieved in (141) dimensions in a way
that should be easily generalized to (3+1) dimensions. In Chapter 4 I find
the Wightman function for a spherical mirror expanding with nearly uniform
acceleration in (3+1)D. In Chapter 3 [ find the flux from such a mirror and
show that it is in accord with previously known results in the appropriate lim-
its. Chapter 6 contains the energy density calculation for a nearly uniformly
accelerating box in (3+1)D and some discussion of the quantum equivalence
principle and the Boulware state for a (3+1)D black hole. Finally, Chapter
7 summarizes the result of the previous Chapters and offers some concluding

remarks. Details of the calculational technique used to obtain the results of
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Chapter 5 are included in Appendix A.



Chapter 2

Background Material

2.1 Acceleration in Minkowski Space

In one of its many incarnations, Einstein’s equivalence principle states that
there is no local physical process by which one can determine whether one
is subject to a uniform gravitational field or a uniform acceleration. because
of “the complete physical equivalence of a gravitational field and of a cor-
responding acceleration of the reference system™[12]. The classic gedanken-
experiment which he used to illustrate this is the elevator experiment[13].
Whether I feel the floor of an elevator push against my feet because it is
preventing me from falling freely in the gravitational field or because it is
accelerating upward in the absence of a gravitational field is irrelevant. The
only physically significant fact is that I am being accelerated upward by the
elevator.

In Chapters 3-6 I will be essentially using the elevator gedankenezperiment
above to show that, at least in some contexts, quantum fields also obey the
equivalence principle. To do this, I will need to discuss mirrors moving

with both uniform acceleration and motion that is perturbed slightly from
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Figure 2.1: The hyperbola is the worldline of a particle following a trajectory
parameterized by (2.6). Note that this trajectory asymptotically approaches
the light cone from the origin.
uniform acceleration. In preparation for this discussion. I will discuss uniform
acceleration and perturbations from it in 141 and 341 dimensions iu this
Section.

[ will begin in 141 dimensions and in the absence of a gravitational field.

The space-time metric will therefore be the standard Minkowski metric,
ds? = —dt® + dr?. (2.1)

Next., let me consider a particle moving along a space-time hyperbola. It has

a trajectory parameterized by T according to the parametric equations
t = Esinh(T), z = £ cosh(T). (2.2)
The constant T is the distance of closest approach of the trajectory to the

origin. The trajectory (2.6) is illustrated in Fig. 2.1.

The proper time 7 for a particle with trajectoryv (2.6) is given by

drm = Vdt? — dr? = a\/cosh?(T/a) —sinh®(T/a) dT = adT. (2.3)
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In other words. the parameter T is proportional to the proper time of a par-
ticle with trajectory (2.6). Let me therefore express the trajectory parameter

in terms of the proper time.
t = ¢sinh(t/a). 1 = Ecosh(7/a). (2.4)

The arbitrary constant a is introduced simply to keep the arguments of the
hyperbolic trig functions dimensionless. so it must have dimensions of length
(just as 7 does).

I can use this to calculate the magnitude of the particle’s 2-acceleration.

2r\® [(d2t\® ¢ _
“=J<FI> ‘(F) = (2.5)

Thus. the particle’s acceleration is expressed entirely in terms of the constants

[t is given by

£ and a and must itself be constant. There is one particular trajectory of
this type which has an especially simple form. If I take the distance of closest
approach to be equal to the arbitrary constant a, so that the trajectory has

an acceleration given by
t = asinh(7/a). r = acosh(t/a). (2.6)

then the acceleration is simply the inverse of the distance of closest approach.
a = 1/a. I will single this curve out for special attention in the next Chapter.

Next. consider a one parameter congruence of such constant acceleration
particles, so that £ > 0 in (2.4) becomes the congruence parameter. This
congruence fills a portion of Minkowski space, as shown in Fig. 2.2. Eqs
(2.4) essentially define new coordinates (€. 7) on this part of Minkowski space.

These coordinates, called Rindler coordinates[l-i], are particularly useful for
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N

Figure 2.2: Rindler coordinates 7 and €. Note that they only cover one
quarter of Minkowski space. the Rindler wedge.

discussing accelerated motion. The portion of Minkowski space covered by
these coordinates is called Rindler space or the Rindler wedge. Finally, 1

can rewrite the metric (2.1) in terms of the Rindler coordinates using the

coordinate transformation (2.4). [ get

1S
..

2
ds® = —-0—2(172 + d€2. (2.

It comes as no surprise at this point that this metric is called the Rindler
meltric.

I shall also be discussing motion that is perturbed from uniform accelera-
tion. Since the acceleration of the particle trajectory (2.6) is the inverse of a.
I can perturb the acceleration by perturbing ¢, i.c. by letting a = a+da(7).

Let me therefore consider now a particle with the trajectory

t = (a + da(7))sinh(7/a), z = (a + da(1)) cosh(7/a). (2.8)
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For such a perturbed particle. the proper time is given by

dT = \J (1 + 5—") —§a’ dr. (2.9)

Q

where da denotes the derivative of Sa with respect to the parameter 7. If I
assume, as I shall for the remainder of this thesis. that the perturbation is

small. that is, that
dr
n—1

dmn

then, to first order in the perturbation I can rewrite (2.9) as

o da(T) << 1. (2.10)

§
dT =~ (1 + —O> dr. (2.11)
Q

In other words. the proper time for such a particle is perturbed by an amount
(ba/a)dT.

Using (2.11) I can now calculate the magnitude of the 2-acceleration for
the particle trajectory in the same way [ did in (2.3). Doing so. I obtain to

first order in the perturbation

Sl

a(t) == a+da(7) =

+ (5"0 - 5—") : .2.12)

a2

where dots denote derivatives with respect to 7. Therefore, as predicted. the

perturbation da(7) in the trajectory leads to a perturbation in the accelera-
tion

a(t) = ba — —. (2.13)

So far I have done evervthing in this Section in 141 dimensions. To

extend it to 3+1 dimensions, however, is a simple matter. Consider a particle

accelerating in (3+1)D Minkowski space

ds? = —dt* + dz? + dy? + d:2. (2.14)
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If the acceleration is in the z direction, the trajectory is given by (2.6) aug-
mented by y =constant and z =constant.

I can also consider a congruence of such particles in 3+1 dimensions. If
that congruence is spanned by 2 parameters (apart from 7) and behaves nicely
(e.g. is continuous in the two parameters), then the congruence will form a
time-like 3-surface in Minkowski space. In other words, the particles can be
thought of as points on a space-like 2-surface that is undergoing constant
acceleration. For example, consider the set of trajectories parameterized by

the angles 8 and o according to
r = acosh(7/a)cos(f)sin(o), y = acosh(7/a)cos(8)sin(o).
z = acosh(7/a)cos(d), t = asinh(7/a). (2.13)

where a is again constant.

The proper time for each particle described by (2.13) is again given by 7.
which can therefore be thought of as the proper time for the entire surface.
At a fixed proper time, the angles o and 6 parameterize a 2-sphere. An
incremental change in 7 changes the radius of this 2-sphere. Therefore. (2.13)
can be thought of as a 2-sphere expanding radially with uniform acceleration.
In other words, each point on the sphere is accelerating outward. By looking
at a single point on the sphere, say ¢ = 7/2 and 8 = 0. I recover the 1+1
dimensional motion described above. I can therefore conclude that the radial
acceleration of the sphere is given by 1/ and that this is the closest approach
of the points to the origin (i.e. the minimum radius of the 2-sphere). as is
shown in Fig. 2.3.

I should point out that this is not the most general expression for a

2-sphere expanding with constant radial acceleration: instead of having r =
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Figure 2.3: The worldsheet of a 2-sphere expanding radially with constant
acceleration, as parameterized by (2.13). Note that in order to draw this
3-surface I have had to suppress one dimension. Thus, each point actually
represents a circle.

V1T + y? + 22 = acosh(r/a) in (2.15) I could have used r = ro+a cosh(7/a).
Note that while (2.13) in invariant under boosts (which preserve the space-
time interval 2 + y® + 22 — t2). the generalization with rg # 0 is not. For
this and other reasons I will restrict my attention to the special case (2.13)
(i.c. g =0).

The gencralization to non-uniform acceleration is equally simple. In par-
ticular, if I wish to perturb the motion of the surface (2.135) so as to preserve
the 2-spheres, then I again simply replace a by a + da(7) in (2.13). I then
obtain the parameterization of a 2-sphere expanding radially with perturbed
acceleration a(7) as given in (2.12).

It is worth mentioning that the perturbation breaks the Lorentz invariance

of the problem. In this sense, the (3+1) dimensional case differs from the
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(1+1) dimensional case. In (141) dimensions, [ could always arrange for a
given point to be at 7 = 0 by boosting to an appropriate frame. This is
also true for the Lorentz invariant geometry of the unperturbed accelerating
sphere (2.15). However, the perturbations pick out a unique frame. the one
in which the perturbations are spherical (i.e. da is a function only of 7).
Thus, it will not be possible to assume that any point can generically be
taken to be at 7 = 0. This will be a minor inconvenience in light of the
comparative ease of working with such surfaces. however. They will be the

primary object of interest in Chapters 4 and 5.

2.2 Quantum Fields in Curved Space-Time

Perhaps the single most important advance in modern physics has been the
introduction and widespread adoption of quantum theory. The initial quan-
tum revolution, at the beginning of the twentieth century. dealt mainly with
the quantization of svstems of particles. Interestingly. even at that time it
was known that much of physics could more easily be described in terms of
fields. However, the quantum theory of ficlds, or quantum field theory. was
delaved in its development until the middle of the twentieth century. The
largest obstacle contributing to this delay was the unavoidable occurrence
of divergent quantities in the theory[2]. Today, these divergences are usu-
allv considered technical issues and there is an arsenal of regularization and
renormalization techniques available to deal with them[13].

Nonetheless, quantum field theory is far from being fait accompli. Apart
from any foundational issues that might remain unsettled. there is simply a

dearth of actual quantum field theoretical results for physically interesting
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svstems. This is in large part due to the fact that even with modern tech-
niques available, such results involve laborious and often subtle calculations.
Most of this thesis deals with exactly such calculations, and this Section is
intended to provide some background against which to set them. Most of the
material in this Section can be found in a more complete form in [16. 17. 18].

For simplicity, I will be dealing throughout this thesis exclusively with
massless scalar fields. The standard action for such a field ¢ in an n-

dimensional space-time with (contravariant) metric g"* is

1 .
S= —é/\/_—gd"rﬁ - 5/\/——gd"r(g""o'm0;,, + ERS?). (2.16)

where ¢ is the determinant of the metric. R is the scalar curvature of the
space-time. : ¢ indicates the space-time covariant derivative with respect to
the coordinate # and £ is (at this point) an arbitrary constant. There are, in
fact, only two values of € that are generally considered to be interesting. For
mimimal coupling & = 0 while for conformal coupling £ = %[(n -2)/tn—=1)]. I
will be using both types of coupling in the coming Chapters, so. for the time
being, I will let £ be arbitrary.

Demanding that the action be stationary with respect to variations in the

field o, that is, that
5§

5_O 0, (2.17)

I obtain the scalar field (wave) equation
Do :=00—-&Ro :=g"0,,, —ERo = 0. (2.18)

Typically, I will be interested in a scalar field which satisfies (2.18) in

a given domain §? in the space-time and behaves in some specified way on
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the boundary 90 of that domain. In that case, I will need to augment
(2.71) with a boundary condition (BC). Thus, just as in ordinary quantum
mechanics, the problem is formulated in terms of a boundary value problem
(BVP). It will therefore usually admit an infinite (possibly uncountable) set
of eigenfunction solutions, or modes.

It is possible to define an inner product on the set of solutions of the BV'P.
Given a space-like hypersurface € in the domain  with future directed unit
normal vector n#, the inner product of two solutions ©,(z) and o9(z) is given

by
(01.09) = _i/S{o'l(x) (8,63(z)) = (Buon(z)) O3(x)} ¥ V=RdS. (2.19)

where * signifies complex conjugation and /—hd¥ is the invariant volume
element of the hypersurface .
There will exist a set of modes which form an orthonormal set with respect

to the inner product (2.19). i.e., every pair of modes ¢o_, and o_, satisfy

(67 .0.) = =00 (6..00)=0. (2.20)

Wt e -2

(.O-'x . O__.._,) = 5—-‘1-—» .

and that span the space of solutions of the BV'P. Thus, any solution o of
the BV'P can be decomposed in terms of these modes. In particular, if o_
arc all the modes of positive norm (i.e. (¢,,0,) > 0). then the field may be

expanded as

6 = T.lasou() +ale (o)), (2.21)

with numerical coefficients a_ and af.
The formalism developed thus far is suitable for canonical quant-iz-a-

tion[19]. The first step in this quantization is the definition of the momentum
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conjugate to ©. According to Lagrangian theorv the momentum is given by

_sc

T =

3 (2.22)
00
To begin the quantization I raise © and 7 to the status of operators o and

7 on a Hilbert space (which I shall specify shortly). I then impose the equal

tirne commutation relations
lo(z), #(z")] = id(z, 2. (2.23)

where r and z’ are any two points on a space-like hvpersurface £ and é(z. ')

is the generalized Dirac distribution satisfving
/a _d"rV=hfla)de. ) = f(2). (2.24)

The decomposition of the field (2.21) suggests a similar decomposition

for the field operator
o="S_(ao_(z)+alor). (2.25)
The commutation relations (2.23) then imply that @ and a' must satisfv

[a,.al] = 0, (2.26)

-2

The algebra of the operators @ and a' is reminiscent of the algebra of
creation and annihilation operators for a simple harmonic oscillator (SHO)
(c.f. [20], pp. 182-183). In the SHO case, they operate on energy cigenstates
to create and annihilate quanta of energy. In the casc of the scalar field.
these operators must create and annihilate quanta of the ficld. In other

words. they create and annihilate particles. The Hilbert space upon which
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they (and by extension 6 and ) act, therefore, must be the space of particle
representations. or Fock space. In particular, the zero particle or vacuum
state is defined by

a.|0)=0 Vw, (2.27)

So far, everything has proceeded much in the way that it would in flat
(Minkowski) space-time, but this similarity is deceiving. The crucial obser-
vation is that the BV'P does not admit just one choice of a complete set of
modes. Indeed, there are an infinite number of choices. even in flat space-
time. However. flat space-time has a symmetry group (the Poincaré group)
under which it is invariant. The time-like orbits of this group. which turn out
to be the time-like geodesics of the space-time, provide a family of preferred
observers (actually, an infinite number of equivalent families). I can therefore
use the proper time of these preferred observers to define a preferred time
coordinate. This, in turn. allows me to divide the modes into positive and
negative frequency sets and to identify the positive frequency modes with
the positive normed modes o_ and the negative frequency modes with their
conjugates o-,. This choice of positive normed modes is invariant under the
Poincaré group, and therefore defines a preferred vacuum (2.27) which is
empty for all inertial observers at every point in the space-time.

In general. however, there will be no symmetry group of the space-time.
A state which appears to be a vacuum for one inertial observer may not
be a vacuum for any other inertial observer, and there may be no way to
distinguish a preferred “vacuum” state. In fact, in many cases. it would
be surprising if there were, since external interactions with the space-time

geometry tend to change the particle content in QFT[21]. Thus, if I consider
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a space-time which is asymptotically flat at early and late times, but has some
gravitational evolution in between. I would expect the particle content might
be different for inertial observers in the early and late asymptotic regions.
since the intervening gravitational effects might very well create or destrov
particles.

In light of the fact that particle content is not covariant, but depends
on the arbitrary choice of positive normed modes (which is equivalent to
specifving a preferred time coordinate), it is preferable to avoid using the
notion of particles when possible. This is especially true in the context of
general relativity. where one might be tempted to identify particle content
with matter content and hence as a source of gravitation. Clearly. this would
be a dangerous temptation since the definition of a particle is not covariant.

Of course, the true source for gravitation is the stress-encrgy tensor T,
(SET). For the classical field. it is given by the variation of the action with
respect to the contravariant metric

2 S
(1= 210,00 + (2 = 3 ) 610800 = 260140
2(n—1)

n

T,(r) =

2 1 >
+;£gyuODO + f I:R;w - ER!/’[U + ngpu O‘(Q.{_)S)

The quantum version would thus presumably be the same with the fields
o elevated to the status of operators. However, this also turns T}, into an
operator, which raises a number of issues. First of all. to use the operator
f’,,,, in Einstein’s field equations, I would have to be able to express them in

operator form. This would require a curvature operator, and I am not sure

how to formulate one in a sensible way (in particular. there are difficulties
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with renormalization of such operators[22]). In fact, if I did I might rea-
sonably claim to have a quantum theory of gravity. Unfortunately, such a
theory is not known at this time. The solution to this dilemna is to use the
expectation value of the SET. (T,w) in the classical field equations. This is
essentially the semi-classical approximation of ordinary quantum mechanics
(c.f. [20], Ch. 11) as applied to fields on a classical background geometry.

There is a second difficultv. however. It turns out that the expectation
values of the field operators o(z) are typically distributional. Since the SET
is quadratic in o, and there is in general no way to multiply distributions in
a meaningful way, one might suppose that the expectation value of the SET
is ill-defined. Fortunately, this difficulty can also be circumvented by taking
the distributions to be at different points. For example, while 6(z)é(z) is
ill-defined, §(z)é(z’) is not. By taking the field operators to be at different
points in the space-time, one hopes that any divergences that may arise
may be identified and cancelled with other divergences before a final finite
coincidence limit is taken. This process is known as point-splitting, and is
one of many regularization methods currently known to be effective. It is the
only regularization method I will be using in this thesis.

Thus, what I will be calculating throughout this thesis is the expectation

value of the two point operator

(Tu)(z,2') = %{(1-2£)<<5=,,(z)<5w,(r')>

+ (2{ - %) 9923 (0.a(z) 0.3 (z'))

~26(0,(2)S(E)) + 2€0,(6(a")06()
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1 2(n—1)

+£ R;u' - 2Rg;w + T&Rg;w:l (O(I)O(II))

+I ¢ .r'} . (2.29)

where r & 1’ denotes terms identical to all the proceeding terms but with r
and 1’ interchanged. At the end. I will take the coincidence limit £’ — z to

find the expectation value of the SET,
(T )(x) = im (T, (z,2")). (2.30)

The expectation value of the SET, (2.30). has some interesting properties
which I shall exploit in later discussions. The first is that. like the SET for

classical matter. (2.30) must satisfv the covariant conservation equations
¢ (Th)a = 0. (2.31)

This is a necessary condition for using this object in the Einstein field equa-
tions.

A more interesting property is apparent when the field in question is con-
forinally coupled (£ = 1/6 in 3+1 dimensions). For this coupling the classical
SET is traceless (T, = 0). However. the quantization breaks the conformal
invariance of the SET and induces an anomalous trace which depends only
on the spin of the field being quantized and the space-time, but not on the

actual state or field[23]. In 141 dimensions this anomalous trace is

1
" —_—
(T"u) = 3= R, (2.32)

while in 3+1 dimensions the expression is somewhat more complicated

(T“u> = .

= s (-c,,wcm’ — (RagR®® — %Rz) + I'_‘IR) . (2.33)
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A comprehensive explanation of the rather complicated history of the con-
formal anomaly can be found in [16] (in particular, see their bibliography
of the relevant literature on pp. 335 — 336). As I shall explain shortly.
one can draw some interesting conclusions about fields quantized in curved
backgrounds from this anomaly.

While in theory I have provided enough background to obtain (7,,) at
this point, in practice it is notoriously difficult to explicitly find the modes
and carry out the construction (2.29). However, it is often possible to bypass
some of these difficulties by working with Green’s functions. I will be using
a variety of Green’s functions in this thesis. The most fundamental Green's

functions are the Wightman functions G*(z.z') and G™(z,1'). defined by

GH(r.r') =G ('.1) = (o(z)o(z")) = S o.(z)ol ('), (2.34)

and called the positive and negative frequency Wightman functions respec-
tively. In terms of these functions, the Feynman Green's function. or Feyn-
man propagator is defined to be
iGp(z.7') = 8(z° — 20)GF(z.2') + 6(z"° — %G (z, 7). (2.35)
where (x) is the Heaviside distribution
0. <0

8(z) := { l, £>0 (2.36)

The Fevnman propagator is a complex function. Its real and imaginary
parts are both very useful in their own rights. The imaginary part is propor-

tional to the Hadamard Green'’s function

GW(z,z') = —=2Im(Gp(z,z")). (2.37)
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which is defined to be

GV (z.1') := (o(z)o(z") + o(z')o(z)). (2.38)

This makes it particularly suitable for calculating the stress-energv tensor
via (2.29). since

. ) 1 1 3
Fuez) = {12099 + (2= 3) w0 VT )

1
—f(vﬂvv + VF'VV') + ;ffluu(D + D’)

_¢ [R,w _Llpg, +Hn= l)ng,w] } G (z.1')(2.39)

2 n

The real part is the negative of the average of the advanced and retarded

Green's functions
: ’ 1 ! 4
Re(Gp(r.1')) = B(GR(I.I )+ Galz. L)), (2.40)
which are defined to be

Grir.z') = —0(z° - 2°)(G*(z.7') — G (z.T')). (2.41)
Ga(z.7') = 0(z"° = 1°)(G*(z.2') — G (z,2)). (2.42)

respectively.

By applying the differential operator D defined in (2.18) to the various
Green's functions, one discovers that they are not all trulv Green's functions
in a strict mathematical sense. Recall that a mathematical Green'’s function

satisfies the differential equation

DG(z, ') = /—g¢d(z.1'), (2.43)
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and the requisite boundary conditions. While this is true for Gg and G .
GF is in fact the negative of a Green's function and G!*) and G* are actually

homogeneous solutions. i.e.
DG(z.x') =0. (2.44)

Nonetheless. thev are generally all referred to as Green's functions in the
literature and I shall do so here.

One might wonder about the efficacy of introducing Green's functions.
since they are all defined in terms of the field modes. If the modes are avail-
able. surely it is most efficient to calculate the SET directly. The mitigating
factor, however, is that the Green's functions can sometimes be constructed
without the need to solve for the modes directly.

In particular. if the space-time is static (there exists a time-like coordinate
t such that the metric is invariant under the transformations t — t+constant
and t — —t) then the operator D can be made elliptical by replacing ¢ by
{w. For elliptical operators. there is a unique Green's function Gg(z.r').
A varicety of techniques are known by which Gg(z,z') can be found. By
replacing w in Gg by —it, one of the Lorentzian Green's functions for D is
recovered. The only question is which.

The answer is supplied by examining the behaviour of the Euclidean
Green's function in the limit z — z’. In this limit, the Green’s function
can be thought of as being a local function. Locally, all manifolds are flat,
so the dominant behaviour of the Green’s functions will be that of the flat
space-time Green'’s function.

For simplicity let me restrict my attention to (3+1)D, and without loss

of generality, let me take z’ to be the origin. Then the dominant behaviour
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A Im(w) = - Re(r)

X w=ilxl

Re(w) = Im(r)

X w=-ilxl

Figure 2.4: The singularities of the Euclidean Green’s function (2.43) are
marked by x’s on the imaginary w axis.

of the Green's functions near the origin can easily be found (by. for instance.

extending to 4-dimensions the arguments on p. 910 of [24])

1

|2

Ge(z.0) ~ (2.15)

Now. observe that, for a fixed spatial position x (# 0), (2.43) is singular at
two points, w = %i|x| as shown in Fig. 2.4.

What happens to these singularities in the Lorentzian domain? The
transformation w — —if rotates the axes in Fig. 2.4 by 7/2 so that the
singularities now lie on the real ¢t axis, as shown in Fig. 2.5. In order for
this transformation to be analytic, however, the axis cannot pass through
the singularities. The correct way to think of this transformation, therefore,
is as the limit of the rotation Re(w) — Re(t), as shown in Fig. 2.3.

While I will not prove it explicitly here, careful analysis of the pole t =
|x| shows that its residue is given by G*(z,z'), and likewise the residue

of t = —|x| is given by G~ (z,z') (c.f. [17]. p. 73). Thus. as shown in
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Almp)
e,
4 = -ixl > \:)
% n
Rel) r=lxl Re@)

Figure 2.53: In order for the transformation w — it to be analytic, the real
axis must rotate without intersecting the poles (denoted by x). This means
that the transformation is really the limit of the rotation shown here.

Fig. 2.5, the analytic continuation of Gg will contain the future directed
(upper semi-circle) contribution of G* and the past directed (lower semi-
circle) contribution of G~. Inspection of (2.33) reveals that this is precisely
the content of the Feynman propagator. Therefore. the analytic extension of
GE is GF.

Grlt.x:t' X') = —i lim Ge(w.x:u',x'). (2.46)

w—s—1t
[
w —b—t(’

Finally. let me briefly mention thermal states. So far, I have discussed
Green's functions, which involve expectation values in some state, without
specifving the state. Usually, one is interested in some pure state. However,
at least for static space-times, evervthing I've done can be easily generalized
to mixed states. In particular, for a thermal state with temperature T the

expectation value is replaced by an ensemble average (c.f. [20], pp.378 - 381)

(6) = Tr(po) /Tr(p). (2.47)
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where Tr denotes a trace and the density operator p is, in its simplest form.
p:=e (2.48)

where 3 := 1/T and H is the Hamiltonian of the thermal system.
The Green's functions for thermal states have a most remarkable property.

Consider for instance

Tr(e”?"o(z)o(z’))

Gt (z.1')

Tr(e—34)
Tr(e“gHO'(I)c-jHe‘3Ho'(1")). (2.49)
Tr(e—3H)
Applying the Heisenberg equations of motion,
o(t + At.x) = e'f3o(t, x)e 7, (2.50)
to (2.49) I can rewrite it as
Tr(e 3 o(t'. x'Yo(t + i3.x))
+ YA )
GTt.x:t\x) = Te(e-7H) .
= G (t+id.x;t'.X). (2.51)
In particular, it is clear from (2.38) that
GVt +i3,x:t,x') = GV (t, x:t', X). (2.52)

This relation will be useful in identifving thermal states when I encounter

them in Section 2.4.

2.3 Perturbations of Green’s Functions

In Section 2.2, I discussed quantum field theory in terms of a boundary

value problem. However, even in Minkowski space-time, there are many
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interesting boundary configurations for which explicit solutions have not been
constructed. Of particular interest in this thesis will be Dirichlet boundaries
(mirrors) undergoing non-uniform acceleration. While these boundaries are
well understood in (1+1)D [10], there has been relatively little known about
them in (3+1)D.

Much of the original work presented in this thesis addresses the ques-
tion of non-uniformly accelerating mirrors in (3+1)D. In preparation for the
discussions in Chapters 3 and 4, I will review in this Section perturbation
theory for Green'’s functions of Section 2.2. The method I discuss here is es-
sentially identical to that proposed by Ford and Vilenkin[23], although it was
rediscovered independently for use in the work presented in later Chapters
of this thesis and related publications[26]. I begin by considering the bound-
ary value problem for the unperturbed modes, ¢_, in the (n+1) dimensional
Lorentzian domain 2,

Oo.(z) = 0. rEQ.} (2.53)

o.(z) = 0. xe€dq.
where 09 is a time-like n dimensional boundary of the domain Q, and is
given by the equation f(r) = a for some constant a. Perturbations which
preserve the spatial geometry of the boundary can be written as da(7). and
the perturbed path of the mirror is therefore f(r) = a + da(7), where 7 is
the proper time for points on the unperturbed boundary. This small change
in the boundary will cause the modes to change slightly to ¢_(z) + do.(z).

which will satisfy the same BVP,

O(o, + dou)(z) = 0, rGQ,}

(6, +066,)(z) = 0, z €. (2.54)

Expanding the boundary condition of (2.54) about f(z) = a and noting that
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the outward normal vector to this surface is n, = —df/0z° I have to first

order in the perturbation
do._ _ ==
o.(z) — a—(r) da +do_(z)=0. z €N, (2.33)

where 9, = g°° hag is the outward unit normal derivative. Thus. from

(2.33), (2.54) and (2.33) the BVP for the perturbation of the mode is

r €€, .
2= (r) da. T € IN. } (2.56)

Odo,(z) =

(5

co|°’ o

Such inhomogeneous BV Ps can often be solved using Green's second iden-
tity (c.f. [24]. p. 483), which. for suitably well behaved functions f and g in

a domain §? asserts

| v=sa+tz(sog - gof = [\l [f——JafJ (2:57)

n

where 9 is the boundary of Q, and h is the determinant of the induced

metric on the boundary. If I take g to be do_ then (2.37) has the form

/ V=gd"*z 6o ( / JIhld"z | f [ o — %‘%‘ &1%} (2.38)

Clearly, I would have a solution of the BVP (2.36) if I could find a solution

f to the homogeneous boundary value problem

0.f(z,7) = Y z-2"), ze€N (2.59)
f(z, ') = 0, z € 09 (2.60)

since in that case (2.58) reduces to

sou(z /\/_d" -—*’ " sal(z') g—i(z,r'). (2.61)
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The BVP (2.60-2.61) has a number of solutions. However, if I want do_
to be a causal response to the boundary perturbation da then I would like
f(z.z') to have support only when the point z’ is in the causal past of the
point r. As is evident from (2.42) in Section 2.2. this condition is satisfied
by the retarded Green's function. Gg(z.z'). for the unperturbed boundary.
Thus. I can obtain the required perturbation by taking f(z,z’') = Ggr(z.z’)
in (2.61).

Having obtained the perturbation in modes of the scalar field o. I can now
construct the corresponding perturbation of any of the Lorentzian Green's
functions of Section 2.2. For example. I will explicitly construct the pertur-
bation in G*(z,z’) here. The perturbation of any other Green's function
proceeds similarly.

First, I need the perturbation of the ficld operator. Recall from Section
2.2 that the ficld operator is defined in terms of the field modes by
o(z) = Y _(a0.(r) +alol(z)), (2.62)
The perturbation of the field operator is related to the perturbation of the

modes by

So(z) = 3 (a.606.(x) + atsex(x)). (2.63)

to first order.
Now, suppose that [ have a state |0) which I define to be the vacuum.
Then, from Section 2.2  know that the positive frequency Wightman function

for that state will be

G*(z', ") = (0|6(z")é(z")|0). (2.64)



CHAPTER 2. BACKGROUND MATERIAL 33

Thus, the first order perturbation of G*(z’,z") is given in terms of the mode

perturbations by

§G* (2. 2") = (0ldo(z")o(z") + o(z')d6(")|0)

> [ (Olaco(="0)deu(z) | (2.65)
¥ +{0lo(z")al|0)sc ()]

where I have used the fact that a,|0) = (0[a! = 0. Replacing f by Gg in

(2.61) and then inserting the result into (2.63) I get

§G*(z'. ") = / VZhd"z da(z)x
o [0n401 £.la0,(2)]6(2")10)8.G r(x" )
+ 9a(0]0(2") Tolalo.(2)]10)0.Gr(z". 1)) .
(2.66)

where I have interchanged the order of integration and summation. Again
recalling a_|0) = (0|af, = 0 and the definition of G*(z'.z"). I can rewrite
(2.66) in the simple form
§G* (2. 2") = / V=hd"z ba(z) [0.GF(z.2")0.Gr(' . 1) (2.67)
n + anG+(r’.1‘)6,,GR(r",r)]

Thus. the perturbation of G*(z'.2") is given in terms of an integral of
its normal derivative over the unperturbed boundary. An almost ideutical
argument would have produced for the perturbation of the Hadamard Green's

function

5GN (2" = | V=hd"z éa(z) [0,GV)(z,2")0.Grlz', ) (2.68)
+ 8,GM (2, 1)8,Gr(z". 7))

Eq.s (2.68) and (2.67) will be used in Chapters 3 and 4 respectively.
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2.4 Rindler and Minkowski States

To illustrate some of the concepts presented in Section 2.2, and for future
reference, consider Minkowski space-time. For simplicity. I will work in 141
dimensions, although the conclusions I can draw will be quite general.

As mentioned in Section 2.2, in Minkowski space-time there is a natural
choice of vacuum state associated with inertial observers and invariant un-
der the Poincaré group. In particular. in terms of the standard Minkowski
coordinates (2.1). which are associated with orbits of this group. the scalar
field equation is

(=07 + 3%)o(z) = 0. (2.69)

Although one can easily solve for the modes of this equation. I will instead
find the Fevnman propagator by way of the Euclidean Green's function.
Letting t = Jw. (2.69) becomes Laplace’'s equation. The Green's function

for the free field is well known (c.f. [24]. p. 911).

1 -
Ge(z.2') = 2—__111|1'—l”l[:_‘. (2.70)
il
where | - |g means the Euclidean distance {(c.g. [z} = w? + z?).
As per (2.46). the analyvtic continuation of this function
! -
Gr(z.2') = — In|z — 2|y, (2.71)
27

is the Fevnman propagator. Note that G ¢ is a complex function because the
Minkowski norm |z|3; = —t2 + z? can be negative. Using (2.37) I can find

the Hadamard Green's function

1 1 ,
Gi\I)inkowski(’r'Il) = ox Inf|lz — z'|ar]. (2.72)
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where the outer bars | - | denote absolute value.

Eq. (2.72) immediately presents me with a problem. If I apply (2.39) to
it T will get a divergent stress-energy tensor. It would therefore seem that
Minkowski space would be quantum mechanically unstable. However. this
is not what is observed in nature. In weak gravity and in the absence of
otler interactions. the vacuum appears stable. Recalling that the zero level
of cnergy is arbitrary, | define the stress-energy of the Minkowski vacuum to
vanish.

(M|T,.,| M) = 0. (2.73)

All other stress-cnergies in Minkowski space are then measured relative to
this zero level. This procedure. called renormalization. can be implemented
in actual calculations by subtracting the Minkowski state contribution at the
level of the Green's functions. Thus. the renormalized Hadamard Green's

function is given by
1 1 ' a -
G(rc)n(l\ ') =GW(z.1') - GS\I)inkowski(I' ). (2.74)

This distinguishes the Minkowski vacuum from all other vacuum states in
Minkowski space. To denote this distinction. [ will call the Minkowski vac-
uuin the ground state for Minkowski space-time.

Notice that in curved space-times there is, as stated earlier in this Chap-
ter. generally no natural choice of preferred state with which to perform such
a renormalization. Furthermore, even if a preferred state can be defined
(I will give an explicit example of one in Section 2.3), one would not expect
(T,.) to vanish for it. as is evidenced by the conformal anomaly (2.33). Thus,

there is no ground state and renormalization must be carried out by other
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means. [ will not deal with renormalization in curved space-time here. the
interested reader is referred to [16].

Thus far, evervthing I have done has been standard flat space-time QFT.
However. [ am already in a position to see that things are not as simple
as thev seem. By simply using the Rindler coordinates in the covariant

expression (2.72) I find for the Hadamard's Green function
1 2 1 ! ! —_—
GWNz.r') = 4—__ln €2 + €7 — 2€€ cosh((7 — 7')/a)l. (2.73)

The most important feature to notice is that the Green's function is invariant
under the transformation 7 — 7+:27c. [t appears. therefore. to be a Green's
function for a thermal state with temperature T = 1/27c.

What is this thermal state? Clearly it is the Minkowski vacuum: the
only thing I have done is change coordinates. In particular. the new time
coordinate 7 in which (2.73) has an imaginary periodicity is the proper time
of an accelerated observer. Thus. I conclude that to such an observer the
Minkowski vacuum appears to contain a thermal spectrum of particles with
characteristic temperature

1 a

27a 27

~
It
|

(2.76)

Detailed analysis of the sort found in [16] bears this out. In other words.
a state which appears empty to an inertial observer appears filled with a
thermal gas as seen by accelerated observers. Conversely, the state which
appears empty to accelerating observers (called the Rindler vacuumn) cannot
appear empty to an inertial observer.

Since I have defined the Minkowski vacuum to be the ground state. and

therefore to have a vanishing quantum SET, I must conclude that the Rindler
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vacuum has a finite stress-energy contribution. The expectation value of the
SET in the Rindler state in 3+1 dimensions has been calculated by Candelas

and Deutsch [27]. For a conformally coupled scalar field it is

1 000
a* 0 4 00
- — 3 o
(Tw) = ~Tgo2 | 0 0 4 0 (2.70)
000 j3
The analogous expression in 141 dimensions is
2 )
a* a-
= ——, Trr = - . 2.7
(Zu) 24w (Tz) 247 (2.48)

Probably the most remarkable feature of (2.77) and (2.78) is that they have
energy densities less than the ground state energy density. This is peculiar
but generic feature of quantum states. and shall appear again in this thesis.
Another noteworthy feature of (2.77) becomes apparent if one observes
that energy density of an isotropic bath of thermal scalar radiation is given

by (c.f. [28]. p108)
=—T" (2.79)

If I substitute (2.76) into this energy density. it is exactly the negative of the
Rindler vacuum cnergy density. In fact, the whole SET (2.77) is exactly the
negative of the SET for an isotropic bath of thermal scalar radiation. This
suggests that if one put an isotropic bath of thermalized Rindler particles
into the Rindler vacunm that one would recover the \linkowski vacuum,
and that this is why the Minkowski vacuum looks like a thermal state to an
accelerating observer. While this is true for conformally coupled scalar fields.
it is not true for ficlds of greater spin. This issue would seem to bear further

analysis. but [ will not explore it further in this thesis.
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While the existence of thermal radiation and a negative energy density
in the Rindler vacuum might at first seem odd, they can both be understood
intuitively as having to do with the fact that Rindler coordinates only cover
part of Minkowski space (see Fig. 2.2). Firstly, it is well known that mixed
(including thermal) states can be obtained by tracing out parts of the density
matrix for pure states. The fact that Rindler space-time is only a part of
Minkowski space-time results is analogous to such a tracing process. Like-
wise, by excluding modes (and the cnergy carried by them) which extend
outside the Rindler wedge when forming the Rindler state. I am inducing a
negative energy density with respect to the Minkowski (vacuum) state.

It is worth pointing out that while the choice of the Minkowski vacuum
as the ground state for flat space-time might secem simply to be a matter
of gauge. it is not when gravity is considered. When gravity is neglected.
it is only the encrgy difference between states that is physically significant.
Since all observers. regardless of which state they consider to be vacuum.
agree on what this energy difference is. they all arrive at the correct physical
predictions.

However. choosing a different state to be the ground state would lead to
different physical predictions when gravitation is concerned. This is because
stress-energy is the source for gravitation. In other words. the gravitational
field cares not only about the difference between the energy of two states, but
also about what the absolute energy of each state is. To illustrate, consider
the example of inertial and accelerated observers in Minkowski space-time. If
a Rindler state, which is the vacuumn state for an accelerated cbserver, were

the ground state, then the Minkowski vacuum. which has a positive energy
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density when compared to the Rindler state, would truly have a positive
encrgy. Thus. there would be quantum corrections to Minkowski space-time.
that is, the classical vacuum space-time would not be quantum mechanically
stable.

This vacuum stability argument and the fact that observers with differ-
ent accelerations at the same event have different vacua, which means that
there is not a unique choice of Rindler state. lead one to the conclusion that
the Minkowski state. which is the vacuum for all inertial observers. is the
correct ground state for gravitational calculations. In this respect, the bath
of thermal radiation scen by accelerating observers in the Minkowski state is
an artifact of these observers measuring energy with respect to the vacuum
of his non-inertial (accelerated) frame. These particles lack “gravitational
reality” since they cannot contribute to the gravitational ficld. Only the
particle content of a state with respect to the ground state is “real”.

As I mentioned earlier in this Section. in curved space-times there is not.
in general. a preferred state. However, if the space-time has a symmetry
group whose orbits are time-like (that is, if the space-time is stationary).
then invariance under the motions of this group can be used as a criterion
for preferred states. Unfortunately. these states do not possess many of the
nice properties of the Minkowski vacuum. In particular. they will not be free
of particle content for all inertial (or, if one prefers, geodesic) observers, nor
will it be possible to define a ground state for the purpose of renormalization.
as mentioned above. Nonetheless, [ will demonstrate at least one case below
in which such a state will play a role that in some ways analogous to the

Minkowski vacuum.
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2.5 Black Holes and Their Quantum States

One of the most interesting applications of QFT in curved space-time deals
with quantum fields in a black hole background. Arguably the single most
exciting discovery made in this context is Hawking radiation. Hawking
showed[3] that black holes, which are classically absolutely dark and cold
because no particles can escape them. actually evaporate into clouds of ther-
mal radiation through quantum processes.

Before describing how this happens. let me review some basic clements
of black hole theory. The simplest black hole model, and the only one that
I will be concerned with in this thesis. is the Schwarzschild black hole. The
metric describing this black hole is the Schwarzschild metric
dr?
f(r)

where. in the standard Schwarzschild coordinates, f(r) =1 — 2% The coor-

ds® = —f(r)dt® + + r(df? + sin® 0 do?). (2.80)

dinateranges arc —oc <t < x.0<r<x.0<o<2rand 0 <8 <7 Itis
clear from (2.80) that the Schwarzschild space-time is spherically symmetric.
Thus, the space-time can be foliated by a 2-parameter family of 2-spheres. o
and 6 are just the familiar angular coordinates on these spheres. The radial
coordinate r is related to the area of these 2-spheres in the same way as in
flat space, 4 = 4772, The constant m is the mass of the black hole. Finally.
the Schwarzschild time coordinate t is proportional to proper time for a static
observer. These observers, which remain at a fixed radius r, must accelerate

to avoid falling into the black hole with an acceleration

I
a= 2\/}_( ), (2.81)
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where the prime denotes differentiation with respect to r.

Three of the foliating 2-spheres are of special interest. The first is the lim-
iting sphere r — oc. In this limit, f(r) = 1 and (2.80) looks like Minkowski
space written in the standard spherical coordinates r, 8 and o. This is called
the asvmptotically flat region. The second is the 2-sphere r = 2m. At this
radius. called the Schwarzschild radius, the function f(r) vanishes and the
metric (2.80) is ill-defined. This has a number of consequences. but in par-
ticular. it means that the acceleration (2.81) diverges there. Thus. nothing
can remain static at this sphere (or inside it. for r < 2/n): everyvthing in this
region must fall inward. eventually arriving at the center of the black hole.
The sphere at r = 2m is called the event horizon. Finally. the limit sphere
r — 0 is at the center of the space-time. It has no area. and it is clear that
(2.80) is also ill-defined there. This pathology of the metric is mirrored in
the curvature, which also diverges at r = 0. This is the central singularity of
the space-time, where all infalling matter eventually accerues.

A clearer understanding of the Schwarzschild metric is provided by the
space-time diagram Fig. 2.6. In order to provide a two dimensional repre-
sentation of the space-time [ have had to suppress the 8 and o coordinates.
so cach point on the diagram actually represents a two sphere. As with the
standard space-time diagrams of Minkowski space. I have drawn Fig. 2.6 so
that radial light (and other massless particles) follow the 45° diagonal lines.
Oune usually envisions only an exterior and interior region for the black hole.
which correspond to the right hand and upper wedge respectively. However.
the space-time can be analytically extended as shown in Fig. 2.6 to include

two other areas. Note that four copies of the Schwarzschild coordinates,
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\
/ r = const N\

Figure 2.6: This space-time diagram of the Schwarzschild black hole shows
the event horizon (r = 2m) and the singularity (r = 0). Massless particles
travel on the 43° diagonal line.

which behave badly on r = 2m. are required to cover the entire space-time.
One is immediately struck by the resemblance of the Rindler coordinates
in Fig. 2.2, which represent uniformly accelerating observers in Minkowski
space-time. and the Schwarzschild coordinates in Fig. 2.6. which represent
uniformly accelerating observers in a black hole space-time. One would sus-
pect. then. that an attempt to quantize a field using these coordinates would
lead to a state very like the Rindler state. This is. in fact. the case. Such
a state was described by Boulware[29] and is called the Boulware state. It
is characterized by the boundary condition that it appear empty to static
observers at 7 — oc and by the requirement that the state itself be static.
The natural question at this point is whether there is also a state which
is analogous to the Minkowski state in flat space-time. Recalling the special
status of the Minkowski vacuum and observing the rule that there is generally

no such preferred states in curved space-times, it seems unlikely. Fortunately,
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however. the Schwarzschild black hole is an exception to this rule. It is
evident from (2.80) that the Schwarzschild space-time is invariant under the
time translation transformation ¢ — t+constant. Thus. it has a symmetry
group for which the t-coordinate curves are orbits (the technical term for
this symmetry is stationarity). Quantum states which are invariant under
the transformation t — t + constant have the same symmetry as the space-
time. As mentioned in Section 2.4, they are therefore in some sense more
natural to this space-time,. and thus preferred.

[t turns out that therc is a unique quantum state on the Schwarzschild
space-time which is invariant under time translations and is everywhere nou-
singular. This is called the Hartle-Hawking-Israel state[30]. It is character-
ized by the boundary condition that it appears static and non-singular to
inertial observers at the event horizon. In fact, the Hartle-Hawking-Isracl
state contains only the irremovable vacuum polarization contribution at the
horizon. so not only is it non-singular, it is as empty as a quantum state
could be there. Thus. it shares with the Minkowski state some semblance of
the claim to being the vacuum state for inertial observers.

The Hartle-Hawking-Isracl state lacks many of the pleasing characteris-
tics of the Minkowski vacuum. however. For instance. it is not generally
quite possible for a quantum state to be empty where the curvature does
not vanish. This is most easily seen by noting that the conformal anomaly
(2.33) does not generally vanish unless the curvature does. Physically, this
is simply a manifestation of the fact that an external field will create a stress
in the vacuum. This process is known as vacuum polarization. Nor does

the Hartle-Hawking-Israel state possess only the vacuum polarization contri-
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bution (which one might describe as ~as close as possible to vacuum™) for
all inertial observers in all regions. At r — oo, the vacuum polarization
vanishes. but inertial observers (which coincide with static observers in this
limit). see a thermal bath of radiation.

Nouetheless, the relationship between the Hartle-Hawking-Isracl (HHI)
and Boulware states closely parallels the relationship between the Minkowski
and Rindler states in flat space-time. Like the Rindler state, the Boulware
state has a negative energy density when compared to the appropriate inertial
state. in this case the HHI state. Furthermore. as in Minkowski space-time.
the inertial (HHI) state appears to be a thermal state to accelerated ob-
servers. at least in the asymptotically flat region r — >c. Therefore. since
the HHI (inertial) state is the natural state for a Schwarzschild black hole.
and since this state appears to be a thermal state to static observers at
r — oc. the black hole appears to be in equilibrium with thermal radiation
there. While this. by itself. is not a derivation of the Hawking radiation
emitted by such a black hole. it is at least suggestive.

Unfortunately. calculations for black hole quantum states in 3+1 dimen-
sions are notoriously difficult to do. To illustrate. therefore. let me consider

a 141 dimensional black hole with metric

9 dr?
ds? = —f(r)dt® + 0
f(ro) = 0, f(oc) =1.f(ro) = 2« (2.82)

where rg is the horizon radius, f’ denotes df /dr, and  is a constant.
Let me further introduce null coordinates u and v defined by

dr
f(r)

dv = dt+ = —n,dr°,
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du = dt-—

= —l,dz". (2.83)

where indices a.b.c, ... range over 0. 1. The expectation value for the stress-
energy tensor of a massless ficld on the background (2.82) can be written in
the form
T = %ng“” + E(1%l° + n%n®) + FI21°, (2.84)
where the unspecified functions T2(r), E(r) and F(r) correspond to vacuum
polarization. an isotropic radiation ficld and a net outward flux respectively.
As discussed in Section 2.2, for a massless scalar field in (1+1)D. TF is
given by the trace anomaly.

1 1
e R = ———f" 2.85)
Io=gspft=—5/ (2.83)

where R is the curvature scalar for metric (2.82) and f’ denotes the derivative
of f with respect to r. One can obtain the remaining components from the
conservation law, 79, = 0. where : denotes covariant differentiation. In

terms of £ and F the conservation law takes the form

F'(r) = 0.
! 1 (1 c

The specific state with respect to which the expectation value of the stress-
energy tensor is taken is given by the boundary conditions which are imposed
on (2.86).

As mentioned earlier in this Chapter. I will be intcrested in two quantum
states here. The Boulware state appears empty, apart from the irremovable
vacuum polarization represented by (2.83), to stationaryv observers, and ex-

actly empty to stationarv observers at r = oc. This is expressed by the
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boundary condition T%* — 0 as r — . This condition and the conservation

equations (2.86) imply
1 1" 1 rl
E = Ep=o—(3/£'-11%).

F = Fg=0. (2.87)

When (2.85) and (2.87) are substituted into (2.84) the stress-cnergy takes

the form of a stationary fluid with energy density and pressure

1 1" frz
P = 5= <f 4f> ; (2.88)
1 f"
= ———— 2
Pg Yy (2.89)

respectively.

The Hartle-Hawking-Isracl state is the one which is appropriate for an
eternal black hole inside a cavity with reflecting walls. in thermal equilibrium
with its own radiation. It appears empty (modulo vacuum polarization)
to free-falling observers at the horizon. This corresponds to the boundary
condition that the stress-energy be regular on both the past and future event
horizons. By imposing this boundary condition on equations (2.86) E and

F take the form

E = EHHI

1 1 " ‘2_1 2
G- 1)

FEFHH[ =0 (290)

Thus. the expectation value of the stress-energy in the Hartle-Hawking-Isracl

state also takes the form of a stationary fluid with energy density and pressure

1 R

PHHI = m(f —T> (2.91)
1 2 _ g2

Py = L7 (2.92)

247 4f
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~~

respectively. Notice that as r — oc we have Pyyr = pgur = 52/2471'.
This is the thermodynamical equation of state for black-body radiation at
temperature

T = TBH = I{/Qﬂ'. (293)

Tgy is referred to as the temperature of the black hole, since it is the char-

acteristic temperature of the radiation seen by distant static observers.



Chapter 3

A (141)D Calculation

3.1 Introduction

The purpose of this chapter is to review the results first obtained in [9]. These
results indicate that one can calculate the energy density for the Boulware
state of a quantum field in a Schwarzschild black hole background by consid-
ering the fluxes of quantum energy emitted by moving mirrors in Minkowski
space-time. This review will serve a two-fold purpose. In the first instance.
it provides a template for the more difficult (3+1)D result. In the second. it
demonstrates that the heuristic arguments I use involving a quantum equiv-
alence principle to relate the flux of radiation from a moving mirror to the
Boulware state for a black hole have validity, at least in (1+1)D.

Let me begin with the general form of the argument. It is well established
that, when quantum effects are considered, a mirror experiencing nonuniform
acceleration will radiate two fluxes of energy proportional to the change in
acceleration, dE/dT x da/d7[10] (I will re-derive this result in the next
section). Onec of these fluxes will be in the direction of the increase in the

acceleration of the mirror, and in the case of a scalar field will have negative

48
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energy. The other. in the opposite direction. will have positive energy.

Now consider the situation from the point of view of an inertial observer
watching an empty (apart from Casimir contributions. which I will system-
atically ignore throughout this thesis) mirrored box accelerate from left to
right in Minkowski space. If the box increases its acceleration by a small
amount, two fluxes of energy will enter the box. The flux from the rear (left)
wall will be negative and the flux from the front (right) wall will be positive.
However. even if I keep the proper length of the box constant. these fluxes
will not be equal. As the box accelerates. it will undergo Lorentz contraction
as viewed by the inertial observer. The rear wall will therefore be forced to
accelerate, and change its acceleration, at a higher rate than the front wall.
and will thus emit a larger flux. As a result, the inertial observer sees a
negative energy density developing inside the box.

On the other hand, I now consider the situation from the point of view
of an observer inside the box. accelerating with it. There is no reason for
this observer to suspect that the quantum state inside the box is changing.
Indeed. if the change in acceleration is sufficiently small (i.e. the acceleration
process is adiabatic). the state inside the box will continue to be the vacuum
state for his frame. Thus. with respect to what he sees as the empty vacuumn
state inside the box, the space-time outside the box becomes filled with a
positive energy fluid.

These apparently disparate descriptions of the same scenario are eas-
ily reconciled once one realizes that the quantum state inside the box. the
Rindler vacuum |R), is different from the quantum state outside the box,

the Minkowski vacuum|.M). Recall that the renormalized energy density of
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the Rindler state is lower than that of the Minkowski state. Therefore, the
inertial observer. whose natural vacuum is the Minkowski state outside the
box. sees the Rindler state inside the box as having negative encrgy density.
Conversely. the accelerating observer. whose natural vacuum is the Rindler
state. sees the box as being empty but the exterior as having a net positive
energy density.

Let me now turn to the case of a rigid box being lowered toward a black
hole. Both the top and bottom reflecting walls will undergo a change of
acceleration when lowered. The positive cnergy flux from both mirrors will
be toward the horizon. the negative energy fluxes away from the horizon.
Thus. as the box is lowered, positive energy will flow from the mirror at the
top of the box into the box's interior. while at the same time. negative energy
will flow from the bottom mirror into the box. But for a box of fixed proper
length. the change in acceleration during lowering is larger at the bottom
than at the top. Therefore. the flux from the bottom mirror will be larger.
and there is a net negative energy flow into the box. The interior of a box
which is initially empty will consequently acquire a negative energy density
through the lowering process.

However, just as in Minkowski space. an observer inside the box, being
lowered with it would have no reason to suspect that the state inside the box
was changed. The state inside the box would continue to be the vacuum state
as observed by this observer. As discussed in Section 2.4, the vacuum state
as seen by a static observer near r — oc is the Boulware state. The negative
encrgy density developing inside the box due to the quantum fluxes from the

mirrors should, therefore, just be the energy density of the Boulware state.
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It would be difficult, even in (1+1)D. to perform the analyvsis in the black
hole space-time which would confirm that the Boulware state does indeed
develop inside the box as it is being lowered. However, according to the
equivalence principle there should be no local difference between a box being
accelerated in Minkowski space and one being quasi-statically lowered into a
black hole from the point of view of an observer inside the box.

The extent to which an equivalence principle holds for quantum states
is complicated by the fact that theyv arc inherently non-local objects. This
is because a choice of positive normed modes is equivalent to a preferred
choice of time at every point in space. Fortunatelv for me. static states like
the Boulware state are exceptional in this sense. Because they exist for an
infinite time, they are characterized by a continuous spectrum of modes. This
allows one to localize the state in an arbitrarily small region of space, such
as a box. Thus, there is reason to believe that the equivalence principle may
apply in this case. and I will be able to derive the energy of the Boulware
state from arguments in Minkowski space-time. I will show explicitly in this
Chapter that these expectations are fulfilled.

In the next Section. I will re-derive the Fulling-Davies[10] result for a
moving mirror in (14+1)D in a way that will be extensible to the (3+1)
dimensional case. In the remaining sections of this chapter., I will make
the heuristic statements above precise. Using the fluxes from moving mirrors
in (1+1)D Minkowski space, I will calculate the energy density that develops
in a box of fixed proper length as it is accelerated non-uniformly. Next, I
will use the equivalence principle to translate this result into the context of

a black hole space-time. Finally, I will show that the energy density of the
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state inside the box as calculated by this method is precisely that of the

Boulware state in (14+1)D.

3.2 Moving Mirrors in (1+1)D

The standard derivation of the stress-energy tensor (SET) associated with a
moving mirror in (14+1)D is that of Fulling and Davies[10]. Unfortunately.
this elegant result involves the conformal invariance of the wave equation in
(141)D and can therefore not be extended to higher dimension. However, as
noted in Ford and Vilenkin[25] and in Section 2.3, given a boundary geometry
for which the SET. or an appropriate Green's function. is known. one may use
perturbation methods to extend the results to nearby boundarv geometries
in any dimension.

To illustrate the perturbation method, which I will be using in Chapter 4
and to obtain the equivalent to the Fulling-Davies result for nearly uniformly
accelerating mirrors in (3+1)D, I will re-derive the Fulling-Davies result in
this Section using it.

I begin with the unperturbed Green's function. The world history of a
uniformly accelerating mirror in (1+1)D is given by ||y = a. where |- |y
denotes the Minkowski norm (e.g. |z|yy = V22 —t2). Thus. the Fevnman

propagator for a Dirichlet boundary condition at the mirror is a solution of
OGr({z,z') = §(zx — 1'). Gr(r,2')=0 Vz € {z:|z]y =a}. (3.1)
The equivalent problem in the Euclidean sector is
V2Ge(zr,z') = §(x — 1'). Gep(z.2') =0 Vz e {z:|z|]g = a}, (3.2)

where | - |g is the positive semi-definite Euclidean norm ( |z|g = vZZ + §?).
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Thus. [ need only solve Laplace’s equation in 2 dimensions with a Dirichlet
boundary condition on the circle |z]g = a to obtain the unperturbed prop-
agator. This is easily solved using the method of images. The elementary
solution for the Laplacian was found in (2.70)

E(z.r') = % In (Il‘ - 1'[25) . (3.3)

T

This is the “potential™ at r due to a unit point charge at =’. To impose the

boundary condition (3.2) we simply add a sccond charge of strength —|z'|2/ o>

e L (7R
E(z.1") =—4—_1n = le = ') . (3.4)
where
- 02 ' -
= WI . (30)
E

is the image point to z'. Wick rotating back. I get the Fevnman propagator

’ 1 e ! 2, ~12
Grlr.2') = g [ln([r —2'5,) — In( |la|,_)’” |z — I’]_},)J . (3.6)

"

The Fevnman propagator is casily separated into real and imaginary parts

using the standard identity
In(r) = In|z| + in6(-2z). (3.7)

Recalling (2.37) and (2.40), therefore, I get

G (z,1") = QL—— [ln (I]r - r'[i,l) —In (‘ll;#[r - 7'|3, )] , (3.8)
Griz.7') = %G(t' —y[o(-lz=2B) -0 (-lz—#3)]. (39

where the outer | - |'s inside the In's denote absolute values.
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I can now calculate the perturbed Hadamard function GV (x.r’) using
the perturbation formula (2.67). First I need the normal derivatives of G!)

and Gr on the boundary. Using the Rindler coordinates (2.7) I have

R = €7 (3.10)
lt =213 = &+ f’“ 2£€' cosh((T — 7)/a). (3.11)
lt-r3 = €+ 5—2 - ‘202§cosh(('r —7')/a). (3.12)

Clearly. since the boundary is parameterized by 7. the outward normal di-
rection (with respect to a point outside the sphere) is the —£ direction. It is
therefore straightforward to calculate the normal derivatives of Gg and G

on the boundarv. They are

- = —-—— 3.1
BfG c=a Ta [a + &% — ”af’ cosh((7 — 7)/a) (3.13)
—Q-GR = —0(£"sinh(7"/a) — asinh(7/a)) (é—-i)

a€ f=a (@]

xd(—d2 — &% + 2a€ cosh((r — T')/a)) . (3.14)

Eq. (3.14) can be simplified considerably by recalling the identity

6 (x — f1(0))
Lf(f=Ho)]

Thus. the Dirac distribution in (3.14) can be written

(3.13)

o(f(r)) =

I- a '/
6( a? — €7 + 2a€' cosh(( ) /a) ) = 02—_5;,5 o(r — 7g) (3.16)
where )
2 11
7h = 7" —acosh™ (a2:;, ) (3.17)
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Furthermore. observing that
"o .. " . " 5"2 — 02 "
€"sinh(7"/a) — asinh(tg/a) = T (cosh(r”/a) — sinh(7"/a)),
(3.18)
and that for all 7"
cosh(/a) > sinh(7"/a). (3.19)
5"' > o’ (3.20)
[ can eliminate the Heaviside step function in (3.14) and write
_EG -_5(~_~”) (3.21)
af R [ IR . .

The choice of the subscript R for 75 may lead one to think that it is a
retarded quantity. and this is indecd the case. It is the proper time at which
the mirror’s world-history intersects the past null cone from z”. as illustrated
in Fig. 3.1.

Eq.s (3.21) and (3.13) are sufficient to allow me to calculate the per-
turbation in the Hadamard Green's function due to the perturbation of the
boundary. Substituting (3.13) and (3.21) into (2.68) and performing the

trivial integration I find

G = Sa(Th) %x (3.22)
02 _512
e = o) ¢ (o (57 + €7 exp (-557))
+1‘ - I

where ' ¢ z” denotes a term the same as the preceding with ¢ and £”

interchanged and likewise for ¥ and 7.
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Figure 3.1: A geometric interpretation of 7. The hyperbola is the world-

history of the mirror. The line joining z” to the mirror is a null line. 7f is
the proper time at which the mirror and the event £” have the same retarded
time.

In Fig. 3.1 it is evident that any flux from the mirror will travel along
the null rays « ;= t — 2 = constant. In anticipation of calculating the flux.
therefore. 1 express (3.22) in terms of the null coordinates v and v := z + ¢.

Noting that

e = _u (3.23)
r = aln —%, (3.24)
TR = aln(—%) (3.23)

u

[ get

) TII " 2 1.0

sG\ = a(7p(u")) - a, Tuv +1 e 1", (3.26)
am a*(l — &) + v'(u" — u')

Next, I wish to calculate the quantum flux normal to the mirror’s world

history, as measured in the mirror’s frame. Observing that a*v, = 0, where



=1
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a* is the acceleration 4-vector of the mirror and v* its 4-velocity. I find that

the normal flux is given by the expression

(M| Flux [M) = (M| T, | M) (3.27)
a
where a := /g,,a”a” is the magnitude of ¢”. Thus. once I have (M|T,, |M).
I will have the necessary flux. However, recall from Section 2.2 that

1 1 I¥-114
(M| T, |M)(z) = 5 lim (a#,au,, - §g,wg°3 ao,a,,,) G ). (3.28)

It is obvious upon inspection of (3.26) that (M|T,.|)) = 0. Further-
more. in Minkowski space-time the conformal anomaly vanishes which implies

(M|T,.|M) = 0. Hence I need only calculate

1 , O3 bS]
Al AN = - 2 - —dbal. X
(M| T, | M) 53 (a 07350 5 a> (3.29)

Substituting (3.29) into (3.27) and observing from the results of Section

2.1 that (to 0** order in the perturbation) L"‘% = 2. I get for the flux

(M| Flux|M) = — L a® & da — —(?—5(11 ha (3.30)
- ST 19702 73 ar ’
But. to first order in the perturbation, I have from Section 2.1
da 1 , O3 0
7= (gmte 5] 534
Thus. I have for the flux
1 da
R x|M) = ———. .32
(M| Flux |\ TP (3.32)

which agrees with the result of Fulling and Davies[10]. This is exactly the
result I need to prove the state inside the box has the energy density of
the Boulware state in (141)D. This proof will occupyv the remainder of this

chapter.
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3.3 Accelerating Mirrors and the Boulware
State

In this Section I will use the results of the previous Section to calculate the
energy density in a box being lowered quasi-statically toward a (1+1)D black
hole (2.82). For this space-time, a is given at a proper distance z (defined by
dz := dr/\/f) from the horizon by
y
a = %% = §f_\/7 (3.33)
where prime denotes differentiation with respect to the Schwarzschild radius
r. Thus. the magnitude of the energy flux from a mirror is
7\ -
% = —ﬁ (f" - g—f> gi (3.34)
Now. let me consider a rigid box with reflecting walls being lowered adi-
abatically toward the black hole. I will assume the top and bottom walls are
rigidly separated by a proper length £ which is much less than the radius of
the black hole. I will consider the energy flux at an arbitrary fixed surface
(a point. in this case) labeled by z;, (z5 < z; < zr). in the interior of the
box. Consider the flux from. say, the top mirror of the box. In terms of the

proper time 7; for stationary observer at z; the flux at the top will have the

form
dE 1 f\ dzr .
—(zp) = —— | ' — — . 3.3
d‘r,-( ) 247w ( 2f>”r dr; (3.35)

where the subscripts / and T denote quantities at z; and the top of the box
respectively. In particular, the energy E in this expression is that relative

to a momentarlyy stationary observer at zr. If one blue-shifts the energy to
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that seen by a momentarily stationary observer at z; then the flux becomes

dE, 1L \fGr) (., f?\ dxr
d—ﬂ(a)——%—ﬂ—m‘ (f —.2—.;:)7-_7—1 (3.36)

The net rate of change of energy as measured by a comoving observer at =z,
will be (3.36) plus the energy flux from the bottom of the box. red-shifted to

correspond to energy as measured at z;,

dE| L { fler) (f,,_f_f’-_> _ f(z8) <f,,_f_’2> }1_
A7 jpey 247 fz:) 2f )+ f(=:) 2f) g d7

(3.37)

where the subscript B denotes quantities at the bottom of the box. In obtain-
ing (3.37) I have taken advantage of the fact that since the proper length of
the box. £, is assumed constant, :g = zr + £. and therefore dzg = dzr = d=.
Note that while this result depends hold only for one particular point in the
box. : = z;. if the box is sufficiently small this dependence will be negligible
and the rate of change of energy can be assumed to be approximately inde-
pendent of the point within the box at which the energy is measured (i.c.
the point z; where the Killing vector 3,/\/1‘(—':,-_) is normalized).

Let me now assume the length of the box is small compared to other
relevant length scales in the problem. This will not be true close to the
horizon and will therefore prevent me from considering the floating point of
the box. Nonetheless. when the box is far enough from the horizon and € is

small,
_d_}:_' N F(z: 46— F(2)
d= — ( ’

for any function F(z). Therefore, I rewrite (3.37):

2 i) = —[—— i " f_r2 _(1_:_
A7 | et (1) = 247\/f {dz [\/7( - Qf)” i (3.39)

(3.38)
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The total energy is the sum of the energies entering the box as it is lowered

from infinity to =.

e (a [ | e,
Enel(") - 247 ./T,(:,::)o) \/T{d: l:\/? (f Qf):I} dTidl'
A 12

~ E(f 4f>:. (3.40)

But this is just the energy of the Boulware state (2.88). Thus. [ conclude
that the energy of the matter content of the box is properly measured with

respect to the Boulware vacuum energy.

3.4 Conclusion

In the previous Section I have shown that the effect of the acceleration radi-
ation on the energy deunsity inside the box is exactly the same as obtained by
cousidering the vacuum state of the interior of the box to be the Boulware
state. [ have therefore concluded that throughout the quasi-static change of
acceleration. the box has maintained the Boulware state inside it.

As stated in Section 3.1, that the state in the box's interior is alwayvs the
Boulware state is to be expected on general grounds. The interior vacuum is
initiallv the Boulware state (the vacuum for a stationary obscrver at infinity)
and is invariant under the adiabatic (quasi-static) process of lowering. Thus.
there is no reason for the box not to maintain the in-vacuum.

It may be surprising that the acceleration of an empty box in flat space-
time can be used to obtain the encrgy density of the Boulware state in a
curved space-time. However, this is not difficult to understand. As [ men-
tioned, it is expected that the state inside an adiabatically lowered box is the

Boulware state. However. a small enough box sees the gravitational field of
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the black hole as being essentially homogeneous. The equivalence principle
then implies that local phenomena inside such a box are insufficient to de-
termine whether it is accelerating in a gravitational field or in Rindler space.
The staticity of the Boulware state implies that it may be localized inside
the box so that the equivalence principle applies to it.

While the validity of an equivalence principle for quantum states is a
matter of some debate[31], I can apparently implement it in this case. Using
it. I have demonstrated how to obtain the Boulware encrgy density simply
by considering the energy balance between two accelerating mirrors in 141
dimensional Rindler space. The remainder of this thesis will be involved with

exploring this equivalence in the more physically interesting case of (3+1)D.



Chapter 4

The Perturbed Green’s
Function in (3+41)D

4.1 Introduction

The goal in this chapter is to find the quantum flux emitted normal to a
mirror with nonuniform acceleration in 3+1 dimensions. Such a flux has
been found for a plane mirror perturbed from rest by Ford and Vilenkin [23].
However. my ultimate goal is to reproduce the Boulware state energy density
calculation of Chapter 3 in 3+1 dimensions. For this purpose. I require the
flux from a mirror perturbed from an arbitrary constant acceleration. with
which to simulate the quasi-static (adiabatic) lowering process.

As in Chapter 3. I will consider the perturbation of a mirror which is ini-
tially accelerating uniformly. The required Green's functions for a uniformly
accelerating plane mirror have been obtained by Candelas and Deutsch [27].
but they are extremely complex. This is possibly connected to the fact that
almost all null rays will intersect the mirror an infinite number of times for

this mirror geometry. Because of the complexity of this result, the perturba-
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tion calculation would be a formidable task.

However. for a spherical mirror expanding with uniform acceleration as
given by (2.13). a simple calculation demonstrates that every light ray in-
tersects the mirror exactly once except for those impinging on the surface
tangentially. which are confined to the surface forever afterward [32]. This
results in a remarkable simplicity for the Green's functions for this geom-

etrv. and [ will therefore use this as a starting point for the perturbation

calculation.

4.2 The Unperturbed Green’s Function

[ begin in this Section with the unperturbed case. i.e. a spherical mirror
expanding with uniform acceleration. Here. and throughout the rest of this
thesis. I will restrict my consideration to the special geometry described by
(2.13). The Green's function for such a mirror was originally calculated by
Frolov and Sercbriany [32]. and I reproduce the calculation here only for
completeness.

Although the quantum stress energy is calculated using the Hadamard
Green's function. as in Chapter 3 I will begin by finding the Feynman prop-
agator. This is again accomplished by first rotating to the Euclidean sector
and then using the method of images to obtain the Euclidean Green's func-
tion. The Feynman propagator is then obtained by a Wick rotation back to
the Lorentzian sector.

Although it is not necessary, I will explicitly use the Minkowski gauge

ds® = dz® + dy* + dz* — dt?, (4.1)
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in this Section for clarity. In terms of these coordinates, points on the surface

of the 2-sphere expanding with uniform acceleration satisfy the condition
|J:|2 =2+ 2+ 212 =a? (4.2)

wlere a is the inverse of the acceleration. Green's functions G(r.z') for a
reflecting sphere which undergoes the motion (4.2) therefore satisfy the wave

equation
0.G(z.r') = (3,2 + 9, + 3.2 = 3})G(x.1') = =& (| — 1']). (4.3)

and vanish on the mirror’s surface as described by (4.2).

Note that Eq. (4.2) is reminiscent of the equation for a 3 dimensional
sphere in Euclidean 4-space when 2 is replaced by —t2. Clearly. therefore, un-
der the Wick rotation t — (T. the problem of finding G(z. z’) is transformed

to that of finding the unique Green's function for the Laplace operator
DGe(r. )= (0.2 + 90,2+ 0.2+ 0r8)Ge(r.2') = =8 (Jlr = L)), (4.4)
which vanishes on the 3-sphere
1'2+1/2+:2-+-T"2 = a’. (4.3)

in Euclidean 4-space. This elliptic boundary value problem (BVP) is easily
solved using the method of images. Recall that the elementary solution for

the operator A, in (4.4) is

1 1
! —
E(z.z") = _—47r2——|.r—.r’|2
1 1

(4.6)

e EE S
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Just as in the (1+41)D calculation. if [ want the potential to vanish on the
sphere (4.3) I must add a counter charge of strength —a?/|z’|? at the image
point (a?/|z'|?)7’. i.c.

1 1 a? 1

- . 17
W\ T=2F o7 (20

. a? /2 '
I — T

=T

This. therefore, is the solution to the BV'P (4.4) and (4.3).

Having obtained the solution in the Euclidean sector I now need to trans-
form back to the Lorentzian sector in order to obtain the Lorentzian Green's
functions. As discussed in Section 2.2. the Feynman propagator is obtained
by performing a Wick rotation on the Euclidean Green's function. Thus. the

Fevnman propagator corresponding to (4.7) is

Gr(z.r) Ly ! o ! (4.8
clr.r) = ———11m E — = G .
Flz e e v TR R )
III['.’
Recalling the distributional identity
. 1 1 : ,
lim — =P (—) + imé(x). (4.9)
«—0 I F 1€ I

wlere P denotes the principle part of the an integral and 6(r) is the Dirac

delta distribution. I can rewrite (4.8) in the more useful form

1 1 a? 1
!
r. = ——P - :
Grler) R S E L PR
] > a? a? 2
12 !
S é(lr = 2'|7) - _|1"|26 T - —|1"|2I . (4.10)

Thus. following Frolov and Serebriany[32], I have obtained the Feynman

propagator for a spherical mirror expanding with uniform acceleration in 3+1
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dimension. Since. as discussed in Section 2.2, all other Green's functions can
be obtained from the Feynman propagator, this is all I need to begin the

perturbation analysis.

4.3 Propagation of Retarded Signals

[ can now use the perturbation procedure outlined in Section 2.3 and (4.10)
to find the perturbed Hadamard function for the non-uniformly accelerating
IMIrror.

To begin with. I have to find the two Green's functions appearing in the
right hand side of (2.67) corresponding to this gecometry. Using Eq (2.33) I
find that

1
lr — "2 4+ 2i(t — t")e

12 om (4.11)

GHr.2") = —L.Iim (

a“ 1
|z |? !J' - ﬂ,!.-.- I"|2 +2: (f - t”) e

P EiEe

For the time being I will suppress the € to make G* casier to write with

the understanding that [ will reinstate it should I encounter a singularity in

evaluating (2.67). Hence,

a’ ,

+ " 1 1 2 1

G (x.1") = I T T - 5 (4.12)
T2\ |r — 2| |z”| II—F'.I'-"I"

will appear to be svmmetric in the points r and z”, although it will in fact
PP P g

be Hermitian (that is. it will satisfy the condition G*(z’, ") = G(z". =')).

2
)} . (4.13)

I can also obtain Gg(z', z) using (2.40). It is

/

"

, 1 , "o a? a2
GR(I‘I):';G(t —t) 6('1‘—1"")—W6 I—|I—I|2'.’L'
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Having obtained G* and Gg, it is now simply a matter of substituting
them into (2.67) and performing the requisite integration. While the cal-
culation is straightforward. it is not short. Recall that the two terms of
(2.67) describe signals propagating from a retarded source da(z) 9,G7(zx.-)
(a source on the past null cone) to points r”’ and z’ respectively-.

To facilitate matters, I will spend the remainder of this section analyzing

integrals of the form

I[= /H_ W@z f(r) 8.Grlz".z). (4.14)

with the retarded Green's function as given in (4.13). This integral represents
the propagation of a signal when the source f(r) is on a sphere expanding
with uniform acceleration.

Consider the integral (4.14). From Eq.(4.2) the outward (with respect
to a point outside the mirror) normal to the mirror's surface is given by

n* = —r#/a. Thus.

f

anGR(I" ‘[) = —jal‘GR(’r' I’)

+6(t' —t) |:2(|1]"2 —z-1')8(|Jx - I'P) (4.13)
2 22
2 / a a !
2(] | T /IQI'I> III|26(I— II'I?'I )J}
Now. observing that on the surface |z|? = o2
2 2 1 2
. a” _ 2 a : a_ '
e - S
2
a 2
= gl (419
j2f2=a
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and recalling the identities

1 -
8(kz) = md(l), (4.17)
§(hkz) = Z%J'(r). (4.18)

where k is a constant. [ find that the term proportional to §(#' —t) in (4.13)

vanishes on the surface and I have

C g g(tl_t b 15 ’ 9 712 ’
0.Grlx 'I)Ilrl'-’=o'-' = ——Q—_)(a' —|2'12)8 (@% + ||> = 2z - 1)
n frf2=a?
(4.19)

Thus (4.14) takes the simple form
(02 — III|2) 3 ’ 1, 2 2 ’
I= —-———/H VIbEx 8t —t) f(x)d' (@ + |17 —2r- 1), (4.20)
QT r|?=a?

At this point it will be necessary to make a choice of coordinates. 1|
will begin with cylindrical coordinates which are related to the Minkowski
coordinates (4.1) by r = rcos(o). y = rsin(o). = = .t — t. Due to the
sphlierical symmetry of the geometry. the z-axis can always be aligned such
that ' =0, givingme r- 12" = z2" —tt'.

Now, consider what the integral (4.20) represents. I am considering
null signals propagating from a sphere expanding with uniform acceleration.
Thus. I'm integrating over the intersection of the past light cone of the point
1’ and the world history of the sphere. As shown in Fig. 4.1, the intersection
of these two 3 dimensional surfaces is a 2 dimensional surface. This 2-surface
has a particularly simple gcometric form, it lies in a 3 dimensional plane.

I can take advantage of this geometric simplicity to facilitate the inte-

gration. [ define the new coordinate w so that the 3-plane in which the
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Figure 4.1: The intersection of the world history of a mirror expanding with
uniform acceleration (the hvperboloid) and the past light cone of a point .
This figure is dimensionally reduced: each point represents a compactified
circle.
integration surface lies is at w = const. Explicitly, this coordinate is

! t a t

==t = =—w+-=t (4.21)

w = —
Qa a : z

In terms of these coordinates the Minkowski line element (4.2) is

2 2 2.2 Q@ L0 qat' (t% == 5¢
ds® =dr° + r-do” + -_72(110 + ...—.I—Q-(IU.‘ dt + ——i,——(lf ) (4.22)

Projecting this metric onto the surface of the sphere (|z?> = @) by imposing
r = Va2 + t2 — z2 | obtain an induced metric on the surface of the mirror.
All I need for this calculation is the invariant surface element for the induced

metric, which is given by the simple expression,

3 a? v
&’r = —dtdodu. (4.23)

In terms of these (w.¢.t) coordinates (4.20) becomes
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2—
/ dt 6(t' —t) / do/ duw f(z) 8.6(a? + |2'|? - 2auw).
w' ()

where the limits w) (f) = (—t't £2’\/(«? + t?))/ on w arise from the restric-
tion that —va?® +t? < z < Va?* + t2.

Performing the w« integration in (4.23) by parts I get

2 _ 712
[ = (a——'il_)/ dt 6(t / do
2z’
(t)

{[f( 1)5(a® + |2']* = 2a ]u_m (4.23)

alyjr!|? )
w=———

where the Heaviside distributions in the last term of (4.25) ensure that the

1
+£¢9(u —uwl)f(wl, — w)d,

Dirac distribution is evaluated only for values of w between w’ (¢) and u’, (t).
Since u? are actually functions of ¢. the limits w) correspond to limits

in . defined by

% (1.26)

w'+(t'+) =u' (t):=

The limits ¢/, have a remarkably simple geometric meaning. They are the
Minkowski times where the future and past light cones of the point 1 first
intersect the world history of the sphere. as shown in Fig. 4.2,

Thus. the second term in (4.23) is simply

Q-z _ |1.1|2 2 t_
R=""L [Tdo /_ 0uf(@)], _araps - (4.27)

The first term is also relatively simple. Recalling again the identity

_ 5z~ £71(0))
F@r

LferaTse-t)

2(x2t — t'y/a? + t,.2)

6(f(x)) (4.28)

I have

§(a® + |2')* — 2auy) =
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A

Figure 4.2: For every point r outside the mirror I define the advanced point
I, and the retarded point r_ as the points of intersection of the light cone
from r (represented by long dashes) and the world history of the mirror
(represented by the hyperbola) in the = — ¢ plane. These are the points of
intersection in the future and past of r that are closest to . The coordinates
of the points r. aret =ty : =z and r =0.

It is obvious from the definition of t'.: that

a? 41,2 =z, (4.30)

— ). (4.31)

Putting (4.27 - 4.31) into (4.23) I get for the integral (4.14)

1 2z 2 _ {2
[=-— / do | = 1 o fa o f (4.32)
27z Jo 2a - we 2L

This formula describes the propagation of any source f(z) from the surface
of a uniformly expanding mirror to the exterior of the mirror. Its simple form

indicates that this gecometry, in which all but tangentially incident light rayvs
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intersect the surface of the mirror at most once, will simplify considerably the
perturbation calculation. In the next Section, I apply (4.32) to the problem

at hand, that is, to the perturbation of the Wightman function.

4.4 The Perturbed Green’s Function

I am now in a position to evaluate (2.67). I denote the perturbation of
the boundary by da(r). so that the perturbed boundary is given by |z| =
a+da(x). For the first term in (2.67) (for instance) [ need to evaluate (4.14)
with f of the form

f =dalz) 3,G*(z.1"). (4.33)

that is. by virtue of the identiry (4.32). I need to evaluate

2z 2112
1 do [w dt 9, ((50(1‘) 3,1G+(1'-I")) (4.34)

2a -

+2. da(x) 9,G* (1‘.1")] .
=n"+ir’Y'-'

u:
la

Here 2’ and 1" will be the arguments of the Green's function perturbation
and r represent the integration variable on the surface. From (4.12) I can

find the normal derivative of G*(r.z"). It is

4.G*(z,1") = —1—80G+(1',I")
a
1 |2z2—z-z" a2 2z’ - ﬁrr -z
4720 Il. - Inld |1'"l2 II - |;"-’|2 Inl-i
(4.33)
Evaluating this on the surface of the mirror |z]* = o? [ get
" 1 2 — |2
8.G*(z,z") = a” - || . (4.36)

T 272 |r — 2|4

|z =a?
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Up to this point. the calculation of the perturbation of the positive fre-
quency Wightman function has been entirely general. However, for simplicity
[ will restrict my attention to spherical perturbations of the mirror. Such per-
turbations depend only on the proper time 7 of points on the surface of the

mirror. which is related to their Minkowski time ¢ by

t
7 = a arctanh <\/—Z—Z—T{—§) . (4.37)

Note that 7 is independent of w, and that therefore
du.0a(7) = 0. (4.38)

Also. to repeat the calculation of Chapter 3 I need only calculate the flux
of quantum radiation normal to the mirror. This component of the stress
cuergy cannot depend on the azimuthal angle separating the points r’ and
", Thus. for my purposes I need not calculate G (2, 2”) in all generality:
it will suffice to restrict my attention to the special case r” = 0. As a result.

[ have the following identities:

n

22| st = __2”1:_,(0'3 + |22+ 2t't) — 1"t (4.39)
and
O a? + |.r.”|21—- 2r - 1'")2 lzl=a
- 4az"=" (4.40)

[(@? + |z"|2 + 2t"t) 2" — (a2 + |2'|2 + 2tt') 2"]3
Putting (4.36) into (4.34), using (4.39). (4.40) and (4.38) and performing
the trivial ¢ integration vields

po PR =)

9
e
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woo , t_ da(7)
[2: (az — |z |2) /_x dt [(a2 + |2 + 2t¢") =" — (a2 + |r'I2 + 2tt’).:”]3
Vo Sa(r(tL)) |
T (@2 4 |22 + 2t ) — (a2 + |22 4 20t ) 2P |
(4.41)
This can be simplified somewhat by noting that
1
[(a2 + |72 + 2t"t )" — (a? + || + 2t't_ ) "]?
_ (t' —z')? .
) G A
and recalling the definition of 2z’ ., (4.30). so that (4.41) becomes
;oo et et
m2a
/"_ Jt da(7(t))
- [(@2 + [z"[2 + 2t") " — (a? + [z'[2 + 2t't)']3
+(|1‘”|'2 —a?) (t' — 2"V (a® + (¢ = )VH)bal(t_)
72az’ a2 4 (¢ = )" + )Pl - =) = (" = ]
(4.43)

Recall that from (2.67) the perturbation of the Wightman function is just
(4.43) and a like term with 2/ & . However. before combining terms. |
wish to make modifications to (4.43) which will simplify its form somewhat.

The first is the introduction of the null coordinates
vi=t+=z. u:=t-—z. (4.44)

Since I have taken both z’ and z” to be in the = — ¢ plane, this implies that

|2'|? = —u't’ and || = —u"¢". In terms of these coordinates
1 a? 1 a? -
t =§ (U—:), = dt=§ (1-{-;5) du. (440)
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and ¢ = u'. ¢ = u” on the mirror. The second simplification has to do

with a partial coincidence limit. I will argue in the next Chapter that the
flux should be dominated by the u — ¢ component of the stress-energy. This
component is expressed entirely in terms of derivatives with respect to u.

" = ¢’ = v immediately. With the null coordinates

and I will therefore take v
(4.44) and this partial coincidence, I find after a bit of algebra that I can

write the perturbation (2.67) in the form

o) = T
(' —v)(u" =) v ‘
[ o / A(u)du (4.16)
—(u" = )2 4") = (v — L')2.4(u')] .

where

Alu) = u({u® + a”) da(7(u))

= T (4.47)

There are two noteworthy properties of (4.46). The first is that it can be
shown that §G™ is finite in the coincidence limit £ — z’. This might be intu-
itively understood by recalling that any renormalization that is necessary will
have been performed at the level of the unperturbed Green's function. With
the divergent Minkowski contribution already removed. one would expect all
subsequent contributions to be finite.

Examination of (4.46) reveals a second amazing feature of this perturba-
tion. As seen in Fig. 4.1, the retarded Green's function propagates signals
from sources anywhere on the past null cone of the point of interest. and
the intersection of that past null cone with the world history of the mirror

(time-like hyperboloid) is non-compact. Yet (4.46) has support only on the
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compact portion of this intersection between u’ and u”. The mathematical
reason for this is that the first term in the expression (4.43) for I(«'. 1").
which does not have compact support itself. is odd under interchange of r’
and z”. Thus. for the Hermitian function G*(z', ") = I(z', ") + I(z". r'). if
a perturbation contributes to the signal at ' and at 1”. these contributions
cancel. I cannot help but feel that there is some physical explanation for
this. but I do not know of one at this time.

The compactness of the support of (4.46) will have an important conse-
quence when [ calculate (T,,). Recall that the SET involves a coincidence
limit 2 — z/. In this limit. the support of (4.46) will be a single point.
In other words. while amplitudes from the entire history of the mirror in
the light-like past of a point might be expected to contribute to the flux at
that point. it will turn out that the flux will arise from perturbations only
at a single instant of time. Furthermore. this single time corresponds to the
perturbation closest to the point at which the flux is evaluarted.

The explicit calculation of (T,,) which will bear this out will be the topic

of the next Chapter.



Chapter 5

Quantum Flux from a Moving
Mirror

5.1 Introduction

In the last Chapter I derived the perturbation of the Hadamard Green's
function §G'Y) due to a perturbation in the motion of a spherical mirror
expanding with uniform acceleration. In this Chapter. I derive the quantum
cnergy flux normal to the mirror due to this perturbation. As in Eq. (3.27).
we wish to calculate

at

(Flux) = T,,,—(I—v”. (3.1)

¥

However. recall that [ was able to take both z’ and r” to be in the =z — ¢
plane. This means that I will need to calculate the flux in the z — ¢ plane.
which is the same flux I calculated for the (141)D case. Therefore I again
have
u2 2
(Flux) = <6Tuu>';2- + (6Tuv)g§. (5.2)
Now. unlike 141 dimensions. where (T,,) was the only non-vanishing

component, in 3+1 dimensions it is not immediately obvious that (T,.) van-
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ishes. Indeed, even for perturbations of plane mirrors from rest one finds
that (T.,.) does not vanish. In fact. for the minimal stress-energy tensor.
even a plane mirror at rest has a non-vanishing (7,.)[25]. In addition, for
the spherical mirror there are additional terms that enter due to the curva-
ture of the surface[33]. To repeat the (141)D calculation. however. what I
want is the flux due to the motion of the mirror. rather than these other
extraneous contributions.

This raises the question of how such a flux is identified. In electromag-
netism. one would decompose the field into near and far field pieces and use
the far field for this purpose. For my problem. this sort of decomposition also
seems to make sense. It would be reasonable to suppose that those effects
tied to the boundary would vanish more rapidly than a flux in the far field.
Furthermore. in the far field. anyv (7,.) contribution to the flux should die off
more quickly than the (T,,) contribution. since there is no source in the past
v direction. This is born out explicitly in the case of plane mirrors perturbed

from rest. where the dominant far field contributions die off like
- =1 . -3 -
:ILII’IC<T,,“> ~ 7, :ll,nglc(Tﬂ') ~ 27, (3.3)

for both minimal and conformal SETs. If this line of reasoning i« correct the

dominant flux is simply
2

(Flux) = (6Tu,,)§3. (5.4)

For this reason, I will turn my focus to finding (T,.) at this point.
As noted in Chapter 2. the two distinct stress-cnergy tensors (SETs) that
are frequently used are both special cases of (2.28): for the minimal SET

one sets £ = 0 and for the conformal SET one takes § = é. Note that
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for either SET R,, and R both vanish in flat space-time. It is therefore
apparent from (2.28) that the u — u component of the minimal SET is just
proportional to 8,:8,,G") (z’. £"). while the same component of the conformal
SET also depends on (0,8, + 88, )GY (L' "), By calculating both of
these quantities. we will have the u — u component of both SETs at our
disposal.

The last point to which I want to draw attention in this Section is that
there is an imaginary part of §G*(z'.z") that I have been suppressing. How-
ever. as can be seen from (2.38) and (2.34). the Hadamard Green's function is
simply the positive (or negative) frequency Wightman function symmetrized

i its two arguments,

Qt
<

5GW (2. 2") = 6G*(«'.2") + 6G™ (" 7). (5,

Furthermore. the Wightman function of the perturbed mirror (4.46) is Her-
mitian in £ and zr”. Thus. the imaginary parts will cancel when [ form
dGY and I will be left with twice the real part of dG*. which is all T really
calculated in (4.46). As a result, [ only need to differentiate §G*(2'. 1) as in-
dicated in the previous paragraph in order to obtain the required component

of both SETs. The next Scction deals with this “simple task™.

5.2 The Method of Means and Differences

Unfortunately, even with the relatively simple form of (4.47), it is a long
and difficult calculation to take the required derivatives (and coincidence
limits) in order to find the required éT,,’s. The task is made somewhat

simpler, however. by employing what I will call the “method of means and
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differences”.
The central idea is as follows: given any function F(r) of a single variable

r. denote the difference of F at points r = 1’ and r = z” by
AF(z):= F(2") = F(L). (5.6)
Then AF(x) can be expanded in terms of a power series in Ar = (2" — '),

AF(z) = F(z)ar — %)—F“”(:L‘)(Al‘)s + %Fm(r)(mﬁ +0((Ar)). (5.7)

where F'®(z) is short for ‘;';,, F and
1

F(z):= 3(F(r') + F(z")). (5.8)

1s the mean of the values of F* at 1’ and 2", Thus. for example. the integral

in (4.46). which has the form.

l ul'
B(u'.u") = KZ/' A(u)du (3.9)

is expanded according to (3.8) into

B(u' . u") = A(u) — li‘)A_"(Au)'2 + 1.170.47)(._\,1)4 +O0((Au)%).  (5.10)

I will defer straightforward but tedious application of the method of means
and differences to (4.46) to Appendix A. and simply use the results here. In
particular. then, from (A.41) and (A.42) I get the following expressions for

the derivatives of §G*(z'. ")

02 2 1 a4
: hy + - 2,27 -
ullI_I.lu [8u’8u" G } awg{ 60“ g dut
o 1 5, . . 78%4
- 2,2 —2=
] g L
——1-[4 +8 z/+u2] o4
N
—5[””/437—54}
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: 9 1 _ 1 , ,8'4
‘,%m[au-z‘” ] = - { “w0" Y Bt

e 1 . 7 %4
~8 [3#‘2 + 4p I/] 311‘2

o
Hou [

* — +02
o= |u T ) (5.13)

v = (u-—ru).

where

and A(u) is defined in (4.47).

Expressions (5.11) and (3.12) are sufficient to calculate either the minimal
or conformal (T,,) component. As I pecinted out would be the case at the
end of Chapter 4. a most remarkable feature of these expressions is that
they are entirely local. This contradicts the naive expectation that a given
space-time event z should receive fluxes from every perturbation that is in
its causal past, which is manifestly non-local (see Fig. 4.1). As mentioned
in Chapter 4. [ do not know of a physical explanation for this. Regardless of
the actual cause. this fortunate simplification of the flux and lends itself to
the repetition of the (141)D calculation in Chapter 3.

This concludes the Section on the use of the method of means and differ-
ences. In the next Section. I will explicitly calculate the flux in terms of the

acceleration of the mirror.
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5.3 The Quantum Flux

While. as mentioned in the previous Section. the forms of (5.11) and (5.12)
are remarkably simple. they are not terribly useful for repeating the calcu-
lation of the Boulware energyv density. In order to do that, I would like to
express the quantum fluxes in terms of the acceleration. as was done in the
(14+1)D case. I will therefore neced to express T, in terms of the perturbation
of the acceleration. da. or at least in terins of the mirror perturbation éa.
Since both minimal and conformal (T,,)'s will be useful. at least in checking
my results. [ will calculate both of them. However. the u — u component
of the conformal SET (T,,)°™ will be of special interest since it is both
simpler in form and interpretation. In particular., because the conformal
SET vanishes identically in the case of uniform acceleration [32]. the flux
contains contributions only from the perturbed SET which allows a cleaner
comparison with the (1+1)D result.

To begin with. recall (2.39) which gives for the v — u component of the

conformal SET

(Thu) = é lim [28,"8,,~G‘”(r'.r") - 8,,26'“’(1’.1"’)J ) (5.14)

’
u —u

But. according to (2.38).
G ") = GH(', ") + GH (", 1), (3.13)

which. since dG* is Hermitian, means that I can write

conf _ _ 1. 0%(6GT) _ d?(6GT)
(6T} - 3 ..ll}r_l.lu {2 [ du’'du" du? )

2

2 2.2 04 . 3 .
_ v prrdtd uw d°4 .
- T3 { 120 a7~ 12 TV 5 (5.16)
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1, ) %4 94
~5 (tv)’ +2um) 25 — (u+v)5=— A} :

where yr and v are defined in (5.13) and A(u) is defined as in (4.47).

u(u? + a?)da

A:= P (2.17)
Likewise. for the minimal component [ have
. . 92(6G*)
(57‘«1:4 min = —1 .
(0T ) bl NN
2 2.9 a1 3
_ v wv-d'A v a’A .
i { 50 o 12 1TV ga 218
1 2 9?4 1 94 1
——{(2 < — —=(2 —
12 ((-/l Tyt 4;11/) du? 2(-# +v) du ‘2‘—1} )
Again, it is casiest to expand this in more than one step. Defining
H :=u(u®+ a?) (3.19)
so that
Hu) .
[ get
conf _ 1 2 2705(4) _ + (3)
(6T,.) = TS0 [/1 v-H Quv(pn+ v)H
+ 202 4+ 4pv + VA )H”
—12(p+ v)H' + 24H]. (3.21)
and
. l s
min 4, 277(4) _ .3 = N E7(3)
(6T,.) antodod [/1 v°H pv(2pn + Tv)H

+ p2(2u% + 13pv + 32°)H"
— 6p(2u® + Tuv + 1502 H'

+12(24% + 3pv + 10p)H| . (5.22)
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Now. recall (2.13) where I found that
§a = —— + da. (5.23)

where dots denote differentiation with respect to the proper time of the
(unperturbed) mirror. 7. Thus, I nced to convert derivatives with respect to

u to those with respect to 7. The two coordinates are related by

u=(t—=z)=—ae /" (3.24)
But note that by defining
o:=u’+a’. (5.25)
I have that
H = uoéa. (5.26)
and
a 10 a d
— = = - 3.27
do  2udu 2u? ot (5.27)
Therefore.
30:3(11 da) = 4211:5 da. (5.28)

Thus. the derivatives of H(u) with respect to « (denoted by the primes)

are explicitly

H = (c+2u®)ba+ uo(ba),
= 2u(uda) + 2“‘736_0(" éa), (3.29)
H" = 6uda+2(c + 2u?)(8a)’ + uo(da)”,
— uda)+ 20 + )2 (uba) + L da. (5.30;
do u

H® = 66a + 18u(da) + 3(c + 2u*)(8a)" + ua(6a)®,
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3
= 24ua%(u50) +6ada — %d(—ll_(da). (5.31)
HY = 24(6a) + 36u(da)” + 4(c + 2u®)(8a)® + uc(ba)?,
= ‘)4-i(u da) + 1‘7a—2da + 20—3(0 - 4u2)—d—(da) + ﬁ @ (da)
" Jo Tu ud T ud d72 )

(5.32)

It is now a straightforward matter to substitute (5.26) and (5.29-5.32) into
(5.21) and (5.22) respectively to find the u — u components of the conformal
and minimal SETs respectively. For (T,,)™® this results in a rather long
expression. Furthermore, [ will only be using this quantity as a check. rather
than to repeat the (1+1)D box calculation. I will therefore not write the full
expression here.

In contrast. the conformal component has a comparatively compact form

-onf 1 2 (%0 8, .
((5Tuu>con m[ 4!\')(11 da) + 2 - O_T(u da)
2.2 44 )
LS L@ .‘,3 7 5 (5.33)
v u
3, .
—22—;:'(2/\UC + (' = 402u?) (5(1J.
u
where
\ 0'2 - 12
4 - — L'
w = ul+Au-o? (5.34)
k2 = A% +4a?,
¢ = u?-a>

Note that I have expressed (5.33) as much as possible in terms of the per-
turbation the acceleration da rather than the perturbation of the mirror da.

Using (5.23) one could easily express this quantity entirely in terms of da.
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however, in order to repeat the box argument of Chapter 3 it will be more
convenient to think in terms of acceleration.

Eq. (5.33) is one of the primary results of this thesis. With (5.4) (and the
assumption that (T..) is irrelevant for this calculation) it gives me the flux
of conformal quantum energy emitted normal to the surface of a spherical
mirror when the rate of expansion is perturbed from constant acceleration.
In the next Section, various checks are made to ensure that this expression

and (3.22) are in agreement with previously known results.

5.4 Checks and Balances

In this Section. I present three checks that the results above make sense. The
first. and easiest. has to do with the fall off of the flux at future null infinity.

which in these coordinates corresponds to v = oc. It is simple to verify that

.ll,nolc A~ -0 (3.33)
.}Lnolo.u ~ —ur. (5.36)
vlinalc K~ 2, (2.37)
from which I get
i . 1 Ca J -
JEI;(FIUX)Lonf = m [411 da + 2——,0—1(11 0([) (038)

4
2—5(1 -4 C5a+ ——50}
u
Thus, the flux falls off as v~2, which is the expected rate for a spherical
source.
The next check answers the following question: are the results above for

an arbitrary perturbation compatible with those for a fixed perturbation. one
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with da = 07 By taking ba =0.1am simply redefining the minimum radius
of the 3-sphere @ — a + dc. so I can compare my results to those obtained
by Frolov and Serebriany [32] in the constant acceleration case.

It is quickly obvious that this sort of compatibility exists for (6T},,) as
calculated in (5.33). Note that Frolov and Serebriany show that for fixed
acceleration the conformal SET vanishes identically. This is also true for
(5.33). in which the first two terms give canceling contributions. Such null
checks (0 = 0) are somewhat less than satisfving. however. There are many
paths to a null result.

The minimal SET. however. does not vanish for constant acceleration. Al-
though. as [ mentioned above. (JT,,,,)min for a time dependent perturbation
is messy. it is very simple for the constant perturbation case. I get

2(11‘2(111‘ —3a?) _

TTQ(UL' + av"_’).-)

(5Tuu>min = (539)

On the other hand. starting with the minimal SET for constant acceler-
ation as calculated by Frolov and Serebriany [32]

—(a)?

T,, nlin: .
(Tuu) 72 (ur + a?)?

(5.40)

and perturbing by letting a — o + da. it is straightforward to sce that to
first order in da the stress-energy component changes by exactly (3.39) as
well. Thus, the minimal stress-energy tensor result is also compatible with
the Frolov-Serebriany result for constant perturbation.

The final check I will perform is a comparison to the results of Ford and
Vilenkin [25]. The Ford-Vilenkin results are for a planar mirror perturbed
from rest. Thus, in order to compare I must consider the results I've ob-

tained for vanishing velocity and acceleration and for infinite radius (the
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casc in which the mirror becomes approximately flat). The first requirement.
vanishing velocity, is easily achieved by considering (47T,,) only in the null
future of the point of stationarity for the accelerating mirror, i.e., only on
the null line v = —a, which implies v = 2z — a. Next. I need to consider the
stress-energy at a finite distance r from the mirror. Thus. I let z = a + r.
Finally. recalling that the radius of the sphere at the stationary point is a
and that the acceleration of the mirror is 1/a. I observe that the other two
requirements (vanishing acceleration and infinite radius) are simultancously
achieved in the a — oc limit.

Performing this series of steps I find that the SET components (5.21) and

(5.22) become

. - yconf | _ _ 1 " (3) 4 9.2 1) .
lim [(JTM)"=_Q} = T ((6a)" + 22(62)® + 2:2(6a) ). (5.41)
and
. min 4= ' .20 5 \1
lim [(6T,.)"m | - o (306a + 452(8a)’ + 322%(6a)

+142%(60)¥ + 42*(82) M) . (5.42)

respectively. where the derivatives of da are with respect to u.

On the other hand. by noting that

Tuu = (T:: + :rll - QEI) . (543)

|

I can compose the same stress-energy components from those provided in by
Ford and Vilenkin in [25]. Upon doing so. I obtain exact agreement with
(5.41) and (5.42).

There are two conclusions I can reach from these checks, especially the

comparisons with the Ford-Vilenkin results. The first is that the perturbation
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method ['ve outlined does give results which are reasonable and is the same
as the Ford-Vilenkin perturbation method. as [ mentioned in Section 2.4.
The second is that the a = oc limit does correspond to the case of a planar

mirror. I will take advantage of this correspondence in the next Chapter.



Chapter 6

The Boulware State for Black
Holes

6.1 The Flat Mirror Limit

Having obtained in Section 3.3 the quantum flux from a mirror with non-
uniform acceleration in 3+1 dimensions. I can now repeat the arguments
from Section 3.3. This should allow me to calculate the energy density of
the Boulware state for a Schwarzschild black hole as measured by an inertial
observer. Given this component of the stress-energy tensor I can obtain an
analyvtic expression for the entire tensor.

First. however. I must identify which parts of the flux (5.33) are relevant
for this analvsis. In particular, it is known that even for static spherical mir-
rors. the stress-energy contains terms due to the curvature of the mirror[33].
Presumably the Boulware state is independent of these terms, and it would
be advantageous to remove them a priori. In order to do this. I need to
the radius of the sphere to be arbitrarily large. This will be the case for

very early (T = —o0) and very late (7 — oc) proper times for the spherical

90
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mirror. Note that we cannot simply take a — oc. because although this
does correspond to large radius. it also corresponds to vanishing acceleration
which is not true for mirrors hovering quasi-statically above black holes.

In terms of the null coordinates u and v appearing in (3.33). the early
proper time limit 7 — —oc¢ is simply 4« — —>c. In this limit. I find the

dominant behaviour of the quantities defined in (5.34) to be
&~ 62 ~ /{2 ~ u2. (6'1)

Substituting (6.1) into (3.33) I get

1

m[?@u(éa + ada + 02(5(1)

(Tuu)

—2a%u(u® + 2\u — 40®)éa + 04113521]. (6.2)

From (6.2). and recalling from (5.4) that

2

(Flux) = —(T.). (6.3)
a?
I read off the dominant contribution to the (Flux) in the limit ¥ - —2 to
be

(Flux) ~ - [ada — 25d]. (6.4)

36072ur

Now. notice that (6.4) vanishes in the limit ¢ - —oc. This is to be
expected since, in this limit, the mirror is receding from a static external
observer at the speed of light. and the flux is therefore infinitely red-shifted.
To correct for this, I must multiply by the appropriate blue-shift factor. Since
the flux has units of Energy/Area/Time, and the area is unaffected by the

(orthogonal) velocity, I need two correction factors, one for the energy

d7,,, -
FEC,,,. (60)

rec

Ercc -
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and one for the inverse proper time

Foo= e (6.6)

where the labels rec and em denote quantities for the receiver and emitter
respectively.

Observing that the blue-shift factor is given by

dTem _ V/—uv

dr..  «a (6.9)
I find. therefore. that the flux in the frame of the emitter is
(Flux) = ————[ada — 28a] (6.8)
T 3607202 ' :

Thus. recalling that the unperturbed acceleration is simply 1/a. I have for
the flux from a planar mirror perturbed from uniform acceleration a by an

amount da in 3 + 1 dimensions

£

36072

(Flux) = — [6a — 2abal. (6.9)

(at least to the extent that such a mirror is approximated by a large sphere).

In the next Section. I will use this expression to calculate the energy
density inside a box being lowered quasi-statically toward a black hole. This
calculation in 141 dimensions (see Section 3.3) vielded the energy density of

the Boulware state for the black hole.

6.2 The Quasi-Static Box in (3+1)D

It is now a straightforward matter to use (6.9) to repeat the arguments of

Section 3.3 where I was able to obtain the density for the Boulware state
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for Schwarzschild space-time in 141 dimensions. First. consider the relative

magnitudes of the two terms in (6.9). This is most easily done by expanding

d_(].:(]_ d

— l’;?

= = = 6.10
T  drd: ( )
where v is the proper 3-velocity with respect to a static observer. For quasi-
static lowering (which [ am assuming here). the velocity v must be taken to

be small v << 1. But & ~ v?, while @ ~ v. Thus. for quasi-static lowering.

a will be negligible compared to a. in (6.9) and I can write

(Flux) = ! _a’ba. (6.11)

Next. [ invoke the equivalence principle, and identify the acceleration a
to be the acceleration of a static observer outside a black hole. As in Section

3.3. if I write the metric in the standard Schwarzschild coordinates

)
dr=

fir)

the acceleration is given in terms of the Schwarzschild metric function f(r)

ds® = — f(r)dt® + + r2dQ>. (6.12)

by

-
a= i (6.13)

where the prime denotes a derivative with respect to the radial coordinate r.
Thus, lowering a mirror a small proper distance dz = dr/\/f changes its

acceleration by the amount

da da
da = —d:z= —d:z
a dz fdr

1(., 1L1f7?
= ;)—(f ———> z. (6.14)



CHAPTER 6. THE BOULWARE STATE FOR BLACK HOLES 94

Therefore. [ can rewrite (6.11) as

N = 1 f’2 " lf_lz E =
(Flux) = 1440727—(f - f>dl_. (6.13)

Now. if I consider a box with mirrored walls, then there will be a flux of

the form (6.13) entering the box from the bottom wall and similarly a flux of
the opposited sign from the top wall. As in Section 3.3. the positive energy
flux will be blue shifted and the negative energy flux will be red shifted.
Thus. the net rate of energy deposition into the box per unit mirror area. as

measured at some point z; within the box. is given by

de 3 1 2 A 157
(Foinet = _1440x‘2{[7 (f T2 f ) ‘/}-}

4

2/, 1 2 1 d:z ,
Pl s e

where e denotes the energy per unit area.
If the proper distance between the top and bottom walls is small enough.
[ can express the difference in the braces in (6.16) as a derivative multiplied
by (. N
<(1e) _ € (., 1f° 1 d: (6.17)
dr/met T T2 | f 2 f )| VFdr o
To convert the rate of change of energy per unit area to the rate of change
of energy density, (p), I need to divide by ¢
d 1 2 1f%\] 1 d=
(Ly= ——— i f”—.—lf— — ==, (6.18)
dr 144072 | f 2 f )| VFfdr

To calculate the total change in the energy density as the box is lowered.

then. I need to integrate (6.18) over the history of the lowering process. The

energy density inside the box when it has been lowered from asymptotic
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infinity to a proper distance = from the black hole horizon is

1 L d[ff, 157
) =T L. FFa= [\/_f (f ‘57‘)]- (6.19)

By rewriting the derivative in the integrand

d[f2 (o LN — 7 d [f2(pn L
H(r-37)] = Vi[5 (r-37)

[ can rewrite (6.19) in the form

IR S (VAN STRR i S ST i SV Y i
0 =—ra{[F (- 3%)] 3 LoV (- 357

(6.21)
Then. noting that
141 13 12
l(—l f—q = f—q f"—l— . (6.22)
ddr | f? f? 2 f
and that for the Schwarzschild metric
rl_iglc fiir) = rliglc f(r) =0. (6.23)
I find .
L f2(w_3f"
= - e - = 24)
() = —Ti1072 7 (f 8 f ) ‘ (6.24)

Thus. the energy density which accrues inside the box due to the quantum
fluxes from the mirrors during the quasi-static lowering process is given by
(6.24). But. as I argued in previous Chapters. and as [ showed explicitly in
141 dimensions, this might be related to the energy density of the Boulware
state for the black hole. In the next Section, I will discuss this result and its

implications.
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6.3 A Quantum Equivalence Principle?

If (6.24) truly represents the (T},) component of the Boulware stress-energy
tensor for the Schwarzschild black hole. it is now straightforward to obtain
the other components as well. The first step is noting that if the Boulware
state is to be a vacuuin state for static observers at all Schwarzschild times ¢
then it must be invariant under time reversal. This in turn implies that T5.
where { is a spatial index. must vanish identically. Similarly. the spherical
svmmetry of the space-time implies that components having a single 8 or o
index must also vanish.

Thus. I am lead to the conclusion that the Boulware state stress-energy
tensor must be diagonal. If (6.24) represents one of the diagonal components.
I am left with three to find. I can accomplish this by using the conformal
anomaly equation (2.33) which provides one independent equation and the
covariant conscrvation equations (2.31) which provide two more. Thus. by
solving two differential and one algebraic equations. [ would have the entire
Boulware state SET.

However. there is good reason to believe that (6.24) is not the energy den-
sitv of the Boulware SET. The evidence is provided by the same equivalence
principle [ have been invoking toward the opposite end. The argument goes as
follows: if a quantum equivalence principle holds then no local measurement
can distinguish between the interior of a box being lowered quasi-statically
toward a black hole and one being moved through the exact same range
of accelerations in exactly the same way in Minkowski space-time. Since
I've argued that the lowering process should preserve the vacuum state for

accelerated observers. the Boulware state, inside the box lowered toward a
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black hole, it follows that the equivalent quasi-static process in Minkowski
space-time should preserved the vacuum state for uniformly accelerated ob-
servers in that space-time as well. which is the Rindler state. Therefore.
although (6.24) was developed derived specifically for Schwarzschild space-
time. through the equivalence principle I should be able to recover results for
the Rindler state from it.

In (141)D, this equivalence is manifest for at least the energy densities
of these SETs in (141)D. Recall that the box lowering process in Chapter 3

gave me the Boulware energy density (2.88).

(BI IB)(H—[) — 1 ” fr2 (6.25!
P " 247 if ) =2
while the Rindler energy density in (1+1)D was given by (2.78).
(b+1) _ _“_2_
(R|p|R) =35 (6.26)

where |B) and |R) are the Boulware and Rindler states respectively.
Now. if I write the Rindler metric (2.7) in the Schwarzschild form

dr?
fir)’

I find that f is linear in r for the Rindler metric, so that f” = 0 for it. Also.

(6.27)

ds? = —f(r)dt* +

for every metric of the form (6.27) the acceleration is given by a = f'/(2/f).
Substituting from these expressions for f’ and f” into (6.23) I see that it
does indeed simplify to (6.26) for Minkowski space-time. and all is well.

In (3+1)D. however, this argument runs into trouble. In this case, I
have calculated for the energy density of a box being quasi-statically lowered

toward a black hole the energy density (6.24),

1 f/‘2 3f/2
. AG+HD) — n_ 4
(Box|p|Box) = 1107 7 ( 57 ) (6.28)
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where |Box) indicates the state inside the box being lowered toward the black
hole. However. the Rindler energy density in (3+1)D was given by (2.77).

(14

@G+ - __—

(6.29)

This time. by substituting f'/(2y/f) = a and f” = 0 into (6.28). I obtain
twice the negative of (6.29), i.e.

(14
24072

(Box|p|Box)3+! = = —2(R|p|R)®*V. (6.30)

Thus. [ am left with two possible conclusions. The first is that there is
not a quantum equivalence principle as I argued there should be. In that case
there would be no reason to expect that the energy density inside the box
should be the Rindler energy density when I transform from the black hole
scenario to the flat space-time scenario. On the other hand. in this case there
would be no reason to expect that I could get information about the Boulware
state from considering a box accelerating in Minkowski space-time in the
first place. The concurrence of the box calculation with the Boulware energy
density in (14+1)D would then have to be seen as a misleading coincidence.
and one would conclude that trving to repeat the calculation in (3+1)D had
been an exercise doomed from the beginning.

The second possibility is that the equivalence principle holds but that I
have not applied it properly in (3+1)D. If this is true, one must ask in what
sense the application has differed in (3+1)D from the successful application

in (141)D. I will examine some possibilities in Chapter 7.



Chapter 7

Conclusions

Let me begin this Chapter with a summary of the original work presented in
previous Chapters. In Chapter 3. I showed that in (14+1)D the encrgy den-
sity inside a box with reflecting walls which is initially empty and an infinite
distance from a black hole and then is lowered quasi-statically toward the
black hole was the energy density of the Boulware state. This. I reasoned.
was natural because the static state which is empty (ignoring Casamir con-
tributions. as [ have throughout this thesis) of particles at r = o and which
will be unaffected by quasi-static processes is the Boulware state. Since the
quasi-static lowering process preserves the Boulware state inside the box. the
energy density at any finite proper distance from the horizon of the black hole
should be the Boulware energy density.

The second interesting feature of the calculation in Chapter 3 was that [
was able to deduce the Boulware energy density inside the box by considering
ounly quantum effects from a single moving mirror in Minkowski space-time.
This implied that there was a quantum equivalence principle at work which

allowed me to make a connection between quantum states for uniformly ac-

99
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celerating observers regardless of the background metric (gravitational field).

To repeat this calculation in (3+1)D I needed to know the quantum SET
for a moving mirror in (3+1)D. This SET was not previously known. but |
have presented a set of calculational tools for obtaining it in the limit of small
deviations from uniform acceleration in Chapters 4 and 3 and Appendix A.
However. [ have calculated only the one component (the u — u component)
explicitly. since that was all that was needed in (1+1)D. Using this result
for the moving mirror, I repeated the accelerating box arguments in Chapter
6. However, I found there that my expression for what I expected to be the
Boulware energy density was suspect. since. unlike the (1+1)D result. it did
not reproduce to the Rindler energy density in the appropriate limit. T have
also outlined how one would go about finding an analytic forin for the entire
Boulware SET given the correct encrgy density.

The question to be answered at this point is “where does one go from
here?” One might conclude that there is no quantum equivalence principle
and simply abandon this line of inquiry. Indeed. as mentioned carlier in this
thesis. the existence of a quantum equivalence principle is debatable.

While I have outlined reasons in Chapter 3 why I think there should
be such a principle for interior states of quasi-static boxes in static space-
times. [ have no direct evidence for one in (3+1)D at this point. Indeed.
there is at least one significant reason to suspect that if there is some sort of
equivalence, it is not as straightforward as claiming that the SET should be
the same for all such boxes. That reason is the existence of the conformal
anomaly (2.33). Clearly. the SETs cannot be identical for boxes in Minkowski

and Schwarzschild space-times, since the conformal anomaly vanishes in the
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former but not the latter, which means that the traces of the SETs are not
the same!

Nonetheless, Chapter 3 does seem to imply an equivalence principle for
such boxes in (141)D. Furthermore. this equivalence involves only an iden-
tification of the classical accelerations of uniformly accelerating observers in
different static space-times rather than the actual quantum states. Also, the
result in Chapter 6 for (3+1)D fails to satisfv the same equivalence by only
an overall factor of 2. It seems. therefore. reasonable to suspect that there is
simply some error in the specific application of this principle in (3+1)D.

The most notable difference between the (141)D and (3+1)D results
from this perspective is that. while in (14+1)D (T,.) vanishes identically.
and therefore cannot contribute to the flux. this is not the case in (3+1)D.
Instead. in Chapter 3 [ used the heuristic argument that the non-vanishing
(T..) was likely a boundary effect rather than a flux due to the motion of the
nirror. Since [ believe that it is the motion (acceleration) of the boundaries
that is responsible for the preservation of the Boulware state inside the box.
rather than the specific nature of the boundary itself. I ignered this term
in calculating what I thought to be the Boulware energy deusity. However.
upon examining the results of Candelas and Deutsch [27] for a uniformly
accelerating plane mirror in (3+1)D, one finds that the far field SET is simply
the Rindler SET. Thus. there seems to be some real sense in which the entire
SET (including the v— v component) are related to the motion of the mirror.

The only way to determine with certainty what parts of the SET are
related to motion and which parts are boundary terms independent of the

motion is to calculate the remaining components of (T}, ) for a non-uniformly
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accelerating mirror in flat space-time. This work is currently in progress[26].
There are other issues to be resolved as well. One pertains to the fact that
there is a difference between the superimposed quantum states of two single
mirrors and the quantum state for a pair of mirrors. While it seems that the
superimposed single mirrors capture the dominant contribution from the non-
uniform acceleration. at least in (1+41)D. it is clear that the quantum state for
a pair of mirrors will also contain Casimir[34] like contributions. Investigation
is currently underway to understand how these contributions separate in
(14+1)D with an eve toward determining whether one can also expect the
superimposed single mirrors to give the dominant motion countribution in
(3+1)D[26].

Unfortunately. the calculation of these components is likely to prove quite
time consuming. but results are expected to be in hand within a year of the
time of writing of this thesis. It remains to be seen whether they will provide
the necessary clues to unravel this fascinating problem. One thing is certain.
however. There remains much work to be done in resolving the status of this

one small piece of the quantum equivalence puzzle.



Appendix A

The Method of Means and
Differences

With the identities (3.7) and (5.10). I will be able to express the required
derivatives in the appropriate power scries. But first, I will need to get the
required derivatives. This is best done in small steps. Recall that I am trving
to differentiate

(¢'v + a®)(u"v + a?) «
m2a(u" — u')

[(_u (—ul‘)(u —v) /u" A(u)du (A.1)

no__ ul)

—(u" = )2 A(") = (v’ — l")'z--l(“')}-

§G*H(r'.2") =

~

where A(u) is a function whose specific form will not matter for the discussion
in this Appendix.

Let me therefore define

E(z'.2") .= (v = ) (v = 2")B(d, ") — (v — )2A(x). (A.2)
and
vy . E(ZI")
H(z' ") .= SO (A.3)
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and finally

Wi r")y = (' + o)(«" + b)H (. 1"). (A.4)
Clearly, 6G*(u',u") from (A.1) has the same functional form as W (z'.1").
Thus. I need to find 8.9,~W (2, ") and (8,;)>W on order to find the two

required SET components.

[ begin by calculating the first derivatives of E'(z’, 2").

aE — N QB(.II“[") . / L . ’ -4(1',) ! . I g1yt
%—(l,—l ) v +(v—r) (22" —v—1") KV —§(L—-I) ("), (A.D)
and
aE "2 B(II-'T") ! ’ " -'1(1”) 1 "y\2
o o (p— N2 T Ol I SO 2y
ox" (L I) Ar (L I) <z L r ) Ar 2(l z ) A (l )
(A.6)

Using cither of these and the definition of B(z'.2") I can find the mixed
partial derivative

62E . _9(1"—-5,)(1'_1'") ’ 'II) _ ‘A[(U_I)-’l(l‘)]

ar'or’ T (Ar)? Clrr At .
and the other two second derivatives
4 {— et 3 - r')] A() = 5o =P (AS)
SIE = 2v—2) (Ai)" [" (l(;;)l;)? i - 3} A
+ [-‘—-‘A—f)—z +3(— z")] A(2") = 2o — 2P
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Furthermore. I can find the first derivatives of H(z’.r") in terms of

E(I,. .Z'")
oH E 1 OF
- =9 = AL
o7 azp T Br2or (A4.10)
0H E 1 OF
5z = T2lazp T (Bnror (A.11)
and the second derivatives
9°H E 2 oE 1 8°E
= - Al — 9
dz’'dr” (Arx)? * (Ar)3 _\< or ) (Ar)2 orrar” (4.12)
0*H E 4 OE 1 9%E
o7 = S T oy T Rzt (A-13)
o°H E 14 OFE 1 O’FE (A14)

3 6 , 5.
oo 32 Pdrpor Bz o
Using Eq.s (A.10-A.14). I find for the second derivatives of 117(r'. £") in

terms of E(r'.r") and its derivatives.

or'ox" (Aur)? (Ar)? + (Ar)3
2 —— ("4 b)(2’+b) FE

sl E E 2 _—
= ——— —6(£"+b)(L" +b) A(lxr +0)°E")

~ g T OE R s (A.13)
921 , 9 b
= = S b+ A 9
91’2 (' + b+ Ax) [(AI)3 < +3 - )E
2z’ +b)\ OE (' +b)BE
w2\ = V= \ oL
+(At)2 (1 + Ar ) 31" (.l.T)z aI,QJ (.'\16)

24y " b
Ll (I"+b-;_\.1»)[ 2 (-2+3I + )E
2 . Al‘

2 (1_9‘2(1"+b)) OE (z"+b)a‘2£] (A1

(Ax)? Ar ox" (Az)? 9z
Adding Eq.s (A.16) and (A.17) and dividing by two I get the averaged second
derivative
o (' +b)(z" + b) O°F 2 N 1 oF
= - b)*— | — — Al —
(91)? A o \Et e T B
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6 dE 6 ——3. _E
+(AI)2 ((I + b)_a?) - (Al‘)" (I + b) E (AI)'Z (-'\--18)

Eq.s (A.15) and (A.18) provide the expressions I need to evaluate the de-
sired SET components in terms of E(z’, £"). but they must still be converted
to expressions involving AA. A. and C(z’.z") to make the coincidence limit
feasible. It will be easier to convert, however, if there is a degree of uni-
formity in the terms involving derivatives of E. Ideally. I would like these
equations to involve only 82E/32'dx". 82E 912, N(QE/dx). DE[dz, and E
itself. This can be arranged by the application of the following identities to

(A.135) and (A.18)

1
r’'+b6 = (r+b)— -Q—Ar, (A.19)
" Ty 1
"+b = (r+b)+ :Z-AJ:. (A.20)
oF —— [OF oF
A((r + b)a—l) = (r+10) A(—OT) + Ar Ere (A.21)
oF —JE 1 oF
. = = = i . = 995
(r+b) o (r+0) 3 + 4A1 A( 31’) . (A.22)

A((Hbf%) = [<I"+b)(x’+b)+(m2] A(a_E)

Upon substituting (A.19-A.23) into (A.15) and (A.18) I obtain expres-
sions for %11"/92’0z" and 92W/dr? that deperd only on E, A(GE/dr),

GE/9x. 8E[82'01", and 82E /9z?. | will not write these expressions explic-
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itly here. but rather I will now concentrate of the forms of these derivatives
of E(z'.2"). I have already written down the explicit forms of E(z’,z") and
8?E /01 3z” explicitly in (A.2) and {A.T) respectively. It is a straightforward

matter to calculate

oF — C
) = 9 —rp2— 1)
A(Or) (v —zx) A.’L‘+A[(L 1)A]
—Ard — %A[(v - )24, (A.24)
9E — 1 2 LT o
- —(l—I)C-{"EA[(U—I) Al+ (v —2r)4
A -
- —_;EAA - %(v — )24 (A.23)
from (A.3) and (A.6). and
2 PE T 2 \f(e— 1Al — 4
2 T = (v — 1) VSR Al(v —r)d] - 44
+ i.«A[(v — )24+ 6(v —x)A' — (v — £)2A".  (A.26)

Ar
from (A.8) and (A.9).
The next step is to rewrite the expressions above so that theyv contain

only A" and AA™. This is easily done by using the following identities

(r—2)4 = (r—-z1)A— é Azr A4, (A.27)

(v —1)24 = (v—1t)24— %(v —r)Ar A (A.28)
Al —1)4] = (v—1) A4 — Az A, (A.29)
Al(v —1)24] = (v —-1)2A4—2Az(v —1) A. (A.30)

Using (A.27 - A.30) I can rewrite the means and differences of the deriva-

tives of E(z'.1") as follows:

E = (v—1)(v-2")C+ %(v —z) AA - %(A.r)2 A, (A.31)
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APPENDIX A.
oF 2
—_— = - —_ 2 v — A _ 9/
A(@r) Ar(l r)?2C+(v—1) Ad4d-2A1 4
l——— —_— .
— (=) A4+ Az (v —-1) 4. (A.32)
OFE 1] —— 1
—_— = =y — ——— -_— 2 —_—
5 (v I)C+7Ar(b )2 AA A.L‘.A-l
1 _—
——(r—1)24" + I(b‘ —r)Ar A4, (A.33)
8’E 2 , " -
A —3—(1 -z (v—-1r )C_—.r QA4+ 4 (A.34)
J°FE 2 5 1 Al
57 = aapt Ol mA (4:33)
11 i
+ 51—1"(1 —l')“ A(."l ) +2(l “.I.') 4
+ —(v— 1) Ar A(A")

Eq.s (A.31 - A.35) are in forms which are conducive to expanding in
Using (5.7) and (3.10) I get the following

power series of the form (35.7).
? (A.36)

series expressions for them
1 -
5.-1) (A U )

1 —
+ 5 =) T~

] —
E = (—E(L—I) AT+
1
* (100“ — A = Sl - AR = 15 ) el
+0((AD)°).
A(%i;) = (—l(v—1)2;V+2(v—r).-'1—'—2.i) Az (A.37)
+ (T2 - ST 2 A7) (a2)* + O((az)).
9E _ I T o L)
= = ( 2P A + (v =1 .4—2.4)(A£) (A.38)
N 7 1
—1)2 A6 LT @ 4 2 A3 ) (A )4
+(4“ A = sl B AN A 54 )(AI)
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+0({Ar)°).
8r'or" - (6(1 —I) A _(L—I)‘"1 +-4) (:\39)
Lle——Tw ., Ll (3)__1_,—,7) 2
+( golt T AN e m 2 AW = 5" (A1)
+0((Arn)"),
PE
ar2

(e T+ -0 T - 3)

(A40)
1 1 3—
(= )24 D — 13) — 2737 ¢,
+( 40(1 r)? Al 4 3(1 ) Al 4.-& ) (Ar)
+0((Ar)Y).

2

Using Eq.s (A.36-A.40) and (A.19-A.23) I can write 8°117/91'z" from
(A.13) and EQW'/ dz? from (A.18) as power serics

o’ 1
CYWT —— bY2 (¢ — )2 40
or'or" 60(I+ ) (l l) 4
- [(1-+1))(L‘—_L-)'2_2(1._*_())2 (}L'—l‘)] 13
U P I T e
1 — 1-
+5[r =0 2w+ T - 54 (A1)
i 1
= —— 2o )2 ()
922 40(1"*'1)) (L 1‘) A
1 3 -
—ﬁ [(I"‘ b) (l' - J')" — 3(1+ b)Z(L. —I)] -4(3,
_1
6

[BE+0 -4z +0) (v—1)| A7~ (T +b) T (A.42)
These are the required derivatives. | will now be able to use these iden-

tities to find the u — u components of both the canonical and conformal

stress-energy tensors for a scalar field outside a spherical mirror expanding
with nearly uniform acceleration.
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