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Abstract 
 

 

Spectrum sensing (detection of spectrum holes) in cognitive radios (CRs) has been a 

promising technique to alleviate the problem of radio frequency (RF) spectrum scarcity. 

Among several available techniques to detect the availability of spectrum holes, the 

energy detector (ED) has been one of the most popular methods due to its ease of 

implementation and non-coherent nature. However, the energy detector is suitable only 

when the noise variance is known with absolute certainty, and its performance starts 

degrading with an increase in noise variance uncertainty. Motivated by this fact, we use 

an improved energy detector (IED), which is a more generalized version of the ED, to 

mitigate the problem of noise variance uncertainty by adaptively tuning one of its critical 

parameters of interest. Our results show that a significantly better performance than that 

of the ED can be obtained by using a single CR based on an IED. To further enhance the 

spectrum sensing performance, the scenario is extended to cooperative spectrum sensing 

where a number of CRs collaborate with each other to jointly identify any possible 

spectrum holes. The MAJORITY fusion rule is deployed at the fusion center (FC) to 

combine the independent decision from the CRs. Encouraging performance gains 

compared to those obtained by using the single CR based spectrum sensing are observed. 
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Chapter 1 

 

Introduction 

 

1.1 Motivation 

An explosive growth in wireless services has occurred in the past few years. The 

resulting demand for an increased data rate has made the bandwidth even more precious 

and scarce than it was previously. The competitive trend among the service providers and 

the crowded nature of spectrum allocated to them illustrate this developement. For 

example, Fig 1. shows the increase in mobile traffic in recent years. 

 

                   Fig. 1. Increase in mobile data traffic forecast [12] 

 

The Asia Pacific and North America regions will account for almost two-thirds of 

global mobile traffic by 2017, as shown in Fig. 2. The Middle East and Africa will 

experience the highest computed annual growth rate (CAGR) of 77 percent, an increase 

of 17.3-fold over the forecast period. The Asia Pacific region will have the second 

highest CAGR of 76 percent, an increase of 16.9-fold over the forecast period. The 

emerging market regions of Latin America and Central and Eastern Europe will have 
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CAGRs of 67 percent and 66 percent respectively, and combined with the Middle East 

and Africa will represent an increasing share of total mobile data traffic, up from 19 

percent at the end of 2012 to 22 percent by 2017. Such enormous growth in the demand 

for wireless services will translate into a demand for an equivalent bandwidth 

requirement, which in turn depends upon the available radio frequency (RF) spectrum. 

However, the traditional spectrum allocation policy of several government agencies 

around the world allocates a specific portion of RF spectrum exclusively to a specific 

service. For example, all cellular phone networks worldwide use the portion of the 

spectrum designed as Ultra high frequency (UHF), i.e., from 300 MHz to 3 GHz and the 

same UHF is used for television, Wi-Fi and Bluetooth transmission. The users, who have 

an exclusive license to use a particular spectrum, are termed the primary users (PUs) of 

the spectrum.  

However, studies have shown that the PUs are not always active and thus the 

allocated RF spectrum may be vastly underutilized across time and space. For example, a 

recent measurement conducted at the Berkeley wireless research center [1] is shown in 

Fig. 2., which shows the variation of the power spectral density across frequency.  

Clearly, the RF spectrum from 2 GHz to 6 GHz is hardly utilized.  Also, a field spectrum 

measurement taken in New York City showed that the maximum total spectrum 

occupancy was only 13.1% from 30 MHz to 3 GHz [1].  

 

Fig. 2. Spectrum utilization graph [20] 
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Similar results were obtained in the most crowded areas of downtown Washington D.C., 

indicating less than 35% occupancy of the radio spectrum below 3 GHz [2].  

Thus, a means to address the problem of this vast underutilization of the RF 

spectrum is needed. To increase spectrum utilization (spectral efficiency), a possible 

solution may be to identify the unused spectrum if it is successfully detected, it can be 

temporarily made available to some opportunistic users called the secondary users (SUs) 

of the spectrum. This allocation results in a demand for new technology to determine 

whether or not the spectrum is being used at any given time. In other words, it is 

necessary to “sense” the availability of communication opportunities, which are called as 

“spectrum holes” [5]. This process, popularly known as “spectrum sensing” in the 

literature, has led to the evolution of intelligent devices called cognitive radios (CRs) [1]. 

The foremost task of a CR is to continuously sense the spectrum to detect the 

reappearance of the PU in order to avoid harmfully interfering with the PU and, thus, to 

alleviate the problem of spectrum scarcity by promoting dynamic spectrum utilization. 

Several spectrum-sensing techniques are popular in the literature, for example, the 

matched filter detector, cyclostationary-feature detector, wavelet-based detector, 

covariance-based detector and energy detector [4]. The energy detector (ED) is one of the 

most popularly used detection techniques due to its simplicity and non-coherent nature. 

An ED computes the energy of a signal in the band of interest, compares this 

energy to a pre-determined threshold value, and decides whether the desired signal is 

present or not. The main advantage of an ED is that it does not require any knowledge of 

the signal such as the modulation format, symbol synchronization, design structure, 

decision-making and cost [3] and thus may be very suitable for blind spectrum sensing 

purposes. However, the nature of the channel between the PU and the sensor and, hence, 

the power of the received signal in relation to the noise level will impact the performance 

of an ED as it cannot detect the primary signal at a low signal-to-noise ratio (SNR) due to 

noise uncertainty. Although an ED performs well when the noise power is known with 

certainty, in reality, the noise power may vary with time, leading to noise variance 

uncertainty, so that the assumption of it being known or being estimated accurately is 

violated [13]. 
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The ED performance is known to degrade under noise variance uncertainty [4]. 

Motivated by this fact, we consider a more generalized version of an ED in which the 

squaring operation on the received signal is replaced by an arbitrary power  >0 such that 

the ED is a special case    . This detector is called the improved energy detector (IED) 

[4]. Numerical results show that the best power operation of the signal amplitude depends 

on the probability of false alarms, the probability of detection, the average signal-to-noise 

ratio (ASNR) or the sample size, but generally does not equal two as in the conventional 

energy detector [6]. Thus, it may be possible to compensate for the ED performance 

degradation due to noise variance uncertainty by considering an IED an with adaptively 

tuned p value. Hence, we consider the IED in this study. 

Next, the two main objectives of the project are briefly outlined in Section 1.2 and 

elaborated in Section 1.3. 

 

1.2 Objectives 

1. Spectrum sensing with improved energy detector under uncertain noise variance 

and multipath fading environment. 

2. Investigation of multiple antenna and cooperative spectrum sensing techniques to 

attain possible improvement in an ED under uncertain noise variance. 

 

1.3 Problems 

The two objectives are now briefly elaborated as problems 1.3.1 and 1.3.2 

respectively.  

 

1.3.1 Performance of improved energy detector under noise variance uncertainty 

The spectrum sensing performance is adversely affected not only by noise 

variance uncertainty, but also by multipath fading, which an inherent phenomenon in a 

wireless environment and occurs due to the nature of wireless signal propagation. 

Motivated by this fact, we need to effectively quantify the spectrum sensing performance 

of an IED in a joint scenario of multipath fading and noise variance uncertainty. Further, 

the possibility of obtaining performance gains compared to the performance of a 

traditional ED under these situations needs to be investigated. 
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1.3.2 Cooperative spectrum sensing with improved energy detector under noise 

variance uncertainty 

Another problem in spectrum sensing arises when a CR is shadowed from the PU 

due to the presence of large obstacles such as buildings or hills, such that the CR cannot 

effectively receive the PU transmit signal, thus giving rise to the hidden terminal problem 

[6] In such a situation, the CR transmission will harmfully interfere with the PU 

transmission. Thus, cooperative spectrum sensing, in which a number of CRs collaborate 

with each other, is necessary in such a situation [14]. Moreover, the amount of 

performance gain that such a cooperative network of IED equipped CRs would yield 

relative to a single CR deploying the IED is an interesting topic for investigation. 
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Chapter 2 

 

Literature Review 

 

2.1 Radio Frequency Spectrum 

The radio frequency (RF) spectrum is a range of frequencies from 3 kHz to 300 

GHz used for wireless communications such as radio, television broadcasting, cell 

phones, satellite communications, wireless home networks, GPS and several other daily 

applications. However, all these applications cannot use the same range of frequencies as 

doing so results in interference. Hence, a different range of frequencies has to be 

allocated for different applications. For example, the frequency range from 54 to 806 

MHz has been assigned for various television channels. (e.g. 54-72 MHz for television 

channel 2-69) [1] Within this frequency range, several service providers have to be 

allocated. These providers have to make sure that they do not violate federal regulations, 

which state that no service provider will access any licensed spectrum assigned for any 

other service provider, while also ensuring that all service providers meet the demands of 

wireless communication. These services providers have to make the best use of the 

allocated spectrum to provide services for customers, as neither the allocation nor the 

method of allocation will change. However, all these allocated spectrums are 

underutilized, and the service providers are left with no choice than to look for a new 

technology, that will provide the most effective use of the radio frequency spectrum. 

 

2.1.1 RF spectrum underutilization 

A recent survey of spectrum utilization made by the Federal Communications 

Commission (FCC) has indicated that the actual licensed spectrum is largely 

underutilized in vast temporal and geographic dimensions [1]. Moreover, the spectrum 

usage varies significantly in various time, frequencies, and geographic locations [4]. As 

more users have switched from wired to wireless communication systems, an explosive 

growth in wireless communication is occurring. In order to meet this growth, the 
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underutilization has to be improved by utilizing the unused part (the spectrum holes) of 

the licensed band of the spectrum. 

 

2.1.2 Spectrum holes 

The CR enables dynamic utilization of a temporally unused spectrum, or the 

spectrum hole or white space [9]. A band of a spectrum can be considered unused if it can 

accommodate secondary transmissions without interfering with the primary user of the 

band. The region of the time-frequency-space in which a primary user allows a secondary 

user to utilize a channel is called a spectrum hole [5]. For example, in Fig. 3, a graph is 

plotted between the frequency and the time, with three frequency slots.  

 

Fig. 3. Spectrum holes 

Frequency slot 1 is completely vacant; in frequency slot 2, major portion of the spectrum 

is utilized, and the unused portion is the spectrum hole; and in frequency slot 3, the 

spectrum is not completely utilized, so between periods of use, it forms a spectrum hole. 

A secondary user can find an unused frequency band and utilize the band without 

interfering with the primary user. The spectrum sensing cognitive radio can sense these 

spectrum holes for better utilization of the radio frequency spectrum. 

 

2.2 Cognitive Radio 

Cognitive radio (CR) is the latest wireless communication technology that can 

monitor, sense and detect the conditions of its operating environment and dynamically 

reconfigure its characteristics to best match those conditions. The fundamental task of a 
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CR is spectrum sensing. However, the great improvement in the spectrum sensing CR, 

has helped it to sense the wireless channel and determine whether or not a PU is 

occupying the channel. When a PU does not occupy the channel, the SU can utilize the 

licensed spectrum until the reappearance of the PU. In order to detect the presence of the 

PU, the cognitive radio has to continuously sense the wireless channel to ensure the PU is 

being served without any interference from the secondary user. This process optimizes 

the use of the available RF. Apart from sensing the spectrum, CRs can also help in 

managing the spectrum and selecting the best available channel for the user. Spectrum 

sharing coordinates access to the channel along with other users [4].  

 

2.3 Spectrum Sensing 

Spectrum sensing is the key factor in cognitive radio communication as this process 

senses spectrum holes to effectively use the radio spectrum. The main purpose of 

spectrum sensing is to detect the PU that is receiving data. The other purpose is to 

monitor the alternative empty spectrum in case the PU returns back to the spectrum being 

used by the SU. Once the primary user is detected, the switch to the secondary user from 

the channel becomes smooth. Several methods can be used to sense the spectrum, such as 

matched filter detection, cyclostationary detection, wavelet detection, covariance 

detection, and energy detector (ED). These methods are briefly explained below.  

 

1) Matched filter detection (MFD): is one of the common spectrum sensing techniques. In 

MFD, the SU needs to have a foregoing knowledge of the PU signal as it maximizes the 

SNR of the signal. The main disadvantage of MFD is that it requires the sensing receivers 

to be of different signal types [2]. Furthermore, its use is heavily dependent on the 

primary user signal, which is not available at CRs.  

 

2) Cyclostationary feature detection is more resilient towards noise uncertainty, but 

requires previous knowledge of PU signal modulation format. An advantage of 

cyclostationary detection is the ability to operate at a very low SNR. The major 

disadvantages are some practical issues, such as the need for very long observation times, 

high computational complexity [4], and ultra-stable synchronization. 
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3) In Wavelet-based detection, an input signal is decomposed into different frequency 

components, and then each component is studied with resolutions matching its scale [4]. 

It can provide sharp changes and local features because of their basic functions that are 

irregularly shaped wavelets. However, its feasibility is limited by the need for high 

sampling rates, which are characterized by large bandwidths.  

 

4) An energy detector (ED), also called a radiometer, provides a non-coherent method of 

detection. An ED computes the energy of a signal in a certain bandwidth [3] and 

compares this signal energy to a certain threshold value and decides whether the desired 

signal is present or not. The main advantage of an ED is that it does not require any 

knowledge of the signal such as the modulation format, symbol synchronization, design 

structure, decision-making and cost [3] and thus may be very suitable for blind spectrum 

sensing.  

 

2.4 Energy Detector 

  

  

    Received signal                                    Threshold                                            

                                                                                        

 

 

Fig. 4. Block diagram of an energy detector 

 

An ED is also called a radiometer or a non-coherent detector. An ED simply 

computes the energy of a signal present in a certain bandwidth and compares it to a 

certain   value to decide whether the desired signal is present or not. The resulting 

decision variable is then given by  

                                        
 

 
 ∑ |  |

 

   
            

                                                                        

 

where   is the detection threshold.  
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The main advantage of an ED is that it does not require any knowledge of the 

signal such as the modulation format or symbol synchronization. It has a simple design 

structure to perform real-time detection, and quick-sensing decision making and has a 

low cost [22]. As shown in Fig.4, an ED takes the input signal, passes it through a band-

pass filter to select the bandwidth, and squares and integrates it over the observation 

period. The output is then compared with the predetermined   to detect the presence of 

the PU.  

 

2.5 Hypothesis Testing 

The problem of PU signal detection can be modeled as a binary hypothesis-testing 

problem of the form [6] 

                                                                                                                                  (2.2) 

                                                                                                                              (2.3) 

Where,    (null) represents the hypothesis that the signal is absent;    (the 

alternate) represents the hypothesis that the signal is present; i = 1, 2, … n signal 

samples; Wi is assumed to be white Gaussian noise with zero mean and variance, 
2
; and 

Si is the fading channel. The CR uses the following test statistic to make decisions about 

the presence or absence of the PU. 

 

2.5.1 Performance metrics 

The various performance metrics considered are the probability of detection (Pd), 

probability of false alarm (Pf), probability of error in decision making (Pe), and the 

parameters of interest (SNR, sample size/time-bandwidth product, p – arbitrary positive 

constant, detection threshold ( ), and number of CRs used in cooperative sensing).  The 

probability of detection can be defined as the probability of detecting the PU in the 

channel and is given by  

                                                     |                |                                            

The probability of a false alarm is given as the probability of detecting a user in the 

channel even though a user is not actually present: 

                                                       |                |                                     (2.5)  
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The probability of error (  ) is given as the chance of making a wrong decision by the 

receiver. 

                                                                                                           (2.6) 

 where,         and         are the probabilities of hypotheses    and    respectively. 

 

 2.6 Improved Energy Detector  

An ED shows poor performance at severe noise variance uncertainty. Numerical 

results show that the best power operation of the signal amplitude depends on the 

probability of false alarm, the probability of detection, the average signal-to-noise ratio 

(ASNR) or the sample size, but generally does not equal to two as in the conventional 

energy detector [6]. Assigning a definite value for squaring the signal amplitude would 

hinder the correct process of detection.  

 

                                                      
 

 
 ∑ |  |

 

   
                                                                         

 

          

Received signal                        Threshold                              

                      

                        

  

Fig. 5. Block diagram of an improved energy detector 

 

An arbitrary value instead of a definite signal amplitude value improves an energy 

detector. An improved energy detector is proposed to detect the PUs under noise variance 

uncertainty. This is compatible with real world communications and would improve 

spectrum sensing performance, especially at low SNRs. Fig.5 is the block diagram of an 

improved energy detector [10]. 
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2.7 Fading Channel Models 

 

2.7.1 Rayleigh fading 

The Rayleigh fading model is particularly useful in scenarios where the signal 

may be considered to be scattered between the transmitter and receiver. The Rayleigh 

fading model can be used to describe the form of fading that occurs when multipath 

propagation exists. In any terrestrial environment, a radio signal will travel via a number 

of different paths from the transmitter to the receiver. The most obvious path is the direct 

or line of sight path. When the signals reach the receiver, the overall signal is a 

combination of all the signals that have reached the receiver via the different available 

paths. These signals will all sum together, the phase of a signal being important. 

Depending upon how these signals sum together, the signal strength will vary [7]. Thus, 

the radio signal reaching the destination cannot be accurate. The Rayleigh fading channel 

probability density function is given as below: 

                           

                                               
 

    
   

                                                                               

 

2.8 Cooperative Diversity 

 The Cooperative spectrum sensing is considered in CR system to enhance the 

reliability of detecting the PU even under hidden terminal problem as tall building might 

shadow CRs. In this severe multipath-fading scenario, spectrum sensing is difficult. Due 

to these issues, CRs cannot detect the presence of the PU and this problem may result in 

interference [4]. In order to prevent these problems, multiple CRs are employed, and their 

decisions are sent to a fusion center where a final decision is made about the presence or 

absence of a primary user [23]. Fig. 6 demonstrates this process. The fusion center makes 

the final decision depending upon which fusion rule it uses.  
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                        Fig. 6. Cooperative spectrum sensing in CR network [23] 

 

The fusion rule has to be effective as it relies on several decisions made by an array of 

CRs. The two different types of fusion rules are the hard and the soft fusion rules. In case 

of soft fusion rule all the CRs forward the entire sensing result to the fusion center 

without performing any local decision. The decision is made between two hypotheses by 

taking linear combination of measurements of various CRs [25]. The second type of 

fusion rule is the hard fusion rule, when hard decisions are made, the AND, OR, 

MAJORITY, and N-out-of-K methods can be used for combining the one-bit decision 

information regarding the existence of the PU from diff erent cognitive radios [8]. In the 

AND-rule, all sensing results should be    for deciding   , where    is the alternate 

hypothesis, i.e. the hypothesis that a primary user is occupying the observed band. In the 

Or-rule, the fusion center decides    if any of the received decisions plus its own is   . 

In the Majority-rule, in order to decide    the majority of the nodes must have decision 

  . The N-out-of-K rule (MAJORITY) outputs    when the number of    decisions is 

equal to or larger than N where there are a total of K cooperating nodes. The Majority 

rule is given by 

                                                  ∑(
 
 
)    

 

 

   

      
 −                                                            
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                                             ∑(
 
 
)   

 

 

   

      
 −                                                        

where    and    are probability of detection and probability of false alarm respectively. 

 

Therefore, out of all the rules mentioned above, the majority rule is the most effective 

and reliable, as it considers the decisions of all the CRs in the system. In soft decision 

methods, the exact measurements are reported to the fusion center. which uses fixed 

weights for all the measurements reported to it. All received measurements are summed 

coherently and compared against one global threshold. 

 

2.9 Noise Model 

 Noise is all around us in all sorts of forms like environmental/physical noise, 

semantic noise, external/internal noise and various other noises and can be the inherent 

fluctuations in some part of a system. Noise models are usually additive or multiplicative. 

Their type determines their classification into various forms. In this report, we are 

concerned mainly with the Gaussian model. 

 

2.9.1 Gaussian noise 

 Gaussian noise usually does not depend on time and is always random, but its 

values at any pair of times are identically distributed and statistically independent and 

hence uncorrelated. Gaussian noise is a random noise and signals only the amplitude 

changes fluctuating randomly and its spectrum is totally different from that of Additive 

white Gaussian noise (AWGN). The probability density function ‘P’ of a Gaussian noise 

is given as below:              

                                                     
 

    
 
       

   
                                                          

where   the mean value, and   the standard deviation. 

 

2.9.2 Additive white Gaussian noise 

  AWGN is a channel model in which the only impairment to communication is the 

linear addition of wideband or white noise with the constant spectral density (expressed 
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as watts per hertz of bandwidth) and a Gaussian distribution of amplitude. The model 

does not account for fading, frequency selectivity, interference, nonlinearity or 

dispersion. However, it produces simple and tractable mathematical models, which are 

useful for gaining insight into the underlying behavior of a system before these other 

phenomena are considered. 

 

2.9.3 Noise variance uncertainty 

 For many detection methods, the receiver noise power is assumed to be known. 

However, the noise power level may change over time due to environmental conditions. 

The two types of noise uncertainty are receiver device noise uncertainty and environment 

noise uncertainty. The receiver device noise uncertainty is due to the nonlinearity of 

receiver components and the time-varying thermal noise in them [17]. The environment 

noise uncertainty is caused by the transmissions of other users, either unintentionally 

or intentionally. Any detector suffers from device-level uncertainties due to the non-

linearity of various components and non-uniform, time-varying thermal noise, etc. 

However, the dominant source of uncertainty for a cognitive radio network is the 

potential interference from the transmissions of other opportunistic devices 

communicating within the same band [17]. 
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Chapter 3 

 

Spectrum Sensing with Improved Energy Detector in 

Fading and Noise Variance Uncertainty  

 

The performance of any wireless communications system is adversely affected by 

multipath fading. The ED is not an exception. A number of studies in the past have 

characterized the performance of ED in fading channel [19], [26], [27], [28]. All of these 

studies report degradation in performance of the ED-based CR in multipath propagation 

environments. However, these studies assume a perfectly known noise variance at the detector. 

In practical situations, the noise variance is not constant and may change with time [13], [29] 

and thus the assumption of it being known perfectly is violated. Although the ED performance 

under noise variance uncertainty is considered in [22], the analysis is limited to the assumption 

of a large number of samples at the CR. However, acquiring a large number of samples may 

violate the agile sensing requirement for a CR and thus the assumption of a large number of 

samples at the detector may not always hold. Furthermore, not much attention has been given in 

the literature for improving the performance of the ED under noise variance uncertainty that 

may be very important in designing practical detection systems for spectrum sensing in CR 

networks. 

Motivated by the aforementioned problem, in this chapter, we consider the IED, which is 

known to yield remarkable performance gains, compared to the traditional ED [6], [24]. Again, 

these studies present their analysis assuming a perfect knowledge of the noise variance at the 

detector. However, the performance of an IED in multipath fading and under noise variance 

uncertainty has not been investigated and thus is the focus of this chapter. We consider the PU-

CR channel to be Rayleigh faded and incorporate the uncertainty in noise variance into the 

received signal model at the CR. The sensing performance of the IED is studied and quantified 

under different operating conditions characterized by various parameters of interest such as the 

tuning parameter  , detection threshold, SNR and the noise variance uncertainty factor. In order 

to further enhance the performance of a single CR, a number of cooperating CRs is considered 
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next. We consider the deployment of MAJORITY based fusion of the independent CR decisions. 

The effect of the number of CRs on the detection performance metrics and the interplay of 

different parameters of interest are characterized in the numerical results. 

The rest of the chapter is organized as follows. In Section 3.1, the system model is 

reviewed. The simulation model is presented in Section 3.2. Useful numerical results and the 

corresponding insights are demonstrated and discussed in Section 3.3. Finally, the chapter is 

concluded with Section 3.4. 

 

3.1 System model 

After the received signal at the CR is noise-limited and sampled at an appropriate rate, 

the  -th received signal sample under the two hypotheses can be expressed as 

                            {
√ ̅                       

                                        

                (3.1) 

for all              , where  ̅ is the average SNR,       is the noise variance 

uncertainty and   is the Rayleigh fading channel coefficient, whose PDF of the envelope   

| |is given by 

  ( )  
 

  
   { 

  

   
}                    (3.2) 

where    is equivalent to the average envelope power. The received signal is then fed to the 

input of the IED, which, after processing, yields the decision statistic of the form 

                                                        
 

 
 ∑ |  |

 

   
      

                                                                      (   ) 

where   is the detection threshold. These equations are used in our simulations and thus form the 

basis for computing the single CR-based detector performance metrics such as the probability of 

detection(  ), the probability of missed detection (  ), the probability of false alarm (  ), and 

the probability of error(  ). 

For cooperative spectrum sensing, a total of   CRs are assumed to be independently 

detecting the PU signal activity. The final decision making process requires each CR to forward 

its individual decision to the FC which is in charge of combining the received decisions and 

yielding a final decision on the presence or absence of the PU. The FC is assumed to deploy 

MAJORITY fusion rule which is more general (and practical) than the traditional OR and AND 

fusion rules. To characterize the overall spectrum sensing performance of the CR network, the 
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desired performance are: cooperative detection probability(  ), cooperative probability of false 

alarm (  ) and the cooperative probability of error(  ). For MAJORITY rule, these metrics are 

related to the metrics for a single CR as [4] 

      (  )                                            (3.4)  

      (    )
                                            (3.5) 

  

Based on (3.4) and (3.5), the overall probability of error in decision making can be evaluated as 

   (       )          (3.6) 

assuming that the two hypotheses are equally-likely.  

 

3.2 Simulation model 

 

3.3 Description of simulation model 

 The system model is implemented in MATLAB. Exhaustive Monte-Carlo simulations up 

to 10
5
 iterations are carried for generating the numerical results.  

 

Rayleigh fading channel generation 

With the assumption of a large number of planes waves arriving at the receiver, the received 

complex envelope can be expressed as a complex Gaussian random process of the form [7] 

  ( )      ( )       ( )         (3.7) 

where   ( )  and   ( ) are independent and identically distributed zero-mean Gaussian random 

variables with normalized noise variance 1 and   √  is the imaginary unit. Then, the 

amplitude of  ( ), denoted by  ( )  | ( )|will be Rayleigh distributed with the PDF given in  

                                         (   )   
 

  
  

   

                                                                             (   ) 

 

3.4 Numerical results and discussions 

                  In this section, several graphical results are presented to characterize the spectrum 

sensing performance of the IED under noise variance uncertainty. Inter-relationship between the 

critical parameters of interest are illustrated and the performance of single CR-based as well as 
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multiple CR-based spectrum sensing is characterized. Next, we briefly describe the graphical 

plots presented in this section. 

        In    vs.  , where the    takes the Y-axis and  -values takes the X-axis, a graph is 

obtained for the different values of the noise uncertainty, and for the constant values for   and N. 

The rest of the graphs have the same axis properties, but are plotted for different varying values 

like   and N. In Figures 9 and 10, in order to obtain the optimal value of threshold, the Pf has to 

be 0.1, for constant values for N,   and noise uncertainty. The final graph in this chapter is 

plotted for the    and   for differing SNRs. In this section, we have generated various graphs 

such as graphs for    vs.  ,    vs.  ,    vs. SNR with various factors constant. In all the graphs 

generated some parameters are kept constant, and a few other parameters are assigned as 

variables in order to study the performance under various conditions to obtain the optimal p 

value and how they perform under very low SNRs and to compare the performance of 

conventional and improved energy detectors. 

 

Effect of   on optimal   

The effect of various levels of noise variance uncertainty on the optimal choice of the 

IED parameter   is illustrated in Fig. 7 with the help of a set of    vs.   graphs plotted for 

various   values. Several interesting observation can be made. First, it can be seen that the 

minimum    is obtained only at a particular value of   which is the optimal one since it 

maximizes the detection performance (lowest probability of error). Also, it is clear that the 

increase in noise variance uncertainty degrades the detection performance. Further, the optimal   

changes with the change in  . In other words, to compensate for the degradation in detection 

performance due to increase in  , the parameter   needs to be changed adaptively to yield a 

minimum   . Another interesting observation is that beyond a specific   (      in this case), 

the IED becomes independent of the noise variance uncertainty, i.e. the sensing performance 

remains the same. The last important observation is that as compared to the traditional ED, the     

reduces significantly for the IED. For example, a reduction in    occurs by as much as 49 % 

when   is changed from 2 to the optimal value of 3.9 observed at      . Hence, the IED is 

remarkably effective in mitigating the impact of noise variance uncertainty on the spectrum 

sensing performance of the traditional ED. 
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Fig. 7. Pe vs. p for different   with SNR = -10 dB,   = 6.9 and     . 

 

Effect of   on optimal   

Fig. 8 is a set of    vs.   graphs plotted for various values of   values. It shows that, the 

minimum    is obtained only at a particular value of   that is the optimal one since it maximizes 

the detection performance. It is also noticed that higher values of   increases the detection 

probability. Thus the optimal value of   changes with change in  . But the optimal value with 

very low    could be attained for high values of  . For example, the    is high for the 

conventional energy detector and decreases immediately by 25% for   = 1.5 
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Fig. 8. Pe vs. p for different   with SNR = -10dB, N 10 and   = 0.9. 

 

However, when the threshold value is increased by value of 2, the    is decreased to a minimum 

value for an optimal value of   = 5.2 for a   of 7.5. For the   of 7.5, the    remains maximum 

until   =3 and falls suddenly to the minimum value. Thus, the optimal   value can be obtained 

from the range 3 to 5.2. The behaviour of the improved energy detector from the   of 1.5 to 3.5 is 

notably different, after which this difference is negligible. 

 

Effect of N on optimal p 

The influence of different values of sampling size on   is illustrated in Fig. 9 with the 

help of sets of    vs.   for different   values. Several observations are made in this graph. First, 

the minimum    is obtained only for a particular value of  , which is the optimal value too. It is 

also seen that increase in   value increases the detection probability. i.e., spectrum sensing 
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increases with an increase in N values. For lower values of N,    decreases only until a certain 

point and remains with less difference for greater values of  , whereas when N increases, the    

decreases to its minimum value and increases drastically beyond a certain point of  .  

 

 Fig. 9. Pe vs. p for different N with   =6.9  = 0.2 and SNR = -10dB. 

 

The optimal value of   can be attained with higher values of N. For example, consider the 

graph, for the conventional energy detector (  = 2), the    is independent of   values from 2 to 

8, but when   increases slightly, there is a drastic change in   , and it is also noted that for 

greater values of N,    reaches the minimum value of 7.2% for a p of 4.6. i.e.,   increases the 

probability of detection. For the lower sampling size values, N =2, the minimum    that can 

attain is 17% at p = 6.7. However, in this case, the    does not decrease drastically unlike for 

high values of  . Thus, the    is minimum for the   values ranging from 4 to 5, and the optimal 

value of p can be obtained from the range of 4 to 5. 
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Effect of   on    vs. SNR 

 

 Fig. 10. Pd vs. SNR for different   for p = 4,  = 6.9 and N = 10 

 

  In general, in order to detect the PUs without any interference in the system, the system 

should be able to perform well even at the higher   values. In order to study the same, Fig.10 and 

Fig.11 are compared together and studied. Fig.10 is the    vs. SNR graph, in which the   varies 

for a conventional energy detector and Fig. 11 is the graph for    vs. SNR for different   in 

improved energy detector. In both these graph   and   are considered constant. Fig.10 clearly 

reveals that the    is higher for a lower value of   and the    decreases as   increases at lower 

SNR values. 
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 Fig. 11. Pe vs. SNR for different   for conventional energy detectors (p = 2),   = 6.9 and N = 10 

 

For any of the  , the    is zero at the SNR level 0 dB in Fig. 10, whereas in Fig. 11, the 

   is 17% for the same value of the noise and the SNR. Both these graphs show that, for an 

increasing noise uncertainty level, the    is the same with increase in SNR value. The    attains 

100% for the SNR value 6 dB, whereas in the conventional energy detector, a 6 dB gain interval 

of the SNR occurs with the improved energy detector compared to the performance of the 

conventional energy detector. Thus, in the improved energy detector, the    is possible even at 

low SNR values and with high noise uncertainty, with an increased efficiency of 50% more than 

that of the conventional energy detector. 
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Effect of     on   

 

Fig. 12. Pe vs.   for different SNR with p = 4, N = 4 and   = 0.2. 

 

The effect of various     values on optimal   is illustrated in Fig. 12. This figure clearly 

shows that, minimum value of    is obtained for a particular value of   that is optimal one as it 

maximizes the detection probability. It is also clear from the graph that a very low value of SNR 

degrades the detection performance i.e., at very low values of the SNR, the    remains maximum 

and decreases when reach closer to 0db.The    is high for SNR values very close to 0db, and the 

optimal value of   can be attained from the range -5 to 0. Fig.12 reveals that the    is 50%, or the 

maximum, for almost all the values of   at -20dB, except in the range of 1 to 4. However, the    

decreases drastically within a   value of 0 to 2 and reaches the minimum value of 8.5% for a   

value of 4.2. Thus, the    decreases with an increase in the SNR, and the optimal   value 

according to the graph is 4.2. 
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Effect of K on optimal   

 The basic idea of Fig.13 is to study the number of CRs ( ) that should be used in the 

system to enhance the detection of PUs reliably. Fig. 13 is a set of   vs.   for different numbers 

of CRs. Several interesting observations are made. First, there is a slight difference in optimal   

value for different values of  , i.e., a slight difference occurs in the    when   increases. 

 

Fig. 13 Qe Vs. p for various K in cooperative spectrum sensing with   = 6.9, N of 10 and SNR = -10 dB. 

 

The optimal value of   is clearly obtained in the range where the    is minimum. This graph 

reveals that the    remains at a constant value of 50% for the conventional energy detector at a   

of 2 and remains the same until   reaches 2.6. Beyond this   value, the    plummets to 0.1% for 

a   of 3.4 and even reaches zero for a   of 4. This result implies that the cooperative spectrum 

sensing has a better performance. However, to figure out the number of CRs that need to be 
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involved in the system, the    is considered for different  s at a fixed   of 3.7. For the improved 

energy detector with a   of 3.7, the    is 0.5% for   =3. However, when the K-values are 

increased to 7 and 10, the    becomes 0.02 and zero respectively. Thus, it can be concluded that 

performance of the system increases with an increase in number of CRs. However, the system 

performance degrades for a   above 6 for high   values. For these systems, the optimal   value 

should be considered in a range from 3.7 to 5.5. 

 

Effect of   on optimal p 

Fig.14 is a set of    vs.   graph plotted for various   values. One of the observations is 

that, for lower   the    decreases drastically for a lower value of   and remains at its minimum 

until the point where there is no effect on the   values. When   increases, the    decreases for 

slightly higher values of   and remains at its minimum until it has no effect on  . For example, 

the    is maximum for conventional energy detectors and starts to descend quickly after a   of 

2.5. The    is almost zero for a   of 3.7 at a noise uncertainty value of 0.2, while when   is 0.5, 

the    decreases to zero only for a   of 4.3. From this comparison, it can be concluded that the 

system performance increases with a decrease in noise uncertainty. Another observation from 

this plot is that for any value of noise uncertainty, the    is the same after a   of 4.6. 
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Fig. 14. Qe Vs. p for different   in cooperative spectrum sensing with K = 10, SNR = -10 dB and  

  = 6.9. 

 

Effect of   on SNR 

 Fig. 15 is a graph to study the impact of different values of   on SNR. This could be 

studied with the help of a set of   vs. SNRs for varying  . The graph shows that    attains its 

maximum value for a low value of   at a lower SNR and when   increases,    attains its 

maximum value only at higher values of SNR. We can also say that, the    is high for low 

values of noise uncertainty. For example, the    is 100% for a SNR of -4 dB and 100% at a SNR 

of 1 dB for   of 0.5. Secondly, when Figures 9 and 14 are compared, the    is found to be 100% 

for SNR values of -4 dB and 0 dB with a   of 0.2. This result indicates that the performance of 

the improved energy detector is much better than that of the traditional energy detector in 

cooperative spectrum sensing, as the former can detect the PUs at much lower SNRs. 
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Fig. 15. Qd vs. SNR for different   in cooperative spectrum sensing with N of 10,  = 6.9 and  

p = 4. 

3.5 Conclusion   

 In this chapter, the sensing performance of IED in Rayleigh fading is studied 

under the influence of noise variance uncertainty. Interestingly, to improve the performance of 

IED adaptive tuning of IED parameter   is required and optimal value of   depends on detection 

threshold, samples size, SNR values and the degree of noise variance uncertainty. Further, to 

enhance the sensing performance, a network of cooperating CRs each equipped with an IED is 

considered by deploying MAJORITY fusion rule to combine the individual CR decisions at the 

FC. Surprisingly, increasing the number of CRs does not necessarily improve the detection 

performance and the optimal number of CRs depends upon the choice of   in addition to the 

aforementioned parameters of interest. Thus, a careful selection of the number of CRs and IED 

parameter   would be needed to yield meaningful performance gains.  
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Chapter 4 

 

Conclusion and Future Work 

 

 In this research project, the problem of spectrum sensing in CR networks was 

investigated by using an IED. First, spectrum sensing with a single CR equipped with an 

improved energy detector was considered in the Rayleigh fading channel and with 

uncertain noise variance. The IED, which is a more generalized version of the traditional 

energy detector, was found to yield significant performance gains compared to the 

performance of the traditional energy detector after fine tuning the parameter   (which is 

a constant; i.e.,   = 2 for the conventional energy detector) in environments with 

uncertain noise variance. The degradation in spectrum sensing performance with the 

increase in noise variance uncertainty was found to be mitigated substantially by adaptive 

tuning of the parameter  . Motivated by the improved performance, and in order to 

further enhance the spectrum sensing reliability, we considered a cooperative network of 

several CRs equipped with the improved energy detector by utilizing the MAJORITY 

fusion rule at the fusion center. Interestingly, encouraging performance gains compared 

to the performance of single CR-based spectrum sensing were observed, demonstrating 

that cooperation combined with the use of improved energy detector effectively mitigated 

the problem of noise variance uncertainty in the conventional energy detector. 

 Extending this project to scenarios with different fading channels models, for 

instance, Nakagami-  and/or Rician fading, would be interesting in order to study the 

impact of different degrees of wireless multipath fading on the detection performance of 

the improved energy detector under noise variance uncertainty. Another interesting 

extension would be to consider the channel estimation errors in addition to the noise 

variance uncertainty and its effect on the sensing quality of the improved energy detector. 

Further extension of both of these scenarios to cooperative spectrum sensing might be 

interesting to study and quantify the achievable performance gain due to cooperative 

diversity. 
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