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Abstract

Depending on the method we choose for human action recognition, some algo-

rithms require the localization of human in action videos as a preprocessing step.

This preprocessing is more challenging in real environments with noises or varying

illumination, and may include background subtraction, shadow removal and noise

removal.

This thesis concerns with shadow removal problem with the goal of extract-

ing human silhouette properly. Detecting shadows can be considered as a labeling

problem and can be transformed into an energy minimization problem in a Markov

Random Field framework. The advantage of the algorithm is that it considers the

neighborhood information as well as chromaticity values of the pixels.

Also a new dataset is provided containing several daily actions of people living

in a smart condo. The dataset is used in order to evaluate the proposed method.

Moreover, it can be useful in action recognition and motion analysis studies with

health care applications.
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Chapter 1

Introduction

Human action recognition considers the task of labeling videos which contain dif-

ferent human action classes. In a simple case a video is segmented into single ac-

tions, and the recognition algorithm assigns one of the learned labels to each video

segment. In a more general form, labeling a sequence of actions is needed, which

requires detecting actions as well. The detection and recognition of human actions

have been motivated by many applications such as video indexing, video retrieval,

human computer interaction, visual surveillance and security applications. As an

example, automated video surveillance in public places is often employed nowa-

days. Detecting suspicious activities like “a person leaving a bag” in an airport, or

detecting unusual activities such as “an old person falling” in a senior care center,

are some of the ultimate goals of a surveillance system.

Humans have innate abilities in recognizing and distinguishing different actions,

or in detecting desired activities. This can be due to our perception of the scene and

human poses that are achieved by either our immediate visual evidence, our visual

experience, our interaction with the real world or a combination of them. In fact,

humans have an advantage of understanding the physical and geometrical proper-

ties of scenes and actors (the shape of the body, the depth information and the color

and texture details of the scene) in order to determine the relationship among them.

However, for a computer, considering all of these factors, properties and the re-

lationship between them make recognition quite difficult. Thus, almost all of the

existing methods consider the task of action recognition with a particular applica-

tion, and use assumptions and constraints to simplify the problem. For instance,
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one may assume the camera and/or the scene are static, each action is assigned to

exactly one predetermined label and the whole body of the action performer falls

within the camera view.

Despite the fact that various approaches with different environmental settings

have been used for action recognition and motion analysis, very few of them have

addressed the problem in the context of health care applications in real environ-

ments. For instance, Osmani et al. [10] analyze the activities performed by doc-

tors and nurses in a health-care environment in order to improve the efficiency and

quality of medical services. In another study, Robinovitch et al. [11] analyze the

real-life falls using long-term health care data in order to prevent fallings. In this

thesis, we consider human actions in a smart condo with health care applications.

A smart condo is a health care environment accompanied with assisted living

devices and technologies for patients or elderly people in order to increase the qual-

ity of treatment and of their lives. It is expected to reduce the risk of injuries during

their stay. A smart condo is facilitated with intelligent technologies such as wire-

less sensors and cameras for remote monitoring the place. This remote monitoring

can provide health care professionals a better understanding of the daily activities

of patients. This understanding enables the professionals to analyze the patients

movements, to identify the need of treatment or rehabilitation and to discriminate

normal and risky activities in order to reduce the risk of injuries.

The ability to recognize human actions automatically in a smart condo offers

many advantages, such as providing useful information for analyzing the daily ac-

tivities of patients, detecting unusual or risky activities and designing facilities.

These automatic analysis of the captured data can ease and reduce the efforts of

the medical staff. There are some challenges with this task such as illumina-

tion changes, inhomogeneous background, variations in performances and clothing,

shadows and highlights, occlusion by furniture, and so on.

Depending on the method, many action recognition or more generally motion

analysis algorithms need preprocessing of the captured data. The preprocessing

may include foreground/background segmentation [4], shadow removal, noise re-

moval, video alignments [12], etc. Most of the methods assume that the proper
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silhouette is available and remove the burden of these preprocessing steps from the

recognition task, which may not be possible in a real application.

In this thesis, the contributions include a new dataset containing basic daily ac-

tions captured in a smart condo environment and a new shadow removal algorithm.

The goal of the dataset is to provide common challenges in a real situation with in-

homogeneous background, shadows, illumination changes and noises. The dataset

includes considerable variation in action performances and in the actors themselves.

The shadow removal methodology can be applied to the results of the background

subtraction step. It is based on chromaticity values. The unique feature of the al-

gorithm is that it considers the neighborhood information of pixels, and provides

an improvement compared with that of existing methods. Additionally, it is fast

enough and gives reasonably good foreground without removing informative parts

compared to other algorithms. We assume that the camera and the background are

static, and that all the actions are captured from the same view for simplicity. Given

an image containing the moving human and its shadow, the output of the shadow

removal stage includes the human body as foreground and the shadow pixels as

background. Then extracted silhouettes can be used as inputs to a recognition task.

Furthermore, the proposed method can be used by any motion analysis algorithm

as a preprocessing step.

The remaining chapters of this thesis are organized as follows. Chapter 2 dis-

cusses the previous works in action recognition, background subtraction, and shadow

removal. Then some existing action datasets are introduced. Chapter 3 presents the

motivation of the study and explains the proposed method. Chapter 4 describes the

works flow of human action recognition in a smart condo and gives an introduction

about the smart condo facility of the university of Alberta. Then the proposed hu-

man action dataset is introduced, and the implementation details and experimental

results are presented. Finally, chapter 5 provides a conclusion and recommenda-

tions for future works.
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Chapter 2

Background and Related Work

2.1 Human Action Recognition

Vision based activity recognition is the process of analyzing and labeling human

movements in a video or a sequence of images. The recognition of an activity

can be performed at various levels. A gesture or action primitive is defined as the

movement of a human’s body part and can be described as an atomic component

of an action. For instance, putting a leg forward or raising a hand may be referred

to gestures, whereas walking is an action. So an action is composed of several

atomic gestures and may contain the whole body’s movement. Actions are defined

as simple unique activities which may be possibly cyclic, such as running or jump-

ing. However, an activity can be described as a complex sequence of consecutive

actions, such as playing soccer that includes running, kicking, jumping, etc. More-

over, an activity may include interactions between two or more people or perhaps

between a human and an object.

Early works on motion analysis and activity recognition were conducted back

in the 1990’s, as Aggarwal et al. stated based on their survey [13], whereas these

analysis were mainly concentrated on primitive actions and motions with simple

structures [14] [15]. However, in recent years, many studies have been done in areas

with more complex motion analysis in a wide range of applications under different

environments such as human tracking, pose estimation, body structure analysis and

action recognition. This thesis is focused on recognition of relatively simple ac-

tions, and interactions with objects or group activities are not considered. Usually,
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(a) (b) (c)

Figure 2.1: (a) A frame of a soccer video (b) The strongest interest point detected
in the sequence on a player heading the ball (c) Resulting interest points for a video
frame with the action hand shake (from [1]).

it is assumed that actions are segmented in time and this assumption removes the

extra process of segmentation away from the recognition task, although it is not

always realistic. Action detection algorithms address this issue [16].

In general, vision-based human action recognition can be considered as feature

extraction and then classification of these representations. Various studies have ap-

proached the problem differently. Some methods [7] [17] [18] represent an action

by a collection of local descriptors. They encode the sequence of images using local

patches and represent information using a collection of interest points. The bag of

words is then used to summarize the whole action as a set of local descriptors. An

advantage of such methods is that usually there is no need for preprocessing, such

as human localization and background subtraction in videos.

Laptev et al. [1] extracted local 3D information from action videos by extending

the Harris [19] Forstner [20] interest point detector. The idea is based on the obser-

vation that pixel values with significant local variations in space and time contain

useful information in encoding the video and in understanding the motion. After

extracting 3D interest points, local spatio-temporal neighborhoods of the points are

described using spatio-temporal Gaussian derivatives for action detection in videos.

Later the authors use the same interest points and compute the 3D Histogram of

Gradients(HOG) and Optical Flow(OF) features for each cuboid around the points

for action recognition [21]. Figure 2.1 illustrates interest points detected in two

different action videos. One drawback of such methods is that the detected interest

points are sparse and unstable. As an improvement, Williems et al. [22] propose a
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method to detect dense and scale invariant spatio-temporal interest points. In ad-

dition to using Harris detector, they use the determinant of the Hessian matrix of

interest points as the saliency measure to localize the features. Their detector is

more efficient and robust to scale changes. They also use the SURF [23] descriptor

to describe the interest points in various space and time scales. Other algorithms

use the local HOG and HOF descriptors [21] or the SIFT descriptor [24] for action

recognition. One disadvantage of representing actions with local features is that the

relative information between local features is not kept. Usually a bag-of-words or a

histogram of features is used to represent the whole action. Works done by Niebles

et al. [17] and Park et al. [25] are examples of such an approach.

On the other hand, some methods use the global representation of actions for

recognition. The basic idea is to encode the region of interest (person) as a whole,

which contains more information about the structure of the body. A useful repre-

sentation is the silhouette of the person. Bobick and Davis [2] propose one of the

earliest works on movement representation and action recognition using silhouettes.

The idea is to consider the shape of the region of interest to find and characterize

movements. They define two simple templates to demonstrate the motion proper-

ties of pixels. A binary Motion Energy Image (MEI) that shows the occurrence

of motion is constructed by computing the difference of two consecutive frames.

Then the Motion History Image (MHI) is defined as a function of the history of

motion for each pixel, such that a recent movement is shown with a higher inten-

sity. Figure 2.2 shows the MEI and MHI images for an aerobic move. Finally, using

moment-based features the statistical information of the both templates (MEI and

MHI) are extracted and used for comparison of aerobic moves in action recognition

experiments.

Apart from concentrating on the physical features of a person, some methods

consider motion information [26] [27]. Shah et al. [3] extract some discriminative

features from optical flow (OF) for action recognition. The OF fields for two dif-

ferent actions are shown in figure 2.3. The “Divergence” feature is defined to focus

on the expanding OF caused by the movements of limbs. Also the “Vorticity” fea-

ture emphasizes on circular motion. There is also another feature, which represents
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(a) (b) (c)

Figure 2.2: Comparison of MEI and MHI for an action. (a) One example frame of
an aerobic action. (b) The MEI image represents the shape of the region in which
the motion occurs. (c) The MHI image represents the temporal history of an motion
(from [2]).

the symmetry in time of a human action around the diagonal axis of the image.

Moreover, they define several kinematic features to encode small scale motions of

limbs and to show deviation of the action performance from rigid body motion. Fi-

nally, dominant kinematic modes are extracted by performing Principal Component

Analysis (PCA) of the above features.

Furthermore, some algorithms consider an action as a 3D Spatio-Temporal Vol-

ume (STV) and try to represent and compare the STVs by some informative fea-

tures [28] [29]. Blank et al. [4] use appearance based features by extending the

idea of Gorelick et al. [30] to 3D shapes. Gorelick et al. introduce a 2D shape

representation by solving a Poisson equation of the shape that is interpreted as a

mean distance of each point to the boundary undergoing a random walk. Blank et

al. extract the 3D space-time shape from each action video, and solve the of Pois-

son equation for the 3D shape. Figure 2.4 shows the 3D STV and the solution of

Poisson equation for actions “jumping jack” and “walk”. The space-time saliency

feature is defined to emphasize on fast moving body parts relative to the torso. Also

the “stickness” and the “plateness” features which are inspired by an old work by

Rivlin et al. [31] are extracted to represent the local orientation and aspect ratios of

the 3D shape. Finally, an action sequence is represented by a set of global features

as the weighted moments of the 3D shape and the above mentioned local features
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(a) (b)

Figure 2.3: (a) Optical flow of bend action at frame 20. (b) Optical flow of hand
wave action at frame 10 (from [3]).

are used as the weights. The nearest neighbor classification method is used to com-

pare the actions. Figure 2.5 shows the features used in the paper [4] for “jumping

jack” action.

Some other algorithms interpret an action as a set of space-time trajectories

of points [32] [33]. Junejo et al. [5] construct a self-similarity matrix (SSM) by

computing pairwise distances between features extracted from a moving person in

different time frames. So the SSM captures structural similarities and dissimilarities

of the body pose within an action sequence. It is independent to the view and robust

to performance variations. Figure 2.7 demonstrates the SSM matrix constructed

from the 3D position of the body joints for two actions, each taken from a different

(a) (b)

Figure 2.4: (a) The space-time shape of “jumping-jack” and “walk” actions, and (b)
their corresponding solutions of Poisson equation (from [4]).
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Figure 2.5: The top row, from left to right: The original frame of jumping-jack ac-
tion, the extracted foreground mask, solution of Poisson eq. The bottom row, from
left to right: space-time saliency, measure of “plateness”, measure of “stickness”
(from [4]).

view. It can be seen that the self-similarity matrix represents similar patterns for

an action taken in different view points. Different features are used to construct

the SSM matrices including the 3D position of body joints, Histogram of Gradients

(HOG) vectors extracted from each frame and the concatenation of the optical flow

vectors within a bounding box around the person. These different SSMs are then

evaluated by the authors for the task of action recognition.

As a whole, global representation methods are dependent on preprocessing,

such as background subtraction and tracking; and although they encode useful gen-

eral information of the action, they are more sensitive to noise and partial occlu-

sions. Therefore, if a proper preprocessing method is available, usually global rep-

resentation methods perform well.

Finally, another group of approaches use hierarchical methods to recognize high

level and more complicated activities or human interactions with objects. They as-

sume that a complex activity is composed of simpler actions, and those simpler

actions can be recognized easily using previous methods. For instance, fighting is a

high level activity composed of punching and kicking. These approaches need less
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training data to learn activities with complex structures compared to single layered

approaches that were introduced before. As examples of such approaches, Oliver

et al. [34] and Nguyen et al. [35] use multi-layered state-based models such as

Hidden Markov Model (HMM) to learn activities with sequential structures. More-

over, Ivanov and Bobick [36] and Minnen et al. [37] use context free grammars,

which consider activities as a set of atomic actions that can be described by some

production rules. The drawbacks with such algorithms are the difficulty of finding

the productions rules and none-uniqueness in decomposing activities into simpler

actions.

2.2 Background Subtraction

Background subtraction in a video is the process of detecting moving objects from

the static scene. The early study of background subtraction took place more than

thirty years ago [38]. Recently it has had a wide applications in different areas

of computer vision such as tracking, object detection, recognition, etc. Depend-

ing on the application and the environment, different approaches have been devel-

oped for removing the background. In this process, one might usually face with

challenges such as varying background in outdoor scenes (trees, the sea surface,

etc.), gradually or sudden changes in illumination, color similarities between the

background and foreground pixels, light reflection and shadows. In recent stud-

(a) (b)

Figure 2.6: Comparison of trajectory based SSM matrices for actions (a) bend and
(b) kick, taken from two different views (from [5]).
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ies mostly statistical methods have been used to model the background. Sobral et

al. [39] have provided a C++ framework named BGSLibrary for background sub-

traction and have implemented and adapted several existing algorithms [40]. The

Mixture of Gaussian (MOG) models [41] is a widely used approach for background

modeling and numerous improvements of the original method have been proposed

recently [42] [43] [44]. In this thesis the MOG algorithm by Stauffer et al. [41]

is employed because it gives reasonably good results in our application and is fast

enough. The algorithm’s code is available in the LBMixtureOfGaussians class of

the BGSlibrary package and is adapted from the “Scene” application by Bender et

al. [45].

The original MOG was introduced by Stauffer et al. [41]. In the RGB color

space, the probability of observing the current value of pixel X at time t can be

expressed as a mixture of N Gaussian distributions:

P (Xt) =
N∑
i=1

ωi,t.η(Xt, µi,t,Σi,t), (2.1)

where N is the number of distributions, ωi,t a weight of the ith Gaussian at frame t

with mean µi,t and standard deviation Σi,t, and η is the Gaussian probability density

function:

η(Xt, µ,Σ) =
1

(2π)n/2 |Σ|1/2
e−

1
2

(Xt−µ)Σ−1(Xt−µ). (2.2)

The weights and the parameters µi,t and σi,t employed by Stauffer et al. [41]

are initialized using the K-means algorithm [41]. K determines the multi dimen-

sionality of the background and is set to 4 in BGSLibrary [39]. After foreground

detection for the first frame, the parameters are then updated. For detection, all N

Gaussians are ordered using the ratio rj = ωj/σj . As one expects the background

to happen more often than the foreground for a pixel, the weight should be bigger

and the variance should be lower for the background pixels. Hence, using a simple

threshold, the B distributions with higher ratio values are considered as the back-

ground and the others are considered to be the foreground. Therefore, to label a

pixel, the Mahalanobis distance defined as follows is used to find the distance of
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the pixel to each distribution.

sqrt((Xt+1 − µi,t)T .Σ−1
i,t .(Xt+1 − µi,t)) < τσi,t. (2.3)

Note that τ is a constant threshold. If the nearest distribution to the pixel belongs

to the background distributions, the pixel is labeled as background; otherwise it is

labeled as foreground. After each labeling the distribution parameters are updated.

Although MOG can remove the static background pretty well, it cannot remove the

moving shadows. Hence, there is a need to apply an extra step to remove shadows.

2.3 Shadow Removal

Shadow removal is a critical preprocessing step for object detection and track-

ing. In action recognition, depending on the method, we may need to remove the

shadow pixels in order to obtain the silhouette. Although there are many useful

methods for subtracting the background, such as the Gaussian mixture models in-

troduced before [40], a major problem of such methods is that shadows tend to be

classified as a part of the foreground, because shadows have the same movement

patterns and intensity changes as the foreground pixels. Therefore, an extra pro-

cess is usually needed to remove the shadow. We can classify the features used

by shadow removal algorithms into intensity-based, chromaticity-based, physical-

based, geometry-based and textural features as Sanin et al. [46] suggested. Meth-

ods using intensity features use the fact that regions under shadow are darker be-

cause they are blocked from the light source. The chromaticity based methods keep

the previous fact and also use the fact that the chromaticity of pixels under shadow

does not change. Intensity-based or chromaticity-based features are usually used as

the first step by many algorithms such as Hsieh et al. [6].

A very effective and simple chromaticity-based method is provided by Cuc-

chiara et al. [9]. The HSV color space is used in this paper, since it separates the

luminosity and chromaticity of the pixels. The value (V) is the measure of inten-

sity, which is lower for pixels under the shadow. On the other hand, the hue (H)

is directly related to chromaticity and does not change in shadow pixels, whereas

the authors noted that the saturation (S) of pixels is lower under the shadow. Using
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these facts for a pixel p in a frame F and its corresponding pixel in the background

reference image B, if the following three conditions are satisfied, the pixel is la-

beled as shadow:

β1 ≤ (F V
p /B

V
p ) ≤ β2, (2.4)

(F S
p −BS

p ) ≤ τS, (2.5)

|FH
p −BH

p | ≤ τH . (2.6)

Note that β1 = 0.3, β2 = 1, τH = 48, and τS = 40 as they are tuned experimen-

tally by the Sanin et al. in their survey [47].

On the other hand, physical approaches try to model or learn the specific ap-

pearance of the shadow regions. An example of such methods is given by Huang et

al. [48]. The color change of a pixel p, from shadow to background values is rep-

resented by v(p). Then the feature vector x(p) = [α(p), θ(p), φ(p)] is constructed

containing three factors α(p) as the illumination attenuation, and θ(p) and φ(p) as

the directions of v(p) in spherical coordinates. At first, a basic shadow detection is

applied and pixels in the foreground with lower luminosity and different saturation

from the background are selected. Then the above features of the primary shadow

pixels are used to learn Gaussian Mixture Models for the cast shadows. Finally, an

observed pixel is classified by deriving the posterior probabilities of the cast shadow

and foreground for the pixel and thresholding these posteriors.

Geometry-based approaches try to locate the shadow with geometric analysis of

the shape, such as in the method by Hsieh et al. [6]. At first, the authors extract a

set of person-shadow pairs by applying a simple background subtraction technique,

followed by a histogram projection method. Then for each individual region fol-

lowing steps are performed. Each pixel is represented by its coordinates as (x, y).

Then the center of gravity (x̄, ȳ), the central moments (µp,q)R and the orientation θ

of region R are defined as:

(x̄, ȳ) = (
1

|R|
∑

(x,y)∈R

x,
1

|R|
∑

(x,y)∈R

y), (2.7)

(µp,q)R =
∑

(x,y)∈R

(x− x̄)p(y − ȳ)q, (2.8)
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Figure 2.7: an object-shadow pair and its contour information (from [6]).

θ =
1

2
arctan(

2µ1,1

µ2,0 − µ0,2

). (2.9)

Note that |R| is the area of the region. The authors use the assumption that the

shadow will touch the person’s body at the feet and the shadow and the body can

be separated using a straight line QRPR as it is shown in figure 2.8. The point PR

is found below the center of gravity, where the maximum vertical change happens.

The vertical change is considered between two adjacent points in the region from an

object pixel to a none-object pixel or vice versa. Then knowing the orientation θ and

PR the line QRPR is found to roughly separate the shadow from the foreground. In

the next step, the candidate shadow pixels are modeled by a Gaussian mixture model

using the coordinates of the pixels in addition to the intensity information. If (x, y)

are the Cartesian coordinates of a pixel in region R, then the elliptic coordinates of

the pixel is defined as follows:

(
s
t

)
=

(
cosθR −sinθR
sinθR cosθR

)(
x− µx
y − µy

)
, (2.10)

where θR is the major orientation of the region R, and µx and µy are, respectively,

the means of x and y coordinates in R. The Gaussian object model is then defined

as:

G(s, t, g) = exp

[
−
(
ωss

2

σ2
s

+
ωtt

2

σ2
t

+
ωg(g − µg)2

σ2
g

)]
. (2.11)

Note that g is the intensity of a pixel, ωs , ωt and ωg are, respectively, the weights
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of the s coordinate, the t coordinate, and the intensity component, and σs , σt and

σg are, respectively, the variances of s, t, and the intensity component. The above

model summarizes the intensity and coordinates of the pixels in the region. Finally,

for each pixel in the region, it is classified as shadow if it agrees with the model or

non-shadow otherwise.

Finally, texture-based approaches assume that regions under shadow keep most

of their texture information. Leone and Distante in their paper [49] extract gradient

based texture features from the shadow regions. Similar to many other algorithms, a

big enough candidate shadow region is first found by applying the method described

by Cuchiara et al. [9]. Then using the idea that a shadow preserves texture, they

remove the incorrectly classified pixels.

The primary shadow parts are segmented into regions using edge information

and the texture correlation between each region in the frame and the background

reference is computed. Denote 5y as the vertical gradient, 5x as the horizontal

gradient, F as the frame andB as the background reference, the difference between

the gradient directions of B and F for a pixel p is defined as:

∆θp = arccos
5F
x 5B

x +5F
y 5B

y√
(5F

x 2 +5F
y 2)(5B

x 2 +5B
y 2)

. (2.12)

Then the correlation between the two regions is computed as:

c =

∑n
p=1H(τa −∆θp)

n
. (2.13)

It is noteworthy that n is the number of pixels in the region, H is a unit step

function. When the angular difference is less than or equal to the threshold τa, H

is equal to 1; otherwise it is equal to zero. Meanwhile, c represents the fraction of

pixels in the frame region in which their gradients are similar to the corresponding

background. Using another threshold τ on c can lead to a final decision for the

region. if c is greater than τ then the region is classified as shadow, otherwise it is

labeled as non-shadow.
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Figure 2.8: KTH action dataset: examples of sequences of different types of actions
and scenarios (from [7]).

2.4 Dataset

There are several publicly available datasets for action recognition. They have been

used by many people for evaluations and comparisons of different approaches.

Here we review some of the most widely used datasets. The KTH human mo-

tion dataset [7] contains six types of actions including walking, running, jogging,

boxing, hand waving and hand clapping (actions are performed by 25 different ac-

tors in four different scenarios: outdoors, outdoors with scale variation, outdoors

with different clothes, and indoors). Having about 2300 video sequences, there is

a considerable variation in the performance and duration of the actions and slight

differences in the camera viewpoint. However, the background is simple and ho-

mogeneous.

The Weizmann human action dataset [4] contains 90 low-resolution videos in-

cluding 10 daily actions such as walking, running, skipping, jumping-jack, jumping

forward on two legs, jumping in place on two legs, galloping sideways, waving two

hands, waving one hand or bending. 9 different actors perform the actions. All

the scenarios are outdoors, with a simple and homogeneous background. The fore-

ground silhouettes are also provided in the dataset.
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Figure 2.9: Weizmann action dataset: examples of action sequences (from [4]).

The INRIA Xmas Motion Acquisition Sequence (IXMAS) [8] is a multi view

dataset from 11 different actors containing 14 actions (checking watch, crossing

arms, scratching head, sitting down, getting up, turning around, walking, waving,

punching, kicking, pointing, picking up, throwing overhead, throwing from bot-

tom). The background is static and the illumination is controlled. The dataset

also contains the foreground silhouette and the reconstructed mesh geometry of the

frames.

There are also other action datasets such as the UCF [50] sports action dataset

which contains 150 video sequences of sport motions, and the Hollywood human

action dataset [21] which contains 8 realistic human actions extracted from movies.

Although existing datasets try to provide natural and realistic human actions,

there are many limitations. First, all existing datasets are limited in the number of

action classes and may not be suitable to all applications. Therefore, new datasets

for particular applications such as the smart condo is much needed. Moreover, the

environments in which the data are captured are usually controlled environments

that simplify the preprocessing of the data and extracting the human silhouettes.

In a more realistic situation, the illumination of a scene may change during video
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Figure 2.10: INRIA Xmas Motion Acquisition, example action sequence (from [8]).

capturing and the background regions are more complex. Hence, background sub-

traction is more challenging in such environments. For indoor scenes, we may have

shadows, and hence, shadow removal algorithms must be applied in addition to

background subtraction. In this thesis, a new indoor dataset for daily actions in a

smart condo environment is provided and instead of assuming that preprocessing

is already done, some useful techniques for preprocessing of the captured data are

proposed in order to extract the human silhouettes. It is anticipated that our prepro-

cessing steps can be applied to other datasets and the results may be used as inputs

to any human action recognition algorithm.
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Chapter 3

The Proposed Method

3.1 Motivation

As it was mentioned in the previous chapter, if there exist properly preprocessed in-

puts, global methods show good performances. But in most of the cases the proper

input data is achieved manually. Moreover, some datasets have been captured in

controlled environments which make preprocessing trivial and less challenging. But

in real environments, preprocessing of the data is a challenging task. Particularly, in

a scene with normal light sources, there are moving shadows when the light source

is blocked by a person. In such situations, shadow removal is needed in addition

to background subtraction to localize the person performing an action. Although

shadow removal has been studied in tracking and human detection tasks, none of

the action recognition techniques has addressed this issue as an inevitable prepro-

cessing step. Moreover, no action dataset includes moving shadows. Our goal is to

perform action recognition in a real health care environment such as a smart condo,

and we try to address some of the existing challenges. So we perform the whole

process of the recognition including collecting action datasets in the smart condo,

preprocessing the collected data , and finally applying an existing action recognition

method to evaluate the results. Our contributions include a new dataset of human

actions in a smart condo environment, and proposing a new shadow removal algo-

rithm. We show that our proposed shadow removal algorithm outperforms some

existing methods in the smart condo and similar environments.
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3.2 Shadow detection as a labeling problem

The input of the algorithm is the result of applying an existing background sub-

traction technique on a sequence of action frames. The goal is then to extract the

foreground pixels that represents the person’s silhouette. In an input image pixels

with the value of one are either the foreground or the shadow, and pixels with the

value of zero are stationary background. In order to remove the shadow pixels,

we propose a new shadow detection technique. Like many other shadow detection

algorithms we provide our method as an improvement to a chromaticity-based algo-

rithm. As Sanin et al. [47] show in their survey the chromaticity-based algorithm

provided by Chucchiara et al. [9] gets a reasonably good detection rate for indoor

scenes which are similar to our application, but the discrimination rate of the algo-

rithm is poor compared to others. It means their method is strong in detecting the

real shadow pixels, but it incorrectly labels some foreground pixels as shadow as

well. Our goal is to improve the discrimination performance of the algorithm. Like

other shadow detection algorithms there are two basic assumptions of our method:

1. The luminosity of a pixel is lower under shadow, and

2. The chromaticity of a pixel does not change under shadow.

Many problems in computer vision have been represented as a labeling prob-

lem and solved using energy minimization. For instance Cohen [51] casts the

background subtraction into a labeling problem, and uses graph cuts algorithm for

the energy minimization. Szeliski et al. in their paper [52] compare the accu-

racy and computation time of several energy minimization algorithms, such as Iter-

ated Conditional Modes(ICM) [53], graph cuts [54] and Loopy Belief Propagation

(LBP) [55]. As they mentioned, such energy minimization problems can be justi-

fied in terms of maximum a posteriori probability (MAP) estimation of a Markov

Random Field (MRF). The energy function E can be defined as the sum of two

terms, E = Ed + λEs. The data term Ed which penalizes values that are inconsis-

tent with observations or assumptions, and the smoothness term Es which enforces

spatial consistency.
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The pixel labeling approach has been used in many problems such as back-

ground subtraction [51], stereo matching [56], and image segmentation [57]. But

no one has applied this approach to shadow detection before. Here motivated by

the works of [51] [58] we consider shadow detection as a pixel labeling problem,

where the label determines if a pixel is in shadow or not. The label for each pixel

is determined by applying the chromaticity-based method, and neighborhood infor-

mation in the spatial domain. As Szeliski et al. [52] mentioned Boykov et al. [54]

introduce two graph cut algorithms called swap move and expansion move which

converge quickly to a strong local minimum. They evaluate both algorithms on dif-

ferent benchmark problems and show that expansion move performs better than the

other. So we use the expansion move graph cuts algorithm to minimize the energy

function. The result is a binary image representing shadow pixels with the value

one, and other pixels with zero. Finally we subtract the result from the input frame

to get the foreground silhouette.

In each frame a pixel p can be expressed in terms of its coordinates as p(i, j).

The data term function Dp(fp) is defined as the cost of assigning label fp to p.

For the smoothness term we consider four neighbors of a pixel in the horizontal and

vertical directions, in a way that p(i, j) and q(s, t) are neighbors if |i−s|+ |j− t| =

1. Then the smoothness term function Vpq(fp, fq) is defined as the cost of assigning

fp and fq to the neighbors p and q. We define the energy function E as:

E(fp) =
∑
p∈P

Dp(fp) +
∑
{p,q}∈N

Vp,q(fp, fq). (3.1)

Note that P is the set of all pixels p in the frame, N is the set of neighboring

pixels, and {p, q} stands for an unsorted set of pixels.

3.2.1 Data Term

We define the data term based on the chromaticity-base method provided by Cuc-

chiara et al. [9]. For a pixel p, Xp,v = (F v
p /B

v
p) represents the ratio of the Value

component of p in the frame to its corresponding pixel in the background. Shadow

pixels get the ratio with values between β1 and β2. Similarly, Xp,s = (F s
p − Bs

p)

represents the difference between the saturation of pixel p in the frame and that of
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its corresponding background pixel. For shadow pixels the value ofXp,s is less than

the threshold τs. In a similar way, Xp,h = |F h
p −Bh

p | denotes the difference between

the hue of pixel p in the frame and that of the corresponding background. The value

of Xp,h is less than the threshold τh for shadow pixels. We set β1 = 0.3, β2 = 1,

τh = 48, and τs = 40.

Using these three conditions defined in the paper, the cost function Dp(fp) is

defined as the multiplication of two terms as:

Dp(fp) = G1(p)fp ·G2(p)(1−fp), (3.2)

where G1(p) is the cost of labeling pixel p as shadow, G2(p) is the cost of labeling

p as none shadow, and are defined as:

G1(p) =



K11 if β1 ≤ Xp,v ≤ β2 and Xp,s ≤ τs and Xp,h ≤ τh ,
K12 if β1 ≤ Xp,v ≤ β2 and Xp,s > τs and Xp,h ≤ τh ,
K13 if β1 ≤ Xp,v ≤ β2 and Xp,s > τs and Xp,h > τh ,
K14 if β1 ≤ Xp,v ≤ β2 and Xp,s ≤ τs and Xp,h > τh ,
K15 else.

(3.3)

G2(p) =



K21 if β1 ≤ Xp,v ≤ β2 and Xp,s ≤ τs and Xp,h ≤ τh ,
K22 if β1 ≤ Xp,v ≤ β2 and Xp,s > τs and Xp,h ≤ τh ,
K23 if β1 ≤ Xp,v ≤ β2 and Xp,s > τs and Xp,h > τh ,
K24 if β1 ≤ Xp,v ≤ β2 and Xp,s ≤ τs and Xp,h > τh ,
K25 else.

(3.4)

In our experiments we set K11 = 1, K12 = K13 = K14 = 3, K15 = 9, K21 = 9,

K22 = K23 = K24 = 7 and K25 = 1. These values are obtained by trial-and-

error. So the function Dp(fp) penalizes pixels that do not have the described three

conditions. It can be seen that the first condition on the value of a pixel is more

critical in deciding about the label of that pixel, because shadow keeps the value

unchanged.

3.2.2 Smoothness Term

In order to remove incorrectly detected shadow pixels the smoothness term is de-

fined. For two neighboring pixels p and q the smoothness term gives a high value if
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fp and fq do not have the same labels. Therefore, as Szeliski et al. [52] suggested,

we define the smoothness term as a function of the difference of the two neighbor’s

labels:

Vp,q(fp, fq) = wpq.|fp − fq|. (3.5)

We set wpq the constant value 25, which is found experimentally. The energy min-

imization of the above energy function is done using the publicly available frame-

work in the C++ programming language by Szeliski et al. [52]. We use the expan-

sion move graph cuts algorithm [54] [59] implemented in the framework, which

uses the max-flow algorithm provided by Boykov et al. [60]. Later we will show

that detecting shadow pixels using chromaticity and neighborhood information im-

proves the results. The next chapter shows the qualitative results of the comparison

of our shadow removal algorithm to the chromaticity-based algorithm [9] using dif-

ferent datasets. Also we compare the effect of our algorithm and of other existing

shadow removal methods on action recognition.
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Chapter 4

Experiments

4.1 Human Action Recognition in a Smart Condo

In this chapter, first the work flow of human action recognition in a smart condo

environment is provided. Then a new dataset for action recognition is introduced,

and our experimental setup is described. Finally, the proposed shadow removal

method is evaluated and compared to other existing methods.

In order to evaluate the proposed shadow removal algorithm quantitatively and

to demonstrate its performance in the smart condo environment, we have picked

an existing action recognition algorithm proposed by Blank et al. [4] to process

the results after shadow removal. The algorithm was explained in the background

chapter. It is shown to have a good performance on the Weizmann dataset that con-

tains some common actions with our proposed dataset. The preprocessing steps

include background subtraction, shadow removal, noise removal and alignment of

the videos. For background subtraction, the Gaussian Mixture Model (GMM) is

first applied to a raw action video sequence, from which the moving objects are ex-

tracted. Then, in each frame the moving shadow is removed by either the proposed

method or one of the existing algorithms for comparison. The flow chart of the

whole process is shown in figure 4.1.

4.2 Smart Condo

The smart condo is located in the Edmonton Clinic Health Academy (HCHA). The

goal is to provide research opportunities for research around health care facilities

24



Figure 4.1: The work flow of the action recognition in the smart condo

and in particular “intelligent” home for seniors and patients. The smart condo is

equipped with technologies such as wireless sensors and cameras in order to mon-

itor the events. There are four cameras mounted on the ceiling of the living room,

two mounted on the ceiling of the kitchen, one in the bedroom and one in the bath-

room. Figure 4.2 shows the condo from different views. It can be seen that not all

the views are useful for motion analysis. The camera mounted at the end of the

living room is used to capture the actions in this thesis, as shown in figure 4.3.

Figure 4.2: The smart condo from different views, captured by mounted cameras.

25



Figure 4.3: A single view is used to capture all the actions.

4.3 Human Action Dataset

We have collected a database of 98 video sequences each with a resolution of 480

× 640 and a frame rate of 30 fps. The video sequences include 10 different actions

performed by 7 people. The actions are “bend”, “lie”, “limp”, “run”, “sit”, “stand-

up”, “turn”, “walk” and “walker” which means walking with a walker. Figure 4.4

and 4.5 show selected sample frames from the dataset. As it can be seen the actors

are of different genders with varying clothing and appearances (overweight, thin,

short and tall). Also we have tried to include variations in the performance and

the speed of each action. Actions are selected based on simple daily actions people

normally perform in their daily lives. Although there are several datasets with focus

on health care applications [61] [62], they are restricted to particular uses such as

fall detection. None of them considers daily actions of people living in a smart

condo environment. Our new dataset will be useful to other researched in future

studies on action recognition with focus on health care applications.
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Figure 4.4: The human action dataset. The top row from left to right: bend, lie.
The middle row from left to right: limp, run. The bottom row from left to right: sit,
stand-up.
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Figure 4.5: The human action dataset. The top row from left to right: turn, walk.
The bottom row: walker(1), walker(2).
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4.4 Implementation

4.4.1 Mixture of Gaussian Background Subtraction

Sobral and Andrews [39] have provided the BGSLibrary C++ framework for Back-

ground Subtraction (BGS). They have implemented a large number of algorithms

and compared their results on “Highway Traffic” scenes. As described before, we

use the Mixture of Gaussians provided by Staffer et al. [41] which is available in

the LBMixtureOfGaussians class of the BGSlibrary package and is adapted from

the “Scene” application by Bender et al. [45]. The parameters are set as provided

in the package. The “Sensitivity” is set to 81, which describes the sensitivity to

changes in the background. The “Learning Rate” is set to 59, which determines the

rate at which the model adapts to changes in the video frames. Finally, the “Noise

Variance” is set to 206, which specifies the minimum value of the variance in the

Gaussian model. The input of the algorithm is the raw human action videos, and the

output is the logical images representing the moving foreground. Figure 4.6 shows

the results of the BGS algorithm.

4.4.2 Shadow Removal

Sanin et al. [46] have provided the source code for a number of shadow removal

algorithms, in addition to the ground truth data for some shadow removal datasets,

in order to compare the results. The source code is available in [63]. The input

to the following algorithms includes the original frame taken from an action video,

the corresponding BGS result, and the background image itself. The output is the

moving foreground with the shadow removed.

4.4.3 Chromaticity-based Method

The algorithm proposed by Cucchiara et al. [9] is used here for comparison and as

the basis of the proposed method. The parameters are tuned in the work of Sanin et

al. [46] as follows: β1 = 0.3, β2 = 1, τh = 48, and τs = 40. Figure 4.7 shows the

results of the method.
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Figure 4.6: Background Subtraction (BGS) results: the first two rows show sample
images from the raw videos. The last two rows show the results of BGS.
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Figure 4.7: Chromaticity-based shadow removal results: the first two rows show
the results of BGS. The last two rows show the results of the algorithm proposed by
Cucchiara et al. [9]. 31



4.4.4 The Proposed Method

The MRF energy minimization software available in [64] is used for this part. The

software that accompanies the paper [52] is provided by Szeliski et al. We use

the graph cuts algorithm as the energy minimization method. The energy function

is explained in section “The Proposed Method” . The data term is based on the

chromaticity-based shadow removal algorithm, while the smoothness function is

based on a simple neighborhood information, in order to reduce the false positive

labels. The output of the algorithm is shown in figure 4.8.

4.4.5 Other methods

In order to quantitatively compare the results of our method to others in the smart

condo application, we have performed action recognition using the output of other

shadow removal methods. We have used the physical-based method by Huang et

al. [48] , the geometrical-based method by Hsieh et al. [6], and the texture-based

method by Leone and Distante [49]. The source code of the above algorithms are

provided in [63]. The default values of the parameters are used as they are provided

in the source code.

4.4.6 Video Alignment

The frames of each video sequence are aligned in order to compensate for the global

motion of the body, and to emphasize on the motion of relative body parts, as sug-

gested by Blank et al. [4]. First, the bounding box of the person is found for each

frame. Having the centers of the mass of all the bounding boxes, the best fitting line

to them is found, then all the frames are aligned to a reference point.
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Figure 4.8: MRF shadow removal results: the first two rows show the results of
BGS. The last two rows show the results of our shadow removal algorithm.
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4.4.7 Action as Space-time Shape

In this thesis, the algorithm proposed by Blank et al. [4] is implemented for action

recognition. An action is represented by a 3D space-time shape formed by con-

catenating all the frames with the background and shadow removed. Then local

and global features are extracted from the 3D shape to encode the relative motion

of the body to the torso. The algorithm has a good performance on the Weizmann

dataset. Because the algorithm concerns the shape of an action, the preprocessing

step can affect the results. So in the next section we compare the accuracy of action

recognition when different shadow removal algorithms are applied. The input to the

method is an aligned sequence of frames for one action, and the output is one of the

ten action labels: “bend”, “lie”, “limp”, “run”, “sit”, “stand-up”, “turn”, “walk” and

“walker”. All the other parameters are set the same as described in the paper. Also

the nearest neighbor classification with Euclidian distance is used for classification.
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4.5 Results

4.5.1 Experiment 1: The Recognition Performance on the Smart
Condo Action Data

In this experiment, we test the recognition performance on the dataset collected in

the smart condo and preprocessed by the proposed shadow removal method. Table

4.1 shows the action confusion results for classification of the videos. The average

accuracy is 81% which means the average of accuracies for all action labels. On the

other hand, we define the overall accuracy as the ratio of the number of correctly

classified action sequences for all the action labels by the total number of action

sequences. The overall accuracy is 87% for the recognition algorithm. The best

accuracy is obtained for the “crawl” action, because it is quite different from the

others. The poorest result belongs to “run” which is often misclassified as “walk”,

and “lie” is misclassified as “stand” in many cases, as they share similar body poses

in some frames.

bend crawl lie limp run sit stand turn walk walker

bend 89 1 0 2 0 3 4 0 0 1

crawl 0 100 0 0 0 0 0 0 0 0

lie 0 4 70 0 0 3 23 0 0 0

limp 0 0 0 80 0 1 3 9 1 6

run 0 0 0 0 55 0 4 0 32 9

sit 2 0 2 0 0 89 7 0 0 0

stand 0 0 2 1 0 6 89 0 2 0

turn 1 0 0 9 0 1 3 77 1 8

walk 0 0 0 5 7 0 2 1 71 14

walker 0 0 0 2 0 0 1 1 4 92

Table 4.1: Action confusion in classification using our method
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4.5.2 Experiment 2: The Effect of MRF-based Shadow Removal
Method in Action Recognition

In this experiment we show the effect of removing shadows from videos in the

recognition results. Also the proposed shadow removal algorithm is compared to

the state of the art chromaticity-based method quantitatively by comparing their

recognition results. Table 4.2 shows the recognition accuracy for each action label

when our shadow removal method is used in preprocessing of the data. Table 4.3

shows the accuracies when the chromaticity-based algorithm is used. Finally, table

4.4 shows the results when no shadow removal algorithm is applied to the action

sequences.

It can be seen that the action recognition algorithm gives lower performance

when the shadow regions are not removed, which suggests the importance of the

shadow removal step. On the other hand, the MRF method improves the accuracies

for almost all the action labels, and the average accuracy is enhanced by 3%.

Also it can be seen that the proposed method gets low accuracy for the “lie”

action, as if no shadow removal is used. A good explanation is that when a person

is lying on the ground, the body-shadow pair is seen as a single object with large

neighborhood of pixels. So the smoothness term reduce the effect of data term, and

therefore, the MRF-based method performs poorly in removing the shadow pixels

compared to chromaticity-based method.
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bend crawl lie limp run sit stand turn walk walker average accuracy overall accuracy

Accuracy (%) 89 100 70 80 55 89 89 77 71 92 81 87

Table 4.2: Action classification accuracies using our shadow removal method

bend crawl lie limp run sit stand turn walk walker average accuracy overall accuracy

Accuracy (%) 86 100 84 66 53 85 89 66 60 88 78 82

Table 4.3: Action classification accuracies using the chromaticity-based shadow
removal method.

bend crawl lie limp run sit stand turn walk walker average accuracy overall accuracy

Accuracy (%) 86 99 69 48 38 77 84 70 60 88 72 78

Table 4.4: Action classification accuracies without a shadow removal.
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4.5.3 Experiment 3: Comparing Other Shadow Removal Meth-
ods with the MRF-based Method in Action Recognition

We tried other shadow removal methods on our dataset, and compared their results.

The parameters of each algorithm are set to their default values as described in

the source code [63]. The physical-based method introduced by Huang et al. [48]

shows the best result qualitatively. Figure 4.9 shows the sample qualitative results

of other shadow removal methods.

In another experiment we compared the recognition results of the MRF algo-

rithm output with the physical-based method output, as physical-based algorithm

performs better than texture-based and geometrical-based methods on the smart

condo dataset. Table 4.5 shows the recognition accuracy results by using each of

them. It can be seen that the proposed MRF shadow removal algorithm is the best

among them. Another interesting conclusion is that the chromaticity-based method

gives better recognition accuracy than other methods except the MRF shadow re-

moval method.

bend crawl lie limp run sit stand turn walk walker average accuracy overall accuracy

MRF Shadow Removal 89 100 70 80 55 89 89 77 71 92 81 87

Chromaticity-based Shadow Removal 86 100 84 66 53 85 89 66 60 88 78 82

Physical-based Shadow Removal 83 100 85 37 32 84 76 48 36 98 67 76

Table 4.5: Action classification accuracies using each one of MRF-based, physical-
based, and chromaticity-based methods.
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Figure 4.9: Shadow removal results after applying different methods: the first row
shows the results of BGS. The second row shows the results of physical-based
shadow removal, the third row shows the results of geometrical-based Shadow re-
moval, and the fourth row shows the results of texture-based shadow removal.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this thesis we consider action recognition with a focus on health-care applica-

tions. We first introduce a new human action dataset captured in a smart condo,

then we propose a new shadow removal method in order to improve the localiza-

tion of human body in videos and provide the proper inputs for motion analysis

methods.

5.1.1 Human Action Dataset

Although several human action datasets are available for research studies, none of

them considers daily actions in a smart condo environment. In recent years, many

studies have aimed to improve health care services by automating the remote mon-

itoring of patients and of elderly people in health care environments. The goals in

mind include injury prevention, recognition of unusual activities or motion analysis

with the aim of improving facility design.

The smart condo facility at the University of Alberta is designed for interdis-

ciplinary research projects related to computer science, computer engineering and

rehabilitations. There are several projects by different groups taking place in the

smart condo. We collect a simple dataset from daily actions which may occur in a

health care environment. This is also useful for future research on action recogni-

tion and motion analysis. The dataset contains ten different actions performed by

seven different people. We have tried to add enough variations in the action perfor-
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mances such as in gender, clothing and pace. A significant innovation of the dataset

is that it includes moving shadows produced by the action performers. None of the

action datasets has the shadow problem, although shadow naturally exists in indoor

or outdoor videos. We then investigate the shadow removal problem for the action

recognition task.

5.1.2 Shadow Removal

The novelty of our shadow removal method is that it considers the neighborhood

information to enhance the results of an existing shadow removal algorithm [9].

Based on this approach, the probability of a pixel to be labeled as a shadow is

higher when its neighbors are shadows as well. So the problem transforms into an

energy minimization problem in a Markov Random Field framework with the goal

of minimizing the sum of the costs in an image. We use the chromaticity-based

algorithm by Cucchiara et al. [9] for the data term of the energy function, because

the algorithm performed better than the other methods on our dataset. Depend-

ing on the application the MRF approach may be used with other approaches to

contain more information about the pixels such as texture, geometrical or physical

information.

We compared the proposed method with other shadow removal algorithms by

their effect on the action recognition task. We picked an existing action recognition

method by Blank et al. [4], then we prepared its inputs by applying the background

subtraction [41] following the shadow removal on the action videos. The videos

are divided into a number of segments using sliding windows in time. Each video

segment is then classified and labeled as one of the ten available actions. The effect

of shadow removal and specifically the advantage of our method is then described.

5.2 Future Works

The dataset can be extended by adding actions or variations in the performances.

For instance, in our experiment a single camera is used in the condo, but in order

to capture the actions from different views with different background objects, extra
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cameras can be employed. Moreover, in order to include more real features to the

dataset, occlusions or interactions with other objects maybe added, such as “push-

ing a chair” or “picking up an item from the floor”, etc. In ideal cases, we may

use real patients or elderly people in our experiments, as their motion and action

performances are not easy to imitate. Also another challenge to consider in future

may be the issue of varying illumination in a single action capture, as it may happen

in real situations. The challenge is then to improve the background subtraction and

shadow removal processes to address this issue.

In the shadow removal part, we have defined a simple smoothness function.

Defining a more complex function to include more neighborhood information may

improve the results. The data term can be also improved to include more features

such as texture information, in addition to color and neighborhood information. In

the experimental part, the performance of algorithm may be evaluated by applying

different action recognition methods or even by methods for different applications

such as object detection, tracking, gait analysis, fall detection, etc. and in different

environments, such as outdoor scenes.
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