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Abstract

Processes in industry usually exhibit certain forms of time-varying behaviour as well

as nonlinearity. Suitable production policies might also drive a plant to switch among

various operating modes leading to the multiple-mode behaviour. Moreover, indus-

trial data are often noisy and contaminated with outliers, making the process identi-

fication challenging. Thus, reliable identification of the multi-modal process plays a

key role in efficient process control and operations.

In this thesis, time-varying behaviour, nonlinearity and switching dynamics are

generally treated as multi-modal behaviour. Two multi-model modelling techniques,

i.e., the linear parameter varying (LPV) technique and the switched modelling tech-

nique, are investigated to model the multi-modal processes. The robustness of pro-

posed algorithms is enhanced by modelling the noise as t distributions.

The identification of multi-modal processes is formulated under statistical frame-

works. The expectation-maximization (EM) algorithm is a powerful statistical ap-

proach to parameter estimation. A novel identification algorithm is proposed to

minimize the adverse influence of outliers by integrating t distributions with the EM

algorithm. During the iterative estimation procedure, outlying observations are down-

weighted by a latent variable of the t distribution automatically, so their adverse influ-

ence on identification is minimized. Furthermore, a full-Bayesian estimation method

named as variational Bayesian algorithm is investigated to identify multi-modal pro-

cesses. A novel iterative optimization algorithm is proposed to infer the number of

operating modes from the training data. Hence the model structure (the number of

modes) and model parameters are obtained simultaneously.

The proposed algorithms are verified by simulations and experiments. Finally,

soft sensors based on proposed algorithms are designed to effectively estimate the

steam-quality for the once-through steam generators used in the oil sands industry.
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Chapter 1

Introduction

Advanced process control (APC) strategies have been developing rapidly during re-

cent decades to meet the increasing requirements of complex industrial operations

under various production conditions. Most of the APC strategies are model-based,

leading to the prerequisite of an accurate and compact mathematical description of

the process. Hence, process modelling and identification play an important role in

control and monitoring of industrial processes.

1.1 Motivation

Due to the wide operating range of industrial processes, time-varying and nonlin-

ear behaviour commonly exist in process operations. Traditional modelling methods

based on the assumption that the process is simply operated within a fixed operating

region are not capable of describing the process dynamics over the entire operating

range. The model of an industrial process changes with the shift of the operating

modes, resulting in the multi-modal behaviour of the process.

Under some circumstance, the operating mode of the process is dependent on

the known variables which are referred to as scheduling variables, and the linear

parameter varying (LPV) technique [2, 3, 4] is effective in modelling and control of

these time-varying/nonlinear processes. Nevertheless, the scheduling variable is not

always available due to insufficient knowledge of the process. An an alternative,

the switching modelling technique [5, 6, 7, 8] has no requirement for the scheduling

variables. The operating modes of the process are estimated by data-driven methods

instead of being determined by the scheduling variable. Both modelling methods are
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able to identify multi-modal processes. The LPV technique is preferred when there

is sufficient process knowledge to investigate the scheduling variable. Otherwise, the

switched modelling technique is more suitable.

Industrial data are often noisy and contaminated with outliers, which may be cor-

rupted observations or genuine samples from a heavy-tailed distribution [9]. Trans-

mission errors, process disturbances, and instrument degradation are common reasons

that can cause outliers in recorded data. Data-driven modelling methods are usually

sensitive to outliers. Statistical analysis of process data contaminated with outliers

may lead to biased parameter estimation and plant-model mismatch [10]. Therefore,

the problem of process identification in the presence of outliers has received great

attention, and various robust identification methods have been proposed to deal with

outliers [11, 12, 13].

The modelling of the noise distribution is essential to parameter estimation under

statistical frameworks. Conventional Gaussian distributions are sensitive to outliers.

A t distribution has the capability of varying continuously from a very heavy-tailed

distribution to a Gaussian distribution by adjusting its degrees of freedom. The effect

of outliers on modelling can be diminished by assigning higher probability densities to

the tails [14]. In addition, a t distribution can be represented by an infinite mixture

of scaled Gaussian distributions [15], which is an important property in statistical

modelling.

This thesis focuses on robust identification of multi-modal processes under sta-

tistical frameworks. Two approaches to identification of multi-modal processes with

sufficient robustness are proposed, and soft sensors based on proposed algorithms are

designed to estimate the steam-quality for once-through steam generators in oil sands

industry.

1.2 Thesis contributions

The main contribution of this thesis is the development of multi-modal process iden-

tification methods with sufficient robustness to address the difficulty of modelling

time-varying behaviour, nonlinearity, and switching dynamics of industrial processes.

The proposed algorithms are resistant to outliers and result in improved accuracy
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and reliability of process modelling and prediction. Specifically, the contributions of

this thesis are summarized as follows:

1. Modelled the time-varying/nonlinear processes using the multiple-model LPV

approach, and t distributions are used to describe noise characteristic with outliers.

2. Integrated t distributions with the expectation-maximization (EM) algorithm,

and made the algorithm down-weight outlying observations automatically.

3. Developed a robust variational Bayesian approach to identification of switched

models. The distributions of parameters were estimated by the full-Bayesian ap-

proach, and the uncertainty of parameters was taken into account.

4. Proposed a method to infer the number of operating modes of the process from

the training data-set automatically.

5. Designed multi-model soft sensors to estimate steam-quality of once-through

steam generators used in oil sands industry. Evaluated the performance of various

methods of steam-quality measurements.

1.3 Thesis outline

This thesis is organized in the paper format. The literature review is distributed in

each chapter.

The rest of this thesis is organised as follows:

Chapter 2 develops a robust multiple-model linear parameter varying (LPV) ap-

proach to identification of the nonlinear process contaminated with outliers. The

identification problem is formulated and solved under the EM framework.

Chapter 3 deals with such practical issues as unknown number of local-models,

noisy operational data, and unknown switching mechanism of the switched models.

A full-Bayesian process identification approach is developed in this chapter.

Chapter 4 is the design of adaptive soft sensors of steam-quality measurement for

once-through steam generators used in industry.

Chapter 5 concludes the thesis.
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Chapter 2

Robust Multiple-model LPV
Approach to Nonlinear Process
Identification Using Mixture t
Distributions∗

In this chapter, we propose a robust multiple-model linear parameter varying (LPV)

approach to identification of the nonlinear process contaminated with outliers. The

identification problem is formulated and solved under the EM framework. Instead

of assuming that the measurement noise comes from the Gaussian distribution like

conventional LPV approaches, the proposed robust algorithm formulates the LPV

solution using mixture t distributions and thus naturally addresses the robust iden-

tification problem. By modulating the distribution tails through degrees of freedom,

the proposed algorithm can handle various outliers. Two simulated examples and an

experiment are studied to verify the effectiveness of the proposed approach.

2.1 Introduction

Processes in industry are commonly operated in a wide operating range and tend to

exhibit parameter varying nature as well as nonlinearity. The dynamic behaviour of

the complex nonlinear process cannot be predicted well by traditional linear models.

Diverse nonlinear modelling approaches have been developed by researchers. Among

∗This chapter has been published in: Y. Lu and B. Huang, Robust multiple-model LPV approach
to nonlinear process identification using mixture t distributions, Journal of Process Control (in press,
2014).
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them, nonlinear ARX models [16] and Wiener-Hammerstein models [17] are widely

applied, though the robustness and prediction performance need improvement. Other

techniques such as neural networks [18], self-organizing maps [19], and least-squares

support vector machine (LS-SVM) [20] have been applied to identification of non-

linear processes by taking practical issues into account. Though the robustness of

nonlinear process identification methods have been improved using these elaborate

approaches, the identified model tends to be complicated. In literature, the linear pa-

rameter varying (LPV) approach has often been used to address the nonlinear process

identification problem. This approach utilizes a linear description for the nonlinear

process that involves a suitable set of scheduling variables [21]. The model complexity

of the nonlinear process can be reduced significantly using the LPV approach.

The existing LPV identification approaches are commonly formulated in discrete-

time framework assuming a dependence on the scheduling variable [22]. Based on the

model structure, they can be characterized into three types: input-output (IO) LPV

[23], state-space (SS) LPV [24] and orthogonal basis functions (OBF) based LPV

[25]. In this chapter we explore the LPV identification approach based on the IO

model. Most IO LPV methods existing in the literature are parameter interpolation

based [23, 26]. The limitation of the parameter interpolation is the assumption that

the scheduling variable should vary continuously, which may not always be the case

in practice. To address this issue, the model interpolation based LPV approach [4]

has been developed, although a similar idea can be traced back to an earlier study

[3]. The model interpolation LPV approach is a mixture modelling technique that

resembles the data clustering method, both of which assign each collected data point

to one of local models and then identify local models using assigned data points.

Multiple-model methods based on cluster analysis [6, 8] have been successfully ap-

plied to identification of piece-wise affine (PWA) systems, in which the transition

from one local model to another is abrupt. However, for many chemical processes,

the dynamic behaviour tends to vary gradually during the transition period. Thus,

models identified by methods based on cluster analysis may not capture the dynamics

of transition. On contrast, the transition dynamics can be approximated by a com-

bination of local models through a smooth validity function in model interpolation

LPV approaches. These approaches conform to the operation of chemical processes in
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practice; namely the process is operated around several desired operating points, and

dynamic transitions from one operating point to another operating point is permitted.

Although the model interpolation based LPV identification approaches proposed

in the literature are relevant to the operation of the process, to the best of authors’

knowledge, none of these methods has considered the influence of outliers and ro-

bustness which may greatly deteriorate the reliability of the identified model. Con-

ventional multiple-model approaches, for example, the algorithm illustrated in [27],

make use of Gaussian mixture models to approximate the complex process where

the prediction error of each local model is assumed as Gaussian distributed, a main

limitation of which is the lack of robustness to outliers. Under the assumed Gaus-

sian distribution, maximizing the likelihood function is equivalent to finding the least

square solution, which is well known for the lack of robustness [15]. Thus, models

identified by conventional approaches may be unreliable owing to the influence of

outliers. Considering the common existence of outliers in industry data sets, pos-

sibly brought by the malfunction of sensors, signal interference, incorrect recording

by technicians and other unknown disturbance, LPV modelling methods should take

outliers into account.

Simple approaches, like trimming and winsorizing [28], are aimed at screening

outliers. Though intuitive and simple, one of the common major drawbacks is the

simple discarding of data. This practice can lead to biased estimation [14]. Several

advanced approaches have been proposed to deal with outliers as alternatives to

simple screening. Methods are commonly designed to reduce the influence of outliers

in regression. Robust regression methods, such as the M-estimator introduced by

Huber [29], can iteratively down-weight the outlying data. Another way to cope

with potential outliers is to use the two-component Gaussian distribution, or the

contaminated Gaussian distribution [30, 31]. The outliers are taken into account when

modelling the noise, where a Gaussian component with large variance (or covariance

matrix) is utilized to model the outliers. Jin et al. have used the contaminated

Gaussian distribution to make their algorithm robust to outliers when identifying

the piecewise/switching process [8]. Although they have demonstrated the advantage

of their algorithm in dealing with outliers, the solution is limited to a special type

of outliers with two components of Gaussian mixture distribution. A more general
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approach to resist the influence of outliers is to use t distributions. The t distribution

can have longer tails than a Gaussian distribution through adjustable degrees of

freedom (ν). The effect of outliers on modelling can be diminished by assigning

higher probability densities to outliers (i.e. tails) [14]. Several researchers have taken

advantages of t distributions to make methods robust to outliers in their applications,

such as cluster analysis [32], image processing [33] and latent variable modelling [14].

However, in nonlinear process identification, to the best of authors’ knowledge,

no such method has been explored. In this chapter, we will develop a novel approach

which makes the identification of nonlinear processes robust to outliers using the

mixture t distributions under the framework of the multiple-model LPV approach.

Owing to the flexibility of t distributions, the proposed method not only resists the

adverse effect of outliers but also acts as an indicator of the quality of the data.

The degree of freedom of the t distribution is self-adaptive to the quality of the data

set. A large degree of freedom indicates a good quality of the data set while a small

one corresponds to a poor data quality. When the degree of freedom is taken as a

parameter to be estimated from data, the developed algorithm is capable of adapting

itself to the data with various quality. Two simulation examples and an experiment

verification demonstrate that the proposed method is capable of adapting to the

various data quality and can provide more reliable identification results.

We illustrate the proposed approach in detail in the remainder of this chapter.

Section 2 revisits t distributions, illustrating the relation between Gaussian distribu-

tions and t distributions. Then the identification problem is formulated under the

multiple-model LPV framework with mixture t distributions in Section 3. Consid-

ering the difficulty of estimating parameters by maximizing the likelihood function

directly, a robust identification method based on the EM algorithm is developed in

Section 4. Two simulation examples and an experiment performed on a balls-in-tubes

apparatus are utilized to verify the proposed method in Section 5. Section 6 concludes

this chapter.
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2.2 Revisit of t distributions

Though Gaussian distributions have nice analytical property and often yield tractable

algorithms for linear models, their sensitivity to outliers is widely known. As an

alternative, t distributions provide a way to broaden the Gaussian distribution for

potential outliers. The probability density function of a univariate t distribution with

mean µ, variance related variable σ2, and degrees of freedom ν is [32]

t(yk|µ, σ2, ν) =
Γ(ν+d

2
)|σ2|−1/2

(πν)d/2Γ(ν
2
){1 + δ(yk|µ, σ2)/ν} ν+d

2

, (2.1)

where d is the dimension of the observation yk (d = 1 here), and Γ(t) is the Gamma

function with the expression Γ(t) =
∫∞

0
zt−1e−zdz. In addition, δ(yk|µ, σ2) represents

the squared one-dimensional Mahalanobis distance between yk and µ:

δ(yk|µ, σ2) = (yk − µ)2/σ2. (2.2)

As displayed in Fig. 2.1, t distributions can have longer tails than a Gaussian distri-

bution owing to adjustable degrees of freedom ν. The effect of outliers on modelling

can be diminished by assigning higher probability densities to outliers [14].

Moreover, the t distribution can be represented by an infinite mixture of scaled

Gaussian distributions [15], so it reserves good analytical property of the Gaussian

distribution. Consider a linear model given by Eq. (2.3),

yk = xTk θ + ek, k = 1, 2, · · · , N (2.3)

with fully observed predictor variables; namely the regressor xk is fully observed. θ

is the regression coefficient, and ek is the residual distributed as a t distribution with

mean 0, variance related variable σ2, and degrees of freedom ν, i.e.,

ek ∼ t(0, σ2, ν), (2.4)

from which we have yk|(xk, θ, σ2, ν) ∼ t(xTk θ, σ
2, ν). Essentially, the t distribution

can be decomposed into scaled Gaussian distributions where the variance scale r is a

Gamma distributed latent variable which depends on degrees of freedom ν [15], i.e.,

f(yk|xk, θ, σ2, ν) =

∫
f(yk|xk, θ, σ2, ν, r)f(r|xk, θ, σ2, ν)dr, (2.5)
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Figure 2.1: Tails of t distributions with fixed mean for various degree of freedom ν,
where ν →∞ corresponds to a Gaussian distribution.

where

yk|(xk, θ, σ2, ν, r) = yk|(xk, θ, σ2, r) ∼ N (xTk θ, σ
2/r), (2.6)

r|(xk, θ, σ2, ν) = r|ν ∼ G(
1

2
ν,

1

2
ν), (2.7)

and the Gamma density function has the form:

G(r|α, β) =
βαrα−1e−βr

Γ(α)
, r > 0, α > 0, β > 0. (2.8)

According to the property of Gamma distributions, it is easy to understand that

r → 1 with probability 1 as ν →∞, and yk becomes marginally Gaussian distributed

[34], i.e, N (xTk θ, σ
2). Therefore, the family of t distributions not only reserve good an-

alytical property of Gaussian distributions, but also provide a heavy-tailed alternative

to the Gaussian family [32].

2.3 Problem formulation using mixture t distribu-

tions

Often chemical processes transit among several operating points during a normal

operation. Owing to the nonlinearity of the process, local models around different

9



operating points are different from each other. Therefore, a single linear model usually

fails to represent the whole process. Besides, the nonlinear model structure of the

process is usually unknown, so representing the process by a nonlinear model structure

directly is not feasible in most cases. To conquer this difficulty, the multiple-model

LPV approach has been proposed in literature. In this approach, each local model

around the operating point is approximated by a linear model. Among many linear

model structures, the autoregressive eXogenous (ARX) model structure is often used

[4, 27], while the Box-Jenkins (BJ) model structure has also been considered [22].

Since a high-order ARX model is capable of approximating any linear dynamic process

[35], and the parameter estimation of the ARX model has a closed form solution

under the EM framework, the ARX model structure, as expressed by Eq. (2.9), will

be adopted as the local model throughout this chapter.

yk = xTk θIk + ek, k = 1, 2, · · · , N (2.9)

where yk ∈ R is the measured output, and xk ∈ Rn denotes the regressor of the

process at k-th sampling instant. The regressor xk can be expressed as:

xk = [yk−1 yk−2 · · · yk−na uTk−1 u
T
k−2 · · · uTk−nb]T (2.10)

where the orders of the output and input polynomial are na and nb with the rela-

tionship n = na + m × nb, and u ∈ Rm represents the input. Conventionally the

prediction error (ek = yk − xTk θIk) is assumed to follow the Gaussian distribution

when formulating the identification problem. As discussed in the introduction sec-

tion, directly maximizing the Gaussian likelihood function lacks robustness. In order

to deal with potential outliers or data with longer-than-Gaussian tails, we consider

that ek follows t distributions. A good property of the t distribution is that it can be

decomposed into scaled Gaussian distributions and a Gamma distribution. In addi-

tion to the model identity Ik that is used to indicate the local model identity of the

k-th sampling data point, another hidden variable which is called variance scale Rk,

needs to be introduced, so that

yk|(xk, θIk , σ2
Ik
, Rk, Ik = i) ∼ N (xTk θi, σ

2
i /Rk), (2.11)

for k = 1, · · · , N , and

Rk|(νIk , Ik = i) ∼ G(
νi
2
,
νi
2

). (2.12)
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Thus, according to Section 2, given xk, θIk , σ
2
Ik
, νIk , and the model identity Ik = i, yk

follows a t distribution, i.e.,

yk|(xk, θIk , σ2
Ik
, νIk , Ik = i) ∼ t(xTk θi, σ

2
i , νi). (2.13)

In the proposed approach, an ARX model is adopted to capture the process dy-

namics around each operating point. The probability density at the current output

yk given the past input {uk−1, · · · , u1}, the past output {yk−1, · · · , y1}, the schedul-

ing variable {Tk, · · · , T1}, and model parameters Φ = {Φ1,Φ2, · · · ,ΦM} where the

parameter of i-th local model is denoted as Φi = {θi, σ2
i , νi} (i = 1, 2, · · · ,M), can be

derived as:
P (yk|yk−1, · · · , y1, uk−1, · · · , u1, Tk, · · · , T1,Φ)

=
M∑
i=1

P (yk, Ik = i|xk, Tk, · · · , T1,Φ)

=
M∑
i=1

πikP (yk|xk, Tk, · · · , T1,Φ, Ik = i)

=
M∑
i=1

πikP (yk|xk,Φi),

(2.14)

where xk = [yk−1, · · · , y1, uk−1, · · · , u1]T . Given the local model identify at k-th

sampling instant, the output yk is independent of the scheduling variable T and other

local model parameters ΦIk 6=i, so that P (yk|xk, Tk, · · · , T1,Φ, Ik = i) = P (yk|xk,Φi)

is obtained. In addition, πik denotes the probability that the i-th model takes effect,

also known as the mixing coefficient, which has the following expression:

πik = P (Ik = i|xk, Tk, · · · , T1,Φ). (2.15)

Since the model identity at k-th sampling instant does not depend on the past input

and output, past scheduling variables, and model parameters Φ when given the current

scheduling variable, Eq. (2.15) can be simplified as πik = P (Ik = i|Tk) with a

constraint
M∑
i=1

πik = 1. Up to now, the probability density of output yk given all the

observed information has been formulated as the mixture t distributions, as derived in

Eq. (2.14), where the distribution of each local model is formulated as a t component

with the density P (yk|xk,Φi), which is same as P (yk|xk, θIk , σ2
Ik
, νIk , Ik = i), and the

mixing coefficient πik.

Once linear models around fixed operating points have been identified, the global

model is obtained by model interpolation with the assistant of proper weighting func-
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tions, and the estimated output at k-th instant can be expressed as a combination of

estimation given by each local model, which is

yk =
M∑
i=1

αi(Tk)ŷik =
M∑
i=1

αi(Tk)x
T
k θ̂i, (2.16)

where αi(Tk) is the weight of i-th local model at k-th sampling instant. In literature,

several weighting functions are available, such as the cubic spline function [36], the

piecewise function [37], and the exponential function [27]. Among them, the expo-

nential function has only one parameter (validity width o) to determine when used as

the weighting function, and can provide a smooth combination of local models. The

exponential weighting function for i-th local model with respect to the scheduling

variable at k-th sampling instant is expressed by the following equation:

wik = exp

(
−(Tk − Ti)2

2(oi)
2

)
, (2.17)

where Tk denotes the measured or inferred scheduling variable at k-th sampling in-

stant; Ti denotes the fixed operating points around which the desired products are

produced, and they are assumed to be known a prior. The validity width of the i-th

local model is denoted as oi. The mixing coefficient πik is defined to be equivalent to

the normalized weight, i.e.,

πik , αi(Tk) =
wik
M∑
i=1

wik

,
M∑
i=1

πik = 1. (2.18)

Therefore, the parameters that need to be estimated are Θ = {Θ1,Θ2, · · · ,ΘM},

where Θi = {Φi, oi}, i = 1, 2, · · · ,M . The parameters can be estimated through the

maximum likelihood approach, i.e.,

Θ = arg max
Θ
P (Dobs|Θ)

= arg max
Θ
P (yN . . . y1, uN . . . u1, TN . . . T1|Θ), (2.19)

where the joint probability density P (yN . . . y1, uN . . . u1, TN . . . T1|Θ) can be expanded

according to the chain rule,

P (yN . . . y1, uN . . . u1, TN . . . T1|Θ)
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∆
= P (yN :1, uN :1, TN :1|Θ)

= P (yN |yN−1:1, uN :1, TN :1,Θ) · P (yN−1:1, uN :1, TN :1|Θ)

= P (yN |yN−1:1, uN :1, TN :1,Θ) · P (yN−1|yN−2:1, uN :1, TN :1,Θ) · P (yN−2:1, uN :1, TN :1|Θ)

...

= P (yN |yN−1:1, uN :1, TN :1,Θ) · · ·P (y2|y1, uN :1, TN :1,Θ) · P (y1, uN :1, TN :1|Θ)

=
N∏
k=2

P (yk|yk−1:1, uN :1, TN :1,Θ) · P (y1|uN :1, TN :1,Θ)C, (2.20)

where C is the conditional probability density P (uN :1, TN :1|Θ), and it is a constant.

Since the output at k-th instant, namely yk, is not affected by current and future in-

puts uN :k, and future scheduling variables TN :k+1, Eq. (2.20) can be further simplified

as

P (yN . . . y1, uN . . . u1, TN . . . T1|Θ) = P (y1|T1,Θ)C ·
N∏
k=2

P (yk|yk−1:1, uk−1:1, Tk:1,Θ).

(2.21)

According to Eq. (2.14), P (yk|yk−1:1, uk−1:1, Tk:1,Θ) =
M∑
i=1

πikP (yk|xk,Θi). Thus, Eq.

(2.19) can be finally written as,

Θ = arg max
Θ

{
M∑
i=1

πi1P (y1|Θi)C ·
N∏
k=2

M∑
i=1

πikP (yk|xk,Θi)

}
. (2.22)

2.4 Robust LPV model identification using the EM

algorithm

Estimating parameters by maximizing the likelihood function directly, as Eq. (2.22)

does, is difficult. The expectation-maximization (EM) algorithm [38] can make the

maximum-likelihood estimation of parameters feasible by iteratively maximizing a

lower bound of the log-likelihood when the data has missing values or hidden variables.

In the EM algorithm, we consider that the observed data Dobs is incomplete, and

the hidden variable Dhid is introduced to compose the complete data set {Dobs, Dhid}.

The algorithm first performs the E-step where the conditional expectation of the log-

likelihood of the complete data is derived. The expectation is referred to as the Q
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function:

Q(Θ|Θ(n)) = EDhid|Dobs,Θ(n) {logP (Dobs, Dhid|Θ)} . (2.23)

The second step, called the M-step, is to update the parameter Θ by maximizing

the Q function. That is to find:

Θ(n+1) = arg max
Θ
Q(Θ|Θ(n)). (2.24)

These two steps are iteratively calculated. The log-likelihood function of the ob-

served data is guaranteed to increase in each iteration, and the algorithm is guaranteed

to converge to at least a local maximum of the likelihood function [39].

2.4.1 E-step

Under the assumption made in Section 3, the complete data set in this scenario is

{Dobs, Dhid} = {(Y, U, T ), (R, I)}. Thus, the Q function is written as

Q(Θ|Θ(n)) = ER,I|Θ(n),Y,U,T{logP (Y, U, T,R, I|Θ)}. (2.25)

The log-likelihood of the complete data can be factorized into a summation of related

probability densities, as derived in Eq. (2.26).

logP (Y, U, T,R, I|Θ) = logP (Y |U, T,R, I,Θ)P (R|U, T, I,Θ)P (I|U, T,Θ)P (U, T |Θ)

= log
N∏
k=1

P (yk|xk, Rk,ΘIk)P (Rk|Ik, νIk)P (Ik|Tk,ΘIk)C

=
N∑
k=1

{logP (yk|xk, Rk,ΘIk) + logP (Rk|Ik, νIk)

+ logP (Ik|Tk,ΘIk)}+ logC, (2.26)

where C is the conditional probability P (U, T |Θ) that is a constant value. Therefore,

the Q function, namely Eq. (2.25), can be expanded as:

Q(Θ|Θ(n)) = ER,I|Θ(n),Y,U,T{
N∑
k=1

logP (yk|xk, Rk,ΘIk) +
N∑
k=1

logP (Rk|Ik, νIk)

+
N∑
k=1

logP (Ik|Tk,ΘIk) + logC}. (2.27)
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Recall that yk|(xk, Rk,ΘIk) ∼ N (xTk θIk , σ
2
Ik
/Rk) and Rk|(Ik, νIk) ∼ G(

νIk
2
,
νIk
2

), so

that

logP (yk|xk, Rk,ΘIk) = log
1√

(2π)σ2
Ik
/Rk

e
−
Rk(yk−x

T
k θIk

)
2

2σ2
Ik

= −1

2
log 2π − 1

2
log σ2

Ik
+

1

2
logRk −

Rk

2σIk
2
(yk − xTk θIk)2,

(2.28)

logP (Rk|Ik, νIk) = log
(νIk/2)

νIk
2 Rk

νIk
2
−1

Γ(
νIk
2

)
e−

νIk
2
Rk

= − log Γ(
1

2
νIk) +

1

2
νIk log(

1

2
νIk) +

1

2
νIk(logRk −Rk)− logRk.

(2.29)

Thus the log-likelihood of the complete data can be expressed as a linear function

of Rk, logRk and Ik, and the above expectation calculation can be implemented by

taking the expectation of each term over Rk and logRk, k = 1, 2, · · · , N , conditional

on Ik = i, as well as Dobs and Θ(n), and then over Ik given Dobs and Θ(n). To

summarize, the expectation calculations boil down to

E(Rk|Ik = i,Θ(n), Y, U, T ),

E(logRk|Ik = i,Θ(n), Y, U, T ),

E(Ik|Θ(n), Y, U, T ). (2.30)

The posterior probability that the i-th component of the mixture generates the

data point yk, given the observed data set Dobs and the estimated parameters in the

previous M-step Θ(n), can be calculated based on the Bayes’ rule:

P (Ik = i|Θ(n), Y, U, T ) = P (Ik = i|Θ(n), yk, · · · , y1, uk−1, · · · , u1, Tk, · · · , T1)

= P (Ik = i|Θ(n), yk, xk, Tk)

=
P (yk|Θ(n), xk, Tk, Ik = i)P (Ik = i|Θ(n), xk, Tk)

P (yk|Θ(n), xk, Tk)

=
π

(n)
ik P (yk|Θi

(n), xk, Tk, Ik = i)
M∑
i=1

π
(n)
ik P (yk|Θi

(n), xk, Tk, Ik = i)
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=
π

(n)
ik P (yk|xk, σ2

i
(n)
, ν

(n)
i , θ

(n)
i )

M∑
i=1

π
(n)
ik P (yk|xk, σ2

i
(n)
, ν

(n)
i , θ

(n)
i )

∆
= τ

(n)
ik . (2.31)

The Gamma distribution is the conjugate prior distribution over Rk, and hence

the conditional posterior distribution over Rk, namely, its distribution given {Ik =

i,Θ(n), Y, U, T}, follows a Gamma distribution as well [34]:

Rk|Ik = i,Θ(n), Y, U, T ∼ gamma

(
ν

(n)
i + 1

2
,
ν

(n)
i + δ(yk|xkT θ(n)

i , σ2
i

(n)
)

2

)
. (2.32)

From Eq. (2.32) we can get the expectation of the conditional posterior distribution

over Rk and logRk according to the property of Gamma distributions [32]:

E(Rk|Ik = i,Θ(n), Y, U, T ) =
ν

(n)
i + 1

ν
(n)
i + δ(yk|xkT θ(n)

i , σ2
i

(n)
)

∆
= r

(n)
ik , (2.33)

E(logRk|Ik = i,Θ(n), Y, U, T ) = ψ(
ν

(n)
i + 1

2
)− log(

ν
(n)
i + δ(yk|xkT θ(n)

i , σ2
i

(n)
)

2
)

= log r
(n)
ik + {ψ(

νi
(n) + 1

2
)− log

νi
(n) + 1

2
}, (2.34)

where ψ(ν) is the digamma function that is equivalent to the first order derivative of

Γ(ν) divided by Γ(ν), i.e.,

ψ(ν) =
∂Γ(ν)/∂ν

Γ(ν)
. (2.35)

By using the results obtained in Eq. (2.31), Eq. (2.33), and Eq. (2.34), the Q

function presented in Eq. (2.27), can be written as

Q(Θ|Θ(n)) =
N∑
k=1

M∑
i=1

τ
(n)
ik {Q1(oi) +Q2(νi) +Q3(θi, σi

2)}+ logC (2.36)

where

Q1(oi) =

 e
− (Tk−Ti)

2

2o2
i

M∑
i=1

e
− (Tk−Ti)

2

2o2
i

 , (2.37)

Q2(νi) = − log Γ(
1

2
νi) +

1

2
νi log(

1

2
νi)−

(
log r

(n)
ik + {ψ(

νi
(n) + 1

2
)− log

νi
(n) + 1

2
}
)
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+
1

2
νi

(
log r

(n)
ik + {ψ(

νi
(n) + 1

2
)− log

νi
(n) + 1

2
} − r(n)

ik

)
, (2.38)

and

Q3(θi, σi
2) = −1

2
log 2π − log σi −

r
(n)
ik

2σi2
(yk − xTk θi)

2

+
1

2

(
log r

(n)
ik + {ψ(

νi
(n) + 1

2
)− log

νi
(n) + 1

2
}
)
. (2.39)

In short, we can see that the main task of the E-step is to determine τ
(n)
ik and r

(n)
ik .

They are the key components of the Q function along with the observed data, the

estimated parameters from the previous M-step, and the unknown parameters that

need to be estimated in the next M-step.

2.4.2 M-step

The M step is to update parameters by maximizing the Q function derived as Eq.

(2.36). Through the maximization, we can get analytical solutions for θ
(n+1)
i and

σ2
i

(n+1)
. As for o

(n+1)
i and ν

(n+1)
i , we need to use numerical methods to search for the

optimum. The updated parameters can be expressed as follows:

θ
(n+1)
i =

N∑
k=1

τ
(n)
ik r

(n)
ik xkyk

N∑
k=1

τ
(n)
ik r

(n)
ik xkx

T
k

, (2.40)

σ2
i

(n+1)
=

N∑
k=1

τ
(n)
ik r

(n)
ik (yk − xTk θ

(n+1)
i )

2

N∑
k=1

τ
(n)
ik

, (2.41)

o
(n+1)
i = argmaxoi,i=1,2,··· ,M

{
N∑
k=1

M∑
i=1

τ
(n)
ik Q1(oi)

}
, (2.42)

s.t. omin ≤ oi ≤ omax
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v
(n+1)
i : ∂

∂νi

N∑
k=1

M∑
i=1

τ
(n)
ik Q2(νi) = 0⇔

−ψ(1
2
νi) + log(1

2
νi) + 1 + {ψ(νi

(n)+1
2

)− log νi
(n)+1

2
}+ 1

N∑
k=1

τ
(n)
ik

N∑
k=1

τ
(n)
ik (log r

(n)
ik − r

(n)
ik ) = 0.

(2.43)

To reduce the computation load for searching the numerical optimum, we let M

local t components have equal degrees of freedom; that is to say, let ν1 = ν2 = · · · =

νM = ν. This is reasonable as the degree of freedom represents the data quality. Thus

the maximizing step for ν can be derived as

−ψ(
1

2
ν)+log(

1

2
ν)+1+{ψ(

ν(n) + 1

2
)−log

ν(n) + 1

2
}+ 1

N

N∑
k=1

M∑
i=1

τ
(n)
ik (log r

(n)
ik − r

(n)
ik ) = 0.

(2.44)

2.4.3 Algorithm summary and discussion

The E-step and M-step are updated iteratively until the convergence of the algorithm.

The log-likelihood of the observed data, which is calculated through Eq. (2.45) refer-

ring to Eq. (2.22), acts as the indicator of convergence:

L(Θ(n+1)) =
N∑
k=1

log(
M∑
i=1

π
(n+1)
ik P (yk|xk,Θ(n+1)

i )) + C. (2.45)

When |L(Θ(n+1))− L(Θ(n))| ≤ ε, model parameters converge to their true value, and

the iteration stops. ε is the threshold of the stop criterion. In summary, the proposed

robust algorithm is executed as Table 2.1 shows.

Table 2.1: Procedure of the proposed robust algorithm
1. Initialization. Set n = 0. Assign random values to param-

eters Θ(0).

2. E-step. Evaluate τ
(n)
ik by Eq. (2.31) and r

(n)
ik by Eq. (2.33).

3. M-step. Update parameters θ
(n+1)
i by Eq. (2.40), σ2

i
(n+1)

by

Eq. (2.41), o
(n+1)
i by Eq. (2.42), and ν(n+1) by Eq. (2.44).

4. Evaluate L(Θ(n+1)). Calculate the new value of the log-
likelihood of the observed data.

5. Check stop criterion. If |L(Θ(n+1)) − L(Θ(n))| ≤ ε, stop.
Otherwise, set n = n+ 1, and go to step 2.
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The equation for calculating θ
(n+1)
i has a similar form as the one in [8] which

introduces a scaling weight to reduce the adverse influence of the outliers when solving

the identification problem of switching process dynamics. However, unlike the scaling

weight which is determined manually according to the priori knowledge as shown in

[8], the weight r
(n)
ik in this work is completely determined by the data set itself.

When the collected data set is contaminated with outliers, the estimated degrees of

freedom ν(n) will have a small value. Suppose that the current output yk is generated

around the i-th operating point. If it is an outlier, the distance between yk and xTk θ
(n)
i ,

namely δ(yk|xkT θ(n)
i , σ2

i
(n)

), is large, and according to Eq. (2.33), r
(n)
ik will be small.

Hence, the k-th sampling data point will be down-weighted when estimating the

model parameters using Eq. (2.40) and Eq. (2.41). On the other hand, If the sample

is normal, r
(n)
ik is close to 1, and thus the data point takes full effect in parameter

estimation.

Besides, if the collected data has a good quality, i.e., the noise follows a Gaus-

sian distribution, the estimated degrees of freedom ν(n) will be large and the distance

δ(yk|xkT θ(n)
i , σ2

i
(n)

) will be small, and hence r
(n)
ik is always close to 1. All data points

collected around the i-th operating point take full effect in estimating parameters

of the i-th local model, so the proposed robust approach is consistent with the con-

ventional approach when the noise is Gaussian distributed. Therefore, the proposed

approach is an adaptive approach to dealing with outliers.

2.5 Simulation & experiment

2.5.1 Numerical example

The first simulation example is adopted from [4]. Consider a first order continuous-

time process with the following transfer function,

G(s, p) =
K(p)

τ(p)s+ 1
, (2.46)

where

K(p) = 0.6 + p2, τ(p) = 3 + 0.5p3, p ∈ [1, 4]. (2.47)

Both time constant τ and gain K vary in the operation range p ∈ [1, 4]. Therefore,

a single linear model cannot capture the process behaviour in the whole operation
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trajectory [4].

Consider first the three operating points, i.e., p = 1, p = 2.25 and p = 4. The true

values of local model parameters, namely θi, i = 1, 2, 3, are obtained by discretizing

the continuous-time transfer function at the corresponding operating point. The

scheduling variable p varies as follows (shown in Fig. 2.2):

• First period: 100 seconds, at the operating point p = 1;

• Second period: 300 seconds, the scheduling variable p varies linearly in time

from 1 to 2.25;

• Third period: 150 seconds, at the operating point p = 2.25;

• Fourth period: 200 seconds, the scheduling variable p varies linearly in time

from 2.25 to 4;

• Fifth period: 150 seconds, at the operating point p = 4.
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Figure 2.2: Variation of the noise-free scheduling variable p.

To identify the nonlinear process, a random binary sequence (RBS) signal is de-

signed for persistently exciting the process around each operating point. The regular
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LPV approach proposed in [27] only considers Gaussian distributed noise, the perfor-

mance of which will be deteriorated by outliers. The proposed robust approach can

eliminate the adverse effect of outliers owing to the adaptive degrees of freedom. How

severe contamination the proposed approach can deal with, or what the breakdown

point of the proposed approach is, is of interest to investigate. A set of Gaussian

noise with mean 0 and variance 0.015 is generated as the process noise. To find the

breakdown point of the proposed algorithm, we substitute part of the process noise by

uniformly distributed outliers which are located in the range [-3.5, -3]. The percent-

age of outliers ranges from 0 to 50 % with a 1% incremental size. Fig. 2.3 shows the

variation of degrees of freedom (ν) with the percentage of outliers, from which we can

see that the breakdown point is about 38% outliers in this simulated case study. After

38%, the estimated degrees of freedom tend to be unstable and may be far away from

the true value. Therefore, within a broad range of corruption, the proposed approach

is capable of adapting to the various quality of data, that is to say, adaptively using

large degrees of freedom to identify the model from data sets having good quality

while using small degrees of freedom to deal with poor quality data sets. We also

compare the results of parameter estimation obtained by the regular approach and

the proposed robust approach. The relative error, as defined by Eq. (2.48), is used

to indicate the accuracy of estimation. Fig. 2.4 shows the average relative error of 6

local-model parameters. The relative error given by the proposed robust approach is

around 5%, and it is consistently smaller than the one given by the regular approach

when the percentage of outliers ranges from 0% to 38%. In fact, the relative error

from the regular approach is fairly large and unpredictable and Fig. 2.4 only shows

the best case of the regular approach. After 38 % outliers, the proposed approach

still outperforms the regular one, even though the estimated degrees of freedom are

not accurate. It can be explained by Eq. (2.33). Although the estimated ν(n) is much

larger than the true value, it will not influence the weight r
(n)
ik significantly. For the

normal data point, the distance δ(yk|xkT θ(n)
i , σ2

i
(n)

) is small, so r
(n)
ik is close to 1. For

the outlying data point, the distance is large, so r
(n)
ik is smaller than 1. Therefore,

even if ν(n) is not well estimated, normal data points still take effect in parameter

estimation while outliers are down-weighted.
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Relative Error =
|θ̂ − θTrue|
θTrue

× 100%. (2.48)
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Figure 2.3: Variation of ν with the increasing degree of corruption.

To fairly compare the regular approach and the proposed robust approach, Monte

Carlo simulations (50 runs) are performed in two cases:

Case I. the process noise is Gaussian distributed.

Case II. the process noise is contaminated with 10% outliers.

We list the parameters estimated by two methods in Table 2.2 for comparison.

True denotes the true parameter values of local models at the operating point p =

1, p = 2.25, and p = 4, respectively. Regular means the estimated parameter by

the regular LPV approach as proposed in [27]. Robust stands for the estimated

parameter by the proposed robust LPV approach using mixture t distributions. The

mean and one standard deviation of the estimation are presented in Table 2.2. In

Case I, these two identification algorithms have a comparable performance, while

in Case II, the comparison demonstrates that the proposed approach outperforms

the regular approach in dealing with outliers. The estimated parameters by the

proposed approach are closer to true values, and the standard deviations are smaller.

22



0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

Percentage of Outliers(%)

A
ve

ra
ge

 R
el

at
iv

e 
E

rr
or

 (%
)

 

 
Regular
Robust

Figure 2.4: Comparison of average relative error of 6 local-model parameters from
two approaches.

In addition, the proposed approach will have more significant advantage over the

regular one when the data set is contaminated more severely according to Fig. 2.4.

In order to inspect the prediction performance of the identified LPV model by

the proposed approach, both self-validation and cross-validation are considered. In

self-validation, instead of using the training data set which contains a lot of outliers,

we generate an outlier-free data set randomly around original operating points (p = 1,

p = 2.25, and p = 4), and in cross-validation, we make use of a new data set that is

generated around new operating points. To generate the data set for cross-validation,

three new operating points, i.e., p = 1.1, p = 2.15, and p = 3.9, are considered.

In addition to the regular approach and the proposed robust approach, a robust

nonlinear process identification method is also compared. Here, the LS-SVM [20]

which is a kernel-based learning method is considered. Under the situation where

the noise is contaminated with 10% outliers, identification results from one random

example of simulations are used for model validation, as shown in Fig. 2.5(a) and Fig.

2.5(b). The prediction of LPV model identified by the proposed approach captures

the trend of the measurement in both self-validation and cross-validation, so does the
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Table 2.2: Comparison of estimated parameters by two methods.
θ1 θ2 θ3

True
0.751 0.891 0.972
0.398 0.615 0.468

Case I: No outliers in the process noise

Regular
0.791(±0.0158) 0.881(±0.0080) 0.973(±0.0038)
0.389(±0.0273) 0.624(±0.0180) 0.481(±0.0171)

Robust
0.793(±0.0172) 0.880(±0.0086) 0.973(±0.0041)
0.383(±0.0302) 0.626(±0.0186) 0.483(±0.0167)

Case II: 10% outliers in the process noise

Regular
0.839(±0.0169) 0.936(±0.0093) 0.993(±0.0036)
0.409(±0.1247) 0.575(±0.1394) 0.482(±0.1344)

Robust
0.771(±0.0106) 0.887(±0.0050) 0.969(±0.0016)
0.438(±0.0286) 0.599(±0.0241) 0.476(±0.0235)

prediction of the model fitted by the robust LS-SVM, indicating that both the LPV

model and the LS-SVM model are capable of representing the nonlinear process.

However, the LPV model identified by the proposed approach has a much simpler

model structure than the kernel-based model given by LS-SVM. The performance of

the regular approach is not good compared with other two approaches. The root

mean square errors of self-validation (SV RMSE) and cross-validation (CV RMSE)

are compared in Table 2.3. As shown in Table 2.3, the proposed robust approach has

a better prediction performance than other two methods.

Table 2.3: Comparison of prediction performance of identified models.
Method SV RMSE CV RMSE
Regular 1.7097 1.2734
Robust 0.3794 0.3885
LS-SVM[20] 0.9561 1.1789

2.5.2 Continuous stirred tank reactor

The continuous stirred tank reactor (CSTR) is a widely used production unit in

chemical and petrochemical processes. The CSTR studied here is an exothermic

process with irreversible reaction A → B that has been utilized in literatures for

nonlinear system state estimation and model predictive control [40, 41, 42]. The first

principle model of the process can be written as follows according to the mass balance
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Figure 2.5: (a)Self-validation of identified models; (b)cross-validation of identified
models. The data sets used in validation have no synthetic outliers.

25



and heat balance of the process [40]:

dCA(t)

dt
=
q(t)

V
(CA0(t)− CA(t))− k0CA(t) exp

(
−E
RT (t)

)
(2.49)

dT (t)
dt

= q(t)
V

(T0(t)− T (t))− (−∆H)k0CA(t)
ρCp

exp
(
−E
RT (t)

)
+ρcCpc
ρCpV

qc(t)
{

1− exp
(
−hA

qc(t)ρCp

)}
(Tc0(t)− T (t))

(2.50)

The variables and their corresponding steady state values in the above two equa-

tions are listed in Table 2.4 [40].

Table 2.4: Variables and their steady state values of the CSTR process.
Parameter Value Unit
Product concentration of component A, CA output1 mol/L
Temperature of the reactor, T output2 K
Coolant flow rate, qc input L/min
Process flow rate, q 100 L/min
Feed concentration of component A, CA0 1 mol/L
Feed temperature, T0 350.0 K
Inlet coolant temperature, Tc0 350.0 K
Specific heats, Cp, Cpc 1 cal/(g K)
Heat transfer term, hA 7× 105 cal/(min K)
Reactor volume, V 100 L
Liquid density, ρ, ρc 1× 103 g/L
Heat of reaction, −∆H −2× 105 cal/mol
Activation energy term, E/R 1× 104 K
Reaction rate constant, k0 7.2× 1010 min−1

In this simulation, the relationship between the coolant flow rate (qc) and the

product concentration of component A (CA) is considered for building a single input

single output (SISO) model. The input-output data set is generated from the sim-

ulated process. To verify the proposed method, we add measurement noise to the

simulated output. The magnitude of the added white noise is 0.5% of the magni-

tude of the noise-free output, and 5% of the noise is randomly selected and replaced

by outliers which are uniformly distributed in the range of [-0.03, 0.02]. The input-

output data of the process contaminated by outliers is presented in Fig. 2.6. Since the

coolant flow rate (qc) influences the model significantly, it is chosen as the scheduling

variable that varies from 97 L/min to 109 L/min [27]. Three operating points are

taken into account, with qc being 97 L/min, 103 L/min, and 109 L/min, respectively.
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A LPV model is identified for the CSTR process by the proposed robust approach.

For each local model, the normalized weight varies with different coolant flow rate,

as shown in Fig. 2.7. When qc = 97L/min, the weight of the first local model is

larger than 0.95 while all other weights are close to 0. It means that the first local

model is the dominant one when the scheduling variable is around 97 L/min. As qc

increases, the weight of the first model decreases quickly while that of the second one

increases until qc reaches the range dominated by the second local model, and so on.

The effective range of the first local model is quite small because of a small validity

width of this local model (o1). The second local model has a bigger validity width,

leading to a larger effective range, so does the third local model. Thus, the overall

prediction of the identified model can be effectively represented by a weighted com-

bination of prediction given by these three local models. The identified LPV model

is much simpler than the original nonlinear process, but it approximates the complex

CSTR process as demonstrated through the model validation.
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Figure 2.6: Input-output data set of the CSTR process.

Results of self-validation based on the training data (qc ∈ {97, 103, 109} L/min)
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Figure 2.7: Normalized weight of each local model under different operating conditions
(coolant flow rates).

are shown in Fig. 2.8. Cross-validation results around new operating points (qc ∈

{98, 103, 107} L/min) are presented in Fig. 2.9. In both figures, the predicted output

of the model identified by the proposed method can capture the dynamics of the true

process well, so does that of the model fitted by LS-SVM. The LPV model identified

by the regular method is not as reliable as models from the other two methods. Table

2.5 shows the RMSE of both self-validation and cross-validation. It is clear that

the performance of the proposed method is comparable with that of the LS-SVM

method. However, compared with the nonlinear model fitted by LS-SVM, the LPV

model identified by the proposed method is much simpler and more intuitive since it

is a weighted combination of three local linear models.

Table 2.5: Comparison of prediction performance of identified CSTR models.
Method SV RMSE CV RMSE
Regular 0.00373 0.00237
Robust 0.00352 0.00050
LS-SVM[20] 0.00351 0.00038
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Figure 2.8: Self-validation of identified models for CSTR. Predicted output of the
LPV model identified by the proposed method capture the dynamics of the true
process well, so does that of the model fitted by LS-SVM.

2.5.3 Experiment evaluation

An experiment using a pilot-scale system called balls-in-tubes is conducted to further

demonstrate the validity of the proposed approach. The experimental apparatus is

presented in Fig. 2.10. The system has four modules. Each of them has a tube

with a ping-pong ball inside, an ultrasonic sensor at the top to measure the distance

between the sensor and the ball, and a DC fan at the bottom of the tube to lift the

ball. The box under each tube can be viewed as a still balloon blown up by the fan,

and its outlet blows air into the tube. These four tubes are connected at the fans’

inlets by means of an input manifold that has a fan at the inlet on the left and an

adjustable outlet on the right. This fan acts as the main fan of the system, sucking

air into the system from the outside. An output manifold which has an outlet also

connects tubes on the top. More detailed description of the experimental apparatus

can be found in [43].

The manifolds play a key role in the experiment. The input manifold necessitates

the sharing of air, and the output manifold restricts the air flow. They cause a
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Figure 2.9: Cross-validation of identified models for CSTR. The LPV model identified
by the regular method fails to predict the dynamics of the process when the coolant
flow rate is low. Both the LPV model identified by the proposed method and the
model fitted by LS-SVM can predict the dynamics of the true process.
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Figure 2.10: Experimental apparatus of the balls-in-tubes system.

significant coupling among the four tubes [43]. The speed of the main fan at the

input manifold is fixed, so the amount of the air that can be allocated by DC fans

is viewed as a constant. Therefore, if a significant amount of air is allocated to

some tubes, then the fans for other tubes have less air that can be allocated. In

our experiment, tube 1 is the module that we are interested in. The process model

between the input, namely the fan speed, and the output, namely the ball’s height,

varies owing to the limited air in the manifold. When speeds of other fans increase,

more air is allocated into other tubes, so that the fan for tube 1 has less air that can be

allocated, resulting in the dropping of the ball if the fan speed remains constant. As

a result, the model parameters of tube 1 will be influenced by the fan speed of other

tubes. Therefore, the fan speed of other tubes can be considered as the scheduling

variable for tube 1 because of their significant influence. For simplicity, only the fan

for tube 4 is utilized while the fans for tube 2 and tube 3 respectively are not run.

In other words, only the speed of the fan for tube 4 takes the role of the scheduling

variable in this experiment. Meanwhile, a PID controller is used for maintaining the
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height of the ball in tube 1 around the set point. Random binary sequence signal is

designed as the set point signal to persistently excite the process. The controller’s

signal and the ball’s height are sampled as the input and output data of the process.

Fig. 2.11 shows the influence of the scheduling variable on the input of tube 1, and

Fig. 2.12 presents the affected output of tube 1. These two figures indicate that it is

appropriate to take the speed of fan 4 as the scheduling variable.
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Figure 2.11: Influence of the scheduling variable to the input. When the speed of fan
4 increase, more air is allocated into tube 4, meaning the fan for tube 1 has less air
that can be allocated. Fan 1 has to increase the speed to make the ball recover to
the previous height.

In the experiment, the operating points are selected at 10%, 50%, and 100% of

the maximum speed of fan 4 respectively, and the scheduling variable varies from

one operating point to another with gradual transition, as shown in Fig. 2.13. The

collected input and output data (training data) are presented in Fig. 2.14. The

data set collected from the ultrasonic sensors is noisy, with some measurement spikes

corresponding to errors greater than 10 cm [43], naturally representing the outliers.

ARX models are adopted as local models around operating points. Utilizing the

proposed robust algorithm, a LPV model is identified for representing this parameter
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Figure 2.12: Influence of the scheduling variable to the output. The ball drops sud-
denly when the scheduling variable increases from 0.2 to 1. After the fan speed
increases, the ball’s height recovers to the set point.

varying process.

The prediction performance of identified models by different nonlinear process

identification approaches is compared through model validation. The self-validation

is first performed using the collected training data. Fig. 2.15 displays the validation

result. Note that the input signal of the process is actually the control signal deter-

mined by the PID controller, so this is a closed-loop identification problem. When a

measured output is an outlier, the control signal given by the PID controller changes

sharply because of the large difference between the measurement and the set point,

so the estimated output contains spikes too, corresponding to outliers in the measure-

ment. To display the outliers in the measurement, the one-step ahead predictor is

utilized. The residual between the measured output and one-step ahead prediction is

presented in Fig. 2.16, from which we can see that quite a few measured data points

are outliers. To further verify the identified LPV model, a data set collected around

new operating points is used for cross-validation. The new operating points are at

30% and 80% of the maximum speed of fan 4, and the scheduling variable varies
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Figure 2.13: The operating points are at 10%, 50%, and 100% of the maximum speed
respectively, and the scheduling variable varies from one operating point to another
operating point with gradual transition.
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Figure 2.14: The collected input and output data (training data).
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from 30% to 80% gradually. The result of cross-validation is shown in Fig. 2.17.

The dynamic predictions of models identified by all three methods are comparable

by graphic visualization. To have a closer look at the prediction performance, we list

the RMSE of model validation in Table 2.6. Although the regular LPV identification

approach has a smaller RMSE in self-validation, the prediction performance of the

regular approach around new operating points is poorer than the proposed robust

approach. The prediction performance of the model identified by LS-SVM is also

poorer than the proposed even though it has a more complex model structure.

Table 2.6: Comparison of prediction performance.
Method SV RMSE CV RMSE
Regular 0.0315 0.0444
Robust 0.0355 0.0369
LS-SVM[20] 0.0385 0.0727
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Figure 2.15: Self-validation of identified models. The infinite-step ahead predictions
given by different models are compared with the measurement.
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Figure 2.16: Residual between the one-step ahead prediction of the model identified
by the proposed method and the measured output.
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Figure 2.17: Cross-validation of identified models. The infinite-step ahead predictions
given by different models are compared with the measurement around new operating
points.
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2.6 Conclusions

In this chapter we proposed a robust multiple-model LPV approach to identify the

nonlinear process subject to outliers using mixture t distributions. The multiple-

model LPV approach uses a weighted combination of local models around fixed oper-

ating points to approximate the nonlinear process across the whole operating range.

In the proposed method, outliers are handled by using the mixture t distributions.

Owing to the flexibility of degrees of freedom of t distributions, the proposed method

shows good resistance to the influence of outliers and adaptability to data sets with

different quality, and meanwhile it can also provide indication of the data quality.

An effective algorithm for parameter estimation when identifying the LPV model was

derived under the framework of EM algorithm. A numerical example and a simu-

lated chemical process have demonstrated the advantage of the proposed method.

The balls-in-tubes experiment has been conducted to further verify the effectiveness

of proposed method.
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Chapter 3

A Variational Bayesian Approach
to Robust Identification of
Switched ARX Models ∗

A variational Bayesian (VB) approach to robust identification of switched Auto-

Regressive eXogenous (SARX) models is developed in this chapter. By formulating

the problem of interest under a full Bayesian identification framework, the number of

local models can be determined automatically, while accounting for the uncertainty

of parameter estimates in the overall identification procedure. A set of significance

coefficients is used to assign proper importance weights to the local models. The

optimal values of significance coefficients are obtained by maximizing the marginal

likelihood of the identification data. In this way, insignificant local models will be

suppressed and the optimal number of local models can be determined. Considering

the fact that the identification data may be contaminated with outliers, t distributions

with adjustable tails are utilized to model the contaminating noise. The t distribution

with smaller degrees of freedom can assign higher probability density to the longer

tails so that the negative influence of outliers on the identification procedure can

be reduced. Besides, given any new data, outliers can be detected by evaluating

the predictive probability distribution. The effectiveness of the proposed Bayesian

approach is demonstrated through simulated examples.

∗This chapter is an extended version of the paper: Y. Lu, S. Khatibisepehr, and B. Huang, A
Variational Bayesian Approach to Identification of Switched ARX Models, Proceedings of the 53rd
IEEE Conference on Decision and Control (accepted, 2014).
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3.1 Introduction

Industrial processes usually exhibit certain forms of non-linear behaviour. Suitable

production policies might drive a chemical plant to switch among various operating

conditions resulting in multiple modes or regimes of behaviour. Historical process data

collected around different operating points may be generated by different dynamics.

Thus, a single linear model may fail to capture the dynamics of a complex chemical

process. In such a situation, hybrid models with multiple-model structures may be

used to describe both continuous-state and discrete-state dynamics of the underlying

non-linear processes [6]. Owing to its multiple-model nature, a hybrid model can

capture different dynamics simultaneously. To represent a multi-modal process or a

hybrid system, a switched local ARX (SARX) model is often used to approximate

the non-linear dynamic behaviour of a process with various operating points [7, 8],

due to its simplicity and effectiveness.

The problem of identifying SARX models has been considered widely and sev-

eral approaches have been proposed such as clustering based techniques [44], particle

filtering based algorithms [7], recursive least square methods [45], prediction error

minimization methods [5] and expectation-maximization based algorithms [8]. Suc-

cessful implementation of these methods often requires high-quality identification

data as well as prior knowledge of the number of local-models, and most of them only

deal with a special type of SARX models, called piecewise affine models in which the

switching mechanism of the process is represented by regressor space partition. If

the switching mechanism is regarded as switching along the time instead of regressor

space partition, a general type of the switched process can be described[8], but the

number of local-models is needed a priori.

However, there is often no prior information available about the number of local-

models, so the condition required by most methods that the number of local-models

is known a priori is inconsistent with real situation. Nakada et al. [6] utilized the

information criteria such as the consistent Akaike’s information criterion (CAIC) and

the minimum description length (MDL) to determine the number of local-models. The

authors performed comparison among a set of identified SARX models with different

number of local-models, and selected the SARX model which had the smallest value of
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information criteria as the final model with the optimal number of local-models. Vidal

[46] proposed a recursive approach to estimate model parameters and the number of

local-models simultaneously. However, both methods ignored the potential adverse

influence of outliers. In practice, a random error caused by such issues as instrument

degradation, transmission faults and process disturbances usually results in an outlier

in process data [47]. Noisy measurements and outlying observations can significantly

deteriorate the performance of conventional identification methods. Jin et al. [8]

proposed an identification approach that could resist the adverse effect of outlying

data, but their method addressed the problem in an ad hoc way, and it required a

known number of local-models. Another shortcoming of these methods is that they

merely obtain a set of single-valued parameter estimates. As a result, the uncertainty

of parameters cannot be provided. To address the aforementioned issues, a more

advanced and robust method needs to be developed in order to identify the SARX

models from noisy training data with less need of subjective knowledge.

In this chapter, a new approach is developed for robust identification of the SARX

models with the variational Bayesian (VB) learning method [48, 49]. Practical issues

such as adverse influence of outliers, no or little prior knowledge of local-model num-

bers, and uncertainty of estimated parameters, are taken into account simultaneously.

To handle the outliers, t distributions with adjustable degrees of freedom are utilized

to model the contaminating noise. The t distribution with smaller degrees of freedom

can assign higher probability density to the tails so that the negative influence of

outliers on the identification procedure can be diminished [14]. t distributions are

commonly utilized in robust modelling [15, 50]. Moreover, the t distribution has

shown advantages in image processing and computer vision [33, 51]. An analytical

expression for the approximated posterior probability density function over the model

parameters is obtained by decomposing the t distribution into scaled Normal distri-

butions and a Gamma distribution[15, 32]. Owing to the attractive property of the t

distribution, the proposed approach can effectively adapt to various quality of identi-

fication data sets in order to make more reliable estimation. To determine the number

of local-model, a set of significance coefficients is used to assign proper significance

weights to local-models. The optimal values of significance coefficients are obtained by

maximizing the marginal likelihood of the identification data [52]. In this way, local-
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models that have insignificant dynamics will be suppressed and the optimal number

of the local-models can be determined. In the proposed approach, the VB algorithm

iteratively maximizes a lower bound of the marginal data likelihood, from which a

set of approximating posterior distributions over model parameters can be obtained

after the lower bound converges. Thus, the uncertainty of estimated parameters is

also taken into account when determining the optimal number of local-models.

The proposed approach is discussed in detail in the remainder of this chapter.

Section 2 briefly revisits the variational Bayesian algorithm. The illustration of the

SARX identification problem is presented in Section 3. Section 4 is the mathematical

formulation of the proposed approach under the variational Bayesian framework. In

Section 5, identification of a simulated SARX process and a non-linear model is used

to verify the proposed approach. Section 6 concludes this chapter.

3.2 Revisit of variational Bayesian approach

Let Y be a set of observed data, X be the hidden variable and Ω be the model struc-

ture. In Bayesian model identification, the marginal likelihood or evidence p(Y |Ω) is

the key quantity to be evaluated. Usually the following integral has to be solved:

p(Y |Ω) =

∫
p(X, θ|Ω)p(Y |X, θ,Ω)dXdθ, (3.1)

where θ is the parameter vector and p(Y |X, θ,Ω) is the data likelihood. The integral

is often intractable as a result of introducing the distribution of parameters. The

VB approach makes the integration tractable by introducing a free joint distribution

q(X, θ). That is,

ln p(Y |Ω) = ln

∫
q(X, θ)

p(Y,X, θ|Ω)

q(X, θ)
dXdθ (3.2a)

≥
∫
q(X, θ) ln

p(Y,X, θ|Ω)

q(X, θ)
dXdθ. (3.2b)

Due to the concavity of the logarithm function, (3.2b) is obtained from (3.2a) by

employing Jensen’s inequality. Under the VB framework, the free joint distribution

can be factorized [53], namely q(X, θ) ≈ q(X)q(θ). Then we have

ln p(Y |Ω) ≥
∫
q(X)q(θ) ln

p(Y,X, θ|Ω)

q(X)q(θ)
dXdθ , FΩ[q(X), q(θ)]. (3.3)
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The difference between ln p(Y |Ω) and the lower bound FΩ[q(X), q(θ)] can be eval-

uated by the following equation:

ln p(Y |Ω)− FΩ[q(X), q(θ)]

=

∫
q(X)q(θ)

{
ln
p(Y,X, θ|Ω)

p(X, θ|Y,Ω)
− ln

p(Y,X, θ|Ω)

q(X)q(θ)

}
dXdθ

=

∫
q(X)q(θ) ln

q(X)q(θ)

p(X, θ|Y,Ω)
dXdθ , KL(q||p). (3.4)

KL(q||p) denotes the Kullback-Leibler (KL) divergence between the free distribution

q(X, θ) and the true joint posterior distribution of hidden variables and parameters,

namely p(θ,X|Y,Ω). The VB algorithm optimizes the free distributions q(X) and q(θ)

iteratively by maximizing the lower bound so that the difference between q(X, θ) and

p(θ,X|Y,Ω) is minimized. By taking the functional derivatives of the lower bound

with respect to q(X) and q(θ) and equating them to zeros, the following update

equations can be obtained [53]:

q(X)(t+1) ∝ exp

[∫
ln p(X, Y |θ,Ω)q(θ)(t)dθ

]
, (3.5a)

q(θ)(t+1) ∝p(θ|Ω) exp

[∫
ln p(X, Y |θ,Ω)q(X)(t+1)dX

]
. (3.5b)

where superscript (t) denotes the number of iterations. These two iterative updates

will not stop until convergence. They resemble the E-step and M-step of the EM al-

gorithm. Thus, (3.5a) and (3.5b) are often referred to as variational Bayesian E-step

and M-step, respectively. Since the VB approach estimates the posterior distribu-

tion over hidden variables and parameters, the uncertainty of parameter estimates is

obtained after the algorithm converges.

3.3 Problem statement

Industrial processes are often non-linear and may run under various operating con-

ditions. Variations in the feed flow-rate, catalyst type, and operating temperature

are some of the factors that may change the operating modes. Thus one single linear

model usually fails to capture the complete dynamics of an industrial process. Hy-

brid models such as SARX models are often used to address this issue. Although the
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problem of SARX model identification has been studied by many researchers, sev-

eral challenging issues in this area are open for further investigation, such as robust

identification and determining number of local models. In this work, we will address

the identification of SARX models by embedding t distributions into the variational

Bayesian framework. The robustness and ability to determine local-model numbers

of the proposed algorithm will be elaborated. Consider a switched linear ARX model

defined by

yk = xTk θi + εi(k), (3.6)

where xk ∈ Rh is the regressor, and k = {1, 2, · · · , N} denotes the sampling instant.

θi ∈ Rh is i-th local-model parameters, and i = {1, 2, · · · ,m} is the local-model

identity that indicates the random model switching from one operating mode to

another operating mode. The noise of the local-model is denoted as εi(k). The

regression vector has the following form:

xk = [yk−1 yk−2 · · · yk−na uTk−1 u
T
k−2 · · · uTk−nb 1]T , (3.7)

where uk ∈ Rd and yk ∈ R are the input and output of the process with orders na

and nb, and na + d · nb + 1 = h where na and nb are assumed to be known.

Conventionally, the noise εi(k) is assumed to be zero-mean Normal distributed

with precision (inverse variance) δi, where the identification results may be greatly

influenced by outliers. Compared with a Normal distribution, a t distribution, with

adjustable longer-than-Normal tails, can resist the adverse effect of outliers better.

Therefore, in order to robustly identify the SARX model, the noise εi(k) is considered

to follow the t distribution. Given the regression vector, local-model parameters, and

degrees of freedom of the t distribution (νi), the output also follows a t distribu-

tion,i.e.,

Yk|{xk, θi, δi, νi} ∼ t(xTk θi, δi, νi), (3.8)

where the t distribution has the following expression:

t(yk|xTk θi, δi, νi) =
Γ(νi+1

2
)δ

1/2
i

(πνi)1/2Γ(νi
2

){1 + δi(yk − xTk θi)2/νi}
νi+1

2

, (3.9)

and Γ(ν) is the Gamma function which is Γ(ν) =
∫∞

0
zν−1e−zdz.
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A property of the t distribution is that it can be expressed by an infinite mixture of

scaled Normal distributions[15], which makes it feasible to obtain analytical solutions

in the derivation. A hidden variable Rk representing the scale of the noise at the k-th

sampling instant is introduced. Thereby, the t distribution with degrees of freedom νi

can be decomposed into scaled Normal distributions and a Gamma distribution [15],

i.e.,

t(yk|xTk θi, δi, νi) =

∫ ∞
0

N (yk|xTk θi, Rk, δi)G(Rk|
νi
2
,
νi
2

)dRk, (3.10)

where

N (yk|xTk θi, Rk, δi) =
(Rkδi)

1/2

√
2π

e−
Rkδi(yk−x

T
k θi)

2

2 , (3.11a)

G(Rk|
νi
2
,
νi
2

) =
1

Γ(νi
2

)
(
νi
2

)
νi
2 R

νi
2
k e
− νi

2
Rk . (3.11b)

The local-model identity I and the noise scale R are taken as the hidden variable

H, i.e., Hk = {Ik, Rk}, Ik = i and k = 1, 2, ..., N , where N is the number of collected

data points. The parameter set of the SARX model, denoted as Θ, includes local-

model parameters θ, parameter precision β, noise precision δ, and degrees of freedom

ν. For instance, if a SARX process has m local-models where m needs to be inferred,

the parameters that need to be estimated are {Θ1,Θ2, · · · ,Θm}, and Θi includes

Φi = {θi, βi, δi} and νi, i = i, 2, ...,m.

In reality, the true number of local-models is unknown in SARX model identifica-

tion process. By taking advantages of the variational Bayesian approach, the number

of local-models m can be inferred from a given data set automatically instead of being

pre-assigned as the traditional approaches do. Suppose that M is an upper bound of

the number of local-models, where some local-models are insignificant. We use a set

of significance coefficients α = {α1, α2, · · · , αM} to indicate the significance of each

local-model with a constraint that

M∑
i=1

αi = 1, αi ∈ [0, 1], (3.12)

where αi = 0 means that the corresponding local-model is redundant, and αi = 1 in-

dicates that the switched model is only composed of the i-th local-model. Meanwhile,

the prior probability of Ik = i is defined as p(Ik = i|α) = αi. The marginal likelihood

(evidence) is conditioned on the significance coefficients α, namely p(Y, U |α). We are
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intended to optimize the values of α by maximizing the conditional evidence p(Y, U |α).

The significance coefficient αi corresponding to the insignificant local-models tend to

converge to zero.

3.4 Robust identification of SARX models

3.4.1 Prior

The joint prior distribution over model parameters Φ can be expressed as

p(Φ|α) =
M∏
i=i

p(θi|βi)p(βi)p(δi), (3.13)

and, as corresponding conjugates, the Normal distribution and the Gamma distribu-

tion are adopted as prior distributions respectively:

p(θi|βi) = N (0, β−1
i Ih×h), (3.14a)

p(βi|a0, b0) = G(a0, b0), (3.14b)

p(δi|c0, d0) = G(c0, d0), (3.14c)

where Ih×h is an identity matrix, and a0, b0, c0 and d0 are constant hyper-parameters.

The optimization of the degrees of freedom νi is treated separately from other pa-

rameters, and it will be considered in the variational Bayesian M-step.

3.4.2 Variational Bayesian E-step

In the variational Bayesian E-step, we maximize the lower bound F [q(R, I), q(Φ)]

with respect to q(R, I) by fixing q(Φ) and ν. The lower bound F [q(R, I), q(Φ)] can

be formulated as

F [q(R, I), q(Φ)] =
∑
I

∫
q(R, I)q(Φ) ln

p(Y, U,R, I,Φ, ν|α)

q(R, I)q(Φ)
dRdΦ (3.15)

By solving the following optimization problem:

max
q(R,I)

{F [q(R, I), q(Φ)]} , subject to
∑
I

∫
q(R, I)dR = 1, (3.16)

we get:

q(R, I) =
1

ZR,I
e〈ln p(Y,U,R,I|Φ,ν,α)〉q(Φ) , (3.17a)
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ZR,I =
∑
I

∫
e〈ln p(Y,U,R,I|Φ,ν,α)〉q(Φ)dR, (3.17b)

where ZR,I is a normalizing constant, and 〈·〉q(Φ) denotes the expectation operation.

The above derived equation is intractable, so further simplification should be

conducted. The log-likelihood of complete data can be expanded as follows:

ln p(Y, U,R, I|Φ, ν, α) = ln {p(Y |U,R, I,Φ, ν, α)p(R|I, U,Φ, ν, α)p(I|U,Φ, ν, α)p(U |Φ, ν, α)}

= ln

{
N∏
k=1

p(yk|xk, Rk, Ik,Φ)p(Rk|Ik, νIk)p(Ik|α)p(U |Φ, ν, α)

}

=
N∑
k=1

ln {p(yk|xk, Rk, Ik,Φ)p(Rk|Ik, νIk)p(Ik|α)c}. (3.18)

ZR,I can then be expressed as

ZR,I =
∑
I

∫
e〈ln p(Y,U,R,I|Φ,ν,α)〉q(Φ)dR

=
N∏
k=1

∑
Ik

∫
e
〈ln{p(yk|xk,Rk,Ik,Φ)p(Rk|Ik,νIk )p(Ik|α)c}〉

q(Φ)dRk. (3.19)

Define

ZRk,Ik =
∑
Ik

∫
e
〈ln{p(yk|xk,Rk,Ik,Φ)p(Rk|Ik,νIk )p(Ik|α)c}〉

q(Φ)dRk, (3.20)

and then we have ZR,I =
N∏
k=1

ZRk,Ik . As a result, the joint distribution q(R, I) can be

written as

q(R, I) =
1

N∏
k=1

ZRk,Ik

N∏
k=1

e
〈ln{p(yk|xk,Rk,Ik,Φ)p(Rk|Ik,νIk )p(Ik|α)c}〉

q(Φ)

=
N∏
k=1

1

ZRk,Ik
e
〈ln{p(yk|xk,Rk,Ik,Φ)p(Rk|Ik,νIk )p(Ik|α)c}〉

q(Φ) . (3.21)

On the other hand, based on the independent identical distribution (i.i.d) as-

sumption of hidden variables at each sampling instant, q(R, I) can be decomposed as

follows:

q(R, I) =
N∏
k=1

q(Rk, Ik). (3.22)
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Therefore, the joint density q(Rk, Ik) can be calculated by the following equation:

q(Rk, Ik) =
1

ZRk,Ik
e
〈ln{p(yk|xk,Rk,Ik,Φ)p(Rk|Ik,νIk )p(Ik|α)c}〉

q(Φ) . (3.23)

To simplify the expression, define

Aki = e〈ln{p(yk|xk,Rk,Ik=i,Φ)p(Rk|Ik=i,νi)p(Ik=i|α)c}〉q(Φ) , (3.24)

and let Bki =
∫
AkidRk. Then we have

q(Rk, Ik = i) =
Aki

M∑
i=1

Bki

. (3.25)

By integrating Rk out of the joint density, we get the probability of Ik = i, i.e.,

q(Ik = i) =

∫
q(Rk, Ik = i)dRk =

Bki

M∑
i=1

Bki

. (3.26)

Then, the conditional density q(Rk|Ik = i) can be obtained as

q(Rk|Ik = i) =
q(Rk, Ik = i)

q(Ik = i)
=
Aki
Bki

. (3.27)

Clearly, the key point of the variational Bayesian E-step is to obtain the expression

of Aki and Bki. Recall Eq. (3.11a), Eq. (3.11b), and p(Ik = i|α) = αi. Then the

log-likelihood of the complete data can be rewritten as

ln {p(yk|xk, Rk, Ik = i,Φ)p(Rk|Ik = i, νi)p(Ik = i|α)c}

=

{
1

2
(− ln 2π + lnRk + ln δi)−

Rkδi
2

(yk − xTk θi)
2
}

+
{
−νi

2
Rk +

νi
2

ln
νi
2

+ (
νi
2
− 1) lnRk − ln Γ(

νi
2

)
}

+ lnαi + ln c. (3.28)

Consequently, the expected log-likelihood in Eq. (3.24) is expressed as

〈ln {p(yk|xk, Rk, Ik = i,Φ)p(Rk|Ik = i, νi)p(Ik = i|α)c}〉q(Φ)

= ln(ωkiR
(fki−1)
k )− gkiRk, (3.29)

with

ωki =
αiδ̂

1/2
i (νi

2
)
νi
2 c

√
2πΓ(νi

2
)
, (3.30a)
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fki =
νi + 1

2
, (3.30b)

gki =
1

2

{
νi + δi

(
y2
k − 2ykx

T
k θi + xTk

〈
θiθ

T
i

〉
q(θ)

xk

)}
, (3.30c)

where δ̂i = e〈ln δi〉q(δ) , δi = 〈δi〉q(δ), and θi = 〈θi〉q(θ). Finally, we can obtain the

expression of Aki and Bki as follows,

Aki = e〈ln{p(yk|xk,Rk,Ik=i,Φ)p(Rk|Ik=i,νi)p(Ik=i|α)c}〉q(Φ)

= eln(ωkiR
(fki−1)

k )−gkiRk

= ωkiR
(fki−1)
k e−gkiRk . (3.31)

Bki =

∫
AkidRk

=

∫
ωkiR

(fki−1)
k e−gkiRkdRk

= ωkig
−fki
ki

∫
(gkiRk)

(fki−1)e−gkiRkd(gkiRk)

= ωkig
−fki
ki Γ(fki). (3.32)

The approximated posterior probability of Ik = i can be calculated by the follow-

ing equation:

q(Ik = i) =
Bki

M∑
i=1

Bki

=
ωkig

−fki
ki Γ(fki)

M∑
i=1

ωkig
−fki
ki Γ(fki)

∆
= qki, (3.33)

and the conditional density q(Rk|Ik = i) has the expression as

q(Rk|Ik = i) =
Aki
Bki

=
R

(fki−1)
k gfkiki

Γ(fki)
e−gkiRk . (3.34)

Clearly, Rk|Ik = i ∼ G(fki, gki), and the expected value of Rk is

rki = 〈Rk〉q(Rk|Ik=i) =
fki
gki
. (3.35)

3.4.3 Variational Bayesian M-step

In the variational Bayesian M-step, we maximize the lower bound F [q(R, I), q(Φ)]

with respect to q(Φ) and ν by fixing q(R, I). Considering that q(Φ) =
M∏
i=1

q(θi)q(βi)q(δi)
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with the prior density p(Φ) =
M∏
i=1

p(θi|βi)p(βi)p(δi), we can maximize the lower bound

with respect to each density composing q(Φ). F [q(R, I), q(Φ)] can be rewritten as

F [q(R, I), q(Φ)] =

∫
q(Φ)

〈
ln
p(Y, U,R, I|Φ, ν, α)

q(R, I)

〉
q(R,I)

dΦ +

∫
q(Φ) ln

p(Φ, ν|α)

q(Φ)
dΦ,

(3.36)

and 〈ln p(Y, U,R, I|Φ, ν, α)〉q(R,I) can be expressed as follows:

〈ln p(Y, U,R, I|Φ, ν, α)〉q(R,I)

=〈
N∑
k=1

ln {p(yk|xk, Rk, Ik,Φ)p(Rk|Ik, νIk)p(Ik|α)c}〉q(R,I)

=
N∑
k=1

M∑
i=1

qki{
1

2
(ln r̃ki + ln δi)−

rkiδi
2

(yk − xTk θi)
2 − νi

2
rki +

νi
2

ln
νi
2

+(
νi
2
− 1) ln r̃ki − ln Γ(

νi
2

) + lnαi}+ C, (3.37)

where ln r̃ki = 〈lnRk〉q(Rk|Ik=i) and C is a constant.

To Maximize F [q(R, I), q(Φ)] w.r.t q(θi), we need to calculate the first order func-

tional derivative w.r.t. q(θi), i.e.,

∂
{
F [q(R, I), q(Φ)] + λ

(∫
q(θi)dθi − 1

)}
∂q(θi)

= 0, (3.38)

where λ is the Lagrangian multiplier. By arranging terms relevant to q(θi), we can

obtain the expression of q(θi), i.e.,

q(θi) ∝ p(θi|βi) exp{
N∑
k=1

qki(−
rkiδi

2
)(yk − xTk θi)

2}

∝ exp{−1

2
θTi (βiI)θi} exp{

N∑
k=1

qki(−
rkiδi

2
)(yk − xTk θi)

2}

∝ exp{−1

2
(θTi (βiI +

N∑
k=1

qkirkiδixkx
T
k )θi +

N∑
k=1

qkirkiδi(y
2
k − 2θTi ykxk))}. (3.39)

The expression given in the right-hand side of Eq. (3.39) indicates that q(θi) is a

Gaussian density function, i.e., q(θi) = N (θi|µ̃i, Λ̃−1
i ) with

Λ̃i = βiI +
N∑
k=1

qkirkiδixkx
T
k , (3.40a)
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µ̃i = Λ̃−1
i

N∑
k=1

qkirkiδiykxk. (3.40b)

Therefore, the expected value of θi is θi = 〈θi〉q(θ) = µ̃i.

The same procedure is followed to maximize F [q(I), q(Φ)] with respect to q(βi),

and the expression of ln q(βi) is

ln q(βi) = 〈ln p(θi|βi) + ln p(βi)− ln q(θi)〉q(θi) + Ci

= −1

2
ln
∣∣β−1
i I
∣∣− 1

2

〈
θTi (βiI)θi

〉
q(θi)

+ (a0 − 1) ln βi − b0βi + a0 ln b0 + Ci

= (a0 +
h

2
− 1) ln βi − (b0 +

1

2

〈
θTi θi

〉
q(θi)

)βi + Ci, (3.41)

where the dimension of the identity matrix I is h× h and Ci is the constant that is

not related to βi. The expression obtained for q(βi) indicates that the approximated

posterior over βi is a Gamma density function, i.e. q(βi) = G(ãi, b̃i) with

ãi = a0 +
h

2
, (3.42a)

b̃i = b0 +
1

2

〈
θTi θi

〉
q(θi)

= b0 +
1

2
tr(Λ̃−1

i + µ̃iµ̃
T
i ), (3.42b)

from which we get the expected value of βi by βi = 〈βi〉q(β) = ãi/b̃i.

Similarly, the expression obtained for q(δi) indicates that the approximated pos-

terior over δi is also a Gamma density function, i.e. q(δi) = G(c̃i, d̃i) with

c̃i = c0 +
1

2

N∑
k=1

qki, (3.43a)

d̃i = d0 +
1

2

N∑
k=1

qkirki

(
y2
k − 2θ

T

i ykxk + xTk (Λ̃−1
i + µ̃iµ̃

T
i )xk

)
. (3.43b)

The expected value of δi is δi = 〈δi〉q(δ) = c̃i/d̃i.

In addition, the lower bound F [q(I), q(Φ)] is maximized with respect to ν. The

prior distribution over ν is p(ν|α) =
M∏
i=1

p(νi). Consider that the prior distribution

over νi is an exponential distribution [54], i.e., p(νi) = e0exp(−e0νi). The posterior

density over νi, denoted as q(νi), is proportional to the production of the prior and

the likelihood over νi, i.e.,

ln q(νi) = ln p(νi) +
N∑
k=1

qki

{νi
2

ln
νi
2
− ln Γ(

νi
2

) + (
νi
2
− 1) ln r̃ki −

νi
2
rki

}
+ Cvi
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= −(e0 +
1

2

N∑
k=1

qki(ln r̃ki − rki))νi + (
νi
2

ln
νi
2
− ln Γ(

νi
2

))
N∑
k=1

qki + Cνi ,

(3.44)

where Cνi is the constant that is not relevant to νi. According to Eq. (3.36) and

Eq. (3.37), maximizing the lower bound w.r.t νi is equivalent to maximizing ln q(νi).

Hence, we can resort to MAP approach through numerical search to update the value

of νi:

νi = arg max
νi>0
{ln q(νi)} . (3.45)

3.4.4 Significance coefficients optimization

Given the significance coefficients α, the VBE-step and VBM-step are iteratively

computed until convergence of parameters. Upon the convergence, we will obtain a

lower bound F [q(I), q(Φ)] that is approaching the marginal log-likelihood ln p(Y, U |α).

The optimal values of significance coefficients can be updated by maximizing this

lower bound with respect to α subject to
M∑
i=1

αi = 1 [52]. By solving the following

equation

∂

{
F [q(I), q(Φ)] + λ(

M∑
i=1

αi − 1)

}
∂αi

= 0, (3.46)

the update equation for αi is obtained as

αi =

N∑
k=1

qki

N
. (3.47)

During the optimization procedure, the significance coefficients of redundant local-

models will converge to zero quickly. This would provide an automated mechanism

to eliminate the insignificant local-models and determine the number of local-models

from the identification process.

3.4.5 Lower bound evaluation

The lower bound is evaluated after each iteration of the update equations as it is an

indicator of convergence. Having updated the estimates of q(I), q(Φ), ν and α, the
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value of lower bound can be calculated as follows:

F [q(R, I), q(Φ)] =
∑
I

∫
q(R, I)q(Φ) ln

p(Y, U,R, I|Φ, ν, α)

q(R, I)
dRdΦ+

∫
q(Φ) ln

p(Φ, ν|α)

q(Φ)
dΦ.

(3.48)

However, calculating multiple integration is computationally expansive. As pointed

out by Takekawa et al. [54], the integration can be avoided through mathematical

operation. The first term of Eq. (3.48) can be transformed into

N∑
k=1

ln
M∑
i=1

Bki. (3.49)

The derivation is given in Appendix. The second term of Eq. (3.48) is equivalent to

−KL [q(Φ)||p(Φ|α)] + ln p(ν|α). (3.50)

Therefore, the lower bound can be evaluated by

F [q(R, I), q(Φ)] =
N∑
k=1

ln
M∑
i=1

Bki −KL [q(Φ)||p(Φ|α)] + ln p(ν|α). (3.51)

3.4.6 Outlier detection through predictive density

In the Bayesian learning, one goal is to perform density estimation with respect to

the identified model [55]. Inspired by the method of density estimation proposed in

[55], we propose an outlier detection approach based on the identified model. The

density of a new output yn+1 given the training data and current input un is

p(yn+1|Y, U, un) =
∑
I

∫
p(yn+1, R, I,Φ|Y, U, un)dRdΦ

=
∑
I

∫
p(yn+1|Y, U, un, R, I,Φ)p(R, I,Φ|Y, U, un)dRdΦ. (3.52)

The likelihood p(yn+1|Y, U, un, R, I,Φ) can be simplified as p(yn+1|xn+1, Rn+1, In+1,Φ).

Under the variational Bayesian framework, the true posterior density is approximated

by the variational posterior, namely,

p(R, I,Φ|Y, U, un) ≈ q(R, I,Φ) = q(R, I)q(Φ). (3.53)

Therefore, the predictive density can be approximated by

p(yn+1|Y, U, un) ≈
∑
I

∫
p(yn+1|xn+1, Rn+1, In+1,Φ)q(R, I)q(Φ)dRdΦ. (3.54)
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The log predictive density can be derived as

ln p(yn+1|Y, U, un) ≈ ln
∑
I

∫
p(yn+1|xn+1, Rn+1, In+1,Φ)q(R, I)q(Φ)dRdΦ

≥
∑
I

∫
q(R, I)q(Φ) ln p(yn+1|xn+1, Rn+1, In+1,Φ)dRdΦ

=
m∑
i=1

qn+1,i{
1

2
(ln(

δ̂i
2π

) + ln r̃n+1,i)

−rn+1,iδi
2

(y2
n+1 − 2yn+1x

T
n+1θi + xTn+1〈θiθTi 〉q(θ)xn+1)} (3.55)

Based on the predictive density, outliers in the coming data can be detected.

Normal data points have a large value of the approximated density while an outlying

data point has a much smaller value.

3.4.7 Algorithm summary

We summarize the execution procedure of the proposed approach in Fig. 3.1. Given

a set of identification data, the posterior density of the model identity and the noise

scale at each sampling instant is calculated through qki and rki in the VB E-step. The

value of rik will be vary small for outliers, which automatically leads to significant

down-weighting of outlying data. In the VB M-step, the posterior density of each

parameter is updated until convergence, from which we can get the expected value of

parameters. The number of local-models is obtained by optimizing the significance

coefficients, where redundant local-models will be eliminated. Based on the identified

model, outlier detection can be performed resorting to the approximate predictive

density, which is not shown in Fig. 3.1.

3.5 Simulation examples

3.5.1 A numerical example

Consider a simulated switched ARX process with m local-models described as follows:

yk = xTk θi + εi(k), k ∈ {1, 2, · · · , N}, i ∈ {1, 2, · · · ,m}, (3.56)

where the regression vector is

xk = [yk−1, yk−2, uk−1, uk−2, 1]T . (3.57)
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Figure 3.1: Flowchart of the robust identification of SARX models by the proposed
approach.
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To generate simulated data, the number of identification data points is set to be N =

600 and the true number of local-models is m = 3 which needs to be inferred from the

data. The added disturbing noise is denoted by εi(k). A sequential number generator

is designed to randomly generate a sequence of operating points for the underlying

process. The operating point changes randomly every 100 sampling instants. The

true parameters of local-models at three operating points are

θ1 = [1.21 − 0.49 − 0.30 0.90 0.5]T ,

θ2 = [1.39 − 0.50 0.20 − 0.45 0]T ,

θ3 = [−1.20 − 0.72 0.60 − 0.70 2.00]T .

Two kinds of input signal are designed to persistently excite the simulated pro-

cess, i.e., uniformly distributed white noise over the interval [−1, 1] and a random

binary sequence (RBS) with level [−1, 1]. The choice of input signal depends on the

comparison methods. If clustering based methods (comparing methods) fail to cluster

the collected data when the input signal is a RBS, then uniformly distributed input

signal will be adopted for the sake of comparison. Output data sets are generated

by the simulated process. In the case that εi is Normal distributed noise with mean

0 and variance 0.025, a snapshot of the random switching operating point as well as

the simulated input-output data is shown in Fig. 3.2. To simulate the situation when

the noise is contaminated with outliers, we randomly replace part of the noise by

uniformly distributed outliers over the range [−3.5,−3]. Since the number of local-

models (m̂) is unknown, in addition to parameter estimation, we need to infer m̂ from

the identification data corrupted by outliers. When the identification data set is of

good quality, the method proposed by Nakata et al. [6] (denoted as Nakata) is able

to determine m̂ by selecting the model that has the smallest value of information

criteria. The consistent Akaike’s information criterion (CAIC) is adopted as the in-

formation criterion in comparison. Classical clustering methods such as the K-means

algorithm can also estimate the number of local-models (clusters) by combining in-

dexes that will optimize the clustering structure. The data vector at k-th sampling

instant is composed of yk and xk (the term related to non-zero mean in xk is not

included). Here a widely used clustering method, i.e., K-means plus Davies-Bouldin

index which is denoted by K-DB, is considered. Implementation of these conven-
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tional methods involves three distinct steps: 1. Clustering the identification data

when given the number of clusters, 2. Determining the number of clusters through

information criteria or DB index, 3. Estimating parameters of local-models based

on clustering results. On the contrary, the proposed approach (denoted by Robust)

is able to determine the number of local-models as well as estimate the model pa-

rameters simultaneously. Moreover, the proposed approach takes noise and outliers

into account while conventional methods ignore this practical issue. In addition, the

regular approach under the VB framework (denoted by Regular), where the noise εi

is modelled as a Normal distribution, is compared as well.
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Figure 3.2: An example of generated data by the simulated process.

A. Determine the number of local-models

The number of local-models can be estimated by aforementioned methods. Their

performances are accessed under two scenarios:

• Case I: the noise follows Normal distribution;

• Case II: the noise is contaminated with 5% outliers.
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In each case, a Monte Carlo simulation (50 runs) is performed to estimate m̂. The

upper bound of m̂ is set to be M = 5 for all investigated methods. Fig. 3.3 and Fig.

3.4 show the results of the estimated number of local-models by compared methods

in Case I and Case II, respectively. From Fig. 3.3, we can see that the performance

of Nakata, Regular, and Robust are comparable when the identification data have a

good quality. It occurs 47 times (Nakata), 50 times (Regular), and 50 times (Robust)

respectively when the estimated number of local-models equals to the true number

which is m = 3. The performance of K-DB is poor in this simulation. It might be

caused by the non-spherical clusters, since the K-DB performs well only for spherical

clusters. In Case II where the data are contaminated with outliers, however, the

capabilities of investigated methods deteriorate significantly except for the proposed

robust approach. The Nakata and Regular tend to give more local-models under the

influence of outliers, and the K-DB tends to use fewer local-models, while the Robust

is capable of resisting outliers and estimating m̂ correctly.
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Figure 3.3: Bar chart of the estimated number of local-models in Case I.
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Figure 3.4: Bar chart of the estimated number of local-models in Case II..

B. Estimate parameters of local-models

The performance of these methods in parameter estimation is compared as well. The

K-DB is not considered due to the poor performance of dealing with non-spherical

clusters. The aforementioned two cases are investigated again. The number of local-

models is assumed to be known in order to have a fair comparison of their perfor-

mances in parameter estimation. Monte Carlo simulations with 50 runs each are

constructed. In Case I, the identification data sets have a good quality, and results

from these methods are fairly satisfactory, as presented in Fig. 3.5. For each local-

model, the coefficient vector, denoted by θi, i = 1, 2, 3, consists of five elements,

namely [P1 P2 P3 P4 P5]. The mean values of estimation from these methods are

close to the true value, and the standard deviations are small. However, as Fig. 3.6

shows, when the data sets are contaminated with 5% outliers, the Nakata and the

Regular fail to estimate the parameters accurately and reliably, while the performance

of the proposed approach is consistently satisfactory.
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Figure 3.5: Case I: comparison of the mean and standard deviation given by three
methods.
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Figure 3.6: Case II: comparison of the mean and standard deviation given by three
methods.
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C. Detect outliers by the proposed approach

As aforementioned, the proposed approach is able to detect outliers from the dynamic

process through the predictive density. Given a set of testing data, the logarithmic

prediction density function can be calculated approximately by Eq. (3.55). Since

the statistics of the predictive density is not fully revealed, a simple but effective

rule is adopted. As Fig. 3.7 presents, the approximate predictive density (ln) values

of majority data points are larger than −1.5 (correspondingly, the density value is

e(−1.5) ≈ 0.223), while a number of data points are located far below this value. Thus

in this example −1.5 is taken as the threshold to determine whether the coming data

point is an outlier or not. Fig. 3.8 shows the percentage of outliers detected in the

individual runs of Monte Carlo simulation. According to the figure, The accuracy of

outlier detection is around 88%. The simple rule based on the predictive density is

capable of separating outliers from the testing data.
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Figure 3.7: Approximate predictive density of the testing data in an individual run
of Monte Carlo simulation.
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Figure 3.8: Percentage of outliers detected in the individual runs of Monte Carlo
simulation.

Figure 3.9: A Hammerstein model with a saturation non-linearity.
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3.5.2 Application to a Hammerstein model

In non-linear process identification, a Hammerstein model shown in Fig. 3.9 is often

used. It consists of a linear time-invariant (LTI) process and a static non-linear

component. We consider the Hammerstein model as is investigated in [6]. It is a

SISO Hammerstein model with a saturation function. The LTI plant is given by

yk = −a1yk−1 − a2yk−2 + b1zk−1 + ek, (3.58)

where a1, a2, and b1 are scalar constants, and f is a saturation function:

zk = f(uk) =


umax, if uk > umax

uk, if uk ∈ [umin, umax]
umin, if uk < umin

(3.59)

and umax and umin are scalar constants giving the upper and lower bounds of satura-

tion, respectively.

Same as [6], when generating data sets through the Hammerstein model, we fix

a1 = 0.5, a2 = 0.1, b1 = 1, umax = 2, and umin = −1. The input uk is normally

distributed with mean 0 and variance 4. The noise ek is contaminated with outliers.

95% of the noise is normally distributed with means 0 and variance 0.04, and 5% of

the noise is randomly replaced by outliers which are uniformly distributed over the

range [−6, − 4]. The sample of data is N = 900.

The proposed robust approach is applied to identification of the non-linear model.

Suppose we do not have any prior information about the non-linearity. The upper

bound of local-model numbers is set to M = 8. A second order ARX model (Eq.

3.60) is adopted to approximate the local-model, so na = 2 and nb = 2.

yk = c1yk−1 + c2yk−2 + d1uk−1 + d2uk−2 + g + εk, (3.60)

where g is the mean of the local-model.

A Monte Carlo simulation with 60 trials of different noise sequences is constructed

to verify the performance of the proposed approach. As Fig. 3.10 shows, in 56

individual runs of the simulation, the number of local-models is estimated to be m̂ = 3,

which indicates that using three linear local-models is capable of approximating the

non-linear model, although the given upper bound is M = 8 at the beginning of

identification. Only 4 out of 60 trials, the proposed approach fails to correctly infer
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m from noisy data with outliers. Based on the 56 times of correct estimation, the

mean and one standard deviation of estimated parameters corresponding to three

local-models are presented in Table 3.1. From Table 3.1, it is easy to figure out the

parameters of the Hammerstein model, i.e.,

a1 = −c1 ≈ 0.5, a2 = −c2 ≈ 0.1, b1 = d1(Second) ≈ 1,

umax =
g(First)

b1

≈ 2, umin =
g(Third)

b1

≈ −1. (3.61)

The proposed approach performs fairly well in identification of the Hammerstein

model, where the mean of estimation is close to the true value and the standard

deviation is small. Given testing data sets, the capability of outlier detection is

evaluated as well. In each individual run of the simulation, a testing data set which

is contaminated with 10% outliers is assessed based on the identified model. The

predictive density approach can distinguish between outliers and normal data as long

as the number of local-models is estimated correctly, as Fig. 3.11 demonstrates.
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Figure 3.10: Estimated number of local-models in the simulation (60 runs).
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Figure 3.11: Percentage of outliers detected in the simulation (60 runs).

Table 3.1: Parameters of three local-models

First Second Third
c1 -0.4969(±0.0149) -0.5024(±0.0072) -0.4985(±0.0127)
c2 -0.1000(±0.0140) -0.0980(±0.0073) -0.0976(±0.0088)
d1 -0.0060(±0.0119) 1.0004(±0.0064) -0.0002(±0.0103)
d2 -0.0028(±0.0113) -0.0008(±0.0075) -0.0004(±0.0108)
g 1.9950(±0.0244) -0.0043(±0.0127) -1.0059(±0.0147)
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3.6 Conclusions

In this chapter, a variational Bayesian approach to identification of switched ARX

models was developed. Practical issues including robustness, estimation of the num-

ber of local-models, estimation of parameter uncertainty, and outlier detection were

addressed. By embedding the t distribution into the framework of the variational

Bayesian approach, the outliers were down-weighted in estimation, leading to the ro-

bustness of the proposed approach. Meanwhile, a set of significance coefficients was

introduced to indicate the significance of each local-model, and during the optimiza-

tion, redundant or insignificant local-models were eliminated. In addition, instead of

simply partitioning the data through clustering techniques, the model identity of each

data point was inferred from the data during the identification process. The poste-

rior probability density functions of parameters were estimated under the variational

Bayesian framework, so the uncertainty of parameters was investigated as well. Based

on the identified model, an outlier detection method through the approximate pre-

dictive density function was proposed. The effectiveness of the proposed approach for

robust identification of SARX models as well as the performance of outlier detection

were verified through simulated examples. The proposed approach not only resists the

adverse influence of outliers, but also infers the number of local-models automatically,

which makes this algorithm more applicable to the real world problems.

Appendix

The expression (3.49) can be derived as∑
I

∫
q(R, I)q(Φ) ln

p(Y, U,R, I|Φ, ν, α)

q(R, I)
dRdΦ

=
N∑
k=1

M∑
i=1

∫
q(Rk, Ik = i) {lnAki − ln q(Rk, Ik = i)}dRk (3.62)

according to Eq. (3.24). By substituting Eq. (3.25) into the above equation, we can

further simplify its expression:
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N∑
k=1

M∑
i=1

∫
q(Rk, Ik = i)

{
lnAki − ln

(
Aki

/
M∑
i=1

Bki

)}
dRk

=
N∑
k=1

M∑
i=1

∫
q(Rk, Ik = i)

{
ln

M∑
i=1

Bki

}
dRk

=
N∑
k=1

ln
M∑
i=1

Bki

M∑
i=1

∫
q(Rk, Ik = i)dRk

=
N∑
k=1

ln
M∑
i=1

Bki

(3.63)
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Chapter 4

Design of Adaptive Steam-quality
Soft Sensors for Once-through
Steam Generators

Advanced process control practice usually requires a reliable process model. Indus-

trial processes are complicated, and operational data are noisy with potential out-

liers. These practical issues should be considered when modelling industrial processes.

Once-through steam generators are commonly used in oil sands industry to provide

steam for the steam assisted operations. A reliable estimation of steam-quality is

a key requirement for investigating the performance of steam generators. There-

fore, adaptive soft sensors for steam-quality measurement are designed to meet the

requirement of industrial operations in this chapter.

4.1 Introduction

Alberta holds the world’s largest reserves of bitumen which has the same order of

magnitude as reserves of conventional oil in Saudi Arabia. Up to 80% of the estimated

reserves could be recovered by in-situ thermal operations [56]. Conventional in-situ

technologies such as steam flooding and cyclic steam stimulation (CSS) [57] have been

successfully applied in Venezuela and California. New in-situ production technologies

such as the steam assisted gravity drainage (SAGD) [58] and expanding solvent-SAGD

(ES-SAGD) [59] are becoming dominant technologies employed for the recovery of

heavy oil and oil sands in Canada. The new in-situ technologies have increased

produced oil rates and reduced production costs [56].
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However, whether the conventional or the new in-situ technologies, they all de-

mand a great amount of steam in operation. In Alberta, the SAGD and its variants

are widely applied in the oil sands industry. The steam generator thus plays an im-

portant role in the recovery of bitumen and heavy oil. Fig. 4.1 shows the water

and steam circuit for the SAGD process. Common types of steam generators used

for oil sands recovery are once-through steam generators (OTSGs) and drum boilers.

Although the capital costs of drum boilers are significantly less than OTSGs and the

need for vapor-liquid separators is eliminated for drum boilers, OTSGs are favoured

over the drum boilers in most oil sands fields so far [1]. There are several reasons

for this. OTSGs have lower heat flux than drum boilers which makes OTSGs more

tolerant to the overheating caused by the scale deposition on the tubes [60]. Also,

OTSGs require less maintenance as they do not have level controls and low level cuts

required in drum boilers [61].

Figure 4.1: Water and steam circuit for the SAGD process [1].

The operational performance of the OTSGs can be evaluated by the steam-quality,

namely the mass fraction of steam in a saturated steam/water mixture [62]. OTSGs

generally should produce 75-80% quality steam. Over-high quality steam or insuffi-

cient liquid water may cause deposition of tube fouling and solids which will decrease

heat transfer and increase the tube temperature. Though the OTSG has certain tol-

erance to the overheating, it can be damaged if the limit is exceeded. Certainly, low

69



quality steam means low efficiency of the OTSG, which is not economical. There-

fore, the steam-quality should be monitored and maintained within a tight range in

order to keep a good performance of OTSGs. Online measurement of the average

steam-quality can be conducted by calculating the difference between the inlet boiler

feed water (BFW) flow rate and the condensate blowdown flow rate. The online

measurement is not accurate enough, so laboratory analysis of samples is usually

conducted every few hours in order to more precisely monitor the steam-quality. The

low accuracy of online measurement and infrequent laboratory analysis cannot meet

the real-time monitoring and closed-loop control of steam-quality. To solve this prob-

lem, Xie et. al [62] developed soft sensors for online steam-quality measurements of

OTSGs. The soft sensors have been successfully implemented online to predict steam

qualities in an industrial OTSG. However, some generalization issues remain for the

soft sensor to be applicable in various steam generators used across the oil sands

industry.

Soft sensors, also called inferential models, can provide frequent online estimates of

quality variables on the basis of the correlation with available process measurements

[10]. The development of the soft sensing technology has benefited the bioprocess

industry [63], chemical industry [64], steel industry [65], and oil sands industry [10].

The design of soft sensors is rooted in the process modelling. Soft sensors usually

work well only for a particular operating region where the underlying identified model

approximates the true process well. Therefore, the identification of the process plays

a key role in the design of effective soft sensors.

Industrial processes usually exhibit certain forms of time-varying property. Also,

production policies might drive a chemical plant to switch among various operating

conditions, which results in multiple modes or regimes of behaviour. For example,

the varying of the BFW flow rate of the OTSG can influence the steam production

and steam-quality, so one single model may not be able to capture the dynamic

behaviour of the process. Hence, the estimation of steam-quality given by soft sensors

based on a single model is not always reliable. In such applications, multi-model

soft sensors show the advantage so that both continuous dynamic behaviour and

discontinuous dynamics can be described [66, 10]. Multi-model process identification

has been widely studied. Quite a few approaches have been proposed to solve the
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identification problem, such as expectation-maximization based method [8], clustering

based method [44] and recursive identification method [46]. Despite the existence of

various methods, robustness issue has not been well studied.

The t distribution is well known for robustness in statistical modelling and Bayesian

inference. In literature, the t distribution has been widely utilized to deal with outly-

ing data points [67, 68, 14]. However, this advanced technique has not been employed

for the multi-model soft sensor development. The main contribution of this chapter is

to introduce a statistical approach to the development of multi-model soft sensors for

online measurement of steam-quality, where t distributions are integrated with the

variational Bayesian (VB) [48, 52] framework in order to deal with potential outliers.

First-principle models are presented first. Unknown parameters of the model are es-

timated by the VB approach in which the influence of outliers is taken into account.

Considering the error between the first-principle model and the real process model, an

adaptive bias correction term is used. The effectiveness of the adaptive multi-model

soft sensors is demonstrated through prediction of steam qualities for industrial scale

once-through steam generators.

4.2 Process description and models

Fig. 4.2 shows the simplified schematic diagram of an industrial steam generator

(OTSG). The BFW is divided into 8 individual passes, and Passes 1 to 4 are fed

into the upper deck and passes 5 to 8 are fed into the lower deck where the water is

heated. The saturated steam/water mixtures flow out of the OTSG and merge into

one stream, and then the stream flows into high pressure separator for the separation

of dry steam from liquid water. The process variables of interest are listed in Table

4.1.

Differential pressure meters are installed at the outlet of each individual pass

for steam-quality estimation. Individual-pass steam-quality (I-SQ) is continuously

calculated using a combination of steam discharge pressure, pass feed water flow

and the differential pressure measurement. The calculation can be adjusted through

a tuning factor when the online measurement has a significant deviation from lab

sample, but the exact time and magnitude of tuning are difficult to know exactly. A
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Figure 4.2: Schematic diagram of an OTSG.

Table 4.1: List of process variables
Variable Description Unit

Y l Lab analysis of I-SQ l (l = 1, 2, · · · , 8) %
X l Online measurement of I-SQ l (l = 1, 2, · · · , 8) %
X Online measurement of O-SQ %
Ff BFW Flow rate m3/hr
F l Flow rate of Pass l m3/hr
Tf Inlet temperature of BFW ◦C
T l Outlet temperature of Pass l ◦C
Tr Temperature after Passes recombine ◦C

mass balance based overall steam-quality (O-SQ) is available as well. The calculation

is based on BFW flow rate, steam blowdown flow rate, and steam separator level

change, but the accuracy is not guaranteed.

Although the structure of various OTSGs may be different, the heat transfer

procedure of the OTSG resembles each other. The first-principle model derived by

Xie et. al [62] is adopted as the model of the soft sensor. Hence, the model for

estimating I-SQ is

Z l(t) =
ξlρFf (t)∆HX(t) + 100ξlρFf (t)Cp1[Tr(t)− Tf (t)]− 100ρF l(t)Cp2[T l(t)− Tf (t)]

ρF l(t)∆H
,

(4.1)

where ξl is the fraction of heat absorbed by l-th individual pass; ρ is the density of

water; Cp1 and Cp2 are the heat capacity and ∆H is the enthalpy of vaporization. X(t)

denotes the online measurement of O-SQ. By defining k1 = ξl, k2 = 100ξlCp1/∆H

and k3 = −100Cp2/∆H, we can simplify the model as follows:

Z l(t) = k1u1(t) + k2u2(t) + k3u3(t), (4.2)
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where k1, k2 and k3 are unknown parameters, and u1(t), u2(t) and u3(t) are treated

as inputs, which can be calculated by

u1(t) =
Ff (t)

F l(t)
X(t), (4.3a)

u2(t) =
Ff (t)

F l(t)
[Tr(t)− Tf (t)], (4.3b)

u3(t) =T l(t)− Tf (t). (4.3c)

The model of estimating O-SQ is the scaled online measurement of O-SQ in order

to reduce the scaling error of the online measurement. That is

ZO(t) = kX(t). (4.4)

The design of multi-model soft sensors as well as single-model soft sensors for mea-

suring I-SQ and O-SQ is based on these models. Model parameters will be estimated

in the stage of soft sensor design.

4.3 Design of adaptive soft sensors

According to the structure of models, we can simply use linear regression methods

to estimate model parameters, given the input data and lab samples of steam-quality

(output data). However, the process may vary with time, resulting in variation of

model parameters. Thus, a single linear model is not capable of predicting the steam-

quality well over entire operating range. On the basis of conventional single-model

based soft sensors, multi-model soft sensors are therefore designed. Furthermore,

since the first-principle model is not precise owing to the omission of some factors

such as heat loss, an online bias updating term, as expressed by Eq. (4.5) [69, 70], is

considered when constructing the adaptive soft sensors.

β(t) = α[Y (t− 1)− Z(t− 1)] + (1− α)β(t− 1), α ∈ [0, 1] (4.5)

where Y (t− 1) is the laboratory analysis of steam-quality and Z(t− 1) is the model

prediction at the previous sampling instant. The bias correction term is updated only

when a new laboratory data point is available.
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4.3.1 Single-model based soft sensors

The single-model soft sensors of steam-quality measurement are proposed by Xie et.

al [62], and we further improve it in this work. Since the industrial data are noisy with

potential outliers, data preprocessing is necessary. A popular univariate approach to

detect outliers is the 3σ rule [71],

|x(t)− x̄| > 3σ (4.6)

where x̄ is the mean of the data sequence.

The single-model soft sensors, which is named as Soft Sensor I, can be constructed

as

Ŷ (t) = Z(t) + β(t), (4.7a)

Z(t) = f(θ, U(t)) =

{
k1u1(t) + k2u2(t) + k3u3(t), I − SQ
kX(t), O − SQ (4.7b)

β(t) = α[Y (t− 1)− Z(t− 1)] + (1− α)β(t− 1), α ∈ [0, 1]. (4.7c)

Ŷ (t) is the steam-quality prediction of the adaptive Soft Sensor I ; θ is the model

parameter, and U(t) is the input of the model at time instant t. The model parameter

K ([k1, k2, k3] for I-SQ, and k for O-SQ) and the bias parameter α are estimated

simultaneously by the prediction error method (PEM). Considering the constraint of

α, the projection method is used to solve the constraint optimization problem as part

of the PEM algorithm. For details, please refer to [62] for the PEM algorithm and

[72] for the projection method.

4.3.2 Multi-model soft sensors

The multi-model soft sensors of steam-quality are named as Soft Sensor II. The

process of steam generation is approximated by first-principle models with multiple

sets of parameters. The model parameters of each model are estimated by the VB

algorithm. Considering the existence of outliers, the parameter estimation method

should be able to resist the adverse influence of outliers. Though the 3σ rule is easy

to implement, this procedure often fails in practice because the presence of outliers

tends to inflate the variance estimation, which causes too few outliers to be detected

[73]. Therefore, a more advanced method, i.e., use of the t distribution which can
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eliminate the influence of outliers with the VB algorithm, is utilized for the design of

multi-model soft sensors.

The steam generation process may vary with time owing to the variation of oper-

ating conditions, such as increase of BFW flow rate, and decrease of combustion air,

and so on. Hence, we use multiple local-models to capture the time-varying property,

i.e.,

Y (t) = Zi(t) + ei(t) (4.8)

if i-th local model takes effect, and

Zi(t) = fi(θi, U(t)) =

{
ki1u1(t) + ki2u2(t) + ki3u3(t), I − SQ
kiX(t), O − SQ (4.9)

where i ∈ {1, 2, · · · ,m} and m is the number of local models. ei(t) is the noise whose

distribution is considered to follow a t distribution with mean 0, precision (inverse

variance) δi, and degrees of freedom νi. It is obvious that given the model prediction

Zi(t) and distribution parameters, the output Y (t) follows a t distribution as well,

Y (t)|{Z(t), δi, νi} ∼ t(Z(t), δi, νi). (4.10)

Using the expression of the t distribution directly in Bayesian estimation results

in intractable problem. Hence, in Bayesian inference the t distribution is usually

decomposed into scaled Normal distributions and a Gamma distribution by utilizing

a hidden variable which is the scale Rt [15], i.e.,

t(Y (t)|Z(t), δi, νi) =

∫ ∞
0

N (Y (t)|Z(t), Rtδi)G(Rt|
νi
2
,
νi
2

)dRt. (4.11)

Since there are multiple local-models, the t-th sampling point may be generated

by any local-model. In order to properly assign samples to different local-models,

each sample is paired with an identity It indicating the corresponding local-model

identity. Suppose we have N data samples; correspondingly, we have N identities,

i.e., It = i, i ∈ {1, 2, · · · ,m} and t = 1, 2, · · · , N . The probability that It = i

should be determined. Thus, in the design of multi-model soft sensors, the hidden

variables (H = {I, R}) are utilized to address the parameter estimation problem.

The parameters of the local-model denoted by θ includes local model parameters

K, parameter precision β, noise precision δ and degrees of freedom ν. Given the
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identification data set D = {Y, U}, the parameter estimation problem is formulated

under the Bayesian framework:

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
, (4.12)

where p(Θ|D) is the posterior probability density function and Θ = [θ1, θ2, · · · , θm].

p(D|Θ) is the likelihood and p(Θ) is the joint prior distribution of parameters. p(D)

is the evidence which is an unknown constant. The appropriate prior distributions

are assigned to each parameter, that is, K as Normal distribution, β as Gamma

distribution, δ as Gamma distribution, and ν as exponential distribution.

In literature, the MAP estimation method is commonly utilized to get point-

estimate of parameters based on the likelihood and the prior, and the evidence is

neglected. In full-Bayesian estimation, the evidence is the key quantity to be evalu-

ated, where the following integral is an obstacle:

p(D) =

∫
p(D,H,Θ)dHdΘ

=

∫
p(D|H,Θ)p(H,Θ)dHdΘ. (4.13)

The integral is often intractable without resorting to advanced methods. A free joint

density function q(H,Θ) is inserted into the integral, and the log-evidence is expressed

as follows:

ln p(D) = ln

∫
q(H,Θ)

p(D,H,Θ)

q(H,Θ)
dHdΘ. (4.14)

Under the VB framework, the factorization assumption (q(H,Θ) = q(H)q(Θ)) is

adopted. Owing to the concavity of the logarithm function, the Jensen’s inequality

results in a lower bound of the log-evidence:

ln p(D) ≥
∫
q(H)q(Θ) ln

p(D,H,Θ)

q(H)q(Θ)
dHdΘ. (4.15)

The lower bound is denoted as F [q(H), q(Θ)], and the lower bound equals to the

log-evidence if and only if p(H,Θ|D) = q(H)q(Θ). Hence, under the VB framework

we must find the free density functions (q(H) and q(Θ)) that best describe the model

given the observed data-set D. In this problem, the identity I is a discrete variable

and the scale R is a continuous variable, so the lower bound is formulated as

F [q(R, I), q(Θ)] =
∑
I

∫
q(R, I)q(Θ) ln

p(D,R, I,Θ)

q(R, I)q(Θ)
dRdΘ. (4.16)
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The updating expression of q(R, I) is obtained by solving the following optimiza-

tion problem through the first-order functional derivative:

max
q(R,I)
{F [q(R, I), q(Θ)(n)]}, s.t.

∑
I

∫
q(R, I)dR = 1, (4.17)

where q(Θ)(n) is the density function obtained in the previous iteration. Similarly,

the updating expression of q(Θ) is obtained from the first-order functional derivative,

i.e.,
∂{F [q(R, I)(n), q(Θ)] + λ[

∫
q(Θ)dΘ− 1]}

∂q(Θ)
= 0, (4.18)

where q(R, I)(n) is the updated density function and λ is the Lagrangian multiplier.

Based on the above derivations, the implementation procedure of the variational

Bayesian estimation of parameters is outlined in Table 4.2.

Table 4.2: Procedure of the VB estimation method
1. Initialization. Set n = 0. Determine prior density p(Θ)

and related hyper-parameters.
2. Iterative updating. Evaluate q(R, I)(n+1) and q(Θ)(n+1).
3. Evaluate F [q(R, I)(n+1), q(Θ)(n+1)]. Calculate the new

value of the lower bound of the evidence.
4. Check stop criterion.

If |F [q(R, I)(n+1), q(Θ)(n+1)] − F [q(R, I)(n), q(Θ)(n)]| ≤ ε,
stop. Otherwise, set n = n+ 1, and go to step 2.

The parameter of each model, namely K, is estimated when the proposed al-

gorithm converges, and the outliers in the identification data are handled by the

t-distributions. The global output of the model is a weighted mixture of these basis

models, i.e.,

ZG(t) =
m∑
i=1

ωi(t)Zi(t), (4.19)

where the basis model is expressed by Eq. (4.9), and the mixing coefficient of each

local model at t-th sampling instant is ωi(t), i ∈ {1, 2, · · · ,m}. The calculation of

the mixing coefficient is based on the posterior probability of the identity It = i given

the t-th sampling data point and estimated parameters, i.e.,

ωi(t) = p(It = i|Y (t), U(t), Θ̂) ≈ q(It = i), (4.20)
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where the posterior probability is approximated by q(It = i) after the convergence of

the algorithm. Considering the model error, the bias correction term expressed by

Eq. (4.5) is utilized to construct the adaptive multi-model soft sensors, namely, Soft

Sensor II, i.e.,

Ŷ (t) = ZG(t) + β(t), (4.21a)

ZG(t) =
m∑
i=1

ωi(t)Zi(t), (4.21b)

β(t) = α[Y (t− 1)− ZG(t− 1)] + (1− α)β(t− 1), α ∈ [0, 1]. (4.21c)

Here α is not estimated simultaneously with model parameters as it was done

in Soft Sensor I. Instead, it is treated as a tuning parameter in order to reduce the

complexity.

When implementing the Soft Sensor II online, the steam-quality at q-th instant

is predicted by the soft sensor. However, the mixing coefficient of each basis model

at the new instant cannot be calculated by Eq. (4.20) since q(Iq = i) is unknown.

Therefore, the calculation of mixing coefficients is the key component in the real-time

prediction of the steam-quality.

The identification data {Y, U} are stored in a database. When a query sample Uq

in the input space comes, the similarity sj between Uq and each identification data

point Uj is calculated based on the Euclidean distance

dj =
√

(Uj − Uq)T (Uj − Uq), j = 1, 2, · · · , N, (4.22)

where N is the number of identification data samples. In this work, the method

defined by Eq. (4.23) [74] is adopted to measure the similarity:

sj = exp

(
− dj
σdjφ

)
, (4.23)

where σdj is the standard deviation of dj(j = 1, 2, · · · , N) and φ is a localization

parameter. The similarity decreases sharply when φ gets small and gradually when

φ is large.

Resorting to this method, the similarity between the query sample and every

identification data point is obtained. The mixing coefficients of each identification
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data point, namely ωi(j), are stored in a data base, and the mixing coefficient of the

query sample can be calculated based on the similarity as follows:

ωi(q) =
N∑
j=1

sj · ωi(j), i = 1, 2, · · · ,m. (4.24)

Once the mixing coefficients of the query sample are calculated, the predicted

steam-quality by the Soft Sensor II at any instant is obtained according to Eq.

(4.21).

4.4 Industrial case studies

Single-model based soft sensors and multi-model soft sensors have been designed

based on the first-principle model of the steam-generation process. In this section,

two once-through steam generators with different structures are used to evaluate the

performance of the developed Soft Sensor I and Soft Sensor II.

4.4.1 Case I: OTSG

A. Process description

The process of the once-through steam generator (OTSG) is described in Section 2.

The simplified schematic diagram is shown in Fig. 4.2, and Table 4.1 lists the process

variables utilized in the design of soft sensors. The real-time measurements were

recorded every 10 minutes, whereas the laboratory analysis of I-SQ was logged every

6 hours. The operational and laboratory data were collected through an automated

data historian. The data recorded from August 1, 2012 to August 31, 2013 are

available. Missing measurements and outliers exist in the collected historical data.

Simple pre-processing methods like the 3σ rule are adopted to refine the quality of

the data. The identification data set consists of 664 data points, and the validation

data set is composed of 332 data points.

B. Soft sensor identification

Online measurements of both I-SQ and O-SQ are available, but the accuracy is not

satisfactory. Take the individual pass 1 as an example, the laboratory analysis and the

online measurement of I-SQ are displayed in Fig. 4.3. Clearly, the online measurement
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of steam-quality does not track the trend of the true value from 100 to 200 sampling

instant.
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Figure 4.3: Laboratory analysis and online measurement of pass 1 steam-quality.

The identification procedure of soft sensors involves the online measurement of

O-SQ, as Eq. (4.3a) shows. The trend of the online measurement can thus influence

the accuracy of estimation results, especially for the single-model based soft sensors.

By investigating the process data, we find that compared with the online measure-

ment of O-SQ, the online measurements of I-SQ are much better. Therefore, the

weighted average of the measured I-SQ of 8 individual passes is treated as the online

measurement of O-SQ. That is to say, X is replaced by X̄ in Eq. (4.3a), and X̄ is

X̄(t) =

8∑
l=1

F l(t)X l(t)

8∑
l=1

F l(t)

. (4.25)

In addition, there is no laboratory analysis of O-SQ, so the weighted average of the

laboratory analysis of each I-SQ is calculated to be the laboratory data of O-SQ that
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acts as the reference of the average steam-quality, i.e.,

Ȳ (t) =

8∑
l=1

F l(t)Y l(t)

8∑
l=1

F l(t)

. (4.26)

Fig. 4.4 shows the steam-quality obtained by Ȳ , X̄ and X, respectively. Compared

with the trend of the online measurement (X), the trend of X̄ is more similar to the

trend of the reference. Based on the local-model structure and collected identification

data, models of soft sensors are identified. We denote the model of Soft Sensor

I as Model I, and the model of Soft Sensor II as Model II. By including the bias

correction term with the models, Soft Sensor I and Soft Sensor II are constructed.

The performance of the soft sensors is compared with the performance of the online

measurement.
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Figure 4.4: The steam-quality obtained by weighted average of lab analysis (Ȳ ),
weighted average of online measurements of I-SQ (X̄), and the online measurement
of O-SQ (X).
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C. Soft sensor evaluation

The accuracy and reliability of the developed soft sensors should be evaluated before

online implementation. The level of agreement between the predicted and reference

values is evaluated by accuracy. The reliability is the degree to which the prediction

errors vary. Thus, evaluating the performance of soft sensors is closely related to

accessing the prediction errors (ε).

In order to evaluate the performance of soft sensors in a quantitative way, the

mean absolute error (MAE), standard deviation of errors (StdE), and mean squared

error (MSE) are calculated. The MAE is used to access the accuracy, and StdE is a

measure of reliability. Meanwhile, the MSE reveals both accuracy and reliability of

the prediction performance. The formula of MAE, StdE, and MSE are expressed as

follows:

MAE =
1

N

N∑
t=1

|εt|, (4.27)

StdE =

√√√√ 1

N − 1

N∑
t=1

(εt − ε̄)2, (4.28)

MSE =

√√√√ 1

N

N∑
t=1

ε2
t . (4.29)

The OTSG has 8 individual passes in total. The performance of soft sensors for

each individual pass is assessed, both in self-validation and cross-validation. Fig.

4.5 shows the MAE of estimated steam-quality by the online measurement, Model

I, Model II, Soft Sensor I, and Soft Sensor II, respectively. Fig. 4.6 is the StdE in

self-validation and cross-validation. Fig. 4.7 presents the MSE. As for the prediction

of O-SQ, the evaluation results of predictions are recorded in Table 4.3. According

to the comparison, the performance of Soft Sensor I is better than that of the online

measurement, whereas Soft Sensor II outperforms Soft Sensor I. In addition, Model

II is more accurate and reliable than Model I, from which we can see the advantage

of the proposed multi-model approach.

Besides, the scatter plot of the predicted values versus reference values is utilized

to evaluate the prediction performance visually. Ideally, the predicted values equal to

the reference values (laboratory analysis), i.e., all the data points lie on the 45 degree
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Figure 4.5: OTSG, I-SQ. (a) MAE in self-validation; (b) MAE in cross-validation
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Figure 4.6: OTSG, I-SQ. (a) StdE in self-validation; (b) StdE in cross-validation
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Figure 4.7: OTSG, I-SQ. (a) MSE in self-validation; (b) MSE in cross-validation
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Table 4.3: A evaluation summary of the prediction performance (O-SQ).
MAE StdE MSE

Self-validation
Online measurement 0.9584 1.2383 1.5951
Model I 0.9608 1.2386 1.5717
Model II 0.5017 0.8516 0.7258
Soft Sensor I 0.6823 0.9545 0.9098
Soft Sensor II 0.4214 0.6857 0.4695
Cross-validation
Online measurement 0.8651 1.0763 1.1596
Model I 0.9274 1.0766 1.4349
Model II 0.8850 1.0855 1.2873
Soft Sensor I 0.5911 0.7877 0.6186
Soft Sensor II 0.5640 0.7577 0.5723

line (y = x), indicating perfect matching between the prediction and the reference.

The time-trend plot of predicted values and reference values is also widely used for

visualizing the prediction performance. Take the individual pass 1 as an example, the

scatter plot and time-trend plot are shown in Fig. 4.8 and Fig. 4.9. These figures

indicate that the prediction performance of both soft sensors is good in this case

study, and Soft Sensor II outperforms Soft Sensor I slightly.
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Figure 4.8: Self-validation, individual pass 1. (a) Scatter plot comparison; (b) time-
trend comparison
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Figure 4.9: Cross-validation, individual pass 1. (a) Scatter plot comparison; (b)
time-trend comparison

4.4.2 Case II: Cogen-HRSG

A. Process description

The Cogeneration consists of a Heat Recovery Steam Generator (HRSG), which pro-

vides steam for the injection into the reservoirs of SAGD systems, and a gas turbine

that supplies power to the plant and sales to the grid. Fig. 4.10 shows the simplified

schematic diagram of Cogen-HRSG. The fuel gas consisting of compressed air and

combust is combusted in the gas turbine to generate electricity. The hot exhaust

from the combustion is sent to the HRSG to provide heat for the steam generator.

Since the exhaust cannot provide enough energy, extra fuel gas is burned in the duct

burner to produce additional heat for the steam generator.

Power Generator

Exhaust Gas

Natural Gas

Duct Burnber

BFW

To Atomosphere

Gas Turbine

.

.

.

Steam to 

Steam Separator

Figure 4.10: Schematic diagram of Cogen-HRSG.
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The structure of Cogen-HRSG is different from the structure of OTSG, but they

share the same model structure which is based on the heat transfer principle. That

is to say, the process variables of interest are same, as listed in Table 4.1. The only

difference is that the number of individual passes is 12 instead of 8 in this case study.

The real-time measurements of variables were recorded every 1 minute, and the

laboratory analysis was logged every 6 hours. The data recorded from January 1,

2013 to July 1, 2014 are available to use. Through preprocessing, we have 1490 data

points in total. The identification data set consists of the previous 1000 data points,

and the rest data are used for validation.

B. Soft sensor identification and evaluation

Fig. 4.11 shows the laboratory analysis and online measurement of steam-quality

in individual pass 1. The online measurement is not accurate. Following the same

procedure described in Case I, models are identified first, and the soft sensors are

constructed by taking the bias correction term into account.
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Figure 4.11: Steam-quality in individual pass 1.

The performance of models and soft sensors for each individual pass (12 passes in

total) is evaluated by the MAE, StdE and MSE, respectively. Fig. 4.12, Fig. 4.13,
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and Fig. 4.14 present the comparison results of their prediction performance. We can

see that the online measurement is not accurate, especially the data in self-validation.

The performance of Soft Sensor I appears satisfactory, but the model (namely Model

I ) has a poor performance. That means the bias correction term plays a key role

in the prediction of steam-quality which indicates the soft sensor prediction may not

be reliable. In contrast, Model II is much better than Model I, which demonstrates

the effectiveness of the multi-model approach. Moreover, the standard deviation of

errors of Soft Sensor II is the smallest, so it is the most reliable method to predict

steam-quality.
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Figure 4.12: Cogen-HRSG, I-SQ. (a) MAE in self-validation; (b) MAE in cross-
validation
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Figure 4.13: Cogen-HRSG, I-SQ. (a) StdE in self-validation; (b) StdE in cross-
validation
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Figure 4.14: Cogen-HRSG, I-SQ. (a) MSE in self-validation; (b) MSE in cross-
validation

Taking the individual pass 1 as an example, the time-trend plot and scatter plot of

Soft Sensor I are shown in Fig. 4.15 and Fig. 4.16. The bias of the prediction given

by Model I is obvious. After bias correction, the performance appears to improve.

For comparison, the time-trend plot and scatter plot of Soft Sensor II are shown in

Fig. 4.17 and Fig. 4.18. The performance of Model II is satisfactory, and after the

bias correction, the performance is even better.
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Figure 4.15: Self-validation Soft Sensor I, I-SQ 1. (a) Time-trend comparison; (b)
scatter plot comparison
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Figure 4.16: Cross-validation Soft Sensor I, I-SQ 1. (a) Time-trend comparison; (b)
scatter plot comparison
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Figure 4.17: Self-validation Soft Sensor II, I-SQ 1. (a) Time-trend comparison; (b)
scatter plot comparison
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Figure 4.18: Cross-validation Soft Sensor II, I-SQ 1. (a) Time-trend comparison; (b)
scatter plot comparison
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4.5 Discussion

Industrial case studies have demonstrated the effectiveness of the developed soft sen-

sors. Soft Sensor I is a single-model based inferential sensor, which is simple and

easily identifiable. Soft Sensor II is a multi-model inferential sensor, which is more

sophisticated, but more accurate and reliable.

Resorting to the online bias updating term, the soft sensors become adaptive to

the operating conditions, and both soft sensors outperform the online measurement.

However, we must realize that the bias updating term depends on the laboratory anal-

ysis and can only correct slow dynamics. If the laboratory analysis is not available,

the prediction performance of the soft sensors can deteriorate, indicating potential

problems when predicting at a point far away from lab data. Especially for Soft

Sensor I, the prediction of the single model (Model I ) cannot track the real steam-

quality well, as we can see from figures in case studies. In contrast, Model II, namely

the model of Soft Sensor II, is capable of providing acceptable predictions of the

steam-quality. Furthermore, the prediction of Model II is more accurate and reliable

than the online measurement. After bias correction, Soft Sensor II outperforms other

fast-rate estimation of steam-quality known to this work.

When identifying Soft Sensor I, all parameters including the weight of the bias

updating term are estimated by the PEM algorithm simultaneously. The advantage

of this approach is that we do not need to tune any parameter. Besides, the com-

putational load is not heavy. However, the reliability of this approach is in doubt.

The weight (α) is a special parameter which has a constraint condition, and the

convergence may be different from the convergence of the model parameter (K). If

we adopt the method proposed in [62] directly, the estimation result might not be

satisfactory. We have met the situation where the estimated α is larger than 1, re-

sulting in significant oscillation and even divergence of the steam-quality prediction.

By using the projection method, α is forced to be located within [0, 1]. However, α̂

may be 1 or close to 1, and the model parameters are still not well estimated. Then

the bias correction term updates sharply when the new laboratory data point comes

because of the large gap between the model prediction and the laboratory analysis.

Therefore, estimating all parameters simultaneously using PEM may not give us the
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best results.

On the contrary, the model parameters of Soft Sensor II are identified by the

variational Bayesian method by taking the influence of outliers into account, and the

weight parameter is tuned manually instead of being estimated by the algorithm in

order to reduce the computational load. The variational Bayesian method is more

sophisticated than the prediction error method, and thus can identify the model

better, but it is computationally expensive. Fortunately, the identification procedure

is off-line, so it does not matter if the estimation procedure takes longer time. During

the prediction, the similarity between the query data point and historical data is

calculated in order to determine the operating mode. The prediction of steam-quality

by the model may still have bias, so the bias correction term is utilized to improve the

prediction performance. The weight is tuned, and usually α = 0.3 can compensate the

bias between the model prediction and the laboratory analysis, and yield a smooth

updating of the bias correction term.

4.6 Conclusions

The estimation of the steam-quality in the steam generator is challenging. In this

research, based on the previous work of Xie et. al, we designed two kinds of adaptive

soft sensors. The single-model based soft sensor is simple and easy to be developed.

Industrial case studies verified the effectiveness of the soft sensor, but generality is still

in question since the performance of the model could be worse than the performance of

the online measurement under some conditions, which means that the bias correction

is important in Soft Sensor I. A variational Bayesian approach to the development of

multi-modal soft sensors is proposed. The influence of outliers is reduced by resorting

to t distributions. Both the model and the soft sensor have a good performance

in the case study of OTSG and Cogen-HRSG. The multi-model soft sensor is more

reliable. Therefore, the advantage of Soft Sensor II over Soft Sensor I is significant

if the laboratory analysis is not available for a considerable time period during the

operation.
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Chapter 5

Conclusions

5.1 Summary of this thesis

This thesis focuses on robust identification of industrial processes, generally viewed

as multi-modal processes, with time-varying behaviour, nonlinearity, and switching

dynamics. Soft sensors based on proposed algorithms for industrial applications are

designed to meet the requirement of the real-time estimation of steam-quality.

The background and motivation of the robust identification of multi-modal pro-

cesses were presented in Chapter 1.

Chapter 2 proposed a robust multiple-model LPV approach to identify the non-

linear process subject to outliers using mixture t distributions. The basic idea of this

approach was to use a weighted combination of local-models around operating points

to approximate the nonlinear process across the whole operating range. Resorting to

t distributions, the outliers were down-weighted automatically during the iterative

optimization.

A variational Bayesian approach to identification of switched ARX models was

developed in Chapter 3. Practical issues such as robustness and outlier detection,

estimation of the number of operating modes, and estimation of parameter uncer-

tainty were addressed in this chapter. A set of mixing coefficients was introduced to

indicate the significance of each local-model and redundant local-models were elimi-

nated by the algorithm during the iterative procedure of optimization. The number of

local-models and the probability distribution functions over parameters were obtained

simultaneously.

The advantage of using multiple local-models in process modelling was shown in
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simulations and experiment case studies. The performance of soft sensors is dependent

on the derived or the identified process model. The multi-model modelling approach

was applied to the design of soft sensors in Chapter 4. The previous single-model

based soft sensor was simple and easy to be implemented, but the reliability can be

improved further. The developed multi-model soft sensor performed well in industrial

case studies of OTSG-93 and Cogen-HRSG, and the performance of the model was

better than that of the online measurement of steam-quality.

5.2 Directions for future work

We worked on the modelling and identification of multi-modal processes throughout

this thesis. Statistical optimization approaches including the expectation-maximization

algorithm and the variational Bayesian algorithm were investigated to address the

problem of process identification. Practical issues like robustness, estimation of the

number of operating modes, and outlier detection were addressed in this thesis. How-

ever, some issues in the field of multi-modal process identification remain open.

On one hand, in both the LPV modelling approach and the switched modelling

approach, the order of the transfer function was assumed to be known. We used the

off-line cross-validation method to determine the appropriate order of the transfer

function, and assumed all the local-models had the same order. In practice, the order

of each local-model can be different. An advanced method need to be developed to

estimate the orders along with the estimation of model parameters.

On the other hand, we assumed that the collected training data covered all oper-

ating modes of the process and thus the identified model could represent the process

over the whole operating range. This assumption is not always reasonable in industry.

The collected training data may not cover the whole operating range owing to the

constraints of operation during a certain period. The prediction performance of the

model may be unsatisfactory if the process runs in the new operating mode which

is not considered in process identification. How to detect new operating modes and

then update the model remains to be addressed.

In addition, the outlier detection approach through predictive density function

was not fully studied. The exact calculation of predictive density function is difficult,
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and it has not been addressed in literature. In Chapter 3, the predictive density was

approximated by its lower bound, and a threshold of the lower bound to distinguish

outliers from normal data was utilized, which is ad-hoc. More objective methods need

to be discovered to consummate the approach to outlier detection through predictive

density function.

Finally, when implementing the multi-model soft sensor online, the calculation of

mixing coefficients plays a key role in the real-time prediction of the steam-quality.

A method based on the similarity between the query data and each identification

data point was proposed to estimate the mixing coefficients. This may not be very

accurate according to the prediction performance of the model in cross-validation.

Therefore, a better method to estimate the mixing coefficients needs to be explored.
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[25] R Tóth, PSC Heuberger, and PMJ Van den Hof. An LPV identification frame-
work based on orthonormal basis functions. In proceedings of the 15th IFAC
Symposium on System Identification, Saint-Malo, France, 2009.

[26] Mark Butcher and Alireza Karimi. Data-driven tuning of linear parameter-
varying precompensators. International Journal of Adaptive Control and Signal
Processing, 24(7):592–609, 2010.

96



[27] Xing Jin, Biao Huang, and David S Shook. Multiple model LPV approach to
nonlinear process identification with EM algorithm. Journal of Process Control,
21(1):182–193, 2011.

[28] John W Tukey. The future of data analysis. The Annals of Mathematical Statis-
tics, 33(1):1–67, 1962.

[29] Peter J Huber et al. Robust estimation of a location parameter. The Annals of
Mathematical Statistics, 35(1):73–101, 1964.

[30] IB Tjoa and LT Biegler. Simultaneous strategies for data reconciliation and
gross error detection of nonlinear systems. Computers & chemical engineering,
15(10):679–690, 1991.

[31] Moustapha Alhaj-Dibo, Didier Maquin, and José Ragot. Data reconciliation: A
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