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Abstract

We first recall the filtration F • on the higher Chow group CHr(X,m;Q) of
a complex smooth projective variety X as done by J. Lewis (for m = 0),
and separately by M. Saito / M. Asakura and explain the various invariants
(Mumford-Griffiths and de Rham), as well as the notion of arithmetic normal
functions due to M. Kerr and J. Lewis. As in the case of Griffiths’ use of
normal functions for m = 0 to detect interesting cycles, we do the same thing
for the higher Chow groups.
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Chapter 1

Introduction

An important notion in transcendental algebraic geometry is that of explain-
ing invariants on a complex smooth projective variety X by algebraically de-
fined objects on it. In this context we are interested in studying Chow groups.
We consider algebraic cycles on the variety and consider the group formed by
them. An algebraic cycle of codimension r is a formal sum of codimension
r irreducible subvarieties in X. Modulo an adequate equivalence relation,
called rational equivalence, we get the Chow group of codimension r cycles
on X. We expect, for instance, that the rational cohomology classes of type
(r, r) of X should be generated by fundamental classes of rational elements
in the Chow group of codimension r cycles on X. This is the famous Hodge
conjecture.

Let X be a complex smooth projective variety. We would like to find good
invariants to better understand the structure of CHr(X;Q), the Chow group
of codimension r cycles on X with rational coefficients. Consider the cycle
class map

cr : CHr(X;Q)→ homMHS(Q(0), H2r(X,Q(r))).

This map is expected to be surjective (Hodge Conjecture). Then we look at
the kernel of this map and denote it by CHr

hom(X;Q). We get the Abel-Jacobi
map

CHr
hom(X;Q)→ Ext1

MHS(Q(0), H2r−1(X,Q(r))).

This map is neither surjective nor injective when r > 1, as was proved by
Griffiths ([22]) and Mumford ([41]) respectively; it is an isomorphism when
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r = 1 (see [34],[36]). However these two maps give us the idea that if we
look at the kernel of the Abel-Jacobi map, we could capture these cycles by
higher extension groups in the category of mixed Hodge structures. This is
unfortunately false because Ext`MHS = 0 for ` ≥ 2. Nevertheless, we still
expect to define a filtration on CHr(X;Q) with certain properties, which we
will call a filtration of Bloch-Beilinson type, and find maps to Hodge theoretic
invariants. In [35] we can find a construction of such a filtration by J. Lewis:

Theorem 1.1. Let X be a complex smooth projective variety X. Then, for
all r, there is a descending filtration {F jCHr(X;Q)} ,

CHr(X;Q) = F 0CHr(X;Q) ⊃ F 1CHr(X;Q) ⊃ · · ·
· · · ⊃ F jCHr(X;Q) ⊃ F j+1CHr(X;Q) ⊃ · · ·

which satisfies the following:

(i) F 1CHr(X;Q) = CHr
hom(X;Q).

(ii) F j is preserved under the action of correspondences.

(iii) F jCHr(X;Q) • F `CHs(X;Q) ⊂ F j+`CHr+s(X;Q), under the intersec-
tion product.

(iv) Assume that the components of the diagonal are algebraic. Then

∆X(2d− 2r + `, 2r − `)∗|GrjFCHr(X;Q) =

{
Identity , if ` = j

0 , otherwise

where GrjFCHr(X;Q) = F jCHr(X;Q)/F j+1CHr(X;Q).

(v) F 2CHr(X;Q) ⊂ ker{CHr
hom(X;Q)→ Ext1

MHS(Q(0), H2r−1(X,Q(r)))}.

(vi) F r+1CHr(X;Q) = F r+2CHr(X;Q) = F r+3CHr(X;Q) = · · ·

If we assume that

CHr
hom(X;Q)→ Ext1

MHS(Q(0), H2r−1(X,Q(r)))

is injective for X smooth quasiprojective over Q̄, then Lewis also proves that
Dr(X;Q) :=

⋂
j≥0 F

jCHr(X;Q) = 0.
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In [38] another filtration is defined. If we assume that the components of the
diagonal are algebraic and Dr(X;Q) = 0 then both filtrations are the same.
Lewis and Saito define the space of Mumford-Griffiths invariants ∇Jr,j(X/C)
and the space of de Rham invariants ∇DRr,j(X/C) (see Chapter (5)) and
construct maps between graded pieces of the filtration and these invariants

GrjFCHr(X;Q)→ ∇Jr,j(X/C),

GrjFCHr(X;Q)→ ∇DRr,j(X/C).

Then they give conditions for which the kernel and image of these maps are
“uncountably large”.

The next natural step is to try to reproduce all these concepts and results
for higher Chow groups, as well a generalization of Griffiths’ use of normal
functions to detect interesting cycles. This involves explaining a mountain
of technical material, such as the aforementioned filtration for higher Chow
groups CHr(X,m;Q). This was done in [5] and we basically follow the ideas
there. This involves M. Saito’s theory of mixed Hodge modules. Then we
recall the analogous definition of higher Mumford-Griffiths and de Rham
invariants and the corresponding maps

GrjFCHr(X,m;Q)→ ∇Jr,m,j(X/C), (1.1)

GrjFCHr(X,m;Q)→ ∇DRr,m,j(X/C).

We also explain M. Saito’s argument that the image of the two maps is the
same (see [46]). That is, we explain that for a cycle in CHr(X,m;Q) its
image in ∇Jr,m,j(X/C) and its image in ∇DRr,m,j(X/C) are the same, i.e.
one vanishes if the other does. This answers a question posed in [38], where
they state this equivalence as a conjecture for m = 0 and assume it in several
theorems. Actually, we explain M. Saito’s argument that both invariants
factor through the space Ej,2r−m−j

∞ (η). This space (defined in Chapter (6))
is given by hom of two mixed Hodge structures and provides a more natural
way to deal with the Mumford-Griffiths invariant of a cycle.

Under some conjectural assumptions we prove some basic results about the
image and kernel of (1.1). Then we recall a new filtration due to Kerr/Lewis
([31]), constructed using the theory of arithmetic normal functions. These
“higher” normal functions coincide with classical normal functions in the case
m = 0 and provide means to define a more geometrical filtration and help

3



us to determine conditions to find indecomposable cycles, thus generalizing
some earlier ideas of Griffiths on normal functions. New results and directions
are explained in the final two chapters.
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Chapter 2

Higher Chow groups

Let X be a quasiprojective variety over a field k. For m ∈ N, define the
“simplex” ∆m by

∆m = Spec

(
k[t0, ..., tm]∑m
j=0 tj − 1

)
.

The codimension one faces of the simplex ∆m are the (m + 1) linear hyper-
surfaces in ∆m obtained by setting the coordinate tj = 0 of tj in ∆m. By
intersecting the codimension one faces, one gets codimension (m − n)-faces
isomorphic to ∆n for every n < m. These faces are parametrized by strictly
increasing maps ρ : {1, . . . , n} → {1, . . . ,m}, which are characterized by the
conditions pi goes to pρ(i), where pi = (0, . . . , 1, . . . , 0) are the vertices of the
simplex, making ∆m a simplicial set.

Put Zr(X ×∆m) = set of cycles of X ×∆m of codimension r. If ξ is a cycle
in Zr(X×∆m), and every irreducible component of ξ meets all faces X×∆n

in codimension at least r for n < m, we say that ξ meets X ×∆m properly.
Set

Zr(X,m) := {ξ ∈ Zr(X ×∆m)| ξ meets X ×∆m properly}.

Let ∂̄j : Zr(X,m) → Zr(X,m − 1) be the restriction map to the j-th codi-
mension one face for j = 0, . . . ,m and let ∂m =

∑m
j=0(−1)j ∂̄j. The boundary

map ∂m satisfies ∂m ◦ ∂m+1 = 0.

Definition 2.1. The mth higher Chow group of X in codimension r, de-
noted by CHr(X,m), is defined as the mth homology group of the complex
{Zr(X,m), ∂m}.
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If r > m+ dimX, then it is clear by the definition that CHr(X,m) = 0. The
following proposition establishes functoriality for higher Chow groups (see
[8]).

Proposition 2.2. Let X and Y be quasiprojective varieties over k, dimX =
d1, dimY = d2, and f : X → Y a morphism. If f is proper there is a
morphism

f∗ : Zr(X,m)→ Zr−d(Y,m),

for all r and all m, with d = d1−d2. There is also for f flat and for all r and
all m, a morphism

f ∗ : Zr(Y,m)→ Zr(X,m).

Using proposition (2.2), we can construct, for f proper, a push-forward mor-
phism

f∗ : CHr(X,m)→ CHr−d(Y,m),

and, for f flat, a pull-back morphism

f ∗ : CHr(Y,m)→ CHr(X,m),

for all r and all m, with d = d1 − d2.

Remark. For smooth varieties, the morphism f ∗ exists unconditionally on
the level of Chow groups.

The notion of product is also defined for higher Chow groups, in fact we have
(see [8] and the excellent explanation in [20]):

Proposition 2.3. Let X and Y be smooth quasiprojective varieties over k.
There exists a well defined product

CHr(X,m)⊗ CHs(Y, n)→ CHr+s(X × Y,m+ n).

Moreover, this product induces an internal product

CHr(X,m)⊗ CHs(X,n)→ CHr+s(X,m+ n).

Remark. (i) The internal product is only valid in the smooth case.

(ii) If ξ1, ξ2 are two cycles, we denote their product by ξ1 • ξ2.

6



The product of cycles in higher Chow groups has a more natural description
if we consider the cubical version. Set �m = (P1

k−{1})m with coordinates tj.
Codimension one faces on �m are obtained by setting tj = 0,∞. Intersecting
these faces gives us higher codimension faces. Let Cr(X,m) be the free
abelian group generated by subvarieties of X×�m of codimension r meeting
all the faces of the cubes �n, n < m, again in the same codimension. There
is a map

dm =
m∑
j=1

(−1)j(∂∞j − ∂0
j ),

where ∂0
j is the pullback to the face tj = 0 and ∂∞j is the pullback to

the face tj = ∞. The map dm satisfies dm ◦ dm+1 = 0, effectively mak-
ing (Cr(X,m), dm) a complex. Consider projections �m → �m−1 of the
form (t1, . . . , tm) 7→ (t1, . . . , t̂j, . . . tm) (t̂j means omit tj). Those elements
in Cr(X,m) which are the pullback of cycles on X × �m−1 via such pro-
jections are called degenerate cycles. We define Dr(X,m) as the subgroup
of Cr(X,m) generated by all degenerate cycles. Then {Dr(X,m), dm} is a
subcomplex of {Cr(X,m), dm}. Let

Zr
c (X, •) = Cr(X, •)/Dr(X, •).

Proposition 2.4 ([32]). There is a quasi-isomorphism between Zr
c (X, •) and

Zr(X, •), which induces an isomorphism

CHr(X,m) ' Hn(Zr
c (X, •)).

Because of this isomorphism, we can use any of the two constructions to
define higher Chow groups. The isomorphism

�1 ×�m−1 ' �m

induces an isomorphism

(X ×�m)× (Y ×�n) ' (X × Y )×�m+n

for varieties X, Y over k. Thus the product of higher Chow groups has
an explicit description in this setting. CH∗(X, ∗) =

⊕
r,m CHr(X,m) has

a commutative graded ring structure such that ξ1 • ξ2 = (−1)mnξ2 • ξ1 for
ξ1 ∈ CH∗(X,m), ξ2 ∈ CH∗(X,n).
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Proposition 2.5 (Projection formula). Let X and Y be smooth quasipro-
jective varieties over k, f : X → Y a proper morphism, ξ1 ∈ CH∗(X, ∗), ξ2 ∈
CH∗(Y, ∗). Then

f∗(ξ1 • f ∗(ξ2)) = f∗(ξ1) • ξ2.

A consequence of the product structure for higher Chow groups is the exis-
tence of indecomposable elements. Take a smooth quasiprojective variety X
over k. Then we have a map:

Π :
⊕

r1+r2=r,m1+m2=m

CHr1(X,m1)⊗ CHr2(X,m2)→ CHr(X,m),

where (r1,m1) 6= (0, 0), (r2,m2) 6= (0, 0). We say that an element of
CHr(X,m) is decomposable if it is in the image of Π. The space of indecom-
posable elements of CHr(X,m) is the quotient CHr(X,m)/ImageΠ. Now,
let X be a smooth projective variety over k. Later we will use the subgroup
of decomposables CHr

dec(X,m) given by the image of

CHr−m(X, 0)⊗ CH1(X, 1)⊗m → CHr(X,m)

under the product for higher Chow groups and the subgroup of indecompos-
ables CHr

ind(X,m) given by

CHr
ind(X,m) := CHr(X,m)/CHr

dec(X,m).

Another important result is the existence of a localization sequence ([9]).

Proposition 2.6. Let X be a quasiprojective variety over a field. If Y ⊂ X
is a closed subvariety of pure codimension r, then one has a localization

. . .→ CH∗(Y,m)→ CH∗+r(X,m)→ CH∗+r(X \ Y,m)→ CH∗(Y,m− 1)→ . . .

Corollary 2.7 (Mayer-Vietoris sequence). Let X = U∪V be a Zariski cover.
Then we have a long exact sequence

. . .→ CH∗(U ∪ V,m)→ CH∗(U,m)⊕ CH∗(V,m)→ CH∗(U ∩ V,m)→ CH∗(U ∪ V,m− 1)→ . . .

The existence of a product and functoriality on higher Chow groups are
necessary to define the morphism induced by a “correspondence”.
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Definition 2.8. Let X and Y be smooth projective varieties over k.

(i) A correspondence from X to Y is a cycle Γ ∈ CH`(X × Y, n).

(ii) The morphism induced by a correspondence Γ ∈ CH`(X × Y, n),

Γ∗ : CHr(X,m)→ CHs(Y,m+ n),

with s = r + `− dim(X), is defined by

Γ∗(ξ) = πY ∗(π
∗
X(ξ) • Γ)

for ξ ∈ CHs(X,m), where πX : X × Y → X and πY : X × Y → Y are the
projections.

If we consider CHr(X), the Chow group of codimension r algebraic cycles on a
quasiprojective variety X, then higher Chow groups provide a generalization
of these groups. Indeed we have

Proposition 2.9. Let X be a quasiprojective variety over a field k. Then
CHr(X, 0) ' CHr(X).

We will restrict our discussion to higher Chow groups without torsion and
set CHr(X,m;Q) := CHr(X,m)⊗Q.
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Chapter 3

Mixed Hodge structures

In the following we introduce the definitions of Hodge structures, and more
generally mixed Hodge structures. These are necessary since later we will
define maps from (filtered) higher Chow groups to extensions of mixed Hodge
modules. The cycles mapped in this way can be described by looking at a
short exact sequence that involves Ext and hom of (polarizable) mixed Hodge
structures.

Definition 3.1. A Hodge structure H of weight ` is a pair consisting of a
Z−module of finite type HZ such that HR := HZ ⊗ R is a finite dimensional
vector space over R, and a decreasing filtration F • of HC := HZ ⊗ C such
that

HC = F p ⊕ F `−p+1.

Setting Hp,q := F p ∩ F q, we get a decomposition

HC =
⊕
p+q=`

Hp,q

where Hp,q = Hq,p (the bar denotes complex conjugation).

If we have a Z−module of finite type HZ, such that HR is a finite dimensional
vector space over R, then the existence of a decomposition of HC like the one
above, can be used to construct a filtration by setting F r =

⊕
p≥rH

p,`−p.
This induces a Hodge structure of weight ` on HZ. Thus the existence of
decompositions is equivalent to the existence of filtrations with the properties
described.
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Example 3.2. Let X be a smooth projective variety over C. The classical
example of a Hodge structure of weight ` is a consequence of the Hodge
decomposition theorem (see [24] or [34]), which allows us to write

H`
DR(X,C) =

⊕
p+q=`

Hp,q(X).

Example 3.3. Another example is given by the Hodge structure of Tate
Z(`) of weight −2` defined by Z(`) := Z. It is the unique integral Hodge
structure of weight −2` on Z, the decomposition is given by Z(`) = Z(`)−`,−`.

Definition 3.4. A morphism of Hodge structures f : H1 → H2 is a morphism
of Z−modules that preserves the filtration, i.e. f(F rH1C) ⊂ F rH2C for all r.

We can define the direct sum of Hodge structures of the same weight in an
obvious way. We can also define tensor product and hom. If H1 is a Hodge
structure of weight `1 such that H1C =

⊕
p+q=`1

Hp,q
1 and H2 is a Hodge

structure of weight `2 such that H2C =
⊕

p+q=`2
Hp,q

2 , then H1 ⊗ H2 is a
Hodge structure of weight `1 + `2, with

(H1 ⊗H2)p,q =
⊕

p1+p2=p,q1+q2=q

Hp1,q1
1 ⊗Hp2,q2

1 .

hom(H1, H2) has weight −`1 + `2 and

hom(H1, H2)p,q = {f : H1C → H2C| f(Hp1,q1
1 ) ⊂ Hp1+p,q1+q

2 )}.

In particular, H1 ⊗ Z(`) is a Hodge structure of weight `1 − 2` and the dual
Hodge structure H∗1 has weight −`1.

Definition 3.5. Let H be a Hodge structure of weight `. A polarization of
H is a nonsingular, bilinear form

S : HC ⊗HC → C,

which is defined over Q, such that:

(i) S(x, y) = (−1)`S(y, x).

(ii) S(Hp,q, Hr,s) = 0 unless p = s, q = r.
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(iii) ip−qS(x, ȳ) is a hermitian positive-definite bilinear form on Hp,q.

A polarizable Hodge structure is a Hodge structure that admits a polariza-
tion. Hodge structures form an abelian category with tensor products. We
need polarized Hodge structures to get a semisimple category. In fact, if
G ⊂ H is a sub Hodge structure of a polarized Hodge structure H (i.e. G is
a Hodge structure such that the inclusion is a morphism of Hodge structures)
then G inherits a polarization from the one on G and HQ = GQ ⊕G⊥Q.

Definition 3.6. A mixed Hodge structure H is a triple consisting of

(i) A Z−module of finite type HZ, such that HR := HZ ⊗ R is a finite
dimensional vector space over R.

(ii) An increasing filtration W• of HQ := HZ ⊗Q.

(iii) A decreasing filtration F • of HC := HZ ⊗ C.

Furthermore, F • induces a Hodge structure of weight ` on each of the graded
pieces

Gr`W = W`/W`−1.

W is usually called the weight filtration and F the Hodge filtration. A mor-
phism of mixed Hodge structures is a morphism of Z−modules that preserves
both filtrations. A graded-polarizable mixed Hodge structure is a mixed
Hodge structure such that each graded piece Gr`W is a polarizable Hodge
structure. The category of mixed Hodge structures is abelian.

Deligne proved in [18] that for any complex variety X, H`(X,Q) carries a
canonical and functorial mixed Hodge structure. This structure is the usual
Hodge structure when X is smooth and projective. More generally we have
the following ([18], [19]):

Theorem 3.7. Let U be a complex quasiprojective variety. Then H`(U,Z)
has a canonical and functorial mixed Hodge structure such that

(i) If U is smooth projective, the mixed Hodge structure on H`(U) is the
usual one.

(ii) If U is smooth with smooth compactification X, then H`(U) has weights
in the range [`, 2`] and Im(H`(X)→ H`(U)) = W`H

`(U).
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(iii) If U is complete then H`(U) has weights ≤ `.

Example 3.8. Consider a compact Riemann surface X and a finite set of
points Σ ⊂ X. Then the exact sequence

0→ H1(X,Z)→ H1(U,Z)
Residue−−−−→ H0

deg 0(Σ,Z(−1))→ 0

is an exact sequence of mixed Hodge structures, where U = X − Σ and also
H0

deg 0(Σ,Z(−1)) ' Z(−1)|Σ|−1. In this case W1H
1(U,Z) = Im(H1(X,Z) →

H1(U,Z)) and Gr2
WH

1(U,Z) ' Z(−1)|Σ|−1.

We denote the category of mixed Hodge structures by MHS. We will be
interested in extensions of mixed Hodge structures. The following result of
Carlson ([11]) is essential.

Theorem 3.9. Let H be a mixed Hodge structure. Then

Ext1
MHS(Q(0), H) =

W0HC

F 0W0HC +W0HQ
.

The theorem in this form is proved by U. Jannsen in [26] following the proof
of Carlson. Moreover by Carlson’s description of Ext1

MHS, since the functor
Ext1

MHS(Q(0),−) is right exact, one can show that ExtjMHS(V,H) = 0 for
j ≥ 2 and any MHS H, V , as was first established by Beilinson [6]. If
we consider the category of graded-polarizable mixed Hodge structures, the
theorem takes the following form stated in [5]:

Theorem 3.10. Let H be a graded-polarizable mixed Hodge structure.
Then

Ext1
PMHS(Q(0), H) =

W−1HC

W−1HC ∩ (F 0W0HC +W0HQ)
↪→ Ext1

MHS(Q(0), H).

Proposition 3.11. Let H be a graded-polarizable mixed Hodge structure.
Then

Ext1
PMHS(Q(0), H) =

Ext1
MHS(Q(0),W−1H)

homMHS(Q(0), Gr0
WH)

Proof. There is a natural map

W−1HC

F 0W−1HC +W−1HQ
→ W−1HC

W−1HC ∩ (F 0W0HC +W0HQ)
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whose kernel is F 0Gr0
WHC ∩ Gr0

WHQ. By theorems (3.9), (3.10) we get an
exact sequence

0→ F 0Gr0
WHC ∩Gr0

WHQ → Ext1
MHS(Q(0),W−1H)→ Ext1

PMHS(Q(0), H)→ 0.

On the other hand, by using the long exact sequence associated to the short
exact sequence

0→ W−1H → W0H → Gr0
WH → 0

we get the exact sequence

homMHS(Q(0), Gr0
WH)→ Ext1

MHS(Q(0),W−1H)→ Ext1
MHS(Q(0),W0H).

Then, using (3.9) again, we deduce that (also see [26])

homMHS(Q(0), Gr0
WH) = F 0Gr0

WHC ∩Gr0
WHQ

and the proposition follows.

We define for any Hodge structure H:

Γ(H) := homMHS(Q(0), H),

J(H) := Ext1
MHS(Q(0), H).

Although we aren’t going to get into the details of degeneration of Hodge
structures, we will need to know what a variation of Hodge structure is. If
X is a complex manifold, to any locally constant sheaf V of complex vector
spaces (called a local system) we can associate a holomorphic vector bun-
dle on X with a flat connection. The holomorphic vector bundle is given
by V := OX ⊗ V endowed with an integrable connection ∇, with space of
horizontal sections V . Moreover, there is a bijective correspondence between
isomorphism classes of holomorphic vector bundles equipped with a flat con-
nection and isomorphism classes of local systems.

Definition 3.12. Let X be a complex manifold. A polarized variation of
Hodge structure (or VHS) of weight ` over X consists of a local system VZ
over X of Z−modules of finite rank such that:

(i) There is a decreasing filtration F• of V = OX ⊗ VZ by holomorphic
sub-bundles.
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(ii) There exists a flat bilinear form S : VC × VC → C.

They satisfy:

1. the Griffiths transversality condition ∇(Fp) ⊂ Ω1
X ⊗OX Fp−1;

2. For every x ∈ X, the Z−module VZ,x, with the filtration F •x induced by
F• and the bilinear form Sx is a polarized Hodge structure of weight `.

Example 3.13. Let f : Y → X be a smooth projective morphism between
quasi-projective algebraic varieties over C. Then the local system Rm

primf∗Z ⊂
Rmf∗Z consisting of the primitive cohomology classes in the fibers of f is a
polarized variation of Hodge structure.

15



Chapter 4

Mixed Hodge modules

Fix an algebraically closed field k of characteristic 0. Let X be a smooth vari-
ety over k, of dimension n. Take U ⊂ X an open affine subset. A differential
operator of order ≤ r on U is a k-linear endomorphism g : OX(U)→ OX(U)
such that [f̂r . . . [f̂1, [f̂0, g]] . . .] = 0 for any f0, f1, . . . fr ∈ OX(U), where f̂i
is the operator of multiplication by fi. Let D(U) be the ring of differential
operators on U . It is the union of all differential operators on U of all orders.

Proposition 4.1 ([7]). The functor U 7→ D(U) defines a quasi-coherent
sheaf of OX-modules.

Definition 4.2. The sheaf of proposition (4.1) is called the sheaf of differ-
ential operators on X and is denoted by DX . A DX-module is a sheaf M of
left DX-modules which is quasi-coherent as OX-module.

Remark. Although we chose left DX-modules in our definition, we could also
have chosen right DX-modules. However, we can go from one to the other
by a well defined operation (as discussed in [3]), so we use only DX modules
like in the definition.

Example 4.3. OX is clearly a DX-module because the sheaf OX is itself
quasi-coherent.

It is possible to find (see [7]) for each x ∈ X an affine neighbourhood U of x,
functions x1, . . . , xn on U and vector fields ∂1, . . . , ∂n on U , with ∂i(xj) = δij,
such that the tangent sheaf TX (the definition can be found later in Chapter
(5)) is generated by {xi, ∂j}. Then D(U) = OX(U)⊗ k[∂1, . . . , ∂n].
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Example 4.4. When X = Cn, DX(X) is the Weyl algebra over C, de-
noted by Dn. Dn is the noncommutative C-algebra generated by symbols
x1, . . . , xn, ∂1 = ∂

∂x1
, . . . , ∂n = ∂

∂xn
subject to the relations [xi, xj] = [∂i, ∂j] =

0, [∂i, xj] = δij. An element P ∈ Dn can be written in a unique way as

P =
∑

αI,Jx
i1 · · · xin∂j1 · · · ∂jn ,

where i1, · · · , in, j1, · · · , jn ∈ N, αI,J ∈ C and I, J ∈ Nn correspond to
i1, · · · , in and j1, · · · , jn respectively. A differential operator of order r is
then an operator P such that the maximum j1 + · · ·+ jn = r.

We can define direct image and inverse image functors of DX-modules by
working in the derived category. Let Db(DX) be the bounded derived cat-
egory of DX-modules, and f : X → Y a morphism of varieties. We de-
note the inverse image by f ∗ : Db(DY ) → Db(DX) and the direct im-
age by f∗ : Db(DX) → Db(DY ). By taking cohomology we get functors
Hi : Db(DX)→M(DX), where M(DX) is the category of DX-modules.

If Dr
X is the sheaf of differential operators of order ≤ r, {D•X} is a filtration

of DX by coherent OX-modules such that D0
X = OX and Di ·Dj ⊂ Di+j. Let

GrD(DX) = ⊕Di
X/D

i−1
X . This sheaf is isomorphic to the cotangent bundle

T ∗X.

Definition 4.5. Let M be a DX-module. A good filtration on M is an
increasing filtration M• of M by OX-submodules such that

(i) M = ∪Mi.

(ii) Di
XMj ⊂Mi+j.

(ii) Each Mj is a coherent OX-module and D1
XMj =Mj+1 for j � 0.

Proposition 4.6 ([7],[10]). If M is a coherent DX-module then M has a
good filtration.

Let M be a coherent DX-module with M• a good filtration on M. Let
GrM(M) = ⊕Mi/Mi−1. Then GrM(M) is a coherent GrD(DX)-module.
Thus GrM(M) has a support supp(GrM(M)), which is a closed subvariety
of T ∗X.
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Proposition 4.7 ([7]). supp(GrM(M)) doesn’t depend on the filtration of
M.

Definition 4.8. Ch(M) := supp(GrM(M)) is called the characteristic va-
riety of M.

Using the following important result (see [7]) we can define holonomic DX-
modules.

Theorem 4.9 (Bernstein inequality). LetM 6= 0 be a coherent DX-module.
Then dimCh(M) ≥ dimX.

Definition 4.10. A coherent DX-module M is called holonomic if
dimCh(M) ≤ dimX.

Any locally free sheaf F on X induces a vector bundle V on X. An integrable
(or flat) connection on V is a map

∇ : V → Ω1
X ⊗ V

such that ∇ ◦∇ = 0.

Proposition 4.11 ([3]). If M is a holonomic DX-module, there exists an
open dense subset U ⊂ X such that M|U induces an integrable connection.

Consider a vector bundle V with a connection ∇ on a smooth variety X. The
pair (V,∇) has regular singularities if there exists a smooth compactification
X̄ of X, such that D = X̄ − X is a divisor with normal crossings and log
connection

∇ : V̄ → Ω1
X(logD)⊗ V̄ .

If M is a holonomic DX-module, dimX = 1, we say that M has regular
singularities if there is a dense open set U ⊂ X such that M |U induces
a connection with regular singularities. For X of arbitrary dimension, M
has regular singularities if H0(i∗CM) has regular singularities for any smooth
curve C with iC : C → X (see [5]). MFrh(X) denotes the category of regular
holonomic DX-modules with a good filtration.

Now we define perverse sheaves and describe its relation with DX-modules.
Let X be an algebraic variety over C. A sheaf F of C vector spaces is called
constructible if X can be written as a finite union X =

⋃
Xi of locally
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closed algebraic subvarieties Xi of X such that F|Xi is finite and locally
constant. Let Db(CX) be the derived category of bounded complexes of
sheaves of C vector spaces. Given K• ∈ Db(CX), the Verdier dual complex
is D(K•) := R homX(K•,CX [2n]), where dimX = n.

Definition 4.12. A complex K• ∈ Db(CX) is called a perverse sheaf if:

(i) The cohomology sheaves Hj(K•) are constructible and

dim(suppHj(K•)) ≤ −j,

for all j.

(ii) dim(suppHj(D(K•))) ≤ −j, for all j.

The category of perverse sheaves is denoted by Perv(CX).

Given a algebraic variety X over C of dimension n, for any DX-module M
we have the de Rham complex:

M d−→ Ω1
X ⊗M

d−→ Ω2
X ⊗M −→ · · · −→ Ωn

X ⊗M

where, for local coordinates (z1, . . . , zn),

d(ω ⊗m) =
n∑
j=1

(dzj ∧ ω)⊗ ∂jm.

If we shift the complex n places to the left, i.e. Ωj
X ⊗M is put in degree

j−n, and denote this by [n], we get the de Rham functor from DX-modules
to complexes:

DR(M) = Ω•X ⊗M[n].

The following theorem is due to Kashiwara, Kawai and Mebkhout ([27],[28],
[39]).

Theorem 4.13 (Riemann-Hilbert correspondence). Let X be a smooth vari-
ety over C. Then the de Rham functorM 7→ DR(M) induces an equivalence
of categories between the category of holonomic DX-modules with regular
singularities and the category of perverse sheaves Perv(CX).
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Perverse sheaves can be defined for complexes of sheaves with coefficients in
Q. A weight filtration on an object K•Q in Perv(QX) is a finite increasing
filtration WQ of sub-perverse sheaves, the category of perverse sheaves with
weight filtration is denoted by PervW(QX). On the other hand, a weight
filtration on a DX-module M is a finite increasing filtration WM of M by
DX-submodules. Let MFWrh(X) denote the category of filtered (by a good
filtration) regular holonomic DX-modules with a weight filtration.

There is a natural functor from MFWrh(X) to PervW(CX) (the category of
weight filtered perverse sheaves in Perv(CX)). It takes the pair (M,WM)
to the pair (DR(M), DR(WM)). Now, let’s consider objects of the form
(K•Q,WQ,M, F,W, α) where K•Q is a perverse sheaf with weight filtration
WQ, M is a holonomic DX-module with regular singularities and weight
filtration W , F is a good filtration onM and α is an isomorphism of filtered
objects, i.e. α : (K•Q ⊗ C,WQ ⊗ C) ' (DR(M), DR(WM)). In the language
of categories, we are taking elements in the fiber product MFWrh(X;Q) :=
PervW(QX) ×PervW(CX) MFWrh(X). In [44] M. Saito defined mixed Hodge
modules:

Theorem 4.14 (M. Saito). For any smooth variety X over C there exists
an abelian category MHM(X) that is a full subcategory of MFWrh(X;Q).
MHM(X) is called the category of mixed Hodge modules.

The category of mixed Hodge modules contains a semi-simple full subcate-
gory of modules of pure weight. These are called polarizable Hodge modules
(defined in [43]). In the derived category Db(MHM(X)) all expected oper-
ations are defined: f∗, f

∗, f!, f
!,D, etc. MHM(Spec(C)) is isomorphic to the

category of graded polarizable mixed Hodge structures.

For k a subfield of C, the category MHM(X) of mixed Hodge modules of a
smooth variety X over k is well defined. We have a natural functor

MFWrh(X)→ MFWrh(XC),

and MHM(X) is a full subcategory of the fibre product of MHM(XC) and
MFWrh(X) over MFWrh(XC).

Example 4.15. Let r ∈ Z. The DX-module OX has a good filtration defined
by F−r = OX , F s = 0 for s 6= −r. Since DR(OX) is quasi-isomorphic to
CX [dimX], we get a mixed Hodge module QX(r)[dimX] given by

(QX(r)[dimX],W,OX , F ),
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where GrdimX−2r
W (QX(r)[dimX]) = QX(r)[dimX]. This is called the constant

(or Tate) mixed Hodge module. We usually use the shifted module

QX(r) = QX(r)[dimX][−dimX].

Since we have defined mixed Hodge modules for smooth varieties, we should
find a way to deal with varieties not necessarily smooth. What we would
like is to have a category M(X) for any separated algebraic variety X over
a field k together with functors to the category of perverse sheaves over
X ×k C, such that we have a dual functor D, external product, pull-backs
f ∗, direct images f∗ (for f a morphism between separated varieties), etc.,
in the bounded derived category DbM(X), and a constant object QX , all
compatible with the functor to perverse sheaves. Moreover, we would like
M(X) to be MHM(X) when X is smooth. This category always exists and is
called the category of Q-mixed sheaves on X (see [45], the definition is more
technical that the one given here, but the idea is the same, we want forgetful
functors to perverse sheaves and stability for pull-backs, duals, products,
direct images, etc., and constant objects).

Now consider a morphism f : X → Y between separated varieties. The con-
stant objects QX ∈M(X), QY ∈M(Y ) always exist and we have morphisms

QY → f∗QX , f!DQX → DQY

which are called the restriction and Gysin morphisms respectively.

Proposition 4.16 ([45]). Let X be a purely n-dimensional smooth variety.
Then

DQX = QX(n)[2n].

Remark. If X is a separated variety and n =dimX we have a canonical
morphism:

QX(n)[2n]→ DQX . (4.1)

Let π : Y → X be a proper morphism such that Y is smooth of pure dimen-
sion n and π(Y ) = X ′, where X ′ is the union of the irreducible components
Xi of X such that dimXi =dimX. Then (4.1) coincides with the composition
of the restriction and Gysin morphisms:

QX(n)[2n]→ π∗QY (n)[2n]→ DQX .
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The following decomposition will be relevant later, when we construct filtra-
tions.

Proposition 4.17 ([45]). Let f : X → Y be a proper morphism of smooth
varieties. If M ∈MHM(X) is pure, we have a non canonical isomorphism

f∗M '
⊕
i

H if∗M [−i]

in DbMHM(Y ).

Remark. We should note that the proposition above is also valid when the
varieties are not smooth. In that case we work in the category of mixed
sheaves, where corresponding concepts of weight filtration and “pure” object
are defined in complete analogy with the ones in mixed Hodge modules.

Corollary 4.18. Let f : X → Y be a proper smooth morphism of quasi-
projective smooth varieties over k ⊂ C. Then there is a Leray spectral
sequence

Ep,q
2 = ExtpMHM(Y )(QY (0), Rqf∗M)⇒ Extp+qMHM(X)(QX(0),M),

which degenerates at E2, for any pure M ∈ MHM(X).

Proof. The existence of the Leray filtration on Extp+qMHM(X)(QX(0),M) such
that

Ep,q
2 = ExtpMHM(Y )(QY (0), Rqf∗M)

is clear. Then we use the decomposition in proposition (4.17) and apply
Deligne’s criterion to conclude that the Leray spectral sequence associated
to the Leray filtration degenerates at E2.

The following theorem provides the link we need between higher Chow groups
and mixed Hodge modules, namely the cycle map.

Theorem 4.19 (M. Saito). Let X be a smooth variety over k ⊂ C. Then
there exists a cycle map

cr,m : CHr(X,m;Q)→ Ext2r−m
MHM(X)(QX(0),QX(r)).
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Proof. First we construct the cycle map for CHr(X;Q). Let Z ⊂ X be a
irreducible closed subvariety of X of codimension r, with dimX = n. Then
we can find a resolution of singularities for Z, i.e., we can find a smooth
variety Z ′ and a proper morphism g : Z ′ → Z such that g(Z ′) = Z. By using
the restriction morphism we have a map

QZ(n− r)[2(n− r)]→ g∗QZ′(n− r)[2(n− r)]. (4.2)

Since Z ′ is smooth we can use proposition (4.16), so QZ′(n− r)[2(n− r)] =
DQZ′ . Then we compose (4.2) with the Gysin map to get a morphism

QZ(n− r)[2(n− r)]→ DQZ .

We can use again the restriction and Gysin morphisms for the inclusion of Z
in X to get

QX → QZ → DQZ(−n+ r)[2(−n+ r)]→ DQX(−n+ r)[2(−n+ r)].

(here we omitted i∗, where i is the inclusion). Since X is smooth

DQX(−n+ r)[2(−n+ r)] = QX(r)[2r],

so we have constructed for every cycle, an element of

homDbMHM(X)(QX ,QX(r)[2r]).

Then we have the cycle map, since

homDbMHM(X)(QX ,QX(r)[2r]) = Ext2r
MHM(X)(QX(0),QX(r)).

To prove that this map is well defined under rational equivalence we take a
cycle W in X×P1. We would like to prove that the element in homDbMHM(X)

corresponding to π∗(W •X× t) is independent of t ∈ P1, where π : X×P1 →
X. But a consequence of the theory of mixed Hodge modules ([45]), is that
we have a morphism from π∗ to i∗t , for it : X×t→ X×P1. So, it is enough to
prove that i∗t (W •X×t) induces a morphism in homDbMHM(X×t) such that: 1)
it corresponds to the pullback of the morphism in homDbMHM(X×P1) induced
by W •X× t, 2) it is independent of t. This is a consequence of the fact that
there exists a functorial morphism from i∗t to the nearby cycle functor, and
the morphism induced by i∗t (W •X × t) is precisely the one induced by the
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intersection of W with X × t, and the nearby cycle functor is invariant by t
(the details can be found in [45], section 8).

Now consider an element in CHr(X,m;Q), i.e. take a cycle in X ×∆m that
meets all the faces X ×∆i properly and in the kernel of the restriction map
to every face. Then it is possible to prove (see [45], Prop. 8.3 and Lemma
8.4) that this cycle Z induces a morphism

Q|Z| → j!DQU(−n+ r)[2(−n+ r)],

where U = (X ×∆m) \ (X × ∪∆i), j : U → X ×∆m and |Z| is the support
of Z. We also have the identity

p∗j!QU = QX [−m], (4.3)

for p : X × ∆m → X. Then using the restriction morphism for p and the
inclusion of |Z| in X ×∆m we have the following composition

QX → p∗QX×∆m → p∗Q|Z| → p∗j!DQU(−n+ r)[2(−n+ r)].

Finally

p∗j!DQU(−n+r)[2(−n+r)] = DQX(−n+r)[2(−n+r)−m] = QX(r)[2r−m],

by (4.3) and smoothness of X. In conclusion we have constructed, for a cycle
in CHr(X,m;Q), an element of

homDbMHM(X)(QX ,QX(r)[2r −m]) = Ext2r−m
MHM(X)(QX(0),QX(r)).

which we can check is well defined by a similar argument to the case m =
0.

The cycle map is compatible with direct image for proper morphisms and
pullback. If f : X → Y is proper, the direct image of an element in

homDbMHM(X)(QX ,QX(r)[2r −m])

is given by the restriction and Gysin morphisms for f , i.e.

QY → f∗QX → f∗DQX(−d1 + r)[−2(d1 − r)−m]→
DQY (−d1 + r)[−2(d1 − r)−m] = QY (r − d)[2(r − d)−m]
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gives the element in

homDbMHM(Y )(QY ,QY (r − d)[2(r − d)−m])

where d = dimX − dimY , dimX = d1. For general f : X → Y , the pullback
of an element in

homDbMHM(Y )(QY ,QY (r)[2r −m])

is given by the natural pullback of the morphism, so we get an element in

homDbMHM(X)(QX ,QX(r)[2r −m]).

The cycle map is also compatible with the product of cycles on smooth X.
If we consider the product of two cycles ξ1 • ξ2, with ξ1 ∈ CHr(X,m;Q), ξ2 ∈
CHs(X,n;Q), then the corresponding element in

homDbMHM(X)(QX ,QX(r + s)[2(r + s)− (m+ n)]).

is given in the following way: the cycles ξ1 and ξ2 induce morphisms

QX → Q|ξ1| → DQ|ξ1|(−d+ r)[−2(d− r)−m]→ QX(r)[2r −m]

and

QX → Q|ξ2| → DQ|ξ2|(−d+ s)[−2(d− s)− n]→ QX(s)[2s− n]

respectively, with dimX = d. Then the cycle ξ1×ξ2 in CHr+s(X×X,m+n;Q)
corresponds to the natural external product of the two morphisms above

QX ⊗QX → Q|ξ1| ⊗Q|ξ2| →
DQ|ξ1|(−d+ r)[−2(d− r)−m]⊗ DQ|ξ2|(−d+ s)[−2(d− s)− n]→

QX(r)[2r −m]⊗QX(s)[2s− n]

which is clearly equivalent to

QX×X → Q|ξ1×ξ2| → DQ|ξ1×ξ2|(−2d+r+s)[−2(d−r)−m−2(d−s)−n]→
QX×X(r + s)[2(r + s)−m− n]

We can apply the pullback along the diagonal morphism to get the required
morphism, which corresponds to the morphism induced by the intersection.
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Chapter 5

Higher Mumford-Griffiths
invariants

We first introduce the sheaf of relative differentials, which is a purely alge-
braic construction used to define the algebraic de Rham cohomology groups,
which in turn allows us to define the space of higher Mumford-Griffiths in-
variants.

Definition 5.1. Let f : A → B be a morphism of rings. The B-module
ΩB/A is defined to be the free B-module generated by {db|b ∈ B} divided
out by the relations (i) d(b1 +b2) = db1 +db2, (ii) d(b1b2) = b1db2 +b2db1, (iii)
da = 0 if a comes from A. ΩB/A is called the module of relative differentials
of B over A.

Let δ : B⊗AB → B be the map defined by b1⊗b2 7→ b1b2, and let I = ker δ. I
is a B⊗AB-module, I/I2 is a B⊗AB/I-module, and therefore is a B-module
(see [42]).

Proposition 5.2 ([42]). I/I2 is isomorphic to ΩB/A.

Example 5.3 ([42]). Let A = k, k a field, B = k[x1, . . . , xn]. Then ΩB/A is
a free B-module with generators dx1, . . . , dxn and

dg =
n∑
i=1

∂g

∂xi
dxi
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for all g ∈ B. More generally, if B = k[x1, . . . , xn]/(f1, . . . , fm) then ΩB/A is
generated as B-module by dx1, . . . , dxn with relations:

dfi =
n∑
j=1

∂fi
∂xj

dxj = 0.

We can now extend the definition of relative differentials to schemes (as
defined in [42]). Let f : X → Y be a morphism of schemes. Let

∆ : X → X ×Y X

be the diagonal morphism. X is isomorphic to its image ∆(X) by ∆.

Definition 5.4. Let I be the sheaf ideals of ∆(X). The sheaf of relative
differentials of X over Y is defined to be the sheaf ΩX/Y = ∆∗(I /I 2) on
X.

The sheaf ΩX/Y can also be defined locally. If U = Spec(B) ⊂ X, V =
Spec(A) ⊂ Y are open affine such that f(U) ⊂ V , then ΩX/Y restricted to
U is ΩB/A. There is a natural differential map d : OX → ΩX/Y and ΩX/Y is
quasi-coherent (see [25]).

Proposition 5.5 ([25]). Let X a variety over an algebraically closed field
k = k. X is a smooth variety over k if and only if ΩX/k is a locally free sheaf
of rank n = dimX.

If X is a smooth variety over k = k, then we define the tangent sheaf of X by
TX := homOX (ΩX/k,OX). It is a locally free sheaf of rank n = dimX. Thus
we can associate to TX a vector bundle over X.

In general we put Ω`
X/Y = ∧`ΩX/Y . In some constructions where the context

is clear, we will denote the global sections of Ω`
X/Y also by Ω`

X/Y . Then we

have a complex Ω•X/Y where the differential d` : Ω`
X/Y → Ω`+1

X/Y is the natural
morphism induced by d:

Ω•X/Y : 0→ OX → ΩX/Y → Ω2
X/Y → . . .

Let X and S be smooth quasiprojective varieties over k and f : X → S a
proper smooth morphism.

27



Definition 5.6. The q-th relative de Rham cohomology sheaf of X over S
is

Hq
DR(X/S) := Rqf∗Ω

•
X/S.

The sequence
0→ f ∗(Ω1

S/k)→ Ω1
X/k → Ω1

X/S → 0,

is exact because f is smooth and we can define a canonical filtration on the
complex Ω•X/k by

F j(Ω•X/k) = image(Ω•−jX/k ⊗OX f
∗(Ωj

S/k)→ Ω•X/k).

with graded pieces

GrjF (Ω•X/k) =
F j(Ω•X/k)

F j+1(Ω•X/k)
= f ∗(Ωj

S/k)⊗OX Ω•−jX/S.

There is a spectral sequence abutting to Rqf∗Ω
•
X/k with

Ep,q
1 =Rp+qf∗(Gr

p
F (Ω•X/k)) = Rp+qf∗(f

∗(Ωp
S/k)⊗OX Ω•−pX/S)

'Ωp
S/k ⊗OS H

q
DR(X/S).

Let’s consider, for every q, the complex E•,q1 :

0→ Hq
DR(X/S)

d0,q1−→ Ω1
S/k ⊗OS H

q
DR(X/S)

d1,q1−→ Ω2
S/k ⊗OS H

q
DR(X/S)→ . . .

Since the filtration is compatible with the exterior product and the sequence
of hyperderived functors is multiplicative we have pairings

Ep,q
r × Ep1,q1

r → Ep+p1,q+q1
r

sending (e, e1) to e · e1 where e and e1 are sections of Ep,q
r and Ep1,q1

r respec-
tively, over an open subset of S. Moreover

dr(e · e1) = dr(e) · e1 + (−1)p+qe · dr(e1).

Thus, in particular, we get

dp,q1 (ω · e) = dω · e+ (−1)pω · d0,q
1 e
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for ω a section of Ωp
S/k and e a section of Hq

DR(X/S) over an open subset of

S. Note that we took a section ω of Ωp
S/k because we can consider Ωp

S/k as

a subcomplex of E•,01 . Indeed, for q = 0, the complex E•,01 is isomorphic to
Ω•S/k⊗OSH0

DR(X/S) with the differential d⊗1, where d is the differentiation

in Ω•S/k. Therefore ∇ := d0,q
1 is a connection on Hq

DR(X/S) and clearly

d1,q
1 ◦ d

0,q
1 = 0, i.e. the connection is integrable. We have proved (see [29]):

Theorem 5.7 (Katz-Oda). Let f : X → S be a proper smooth morphism of
smooth quasiprojective varieties over k. There exists a canonical integrable
connection ∇ : Hq

DR(X/S)→ Ω1
S/k ⊗OS H

q
DR(X/S) on the relative de Rham

cohomology sheaf Hq
DR(X/S).

The connection ∇ is called the Gauss-Manin connection. One can extend ∇
to

∇ : Ω`
S/k ⊗OS H

q
DR(X/S)→ Ω`+1

S/k ⊗OS H
q
DR(X/S)

by
∇(ω ⊗ e) = dω ⊗ e+ (−1)`ω ⊗∇e.

Now consider the short exact sequence

0→ Grp+1
F (Ω•X/k)→

F p(Ω•X/k)

F p+2(Ω•X/k)
→ GrpF (Ω•X/k)→ 0.

By applying the functor Rp+qf∗ we get a connecting homomorphism from
Rp+qf∗(Gr

p
F (Ω•X/k)) to Rp+q+1f∗(Gr

p+1
F (Ω•X/k)). In [29], Katz and Oda show

that this connecting homomorphism is precisely the differential

dp,q1 : Ep,q
1 = Rp+qf∗(Gr

p
F (Ω•X/k))→ Ep+1,q

1 = Rp+q+1f∗(Gr
p+1
F (Ω•X/k)).

In particular, the Gauss-Manin connection ∇ = d0,q
1 is obtained from the

connecting homomorphism of the short exact sequence

0→ Gr1
F (Ω•X/k)→

Ω•X/k
F 2(Ω•X/k)

→ Gr0
F (Ω•X/k)→ 0.

when we apply Rqf∗. Then one gets a commutative diagram

Rqf∗(Gr
0
F (Ω•≥jX/k))

∇ //

��

Rq+1f∗(Gr
1
F (Ω•≥jX/k))

��
Rqf∗(Gr

0
F (Ω•X/k))

∇ // Rq+1f∗(Gr
1
F (Ω•X/k)).
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Since

Rqf∗(Gr
0
F (Ω•≥jX/k)) = Rqf∗(f

∗(Ω0
S/k)⊗OX Ω•≥jX/S) ' Rqf∗Ω

•≥j
X/S

and

Rq+1f∗(Gr
1
F (Ω•≥jX/k)) = Rq+1f∗(f

∗(Ω1
S/k)⊗OX Ω•−1≥j−1

X/S ) ' Ω1
S/k ⊗OS Rqf∗Ω•≥j−1

X/S

we obtain
Rqf∗Ω

•≥j
X/S

∇ //

��

Ω1
S/k ⊗OS Rqf∗Ω

•≥j−1
X/S

��
Rqf∗Ω

•
X/S

∇ // Ω1
S/k ⊗OS Rqf∗Ω

•
X/S

We define a filtration on the sheaves Hq
DR(X/S) by

F jHq
DR(X/S) := image(Rqf∗Ω

•≥j
X/S → Rqf∗Ω

•
X/S).

Then the diagram above shows that:

∇(F jHq
DR(X/S)) ⊂ Ω1

S/k ⊗OS F j−1Hq
DR(X/S)

This property is called Griffiths transversality.

More generally, applying Rqf∗ to the short exact sequence

0 // Grp+1
F (Ω•≥rX/k)

// F
p(Ω•≥r

X/k
)

F p+2(Ω•≥r
X/k

)
// GrpF (Ω•≥rX/k)

// 0

Ωp+1
S/k ⊗ Ω•≥r−p−1

X/S Ωp
S/k ⊗ Ω•≥r−pX/S

yields

∇ : Ωp
S/k ⊗ F

r−pHq
DR(X/S)→ Ωp+1

S/k ⊗ F
r−p−1Hq

DR(X/S) (5.1)

Now, let X = XK be a smooth projective variety defined over a subfield
K ⊂ C that is say finitely generated over a subfield k ⊂ K. One should
keep in mind the situation of a k-spread of smooth quasi-projective varieties
X → S, where k(S) = K, and X = Xη, where η is the generic point of S
(see Chapter (6)).
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Definition 5.8. The q-th algebraic de Rham cohomology group of X over
k is given by

Hq
DR(X/k) := Hq(X,Ω•X/k).

The Hodge filtration is given by

F jHq
DR(X/k) := Hq(X,Ω•≥jX/k).

Thus, using the constructions above we get the Gauss-Manin connection:

∇ : Hq
DR(X/K)→ Ω1

K/k ⊗H
q
DR(X/K)

that can be extended to

∇ : Ω`
K/k ⊗H

q
DR(X/K)→ Ω`+1

K/k ⊗H
q
DR(X/K)

Clearly, as in the relative case, we have:

(i) ∇2 = 0, i.e. the connection is integrable.

(ii) Griffiths transversality:

∇(F jH i
DR(X/K)) ⊂ Ω1

K/k ⊗ F j−1H i
DR(X/K).

Definition 5.9. (i) The space of higher Mumford-Griffiths invariants of
XK/K, ∇Jr,m,j(XK/K), is defined by the cohomology of:

Ωj−1
K/k ⊗ F

r−j+1H2r−m−j
DR (XK/K)

∇−→

Ωj
K/k ⊗ F

r−jH2r−m−j
DR (XK/K)

∇−→

Ωj+1
K/k ⊗ F

r−j−1H2r−m−j
DR (XK/K)

(ii) The space of higher de Rham invariants of XK/K, ∇DRr,m,j(XK/K), is
defined by the cohomology of:

Ωj−1
K/k ⊗H

2r−m−j
DR (XK/K)

∇−→

Ωj
K/k ⊗H

2r−m−j
DR (XK/K)

∇−→

Ωj+1
K/k ⊗H

2r−m−j
DR (XK/K).

Remark. By applying the global sections functor to (5.1), one has a varia-
tional version ∇Jr,m,j(XS/S), and likewise ∇DRr,m,j(XS/S).

31



Chapter 6

Filtrations on higher Chow
groups

Let X be a smooth projective variety over C. Since there are a finite number
of polynomials defining X, we can consider X as defined over a finitely gen-
erated extension K of Q̄, and call it XK . Then there exist varieties X and
S over Q̄ and a proper smooth morphism f : X → S such that the fibre XηS
over the generic point ηS ∈ S is XK . This is the process of taking a Q̄-spread
of the variety (see [30]). Let’s denote f−1(U) by XU , for any open affine
U ⊂ S. If we consider the category MHM(XU) of mixed Hodge modules over
XU , we have the cycle map

cr,m : CHr(XU ,m;Q)→ Ext2r−m
MHM(XU )(QXU (0),QXU (r)).

Moreover, since f is smooth and proper we can use Corollary (4.18). Then
there is the Leray spectral sequence

Ep,q
2 = ExtpMHM(U)(QU(0), Rqf∗QXU (r))⇒ Extp+qMHM(XU )(QXU (0),QXU (r)),

(6.1)
which degenerates at E2. Let’s denote the canonical Leray filtration on
Extp+qMHM(XU )(QXU (0),QXU (r)) by F •L.

Now we can construct a filtration on XU . Let

F jCHr(XU ,m;Q) := c−1
r,m(F j

L Ext2r−m
MHM(XU )(QXU (0),QXU (r))).

Also, we get maps between the graded pieces of this filtration and the groups
Ep,q

2 . More explicitly, by using the cycle map and the degeneration of the
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spectral sequence (6.1), there are injective maps

cjr,m : GrjFCHr(XU ,m;Q)→ ExtjMHM(U)(QU(0), R2r−m−jf∗QXU (r)).

Note the filtration F j and maps cjr,m can be defined, besides for XU , for any
smooth variety defined over a field k ⊂ C, which is finitely generated over Q̄.

Lemma 6.1. Let f : X → S be as above and ηS ∈ S the generic point.
Then

CHr(XηS ,m) = lim−−−→
U⊂S

CHr(XU ,m).

Proof. First we have

lim−−−→
U⊂S

Zr(XU ×∆m) = Zr(XηS ×∆m).

Every cycle meeting XU ×∆m properly has limit in Zr(XηS ,m), i.e.

lim−−−→
U⊂S

Zr(XU ,m) = Zr(XηS ,m).

Since CHr(XU ,m) is the homology of

Zr(X,m+ 1)
∂m+1−→ Zr(X,m)

∂m−→ Zr(X,m− 1),

we can take the limit to get

lim−−−→
U⊂S

CHr(XU ,m) = CHr(XηS ,m).

Theorem 6.2 (Asakura [5]). Let X be a smooth projective variety over C
of dimension d. There exists a descending filtration F • on CHr(X,m;Q),
which satisfies the following:

(i) F 0CHr(X,m;Q) = CHr(X,m;Q).

(ii) F jCHr(X,m;Q) • F `CHs(X,n;Q) ⊂ F j+`CHr+s(X,m + n;Q), under
the intersection product. (Not specifically stated in [5].)

(iii) F j is preserved under the action of correspondences.
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(iv) Assume the components of the diagonal class are algebraic. Then

∆X(2d−2r+m+`, 2r−m−`)∗|GrjFCHr(X,m;Q) =

{
Identity , if ` = j

0 , otherwise

where GrjFCHr(X,m;Q) = F jCHr(X,m;Q)/F j+1CHr(X,m;Q).

(v) F r+1CHr(X,m;Q) = F r+2CHr(X,m;Q) = . . .

Proof. It is instructive to sketch some details. We already showed how to
define a filtration on XU . To get a filtration on the variety X we perform
two more steps. First, we can define a filtration on XK using the fact that
XK ' XηS ' lim←−XU (here the limit is over all U ⊂ S affine open). Then

F jCHr(XK ;Q) := lim−−−→
U⊂S

F jCHr(XU ;Q),

where the limit is taken over all open affine subsets of S (this is justified by
the previous lemma). Finally we set

F jCHr(X;Q) := lim−−−→
K⊂C

F jCHr(XK ;Q),

where K is finitely generated over Q.

(i) Follows from the definition.

(ii) Let’s take two cycles ξ1 ∈ F jCHr(X,m;Q), ξ2 ∈ F `CHs(X,n;Q). We can
spread out ξ1 and ξ2 to cycles ξ̄1 ∈ F jCHr(XU ,m;Q), ξ̄2 ∈ F `CHs(XU , n;Q).
From the construction of the filtration we have the following injective map

cjr,m : GrjFCHr(XU ,m;Q)→ ExtjMHM(U)(QU(0), R2r−m−jf∗QXU (r)),

so that ξ̄1 induces a morphism in

homDbMHM(U)(QU(0), R2r−m−jf∗QXU (r)[j]).

Similarly, ξ̄2 induces a morphism in

homDbMHM(U)(QU(0), R2s−n−`f∗QXU (s)[`]).
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Since the product of cycles corresponds to the natural product of morphisms,
ξ1 • ξ2 induces a morphism in

homDbMHM(U)(QU(0)⊗QU(0), R2r−m−jf∗QXU (r)[j]⊗R2s−n−`f∗QXU (s)[`]).

There is a map

R2r−m−jf∗QXU (r)⊗R2s−n−`f∗QXU (s)→ R2(r+s)−m−n−j−`f∗QXU (r + s)

(the product is compatible with the product of filtered modules, using the
forgetful functor from the category of mixed Hodge modules to the category
of filtered regular holonomic DU -modules). Therefore we get an element of

homDbMHM(U)(QU(0), R2(r+s)−m−n−j−`f∗QXU (r + s)[j + `])

which gives us an element in F j+`
L Ext

2(r+s)−m−n
MHM(XU ) (QXU (0),QXU (r)), thus ξ̄1•ξ̄2

is in F j+`CHr+s(XU ,m+ n;Q).

(iii) Consider a correspondence Γ ∈ CH`(X × Y, n). We can find proper
smooth morphisms f : X → S,g : Y → W such that for open sets U ⊂ S, V ⊂
W , Γ can be represented by Γ̄ ∈ CH`(XU×YV , n). Take ξ ∈ F jCHr(X,m;Q)
with corresponding spread ξ̄ ∈ F jCHr(XU ,m;Q). Then ξ̄ maps to an ele-
ment of

ExtjMHM(U)(QU(0), R2r−m−jf∗QXU (r)) =

homDbMHM(U)(QU(0), R2r−m−jf∗QXU (r)[j]). (6.2)

Similarly Γ̄ maps to an element of

Ext0
MHM(U×V )(QU×V (0), R2`−n(f × g)∗QX×YU×V (`)) =

homDbMHM(U×V )(QU×V (0), R2`−n(f × g)∗QX×YU×V (`)). (6.3)

Since Γ∗ is defined by

Γ∗(ξ) = πY ∗(π
∗
X(ξ) • Γ),

we can apply π∗XU to the morphism defined by ξ̄ in (6.2), then take the
product with the morphism defined by Γ̄ in (6.3), and finally apply πYV ∗ to
get an element in

ExtjMHM(V )(QV (0), R2(r+`−d)−(m+n)−jg∗QYV (r + `− d)) =

homDbMHM(V )(QV (0), R2(r+`−d)−(m+n)−jg∗QYV (r + `− d)[j]).
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The property follows.

(iv) Suppose the components of the diagonal class [∆X ] ∈ H2d(X × X,Q)
are algebraic, i.e. for the decomposition

H2d(X ×X,Q) =
⊕

p+q=2d

Hp(X)⊗Hq(X)

we have [∆X ] =
∑

[∆(p, q)]. Then we can find a decomposition [∆̄XU ] =∑
[∆̄(p, q)] where ∆̄(p, q) ∈ CHd(XU × XU ;Q), ∆̄XU ∈ CHd(XU × XU ;Q).

If we take ξ ∈ GrjFCHr(X,m;Q) with corresponding spread given by ξ̄ ∈
GrjFCHr(XU ,m;Q), it is clear by (iii), that ∆̄(p, q)∗ acts as the identity on
ξ̄ precisely when p = 2d− 2r+m− j because ∆̄(p, q) maps to an element of

Ext0
MHM(U×U)(QU×U(0), Rpf∗QXU ⊗Rqf∗QXU (d)).

(v) Consider the operation LX of intersecting with a hyperplane section of
X. Then we have an induced map

Ld−2r+m+j
X : GrjFCHr(X,m;Q)→ GrjFCHd−r+m+j(X,m;Q).

This is because the product is preserved by the filtration, using (ii). More-
over, since the product is compatible with the cycle map we have the following
commutative diagram:

GrjFCHr(XU ,m;Q) //

��

ExtjMHM(U)(QU (0), R2r−m−jf∗QXU (r))

��

GrjFCHd−r+m+j(XU ,m;Q) // ExtjMHM(U)(QU (0), R2d−2r+m+jf∗QXU (d− r)).

The right vertical arrow is an isomorphism because of the hard Lefschetz
theorem. If j − r > 0 then d− r +m+ j > m+ d. Therefore

GrjFCHd−r+m+j(X,m;Q) = 0

and as a result GrjFCHr(X,m;Q) = 0.

The graded pieces of the filtration we just constructed can be mapped to the
space of higher Mumford-Griffiths invariants (we closely follow [5]).
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Theorem 6.3. Let X be a smooth projective variety over C. Then there
exists a map

GrjFCHr(X,m;Q)→ ∇Jr,m,j(X/C).

Proof. The variety X is defined over K, a finitely generated extension of Q̄,
such that X = XK ⊗ C. Take a spread of XK , i.e. a morphism f : X → S
proper and smooth such that XK = XηS for the generic point ηS of S. Using
the same notation we have been using, there is an injective map

cjr,m : GrjFCHr(XU ,m;Q)→ ExtjMHM(U)(QU(0), R2r−m−jf∗QXU (r)).

Recall that we can map any mixed Hodge module to its corresponding fil-
tered regular holonomic DU -module. In particular, QU(0) maps to OU and
R2r−m−jf∗QXU (r) to

R2r−m−jf∗Ω
•
XU/U

(r) = H2r−m−j
DR (XU/U)(r).

Then we have a natural map

ExtjMHM(U)(QU (0), R2r−m−jf∗QXU (r))→ ExtjMFrh(U)(OU ,H
2r−m−j
DR (XU/U)(r)).

Consider the Kozul resolution

0→ DU(−d)⊗ ∧dTU → . . .→ DU(−1)⊗ TU → DU → OU → 0,

with d = dimX. By applying hom in the category MFrh(U) we get the
sequence

0→ hom(OU ,H2r−m−j
DR (XU/U)(r))→ hom(DU ,H2r−m−j

DR (XU/U)(r))

→ hom(DU(−1)⊗ TU ,H2r−m−j
DR (XU/U)(r))→ . . .

Since, in general, ExtpMFrh(U)(DU(`),M) = 0 for any DU -module M and

for all p ≥ 1, we can calculate ExtjMFrh(U)(OU ,H
2r−m−j
DR (XU/U)(r)) as the

cohomology of

hom(DU(−j + 1)⊗ ∧j−1TU ,H2r−m−j
DR (XU/U)(r))→

hom(DU(−j)⊗ ∧jTU ,H2r−m−j
DR (XU/U)(r))→

homDU(−j − 1)⊗ ∧j+1TU ,H2r−m−j
DR (XU/U)(r))
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On the other hand

hom(DU(−`)⊗ ∧`TU ,Hq
DR(XU/U)(r))

= hom(DU ⊗ ∧`TU ,Hq
DR(XU/U)(r − `))

' Ω`
U/Q̄ ⊗ F

r−`Hq
DR(XU/U),

for any ` and q. If we apply the global sections functor we get:

Γ(U,Ωj

U/Q̄ ⊗ F
r−jH2r−m−j

DR (XU/U)) = Ωj

U/Q̄ ⊗ F
r−jH2r−m−j

DR (XU/U).

So, ExtjMFrh(U)(OU ,H
2r−m−j
DR (XU/U)(r)) maps to ∇Jr,m,j(XU/U). Thus we

have a map
GrjFCHr(XU ,m;Q)→ ∇Jr,m,j(XU/U).

Furthermore,

lim−−−→
U⊂S

Ωj
U ⊗ F

r−jH2r−m−j
DR (XU/U) = Ωj

η/Q̄ ⊗ F
r−jH2r−m−j

DR (Xη/η)

' Ωj

K/Q̄ ⊗ F
r−jH2r−m−j

DR (XK/K).

Then we can apply the limit over U ⊂ S and then the limit over all K to get
the result.

By considering the natural map ∇Jr,m,j(X/C)→ ∇DRr,m,j(X/C) by forget-
ting the Hodge filtration, we also have a map

GrjFCHr(X,m;Q)→ ∇DRr,m,j(X/C).

In general, higher Mumford-Griffiths invariants and de Rham invariants are
difficult to describe. For that reason we would like to factor the previous
maps through a more workable space. The first step is the construction of a
short exact sequence whose first and last term are extensions in the category
of mixed Hodge structures, a category that is well known.

Lemma 6.4. Let Y be a smooth quasiprojective variety over k ⊂ C, M ∈
MHM(Y ) and g : Y → Spec(k) be the natural morphism. Then there exists
a short exact sequence

0→ Ext1
MHM(Spec(k))(QSpec(k)(0), Rq−1g∗M)→

ExtqMHM(Y )(QY (0),M)→ homMHM(Spec(k))(QSpec(k)(0), Rqg∗M)→ 0
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Proof. By Corollary (4.18) there is the Leray spectral sequence

Ep,q
2 = ExtpMHM(Spec(k))(QSpec(k)(0), Rqg∗M)⇒ Extp+qMHM(Y )(QY (0),M),

which degenerates at E2. Then, if L is the Leray filtration on Extp+qMHM(Y ),

Ep,q
2 = GrpL Extp+qMHM(Y )(QY (0),M).

On the other hand, MHM(Spec(k)) is a subcategory of the category of mixed
Hodge structures, and we know that Ext`MHS = 0 for all ` ≥ 2, and similarly
for MHM(Spec(k)). Then

L1 ExtqMHM(Y )(QY (0),M) = Gr1
L ExtqMHM(Y )(QY (0),M)

= Ext1
MHM(Spec(k))(QSpec(k)(0), Rq−1g∗M).

Since

homMHM(Spec(k))(QSpec(k)(0), Rqg∗M) = Gr0
L ExtqMHM(Y )(QY (0),M),

we get that homMHM(Spec(k))(QSpec(k)(0), Rqg∗M) is the quotient of
ExtqMHM(Y )(QY (0),M) and Ext1

MHM(Spec(k))(QSpec(k)(0), Rq−1g∗M), and this
implies that we have the short exact sequence required.

Since we will we passing to spreads when working with complex smooth
projective varieties, the following proposition is what we need:

Proposition 6.5. Let f : X → S be a proper smooth morphism of quasipro-
jective smooth varieties over k ⊂ C. Then there exists a short exact sequence

0→ Ej,2r−m−j
∞ → Ej,2r−m−j

∞ → Ej,2r−m−j
∞ → 0

where
Ej,2r−m−j
∞ = ExtjMHM(S)(QS(0), R2r−m−jf∗QX(r)),

Ej,2r−m−j
∞ =

Ext1
MHS(Q(0),W−1H

j−1(S,R2r−m−jf∗Q(r)))

homMHS(Q(0), Gr0
WH

j−1(S,R2r−m−jf∗Q(r)))

and
Ej,2r−m−j
∞ = homMHS(Q(0), Hj(S,R2r−m−jf∗Q(r))).
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Proof. In the previous lemma, we set M = R2r−m−jf∗QX(r) and q = j to
get a sequence

0→ Ext1
MHM(Spec(k))(QSpec(k)(0), Rj−1g∗R

2r−m−jf∗QX(r))

→ ExtjMHM(S)(QS(0), R2r−m−jf∗QX(r))

→ homMHM(Spec(k))(QSpec(k)(0), Rjg∗R
2r−m−jf∗QX(r))→ 0.

But MHM(Spec(k)) is a subcategory of PMHS, the category of graded po-
larizable mixed Hodge structures. The mixed Hodge module QSpec(k)(0) is
isomorphic to Q(0), Rj−1g∗R

2r−m−jf∗QX(r) ' Hj−1(S,R2r−m−jf∗Q(r)) and
Rjg∗R

2r−m−jf∗QX(r) ' Hj(S,R2r−m−jf∗Q(r)), because g : S → Spec(k) has
constant fibre S. Thus,

Ext1
MHM(Spec(k))(QSpec(k)(0), Rj−1g∗R

2r−m−jf∗QX(r))

' Ext1
PMHS(Q(0), Hj−1(S,R2r−m−jf∗Q(r))),

homMHM(Spec(k))(QSpec(k)(0), Rjg∗R
2r−m−jf∗QX(r))

' homPMHS(Q(0), Hj(S,R2r−m−jf∗Q(r))).

Finally,

Ext1
PMHS(Q(0), Hj−1(S,R2r−m−jf∗Q(r)))

=
Ext1

MHS(Q(0),W−1H
j−1(S,R2r−m−jf∗Q(r)))

homMHS(Q(0), Gr0
WH

j−1(S,R2r−m−jf∗Q(r)))

by Proposition (3.11).

Now we can use the short exact sequence we just constructed and relate it
to the filtration on higher Chow groups. Take a complex smooth projective
variety X, and consider a spread given by a proper smooth morphism f :
X → S of varieties over Q̄ such that XK = XηS , where K is the field of
definition of X of finite transcendence degree over Q̄, ηS is the generic point
of S and XηS = f−1(ηS). Then, for U ⊂ S,XU = f−1(U), we have an
injective map

cjr,m : GrjFCHr(XU ,m;Q)→ ExtjMHM(U)(QU(0), R2r−m−jf∗QXU (r)).

Using the notation of Proposition (6.5), this means we have a map

GrjFCHr(XU ,m;Q)→ Ej,2r−m−j
∞
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because
Ej,2r−m−j
∞ = ExtjMHM(U)(QU(0), R2r−m−jf∗QXU (r))

for f : XU → U . An immediate consequence is the following property for
our filtration.

Corollary 6.6. Let X be a complex smooth projective variety and F • the
descending filtration on CHr(X,m;Q) of Theorem (6.2). Then F 0 = F 1

when m ≥ 1.

Proof. Take a spread of X as before. If j = 0 then Ej,2r−m−j
∞ = 0 and

Ej,2r−m−j
∞ ' Ej,2r−m−j

∞ by Proposition (6.5). Since we have an injective map

GrjFCHr(XU ,m;Q)→ Ej,2r−m−j
∞ ,

then we have an injective map

Gr0
FCHr(XU ,m;Q)→ homMHS(Q(0), H0(U,R2r−mf∗Q(r))).

We know that H0(U,R2r−mf∗Q(r)) is isomorphic to the cycles in
H2r−m(Xt,Q(r)) invariant under the action of the monodromy group π(U, t),
for t ∈ U and Xt the fibre by f : XU → U . We can write this as

H0(U,R2r−mf∗Q(r)) ' H2r−m(Xt,Q(r))π(U,t).

On the other hand (see [26])

homMHS(Q(0), Hj(U,R2r−m−jf∗Q(r))) =

F 0W0H
j(U,R2r−m−jf∗Q(r))⊗ C ∩W0H

j(U,R2r−m−jf∗Q(r)).

But H2r−m(Xt,Q(r))π(U,t) is a pure Hodge structure by the work of Deligne
([18]) so that we can drop the W0. Then

F 0Hj(U,R2r−m−jf∗Q(r))⊗ C ' F rH2r−m(Xt,C)π(U,t).

Using the fact that Xt is projective and a weight argument, F rH2r−m(Xt,C)
= 0. Therefore

homMHS(Q(0), Hj(U,R2r−m−jf∗Q(r))) = 0.

This means that Gr0
FCHr(XU ,m;Q) = 0 and F 0 = F 1.
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Now we can factor the map from the filtration on higher Chow groups to the
de Rham invariants through Ej,2r−m−j

∞ . First, we need the following technical
lemma.

Lemma 6.7. (i) Let X be a complex analytic variety and V a complex local
system over X. If V = OX ⊗C V , then the complex Ω•X(V) = Ω•X ⊗ V is a
resolution of sheaves of V .

(ii)(Deligne [17]) Let X be a smooth variety over C and V a local system
over X equipped with a flat connection with regular singular points. Let
Ω•X(V) be as in (i). Then, we have an isomorphism between the algebraic
and analytic hypercohomology

H`(X,Ω•X(V)) ' H`(X,Ω•Xan(V))

for all `.

Proposition 6.8. Let f : X → S be a smooth proper morphism of smooth
quasi-projective varieties over a field k ⊂ C. Assume S is an affine variety.
There is an injective map

Φr,m,j : Ej,2r−m−j
∞ ↪→ ∇DRr,m,j(X/S)⊗k C

Proof. We can use part (i) of the previous lemma applied to the local system
R2r−m−jf∗C over S to conclude that Ω•S/k ⊗OS R2r−m−jf∗C is a resolution of

R2r−m−jf∗C. Then

Hj(S/C, R2r−m−jf∗C) = Hj(S/C,Ω•San ⊗OS R2r−m−jf∗C).

Using (ii) of the previous lemma,

Hj(S/C,Ω•San ⊗OS R2r−m−jf∗C) ' Hj(S/C,Ω•S/C ⊗OS R2r−m−jf∗C).

We can now use the fact that OS ⊗C R
2r−m−jf∗C ' R2r−m−jf∗Ω

•
X/C to get

Hj(S/C, R2r−m−jf∗C) = Hj(S,Ω•S/k ⊗OS R2r−m−jf∗Ω
•
X/S)⊗k C.

The complex
Ω•S/k ⊗OS R2r−m−jf∗Ω

•
X/S

has differential ∇, the Gauss-Manin connection on sheaves. The term Ep,q
2

of the second spectral sequence abutting to

Hj(S,Ω•S/k ⊗OS R2r−m−jf∗Ω
•
X/S)
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is given by
Ep,q

2 = Hq
∇(Hp(S,Ω•S/k ⊗OS R2r−m−jf∗Ω

•
X/S))

where Hq
∇(−) means the cohomology of

Hp(S,Ωq−1
S/k ⊗OS R

2r−m−jf∗Ω
•
X/S)

∇−→

Hp(S,Ωq
S/k ⊗OS R

2r−m−jf∗Ω
•
X/S)

∇−→

Hp(S,Ωq+1
S/k ⊗OS R

2r−m−jf∗Ω
•
X/S)

By hypothesis, S is affine. The sheaves Ωq
S/k⊗OSR2r−m−jf∗Ω

•
X/S are coherent.

Therefore
Hp(S,Ω•S/k ⊗OS R2r−m−jf∗Ω

•
X/S) = 0

for p > 0. Then Ep,q
2 = 0 for p > 0 and we can calculate the hypercohomol-

ogy of Ωq
S/k ⊗OS R2r−m−jf∗Ω

•
X/S by the terms E0,q

2 of the spectral sequence.
Specifically,

Hj(S,Ω•S/k ⊗OS R2r−m−jf∗Ω
•
X/S)

is the cohomology of

H0(S,Ωj−1
S/k ⊗OS R

2r−m−jf∗Ω
•
X/S)

∇−→

H0(S,Ωj
S/k ⊗OS R

2r−m−jf∗Ω
•
X/S)

∇−→

H0(S,Ωj+1
S/k ⊗OS R

2r−m−jf∗Ω
•
X/S)

But this is precisely the definition of ∇DRr,m,j(X/S). On the other hand,

Ej,2r−m−j
∞ = homMHS(Q(0), Hj(S,R2r−m−jf∗Q(r)))

maps naturally to Hj(S/C, R2r−m−jf∗C). In conclusion we have

Ej,2r−m−j
∞ ↪→ Hj(S/C, R2r−m−jf∗C) ' ∇DRr,m,j(X/S)⊗k C.

Using the previous proposition, and the map from GrjFCHr(XU ,m;Q) to the
space Ej,2r−m−j

∞ , we get a map

GrjFCHr(XU ,m;Q)→ Ej,2r−m−j
∞ ↪→ ∇DRr,m,j(XU/U)⊗k C.
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Unfortunately, we cannot relate the map above to our map from the graded
pieces GrjFCHr(XU ,m;Q) to ∇DRr,m,j(XU/U), which was constructed by
showing that Ej,2r−m−j

∞ maps to ∇Jr,m,j(XU/U) and then using the natural
map from the Mumford-Griffiths invariants to the de Rham invariants. What
we are going to do next, it is to construct a new map to the space of Mumford-
Griffiths invariants that factors through Ej,2r−m−j

∞ as required. Later, we will
see this one coincides with the first map we constructed.

Theorem 6.9. Let f : X → S be a proper morphism of smooth varieties
over k ⊂ C. Assume S is projective, U ⊂ S is affine open and f is smooth
over U . Set XU = f−1(U). Then there exists an injection

Ej,2r−m−j
∞ ↪→ ∇Jr,m,j(XU/U).

Proof. As a consequence of Hironaka’s theorem, D = S \U is a normal cross-
ings divisor because S is projective and Y = f−1(D) is a normal crossings
divisor as well. Then XU = X \ Y and by Deligne,

F rH2r−m(XU ,Q(r)) = F rH2r−m(X,Ω•X(log Y )) = H2r−m(X,F rΩ•X(log Y )).

We have a canonical Leray filtration L• on F rH2r−m(XU ,Q(r)) with graded
pieces

GrjLF
rH2r−m(XU ,Q(r)) = F rHj(U,R2r−m−jf∗Q(r)).

Consider a filtered locally free O-module V i on S \D underlying a variation
of Hodge structure whose fibre V i

s at s ∈ S \ D is H i(Xs,C). Since D is a
divisor with normal crossings on S we can find the Deligne extension Ṽ i of
V i such that the eigenvalues of the residue of the connection are contained
in [0, 1). If F • denotes the Hodge filtration on V i, then we can extend it to
Ṽ i. The logarithmic de Rham complex is defined by

DRlog(Ṽ i) = Ω•S(logD)⊗O Ṽ i

with F rDRlog(Ṽ i) defined by Ωj
S(logD) ⊗O F r−jṼ i. We will use V i =

Hi
DR(XU/U). A consequence of the work of M. Saito in [46] is that:

GrjLH
2r−m(X,F rΩ•X(log Y )) = Hj(F rDRlog(Ṽ 2r−m−j)).

Then by using the restriction to U we get a morphism

F rHj(U,R2r−m−jf∗Q(r))→ Hj(U, F rDRlog(Ṽ 2r−m−j)),
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where the RHS can be computed in the Zariski topology by GAGA. The last
term is Hj(U, F rDR(H2r−m−j

DR (XU/U))) when we take V 2r−m−j =

H2r−m−j
DR (XU/U), i.e. ∇Jr,m,j(XU/U). Since there is a natural morphism

Ej,2r−j∞ = homMHS(Q(0), Hj(U,R2r−m−jf∗Q(r))) ↪→ F rHj(U,R2r−m−jf∗Q(r))

we get a map
Ej,2r−m−j
∞ → ∇Jr,m,j(XU/U).

Moreover, by [46] we have a natural filtration L• on H2r−m(XU , F
rΩ•XU )

compatible with the Leray filtration on H2r−m(X,F rΩ•X(log Y )) such that

GrjLH
2r−m(XU , F

rΩ•XU ) = Hj(U, F rDRlog(Ṽ 2r−m−j)).

Since the Hodge filtration is strict, the composition

H2r−m(X,F rΩ•X(log Y ))→ H2r−m(XU , F
rΩ•XU )→ H2r−m(XU ,Ω

•
XU

)

is injective and in consequence the morphism

H2r−m(X,F rΩ•X(log Y ))→ H2r−m(XU , F
rΩ•XU )

is injective. Therefore

F rHj(U,R2r−m−jf∗Q(r))→ ∇Jr,m,j(XU/U)

is injective as well.

Using the map
GrjFCHr(XU ,m;Q)→ Ej,2r−m−j

∞

and the short exact sequence in proposition (6.5), we get the morphism

GrjFCHr(XU ,m;Q)→ ∇Jr,m,j(XU/U)

which factors through Ej,2r−m−j
∞ .

We also have a well-defined filtration L•0 on H2r−m(XU ,Ω
•
XU

) with graded
pieces

GrjL0
H2r−m(XU ,Ω

•
XU

) = Hj(U,DRlog(Ṽ 2r−m−j)).

Then, setting V 2r−m−j = H2r−m−j
DR (XU/U), we get

GrjL0
H2r−m(XU ,Ω

•
XU

) ' ∇DRr,m,j(XU/U).
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Now, consider the morphism

H2r−m(XU , F
rΩ•XU )→ H2r−m(XU ,Ω

•
XU

).

This morphism is compatible with the filtrations L• (defined in the proof
above) and L•0 respectively. Therefore we have a map

∇Jr,m,j(XU/U)→ ∇DRr,m,j(XU/U).

and since the composition

H2r−m(X,F rΩ•X(log Y ))→ H2r−m(XU , F
rΩ•XU )→ H2r−m(XU ,Ω

•
XU

)

is injective we have a diagram

Ej,2r−m−j
∞ � u

((

� � //∇Jr,m,j(XU/U)

��
∇DRr,m,j(XU/U).

Actually, we arrive the following:

Theorem 6.10 (M. Saito). Let f : X → S be a proper morphism of smooth
projective varieties over k ⊂ C. Let U ⊂ S be affine open and assume
f is smooth over U . Set XU = f−1(U). Then the image of a cycle ξ̄ ∈
GrjFCHr(XU ,m;Q) in ∇Jr,m,j(XU/U) and its image in ∇DRr,m,j(XU/U)
are equivalent to each other. i.e. one vanishes if the other does.

We constructed a map GrjFCHr(XU ,m;Q)→ ∇Jr,m,j(XU/U) in Proposition
(6.3) using the forgetful functor from the category MHM(U) to the category
MFrh(U) to get a morphism

ExtjMHM(U)(QU (0), R2r−m−jf∗QXU (r))→ ExtjMFrh(U)(OU ,H
2r−m−j
DR (XU/U)(r)).

and we proved that ExtjMFrh(U)(OU ,H
2r−m−j
DR (XU/U)(r)) is isomorphic to the

cohomology of a complex whose global sections are ∇Jr,m,j(XU/U). Finally
we used the map

GrjFCHr(XU ,m;Q)→ ExtjMHM(U)(QU(0), R2r−m−jf∗QXU (r)).

This construction coincides with the map of Proposition (6.9). Indeed, it
follows from the discussion in 2.4 of [46] that the (global) extension group
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Ext2r−m(OU ,OU(r)) is isomorphic to H2r−m(XU , F
rΩ•XU ). The filtration L•

on H2r−m(XU , F
rΩ•XU ) and the Leray filtration F •L on Extj(OU ,OU(r)) com-

ing from the Leray filtration on the extension group of the corresponding
mixed Hodge modules coincide and therefore the maps are the same.

Note that the map ∇Jr,m,j(XU/U) → ∇DRr,m,j(XU/U) is not, in general,
injective. Suppose that XU is the product of two varieties, i.e. it is of the
form XU = X ×k U with corresponding morphism f : X ×k U → U . Then
Hp
DR(XU/U) ' Hp

DR(X/k) for all p and the Gauss-Manin connection is just
differentiation along U . Then ∇Jr,m,j(XU/U) is given by the cohomology of

Ωj−1
U/k ⊗ F

r−j+1H2r−m−j
DR (X/k)

d⊗1−−→

Ωj
U/k ⊗ F

r−jH2r−m−j
DR (X/k)

d⊗1−−→

Ωj+1
U/k ⊗ F

r−j−1H2r−m−j
DR (X/k)

and ∇DRr,m,j(XU/U) by the cohomology of

Ωj−1
U/k⊗H

2r−m−j
DR (X/k)

d⊗1−−→ Ωj
U/k⊗H

2r−m−j
DR (X/k)

d⊗1−−→ Ωj+1
U/k⊗H

2r−m−j
DR (X/k).

Thus, for example when k = C, H2r−m−j
DR (X/k) ' H2r−m−j(X,C) and we can

find elements in ∇Jr,m,j(XU/U) that are trivial in ∇DRr,m,j(XU/U) because
of the Hodge filtration.
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Chapter 7

Invariants for some special
cases

The first part of this section deals with detecting cycles with non-trivial
Mumford-Griffiths invariant. From here on we will denote any product of
the form X×k Spec(L) just by X×k L or X×L if the context is clear, for X
a variety over k and k ⊂ L ⊂ C. Let X be a smooth quasiprojective variety
over k ⊂ C. Consider the natural morphism g : X → Spec(k). Then we can
use lemma (6.4) to get a short exact sequence

0→ Ext1
MHM(Spec(k))(QSpec(k)(0), R2r−m−1g∗QX(r))

→ Ext2r−m
MHM(X)(QX(0),QX(r))→

homMHM(Spec(k))(QSpec(k)(0), R2r−mg∗QX(r))→ 0

The category MHM(Spec(k)) is a subcategory of the category of polarizable
mixed Hodge structures, and we have the isomorphisms

QSpec(k)(0) ' Q(0),

R2r−m−1g∗QX(r) ' Hq−1(X,Q(r)),

R2r−mg∗QX(r) ' Hq(X,Q(r)).

Then we can rewrite the short exact sequence as

0→ Ext1
MHS(Q(0), H2r−m−1(X,Q(r)))→

Ext2r−m
MHM(X)(QX(0),QX(r))→ homMHS(Q(0), H2r−m(X,Q(r)))→ 0 (7.1)
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We previously constructed a morphism

cr,m : CHr(X,m;Q)→ Ext2r−m
MHM(X)(QX(0),QX(r)).

Then we have a map

CHr(X,m;Q)→ homMHS(Q(0), H2r−m(X,Q(r))).

Conjecture 7.1 (Conjecture BE-HDG). Let W be a smooth quasiprojective
variety over C that can be expressed as W = W0 ×Q̄ C where W0 is defined
over Q̄. Then

CHr(W,m;Q)→ homMHS(Q(0), H2r−m(W,Q(r)))

is surjective.

Beilinson [6] conjectured the surjectivity of

CHr(X,m;Q)→ homMHS(Q(0), H2r−m(X,Q(r)))

for any complex smooth quasiprojective variety X. However this was dis-
proved by Jannsen [26]. For X projective defined over a subfield k of C and
m = 0 this becomes the famous Hodge conjecture

Conjecture 7.2 (HC).

CHr(X,Q)→ homMHS(Q(0), H2r(X,Q(r)))

is surjective.

We denote the kernel of the map

CHr(X,m;Q)→ homMHS(Q(0), H2r−m(X,Q(r)))

by CHr
hom(X,m;Q). The Abel-Jacobi map is given by

AJ : CHr
hom(X,m;Q)→ Ext1

MHS(Q(0), H2r−m−1(X,Q(r))),

using (7.1). Now we can state the Bloch-Beilinson conjecture:

Conjecture 7.3 (BBC). For X smooth projective defined over Q̄, AJ is
injective.
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If we assume the two previous conjectures, then Conjecture BE-HDG is true.
This was proved by M. Saito [47] and using different methods by Kerr-Lewis
[31] and de Jeu-Lewis [16].

Proposition 7.4. Conjecture BE-HDG follows from HC and BBC.

Take a complex smooth projective variety X such that X = XK ×C, where
XK is defined over K, a finitely generated extension of Q̄. Given a spread
of X by a morphism f : X → S proper and smooth such that XK = XηS for
the generic point ηS of S, we constructed a map

GrjFCHr(XU ,m;Q)→ Ej,2r−m−j
∞ = homMHS(Q(0), Hj(U,R2r−m−jf∗Q(r))).

where XU = f−1(U).

Proposition 7.5. Assume Conjecture BE-HDG and that the components
of the diagonal class of X are algebraic. Then

F jCHr(XU ,m;Q)→ Ej,2r−m−j
∞

is surjective.

Proof. Let L denote the canonical Leray filtration on H2r−m(XU ,Q(r)) such
that

GrjLH
2r−m(XU ,Q(r)) = Hj(U,R2r−m−jf∗Q(r)).

We have a map

h : CHr(XU ,m;Q)→ homMHS(Q(0), H2r−m(XU ,Q(r)))→ H2r−m(XU ,Q(r))

such that h(F jCHr(X,m;Q)) ⊆ LjH2r−m(XU ,Q(r)). A correspondence
Γ0 ∈ CHd(X ×Q̄ X, 0) can be spread out to a correspondence
Γ ∈ CHd(XU ×U XU , 0) and we have a commutative diagram

CHr(XU ,m;Q) h //

Γ∗
��

H2r−m(XU ,Q(r))

h(Γ)∗
��

CHr(XU ,m;Q) h // H2r−m(XU ,Q(r)).

Now let Γ0 = ∆X . The Chow-Künneth decomposition of ∆X leads to iso-
morphisms

CHr(XU ,m;Q) '
⊕
j≥0

GrjFCHr(XU ,m;Q),
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H2r−m(XU ,Q(r)) '
⊕
j≥0

Hj(U,R2r−m−jf∗Q(r)),

where the latter is an isomorphism of MHS (the latter holds regardless of
whether ∆X has a Chow-Künneth decomposition, by using cohomological
Künneth decomposition), and GrjFCHr(X,m;Q) is identified with
∆X(2d− 2r+m+ j, 2r−m− j)∗CHr(X,m;Q). This induces a commutative
diagram,

CHr(XU ,m;Q) // //

o
��

homMHS(Q(0), H2r−m(XU ,Q(r)))

o
��⊕

j≥0Gr
j
FCHr(XU ,m;Q) //

⊕
j≥0 homMHS(Q(0), Hj(U,R2r−m−jf∗Q(r)))

for which the proposition follows by applying BE-HDG.

Corollary 7.6. Let X be a complex smooth projective variety. Let us as-
sume Ej,2r−m−j

∞ 6= 0. Assume BE-HDG and that the components of the
diagonal class are algebraic. Then the image of the map

GrjFCHr(XK ,m;Q)→ ∇Jr,m,j(XK/K)

is not zero.

Proof. By Theorem (6.9) there is an injection Ej,2r−m−j
∞ ↪→ Jr,m,j(XU/U).

Since Ej,2r−m−j
∞ 6= 0 we can use the previous proposition to get a cycle in

GrjFCHr(XU ,m;Q) with non trivial Mumford-Griffiths invariant. To get the
result we take the limit for U ⊂ S affine open.

Our next discussion involves detecting cycles with trivial Mumford-Griffiths
invariant, and towards this goal we now consider a special product situation.
[31] also discusses this situation and there is some overlap in results; however
we feel that the arguments presented there are not too accessible for the
reader. Rather, our intention here, besides completeness, is to present a
more “user-friendly” approach. If X is a smooth projective variety over a
field k ⊂ C, we can take any smooth projective variety S over k and let
f : X × S → S be the morphism given by the projection. For U ⊂ S open,
XU = f−1(U) = X × U . Let K = k(S) and XK = X ×k K. Then we have
an isomorphism

CHr(XK ,m;Q) ' lim
−→

CHr(X × U,m;Q).
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and we can define a complex variety by setting XC := X ×k C.

Regarding the kernel of the map fromGrjFCHr(XK ,m;Q) to∇Jr,m,j(XK/K),
we can get cycles in this kernel by considering cycles coming from the prod-
uct of two varieties. Specifically, consider two smooth projective varieties X
and S over k ⊂ C and assume m ≥ 1. We have a map

F jCHr(X × S,m;Q)→ Ej,2r−m−j
∞ = homMHS(Q(0), Hj(S,R2r−m−jf∗Q(r)))

with kernel in Ej,2r−m−j
∞ because of the short exact sequence

0→ Ej,2r−m−j
∞ → Ej,2r−m−j

∞ → Ej,2r−m−j
∞ .

Since f is given by the projection f : X × S → S and both X and S are
projective , then

homMHS(Q(0), Hj(S,R2r−m−jf∗Q(r))) =

homMHS(Q(0), Hj(S,Q)⊗H2r−m−j(X,Q(r))) = 0

using a weight argument. Also since

Ej,2r−m−j
∞ =

Ext1
MHS(Q(0),W−1(Hj−1(S,Q)⊗H2r−m−j(X,Q(r))))

homMHS(Q(0), Gr0
W (Hj−1(S,Q)⊗H2r−m−j(X,Q(r))))

,

we have

Ej,2r−m−j
∞ = Ext1

MHS(Q(0), Hj−1(S,Q)⊗H2r−m−j(X,Q(r)))

because we are working with pure Hodge structures. Thus we have a map

F jCHr(X × S,m;Q)→ Ext1
MHS

(
Q(0), Hj−1(S,Q)⊗H2r−m−j(X,Q(r))

)
.

Now let N1
HH

j−1(S,Q) be the largest subHodge structure lying in the in-
tersection F 1Hj−1(S,C) ∩ Hj−1(S,Q) and N r−j+1

H H2r−m−j(X,Q(r)) be the
largest subHodge structure lying in F r−j+1H2r−m−j(X,C)∩H2r−m−j(X,Q(r)).
We have a morphism

Ext1
MHS

(
Q(0), Hj−1(S,Q)⊗H2r−m−j(X,Q(r))

)
→ Ext1

MHS

(
Q(0),

Hj−1(S,Q)

N1
HH

j−1(S,Q)
⊗ H2r−m−j(X,Q(r))

N r−j+1
H H2r−m−j(X,Q(r))

)
induced by projection and we get a map

F jCHr(X × S,m;Q)→ Ext1MHS

(
Q(0),

Hj−1(S,Q)

N1
HH

j−1(S,Q)
⊗ H2r−m−j(X,Q(r))

Nr−j+1
H H2r−m−j(X,Q(r))

)
.
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Proposition 7.7. Suppose the map

F jCHr(X × S,m;Q)→ Ext1MHS

(
Q(0),

Hj−1(S,Q)

N1
HH

j−1(S,Q)
⊗ H2r−m−j(X,Q(r))

Nr−j+1
H H2r−m−j(X,Q(r))

)

is not zero. Then, for K = k(S), the kernel of the map

φ : GrjFCHr(XK ,m;Q)→ ∇Jr,m,j(XK/K).

is non trivial.

Proof. Let U be an open subset of S. Let i denote the inclusion i : U ↪→ S.
Then we have a commutative diagram.

F jCHr(X × S,m;Q)
i∗ //

��

F jCHr(X × U,m;Q)

��
Ext1MHS(Q(0), Hj−1(S,Q)⊗H2r−m−j(X,Q(r))) // Ext1PMHS(Q(0), Hj−1(U,Q)⊗H2r−m−j(X,Q(r))),

(7.2)

where

Ext1
PMHS(Q(0), Hj−1(U,Q)⊗H2r−m−j(X,Q(r)))

' Ext1
MHS(Q(0),W−1(Hj−1(U,Q)⊗H2r−m−j(X,Q(r))))

homMHS(Q(0), Gr0
W (Hj−1(U,Q)⊗H2r−m−j(X,Q(r))))

We will show that under our hypothesis the image of the map

Ext1
MHS(Q(0), Hj−1(S,Q)⊗H2r−m−j(X,Q(r)))

→ Ext1
MHS(Q(0),W−1(Hj−1(U,Q)⊗H2r−m−j(X,Q(r))))

homMHS(Q(0), Gr0
W (Hj−1(U,Q)⊗H2r−m−j(X,Q(r))))

(7.3)

is non trivial. This is indeed true because of the following. First of all, observe
Hj−1(U,Q)⊗H2r−m−j(X,Q(r)) is a product of mixed Hodge structures and
in general for two mixed Hodge structures H1, H2:

Wn(H1 ⊗H2) =
⊕
p+q=n

WpH1 ⊗WqH2.

Therefore

Wj−1

(
Hj−1(U,Q)

)
⊗H2r−m−j(X,Q(r)) ↪→W−1(Hj−1(U,Q)⊗H2r−m−j(X,Q(r))).

53



Moreover

Wj−1H
j−1(U,Q) = Im(Hj−1(S,Q)→ Hj−1(U,Q)) ' Hj−1(S,Q)

Hj−1
S\U(S,Q)

and

Im

(
Hj−1(S,Q)→ lim−−−→

U⊂S
Hj−1(U,Q)

)
' Hj−1(S,Q)

N1Hj−1(S,Q)
,

whereN1Hj−1(S,Q) is the filtration by coniveau. In generalN1Hj−1(S,Q) ⊆
N1
HH

j−1(S,Q). Thus by assumption there exists an element in
F jCHr(X × S,m;Q) whose image in

Ext1
MHS(Q(0), Hj−1(S,Q)⊗H2r−m−j(X,Q(r)))

→ Ext1
MHS(Q(0),Wj−1

(
Hj−1(U,Q)

)
⊗H2r−m−j(X,Q(r)))

is not zero. Next, observe that the quotient

Ext1
MHS(Q(0),Wj−1 (Hj−1(U,Q))⊗H2r−m−j(X,Q(r)))

homMHS(Q(0), Gr0,−m−1
W (Hj−1(U,Q)⊗H2r−m−j(X,Q(r))))

comes from the short exact sequence

0→ Wj−1

(
Hj−1(U,Q)

)
⊗H2r−m−j(X,Q(r))

→ W0(Hj−1(U,Q)⊗H2r−m−j(X,Q(r)))

→ Gr0,−m−1
W (Hj−1(U,Q)⊗H2r−m−j(X,Q(r)))→ 0

after taking Ext, because Wj−1 (Hj−1(U,Q))⊗H2r−m−j(X,Q(r)) =
W−m−1

(
Hj−1(U,Q)⊗H2r−m−j(X,Q(r))

)
. Then we get a map

E2 := homMHS(Q(0), Gr0,−m−1
W (Hj−1(U,Q)⊗H2r−m−j(X,Q(r))))

→ E3 := Ext1
MHS(Q(0),Wj−1

(
Hj−1(U,Q)

)
⊗H2r−m−j(X,Q(r))).

Similarly we have a map

E0 := homMHS(Q(0), Gr0,−m−1
W (Hj−1(U,Q)⊗N r−j+1

H H2r−m−j(X,Q(r))))

→ E1 := Ext1
MHS(Q(0),Wj−1

(
Hj−1(U,Q)

)
⊗N r−j+1

H H2r−m−j(X,Q(r))).
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In the commutative diagram

E0
//

��

E1

��
E2

// E3

the left vertical arrow is an equality because the natural inclusion

homMHS(Q(0), Gr0,−m−1
W (Hj−1(U,Q)⊗N r−j+1

H H2r−m−j(X,Q(r))))

⊆ homMHS(Q(0), Gr0,−m−1
W (Hj−1(U,Q)⊗H2r−m−j(X,Q(r))))

is an equality. This relies on the fact that F jHj−1(U,C) = 0 and that the
maximum weight of Hj−1(U,Q) is 2j − 2. Indeed, let us untwist everything
by Q(−r). We are looking at[

Gr2r,2r−m−1
W

(
Hj−1(U,Q)⊗H2r−m−j(X,Q))

)]r,r
⊂
[
Wm+j

(
Hj−1(U)

)
⊗H2r−m−j(X)

]r,r
.

From the short exact sequence:

0→ Wm+j−1 → Wm+j → Grm+j
W → 0,

together with [
Wm+j−1

(
Hj−1(U)

)
⊗H2r−m−j(X)

]r,r
= 0,

it follows that[
Gr2r,2r−m−1

W

(
Hj−1(U,Q)⊗H2r−m−j(X,Q))

)]r,r ⊂ [V ⊗H2r−m−j(X)
]r,r

,

where V is a pure HS of weight m+ j (and also recall that F jVC = 0). So in
terms of type (r, r) we have:

V j−1,m+1
C ⊗Hr−j+1,r−m−1 ⊕ · · · ⊕ V m+1,j−1

C ⊗Hr−m−1,r−j+1.

This is contained in VC⊗F r−j+1H2r−j−m(X) precisely when r− j + 1 ≤ r−
m−1, i.e. j ≥ m+2. But recall from Theorem (3.7) that weight(Hj−1(U)) ≤
2j − 2. Thus m+ j ≤ 2j − 2 and the desired equality follows.
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What all this shows is that

homMHS(Q(0), Gr0,−m−1
W (Hj−1(U,Q)⊗H2r−m−j(X,Q(r))))

is contained in

Ext1
MHS(Q(0),Wj−1H

j−1(U,Q)⊗N r−j+1
H H2r−m−j(X,Q(r)))

and, by assumption, this means that (7.3) is not trivial. Then we use the
diagram (7.2) and conclude that kerφ is not trivial after taking the limit over
U ⊂ S.

In the last proposition the assumption that the map

F jCHr(X × S,m;Q)→ Ext1MHS

(
Q(0),

Hj−1(S,Q)

N1
HH

j−1(S,Q)
⊗ H2r−m−j(X,Q(r))

Nr−j+1
H H2r−m−j(X,Q(r))

)
is not zero is a harder result. If we work with the category of MHS over R,

the natural situation that comes to mind is the Hodge D-conjecture, i.e. the
surjectivity of

CHr(Y,m;R)→ H2r−m
D (Y,R(r)).

While this conjecture is not true in general, it is expected to hold for k ⊂ Q̄
for any smooth projective variety Y over k, in particular for X × S defined
over such k.

Let’s take two complex smooth projective varieties X and S. When m ≥ 1:

H2r−m
D (X × S,R(r)) ' H2r−m−1(X × S,C)

F rH2r−m−1(X × S,C) +H2r−m−1(X × S,R(r))

π−→
'

H2r−m−1(X × S,R(r − 1))

π(F rH2r−m−1(X × S,C))
(7.4)

where π : C = R(r) ⊕ R(r − 1) → R(r − 1) is the projection. Then we can
use the Hodge and Künneth decompositions to get a map

H2r−m
D (X × S,R(r))

α−→ Hr−j,r−m(X)⊗Hj−1,0(S)

By using the real regulator r, defining β as the cup product with a class in
[β] ∈ Hs−j+1,s(S) and using Hs,s(S) ' C where s = dimS, we get the map

CHr(X × S,m;Q)
r−→ H2r−m

D (X × S,R(r))
α−→ Hr−j,r−m(X)⊗Hj−1,0(S)

β−→ Hr−j,r−m(X).
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In the case m = 0 we use the cycle class map and the Hodge and Künneth
decompositions and define the last morphism similarly to β above to get

CHr(X × S, 0;Q)→ H2r−m(X × S,C)→ Hr−j,r−m(X)⊗Hj−1,0(S)

→ Hr−j,r−m(X).

Thus for any m we have constructed

CHr(X × S,m;Q)→ Hr−j,r−m(X). (7.5)

The following definition is introduced by J. Lewis in [33].

Definition 7.8. (i) H{r,j,m}(X) = complex subspace of Hr−j,r−m(X) gen-
erated by the image of (7.5) in Hr−j,r−m(X) over all smooth projective
S.

(ii) H
{r−j,r−m}
N (X) = complex subspace of Hr−j,r−m(X) generated by the

Hodge projected image

N r−jH2r−m−j(X,Q)⊗ C→ Hr−j,r−m(X)

where N• denotes the filtration by coniveau.

One has H{r,j,0}(X) ⊆ H
{r−j,r}
N (X). Under the assumption of the hard Lef-

schetz conjecture, one can show that H{r,j,0}(X) = H
{r−j,r}
N (X).

Theorem 7.9 (Lewis). Let X be a complex smooth projective variety and
m ≤ 2. Then:

(i) H{r−m,j−m,0}(X) ⊂ H{r,j,m}(X).

(ii) H{r,j,m}(X)/H{r−m,j−m,0}(X) 6= 0 and j −m ≥ 1 ⇒ CHr
ind(X,m;Q) is

uncountable. Moreover, there are an uncountable number of indecom-
posables in the kernel of

CHr(X,m;Q)→ H2r−m
D (X,Q(r)).

Remark. The theorem is also valid for m ≥ 3 but needs an extra conjectural
condition. It can be found in [33].
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Note that H{r,j,m}(X) 6= 0 is the “real” analogue to the hypothesis:

F jCHr(X × S,m;Q)→ Ext1MHS

(
Q(0),

Hj−1(S,Q)

N1
HH

j−1(S,Q)
⊗ H2r−m−j(X,Q(r))

Nr−j+1
H H2r−m−j(X,Q(r))

)

has non trivial image, in Proposition (7.7). Under their respective assump-
tions, in Proposition (7.7) we find elements in the kernel of

GrjFCHr(XK ,m;Q)→ ∇Jr,m,j(XK/K).

and in Theorem (7.9) we find elements in the kernel of

CHr(X,m;Q)→ H2r−m
D (X,Q(r)).

When m = 1, Collino and Fakhruddin (see [15]) prove

H{r,j,1}(X)/H{r−1,j−1,0}(X) 6= 0

for the Jacobian X = J(C) of a generic hyperelliptic curve C of genus g ≥ 3,
r = g and all j such that 2 ≤ j ≤ g − 1.
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Chapter 8

Arithmetic normal functions

The filtration we have defined can be compared to a more geometrical filtra-
tion defined on higher Chow groups. We need to introduce the concept of
arithmetic normal functions first, which provide a generalization to classical
normal functions. Then we will describe conditions to find indecomposable
elements in higher Chow groups using the topological invariants defined by
arithmetic normal functions.

Let’s take a complex smooth projective variety X. If X is defined over K, a
finitely generated extension field of Q̄, we denote this by XK and consider a
spread of X, given by a smooth projective morphism ρ : X → S of smooth
projective varieties over Q̄ such that X = Xη×C, where η ∈ S is the generic
point and XK = Xη is the fibre by ρ.

We constructed a filtration F • on CHr(Xη,m;Q) and well-defined injective
maps

cjr,m : GrjFCHr(Xη,m;Q) ↪→ Ej,2r−m−j
∞ (η).

The space Ej,2r−m−j
∞ (η) fits in the short exact sequence

0→ Ej,2r−m−j
∞ (η)→ Ej,2r−m−j

∞ (η)→ Ej,2r−m−j
∞ (η)→ 0,

where
Ej,2r−m−j
∞ (η) = Γ(Hj(η,R2r−m−jρ∗Q(r))),

Ej,2r−m−j
∞ (η) =

J(W−1H
j−1(η,R2r−m−jρ∗Q(r)))

Γ(Gr0
WH

j−1(η,R2r−m−jρ∗Q(r)))
.
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(Recall the notation introduced in Chapter (3): Γ(H) := homMHS(Q(0), H),
J(H) := Ext1

MHS(Q(0), H) for any MHS H.)

Here we explicitly make reference to the generic point and use the definition:

homMHS(Q(0), Hj(η,R2r−m−jρ∗Q(r))) := lim−−−→
U⊂S

homMHS(Q(0), Hj(U,R2r−m−jρ∗Q(r)))

and similarly
Ej,2r−m−j
∞ (η) := lim−−−→

U⊂S
Ej,2r−m−j
∞ .

We call [ξ]j to the class of ξ ∈ F jCHr(Xη,m;Q) in Ej,2r−m−j
∞ (η) under the

composition

GrjFCHr(Xη,m;Q) ↪→ Ej,2r−m−j
∞ (η)→ Ej,2r−m−j

∞ (η).

Also, we have a short exact sequence

0→ Ext1
MHS(Q(0), H2r−m−1(Xη,Q(r)))→

Ext2r−m
MHM(η)(QXη(0),QXη(r))→ homMHS(Q(0), H2r−m(Xη,Q(r)))→ 0

and if the image of ξ in homMHS(Q(0), H2r−m(Xη,Q(r))) is zero using the
map

CHr(Xη,m;Q)→ Ext2r−m
MHM(η)(QXη(0),QXη(r)) (8.1)

then ξ maps to an element of Ext1
MHS(Q(0), H2r−m−1(Xη,Q(r))). We call this

map AJ . The kernel of (8.1) is denoted by CHr
hom(Xη,m;Q).

A complex subvariety T ⊂ S(C) is called very general if no rational function
f ∈ Q̄(S)∗ has f |T ≡ 0. Equivalently, the minimal field of definition L of T
has trdeg(L/Q̄) = codimS(T ). Let S[j] be the set of j − 1 dimensional very
general subvarieries of S(C) and ηT := lim←−V over V ⊂ T affine Zariski open

over L (T means TL).

Definition 8.1. If [ξ]0 = [ξ]1 = . . . = [ξ]j−1 = 0, the jth arithmetic normal
function

νjξ : S[j]→
∐
T ∈S[j]

Ext1
MHS(Q(0), H2r−m−1(XηT ,Q(r)))

associated to ξ is given by νjξ (T ) := AJ(ξ|XηT ).
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In particular, when j = 1, ν1
ξ is defined in very general complex points of

S(C), i.e. all the generic points corresponding to different embeddings of
Q̄(S) ' K in C. In this case and when m = 0, ν1

ξ is essentially a classical
normal function. To better understand this idea, we look at the commutative
diagram

XT ↪ //

ρT

��

X (C)

ρ

��
T ↪ // S(C)

and the induced

0 // Ej,2r−m−j
∞ (ρ) //

��

Ej,2r−m−j
∞ (ρ) //

��

Ej,2r−m−j
∞ (ρ) //

��

0

0 // Ej,2r−m−j
∞ (ρT ) // Ej,2r−m−j

∞ (ρT ) // Ej,2r−m−j
∞ (ρT ) // 0

Then a cycle ξ ∈ GrjFCHr(Xη,m;Q) has a value νjξ (T ) ∈ Ej,2r−m−j
∞ (ρT ).

This follows from the existence of the map

GrjFCHr(Xη,m;Q)→ Ej,2r−m−j
∞ (ρ)

and the fact that Ej,2r−m−j
∞ (ρT ) = 0. Indeed, we have the following version

of the weak Lefschetz theorem (see [1]):

Proposition 8.2. Let G be a locally constant sheaf on a n dimensional
nonsingular complex affine variety Y . Then H i(Y,G) = 0 for i > n, and
H i(Y,G)→ H i(H,G) is injective for i < n and any general affine hyperplane
section H.

Since

Ej,2r−m−j
∞ (ρT ) = homMHS(Q(0), Hj(ηT , R

2r−m−jρT ∗Q(r)))

and dimηT = j − 1 because ηT is a limit of affines then Ej,2r−m−j
∞ (ρT ) = 0.

We have a map

CHr(Xη,m;Q)→ Ext2r−mMHM(η)(QXη(0),QXη(r))→ homMHS(Q(0), H2r−m(Xη,Q(r)))

Recall the filtration on CHr(Xη,m;Q) is induced by a Leray filtration on
Ext2r−m

MHM(η)(QXη(0),QXη(r)) and this induces a natural filtration FL on
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homMHS(Q(0), H2r−m(Xη,Q(r))). This filtration coincides with the Leray
filtration L on H2r−m(Xη,Q(r)), i.e.

F j
L homMHS(Q(0), H2r−m(Xη,Q(r))) = Lj homMHS(Q(0), H2r−m(Xη,Q(r))),

where

Lj homMHS(Q(0), H2r−m(Xη,Q(r))) := homMHS(Q(0),LjH2r−m(Xη,Q(r))).

Therefore we have a map

GrjFCHr(Xη,m;Q)→ homMHS(Q(0), Hj(η,R2r−m−jρ∗Q(r)))

where the last term is homMHS(Q(0), GrjLH
2r−m(Xη,Q(r))). Since we as-

sumed [ξ]0 = [ξ]1 = . . . = [ξ]j−1 = 0, then the class of ξ|XηT in the graded

piece Gr`L homMHS(Q(0), H2r−m(XηT ,Q(r))) vanishes for 0 ≤ ` ≤ j − 1. For
` ≥ j we use Proposition (8.2) to show that
Gr`L homMHS(Q(0), H2r−m(XηT ,Q(r))) = 0.This proves that ξ|XηT maps to

zero in homMHS(Q(0), H2r−m(Xη,Q(r))) and νjξ is well defined. Moreover

its value is in Ej,2r−m−j
∞ (ρT ) as described in the diagram above and more

generally (see [31]):

Proposition 8.3. Assume [ξ]0 = [ξ]1 = . . . = [ξ]j−1 = 0. If νj−1
ξ = 0 and

j ≤ m− 2, then νjξ factors through∐
T ∈S[j]

Ext1
MHS(Q(0), Hj−1(η,R2r−m−jρ∗Q(r))).

Actually, [ξ]j =: δ(νjξ ) is the “topological invariant” of νjξ . Indeed there
is the following result that relies on the explicit description of the higher
Abel-Jacobi map.

Theorem 8.4 (Kerr-Lewis [31]). [ξ]j depends only on νjξ . Hence if νjξ = 0,
then [ξ]j = 0.

This allows us to define a new filtration without making reference to our
filtration F •.

Definition 8.5. Set Λ0CHr(Xη,m;Q) = CHr(Xη,m;Q), Λ1CHr(Xη,m;Q) =
CHr

hom(Xη,m;Q) and

ΛjCHr(Xη,m;Q) := {ξ ∈ CHr
hom(Xη,m;Q)|ν1

ξ = . . . = νj−1
ξ = 0}.
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Theorem 8.6 (Kerr-Lewis). F ` ⊆ Λ` for all `, with equality for ` = 0, . . . ,m+
2.

Actually under the assumption of the general Hodge conjecture and assuming
X is defined over Q̄ it can be proved that both filtrations are the same (see
[37]).

8.1 Some results on indecomposability

In Chapter (2) we define, for any smooth projective variety Y over a field
k, the space of decomposable elements of CHr(Y,m;Q) as the image of the
map

Π :
⊕

r1+r2=r,m1+m2=m

CHr1(Y,m1;Q)⊗ CHr2(Y,m2;Q)→ CHr(Y,m;Q),

where (r1,m1) 6= (0, 0), (r2,m2) 6= (0, 0). Let Ξ(r,m;Q)(Y ) := ImageΠ. We
also introduced the subgroup of decomposables CHr

dec(Y,m;Q) by consider-
ing the elements in the image of

CHr−m(Y, 0;Q)⊗ CH1(Y, 1;Q)⊗m → CHr(Y,m;Q)

under the product for higher Chow groups and

CHr
ind(Y,m;Q) := CHr(Y,m;Q)/CHr

dec(Y,m;Q).

As our results really only matter in the situation where r ≥ m, we will assume
this throughout this section. Recall that CHr−m(Y, 0;Q) ' CHr−m(Y ;Q).
Let X be a complex smooth projective variety and Y ⊂ X a proper subva-
riety. The following commutative diagram is introduced in [16]:

CHr(X\Y,m+1;Q)
CHr(X,m+1;Q)

//

��

CHr
Y (X,m;Q)0 α //

β

��

CHr
hom(X,m;Q)

AJ
��

Γ(H2r−m−1(X \ Y,Q(r))) // Γ(H2r−m
Y (X,Q(r))0) // J

(
H2r−m−1(X,Q(r))

H2r−m−1
Y (X,Q(r))

)
,

where

H2r−m
Y (X,Q(r))0 := ker

(
H2r−m
Y (X,Q(r))→ H2r−m(X,Q(r))

)
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and

CHr
Y (X,m;Q)0 :=

ker
(
CHr

Y (X,m;Q)→ H2r−m(X,Q(r))
)

= α−1CHr
hom(X,m;Q).

Then we can put (see [16])

N1CHr(X,m;Q) := lim
−→
Y

α(ker β),

where Y ⊂ X ranges over all pure codimension one algebraic subsets of X.
We have inclusions

CHr
dec(X,m;Q) ⊆ Ξ(r,m;Q)(X) ⊆ N1CHr(X,m;Q).

The first inclusion is clear by definition and the second one is a consequence
of the work of de Jeu and Lewis in [16]. They are equalities in the case
(r,m) = (2, 1); for m > 1, the first equality is in general strict, but it is not
clear if equality holds in the second inclusion.

From the Lefschetz decomposition on cohomology with rational coefficients
on a smooth complex projective variety Y and for p ≤ dimY

Hp(Y,Q) = Hp
prim(Y,Q)⊕ L ·Hp−2(Y,Q) =

⊕
2q≤p

LqHp−2q
prim (Y,Q),

where L : H`(Y,Q)→ H`+2(Y,Q) is the operator defined by the cup product
with the Kähler class.

Applying this to the family ρ : X → S over the generic point η ∈ S and
assuming 2r −m− j ≤ dimXη, we get a decomposition

Ej,2r−m−j
∞ (η) = Γ

(
Hj(η,R2r−m−j

prim ρ∗Q(r))
)⊕

Γ
(
Hj(η, L ·R2r−m−j−2ρ∗Q(r))

)
=

⊕
2q≤2r−m−j

Γ
(
Hj(η, LqR2r−m−j−2q

prim ρ∗Q(r))
)
.

(8.2)

So, for example when m = j = 1, r = 2:

E1,2

∞ (η) ' Γ
(
H1(η,R2

primρ∗Q(2))
)⊕

Γ
(
H1(η,Q(2))

)
,
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and in the case j = 1 and r ≥ m arbitrary,

E1,2r−m−1
∞ (η) = Γ

(
H1(η,R2r−m−1

prim ρ∗Q(r))
)⊕

Γ
(
H1(η, LR2r−m−3

prim ρ∗Q(r))
)⊕

· · · .

We define
Γ0 := Γ

(
H1(η,R2r−m−1

prim ρ∗Q(r))
)
.

Let
π : E1,2r−m−1

∞ (η)→ Γ0

be the projection.

Proposition 8.7. Suppose Γ(H0(η,R2`ρ∗Q)) ' Q for 0 < ` < r and set
XK = Xη and X/C = XK ×K C. Assume that 2r−m− 1 ≤ dimX/C. Then

ξ ∈ Ξ(r,m;Q)(X/C)⇒ π ◦ δ(νξ) = 0.

Proof. Let ξ ∈ Ξ(r,m;Q)(X/C). We can write:

CHr(X/C,m;Q) = lim
−→
U/K̄

CHr(XK̄ × U,m;Q),

where U/K̄ is an extension of finite type. Therefore by an argument similar
to the proof of Lemma 5.1 in [36] and after collecting the coefficients of the
polynomials defining the cycle, ξ ∈ Ξ(r,m;Q)(XL) for some finite extension
L/K. Since K = Q̄(S) ⊂ L = Q̄(S0) for some S and S0, we can find a finite
and proper map κ : S0 → S such that, on cohomology of locally constant
systems, κ∗ ◦ κ∗ = ×N , where N = deg κ. This implies that if we pullback
νξ to over S0 and show that π ◦ δ(νξ) = 0, then that is also the case over S.
Therefore we can assume ξ ∈ Ξ(r,m;Q)(XK). Since F 0 = F 1 for m ≥ 1, the
map

CHr(Xη,m;Q)→ Gr1
FCHr(Xη,m;Q)

is well defined. Let’s suppose ξ = ξ1 • ξ2, with ξ1 ∈ CHr1(Xη, 0;Q), ξ2 ∈
CHr2(Xη,m;Q), where r1 + r2 = r, r1, m ≥ 1. Consider the map

CHr2(Xη,m;Q)→ Gr1
FCHr2(Xη,m;Q)→ E1,2r2−m−1

∞ (η)→ E1,2r2−m−1

∞ (η)

and image of ξ2 in E1,2r2−m−1

∞ (η) ' Γ
(
H1(η,R2r2−m−1ρ∗Q(r2))

)
; if it is zero

there, it is in J
(
H0(η,R2r2−m−1ρ∗Q(r2))

)
. We also have a map

CHr1(Xη, 0;Q)→ Gr0
FCHr1(Xη, 0;Q)→ Γ

(
H0(η,R2r1ρ∗Q(r1))

)
,
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so ξ1 maps to Γ
(
H0(η,R2r1ρ∗Q(r1))

)
. Recall we have a product structure

in extension groups and hom = Ext0. If ξ2 ∈ Γ
(
H1(η,R2r2−m−1ρ∗Q(r2))

)
=

homMHS(Q(0), H1(η,R2r2−m−1ρ∗Q(r2))) then the image of ξ1 • ξ2 is in

homMHS(Q(0), H0(η,R2r1ρ∗Q(r1)))⊗ homMHS(Q(0), H1(η,R2r2−m−1ρ∗Q(r2)))

⊂ homMHS(Q(0), H1(η,R2r−m−1ρ∗Q(r))).

This coincides with [ξ]1 = δ(νξ).

By assumption homMHS(Q(0), H0(η,R2r1ρ∗Q(r1))) ' Q(r1), so the product
lies in

Q(r1)⊗ homMHS(Q(0), H1(η,R2r2−m−1ρ∗Q(r2)))

⊂ Γ
(
H1(η, Lr1 ·R2r2−m−1ρ∗Q(r))

)
.

This is precisely in the complement of Γ0 and the proposition follows in this
case. If ξ2 ∈ J

(
H0(η,R2r2−m−1ρ∗Q(r2))

)
then the image of ξ1 • ξ2 is in

homMHS(Q(0), H0(η,R2r1ρ∗Q(r1)))⊗ Ext1
MHS(Q(0), H0(η,R2r2−m−1ρ∗Q(r2)))

⊂ Ext1
MHS(Q(0), H0(η,R2r−m−1ρ∗Q(r))).

The last term is precisely the kernel of the map to E1,2r−m−1

∞ (η), so δ(νξ) = 0

trivially. If ξ2 ∈ F `CHr2(Xη,m;Q) where ` ≥ 2 or ξ1 ∈ F µCHr1(Xη, 0;Q)
where µ ≥ 1 then ξ1 • ξ2 ∈ F `+µCHr(Xη,m;Q) with ` + µ ≥ 2. This
clearly implies [ξ]1 = 0. Finally, if ξ1 ∈ CHr1(Xη,m1;Q) where m1 ≥ 1 and
ξ2 ∈ CHr2(Xη,m2;Q) where m2 ≥ 1 then ξ1 • ξ2 ∈ F `CHr(Xη,m;Q) with
` ≥ 2 and [ξ]1 = 0.

Proposition 8.8. Let t ∈ S(C) be a very general point (given by an em-
bedding K ⊂ C) and Xt = XK × C. Suppose H2`(Xt,Q) ' Q for 0 < ` < r
and 2r −m− 1 ≤ dimXt. Then

AJ(ξt) ∈ AJ(Ξ(r,m;Q)(Xt)) ∀ very general t ∈ S(C)⇒ π ◦ δ(νξ) = 0.

Proof. Let’s take a cycle ω ∈ Ξ(r,m;Q)(Xt). Suppose ω = ω1 • ω2, where
ω1 ∈ CHr1(Xt, 0;Q), ω2 ∈ CHr2(Xt,m;Q), where r1 + r2 = r, r1, m ≥ 1. We
have maps

CHr1(Xt, 0;Q)→ Γ
(
H2r1(Xt,Q(r1))

)
,

CHr2(Xt,m;Q)→ J
(
H2r2−m−1(Xt,Q(r2))

)
.
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Since H2r1(Xt,Q(r1)) ' Q(r1), using the maps above:

AJ(ω) ∈ Q(r1)⊗ J
(
H2r2−m−1(Xt,Q(r2))

)
⊂ J

(
Lr1 ·H2r2−m−1(Xt,Q(r))

)
.

There is a short exact sequence

0→ R2r−m−1ρ∗Q→ OS

(∐
t∈S

H2r−m−1(Xt,C)

F rH2r−m−1(Xt,C)

)
→ J → 0,

where J is the sheaf of normal functions. We can compute δ(νω) by using
the connecting morphism

H0(S,J )
δ−→ H1(S,R2r−m−1ρ∗Q).

From the decomposition

H1(S,R2r−m−1ρ∗Q) =H1(S,R2r−m−1
prim ρ∗Q)

⊕
H1(S, LR2r−m−3

prim ρ∗Q)
⊕
· · ·⊕

H1(S, Lr1 ·R2r2−m−1ρ∗Q),

and using that AJ(ω) ∈ J
(
Lr1 · H2r2−m−1(Xt,Q(r))

)
and δ we conclude

that π ◦ δ(νω) = 0. If ω1 ∈ CHr1(Xt,m1;Q) where m1 ≥ 1 and ω2 ∈
CHr2(Xt,m2;Q) where m2 ≥ 1 then ω1 • ω2 ∈ F 2CHr(Xt,m;Q). But
F 2CHr(Xt,m;Q) ⊂ kerAJ (see Proposition (8.10) below), thus δ(νω) =
0.

Take our smooth complex projective variety X = Xη × C. If H2`(X;Q)π1(S)

' Q for 0 < ` < r, since H0(η,R2`ρ∗Q) is isomorphic to the cycles in
H2`(X;Q) invariant under the action of the monodromy group π1(S), we get
the isomorphism Γ(H0(η,R2`ρ∗Q)) ' Q, the assumption in Proposition (8.7).
We also get H0(η,R2r−2ρ∗Q(r)) ' Q as required in the next proposition.

Let W be a complex smooth quasi-projective variety. In [16], R. de Jeu and
J. Lewis give conditions for the surjectivity of

CHr(W,m;Q)→ Γ(H2r−m(W,Q(r))).

In particular they show it is always true for r = m = 1 (also see [4]). This
implies that

CH1(Xη, 1;Q)→ Γ
(
H1(η,R0ρ∗Q(1))

)
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is surjective. Quite generally, a version of the Beilinson-Hodge conjecture
implies that for all m,

CHm(Xη,m;Q)→ Γ
(
H1(η,Rm−1ρ∗Q(m))

)
is surjective ([16]). We will now assume that 2r −m − 1 ≤ dimXη, m = 1,
and that

H0(η,R2r−2ρ∗Q(r)) ' Q.

Note that the map

CHr−m(Xη;Q)→ Γ
(
H0(η,R2r−2mρ∗Q(r −m))

)
' Q(r −m)

is surjective. Finally, suppose that F 2CHr(Xη, 1;Q) ⊆ N1CHr(Xη, 1;Q) (by
[16] Corollary 6.9, this is the case under a generalization of the Beilinson-
Hodge conjecture, see Proposition (8.11) below.)

Proposition 8.9. Assume that 2r−2 ≤ dimXη, that H0(η,R2r−2ρ∗Q(r)) '
Q and that F 2CHr(Xη, 1;Q) ⊆ N1CHr(Xη, 1;Q). Then

0 6= ξ ∈ CHr(Xη, 1;Q)/N1CHr(Xη, 1;Q)⇒ π ◦ δ(νξ) 6= 0.

Proof. Since CHr
dec(Xη, 1;Q) consists of the image of the map

CHr−1(Xη;Q)⊗ CH1(Xη, 1;Q)→ CHr(Xη, 1;Q),

the hypotheses above imply that the image of the group of decomposables in
E1,2r−2

∞ (η) is Q(r− 1)⊗Γ
(
H1(η,R0ρ∗Q(1))

)
and this map is surjective (here

we only consider the map from CHr−1(Xη;Q) to Gr0
F and from CH1(Xη, 1;Q)

to Gr1
F since maps to other pieces of the filtration don’t really go to E1,2r−2

∞ (η)
as we showed in the proof of Proposition (8.7) above). Therefore, if we work
with CHr(Xη, 1;Q) modulo the decomposables CHr

dec(Xη, 1;Q), its image in
E1,2r−2

∞ (η) (modulo the image of the decomposables) can be made to lie in

Γ0. Since CHr
dec(Xη, 1;Q) ⊆ N1CHr(Xη, 1;Q), then this also shows that

the image of CHr(Xη, 1;Q) modulo N1CHr(Xη, 1;Q) lies in Γ0. Because
F 2CHr(Xη, 1;Q) ⊆ N1CHr(Xη, 1;Q) and ξ 6∈ N1CHr(Xη, 1;Q), the image
of the cycle ξ ∈ CHr(Xη, 1;Q) in E1,2r−2

∞ (η) is not zero. Thus we have two
possibilities: [ξ]1 6= 0 or [ξ]1 = 0. If [ξ]1 6= 0 (modulo the image of N1) then
π ◦ δ(νξ) 6= 0. If [ξ]1 = 0, then ξ maps to an element of

E1,2r−2
∞ (η) = Ext1

MHS(Q(0), H0(η,R2r−2ρ∗Q(r)))
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Also,
Ext1

MHS(Q(0), H0(η,R2r−2ρ∗Q(r))) ' C/Q
because H0(η,R2r−2ρ∗Q(r)) ' Q. However, that the map

CH1(Xη, 1;Q)→ Γ(H1(η,R0ρ∗Q(1)))

is surjective (with kernel in C/Q, see [16]) implies that any element in
J(H0(η,R0ρ∗Q(1))), which is the kernel of the map

E1,0
∞ → Γ(H1(η,R0ρ∗Q(1))),

comes from a cycle in CH1(Xη, 1;Q). We also have

J(H0(η,R0ρ∗Q(1))) ' C/Q.

Therefore any element in E1,2r−2
∞ (η) comes from a decomposable cycle, so [ξ]1

cannot be zero when ξ is in CHr(Xη, 1;Q)/N1CHr(Xη, 1;Q).

Regarding the inclusion F 2CHr(Xη, 1;Q) ⊆ N1CHr(Xη, 1;Q) required for
Proposition (8.9), we have the following property of the filtration F • on
higher Chow groups which relates F 2 with the higher Abel-Jacobi map AJ :

Proposition 8.10. Let X be a smooth complex projective variety.

F 2 ⊆ kerAJ : CHr
hom(X,m;Q)→ J(H2r−m−1(X,Q(r))).

Proof. By Theorem (8.6), F 2 = Λ2, where Λ• is the filtration defined in (8.5).
Then it is clear by the definition of arithmetic normal functions (8.1) that
F 2 ⊂ kerAJ .

Remark. An alternative proof can be given without reference to the theory
of arithmetic normal functions. Indeed, consider X as defined over a field K,
XK ' Xη, η ∈ S the generic point and ρ : X → S. There is an injective map

Gr1
FCHr(XU ,m;Q) ↪→ Ext1

MHM(U)(QU(0), R2r−m−1ρ∗QXU (r))

for U ⊂ S. Since MHM(Spec(C)) is isomorphic to the category of graded
polarizable mixed Hodge structures, we can use the inclusion of the generic
point to get a functor from MHM(U) to MHS such that QU(0) maps to Q(0)
and R2r−m−1ρ∗QXU (r) to H2r−m−1(Xη,Q(r)). Thus we have a map

Ext1
MHM(U)(QU(0), R2r−m−1ρ∗QXU (r))→ Ext1(Q(0), H2r−m−1(Xη,Q(r))).

Now it is clear that an element in F 2 map to zero under AJ .
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Then we use the last proposition with the next result to get the last condition
required for (8.9). Let X be a complex smooth projective variety. Consider
the map

lim cr,m : lim CHr(U,m;Q)→ lim Γ(H2r−m(U,Q(r))),

where the limits are taken over open subsets of X.

Proposition 8.11 ([16], Cor. 6.9). Assume the Hodge conjecture and let
r ≥ m. Then

lim Γ(H2r−m(U,Q(r)))

im(lim cr,m)
= 0 implies kerAJ ⊂ N1CHr(X,m− 1;Q).

Summarizing:

Theorem 8.12. Let XK = Xη and X/C = XK ×K C. Assume that
2r − m − 1 ≤ dimXK . Suppose Γ(H0(η,R2`ρ∗Q)) ' Q for 0 < ` < r,
H0(η,R2r−2ρ∗Q(r)) ' Q and that F 2CHr(Xη, 1;Q) ⊆ N1CHr(Xη, 1;Q).
Then

(i) ξ ∈ Ξ(r,m;Q)(XK)⇒ π([ξ]) = π ◦ δ(νξ) = 0.

(ii) 0 6= ξ ∈ CHr(XK , 1;Q)/N1CHr(XK , 1;Q)⇒ π([ξ]) = π ◦ δ(νξ) 6= 0.

In particular, when r = 2 and m = 1:

Corollary 8.13. Let XK = Xη, with dimXK ≥ 2. Suppose that
H2(X;Q)π1(S) ' Q. Also assume that F 2CH2(Xη, 1;Q) ⊆ CH2

dec(Xη, 1;Q).
Then

0 6= ξ ∈ CH2
ind(XK , 1;Q)⇔ π([ξ]) = π ◦ δ(νξ) 6= 0.

8.2 Griffiths infinitesimal invariant and nor-

mal functions

This section, which is also discussed in the work of [13], is included here for
completeness. Let’s take a complex smooth projective variety X, defined
over a finitely generated extension field K of Q̄, with Q̄-spread given by a
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smooth projective morphism ρ : X → S of smooth projective varieties over
Q̄ such that X = Xη × C, where η ∈ S is the generic point and XK = Xη is
the fibre by ρ.

We have the topological invariant δ(νξ) ∈ E1,2r−m−1

∞ (η) defined for a cycle

ξ ∈ F 1CHr(Xη,m;Q). Take U ⊂ S affine open. Since η is obtained after
taking a limit we focus our attention in the invariants over XU = ρ−1(U) .
We have a map

E1,2r−m−1

∞ ↪→ ∇Jr,m,1(XU/U)

where
E1,2r−m−1

∞ = Γ(H1(U,R2r−m−1ρ∗Q(r))).

Moreover, by considering Γ(H1(U,R2r−m−1
prim ρ∗Q(r))) using the decomposition

E1,2r−m−1

∞ (η) =
⊕

2q≤2r−m−1

Γ(Hj(η, LqR2r−m−1−2q
prim ρ∗Q(r))).

we get a map
Γ(H1(U,R2r−m−1

prim ρ∗Q(r))) ↪→ ∇ΓJ

where ∇ΓJ is the reduced invariant

∇ΓJ :=
ker∇ : H0(U,Ω1

U ⊗ F r−1R
2r−m−1
prim ρ∗C)→ H0(U,Ω2

U ⊗ F r−2R
2r−m−1
prim ρ∗C)

∇(H0(U,OU ⊗ F rR2r−m−1
prim ρ∗C))

Associated to any normal function we have the Griffiths infinitesimal invari-
ant (introduced in [23], see also [21], [12]). We can define a reduced Griffiths
infinitesimal invariant of the normal function νξ denoted by δG(νξ) and lying
in Γ∇J , where Γ∇J := H0(U,∇J) and

∇J :=
ker∇ : Ω1

U ⊗ F r−1R2r−m−1
prim ρ∗C→ Ω2

U ⊗ F r−2R2r−m−1
prim ρ∗C

∇(OU ⊗ F rR2r−m−1
prim ρ∗C)

.

There is a natural map ∇ΓJ → Γ∇J and we want to prove ∇ΓJ ' Γ∇J .
We need the following:

Assumption 8.14. For a fixed choice of r and m:

R2r−m−1
prim ρ∗C ∩

(
OU ⊗ F rR2r−m−1

prim ρ∗C
)

= 0.
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Since the kernel of

OU ⊗ F rR2r−m−1
prim ρ∗C→ Ω1

U ⊗ F r−1R2r−m−1
prim ρ∗C

is precisely
R2r−m−1

prim ρ∗C ∩
(
OU ⊗ F rR2r−m−1

prim ρ∗C
)
,

we get a short exact sequence

0→ OU ⊗ F rR2r−m−1
prim ρ∗C→ (Ω1

U ⊗ F r−1R2r−m−1
prim ρ∗C)ker∇ → ∇J → 0.

If we apply the global sections functor we get a short exact sequence again
because the functor is right exact as U is affine; it is always left exact.

Proposition 8.15. Under Assumption (8.14) ∇ΓJ ' Γ∇J .

The equivalence of these invariants (defined in a slightly different way) ap-
pears in [13]. This is relevant because a normal function with nontrivial Grif-
fiths invariant gives us a nontrivial Mumford-Griffiths invariant. For instance,
in [40] we can find an example of a normal function with nonzero Griffiths
invariant. Of course any cycle in GrjFCHr(X,m;Q) inducing a nontrivial
class in Ej,2r−m−j

∞ gives rise to a nontrivial Mumford-Griffiths invariant.

8.3 A Griffiths type theorem on normal func-

tions

Let Z ⊂ P4 be a smooth threefold of degree ≥ 4. Suppose `1, `2 are two
distinct lines in Z. We can choose a P3 containing both lines, more precisely :
P3 will contain the span of `1, `2, with equality if `1∩`2 = ∅. Let X0 := P3∩Z
and assume it is smooth. Even though a general algebraic surface in P3 of
degree n ≥ 4 contains no lines, we can still find examples of smooth surfaces
containing lines, hence the situation described with X0 smooth occurs, such
as when Z, `1, `2 are very general. Indeed, let f : Z → C be the family
of Calabi-Yau threefolds whose fibre Zt over t ∈ C is given by V (Ft) ⊂ P4

where

Ft(z0, z1, z2, z3, z4) = z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5tz0z1z2z3z4.

This family is known as the Dwork pencil of quintics. Let H ' P3 be the
symmetric hyperplane in P4 given by H := V (z0 + z1 + z2 + z3 + z4). Set
Yt := Zt ∩H and consider the pencil of surfaces {Yt}.
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Theorem 8.16 (J. Xie). The base locus of the pencil {Yt} contains 15 lines.

A proof of this fact can be found in [48]. A line in Yt outside the base locus
is called an additional line. J. Xie also shows:

Theorem 8.17 (J. Xie). Let Et be the set of additional lines on the non
singular surface Yt. Then Et 6= ∅ if and only if t = 0, 2 or 2τ , where τ is a root
of τ 4 + τ + 1. The additional lines are |E0| = 20, |E2| = 40 and |E2τ | = 60.
Furthermore, none of the surfaces Y0,Y2 and Y2τ is isomorphic to the Fermat
quintic surface.

Thus, the total lines in the surfaces Y0,Y2 and Y2τ are 35, 55 and 75 respec-
tively. It is well known that the Fermat quintic surface has 75 lines. However
it is not isomorphic to Y2τ .

Denote by [`1], [`2] the fundamental classes of the lines `1, `2 in H2(X0,Q(1))
respectively.

Lemma 8.18. [`1], [`2] are independent in H2(X0,Q(1)).

Proof. Since `1 and `2 are two distinct lines then either `1 ∩ `2 = ∅ or 1. It
follows that 〈`1, `2〉X0 ≥ 0. Let us assume that `1 ∼hom `2 on X0 and put
[`] = [`1] = [`2], where ` ' P1. Then 〈`, `〉X0 ≥ 0 and by the adjunction
formula:

O`(−2) = OP1(−2) = ΩP1 = Ω` = O`(`)⊗ Ω2
X0

= O`(`)⊗OX0(d− 3).

This cannot happen if d ≥ 3, and we are assuming d ≥ 4, otherwise −2 ≥
0.

Consider a pencil {Xt}t∈P1 of hyperplane sections of Z containing X0 and a
very general X1 as members. Further, let X be the blowup of Z along the
base locus of the pencil. Then for very general t ∈ P1, Pic(Xt)⊗Q ' Q. If
`1 ∼rat `2 on X we can find ξ ∈ CH2(X \X0, 1;Q) such that div(ξ) = `1− `2.
This follows from the description, for any complex smooth projective variety
X, of CHr(X, 1) as the homology of the middle term in the complex⊕

cdXY=r−2

K2(C(Y ))
T−→

⊕
cdXY=r−1

C(Y )×
div−→ zr(X),
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where T is the Tame symbol, div is the divisor map and zr(X) is the free
abelian group generated by subvarieties of codimension r in X. Moreover,
K0(C(Y )) ' Z, K1(C(Y )) = C(Y )× and K2(C(Y )) is generated by symbols.
Thus

CHr(X, 1) =
{
∑

j(fj, Zj) : cdXZj = r − 1, fj ∈ C(Zj)
×,
∑

j div(fj) = 0}
Image (Tame symbol)

.

See [36] or [40] for details. Since F 0CH2(X \X0, 1;Q) = F 1CH2(X \X0, 1;Q)
we have a map

Gr1
FCH2(X \X0, 1;Q)→ Γ(H1(P1 \ 0, R2ρ∗Q(2))).

where ρ : X → P1 is the natural projection. Moreover, we have a decompo-
sition

Γ(H1(P1\0, R2ρ∗Q(2))) = Γ(H1(P1\0, R2
primρ∗Q(2)))

⊕
Γ(H1(P1\0,Q(2))).

Then Γ(H1(P1 \0,Q(2))) = 0, since P1 \0 ' C and H1(C,Q) = 0. If we take
the limit over U ⊂ P1 \ 0 open affine we obtain the map

Gr1
FCH2(Xη, 1;Q)→ Γ(H1(η,R2ρ∗Q(2))),

where ξ maps to Γ0 (see the notation in Section (8.1)). This image is not
trivial; moreover H2

alg(Xη;Q)π1(U,t) ' Q if d ≥ 4. Then we get an indecom-

posable in CH2(Xη, 1;Q) by Proposition (8.7) (or Corollary (8.13)). We also
get a regulator indecomposable by Proposition (8.8). That this image is not
trivial goes as follows. We have a localization sequence

. . .→ CH2(X , 1;Q)→ CH2(X \X0, 1;Q)→ CH1(X0;Q)→ . . .

and corresponding diagram

CH2(X , 1;Q) //

��

CH2(X \X0, 1;Q) //

��

CH1(X0;Q)

��
Γ(H3(X ,Q(2))) // Γ(H3(X \X0,Q(2))) // Γ(H2(X0,Q(1)))

For X is projective, Γ(H3(X ,Q(2))) = 0 and the map Γ(H3(X \X0,Q(2)))→
Γ(H2(X0,Q(1))) is injective. The morphism CH2(X\X0, 1;Q)→ CH1(X0;Q)
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is the divisor map and the image of ξ is precisely `1 − `2. But [`1]− [`2] 6= 0
in H2(X0,Q(1)) and consequently ξ maps to a nonzero element in the group
Γ(H3(X \X0,Q(2))). Because of the (noncanonical) decomposition

H3(X \X0,Q(2)) '
⊕
p+q=3

Hp(P1 \ 0, Rqρ∗Q(2))

there is an injection

Γ(H1(P1 \ 0, R2ρ∗Q(2))) ↪→ Γ(H3(X \X0,Q(2))).

Moreover, Hp(P1 \ 0, Rqρ∗Q(2)) = 0 for p > 1 because P1 \ 0 ' C and
H3(X \X0,Q(2)) is isomorphic to

H0(P1 \ 0, R3ρ∗Q(2))⊕H1(P1 \ 0, R2ρ∗Q(2)).

This shows that the image of

Gr1
FCH2(X \X0, 1;Q)→ Γ(H1(P1 \ 0, R2ρ∗Q(2))).

is not trivial and we are done.

Theorem 8.19. Let Z ⊂ P4 be a smooth threefold of degree ≥ 4. Suppose
`1, `2 are two distinct lines in Z and assume given a smooth X0 = P3 ∩ Z
where P3 contains both lines (such as in the case where Z, `1, `2 are very
general). Let X be the blow-up of Z along a very general hyperplane section
of X0, and assume that `1 ∼rat `2 on X . Then there exists a hyperplane X
in Z such that CH2(X, 1;Q) contains a (regulator) indecomposable cycle.

So in summary, `1 ∼rat `2 on X leads to a normal function νξ with nontrivial
topological invariant. This is quite possible in the case d := degZ = 4, but
for d ≥ 5, and general enough pencil {Xt}t∈P1 containing X0 and a very
general X1, this cannot happen as the regulator is known to be trivial on
CH2(X1, 1) (Müller-Stach [40], Chen and Lewis [14]). Thus for example in
the case d = 5, `1 6∼rat `2. This can be thought of as a weak version of
Griffiths famous theorem on normal functions and the nontriviality of the
Griffihs group on such X.
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8.4 New directions

The ideas presented in this thesis were first motivated by the results of J.
Lewis and S. Saito in [38]. Working with a filtration on Chow groups in the
case m = 0, they were able to determine conditions for which the kernel and
image of the map

φr,j : GrjFCHr(X;Q)→ ∇Jr,j(X/C),

are “uncountably” large. Of particular interest to us are the invariants
Hr−j,r

Q̄ (X) defined for any complex smooth projective variety X. Assum-

ing the components of the diagonal are algebraic and j ≥ 2, Hr−j,r
Q̄ (X) 6= 0

implies that there are an uncountable number of classes in kerφr,j. (Theorem
7.2 in [38].) For example, for Xo an abelian variety over Q̄ of dimension d
the invariant Hr−j,r

Q̄ (X) is not trivial when 2 ≤ j ≤ r ≤ d and Xo = X×Q̄C.
This is the kind of result we would like to reproduce in the case m ≥ 1. Our
future work would involve to define new invariants that give us the same type
of conclusion.

In the use of normal functions to detect indecomposables, we would like
to get an analogue to Proposition (8.7) with Ξ(r,m;Q)(X/C) replaced by
N1CHr(X/C, 1;Q). This will certainly require new methods different to the
ones used here. Also, we proved results for the first normal function only, i.e.
we set j = 1 in Definition (8.1). One can ask, what is the relation between
indecomposables and higher normal functions, i.e. for j > 1? A similar result
to Theorem (8.12) is what would be interesting to find. In the last section,
we could determine conditions to find indecomposables in certain surfaces
arising from smooth threefolds of degree ≥ 4 in P4. It would be interesting
to find indecomposable higher Chow cycles when m ≥ 2 using this technique.
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Geómetrie Algébrique d’Angers. Sijthoff and Nordhoff, Alphen an den
Rijn, the Netherland, 1979.

[12] J. Carlson, S. Müller-Stach, and C. Peters. Period mappings and Period
Domains, volume 85 of Cambridge studies in advanced mathematics.
Cambridge University Press, 2003.

[13] X. Chen, C. Doran, M. Kerr, and James D. Lewis. Picard-Fuchs ideals
and normal functions. Preprint, 2011.

[14] X. Chen and James D. Lewis. Noether-Lefschetz for K1 of a certain
class of surfaces. Bolet́ın de la Sociedad Matemática Mexicana, 10(1),
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