
Robust Active Learning 

by 

Rui Nie 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science 

in 

Statistical Machine Learning 

Department of Mathematical and Statistical Sciences 
University of Alberta 

© Rui Nie, 2015 



Abstract

This dissertation first introduces the concepts of robust active learning

(also called optimal experimental design in statistics), and the possible ad-

vantages of it over the traditional passive learning method. Then a general

regression problem with possibly misspecified models is presented, and divided

into three specific problems due to different choices of loss functions and opti-

mizing methods.

After that, the three problems are all solved with a minimax approach but

in different ways to get the optimal design densities for the active learning

method.

Finally, simulations are used to compare active learning with passive learn-

ing results on specific examples, and the experiment results prove that active

learning is more robust and advantageous than passive learning in these ex-

amples.
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Chapter 1

Introduction

1.1 Motivation for Active Learning

Consider this problem: researchers want to establish a program to automati-

cally detect cancer of an organ from a patient’s X-ray picture of that organ.

However, although X-ray pictures of the organ are plentiful and easy to get,

whether a patient has the cancer and how bad the cancer is have to be verified

by experts or even determined over time. Therefore, when researchers collect

data to optimize the program, they can find inputs (X-ray pictures) of the pro-

gram easily and cheaply, but obtaining the output of the program (diagnosis

of the cancer) is comparatively hard, expensive and time-consuming.

This kind of problem is very common in practice. To save cost and effort,

researchers will choose a sample from the whole dataset, and only look for

the outputs for this sample. The criterion for choosing this sample is to get

the most effective sample, the one that will generate the largest prediction

accuracy with the smallest sample size.
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1.2 Active Learning and Experimental Design

In the machine learning field, active learning is defined in contrast to passive

learning (Cohn, Ghahramani, and Jordan, 1996). In passive learning, the

researcher is treated as a passive recipient of the data to be used for optimizing

the program; usually the computer will randomly select a sample from the

whole dataset to be the input data; but usually this random sample is not

the most effective one. However, in active learning, the researchers can decide

which sample to use by themselves; they either rely on some experts’ knowledge

or construct some models to find the most effective sample. The advantage of

active learning over passive learning has been established by many authors in

various tasks, such as text classification (Tong and Koller, 2002), information

extraction (Scheffer, Decomain, and Wrobel, 2001; Olsson, 2009) and spoken

language understanding (Tur, Hakkani-Tür, and Schapire, 2005).

The aim of active learning is to find the best locations of the unlabeled

sample points, so that the parameters estimated by the sample can be the most

accurate. Many strategies for determining the sample locations are proposed,

a review of the general frameworks of those strategies can be seen in Settles

(2009). In classification field, for instance, uncertainty sampling method is

widely used, where researchers choose sample points about which they are

least certain how to label, because those points are the most informative ones.

In regression field, however, the “variance reduction” method (Settles, 2009,

p. 21) is widely used. It is called optimal experimental design in statistics

field (Kiefer, 1959; Fedorov, 1972; Pukelsheim, 1993).

Traditional experimental design methods aim to find sample points that

minimize the variability of the estimated parameters or the predicted output,
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so that these sample points generate the most accurate estimates. There is

no unique way to measure the variability of the estimates, so a number of

criteria have been proposed. Among them we will talk about the I-optimality

and G-optimality in this dissertation. The I-optimality aims to minimize the

integration of the variance of the predicted output, and the G-optimality aims

to minimize the maximum variance of the predicted output.

However, the traditional experimental design methods only make sense

when the model can be assumed to be true, or when the bias caused by the

difference between the true model and the misspecified model is small enough

to be ignored. Otherwise, we also have to consider the bias part. Therefore,

in this dissertation, we define the loss function to be the Integrated Mean

Squared Error (IMSE) and the Maximum Mean Squared Error (Max MSE)

of the predicted output; they correspond to the traditional I-optimality and

G-optimality problem, but use the mean squared error, which contains both

variance and bias, to replace variance in the traditional theory.

1.3 Our Contribution

Many literatures have considered the misspecification of the model and im-

prove on the traditional optimal design theory (Kanamori and Shimodaira,

2003; Sugiyama, 2006). The research direction of this thesis is most close to

that of Sugiyama (2006), so we make comparisons with that paper. Later in

Chapter 2, we can see that the model error term ψ (1.1) causes the occurrence

of bn;ψ,w, thus causing the bias (2.1). Then when asymptotics of MSE of θ̂

are taken, Sψ,w,p (2.4) also occurs, which is a major component in the squared

bias part of the MSE. Sugiyama claimed the error term ψ to be “inaccessible”
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(Sugiyama, 2006, p. 151), thus, when he solved for the best design density,

he ignored the bias part Sψ,p in (2.6) by bounding τn = o(1) in (1.3). We

will improve on that by enlarging the bound and keeping both the bias and

variance, and solve the “inaccessible” problem by a minimax method - mini-

mizing the maximum (over ψ) MSE. That will be the first time to explicitly

take the model misspecification into account in the process of solving for the

best design density, and that is the major contribution of this dissertation.

1.4 Robust Active Learning

The aim of robust active learning is to get an active learning design that is

least sensitive to small errors of the model. In practice, the analytic form

of the true model is usually unknown, the estimated model more or less has

some deviation from the true model, thus a robust design will be useful in such

situations. In this thesis we will analyze models that have small deviations

from the true model. In order to get a robust design, we will use a minimax

approach to optimize the design, that is to first maximize the loss function over

the model error, then find a probability design that minimizes the maximized

loss.

Wen, Yu, and Greiner (2014) also consider the minimax estimation prob-

lems in active learning with misspecified models, but with the loss function

maximized over the “reweighting” functions in weighted likelihood estimates

which are then optimized, and minimized by the unknown parameters of the

model. They assume that the test distribution is uncertain, and learn when

the “reweighting” is needed and provide a “reweighting” algorithm. In this

thesis, we assume that the test distribution is known, and the “reweighting”
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function (2.5) is chosen in Chapter 2, the focus is to learn the best training

distribution. Our work can be preceded by the studies of Wen et al. (2014).

In our research, the costs of obtaining every training example is considered

to be the same, and the sample size is fixed. For research of active learning

problem with different costs and (unknown) discriminative power for different

learning examples and under budgetary constraints, see Kapoor and Greiner

(2005).

1.5 Problem Formulation

This paper looks into the robust active learning problem in regression scenario.

Suppose a design space χ; in the previous cancer diagnosis example, χ can be

seen as the set that contains all pixel vectors of the X-ray pictures. Suppose

x = (x1, x2, ..., xs) is one element in χ; it could be the pixel vector of one

of the X-ray pictures in the cancer diagnosis example. Also suppose x has a

density of q(x) in χ. Let y denote the corresponding output of x; it could

be the numeric diagnosis result defined by researchers in the cancer diagnosis

example. Suppose the regression model is

y = E(y|x) + ε,

E(y|x) = f ′(x)θ + ψ(x). (1.1)

In the model, ε is one of the i.i.d. random errors with mean zero and unknown

variance σ2
ε ; f(x) is an r-dimensional column vector of regressors, each element

of which is a function of several functionally independent variables x; θ is an

r-dimensional column vector of unknown parameters; and ψ(x) is the error
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term that indicates the difference between the true model E(y|x) and the

estimated model f ′(x)θ. The prime in the function indicates transposition.

We assume that the analytic form of E(y|x) is unknown, and the researcher

estimates E(y|x) with f ′(x)θ, thus leading to the existence of the error term

ψ(x).

To ensure the uniqueness of θ and ψ(x), define

θ = argmin
η

∫
χ

(E[y|x]− f ′(x)η)2q(x)dx,

ψ(x) = E[y|x]− f ′(x)θ.

The above two equations lead to the orthogonality requirement

∫
χ

f(x)ψ(x)q(x)dx = 0. (1.2)

We assume that the magnitude of the error term ψ(x) is bounded. Other-

wise, if the difference between true model and the estimated model is unlim-

ited, the estimated model would be meaningless. Therefore, assume that

∫
χ

ψ2(x)q(x)dx ≤ τ 2n, (1.3)

for a given constant τn. This τn may or may not depend on n.

The process of optimizing the regression model is:

(1) Take a sample of size n from χ with a design density p(x). Suppose

the sample is {xi}i=1,2,...,n.

(2) Find out the corresponding output {yi}i=1,2,...,n for the sample input

{xi}i=1,2,...,n.
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(3) Optimize the parameter vector θ in the regression model using

the sample {xi, yi}i=1,2,...,n thus the estimated model that has the greatest

prediction accuracy.

In passive learning, the sample is a chosen uniformly at random, so the den-

sity p(x) = q(x); while in active learning, p(x) is designed by the researcher.

The aim of active learning in this problem setting is, with a fixed sample

size, to find the best sample distribution p(x) that yields the regression model

with the greatest prediction accuracy.

In chapters 2, 3 and 4, we discuss three ways to find the best density

p(x), all with a minimax approach. In Chapter 2, we use a Weighted Least

Squares (WLS) method to estimate parameter θ. We define the loss function

to be the Integrated Mean Squared Error (IMSE) of the fitted value of ŷ;

first maximize the loss function over the error term ψ(x) and then minimize

the maximized loss function over density p(x), thus to find the best density

p(x). In Chapter 3, we also use the WLS method to estimate θ, but we define

another loss function – Maximum Mean Squared Error (Max MSE) of ŷ, and

use a minimax approach to find the best p(x). In Chapter 4, we use the

traditional Ordinary Least Squares (OLS) method to estimate θ, and again

use IMSE as the loss function, then find p(x) by a minimax method.
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Chapter 2

Active Learning with WLS

Estimation and Loss Function

IMSE

2.1 MSE of the WLS Estimate

2.1.1 MSE of the Sample WLS Estimate

In this chapter the unknown parameter vector θ is estimated by the Weighted

Least Squares (WLS) estimate θ̂WLS. This is motivated by Sugiyama (2006),

where θ̂WLS with weight of the sample points – w0(x) = q(x)/p(x), is claimed

to be an asymptotically unbiased estimate. Later in Section 2.2 we will prove

the validity of this claim. Now we first generate the θ̂WLS and its Mean

Squared Error (MSE) with a general weight w.

Suppose that x = (x1, x2, ..., xr) is a design point that is randomly sampled

from χ with a design density p(x), and there are n design points. Define W to
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be a n × n diagonal matrix whose diagonal elements are the positive weights

at each of the design points: w(x1), w(x2), ..., w(xn). Define

X = [f(x1),f(x2), ...f(xn)]′,

Y = [y1, y2, ..., yn]′,

Mn;w =
1

n

n∑
i=1

f(xi)w(xi)f
′(xi),

Dn;w =
1

n

n∑
i=1

f(xi)w
2(xi)f

′(xi),

bn;ψ,w =
1

n

n∑
i=1

f(xi)w(xi)ψ(xi).

Obviously Mn;w = 1
n
XTWX, and is semi-positive definite, since

c′Mn;wc =
1

n

n∑
i=1

(c′f(xi))
2w(xi) ≥ 0,

for any r-dimensional nonzero column vector c. Assume that Mn;w is invert-

ible, which is equivalent to the assumption that X has full rank. Then the

weighted least squares estimate is

θ̂WLS = (XTWX)−1XTWY

= M−1
n;w

1

n

n∑
i=1

f(xi)w(xi)yi

= θ +M−1
n;wbn;ψ,w +M−1

n;w ·
1

n

n∑
i=1

f(xi)w(xi)εi.

Because the random errors {εi}i=1,2,...,n are i.i.d. variables with mean zero

9



and variance σ2
ε , the expectation of θ̂WLS over random error is

Eε[θ̂WLS] = θ +M−1
n;wbn;ψ,w; (2.1)

the covariance matrix of θ̂WLS is

COVε[θ̂WLS] = (XTWX)−1XTWWX(XTWX)−1σ2
ε

=
σ2
ε

n
M−1

n;wDn;wM
−1
n;w.

Then the MSE of θ̂WLS conditional on the sample is

MSEε[θ̂WLS] = COVε[θ̂WLS] + (Eε[θ̂WLS]− θ)(Eε[θ̂WLS]− θ)′

= M−1
n;w

{
σ2
ε

n
Dn;w + bn;ψ,wb

′
n;ψ,w

}
M−1

n;w.
(2.2)

2.1.2 Asymptotics of the MSE

First we introduce the asymptotics of the matrices that appear in the function

of the MSE. Define

Mw,p =

∫
χ

f(x)w(x)f ′(x)p(x)dx,

Dw,p =

∫
χ

f(x)w2(x)f ′(x)p(x)dx,

bψ,w,p =

∫
χ

f(x)w(x)ψ(x)p(x)dx,

Sψ,w,p = COVx
[
f(x)w(x)ψ(x)

]
=

∫
χ

(f(x)w(x)ψ(x)− bψ,w,p)(f(x)w(x)ψ(x)− bψ,w,p)′p(x)dx

=

∫
χ

f(x)w2(x)ψ2(x)f ′(x)p(x)dx− bψ,w,pb′ψ,w,p.

10



Lemma 2.1: Mn;w = Mw,p+Op

(
1√
n

)
; Dn;w = Dw,p+Op

(
1√
n

)
; bn;ψ,wb

′
n;ψ,w =

bψ,w,pb
′
ψ,w,p + 1

n
Sψ,w,p + op

(
1
n

)
.

Proof: The j, kth element in Mn;w is

{
Mn;w

}
j,k

=
1

n

n∑
i=1

fj(xi)w(xi)fk(xi)

The expectation of
{
Mn;w

}
j,k

is

Ex

[{
Mn;w

}
j,k

]
=

∫
χ

fj(x)w(x)fk(x)p(x)dx

=
{
Mw,p

}
j,k

The variance of
{
Mn;w

}
j, k is

V ARx

[{
Mn;w

}
j,k

]
=

1

n
V arx

[
fj(x)w(x)fk(x)

]
By Theorem 14.4-1 in (Bishop, Fienberg, and Holland, 2007), we have

{
Mn;w

}
j,k
− Ex

[{
Mn;w

}
j,k

]
= Op

(√
V arx

[{
Mn;w

}
j,k

])
,

i.e. {
Mn;w

}
j,k
−
{
Mw,p

}
j,k

= Op

(
1√
n

)
,

meaning the set of values
√
n
{{
Mn;w

}
j,k
−
{
Mw,p

}
j,k

}
are stochastically

bounded. If the above equation applies to every entry of a matrix, then it

applies to the whole matrix. Therefore,

Mn;w −Mw,p = Op

(
1√
n

)
.
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Similarly, we can also prove

Dn;w −Dw,p = Op

(
1√
n

)
.

It is obvious that

Ex
[
bn;ψ,w

]
= bψ,w,p,

COVx
[
bn;ψ,w

]
=

1

n
Sψ,w,p.

By the Weak Law of Large Numbers, we have the following convergence in

probability:

bn;ψ,w
P→ bψ,w,p, (2.3)

n
(

(bn;ψ,w − bψ,w,p)(bn;ψ,w − bψ,w,p)′ −
1

n
Sψ,w,p

)
P→ 0.

This is equivalent to

bn;ψ,wb
′
n;ψ,w = bψ,w,pb

′
ψ,w,p +

1

n
Sψ,w,p + op

(
1

n

)
.

Thus Lemma 2.1 is proved.

With Lemma 2.1 , we conclude that

MSEε[θ̂WLS] =
σ2
ε

n

[
Mw,p +Op

(
1√
n

)]−1[
Dw,p +Op

(
1√
n

)][
Mw,p +Op

(
1√
n

)]−1
+

[
Mw,p +Op

(
1√
n

)]−1[
bψ,w,pb

′
ψ,w,p +

1

n
Sψ,w,p + op

(
1

n

)][
Mw,p +Op

(
1√
n

)]−1
=
σ2
ε

n
M−1

w,pDw,pM
−1
w,p +M−1

w,p

(
bψ,w,pb

′
ψ,w,p +

1

n
Sψ,w,p

)
M−1

w,p +Op

(
n−3/2

)
.

(2.4)
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2.2 Weight w0 and Loss Function IMSE

Assume that q(x) 6= 0, p(x) 6= 0. Now we choose weight to be

w0(x) =
q(x)

p(x)
, (2.5)

because with w0(x),

bψ,w0,p =

∫
χ

f(x)w0(x)ψ(x)p(x)dx

=

∫
χ

f(x)ψ(x)q(x)dx

= 0

by (1.2); so that by (2.3) bn;ψ,w0 is asymptotically zero. Then Eε[θ̂WLS] = θ

asymptotically by (2.1), thus this weight w0 will make θWLS asymptotically

unbiased.

Then we have

Mw0,p =
∫
χ
f(x)f ′(x)q(x)dx

def
= U ,

Dw0,p =
∫
χ
f(x) q

2(x)
p(x)

f ′(x)dx
def
= T p,

Sψ,w0,p =
∫
χ
f(x) q

2(x)
p(x)

ψ2(x)f ′(x)dx
def
= Sψ,p.

We assume that if c′f(x) = 0 (a.e. x ∈ χ), then c = 0. With this

assumption, U is positive definite, since for any nonzero column vector c,
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c′Uc =
∫
χ
(c′f(x))2q(x)dx > 0. Then by (2.4)

MSEε

[
θ̂WLS

]
=
σ2
ε

n
U−1T pU

−1 +
1

n
U−1Sψ,pU

−1 +O(n−3/2)

=
1

n
U−1{σ2

εT p + Sψ,p}U−1 +O(n−3/2),

(2.6)

The MSE of the estimated ŷ is

MSEε(ŷ) = Eε

[{
f ′(x)θ̂WLS − E[y|x]

}2
]

= Eε

[{
f ′(x)(θ̂WLS − θ)− ψ(x)

}2
]

= f ′(x)MSEε

[
θ̂WLS

]
f(x) + ψ2(x).

(2.7)

The value of MSEε,z(ŷ) is dependent on the design points in the random

sample. We want to establish a stable loss function that is not affected by the

randomness of the sample, so we set the loss function to be the expectation

of MSEε(ŷ) integrated over points in design space χ, and call it Integrated

Mean Squared Error (IMSE).

IMSE =

∫
χ

MSEε(ŷ)q(x)dx

=

∫
χ

f ′(x)MSEε

[
θ̂WLS

]
f(x)q(x)dx+

∫
χ

ψ2(x)q(x)dx (2.8)

= tr
[
U
{
MSEε

[
θ̂WLS

]}]
+

∫
χ

ψ2(x)q(x)dx

=
1

n
tr
[
U−1{σ2

εT p + Sψ,p}
]

+

∫
χ

ψ2(x)q(x)dx+O(n−3/2)(2.9)

Since
∫
χ
ψ2(x)q(x)dx does not depend on the design, we concentrate on

optimizing the leading term in (2.9). In Section 3.2 of (Sugiyama, 2006), τn =

14



τ = o(1) is assumed, then T p = O(1) and Sψ,p = o(1), so that tr
[
U−1Sψ,p

]
is also ignored, and the problem becomes minimizing tr

[
U−1T p

]
only, which

is called variance-only approach. To extend and improve on the results by

(Sugiyama, 2006), we assume τn = τ = O(1) now, then the term tr[U−1Sψ,p]

remains.

To find the best p(x), we adopt a minimax approach – first find the maxi-

mum of the loss function over ψ(x), then find the p(x) that can minimize that

maximized loss. To be specific, the problem becomes:

min
p

max
ψ

tr
[
U−1{σ2

εT p + Sψ,p}
]
, (2.10)

with the maximization done subject to (1.2) and (1.3), and minimization sub-

ject to the requirement that p(x) be a probability density.

2.3 Maximization over ψ

First we deal with the maximization part in (2.10).

max
ψ

tr
[
U−1{σ2

εT p + Sψ,p}
]

= max
ψ

{
σ2
ε tr[U

−1T p] + tr[U−1Sψ,p]
}
.

Only the second part tr[U−1Sψ,p] contains ψ(x), so only this part needs to be

maximized. Now the maximization problem becomes

max
ψ

tr[U−1Sψ,p] = max
ψ

tr

[
U−1

∫
χ

f(x)
q2(x)

p(x)
ψ2(x)f ′(x)dx

]
= max

ψ

∫
χ

f ′(x)U−1f(x)
q(x)

p(x)
ψ2(x)q(x)dx.

(2.11)
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subject to (1.2) and (1.3).

Assume that ∫
χ

ψ2(x)q(x)dx = t2, (2.12)

then t2 ≤ τ 2 by (1.3). Define

h(x) = ψ2(x)q(x)/t2. (2.13)

By (2.12), h(x) is a density function. Then

tr[U−1Sψ,p] = t2
∫
χ

ap(x)h(x)dx

≤ t2 max
x

ap(x)

≤ τ 2 max
x

ap(x).

From above it can be seen that the maximum of tr[U−1Sψ,p] is reached on

condition that t = τ , so we let t2 = τ 2, and thus we have

∫
χ

ψ2(x)q(x)dx = τ 2. (2.14)

We use (2.14) to replace the constraint (1.3) in this maximization section.

Lemma 2.2: The equation
∫
χ
ap(x)h(x)dx = maxx ap(x), constraint (1.2)

and (2.14) can all be satisfied at the same time when h(x) = δ(x−x∗), where

δ(x) is a delta function, and x∗ = argmaxx ap(x).

Proof: For simplification, we only prove this in the one dimensional case,

and when χ is a continuous domain. To be specific, suppose that χ = [c, d] (c,
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d are constants, they can be either finite or infinite),

h(x) = δ(x− x∗) = lim
n−>∞

δn(x− x∗), (2.15)

where, according to (Arfken and Weber, 2011), the delta sequence can be de-

fined to be

δn(x− x∗) =


0, c < x < x∗ − 1

2n

n, x∗ − 1
2n
< x < x∗ + 1

2n

0, x∗ + 1
2n
< x < d

.

Then

∫
χ

ap(x)h(x)dx =

∫ d

c

ap(x)δ(x− x∗)dx

= lim
n−>∞

∫ d

c

ap(x)δn(x− x∗)dx

= max
x

ap(x).

The constraint (2.14) is satisfied by (2.15) and the fact that the delta function

is a density function. Constraint (1.2) is also satisfied, which is proved below.

∫
χ

f(x)ψ(x)q(x)dx =

∫
χ

f(x)
√
h(x)q(x)dx

=

∫
χ

f(x)
√
δ(x− x∗)q(x)dx

= lim
n−>∞

∫ d

c

f(x)
√
δn(x− x∗)q(x)dx

= lim
n−>∞

∫ x∗+ 1
2n

x∗− 1
2n

√
nf(x)

√
q(x)dx

= 0.
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Therefore, ∫
χ

ap(x)h(x)dx = max
x

ap(x),

when h(x) = δ(x− x∗). Thus Lemma 2.2 is proved.

With Lemma 2.2, we know

max
ψ

tr
[
U−1Sψ,p

]
= τ 2 max

x
ap(x).

Then we get

max
ψ

tr
[
U−1{σ2

εT p + Sψ,p}
]

= σ2
ε tr
[
U−1T p

]
+ max

ψ
tr
[
U−1Sψ,p

]
= σ2

ε tr
[
U−1T p

]
+ τ 2 max

x
ap(x)

= σ2
ε tr

{
U−1

∫
χ

f(x)
q2(x)

p(x)
f ′(x)dx

}
+ τ 2 max

x
ap(x)

= σ2
ε

∫
χ

ap(x)q(x)dx+ τ 2 max
x

ap(x)

= σ2
εEq
[
ap(x)

]
+ τ 2 max

x
ap(x),

where ap(x) = f ′(x)U−1f(x) q(x)
p(x)

. Therefore, we have the following theorem.

Theorem 2.1:

maxψ tr[U
−1{σ2

εT p + Sψ,p}]
σ2
ε + τ 2

= (1− ν)Eq
[
ap(x)

]
+ ν max

x
ap(x), (2.16)

where ν = τ 2/(σ2
ε+τ 2) ∈ [0, 1] may be chosen by the experimenter, representing

the relative concern for errors due to bias rather than to variance.

Now (2.16) needs to be minimized by density p(x).
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2.4 Minimization over p

In this section we will first work out a general solution solution to the mini-

mization problem, then use a straight line model as an example and work out

the exact solution of that example.

2.4.1 General Solution

For the purpose of illustration, before obtaining the general solution for 0 ≤

ν ≤ 1, we first do the minimization for special cases when ν = 0 and 1.

Minimization when ν = 0

When ν = 0, the minimization problem becomes

min
p
Eq[ap(x)] subject to

∫
χ

p(x)dx = 1. (2.17)

Lemma 2.3: The minimizer of (2.17) is

p(x) =

√
b(x)q(x)∫

χ

√
b(x)q(x)dx

, (2.18)

where

b(x) = ap(x)p(x) = f ′(x)U−1f(x)q(x).

The minimum value is (
∫
χ

√
b(x)q(x))2.

Proof: By Cauchy-Schwarz Inequality, we have

∫
χ

b(x)q(x)

p(x)
dx ·

∫
χ

p(x)dx ≥ (

∫
χ

√
b(x)q(x)dx)2. (2.19)
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Since
∫
χ
b(x)q(x)
p(x)

dx = Eq[ap(x)] and
∫
χ
p(x)dx = 1, (2.19) becomes

Eq[ap(x)] ≥ (

∫
χ

√
b(x)q(x)dx)2,

equality is reached if and only if b(x)q(x)
p(x)

= λp(x) (λ is a constant); then since

p(x) is a density, we get (2.18), and Lemma 2.3 is proved.

Notice that since ν = 0, only the first part in (2.16) remains, so the problem

becomes the same as the variance-only problem in Section 3.2 in (Sugiyama,

2006), and the results are the same, too.

Minimization when ν = 1

When ν = 1, the minimization problem becomes

min
p
{max

x
ap(x)} subject to

∫
χ

p(x)dx = 1. (2.20)

Lemma 2.4: The minimizer of (2.20) is

p(x) =
b(x)∫

χ
b(x)dx

. (2.21)

The minimum value is r, which is the dimension of the vector f(x).

Proof:

max
x

ap(x) ≥ Ep[ap(x)] =

∫
χ

b(x)

p(x)
p(x)dx =

∫
χ

b(x)dx.

When (2.21) holds,

ap(x) =
b(x)

p(x)
=

∫
χ

b(x)dx.
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Thus (2.21) is proved to be the minimizer. Then

min
p
{max

x
ap(x)} =

∫
χ

b(x)dx =

∫
χ

f ′(x)U−1f(x)q(x)dx

= tr

{∫
χ

f(x)f ′(x)q(x)dx ·U−1
}

= tr
[
UU−1

]
= trIr = r.

(2.22)

Therefore, Lemma 2.4 is proved.

Minimization when 0 ≤ ν ≤ 1

In this part we will obtain a general solution when 0 ≤ ν ≤ 1. Note that the

solutions in Section 2.4.1.1 and 2.4.1.2, when ν = 0 and ν = 1, are special

cases of the solution in this section.

It is convenient to first minimize (2.16) over ap(x) then recover p(x). To

simplify notation, define a(x) = ap(x) and then p(x) = b(x)/a(x).

We will minimize (2.16) in two steps: first fix maxxa(x) and minimize

Eq[a(x)], then minimize the whole thing over m.

Define

Am =

{
a(·) | max

x
a(x) = m and

∫
χ

b(x)

a(x)
dx = 1

}
.

First we need to find the minimizer of Eq[a(x)] in class Am.

Ignore the constraint maxx a(x) = m for the moment, first minimize

Eq[a(x)] subject to
∫
χ
b(x)
a(x)

dx = 1; the problem is equivalent to minimizing

∫
χ

[
a(x)q(x) + λ

b(x)

a(x)

]
dx, (2.23)
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where λ is a Lagrange multiplier.

To minimize (2.23), it is sufficient to minimize the integrand in (2.23). The

minimizer of the integrand is found to be
√
λ
√

b(x)
q(x)

(λ ≥ 0). If this minimizer is

to satisfy the constraint maxx a(x) = m, one choice is to truncate it whenever

it gets over m. (Here m has to be no greater than the maximum value of the

minimizer.)

Define

a (x) = cm

√
b(x)

q(x)
= cm

√
f(x)U−1f(x),

am(x) = min(a (x),m),

(2.24)

where cm is chosen so that

∫
χ

b(x)

am(x)
dx = 1; (2.25)

and where m ∈ [r,maxx a (x)] (by (2.22)). It is obvious that am(·) ∈ Am.

In the following, Lemma 2.5 proves that such a cm exists, so that such con-

struction method is valid; then Theorem 2.2 shows the general solution to the

minimization problem.

Lemma 2.5: There exists at least one cm ∈ (0,+∞) such that (2.25) is

satisfied.

Proof:

(1) Assume that

a (x) = c

√
b(x)

q(x)
= c

√
f(x)U−1f(x) (c > 0),

am(x) = min(a (x),m).
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This c here is not relevant to m. We make the assumption in Section 2.2

that if c′f(x) = 0 (a.e. x ∈ χ), then c = 0, and thus U is positive definite.

Therefore, f(x) 6= 0, and f(x)U−1f(x) > 0. From the definition of am(x)

we know that

b(x)

am(x)
= max

(
f ′(x)U−1f(x)

m
,

√
f ′(x)U−1f(x)

c

)
q(x).

Define

S(c) =
{
x ∈ χ |

√
f ′(x)U−1f(x) < m/c

}
,

then on S(c) we have b(x)
am(x)

=

√
f ′(x)U−1f(x)

c
q(x). Therefore,

∫
χ

b(x)

am(x)
dx ≥

∫
S(c)

b(x)

am(x)
dx =

1

c

∫
S(c)

√
f ′(x)U−1f(x)q(x)dx.

When c→ 0+, S(c) will become larger and larger and approach χ, so∫
S(c)

√
f ′(x)U−1f(x)q(x)dx will also increase and approach

Ex

[√
f ′(x)U−1f(x)

]
> 0. Also when c→ 0+, 1/c→ +∞, thus

1

c

∫
S(c)

√
f ′(x)U−1f(x)q(x)dx→ +∞,

and so ∫
χ

b(x)

am(x)
dx→ +∞ > 0.

(2) When c→ +∞, am(x) = m,

∫
χ

b(x)

am(x)
dx− 1 =

∫
χ

b(x)

m
dx− 1 ≤ 0 (since m ≥

∫
χ

b(x)dx by (2.22)).
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So there exists at least one root of c in (0, +∞) that satisfies (2.25).

Theorem 2.2: (1) The minimizer of Eq[a(x)] in class Am is am.

(2) Put the minimizer am(x) into (2.16), it will become

α(m) := (1− ν)Eq[am(x)] + ν ·m. (2.26)

Minimize (2.26) over m ∈ [r,maxx a (x)]. If mν is the minimizer of (2.26)

then amν will be the minimizer of (2.16), and pν = b(x)
amν (x)

will be the corre-

sponding optimal design density.

Proof: (1) Let a(·) be any other member of Am. We have

∫
χ

b(x)

a(x)
dx =

∫
χ

b(x)

am(x)
dx = 1
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Then

Eq[a(x)]− Eq[am(x)]

=

∫
χ

a(x)q(x)dx−
∫
χ

am(x)q(x)dx+ c2m

(∫
χ

b(x)

a(x)
dx−

∫
χ

b(x)

am(x)
dx

)
=

∫
χ

a(x)q(x)dx−
∫
χ

am(x)q(x)dx+

(∫
χ

a 2(x)q(x)

a(x)
dx−

∫
χ

a 2(x)q(x)

am(x)
dx

)
by (2.24)

=

∫
a (x)≤m

{
a(x)q(x)− a (x)q(x) +

a 2(x)q(x)

a(x)
− a 2(x)q(x)

a (x)

}
dx

+

∫
a (x)>m

{
a(x)q(x)−mq(x) +

a 2(x)q(x)

a(x)
− a 2(x)q(x)

m

}
dx

≥
∫
a (x)≤m

{
a(x)q(x)− a (x)q(x) +

a 2(x)q(x)

a(x)
− a 2(x)q(x)

a (x)

}
dx

+

∫
a (x)>m

{
a(x)q(x)−mq(x) +

m2q(x)

a(x)
− m2q(x)

m

}
dx

=

∫
a (x)≤m

q(x)

a(x)
[a (x)− a(x)]2dx+

∫
a (x)>m

q(x)

a(x)
[m− a(x)]2dx

=

∫
χ

q(x)

a(x)
[am(x)− a(x)]2dx

≥ 0,

with equality iff a(x) ≡ am(x). Thus am is proved to be the minimizer of

Eq[a(x)] in class Am.

(2) If the minimizer of (2.26) is mν, and the corresponding minimizer in

class Amν is amν , assume that a0(x) is any other one of a(x) that is different

from amν (x). Assume that maxx a0(x) = m0, and that the minimizer in class
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Am0 is am0. Then we have

(1− ν)Eq[amν (x)] + ν max
x

amν (x)

= α(mν)

≤ α(m0) since mν is the minimizer of α(m)

= (1− ν)Eq[am0(x)] + ν ·m0

≤ (1− ν)Eq[a0(x)] + ν ·m0 since am0 is the minimizer in class Am0

= (1− ν)Eq[a0(x)] + ν max
x

a0(x).

Therefore, amν is proved to be the minimizer of (2.16), then pν = b(x)
amν (x)

is the

corresponding optimal design density.

2.4.2 Straight Line Example

In this section we specify a straight line example and minimize α(m) numer-

ically. Assume that the dimension of x is 1, and the design space for x is

χ = (−∞,∞). Also, assume that q(x) is a normal density with mean 0 and

standard deviation σq, and that f(x) = [1, x]′, thus r = 2. Then

U =

∫
χ

f(x)f ′(x)q(x)dx =

1 0

0 σ2
q

 ,
b(x) = f ′(x)U−1f(x)q(x) = (1 +

x2

σ2
q

)q(x),

a (x) = cm

√
f ′(x)U−1f(x) = cm

√
1 +

x2

σ2
q

,

am(x) = min(a (x),m),
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a (x) < m⇒ −σq

√
m2

c2m
− 1 < x < σq

√
m2

c2m
− 1.

Notice that under this setting, the passive learning method will make the

maximum of the loss function (2.16) to be infinity, since when p(x) = q(x),

ap(x) = 1 + x2, and so maxx ap(x) = +∞. But with our active learning

method, the maximum of the loss function is bounded. This in a way shows

that our active learning method is more robust and advantageous than passive

learning.

Since maxx a (x) ∈ [2,+∞), we restrict m ≥ 2. Regarding the value of cm,

1. When cm ≤ 0, it is impossible, because am(x) > 0.

2. When 0 < cm ≤ m, cm is defined by

∫
a (x)<m

b(x)

a (x)
dx+

∫
a (x)≥m

b(x)

m
dx = 1,

i.e.

∫ σq

√
m2

c2m
−1

−σq
√
m2

c2m
−1

b(x)

a (x)
dx+

∫ ∞
σq

√
m2

c2m
−1

b(x)

m
dx+

∫ −σq√m2

c2m
−1

−∞

b(x)

m
dx = 1.

Because the integrands are even functions, the above is equivalent to

2

∫ σq

√
m2

c2m
−1

0

b(x)

a (x)
dx+ 2

∫ ∞
σq

√
m2

c2m
−1

b(x)

m
dx = 1,

i.e.

2

cm

∫ σq

√
m2

c2m
−1

0

√
1 +

x2

σ2
q

q(x)dx+
2

m

∫ ∞
σq

√
m2

c2m
−1

(1 +
x2

σ2
q

)q(x)dx = 1. (2.27)
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3. When cm > m, obviously am(x) = m. Then by the constraint (2.25)

we get am(x) = m =
∫
χ
b(x)dx = 2. It always has the same solution as when

cm = m.

In conclusion of 1, 2 and 3, we can constrain cm to be 0 < cm ≤ m, and

find cm by (2.27) once m is known. There exists at least one root of cm in

(0,m] because, when c→ 0+,

∫
χ

b(x)

am(x)
dx− 1→ +∞,

and when c = m,

∫
χ

b(x)

am(x)
dx− 1 =

∫
χ

b(x)

m
− 1 ≤ 0.

Program Structure

To work out the minimizer numerically, the structure of our program is as

follows. In the program, we set σq = 1.

(1) Express cm by a function of m, by solving (2.27) using a nonlinear root

finding function, with constraint 0 < cm ≤ m.

(2) Substitute cm in (2.24) by the function of m, so as to express am(x) by

a function of m. Put that am(x) into (2.26), then we can express α(m) by a

function of m. Minimize α(m), find the minimizer m∗ and the corresponding

α(m∗) by a nonlinear function minimizer, subject to the constraint that m ≥ 2.

(3) Obtain the best p(x) by p(x) = b(x)/am∗(x).

Program Result

In the following, Table 2.1 shows the numerical solutions of m and α(m)

when ν = 0, 0.2, 0.4, 0.6, 0.8, 1, respectively; Figure 2.1 shows the plots of
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p(x), q(x) and w(x) = 0.2w0(x) when ν = 0, 0.2, 0.4, 0.6, 0.8, 1, respectively.

Note that when the weights w0(x) are multiplied by a positive constant, the

value of the loss function in (2.10) will also be multiplied by the same constant,

but the optimization problem will not change. So taking w(x) = 0.2w0(x) here

will not affect the optimization result.

ν 0 0.2 0.4 0.6 0.8 1
m ∞ 2.2018 2.0285 2.0001 2.0001 2.0001

α(m) 1.8348 1.9668 1.9980 2.0000 2.0001 2.0001

Table 2.1: Solutions of m and α(m) when ν = 0, 0.2, 0.4, 0.6, 0.8, 1, respec-
tively.

ν ν ν

ν ν ν

Figure 2.1: Plots of p(x), q(x) and w(x) = 0.2w0(x) when ν =
0, 0.2, 0.4, 0.6, 0.8, 1, respectively.
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Chapter 3

Active Learning with WLS

Estimation and Loss Function

Max MSE

3.1 Loss Function Max MSE

In this chapter, we adopt another loss function. We set the loss function to be

the maximum of the MSE of ŷ in (2.7), and call it Max MSE. Again, we will

use a minimax approach to find the best p(x). In (2.7), the term ψ2(x) does

not depend on p(x), so we again concentrate on the leading term of (2.7). We

again assume that τn = τ = O(1). To be specific, the minimax problem is

min
p

max
ψ,t

f ′(t)MSEε

[
θ̂WLS

]
f(t). (3.1)

The MSEε

[
θ̂WLS

]
is affected by the randomness of the sample. In order to

make the MSE stable, and to make it easy to solve for the best p(x), we
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can replace the MSEε

[
θ̂WLS

]
with its asymptotic value in (2.6), so that the

minimax problem becomes

min
p

max
ψ,t

f ′(t)U−1
{
σ2
εT p + Sψ,p

}
U−1f(t), (3.2)

with the maximization subject to (1.2) and (1.3).

3.2 Maximization over t and ψ

Assume that dimensions of vector x and t are both 1; t, x ∈ χ = [−1, 1];

f(x) = [1, x]′, f(t) = [1, t]′; both p and q are symmetric densities. Notice

that we have changed the assumption of χ from (−∞,+∞) in Section 2.4.2

to [−1, 1] in this section, because the loss functions of these two sections are

different. If t is not bounded, in this section the loss function will go to infinity

as t→∞.

With the above assumptions, we have

max
ψ,t

f ′(t)U−1
{
σ2
εT p + Sψ,p

}
U−1f(t)

= max
ψ

max
t

{
σ2
εf
′(t)U−1T pU

−1f(t) + f ′(t)U−1Sψ,pU
−1f(t)

}
= max

ψ
max
t

{
σ2
ε

∫
χ

[f ′(t)U−1f(x)]2
q2(x)

p(x)
dx+

∫
χ

[f ′(t)U−1f(x)]2
q2(x)

p(x)
ψ2(x)dx

}
= max

ψ
max
t

{
σ2
ε

∫ 1

−1
(1 +

1

σ4
q

t2x2)
q2(x)

p(x)
dx+

∫ 1

−1
(1 +

1

σ4
q

t2x2)
q2(x)

p(x)
ψ2(x)dx

}
,

(3.3)

where σ2
q =

∫ 1

−1 x
2q(x)dx. Since t ∈ [−1, 1], (3.3) is maximized with t =
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−1 or 1. So (3.3) becomes

max
ψ

{
σ2
ε

∫ 1

−1
(1 +

1

σ4
q

x2)
q2(x)

p(x)
dx+

∫ 1

−1
(1 +

1

σ4
q

x2)
q2(x)

p(x)
ψ2(x)dx

}
(3.4)

Similarly with Section 2.3, denote

ap(x) = (1 +
1

σ4
q

x2)
q(x)

p(x)
,

h(x) = ψ2(x)q(x)/τ 2,

then (3.4) becomes

σ2
εEq[ap(x)] + τ 2n max

h

∫ 1

−1
ap(x)h(x)dx. (3.5)

Then similarly with Claim 2.3 and 2.4, it can be proved that (3.5) is maximized

by

h(x) = δ(x− x∗),

where δ(x) is a delta function and x∗ = argmaxx ap(x). The maximum of

(3.5) is

σ2
εEq[ap(x)] + τ 2 max

x
ap(x)

= (1− ν)Eq[ap(x)] + ν max
x

ap(x)

(3.6)

where ν = τ 2/(σ2
ε + τ 2) ∈ [0, 1].
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3.3 Minimization over p

Under the assumptions in Section 3.2, the form of the minimization problem

(3.6) in this chapter is the same with the minimization problem (2.16) in

Chapter 2, so the forms of general solutions are also identical.

When it comes to the exact example, we also work on a straight line exam-

ple here, and inherit all the assumptions and notations in Chapter 2, except

for two differences:

(1) The domain χ has changed to [−1, 1].

(2) Since the domain has changed, we also change the assumption of q(x)

from the standard normal density in Chapter 2 to

q(x) =
3

4
(1− x2). (3.7)

Now σ2
q = 1

5
.

Because of the above changes, the steps to determine the values of cm have

changed, too.

1. When cm ≤ 0, it is impossible, because am(x) > 0.

2. When 0 < cm ≤ m√
26

, a (x) ≤ m always holds, so cm is defined by

∫
χ

b(x)

a (x)
dx = 1,

i.e.

1

cm

∫ 1

−1

√
1 + 25x2q(x)dx = 1. (3.8)
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3. When m√
26
< cm ≤ m, cm is defined by

∫
a (x)<m

b(x)

a (x)
dx+

∫
a (x)≥m

b(x)

m
dx = 1,

i.e.

∫ 1
5

√
m2

c2m
−1

− 1
5

√
m2

c2m
−1

b(x)

a (x)
dx+

∫ 1

1
5

√
m2

c2m
−1

b(x)

m
dx+

∫ − 1
5

√
m2

c2m
−1

−1

b(x)

m
dx = 1.

Because the integrands are even functions, the above is equivalent to

2

∫ 1
5

√
m2

c2m
−1

0

b(x)

a (x)
dx+ 2

∫ 1

1
5

√
m2

c2m
−1

b(x)

m
dx = 1,

i.e.

2

cm

∫ 1
5

√
m2

c2m
−1

0

√
1 + 25x2q(x)dx+

2

m

∫ 1

1
5

√
m2

c2m
−1

(1 + 25x2)q(x)dx = 1. (3.9)

4. When cm > m, obviously am(x) = m. Then we get am(x) = m =∫
χ
b(x)dx = 6. It always has the same solution as when cm = m.

In conclusion of 1, 2, 3 and 4, we can first constrain cm to be 0 < cm ≤ m,

and then find cm by (3.8) if 0 < cm ≤ m√
26

, and by (3.9) if m√
26
< cm ≤ m.

Other parts of the solution are the same with those in Section 2.4.2.

Program Structure

The program structure is also similar to that of Chapter 2.

(1) Define an equation to be (3.8) if 0 < cm ≤ m√
26

, and (3.9) if m√
26
< cm ≤

m. Obtain a function of m to get cm by solving the above equation using a
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nonlinear root finding function, subject to 0 < cm ≤ m.

(2) With the cm, we can express am(x) by a function of m and x. Put

that am(x) into (3.6), find the minimizer m∗ and the corresponding α(m∗) by

a nonlinear function minimizer, subject to the constraint that m ≥ 6. (Since

minp maxx ap(x) = 6.)

(3) Obtain the best p(x) by p(x) = b(x)/am∗(x).

Program Result

In the following, Table 3.1 shows the numerical solutions of m and α(m)

when ν = 0, 0.2, 0.4, 0.6, 0.8, 1, respectively; Figure 3.1 shows the plots of

p(x), q(x) and w(x) = 0.3w0(x) when ν = 0, 0.2, 0.4, 0.6, 0.8, 1, respectively.

Again, taking w(x) = 0.3w0(x) here will not change the optimization result.

ν 0 0.2 0.4 0.6 0.8 1
m 11.2484 6.9736 6.4365 6.1582 6.0088 6.0000

α(m) 4.9472 5.4916 5.7800 5.9420 5.9993 6.0000

Table 3.1: Solutions of m and α(m) when ν = 0, 0.2, 0.4, 0.6, 0.8, 1, respec-
tively.
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ν ν ν

ν ν ν

Figure 3.1: Plots of p(x), q(x) and w(x) = 0.3w0(x) when ν =
0, 0.2, 0.4, 0.6, 0.8, 1, respectively.
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Chapter 4

Active Learning with OLS

Estimation and Loss Function

IMSE

4.1 Problem Formulation

In this chapter, we explore the solution when the parameter vector θ is esti-

mated by the most commonly used Ordinary Least Squares (OLS) estimate.

Again, we use IMSE as the loss function in this chapter.

With OLS, the weight w ≡ 1. Unlike the WLS estimate, we will not get

an asymptotically unbiased estimate this time. Thus we assume τn = τ/
√
n,

then τ 2n = O(n−1), so that Sψ,w,p = O(n−1) can be ignored, which will simplify
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the problem a bit. To be specific, when bψ,w,p 6= 0, by (2.4) and (2.8),

IMSE =
1

n
tr
[
UM−1

w,p

{
σ2
εDw,p + Sψ,w,p + nbψ,w,pb

′
ψ,w,p

}
M−1

w,p

]
+

∫
χ

ψ2(x)q(x)dx+O(n−3/2)

=
1

n
tr
[
UM−1

w,p

{
σ2
εDw,p + Sψ,w,p + b√nψ,w,pb

′√
nψ,w,p

}
M−1

w,p

]
+

∫
χ

ψ2(x)q(x)dx+O(n−3/2) (4.1)

=
1

n
tr
[
UM−1

w,p

{
σ2
εDw,p + Sψ,w,p

}
M−1

w,p + b′√nψ,w,pM
−1
w,pUM

−1
w,pb

√
nψ,w,p

]
+

∫
χ

ψ2(x)q(x)dx+O(n−3/2). (4.2)

Since τ 2n = O(n−1) implies that

Sψ,w,p =

∫
χ

f(x)w2(x)ψ2(x)f ′(x)p(x)dx− bψ,w,pb′ψ,w,p = O(n−1),

and since

Dw,p =

∫
χ

f(x)w2(x)f ′(x)p(x)dx = O(1),

b√nψ,w,pb
′√
nψ,w,p =

(∫
χ

f(x)w(x)
√
nψ(x)p(x)dx

)(∫
χ

f(x)w(x)
√
nψ(x)p(x)dx

)′
= O(1),

from (4.1), we can see that it is reasonable to ignore Sψ,w,p.

When w = 1,

M 1,p = D1,p =
∫
χ
f(x)f ′(x)p(x)dx

def
= V p,

b√nψ,1,p =
∫
χ
f(x)

√
nψ(x)p(x)dx

def
= b√nψ,p,

Put them into (4.2), and remember that Sψ,w,p is ignored, so the optimization
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problem becomes

min
p

{
σ2
ε tr
[
UV −1p

]
+ max

ψ

{
b′√nψ,pV

−1
p UV

−1
p b

√
nψ,p +

∫
χ

nψ2(x)q(x)dx

}}
,

(4.3)

with the maximization done subject to (1.2) and (1.3), and minimization sub-

ject to the constraint that p(x) be a probability density.

4.2 Maximization over ψ

In the following, we will solve this minimax problem, the approach we use first

appeared in (Wiens, 1992), but requires modifications, which are made here.

Define

Hp = V pU
−1V p,

Kp =
∫
χ
f(x)f ′(x)p

2(x)
q(x)

dx,

Gp = Kp−Hp =

∫
χ

[
(
p(x)

q(x)
Ir−V pU

−1)f(x)

][
(
p(x)

q(x)
Ir−V pU

−1)f(x)

]′
q(x)dx.

The matrix Gp is clearly positive semi-definite. Assume that Gp is positive

definite. If not, we could first perturb it to make it non-singular, and then

pass to the limit (Heo, Schmuland, and Wiens, 2001).

Define

r(x) = (τ/
√
n)G−1/2p

(p(x)

q(x)
Ir − V pU

−1
)
f(x).

Denote Ψ as the class of all ψ(x) defined in (1.2) and (1.3).

Lemma 4.1: The class Ψ0 = {ψβ(x) = r′(x)β | ‖β‖ = 1} is a sub-class

of Ψ.
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Proof: ∫
χ

f(x)ψβ(x)q(x)dx

=

∫
χ

f(x)r′(x)q(x)dx · β

=

∫
χ

f(x)f ′(x)q(x)
(p(x)

q(x)
Ir − V pU

−1
)′
dx ·G−1/2p β

=
(
V p − V p

)
G−1/2p β

= 0.

So (1.2) is satisfied.

∫
χ

ψ2
β(x)q(x)dx

= β′
∫
χ

r′(x)r(x)q(x)dxβ

=
τ 2

n
β′G−1/2p ·

∫
χ

[
(
p(x)

q(x)
Ir − V pU

−1)f(x)

][
(
p(x)

q(x)
Ir − V pU

−1)f(x)

]′
q(x)dx ·G−1/2p β

=
τ 2

n
β′G−1/2p GpG

−1/2
p β

=
τ 2

n
= τ 2n.

(4.4)

So (1.3) is also satisfied. Thus Lemma 4.1 is proved.

Lemma 4.2: The ψ that maximizes (4.2) is in Ψ0.
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Proof: ∫
χ

f(x)r′(x)p(x)dx

=
τ√
n

∫
χ

f(x)f ′(x)
(p(x)

q(x)
Ir − V pU

−1
)
p(x)dx ·G−1/2p

=
τ√
n

(
Kp − V pU

−1V p

)
·G−1/2p

=
τ√
n
GpG

−1/2
p

=
τ√
n
G1/2
p

(4.5)

Let ψ ∈ Ψ be arbitrary and set β∗ =
G
−1/2
p b√nψ,p∥∥∥G−1/2
p b√nψ,p

∥∥∥ . By (4.5),

b′√nψβ∗ ,pV
−1
p UV

−1
p b

√
nψβ∗ ,p

=

∫
χ

f ′(x)
√
nψβ∗(x)p(x)dx · V −1p UV −1p ·

∫
χ

f(x)
√
nψβ∗(x)p(x)dx

= nβ′∗ ·
∫
χ

f(x)r′(x)p(x)dx · V −1p UV −1p ·
∫
χ

f(x)r′(x)p(x)dx · β∗

= n · τ
2

n
β′∗G

1/2
p H−1p G

1/2
p β∗

= τ 2
b′√nψ,pH

−1
p b

√
nψ,p∥∥∥G−1/2p b√nψ,p

∥∥∥2

(4.6)

Therefore, by (4.6) and (4.4), the IMSE (4.2) evaluated at ψβ∗ gives

IMSE|ψβ∗
=

1

n

{
σ2
ε tr
[
UV −1p

]
+ τ 2

b′√nψ,pH
−1
p b

√
nψ,p∥∥∥G−1/2p b√nψ,p

∥∥∥2 + τ 2
}
. (4.7)

41



Also, we have

∫
χ

r(x)ψ(x)q(x)dx

=
τ√
n
G−1/2p

∫
χ

(p(x)

q(x)
Ir − V pU

−1
)
f(x)ψ(x)q(x)dx

=
τ√
n
G−1/2p · 1√

n

(
b√nψ,p −

√
nV pU

−1
∫
χ

f(x)ψ(x)q(x)dx
)

=
τ

n
G−1/2p b√nψ,p,

by the constraint (1.2). Then by (1.3), (4.4) and Cauchy-Schwarz Inequality,

τ 2

n
≥

√∫
χ

ψ2(x)q(x)dx

√∫
χ

ψ2
β∗

(x)q(x)dx

≥
∣∣∣ ∫

χ

ψ(x)ψβ∗(x)dx
∣∣∣

=
∣∣∣ ∫

χ

ψ(x)r′(x)q(x)dx · β∗
∣∣∣

=
τ

n

∥∥∥G−1/2p b√nψ,p

∥∥∥ ,
so that ∥∥∥G−1/2p b√nψ,p

∥∥∥ ≤ τ.

Therefore,

IMSE|ψβ∗
=

1

n

{
σ2
ε tr
[
UV −1p

]
+ τ 2

b′√nψ,pH
−1
p b

√
nψ,p∥∥∥G−1/2p b√nψ,p

∥∥∥2 + τ 2
}

≥ 1

n

{
σ2
ε tr
[
UV −1p

]
+ τ 2

b′√nψ,pH
−1
p b

√
nψ,p

τ 2
+

∫
χ

nψ2(x)q(x)dx

}
= IMSE|ψ.

Since ψ ∈ Ψ is arbitrary and ψβ∗ ∈ Ψ0, we know that Ψ0 contains the ψ that
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maximizes (4.2), thus Lemma 4.2 is proved.

Evaluating (4.2) at ψβ for arbitrary β gives

IMSE|ψβ =
σ2
ε

n
tr
[
UV −1p

]
+
τ 2

n
β′
(
G1/2
p HpG

1/2
p + Ir

)
β;

now maximizing over β yields the result that maxψ IMSE is (σ2
ε +τ 2)/n times

Lν(p) = (1− ν)tr
[
UV −1p

]
+ νchmax

[
KpH

−1
p

]
,

where ν = τ 2/(σ2
ε + τ 2) and chmax denotes the maximum eigenvalue.

Now what is left is to find a density p(x) that minimize Lν(p), and that

requires specification of models. In the following, we will discuss the solution

of the above problem with a straight line model.

4.3 Minimization over p with a Straight Line

Model

Assume that f(x) = [1, x]′, χ = (−∞,∞), both p(x) and q(x) are symmetric,

and the variance of q(x) is σ2
q . Then

Lν(p) = (1−ν)

(
1+

σ2
q∫

χ
x2p(x)dx

)
+ν max

(∫
X

p2(x)

q(x)
dx,

∫
X
x2 p

2(x)
q(x)

dx

(
∫
χ
x2p(x)dx)2

σ2
q

)
,

(4.8)

where
∫
χ
p2(x)
q(x)

dx and
∫
χ x

2 p
2(x)
q(x)

dx

(
∫
χ x

2p(x)dx)2
σ2
q are the two eigenvalues of KpH

−1
p .

Then we solve the problem with the approach appeared in (Daemi and

Wiens, 2013). Denote the above two eigenvalues as E1(p) and E2(p). Suppose

we choose the first eigenvalue E1(p) in (4.8) and find the minimizing density
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p1(x) of

Lν,1(p) = (1− ν)

(
1 +

σ2
q∫

χ
x2p(x)dx

)
+ ν

∫
X

p2(x)

q(x)
dx

Lemma 4.3: If Lν,1(p1) ≥ Lν,2(p1), then p1(x) is the minimax solution of

Lν(p) (4.8).

Proof:

Lν(p) = max
{
Lν,1(p), Lν,2(p)

}
≥ Lν,1(p)

≥ Lν,1(p1) = max
{
Lν,1(p1), Lν,1(p1)

}
= Lν(p1).

Thus Lemma 4.3 is proved.

Similarly, if we choose the second eigenvalue E2(p) in (4.8) and find the

minimizing p2(x) of

Lν,2(p) = (1− ν)

(
1 +

σ2
q∫

χ
x2p(x)dx

)
+ ν

∫
χ
x2 p

2(x)
q(x)

dx

(
∫
χ
x2p(x)dx)2

σ2
q .

Then if we can prove Lν,2(p2) ≥ Lν,1(p2), then p2(x) is the minimax solution

of Lν(p) (4.8).

Therefore, in the following, we will solve the minimization problem in three

steps.

Notice that the numerical solution is dependent on q(x), so in the following

we assume q(x) is the standard normal density.

Step 1. Assume that at the minimizing p(x), Lν,1(p) ≥ Lν,2(p), i.e.,

E1(p) ≥ E2(p). Find the minimizing p(x), and then check if the above as-

sumption truly holds. If so, then this p(x) is the solution of the minimax

problem (4.3); if not, continue to Step 2.
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Step 2. Assume that at the minimizing p(x), Lν,2(p) ≥ Lν,1(p), i.e.,

E2(p) ≥ E1(p). Find the minimizing p(x), and then check if the above as-

sumption truly holds. If so, then this p(x) is the solution of the minimax

problem (4.3); if not, continue to Step 3.

Step 3. If both Step 1 and Step 2 fail, (we can see from Sections 4.3.1 and

4.3.2 that this is truly the case here), then a general construction technique

can solve the problem and that is practiced in the following Step 3 section.

4.3.1 Step 1

First assume E1(p) ≥ E2(p) at the minimizing p(x), then we only need to

minimize

Lν,1(p) = (1− ν)

(
1 +

σ2
q∫

χ
x2p(x)dx

)
+ ν

∫
X

p2(x)

q(x)
dx. (4.9)

First fix the
∫
χ
x2p(x)dx, let it equal σ2

p, then the first term of Lν,1(p) is fixed.

The problem of minimizing Lν,1(p) becomes

min
p

∫
χ

p2(x)

q(x)
dx

subject to

∫
χ

p(x)dx = 1,∫
χ

x2p(x) = σ2
p.
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Use Lagrange Multiplier and the above problem is equivalent to minimizing

min
p

∫
χ

{
p2(x)

q(x)
− λ1p(x)− λ2x2p(x)

}
dx.

It is sufficient to only minimize the integrand pointwise over p(x) ≥ 0.

Since the integrand is a quadratic function of p(x) and the coefficient of p2(x)

is positive, the critical point

p(x) =
λ1 + λ2x

2

2
q(x)

is the minimum point.

The density p(x) has to be non-negative. If the critical point is negative,

then p(x) is increasing in the non-negative domain, so in this situation p(x) = 0

will be the minimizer. Thus the minimizer is in this form:

p(x) = (a+ bx2)+q(x).

Here the notation “(a+ bx2)+” means:

(a+ bx2)+ =


a+ bx2 if a+ bx2 > 0

0 if a+ bx2 ≤ 0

We substitute p(x) in the Lν,1(p) (4.9) with the above form, then use the non-

linear minimizer to find the values of a and b that minimize Lν,1(p). Note that

p(x) should be a density function, so every time before running the minimizer,

we divide a and b by the integration of p(x). This is to make sure the values

of a and b we get always make p(x) have an integration of 1. Finally, with the
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solved a and b, we go back to check if the assumption E1(p) ≥ E2(p) holds.

The first plot in Figure 4.1 shows the values of Lν,1(p) at the minimizing

p(x) against values of ν. The second figure shows the values of a and b against

values of ν. The third plot shows the two eigenvalues E1(p) and E2(p) at the

minimizing p(x) against different values of ν. From the third plot, we can see

that at some values of ν (such as when ν = 0.5, 0.6), the second eigenvalue

is bigger than the first eigenvalue, and that is against our assumption that

E1(p) ≥ E2(p), so the method in Step 1 fails at those values of ν.

ν
ν

ν

ν

ν

ν ν

Figure 4.1: Values of Lν,1(p), a and b, and two eigenvalues against ν in Step
1.

4.3.2 Step 2

Assume that E1(p) < E2(p) at the minimizing p(x), now the loss function

Lν(p) (4.8) becomes

Lν,2(p) = (1− ν)

(
1 +

σ2
q∫

χ
x2p(x)dx

)
+ ν

∫
X
x2 p

2(x)
q(x)

dx

(
∫
χ
x2p(x)dx)2

σ2
q . (4.10)

Similarly with Step 1, we use Lagrange Multiplier and finally find that the

minimizer is in the form

p(x) =

(
a+ bx2

x2

)+

q(x). (4.11)
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Again use similar numerical method to minimize Lν,2(p), and the results are

shown in Figure 4.2. The first plot in Figure 4.2 shows the values of Lν,2(p) at

the minimizing p(x) against values of ν. The second figure shows the values of

a and b against values of ν. The third plot shows the two eigenvalues E1(p) and

E2(p) at the minimizing p(x) against different values of ν. The third plot con-

tradicts the assumption that E1(p) < E2(p). So the method in Step 2 also fails.

ν
ν

ν

ν

ν

ν ν

Figure 4.2: Values of Lν,2(p), a and b, and two eigenvalues against ν in Step
2.

4.3.3 Step 3

1. Fix σ2
p, find minimizer density p(x) subject to E1(p) ≥ E2(p). That is

min
p

∫
χ

p2(x)

q(x)
dx,

subject to

∫
χ

p(x)dx = 1,∫
χ

x2p(x)dx = σ2
p,∫

χ

(
p2(x)

q(x)
−
∫
χ
x2 p

2(x)
q(x)

dx

σ4
p

σ2
q − δ2

)
dx = 0,
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where δ is a slack variable. By using Lagrange Multiplier, the above is equiv-

alent to

min
p

∫
χ

{
p2(x)

q(x)
− λ1p(x)− λ2x2p(x)− λ3

(
p2(x)

q(x)
− x2p2(x)

q(x)

σ2
q

σ4
p

)}
dx, (4.12)

where λ3 ≥ 0. It is sufficient to minimize the integrand pointwise.

The critical point of the integrand is

p(x) =
λ1 + λ2x

2

2(1− λ3) + 2λ3
σ2
q

σ4
p
x2
q(x). (4.13)

2. Fix σ2
p, find minimizer density p(x) subject to E1(p) < E2(p).

Similarly we find that the problem is equivalent to

min
p

∫
χ

{
x2p2(x)

q(x)
·
σ2
q

σ4
p

− λ′1p(x)− λ′2x2p(x) + λ′3

(
p2(x)

q(x)
− x2p2(x)

q(x)
·
σ2
q

σ4
p

)}
dx,

(4.14)

where λ′3 ≥ 0, and the critical point of the integrand is

p(x) =
λ′1 + λ′2x

2

2λ′3 + 2(1− λ′3)
σ2
q

σ4
p
x2
q(x). (4.15)

3. Now we know that p(x) in (4.13) and (4.15) are critical points of (4.12)

and (4.14) respectively, but critical points can be either minimum points or

maximum points. We first assume that they are both minimum points, after

working out final results, we will come back to prove this assumption. After

assuming that they are minimum points, p(x) in (4.12) and (4.14) are both
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minimizers, we notice that they are both in the following form:

p(x) =

(
a+ bx2

c+ dx2

)+

q(x)

To avoid over-parameterization, we can divide a, b, c, d by one of them so that

there are only three parameters left. It seems better to divide them all by a

or b because then cases in Step 1 and Step 2 could be included. (When c = 1,

d = 0, these are cases in Step 1; when c = 0, d = 1, these are cases in Step 2.)

Here we divide them all by a. (In fact experiments show that either dividing

by a or by b produces the same result.) Therefore,

p(x) =

(
1 + b′x2

c′ + d′x2

)+

q(x). (4.16)

We substitute p(x) in the Lν(p) (4.8) with the above form, then use the

nonlinear minimizer to find the values of b′, c′ and d′ that minimize Lν(p).

Again, to make sure p(x) is a density, every time before running the minimizer,

we multiply c′ and d′ by the integration of p(x). Results are shown in Table

4.1, Figure 4.3 and 4.4.

From the first plot in Figure 4.4, we can see that when ν = 0, p(x) is similar

to a delta function, but with double peaks. That is because, when ν = 0, the

minimization problem is equivalent to

max
p

∫
χ

x2p(x)dx subject to

∫
χ

p(x)dx = 1.

The best p(x) to this problem would be a density that concentrates mass at the

two points where x2 reaches maximum. Since χ = (−∞,+∞), theoretically,

p(x) has to be a density that concentrates mass at −∞ and +∞. But since
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p(x) is restricted to be in the form of (4.16), |x| = 4.5740 might be the largest

value p(x) can concentrate at. In fact, with this p(x), L0(p) = 1.0478, as

shown in Table 4.1, which is very close to the ideal situation when L0(p) = 1,

so this result can be accepted.

From the last plot in Figure 4.4, we can see that when ν = 1, p(x) = q(x).

ν 0 0.2 0.4 0.6 0.8 1
Lν(p) 1.0478 1.5 1.4473 1.3345 1.1836 1
b′ -75.24 1.0 0.5224 0.4482 0.4034 1
c′ 5.685e5 2.0 1.467 1.282 1.136 1
d′ -27177.0 0 0.03467 0.1221 0.2281 1

Table 4.1: Values of Lν(p) and b
′, c′, d′ at ν = 0, 0.2, 0.4, 0.6, 0.8, 1.

ν
ν

ν

ν

′ ′ ′ ν

ν

′
′

′

′
′
′

ν

Figure 4.3: Values of Lν(p), values of b
′, c′, d′ , and two eigenvalues against ν

in Step 3. Note that these plots are not truly continuous plots; only points at
ν = 0, 0.1, 0.2, ..., 1 are experimental results, then these points are connected.

Finally, in order to prove that p(x) in (4.13) and (4.15) are minimizer of

(4.12) and (4.14) respectively, we need to show that the coefficient of p2(x) in

the integrand of (4.12) and (4.14):

(1− λ3) + λ3
σ2
q

σ4
p

x2

and

λ′3 + (1− λ′3)
σ2
q

σ4
p

x2
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ν ν ν

ν ν ν

Figure 4.4: Plots of p(x) when ν = 0, 0.2, 0.4, 0.6, 0.8, 1 respectively in Step
3.

are both positive.

Since λ3 ≥ 0, λ′3 ≥ 0, if we can prove that 1 − λ3 has the same sign as λ3

and that 1−λ′3 has the same sign as λ′3, then 1−λ3 and 1−λ′3 will be proved

to be positive, too. That is equivalent to show that c′ and d′ in (4.16) have

the same sign. The final results show that, except when ν = 0, which we have

already talked about above, c′ and d′ are always positive, thus c′ and d′ can

be seen as always having the same sign, then we prove that the p(x) we get

are truly minimizers.
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Chapter 5

Simulations and Comparisons

In this chapter, we apply different forms of error term ψ(x) to the problem,

and compare the loss of our active learning method with the loss of traditional

passive learning method. Because the solutions in this thesis are restricted to

model assumptions specified in Chapters 2, 3 and 4 (for the exact assumptions

see Sections 2.4.2, 3.2 and 4.3), and it is hard to find real world examples that

fit the assumptions, so we only test our solutions on simulations.

We assume that ψi(x) = τnri(x) (i ∈ {1, 2, 3}; τn = τ in Chapters 2 and

3, τn = τ/
√
n in Chapter 4), and choose the three different forms of ri(x):

r1(x) =

x2

σ2
q
− 1√∫

χ
(x

2

σ2
q
− 1)2q(x)dx

,

r2(x) =

x3

Eq [x4]
− x

σ2
q√∫

χ
( x3

Eq [x4]
− x

σ2
q
)2q(x)dx

,

r3(x) =

x4

Eq [x4]
− x2

σ2
q√∫

χ
( x4

Eq [x4]
− x2

σ2
q
)2q(x)dx

,

to represent three different forms of model error. All of these choices of ψ(x)
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meet the constraint (1.2) and (1.3).

Note that the value of ν, which represents the relative magnitude of model

error to the sum of model error and sampling error, is unknown to the ex-

perimenter, thus the assumptions of ν by the experimenter might be different

from the true value of ν. Let ν1 represent the assumptions of ν by the ex-

perimenter, and pν1(x) represent the design density constructed under the

assumptions. Let ν2 represent the true value of ν. In this chapter, we choose

ν = 0.2, 0.5, 0.8, which is equivalent to τn = 0.5σε, σε, 2σε, to represent

situations when the magnitude of model error is less, equal or greater than the

magnitude of sampling error. We will compute loss functions with the three

different choices of ν1, ν2 and ψ(x) respectively, and compare the performances

of active learning with that of passive learning.

In Chapters 2, 3 and 4, we use different loss functions and methods to solve

the problems, and give different examples to get numerical results. Therefore,

in the following three sections, we do simulations following the assumptions

and settings of each of the three chapters, and show the results respectively.

Each section is divided into two parts. In the first part we still use the asymp-

totic loss function defined in Chapters 2, 3 and 4, and compare the asymptotic

results of passive learning and active learning. In the second part, we carry out

experiments and make comparisons based on finite samples. Notice that in the

first part, the loss functions we define depend on ν, the relative importance of

σε and τn, not on the true values of σε and τn, so we do not make assumptions

on their true values. However, in the second part, the loss functions not only

depend on ν but also on σε and τn (only knowing one of them is enough), so

here we uniformly assume that σε = 1 in the second part.
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5.1 Simulation Results of Chapter 2

5.1.1 The Asymptotic Results

The optimization problem in Chapter 2 is (2.10), so in this section we define

the loss function to be

tr
[
U−1{σ2

εT p + Sψ,p}
]
.

According to assumptions of the example in Chapter 2, we have

U = I2, (5.1)

T p =

∫∞−∞ q2(x)
p(x)

dx 0

0
∫∞
−∞ x

2 q
2(x)
p(x)

dx

 ,

Sψ,p =

∫∞−∞ ψ2(x) q
2(x)
p(x)

dx 0

0
∫∞
−∞ x

2ψ2(x) q
2(x)
p(x)

dx

 .
Then

tr
[
U−1{σ2

εT p + Sψ,p}
]

=

∫ ∞
−∞

(
σ2
ε + ψ2(x)

)(
1 + x2

)q2(x)

p(x)
dx

= (σ2
ε + τ 2)

∫ ∞
−∞

(
(1− ν) + νr2(x)

)(
1 + x2

)q2(x)

p(x)
dx.

Therefore, we can change the definition of the loss function to be

Loss1(pν1 , ν2, ri) =

∫ ∞
−∞

(
(1−ν2)+ν2r

2
i (x)

)(
1+x2

) q2(x)

pν1(x)
dx. (i ∈ {1, 2, 3})

(5.2)

We compute (5.2) with the three pν1(x) to get the losses of active learning
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method. Then we replace pν1(x) with q(x) in the above computation to get

the losses of passive learning method. The results are shown below. In Figure

5.1, we compare plots of the design densities for active learning and passive

learning with the three different choices of ν1. Table 5.1 shows the losses of

active learning and passive learning with different ν1, ν2, and ri(x). The table

shows that active learning always has lower loss than passive learning, thus it

is more advantageous in these cases.

ν ν ν

Figure 5.1: Plots of pν1(x) and q(x) when ν1 = 0.2, 0.5, 0.8 respectively.

r1 r2 r3
ν2 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Loss1(p0.2, ν2, ri) 1.945 2.001 2.057 1.956 2.027 2.098 1.966 2.054 2.141
Loss1(p0.5, ν2, ri) 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
Loss1(p0.8, ν2, ri) 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
Loss1(q, ν2, ri) 2.800 4.000 5.200 3.200 5.000 6.800 3.943 6.867 9.771

Table 5.1: Comparisons of active learning and passive learning results.

5.1.2 Results on Finite Samples

The steps of the experiments are as follows.

1. Randomly choose n = 30 points from χ = (−∞,+∞) with design

density p(x) (p(x) = q(x) for passive learning), denote them as {xi}i=1,2,...,n..

They form the inputs of the training sample.
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2. Find out the corresponding outputs of the inputs in Step 1, so that we

have a training sample {xi, yi}i=1,2,...,n..

3. Use the training sample in Step 2 to compute the estimated parameter

vector θ̂, using the WLS method introduced in Chapter 2.

4. Repeat Step 1 to Step 3 for L = 100 times, then we have L = 100

estimates of the parameter vector, denote them as {θ̂i}i=1,2,...,L..

5. Compute the estimated IMSE, variance and the square of the bias of

ŷ, make comparisons of the results when ν1, ν2, ri(x) are different, and make

comparisons of active learning and passive learning results.

In Step 5, we mention the IMSE, variance and the square of the bias of ŷ,

now we give definitions of them. In (2.8), since the second term is not affected

by p(x), we concentrate on the leading term and define the loss function to be

ÎMSE =

∫
χ

f ′(x) ̂MSEε
[
θ̂
]
f(x)q(x)dx

=

∫
χ

f ′(x)
1

L

L∑
i=1

(θ̂i − θ)(θ̂i − θ)′f(x)q(x)dx

=
1

L

L∑
i=1

(θ̂i − θ)′

(∫
χ

f(x)f ′(x)q(x)dx

)
(θ̂i − θ)

=
1

L

L∑
i=1

(θ̂i − θ)′U(θ̂i − θ)

=
1

L

L∑
i=1

(θ̂i − θ)′(θ̂i − θ) by (5.1).
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Similarly, we define estimated variance and squared bias to be

V̂ AR =

∫
χ

f ′(x) ̂COVε
[
θ̂
]
f(x)q(x)dx

=

∫
χ

f ′(x)
1

L

L∑
i=1

(θ̂i − θ̄)(θ̂i − θ̄)
′
f(x)q(x)dx

=
1

L

L∑
i=1

(θ̂i − θ̄)′(θ̂i − θ̄),

ŜQB =

∫
χ

f ′(x)(θ̄ − θ)(θ̄ − θ)′f(x)q(x)dx

= (θ̄ − θ)′(θ̄ − θ),

where θ̄ = 1
L

∑L
i=1 θi.

The experiment results are in Figure 5.2 and Tables 5.2, 5.3 and 5.4. In

Figure 5.2, we show plots of different design densities, and the locations of

their corresponding sample input points if the sample size n = 20. In the

experiment, the sample points are taken randomly with the design density,

here in the plots we deliberately take sample points to be the 1st to 20th

21-quantile of the design density, because these locations are the expected

locations of the random sample points, so they are most representative.

In Tables 5.2, 5.3 and 5.4, the estimated IMSEs of the passive learning

method are always greater than those of the active learning methods, and

their differences are apparent, since most differences are greater than three

times of their standard deviations. Then look at the variance and bias part

separately. It is clear that active learning shows advantage in reducing the

variance. When ν2 = 0.2, their differences in the bias part are small, but when

ν2 increases, which means the magnitude of model error increases (since σε = 1

in our experiments), the advantage of active learning in reducing the bias part
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becomes apparent, too.
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Figure 5.2: Plots of different design densities with n = 20 sample input points
on the x-axis.

5.2 Simulation Results of Chapter 3

5.2.1 The Asymptotic Results

In Chapter 3, the loss function, Max MSE, is the function in (3.4):

∫ 1

−1

[
σ2
ε + ψ2(x)

][
1 +

1

σ4
q

x2
]
q2(x)

p(x)
dx

=
(
σ2
ε + τ 2

)∫ 1

−1

(
1− ν + νr2(x)

)(
1 +

1

σ4
q

x2
)
q2(x)

p(x)
dx.
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Table 5.2: Comparative values of V̂ AR, ŜQB and ÎMSE when ν2 = 0.2

(standard deviations of ÎMSE in parentheses) (Section 5.1.2)

r1 r2 r3

pν1 V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE

p0.2 0.098 0
0.098

(0.0108)
0.096 0.003

0.100
(0.0103)

0.077 0
0.077

(0.0090)

p0.5 o.095 0.003
0.098

(0.0107)
0.078 0

0.078
(0.0074)

0.094 0
0.095

(0.0111)

p0.8 0.076 0
0.076

(0.0084)
0.079 0

0.079
(0.0068)

0.094 0
0.094

(0.0104)

q 0.124 0.004
0.128

(0.0154)
0.119 0.002

0.122
(0.0142)

0.121 0
0.121

(0.0177)

Table 5.3: Comparative values of V̂ AR, ŜQB and ÎMSE when ν2 = 0.5

(standard deviations of ÎMSE in parentheses) (Section 5.1.2)

r1 r2 r3

pν1 V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE

p0.2 0.141 0
0.142

(0.0136)
0.136 0.002

0.138
(0.0149)

0.140 0.002
0.143

(0.0161)

p0.5 0.159 0
0.160

(0.0170)
0.113 0

0.113
(0.0105)

0.158 0
0.158

(0.0152)

p0.8 0.137 0
0.137

(0.0138)
0.135 0.001

0.136
(0.0148)

0.156 0
0.156

(0.0104)

q 0.264 0.003
0.267

(0.0379)
0.217 0.013

0.231
(0.0293)

0.259 0.004
0.263

(0.0520)

Table 5.4: Comparative values of V̂ AR, ŜQB and ÎMSE when ν2 = 0.8

(standard deviations of ÎMSE in parentheses) (Section 5.1.2)

r1 r2 r3

pν1 V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE

p0.2 0.310 0
0.310

(0.0319)
0.383 0.002

0.385
(0.0398)

0.358 0.005
0.363

(0.0542)

p0.5 0.425 0.002
0.160

(0.0390)
0.350 0

0.350
(0.0447)

0.383 0.001
0.385

(0.0510)

p0.8 0.368 0
0.137

(0.0402)
0.325 0.002

0.327
(0.0323)

0.353 0.002
0.355

(0.0524)

q 0.767 0.022
0.789

(0.1065)
0.757 0.045

0.802
(0.1105)

0.779 0.016
0.795

(0.1906)
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Therefore, we choose loss function in this section to be:

Loss2(pν1 , ν2, ri) =

∫ 1

−1

(
1− ν2 + ν2r

2
i (x)

)(
1 +

1

σ4
q

x2
)
q2(x)

pν1(x)
dx.

Then we adopt the assumptions in Chapter 3, compute and compare simulation

results of active learning versus passive learning. Figure 5.3 shows the design

density for active learning and passive learning. Table 5.5 compares the loss of

active learning with that of passive learning, it proves the advantage of active

learning over passive learning in these cases.

ν ν ν

Figure 5.3: Plots of p(x) and q(x) when ν1 = 0.2, 0.5, 0.8 respectively.

r1 r2 r3
ν2 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Loss2(p0.2, ν2, ψi) 5.270 5.256 5.409 5.492 5.458 5.841 5.715 5.66 6.273
Loss2(p0.5, ν2, ψi) 5.514 5.581 5.625 5.577 5.744 5.855 5.640 5.907 6.085
Loss2(p0.8, ν2, ψi) 5.963 5.971 5.971 5.965 5.984 5.985 5.967 5.998 5.999
Loss2(q, ν2, ψi) 7.333 6.198 7.188 9.333 6.496 8.971 11.333 6.793 10.753

Table 5.5: Comparisons of active learning and passive learning results.

5.2.2 Results on Finite Samples

The steps of experiment in this section are similar to those in Section 5.1.2,

but the loss function changes. By (3.1), we define loss function in this section
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to be

̂MaxMSE = max
t
f ′(t)

1

L

L∑
i=1

(θ̂i − θ)(θ̂i − θ)′f(t). (5.3)

Denote the maximizer t in (5.3) as t0, then we define the variance and squared

bias part to be

V̂ AR = f ′(t0)
1

L

L∑
i=1

(θ̂i − θ̄)(θ̂i − θ̄)′f(t0),

ŜQB = f ′(t0)(θ̄ − θ)(θ̄ − θ)′f(t0).

Similarly with Section 5.1.2, results are shown in Figure 5.4, Tables 5.6,

5.7 and 5.8. In this part, the losses of the passive learning are still greater

than the those of active learning, but in some cases their differences are not

big, only about one standard deviation. But this part shows that our active

learning densities greatly reduce the bias, especially when ν2 = 0.8.

Table 5.6: Comparative values of V̂ AR, ŜQB and ̂MaxMSE when ν2 = 0.2

(standard deviations of ̂MaxMSE in parentheses)

r1 r2 r3

pν1 V̂ AR ŜQB ̂MaxMSE V̂ AR ŜQB ̂MaxMSE V̂ AR ŜQB ̂MaxMSE

p0.2 0.259 0
0.259

(0.0348)
0.210 0.028

0.238
(0.0123)

0.247 0.002
0.249

(0.0402)

p0.5 0.202 0.010
0.213

(0.0357)
0.272 0.057

0.330
(0.0507)

0.207 0
0.207

(0.0322)

p0.8 0.262 0.024
0.285

(0.0519)
0.277 0.008

0.285
(0.0403)

0.240 0.002
0.243

(0.0386)

q 0.301 0.022
0.323

(0.0473)
0.253 0.268

0.521
(0.0691)

0.339 0.011
0.350

(0.0570)
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Figure 5.4: Plots of different design densities with n = 20 sample points on
the x-axis.

Table 5.7: Comparative values of V̂ AR, ŜQB and ̂MaxMSE when ν2 = 0.5

(standard deviations of ̂MaxMSE in parentheses)

r1 r2 r3

pν1 V̂ AR ŜQB ̂MaxMSE V̂ AR ŜQB ̂MaxMSE V̂ AR ŜQB ̂MaxMSE

p0.2 0.291 0.013
0.304

(0.0451)
0.338 0.102

0.440
(0.0645)

0.283 0.024
0.308

(0.0505)

p0.5 0.382 0
0.382

(0.0519)
0.359 0.068

0.427
(0.0671)

0.288 0.009
0.297

(0.0447)

p0.8 0.423 0.004
0.428

(0.0332)
0.395 0.095

0.490
(0.0784)

0.333 0.021
0.354

(0.0615)

q 0.510 0.042
0.552

(0.0546)
0.459 1.126

1.585
(0.1782)

0.439 0.064
0.503

(0.0711)
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Table 5.8: Comparative values of V̂ AR, ŜQB and ̂MaxMSE when ν2 = 0.8

(standard deviations of ̂MaxMSE in parentheses)

r1 r2 r3

pν1 V̂ AR ŜQB ̂MaxMSE V̂ AR ŜQB ̂MaxMSE V̂ AR ŜQB ̂MaxMSE

p0.2 0.771 0.046
0.817

(0.0997)
0.958 0.568

1.525
(0.2258)

0.628 0.091
0.720

(0.1173)

p0.5 1.012 0.003
1.014

(0.1590)
0.758 0.265

1.023
(0.1247)

0.727 0.044
0.771

(0.1135)

p0.8 1.000 0.079
1.079

(0.1722)
0.919 0.393

1.312
(0.1474)

0.714 0.085
0.799

(0.1223)

q 1.570 0.228
1.798

(0.2445)
1.150 4.531

5.680
(0.5220)

0.645 0.246
0.891

(0.1216)

5.3 Simulation Results of Chapter 4

5.3.1 The Asymptotic Results

The loss function in Chapter 4 is (4.3). Because with our choices of ψ(x),∫
χ
nψ2(x)q(x)dx = τ 2 always, so we only concentrate on the leading term of

(4.3). Because

σ2
ε tr[UV

−1
p ] + b′√nψ,pV

−1
p UV

−1
p b

√
nψ,p

=
(
σ2
ε + τ 2

)(
(1− ν)tr[UV −1p ] + νb′√nr,pV

−1
p UV

−1
p b

√
nr,p

)
,

we set the loss function to be

Loss3(pν1 , ν2, ri) = (1− ν2)tr[UV −1pν1 ] + ν2b
′√
nri,pν1

V −1pν1UV
−1
pν1
b√nri,pν1 .

With assumptions in Chapter 4, we have

U =

1 0

0 σ2
q

 ,
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V p =

1 0

0 σ2
p

 ,
tr[UV −1p ] = 1 +

σ2
q

σ2
p

,

V −1p UV
−1
p =

1 0

0
σ2
q

σ4
p

 ,

b√nr,p =

 ∫∞−∞√nr(x)p(x)dx∫∞
−∞ x

√
nr(x)p(x)dx

 .
Since the ψ(x) we choose are either odd functions or even functions, thus

specifically, (1) When ψ(x) is an even function, the second element in b√nψ,p

is 0, so

b′√nr,pV
−1
p UV

−1
p b

√
nr,p =

(∫ ∞
−∞

√
nr(x)p(x)dx

)2

.

In this case,

Loss3(pν1 , ν2, ri) = (1− ν2)
(

1 +
σ2
q

σ2
pν1

)
+ ν2

(∫ ∞
−∞

√
nri(x)pν1(x)dx

)2

.

(2) When ψ(x) is an odd function, the first element in b√nψ,p is 0, so

b′√nr,pV
−1
p UV

−1
p b

√
nr,p =

σ2
q

σ4
p

·
(∫ ∞

−∞
x
√
nr(x)p(x)dx

)2

.

In this case,

Loss3(pν1 , ν2, ri) = (1−ν2)
(

1 +
σ2
q

σ2
pν1

)
+ν2 ·

σ2
q

σ4
pν1

·
(∫ ∞

−∞
x
√
nri(x)pν1(x)dx

)2

.

Similarly with Section 5.1 and 5.2, we compute Loss3(pν1 , ν2, ri) and com-
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pared results of active learning and passive learning. Figure 5.5 shows plots

of design density of active learning and passive learning, Table 5.9 shows the

comparisons of the loss. We can see that when ν2 = 0.8 and ν1 is different

from ν2, most of the time the loss of active learning is a little higher than

that of passive learning. But in other cases active learning has lower loss than

passive learning.

ν ν ν

Figure 5.5: Plots of p(x) and q(x) when ν1 = 0.2, 0.5, 0.8 respectively.

ψ1 ψ2 ψ3

ν2 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8
Loss3(p0.2, ν2, ψi) 1.300 1.000 0.700 1.275 0.938 0.600 1.243 0.857 0.471
Loss3(p0.5, ν2, ψi) 1.366 0.895 0.425 1.366 0.895 0.424 1.351 0.857 0.363
Loss3(p0.8, ν2, ψi) 1.486 0.934 0.383 1.486 0.934 0.382 1.484 0.928 0.373
Loss2(q, ν2, ψi) 1.600 1.000 0.400 1.600 1.000 0.400 1.600 1.000 0.400

Table 5.9: Comparisons of active learning and passive learning results.

5.3.2 Results on Finite Samples

In this section, the loss function is the same with that in Section 5.1.2, the

experiments results are shown below. Remember that in this problem, we

bound the magnitude of model error to be O( 1
n
), and thus ignore the bias part,

so from the tables below we can see that the biases are all very small. Also,

although the losses in passive learning are still greater than those of active

learning in most cases, they are pretty close, in some cases when ν2 = 0.8,
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passive learning even has smaller loss. This might be because the magnitude

of the model error is too small.
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Figure 5.6: Plots of different design densities with n = 20 sample points on
the x-axis.

In conclusion of Sections 5.1, 5.2 and 5.3, the results prove that, under

our model assumptions, active learning is more advantageous than passive

learning. Also, it proves the effectiveness of our active learning methods, not

only in reducing variance but also in reducing bias of the estimates.
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Table 5.10: Comparative values of V̂ AR, ŜQB and ÎMSE when ν2 = 0.2

(standard deviations of ÎMSE in parentheses)

r1 r2 r3

pν1 V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE

p0.2 0.061 0.005
0.065

(0.0067)
0.050 0.006

0.056
(0.0074)

0.061 0
0.062

(0.0077)

p0.5 0.069 0
0.070

(0.0076)
0.061 0.001

0.062
(0.0058)

0.062 0
0.063

(0.0069)

p0.8 0.062 0
0.062

(0.0063)
0.064 0

0.064
(0.0059)

0.076 0.001
0.077

(0.0086)

q 0.075 0
0.076

(0.0071)
0.077 0

0.077
(0.0080)

0.080 0
0.080

(0.0107)

Table 5.11: Comparative values of V̂ AR, ŜQB and ÎMSE when ν2 = 0.5

(standard deviations of ÎMSE in parentheses)

r1 r2 r3

pν1 V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE

p0.2 0.063 0.014
0.076

(0.0072)
0.069 0.011

0.080
(0.0077)

0.079 0.003
0.082

(0.0094)

p0.5 0.060 0.003
0.063

(0.0053)
0.072 0.003

0.075
(0.0074)

0.091 0.002
0.093

(0.0093)

p0.8 0.071 0
0.072

(0.0074)
0.072 0

0.072
(0.0087)

0.072 0
0.072

(0.0076)

q 0.085 0
0.085

(0.0104)
0.091 0

0.094
(0.0111)

0.085 0
0.086

(0.0101)
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Table 5.12: Comparative values of V̂ AR, ŜQB and ÎMSE when ν2 = 0.8

(standard deviations of ÎMSE in parentheses)

r1 r2 r3

pν1 V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE V̂ AR ŜQB ÎMSE

p0.2 0.072 0.040
0.112

(0.0131)
0.090 0.040

0.131
(0.0123)

0.128 0.019
0.148

(0.0200)

p0.5 0.087 0.014
0.101

(0.0094)
0.086 0.013

0.099
(0.0107)

0.135 0.006
0.140

(0.0195)

p0.8 0.110 0
0.110

(0.0100)
0.082 0.002

0.084
(0.0088)

0.096 0
0.096

(0.0128)

q 0.096 0
0.096

(0.0107)
0.108 0.002

0.108
(0.0129)

0.100 0
0.101

(0.0108)
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Chapter 6

Conclusion

This thesis is inspired by the possible advantages of active learning over pas-

sive learning. The research object of this thesis is the active learning problem

in regression field. There are different kinds of methods to solve this kind of

problem, such as uncertainty sampling method. The kind of methods we use

are optimal experimental design methods, which are widely used in solving

active learning problem in regression field. But we have improved the tradi-

tional experimental design methods, mainly in that we try to reduce the mean

squared error of the estimation, which include both the variance and the bias

caused by the model error, while traditional methods just focus on variance

reduction.

The assumptions of our research are as follows.

(1) The underlying distribution density of the design space – q(x), is known.

This q(x) is considered to be the density of the testing set of the supervised

learning problem. In the cancer diagnosis example we talk about in Section

1.1, this means that the distribution of all the X-ray pictures are known.

(2) The methods to use the sample to estimate the unknown parameters in
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the regression model are clear. We have chosen two methods – WLS method

with weight w(x) = q(x)/p(x) and OLS method.

We know that “how well the estimations of the unknown parameters are” is

related not only to the estimation methods, but also to how good the sample

is. In assumptions (2) we have made clear the estimation methods, so the

goals of our research are as follows.

(1) How to find the best sample. (The “best” here means that this sample

will result in the “best estimation” of the unknown parameters, and the mea-

surement of the “best estimation” is defined by the loss functions.) That is, if

the sample (the training set) is chosen at random with a density p(x) (we call

it design density) from the design space, we aim to find the best density p(x).

In the cancer diagnosis example, if the researcher randomly choose n X-ray

pictures with a density p(x) to be the sample, the aim is to find the best p(x).

(2) Compare how good the estimation is when the design density is the

best p(x) we find and when the design density is q(x), that is to compare

active learning and passive learning results, and see if active learning truly has

advantage over passive learning.

The contributions of this thesis are:

(1) We outline three forms of active learning problems in regression fields

and find their solutions. However, our solutions have restrictions, they only

apply to models with the same assumptions with ours (for the exact assump-

tions see Sections 2.4.2, 3.2 and 4.3).

(2) By simulation we prove that our active learning solutions to the three

problems are better than passive learning. But again, this statement is only

suitable for models with our settings.

(3) Although our solutions are restricted to specific models, in the process
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of solving for the best design density, we show an example of how to take

not only the variance, but also the bias of the estimation, which caused by the

model error, into consideration. This is our major improvement compared with

Sugiyama’s work (Sugiyama, 2006), in which the bias is ignored by bounding

the magnitude of the error.
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