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ABSTRACT

In wavelet analysis, high vanishing moments and symmetry 
♦

are two highly desirable properties of a wavelet frame. In this 

thesis, we study wavelet frames with high vanishing moments 

and symmetry derived from refinable function vectors.

In chapter 1, we give a construction of a pair of dual wavelet 

frames with rd generators with vanishing moments n and m  re­

spectively. These generators are derived from any given pair of 

d-refinable function vectors in (L2(M))r with sum rule orders m  

and n respectively. To investigate the relation between vanishing 

moments and sum rule orders, a very useful new canonical form 

for the matrix mask of a refinable function vector is given.

In chapter 2, we prove that there always exists a tight wavelet 

frame with vanishing moments m  which is derived from a given 

stable d-refinable function vector with sum rules of order m.

In chapter 3, for any 5-spline of order m, we derive a tight 

wavelet frame with three symmetric generators with vanishing 

moments m.

In chapter 4, we give a necessary and sufficient condition on 

constructing a tight wavelet frame with two symmetric generators 

derived from a symmetric 2-refinable function. To construct such 

a tight wavelet frame, we need to split a 2 x 2 matrix of Laurent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



polynomials symmetrically. A necessary and sufficient condition 

for the split is also given. In this chapter, a clear algorithm is 

given to guide the construction.

Finally, in chapter 5, we present a step by step algorithm 

to construct pairs of symmetric dual 2-wavelet frames from any 

pair of symmetric 2-refinable functions. Our algorithm can be 

easily implemented and yields all possible pairs of symmetric dual 

wavelet frames.

Several examples are provided to demonstrate the main re­
sults in chapters 1, 2, 4 and 5.
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Chapter 1

M ulti wavelet frames from  

refinable function vectors

1.1 In troduction

Basically, a wavelet system consists of a set of functions, { i p j , k } j , k e z ,  which is 

an orthogonal basis, or a Riesz basis, or a frame (in a slightly different form) 

for L2 (M). Each element of the family {'4’j,k}j,kez is defined as

ipjik := 2j/2i>(2j ■ - k ) Vj, k e  Z,

where i p  is a suitable compactly supported function called a m other wavelet.

The simplest example is given by i p  := X[o,i/2) ~~ X[i/2 ,i) • Thus,

1pj,k =  2 J//2X [2-J fc ,2 -J  fc+2-J —!) — 2 “'^ 2X [ 2 - j f c + 2 - J - 1,2 - J / c + 2 - J ) -

It is easy to check th a t { ' i p j , k } j , k £ Z  is an orthogonal basis of L 2 (IR). (Note: This 

system is very close to Rademacher functions, which play an im portant role 

in probability theory.) Therefore, for each /  € L 2 (M), we have the following 

expansion,

/  =  cj,k2^2 (X[2-3k,2-ik+2-i-1) ~  X[2~ik+2~i-1,2~ik+2~i)) i
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where
■2-ik+2-i-x

2-ik+2-i~1

2~ik+2-i
f ( x ) d x

Every wavelet system {ipj,k}j,kez has the following advantages.

1. Simplicity: Every element of a wavelet system is derived from a single

2. Multiscale structure: By the definition of ipjtk, we know th a t for differ­

ent j , 'ipjtk corresponds to a different scale. This correspondence is clear in the 

previous example. It is easy to see th a t for different j ,  Cjtk represents /  in a

length of the interval [2 j k, 2 j (k + 1)]: When j  is very large, the length of the 

interval is very small. Thus, Cjtk represents /  in detail. Moreover, the weight

i.e., for different j ,  cy-y adjusts information about /  by a different scale. Thus, 

every wavelet system can describe the time-frequency locality very well. This 

property is highly desirable in many situations.

3. Efficient representation: Every wavelet system can efficiently describe 

each function /  £ such th a t f  | / ( £ ) | 2 ( 1  + £2)ad£ <  oo for some a  > 0 ,

i.e., only a few coefficients Cjtk are large, and the other coefficients are very 

small. The following example will demonstrate this fact. Consider the previous 

wavelet system. Let /  =  X[o,i/3]- Let us check the coefficients c,-^. By definition 

(1.1.1), we know th a t when k ^  — 1 or k  ^  2J/3 , we can easily see th a t Cj^ =  0; 

when k  £ [0,2J/3  — 1], we have

Therefore, only a few are large, and the other coefficients Cj^ are very 

small.

function ip or several functions by dilations and integer shifts.

different scale with the weight 2 J'/2. The weight 2 ^ 2 is a good balance for the

2-?/ 2 shows th a t Cjtk amplifies information about /  corresponding to  the scale j ;

■2~i{k+\/2)

2~i{k+\/2)

when k £ (2J73 — 1 , 2J/3), i.e., when k = L(2 J — 1)/3J, we have 

\cjtk | ^  1/3) <  mm(2~j/2,2j/2) = 2~|j'l/2.

2
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Wavelet analysis originates from many areas such as atomic decomposi­

tion in harmonic analysis, sub-band coding and windowed Fourier transform 

in engineering. The m other wavelet ip plays an im portant role in a wavelet 

system. In 1986, Y. Meyer and S. Mallat introduced multiresolution analysis 

(MRA) to  generally construct ip. Let Vo be a linear subspace of L 2(M.) and

define Vj :=  : f  £ Vo}. If we have

(a) • • • C V -k C • • • C V-i  C V0 C Vi C • • • C Vk C • • • .

(b) Dj€ZVj = 0.

(c) UjezVj is dense in L 2(M).

(d) There exists a compactly supported function (p £ L 2(Bk) such th a t

(e) There exists W  C L 2(M.) and a compactly supported function ip £

Z/2 OR) such tha t

Then the compactly supported function ip mentioned in (e) is a mother 

wavelet. For constructing an MRA, first we need to construct the kind of 

compactly supported function (p mentioned in (d). Notice th a t from Vo =  

span{0(- — k)}kez,  we have <p £ Vo- Then by the definition of Vi, we have 

Vi =  span{0(2 • — k)}kei- By 0 £ Vo C Vi, we have the following refinement 

equation:

where a is a sequence on Z, called the mask for (p. Any scalar mask a in 

this thesis is assumed to be finitely supported and to satisfy Ylkez (lk = 

Any function cp £ L 2(R) satisfying a refinement equation is called a refinable 

function.

Vo =  span{</>(- -  k)}kez-

(e.l) Ri =  Vb ® W,

(e.2) W  =  span{^(- -  k )}kez.

(1 .1 .2)

3
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Once we get a refinable function 0, under mild assumptions on the mask 

a, we can have an MRA. Thus we can construct a wavelet system. In this 

context, we can understand how im portant a refinement equation is in wavelet 

theory.

As we mentioned before, as a wavelet system, a wavelet basis has many 

useful properties. However, in some situations, it is not good enough. For 

example, Daubechies proved th a t there does not exist any wavelet basis th a t 

is smooth, compactly supported, orthogonal and (anti)symmetric a t the same 

time. Nevertheless, in some situations, we wish we could have all the properties 

above. Therefore, we have to make some tradeoffs to  have all the properties. 

There are two natural methods for doing so. One method is to study wavelet 

frames instead of wavelet bases. We will discuss this method later. Another 

method, instead of deriving from one m other wavelet, is to  a basis consisting 

of {0 jjfc}j,fcez,*=i,2 ,-,L derived from several suitable functions ip1, ip2, ..., ipL.

Geronimo et al. [17] constructed a wavelet basis {tpj k j i ’j k}j,kez derived 

from two functions ip1 and ip2. This wavelet basis is smooth, compactly sup­

ported, orthogonal and (anti)symmetric. Their work motivates the study of 

m ultiwavelet theory.

Multiwavelet theory is a natural extension of the classical wavelet theory. 

From now on, by d we denote a dilation factor which is an integer such tha t 

\d\ > 1. For a function ip €  L 2 (R), we denote

ipj,k '■= \d\j /2ip(dj ■ - k ), j  e  Z, k  6  Z.

A multiwavelet system is a system { p ^ k} 1=1,2,■■■ ,l  of L2-functions which is 

an orthogonal basis, or a Riesz basis, or a frame of L 2 (K).

As we have seen, multiwavelets offer more freedom than  classical wavelets. 

Moreover, in the case of multiwavelets, if we want to  let the m other wavelet 

functions ip1, ip2, . . . ,  ipL to achieve reasonable smoothness, the support of the 

mother wavelet functions is much shorter than th a t of classical wavelets. This 

property, i.e., reasonable smoothness and short support, is very critical when

4
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wavelets are applied to  solve some PDEs numerically.

As we can do in classical wavelet theory, we can construct an MRA 

by a refinable function vector. We say th a t an r  x 1 function vector 

0  =  (0 i , . . .  , 0 r)T is a d-refinable function vector, where r  is called the 

multiplicity, if 0  satisfies the following refinement equation,

where d is the dilation factor, and a is a finitely supported sequence of r  x r  

complex-valued matrices on Z, called the (m atrix) mask for 0. Under an 

appropriate mild condition (see [2, 9, 27, 34, 35, 42, 43]) on a m atrix mask 

a, there exists a unique normalized distributional solution of the refinement 

equation (1.1.3). The refinement equation as well as the various properties 

of its refinable function vector has been well studied in the literature; see 

[2, 9, 15, 16, 20, 27, 34, 35, 42, 43, 45] and references therein. W hen r  =  1, 

the refinable function vector in (1.1.3) is a scalar function, so the refinement 

equation (1 .1 .2 ) in classical wavelet theory is a special case r  =  1 and d =  2  

of the general refinement equation (1.1.3).

As we mentioned previously, we have two methods to  tradeoff a wavelet 

basis to be smooth, compactly supported, (anti)symmetric and orthogonal at 

the same time. One method is to study a multiwavelet basis instead of a 

wavelet basis. The other m ethod is to study a wavelet frame. Now we will 

discuss wavelet frames.

A frame is a generalization of a basis. Figure 1 . 1  shows the difference 

between a basis and a frame. Figures 1.1.(a), l .l .(b ) , 1.1.(c) and 1.1.(d) show 

a basis of R 2, a frame of R 2, an orthogonal basis of R 2 and a tight frame of 

R 2, respectively. A basis of R 2 can represent each element of R 2 uniquely, 

but a frame of R 2 can have different representations for the same element of 

R 2. Thus, a frame provides redundancy, which is useful in some situations. In 

wavelet applications, wavelet frames have already proved to be very useful for 

signal denoising and currently are being explored for image compression.

5
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(a) (b)

Figure 1 .1 : Bases and frames.

Let { i p 1, . . . ,  i p L }  be a finite set of functions in L 2 (R). We say th a t 

{ i p 1 , . . . ,  i p L }  generates a d-wavelet frame in L2 (M) if there exist positive 

constants C\ and C2 such th a t

(1 .1 .4 ) c j i i / h 2 < x ^ y ^ y ^ K / , v ,',ic)i2 < C 211/ 112 v / € l 2( r ) ,
£ = 1  j e z  kel*

where ( / , g) :=  f R f ( t ) g ( t ) dt for f , g e  L 2 (K) and | | / | | 2 := ( / , / ) .  In particular, 

when C i =  C2 in (1.1.4), we say th a t { i p 1, . . . ,  i p L }  generates a tight d- wavelet 

frame in L2 (K).

If both  { i p 1, . . . ,  i p L }  and { i p 1 , . . . ,  i p L }  generate d-wavelet frames in L 2 (M) 

and satisfy

i f - s )  =  E E E < / . l Q $ h . 9 > v / >9  e  ^ ( K ) ,
r= i je z  fcez

then we say th a t { i p 1 , . . . ,  and { i p 1 , . . . ,  '0 L} generate a pair o f dual d- 

wavelet frames in L 2 (R). A pair of dual wavelet frames is also called a 

“bi-frame” in the literature [40]. An im portant property of a wavelet system

6
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is its order of vanishing moments. A function /  with enough decay is said to 

have v an ish in g  m o m e n ts  of order m  if

I  t kf { t ) d t  = 0 V k =  0 , . . . ,  m  — 1 .
JUL

We say th a t {ip1, . . . ,  ipL} has v an ish in g  m o m e n ts  of order m  if ip1, • • •, ipL 

all have vanishing moments of order m.  The order of vanishing moments of a 

wavelet system generated by {ip1, ■ ■ ■, ipL} has a great impact on how efficient 

the wavelet system is in representing a function.

Wavelet frames can be characterized theoretically (see [19] and [39]), but 

those characterizations are not easy to verify in practice. People tried for 

years to find a good way to generally construct wavelet frames with useful 

properties. Recently, Daubechies, Han, Ron and Shen [13], and Chui, He 

and Stockier [4] independently discovered a way to construct wavelet frames 

derived from refinable functions.

Inspired by their work, we are particularly interested, in this chapter, in 

obtaining pairs of dual wavelet frames derived from pairs of refinable function 

vectors. Define the Fourier transform to be /(£ )  :=  JR dt for /  G

L\  (E ). Taking the Fourier transform on both sides of the refinement equation 

(1.1.3), we get

m )  =
fcez

Here the sy m b o l of a m atrix sequence a is defined to be 

(1-1.5) a ( 0 : = ] T a fce - ^ ,  ( e l .
k£ Z

We can also use a m atrix of Laurent polynomials as follows:

a(z) := ^ akZk, ^ e C \ { 0 }. 
fcez

Therefore other than  a m atrix sequence, we can use a symbol a(£) or its 

Laurent polynomial m atrix a(z ) to represent the corresponding mask.

7
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A multiwavelet system is usually generated by several wavelet function 

vectors tpe,£ =  1, . . .  ,L,  which are derived from a d-refinable function vector 

4> in the following way:

T cm = b e( z ) m ,  e = i , . . . , L ,

where be(£), £ =  1 , . . . ,  L  are some appropriate matrices of 27r-periodic trigono­

metric polynomials.

W hen such {ipf: : £ =  1 , . . . ,  L}  generates a wavelet frame or a wavelet 

basis in L2 O&), in the literature they are also called an “MRA wavelet frame” 

or an “MRA wavelet” basis, respectively (see [4, 11, 12, 13, 39]). Note tha t 

all the wavelet function vectors ip1, ..., ipL are derived from the space V\{(p) 

generated by the refinable function vector 0  =  (<p>i,. . . ,  (pr)T , where the space 

Vj((p) denotes the Z/2-closed linear span of <pi{d? • —k ) , k  E Z , £ = 1 , . . . , r .  

Even in the scalar case r  =  1, it is natural to study a wavelet system which 

is generated from wavelet functions derived from a general space V}(0 ) for 

j  ^  1 generated by the scalar refinable function 0. Deriving wavelet functions 

from the space V}(0 ) for some j  ^  1 is equivalent to deriving them  from 

the space Vi($), where $  is a d-refinable function vector whose entries are 

0(d J _ 1  • —k ), k — 0 , . . . ,  \d\i~1 — 1. This fact naturally leads us to investigate 

MRA wavelet frames derived from a refinable function vector.

Tight wavelet frames and dual wavelet frames derived from a scalar refin­

able function (that is, multiplicity r  =  1 ) have been recently studied in Chui, 

He and Stockier [4], Daubechies, Han, Ron and Shen [13] for the case d = 2, 

and Daubechies and Han [1 2 ] for the general dilation factor. The construction 

of wavelet frames in [4, 12, 13] essentially uses the im portant fact th a t a uni­

variate finitely supported mask a satisfies the sum rules of order m  if and only 

if

(1 .1 .6 ) ( l + e - «  +  . . .  +  e-i(|d| - 1« ) ” 1 |

which means a(£) =  ( l  +  e- ^  +  • • • +  e- * ^ - 1)^)mp(£) for some 27r-periodic 

trigonometric polynomial p(£). In the multiwavelet case, the definition of sum

8
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rules becomes much more complicated. In the univariate setting, Plonka (see 

[42]) proposed a very nice factorization technique of the symbol of a mask 

which generalizes the factorization in the scalar case as (1.1.6). However, in 

order to  construct wavelet frames from a refinable function vector, Plonka’s 

factorization cannot be directly used to generalize the construction in [4,12,13] 

to  the multiwavelet setting. In this chapter, by employing the ideas from 

[4, 12, 13, 42] and the idea of Jordan canonical form of a m atrix, we are 

going to overcome this problem to generalize the construction of dual wavelet 

frames and wavelet frames in [4, 12, 13] from the scalar case to  the multiwavelet 

case. Such a generalization to the multiwavelet case is not trivial due to  the 

complicated form of the sum rules and approximation order. In particular, 

this chapter closely follows the lines developed in Daubechies and Han [12] 

where pairs of dual d-wavelet frames derived from any two d-refinable scalar 

functions were obtained. In this chapter, we shall be able to  generalize almost 

all the results in [1 2 ] on pairs of dual wavelet frames for the scalar case to the 

general multiwavelet case.

The outline of this chapter is as follows. In Section 1.2, we shall present a 

new canonical form of a m atrix mask which is quite useful in the construction 

of dual wavelet frames from refinable function vectors. The new canonical 

form proposed in Section 1.2 can be easily generalized to multiple dimensions. 

Also, the new canonical form in Section 1 . 2  can preserve the symmetry of a 

m atrix mask. In Section 1.3, by employing the new canonical form we gained 

in Section 1 . 2  and generalizing several results in [1 2 ], we shall discuss how to 

derive d-wavelet frames with the highest possible order of vanishing moments 

from refinable function vectors. First we shall discuss how to derive pairs of 

dual d-wavelet frames from any two refinable function vectors. Second, we 

shall discuss how to derive real-valued and symmetric dual d-wavelet frames 

from two real-valued and symmetric d-refinable function vectors. In fact, we 

shall show th a t if the symmetry centers of all the components in the two real­

valued d-refinable function vectors differ only by half integers, then we can

9
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obtain a pair of dual d-wavelet frames whose generators are real-valued and 

are either symmetric or antisymmetric with the same symmetry center. Note 

th a t the condition on the symmetry centers of the two d-refinable function 

vectors is autom atically satisfied when d =  2  and is almost a necessary con­

dition in order to  derive pairs of symmetric dual d-wavelet frames from two 

symmetric d-refinable function vectors. In the rest of Section 1.3, we shall 

investigate how to  derive d-wavelet frames from a single d-refinable function 

vector. Finally, in Section 1.4, using the method in Section 1.3, we shall 

present a few examples of pairs of dual wavelet frames to illustrate the general 

procedure for constructing (real-valued and symmetric) pairs of dual wavelet 

frames in this chapter. All the results in this chapter were obtained through 

joint work with my supervisor, Bin Han, and have been published in Advances 

in Computational Mathematics ([23]).

1.2 A  new  canonical form  o f a m atrix  m ask  

and th e  order o f sum  rules

In this section, we shall discuss a new canonical form of a m atrix mask with a 

certain order of sum rules. The order of sum rules of a mask is closely related 

to  the approximation order of its refinable function vector and the order of 

vanishing moments of a wavelet system derived from such a refinable function 

vector. See the work [2 , 20, 27, 34, 35, 42, 43] and references therein for a 

detailed discussion on approximation order and sum rules. We say th a t a 

mask a w ith multiplicity r satisfies the sum  rules of order m  w ith respect to 

the lattice dZ  if there exists a 1 x r  row vector ?/(£) of 27r-periodic trigonometric 

polynomials such th a t y ( 0 ) ^  0  and for k — 0 , . . . ,  |d| — 1 ,

(1.2.7) [y(d-)a(-)}{j)(27rk/d) = 5ky {j)(0), j  =  0 , . . . ,  m  -  1,

where 5 is the Dirac sequence such th a t 50 =  1 and 5k =  0 for all k £  Z \{0}, 

and y ^ ( £ )  denotes the j t h  derivative of y(h) for all j  £ Z. By the Leibniz

10
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differentiation formula, for k 

the following form

3

0 , . . . ,  \d\ — 1, it is easy to rewrite (1.2.7) into

(1 .2 .8 ) ( i }dj - iy {j- e)(0 )a ^ (2 ^k /d )  =  W j)(0 ), j  = 0 , . . . , m - l ,

j'-where g ) :=

Consider condition (1 .2 .8 ) for the special case r — 1. For k = 0 , . . .  ,\d\ — 1, 

when j  — 0, condition (1.2.8) becomes y(0)a(2nk/d) = 5ky{0). Notice th a t 

2/(0 ) 7  ̂ 0, we have a(2nk/d) = 0 for A; =  1 , . . . ,  \d\ — 1. Similarly, check 

condition (1 .2 .8 ) for j  = — 1 , we have a ^ ( 2 n k / d )  = 0  for k =

1 , . . . ,  |d| — 1. On another hand, if we have a ^ ( 2 n k / d )  =  0 for j  =  0 , . . . ,  m  — 1, 

k = 1 , . . . ,  \d\ — 1, then (1.2.8) is satisfied. Therefore, we get the conclusion 

th a t when r  =  1 , i.e., in the scalar case, the mask a(£) has sum rules of order 

m  if and only if

(1.2.9)

Unfortunately, the factorization (1.2.9) is no longer true for general multi­

plicity r. For instance, consider a function vector 0 :=  (0j, 02)T where 0i and 

0 2 are two piecewise polynomials and 0i :=  X[-i,o)g +  1)2 (—2t +  1) +  X[o,i) (t — 

l ) 2 (2t +  1), 0 2 :=  t( t  + l ) 2X[-i,o) +  t( t  — l ) 2X[o,i)- The function vector 0 is the 

well known Hermite cubics and it satisfies the following refinement equation

0 =

1/2 3/4

- 1/8  - 1/8
0 ( 2  • + 1 ) +

' 1 o '
0 (2 -) +

' 1 / 2 - 3 / 4  '

_ 0  1 / 2  _ . 1 / 8 - 1 / 8  _
0 (2 - - I ) .

Hence the mask a(£) is defined as

a ( 0  :=
(e* +  2 +  e "* ) /4  3(e: _ -*)/8

( - e *  +  e- * )/1 6  ( - e *  +  4 -  e~^)/16

Although the mask a(£) satisfies the sum rules of order 4 w ith a row vector 

y(£) =  [1, e ^ /3 + 1 /2 —e~^+e~*2^ /6 ], we have (l+ e~ ^ ) fa(£) .  The factorization

(1.2.9) is no longer true for the case r  >  1.

11
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However, we still can get a factorization similar to (1.2.9) by employing 

the idea of Jordan canonical form. For an r x r  m atrix {/(£) of 27r-periodic 

trigonometric polynomials, we say th a t [/(£) is in v e rtib le  if the inverse of U (£) 

is also a m atrix of 27r-periodic trigonometric polynomials. In Section 1.1, we 

introduced the MRA generated by 0. As before, let Vo be the L 2-closed linear 

span of (• —fc),. . . ,  0r (• — &), k  G Z. Notice th a t Vo is also the Z^-closed linear 

span of 0 i 0 r (- — k), k  G Z where 0 :=  ( 0 i , . . . ,  0r )T :=  f/(£)0(£) 

for an invertible f/(£). So when we are talking about an MRA generated by 0, 

there is no big difference between 0 and 0. Define a(£) :=  U(dfi)a(^)U(^)~x, 

then 0(d£) =  a(£)0(£). So a(£) is the m atrix mask of the refinable function 

vector 0. Since a(£) =  U(df)a(fi)U for some invertible U (£), we have 

some choices for a and we hope we can get some special form for a when U ( f ) 

is suitable.

Before going further, let us go through the following Lemma.

L em m a  1.1. Let U( f )  be an invertible r x r  matrix of 2n-periodic trigono­

metric polynomials. I f  a finitely supported mask a with multiplicity r satisfies 

the sum rules of order m  in (1.2.7) with a 1 x r  row vector y(£) of 2ir-periodic 

trigonometric polynomials, then the finitely supported new mask a, defined by 

a(£) := U(d£)a(£)U(£)_1; a ŝo satisfies the sum rules of order m  in (1.2.7) 

with the new row vector y(£) of 2n-periodic trigonometric polynomials given

b y y { 0  = y (£ )U (0 ~ 1-

P ro o f: We need to check th a t [y(d')a(-)]^(2irk/d) = 8 k V ^ \ 0) for all j  =  

0 , . . . ,  m  — 1 and k = 0 , . . . ,  |d| — 1. Since

m M O  =  y ( d f ) U ( d 0 - ‘U ( d ( ) a ^ ) U ( 0 - 1 =

we only need to  verify th a t for all j  =  0 , . . . ,  m  — 1 and k =  0 , . . . ,  \d\ — 1 ,

(1.2.10) [y (d - )a ( - )U ( - ) - ^ \2 n k /d )  = <5fc[2/ ( - ) t/( .) - 1]^ (0 ).

By assumption, [y(d-)a(-)]^(27rk/d) = 5ky ^ ( 0) for all j  — 0 , . . . ,  m  — 1 and 

k = 0 , . . . ,  |d| — 1, plus the Leibniz differentiation formula, (1.2.10) holds for 

all j  =  0 , . . . ,  m  — 1 and k =  0 , . . . ,  \d\ — 1 . ■

1 2
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Now we are in the position to give the following result about factorization 

of a m atrix mask which generalizes the scalar case in (1.2.9).

T h e o re m  1.1. Let a be a finitely supported mask on Z  with multiplicity r. 

Then a satisfies the sum rules of order m  with respect to the lattice dZ i f  and 

only i f  there exists an invertible r x r  matrix U (£) of 2n-periodic trigonometric 

polynomials such that U(d£)a(£)U( £ ) _ 1  takes the canonical form

( 1 .2 .11)
( 1  +

where Ppi, Pi,2 5 P2 ,i and P2 2  are some 1 x 1, 1 x (r — 1 ), (r — 1 ) x 1 and 

(r — 1 ) x (r — 1 ) matrices of 2n-periodic trigonometric polynomials respectively 

and P i,i(0 ) =  d~m.

P ro o f: Since o satisfies the sum rules of order m, by definition, there exists 

a 1 x r  row vector y{fi) of 27r-periodic trigonometric polynomials such th a t 

y(0 ) 7  ̂ 0 and (1.2.7) holds. Let U\ be an r  x r  invertible m atrix  of numbers 

such th a t y(0)Ui = [1,0, . . . ,  0]. Define the trigonometric polynomials pe, £ =

1 , . . . ,  r,  by [pi(£)> ■ ■ ■ >Pr(£)] =  v(£)U\- Since p i( 0 ) =  1 , there exist 27r-periodic 

trigonometric polynomials fi(fi),£ =  2 , . . .  , r ,  such th a t f (f \  0 ) =  \pe/pi}^(0)  

for all j  = 0 , . . .  , m  -  1 and i  = 2, . . .  , r ,  i.e., \pe(-) -  fe(-)pi( ')]^ (0) =  0  for 

all j  =  0 , . . . ,  m  — 1 and £ — 2 , . . . ,  r.

Take U{i)  =  

[Pi(0»--- .P r(0 ]

u p .  Define $(() := =

. It is evident th a t [/(£) is invert-

1 / 2( o  ••• m
0  / r_ 1

1 - / 2 (e) . . .  - m
0  / r_ 1

ible, s/i (0 ) =  1 , and y f \  0 ) =  \pe -  /tf>i]w (0 ) =  0  for all £ =  2 , . . . ,  r and j  = 

0 , . . . ,  m  — 1 , where [t/i(£), • • ■,&(£)] =  2/(0 - Let « ( 0  =  W 0 a (£ )^ ( f ) -1 - BY 
Lemma 1.1, a satisfies the sum rules of order m; th a t is, for all j  =  0 , . . . ,  m  — 1 

and k = 0 , . . . ,  \d\ — 1 ,

( 1.2 .12) [y(d-)a(-)]{j)(27ck/d) = 8ky b)( 0).

13
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Since y ^ \ 0) =  0 for all £ — 2 , . . . ,  r  and j  =  0 , . . . ,  m  — 1, we observe tha t 

[ye(d-)]^'>(2irk/d) = 0  for all £ =  2 , . . . ,  r, j  — 0 , . . . ,  m — 1 and k =  0 , . . . ,  |d| — 1 . 

So by m atrix multiplication, for all j  — 0 , . . . ,  m  — 1 and k  =  0 , . . . ,  |d| — 1,

(1 .2 .1 2 ) is equivalent to

(1.2.13) [y1(d-)ah l ( . ) f \ 2 n k / d )  = Sky[j \ 0)

and

(1.2.14) [y1(d-)ahe{-)]b){2nk/d)  =  0,

where a i/(£ )  denotes the (1, £)-entry of the m atrix a(£). Since yi(0) =  1, by the 

Leibniz differentiation formula, (1.2.13) implies ai,i(0) =  1 and di^ (2nk /d )  — 

0  for all j  = 0 , . . . ,  m  — 1 and k =  1 , . . . ,  \d\ — 1 ; th a t is, 5 i,i(0 ) =  1 and

( l +e~^H------ |-e- l(MI-i)€)m | aiq(^). Similarly, (1.2.14) implies a^l(2nk /d)  =  0

for all j  =  0 , . . . ,  m  — 1 , £ = 2 , . . . ,  r  and k = 0 , . . . ,  \d\ — 1 ; th a t is, ( 1  — 

e-i\d\^m | a ^ ^ )  for all £ = 2 , . . . ,  r. So a(£) can be w ritten in the form of

(1 .2 .1 1 ).

Suppose th a t a mask a(£) =  f7(d^)a( ^ ) [ / ( ^ ) _ 1  takes the form of (1.2.11) 

where [/(£) is invertible. Since ai,i(0) =  1, by [12, Lemma 2.3] or Lemma 1.4 

in this chapter, there exists a 27r-periodic trigonometric polynomial y\ such 

th a t y i(0 ) =  1 and

[&(•) - y i ( d - ) s i,i(-)]0 )(°) =  0 V j  =  0 , . . .  , m -  1.

Take y(£) =  [yi(£), 0, • • •, 0]. Since a takes the form of (1 .2 .1 1 ), equations 

(1.2.13) and (1.2.14) are satisfied for all j  = 0 , . . . ,  m  — 1 and k = 0 , . . . ,  |d| — 1. 

Hence we have equation (1.2.12), i.e.,

[;y{d-)a(-)]{j\2 'K k/d) = 5ky {3\ 0) V j  = 0 , . . . ,  m  -  1; k = 0 , . . . ,  |d| -  1.

Therefore, a must satisfy the sum rules of order m.  Consequently, since 

a(£) — U(d^)~1a(^)U (£) , the mask a must satisfy the sum rules of order 

m  by Lemma 1.1. ■

14
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The above theorem generalizes the factorization (1.2.9) in the scalar case 

r  =  1 to the general multiwavelet case. Moreover, to describe a wavelet system 

derived from a refinable function vector 0, we need the following theorem. To 

give a simpler and easier understanding, in the following theorem, we put the 

condition “ 1 is a simple eigenvalue of a(0), and dk is not an eigenvalue of a(0) 

for all k E N” on the matrix mask a of the refinable function vector 0. As we 

will see it later, such a condition can be replaced by a much weaker condition.

T h e o re m  1.2. Let a be a finitely supported matrix mask on Z with multiplicity 

r. Suppose that a satisfies the sum rules of order m  with respect to the lattice 

d!L, 1 is a simple eigenvalue of a(0 ), and dk is not an eigenvalue of  a{0 ) for all 

k E N. Then for  any nonnegative integer n, there exists an invertible r x r  ma­

trix U ( 0  of 2n-periodic trigonometric polynomials such that U(d£)a(£)U ( £ ) - 1  

takes the following canonical form

[ ( l - e - « ) " P 2, ,©  P2i2©  J ’

where Pi,i, P i)2, T*2 ,i and are some 1 x 1 , 1  x (r — 1 ), (r — 1 ) x 1 and 

(r — 1 ) x (r — 1 ) matrices of 2n-periodic trigonometric polynomials respectively 

and Pi,i(0) =  d~m. Moreover, i f  <f> =  ( 0 i , . . . , 0 r)T satisfies the refinement 

equation with the dilation factor d and a mask taking the form of  (1.2.15), 

then 0 ^ ( 0 ) =  0  for all £ — 2 , . . . ,  r  and j  = 0 , . . . ,  n — 1 ; that is, all the 

functions  0 2 , . . . ,  0 r have vanishing moments of order n.

P ro o f: Since a satisfies the sum rules of order m,  by Theorem 1.1, there exists 

an invertible r x r  m atrix U i( 0  of 27r-periodic trigonometric polynomials such 

th a t a(£) =  C/i(d£)a(£)[/i( £ ) - 1  takes the form of (1.2.11). By the assumption 

and a (0 ) =  C/i(0 )a (0 )[/i(0 )_1, we deduce th a t 1 is a simple eigenvalue of o(0 ) 

and dk is not an eigenvalue of o(0) for all k  6  N.

Take Ufifi)
0

, where g(£) -  [#2(£) , . . .  ,gr(£)]T with g2 (g),
9 ( 0  I r - 1.

9r(0  being some 27r-periodic trigonometric polynomials to  be determined.

15
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We now compute the m atrix b(£) := O 2(^0“ (0 O 2 (0  1 as follows:

m
1 o ' “ 1,1 (0 “1,2(0 1 0 ■

_0(<̂ O I r — 1. .“2,1(0 “2,2(0. - 0(0  ! r - l .

o i , i ( ^ ) - o i ,2 (0 # ( 0  «i,2 ( 0

g{<%) (“ 1,1 ( 0  -  «i,2 (0 ^(0 ) -  <*2,2 (0 0 ( 0  +  “ 2,i ( 0  “2,2 ( 0  +  5 (^0 “ i,2 (0 . 

Since (1 +  e“* +  . . .  +  | aX)1( 0  and (1 -  | oi,2 ( 0 ,  6 (0

takes the form of (1.2.15) if and only if for all j  =  0 , . . . ,  n — 1,

(1.2.16) [s(d-)ai,i(-) -  d2,2 {-)g(-) + o2,i(-) -  g(d-)dl!2{-)g(-)]b)(0) =  0 .

T hat is, by the Leibniz differentiation formula, for every j  = 0 ,. . . ,  n — 1,

E (fWr^ow^o)
k = 0 '  '

(1.2.17)

/c=u ^  r=o ^  ^ -

= -a^l(O)-

Note th a t 0 1 ,2 (6 ) =  0. The term  <76 ')(0 ) does not essentially appear in the sum

(0) ^ ( 0)

since when k  =  j ,  then JZeZo ( ^ ^ “ iyTk~^(0 )g^(0 )  =  ai,2 (0 )<7(0 ) =  0 , and 

when k = 0 , then the term  in the sum JZeZo (O^) (0 0 ^ ( 6 ) has

the coefficient 0 1 ,2 (0 ) =  0. Consequently, since 1 is a simple eigenvalue of o(0) 

and dk is not an eigenvalue of a(0) for all k € N, we define the (r —1 ) x 1 column 

vectors Cj, j  = 0 , . . . ,  n  — 1, of numbers by the following recursive formula:

Cq := — [ai,i(0 ) / r_i — 02,2(6)] 10 2 , i (0 ) =  — [Jr_i — 0 2 ,2 (0 )] 1o2,i(0 )

since a i,i(0 ) =  1 , and for j  = 1 , . . . ,  n — 1 , define

t - i
:=  [d3I r^  1 -  0 2 ,2 (0 )] - 1

-  “ S ( o )  -  u )  ( s ? i  fc)( ° )d*cfc -  fe)
k =0

1-1 / -\ j - k - 1 ,  . .  N
3 \ j k „  ( d  1 ~ ( 1— fc—

( 0 )C fc )

k =0E 1K*E
e=o

a 1 ,2 ( 0  )ce
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Since 1 is a simple eigenvalue of a(0) and dk is not an eigenvalue of a(0) for 

all k £  N, we deduce th a t — 0 2 ,2 (0 ) is invertible for all j  =  0 , 1 , 2 , . . . .

So Cj,j =  0 , . . . ,  n — 1 , are well defined. Consequently, there exists an (r —

1) x 1 column vector g(£) = [<72(£)> • • • > flv(£)]T °f 27r-periodic trigonometric 

polynomials such th a t g(jH0) = Cj for all j  = 0 , . . . ,  n — 1. By the choice of 

c j , j  =  0 , . . .  ,n  — 1, using the Leibniz differentiation formula, one can easily 

verify th a t (1.2.16) holds. Therefore, setting U(£) =  we see th a t

U(d£)a(£)U ( £ ) _ 1  takes the form of (1.2.15).

Suppose <f>(d£) =  a(£)0(£) with a(£) taking the form of (1.2.15). Due

"l O’
to the special form of a(£) in (1.2.15), we deduce th a t a(0) =

0  *
and

fyO(Q)
*  *  

0  *
for all j  =  0 , . . . ,  n — 1 , where * denotes some unknown

m atrix or number. We use induction to prove th a t 0 b) ( 0) =  [*,0, . . . , 0 ] T 

for all j  — 0, . . . , n  — 1. When j  =  0, we have 0(0) =  a(O)0(O). Since 1

" l  o '
is the simple eigenvalue of a (0 ) and a(0 ) =

0  *
we must have 0 (0 ) =

[*, 0 , . . . ,  0 ]T, where * denotes a number. Suppose th a t 0 ^ ( 0) =  [*, 0 , . . . ,  0]T 

for all k — 0 , . . . ,  j  — 1 with 0 < j  ^  n  — 1. Then by the Leibniz differentiation 

formula, aP0 b)(0) =  XfjLo O)0(fc)(O). So

j - i  /  \

[dj I r -  a (O )]0{j)(O) =  ( l ) ai j~k)(O )0(fc)(O).
k= 0

Since ab fc) (0) and by the induction hypothesis, for all k  =  0 , . . . ,  j-

we have ab fc)(O)0(fc)(O) =  [*,0, . . . , 0 ] r  for k

* *

0  *

1 , 0W(O) =  M , . . . , 0 ]

0 , . . . ,  j  — 1. Since d?Ir — a(0) is invertible for j  >  0, we have 

0 b')(0 ) =  [dPIr -  a(O) ] - 1 

where * denotes some number or matrix. By induction, we conclude th a t
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0 ) =  0  for all j  =  0 , . . . ,  n — 1 and £ = 2 , . . . ,  r  which is equivalent to 

saying th a t f a , . . .  ,(j>r have vanishing moments of order n. ■

Theorem 1.2 gives us a clear canonical form of a m atrix mask a having 

sum rules of order m. Moreover, we can use this canonical form to  characterize 

the vanishing moments of a function derived from the refinable function vector 

<p associated with its m atrix mask a.

C o ro lla ry  1 .2 . Let <p G (l/2 (K ))r be a refinable function vector with its m atrix 

mask a and the m atrix mask a takes the canonical form (1.2.15). Suppose tp G 

L2 (M) is defined by ip(d!;) — 5(£)0(£) where b is a 1 x r  vector of trigonometric 

polynomials. Then for an integer £ ^  n, ip has vanishing moments of order £ 

if and only if 6 ^ ( 0 ) =  0  for all j  =  0 , . . . , £ — 1 where by is the first component 

of b.

Although Theorems 1.1 and 1.2 are stated in the univariate case, from the 

proofs of these two theorems, we know th a t they can be generalized to the 

multivariate case as follows.

T h e o re m  1.3. Let a be a finitely supported matrix mask on Z s with multi­

plicity r. Then a satisfies the sum rules of order m  with respect to the lattice 

M Z S if  and only i f  there exists an invertible r x r  matrix U(£) of 2ir-periodic 

trigonometric polynomials such that the m a sk a (£) =  f7(Mr ^)a(^)C/ ( ^ ) _ 1  sat­

isfies

a M (0) =  1, ^ 0 1 ,1 ( 2 irk) =  0 VA; G (M r ) " 1Z s\Z*, \/a\ < m, 

d^fae(2nk)  =  0 VA; e  (M T)~1 Z s, \fa < m, £ = 2 , . . . ,  r.

T h e o re m  1.4. Let <p =  (fa, • • •, fa )T € (L 2 (Ms))r satisfy the refinement equa­

tion <p(MT£) =  a(£)</>(£) with the dilation matrix M  and its matrix mask a. 

Suppose that a satisfies the sum rules of order m  with respect to the lattice 

M Z S, i.e., there exists a 1 x r  row vector v(£) of 2n-periodic trigonometric 

polynomials such that v(0) ^  0  and

d»[v(MT-)a(-)}(2irk) = 8kd^v(£f) VA; G ( (M T)~1Z S) / Z s, \fa < m.

18
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Ifv(0)<p(0) 7  ̂ 0, then for any nonnegative integer n, there exists an invertible 

r x r  matrix t/(£) of 2rr-periodic trigonometric polynomials such that the mask 

a(£) =  satisfies

ai,!(0) =  1, <9^1,1(27rfc) =  0 VA; G {M t )~1Z s\ Z s, \fi\ < to, 

d ^ a i^ T r k )  =  0 VA; G (M r )_1Zs, \p\ < m, i  =  2 , . . . ,  r,

<9^0 î(27rA:) =  0 VA; G Zs, |/ |̂ <  n, i  =  2 , . . .  ,r.

Moreover, i f  the matrix mask a satisfies the above conditions, then ^ < ^ (0 ) =  0 

for  all £ = 2  , . . . , r  and \g,\ < n, that is, all the functions (p2 ,---,<pr have 

vanishing moments of order n.

As mentioned in Section 1 .1 , symmetry is very im portant in many ap­

plications of wavelet systems. In order to construct symmetric pairs of dual 

d-wavelet frames from symmetric d-refinable function vectors, in the rest of 

this section, let us discuss how symmetry can be preserved in our canonical 

form of a m atrix mask in Theorems 1.1 and 1.2.

For a function <p on R, if cp{c—x) =  ±<p(x), then we say th a t cp is sy m m e t­

ric  about the point c/2  and the s y m m e try  c e n te r  of cp is c/2. Especially, if 

<p(c — x) = — <p(x), then we say th a t (p is a n tisy m m e tr ic  about the point c/ 2  

and the sy m m e try  c e n te r  of (p is c/2. It is easy to see th a t <p(c — x ) =  ±<p(x) 

for all x  G K if and only if </>(£) =  ± e “^£>(£) for all ( G i .  Similarly, (p is a real­

valued function, th a t is, <p{x) = <p(x) for all x  G M, if and only if </>(£) =  <p(—£) 

for all £ G M.

We say th a t a m atrix mask a w ith multiplicity r  is s y m m e tr ic  if there 

exist c i , . . . ,  cr G l  and £1 , . . . ,  er G {—1,1} such th a t

(1.2.18) o(£) =  S (d £ )a (0 5 '(0 _ 1  with S(£) = diag(eie*ci$, . . .  ,e relCr$).

It is evident th a t a is a real-valued m atrix mask if and only if a(—£) =  a(£). 

By a simple computation, we have the following result.
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Lemma 1.3. Let 0 =  (0 1 , . . . , 0 r )T be a d-refinable function vector with a 

finitely supported mask a on'L. I f

d)j(cj — x) =  e-id(x) V x  G K., j =  1 , . . . .  r
(1.2.19) J '

/o r  some Cj G R and £j G { — 1,1},

then 0 (f) =  5 ( 0 0 ( 0  and H d0  = s (d0  l a (O 5 (O 0 (O; ™/iere

5 ( 0  := diag(e1e“ 1̂ , . . . ,  £reiCl̂ ).

Conversely, i f  a is symmetric and (1.2.18) is satisfied, then 0 ( 0  =  5 ( 0 0 ( 0  

and (1.2.19) holds.

Now by the following result, we can see how the symmetry of a m atrix 

mask can be preserved in our canonical form of a m atrix mask.

Theorem  1.5. Let a be a matrix mask with multiplicity r satisfying all the 

conditions in Theorem 1.2. I f  a is symmetric and satisfies (1.2.18), then there 

exists an invertible r x r  matrix U( 0  of 2n-periodic trigonometric polynomials 

such that 6 (0  :=  U(dfi)a(fi)U( 0 _ 1  takes the form of (1.2.15) and the mask b

is symmetric. Moreover, i f  a is a real-valued mask, that is a(—0  =  a ( 0 ,  ^ en 

both U and b are real-valued sequences; that is, U(—0  =  U (0  and b(—0  =

Kf).

Proof: Since a satisfies the sum rules of order m, by definition, there exists 

a 1 x r  row vector u(f) of 27r-periodic trigonometric polynomials such th a t 

u(0 ) ^  0  and

2  ^  [v(d-)a(-)}b)(2irk/d) = 5kv (j)(0)

V /  =  0 , . . . ,  m  — 1; k =  0 , . . . ,  \d\ — 1.

By (1.2.18), we have v(d£)S(d£)a(£) = v(d£)a(£)S(£). Therefore, it follows 

from (1 .2 .2 0 ) tha t

[v{d-)S{d-)a(-)]^\2'Kk /  d) =  [v(d-)a(-)S(-)\^\2'Kk /  d) =  5fc[u(-)5(-)]^(0)
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for all j  =  0 , . . .  , ra — 1 and k = 0 , . . . ,  |d| — 1. Since (1.2.20) implies u(0)a(0) =  

n(0 ), it follows from (1.2.18) th a t 'u(0)5(0)a(0) =  n(0)S,(0). Since 1 is a simple

eigenvalue of a(0) and 5(0) =  diag(£i , . . . ,  £r), we must have e:u(0)5(0) =  u(0) 

for some Id =  1.

Take r/(£) =  u(£) +  £v(t,)S(£,). Then y (0) =  2u(0) ^  0 and if is easY 

to  see th a t (1.2.7) holds. Denote [2/1 (£),•■•, yr (£)] =  v (0 -  Then ye(£) — 

££fe1Ct̂ ye{Q for all £ = 1 , . . .  , r .  W ithout loss of generality, we may assume 

th a t 2/1 (0) =  1. Otherwise, since y(0) ^  0, there is a perm utation m atrix Uq 

such th a t [y(0)£/o]i d  0 , where [y(0){7o]i denotes the first component of y(0)Uo- 

Then we can replace y(£) by y{l;)Uo/[y(0)Uo\i and replace a(£) by U ^ a ^ U o .  

Clearly, Uq ]a(^)Uo is still symmetric and by Lemma 1.1 satisfies the sum rules 

of order ra.

As in the proof of Theorem 1 .1 , since yi(0) =  1, there exist 27r-periodic 

trigonometric polynomials / 2, . . . , / r such th a t

(1.2.21) [ye(.) -  /d - )y iO P (O )  =  0 V 1 =  2 , . . . ,  r; j  =  0 , . . . ,  ra — 1.

Note th a t

y i {0  -  £X£tel{ci~Cl)if i ( 0 y i ( 0  = ££telCliyt{£) -  £i£iel{ct~cx)if ^ E ^ e ^ y ^ )

=  E£eelcd[ye(t) -  f e(C)yi{0]-

with /(£ )  =  [/2 (£)>•••>/r(£)]- As in fhe proof of Theorem 1.1,

Let //(£ ) =  f {.{£)/2 + £!££ei(ce Cl)$/ r ( 0 / 2, for ^ =  2, . . . , r .  Then (1.2.21) 

still holds with f t  being replaced by fg for I  =  2, . . . , r .  Define f/i(£) =

i  m
0  Ir- 1_

a(£) := f/i(d£)a(£)[/i( £ ) _ 1  must take the form of (1.2.11). Since fe(Q  =  

£\£gel^ c^  it is easy to verify th a t C/i(£) =  S'(£)f/i(£)>S'(£)~1. Conse­

quently,

a ( 0  = U i ( d 0 a ( 0 U 1( t y i

= s m u Im s ( d / ; ) - 1s{d ( )a ( i i ) s ( s ) - 's ( t ; )u I { ( r l s ( i ) - '  

= s m u M H O U ^ - ' s u ; ) - 1 = s id O H O D S tf) -1-
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So a is symmetric.

Let 2 (f) =  [2 2 (f), •• • >flv(f)]T t>e given in the proof of Theorem 1.2 such 

th a t (1.2.16) is satisfied. Define Si(f)  :=  diag(c2e“ 2̂ , . . . ,  crelCr̂ ). Since a(f) =  

S (< if)H (0S (0_1, we have

SyrCf) =  ei(‘<- 1)c‘£a 1,1 K), S ^ ( | )  =

and

M l )  =  £ i M l )  -  5 1 (de)a2>2 ( 0 5 i ( 0 " 1-

Let £ (0  =  e ^ S ^ f ) - 1]^!). Then

0 (d f)ai,i(f) +  a 2,i(f) -  a2,2 (0 ^ 0  “  ? ( ^ ) a i , 2 (0 ? ( 0  

=  +  e1eic+ S1(dO~1̂ A O -

5i (<*f ̂ M l ) 5 ! (O d e ici* Si (0 _ 1d(0 -

-  £1eici^S'i(dO_ 1fl'(^ )^ i,i(^ ) +  £ieici^ i ( ^ ) _1M 0 -

e ielcl€S,i(dC)_1a2 ,2 (0 d ( 0  -  £ieici^ i ( d f ) _ 12 (df) M O  0 ( 0

= £ielC1̂ i(dO_1[d( 0̂«l,l(0 + M 0  -«2,2(0d(0 MOMO^O]- 

Therefore, (1.2.16) still holds with g being replaced by (g + 'g)/2. Let

/  x  "  1  0  "

u 2( 0  -
[2(0/2 + £(0/2 A-l.

As in the proof of Theorem 1.2, 6 (0  =  t^2 (^0 ® (0 ^2 (0 _ 1  must  take the 

form of (1.2.15). Since 2 (0  +  0 (0  =  £i eic^ s i ( 0 ~ l [9(0 +  0(O]> [t is easy 

to check th a t [/2 (f) =  ^ (0 ^ 2  ( 0 5 ( 0 1 and therefore, one can verify th a t 

6 (f) =  S'(df)6 (f)S '(f)_1. So the mask 6  is symmetric. Take U(f)  =  L/q(0)L/i(^). 

Then 6 (f) =  f/(df)a(f){7(f ) - 1  takes the form of (1.2.15) and is symmetric.

W hen a is a real-valued mask, one can replace every m atrix V (f) of 2n- 

periodic trigonometric polynomials in the above proof by the corresponding

2 2
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m atrix [U(£) +  U (-£ )]/2 . T hat is, for every sequence in the above proof, we 

can ignore the imaginary part of the sequence. So, both U and b are real-valued 

sequences. ■

Finally, I would like to point out th a t in Theorems 1 .2  and 1.5, the con­

dition “ 1 is a simple eigenvalue of a (0 ) and dk is not an eigenvalue of a (0 ) 

for all k £ N” can be changed into a much weaker condition “y( 0 )</>(0 ) ^  0 ” , 

where y satisfies (1.2.7). The reason is as follows. Use all the same nota­

tions as in the proof of Theorem 1.2 and define 0(£) :=  Ui (£)</>(£), &(£) := 

U2(d0U1( d 0 a ( 0 U 1( 0 ~ 1U2( 0 ~ 1 and rf(0  := £/2 (£ )£ M 0 ?(0 - In the Proof of 
Theorem 1.2, the main idea is to construct some suitable <?(£)• In order to 

construct such <?(£), one needs to solve some linear equations in (1.2.17) for 

gbO(o); j  =  0 , . . . ,  n — 1. The condition “1 is a simple eigenvalue of a(0) and dk 

is not an eigenvalue of a(0) for all k <E N” is to  guarantee th a t one has a unique 

solution <7^ ( 0 ), j  = 0 , . . . ,  n — 1, to the linear system in (1.2.17). The new con­

dition th a t y(0)</>(0) 7  ̂ 0 can guarantee th a t (1.2.17) has a solution but may not 

be unique. The reason is as follows. By Lemma 1.1, y(O)0(O) =  y(O)0(O) 7 = 0. 

By the proof of Theorem 1.1, we know th a t y(0) =  (j/ i(0),0, . . .  ,0]. Hence 

0j(O) 7  ̂ 0. Notice th a t

v ( 0  = £^(0 f e )  =  [0 1  (0 . M O  + 0 1  ( ^ 2 (0 . ■ ■ ■ . 0 r(O  +  0 l(O »r(O ]T-

Then by the Leibniz differentiation formula and 0i(O) ^  0, one can prove th a t 

there exists an (r — 1) x 1 column vector g(£) of 27r-periodic trigonometric 

polynomials such th a t for every j  = 0 , . . . ,  n  — 1 ,

[0 <(O +  0 i(-)^(O ]O)(O) =  0  V £ = 2 , . . .  ,r; j  — 0 , . . .  ,n  — 1.

So for every j  =  0 , . . . ,  n  — 1 ,

(1 .2 .2 2 ) T ^ ( 0 ) = = [ ^ ' )(0 ) , 0 , . . . , 0 ]r .

By (1.2.22), it follows from the refinable equation rf(d£,) — b(£)rf(£) and the 

Leibniz differentiation formula th a t for every j  =  0 , . . . ,  n  — 1,

6 W(0 ) [ l , 0 , . . . , 0 ]T - [ f e g ( 0 ) , 0 , . . . , 0 ]T.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



So &(£) must take the form in (1.2.15). However, it is much easier to solve the 

linear system in (1.2.17) to obtain g(£) than  using the above procedure which 

involves computing the derivatives of <p a t the origin.

1.3 C onstruction  o f m ultiw avelet fram es

Since Section 1.2 gave an elegant canonical form of the m atrix mask with 

certain order of sum rules, in this section, by applying the results in Section 1.2, 

we can investigate how to construct multiwavelet frames w ith certain vanishing 

moments from a given refinable function vector.

1.3.1 Algorithm for constructing pairs of dual wavelet 
frames from refinable function vectors

In this subsection, I shall generalize the construction of pairs of dual wavelet 

frames in [4, 12, 13] for the case r  =  1 to the multiwavelet case with a general 

dilation factor.

By (L 2(R ))r we denote the set of all r  x 1 column vectors of functions 

in L2 (R). Given a m atrix A, we denote A T the transpose of A  and A* the 

transpose of the complex conjugate of A.

By generalizing the results in [4, 12, 13], we have the following theorem.

T h e o re m  1.6. Let <f> and be two r  x 1 d-refinable function vectors in 

(L 2 (K ))r with dilation factor d and finitely supported masks a and b, respec­

tively. Suppose that there are r x r  matrices 0 ,  a 1, . . . ,  aL, b1, . . . ,  bL of 2u- 

periodic trigonometric polynomials such that

(1.3.23) <£(O)*0(O)0(O) =  1, a(O)*0(O)0(O) =  0(O)0(O),

(1.3.24) a*(0)?(0) =  ^(0)0(0) -  0 V £ = 1 , . . . , L

24
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and

(1.3.25)

where

(1.3.26)

aHO*

^  + 2- i Y

aL(0 *

;(e +  ? r

a1(^  + (f d

j t f « )

M ( 0  :=

_ - a ( e  +  i « a ) ' e K ) K 5 )

Define r  x 1 wavelet function vectors i f1, . . .  , i fL, i f 1, . . .  , i fL as follows

(1.3.27) ? ( d 5 )  =  a 'g j f e )  anrf ^ ( d f )  =  d '( J ) f e ) ,  « = 1 , . . . , L .

Then { i f1, . . . ,  i fL} and { i f1, . . . ,  ifL} generate a pair o f dual d-wavelet frames 

in L 2{

P ro o f: Note th a t (1.3.24) implies th a t •01 (O) =  • • • =  ifL(0) =  V,1 (0) =  • • • =  

i fL(0) =  0. Since both <p and (f are compactly supported d-refinable functions 

in (L2 (M))r with finitely supported m atrix masks, by [21, Theorem 2.3], there 

exists a positive constant C  such tha t

E E E E [ l < / ’ < « ) l 2 +  K / ' ^ > l 2] « C 1 I / I I 2 v / e i 2(R)
t =  i  m = i  j e z  fcez

where if^-j^ \fA j^2'(f L ( (̂  ’ ~ k )  and if fm denotes the m -th entry in the column 

vector ife.

By slightly modifying the original proof in [12] (the first version) for the 

scalar case, we generalize the proof in [1 2 ] to the multiwavelet case.

Note th a t for £ =  1 , . . . ,  L, we have

n k( o  = \d\
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By the Plancherel theorem and the Parseval identity, we have

^ 2 ( f ^ i k ) T (^ ,k ,9 )
fcez

=  /  ' 5 2 f { dJ(t  + 27ra))'ll;e( t  + 27raY elKd£,
k̂ zL ^ a6 Z

[  W j ( # ( f  +  27T/3)) +  27
•̂ T /3ez

_ M I  f  y 2 f ( t f ( £  +  2ira))'ipe(£ +  2Tra)*x
J T27T

(1 3.28) +  2?r/5)) ^  +  2ir^
/3ez

=  S  ^ ( d ,(£ +  27ra) ) ^ ( £  +  2Tra)*g(d>£) &{£) d£
n  aGZ

''I ' +/ e e  /(r f3'(£ +  2 -7rm +  c?27rfc))</>̂   1- 2 -7̂  x
27T 1Mr ra= 0  «€Z

i ) «27T ra=(J

where

(1.3.29) h(C) =  £  / ( ^ +1(e +  2  nk))$(£  +  2ttA;)*.
k e z

Note th a t (1.3.25) can be rewritten as follows:

L

£ > '© * & '©  =  e ®  -  a ( t y e ( d t m
£=1

and

L

! > ' ( «  +  ^ )  V ( o  =  -*(<■ +  ^ ) ’e (d O K e). ™ - 1 , • ■ • ,  M - 1 .
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Therefore, we have

Y U 2 ^ ^ i k ) T (^ ,k ,9 )

J K m=0 e= 1
\ d \ j

£ +  2 ir m  
d

2 tt

\ d \ j  

27r

w
2n I  W € )h  ( | ) f ( | )  df-

UI7 /• |d|_1

2 ? r  m = 0

£ +  27rm\ /£  +  27rra
v ( Q  d £

\d\j+1
2 tt g ( d j+10 h ( 0 v ( 0  d £ -

\ d l
2 ir

where r? ( 0  =  0 (0 0 (0 -

Using a similar argument as in (1.3.28), we deduce th a t

fcez

=  9^~ /  0 ( ^ ' O ^ / ( dJ(£ +  2^ fc))?(C +  2 ^ fc)*»7(OdS
i7r ^  fceZ

f  g{di0  ^  /(dJ(£ + 2?rfc))?(  ̂+ ,2^  a^  + 2?rfcj ?y(0
27T

M
2 ?r

27T

feez
Ml-i/- 11 / 

/ f P i ) E E / K +1(
m=0 fcGZ V V

£ +  2 irm

£ + 2imi
d

+ 2irh

d
+ 2-nk

[  l  (£  +  27rm\ /£  +  27rm\*~
/ / W E H — ) ° ( — r ~ )  ^
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and

fcez

^ —  f  d(dj+10  f ( dJ+1( t  +  27rA0 ) f e  +  2ttA:)*77(^)
n  "/ r  ke z

l<ip+1 f  w ^ o m m  d t
J R27T

where the function h{£) is defined in (1.3.29). Hence

L r

£=1 m = l  k&L 
r  r

= £  £ < / .  ) ( v  ) (Wm;j,k i 9 )
m =  1 k &  m = 1

for all f , g £  L 2(M.).

Note th a t for all /  £ L 2

lim „ £ £ [  | (/> ^>m\j,k) | +  | (V m -jJcj / )  |
j - > - o o

m = 1

=  o .

By (1.3.23), it is well known (see [14]) th a t Y?m=\ Efcez(/> </>m-j,k)Vm-j,k goes to 

/  in the 1/2 norm as j  goes to  0 0 . Therefore,

L  r

E E E  = (/>
^=1 m = l

which completes the proof. ■

Prom the above proof, we see th a t the condition a(O)*0(O)0(O) =  ©(0)0(0) 

in Theorem 1.6 can be replaced by 6(O)*0(O)*(f)(0) =  O(O)*0(O). Moreover, as 

been pointed out by Chui and Stockier ([7]) later, the condition

a(O)*0 (O)0 (O) =  ©(0 )0 (0 ) 

in (1.3.23) is a direct conclusion of (1.3.24) and (1.3.25).
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Theorem 1.6 can be easily generalized to the multidimensional spaces 

by the same argument as in the proof of Theorem 1.6. The only little dif­

ference can be fixed by the following argument. Let M  be an s x s inte­

ger m atrix such th a t all its eigenvalues are greater than  one in modulus. 

Suppose th a t (p =  (cpi,. . .  ,(pr)T 6  (T2 (Ms))r is compactly supported and 

<;f>(MT£) =  a(£)</>(£) for some r x r  m atrix a(£) of 27r-periodic trigonometric 

polynomials. Then it was proved in Han [21] th a t there exists a  > 0 such th a t

Jr-C1 +  llf||2)“ |?m(OI2df  < 0 0  and (X +  llfll)“?m G Too for all m  = 1 , . . .  ,r .  
Moreover, by Han [21], we know th a t for any ip = (ip\ , . . . ,  ipr)T which is defined

/ s

by tp(MT£) — &(£)$(£) for some r x r  m atrix 6 (£) of 27r-periodic trigonomet­

ric polynomials, if f Rs ipm(t) dt =  0  for all m  =  1 , . . .  , r ,  then there exists a 

positive constant C  such th a t Y ?m=l X ^ ez« I(f,^m-j,k)\2 ^  C\\f\\2 for all

/  € T2 (Ms), where ipm-jyk :=  |detM|-?/2-i/;TO(M J • - k ) .

1.3.2 Existence and construction of pairs of dual wavelet 
frames with high vanishing moments

As mentioned in Section 1.1, the order of vanishing moments is a very impor­

tan t property for wavelet frames. In this subsection, I shall dem onstrate th a t 

from any two d-refinable function vectors in (L 2 (M))r , by Theorem 1.6, one 

can obtain a pair of dual d-wavelet frames with the highest possible orders 

of vanishing moments. Also, I shall apply Theorem 1.6 with the particular 

choice L = d. Given any two m atrix masks a and b, in order to  derive dual 

d-wavelet frames by Theorem 1.6 with L  =  d, we need construct matrices 

0 , a 1, . . . ,  ad, b1, . . . ,  bd of 27r-periodic trigonometric polynomials such th a t all 

the conditions in Theorem 1.6 are satisfied and all the corresponding wavelet 

functions ip1, . . .  ,ipd,ip1, . . .  ,ipd defined in (1.3.27) have the highest possible 

orders of vanishing moments.

The following lemma generalizes a result in [12] which plays an im portant 

role in constructing pairs of dual d-wavelet frames from any two d-refinable
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function vectors.

L em m a  1.4. Let d be a dilation factor. Let A ( f)  and B(£) be two 2n-periodic 

trigonometric polynomials such that A(0) =  5 (0 ) =  1. Then for any positive 

integer n, there exists a 2n-periodic trigonometric polynomial 0 (£) such that

(1.3.30) 0 (0 ) =  1 , ( 1  -  e -« )"  I W £M (0  -

Moreover, when A  and B  have real coefficients, then so does 6.

P ro o f: We define coefficients c, by Co :=  1 and

Cj 1 dP TTf E  U  ) lA(j~k)(0) ~  dkB ^ - k\0)]ck, j  E N.
k= 0

Obviously, there is a 27r-periodic trigonometric polynomial 0(f  ) such th a t 

0 k) (0 ) =  Cj for all j  — 0 , . . . ,  n — 1. By the Leibniz differentiation formula, it 

is easy to verify th a t (1.3.30) holds for such a 0. ■

We now demonstrate th a t one can construct a pair of dual d-wavelet frames 

having certain vanishing moments derived from any two d-refinable function 

vectors. For simplicity of presentation, in the rest of this chapter, we assume 

th a t the dilation factor d > 1 and for any mask a, we assume th a t 1 is a simple 

eigenvalue of a ( 0 )  and dk(k E N) are not eigenvalues of a ( 0 ) .

T h e o re m  1.7. Let <f> and (p be two r  x 1 d-refinable function vectors in 

(L 2 (K ))r with dilation factor d and finitely supported masks a and b, respec­

tively. Suppose that a and b satisfy the sum rules of orders m  and n  with 

respect to the lattice dZ for  some positive integers m  and n, respectively. Then 

there are r x r  matrices 0 ,  a 1 , . . . ,  ad, b1, . . . ,  bd of 2n-periodic trigonometric 

polynomials such that all the conditions in Theorem 1.6 are satisfied. Conse­

quently, {f 1, . . .  , f d} and {ip1, . . .  )ipd}, which are defined in (1.3.27) for the 

special case L = d, generate a pair of dual d-wavelet frames in  L 2 OR). More­

over, {ip1, . . .  ,ipd} has vanishing moments of order n  and {ip1, . . .  , ipd} has 

vanishing moments o f order m.
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Proof: Since a and b satisfy the sum rules of orders m  and n  respectively, by 

Lemma 1.1 and Theorem 1.2, without loss of generality, we can assume th a t

<H,i( 0  <*1,2 ( 0  

f l2 , l ( 0  0 2 , 2 ( 0

and 6 ( 0  = 6 i ,i ( 0  6 i,a( 0  

62 ,i ( 0  6 2 ,2 ( 0

where 0 2 ,2 ( 0  and 62 ,2 ( 0  are (r — 1) x (r — 1) matrices of 27r-periodic trigono­

metric polynomials such th a t 01,1, 01,2, 02,1, a2,2, 61,1, 61,2, 62,1 and 62,2 satisfy 

oi.i (0 ) =  6 i,i(0 ) =  1 and

(1.3.31)

(! + +  e—i ( d —' > T  I (1  -  e - ^ r  I o ll2 (0 , ( 1  -  K i « ) ,

(! +  . , .  +  e - i ( ^ D S ) ”  | ( 1  _  e-<«)" I b u ( 0 ,  ( 1  -  e - « r  | M 0 -

Since Oi,i(0) =  61,1 (0) =  1, by Lemma 1.4, there exists a 27r-periodic trigono­

metric polynomial 0 ( 0  such th a t

(1.3.32) 0(0) =  1 and (1 -  e^ ) m+n | [0(0 ~  M 0 0 (^ 0 61,1 (0]-

Now we choose 0 ( 0  =  diag($(£)>0,. . .  ,0). (In fact, in the following proof, 

one can choose 0  := diag(0 , *) where * denotes some ( r — 1 ) x (r — 1 ) m atrix 

of 27r-periodic trigonometric polynomials.) Let M (0  be defined in (1.3.26). 

Define

( 1 . 3 . 3 3 )  A ? ©  : =  [ d i a g ( D © - , . . . , i 3 K  +  2 Jr ( < j -  l ) / d ) - ) ] _ ” M © 0 © - ’” ,

w h e r e  D ( £ )  : =  d i a g ( ( l  —  e  1 , . . . ,  l ) .  We n o w  d e m o n s t r a t e  t h a t  M ( ) )  i s  

a n r d x  r  m a t r i x  o f  2 7 r - p e r i o d i c  t r i g o n o m e t r i c  p o l y n o m i a l s .  F r o m  ( 1 . 3 . 3 3 ) ,  b y  

c a l c u l a t i o n ,  w e  h a v e

M i K ) "

M ( $  =
M m

M M )

[£>(£)•] “ [0 ( 0  -  a (0 * e (< f0 K 0 ] D ( 0 -  

-[£> («  +  ? ) ' ]
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Since ©(£) =  diag(0(£), 0 , . . . ,  0), by calculation, we have

(1.3.34)

■({ +^f)'e(dOHO = m ) " i i (s + + y  

ai,a(« +  ^ ) \ . K )  <»«(? + ¥ ) ‘M O .

Note th a t D(£) — d iag ((l — e-1^), I r_ i). For any j  =  1 , . . . ,  d — 1, it follows 

from (1.3.31) and (1.3.34) th a t

(1.3.35)
2,71 j  \  * 

d
( 1  - e « + ¥ ) ) -

7  - 1

+ ^  ] e (domo(0

l r -

m )

(1 _eW£)m(l_e-id€)n
T /  \  1 m+n
[ ( l - e - i *) ( l - e i («+27rJ / <i) )  j

( I_ eid5)m(i_e-id5)n
i({+27rj/d) . m-j-n

where * denotes some m atrix of 27r-periodic trigonometric polynomials. Ob­

serve th a t
( 1  _  e i d ^ m ^  _  e - i d $ y

(—i r em —idnt;
r ( i  _ eid£)

_  e * £ ) ( l  —  e 4 £ + 27o 7 < b )

r a + n

[ (1  _  e ~ r ( l  — e*(?+27rJ/<i))]m+n 

is a 27r-periodic trigonometric polynomial since (1 — e*^)(l — el^ +27rJ/d)) | (1 — 

etd̂ ) for all j  = 1 , . . . ,  d — 1. We conclude th a t M 3 (£) , j  = 2 , . . . , d  are matrices 

of 27r-periodic trigonometric polynomials.

Similarly, by (1.3.31) and (1.3.34), we have 

(1.3.36)

M t (e) =  [D(0 * r n [e(£) -  a ( 0 * e ( d 0 b ( 0 ] D ( 0 ~ m 

’(i -  r r n
i r~ i

0 (0 - a ( O * 0 (deW O

(1— )"■(!—e“ )m
( 1 — e — ) " 0(d£)* 0(df)*

( 1  -  e - ^ ) - m 

9(d£)*

I r—i

By (1.3.32), (1 -  e * )" (l ~  e ^ ) m | [0(0 -  a M (O 0(<*O M O ]- Therefore, 

M i(0  is a m atrix of 27r-periodic trigonometric polynomials. In conclusion,
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M (£) is an rd x  r  m atrix of 27r-periodic trigonometric polynomials. Define

F*(£) :=  e -W -M lr ,  £ =  1 , . . . ,  d and

(1.3.37)
p i ^ y  p 2 ^ y  . . .  p d ^ y

m

Denote

(1.3.38)

p i ^  + ^ y  F 2(£ +  f ) *

_pi(^ | 2n(d-i)y  p 2(e | 2n(.d-i)y

F dU + W

P'd(j£ _|_ 27r(ci—1)  ̂*

ei(d-l)€
J e«(S+2-7r/d) . . . gi((i-l)($+27r/d)

j  gi({+2ir(d-l)/d) _  ei{d-l){i+2*{d-l)/d)

It is well known th a t E o(£)Eq($)* =  did . Observe th a t E(£) = Eo(£)<g)Ir , where 

(£> denotes the right Kronecker product. Consequently, we have E(£)E(£)*  =  

d lrd and E(£) is invertible. Define the r x r  matrices F 1 F d(t;) of

27r-periodic trigonometric polynomials by

(1.3.39)
> « ) '  

F"  K)

£ © - 1M K ) =  rf-1E K )* M © ,

since E(^)E(^)* = d lrd. Now for I  =  1 , . . . ,  d, define

(1.3.40)
«'(e) = f'<K)diag((l-e-i«r , l . . . , l ) ,  
'>'K) = -F'K)diag((l-e-‘« r , l . . . , l ) .

Due to  (1.3.31), we must have = 0(0) =  [1 ,0 , . . . ,  0]T. It can be eas­

ily verified th a t all the conditions in Theorem 1.6 are satisfied. In fact, by
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calculation, we have

a 2 (0 *
a2 ( £ + f ) *

a i ( e +  M ^ l) )*  a2 (e +  M fh ih *

a d ( 0 *

ad(£ +  $ )*

d iag (D (0 * , . . . , D ( £  + 2tr(d -  l ) /d ) * ) ] '" t f ( 0
F \ 0

F d( 0

m

b2( 0  

bd(0.

D ( a r

=  d i a g ^ f l * ,  • • •, D ( £  + 27r ( d  -  l ) / d ) * ) ] B £ ? ( 0 ^ ( e ) " 1 M ( e ) / ? ( O m

=  d i a g ( l > ( f l * ,  • • • ,  D ( £  +  2 t r ( d  -  l ) /d ) * ) ] nM (£)D (O m

=  M (0 -

So (1.3.25) holds. Define the wavelet function vectors ■01, . . . ,  ipd, ip1, . . . ,  ipd 

as in (1.3.27). Then by Theorem 1.6, {ip1, . . . ,  ipd} and {ip1, . . . ,  ipd} generate 

a pair of dual d-wavelet frames in Z^QR). By Corollary 1.2, it follows from

(1.3.31) and (1.3.40) th a t {ip1, . . .  ,ipd} has vanishing moments of order n  and

{ip1, . . . ,  ipd} has vanishing moments of order m. m

A stronger version of Theorem 1.7 will be presented in Theorem 1.9 in 

Section 1.3.4, where we shall give a more general construction of pairs of dual 

d-wavelet frames derived from any two d-refinable function vectors.

1.3.3 Construction of pairs of symmetric dual wavelet 
frames from two symmetric refinable function vec­
tors

Symmetry is a very im portant property of wavelet frames. Given two symmet­

ric ri-refinable function vectors, it is of interest to construct pairs of symmetric 

dual d-wavelet frames. In this subsection, we discuss how to  obtain pairs of 

real-valued and symmetric dual d-wavelet frames when cp and <p are real-valued
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and symmetric d-refinable functions.

Suppose th a t both cp and (p are real-valued d-refinable function vectors in 

L2 (R). Then their associating mask a and b must be real-valued as well. 

Let 0 ,  a 1, . . . ,  aL, ft1, . . . ,  bL be matrices of 27r-periodic trigonometric poly­

nomials such th a t all the conditions in Theorem 1.6 are satisfied. When 

all the coefficients in are real-valued, define sequences bf by

bk := Re(bk) ,k  6  Z, where Re(fr£) denotes the real part of the complex ma­

trix  bk. Then it is easy to check th a t all the conditions in Theorem 1.6 still 

hold with ?/ being replaced by l/. Consequently, define ripe(df) =  ae(fi)(p(fi) and

0  =  6^(0</)( 0  for £ =  1 , . . . ,  L. Then ■01, . . . ,  ipL, p1, . . . ,  pL are real-valued 

wavelet function vectors. By Theorem 1.6, {ip1, • • •, ipL} and { 771, . . . ,  r]L} gen­

erate a pair of dual d-wavelet frames in L2(

In the following, we show th a t when (p and (p are real-valued and sym­

metric d-refinable function vectors such th a t the symmetry centers of all the 

components in (p and <p differ by half integers, then we can derive pairs of 

real-valued and symmetric dual d-wavelet frames.

The following lemma plays a very im portant role in constructing real­

valued and symmetric dual d-wavelet frames from real-valued and symmetric 

d-refinable function vectors.

L em m a  1.5. Let d be a positive dilation factor and k be any integer. When 

k is odd, define

/ i L i K ) : = e " ‘ ¥ k fa" " >£ +  e " i b _ ^ ] '  ■ W = 1 ,  j  =  i , . . . , L ^ ± l j ,  

/ £ l “ J « )  : =  : =  - 1 ,  j  =  1 , . . . ,  L j J -

When k is even, define

/ | W ? )  [e,fa- ‘)£ +  » -* « -> * ] . Sd,kj  1, i - 1  i f  J + 1 ,

/ | ^ J+1 « ) : = e - ? [ e « £ - e - * ] ,  Sw + l j J + 1  := - 1 ,  3 = 1 ........................ -  1,
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where [-\ is the floor function. Define a d x  d matrix f\d,k\{Q os follows

(1.3.41)

f[d,k](0 f[d,k](0 ■" f[d,k\(0

/ [ W ^  +  t )  / [ W *  +  t )  ••• f ^  + T )
f[d,k](0 : =

f 1 (V I 2tt((2-1)\ n 2  ( c  I 2 n ( d - l ) \  t d  ( t  i 27r(d-l)̂
J [ d , k ]  d J J [ d , k \  \ S  d  >  J [ d , k \  ■< d  ).

Then detf/^fc^O)] ^  0 and f[dk](0’3 = 1, ■ ■ ■ ,d  are 2n-periodic trigonometric 

polynomials such that

(1.3.42) =  i  =  l , . . . , d .

P ro o f: By definition, it is easy to see th a t /j^ fc] ( 0  > i  =  1, ■ ••, d are 27r-periodic 

trigonometric polynomials and (1.3.42) holds.

Consider four cases: k is even or odd and d is even or odd. After perform­

ing several elementary m atrix transforms on f[d,k}(0 ), by a direct computation, 

it is not difficult to verify th a t the m atrix f[d,k](0 ) becomes the m atrix £o(0 ), 

where the m atrix l?o(£) is defined in (1.3.38). Since it is well known tha t 

E o(0)Eo(0)* = did, we conclude th a t det[/[d,fc](0)] 0. ■

As in [12], for any nonnegative integer N ,  we can even construct 2tc- 

periodic trigonometric polynomials f*dk],j — 1 , •• •, d such th a t det[/[d,fc](0 )]

0, (1.3.42) holds and [/jdfe](-)]^(0) =  0 for all j  =  2 , . . . ,  d and I  =  0 , . . . ,  2N.

A similar result to Lemma 1.5 has been used in the construction of sym­

m etric/antisym m etric semi-orthogonal d-band wavelets in Sun [47].

Now we can derive pairs of real-valued and symmetric dual d-wavelet 

frames from real-valued and symmetric d-refinable function vectors as follow.

T h e o r e m  1 . 8 .  Let <p =  (<f>x, . . . ,  4>r)T and <f> =  ( < ^ > i , . . . ,  4>r)T be two r  x  1  d- 

refinable function vectors in (L2 (M))r with finitely supported masks a and b, 

respectively. Suppose that a and b satisfy the sum rules o f orders m  and n  

with respect to the lattice dZ for some positive integers m  and n, respectively.
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Assume that the masks a and b are real-valued and symmetric; that is, a(£) =

=  H-(), and

(1.3.43) 4 | )  =  S K ) a ( { ) S © - '  and 6 (f) =  S ^ K ? ) ? © ” 1

with

(1.3.44)

5 ( 0  diag(e\eicii, . . .  ,e relCr5) and 5 ( 0  := diagfe\elC1̂ , . . .  ,e re*Cr€),

ry/iere £ i , . . . ,  ey, £ i , . . . ,  er £ {—1 , 1 } and the numbers C\ , . . . ,  cr, cy, . . . ,  cr sat- 

isfy

(1.3.45) dcj — Ck £ Z, dcj — Ck E Z, j ,  k = 1 , . . . ,  r  and ci — Ci £ Z.

(In other words, the conditions in  (1.3.43) and (1.3.45) are equivalent to say­

ing that all the symmetry centers of <pi,. . . ,  <fr, ( f \ , . . . ,  <pr differ by half inte­

gers.) Then we can derive real-valued and symmetric wavelet function vectors 

i f 1, . . .  , i f d, i f1, . . .  , i f d as in (1.3.27) such that { i f1, . . .  , i fd} and { i f1, . . .  , i f d} 

generate a pair of dual d-wavelet frames in  L 2 OR). Moreover, { i f1, . . . ,  ifd} has 

vanishing moments of order n and {i f1, ,  i fd} has vanishing moments of or­

der m. In fact, each component in all the wavelet function vectors i f 1, . . . ,  i fd, 

i f1, . . .  , i f d is either symmetric or antisymmetric about the same point.

P ro o f: By Theorem 1.5, without loss of generality, we can assume th a t

(1.3.31) holds. Since dc 1 — Cj £ Z for all j  — 1 , . . .  , r ,  we can define r  x r  

matrices

F j (Q '■= diag(/[di(ici-ci-n](0 ) /[d,dci-c2](£)> • ■ ■ > /[d,dci-cr](0 )  ) J =  1 , • • •, d,

where /[ j)fc](0 (^  € Z) are defined in Lemma 1.5. By Lemma 1.5, F j ( f ) , j  — 

1, . . .  ,d  are r  x r matrices of 27r-periodic trigonometric polynomials with real 

coefficients. By (1.3.42), it can be easily verified th a t for j  =  1 , . . . ,  d,

(1.3.46)

F i ®  =  F J' ( - 0 , n O  =  e - iJci«5j n 0 5 ( 0 d i a g ( ( - l ) " e ^ ,  1 , . . . ,  l )
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where

(1.3.47) Sj . diag(ei( 1) SdJdci—ci—n\jj^-2Sd,dci—c2',ji ■ ■ ■ j£r^d,dci—cr',j')

with the numbers Sd,k-,j € {—1,1} being defined in Lemma 1.5. Let E (£) be 

defined in (1.3.37). By Lemma 1.5, we observe th a t

|detJE7(0)| =  |d e t[/[di<fcl_ci_n](0)]| x  |d e t[/[d|<fcl_C2](0)]| • • • |d e t[/[<Mci_Cr](0 )]| ^  0,

where the matrices f[d,k](€)(k € Z) are defined in (1.3.41).

Since det (—l)(d~1)rdeti£(£), it follows th a t e_^ ^ _ 1 r̂ '/2 det£^(|)

is a 27r-periodic trigonometric polynomial by

e-HS+2K)(d-i)r/2d e tE ^  e - ^ d- 1)r/2det e ( ^ ) -

Let

/ ( O  =  lc m (d e t£ (£ ) ,e ^ (d~1)r/2detjE;(£/d)) and g(£) :=  |/ ( ^ ) |2,

where 1cm stands for least common multiple. (We can also choose g(£) 

lcm (/(£), /(£ )) such th a t g(£) = <?(£)■) Then g(£) is a 27r-periodic trigonomet­

ric polynomial such th a t

(1.3.48)

detE(£) | #(£), de t£ (£ ) | g(d£) and detE(£) \ g(£), de tE{£) | g(d£).

Since detW(O) ^  0, we have g{0) ^  0. W ithout loss of generality, we can 

assume g(0) =  1. Since ai,i(0) =  5i,i(0) =  g(0) =  1, by Lemma 1.4, there 

exists a 27r-periodic trigonometric polynomial 0\ such th a t

(1.3.49) 9,(0) =  1 , ( i - e- ‘« r + »  | ,« ) » ( « ) ] .

Define

«(f) := [»(«)»l i e  +  ei<2’- “' )s9(e)»i(«)]/2.
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Clearly, 0 (0 ) =  1 and ( 1  — e ^ )m+n | [0 ( 0  -  0 (dO °u(£)& u(£)] since

[ e i ( 0 y ( 0 - « i( 0 a i , i ( 0 6 i , i ( 0 5 ( d e ) ] /2

4. Ip*(ci-ciK 
2 0 i ( O s ( 0  -  0 i(de)ei(<i- 1)(ci- El)€olll(O 6 i>i(O »(de)

2
0 i(O 0 ( O - 0 i ( < K i ( 6 & i,i(£M ^) 

where we used the fact that

a y i(0  =  (0  and &u  (0  =  .

By (1.3.48), det£(0  | 0(0 and det£(0  | 0(df).

Let 0(0  =  d i ag(0(0 ,0 , . . . ,  0). Since iS(0 _1 — ^(O  and ^(0 is a 27t- 

periodic trigonometric polynomial with real coefficients satisfying th a t 0 ( 0  — 

e*(ci - ci)^0 (O, it is easy to  verify th a t

(1.3.50) 0 ( 0  =  0 ( - o  and 6 ( 0  =  s t o - ' e t o s f p .

Let M {0  be defined in (1.3.26) and M (0 be defined in (1.3.33). Denote

'm 1{ o '

= M (  0  and = m )

m u m o .

Then

and

M i ( Q  := 0 ( 0  -  a ( i ) ' e ( d Q b ( i )

m i )  ~  - a K  +  M 3 d  1}j  e ( d i ) H 0 ,  j  =  d .

Clearly, M j(£ ) , j  = l , . . . , d  are matrices of 27r-periodic trigonometric poly­

nomials with real coefficients. Since (1.3.45) implies Cj — c\ G Z for all
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j  = 1 , . . .  , r,  we deduce th a t S(d£ + 2nk) = e'lCl‘2'KkS(dQ  for all k € Z. By

(1.3.43) and (1.3.50), for j  — 2 , . . . ,  d, we have

M A O  =  -<*(£ +  2 tr(j -  1 )/d)*0 (d£)&(O

=  - S ( f  +  2ir(j -  l ) /d ) _ 1a(J  +  2ir(j -  \ ) / i ) T S ( d ( .  +  2jr(j -  l))S(<if)_1x

6 (d f)S (d f) 6 (f) 

=  -S ( £  +  2 tt0  -  l V d W f  +  2tt(j -  l ) /d )Te“ ‘2' « - 1>S(de)S(ti«)-I x

e ( d f )  & (f)s(f)

=  +  2 tt(j -

=  +  2 i r ( j  ~  l ) / d ) ~ ' M j ( i ) S ( 0

and

M 1( o  =  e ( o - n ( o <e(<ie)6 (e) 

= SKj-'etlJsto - s«)-,o(Ors(dj)S(<ie)-1e(dos(<if)6K)
s ( ? ) - 1e ( e ) s ,( 0  -  s ( 0 - ‘a(£)r e(<if) &(f)S(f)

= SK)"1 [6(0 -  a(f)*e(<ff)6(f)J S(f)

=  s i z y ' i w m ) -

Therefore, for every j  =  1 , . . . ,  d, we have

(1.3.51)

S ^ f )  =  M ,( - f )  and M ,(f) =  e ^ ^ S t f  +  2 v ( j  -

Since 0(£ ) =  diag(#(£), 0 , . . . ,  0), as in the proof of Theorem 1.7, for j  = 

1 , . . . ,  d — 1, it follows from (1.3.35) th a t = 2 , . . . ,  d are matrices

of 27r-periodic trigonometric polynomials and Q(d£) \ M.} (£). Consequently, 

deti?(£) | Mj(£) for all j  =  2 , . . .  ,d  since deti?(£) | 0(g?£). Similarly, it follows 

from (1.3.36) th a t M i(£) is a m atrix of 27r-periodic trigonometric polynomial. 

By (1.3.48) and (1.3.49), it follows from det£^(0) ^  0 th a t

( 1  _  e«)” ( l  -  ^ " M e t i S ©  j [9(f) -  a ,,,(£)<»(<*£)&,,,(£)].
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Hence, by det£?(£) | 0(d£) and (1.3.36), we have detjE7(£) | M i(£). In conclu­

sion, M (£) is a m atrix of 27r-periodic trigonometric polynomials and

detE ( 0  | M {i) .

D efine

'  F H O
(1.3.52)

Fd(t)

where adj.E(£) is the adjacent m atrix of E(£) such th a t 17(£)adjl7(£) =  I dr x 

[deti£(£)]. Since detE(£) \ M (£), we have th a t F 1^ ) , . . . ,  F d(£) are m atri­

ces of 27r-periodic trigonometric polynomials. Define the matrices a 1, . . .  ,ad, 

b1, . . . ,  bd as in (1.3.40). It follows from (1.3.40) and (1.3.46) th a t

(1.3.53) a*(0 =  a * ( - 0  and al {£) =  e - ^ S eae(C)S(0 , j  =

where Sg is defined in (1.3.47). Now as in the proof of Theorem 1.7, it is easy to 

check th a t 0 ,  a 1, . . . ,  ad, b1, . . . ,  bd satisfy all the conditions in Theorem 1.6. By 

the remark before Lemma 1.5, we can assume th a t be, i  =  1 , . . . ,  d are matrices 

of 27r-periodic trigonometric polynomials with real coefficients (otherwise, we

can replace fr(£) by [b (£) +  ¥ ( —£)]/2 )-

Define be(£) :=  [?/(£) +  e ldci^Sg¥($,)S(^)]/2. By the definition of be, it is 

easy to verify th a t

(1.3.54) V ( 0 = b e( -£ )  and &*(£) =  e~idĉ S e¥ ( 0 S ( 0 ,  e = l , . . . , d .

We now demonstrate th a t 0 ,  a 1, . . . ,  ad, b1, . . . ,  bd also satisfy (1.3.25). 

Since (1.3.25) holds for 0 ,  a1, . . . ,  ad, b1, . . . ,  bd, we have

d

o'(f + 27rj/(i)*6'(f) = j  = 0...... d -  1.
i

By (1.3.51), (1.3.53), (1.3.54) and the above identity, for j  =  0 , . . . ,  d  — 1, we
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have

E  + 2 ^ /d )*? ( f)  = MJ+1« )/2  + £  a '(f +  2 v j / d y e - ' ^ S , W ) S ( { ) / 2
t =  1 £=1

=  M ,+1« ) / 2 +

ei * i « + ¥ ) s ( f  +  +  ^ ) r S ,e - i,ic'«S(P (e )S (0 / 2

£=1

=  Mj+1(£)/2 +  e » 2̂ S K  +  V a 'K  +  ^ W £ ) § K ) / 2
*=1

=  Mj+1( ( ) / 2  +  e™ 2' 2S(? +  2 n j / d ) -1 Mj +1(£)S(£) /2  

= J V + i©

where we used the fact th a t SgSe = I r • Therefore, (1.3.25) holds for 0 ,  a 1, . . . ,  

ad, b1, . . . ,  bd.

Define f t (d € )  :=  a*(f)?(f) and $ e(dg) := & *(f)fe) for ^ =  1 , . . . ,  d. By 

Lemma 1.3, it follows from (1.3.53) and (1.3.54) th a t for f  =  1 , . . . ,  d,

n o  = ¥ ( ( )  =  e“ l4s , / K ) ,  1 ^ ( 0  =  ¥ { 0  = ¥ ^ s , ¥ ( 0 -

So all the wavelet functions in ip1, . . . ,  ipd, ip1, . . . ,  ipd are real-valued functions 

and are either symmetric or antisymmetric about the point Cj/2. By The­

orem 1 .6 , {i /d, . . . ,  ipd} and {ip1, . . . ,  ipd} generate a pair of dual d-wavelet 

frames in L 2 (M). Moreover, {ip1, . . .  ,ipd} has vanishing moments of order n 

and {ip1, . . . ,  ipd} has vanishing moments of order m. m

In order to assure th a t S(d^)a(^)S(^)~1 and S ( d $ , ) b ( ^ ) S ( ^ 1 in (1.3.43) 

are matrices of 27r-periodic trigonometric polynomials, it is natural and almost 

necessary to require th a t dc3 — Ck € Z and dcj — cjt £ Z for all j ,  k — 1 , . . . ,  r. 

The extra condition Z\ — c\ £ Z in (1.3.45) is automatically satisfied when d = 2 

(since Cj,Cj £ Z) and is needed to guarantee the existence of a symmetric 6 

in (1.3.49). In other words, the condition in (1.3.45) seems necessary in order 

to obtain pairs of symmetric dual d-wavelet frames derived from symmetric 

d-refinable function vectors. By the remark after Lemma 1.5, as in Daubechies
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and Han [12], we see th a t in both Theorems 1.7 and 1.8, for any nonnegative 

integer N ,  we can even require th a t ip1, {ip2, . . .  ,ipd}, ip1 and {ip2, . . .  ,ipd} 

have vanishing moments of orders n ,n  + 2N, m  + 2 N  and m, respectively.

1.3.4 Wavelet frames from any refinable function vector

In this subsection, let us discuss how to derive wavelet frames from a single 

refinable function vector.

The following generalizes [12, Corollary 3.2] on d-wavelet frames to  the 

multiwavelet case.

T h e o re m  1.9. Let (p be a n r  x 1 d-refinable function vector in (l/2 (K ))r with 

a finitely supported mask a. Suppose that a satisfies the sum rules o f order 

m  with respect to the lattice dZ. For any positive integer n, let Un(£) be an 

r x r  invertible matrix o f 2n-periodic trigonometric polynomials in Theorem 1.2 

such that t7n(dC)a (C )^n(0 _ 1  takes the form of (1.2.15). For any nonnegative 

integer m 0 such thatO ^  m 0 <  m, define matrices of 2ir-periodic trigonometric 

polynomials ae(£), I  =  1 , . . . ,  d by

“ '(? )  =  , l) [ /„ (Q , I  =  1, ■ • ■ ,d ,

where F 1, . . .  , F d are some r x r  matrices of 2n-periodic trigonometric poly­

nomials such that detEiff) ^  0, where the matrix E(£) is defined in (1.3.37). 

Then {ip1, . . .  ,ipd}, which are defined in (1.3.27), generates a d-wavelet frame 

in  L2 (R) and has vanishing moments of order n. Moreover, for  any d-refinable 

function vector (p in (L2 (M))r whose mask satisfies the sum rules o f order 

n, there are matrices 6 1(^) , . . . ,  bd(£) of 2n-periodic trigonometric polynomi­

als such that {ip1, . . . ,  ipd}, which are defined in (1.3.27), and {ip1, . . . ,  ipd} 

generate a pair of dual d-wavelet frames in L 2 (M).

P ro o f: By observation, it suffices to prove the claim for the case Un(£) =  I r- 

Let <p be any d-refinable function vector in (L2 (M))r with a finitely supported
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mask b such th a t b satisfies the sum rules of order n  and by Theorem 1.2 we 

assume th a t (1.3.31) holds. For example, take 0 =  (0i, 0 , . . . ,  0)T and 0i is 

a scalar d-refinable function in L2 O&) whose mask satisfies the sum rules of 

order n. So such a d-refinable function vector 0 exists and in fact we can take 

0 1  to be the 5-spline function of order n.

Since de t5 (£  +  27r/d) =  (—l} ^ _1 r̂ de tE(£), it follows th a t e~t^ d~1')r/2 x 

d e t5 ( |)  is a 27r-periodic trigonometric polynomial. Let /(£ )  := lcm (det5(£), 

g—*(d—i)r/2 detE(£/d))  and g(£) := / ( f ) ( l  +  e“* +  • • • +  e " ^ - 1̂ )™0. Then 

g(£) is a 27r-periodic trigonometric polynomial such th a t detE(£) | g(£) and 

d e t5 ( 0  | g(dO-

By assumption de t5 (0 ) ^  0, so /(0 )  ^  0 and therefore, g(0) ^  0. W ithout 

loss of generality, we can assume g(0) =  1 . Since ui,i(0) =  5i,i(0) — <7(0 ) =  1 , 

by Lemma 1.4, there exists a 27r-periodic trigonometric polynomial 6\ such 

th a t (1.3.49) holds. Take Q(£) = <?(£)0i(£) and ©(£) =  diag(d(£), 0 , . . . ,  0). 

Let M  be defined in (1.3.26). Denote D(£) :=  diag(l — e_^ , l , . . . , l )  and 

G(£) =  d iag ((l — e^)mo_n(l — eldt)~m°, l , . . . ; l ) .  Define M (£) by

M ( 0  ~  d iag(G (Q ,G ({  +  27r/d), . . . ,  G (f +  2 *(d -  1  ) /d ) ) M ( Q C © “ »-“ .

By (1.3.34) and det5 (0 ) ^  0, as in the proof of Theorem 1.7, one can verify 

th a t M (£) is an rd  x r  m atrix of 27r-periodic trigonometric polynomials and 

detE(£) | M (£) since detE(£) \ 0(£) and det5(£) | 0(d£). Define F 1, . . . ,  F d as 

in (1.3.52). Then F *(£), . . .  , F d(£) are matrices of 27r-periodic trigonometric 

polynomials. Let be := F £(£)D(£)m~rno for t  =  1 , . . .  ,d. Then all the condi­

tions in Theorem 1.6 are satisfied and therefore, { 0 1, . . . ,  ipd} and {ip1, . . . ,  ipd}, 

which are defined in (1.3.27), generate a pair of dual d-wavelet frames. ■

Finally, using the same technique as in the proof of Theorem 1.9, we have 

the following result which generalizes [12, Corollary 3.3].

C o ro lla ry  1.6. Let 0 be an r  x 1 d-refinable function vector in (l/2 (K ))r 

with a finitely supported mask a which satisfies the sum rules of order m  with 

respect to  the lattice dZ. Let 17(£) be an r x r  invertible m atrix of 27r-periodic
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trigonometric polynomials in Theorem 1.2 such th a t [7(d£)a(£)C/ ( £ ) _ 1  takes 

the form of (1.2.15) with n  =  1. Let p(£) be an r  x r  m atrix of 27r-periodic 

trigonometric polynomials such th a t

1) detP(£) ^  0 and P(O)0(O) =  0;

2) lim^_+0 e j ( l  — e~^)mP (0 )P ( £ ) _ 1  =  0 for all j  = 2 , . . . ,  r;

3) l i m ^ 27rk/d e f  P (0 )a (£ )P ( £ ) _ 1  =  0  for all A; =  1 , . . . ,  d -  1

where denotes the j th  unit coordinate vector in E r . Define a function 

vector ip by 0 (£) =  P(£)0(£). Then {0} generates a d-wavelet frame in 

L2 (K). Moreover, there exist compactly supported function vectors ip1, . . .  ,ipd 

with arbitrary  smoothness such th a t {ip(d-),ip(d ■ —1 ) , . . . ,  ip(d • — d + 1 )} and 

{0 1 , 0 2, . . . ,  ipd} generate a pair of dual d-wavelet frames.

P ro o f: It suffices to  prove the claim for the case [/(£) =  I r. Let /i(£ ) =  

detP(£) and write /i(£ ) =  / 2 (£)IIfcIo(l ~  e~*^+27rfc/d))n/c such th a t n k ,k  = 

0 , . . . ,  d — 1 are nonnegative integers and / 2 (C) is a 27r-periodic trigonometric 

polynomial satisfying / 2(27rfc/d) ^  0 for all k = 0 , . . . ,  d — 1. Let n  — n\  +  • • • +

n d and define /(£ )  =  / 2 ( f ) ( l  +  H------ 1- e_i(d_1)€) ”1 1 ^ = 0  Clearly,

/ ( 0 ) 7  ̂ 0  and therefore, we can define g(£) = / ( £ ) / / ( 0 ).

Let <p =  (0i, 0 , . . . ,  0)r  with mask 5(0) =  d ia g ^ (l+ e ~ ^ + - • ■+e~l('d~1̂ ) n, 0, 

. . . ,  0^, where (pi is the B-spline function of order n. Let 9 be a 27r-periodic 

trigonometric polynomial such th a t (1.3.49) holds and 0(£) =  diag ($(£)<?(£), 0, 

. . . ,  0). Define ae(£) =  e- l^_ 1^ P (£ ) for t  =  1 , . . . ,  d. Define M  in (1.3.26) and 

let

M (()  = d ia g ((P « )* )" ‘ . (-PK +  2 Tr/d)*)-1 . • • •. (P ( (  +  2 ir(d -  1

As in the proof of Theorem 1.7, by our assumption on P(£), M  must be a 

m atrix of 27r-periodic trigonometric polynomials with the first column of M (0) 

being zeros. Let b1, . . . ,  bd be the solution of (1.3.25). Then be(£),£ =  1 , . . . ,  d
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must be matrices of 27r-periodic trigonometric polynomials such th a t the first 

column of 6^(0) is zero for a lH  =  1 ,d. The rest of the claim can be proved 

similarly as in the proof of Theorem 1.7 and [12, Corollary 3.3]. ■

1.4 E xam ples o f pairs o f sym m etric dual w ave­

let frames

I shall present a few examples of dual wavelet frames to illustrate the general 

procedure for constructing pairs of real-valued symmetric dual wavelet frames 

from real-valued symmetric refinable function vectors. The general procedure 

described in the proofs in Section 1.3 can be easily applied in practice. For 

simplicity, throughout this section, the dilation factor d — 2, the multiplicity 

r  =  2 and we always denote z := e- ^ , £ G R.

Exam ple 1.1. Let us recall the mask of the well known piecewise Hermite 

cubics 0 (it was discussed in Section 1.2) is given by

(1.4.55) « (0  :=
(e* +  2 +  e“* ) /4  3(e* * ) /8

( - e *  +  e“*)/16  ( - e *  +  4 - e " * ) / 1 6

The refinable function vector 0 is known as a Hermite interpolant w ith a Her­

m ite interpolatory mask a. For a general construction of Hermite interpolatory 

masks with multiplicity r  and a general dilation factor d, see Han [20]. In Sec­

tion 1.2, we already mentioned th a t a satisfies the sum rules of order 4 with a 

row vector y(£) =  [1, e^ /3  +  1/2 -  +  e-2l^/6]. Let 0 =  0 and b = a. Take

m  = n  = 2. By computation as in Theorem 1.2, let

U ( 0  :=
k ( z 2 + z  2 +  58) \ { z - z  J)

± { z - z l ) 1

Then U(2£,)a(£)U(£)-1 takes the form of (1.2.15) with m  — n  =  2. Define

1 - ( z  -  l / z ) / 2

(z — 1 / z) /2  0
0 ( 0  :=
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Define a1, a2, b1, b2 by 

a J( 0  :=

and

0 l / z - z  

0 2 - z - l / z
, a2(£)-'=

1/2 — */4 — 1/(42:) 0

z/10 -  1/(10*) - 3

^ ( 0  :=
1

256
1

^3 ^
3

^3 to

1

, b2{ 0 : =

1

cn Pe(0

. P s(0 P*(0 .
vs/ 128

1 -J

—
,00

where

P l(£) =  - 8 9 (z3 + z~3) -  64(^2 +  z~2) + 209(2; +  1/*) -  112,

P2( 0  =  105(*3 -  z~3) -  228(z2 -  z ~2) +  141(* -  1/z),

P3(f) = - 9 4 (z3 -  *“3) -  68(*2 -  z~2) +  418(2; -  1/z),

PA( 0  =  111(*3 +  Z~3) -  240(z2 +  z~2) -  111(* +  1/z)  +  480,

Ps(£) =  4(*3 +  *-3) -  36(2; +  1 /*) +  64,

Pe(0 = -4 ( * 3 -  *~3) +  16(*2 -  z - 2) -  20(* -  1/z),  

p7(£) = -3 0 (* 3 -  z~3) -  20(z2 -  z~2) + 130(2: -  1/z),  

p8(£) =  35(z3 +  z~3) -  80(z2 +  z - 2) -  35(z +  1/z)  +  160.

By a direct computation, one can verify th a t 0 ,  a1, a2, b1, b2 satisfy all 

the conditions in Theorem 1.6 with both the masks a and b in Theorem 1.6 

being the mask in (1.4.55). Define function vectors ip1, ip2, ip1, ip2 as in

(1.3.27). Then {ip1, ip2} and {ip1, ip2} generate a pair of dual 2-wavelet frames. 

ip1 ,ip2jip1 ,ip2 are real-valued and symmetric, and all of them  have vanishing 

moments of order 2. For their graphs, see Figure 1.2.

Exam ple 1.2. Let us use the same mask a and refinable function vector ( p  

as in the previous example. Take (p = (p and b = a. Let m  =  n = 4. By 

computation as in Theorem 1.2, let

U ( 0  :=
« m (0  ui,2( 0

«2,l(0  1
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Figure 1.2: Generators for the pair of dual 2-wavelet frames in Example 1.1: 

(a) ip1 (b) ip2 (c) ip1 (d) ip2. All the components in the wavelet function vectors 

ip1, ip2, ip1, ip2 are either symmetric or antisymmetric about the origin and have 

vanishing moments of order 2.

where

Ml’l(f)  =  1 5 I 2 0  [5(z“ + z ~i] ~ 92(03 +  0 _ 3 )+ 416(02 +  z_2)l +

^  [« (*  +  ,-* )  +  14278],

“ 1,2(0 =  ~Y2  _  z ~2) -  “  z ~^]  ’

“ 2.1 (f) =  [Hz2 -  z ~2) -  52(^ -  z - 1) ] .

Then a(£) :=  [ /(2 £ )a (f)^ (f ) -1 takes the form of (1.2.15) w ith m  = n  = 4. 

Define 0 (£ ) to be the following m atrix

'- l l j ( 3 5 ( *  +  z- > ) -  232) J i t * - * " 1)

- l i e * - * -1) 2̂ 2 (12(^2 +  ^-2) +  1345(z +  ^ -1) +  9536)
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^ ( O  :=

a2(0

Define a 1, b1, a2, b2 as

2 - z - z - 1

0 (2 — z — z -1 )2

0 (z — z_1) (2 — z — z -1 ) 

z — z—1 —^(39(z +  z_1) +  132) 

where

PliO ■= -  [83(z3 +  z - 3) -  560(z2 +  z - 2) +  2333(z +  z ' 1) -  3712],

1

1 _____ Pi P2

. Pz P a .
>

, b:
P5 P6

. P? P8 _

P2(0 ■ = 

Ps(0  '=

6912
1

[l9 (z3 -  z-3) +  484(z2 -  z - 2) -  3125(z -  z -1 )]

225792
[96 (~5 ~"5'  ' ~-3(z“ — z °) +  2005(z" -  z 

1

) -  11536(z2 -  z - 2)] +

225792
[+23437(z -  z-1 ) ] ,

M O  :=

M O  :=

M O  :=

75264
[32(z5 +  z - 5) -  128(z4 +  z - 4) -  229(z3 +  z~3)]

1
75264

[—10492(z2 +  z - 2) +  42057(z +  z " 1) +  6120],

225792
[96(z5 +  z - 5) +  3541 (z3 +  z - 3) -  11536(z2 +  z“ 2)] ■

[l7867(z +  z” 1) -  19936]:
225792

75264
[32(z5 -  z“5) -  128(z4 -  z~4) +  283(z3 -  z~3)] +

1
75264

-12540(z2

M O  := -

M O  :=

580608
[l08(z5 -  z - 5) -  2815(z

39563(

- z - 3)].

z — z %

580608
[ll032(z2 -  z - 2) -  45029(z -  z -1 ) ] ,

193536
[36(z5 +  z - 5) -  144(z4 +  z~4) +  53(z3 +  z~3)] +

1
[l0964(z2 +  z—2) -  80939(z +  z_1) -  168640].

193536

By a direct computation, one can verify th a t ©, a1, a2, b1, b2 satisfy all 

the conditions in Theorem 1.6 with both the masks a and b in Theorem 1.6 

being the mask in (1.4.55). Define function vectors ip1, ip2, ip1, ip2 as in
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Figure 1.3: Generators for the pair of dual 2-wavelet frames in Example 1.2:

(a) ip1 (b) ip2 (c) ip1 (d) ip2. All the components in the wavelet function vectors 

ip1, ip2, ip1, ip2 are (anti)symmetric and have vanishing moments of order 4.

(1.3.27). Then {ip1, ip2} and {ip1, ip2} generate a pair of dual 2-wavelet frames. 

ip1, ip2, ip1, ip2 are real-valued and symmetric, and all of them  have vanishing 

moments of order 4. For their graphs, see Figure 1.3.
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Chapter 2

Tight m ultiwavelet frames from  

refinable function vectors

2.1 In troduction

In Chapter 1, we discussed how to construct pairs of dual multiwavelet frames 

from refinable function vectors and the motivation of the construction. As 

a special kind of multiwavelet frames, tight multiwavelet frames are a gen­

eralization of orthogonal multiwavelet bases. It can carry an “orthogonal” 

property which is very interesting in some cases. In this chapter, I shall ap­

ply the results in Chapter 1 to the tight multiwavelet frame case and prove 

the existence of tight multiwavelet frames with the highest possible vanishing 

moments. It is proved in [4] and [6] the existence of tight multiwavelet frames 

for the scalar case, i.e., the case r =  1, where r  is the multiplicity. The work 

of this chapter is to  extend their result to the general multiwavelet case. Due 

to the complexity of m atrix operation, the extension is not trivial.

Before proceeding further, let us review some definitions. Define Aadj to 

be the adjoint m atrix of a m atrix A.  Define T =  R/27rM. Denote J*(T)r><r the 

space of r  x r  matrices of 27T-periodic trigonometric polynomials, £7°°(r[[’)rxr
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the space of r  x r  matrices of 27r-periodic C'°°-functions and (7(T)rxr the space 

of r  x r  matrices of 27r-periodic continuous functions. For any A  £  C'(T)rXr, 

we say A  >  0 (or A  ^  0) if for all £ £ T, A(£) >  0 which means A(£) is 

positive definite (or A(£) ^  0 which means A(£) is positive semi-definite). Let 

0 — (0i, ■ ■ ■, 0r)T £ (L2 (K))r be a refinable function vector and let a be the 

m atrix mask of 0. The transition operator Ta is very im portant in wavelet 

theory. It is defined by

(2 .1 .1)
M-i

( T . F ) ( d ( )  : =  Y ,  ° K  +  2 ^ / d ) F K  +  2 * i / d M (  +  2  J r j / r f ) *  W  £  C f f l ™ .

3 = 0

By the definition, we know th a t Ta is well defined and Ta maps C'(T)rXr and 

fP(T)rxr into C (T)rxr and T(T)rXr, respectively. A special eigenfunction of Ta 

is <h, the bracket product of 0  and 0. For f , g  £ (L2(R))r , define the bracket 

product (see [33]) as

[/>9}(0 ■= + 2?ri ) s (£ +  2nJ T  v £ e  T -

Since f , g  £ (L2(M.))r , [/, g\ is an r  x r  m atrix of functions in L i(T). Define

$  ; = 0,0

Then we can verify th a t $  is an eigenfunction of Ta as follows.

Ml-i
Ta$(d£) = ^ 2 a (£ + + 2n j /d )a(£  +  2n j /d)*

j = o

= E E “( « + + 2- ¥  + * * ) ? ( * + ¥ + + 2- f
j = o

Id 1-1

=  £ £  0(d£ +  2nj  +  2'Kdk)<f)(d£ +  2txj + 2ir dk)* 
j —o feez

=$(<£).

Thus we have T„ T =  <f>.
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The remaining part of this chapter is as follows. In Section 2.2, I shall 

build some auxiliary lemmas for m atrix inequalities. Based on these lemmas, 

combined with an interesting property of the transition operator Ta, we can 

prove the existence of tight multiwavelet frames with highest possible vanishing 

moments. Although Section 2.2 just proved the existence of tight multiwavelet 

frames, in Section 2.3, I shall show an example of tight multiwavelet frames 

for the case r  =  2 and d = 2.

2.2 E xisten ce o f tigh t m ultiw avelet fram es

First let us continue our discussion on $ .

L em m a  2.1. Let <f> =  (cpy,. . . ,  (pr)T e  (L 2 (M.))r be a refinable function vector 

with its matrix mask a. Define := (p,<j) . It is evident that <f>* =  $ . Assume  

the matrix mask a takes the canonical form  (1.2.15) with n  =  m, then we have

( l - e - « r  I * ( 0 i .■ =  «(?),',„  3 = 2,■■■,>-

and

(1 -  e~i(r  I J =  2 , . . .  ,r.

Moreover, i f  $  >  0, then we have

and

(1 -  e - * ) -  I =  *-■ ({)*,. 3 =  2 ,. . .

(1 -  | [» -* « )  -  a(0 * 4 > - V e M 0 ] M .

P ro o f: By assumption, we have

(2 .2 .2) a ( 0  =
(1 -  e - ^ ) m/ ( l  -  (1 -  e- ^ ) m*

(1 -  e“^ )m* *

where * denotes some 1 x 1, 1 x (r — 1), (r — 1) x 1 and (r — 1) x (r — 1) 

matrices of trigonometric polynomials. Since (f> is refinable,

${<%) = a ( 0 ? ( 0 -
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Taking Oth, . . ( m — l) th  derivatives a t £ =  0 from both sides of the equation 

above, since a(£) has the canonical form (2.2.2), we have

J5°(0) =  0, j  =  2 , . . . , r ;  £ = 0, l , . . . , m  —1.

Notice th a t is a superfunction, we have for £ =  0 , 1 , . . . ,  m  — 1,

Y 2 k e<f>i(x + k) =pe{x) 
fee z

where p^, ^ =  0 , 1 , . . . ,  m  — 1, is a polynomial with degree a t most i. Notice

e -“ < = : Y ,
fcez

and for I  =  0 , . . . ,  m  — 1, j  =  2 , . . . ,  r,

Y  k% , j  = !  Y  \ki(pi{x +  k)](pj(x)dx
fcez feez

=  J  pe(x)<f>j(x)dx 

= (pe(—iD)(j>j^ (0) =  0.

Thus for j  = 2 , . . . ,  r ,

(2-2.3) (1 -  e ~ * r  I * K ) u  =  $(!)*!•

By the definition of adjoint matrices, (—1)J+1$ ^ , j  = 2 , . . . ,  r , is the determi­

nant of a sub-m atrix of $ . Since the first row of this sub-m atrix has a common 

factor (1 — e~^)m, we have

(2.2.4) (1 -  e -« )“  I =  5 331© ,,!-

Moreover, if $  >  0, then det<f>(£) >  0 for all £ € T. Therefore, det<J>(0) ^  0. 

By the m atrix identity A -1 =  Aadj/detA  and (2.2.4), for j  = 2 , . . . ,  r,  we have

(2.2.5) (1 -  e - * r  I =  S © © , ! .

As we proved in Section 2.1, Ta$  =  <f>, i.e.,

Ml-i
®(d0  = E  a (£ +  2nj/d)$(£, + 27rj/d )a (£  +  2-Kj/d)*.

7= 0
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By (2.2.2), we have

(1 -  e_^ ) 2m | [a(£ +  2n j / d ) ^  + 2n j /d )a(£ + 2ttj /d )*] i v  j  =  2 , . . . ,  r.

Therefore,

m ) i , !  =  [a (e )4 « )a (? )* ] ljl+ 0 ( |{ |2’") as f  -*  0.

Combining the equality above with (2.2.2) and (2.2.3), we have

=  I“ « ) i ,i |24>«) i ,i  +  0 (|£|2m) as f  0.

Hence

(2.2.6) ( « t t ) u ) ' ‘=  |<jK)M |2( « ( d 0 u ) _1+ O (l« |2’”) as f  -  0.

By (2.2.3), (2.2.5) and $ (^ )<f>_1(^) =  Ir , we have

1 =  ^ ( O i . i^ _1(O i,i +  O m 2m) as £ ^  0.

Therefore,

(2.2.7) ( ® K ) i , i ) ~ ‘ =  * - ‘ (€ ) i . i  +  0 ( | f | 2"*) as f  0.

By (2.2.2), (2.2.6) and (2.2.7), we have

® _1( 0 i ,i  =  ( « K ) m ) ' 1+ o ( | ? H

=  |a « ) i ,1|2(*(< if)1, . ) ' 1+ 0 ( | ? r )

=  M O i . i l 2* - 1^ ) ! , !  +  0 ( j ^ |2m)

=  H « * ® - , (<<0a(f)]M + O ( |f |2"’) as £ —> 0.

Therefore

(1 -  e-‘«)2m | [« - '« )  -  a(£r*-‘(d()a(()]u .
■

Now let us consider the eigenvectors of Ta. As we showed in Section 2.1, 

Ta<f> =  <f>. Moreover, if the integer shifts of 0 are stable, then the cascade
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algorithm associated with the mask a converges in L<i. Hence, we have th a t 

Ta has a simple eigenvalue 1 and all other eigenvalues of Ta are less than  1 in 

modulus (see [45]). Thus under the condition the integer shifts of cp are stable, 

we have th a t <E> is the unique 1-eigenfunction of Ta and for all £ G T, $(£) > 0. 

Define a as
- l

a(£) :=
(1 -  e~idt )m 0

0 / r_ i

(1 -  e~^)m 0

0 I r-1

Notice we assume th a t a takes the form (2.2.2), so a is an r  x r  m atrix of 

trigonometric polynomials. Define a new operator mapping C '(T )rx r  into 

C '(T )rx r  by

Ml-i
(2.2.8) T~aF(dO  :=  £  a(£ +  2j7r/d)F(£ +  2j7r/d)a(£ +  2 j i r /d ) \

3=0

Since a is an r  x r  m atrix of trigonometric polynomials, we denote 7a(r̂ ')ryr 

a subspace containing all r  x r  matrices of trigonometric polynomials up to 

a finite degree determined by a such th a t it is an invariant subspace of T~ 

and p(Tg) = p(Ta\y~(jyxr) (see [22]). Similarly, since a is an r x r  m atrix of 

trigonometric polynomials, denote T a (T ) rx r  a subspace containing all r  x r  

matrices of trigonometric polynomials up to a finite degree determined by a 

such th a t it is an invariant subspace of Ta and p(Ta) =  p(Ta\j>o(jyxr) . It is 

obvious th a t

T~F = XF  = >  TnF  = AF

where F  is derived from F  by

(2.2.9) F(( )  =

Therefore, we have

(2 .2 .10)

(1 — e~^)m 0 '

0 / r_i
m

( l _ e-^)m o '

0 I r-1
V£ e  T.

p(Ta) ^  p(Ta).

Now we are in the position to prove the following Theorem.
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T h e o re m  2.1. Let 0 and a be defined as in Lemma 2.1. If(j) has stable integer 

shifts, then there exist a positive number p < 1 and some F  £ y (T )rxr such 

that F  >  0 and TaF  ^  pF  where F  is derived from F  by (2.2.9).

P ro o f: Since Ta is a linear operator acting on 9)s(T )rXr which is a finite

dimensional space, by the definition of spectrum, we know th a t there exists 

0  7  ̂G(f )  £ CPa(T)rxr such th a t T%G = A0G and |A0| =  p(Ta\y~(j)rxr). Define
—i *

"(1 — e~^)m 0 ' ( l _ e-^)m o '
G ( 0

1--
- O 1 0 Ir- 1_

then it is evident to see th a t we have TaG =  AoG.

Since $ ( 0 ) 1,1 ^  |0i(O ) | 2 7  ̂ 0, $ ( 0 ) 1,1 7  ̂ 0 and (*(0 ) 1,1 =  0  by the definition 

of G. Thus for all A £ C, we have $  7  ̂ AG. Notice th a t $  is the unique 

1-eigenfunction of Ta, we have |A0| =  p(7a) 1 . Since <f> has stable integer

shifts, Ta has a simple eigenvalue 1 and all other eigenvalues of Ta are less than 

1 in modulus (see [45]). By (2.2.10), we have p(T~) ^  1. Combining the fact 

th a t p(T~) 7  ̂ 1 , we have |A0| =  p(T~) < 1.

Choose pi :=  [1 +p(T~)]/2. Then we have p(Ts) <  pi <  1 . Borrowing the 

idea from the proof of [38, Theorem 3], since p (7s/p i) < 1, (Id -  T^/P\)~l is 

a well defined operator acting on $a(T )rXr and

(Id -  I s / p i ) - 1 = Id  + T~a/p  1 +  T~/p\  +  • • • ,

where I d  denotes the identity operator. Define F  =  (Id  — T a /p i)_1/ r , then 

F  =  Ir + TaF/Pi  +  • • • • Thus F  £ $ s (T)rXr and F  > 0. By the definition of 

F,  we have (Id — Ta/p \ )F  > 0. Therefore, TaF < p\F.  Let F  be derived from 

F  by (2.2.9), then we have TaF  ^  piF. m

Remark: Theorem 2.1 is inspired by [4, Lemma 5]. W hen I was trying to 

generalize [4, Lemma 5], I met some difficulty to apply Perron-Probenius the­

ory. Later I realized th a t the conclusion of [4, Lemma 5] is somehow stronger 

than  its role in [4], i.e., we can use “Ta F p F ” instead of uTaF  = p F ”. That 

is how Theorem 2.1 comes out.
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After Theorem 2.1, our next goal is to prove th a t there exist a positive 

number e and some 0  G T(T)rXr such th a t for all £ G T,

( * ( 0 + ^ ( 0 ) ' ^  0 ( 0  <  ( 4 ( 0  + e p F (£ ) ) - ‘ .

Let us prove the following lemmas first.

L em m a  2.2. I f  A , B  G C'(T)rXr such that A* =  A, B* =  B  and A  < B. Then 

there exists some P  G T(T)rXr such that A  < P  < B.

P ro o f: For every £ G T, suppose Ai(£), ..., Ar (£) are all the eigenvalues of 

(B  -  A)(£) and we have Ai(£) ^  ^  Ar (£). Thus P(£) -  A(£) ^  Ar (£)/r .

Since P(£) — A(£) >  0, we have

Ai(£)  ^  ^  Ar (£) >  0.

Hence we have, for all £ G T,

, , , ,  d e t(B (0  -  4 ( 0 )  ^  d e t(B (0  -  4 ( 0 )  ^  ,

A ,(0  • • • V - . ( 0  "  [ trace (B (0  -  ^ (O ) ]" ” '  "

where c\ is a suitable positive constant number we choose to  satisfy the above 

inequality. Therefore, for all u G Cr , u*(B — A)u  ^  c\u*u. Then we can get a 

trigonometric polynomial Pi G T(T)rxr such th a t for 1 ^  i , j  ^  r  and for all

£ £ T,

\[P1 - ( A  + B)/2}h]( f ) \ < c 1/ (4 r2).

Define P  :=  (Pi +  P 1*)/2, then we have P* =  P  and for all u G  Cr ,

u*(P -  A)u =  u*[(A +  B ) /2  -  A\u  +  u*[Pi -  (A +  B)/2]u/2  

+ u*[Pf -  (A + B)*/2]u/2  

^  c\u*u/2 — CiU*u/4/2 — ciu*u/4/2  

=  c\u*ufA.

Thus P  — A  ^  ' j l r  >  0. Similarly, we have B  — P  ^  f - I r >  0. Thus 

B  < P  < A. m
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L em m a 2.3. I f  A , B  E C'°°(']T)r><7' such that A* =  A, B* — B  and B  — A  — 

P\FP*, where Pi E T ( T ) rXr, detPi ^  0 and F  E C '(T )rXr, F  >  0, then there 

exists some P  E J )( T ) rXr such that A  ^  P  ^  B.

P ro o f: For all £ E T, define Pi(£) :=  detPi(£). Since Pi E fP(T)rXr, and

detPi ^  0, pi is a non-zero 27r-periodic trigonometric polynomial. Therefore, 

|p i | 2 has finitely many roots in T. Suppose all the roots of |p i | 2 in T are

—7T ^  £i <  . . . <  £jv <  7T

with multiplicities op, . . cqv, respectively. Then we have |p i | 2 =  P2P3 , where 

p 2 and p3 are two 27r-periodic trigonometric polynomials such th a t p2(£) 7^ 0 

for all £ E T  and

M O  =  n JL ,(e - iS -

By the Lagrange Interpolation Theorem, for 1 ^  i , j  ^  r , there exist unique 

Pij E T (T )lxl such th a t degptj  <  degp3 and

P u ( O )  =  A j  (&). <■ =  0, ■ ■ ■. a t  -  1; k  =  1 ,..., N .

Define Aj j . |pi| Pi,j) > Î o ■ and A  =  • It

is obvious th a t Po E T (T)rXr and A  — P0 +  PiAp\. Also, by the definition of 

Pij and the fact th a t A hJ is a C'°°-function, it is evident to  see th a t A hJ = 

p~l is a continuous function on T. Since A* — A  and P0 is uniquely

determined by A, we have P0* =  Po and A* = A. By F  > 0, A  E C (T )rxr and 

Lemma 2.2, there exists some P 2 E fP(T)rXr such th a t

pacij2 (p a dj)* ^  p 2 ^  padj^pacij)* +  R

Let P  :=  Po +  Pi P 2P*. We have

P  — A  = Pi[P2 — P f diA {P fdi)*}P* >  0.

Similarly B  — P  ^  0. Thus A  ^  P  ^  B. m

Recall $  := , now we can prove the following proposition. 
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P ro p o s it io n  2.4. Suppose 0 < p < l ,  <f>>0,  F €  C (T )rXr, F  > 0, F  is 

derived from F  by (2.2.9), then there exist e >  0 and 0  G iP(T)rxr such tha t

(<f> +  eF )_1 <  0  <  (Q + ep F ) -1.

P ro o f: For a constant r  x r  m atrix A ^  0, we have

( /  +  A ) - 1 = I  -  A  + A 2(I  + A ) - 1 = I  -  A  +  A ( I  +  A ) - 1 A.

Hence we have th a t for all A  ^  0,

(I  + A ) - 1 > 1 -  A.

Also for a given positive number A, if A  ^  AI r, we have

(I  + A ) ( I - A  + XA) = I - A 2 + XA + XA2 ^  1 + A ( \ I r - A ) ^ I .  

Hence

(2.2.11) (I  + A )-1 ^  I  — A  +  AA when A ^  A/r .

Since <& > 0, we have <3>i := d?1/2 >  0. Thus we have

(<f> +  ep F ) -1 =

^  -  e p ^ F ^ 1] ^ 1 = -  e p Q - 'F Q - 1,

i.e.,

(2.2.12) (<f> +  e p F )-1 ^  S " 1 -  ep4>_1F $ _1.

Choose e >  0 small enough such th a t eF ^  (1 — p )$ /2  since <f> ̂  c /r for some

positive number c. By inequality (2.2.11), choosing A =  (1 — p ) / 2, similarly

to the proof of inequality (2.2.12), we have

(2.2.13) (4> +  e F )” 1 SC O '1 -  e(l +  p)®”1 F ® " 1/2.

Define

(2.2.14) A0( O : = d i a g [ ( l - e - « ) , l , . . . , l ]
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and

$  ;= A ^ Q - ' A Z 1.

By $  >  0 we know th a t the determinant of $  is positive. By Lemma 2.1 we 

know th a t $  G C'00( i y xr. By the definition of $ , we have

[$_1 -  ep$_1F<l>“ 1] -  -  e(l +  p ) $ - l F $ - l /2\

= e(l -  p)<S>-1F<S>-1/2
(2.2.15) _

=  e(l -  p ) ^ n $ A o mF (A om)*$*] W ) * / 2  

-  e(l -  p )A n$F $*](A [T )72 .

It is obvious th a t <3>Fc3>* >  0. By Lemma 2.3, there exists some P  G fP(T)rXr 

such th a t

(2.2.16) -  e(l +  p ) ^ - 1^ - 1̂  ^  P  ^  -  ep$_1P $ _1.

Plus inequalities (2.2.12) and (2.2.13), we have

($  +  e P ) -x ^  P  ^  (<f> +  epP )-1 .

■

Now we can prove the following proposition.

P ro p o s it io n  2.5. Let 0 and a be defined as in Theorem 2.1. l i  4> has stable 

integer shifts, then there exists 0  G fP(T)rxr such th a t 0(O)ip =  1, 0  >  0 and

(2.2.17) 0 _1 — Ta( 0 -1) ^  0.

P ro o f: By Theorem 2.1, there exists some positive number p <  1 and F  >  0 

such th a t TaF  < p F  where F  is defined as in (2.2.9). As we discussed before, 

$  satisfies Ta$  =  $  >  0. Hence by Proposition 2.4, there exist e >  0 and some 

P  G fP(T)rXr such th a t

0 <  ($  +  e P ) - 1 <  P  <  ($  +  e p P )-1,

i.e.,

(2.2.18) $  +  peP ^  P - 1 ^  $  +  eP.
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Let 0  :=  P  > 0, then by inequality (2.2.18) we have ©(0 ) 1,1 =  1 and 

0 - 1 -  T ^ © -1) ^  (<f> +  peF) -  Ta iQ -1) > ($  +  peF) -  Ta(4> +  eF) > 0.

■

Now let us go through the following well-known lemmas.

L em m a  2.6. Suppose A  is an m x n  matrix and B  is an n x m  matrix. Then 

we have

Andet(AIm -  ,413) =  ATOdet(AIn -  BA).

P ro o f: We have the following identities.

Im A A Im o ' AIm - A B A  '

B 1

•< - B
-

0 A/„_

Im A  ' AIm - A him 0
-1

B 1

-< 0 ! n _ A B A In - BA_

Taking the determ inants of the matrices in the above two equations, we have 

Andet(AIm -  A B )  = Amdet(AIn -  BA) .

■

L em m a 2.7. Let A  be an m  x  n matrix and B  be an n  x  m  matrix. I f

(AB)* — A B  and (BA)* =  BA ,  then we have

Im -  A B  ^  0 «=>• In -  B A  ^  0.

P ro o f: Suppose Im — A B  ^  0. Then all the eigenvalues of (Im — A B )  are

n o n n eg a tiv e .  H en ce

m
det[A/m -  (Im -  AB)} = J ] (A  -  A,),

j = 1
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where for j  — 1 , . . . ,  m, Xj is nonnegative. By Lemma 2.6, we have 

(A -  l ) m-ndet[A/n -  (Jn -  BA)] =  (A -  l ) m-"det[(A -  1 )/„  +  BA)]
m

=  det[(A -  1 ) Im + AB] = J ] (A  -  Xj).
3=1

Thus all the eigenvalues of (In — BA )  are nonnegative. Combining th a t 

(BA)* = B A ,  we know th a t I n — B A  ^  0. Therefore, Im — A B  ^  0 im­

plies In — B A  ^  0. Similarly, I n — B A  ^  0 implies I m — A B  ^  0. ■

Finally, we are in the position to state  our main theorem in this chapter:

T h e o re m  2.2. Let G (L2(lR))r be a refinable function vector. I f  the integer 

shifts of (j> are stable and the matrix mask a of <j) satisfies sum rules of  order m,  

then there exists a tight multiwavelet frame derived from and it has vanishing 

moments of order m.

P ro o f: By Theorem 1.2, we can assume th a t the m atrix mask a takes the

canonical form (2.2.2). By Proposition 2.5, there exist 0  G T(T)r'xr such th a t 

0(O)M =  1, 0  >  0 and 0 " 1 -  Ta(Q~l ) > 0.

First we want to prove th a t M  ^  0, where M  is defined by

M (£) := diag [0(£), 0 (£  +  2ir/d) , . . . ,  0 (£  +  2(\d\ -  1 )*/<[)] -

(2.2.19) [a(£), a(£ +  2tt/ d) , . . . ,  a(£ +  2(\d\ -  l)n/d)]  * 0(d£) x

[a(£), a(£ +  2n /d ) , . . . ,  a(£ +  2(|d| -  l)7r/d)] V£ G T.

By the fact 0  >  0 we have 0 i  := 0 1/2 >  0. Therefore, by the definition of M  

in (2.2.19), we have

M ( 0  = diag[0i(£), 0 X(£ +  2tt/ d ) , . . . ,  ©,(£ +  2(\d\ -  l)n/d)]

(J|d|r -  [0 i(d£ )a(£ )0 i(£ )_1,0 i(d £ )a(£  +  2tt/d )0 i(£  +  2ir/d)~1, . . . ,

0 i(d£)a(£  +  2(|d| -  l)7 r/d )0 i(£  +  2(|d| -  l)7r/d)_1]*x 

[0 i(d£ )a(£ )0 i(£ )_1,0 i(d £ )a (£  +  27r/d)0i(£ +  27r/d)_1, . . . ,

0 i(d£)a(£  +  2(\d\ -  1)7 r/d )0 !(£ +  2(\d\ -  1 )7i/d)~1]) 

diag[0i(£), 0 i(£  +  2n /d ) , . . . ,  0 X(£ +  2(|d| -  l)?r/d)].
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Hence,

M (0  ^  0

<=> I\d\r -  [© i(d£M £)0 i(£ )_\  © i(d£M £ +  2 n / d ) 0 i(£ +  2 n / d y \ . . . ,  

0 i(d£)a(£  +  2(|d| -  l)7 r/d )0 i(^  +  2(|d| -  l)7r/d)_1]*x 

[ e i ( d ^ ) a ( O Q i ( 0 ~ \ Q M H ^  + 27r/^)©i(e +  2 n / d ) ~ \  . . . ,

© i +  2(M| -  l ) 7 r / d ) 0 i ( ^  +  2(|d| -  1)7r / d ) -1 ] >  0.

By Lemma 2.7, for all £ E T, we have th a t 

M ( 0  > 0

<=>Ir -  [0 i(d O a(O © i(O _1, B i(de)a(e +  2 tr/d )0 i(£  +  2tt/ d ) ~ \  

0 i(d£)a(£  +  2(|d| -  lW cQ B ite  +  2(\d\ -  l ^ / d ) " 1] x 

[ 0 i ( O a ( O 0 i ( O _1, © i(< W £  +  27r/d)01(£ +  27r/d)-1, • • ■,

0 1(dO a(e +  2(|d| -  l)7r/d)© 1(^ +  2(|d| -  1 ) n / d ) - 1]*> 0.

By 0  =  0 f  =  0 i 0 i ,  we have

m ( 0  ^  0  & i r -  e 1{dOTa{G~1) ( d o e i { d ^ )  >  0  ^  e - ' i d t )  > r a( 0 - 1) ( ^ ) ,

i.e.,

M  ^  0 <t=> ©_1 ^  T ^ © " 1).

Thus by inequality (2.2.17), we know M  ^  0.

Secondly, we want to prove th a t we can derive a tight wavelet frame from 

the given 0 . As a special case of Theorem 1.6, to  derive a tight wavelet frame 

from the given 0 ,  we need to find r x r  matrices a 1 (£),..., aL(£) of trigonometric 

polynomials such th a t

a1®* a1®* V ( o '

(2.2.20)
a'(Z + %y • • ^ + f r «2(0

+ to
a.

1 *
1 aL(0_
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where

M m

Recall M  is defined as

’e(6
A f« ) =  '

0 ^  +  22M zli)

«(0* « « )•

e(<*e)

a

..
. 

+

*

1

+ to 1

*
i

a ( e + 2 . (M|- i ) ) *

It is evident to see th a t (2.2.20) is equivalent to

(2.2.21) 2t({)M({) = M{(),

where

^ ( 0  :=

Define

Ir

A O

aL( 0

e~*Ir

+a ‘ («

“L {(  +

27T(|rf[-l)

27r(lrf|-! ) )

i f  1/  i f

e-i{\d\-\)iIr

e - i { \ d \ - l ) { i + 2 n / d )

7  - i K + 2 i r ( |d | - l ) / d ) /  . . .  p - i ( \ d \ - m + 2 * ( \ d \ - l ) / d )  TI f  U I f  O I f

To solve (2.2.21), using the polyphase decomposition, define

A ( d 0  :=  i 4 ( 0 ^ ( 0

and

M (d{) :=  B K )* M (0 E (f) ,
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By direct calculation, we can verify th a t

A f(0  G 3>(T)|d|rx|‘i|r <=> M ( 0  G y(T )ldlrx ldlr

and

^ ( O .  • • • >aL( 0  e  ? (T )rXr «=> A ( 0  G 7 (T )Lrxldlr.

It is evident to see th a t (2.2.21) is equivalent to

(2.2.22) A ( 0 * A ( 0  = m ) .

We are especially interested in the case L  = \d\. In this case, A(£) is a \d\r x 

\d\r matrix. Since M (£) G 0, (T)ldlrXldlr , we know th a t M (£) G 3>(']T)ldl7'><l(ilr . 

Moreover, by M  ^  0, we have M  ^  0. Hence by the matrix-valued Fejer-Riesz 

Lemma([18], [28], [41]), there exists A  G ^(T ^bxM k such th a t A(£)*A(£) = 

M (£). Therefore we can obtain trigonometric polynomial matrices a 1 (£), ..., 

a '^(£) by the relation A(£) — A(d£)E(!;)~~1. Moreover, by the choice of a1, 

..., a}d\  we know th a t a 1^ ) ,  u ^ (£ ) are r  x r  matrices of trigonometric

polynomials and satisfy (2.2.20). Hence by Theorem 1.6 we can derive a tight 

wavelet frame with generators {ip1, ..., ip ^}  such th a t ip1, ..., ip^  are r  x 1 

function vectors and

j  =  i , . . . , i 4

Finally we want to prove th a t ip1, ..., ip^  all have vanishing moments of 

order m.  By Corollary 1.2, we only need to prove tha t

(1 -  e-«r I k  =  1 , . . . ,  r ; j  = 1 , . . . ,  \i\,

where a?(£)k,i denotes the (k, l)-entry of <F(£). By (2.2.20), we have th a t

|<Z| r

E  E  M f M 2 =  [ e « )  -  a K j 'e w w f ) ]  u
j =1 k =1

=  +  ^ ( e ) G ( ? ) ^ ( 0 *  -  a K J -S - 'T O a t? )

=  [* -■ ©  -  a(€)‘®_1 !,! +  o d d 2”*) as t  -> 0.
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By Lemma 2.1, we have

(1 -  e- « ) 2m j [ $ - '  -

Hence
| d |  r

E E k t t M 2 =  0 ( | « n  as e 0 .
j=l k=1

Therefore,
Ml r

5Z K’tek i/n 2 < +°° as  ̂ o.
j=i ^=1

Noticing the fact th a t the summation of nonnegative numbers is still nonneg­

ative, we have

K ( 0 m /0 " I  < +oo as £ —* 0, k = 1 , . . .  , r - j  = 1 , . . . ,  |d|.

Thus,

( l - e - * ) - | « < ( « ) M> * « 1 ........ r t f - 1 .........1 4

Hence ip1, ip^  all have vanishing moments of order m. m

2.3 E xam ple

E x a m p le  2.1. Let us recall the mask of the well known piecewise Hermite 

cubics (p (it was discussed in Section 1.2) which is given by

(2.3.23) <*(0 :=
(e* +  2 +  e "* ) /4  3(ei$ -  e~*)/8

( - e * +  e - iS)/ l6  ( - e *  +  4 - e " * ) / 1 6

In Section 1.2, we already proved th a t a satisfies the sum rules of order 4 with 

a row vector y(£) =  [1, e^ /3  +  1/2 — e- ^  +  e_2l?/6]. Take m  = n = 1. Define 

U(£) I 2 • Then U takes the form of (1.2.15) with m  =  n  — 1. 

Define
r 1 0 

0 15 +  9 \/2
0(0 : =
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1

o.a

0.6

0.4

0.2

o

0.2

0.4

-0.6

-0.8

1
1 -o.s o 0.6 1

1

O.S

o

-o.s
1 -0.5 O 0.5 1(a)

Figure 2.1: Generators for the tight 2-wavelet frame in Example 2.1: (o.) xp1

(b) xp2. All the components in the wavelet function vectors xp1^ 2 are either 

symmetric or antisymmetric about the origin and have vanishing moments of 

order 1.

and

d\ (2 — ;* )/4 3(e - i £  _  J .*) / 8

«2( 0  : =  d2

( -2 9  +  16>/2)(e-* -  e*)/784 (20 +  l l e “*  +  lle * )/1 1 2

0 (3\/6 +  4 V 3 ) ( e - * - e * ) /8

(6 -  5\/2)(e~* -  e*)/196 3(2 -  e"*  -  e*?)/28

where

d\ :=  diag 1, V105 +  63\/2 and c?2 := diag 1, V 70 +  42V2

Define function vectors ip1 and ip2 by

V?(2{) :=  a1© ? © ,  ~

By a direct computation based on Theorem 1.6, one can verify th a t {xpl ,xp2} 

generates a tight 2-wavelet frame. Moreover, function vectors xpl ,xp2 are real­

valued and symmetric, and all of them  have vanishing moments of order 1. 

For their graphs, see Figure 2.1.
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Chapter 3

Tight wavelet frames w ith three 

sym m etric generators having 

high vanishing m om ents

3.1 In troduction

In Chapters 1 and 2, we discussed how to construct multiwavelet frames from 

refinable function vectors and the existence of a tight multiwavelet frame de­

rived from any given refinable function vector with stable shifts. These two 

chapters generalize the corresponding result in the classical wavelet theory, i.e., 

the case of multiplicity r  =  1. However, even in the classical wavelet theory, 

some interesting questions have not been answered yet. In classical wavelet 

theory, tight wavelet frames generated by symmetric functions are very inter­

esting. A question th a t had not been answered is: for a given positive integer 

n, can we find a tight wavelet frame with some symmetric generators hav­

ing vanishing moments n  and the generators belong to C n~2l  By numerical 

computation, it was verified in [13] (also in [4]) th a t the answer to the above 

question is positive for n  =  1 , . . . ,  6. In this chapter, we are going to  dis-
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cuss how to construct a family of tight wavelet frames with three symmetric 

generators having arbitrary  smoothness and arbitrary vanishing moments. As 

discussed before, in many applications, symmetry and orthogonality are highly 

desirable properties. Since Daubechies proved th a t there does not exist smooth 

compactly supported symmetric orthogonal wavelet, we have to loosen some 

conditions. One way is to  construct tight wavelet frames w ith some smooth 

symmetric generators. Then we have a choice on how many generators we are 

going to  pick. In practice, it is highly desirable to  use few generators. By 

Daubechies’ proof, we know th a t using one generator is not possible and it is 

easy to  see th a t using four generators is trivial. So the question will naturally 

be restricted to use two or three generators to construct wavelet frames. Using 

two generators is very difficult, we will discuss it in the next chapter. So it is 

suitable to  discuss the case of three generators constructing wavelet frames in 

this chapter. After tha t, the next choice is how we can choose the refinable 

function to derive frame generators. One natural choice is to  use B-splines. 

Let us recall th a t a B-spline of order n  is defined by the following inductive

way: B x := X[o,i) and B m B x * for m  = 2, 3 ,___ Here “*” denotes the

standard convolution. In this chapter, we will prove the following main result.

T h e o re m  3.1. Let m  be a positive integer and let B m denote the B-spline 

function of  order m. Then there exist three finitely supported sequences b1, b2, b3 

on Z, which can be easily constructed by a simple procedure, such that by 

defining

: = Y , b l {k)Bm{2 - - k ) ,  1 = 1,2,3,
fcez

one has

(1) {if1, ip2, ip3} generates a tight wavelet frame in LiffH) and has the vanish­

ing moments of order m;

(2) ip1,ip2,ip3 are real-valued, symmetric and compactly supported functions

such thatip1( l —m —t) = ( ~ l ) Tnip1(t), ip2( m —t ) =  ip2(t), and ip3( m —t) = 

—ip3(t) for  all t  G R.
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The rest of this chapter is organized by the following way. In Section 3 .2 ,1 

shall prove an interesting inequality. Based on this inequality, in Section 3.3, I 

shall present a simple step by step procedure to construct the sequences 61, 62 

and b3 in Theorem 3.1. All the results in this chapter have been summarized 

in the paper [24] which has been published in Proceedings of the American 

Mathematical Society.

3.2 A uxiliary  inequalities

In order to  prove Theorem 3.1, let us introduce some auxiliary inequalities in 

this section.

Let us recall the following inequality. For a ^ 0 , c ^ 0 , 6 > 0 , d > 0 ,  it 

is very easy to prove th a t if |  ^  then we have |  ^  ^  Repeat the

above inequality n  times, we have the following lemma.

L em m a  3.1. I f  aj ^  0 and bj > 0 for all j  =  1 ,n  such that ^  ^

• • • ^  r +  then bn ’

a i ^  +  a 2 ^  ^  +  a2 +  • • • +  an
bi 6 1 + 6 2  61 +  62 +  • • • +  bn

For any positive integer m, throughout this chapter, we define Co =  1 and

(3 '2 J )  ^ := M f n - 2 7 T i n O - s ) '  i e N ’
k =1

where 0!! :=  1, 1!! :=  1 and n\\ :=  (n — 2)!! x n  for n  =  2, 3, .... Note th a t

(3 22) ( / 2  arcsin(sillK /2)) _  +  .
’ sin(?/2) s in (f/2 ) + ’ 2 ’ f e l J r . T ] ,

So we have
OO

(3.2.3) J 2  ci =  V 2-
3= 0

The following estimate will be needed later.
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L em m a 3.2. Let Co :=  1 and Cj(j G N )  be defined in (3.2.1). For any positive 

integer m, for  x  G [0,1], define

OO

f m(x) :=  4m (l +  x )2m cj+m( 1 -  x 2)3.
i=o

Then for m  ^  2, f m is an increasing function on the interval [0,1] and for 

3, we have

(3.2.4) 4m (l +  x )2m ^  ci+m(l -  x 2)3 ^  V x G [ 0 , l ] .
j =o

P ro o f: By equality (3.2.3), it is evident th a t f m is a continuous function on 

the interval [0,1]. For x  G (0 ,1), by the definition of f m, we have

OO OO

fn {x )  = 8m 2(l + x )2m~1' ^ 2 c j+rn( l - x 2y - 8 m x ( l + x ) 2m^ r j c j+m( l - x 2y - 1.
j =0 j =0

Consequently, for x  G (0,1),

/m W  1 / ^ - 1
8m x{ l  + xY™ m i - x 2 § Cj+m(1 ^  1-

Denote y := 1 — x 2. Then

OO

l / x  = 1 / y/1 - y  =  (1 -  y)~1/2 = 1 +  ^ ( 2 j  +  l ) c jy ,  x  G (0,1).
l=i

Therefore, for £ G (0,1), we have

of / \ OO OO OO

8 m x ( l + x y m = m ^ {2j +  C3+myj] ~  +  1)cl+ -+ iy j

OO

” • ^  1 9m,jcj+m+iy^)
1=0

where y =  1 — x2 and the numbers ymj  are defined by

(3.2.5) ymJ :=  m V (2 &  +  3)cfc+i ^ = *  -  (j +  1), j  G N U  {0}.
k = 0  C3+ m + 1
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In the following several pages, we want to  estimate gm<j, j  € N U {0} to 

prove th a t gmj  are all positive numbers. By cq := 1 and the definition of the 

numbers Cj (j  £ N) in (3.2.1), we have

(3,2.6) (2k +  3)ct+ IS ± = i  =  2^ +  2m + _3_____ ..................................... ..

Note th a t for any nonnegative integer k, we have

fc+l .. fc+l .. fc+l I T“ I T~

nil - 1/(201 = -2 W -  V W  > 2 n  \A-  Y e t -  2 T - 1
r=i r=2  r=2  '

1 K  l £ - l  1n2 1_1 V £ 2n/F T T

and for 0 <  k ^  j ,

j + m + l  j + m + l

n  [ i - 1 / ( 2 0 1  <  n  ^ - h r - w r i
£ = j + m —k + 1 £ = j + m —fc+l

j + m + l

, ./f^" . ,, V 2£ +  1 \/2 j +  2m +  3
—j + m - k + l

f2 l  -  1 _  V 2j +  2m -  2k + T

It follows from (3.2.6) and the above two inequalities th a t

(2k +  3)Cfc+1̂ ± ^  >  2j + 2m + 3------------1 _ y '2 j +  2m +  3 _
^j + m + i  2j  +  2m — 2k +  1 2^/Ar+T +  2m — 2A; +  1

__ 1 (j +  m +  3 /2 )3/2
2^Jk +  1 (j +  m +  1/2 -  A:)3/2'

Hence,

Jm j +  (j +  1) =  m J ^ ( 2 k  +  3)cfc+iCj+m k
k =0 ° j + m + 1

J 1
^  m (j +  m +  3 /2 )3/2 V"' — -......... —

“ J 2\/fc +  l ( j  +  m +  1/2 — A;)3/2
j+i ,

=  m ( j  +  m +  3 /2 )3/2 — = ------------------------------ .
^  2y/k(j  + m  + 3/2  — A;)3/2
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Let =  yj{k  + l ){ j  + m + \ - k )  and t 2m^ k =  y jk \ j  +  m +  § -  (k +  1)]. 

It is evident to  see th a t tj  *.,m ^  and moreover, we have

+  1

•\/j +  m  +  5/2 — (A; +  1) a / j  +  m +  5/2 — k
t 1 - 12  m,j,k m,j,k

y / j  +  m +  3/2 — k y / j  +  m +  5/2 — k
_  (k + l ) ( j  + m  + 5/2  — k) — k[j +  m +  5/2 — (k +  1)]

y / j  +  m  +  3/2 -  k y / j  +  771 +  5/2 -  J
_  j  +  m +  5/2

V j  +  m +  3/2 -  fcy 'j +  m +  5/2 -  +  t2m j k)
j  +  m +  5/2 

2 V k ( j  +  m +  3/2 — A;)3/2

We deduce th a t 

9m,j +  (j +  1)

^  ^  ( j +  m  +  3 /2 )3/2 \ /F + T  Vfc |
^  j  +  m  +  5/2 ^ / j  +  m  +  5/2 — (k +  1) y / j  +  m +  5/2 — k

_  m ( j  +  m  +  3 /2 )3/2 V j +  2__________a /I
j + m  +  5/2 y /m  + 1/2 y^j +  m +  3/2 

m (j +  m +  3 /2 )3/2 
j  +  m +  5/2

_____________ (j +  2 )(j +  m +  3/2) -  (m +  1/2) ____________
y /m  -\- l / 2 y / j  +  m +  3 /2 [-y/(j +  2)(j +  m  +  3/2) +  y / m  +  1/2]

=  , • +  ^ ______________m (j +  m +  3/2)______________
a/(?7i +  1/2) (j +  2 )( j +  m +  3/2) +  (m +  1/2)

By computation, for m ^  2 and j  ^  0, we have

[m(j  +  m +  3/2) — m  — 1/2]2 -  (m +  1 /2 )(j +  2)(j +  m +  3/2)

=  [m(m — 1) — l /2 ] j2 +  [m(2m2 — 5) — 7/4]j +  m ( m  +  l) (m 2 — 4)

+  5m ( m  — l ) /4  +  (3m — 5)/4  >  0.

Consequently, for all rn +  2 and j  ^  0, we have

m (j +  m  +  3/2) >  \ / ( m  +  l /2 ) ( j  +  2)(j +  m +  3/2) +  (m +  1/2).
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Hence, gmj  +  (j  +  1) > j  + 1 for all m  ^  2 and j  ^  0. T hat is

>  0 Vm ^  2andj ^  0

which implies f'm{x) > 0 for all x  G (0,1) and m  ^  2.

So, for m ^  2, / m is an increasing function on the interval [0,1] and

fm  ^  fm{0)- Note th a t 1 — I / (2k)  =  (2k — 1)/(2k) ^  y / (k  — 1 ) / k  for all

k G N. We deduce th a t

1 1 1
2 (2j +  l ) y / j  '  2 y/ j  2 v T + T

for all j  G N. W hen m ^  4, by inequality (3.2.7), we have

OO OO ^
/ m(0) =  4m J ]  9  ^  4m =  2 v ^

j = m  j —'kn

^  4 >  tt/ ( 1 -  21/2-4) ^  7r/(l -  21/2" m).

Note th a t Co =  1, C\ =  1/6 and C2 =  3/40. W hen m =  3, by (3.2.3), we

have
OO

/ 3(0) =  12 ^  Cj =  12(tt/2 -  c0 -  Cl -  c2) =  6tt -  149/10 ^  tt/(1  -  21/2" 3)
3 =  3

which completes the proof. ■

Now the main result in this section, which plays a critical role in our proof 

of Theorem 3.1, is as follows:

Theorem  3.2. For any positive integer m,

r ^ m - 1 • 2j  £  v- v- 1

(3.2.8) ( x 0! 5m2j ! > ( COS2”  |  + sin2” | ) =  V ? € R,
E ,= o  v 2 2J

where c0 1 and the numbers C j ( j  G N) are defined in (3.2.1).
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P ro o f: It is easy to see th a t in order to show the inequality (3.2.8), it suffices 

to  prove it for £ G [0,7r/2] since sin2 ^  =  cos2 |  ^  sin2 |  for all £ G [0,7r/2], 

Let x = cos(£). By Lemma 3.2, for m ^  3, we have the following estimate

3 = 0

Define
m—1

/  £ \  2 m

(3.2.9) 4 m ( 2 cos -J ^ c ^ s m  J £ ^   ̂•_  2l/2,„„ V £ g [0 ,t t /2 ] .

A (0  :=  £  c, sin* |  and B (f) :=  -  A (f).
j=0

By (3.2.2), B(£) =  J2p=m cj  s n̂2,3 I ' ^  follows from (3.2.9) th a t for £ G [0, 7t/2],

OO

B ( 2 0  = Y 1  sin2j £ =  sin2m £ ct+m sin2j £
j—m j ~0

4m cos2"*(f/2) i 2 /  ^  ,+ 5

n  _ _ l_  _ sin2m(g/2) 
2 2m cos2m(£/2) 

1 _  21/2—m
_1_ _ sin2m(g/2) 

^  S 2m cos2m(£/2)
-V

sin£ 1 i  >

[4cos2(^/2)]m cos(£/2)

where we use the fact th a t cos(£/2) ^  2-1/2 for all £ G [0, 7t/2], Observe tha t 

(1 +  x ) ^  — 1 ^  ~  for all x  ^  0 and m  G N. It follows th a t

sin2m(£/2) \  2k  1 sin2m(£/2)
cos2m(£ /2 ) / ^  2m cos2™ (£/2)’ * 1 ’ 7 J'

Since ^4(2£) +  B(2£) = ; ^ , £  £ [0, 7t/2], from the above two inequalities, we 

have

B(  2£) _ B ( 2 £ ) >  +
1 sin2rn(g/2) \  2m _  

L (C /Q'i I

1 . 1
[4cos2(£ /2 )]m cos(£/2)

" 4 (2 £ )  +  P ( 2 £ )  ^  /  sin2m(£/2) N 2 m
cos2m(£/2) y

(  cos2m(£/2) +  sin2m(£/2)) ^  -  cos(£/2) 

cos2- (£ /2 )  + s in 2m(£ /2 ) )2m -  [4cosa^/2)]m
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The above inequality is equivalent to

S _  B { 2Q____________ 1 _

(3.2.10)
cos + ( 2 0 + 5 ( 2 0  [4cos2(£/2)]r

1 5 (2 Q
+ ( 2 0 + 5 ( 2 0

Since 2cos(£/2) >  1 for all £ G [0, vr/2] and 

1 1

^  (co s2m(£ /2 )+ s in 2m(£/2))
1

2m

Cj sin2j |  
cj cos2'7 £ ( 2 C O s|)2j ^  ( 2 COs | ) 2̂ +2 « ,« « * * » { ■

by Lemma 3.1, we have

B(C) _  E7=mcJ sin2j I  ^  sin2m |  1

cj+1 sin2i+21
£ G [0 ,7 r/2 ],

m )  s in « £  ^  sin2r" £ 4cos2(£/2)
£ G [0, 7t/2].

Hence, -B(£) ^ B (  2 0
[4cos2($/2)]n for all £ G [0, 7t/2 ]  and

4 « )  _  [4(f) +  5 (0 ] -  5(0  > [4(0  +  5(01 5 (2 Q
[4cos2(£/2)]”

A ( 2£) [i4 (2£) +  H (2 £ )]  -  B (2 £ )  "  [T (2 £ ) +  J3(2£)] -  f l ( 2 £ )
B (  2QA (Q + 5(Q _________________ ______________

+ (2 f l+ B (2 Q  + (2 Q + B (2 Q  ' [4cos2 (g /2 )p
Bim

1 ,4(20+5(20
B(2Q 1

COS 2 + ( 2 0 + 5 ( 2 0  ' [4cos2(^/2)]11

1 -
5(2Q

+ ( 2 0 + 5 ( 2 0

since +!(£)+£?(£) =  silf(02) for £ G [—7r, 7t]. It follows from the above inequality 

and (3.2.10) th a t for £ G [0,7r/2],

, QQO i     . (̂20_ ,  1_
° Ub 2 + (2 Q + 5 (2Q [4cos2(£/2)]m ^  f ^ 2 m r c / o \  , ^ 2 m ^ —

^(2£) 1 -
5 ( 2 0 ^  ^ cos2m (£/2) +  sin2m (£/2

+ ( 2 0 + 5 ( 2 0

Therefore, (3.2.8) holds when m  ^  3. It is evident th a t (3.2.8) holds for 

m  — 1. In the following, let us check the case m  =  2. Let x  =  sin2(£/2). Then 

sin2£ =  4cc(l — a;). W hen m  = 2, to prove (3.2.8), it suffices to prove

(3.2.11)
1 4- -  T  6

1 +  |x ( l  — X)
^  [1 — 2x(l  — x )]1/,‘4 VT G [0,1].
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By computation, for x  £ [0,1], we have

[1 +  ^ ( 1  -  z)][l -  2x(l -  x)]l/A <  [1 +  | x ( l  -  x)][l -  ^ 2 x ( l  -  x)]

= 1 + ^  “  l ^ 1 ~ X̂ ~ \ x2(yl ~

<  1 +  jU ( l -  x) ^  1 +  

which verifies inequality (3.2.11). Therefore, the proof is completed. ■

3.3 C onstruction  o f tigh t w avelet fram es w ith  

three sym m etric generators

In this section, using the auxiliary inequalities in Section 3.2, we shall prove 

Theorem 3.1. In particular, we shall give a step by step procedure for con­

structing the sequences b1 ,b2, b:i in Theorem 3.1.

Proof of Theorem 3.1: Let B rn be the B-spline function of order m  and let

( _ £ \  171 ^  ^
— 2 * J ■ Then it is known th a t Bm(2£) =  a(£)Bm(£). Let c0 := 1

and C j ( j  £  N) be the numbers which are defined in (3.2.1). The numbers d m j

are uniquely determined by the following identity

m—1

(3.3.12) ( Y , ci x i T  = Y , d x-j
3 = 0  j = 0

Clearly, dmj0 =  [co]m =  1 and dmj  =  0 for all j  >  m ( m  — 1). Define two

27r-periodic trigonometric polynomials 9X and 9 as follows:

m—1 c
(3.3.13) e1© : = l  + y'< imiysm2j |  and 0(0 ~  l«i(0l2 = WO]2-

3 =  1

Since =  W (g /2 ) <  h for £ € [°. * / %  we have ( i S f 1) '  >
for all j  £ N and for all £ £  [0, 7t/2]. By Lemma 3.1, for £ £  [0, 7t/2], we have

e.«) _  stag'd) _  rE7=„ V in 22(f:
0. (2 0  ETTo1 e "  E ” ^  sin22 f  ( ETTo1 sin2’ « J
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By Theorem 3.2, for £ e  [0,7r/2], we have

= \ / K £ ) |2 +  |a(£ +  yr)|2.

In other words, #(£) —#(2£)(|a(£)|2-|-|a(£+7r)|2) ^  0 for all £ € [0, tt/2 ]. By the 

definition of 0, we have 9(—£) =  0(£) and #(£) ^  #(7r — £) for all £ € [0, vr/2]. 

Consequently, we have

(3.3.14) 0(£) — 0(2£)(|a(£)|2 4- |a(£ +  7r)|2) ^  0 V £ e [-7 r ,7 r ]>

which is the same conclusion in [13, Proposition 3.5] w ith different 0 here. 

Inspired by the “wavelet mask construction” in [13] (at page 21), by the Fejer- 

Riesz lemma, there exists a 27r-periodic trigonometric polynomial 62 such th a t

(3.3.15) |02(£)|2 =  9 ( 0  -  0(2£)(|a(£)|2 +  |a(£ +  tt) |2).

Now define

i> '«) :=  a(e +  Ir )e - i«#1(2f) =

(3.3.16) :=  a(()(«2(2() + fe (2 |) ] /2  =  ( i ± ^ ) > 2(2f) + « 2 f ) ] / 2 ,

_________  / I  _|_ p ~ \  m  ______
63( 0  :=  «K)[«2(2f) -  92(201/2 =  ( ^ — ) [92(2?) -  92(2()]/2.

It is evident th a t bl ,b2 ,bz are real-valued finitely supported sequences on Z 

such th a t

(3.3.17)

F ( | )  =  ( - i r e i<2- ’“«91( 0 ,  W )  =  e™£i>2© ,  W )  =  - e im{63(f).

Let

(3.3.18) © (£ ):=  0(2£)(|a(£)|2 +  |a(£ +  7r) |2).

7 9
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Note th a t 1 ^ (0  +  $2 (£)|2 + l^ (£ )  — $2(£)|2 =  4|02(£)|2> By calculation, we have

|a (O |20 (2 O  +  |fc1(O |2 +  ^ 2(OI2 +  l^3(O |2 

= |a (e ) |29 ( 2 0  +  |a(^ +  7r)|2|^ ( 2 0 |2 +  |a ( 0 |2|^ ( 2 0 |2 

H a ( £ ) | 2$ ( 4 £ ) ( l a ( 2 £ ) | 2 +  | a ( 2 e  +  t t ) | 2) +  | a ( £  +  t t ) | 20 ( 2 O  

+  |a ( f l |2(0(2fl -  0 (4O (|a(2O |2 +  |a(2£ +  7T)|2)

= « ( | a ( 0 | 2 +  K ^  +  vr)|2)

= 0(0

and

a(£MS + tt)0(2O + ^(O&HC + tt) + &2(0 &2(£ + 0  + &3(0 fe3(£ + tt) 

= a ( 0 a (£ +  O 0 ( 2O -  a ( 0 a (£ +  7r)|di(2^)|2 +  a(£)a(£ +  tt)|02(2O |2 

= a ( 0 ^ + O [0 (2 0  -  0(20 -  (0(20 -  0(4O(|a(2O|2 +  |a(2£ +  tt)|2))] 

= 0 .

Define 0 £(2-) =  b£B m,£ — 1,2,3. Since 0(0 ) =  1, by Theorem 1.6, {V 'V2, ^ 3} 

generates a tight wavelet frame in L2(M).

It follows from (3.2.2) th a t 0(£) — #(2£)|a(£)|2 =  0 ( |£ |2m),£  ~^ 0 (also 

see [13]). Thus, we deduce th a t 0 (£ ) — 0 (2 £ )|a (£ )|2 =  0 ( |£ |2m),£  ~ * 0- Con­

sequently, each wavelet function =  1 ,2 ,3  has the vanishing moments of 

order m.  The symmetry of the wavelet functions ip1, ip2, 0 3 follows directly 

from (3.3.17). ■
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Chapter 4

Tight wavelet frames w ith two 

sym m etric generators having 

high vanishing m om ents

4.1 Introduction  and m otivation

M atrix theory plays an im portant role in wavelet analysis [11] and filter banks 

[46, 48, 49]. In this chapter, we are interested in splitting a 2 x 2 m atrix 

of Laurent polynomials with real coefficients and symmetry into the form 

U (z )U ( l / z )T for some 2 x 2  m atrix U whose entries are Laurent polynomials 

with real coefficients and symmetry. Our investigation on this m atrix splitting 

problem is greatly motivated by the recent development of symmetric tight 

wavelet frames and framelet filter banks which have been found to  be useful 

and interesting in many applications [3, 4, 10, 11, 12, 13, 19, 26, 36, 37, 39, 44].

For simplicity, we use a Laurent polynomial a(z) with z =  e~1̂  to represent 

a mask or a finitely supported sequence a. Throughout this chapter, we assume 

th a t all Laurent polynomials have real coefficients. In other words, all the 

filters discussed in this chapter are of finite-impulse-response (FIR).
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As an im portant family of refinable functions, 5-spline functions are useful 

in applications. The 5-spline function 5 n £ C n~2 (E) is a symmetric refinable 

function satisfying 5 n(2£) =  2~n(l +  e~l5)n5 n(£) for £ £ R.

In order to obtain an orthonormal wavelet basis from a refinable function 

(f) via the multiresolution analysis, the refinable function £> must satisfy the 

following condition ([11, 46, 49]):

(4.1.1) j  <j){x +  k)(f>(x) dx =  5k V k £ Z.
J R

By a simple argument, (4.1.1) implies th a t its mask a must satisfy the condition 

([11, 46, 49]):

(4.1.2) \a(z) \ 2 + \a(—z ) \ 2 = 1 V z  £ T :=  {z  £ C : |^| — 1}.

If (4.1.1) holds, one can define a wavelet function by ^(2£) =  e~l^a(—e1̂ )(/>(£). 

Then {ip} generates an orthonormal wavelet basis in L 2 (R) (see [11]). Note 

th a t the Haar wavelet, derived from the 5-spline function Bi ,  is discontinuous.

The conditions in (4.1.1) and (4.1.2) impose a very restrict constraint 

on a refinable function and its low-pass filter, i.e., its mask. Many refinable 

functions such as the 5-spline functions 5 n(n >  1) do not satisfy (4.1.1). In 

fact, up to  an integer shift, 5 i  is the only example of real-valued compactly 

supported refinable function th a t can have symmetry and satisfy (4.1.1) (see 

[11])-

As discussed above, an orthonormal wavelet basis has only one generator. 

By increasing the number of generators in a tight wavelet frame, recently it 

was found th a t one has a lot of freedom in the construction of tight wavelet 

frames derived from refinable functions which may not satisfy the condition 

in (4.1.1). For example, it was demonstrated in Ron and Shen [39] th a t from 

any 5-spline function of order n, one can construct a symmetric tight wavelet 

frame with n  generators. More recently, Chui and He [3] (also see Petukhov 

[36]) showed th a t if the mask a for a symmetric refinable function satisfies

(4.1.3) \a ( z ) \ 2 +  la (—z ) \ 2 ^  1 V ^ £ T,
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then one can derive a symmetric tight wavelet frame with three generators. 

Recently, Daubechies et al. [13] and Chui et al. [4] obtained the following in­

teresting procedure(also see Theorem 1.6 in Chapter 1) th a t yields all possible 

MRA tight wavelet frames derived from a refinable function.

T h e o re m  4.1. Let <p be a refinable function in Z/2 (ffi) such that 0(0) 7  ̂ 0 and 

0(2£) =  a(e- ^)0(£) for  a Laurent polynomial a with a ( l)  =  1. Suppose that 

there exist Laurent polynomials 0 ,  a 1, . . . ,  aL such that 0 (1 ) =  1 and

(4.1.4)
' a \ z )  

a \ - z )

aL(z) 

aL(—z)

a1 ( l / z )  a1 (—l / z )

aL( l / z )  aL(—l / z )

=  M q (z ),

where for all z  G C \{0}7

(4.1.5)
0 (2 ) — 0 (z 2)a (z )a ( l/z )  — 0 ( z 2)a(z)a(—1 / z )

—Q(z 2)a(—z)a ( l / z )  0 (—z) — Q(z2)a(—z)a(—l / z )
M@(z)

Define the wavelet functions i p 1 , . . . ,  i p L  by i p e (  2£) =  a?(e l )̂(p(£,)> £ = 1, ■ • • ,L.  

Then { i p 1 , . . . ,  i p L }  generates a tight wavelet frame in Z/2 (K).

According to Theorem 4.1, a framelet filter bank consists of a low-pass 

filter a and L  high-pass filters a1, . .. ,aL. In order to  design a framelet filter 

bank, one has to split the m atrix M© in (4.1.5) into the form of (4.1.4).

Using Theorem 4.1, it was demonstrated in [4] (also c.f. [13]) th a t for any 

refinable function (p G L 2 OR) whose integer shifts are stable, one can obtain 

an MRA tight wavelet frame with two generators. Unfortunately, when <p is 

symmetric, the construction in [4, 13] cannot guarantee the symmetry of the 

two constructed generators which do not have symmetry in most cases.

Though by increasing the number of generators in a tight wavelet frame 

one has a great deal of freedom to construct them  from refinable functions, 

in many applications, for various purposes such as com putational cost and 

storage concern, one prefers a symmetric tight wavelet frame with as small

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as possible number of generators (or equivalently, high-pass filters). Ideally, a 

tight wavelet frame with a single symmetric generator is desirable. However, as 

shown in [4,13], it is impossible to have an MRA symmetric tight wavelet frame 

with one continuous generator. All the above discussions naturally motivate 

us to consider construction of symmetric MRA tight wavelet frames with two 

generators (that is, symmetric framelet filter banks with two high-pass filters) 

for the following possible advantages.

1. Such framelet filter banks have symmetry which is a much desired property

in applications.

2. By using two high-pass filters, one still has much freedom to  construct

symmetric framelet filter banks from many low-pass filters without im­

posing strict conditions on them.

3. By limiting to two high-pass filters, the associated framelet transform  for

decomposition and reconstruction is efficient in terms of com putational 

and storage costs.

4. Such symmetric framelet filter banks can have good vanishing moments,

short support and many other desired properties.

In order to construct a symmetric framelet filter bank with two high-pass 

filters, according to Theorem 4.1, the core problem is to find two symmetric 

high-pass filters a 1 and a2 such th a t (4.1.4) holds with L — 2. In other words, 

we have to  split the 2 x 2  m atrix M q of Laurent polynomials into the desirable 

form in (4.1.4). This motivates us to investigate the problem of splitting a ma­

trix  of Laurent polynomials with symmetry which may be of interest in other 

applications such as construction of symmetric orthonormal multiwavelets and 

dual framelet filter banks [4, 12, 13].

The following is an outline of this chapter. In Section 2, we shall present a 

general result on splitting a m atrix of Laurent polynomials with symmetry. As 

an application of this result to  symmetric framelet filter banks, we shall present
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a necessary and sufficient condition for the construction of a symmetric tight 

wavelet frame with two generators derived from a given symmetric refinable 

function through Theorem 4.1. Once the necessary and sufficient condition 

is satisfied, we shall present a step-by-step algorithm (see Algorithm 4.3 in 

Section 2) to  derive the two symmetric high-pass filters from a given low-pass 

filter. In Section 3, we shall present some examples of symmetric framelet filter 

banks w ith two high-pass filters which are derived from various low-pass filters 

including some B-spline filters. Our work in this chapter was also motivated 

by [37, 44] where symmetric tight wavelet frames with two generators were 

considered but using the unitary extension principle in [39], which is a special 

case of Theorem 4.1 by taking 0  =  1. As discussed in [4, 13], a nonconstant 0  

is very im portant in order to have a tight wavelet frame with good vanishing 

moments. Also, in order to use the unitary extension principle, the mask 

must satisfy (4.1.3) which excludes some interesting low-pass filters ([3, 4, 13, 

36]). We shall see th a t by using the general construction in Theorem 4.1 the 

investigation of symmetric tight wavelet frames and symmetric framelet filter 

banks becomes much more complicated. In Section 3, by using Algorithm 4.3 

and Theorem 4.1 we shall give examples to show th a t symmetric framelet 

filter banks with two high-pass filters having good vanishing moments can be 

constructed. For applications of framelet filter banks, see [44], In order to 

prove the main results in this chapter, in Section 4, we shall provide some 

auxiliary results. In Section 5, we shall prove our main result on splitting a 

m atrix of Laurent polynomials with symmetry. Though the whole proof of the 

main result is somewhat technical, we shall present a step-by-step algorithm 

(see Algorithm 4.7 in Section 5) to implement the main result on splitting a 

m atrix of Laurent polynomials with symmetry which may be of interest in 

other applications.
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4.2 M ain resu lts

In this section, we shall present the main results of this chapter. We shall 

obtain a general result on splitting a m atrix of Laurent polynomials with sym­

metry. As an application of such a result, we shall give a necessary and suf­

ficient condition for the construction of symmetric MRA tight wavelet frames 

with two compactly supported generators. A step-by-step algorithm (Algo­

rithm  4.3) will be given for construction of symmetric framelet filter banks.

In order to  state the results in this section, let us introduce some notation 

first. We remind the reader th a t all of the Laurent polynomials discussed 

in this chapter have real coefficients and we say th a t a Laurent polynomial 

p  w ith real coefficients is symmetric (or antisymmetric) about k / 2  for some 

k e  Z if p(z)  =  z kp ( l / z ) ( o i  p(z) — —z kp ( l / z ) ) .  Throughout this chapter, we 

say th a t a Laurent polynomial p is (a n ti)sy m m e tr ic  if p is either symmetric 

or antisymmetric. For a nonzero Laurent polynomial p , we define an operator 

S  to be

(4.2.6) [Sp|W  := j F f L ,  z  £  C \{0> .

When p = 0, by convention Sp  is undefined and can be anything.

The following result can be easily verified.

P ro p o s it io n  4.1. Let p and q be two Laurent polynomials w ith real coeffi­

cients. Then

(1) p is (anti)symmetric about k /2  for some k £ Z if and only if [Sp](z) = ± 2 fc.

(2) [ S ( p ( l / . ) m  = [Sp}(l/z) = l/[Sp](z).

(3) [S(pg)](z) =  [Sp]{z)[Sq](z) and [S((-)fc)](z) =  z 2k for k e  Z.

(4) If p  and q are (anti)symmetric such tha t Sp  — Sq , then p ±  q is ( a n t i ­

symmetric and S(p  ±  q) = Sp  = Sq.
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For a nonzero Laurent polynomial p(z) =  Pk.zk such th a t p i j ^ O  and 

Ph 7  ̂ 0, we denote the degree of p by deg(p) =  h — t. In other words, deg(p) 

measures the length of the filter p. By convention, deg(0) =  — oo. For any 

two Laurent polynomials p and q, we say th a t p \ q if there is another Laurent 

polynomial h such th a t q(z) =  p(z)h(z)  for all 2: G C \{0}. We define gcd(p, q) 

to be a nonzero Laurent polynomial h with maximum degree such th a t h | p 

and h \ q. By convention, gcd(0,0) =  0. We say th a t a Laurent polynomial 

p  is trivial if p(z) = czk for some c G M.\{0} and k G Z. Up to a factor of a 

trivial Laurent polynomial, gcd(p, q) is unique.

Proposition  4.2. Let A{z) — A 0 + Yuk=\A k{z k +  z k) with A N 0 be a 

Laurent polynomial with real coefficients. Then A(z)  =  d(z )d ( l / z )  for some 

(anti)symmetric Laurent polynomial d w ith real coefficients if and only if 

A(z) — dA(z)dA(l/z )  for the Laurent polynomial which is uniquely de­

termined by one of the following four cases:

Case 1: W hen N  — 2n and A n  > 0, define dA(z) = Co + 1 ck{zk +  z~k)

and sgn(Ajv) =  1-

Case 2: W hen N  = 2n and A n  <  0, define dA(z) = Ylk=ick(zk — z~k) and 

sgn(^iv) =  -!■

Case 3: When N  =  2 n + l and A n  > 0, define d ^ z )  — Cfc(2:fc-|-2:_1_,c)and

sgn(Aiv) =  1.

Case 4: W hen N  = 2n + 1 and A n  < 0, define ^ 4 (2 ) =  Sfc=o ck(zk — z _1~k) 

and sgn(v4jv) =  — 1 .

The coefficients Co,. . .  ,cn are uniquely determined by the following recursive 

formula: cn := \ / \ A n \ and
~i— 11 r ' *

(4 .2 .7 )  C n - j  :=  —  sgn.(AN) A N- j  -  ^  ckc2n- j - k
£Cr> L . . .n k = n —j + 1

j  = 1 , 2 , . . . , n.

Moreover, if A(z) = d (z )d ( l / z )  for an (anti)symmetric Laurent polynomial d 

with real coefficients, then we must have d(z) = ± z kdA(z) for some k G Z.
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P ro o f: If a Laurent polynomial d is (anti)symmetric and satisfies A(z)  =

d(z )d( l /z ) ,  then it is easy to see th a t d(z) = ± z kdA(z) for some k G Z. By 

comparing the coefficients of A(z)  and dA(z)dA(l/z ) ,  all the claims can be 

easily verified. ■

For a m atrix M ,  we denote by M j^  the (j, k)-entry of the m atrix  M.  For 

a Laurent polynomial p, we denote by Z(p, z<f) the multiplicity of zeros of p at 

z  =  z q ,  th a t is,

(4.2.8) Z ( p , z 0) = sup{n G N U {0} : (z -  z0)n \ p ( z ) } .

Now we are ready to state  the main results in this chapter.

T h e o re m  4.2 . Let A, B  and C be (anti)symmetric Laurent polynomials with 

real coefficients. Denote a 2 x 2  matrix M  by

(4.2.9) M (z)  =
A{z) B(z)  

B ( l / z )  C(z)
z e  C \{0}.

Then there exist (anti)symmetric Laurent polynomials u^, v\, with real

coefficients such that

(4.2.10)

U ( z )U ( l / z )T = M (z)  V z  6 C \{0} with U(z) :=
ui(z)  vi(z)  

u 2 (z) v2 (z)

and

(4.2.11) [Suf f i z^Sv f f iz )  =  [Svff iz^Suff iz ) , z  € C \{0}

i f  and only i f  all the following conditions are satisfied:

(a) The matrix M (z )  is positive semi-definite (that is, M (z )  ^  0) for all 

z e  T.

(b) detM (z)  = d (z )d ( l / z )  for some (anti)symmetric Laurent polynomial d 

with real coefficients.
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(c) Define g = gcd(A, B ,C ) .  I f  B d  =  0, then there is no condition on g. I f  

both B  and d are not identically zero, then the matrix M  satisfies the 

following “gcd” condition, that is, one of the following conditions must  

be true:

(1) I f  [S'B](2:)[S'd](2:) =  z 2n for some n £ Z, then Z (g ,x )  is an even 

number for every x  £ (—1,0) U (0,1).

(2) I f  [SB](z)[Sd](z) = z 2n+1 for some n  £ Z, then Z (g ,x )  is an even 

number for every x  £ (0,1).

(3) If[SB](z)[Sd\(z) = —z 2n for some n  £ Z, then there is no condition 

on g.

(4) If[SB](z)[Sd](z) — —z 2n+1 for some n £ Z, then Z (g ,x )  is an even 

number for every x  £ (—1,0).

We shall prove Theorem 4.2 in Section 5 in a constructive way and a step- 

by-step algorithm (see Algorithm 4.7) will be given to  construct the desired 

filters Ui,u 2 ,Vi,V2 from the m atrix M.  We shall also show th a t the “gcd” 

condition in Theorem 4.2 cannot be removed. Note th a t by Proposition 4.1 

and (4.2.10), it is easy to see th a t when B  ^  0, (4.2.11) is equivalent to

<42i2> z e c \<°>-

As an application of Theorem 4.2 to symmetric framelet filter banks, we 

have the following result for constructing symmetric MRA tight wavelet frames 

with two generators.

T h e o re m  4.3. Let <p £ L2(K) be a refinable function satisfying </>(2£) =  

a(e_^)0(£) for  a symmetric Laurent polynomial a with real coefficients such 

that a ( l)  =  1. Let 0  be a Laurent polynomial with real coefficients such that 

Q(z) — 0 (1  / z) and 0 (1 ) =  1. Let M© be defined in (4.1.5). Then there 

exist two (anti)symmetric Laurent polynomials a 1 and a2 with real coefficients 

such that (4.1.4) in Theorem f . l  holds with r = 2 i f  and only i f  the following 

conditions are satisfied:
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(a) M q {z) ^  0 for  all z  E T. (This condition can be replaced by 0 (z )  ^  0 for

all z  £ T  while conditions (b) and (c) keep unchanged.)

(b) detM©(z) =  d(z2 )d(z~2) for an (anti)symmetric Laurent polynomial d

with real coefficients.

(c) Define g(z2) = gcd([Me]lti, [M©]ii2, [M e]^ ). I f  detMg =  0, there is no

condition on g. I f  detMe ^  0, then the matrix M© satisfies the following

“gcd” condition, that is, one of the following conditions must be true:

(1) I f  [5a] (—z)[Sd](z) = z 2n+1 for some n  E Z, then Z (g ,x )  is an even 

number for every x  E (—1, 0) U (0,1).

(2) I f  [5a](—z)[Sd](z) =  z 2n for some n E Z, then Z (g ,x )  is an even 

number for every x  E (0,1).

(3) I f  [5a](—z)[Sd\{z) =  — z 2n+1 for some n  E 7L, then there is no 

condition on g.

(4) I f  [Sa](—z)[Sd\(z) =  — z 2n for  some n E h ,  then Z (g ,x )  is an even 

number for every x  E (—1,0).

P ro o f: Let us make some connections to Theorem 4.2 first. W ith r  =  2,

(4.1.4) becomes

" a \ z )  a2 {z)
(4.2.13) W ( z ) W ( l / z Y  = M e {z) where W (z)  =

a1 (—z) a2 (—z )

Since the mask a is symmetric, we have [5a] (z) =  z k for some k; € Z. Borrow­

ing the idea of polyphase decomposition, define

(4.2.14)
a / o  I 1 l l  1 | l  4 - r  1 — y \

if k is odd.
=  V2 1 1

if k is even; P ( z ) -
1 + z 1 -  z

2 z —z 2 1 -  z  1 + z

Then P ( z ) P ( l / z ) T = J2 and P ( —z ) =  P ( z ) J 2, where J2 =

(4.2.13) can be rewritten as

(4.2.15) U (z )U ( l / z )T = M(z)

90

0 1 

1 0
. Now

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with

(4.2.16)

U(z2) -  W{z)  := P (z )W (z ) ,  M ( z 2) = M (z)  := P {z )M e ( z ) P { l / z )T.

W hen A; is even, by computation we have

(4.2.17) W ( z )  =  ^

and

al ( z ) + a } ( —z) a2 ( z ) + a 2 (—z)

za 1 (z) — za}(—z) za2 (z ) — za2 (—z)

m * )  = I

[Af(z)]u  =  -  0 ( - z )  - 0 ( z 2)[a(z) + a ( - z ) ] [ a ( l /z )  -  a ( - l / z ) ] ) .

It is easy to see th a t W ( —z) = W (z)  and

M ( - z ) =  P ( z ) J 2M e ( - z ) J 2P ( l / z ) T = P {z )M e ( z ) P ( l / z ) T = M (z) .

So, U and M  are well-defined. Moreover, It is easy to  see th a t M ij2 ^  0 and 

[SMli2]{z) = z~1.

W hen k is odd, by computation we have

(4.2.18)

(1 +  z)a1 (z) +  (1 -  z)a1 ( - z )  (1 +  z)a2 (z) + (1 -  z)a 2 ( - z )

(1 — z)a 1 (z) +  (1 +  z)a 1 (—z) (1 — z)a2 (z) +  (1 +  z)a2 (—z )

and

M h2 {z) =  hyZ -  1 /z)[<d(z) -  0 ( - 2 ) ] - ^ 0 (2;2)[(l +  z)a{z) +  (1 -  z ) a ( - z ) ] x

[(1 -  l / z ) a ( l / z )  + (1 +  l / z ) a { - l / z ) \ .

It is clear th a t W ( —z) = W (z )  and M ( —z ) =  M(z) .  So, U and M  are

well-defined. Moreover, It is easy to see th a t M 1j2 ^  0 and [SMit2){z] =  —1.

By the definition of P  and the definition (4.2.16), we have

det M ( z 2) = detM e(^)

and

g(z) = gcd(M i)i, M i>2, M2i2),
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where

9(z2) = gcd([M e]iii, [M©]i)2, [M©]2j2).

By the discussion above, we can clearly see the relation between conditions 

(a), (b) and (c) in Theorem 4.2 and conditions (a), (b) and (c) in this theorem, 

respectively. Based on the relation, we will prove the necessity and sufficiency 

respectively.

Necessity. Suppose th a t there exist two (anti)symmetric Laurent poly­

nomials a1 and a? w ith real coefficients such th a t (4.1.4) holds, by (4.2.13) 

we have M q (z) ^  0 for all z  G T and therefore condition (a) holds. Note 

th a t detW ( —z) = —det W (z). Thus we can define a Laurent polynomial d by 

d(z2) =  zdetW(z) .  Clearly,

detM©(2i) =  d e iW  (z)de tW {I /  z) =  d{z2)d(z~2).

We now show th a t d is (anti)symmetric. Since a 1 and a2 are (anti)symmetric, 

we have [Sa1]^ )  =  £Xzkl and [5a2] (z) =  e ^ 2 for some e i,£ 2 £ {—1,1} and 

fci,/c2 € Z. By (4.2.13) and (4.1.5), we have

(4.2.19) al (z)al (—l / z ) + a 2 (z)a2 {—l / z )  =  [M©]ii2(z) =  — 0 ( z 2)a(z)a(—l / z ) .  

Note th a t

S[a1(z)a1 ( - l / z ) }  = e 1zk'£ 1( - l / z ) k' = ( - i f 1 

and similarly, S[a2 (z)a2 (—l /z ) \  — (—i f 2. Since

S[Q(z2) a ( z )a ( - l / z ) ]  = S [ e ( z 2)]S[a(z)a(- l / z )}  = ( - i f ,

by a simple argument, it follows from (4.2.19) th a t ( —i f 1 =  ( —i f 2 =  ( —i f .  

(Note th a t there are a t least two even (or odd) numbers among hi, /c2 and k. 

Say, k\ and £;2 are even. Then by item (4) in Proposition 4.1, we conclude th a t 

(—i f 1 =  (—i f 2 =  ( —i f . )  Note th a t det W (z)  = a1 (z)a2 (—z) — a1(—z)a2 (z). 

Since

S { a \ z ) a 2 { - z ) } = £ l£2 { - l ) k2z kl+k2 = £ l£2 { - l ) kz kl+k2  

= £le2( - l f  =  S f a ^ - ^ a 2^ )] ,
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by Proposition 4.1, we conclude th a t <S[detW(z)] =  £i£2 (—l ) kzkl+k2. So, detW  

is (an tisym m etric  and therefore, by d(z2) = zd.etW{z), d is (anti)symmetric. 

Hence condition (b) holds.

Recall th a t [Sa] (z) — z k. When k is even, By Proposition 4.1 and the fact 

th a t (—l ) fel =  (—l ) k2 =  (—l ) k = 1, it follows from (4.2.17) th a t

[ S W x A W  = £lz k\  [S W li2](z) =  e2z k>, {S W 2A](z) =  £lz 2+k\  

[SW2,2]{z] =  e2z 2+k* and [SMh2](z) = z~2.

So, when k  is even, (4.2.10) and (4.2.11) are satisfied. Since P ( z ) P ( l / z ) T — 

I 2, we must have g — gcd(M i]i, M i)2, M 2>2). Note th a t [SMit2](z)[Sd](z) — 

z ^ l S d ^ z )  =  z~ 1~k[Sa\(—z)[Sd\(z) and k is an even integer. Therefore, by 

Theorem 4.2, condition (c) must be true.

W hen k  is odd, by Proposition 4.1 and the fact th a t (—l ) fcl =  (—l ) k2 — 

(—l ) k =  —1, it follows from (4.2.18) th a t

[SWltl](z) = ei z 1+k\  [SWh2](z) =  e2z l+k\  [SW2tl](z) =  - £ lz 1+k\

[SW2,2](z) = —£2z l+k2  and [SM1<2]{z) = - 1 .

Thus when k  is odd, (4.2.10) and (4.2.11) are satisfied. Note th a t

[SMlt2}(z)[Sd}(z) = ~[Sd](z) = - ( - z ) - k [Sa](-z)[Sd](z) 

=z~k[Sa](—z)[Sd](z)

and k is an odd integer. Therefore, by Theorem 4.2, condition (c) must be 

true.

Sufficiency. Suppose th a t conditions (a), (b) and (c) in this theorem 

are satisfied. Prom the discussion before the necessity part, applying The­

orem 4.2 on M (z) ,  we know th a t there exist (anti)symmetric Laurent polyno­

mials U\,u2 ,V\, v2 with real coefficients such th a t (4.2.10) and (4.2.12) hold. 

Define

Ul(z2) Vi(z2) 

u 2 (z2) v2 (z2)_
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We show th a t a 1 and a2 must be (anti)symmetric. Since [Sa] (z)  = z k ) when k 

is even, we have

a l (z ) =  +  u 2 (z2) / z \ and a2(z ) = ~Y-lvi ( z2) +  v2 {z2)/z].

By [SMh2](z) = z~l , it follows from (4.2.12) th a t

S ^ tti^ 2)) =  S { M 1i2(z 2) ) S { u 2{z2)) = z~2S{u 2 (z2)) = S (u 2 (z2) /z )

and S (v i ( z2)) =  S(v 2 (z2)/z) .  By Proposition 4.1, we have [Shd]^) =  [Sui\(z2) 

and [Sa2](z) =  [Svi](z2). Since u\ and v\ are (anti)symmetric, so are the 

Laurent polynomials a1 and a2.

When k is odd, we have

ar(z) = [(1 +  l /^ )« i(^ 2) +  (1 -  1 / z ) u 2 { z 2 ) \ I 2  and

a2 (z) = [(1 +  l / z ^ ^ z 2) +  (1 -  1 / z ) v 2 ( z 2 ) \ / 2 .

By [ S M i j2}(z ) = —1, it follows from (4.2.12) tha t

S{{ 1 + l / z ) u \ ( z 2)) =  z~xS{ui{z2))

= z ~ 1S ( M 1}2(z2) ) S ( u 2(z 2)) =  S ( ( l  -  1 / z ) u 2( z 2))

and S '((l +  l / z ) v i ( z 2)) — S((  1 — l / z ) v 2 (z2)). By Proposition 4.1, we deduce 

th a t [Sud]^) =  z~l [Su-\\{z2) and [Sa2](z) = z~l [Sv\\(z2). Since ui  and v\ 

are (anti)symmetric, so are the Laurent polynomials a1 and a2. Now it is 

straightforward to  verify th a t (4.2.13) holds. ■

In order to construct symmetric framelet filter banks w ith two high-pass 

filters, by the proof of Theorem 4.3, we present the following algorithm.

A lg o r ith m  4.3 . Let a be a symmetric Laurent polynomial with real coeffi­

cients such th a t a (l)  =  1 (that is, a is a low-pass filter). Suppose th a t we

have a Laurent polynomial 0  such th a t all the conditions in Theorem 4.3 are 

satisfied.
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1) Compute the symmetry center of the low-pass filter a: [<S'a]( )̂ :=  =

zk for some integer k. Define the 2 x 2  m atrix P  in (4.2.14) according 

to  the integer k.

2) Calculate the 2 x 2  m atrix M ( z 2) := P ( z ) M q (z ) P ( 1 / z ) t , where M© is

defined in (4.1.5).

3) Using Algorithm 4.7 in Section 5 to split the m atrix M  into the desired

form:

M (z)  =
u x { z )  V x ( z )  

u 2 {z) v2 (z)

U i { l / z )  u 2 { l / z )  

V i { l / z )  V2 { 1 / z )
and

[5it1](z)[S'n2](2:) =  [ S u ^ i z ^ S v ^ i z ) .

In most cases g(z2) = gcd([M©]i)i, [M©]i)2, [M©]2|2) — 1 and conse­

quently, by solving a system of linear equations, we have all the sym­

metric filters Ui,u2 , v i , v 2 by Algorithm 4.7.

4) Obtain the symmetric high-pass filters a 1 and a2 by

a x(z ) := P ^ i { l / z ) u i { z 2) + P2A(1/z )u 2{z2), and 

a2 (z) := Piti ( l / z ) v i ( z 2) +  P2, i ( l / z)v2 (z2) .

Then (4.2.13) holds and we have a symmetric framelet filter bank consisting 

of a low-pass filter a and two high-pass filters a1 and a2.

In order to design a desired filter 0  such th a t all the conditions in The­

orem 4.3 are satisfied, quite often one constructs a O such th a t 0 (1 ) =  1, 

0 (z ) ^  0 for all 2  G T and

detM (z2) =  0 ( z ) 0 ( —z) — Q{z2)[B{z)a(—z)a(—l / z )  +  0 ( —z)a{z)a(l  /  z)\ 

=d(z2)d(z~2)

where d is determined in Proposition 4.2. In most cases the “gcd” condition 

in Theorem 4.3 is automatically satisfied.
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4.3 Som e exam ples o f sym m etric fram elet fil­

ter  banks

First, we illustrate th a t the “gcd” condition in Theorem 4.3 cannot be removed. 

Then by Algorithm 4.3 we provide several examples of symmetric framelet 

filter banks with two high-pass filters. In Theorem 4.3, the “gcd” condition 

seems unnatural. One may conjecture th a t the “gcd” condition would be 

automatically satisfied if M q ( z ) ^  0 for all z  € T  and detM©(z) =  d(z2)d(z~2) 

holds for some (anti)symmetric Laurent polynomial d, i.e., in Theorem 4.3, 

conditions (a) and (b) could imply condition (c). The following example shows 

th a t this conjecture is not true.

E x a m p le  4 .1 . Let the low-pass filter a be given by

a(z) := ^(1 +  z )2[ 1 +  ci(2 -  z -  z -1 ) / 2]

where c\ «  0.07391 is a root of x 8 +  8 x 7 +  35a;6 +  58a;5 — 10a;4 — 72a;3 — x 2 +  

14a; — 1 =  0. By a simple calculation, it is easy to verify th a t the refinable 

function 0 with the mask a lies in L2(M) and in fact is a continuous function. 

Define b :=  c\ +  2ci — 1, f ( z )  := 1 +  6(2 — z  — z_1)/4  and 0 (z ) :=  f ( z 2 ) f ( z ) .  

It is easy to verify th a t M q ( z ) ^  0 for all z  G T  and detM©(z) =  d(z2)d(z~2) 

for some antisymmetric Laurent polynomial d such th a t [Sk£](z) =  —z 2. Let 

a;o =  1 +  2(1 — y/b + 1 )/b ~  —0.43729 € (—1,0) which satisfies f ( x o ) =  0. 

By a simple computation, we have Z(g, xq) — 1, where g(z2) =  f ( z 2) =  

gcd([M e]i,i, [M©]ii2, [Me]2)2). Since [S'a](-z)[S'd](z) =  z 2 ( - z 2) =  - z 4, the 

“gcd” condition fails while conditions (a) and (b) in Theorem 4.3 are satisfied. 

Therefore, the “gcd” condition in Theorem 4.3 cannot be removed.

In the following, let us apply Algorithm 4.3 to obtain several examples of 

symmetric framelet filter banks with two high-pass filters.

E x a m p le  4 .2 . Let </> =  B 3 be the B-Spline function of order 3. It is known 

th a t the low-pass filter for B 3 is a(z) =  (z + l ) 3/8. Define O(z) :=  1 +  w  +
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13/15 w2+ci'iu3+C2 'iu4 with to =  (2 - z - z ~ l )/A . In order to satisfy the condition 

detM q ( z )  =  d(z2 )d(z~2) for some (anti)symmetric Laurent polynomial d, we 

find th a t C2 must be one of the 6 real roots of a polynomial of degree 16 and 

ci can be expressed as a rational polynomial with variable c<i. For simplicity, 

we present them  in decimal notation:

c i «  -0 .9 5 1 5 1 0 4 9 5 9 3 7 8 6 6 8 5 0 3 2 0 4 2 3 2 3 1 9 0 7 8 5 4 4 5 0 9 1 6 4 9 9 7 4 0 6 2 9 2 1

and

c2 «  3.8031271585681554877256781103577526459109075403804.

It is easy to check th a t g = 1 and all the conditions in Theorem 4.3 are 

satisfied. By Algorithms 4.3 and 4.7, solving a system of linear equations, we 

have the high-pass filters a1 and a2 as follows:

a'i z )  := z (z  -  l ) 3 [ 0.01231796418812551(z3 +  z~3) +

0.07390778512875306(z2 +  z~2)+

0.1935907748598208(2: +  z~ l ) -  0.01145080836662162

a (z) :=  (z -  l ) 3 0.01523563127546168(2: +  z~4)+

0.09141378765277004(z3 + z~3)+

0.2159429726473255(z2 + z~2) +

0.2291636466016358(2: +  z~ l ) +  0.06272019447988098

Therefore, {i^1, ^ 2}, which is defined in Theorem 4.1, generates a symmetric 

tight wavelet frame and has vanishing moments of order 3. See Figure 4.1 for 

their graphs.

Example 4.3. Let <f> =  jB4 be the B-Spline function of order 4. The low-pass 
filter for is a(z) =  (z + I ) 4 / 16. Define 0 ( z )  :=  1 +  3 /4  w + 62/45 w 2 + 

ciw3 + C2W4 +  C3W5 w ith w =  (2 — z — 2T 1) / 4. In order to satisfy the condition 

detM©(2:) =  d(z 2)d(z~2) for some (anti)symmetric Laurent polynomial d, we
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(a) (b)

Figure 4.1: (a) is the graph of if;1, (b) is the graph of ip2. {'01,'02} in Exam­

ple 4.2 generates a symmetric tight wavelet frame with vanishing moments of 

order 3.

find a solution {ci, c2, c3} in decimal notation as follows

ci «  -0.87558565547401794914427617570435556, 

c2 «  -.098425653467012442946244513727311111, 

c3 «  .00096972564953008110044609198126222222.

Then g = 1 and all the conditions in Theorem 4.3 hold. By Algorithms 4.3 

and 4.7, solving a system of linear equations, we have the high-pass filters a 1 

and a2 as follows:

a \ z )  :=z(z + 1 ) ( z  -  l ) 3 [0.00002100045515458106(^5 +  z~5)+

0.0001260027309274863(z4 + z~4) +  0.01944570184560223(/ +  z~3)+ 

0.1152041792127928 (z2 +  ^ 2) +  0.2275150394894326(2 +  z~ 1)+ 

0.009838194257376166], 

a2 (z) :=z ( z  -  l ) 4 0.00006434461049978000(^5 +  z~5) +

0.0005147568839982400(z4 + z~4) +  0.01966520045452812 (z3 +  z~3) + 

0.1465117090722619(22 +  z~2) + 0.4466955026709126(2 +  2 ~1)+  

0.5353777065261440
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0.15

0.15

0.05

0.05

(a)

Figure 4.2: (a) is the graph of i p 1 . (b) is the graph of i p 2 .  { i p 1 ,  i p 2 }  in Exam­

ple 4.3 generates a symmetric tight wavelet frame with 3 vanishing moments.

Therefore, { i p 1 ,  i p 2 } ,  which is defined in Theorem 4.1, generates a symmetric 

tight wavelet frame and has 3 vanishing moments. See Figure 4.2 for their 

graphs.

E x a m p le  4 .4 . The low-pass filter a is given by

a(z) =  (z + 1)4(4 — z — z -1 ) / 16 =  —(z3 +  z ~3) / 16 +  9 (z + z~x) j  32 +  1/2.

Define 0 (z ) :=  l  +  2 /5 u ;2+44/315'io3-|-ci'u;4 +  c2'u;5 +  c3u;6-|-C4 'u;7-|-C5 'u;8-|-C6 i(;9 

with w  :=  (2 — z — z-1 )/4 . In order to satisfy detM e(^) =  d(z 2)d(z~2) for some 

(anti)symmetric Laurent polynomial d, we find a solution {ci, c2, c3, c4, c5, c6} 

in decimal notation as follows

ci «  -0.5391476369353669, c2 w 0.03123065991448046,

c3 «  0.1404437899699654, c4 w -0.008183355709257437,

c5 «  -0.02305770106687993, c6 m 0.005166592059270131.

It is easy to  check th a t g — 1 and all the conditions in Theorem 4.3 hold. 

By Algorithms 4.3 and 4.7, solving a system of linear equations, we have the
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high-pass filters a 1 and a2 as follows:

al {z) :=  (z -  l ) 4 [ 0.000009949295438893275(29 +  z ^ ) +  

0.00003979718175557310(z8 +  z~8) +  0.00005349425360331152(z7 +  z~7) -  

0.0001441976213869118(z6 +  z~6) -  0.001526840787475249(z5 +  z~5) -  

0.005764716919552544(z4 +  z~4) -  0.01264520660352171 (z3 +  2 ~3) -  

0.01724394516308753(22 +  z~2) + 0.01039096409945511(2 +  z~ 1)+ 

0.1033772717787854 , 

a2 (z) := (z -  l ) 4 [ 0.000004387146598246904(29 +  z~n )+

0.00001754858639298762(28 +  z~10) -  0.000007220506808539094(27 +  z~9)- 

0.0001868193047710449(z6 + z~8) -  0.001033777502667078(25 +  z~7) -  

0.002874902341160608(24 +  2~6) -  0.002673048014126028(23 +  2~5)+  

0.009978772639517269(22 +  z~4) +  0.06388250373593019(2 +  z~3)+ 

0.2021738981781012(1+ z~2) +  0.31535509698166852-1

Therefore, {ip1, ip2}, which is defined in Theorem 4.1, generates a symmetric 

tight wavelet frame and has vanishing moments of order 4. See Figure 4.3 for 

their graphs.

4.4 Som e auxiliary results

In order to prove Theorem 4.2, in this section we establish some auxiliary 

results. The following result generalizes [4, Theorem 4] by taking into account 

symmetry.

T h e o r e m  4 . 4 .  Let A, B  and C be (an ti)sym m etric  Laurent polynom ials with  

real coefficients. Let M  be defined in (4.2.9). Suppose that M ( z ) ^  0 for  all 

2 6 1  and det M (z)  = d(z )d ( l / z )  for some (anti) symmetric Laurent polyno­

mial d with real coefficients. I f  A  and B  have no common zeros in C \{0}
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(a)-3 -2 1 2

Figure 4.3: (a) is the graph of the interpolating refinable function (p. (b) is 

the graph of 'ip1, (c) is the graph of ip2, {ip1, ip2} in Example 4.4 generates a 

symmetric tight wavelet frame with vanishing moments of order 4.

and A ( z ) =  Aq +  J2k=iAk(zk +  z~k) with A n  0, then there exist four  

(anti)symmetric Laurent polynomials ui ,U2 , v x,V2 with real coefficients such 

that (4.2.10) and (4.2.12) are satisfied with the degrees of u x and v x being at 

most N . In fact, i f  u x, U2 , vx, v2 are (anti)symmetric Laurent polynomials with 

real coefficients such that the degrees o f u x and vx are at most N ,  (4.2.12) holds, 

and {u i,U 2 , v x,V2} is a solution to the following system of linear equations

I B ( l / z ) u x(z) -  d(z)Vl( l / z )  -  A ( z)u2(z ) -  0,
(4.4.20) <

y B { l l z ) v x(z) +  d(z)ux( l/ z )  -  A ( z )v 2 (z) = 0, 

with the following normalization condition

(4.4.21) Wl( l)2 +  ^!(1)2 =  A (l),

then (4.2.10) holds.

P ro o f: If B(z)  = 0, by gcd(A, B) — 1, then A(z)  must be a positive constant 

and all the claims can be easily verified by taking u x =  \[A, U2 =  0, vx =  0 

and V2 = d/ffiA.  So, we can assume th a t B  is not identically zero.
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If d(z) =  0, then A(z)C(z)  = B ( z ) B ( l / z ) .  Since gcd( A ,B )  =  1 and B  

is (anti)symmetric, it follows from A(z)C(z)  — B ( z ) B ( l / z )  = B ( z ) 2 /[SB](z)  

th a t A  must be a positive constant. All the claims hold by taking u\ — 

\ / A , u 2 =  B ( l / z ) / y / A , v i  =  0 and v2 — 0. So, we can assume th a t d is not 

identically zero.

The following proof (about 2 pages) is borrowed from the proof of [4, 

Theorem 4]. Under the assumption th a t (4.2.12) holds and the degrees of u\  

and vx are a t most N, we first show th a t (4.2.10) is equivalent to  the system 

of linear equations in (4.4.20) with the condition in (4.4.21).

Since M (z)  ^  0 for all z £ T and gcd(A, B) — 1, if we have A ( z0) = 0 for 

some zo £ T, then by condition M ( zq) ^  0, we have

0 ^  detM(zo)  =  A (z 0 )C(z0) -  B ( z 0) B ( l / z 0) =  - B ( z 0)B (z 0 ) =  - \ B ( z 0)\2.

Hence, B(zo ) =  0. Therefore, (z — zo) | A(z)  and (z — zo) \ B(z) .  So, 

(z — zq) | gcd(A, B)  which is a contradiction to the assumption gcd(A, B) = 1. 

So, A(z)  7  ̂ 0 for all z £ T. Since A(z)  ^  0 for all 2  G T, we must have A(z) > 0 

for all z £ T. By Proposition 4.2, without loss of generality, we can assume th a t 

d(z) =  detU{z). By U (z )U ( l / z )T — M (z) ,  we have n i ( l ) 2 +  ^ i ( l ) 2 =  A (l) 

and therefore (4.4.21) holds. Since d(z) ^  0 and d(z)U(z ) ~ 1 = adj[/(jz), it 

follows from U (z )U ( l / z )T — M (z)  th a t

d ( z )U ( l / z )T = d{z)U{z)-l M{z) = [adj U(z)]M(z)

v2 (z) - v x  (z) A(z) B(z)

- u 2 (z) ux(z) _ B ( l / z )  C(z)

Comparing the (1,1) and (2, l)-entries of the above matrices, we see th a t

(4.4.20) holds.

Conversely, let ux,u2,vx,v2 be (anti)symmetric Laurent polynomials with 

real coefficients such th a t (4.2.12) holds and the degrees of Ux and v\ are at 

most N. If {ux,u2,Vx,v2} is a solution to the system of linear equations in

(4.4.20) and satisfies the normalization condition in (4.4.21), then we show 

th a t (4.2.10) must be true.
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Multiplying u \ { l / z )  with the first equation and multiplying V\ { l / z )  with 

the second equation in (4.4.20), by adding them  together we have

(4.4.22)

B ( l / z ) [u i ( z ) u i ( l / z )  +  vi{z)vi{l / z) \  = A( z ) [u i { \ / z )u 2(z) +  u i( l  /  z)v2 (z)\.

Since A  and B  have no common zeros in C \{0}, we must have th a t A(z)  

divides {ui{z)u\(l  /  z) +  vi{z)vi ( l / z)) .  T hat is, there is a Laurent polynomial 

p such th a t u i ( z )u i ( l / z )  +  v i {z ) v i ( l / z )  = p{z)A{z).  Since the degrees of ui  

and V\ are a t most N  and A{z)  =  A 0 + J2k=iAk(zk +  z~k) A n  7  ̂ 0, 

we conclude th a t p must be a constant. By (4.4.21) and .4(1) >  0, we must 

further have p =  1. Therefore,

Ui{z)ui{l / z)  +  Vi (z)vi ( l / z )  = A(z).

It follows from (4.4.22) th a t B ( l / z )  = ui ( l / z )v , 2 (z) +  Vi ( l / z ) v 2 (z) and conse­

quently, B(z)  =  ui{z)u2 ( l / z ) + v \ { z ) v 2 {l / z ) .  In other words, [U(z)U(^)T]jtk =  

[M(z)]jtk for all 1 ^  j,  k ^  2  except for the case j  = k  =  2 .

Multiplying v2 (z) with the first equation and multiplying u 2 (z) with the 

second equation in (4.4.20), by subtracting the second one from the first one, 

we have

B(-)[ux(z)v2 ( z ) - u 2 (z)v1 (z)} = d(z)[ui{ l / z )u2 ( z )+ v i { \ / z ) v 2 (z)} = d(z)B(~) .  
z z

So, by B  0, d(z) — ui (z )v2 (z) — u 2 (z)v\{z) = detU(z).  Consequently, 

det[U(z)U(1 / z )T] = d(z )d( l / z )  =  detM (^). Now it is easy to  deduce tha t 

[U(z)U(1/z ) t }2,2 = \M(z)]2,2 from the fact th a t det[U(z)U(1  / z)T] = d e tM(z)  

and [U(z)U( l / z )T]j^ =  [ M( z ) \ j tk for all 1 ^  j ,  k  ^  2  except for j  = k = 2 . So

(4.2.10) holds.

Now we will add some new discussion by taking symmetry into account.

In the second part of the proof, let us show the existence of a desirable 

solution { u \ , u 2 , v i , v 2} to the system of linear equations in (4.4.20) with the 

normalization condition in (4.4.21).
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First, we dem onstrate th a t there are desirable Laurent polynomials u\  and 

Vi satisfying

(4.4.23) A(z)  | [B( l / z )u i ( z )  — d(z)v \ ( l / z ) \  

and

(4.4.24) [S'iii](z)[S'ui](z) =  [SB](z)[Sd}(z).

Let u 0 and vq be two symmetric Laurent polynomials in the following para­

metric forms:

/l̂ j /l̂
Uo ( z )  = b o  + ' ^ 2  +  z~3) and v0 (z) =  c 0 +  ^  c k ( z k +  z ~ k )

j = 1 k= 1

where hb, hc are nonnegative integers and b j , c*,, j  = 0 , . . . ,  hb, k — 0 , . . . ,  hc are 

real numbers which are to be determined later. Let us consider the following 

four cases.

Case 1: [SB](z)[Sd](z) = z 2n for some n  € Z. We choose u\(z)  = znUQ{z) 

and v\(z) = vo(z). W hen N  is even, set hb = hc = N / 2; when N  is odd, 

set hb = hc — ( N  — l) /2 .

Case 2 : [SlS](z)[S'd](2:) =  z 2n+1 for some n  E Z. We choose ui(z)  = zn( 1 +  

z)uo(z)  and v\(z) = Vo(z). W hen N  is even, set hb = N / 2  — 1 and 

hc = N/2\  when N  is odd, set hb = hc = ( N  — l) /2 .

Case 3: [ S B ] ( z ) [ S d ] ( z )  — —z 2n for some n E Z. When N  is even, we choose 

u i ( z )  =  z n ( z  — 1 / z ) u q ( z ) ,  v i ( z )  = v q ( z )  and set hb — N / 2  — l , h c = N / 2 ; 

when N  is odd, we choose u i ( z )  =  z n ( l  — z ) u q ( z ) ,  v \ { z )  = (1 +  1 / z ) v q { z )  

and set hb =  h c =  (JV — l)/2 .

Case 4: [S'5 ](z)[5 '(i](2:) =  — z 2n+1 for some n E Z. We choose u\{z)  =  

zn( 1 — z)u0(z) and v\(z) = vo(z). W hen N  is even, set hb — N / 2  — 1 

and hc =  N/2;  when N  is odd, set hb = hc = ( N  — l) /2 .
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It is easy to see th a t both u\  and v\ are (anti)symmetric and (4.4.24) holds. 

Moreover, the degrees of u\  and v\ are at most N  and it is easy to  verify th a t 

hb + hc + 2 >  N.  Since A(z)  >  0 for all z  € T, by Fejer-Riesz Lemma, we have 

A(z) = A ( z ) A{ l / z )  for some Laurent polynomial A  with real coefficients such 

th a t all of the roots of A  are contained in {z  E C : \z\ <  1}. Therefore, A(z)  

and A ( l / z )  have no common zeros in C \{0}. Since A(z)  = 4̂o +  ]CfcLi A k{zk + 

z ~k), A(z)  can have a t most N  zeros in C \{0}, say, { z i , . . .  , 2 jv'} which are 

all of the distinct roots of the Laurent polynomial A{z)  in C \{0} such th a t 

Z(A,  z\) +  • • • +  Z(A,  zn>) =  N.  Define F(z)  := B ( l / z ) u \ ( z )  — d{z)v\{l / z) .  

Now we have the following system of homogeneous linear equations:

(4.4.25) F ^ \ z k) =  0, k = 0 , . . . ,  N' ,  j  =  0 , . . . ,  Z (2 , zk) -  1.

Since the number of free parameters in {cj ,dk : j  = 0 , . . . ,  hb, k =  0 , . . . ,  hc} 

is hb + hc + 2 >  IV and we have N  homogeneous linear equations, there must 

be a nonzero solution {cj ,dk : j  = 0 , . . .  ,hb,k — 0 , , hc} to  the system of 

homogeneous linear equations in (4.4.25). So there exist u\  and v\ satisfying

(4.4.25) with at least one of them  nonzero. In other words, we deduce from

(4.4.25) tha t

(4.4.26) A(z)  | [B( l / z)u\{z)  — d{z)v\{ l / z)\.

Since z \ , . . . ,  zn> are complex numbers, a solution {cv  dk : j  = 0 , . . .  ,hb,k = 

0 , . . . ,  hc} may be complex numbers too. However, since A, B  and C  are 

Laurent polynomials with real coefficients, we can simply replace the numbers 

Cj,dk by either their real parts or their imaginary part so th a t (4.4.26) is still 

true and a t least one of u\  and v\ is nonzero.

On the other hand, by (4.4.24) and Proposition 4.1, we deduce th a t 

B ( l / z ) u i ( z )  — d(z )v i ( l / z )  is (anti)symmetric. So,

(4.4.27) B ( z ) u i ( l / z )  -  d ( l / z )v i ( z )  = p(z ) [B( l / z )u i ( z )  -  d(z )v i ( l / z ) \

for some nonzero trivial Laurent polynomial p. Consequently, it follows from 

(4.4.26) and (4.4.27) th a t

A { l / z )  | \B( l / z )u i {z )  -  d(z)vi( l /z)] .
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Since A(z)  and A{ \ )  have no common zeros in C \{0} and A(z)  — A(z)A(^) ,  

we conclude th a t (4.4.23) holds. Later on we shall show th a t u i ( l ) 2 +  u i ( l ) 2 A

0. If « i ( l ) 2 +  Mi(l) 2 A  0, then we can properly scale Mi and v\ such th a t 

Mi(l ) 2 +  Mi(l) 2 =  i4(l) holds. Note th a t w ithout factorizing A  we can solve

By (4.4.23) we see th a t m2 is an (anti)symmetric Laurent polynomial with 

real coefficients. Now we show th a t m2 is also an (anti)symmetric Laurent 

polynomial. By definition of m2 and the fact th a t d(z )d( l / z )  — detM( z)  = 

A(z)C(z)  — B ( z ) B ( l / z ) ,  we have

A(z )d( l / z ) i i 2 (z) =  B ( l / z ) d ( l / z ) u i ( z )  — d e tM( z )v i ( l / z )

=  B ( l  /  z )d( l / z )u i ( z )  — A( z ) C( z ) v i ( l / z )  +  B { 1 / z ) B( z ) v \ ( \ / z ) .

A(z) [d{ \ / z )u2 (z) +  C{z)vi{ l / z ) \  =  B ( l / z ) [d ( l / z )u i ( z )  +  B{z )vx(l/z)}.

Since A(z)  = A ( l / z )  and gcd( A , B)  = 1 , we conclude th a t A(z)  divides 

\d( l / z)u\{z)  +  B(z)v \ ( l / z ) ]  and therefore, by A { l / z )  =  A(z) ,  A(z)  divides 

[d(z)ui( l /z)  +  B ( l / z)v\(z)}.  So m2 is a Laurent polynomial with real coeffi­

cients. By (4.4.24) and Proposition 4.1, we see th a t w2 is (anti)symmetric.

By (4.4.28) and Proposition 4.1, we see th a t (4.2.12) and the system of 

linear equations in (4.4.20) must hold. In the following, let us show th a t 

Mi(l) 2 +  v \ ( l ) 2 A  0- Since both (4.2.12) and (4.4.20) are satisfied, as we 

dem onstrated in the first part of the proof, we must have u \ {z )u \ { l / z )  +  

v i ( z ) v \ { l / z )  =  p A ( z )  for some constant p.  If M i ( l )  =  u i ( l )  =  0, by A (l) >  0, 

then we must have p  = 0. T hat is, | m i ( z ) | 2 +  |vi(;z)|2 =  Mi(;z)mi(1/,z) +

the system of linear equations given by [B( l / z )u i ( z )  — d(z)v\{ l / z ) \  = 0( 

mod A(z))  to obtain the desired u\  and v\.

Since A(z)  A  0) we can define 

(4.4.28)

Prom the above identity, we have
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v\ {z ) v \ ( l / z )  — 0 for all z £ T. So, u\  and v\ must be identically zero which is 

a contradiction to our choice of u\  and v\ since one of them  must be nonzero. 

So u i ( l ) 2 +  v i ( l ) 2 7  ̂ 0. Now replacing ui  and iq by cui and cv\ w ith c =  

+  m ( l)2) in the above proof, we see th a t (4.4.20) and (4.2.12) 

still hold. Moreover, we have u i ( l ) 2 +  tq ( l ) 2 = A( l )  which completes the 

proof. ■

Let R[z, z_1] denote the set of all Laurent polynomials with real coeffi­

cients. For a Laurent polynomial p £  R[z, z_1], we say th a t p is irreducible 

in R ^ z -1] if q \ p for some q £  R[z,z_1] implies th a t q = po or q — pop 

for some trivial Laurent polynomial po £ R[z, z-1] (that is, po =  czk for some 

c e R \{0} and k £  Z).

Inspired by [4, Lemma 4], we have a stronger version of Theorem 4.4.

Corollary 4.4. Let A, B  and C  be (anti)symmetric Laurent polynomials with 

real coefficients. Let M  be defined in (4.2.9). Suppose th a t M( z)  ^  0 for all 

z £ T  and detM{z)  — d(z )d( l / z )  for some (anti)symmetric Laurent poly­

nomial d with real coefficients. If g c d( A , B , C)  = 1, then there exist four 

(anti)symmetric Laurent polynomials ui ,U2 , v i ,V2 with real coefficients such 

th a t (4.2.10) and (4.2.12) are satisfied.

Proof: If C(z)  =  0, then gcd(A, B)  =  gcd(A, B,  C)  =  1 and all the claims 

follow from Theorem 4.4. So, we can assume th a t C  is not identically zero.

Define h(z) = g c d(A( z ) , B ( z )B( l / z ) ) .  By the symmetry of A  and B,  

we see th a t h must be (anti)symmetric. Now, we show th a t gcd(h, C) = 1. 

Suppose not. Then there is a nontrivial irreducible p £  R[z, z-1] such th a t 

p | gcd(h,C).  So, p  | h and p \ C. Consequently, p \ A  and p \ B ( z ) B ( l / z ) .  

Note th a t B ( l / z )  = B(z) / [SB](z)  and S B  is trivial. So p | B 2. Since p  is 

irreducible, we must have p \ B.  So, p \ gcd(A, B , C )  which is a contradiction 

since p  is nontrivial but by assumption gcd(A, B,  C) = 1.

Next, we show th a t for a nontrivial irreducible p  £  R[z, z -1 ], if p 2n~~l | h  

for some n  £  N, then we must have p 2n | h. Since p2?l_1 | h, we have p2 n _ 1  |
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B ( z ) B ( l / z )  and therefore, p2n 1 | B 2. Since p is irreducible, we must have 

pn | B  and consequently p2n \ B ( z ) B ( l / z ) .

On the other hand, by p2n~l \ h and h =  gcd(A(z),  B ( z ) B ( l / z ) ) ,  we have

p2n~l | [A(z)C(z) -  B{z )B( l / z ) } .

Since A(z)C(z)  — B ( z ) B ( l / z )  = detM( z)  =  d(z)d( l / z ) ,  we have p 2 n _ 1  | 

d(z)d( l / z) .  Since d( l / z )  — d(z)/[Sd\(z)  and Sd  is trivial, it follows from 

p2n-i  | ^ 2  p 2n | f/^r). Since C ^  0, by d(z )d( l / z )  — detM( z)  =

A{z)C{z) — B ( z ) B ( l / z ) ,  we have

_  d ( z ) d ( l / z ) + B ( z ) B ( l / z )
A{Z) ~  C(z)  '

By gcd(h ,C) — 1 and p | h, we must have p \ C  since p is not trivial. Hence, 

we must have p2n | A.  So, p2n \ h. As a consequence of the fact th a t p 2n~ 1 \ h 

implies p2n \ h, factorize h as

771

h(z) = p 0 { z ) Y[ p*nj(z), 
i = i

where po is a trivial Laurent polynomial and p i , . . .  ,pm are essentially different 

nontrivial irreducible Laurent polynomials in R[z, z~x]. Now define

m

dh{z) := 1 [ p7 ( z ).
j = i

Then h(z) — po(z)dh(z)dh(z).  Note th a t by Proposition 4.2 we can directly 

obtain dh from h w ithout factorizing h. Since ([Sdh\(z) ) 2 — [Sh\(z)/[Spo](z) 

is a trivial Laurent polynomial, Sdh must be trivial and therefore dh is ( a n t i ­

symmetric. So, gcd(A(z),  B ( z ) B ( l / z ) )  — dh(z)dh(l /z) .  Since both  dh and B  

are (anti)symmetric, it follows from dh(z)dh(l /z)  \ B ( z ) B ( l / z )  th a t d\  \ B 2 

and consequently dh \ B.  Define

' A{z )  B{z)  

B ( l / z )  C(z)_ '
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Clearly, A , B  and C  are (anti)symmetric Laurent polynomials and gcd(A, B ) =

1. By Theorem 4.4, there exist four (anti)symmetric Laurent polynomials 

u u u2) v i , v 2 w ith real coefficients such th a t

M( z)  =
U i ( z )  V i ( z )  

u 2( z )  v 2( z )

Uii l j z )  U2 {l / z)  

V i ( l / z )  v2 ( l / z )

lSS‘](z) -  \ SMia ](z) =  lS?;il(z)
[Su2](z] 

M(z)

[Sv2](z)'

dh(z) 0
M(z)

dh( l / z )  0

0  1 0  1_

(4.4.29)

and

(4.4.30) 

Note th a t

Define

ui{z) = ui ( z )dh(z), vi(z)  =  vi(z)dh(z), u 2 (z) =  u 2 (z), v2 (z) = v2 (z).

Then it follows directly from (4.4.29) and (4.4.30) th a t (4.2.10) and (4.2.12) 

are satisfied. ■

L em m a  4.5 . Letp  be a nonzero (anti)symmetric Laurent polynomial with real 

coefficients. Then there exist c G {—1,1} and k £ Z such that czkp(z)  ^  0 for  

all z  G T i f  and only i f  Z(p,  zf) is an even integer for every Zq £ T.

Proof: If czkp(z ) ^ 0 for all z  € T, then by Fejer-Riesz Lemma, czkp(z) — 

q(z)q( l / z)  for some Laurent polynomial q with real coefficients. Hence for all 

zq g T, we have

Z(p, z0) = Z(czkp(z),  z0) = Z(q( z ) , z0) +  Z( q( l / z ) ,  z0) = 2Z(q(z),  z0)

where we used the fact th a t Z(q( l / z ) ,  z q ) — Z(q(z) ,zo) = Z(q,zo)  for all 

Zq G T since q is a Laurent polynomial with real coefficients. So Z(p, z0) must 

be an even integer for every Zq G T.

Conversely, write p(z)  =  q(z)h(z)  such th a t q(z) ^  0 for all z E T  and all 

of the zeros of h lie on T. Since p is (anti)symmetric and Z(p, Zq) = Z(h,  zq)
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is an even integer for all zq G T, there exist c\ G {—1,1} and k\  G Z such 

th a t c \ z k l h ( z ) ^  0 for all z £ l  Since [-Sp]^) =  [ ^ ( ^ [ S T i] ^ ) ,  q must be 

symmetric. Since q ( z )  7  ̂ 0 for all z  G T, we must have [5g](^) =  z 2k2 for some 

k2 G Z. So z ~ k2q ( z ) 7  ̂ 0 and is real-valued for all z G T. Consequently, there 

exists c2 G {—1,1} such th a t c 2z ~ k2q ( z ) > 0 for all z  G T. So, C\C2z k l ~ k2p ( z )  =  

c i z k l h ( z ) c 2z ~ k2q ( z )  ^  0  for all ■

R e m a rk : W hen p is antisymmetric, it is evident th a t both  conditions

in Lemma 4.5 cannot be satisfied.

L em m a  4.6 . Let g be a nonzero Laurent polynomial with real coefficients. 

Then there exist two (anti)symmetric Laurent polynomials q\ and q2 with real 

coefficients such that

(4.4.31) q ^ q ^ l / z )  +  q2 (z)q2 ( l / z )  =  g(z)

and

[Sqi){z)/[Sq2\{z) =  z2k, —z2k, z 2k+1, or — z 2k+1 fo r some integer k

if  and only i f  g( z ) ^  0 fo r all z  G T and Z ( g , x ) is an even integer fo r  every 

x  G (—1, 0) U (0,1), x  G 0, x  G (0,1), or x  £  (—1, 0), respectively.

P ro o f: Necessity. If (4.4.31) holds, then it is evident th a t g(z)  ^  0 for all 

z G l  Since qi ( l / z )  = q1(z) /[Sq1](z) and q2( 1/z)  =  q2 (z)/[Sq2](z), we can 

rewrite (4.4.31) as follows:

q2 (z) + q22 (z)[Sqi](z)/[Sq2](z) = g(z)[Sqi](z).

If [Sqi](z)/[Sq2\(z) = z 2k, then we have q\(x) + x 2kq2 (x) =  ^(x)[S,gi](a:) for all 

x  G R\{0} and consequently, it is easy to see th a t for every x  G (—1 ,0 )U (0 ,1), 

we have

Z ( g , x ) =  Z(g[Sqi],x) = m in(Z(qj ,x) ,Z(q%,x))  = 2 m in(Z(q1 ,x) ,  Z(q2 ,x)).

So, when [Sqffiz)f[Sq2](z) = z 2k, Z(g , x )  must be an even integer for all 

x  G ( -1 ,0 )  U (0,1).
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If [Sqi\(z)/[Sq2\{z) = z 2k+1, then we have q2 (x )+x 2k+1q2 {x) =  g(x)[Sq\](x)

for all x  £  R \{0}. Similarly, it is easy to prove th a t for every x £  (0,1), 

Z ( g , x ) =  2 mm( Z( q i , x ) , Z ( q 2 , x))  must be an even integer.

If [Sqi](z)/[Sq2\(z) = —z 2k+1, then we have q2 (x) + (—x) 2k+1q2 (x) —

g(x)[Sqi](x) for all x  £  R \{0}. Similarly, it is easy to prove th a t for every 

x  £  (—1,0), Z( g , x )  =  2min(Z(qi , x) ,  Z(q2 , x))  must be an even integer.

Sufficiency. Since g(z) ^  0 for all 2  £ T, by Fejer-Riesz lemma, we can 

write g(z) =  h( z )h ( l / z )  for some Laurent polynomial h with real coefficients 

such th a t all of the roots of h are contained in {z  : \z\ ^  1}. Set q\(z) =  

z k[h( z )+h( l / z ) \ /2  and (?2 (-z) =  [h{z) — h( l / z )] /2.  Then it is easy to  verify th a t

(4.4.31) holds and [Sqi](z)/[Sq2](z) — —z 2k. In the following, let us consider 

the other three cases. Factorize h as

where po is a trivial Laurent polynomial and all p j , j  — 1, , m  are essentially 

different nontrivial irreducible Laurent polynomials in Since there

are only two types of nontrivial irreducible Laurent polynomials in R [z ,2 ~1], 

w ithout loss of generality we can assume th a t either pj = z  — (ij for some a3 £ 

(—1 ,1 ) \ { 0 }  or Pj(z) = z 2 +  bjZ + Cj for some bj,Cj £  M satisfying b2 — 4Cj < 0. 

Let us consider the following two cases.

If Pj(z) = z 2 + bjZ +  Cj for some b3 , Cj £ R satisfying 4cj >  b2, since Cj ^  0 

and — 2 ^/cJ ^  bj ^  2  then we have

If Pj(z) = z  — a,j for some a3 £ (—1 ,1)\{0}, then by assumption, we have 

the following cases:

m
h(z) = p0 (z)(z -  1  )z ^ ' \ z  +  n ? ? ( z ).

,2/c+l
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Case 1: If Z ( g , x)  is an even integer for all x  £ (—1,0) U (0,1), then rij must 

be an even integer and therefore, p™3 (z) =  [(z — dj ) n j / 2]2 +  z 2k x 0.

Case 2: If Z ( g , x ) is an even integer for all x  £ (0,1), then n ? must be an 

even integer when a3 £ (0,1). Therefore, when dj £ (0,1), we have 

p™3 (z) = [(z — cij)njZ2]2 +  z 2k+1 x 0. W hen aj £ (—1,0), we also have

f t (Z) = Z - a i =  [ /= % ]2 +  Z“ +1[2 -T -

Case 3: If Z(g , x )  is an even integer for all x  £ (—1,0), then rij must be 

an even integer if aj £ (—1,0). W hen dj £ (—1,0), we have p™3 (z) = 

[ (z~dj )n^ 2]2 - z 2k+1 xO. When dj £ (0,1), we also havepj ( z )  — z - d j  =

- ( k /% ] 2 - ^ +1[z -T ) -

By a direct computation, it is easy to verify the following identify

(4.4.32) ( / f  +  +  w f l )  = ( / i / 3 -  w /2 / 4 ) 2 +  w ( f j 4 + / 2/ 3)2.

By the above argument, using the identity in (4.4.32) we have

h(z) = q„{z)(z -  1 +  + ^ ) ® z ) ) ,

where go is a trivial Laurent polynomial, w(z)  =  z 2k, z 2k+1 or — z 2k+1 according 

to the assumption, and q4 and g2 are Laurent polynomials with real coefficients. 

Observing th a t w ( l / z )  = w( z )_1, we have

h ( l / z )  =  q0 ( l / z ) ( l / z - l ) zih’1)( l / z  + l ) z ĥ ~1) ( ^ ( l / z ) + w { z ) [ q 2 { l / z ) /w{z)]2).

Note th a t qo(z)q0 ( l / z) is a positive constant since go is trivial. By a simple 

computation, we deduce th a t

g(z) = h ( z )h( l / z )  = qi (z)qi ( l / z )  + q2 (z)q2 ( l / z )

where

g i ( z )  : =  \  q « ( z ) q o ( - ) ( z  -  1 ) ™ » ( z  +  ~ & ( * ) « - ) } ,\ z  z  z

9 2 (2 ) :=

\ /qo{z)qo(-)(z  ~  1 )z{h’1](z +  l ) 2(/l “ 1)[g1(z)g2(-)u ;(2 )“ 1 +  g2(^ 9 i( - ) ] .
\ z  z  z
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Since w(z) = w ( l / z ) ,  by a simple computation, we have

q i ( l / z )  = (—l ) z<'h,1'>z~z('h,1')~z('h ~Vqi(z),  

q2 ( l / z ) =  ( _ i ) W ) 2 -W )-z ( fc .- i  )w (z )q2 {z).

Therefore, both q\ and qi are (anti)symmetric and =  w(z).

4.5 P ro o f o f T heorem  4.2 and its associated  

algorithm

In this section, we shall prove Theorem 4.2 and give a step-by-step algorithm 

to  implement it.

P r o o f  o f  T h e o re m  4.2: If g =  gcd(A, B,  C)  =  0, then A  =  B  =  C  = 0 and 

all the claims are obviously true by taking u\ — U2 — Vi — = 0. So, we will

assume g ^  0. Since g =  gcd(A, B,  C ), by the symmetry of A, B  and C, g is 

(anti)symmetric. Since detM(z)  ^  0 for all z  G T, we see th a t

0 ^  B ( z ) B ( l / z )  ^  A(z)C(z)  V 2  e  T.

Since B ( l / z )  =  B(z) / [SB](z) ,  it yields th a t 2 Z( B ,  z) ^  Z( A,  z) +  Z(C,  z) for 

all z G l  So, by the definition of g, we have for every z 6  T,

Z(g,  z) =  mm( Z( A,  z), Z ( B , z), Z(C,  z)) = m in(Z(A,  z ), Z(C,  z)).

Since A(z)  ^  0 and C(z)  ^  0 for all z  G T, by Lemma 4.5, Z ( A , z )  and 

Z(C,  z) are even integers. Consequently, Z ( g , z) =  min(Z(i4, z), Z(C, z)) is an 

even integer for all z G T. Since g is (anti)symmetric, by Lemma 4.5, there 

exist c G {—1,1} and k G Z such th a t czkg(z) ^  0 for all 2  G T. Since 

<7 =  gcd(A, B,  C ), w ithout loss of generality, we can assume th a t g(z)  ^  0 for 

all z  G T by replacing g by czkg(z).  Now define M( z )  — M{z) /g{z )  by 

(4.5.33)

M( z)  =
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A(z)  B(z)  

\ B ( l / z )  C(z)
with A(z)  = B(z)  = B ( z )

9{z)
C{z) C{z)

9 { z )  '
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Since g(z)  ^  0 for all z  € T, it is easy to see th a t all A , B,  C  are (anti)symmetric 

Laurent polynomials and M  (z) ^  0 for all z 6 l

Sufficiency. Since d(z )d( l / z )  = de tM(z)  =  g(z)2de tM (z) , we have g2 | 

d (z )d ( l /2 ). Since d( l )  =  d(^)/[S,<i](2;), g2 \ d2 and therefore, g \ d. So 

define dx(z) = d(z)/g(z).  Then dx is an (anti)symmetric Laurent polyno­

mial and detM( z)  =  d\{z)d\{ l / z ) . Note th a t gcd( A , B , C )  =  1. By Corol­

lary 4.4, there exist four (anti)symmetric Laurent polynomials u \ , u 2 , v i , v 2 

with real coefficients such th a t (4.4.29) and (4.4.30) are satisfied. Define 

d(z)  := ui (z )v2 (z) — u 2 (z)v\{z).  By (4.4.30), d is (anti)symmetric and by 

Proposition 4.1 [Sd](z) =  [Sui\(z)[Sv2\ (z ) .

By Proposition 4.2, it follows from d(z )d( l / z )  =  detM( z )  =  d\{z )d \ ( l / z )  

th a t we must have d(z) = ± z kdx(z) = ± z kd(z) /g(z)  for some k  G Z. So,

[&*](*)
_  ~2fc [Sd](z). Rewrite (4.4.30) as

[5ui](z) =  =  = t ^ i ] ( 2)
[Su2){z) [5u2](2)'

So, we have

ffihK s) =  [St?i](z) [Slui](^)[Sln2](z) 
[Sui](z) [Su2](z) ([5 ui](2 ; ) ) 2

X [SB](z)[Sd](z)

[Sd]{z)
([Sui}(z)¥

([S 'uiK z)

and

[Sv2](z) [5 ui](2r) [Su1](z)[Sv2](z)
= [SB](z)-

[Sd]{z) [Sui](z)
[Su 2\(z) [Su2\(z) (S u i] ^ ) ) 2 ([5 fU l ] ( z ) ) 2  [S ^ i] ^ ) '

By assumption in (c) and Lemma 4.6, there exist two (anti)symmetric Laurent 

polynomials qx and q2 such th a t
2

[SB](z)[Sd](z)[Sgl](*) =  [ff^llO) =  [Sv2}(z) = (  z k 
[Sq2](z) [SuiKz) [Su2](z) V[5ui](z)

(4.5.34)

and g(z) = qx{z)qx{ l / z )  +  q2 (z)q2 ( l / z ) .  Define

u x(z) V i (z) Ui(z) Vi  (z) qi(z) - 3 2 (1 / 2 )

u 2 (z) v2 (z)_ U2 (z) v2(z ). 1 tsJ H-
1

1
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Now by (4.5.34) and Proposition 4.1, it is easy to  check th a t all Ui,u2 , v i , v 2 

are (anti)symmetric Laurent polynomials. By a direct computation, it is easy 

to  see th a t (4.2.10) and (4.2.12) are satisfied.

Necessity. Obviously, (a) and (b) must be true. As we proved in the 

part of sufficiency, we can assume th a t g(z) ^  0 for all z  G T. Let M  be 

defined in (4.5.33). We have g(z)2detM(z)  = detM( z)  — d(z )d( l / z ) .  So, 

g2 | d(z)d( l / z) .  Since d( l / z )  =  d(z)/[Sd](z),  we deduce th a t g 2 \ d2 and 

therefore, g \ d. Define d(z) = d(z)/g(z) .  Then d is (anti)symmetric and 

detM( z)  =  d(z)d( l / z) .  Since M( z)  ^  0 and g(z)  ^  0 for all jz G T, it is easy 

to see th a t M( z)  ^  0 for all z G T. Since gcd(A, B,  C)  =  1, by Corollary 4.4, 

(4.4.29) and (4.4.30) are satisfied. So,

=</(*)

U i ( z )  V i ( z )  

u 2 (z) v2 (z)

U i ( z )  V i (z) 

u 2 (z) v2 (z)

Define

Q(z)  := 9 1 ( 2 ) ►
Ci to

1

9 3 ( 2 ) Qa ( z )_

U i ( l / z )  u 2( l / z )  

V x ( l / z )  v 2( l / z )

U i { l / z )  u 2( l / z )  

v x ( l / z )  v 2( l / z )

V2 (z) - V i  (z) 

- u 2( z )  U i ( z )

= g(z )M(z)

Ui {z )  vx(z) 

u 2 (z) v2 (z)

Then Q (z ) Q ( l / z ) T =  g(z )d( z )d( l / z ) I2. In particular, we have

qi (z)qi ( l / z )  + q2 (z)q2 ( l / z )  = g(z)d(z)d( l / z) .

By (4.2.12) and (4.4.30), we have 

[SifiK*) [SuiKz) [SB] (z) =  [SB](z) =
[<S'tii](^) [Svi](*0

[Su2](z) [5v2](«) [Su2\(z) [S'v2](^ )’

By Proposition 4.1, qi and q2 are (anti)symmetric. By Proposition 4.2, d(z) 

± z k[u-i(z)v2 (z) -  U2( z ) v i ( z ) ] .  So

[Sd](z) =  z 2k[Sui\{z)[Sv2\(z) =  z ^ l S u ^ i z ^ S v ^ z ) .2k  r
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Observing th a t [S'giK-z) =  and [Sq2\{z) =  [ S '^ ^ f S u i ] ^ ) ,  we

have

[Sqi]{z) =  =  [Sui](z) z 2k[Su2]{z)[Sv1](z) = [SB](z)[Sd](z)
[ 5 g 2 ] ( - 2 )  [ 5 ' ^ 2 ] ( ^ ) [ < S ' ^ i ] ( ^ )  [Su2\(z) (zk [Sv1]{z) ) 2 (zk [Sv1](z) ) 2

By Lemma 4.6, Z( g(z )d( z )d( l / z ) , x )  must be an even integer for the corre­

sponding cases. Note th a t d( l / z )  = d(z)/[Sd](z).  So, Z( d ( z ) d ( l / z ) , x )  is 

always an even integer for all x  G 1R. So, Z ( g , x ) =  Z( g( z ) d ( z )d ( l / z ) , x )  — 

Z( d ( z ) d ( l / z ) , x )  must be an even integer for the corresponding cases. There­

fore, (c) must be true. ■

Finally, by the proof of Theorem 4.2 and all the auxiliary results in Sec­

tion 4, let us present the following algorithm on splitting a m atrix of Laurent 

polynomials with symmetry.

A lg o r ith m  4.7. Let A, B  and C  be (anti)symmetric Laurent polynomials 

with real coefficients. Let M  be the 2 x 2  m atrix defined in (4.2.9) such th a t 

all the conditions in Theorem 4.2 are satisfied.

1) Compute g =  gcd(A, B , C).  By the proof of Theorem 4.2, w ithout loss of

generality, we can assume th a t g ^  0 and g(z)  ^  0 for all z  G T.

2) Compute h{z) — gcd(A(z) /g(z) ,  B ( z ) B ( l / z ) / g ( z ) 2). By the proof of

Corollary 4.4, we can assume th a t h(z)  ^  0 for all 2  G T and we can 

calculate dh such th a t h(z) = dh(z)dh{l /z ) by Proposition 4.2.

3) Define a 2 x 2 m atrix M  of Laurent polynomials with real coefficients by

M( z)  =
A(z)  B(z)  

B ( l / z )  C(z)

X/ \ At \ B ( z ) Ait \ C ( z )with A{z) = , B(z)  = C(z)  = - p r - .
g{ z ) h( z )  g ( z ) d h(z) g( z)

By Proposition 4.2, we can calculate d such th a t detM( z )  — d(z)d( l / z ) .  

(If we have an (anti)symmetric Laurent polynomial d satisfying tha t 

detM (z) =  d(z)d( l / z ) ,  then we can take d(z) = d(z)/ (g(z)dh(z))) .
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4) Assume A(z)  = Ao +  X f̂cLi Ak(zk +  z~k) with A n  ^  0. Parameterize the

(anti)symmetric Laurent polynomials U\ and v\ w ith [5 'wi](2 )[iS'ui](;z) =  

[«S'.B](z)[iS'd](z) and the degrees of u\ and v\ are a t most N  (see the 

paragraph after the formula (4.4.24) about how to parameterize u\  and 

V\). Then according to Theorem 4.4 there must be a nonzero solution 

{u\ ,Vi}  to the system of linear homogeneous equations derived from

B { l / z ) u \ ( z )  — d(z)vi(z)  =  0 mod A(z).

By the proof of Theorem 4.4, we must have Ui ( l ) 2 +  u i ( l ) 2 ^  0. M ulti­

plying Ui and Vi by a constant, we can require th a t the solution { u i , v i }  

satisfy « i ( l ) 2 +  u i ( l ) 2 =  A(l) .

5) Define the symmetric filters « 2  and t>2 by

- d i z f a d )  _  d(z)ux{\) + B { \ ) v l {z)
U2 {z) :=  — 2-------------  an<a v2 (z ) : = ------

A ( z ) A{z)

6 ) By Lemma 4.6, write g(z) = qi (z)qi ( l / z) +  q2 (z)q2 ( l / z )  for some (anti)-

symmetric Laurent polynomials q\ and q2 such th a t [Sqi](z)/[Sq2](z) =  

{Svi\(z)/[Sui]{z).  (In most cases, g =  1 and we can simply choose q\ =  1 

and q2 = 0 .)

7) Obtain the (anti)symmetric Laurent polynomials (or symmetric FIR  fil­

ters) u 1 , u 2 , v 1 , v2 by

Ui(z) vx(z) dh{z) 0 Ui(z) M Z) qi(z ) - q i i l )

U2 {z) V2 {z)_ 0  \ U2 (z) v2(z ). M z ) 91 ( * ) .

U{z) :=

Then U( z ) U( l / z )T = M ( z ) and [1Si« i](2:)[S'u2](^) =  [A ^K aH '^iK -2)-

It is not necessary to check all the conditions in Theorem 4.2 in advance. 

If at some step one cannot carry out Algorithm 4.7, then the conditions in 

Theorem 4.2 cannot be satisfied.
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Chapter 5

An algorithm  for constructing  

pairs of dual wavelet frames 

w ith two sym m etric generators

5.1 In troduction

As we mentioned before, symmetry is a highly desirable property of a wavelet 

system. In Chapters 3 and 4, we discussed symmetric tight wavelet frames 

derived from symmetric refinable functions.

For simplicity, as we did in Chapter 4, we still use a Laurent polynomial 

a(z)  w ith z = e~^  to  represent a mask or a finitely supported sequence a. 

W hen we were constructing examples of symmetric tight wavelet frames in 

Chapter 4, for a given symmetric refinable function (f) w ith its mask a, we 

found th a t it is difficult to construct a Laurent polynomial 0  such th a t

Q ( z ) Q ( —z) — 0 ( z 2) [ 0 ( z ) a ( —z ) a ( —l / z )  +  Q ( —z ) a ( z ) a ( l / z ) ]  =  d ( z 2) d ( l / z 2 )

for some (anti)symmetric Laurent polynomial d. Even if we have constructed 

such a 0 ,  the coefficients of 0 , in many cases, are irrational. In practice, a 

function with rational coefficients is desired.
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These two disadvantages of constructing a symmetric tight wavelet frame 

motivate us to study pairs of dual wavelet frames with two symmetric gener­

ators.

By doing it, we will lose the “orthogonality” th a t a tight wavelet frame 

carries, but other properties can be still kept. It is much easier to  construct 

a pair of dual symmetric wavelet frames and the coefficients of the high-pass 

filters will be rational numbers in most cases.

So in this chapter, for a given pair of symmetric 2 -refinable functions <fi 

and (j> with its masks a and b, respectively, we are interested in constructing a 

pair of dual wavelet frames with two symmetric generators.

In Section 5.2, I shall give an algorithm to construct pairs of dual wavelet 

frames with two symmetric generators. As a consequence, pairs of dual wavelet 

frames with two symmetric generators of balanced length can be easily con­

structed via our algorithm for constructing pairs of symmetric dual wavelet 

frames. In Section 5.3, several examples are provided to dem onstrate the al­

gorithm.

5.2 A lgorithm

Let <fi G L 2 (K) and <f> G L2 (R) be two refinable functions with masks a and 

b respectively such th a t </>(2£) =  a(e~^)0(£) and 0(2£) =  6(e~^)0(£). Then 

we have th a t a ( l )  =  6(1) =  1. By [12, Theorem 2.2], if we can find Laurent 

polynomials 0 , a 1, a2, b1 and b2 satisfying 0 (1 ) =  1 , a 1 (l) =  a 2 ( l)  =  ^ ( l )  =  

6 2 (1 ) =  0 , and

(5.2.1)

where

M e (z) :=

a 1 (z) a2 (z)

a \ - z )  a 2 ( - z )

b ' ( l / z )  b H - l / z )

b \  1 / z )  b \ -  1 / z )
=  Me(z )

6 (2 ) -  Q(z 2)a(z)b( l /z)  - Q ( z 2 ) a ( z ) b ( - \ / z)

—Q(z 2)a{—z)b( l / z )  0 (—z) — Q(z 2)a(—z)b(—l / z )
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then {■01,'02} and {t/d, ip2} generate a pair of dual wavelet frames where

? ( 2 0  =  a2(e_<)fe )>

i/d(20  =  ^ ( e ^ f e ) ,  -02(2O =  &2(e“’*)5<0-

Since we are interested in constructing symmetric wavelet frames, we as­

sume th a t a, b and 0  are symmetric and

rt- 9 9 N [iSQ] (2 ) [5a] (z)

1 j [5 0 ] (^ )  [Sb](z)'

where for a nonzero Laurent polynomial p, [Sp](z) :=  p ( z ) / p ( l / z )  which is 

defined in Chapter 4. Moreover, we assume th a t

r, 9 ^  [ S a ^ z )  [Sa*](z) [Sa](z)
[ J [ S a ^ i - z )  [Sa2} ( - z )  [Sa](-z)

and the following facts: The symmetric masks a and b are given and they 

have sum rules of orders m  1 and m 2, respectively; The symmetric Laurent 

polynomial 0  is given, 0(1) =  1, and (1 — z ) n 1+712 \ [Mq (z )\ 1,1 with some 

integers n\  and n 2 such th a t 1 ^  n\  ^  m 2 and 1 ^  n 2 ^  m i.

Define a Laurent polynomial d(z) such th a t d(z2) :=  detM © (z)/(l — 

z 2)ni+n2 ' js eagy gee th a t d is a well defined Laurent polynomial and 

d is symmetric.

Now let us state  our algorithm.

A lg o r ith m  5.1. If d =  0, then we can construct a pair of symmetric dual 

wavelet frames w ith one (anti)symmetric generator by the following steps.

1. D efine

M 0 (z)
0 ( z ) —0 ( z 2)a (z)b (l /z )  0 ( z 2)a(z)b(—1/z)

(1  — z )n l (1  — l / z ) n 2 _  ( l - z ) n l ( l  +  l / z ) n 2

_  Q (z2)q(—z )b ( l /z )  © (—z ) —0 ( z 2)o(—z)b(—1/z)
( l + z ) nl (1 — l / z ) n2 ( l + z ) " l  ( l + l / z ) n2
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Compute

9 o(z2) :=  gcd([M e(^)]i,i, [Me (z)]lj2, [Me (z)]2,u [Me (z)]2}2),

^  2 ^  9i(z) := gcd([Me (z)]i,i, [Me (z)]li2)/go(z2),

g2 (z) := [MQ( l / z ) \ 1:1/ ( g 1 ( l / z ) g 0 { l / z 2)), 

g2 (z) := [Me ( l / z ) \ 2,l / ( g l ( l / z ) g 0 ( l / z 2)) , .

2. It is easy to see th a t g0, r/i, g2, g2 are well defined symmetric Laurent 

polynomials. We will have ^2 (2 ) =  ±<?2 (—%)• If <72(2 ) =  9 2 {—z), then define 

w := 1; If g2 {z) =  —g2 (—z), then define w := e_zC Chose a symmetric Laurent 

polynomial g% such th a t gz divides go and define gA := go) gz-

3. Define ip and ip by

^(2£) := w( l  -  e~**)ni03(e“,2*)0i(e“*)J(£ ),

ip{2£) := w( l  -  e~<)n2gA{e~l2^)g2 {e~<)Z{C).

Then {ip} and {ip} generate a pair of symmetric dual wavelet frames with 

vanishing moments of orders n i and n 2, respectively.

If d ^  0, then we use the following steps to  construct a pair of symmetric 

dual wavelet frames with two (anti)symmetric generators having vanishing 

moments of orders n i and n 2, respectively.

1. Find a symmetric Laurent polynomial d\ such th a t d\ divides d.

2. Find a symmetric Laurent polynomial a2 which satisfies the following 

conditions:

(1 -  z)ni | a2 (z), [Sa2](z)/[Sa2] ( - z )  = [Sa](z)/[Sa](-z),

(5.2.5) dx(z2)( l  -  *»)»i-*» | a2 (—z)[Mq(z)]i ii -  a2 (z)[MQ(z)}2A, 

gcd(a2( - ^ ) / ( l  -  z r \ a 2 ( z ) / ( l  + z y > ) \ d x(z2)

and

(5.2.6) dx{z2){\  -  z 2)n 1+712 | (al { -z )[MQ(z )]ia  -  a1 (z)[Me (z)]2>1)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where a1 is a symmetric Laurent polynomial satisfying the following equations. 

^ ^  (1 -  z )ni | a \ z ) ,  [Sa1](2 ) /[S a 1](-.z) =  [Sa}(z)/[Sa}(-z),

a2 (—z)a1 (z) — a2 (z)a1(—z) = z( 1 — z 2)nidi (z2).

3. Define

b ' ( z )  := -  a s ( i ) [ i W f e ( i ) ] 2 , i ) / ( d , ( ^ ) ( l  -  z2)”1),
\  Z  Z Z Z  I z

bHz) := z f „ i ( - i ) [ M e ( i) ] , . ,  -

4. Define ■01) V'2> V'1) V’2 by

=  ^ ( e - **)?^), ^ ( 2 0  =  a2(e- * )J ( f ) ,

^ 2(20  =  62(e“‘€) f e ) -

Then {'i/4,'02} and {'01, '02} generate a pair of dual wavelet frames w ith van­

ishing moments of orders n\  and n 2, respectively.

P r o o f  o f  A lg o r ith m  5.1: First let us consider the case d =  0. In this case, 

it is easy to  see tha t

(5.2.8) M q (z) =
k0 (z)k2 (z) k i ( z )k2 (z)

_k0 (z)k3 (z) k 1(z)k3 (z)_

with some nonzero Laurent polynomials ko, Aq, k2 and k3. Moreover, we can 

assume th a t gcd[k2 ( z ) , k 3 (z))= 1. Notice —  [M@(—z)]2>2. So we

have

(5.2.9) k0 (z)k2 (z) =  k i ( - z ) k 3 ( - z ) .

Similarly,

(5.2.10) k0 (z)k3 (z) = k i (—z)k2 (—z).

Divide (5.2.9) by (5.2.10), we have

k2 {z) =  k3 ( - z )  
k3 (z) k2 (—z) ’
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Therefore, by gcd ( £ 2 ( 2 ) 1  £ 3 ( 2 ) ) = :  1 ,  we have £ 2 ( 2 )  =  ± k ^ ( —z). If £ 2 ( 2 )  =  

—£ s ( — 2 ) ,  then we replace £ 0 ,  £ 1 ,  £ 2  and £ 3  by ^ £ 0 ( 2 ) ,  zk\ (z) ,  k i { z ) / z  and 

k:i(z) /z ,  respectively. So we can assume th a t £ 2 ( 2 )  =  ks(—z). Therefore, by 

condition (5.2.9), we have £ 0 ( 2 )  =  k \ (—z) and £ 2 ( 2 )  =  £3(—2 ) .  So

M e (z) =  [ £ 2 ( 2 )  £ 2 ( - 2 ) ] t [ £ i ( - 2 )  £ j ( 2 ) ]

=  5 o(2 2) [£ 2(2) £ 2( - 2 ) ] T [£i ( - 2 ) / 5 o(2 2) £ i ( 2 ) / ^ o(2 2)]

where

9 o{z2) :=gcd(k 1 ( z ) , k i ( - z ) )

-  gcd([M e (z)]iii, [Mq (z )}2,2 , [ M @ ( 2 ) ] i ) 2 , [Me (z)]2,i).

Therefore, we proved the algorithm for the case d = 0 and it covers all the 

possible pairs of symmetric wavelet frames with one (anti)symmetric generator 

derived from cj) and (j).

Secondly, let us consider the case d^= 0. As discussed before, we want to 

find some symmetric polynomials a1, a2, b1 and b2 such th a t

1 ~''ni 1 a2, ( l - z ) n2 \ b \  (l - z ) n2 \b2

a1(2 ) a2(2 )

(5.2.11) ( l - 2 )ni | a1, (1 - 2 n̂i

and (5.2.1) are satisfied. So we have det 

fine
a x(—2 ) a2(—2 )

is symmetric. De-

(5.2.12) d i(2 2) =  -  det
a 1(2 ) «2(2 )

o1(—2 ) a2(—2 )

It is easy to see th a t d\ is well defined and d\ is symmetric by assumption

(5.2.3). Under the condition d\ ^  0 since d ^  0, it is evident to see th a t

(5.2.1) is equivalent to

(5.2.13)
b \ l / z ) b \ - l / z ) 1 ' a \ - z )

1CN1

b2 ( l / z ) b2 ( - l / z ) _ zdi ( z2) 1
1 a>(z) _

Me  (2 ).

Also, it is easy to see th a t (5.2.13) is equivalent to

a2 ( - z ) [ M e (z)]h i -  a2 (z)[M&(z ) \ 2 ,1 

- q } { - z ) [ M q { z ) ]  1,1 +  a1 {z)[M&{z)]2,i
(5.2.14)

V ( l / z ) ' 1

zdi ( z2)
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So the combination of conditions (5.2.1) and (5.2.12) is equivalent to the com­

bination of conditions (5.2.12) and (5.2.14). By this reason and condition

(5.2.3), checking the symmetry pattern, it is evident to see th a t our algorithm 

for the case d ^  0 is correct and in fact it covers all the possible pairs of sym­

metric dual wavelet frames derived from 0 and 0. Moreover, since it covers all 

the possible pairs of symmetric dual wavelet frames, we can search some opti­

mal ones according to  our algorithm. For instance, in practice, a 1, a2, b1 and 

b2 can be used as high-pass filters. In terms of efficiency, the maximal length 

of {a1, a2, b1, b2} is desired to be as short as possible. In the next section, 

we shall refine our algorithm to search for the “shortest” pair of symmetric 

dual wavelet frames and several examples are provided to dem onstrate our 

algorithm. ■

5.3 E xam ples

Using Maple program and based on the algorithm in last section, we calculated 

many examples. Especially, we would like to show the following examples:

E x a m p le  5.1. Let 0 be a refinable function with its mask

a(z ) =  2~2[18 — 5 (z +  2-1)](l +  z )5/ 256.

Set <f> = 4> and b = a. We have m\  = m 2 = 4. Define 0  =  1, n\  = =  2,

a \ z )  =  15^_1(1 -  z f [526 +  242(2 +  z ~ x) +  55(22 +  2~2)]/15808, 

a 2 ( z )  =  —2"”1 (1 +  2)(1 -  2)2[106 +  36(2 +  z ~ l ) +  15(22 +  2~2)]/240, 

b \ z )  =  2 ^ (1  -  2)3[86 +  22(2 +  z - 1) +  5(22 +  2-2)]/480, 

b2 ( z )  =  —5252-1(l +  2)(1 -  z f [ 2 7 0  +  12 (2 +  z ~ l ) +  5(22 +  2“2)]/1011712

and define -01, 'lP2-, V'1) V’2 by

^ ( 2 0  =  = a2(e~'€) J ( 0 ,
(5.3.15) ^  -  — *

vd(2£) =  ^ ( e - ^ M o ,  < m )  =  b2( e - ^ ) m -
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Figure 5.1: Generators for the pair of dual 2-wavelet frames in Example 5.1: 

(a) i p 1  (b) i p 2  (c) i p 1  (d) i p 2 . Functions i p 1 ,  i p 2 ,  i p 1 ,  i p 2  are symmetric or 

antisymmetric and have vanishing moments of order 2.

Then { i p 1 ,  i p 2 }  and { i p 1 ,  i p 2 }  generate a pair of dual wavelet frames with van­

ishing moments of orders 2. See Figure 5.1 for their graphs.

E x a m p le  5.2. Let < p  be the cubic 13-spline with its mask a(z) =  ( l +  z)4/16. 

Set (p =  (p and b = a. We have mi  =  m 2 =  4. Define

0  =  1 + ( 2  — 2 — Z-X)iz +  31(2 -  z -  z-'f/zm,

n  1 =  2, n 2 =  4,

ax(z) = - z ~ 4( 1 -  F)2[38 +  18(z +  z~x) +  3(z2 +  ^ "2)]/32, 

a2(z ) = - z - 6( 1 - z ) 2(1 +  z)6/16,

ft1^ )  =  z~5(l  -  z)4[786 -  244(z +  z - 1) +  31 {z2 +  z~2)]/5760, 

b2 (e~*) = z~4( 1 -  z)4[2352 +  403(z +  z_1) +  62(^2 +  z " 2)]/11520

and define i p 1 ,  i p 2 ,  i p 1 ,  i p 2  by (5.3.15). Then { i p 1 , i p 2 }  and { i p 1 , i p 2 }  generate 

a pair of dual wavelet frames with vanishing moments of orders 2 and 4, 

respectively. See Figure 5.2 for their graphs. Similarly, we can construct a
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Figure 5.2: Generators for the pair of dual 2-wavelet frames in Example 5.2: 

(a) pj1 (b) tp2 (c) ip1 (d) 'ip2. Functions 'ip1 ,'ip2 ,ipl ,'ip2 are symmetric and have 

vanishing moments of order 2 or 4.

“shortest” pair of dual wavelet frames with vanishing moments of order 3 

which is derived from the same mask a. A similar example has been given in 

[4, Example l.(iii)].

E x a m p le  5.3. Let (p be the cubic B-spline with its mask a(z) = (1 +  z)4/ 16. 

Set (p = (p and b = a. We have m i =  m 2 =  4. Define

0  =  1 + ( 2 -  z -  z~l )/2, +  31(2 -  z -  z-1 )2/ 360 +  311(2 -  z -  ^“ 1)3/15210,

ni  = 4 ,  n 2 = 4,

ax(z) = (1 -  z)4[22 +  8(z +  z~x) + (z2 +  z“2)]/64, 

a2 (z) = z( 1 -  z)4[208 +  131(z +  z~l ) +  40(z2 +  z~2)+

5(z3 + z_3)]/320, 

bx(z) =  (1 -  z)4[28602 +  3424(z +  z~x) +  933(z2 +  ^“ 2)]/172800, 

b2 (z) =  z (l -  z)4[61024 +  33045(z +  z~x) +  9952(z2 +  z“ 2)+

1244(z3 +  z_3)]/241920
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Figure 5.3: Generators for the pair of dual 2-wavelet frames in Example 5.3:

(a) -i/d (b) ip2 (c) ip1 (d) ip2. Functions ip1, ip2, ip1, ip2 are symmetric and have 

vanishing moments of order 4.

and define ip1, ip2, ip1, ip2 by (5.3.15). Then {ip1 ,ip2} and {'01>'02} generate a 

pair of dual wavelet frames with vanishing moments of order 4. See Figure 5.3 

for their graphs. Similar examples have been given in [4, 13].
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