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Abstract 

With the increasing exploitation of unconventional reservoirs, the demands of implementing 

geomechanics to improve the exploration and development process have been greater than 

before. Knowledge of in-situ stresses and rock failure mechanisms is key for building a 

comprehensive geomechanical model. Consequently, it is necessary to evaluate the state of stress 

in the Earth in order to design and efficiently operate engineered geothermal systems. The goal 

of this study is to investigate the variations of near-wellbore stress concentrations as a function 

of formation anisotropy, stress regimes and borehole relative orientations with respect to the in-

situ stress, and then further examine the mechanical behavior of drilling induced tensile 

fractures. This is done by developing various MATLAB
TM

 based analytical programs, creating 

numerical models and conducting lab simulations. Results from analytical models demonstrate 

that effects of formation anisotropy on borehole stress rise with increasing degree of anisotropy 

and the drilling-induced tensile fractures are not symmetrical when the borehole axis is not 

aligned with any of the in-situ stresses. Those models can also be integrated with different 

industry data sets to estimate the stress states in the formation of interest and enable us have 

better insights for drilling optimization, hydraulic fracturing design, completion planning and 

production maximization. Moreover, in the lab, both axial and en echelon drilling-induced 

tensile fractures were generated and their failure mechanisms agree with the general theory. 

Numerical models are not fully completed as the final goal is to develop a dynamic 3-D model 

based upon the current static model to simulate the lab processes in real-time.  
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Chapter 1 

Overview 

 

This thesis is part of the geothermal theme of the Helmholtz-Alberta Initiative (HAI), which is 

the research collaboration between scientists in Germany and Canada on energy projects for 

cleaner energy production. Conventional geothermal systems can only exploit formations with 

sufficient heat, water and permeability to generate power economically. To minimize limitations 

on site selection, enhanced geothermal systems (EGS) have been widely developed in recent 

years. This technique can enhance energy productions by hydraulic stimulating hot reservoirs 

with low water content and low permeability. A proper control on the stimulation process is 

critical as it has big influences on fracture propagations, fluid migrations and borehole stabilities. 

Hence, simulating the fracturing process is necessary prior to exploitations, and geomechanical 

parameters, such as in-situ stress states and rock elastic properties, are essential inputs to the 

simulation process helping us better predict rock behaviors under different circumstances. This 

motivates us to improve the systematic geomechanical analysis on the fracture characterization 

and in-situ stress estimation in unconventional reservoirs. 

A direct method to evaluate stress orientation is through the usage of image logs (Fig. 1.1), 

which record images of the borehole wall and can reveal a certain kind of property (e.g. 

resistivity, acoustic velocity, etc.) of surrounding formation rocks (Barton et al., 1997; Chan, 

2013). Fractures identified from borehole images can be utilized to refer the horizontal stress 

orientations with the assumption that one of the principal stress is in the vertical direction. In 

addition to stress orientations, the range of stress magnitude can be constrained based on the 

observations of borehole images. Therefore, knowledge of borehole fracture behaviors is critical, 

and developing techniques that can link the fracture mechanism with stresses becomes necessary. 

In this thesis we examine two aspects of this problem: i) the effects of rock anisotropy on stress 

distributions near boreholes, and ii) the related issue of how such boreholes fail. 

In stress analysis, workers rarely take formation anisotropy into consideration; this is in part 

because it can be difficult to characterize the anisotropy. But, if the trend of developing 
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unconventional resources usually held within strongly anisotropic rocks continues, there will be 

a great deal of drilling at all directions through anisotropic formations. Therefore, in this study, I 

coded in MATLAB
TM

 programs to investigate the impacts of formation anisotropy on borehole 

stresses and the consequential growth of drilling-induced tensile fractures. Then these programs 

were also used to validate the numerical model created from a finite element solver, called 

ANSYS
TM

. This numerical model could be further developed into a dynamic model to compare 

its results with those obtained from the photoelasticity lab measurements. 

The photoelasticity lab tests were designed to simulate the initiation and propagation of drilling-

induced tensile fracture and hydraulic fracture. Several glass cubes with identical dimensions 

were drilled with holes in different orientations. This could help us identify the influence of the 

relative orientation of borehole axis with respect to the principal stresses on fracture behaviors.  

 

Figure 1.1 An interval of the processed Formation Microimager (FMI) log of the Hunt well 

demonstrating resistivity changes of the formation on an unwrapped borehole image. Dark color 

indicates higher conductivity; whereas, brighter color indicates higher resistivity. In this figure, 

those lines with dark color may represent fractures. Static display means that the colorbar of the 
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image is consistent throughout the whole well, and does not dynamically change based on 

different depth intervals. Adapted from Chan (2013). 

Chapter 2 focuses on introducing some basic principles related to this study. As the objective of 

this research is to improve techniques for stress estimations, the concept of crustal stresses is first 

presented including the mathematical expressions, the classification of stress regime and the 

corresponding measurement for each stress component. This chapter continues with providing 

some basic information on elasticity related to this research, e.g. reviews on the relationship 

between stress and strain, the effective stress, dominant types of rock intrinsic anisotropy and 

their constitutive relationships. Last, this chapter ends with revisiting two of the most prevailing 

modes of rock failure in geomechanics, and they are compressive failure and tensile failure. This 

section will lay a solid foundation for the following introductions on borehole failure and 

borehole fractures. 

Before moving towards presenting borehole stresses in anisotropic formation, Chapter 3 first 

reviews the isotropic scenario, including the analytical solution for the stress distributions around 

the borehole wall, the borehole failure mechanism and the classifications of borehole fractures. 

In this section, two MATLAB
TM

 based analytical programs are presented, one enables us to 

visualize the stress concentration around the borehole in a plain view, and the other shown as 

lower hemisphere diagrams calculates the tendency of fracture initiations for all possible well 

orientations. I presented these results at the AGU Fall meeting in 2013 and CSEG 

Geoconvention in 2014 (Jia et al., 2014). The last section discusses the results of the 

photoelasticity tests carried out in the laboratory in order to study the mechanical behavior of 

tensile fractures generated around the borehole wall. These observations provide us with some 

interesting preliminary qualitative conclusions which can be integrated with the interpretation 

process for borehole imaging. These results will be presented at the ISRM Congress in 2015 (Jia 

et al., 2015). 

Chapter 4 and Chapter 5 focus on the investigations of the impacts of formation intrinsic 

anisotropy on near-wellbore stresses and the consequential fracture traces.  First, we revisite the 

closed-form solutions for borehole stress calculations in an anisotropic formation, which are 

developed by Amadei (1983) and Lekhnitskii (1981). Then, based on these solutions, a program 
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is presented showing the differences in terms of stress magnitude through changing material 

properties. One thing needs to be mentioned is that even though this program can handle all 

types of anisotropy, this study only shows the transversely isotropic case, which is expected to be 

the anisotropic type of shale. Since fracture traces vary with borehole stresses, chapter 5 provides 

a comprehensive discussion on the manner in which the formation properties affect drilling-

induced tensile fracture traces. I presented these results at the 48
th

 US Rock 

Mechanics/Geomechanics Symposium and the CESG Geoconvention in 2014 (Jia and Schmitt, 

2014; Jia et al., 2014). 

The last part of the work Chapter 6 shows some preliminary work of our numerical models built 

in a finite element solver ANSYS
TM

.  This chapter begins with introducing some detailed 

descriptions about the 3-D model including the model geometry, element attributes, meshing and 

boundary conditions. The next section illustrates the development of the 3-D from a 2-D 

simplified model and its validations. This chapter ends with providing a roadmap for future study 

which aims to create a dynamic 3-D numerical model enabling us to compare the results with 

those from the photoelasticity tests. 

Chapter 7 summarizes all the results from the analytical programs, lab tests and numerical 

models. Also, some suggestions for future investigations on stress estimations and geothermal 

system design are included in this chapter. 

The Appendix A mainly explains the principals of the photoelasicity experiments conducted on 

glasses. Other Appendices are the text version of all  my MATLAB
TM

 codes. 
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Chapter 2 

General Considerations 

 

2.1 Overview 

As the trend of enhanced geothermal system exploitations rises, more issues attract people’s 

attention, such as borehole instabilities, stimulation designs and production optimizations. 

Among all those aspects, geomechanics play a key role. In order to develop a comprehensive 

geomechanics model, in-situ stresses and rock elastic properties are essential inputs. Building a 

complete crustal stress tensor requires different measuring techniques that are practical to apply 

during the oil and gas exploitations (Zoback, 2007). Section 2.2 reviews some basic points about 

the characterizations of crustal stresses including the mathematical form of in-situ stress, stress 

transformations among different coordinates, E. M. Anderson’s classification in terms of the 

faulting regime and the measurement techniques for each stress components. 

In the next section of this chapter, I briefly introduce the concept of rock elasticity which is of 

fundamental importance for rock mechanics as the knowledge of rock elastic property is the key 

for predicting rock behaviors under stresses. First, some terminologies are established and will 

be used with consistent names throughout the thesis to avoid confusion. Second, poroelasticity 

describing the elastic behavior of a porous rock saturated with fluids is discussed since pore 

fluids can influence the response of a rock to an external force. Lastly, four typical types of rock 

anisotropy and their corresponding constitutive relationships are reviewed. 

In the last section of the chapter, several basic principles of rock failure in compression and 

tension are introduced. A stable well is not one in which not a single well failure is formed. For 

example, borehole breakouts, a kind of compressive failure, are usually present in the vicinity of 

the borehole without causing any borehole stability problems when their widths are not large 

enough to put the well into a floating status; however, without proper mud weight control, they 

can grow in terms of azimuth leading to borehole stability problems. Therefore, it is important to 

learn about the rock failure mechanism in order to prevent borehole fracture from growing out of 

control. In the first section, I discuss the concept of the rock compressive strength and its 
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corresponding lab measurement methods. From the theoretical perspective, I also address the 

Mohr-Coulomb failure criterion, which is the most common criterion to predict rock strength as 

a function of pore pressure and confining pressure. The second part is about rock tensile failure 

mechanism which is a much simpler failure mode compare to the compressive failure as the rock 

tensile strength is close to zero. Tensile failure is mainly of application to drilling-induced tensile 

fractures created at the borehole wall (Chapter 3) and hydraulic fracturing. The former does not 

harm borehole stability but the latter results from excessive mud weight that can lead to 

circulation loss. Moreover, all those considerations are based on the assumption that rocks are 

isotropic, linear elastic, continuous and homogeneous. The anisotropic conditions for borehole 

compressive and tensile failure are discussed in Chapter 4 and 5. 

 

2.2  Earth Crustal Stress 

2.2.1 Stress Notation and Transformation 

Stress is a second-rank tensor defined as the distribution of forces on a given area usually 

expressed in the unit of Pascals (Pa). As illustrated in Fig. 2.1a, for an infinitesimal cube in the 

Earth’s crust at depth the stresses it bears can be classified into two kinds: normal stresses (σ), 

whose tractions are normal to cube faces, and shear stresses (τ), whose tractions are parallel to 

the faces. To be more specific, stress is commonly written as the following matrix form: 

𝜎 = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

]      (2.1) 

where the first subscript indicates the normal of the face on which the stress acts and the second 

subscript refers to the direction to which the stress points.  This stress tensor gives the values for 

the x-y-z coordinate as shown in Fig. 2.1a.  In this and most of the following chapters excepting 

Chapter 6, a positive stress magnitude indicates compression as is the convention used in 

geosciences. In other disciplines, such as Physics and Mechanical Engineering, the opposite 

convention with compression negative is applied. Whether the sign is positive or negative for 

compression is not important as long as the convention is applied consistently. We assume that 

the infinitesimal cube is in equilibrium and it is not translating or rotating; this means that forces 

on it are balanced and with regards to rotation:  
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𝜏𝑥𝑦 = 𝜏𝑦𝑥, 𝜏𝑥𝑧 = 𝜏𝑧𝑥, 𝜏𝑦𝑧 = 𝜏𝑧𝑦      (2.2) 

so that there are only six independent components in the matrix Eq. 2.1.  

The matrix of Eq. 2.2 is called a second-order Cauchy stress tensor and as such the values will 

change with the frame of references used even though, regardless of the spatial co-ordinate 

reference, the tensor still carries the same information. To transform between co-ordinate frames, 

the stress tensor can be rotated via direction cosines (𝑎𝑖𝑗) into different arbitrary coordinate 

systems, and its magnitude for each component will change against upon the orientation of the 

coordinate. The direction cosines describe the relative orientation of a newly defined coordinate 

system with respect to the reference coordinate system (Jaeger et al., 2007). To specify direction 

cosines, we need three stress magnitudes and three Eulerian angles between the two Cartesian 

coordinate systems. The mathematical equation is 

𝜎′ = 𝐴𝑇𝜎𝐴      (2.3) 

where A is defined as 

𝐴 = [

𝑎𝑥𝑥′ 𝑎𝑥𝑦′ 𝑎𝑥𝑧′
𝑎𝑦𝑥′ 𝑎𝑦𝑦′ 𝑎𝑦𝑧′
𝑎𝑧𝑥′ 𝑎𝑧𝑦′ 𝑎𝑧𝑧′

]     (2.4) 

where 𝑎𝑖𝑗 is the direction cosine. Or it can be written as the following form (Fjaer et al., 2008) 

𝜎′ = 𝑅(𝛼, 𝛽 , 𝛾)𝜎𝑅𝑇(𝛼, 𝛽 , 𝛾)     (2.5) 

and  

𝑅(𝛼, 𝛽 , 𝛾) = 𝑅𝑧(𝛼)𝑅𝑦(𝛽)𝑅𝑧(𝛾)

= [

𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛼 − 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛼 + 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛼 −𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛽
−𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛼 − 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛼 + 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛽

𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛽
] 

(2.6) 

where 𝛼, 𝛽 and 𝛾 are the Eulerian angles in the 3-D coordinate rotation processes (Fig. 2.2). To 

simplify the problem, stress tensor is usually rotated into a principal coordinate system x’-y’-z’ 

where all shear stresses disappear (Fig. 2.1b), and the rotated stress tensor can be written as 
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𝜎′ = [

𝜎𝑥′𝑥′ 0 0
0 𝜎𝑦′𝑦′ 0

0 0 𝜎𝑧′𝑧′

]     (2.7) 

Whereas, for the crustal stress, as the overburden (or vertical stress) is usually one of the 

principal stresses, the other two principal stresses will be in the horizontal direction. These three 

principal stresses are orthogonal, and can be written in the following matrix form: 

𝜎′ = [
𝑆𝐻 0 0
0 𝑆ℎ 0
0 0 𝑆𝑣

]        (2.8) 

where 𝑆𝐻, 𝑆ℎ and 𝑆𝑣  are the maximum horizontal compressive stress, the minimum horizontal 

compressive stress and the vertical compressive stress, respectively. Hence, in order to define the 

Earth crustal stress under the presumption that the one of the principal stresses remains vertical, 

four parameters should be defined, and they are the three principal stresses and the azimuthal 

angle of the maximum or the minimum horizontal stress (Zoback, 2007). This concept is 

assumed to be applicable to the upper crust close to the Earth surface, which is nearly horizontal 

(Anderson, 1951).  

The reason that the stress transformation is very important for crustal stress calculations is that 

because the assumption cannot always be valid. Fluids (i.e., brine and salt) embedded 

underground cannot support shear tractions; thus, the principal plane becomes tangential to the 

fluid surface (Zoback, 2007). Moreover, stress orientations can also be disturbed around major 

fault zones, in convergent sedimentary basins and deformed zones (Bachu et al., 2008). 

Therefore, attention shall be paid on stress directions around complex geological structures as 

the in-situ principal stresses are not necessarily in the horizontal direction or the vertical 

direction. 
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Figure 2.1 a) The stress state of an infinitesimal cube in the Earth’s crust showing both normal 

stresses and shear stresses in the coordinate system x-y-z. b) The stress state after the stress 

transformation into another arbitrary coordinate system x’-y’-z’ in which all shear stresses 

disappear leaving only three principal stresses acting in the normal direction. Modified from 

Schmitt et al. (2012). 

 

 

Figure 2.2 Illustration of the coordinate rotation processes in 3-D. The mathematical forms are 

listed in Eq. 2.5 & 2.6. 
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2.2.2 Relative Stress Magnitudes in a Sedimentary Basin and their Measurements 

As mentioned in the previous section, the principal stresses in the Earth’s crust is always 

considered to consist of the maximum horizontal stress, 𝑆𝐻, the minimum horizontal stress, 𝑆ℎ, 

and the vertical stress, 𝑆𝑣. As shown in Fig. 2.3, other than those three external stresses, a rock 

volume in the Earth is also subjected to its own internal pressure, which is referred to as pore 

pressure caused by the existence of pore fluids. Pore pressure provides an opposite stress effect 

with respect to the external pressure. 

 

Figure 2.3 The stress state on an infinitesimal rock volume in the Earth. It is under both external 

stresses (three in-situ principal stresses) and an internal stress (pore pressure). 

The relative magnitudes of the three principal in-situ stresses with respect to one another are 

critical to crustal movements and fault styles. In order to differentiate different scenarios, 

Anderson (1951) proposed three faulting regimes based on the relative magnitude of Sv with 

respect to the horizontal stresses, and they are referred to as (Fig.2.4): 

1) Normal faulting regime: Sv is the maximum principal stress, S1. 

2) Strike-slip faulting regime: Sv is the intermediate principal stress, S2. 

3) Reverse faulting regime: Sv is the minimum principal stress, S3. 
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Figure 2.4 E. M. Anderson’s classification for stress regimes: a) normal faulting environment 

with normal faults dipping ~60°; b) strike-slip faulting environment with strike-slip faults; c) 

reverse faulting, also often called thrust faulting environment with thrust faults dipping ~30°. 

Red arrows indicate the movement direction of the hanging wall and the foot wall. Modified 

from Schmitt et al. (2012). 

 

The magnitude of Sv is the integration of rock densities, 𝜌, from the Earth surface to the depth, z: 

𝑆𝑣 = ∫ 𝜌(𝑧)
𝑧

0
𝑔𝑑𝑧     (2.9) 

where g is the gravitational constant. For typical siliciclastic sedimentary rocks, the gradient will 

be around 23MPa/km (Zoback, 2007). If the area of interest is offshore, the weight of water upon 

the seafloor needs to be taken into consideration as well, so that the gradient of Sv in the 

seawater interval will be a bit higher than 10MPa/km. Sv is the easiest stress to be estimated 

comparing to the other two principal stresses. A direct way is by using density logs, which 

should be as complete as possible; if not, other estimates need to be made. Moreover, rock 

density generally increases with depth due to compaction, and as such, the gradient of Sv is also 

increasing, this has been observed in most sedimentary basins.  

Pore pressure is crucial for hydraulic fracture design, drilling risk assessments and caprock 

integrity analyses. Special attention should be paid when dealing with an overpressured reservoir 

as both the shear failure and the tensile failure can be generated more easily. Pore pressure can 

be hydrostatic, 𝑃𝑃
ℎ𝑦𝑑𝑟𝑜

, when the depth of interest is hydraulically interconnected to the surface 

through pore and fracture network, and it can be written as (Zoback, 2007): 

𝑃𝑃
ℎ𝑦𝑑𝑟𝑜

= ∫ 𝜌𝑤
𝑧

0
(𝑧)𝑔𝑑𝑧         (2.10) 

where 𝜌𝑤 is water density. So this can be implied as the pressure is generated by the water from 

the surface to the depth of interest. However, if the pore volume is confined, pore pressure will 

exceed the hydrostatic value. Theoretically, the rock tensile strength is always negligible, and 

pore pressure should be smaller than the minimum horizontal stress; otherwise, hydraulic 

fracture will occur. Pore pressure can be determined directly from drill stem tests (DST), 

diagnostic fracture injection test (DFIT) and wireline formation tests (Reis et al., 2013), or 
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estimated from seismic data (Carcione et al., 2003; Eaton, 1975; Sayers et al., 2002). But for 

shale formation, it is not reliable to use direct measurement; thus, the pore pressure extrapolation 

method becomes necessary (Reis et al., 2013).  

The azimuth of Sh can be determined from earthquake focal mechanisms, wellbore images, 

caliper logs and recent geologic indicators (Zoback, 2007). The magnitude of Sh can be estimated 

by various hydraulic fracturing methods in both normal and strike-slip stress regimes in which Sh 

is the minimum principal stress. These methods are micro-fracture tests, mini-fracture tests, 

extended leak-off tests and massive hydraulic fracturing (Bachu et al., 2008; Hawkes et al., 

2005; Zoback, 2007). Such tests involve processes of fluid injections with certain rates 

generating fractures in the formation of interest. Based on the reliability of previously measured 

data and test procedures, the accuracies of those tests decrease from the micro-fracture test to the 

massive hydraulic fracturing (Bell and Bachu, 2003). 

Before proceeding to the detailed descriptions of these fracture treatment tests, some concepts 

indicated in Fig. 2.5 should be defined. The leak-off pressure (LOP) is the moment that the fluid 

starts to leak-off into the formation leading to a deviation of the data points from the initial 

straight line (Bachu et al., 2008; Raaen et al., 2006). After the LOP, the formation is kept 

pressurized until reaching the peak pressure during the whole process, defined as the formation 

breakdown pressure (FBP), which is followed by an instant drop in pressure indicating a larger 

volume of leak-off fluid into the fractures compared to the volume of pump-in fluid (Raaen et 

al., 2006; Schmitt et al., 2012; Zoback, 2007). Then the pressure curve stays in a plateau, and the 

corresponding pressure is referred to as the fracture propagation pressure (FPP). The 

instantaneous shut-in pressure (ISIP) is the pressure right after the moment the pumping stops, 

while the fracture closure pressure (FCP) corresponds to the pressure at the moment of fracture 

closing (Raaen et al., 2006). 

During micro-fracture tests, low viscosity fluids are injected in a low rate within a small interval 

of formation through perforation or open hole to open and close a tensile fracture several times 

until a fairly constant fracture closure pressure is observed (Bell, 2006). But since the micro-

fracture method is expensive, it is not widely-used in the Western Canadian Sedimentary Basin 

(WCSB). Similar to micro-fracturing, mini-fracture tests evolves fluids with high viscosity 

injected rapidly into formations to record closure pressure (Bachu et al., 2008). As a viscous 
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fluid is utilized, larger friction losses will cause a higher value of FPP; thus, the magnitude of Sh 

is better to be interpreted as the value of the FCP (Zoback, 2007). 

 

Figure 2.5 A typical micro/mini-frac or extended leak-off test record showing pressure versus 

time. Modified after Gaarenstroom et al. (1993). 

 

The conventional leak-off test is stopped once leak-off pressure, Plo, is recorded in an open hole; 

thus, it is impossible to estimate the instantaneous shut-in pressure (ISIP) and the fracture closure 

pressure (Hawkes et al., 2005). If a pre-existing or induced fracture is perpendicular to the 

minimum horizontal stress before the test, then the leak-off pressure is approximately equivalent 

to Sh as this test becomes a fracture reopening process (Bachu et al., 2008). Otherwise, in order 

to equate the LOP as Sh, the tests are required to be conducted in an in-gauge impermeable 

borehole and the formation of interest is assumed to act elastically during pressurization (Addis 

et al., 1998). As those required factors are hard to control, LOTs usually lead to overestimations 

for Sh (Addis et al., 1998; Hawkes et al., 2005).  

Comparing to the conventional leak-off tests, extended three-cycle leak-off tests are more 

preferable to estimate Sh, but they are rarely conducted (Addis et al., 1998; Bachu et al., 2008). 

Extended leak-off tests (XLOTs) are conducted similar to LOTs during the first cycle. A 

constant FPP is observed on the next two more cycles since the tensile strength of the formation 
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and the borehole stresses have already been overcome in the first cycle (Addis et al., 1998). And 

the ISIPs achieved on second and third cycles provide good estimations of the Sh (Addis et al., 

1998). On the other hand, the formation breakdown pressure obtained during massive hydraulic 

fracturing which breaks down formations and generates enormous fractures provides the least 

accurate result (Bachu et al., 2008; Bell and Bachu, 2003; Haimson and Fairhurst, 1969).  

The magnitude of SH is the most difficult component to derive within the full stress tensor. This 

is the final step for stress estimations; in other words, all other stress values and rock elastic 

properties should be constrained in order to estimate SH. A general bound can be achieved using 

stress polygon, but this is not important for this study, so that we won’t discuss it specifically 

here. An alternative method is based on observations of wellbore failures from image logs 

(Chapter 3). This study combines theoretical models with image log data to further study the 

mechanical behavior of borehole failures under different stress regimes and formation types. 

So far, numerous studies have been conducted to analyze the stress state in the WCSB (Bachu et 

al., 2008; Bell, 2006; Bell and Gough, 1979; Bell and Bachu, 2003; 2004; Bell et al., 1994; 

Grasby et al., 2012; Hawkes et al., 2005; McLellan, 1987; Reiter et al., 2014; Teichrob et al., 

2010). The most accurate method for determining Sh magnitude is the mini/micro-frac test. For 

estimating Sh azimuth, the widely used approach is through the observations of borehole failure 

using image logs. Moreover, systematic stress mapping was carried out generating some stress 

maps in Paleozoic and Mesozoic rocks in WCSB (Bell, 2006; Bell and Bachu, 2003; Bell et al., 

1994). 

 

2.3 Elasticity 

2.3.1 Overview 

Elasticity is the ability of a material to support external forces and recover from the resulting 

deformations, which is the building-block for rock mechanics (Fjaer et al., 2008). The simplest 

type of elasticity is linear elasticity where the relationship between the forces and the 

corresponding deformations is linear and the deformation is fully recoverable (Timoshenko and 

Goodier, 1970; Zoback, 2007). The most basic concepts in elasticity are stress and strain which 

are introduced in Section 2.2 and Section 2.3.2, respectively. Some elastic moduli relating 
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stresses and strains and their dynamic measurements are discussed in Section 2.3.3. A porous 

elastic rock saturated with pore fluids behaves significantly different than a simple 

conceptualized non-porous solid rock as the pore fluid has profound effects on the rock elastic 

behaviors. The theory of poroelasticity discussed in Section 2.3.4 describes the behavior of a 

porous rock under external forces. Most rocks present anisotropic properties to some extent. 

Elastic anisotropy can influence a rock elastic behavior in several aspects, such as elastic wave 

propagations, stress distributions (Chapter 4), and failure mechanisms (Chapter 5). In Section 

2.3.5, we introduce four of the most typical intrinsic formation anisotropy and their 

corresponding constitutive relationships; moreover, shale elastic properties will be discussed as 

well. 

 

2.3.2 Strain 

A sample can be shifted by being applied with an external force (Fig. 2.6). The position of a 

specific particle within this sample is denoted as (x, y, z). After the action of the force, the new 

position becomes (x’, y’, z’) with the displacements in x, y, z directions by 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 , 

respectively. Therefore, the new position can be expressed as (Fjaer et al., 2008)  

𝑥′ = 𝑥 − 𝑢𝑥 

𝑦′ = 𝑦 − 𝑢𝑦 

𝑧′ = 𝑧 − 𝑢𝑧           (2.11) 

If the signs of the displacements are positive, the particle is shifted in the negative direction of 

the axes, and vice versa.  
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Figure 2.6 The deformation of a sample. 

However, in rock mechanics, the use of stress and strain is more preferable, rather than the use of 

force and displacement. Strain is a relative measurement in terms of the displacement instead of 

the absolute value. This term can be explained in one dimension. As shown in Fig. 2.7, a one-

dimensional fiber with a length of L is shifted in the x direction. Initially, its left point is in the 

position of x and its right is in the position of x+L. After the action of force, its left and right 

edge are at the position of x-u(x) and x+L-u(x+L), respectively. The current length of the bar has 

been changed by ΔL. Hence the linear strain is  

𝜀 =
∆𝐿

𝐿
=

𝐿−{[𝑥+𝐿−𝑢(𝑥+𝐿)]−[𝑥−𝑢(𝑥)]}

𝐿
=

𝑢(𝑥+𝐿)−𝑢(𝑥)

𝐿
         (2.12) 

In this case, following our compressive stress positive sign convention, the shortening of the bar 

is defined as a positive strain; whereas, extension of the bar is defined as a negative strain. If the 

bar is considered to be infinitesimal, the strain at point x is (Jaeger et al., 2007) 

𝜀(𝑥) = lim𝐿→0
∆𝐿

𝐿
= lim𝐿→0

𝑢(𝑥+𝐿)−𝑢(𝑥)

𝐿
=

𝑑𝑢𝑥

𝑑𝑥
      (2.13) 

 

 

Figure 2.7 Displacement of a fiber in a material whose length can change in one dimension to 

define the strain.  

And in two dimensions, the strain, 𝜀𝑖𝑗, is 
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𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑗
+
𝜕𝑢𝑗

𝜕𝑖
)        (2.14) 

where i and j represent axis directions, ui and uj are the displacement with respect to i and j axes. 

Thus the complete strain matrix in two dimensions can be written as  (Jaeger et al., 2007) 

𝜀 = [
𝜀𝑥𝑥 𝜀𝑥𝑦
𝜀𝑦𝑥 𝜀𝑦𝑦

] = [

𝜕𝑢𝑥

𝜕𝑥

1

2
(
𝜕𝑢𝑥

𝜕𝑦
+
𝜕𝑢𝑦

𝜕𝑥
)

1

2
(
𝜕𝑢𝑦

𝜕𝑥
+
𝜕𝑢𝑥

𝜕𝑦
)

𝜕𝑢𝑦

𝜕𝑦

]  (2.15) 

For a two-dimensional sample under uniaxial compression, as illustrated in Fig. 2.8 (left), its 

strain components are listed as the following: 

𝐴𝑥𝑖𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛       𝜀𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
    (2.16) 

𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛       𝜀𝑦𝑦 =
𝜕𝑢𝑦

𝜕𝑦
      (2.17) 

On the other hand, a sample under a simple shear stress (Fig. 2.8 right) mainly has shear strain, 

and it can be written as (Barber, 2010) 

 𝜀𝑦𝑥 = 𝜀𝑥𝑦 =
1

2
(
𝜕𝑢𝑦

𝜕𝑥
+
𝜕𝑢𝑥

𝜕𝑦
)    (2.18) 

One thing should be noted is that ‘engineering strains’ are often used in most literatures, which 

are defined as 𝛾𝑥𝑦 = 2𝜀𝑥𝑦 and 𝛾𝑥𝑥 = 𝜀𝑥𝑥 as these are the ones we actually measure.  

 

Figure 2.8 Different types of deformations for a two-dimensional sample under a) the normal 

stress and b) the shear stress. 
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2.3.3 Elastic Moduli and Elastic Wave Propagation 

In this section, we only consider intact and homogeneous elastic materials, which behave 

linearly, under the application of external forces in three dimensions. The deformation can be 

fully recovered after stress relaxation. In uniaxial compression without any confinement (force is 

only in the i-direction), the relationship between stress and strain can be expressed in terms of 

Young’s modulus, which can be written as the following 

𝐸𝑖 =
𝜎𝑖𝑖

𝜀𝑖𝑖
        (2.19) 

where all other stresses except 𝜎𝑖𝑖 equal to zero. Note that double subscriptions do not imply 

Einstein summation convention; instead, they refer to the stress in the normal direction and the 

strain in the same direction. Poisson’s ratio, 𝑣𝑖𝑗, relates to the ratio of the strain along the axis j 

and i with the stress applied along axis i (Jaeger et al., 2007) 

𝑣𝑖𝑗 =
−𝜀𝑗𝑗

𝜀𝑖𝑖
       (2.20) 

For an isotropic material, stress can be related to strain through elastic moduli as follows 

(Timoshenko and Goodier, 1970) 

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀00 + 2𝐺𝜀𝑖𝑗       (2.21) 

where 𝜆 is the Lame’s constant, 𝜀00 equals to 𝜎11 + 𝜎22 + 𝜎33, and 𝐺𝑖𝑗 is the shear modulus, is 

given by 

𝐺𝑖𝑗 =
1

2
(
𝜎𝑖𝑗

𝜀𝑖𝑗
)           (2.22) 

and 𝛿𝑖𝑗 is the Kronecker detla, can be defined as 

𝛿𝑖𝑗 = 1      𝑖 = 𝑗 

𝛿𝑖𝑗 = 0      𝑖 ≠ 𝑗             (2.23) 

Upon expansion, Eq. 2.21 can be written in the x, y, z coordinate system as 

𝜎𝑥𝑥 = (𝜆 + 2𝐺)𝜀𝑥𝑥 + 𝜆𝜀𝑦𝑦 + 𝜆𝜀𝑧𝑧 

𝜎𝑦𝑦 = 𝜆𝜀𝑥𝑥 + (𝜆 + 2𝐺)𝜀𝑦𝑦 + 𝜆𝜀𝑧𝑧 



21 

 

𝜎𝑧𝑧 = 𝜆𝜀𝑥𝑥 + 𝜆𝜀𝑦𝑦 + (𝜆 + 2𝐺)𝜀𝑧𝑧 

𝜏𝑦𝑧 = 2𝐺𝜀𝑦𝑧 

𝜏𝑥𝑧 = 2𝐺𝜀𝑥𝑧 

𝜏𝑥𝑦 = 2𝐺𝜀𝑥𝑦           (2.24) 

Additionally, K is another common elastic modulus, called bulk modulus or incompressibility, 

representing the stiffness of a material under hydrostatic compression, and it can be given as the 

ratio of the mean stress, 𝜎00, relative to the volumetric strain, 𝜀00 

𝐾 =
𝜎00

𝜀00
=

1

3
(𝜎11+𝜎22+𝜎33)

𝜀11+𝜀22+𝜀33
    (2.25) 

And the corresponding compressibility is 

𝐶 =
1

𝐾
      (2.26) 

Elastic moduli can be estimated using static laboratory measurements, which change slowly with 

time; whereas dynamic measurements utilize wave velocities, which change rapidly with time. 

Although those two methods are distinguished from each other, their relationships can be 

established empirically but great care needs to be taken in such applications. A further 

complication is that static and dynamic measurements are isothermal or adiabatic, respectively; 

and the differences between the isothermal and adiabatic bulk moduli can be significant in some 

cases particularly if the sample holds fluids (Schmitt, 2014).  

The elastic moduli can be determined based on the velocities of compression waves, VP, and 

shear waves, VS. The equations are given as following (Mavko et al., 2009) 

𝑉𝑃 = √
𝐾+4𝐺/3

𝜌
            (2.27) 

𝑉𝑆 = √
𝐺

𝜌
       (2.28) 

Since fluids cannot bear any shear force, G and 𝑉𝑆 are both zero in fluids.  
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2.3.4 Poroelasticity: Effective Stress 

The poroelasticity theory for consolidated rocks is developed based on the conceptual model of 

porous rocks: an interconnected porous system filled with fluids having a volume relatively 

small compared to the volume of the whole system exists inside the formation rocks (Jaeger et 

al., 2007; Zimmerman, 1991). If the porous system is not interconnected, the fluid inside these 

isolated vugs cannot flow under the application of external pressure providing zero contribution 

to the drainage process (Jaeger et al., 2007). For unconsolidated rocks, the poroelastic behavior 

is similar to the case for soils and will not be considered in this study. 

 

Figure 2.9 Illustration of the influence of pore fluids on the effective stress. Pc, the confining 

pressure, and Pp, the pore pressure. Shaded area is the pore space inside a solid grain. 

For a consolidated porous rock, as shown in Fig. 2.9, its bulk volume is Vb, its pore volume is Vp 

and its solid grain volume is Vm, therefore,  

𝑉𝑏 = 𝑉𝑚 + 𝑉𝑝       (2.29) 

To quantify its porous space relative to the whole grain, porosity is introduced as 

𝜙 = 𝑉𝑝/𝑉𝑏     (2.30) 
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Because of its simplicity, a popular method to estimate the effective compressibility of a rock is 

the Voigt-Reuss-Hill which provides bounds to the moduli of a mixture of components. For a 

solid rock containing different materials, under a uniform pressure over its outer surface, the 

stress and deformation of each grain may not be the same (Zimmerman, 1991). However, to 

simplify the problem, Reuss’s method (Hill, 1952) assumes the state of stress stays the same in 

the whole rock body and the displacement discontinuity is ignored. The effective compressibility 

of the whole rock is 

𝐶𝑅𝑒𝑢𝑠𝑠 = (1 − 𝜙)𝐶𝑠 + 𝜙𝐶𝑓    (2.31) 

where 𝐶𝑠 is the compressibility of the solid frame, and 𝐶𝑓 is the compressibility of the pore fluid. 

Thus, Eq. 2.25 can be rewritten as (Fjaer et al., 2008) 

𝜀00 = (1 − 𝜙)
𝜎00

𝐾𝑠
+ 𝜙

𝜎00

𝐾𝑓
    (2.32) 

where 𝐾𝑠 and 𝐾𝑓 are the intrinsic bulk modulus of the solid itself and the bulk modulus of the 

pore fluid, respectively. And the effective bulk modulus of the mixture, 𝐾𝑒𝑓𝑓, is 

1

𝐾𝑒𝑓𝑓
=

1−𝜙

𝐾𝑠
+

𝜙

𝐾𝑓
        (2.33) 

On the other hand, Voigt method (Hill, 1952) assumes the strains are the uniform for all grains. 

The effective compressibility of the whole rock is 

𝐶𝑉𝑜𝑖𝑔𝑡 = [
(1−𝜙)

𝐶𝑠
+

𝜙

𝐶𝑓
]
−1

          (2.34)  

The Voigt and Reuss methods provide the upper and lower bounds of the actual effective 

compressibility, as the experimental results always stay in between these bounds (Hill, 1952). To 

find the most accurate results, it is better to use the Voigt-Reuss-Hill method, which utilizes the 

average of these two bounds. Again, these are bounds and should be used with care. 

There are two kinds of tests when dealing with porous media, the drained test and the undrained 

test. For the drained test, the pore fluid is allowed to flow out of the porous sample during 

loading; hence, the pore pressure isn’t changing with time, and the stress-strain curve can be 

conceptualized as 

𝜎00 = 𝐾𝑓𝑟𝜀00         (2.35) 
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where 𝐾𝑓𝑟 is the drained bulk modulus of the porous medium’s framework. Eq. 2.32 shows that 

the deformation is proportional to the total stress for a drained system. However, it is not the case 

for an undrained system as the fluid cannot escape during loading. The effective stress for 

volumetric deformation represents the actual stress is applied on the solid material after 

subtracting the stress carried by the pore fluid, which is defined by  (Schön, 2011) 

𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 − 𝛿𝑖𝑗𝛼𝑝𝑓          (2.36) 

Since 𝛿𝑖𝑗  is the Kronecker symbol, we can infer that pore pressure can only affect normal 

stresses, not shear stresses. Moreover, 𝛼 is called Biot coefficient (Nur and Byerlee, 1971) 

𝛼 = 1 −
𝐾𝑓𝑟

𝐾𝑠
       (2.37) 

On the other hand, the bulk modulus of the undrained system, K, is defined by the Gassmann 

equation (Gassmann, 1951) 

𝐾 = 𝐾𝑓𝑟 +
𝐾𝑓

𝜙

(1−
𝐾𝑓𝑟

𝐾𝑠
)
2

1+
𝐾𝑓

𝜙𝐾𝑠
(1−𝜙−

𝐾𝑓𝑟

𝐾𝑠
)
    (2.38) 

 

2.3.5 Anisotropy 

2.3.5.1  Introduction 

The general assumption in the common practice is that rocks are isotropic, homogeneous, 

continuous and linearly elastic. However, most rocks are to some extent anisotropic, 

heterogeneous, discontinuous, nonlinear, and inelastic. Anisotropy means the properties of a 

material vary with direction. Heterogeneity means that the properties of a material are non-

uniform from point to point. A medium is discontinuous if there are sharp discontinuities in the 

stress field within a sample that may result from faults and fractures (Amadei, 1983). Anisotropy 

in sedimentary rocks may be the result of textural anisotropy (i.e., shale formation), layering or 

preferred orientation of an isotropic mineral (i.e., flat-lying platelets) of pore texture and cracks 

(Thomsen, 1986). Barla (1974) proposed a classification for anisotropic rocks that consists of 

two parts: Class A and B. Class A refers to the intrinsically isotropic rocks that display 

anisotropic properties (as might be induced for example by the in-situ state of stress). On the 
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contrary, Class B rocks are intrinsically anisotropic and showing apparent anisotropic properties. 

The objective of this section is to review the constitutive relations for Class B rocks with a focus 

on shales, and the content is mainly based on the earlier studies conducted by Amadei (1983), 

Ong (1994) and Thomsen (1986). 

 

2.3.5.2  Generalized Hooke’s Law 

For an anisotropic, linearly elastic, homogeneous and continuous medium, the constitutive 

relation can be described as follows 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙         (2.39) 

which is the generalized Hooke’s law. 𝐶𝑖𝑗𝑘𝑙 is the fourth order tensor of elastic constants with 81 

independent components (1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 3). However, due to the symmetrical properties of both 

strain and stress tensors (𝜎𝑖𝑗 = 𝜎𝑗𝑖  and 𝜀𝑘𝑙 = 𝜀𝑙𝑘), C has the right and left minor symmetries 

leading to only 36 components, implying 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙   𝑎𝑛𝑑   𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘      (2.40) 

The number of components can be further reduced to 21 if a strain energy function (the change 

of internal strain energy is balanced with the external forces) is assumed to exist, thus 

(Lekhnitskii, 1981) 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗     (2.41) 

For problems in the x, y, z coordinate system, Eq. 2.39 can be rewritten as the following matrix 

form  

(

  
 

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜏𝑦𝑧
𝜏𝑧𝑥
𝜏𝑥𝑦)

  
 
=

(

 
 
 

𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

𝐶14 𝐶15 𝐶16
𝐶24 𝐶25 𝐶26
𝐶34 𝐶35 𝐶36

𝐶14 𝐶24 𝐶34
𝐶15 𝐶25 𝐶35
𝐶16 𝐶26 𝐶36

𝐶44 𝐶45 𝐶46
𝐶45 𝐶55 𝐶56
𝐶46 𝐶56 𝐶66)

 
 
 

(

  
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑧𝑥
𝛾𝑥𝑦)

  
 

  (2.42) 

The inverse form of Eq. 2.39 is represented by the tensor of compliances, 𝐴𝑖𝑗𝑘𝑙, as follows 

𝜀𝑖𝑗 = 𝐴𝑖𝑗𝑘𝑙𝜎𝑘𝑙       (2.43) 
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To have an insight into the physical meanings of compliances, Eq. 2.42 can be given as the 

following form (Lekhnitskii, 1981; Ong, 1994)  

(

 
 
 
 
 
 
 
 
 
 
 

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

𝛾𝑦𝑧

𝛾𝑧𝑥

𝛾𝑥𝑦)

 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 
 
 

1

𝐸𝑥

−𝜐𝑦𝑥

𝐸𝑦

−𝜐𝑧𝑥
𝐸𝑧

−𝜐𝑥𝑦

𝐸𝑥

1

𝐸𝑦

−𝜐𝑧𝑦

𝐸𝑧
−𝜐𝑥𝑧
𝐸𝑥

−𝜐𝑦𝑧

𝐸𝑦

1

𝐸𝑧

𝜂𝑥,𝑦𝑧

𝐺𝑦𝑧

𝜂𝑥,𝑥𝑧
𝐺𝑥𝑧

𝜂𝑥,𝑥𝑦

𝐺𝑥𝑦
𝜂𝑦,𝑦𝑧

𝐺𝑦𝑧

𝜂𝑦,𝑥𝑧

𝐺𝑥𝑧

𝜂𝑦,𝑥𝑦

𝐺𝑥𝑦
𝜂𝑧,𝑦𝑧

𝐺𝑦𝑧

𝜂𝑧,𝑥𝑧
𝐺𝑥𝑧

𝜂𝑧,𝑥𝑦

𝐺𝑥𝑦

𝜂𝑦𝑧,𝑥

𝐸𝑥

𝜂𝑦𝑧,𝑦

𝐸𝑦

𝜂𝑦𝑧,𝑧

𝐸𝑧
𝜂𝑥𝑧,𝑥
𝐸𝑥

𝜂𝑥𝑧,𝑦

𝐸𝑦

𝜂𝑥𝑧,𝑧
𝐸𝑧

𝜂𝑥𝑦,𝑥

𝐸𝑥

𝜂𝑥𝑦,𝑦

𝐸𝑦

𝜂𝑥𝑦,𝑧

𝐸𝑧

1

𝐺𝑦𝑧

𝜇𝑦𝑧,𝑥𝑧

𝐺𝑥𝑧

𝜇𝑦𝑧,𝑥𝑦

𝐺𝑥𝑦
𝜇𝑥𝑧,𝑦𝑧

𝐺𝑦𝑧

1

𝐺𝑥𝑧

𝜇𝑥𝑧,𝑥𝑦

𝐺𝑥𝑦
𝜇𝑥𝑦,𝑦𝑧

𝐺𝑦𝑧

𝜇𝑥𝑦,𝑥𝑧

𝐺𝑥𝑧

1

𝐺𝑥𝑦 )

 
 
 
 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 
 
 
 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

𝜏𝑦𝑧

𝜏𝑧𝑥

𝜏𝑥𝑦)

 
 
 
 
 
 
 
 
 
 
 

 

(2.44) 

where 

1) 𝐸𝑖 is the Young’s Modulus to the direction of i; 

2) 𝜐𝑖𝑗 is the Poisson’s ratio representing the ratio of the strain in the j-direction to the 

strain in the i-direction with an external force applying in the i-direction; 

3) 𝐺𝑖𝑗 is the shear modulus for i-j plane; 

4) 𝜇𝑖𝑗,𝑘𝑙 characterizes that the shear in the i-j plane induces the tangential stress in the k-

l plane; 

5) 𝜂𝑖,𝑘𝑙 is the coefficient of mutual influence of the first kind representing the stretching 

in the k-direction induced by shear stresses applying in the i-j plane; whereas, 𝜂𝑖𝑗,𝑘 is 

the coefficient of mutual influence of the second kind characterizing a shear in the i-j 

plane generated by the normal stress acting in the k- direction. 

If a medium contains any symmetry, the components of the compliance tensor can be reduced to 

be less than 21. In this study, four types of symmetry will be discussed: 

1) One plane of elastic symmetry (monoclinic case); 

2) Three orthogonal planes of elastic symmetry (orthotropic case); 
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3) One rotational axis of elastic symmetry (hexagonal or transversely isotropic case); 

4) Complete symmetry (isotropic case). 

 

One Plane of Elastic Symmetry if the elastic properties within a medium show reflected 

image of one another with respect to a plane, this medium has one plane of elastic symmetry. If 

the x-y plane is the symmetry plane, then 

𝑎4𝑖 = 𝑎5𝑖 = 𝑎46 = 𝑎56 = 0,   𝑖 = 1,2,3   (2.45) 

Therefore, the constitutive relation is reduced to 13 independent components 

(

 
 
 
 
 
 
 
 

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

𝛾𝑦𝑧

𝛾𝑧𝑥

𝛾𝑥𝑦)

 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 

1

𝐸𝑥

−𝜐𝑦𝑥

𝐸𝑦

−𝜐𝑧𝑥

𝐸𝑧

1

𝐸𝑦

−𝜐𝑧𝑦

𝐸𝑧

1

𝐸𝑧

0 0
𝜂𝑥,𝑥𝑦

𝐺𝑥𝑦

0 0
𝜂𝑦,𝑥𝑦

𝐺𝑥𝑦

0 0
𝜂𝑧,𝑥𝑦

𝐺𝑥𝑦

1

𝐺𝑦𝑧

𝜇𝑦𝑧,𝑥𝑧

𝐺𝑥𝑧
0

1

𝐺𝑥𝑧
0

1

𝐺𝑥𝑦)

 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

𝜏𝑦𝑧

𝜏𝑧𝑥

𝜏𝑥𝑦)

 
 
 
 
 
 
 
 

     (2.46) 

 

Three Orthogonal Planes of Elastic Symmetry if three orthogonal planes of elastic 

symmetry exist in the medium and they are perpendicular to x, y, or z, the following conditions 

apply other than Eq. 2.45 

𝑎16 = 𝑎26 = 𝑎36 = 𝑎45 = 0    (2.47) 

Then, Eq. 2.46 can be further reduced to 9 independent components (Note that the matrix is 

symmetrical about the diagonal) 
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(

 
 
 
 
 
 
 
 

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

𝛾𝑦𝑧

𝛾𝑧𝑥

𝛾𝑥𝑦)

 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 

1

𝐸𝑥

−𝜐𝑦𝑥

𝐸𝑦

−𝜐𝑧𝑥

𝐸𝑧

1

𝐸𝑦

−𝜐𝑧𝑦

𝐸𝑧

1

𝐸𝑧

0 0 0

0 0 0

0 0 0
1

𝐺𝑦𝑧

𝜇𝑦𝑧,𝑥𝑧

𝐺𝑥𝑧
0

1

𝐺𝑥𝑧
0

1

𝐺𝑥𝑦)

 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

𝜏𝑦𝑧

𝜏𝑧𝑥

𝜏𝑥𝑦)

 
 
 
 
 
 
 
 

  (2.48) 

 

One Axis of Elastic Symmetry of Rotation  If the axis of elastic symmetry exists in a 

material, all the planes perpendicular to this axis show isotropic properties. This property is also 

called transversely isotropic, and will be further discussed later. For instance, if the axis 

coincides with z-axis, all the planes parallel to the x-y plane are isotropic, and this is the vertical 

transversely isotropic case (VTI). The number of elastic constants is now reduced to 5, and they 

are 

𝐸ℎ = 𝐸𝑥 = 𝐸𝑦  𝐸𝑣 = 𝐸𝑧 

υℎ = 𝜐𝑥𝑦 = 𝜐𝑦𝑥 𝜈𝑣 = 𝜐𝑧𝑥 = 𝜐𝑧𝑦 

𝐺𝑣 = 𝐺𝑦𝑧 = 𝐺𝑥𝑧 Gℎ =
𝐸

2(1+𝜈)
 

(2.49) 

Hence, the constitutive relationship becomes 

(

 
 
 
 
 
 

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧

𝛾𝑦𝑧

𝛾𝑧𝑥

𝛾𝑥𝑦)

 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 

1

𝐸ℎ

−𝜐ℎ

𝐸ℎ

−𝜐𝑣

𝐸𝑣
1

𝐸ℎ

−𝜐𝑣

𝐸𝑣
1

𝐸𝑣

0 0 0

0 0 0

0 0 0

1

𝐺𝑣
0 0

1

𝐺𝑣
0

1

𝐺ℎ)

 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

𝜏𝑦𝑧

𝜏𝑧𝑥

𝜏𝑥𝑦)

 
 
 
 
 
 

   (2.50) 
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Complete Symmetry  This property is also called isotropic, and the number of elastic 

constants is reduced to only 2: E and v 

𝐸 = 𝐸𝑥 = 𝐸𝑦 = 𝐸𝑧 

𝜈 = 𝜈𝑦𝑥 = 𝜈𝑧𝑥 = 𝜈𝑧𝑦      (2.51) 

G =
𝐸

2(1 + 𝜈)
 

To satisfy the positive strain energy requirement, these two parameters should be in the 

following ranges (Ong, 1994)  

𝐸 > 0  −1 ≤ 𝜈 ≤ 0.5         (2.52) 

 

2.3.5.3  Elastic Properties of Shale and the Degree of Anisotropy 

The presence of fine-scale lamination feature in shales, which is mainly due to the preferred 

depositional orientation of clay minerals in the matrix, leads to a series of directionally 

dependent rock properties, such as acoustic velocity, permeability and elastic modulus (Waters et 

al., 2011). The important factors that can influence shale anisotropy include kerogen content, 

fluid interaction, porosity and stress-induced cracks (Vernik and Nur, 1992; Vernik and Liu, 

1997). And shale anisotropy, which is expected to be transversely isotropic, should be considered 

regarding hydraulic fracture propagation prediction, analysis of borehole stability and stress 

assessment (Waters et al., 2011).  

For all those geomechanical applications, Young’s modulus and Poisson’s ratio are essential 

inputs showing some patterns resulted from anisotropy. To explain this, we exclusively consider 

a shale medium in a right-handed coordinate system with x3-axis as the symmetry axis (Figure 

2.10). In such a medium, the corresponding elastic stiffness contains five independent stiffness 

moduli in the following matrix form (Amadei, 1983; Melendez and Schmitt, 2013)  

(

  
 

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜏𝑦𝑧
𝜏𝑧𝑥
𝜏𝑥𝑦)

  
 
=

(

 
 
 
 

𝐶11 (𝐶11 − 2𝐶66) 𝐶13
𝐶11 𝐶13

𝐶33
𝐶44

𝐶44
𝐶66)

 
 
 
 

(

  
 

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑧𝑥
𝛾𝑥𝑦)

  
 

  (2.53) 
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And the Young’s moduli and Poisson’s ratio is given by (Banik and Egan, 2012)  

𝐸3 = 𝐶33 −
2𝐶13

2

𝐶11+𝐶12
     (2.54) 

𝐸1 = 𝐶11 +
𝐶13
2 (𝐶12−𝐶11)+𝐶12(𝐶13

2 −𝐶12𝐶33)

𝐶33𝐶11−𝐶13
2    (2.55) 

𝜈31 = 𝜈32 =
𝐶13

𝐶11+𝐶12
     (2.56) 

𝜈13 = 𝜈23 =
𝐶13(𝐶11−𝐶12)

𝐶33𝐶11−𝐶13
2       (2.57) 

𝜈12 = 𝜈21 =
𝐶12𝐶33−𝐶13

2

𝐶33𝐶11−𝐶13
2     (2.58) 

Based on Sayers (2013) and Sone and Zoback (2013), the following empirical relationships exist 

𝐸1 > 𝐸3 𝜈31 > 𝜈12 𝜈13 > 𝜈31   (2.59) 

 

Figure 2.10 Illustration of the anisotropic symmetry of a vertical transversely isotropic shale 

medium located in a right-handed coordinate system. X3 axis is the symmetry line. 

Acoustic wave velocity anisotropy measurements can help us achieve elastic stiffness of 

anisotropic shale samples, and this have been conducted by many researchers (Cholach and 

Schmitt, 2006; Dewhurst and Siggins, 2006; Johnston and Christensen, 1995; Melendez and 

Schmitt, 2011; Melendez and Schmitt, 2013; Sarout and Gueguen, 2008; Vernik and Nur, 1992; 

Vernik and Liu, 1997; Wong et al., 2008). Moreover, Walsh et al. (2008) pointed out that four 

out of five stiffness moduli (except 𝐶13) can in principle be estimated by the dipole and the 
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monopole Stoneley wave measurements. To quantify the degree of anisotropy, the elastic 

anisotropy can be described in terms of the Thomsen’s anisotropic parameters Ɛ, γ and δ 

(Thomsen, 1986), which are 

𝜀 =
𝐶11−𝐶33

2𝐶33
         (2.60) 

𝛾 =
𝐶66−𝐶55

2𝐶55
         (2.61) 

𝛿 =
(𝐶13−𝐶55)

2−(𝐶33−𝐶55)
2

2𝐶33(𝐶33−𝐶55)
     (2.62) 

Those parameters are non-dimensional and decreases with decreasing anisotropy. For materials 

with ‘weak anisotropy’, Thomsen parameters should be ≪ 1 (Thomsen, 1986). 

 

2.4 Rock Failure 

2.4.1 Introduction 

The purpose of this section is to review the principles of rock failure in both compression and 

tension, and those principles are foundations for understanding borehole failures addressed in the 

following chapters. Rock strength is the maximum stress that a rock can support before it fails. 

Failure can lead to a change in its internal structure permanently or even complete failure by 

fracture. Rock failure enables us to estimate the rock strength directly and is the building block 

for studying the failure mechanisms of borehole instability. Therefore, we could have a better 

insight of rock behaviors in the process of drilling, production and completion to prevent 

borehole failures. 

In this section, rocks are assumed to be homogeneous and isotropic. Anisotropic rocks are 

discussed in Chapter 4 to investigate the impacts of anisotropy on borehole stresses. Rock failure 

is a complex process and phenomenon which still needs more research work in the future. But 

this section only considers the simplified models. In the first part, the subject addressed is the 

rock strength in compression and the Mohr-Coulomb failure criterion. For the second part, the 

topic focuses on tensile failures. 

Before entering the next section discussing about rock failure, it is necessary to start with rock 

strength measurements and introducing some basic concepts to understand the complexity of 
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rock behavior. According to the American Society for Testing and Materials (ASTM) standards, 

a desirable test specimen shall have a thickness-to-diameter ratio between 2:1 to 2.5:1 (ASTM 

International, 2010). During the test, the specimen shall be placed in the test chamber which 

consistently provides homogeneous confining compression, σ3, to the whole specimen. While the 

upper and lower platens apply gradually increased axial compression, σ1, to the both ends of the 

specimen until it fails (Fig. 2.11a). If the confining stress is zero, a uniaxial compressive test is 

conducted and the strength measured is unconfined compressive strength (UCS); otherwise, the 

test is called triaxial compression test. 

 

Figure 2.11 (a) A rock core fails under the triaxial compression test forming a fracture plane 

(dashed line). σ3 is the confined pressure and σ1 is the gradually increased axial pressure. β is the 

angle of core axis with respect to the direction that is normal to the fracture. (b) Typical 

laboratory stress-strain data for an intact sandstone in a uniaxial compressive test. (c) The 

linearized form of the Mohr-Coulomb failure envelope. 
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Now we focus our attention on the rock behavior of a cylindrical specimen in a uniaxial 

compressive test. Fig. 2.11b illustrates a typical failure behavior for a well-cemented rock in a 

uniaxial test. At the beginning of the process, the stress-strain data does not form a straight line 

due to crack closing. Then the specimen behaves elastically with a reversible deformation until 

the yield stress is reached. In the elastic region, the slope of the stress-strain curve is supposed to 

be the static Young’s Moduli, E. At the yield point, the specimen starts to exhibits inelastic 

behavior or ductile behavior with the ability to withstand stress, but the damage to the rock is 

permanent. When the axial load is sufficiently large (~UCS), the specimen starts to fall apart 

losing the ability to support load quickly. 

 

2.4.2 Compressive Failure 

When the stresses applied to rock exceed the compressive strength, the rock can fail in 

compression. The failure process involves all the stresses; therefore, the compressive strength of 

rock depends on its confining stress, and the pore pressure. All study results agree that the 

sample strength increases with the effective confining pressure  (Zoback, 2007). In order to take 

all these stresses into consideration, the most frequently used criterion is the Mohr-Coulomb 

criterion. 

Assuming there is a failure plane existing in a rock core after the triaxial compression strength 

test, the effective principal stresses acting on the core are 𝜎1
′ and 𝜎3

′  (𝜎1
′ > 𝜎3

′), and β is the angle 

between the direction normal to the fracture surface and 𝜎1
′  (Fig. 2.11a). At the moment of 

failure, the shear stress, 𝜏𝑓, and the effective normal stress, 𝜎𝑓
′, acting on the failure surface is 

𝜏𝑓 = 0.5(𝜎1
′ − 𝜎3

′)𝑠𝑖𝑛2𝛽        (2.63) 

𝜎𝑓
′ = 0.5(𝜎1

′ + 𝜎3
′) + 0.5(𝜎1

′ − 𝜎3
′)𝑐𝑜𝑠2𝛽          (2.64) 

The failure of a rock during the triaxial compression test can be represented by a Mohr circle in 

the τ-σ’ space (Fig. 2.11c). The radius of the Mohr circle increases with the difference between 

𝜎1
′ and 𝜎3

′ . Failure occurs when the circle ‘touches’ the Mohr-Coulomb failure envelope, and the 

point of intersection corresponds to the stresses acting on the failure plane at the moment of 

failure. The empirical Mohr failure envelope can be determined by a series of triaxial tests with 

different confining pressures. Unlike the one shown in Fig. 2.11b, the envelope is not a straight 
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line in the real case, and flattens as confining pressure increases. However, most rock failures 

can be considered in terms of the linearized Mohr failure envelop, which can be expressed in the 

following mathematical form 

|𝜏| = 𝑆0 + 𝜇𝜎
′          (2.65) 

where the slope, 𝜇, is the coefficient of internal friction describing the resistance of a rock to 

compressional failures (𝜇 = 𝑡𝑎𝑛𝜑), and 𝑆0 is cohesion, which is not possible to be measured 

directly, but is feasible to be calculated based on its relationship with the unconfined 

compressive strength (UCS or 𝐶0) 

𝐶0 = 2𝑆0[(𝜇𝑖
2 + 1)0.5 + 𝜇𝑖]     (2.66) 

Fig. 2.11c also shows the angle, 2β, giving the line connecting the center of the circle and the 

point where the circle touches the envelope. Note that based on the geometry, the relationship 

between β and φ is 

𝛽 =
𝜋

4
+
𝜑

2
             (2.67) 

The linearized form of the Mohr-Coulomb failure criteria is given as  

𝜎1 = 𝐶0 + 𝑞𝜎3      (2.68) 

And  

𝑞 = [(𝜇𝑖
2 + 1)0.5 + 𝜇𝑖]

2 = tan2 (
𝜋

4
+
𝜑

2
) = tan2𝛽         (2.69) 

Even though the Mohr-Coulomb is the most dominant method in determining rock compressive 

failure, it does not account for the influence of the intermediate stress; and the other criterion 

with the similar case is the empirical Hoek-Brown criterion (Hoek and Brown, 1980). According 

to Zoback (2007), those two approaches are suitable for the triaxial test with a uniform confining 

pressure (𝜎1 > 𝜎2 = 𝜎3 ); whereas, in terms of polyaxial criteria (𝜎1 > 𝜎2 > 𝜎3 ), other 

failure criteria considering the effects of  𝜎2  are more desirable to be adopted, and they are the 

modified Lade criterion (Ewy, 1999), the modified Wiebols-Cook criterion (Wiebols and Cook, 

1968; Zhou, 1994), the Drucker-Prager criterion (Drucker and Prager, 1952), and the Mogi-

Coulomb approach (Al-Ajmi and Zimmerman, 2006). 

 



35 

 

2.4.3 Tensile Failure 

Tensile failure occurs when the effective tensile stress exceeds the tensile strength (𝑇0) of the 

rock sample. For isotropic rocks, the tensile failure criterion is given as 

𝜎3
′ = −𝑇0         (2.70) 

Compared to the compressional strength of rock, the tensile strength is less important due to the 

following reasons: (1) rock tensile strength is quite low especially when cracks pre-exist in the 

rock, and in this study, it is considered to be zero; (2) it is extremely rare in nature to have tensile 

in situ stress at depth (Jaeger et al., 2007; Zoback, 2007).  The tensile fracture plane usually 

initiated from pre-existing flaws with its orientation approximately normal to the direction of the 

minimum principal stress.  

Even though the tensile failure is rare in nature because the rock at depth in the Earth is almost 

always in compression, it can occur in the vicinity of boreholes as the virgin stress state was 

disturbed during and after the drilling process (Chapter 3). Moreover, the Sh magnitude 

measurements discussed in section 2.1.2 (e.g., mini-frac tests, leak-off tests) are processes 

forming tensile fractures when fluid pressure becomes higher than the minimum principal stress. 

Hydraulic fracturing is also a form of tensile failure that utilizes the opening of tensile fractures 

in order to enhance the formation permeability. 

 

2.5 Summary 

In this chapter, we mainly reviewed the following content 

 Some basic principles of Earth crustal stress state including its mathematical form, 

transformation among different coordinates, classifications based on their relative 

magnitudes; 

 Estimation methods for crustal stresses with emphasis on presenting the concepts of 

fracking. 

 Rock elasticity: mathematical terminologies, their relationships with elastic wave 

velocities, poroelasiticity effects and the four classical types of rock intrinsic anisotropy; 

 Rock failure mechanisms on compressive failures and tensile failures. 
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Chapter 3 

Borehole Stresses and Mechanical Behaviors of Borehole Fracture 

 

3.1  Overview 

The in-situ stress state is always in compression as a result of the overburden and tectonic effects 

(Chapter 2). After the drilling process, original solid materials which used to carries the load 

generated from far-field stresses are now replaced by a borehole. For an open hole, since only the 

fluid pressure can support the borehole, the stress concentration will redistribute and strongly 

vary with the azimuth of the wall and the distance from the wall (Fjaer et al., 2008; Zoback, 

2007). If the deviatoric stress exceeds the formation strength, wellbore failure in either tension or 

compression may occur during drilling. Therefore, knowledge of stresses around the borehole is 

essential in order to understand the manner in which the formation in the borehole vicinity 

responds to the stress redistribution. 

The occurrence of wellbore failure observed in image logs in-situ is important information that 

allows one to refer the stress states and, in some cases, the rock strength. Wellbore failure mainly 

includes compressive failures known as breakouts (Bell and Gough, 1982) and tensile failures 

also called drilling-induced tensile fractures (DITF) (Aadnoy, 1990). The existence of breakouts 

is quite common due to high compressive stresses and low mud weights. An appropriate amount 

of breakouts will not create any risk for the wellbore; however, sufficiently wide breakouts or 

even washouts can lead to borehole instability problems, such bridges, stuck pipes, and tight 

spots. On the other hand, drilling-induced tensile fractures (DITFs) can be initiated by high mud 

weight and temperature effect (cooling) (Zoback, 2007). Excessively high mud weight can create 

hydraulic fractures accidentally causing incidents like lost circulations. Therefore, to avoid 

borehole instability, knowledge of the borehole failure mechanism is crucial, and these will be 

discussed in this chapter. Then, based on the program developed by Peska and Zoback (1995), 

the tendencies of failure initiation for an arbitrarily orientated borehole will also be addressed.  

Additionally, to investigate the mechanical behavior of DITFs, a series of photoelasticty tests 

were carried out on clear glass blocks containing borehole aligned both with and at an angle with 
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respect to the principal stresses. The samples were illuminated with polarized light such that 

birefringent fringes could be video recorded during the measurements; this was useful in 

assessing states of stress and in determining fracture initiation.  Axial drilling-induced tensile 

fractures were observed at the azimuths of the applied uniaxial stress as would be expected from 

the concentrated stresses. En echelon fractures were observed from the borehole deviated at 45° 

to the direction of the compression.  These preliminary and currently qualitative results show that 

glass blocks serve as a useful test medium for studies of stress concentration and drilling induced 

fracture creation. This part of the thesis is developed from a submitted conference paper (Jia and 

Schmitt, 2014). 

 

3.2  Stresses around a Borehole in an Isotropic Homogeneous Formation 

The manner in which a vertical wellbore cavity disturbs the original stress state in the isotropic 

formation was first studied by Kirsch (1898) who examined the general 2-D plane strain problem 

of stress distributions around a circular cavity. This solution was then improved upon by 

Hiramatsu and Oka (1962) into a 3-D case of an arbitrarily oriented cylindrical cavity through an 

isotropic medium by changing coordinate systems to consider the nonalignment between the 

borehole and the in-situ stress. This section first introduces the mathematical method for stress 

transformation followed by a review of the general solution for borehole stress distribution in the 

isotropic formation. Some illustrations of the stress states are developed using a MATLAB
TM

 

based program coded to visualize the near-wellbore stress concentration in a 2-D plane 

perpendicularly intersecting the borehole in an isotropic continuum.  

Before introducing the transformation formulas, several assumptions are made 

 The formation is homogeneous, isotropic, continuous and elastic; 

 The in-situ stress state consists of three principal stresses: the vertical stress, 𝑆𝑣 , the 

maximum and minimum horizontal stresses, 𝑆𝐻 and 𝑆ℎ, as introduced in Chapter 2; 

 Poroelasticity, chemical and temperature effects are neglected; 
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 The wellbore is assumed to be infinitely long and subjected to identical forces normal to 

the borehole wall, so the solution can be simplified by the plane strain formulation 

(Amadei, 1983). 

For the classical plane strain formulation, out-of-plane displacements, w, must vanish (Amadei, 

1983); hence, 

𝜖𝑧 = 𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0     (3.1) 

While the remaining three strain components 𝜖𝑥, 𝜖𝑦 and 𝛾𝑥𝑦 in the strain matrix are non-zero. 

This assumption cannot be utilized in the anisotropic formation as will be further discussed in 

Chapter 4. 

 

Figure 3.1 (a) Coordinate systems for the borehole stress model. The axes of the Cartesian 

coordinate system, X-Y-Z are all aligned with one of the in-situ stresses; whereas, the coordinate 

system X1-Y1-Z1 are directly associated with the borehole. (b) Stresses (in red) are transferred in 

the cylindrical coordinate system in a plain plane view, and they are hoop stress and radial stress. 

Fig. 3.1a shows the two coordinate systems defined in the stress model for the isotropic case, and 

they are: (1) the global or in-situ stress coordinate system, X-Y-Z, and (2) the borehole 

coordinate system, X1-Y1-Z1. The relative orientation of the borehole system with respect to the 

stress system is defined by the plunge (i.e., inclination relative to vertical) β and the trend (i.e., 

azimuth from the X axis) α. To examine the stress distribution around the borehole wall, it is 
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necessary to transform the in-situ principal stress values into those in the borehole cylindrical 

coordinate system. Therefore, two steps are needed: 

1. Stress transformations from X-Y-Z to X1-Y1-Z1 (Fig. 3.1a); 

2. Stress transformations from the X1-Y1-Z1 Cartesian coordinate system to the -θ-𝜉 

cylindrical coordinate system (Fig. 3.1b), where r represents the distance from the 

borehole axis, θ is the azimuth of the point from the x-axis and ξ is the position along the 

borehole axis. 

The first step can be achieved by the direction cosines l, m and n 

𝑙1 = cos 𝛽 cos 𝛼 , 𝑙2 = −sin𝛼 , 𝑙3 = sin𝛽 cos𝛼 

𝑚1 = cos 𝛽 sin 𝛼 , 𝑚2 = cos 𝛼 , 𝑚3 = sin𝛽 sin 𝛼     (3.2) 

𝑛1 = −sin𝛽 , 𝑛2 = 0, 𝑛3 = cos 𝛽 

Then, the formation stresses expressed in the X1-Y1-Z1 Cartesian coordinate system become  

𝜎𝑥 = 𝑙1
2𝑆𝐻 +𝑚1

2𝑆ℎ + 𝑛1
2𝑆𝑣          (3.3) 

𝜎𝑦 = 𝑙2
2𝑆𝐻 +𝑚2

2𝑆ℎ + 𝑛2
2𝑆𝑣          (3.4) 

𝜎𝑧 = 𝑙3
2𝑆𝐻 +𝑚3

2𝑆ℎ + 𝑛3
2𝑆𝑣          (3.5) 

𝜏𝑥𝑦 = 𝑙1𝑙2𝑆𝐻 +𝑚1𝑚2𝑆ℎ + 𝑛1𝑛2𝑆𝑣    (3.6) 

𝜏𝑦𝑧 = 𝑙2𝑙3𝑆𝐻 +𝑚2𝑚3𝑆ℎ + 𝑛2𝑛3𝑆𝑣    (3.7) 

𝜏𝑥𝑧 = 𝑙1𝑙3𝑆𝐻 +𝑚1𝑚3𝑆ℎ + 𝑛1𝑛3𝑆𝑣    (3.8) 

The stresses at an infinitesimal point in a cylindrical coordinate are denoted σr, σθ, σ, τθ, τr and 

𝜏𝑟𝜃 . The transformation between stresses in the cylindrical and Cartesian coordinates can be 

expressed in the following mathematical forms 

𝜎𝑟 =
1

2
(𝜎𝑥 + 𝜎𝑦) +

1

2
(𝜎𝑥 − 𝜎𝑦)𝑐𝑜𝑠2𝜃 + 𝜏𝑥𝑦𝑠𝑖𝑛2𝜃       (3.9) 

𝜎𝜃 =
1

2
(𝜎𝑥 + 𝜎𝑦) −

1

2
(𝜎𝑥 − 𝜎𝑦)𝑐𝑜𝑠2𝜃 − 𝜏𝑥𝑦𝑠𝑖𝑛2𝜃     (3.10) 
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𝜎𝜉 = 𝜎𝑧         (3.11) 

𝜏𝑟𝜃 =
1

2
(𝜎𝑦 − 𝜎𝑥)𝑠𝑖𝑛2𝜃 + 𝜏𝑥𝑦𝑐𝑜𝑠2𝜃      (3.12) 

𝜏𝑟 = 𝜏𝑦𝑧𝑠𝑖𝑛𝜃 + 𝜏𝑥𝑧𝑐𝑜𝑠𝜃         (3.13) 

𝜏𝜃 = 𝜏𝑦𝑧𝑐𝑜𝑠𝜃 − 𝜏𝑥𝑧𝑠𝑖𝑛𝜃         (3.14) 

For the boundary condition, assuming that the well radius is a, and the in-situ stresses are applied 

at 𝑟 = 𝑅0, where 𝑅0 ≫ 𝑎, which indicates that the borehole effects on stresses vanishes as the 

distance increasing. The general solutions for the near-wellbore stress distribution can be written 

as: 

𝜎𝑟 =
𝜎𝑥+𝜎𝑦

2
(1 −

𝑎2

𝑟2
) +

𝜎𝑥−𝜎𝑦

2
(1 − 4

𝑎2

𝑟2
+ 3

𝑎4

𝑟4
) 𝑐𝑜𝑠2𝜃 + 𝜏𝑥𝑦 (1 − 4

𝑎2

𝑟2
+ 3

𝑎4

𝑟4
) 𝑠𝑖𝑛2𝜃 + 𝑃𝑤

𝑎2

𝑟2
  

(3.15) 

𝜎𝜃 =
𝜎𝑥+𝜎𝑦

2
(1 +

𝑎2

𝑟2
)+ 

𝜎𝑥−𝜎𝑦

2
(−1 − 3

𝑎4

𝑟4
) 𝑐𝑜𝑠2𝜃 + 𝜏𝑥𝑦 (−1 − 3

𝑎4

𝑟4
) 𝑠𝑖𝑛2𝜃 − 𝑃𝑤

𝑎2

𝑟2
     (3.16) 

𝜎 = 𝜎𝑧 − 𝜈 [2(𝜎𝑥 − 𝜎𝑦)
𝑎2

𝑟2
𝑐𝑜𝑠2𝜃 + 4𝜏𝑥𝑦

𝑎2

𝑟2
𝑠𝑖𝑛2𝜃]    (3.17) 

𝜏𝜃 = 𝜏𝑦𝑧 (1 +
𝑎2

𝑟2
) 𝑐𝑜𝑠𝜃 − 𝜏𝑥𝑧 (1 +

𝑎2

𝑟2
) 𝑠𝑖𝑛𝜃          (3.18) 

𝜏𝑟 = 𝜏𝑦𝑧 (1 −
𝑎2

𝑟2
) 𝑠𝑖𝑛𝜃 + 𝜏𝑥𝑧 (1 −

𝑎2

𝑟2
) 𝑐𝑜𝑠𝜃          (3.19) 

𝜏𝑟𝜃 =
𝜎𝑥−𝜎𝑦

2
(−1 − 2

𝑎2

𝑟2
+ 3

𝑎4

𝑟4
) 𝑠𝑖𝑛2𝜃 + 𝜏𝑥𝑦 (1 + 2

𝑎2

𝑟2
− 3

𝑎4

𝑟4
) 𝑐𝑜𝑠2𝜃   (3.20) 

where 𝑃𝑤 is the wellbore pressure and ν is Poisson’s ratio. Therefore, at the wellbore wall, the 

equations can be simplified to the following forms: 

𝜎𝑟 = 𝑃𝑤       (3.21) 

𝜎𝜃 = 𝜎𝑥 + 𝜎𝑦 − 2(𝜎𝑥 − 𝜎𝑦)𝑐𝑜𝑠2𝜃 − 4𝜏𝑥𝑦𝑠𝑖𝑛2𝜃 − 𝑃𝑤    (3.22) 

𝜎 = 𝜎𝑧 − 𝜈[2(𝜎𝑥 − 𝜎𝑦)𝑐𝑜𝑠2𝜃 + 4𝜏𝑥𝑦𝑠𝑖𝑛2𝜃]          (3.23) 

𝜏𝜃 = 2(−𝜏𝑥𝑧𝑠𝑖𝑛𝜃 + 𝜏𝑦𝑧𝑐𝑜𝑠𝜃)            (3.24) 
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𝜏𝑟 = 𝜏𝑟𝜃 = 0            (3.25) 

 

Figure 3.2 The distributions of (a) hoop stress, (b) axial stress, and (c) radial stress around a 

vertical wellbore in a linear elastic, isotropic and homogeneous formation. The stress orientations 

are indicated in grey arrows and borehole fractures are also shown in part (a). Hot colors 

represent more compressive stresses; whereas, cold colors represent less compressive stresses or 

even tensile stresses if in negative values. 

Based on the analytical solutions introduced above, a MATLAB
TM

 based program was produced 

to visualize the stress concentration around an arbitrarily oriented borehole wall in a linear 

elastic, isotropic and homogeneous formation. Fig. 3.2 shows an example for a vertical borehole 

the axis of which coincides with the vertical principal stress. The input parameters of this 

example are  

SH = 30MPa Sh = 10MPa Sv = 100MPa   Pw = 10MPa    ν=0.25 
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The results illustrate that in a compressional in-situ stress state, the hoop stress is more 

compressive than SH in the direction of Sh; whereas, it is in tension at the azimuth of SH due to 

the joint effects of the mud weight and the horizontal stress contrast. The dramatic stress change 

around the wellbore largely raises the possibility of formation failure, which yields important 

information regarding to the in-situ stress. Therefore, the failure mechanism is the key to 

understand the relationship between wellbore fractures and the in-situ stress. 

 

3.3 Borehole Failure Mechanisms and the Corresponding Fractures 

Without any preexisting fractures, borehole failures are most likely to initiate at the borehole 

wall where stresses are highly disturbed and concentrated. Therefore, to examine the failure 

mechanisms of borehole fracture, it is necessary to first calculate the principal stresses (with 

principal stresses, all shear stresses vanish) at a specific point on the borehole wall, which are 

given as (Aadnoy, 1990; Aadnoy and Bell, 1998): 

𝜎𝑖 = 𝑃𝑤        (3.26) 

𝜎𝑗 =
1

2
(𝜎𝜃 + 𝜎𝜉) +

1

2
[(𝜎𝜃 − 𝜎𝜉)

2
+ 4𝜏𝜃𝜉]

1/2

       (3.27) 

𝜎𝑘 =
1

2
(𝜎𝜃 + 𝜎𝜉) −

1

2
[(𝜎𝜃 − 𝜎𝜉)

2
+ 4𝜏𝜃𝜉]

1/2

        (3.28) 

where, 𝜎𝑗 > 𝜎𝑘, and 𝜎𝑖 acts normal to the borehole wall pointing outward. In this case, the pore 

pressure is neglected. After determining the relative magnitudes of these principal stresses with a 

given set of in-situ stress, they can be relabeled as 𝜎1 , the largest principal stress, 𝜎2 , the 

intermediate principal stress and 𝜎3, the minimum principal stress at the borehole wall. 

The rock surrounding the borehole wall can be considered subject to the three principal stresses 

defined in Eq. 3.26 – Eq. 3.28. If the stresses exceed the rock strength, breakouts, a kind of 

fracture resulted from compressive failure, may first occur at the azimuth of Sh. Utilizing a 

compressive failure criteria (i.e., Mohr-Coulomb failure criteria), the zone of compressive failure 

can be determined (Fig. 3.2a), and those are the places where breakouts initiate. Various studies 

have been carried out to study the failure behaviors of borehole breakout using linear elastic 
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models (Aadnoy and Bell, 1998; Al-Ajmi and Zimmerman, 2006; Peska and Zoback, 1995; Zheng 

et al., 1989). Wang et al. (1994) developed an analytical nonlinear elastoplastic model to 

estimate the yielding zone and predict borehole failure. However, the actual mechanisms of 

borehole breakout are still not fully understood. Breakouts can be avoided by increasing the mud 

weight during drilling, but they become very sensitive and more likely to occur in over-pressured 

formations (i.e., those with pore fluid pressure in excess of that expected due to normal 

hydrostatic increase with depth) because a larger pore pressure shifts the Mohr circle closer to 

the Mohr failure envelope without changing other conditions. 

 

Figure 3.3 Borehole televiewer image data from southern Idaho shows a planar feature (red line) 

and borehole breakouts (yellow boxes). Based on a work that is done by (Shervais et al., 2013). 

Borehole breakouts are observed from oriented caliper logs (e.g., dipmeter) and image logs. Fig. 

3.3 shows an unwrapped ultrasonic borehole televiewer image collected from Southern Idaho as 

part of the International Continental Drilling Program Project Hotspot (Shervais et al., 2013), 

The yellow boxes in Fig. 3.3 highlight the borehole breakouts. Note that breakouts appear in 

pairs on both sides of the borehole wall due to the symmetrical stress patterns as indicated in Fig. 

3.2. In this example, the direction of the minimum principal stress referred from the strikes of 
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breakouts is in the SE-NW direction. Furthermore, the breakout width, Θ, has been used to 

estimate the magnitude of SH based on the assumptions that (1) the breakout width does not 

change as the breakout deepens; (2) at the edge of the breakout width at the borehole wall, the 

compressive stress equals to the limit of rock strength (Barton et al., 1988; Schmitt et al., 2013).  

 

Figure 3.4 (a) Ultrasonic borehole televiewer data from the Hunt well, N. Alberta (Chan, 2013) 

displaying axial DITF. (b) En-echelon DITF from formation microscanner data of Barton and 

Moos (2010) used with permission under the AAPG fair use policy. 

Similar to the failure mechanism discussed in the previous chapter, DITFs occur when the 

minimum principal stress at the borehole wall exceeds the tensile strength of surrounding 

formation rocks. Unlike borehole breakouts and hydraulic fractures, DITFs propagate no more 

than a cm from the borehole wall (Zoback, 2007), as such, the only reliable way to detect the 

existence of DITFs is by using image logs. Image logs reveal two types of DITFs: (1) fractures 

occur in pairs and almost parallel to the borehole axis with an offset of 180°, which are so called 

axial DITFs (Fig. 3.4a); (2) fractures occur in pairs with an offset of 180° but inclined with 

respect to the borehole axis and sometimes interconnected (Fig. 3.4b). The second type of 

fractures is also called en-echelon DITFs, and their occurrences indicate the nonalignment 

between the directions of the in-situ stresses and the borehole axis. Drilling-induced tensile 
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fractures are also stress indicators since the strike of which can be referred to as the direction of 

the maximum horizontal stress. 

(a) Normal Faulting

SH = 50 MPa
Sh = 40 MPa
Sv = 70 MPa

Pp = 20 MPa (for tensile 
fracture)

(a) Strike-slip Faulting
SH = 100 MPa
Sh = 50 MPa

Sv = 70 MPa
Pp = 20 MPa (for tensile 

fracture)

(a) Reverse Faulting
SH = 100 MPa
Sh = 80 MPa
Sv = 70 MPa

Pp = 20 MPa (for tensile 

fracture)

 

Figure 3.5 Lower hemisphere diagrams show the required well pressure and the rock strength to 

initiate drilling-induced tensile fractures (left column) and wellbore breakouts (middle column) 

for arbitrarily oriented wellbores in the normal faulting environment (top), the strike-slip faulting 

environment (middle) and the reverse faulting environment (bottom). The stress conditions are 

shown in the right column. For the tensile fracture case, the color indicates the highest borehole 

pressure to initiate DITFs for each borehole orientations. For the breakout case, the color 

indicates the lowest borehole pressure and rock strength to prevent borehole breakouts for each 

borehole orientations. 

 
(b) 

(c) 
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As mentioned in the overview, wellbore instability depends on the severity of fractures instead of 

the initiation of fractures. But without proper control of the mud weight (i.e., the fluid pressure in 

the borehole), both DITFs and breakouts can threaten borehole stability. Therefore, based on the 

study conducted by Peska and Zoback (1995), a MATLAB
TM

 program was created to examine 

the borehole fracture initiations for all possible well orientations as illustrated in Fig. 3.5. Each 

point in the lower hemisphere diagram represents a well with a certain orientation, where the 

plunge and azimuth are indicated by the radial distance from the center and the azimuth angle, 

respectively.  

The left panel shows the tendency for the initiation of the drilling-induced tensile fractures. The 

colors represent the upper limit of mud weight to generate DITFs. If the magnitude of mud 

weight is even higher than the minimum principal stress, hydraulic fractures can occur prior to 

reaching this high borehole pressure (Zoback, 2007). Noting that in the normal and reverse 

faulting environments, DITFs are expected to occur in approximately 60°deviated wells drilled 

at the azimuth of Sh and SH, respectively. On the other hand, DITFs are more likely to exist in 

horizontal and sub-horizontal wells in the strike-slip faulting environment. 

The right panel shows the tendency of borehole breakout initiation. The failure mechanism used 

here is the linearized Mohr-Coulomb failure criterion (Peska and Zoback, 1995). The colors in 

this case give the lower limits of both mud weight and rock strength required to avoid borehole 

breakout. Hence, we can consider that cold colors indicate more stable well orientations and vice 

versa. As shown in Fig. 3.5, in the strike-slip and reverse faulting regimes, breakouts are more 

likely to initiate in the vertical borehole or deviated well drilled in the direction of Sh; whereas, 

horizontal or sub-horizontal wellbores are more stable at the azimuth of SH. Moreover, since 

higher compressions exist in those two stress regimes than that in the normal faulting regime, 

greater rock strengths and mud weights are required to prevent compressive failure so that wells 

are less stable. Conversely, in the normal faulting environment, vertical or slightly deviated wells 

in the direction of Sh are more desirable as the deviatoric stress will be less.  

 

3.4 Examining the Mechanical Behavior of Tensile Fractures in the 

Laboratory 



52 

 

3.4.1 Introduction 

Various lab measurements have been developed to estimate the mechanical properties and 

behavior of rocks, such as unconfined compressive strength (UCS) tests, and Brazilian tests. The 

stress and strain data or ultrasonic acoustic emissions recorded during these tests enable us to 

infer the moment the first crack is initiated. However, it is impossible to visualize the manner in 

which stresses change and cracks form resulted from external mechanical stresses particularly in 

opaque materials such as rock. On the contrary, a photoelasticity test allows for direct 

visualization of the stress state and the onset of cracking inside the tested sample during the test. 

This and similar techniques were utilized in several studies (Galle, 1959; Galle and Wilhoit, 

1962; Ito et al., 2004). The objective of this section is to simulate the initiations and propagations 

of drilling-induced tensile fractures on the borehole wall in the actual fields using glass cubes 

with holes drilled inside. In this article, we provide an overview of our laboratory measurement 

technique and the preliminary observations from three most representative test samples. 

 

3.4.2 Experimental Methods 

The basic components of glass is commonly SiO2 or B2O3 (Condon, 1954). Upon cooling these 

two ingredients when they are melted, those atoms form a nonequilibrium arrangement with 

irregularly interconnected triangular or tetrahedral crystals (Silver and Bray, 1958). This is also 

known as the ‘glassy state’, which is usually owned by a supercooled liquid or an amorphous 

solid (Silver and Bray, 1958). Due to the random directions of crystalline symmetry axes, glass 

acts as a macro-isotropic material.  Additionally, as glass has extremely low heat conductivity, 

the temperature is heterogeneous in the cooling process (Condon, 1954). Therefore, external 

layers cool faster than the inside. When the inner part finally cools down, it is in tension while 

pushing the outer parts into compression; hence, this process forms a parabolic stress profile 

throughout the glass (Tomlinson et al., 2008). The residual stress inside the glass may also create 

uncertainty to our lab experiments. 

Glass is similar to rocks in terms of the mechanical behavior, i.e., the tensile strength is much 

weaker than its compressive strength; the material is stable, perfectly elastic. That said, it does 

not differ significantly in many ways particularly except that it does not contain pores.  Despite 
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this drawback, its transparency makes it an ideal material for photoelasticity tests. This was first 

revealed by physicist Seebeck (Seebeck, 1813; Seebeck, 1814) and Brewster (Brewster, 1814; 

1816) in the early 19
th

 century. Since then, glass has been widely utilized in the photoelasticity 

experiments, especially for the measurements of residual stress. Please refer to Appendix A for 

more details about what produces birefringence, how we observe it and how anisotropic stress 

states can produce it.  

 

 

Figure 3.6 The schematic of the glass cubes. Top: Sample #1 with a hole drilled through 

vertically; bottom: Sample #2 and #3 with 45° inclined holes drilled more than half way through. 

 

In our study, ‘boreholes’ with a 0.7 cm radius were drilled into such blocks with identical sizes 

of 7.8cm×5cm×5cm (Fig. 3.6). The boreholes were drilled either vertically (Sample #1) or 

deviated (Sample #2 and #3).  Each pair of opposing faces on the blocks was parallel to within a 

tolerance of 25 m, in order to ensure that the uniaxial compression could be applied uniformly. 
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The ratio of the diameter of the hole to the overall dimension of the glass cube should be small 

enough to avoid the influence of the borehole on the stresses at the outer face of the glass cube, 

and it also should be large enough, so that the disturbed birefringence could be seen easily (Galle 

and Wilhoit, 1962). Sample #3 was additionally mounted with strain gauges to capture the 

moment of the incipient cracking, which sometimes can be difficult to see visually. 

After the drilling process, each block was placed centered on a load cell, and for some cases, the 

strain gauge was connected to a desktop computer for data display and recording. As indicated in 

Fig. 3.7, in addition to the load cell, the experimental setup consists of upper and lower platens, a 

hydraulic cylinder, two hand pumps, a computer monitor, a high quality SLR camera in ‘movie’ 

mode, and lower and upper risers. The load was applied continuously through the two hand 

pumps connected to the hydraulic cylinder until the expected tensile fractures initiated. 

Depending on the circumstances, the pressures were increased to further propagate these 

fractures. The monitor was filled with white placed behind the sample to provide a uniform 

source of polarized background light. The camera, placed on the opposite side of the glass block, 

had its lens covered by a polarizer filter. During the experiment, the polarized light is captured 

by a camera to reveal the birefringence, which shows areas of stress difference in the glass 

(Hawkes, 1968). We have not yet carried out quantitative analyses of the observed fringe patterns 

but they are extremely useful for qualitative assessment of the uniformity of stress within the 

sample and for detecting fracture initiation and growth in later analyses. Furthermore, the 

manner in which the borehole vicinity and fractures alter the stress pattern can also be observed 

during the tests. As indicated in Fig. 3.8, all those colors constitute ‘stress contour lines’, and the 

closer the contour lines are, the greater the stress concentration will be.  
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Figure 3.7 The experimental setup. The cartoon in the upper right shows the configuration of the 

data transmission and recording systems. The sample was placed in between the upper platen and 

the load cell. Pressures were applied on the double hydraulic hand pump and then transferred 

through the hydraulic system. 

 

Figure 3.8 The birefringence revealed by the polarized light showing stress differences and 

disturbances caused by borehole vicinity and fractures. The detailed explanation can be found in 

the Appendix A. 

 

Upper platen

Lower platen

Hydraulic hand 

pump

Hydraulic cell

Load cell

Sample

Fracture

Deviated hole
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3.4.3 Results 

Sample # 1 

As illustrated in Fig. 3.6, sample #1 contains a vertical through-going cylindrical borehole; the 

uniaxial load was applied perpendicular to the hole’s axis. During the loading process, fractures 

#1 and #2 (Fig. 3.9) were generated simultaneously when the pressure of the fluid inside the 

hydraulic system reached 6.2 MPa. These two symmetrical fractures are representative of typical 

axial DITFs observed in the borehole and occurred essentially as expected.   

The experiment did not cease at this point, and the levels of uniaxial compression continued to 

increase. This resulted in the production of new tensile fractures #3 at 8.27 MPa and #4 at 

11.72MPa which propagated to intersect with fractures #1 and #2, respectively. They indicate 

that with continued stressing zones of tension shifted around the borehole and were sufficient to 

produce new fractures. Such phenomenon may have resulted from imperfect uniaxial stressing or 

from the interaction of edge effects in the finite sized samples.   

 

Figure 3.9 Sample #1and its fractures after the test. The left is in the front view, and the right 

one is in the side view showing axial fracture traces on the borehole wall. Magenta arrows 

indicate the direction of uniaxial compression. The number represent the time sequence those 

fractures form. 
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Sample #2 

Sample #2 was drilled with a deviated hole (Fig. 3.6) that did not penetrate all the way through 

the block allowing stresses at the borehole bottom to also be studied.  Sample #2 was uniaxially 

loaded applied perpendicular to Face A (Fig. 3.6), and three different fractures were created.   

 Fracture #1 (Fig. 3.10b), which was twistedly occurred on the ‘wall’, was first 

initiated when the system reached 5.86 MPa, and then it propagated until it reached 

the bottom of the hole to form Fracture #2 at 7.58 MPa.  

 A closer view of Fracture #2 was shown in Fig. 3.11. Fractures #1 and #2 were 

adjacent to each other, and Fracture #3 wasn’t recorded in the video, which means 

that its initiation pressure cannot be determined. Both Fracture #2 and #3 were first 

grown in the direction parallel to the borehole axis forming petal fractures, and then 

Fracture #2 curved to be normal to the minimum principal stress forming a centerline 

fracture (Davatzes and Hickman, 2010; Li and Schmitt, 1998).  

 Lastly, three en echelon tensile fractures (highlighted in red in Fig. 3.10c) were 

simultaneously generated near 9.65MPa on the upper side of the hole, and were 

eventually linked up together. It was clear that fractures grew from the hole into the 

medium.  
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a Before

b After Afterc

1

2

Loading

Fracture
group #4

Loading

 

Figure 3.10 Sample #2 and its fractures before and after the test. Yellow arrows indicate the 

direction of uniaxial compression. The number represent the time sequence those fractures form. 
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Figure 3.11 (a) The picture shows a closer view of bottom hole fractures for Sample #2. (b) A 

cartoon illustrates traces of the fractures intersecting on the bottom hole (red lines). 

Sample #3 

In this case, the sample was compressed perpendicular to Face B (Fig. 3.6 bottom). As the area 

of Face B is larger than that of Face A, it requires a higher load to produce fractures. During the 

experiment, no tensile fracture was initiated on the wall of the hole, but five bottom hole 

fractures were formed (Fig. 3.12, 3.13 & 3.14). 

Fracture #1 was first initiated perpendicular to the bottom of the hole when the system was in 

10.34 MPa.  It continued to propagate while re-orienting its plane along the direction of loading 

until the load cell’s limit was reached.  The trajectory of Fracture #1 is illustrated in Fig. 3.14 

(right).  

The initiations of the remaining fractures were difficult to detect in the video and the stress at 

which they were produced is not well constrained. Strikes of these five fractures are orientated in 

different directions; however, since there is no confining pressure, all those directions are 

perpendicular to the least principal stress. 

(a) (b

) 
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Figure 3.12 Sample #3 and its fractures before (a) and after the test (b). 

 

Figure 3.13 A closer view of the bottom hole fractures for Sample #3. 

Loading Loading

Fractures

(a) (b

) 
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Figure 3.14 (a) Red lines show traces of the bottom hole fractures intersecting with the bottom 

hole (grey circle) for Sample #3. (b) The black curved line is shape of the bottom hole fracture 

#1 from the side view. 

 

3.4.4 Discussion 

Among all the photoelasticity tests we carried out, results for these three samples were the most 

representative for the three scenarios. Tensile fractures on the hole’s wall in Sample #1 were 

mainly symmetrical axial tensile fractures and these were expected because the hole axis is 

aligned perpendicular with the uniaxial compression. The rim around the wall of the hole also 

exhibited some fracturing but this was generated during the process of strain recovery. Sample 

#2 and #3 had the same geometry with 45° deviated holes drilled more than half way through, 

but the directions of loading were different.  Sample #2 clearly showed three en echelon tensile 

fractures, which were linked together, on the upper side of the hole caused by the nonalignment 

of the hole axis with respect to the uniaxial compression. On the other hand, tensile fractures on 

the lower side of the wall were created and propagated axially, and this phenomenon needed to 

be further investigated. 

Additionally, fractures on the bottom of the hole in Sample #2 and #3 also reveal some 

interesting mechanical behavior. The first bottom hole fracture generated in Sample #2 was 

Compression

Hole

Bottom 
hole fracture

(a) (b

) 
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initiated immediately after a wall fracture reached the bottom of the hole. However, for Sample 

#3, no wall fracture was created, and the initiation pressure for tensile fracture was higher than 

other two samples, which might due to a larger area contacted with the load. There was a similar 

pattern regarding to the propagation of bottom hole fractures: they tended to propagate along the 

direction of hole axis at first; then, due to a decreasing disturbance on the stress state by the 

bottom of the hole, they reoriented themselves to grow in the plane perpendicular to the least 

principal stress.  As there was no confining stress, the strikes of bottom hole fractures became 

more distinct. 

Although these three tests provide us a great insight on the mechanical behavior and 

characteristics of tensile fractures, there are still some drawbacks. First, the glass is not perfect. 

Flaws mainly originate in the two categories: induced cracks and pre-existing flaws in the glass, 

such as inclusions and severe cord (Shand, 1954). The induced cracks are formed due to the 

rotation speed of the drilling bit did not reach a desired speed to drill glasses. Based on Griffith’s 

theory, the local stresses around the tip of a crack embedded in a brittle body can be several 

times higher than the external stress; therefore, with the existence of flaws, brittle bodies fail 

under the stresses lower than those necessary (Griffith, 1920; Lawn and Wilshaw, 1975; Shand, 

1954). That said, those pre-existing or induced micro-cracks can weaken the strength of glasses. 

But in our preliminary experiments, our main focuses are on the azimuths of tensile fractures 

formed around the hole instead of the strength of specimens. So as long as we are cautious about 

the way of interpreting those strength data, we can still draw some reasonable conclusions. 

Second, our experimental setups are not as sophisticated as those for triaxial tests, so that 

limitations on adding confined pressure and having constantly increasing axial loading are 

inevitable, although it is difficult to see how such photoelasticity tests can be accomplished in 

triaxial conditions. Slightly improper lineup between the upper platen and lower platen can lead 

to unsymmetrical stress concentrations within the specimen. Moreover, since there is only one 

side that was recorded by the camera, some cracks could not even be detected in the video.  

 

3.4.5 Conclusions 

Three photoelasticity experiments were carried out by using glass cubes, and those enabled us to 

examine the failure mechanism of tensile fractures. The glass blocks had a uniform size of 5cm 
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× 5cm × 7.8 cm, and either a vertical or a 45° inclined hole was drilled into the glass. The 

specimens were subject to continuously increasing uniaxial compression until anticipated tensile 

fractures were created. The results of three preliminary tests were given in here. For tensile 

fractures on the hole’s wall, Sample #1 has axial tensile fractures, on the other hand, Sample #2 

contains three en echelon tensile fractures that eventually linked together away from the 

borehole. This proves that if one of the principal stresses is coincident with the hole trajectory, 

tensile fractures will grow axially; otherwise, en echelon tensile fractures will occur. Regarding 

to bottom hole tensile fractures, they strike in multiple directions due to a lack of any lateral 

confining stress in these initial tests. Moreover, they tend to propagate in the direction of hole 

axis first, and then curve to be perpendicular to the minimum principal stress. This study 

concentrates on the experimental method to mimic the situation in the real case, but there are still 

some limitations and assumptions. To improve future study, more advanced experimental setups 

are needed particularly ones in which at least one lateral stress can be applied. Moreover, a 

comparison between lab results and numerical models can offer us a more comprehensive view 

in the mechanical behaviors of tensile fracture. 
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Chapter 4 

The Closed-form Solution for Borehole Stress Calculations in an 

Anisotropic Homogeneous Formation 

 

4.1 Introduction 

Nowadays, highly deviated and horizontal wells are frequently drilling through anisotropic shale 

formations. Highly inclined boreholes are more vulnerable to failure (Wilson and Willis, 1986) 

and are more sensitive to the influence of such anisotropy (Ong, 1994; Ong and Roegiers, 1995). 

Traditionally, borehole stability analyses have assumed that the formations are elastically 

isotropic, an assumption that may be insufficient to deal with unconventional reservoirs 

(Gazaniol et al., 1995). Part of the reason current practices are deficient is that the rock itself is 

more complicated. The formation is anisotropic by dint at all scales of its layering, its texture, 

and fracture sets. This existence of this anisotropy has long been known but its implications for 

wellbore failure have not been extensively investigated. Consequently, to provide further insight 

of the situation in actual fields, having a good knowledge of the wellbore failure mechanisms 

associated with anisotropic formations becomes critical for reducing the likelihood of borehole 

instabilities leading to failure. 

Shales constitute of about 75% of the sections encountered by drilling. Normally, we expect 

shale to be transversely isotropic, abbreviated as TI, due to the symmetry of elastic and structural 

properties (Aadnoy and Bernt, 1988; Cholach and Schmitt, 2006; Hornby, 1995; Johnston and 

Christensen, 1992; Kaarsberg, 1959; Wong et al., 2008). Shale anisotropy depends on porosity, 

kerogen content, fluid interaction and microcracks (Dewhurst and Siggins, 2006; Vernik and 

Nur, 1992; Vernik and Liu, 1997). The elastic constants of shale can be estimated using sonic 

logging tools (Walsh et al., 2008) and laboratory ultrasonic wave speed measurements (Melendez 

and Schmitt, 2011; Melendez and Schmitt, 2013; Sarout and Gueguen, 2008; Vernik and Nur, 

1992; Vernik and Liu, 1997). To quantify the degree of anisotropy, Thomsen (1986) developed 

the anisotropy factors ε, γ and δ, which are unitless and are as functions of elastic modules (Eq. 

4.34). The values of those anisotropy factors decrease with decreasing degree of anisotropy.  
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Other than the borehole stresses in isotropic formations discussed in Chapter 3, the analytical 

solution of the near-wellbore stress calculation in anisotropic formations was developed by 

Lekhnitskii (1981) and Amadei (1983). Numerous later contributions (Aadnoy, 1987; Gaede et al., 

2012; Ong, 1994; Ong and Roegiers, 1995; Vahid and Ahmad, 2011) have been based on these 

pioneering developments. The Lekhnitskii-Amadei (L-A) anisotropic model necessitates the use 

of three coordinate systems that describe the orientations of i) the in-situ far-field stress, ii) the 

rock anisotropy, and iii) the borehole. The inputs to this model include the in-situ stress (e.g. 

magnitudes of three principal stresses and Eulerian angles providing their orientations), the well 

pressure, the rock stiffness matrix, the orientations of the anisotropy, and the borehole azimuth 

and inclination. This comprehensive L-A solution can also be reduced to the Hiramatsu and Oka 

solution to calculate stress distributions in isotropic formations (Gaede et al., 2012). 

The purpose of chapter 4 is to assess the impacts of rock anisotropy (mainly transversely 

isotropy, TI) on near-wellbore stress distribution using the L-A solution. First, earlier analytical 

work (Amadei, 1983; Lekhnitskii, 1981; Ong, 1994) is heavily referenced to revisit the solution 

for borehole stress estimations in an anisotropic medium. Then, sensitivity studies are carried out 

to provide us a further insight of the variations in stress distributions as a function of rock 

anisotropy utilizing a MATLAB
TM

 based program (provided to the reader in Appendix B), which 

is not restricted to any specific borehole orientations, in-situ stresses or rock anisotropies. This 

chapter and the following chapter are developed from one of my conference papers (Jia and 

Schmitt, 2014), and hopefully, they will be submitted for publication in the journal ‘Computer & 

Geosciences’ in the summer of 2015.  

 

4.2 General Assumptions  

The models discussed in this paper consider a circular borehole drilled in a linear elastic, 

homogeneous anisotropic formation without chemical, temperature or poro-elastic effects. Body 

forces are also neglected in this solution. Moreover, we assume the borehole is infinitely long 

and is subjected to both the far field stress and internal mud pressure both of which do not vary 

along the borehole axis. This can be referred to as the generalized plane strain assumption: a 

more generalized case comparing to the classical plane strain formulation.  
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The classical plane strain formulation is not applicable to anisotropic media except for some 

certain situations. This is because that as long as any of the planes of elastic symmetry does not 

coincide with the x-y plane, the out-of-plane displacement (w) is no longer zero (Lekhnitskii, 

1981). Therefore, a generalized plain strain method is utilized in the anisotropic model allowing 

the orientation of the wellbore to be independent of the directions of the far field stresses and the 

symmetry axis of anisotropic medium (Ong, 1994). In that sense, in all planes normal to the x-y 

plane, all components of stress, strain, displacement and forces do not change (Amadei, 1983), 

which means, 

𝜕𝑢𝑥

𝜕𝑧
=

𝜕𝑢𝑦

𝜕𝑧
=

𝜕𝑢𝑧

𝜕𝑧
= 0      (4.1) 

where 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are displacements along the x, y and z directions, respectively, and they are 

functions of x and y alone. 

 

4.3 Model Geometry and Coordinate System Transformations 

To better simulate situations in actual fields, as illustrated in Fig. 4.1, three Cartesian coordinate 

systems are defined by different plunges (β) and trends (α or α’= 90-α) with respect to the global 

coordinate system (X-Y-Z) (Ong and Roegiers, 1993), these are the: 

 Borehole coordinate system X1-Y1-Z1 with the inclination angle β1 and the azimuthal angle 

α1 (the Z1-axis is aligned with the borehole axis and the X1-axis points at the lowest side of 

the wellbore) 

 In-situ stress coordinate system X2-Y2-Z2 with a trend angle of α2 and the plunge β2=0 

 Rock elastic property coordinate system X3-Y3-Z3 with the plunge angle β3 and the 

azimuthal angle α3. 

The principal in-situ stress tensor can be expressed in the following matrix form: 

𝜎 =  [
𝑆𝐻 0 0
0 𝑆ℎ 0
0 0 𝑆𝑣

]                        (4.2) 

where SH, Sh and Sv are the maximum horizontal stress, the minimum horizontal stress and the 

vertical stress, respectively. The stress coordinate system are attached to the directions of three 

principal stresses with SH, Sh and Sv aligned with X2, Y2 and Z2 axis, respectively. Note that in a 
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real problem, one must consider further the relationship between this co-ordinate system and the 

geographic co-ordinates but this is not necessary to the current discussion. To simplify our 

model, Sv is assumed to be always pointing at the opposite direction of the Z-axis. As the 

stability analysis focuses on the near-wellbore environment, both the stress tensor {𝜎}𝑠 and the 

compliances [𝑆] must be rotated into the borehole coordinate system. After some mathematical 

manipulations, these transformations can be written in the following form (Amadei, 1983; Ong, 

1994; Ong and Roegiers, 1993):  

{𝜎}𝑏 = [𝑂𝜎][𝑅𝜖]
𝑡{𝜎}𝑠 

         [𝑆]𝑏 = [𝑃𝜖][𝑀𝜎
′ ]𝑡[𝑆]𝑠[𝑀𝜎

′ ][𝑃𝜖]
𝑡             (4.3)       

Where subscripts s and b indicate in-situ stress and borehole coordinate systems, respectively; 

matrices with subscript σ are stress transformation matrices, whereas matrices with subscripts ∈ 

refer to strain transformation matrices, and t indicates the transpose operator.  The transformation 

matrixes can be expressed as the following in a general form [T] (Ong, 1994): 

[𝑇𝜎] =

(

 
 
 
 

𝑙1
2 𝑚1

2 𝑛1
2

𝑙2
2 𝑚2

2 𝑛2
2

𝑙3
2 𝑚3

2 𝑛3
2

2𝑚1𝑛1 2𝑛1𝑙1 2𝑙1𝑚1

2𝑚2𝑛2 2𝑛2𝑙2 2𝑙2𝑚2

2𝑚3𝑛3 2𝑛3𝑙3 2𝑙3𝑚3

𝑙2𝑙3 𝑚2𝑚3 𝑛2𝑛3
𝑙3𝑙1 𝑚3𝑚1 𝑛3𝑛1
𝑙1𝑙2 𝑚1𝑚2 𝑛1𝑛2

𝑚2𝑛3 +𝑚3𝑛2 𝑛2𝑙3 + 𝑛3𝑙2 𝑙2𝑚3 + 𝑙3𝑚2

𝑚1𝑛3 +𝑚3𝑛1 𝑛1𝑙3 + 𝑛3𝑙1 𝑙1𝑚3 + 𝑙3𝑚1

𝑚1𝑛2 +𝑚2𝑛1 𝑛1𝑙2 + 𝑛2𝑙1 𝑙1𝑚2 + 𝑙2𝑚1)

 
 
 
 

  (4.4) 

[𝑇𝜖] =

(

 
 
 
 

𝑙1
2 𝑚1

2 𝑛1
2

𝑙2
2 𝑚2

2 𝑛2
2

𝑙3
2 𝑚3

2 𝑛3
2

𝑚1𝑛1 𝑛1𝑙1 𝑙1𝑚1

𝑚2𝑛2 𝑛2𝑙2 𝑙2𝑚2

𝑚3𝑛3 𝑛3𝑙3 𝑙3𝑚3

2𝑙2𝑙3 2𝑚2𝑚3 2𝑛2𝑛3
2𝑙3𝑙1 2𝑚3𝑚1 2𝑛3𝑛1
2𝑙1𝑙2 2𝑚1𝑚2 2𝑛1𝑛2

𝑚2𝑛3 +𝑚3𝑛2 𝑛2𝑙3 + 𝑛3𝑙2 𝑙2𝑚3 + 𝑙3𝑚2

𝑚1𝑛3 +𝑚3𝑛1 𝑛1𝑙3 + 𝑛3𝑙1 𝑙1𝑚3 + 𝑙3𝑚1

𝑚1𝑛2 +𝑚2𝑛1 𝑛1𝑙2 + 𝑛2𝑙1 𝑙1𝑚2 + 𝑙2𝑚1)

 
 
 
 

  (4.5) 

where 𝑙, 𝑚 and 𝑛 are direction cosines described in Eq. 3.2. 
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Figure 4.1 Schematic of coordinate reference frames for the anisotropic model. 

In problems solving borehole stresses, the cylindrical coordinate system prevails; therefore, it is 

necessary to transfer stress from a Cartesian coordinate (x, y, z) into a cylindrical system (r, θ, ξ). 

Note that the new axis r and θ are corresponding to X1 and Y1, and ξ axis coincides with Z1 

meaning β = 0. Hence, the new direction cosines are (Ong, 1994): 

𝑙1 = cos 𝜃 , 𝑙2 = −sin 𝜃 , 𝑙3 = 0 

𝑚1 = sin 𝜃 , 𝑚2 = cos 𝜃 , 𝑚3 = 0    (4.7) 

𝑛1 = 0, 𝑛2 = 0, 𝑛3 = 1 

and the expression for the transformed stress is: 

{
 
 

 
 
𝜎𝑟
𝜎𝜃
𝜎𝜉
𝜏𝜃𝜉
𝜏𝑟𝜉
𝜏𝑟𝜃}
 
 

 
 

=

[
 
 
 
 
 
cos2 𝜃 sin2 𝜃 0
sin2 𝜃 cos2 𝜃 0
0 0 1

0 0 sin 2𝜃
0 0 − sin 2𝜃
0 0 0

0 0 0
0 0 0

−
1

2
sin 2𝜃

1

2
sin 2𝜃 0

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 cos 2𝜃]

 
 
 
 
 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 

 (4.8) 
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4.4 General Solution for Stress Components 

For any elastic and static problems involving stress, strain and displacement, they must satisfy 

the following conditions (Amadei, 1983): 

 Equations of equilibrium; 

 Strain-displacement relations; 

 Equations of compatibility for strains 

 Constitutive relations; and, 

 Boundary conditions. 

The generalized plane strain Beltrami-Michell equations of compatibility, differential equations 

derived from the first four conditions in the above, indicates the stress state of an infinitesimal 

cube in an anisotropic medium, which can be expressed in the following form (Ong, 1994): 

𝜎𝑥 =
𝜕2𝐹

𝜕𝑦2
, 𝜎𝑦 =

𝜕2𝐹

𝜕𝑥2
, 𝜏𝑥𝑦 = −

𝜕2𝐹

𝜕𝑥𝜕𝑦
 

𝜏𝑥𝑧 =
𝜕Ψ

𝜕𝑦
, 𝜏𝑦𝑧 = −

𝜕Ψ

𝜕𝑥
         (4.9) 

and the compact solutions are 

𝐿4𝐹 + 𝐿3Ψ = 0 

       𝐿3𝐹 + 𝐿2Ψ = 0                                                    (4.10) 

where 𝐹 and Ψ are stress functions, 𝐿2, 𝐿3 and 𝐿4 are the linear differential operators, which can 

be written as: 

𝐿2 = 𝛽44
𝜕2

𝜕𝑥2
− 2𝛽45

𝜕2

𝜕𝑥𝜕𝑦
+ 𝛽55

𝜕2

𝜕𝑦2
 

𝐿3 = −𝛽24
𝜕3

𝜕𝑥3
+ (𝛽25 + 𝛽46)

𝜕3

𝜕𝑥2𝜕𝑦
− (𝛽14 + 𝛽56)

𝜕3

𝜕𝑥𝜕𝑦2
+ 𝛽15

𝜕3

𝜕𝑦
   (4.11) 

𝐿4 = 𝛽22
𝜕4

𝜕𝑥4
− 2𝛽26

𝜕4

𝜕𝑥3𝜕𝑦
− 2(𝛽12 + 𝛽66)

𝜕4

𝜕𝑥2𝜕𝑦2
− 2𝛽16

𝜕4

𝜕𝑥𝜕𝑦3
+ 𝛽11

𝜕4

𝜕𝑦4
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and 𝛽𝑖𝑗 is the reduced strain coefficients (Lekhnitskii, 1981; Ong, 1994), and it is defined as a 

function of components of the compliance matrix, 𝑎𝑖𝑗: 

𝛽𝑖𝑗 = 𝑎𝑖𝑗 −
𝑎𝑖3𝑎𝑗3

𝑎33
    (𝑖, 𝑗 = 1,2,4,5,6)     (4.12) 

With Eq. 4.10, the following equations can be achieved: 

(𝐿4𝐿2 − 𝐿3𝐿3)𝐹 = 0 

   (𝐿3𝐿3 − 𝐿4𝐿2)Ψ = 0                                              (4.13) 

The first equation of Eq. 4.13 can be written as: 

        𝑓(𝜇) = 𝑙4(𝜇)𝑙2(𝜇) − 𝑙3
2(𝜇) = 0     (4.14) 

where  

𝑙2(𝜇) = 𝛽55𝜇
2 − 2𝛽45𝜇 + 𝛽44 

𝑙3(𝜇) = 𝛽15𝜇
3 − (𝛽14 + 𝛽56)𝜇

2 + (𝛽25 + 𝛽46)𝜇 − 𝛽24 

𝑙4(𝜇) = 𝛽11𝜇
4 − 2𝛽16𝜇

3 + (2𝛽12 + 𝛽66)𝜇
2 − 2𝛽26𝜇 + 𝛽22         (4.15) 

𝑓(𝜇) is the characteristic equation having six roots 𝜇𝑖 (𝑖 = 1,…,6). The roots are always complex 

or purely imaginary, and half of them (𝜇1, 𝜇2, 𝜇3)  are always conjugates of the other half (�̅�1, �̅�2, 

�̅�3) (Lekhnitskii, 1981). Therefore, the general expressions for F and 𝜓 take the following form 

(Ong, 1994): 

𝐹 = 2ℜ[𝐹1(𝑧1) + 𝐹2(𝑧2) + 𝐹3(𝑧3)] 

Ψ = 2ℜ[𝜆1𝐹1
′(𝑧1) + 𝜆2𝐹2

′(𝑧2) +
1

𝜆3
𝐹3
′(𝑧3)]           (4.16) 

where  

(i) ℜ is the operation of taking the real part of the expression in the brackets. 

(ii) 𝐹𝑖(𝑧𝑖)  (i=1,2,3) are analytical functions of 𝑧𝑖 = 𝑥 + 𝜇𝑖𝑦 , and the prime refers to a 

derivation to 𝑧𝑖. 

(iii) 𝜆𝑖 (i=1,2,3) are the complex numbers, defined as 

𝜆1 = −
𝑙3(𝜇1)

𝑙2(𝜇1)
, 𝜆2 = −

𝑙3(𝜇2)

𝑙2(𝜇2)
, 𝜆3 = −

𝑙3(𝜇3)

𝑙4(𝜇3)
       (4.17) 
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Lekhnitskii (1981) introduced three analytic functions, Φ𝑖(𝑧𝑖) (i=1,2,3), which are expressed as: 

Φ1(𝑧1) = 𝐹1
′(𝑧1), Φ2(𝑧2) = 𝐹2

′(𝑧2), Φ3(𝑧3) =
1

𝜆3
𝐹3
′(𝑧3)  (4.18) 

Combining Eq. 4.16 and 4.18, the first derivatives of F with respect to x and y are: 

𝜕𝐹

𝜕𝑥
= 2ℜ[Φ1(𝑧1) + Φ2(𝑧2) + 𝜆3Φ3(𝑧3)] 

𝜕𝐹

𝜕𝑦
= 2ℜ[𝜇1Φ1(𝑧1) + 𝜇2Φ2(𝑧2) + 𝜇3𝜆3Φ3(𝑧3)]    (4.19) 

And the expression for Ψ 

Ψ = 2ℜ[𝜆1Φ1(𝑧1) + 𝜆2Φ2(𝑧2) + Φ3(𝑧3)]         (4.20) 

Utilizing Eq. 4.9 and 4.20, the general expressions for the drilling-induced stress components 

are (Ong, 1994): 

𝜎𝑥𝑏 = 2𝑅𝑒[𝜇1
2Φ1

′ (𝑧1) + 𝜇2
2Φ2

′ (𝑧2) + 𝜆3𝜇3
2Φ3

′ (𝑧3)] 

𝜎𝑦𝑏 = 2𝑅𝑒[Φ1
′ (𝑧1) + Φ2

′ (𝑧2) + 𝜆3Φ3
′ (𝑧3)] 

𝜏𝑥𝑦𝑏 = −2𝑅𝑒[𝜇1Φ1
′ (𝑧1) + 𝜇2Φ2

′ (𝑧2) + 𝜆3𝜇3Φ3
′ (𝑧3)] 

𝜏𝑥𝑧𝑏 = 2𝑅𝑒[𝜆1𝜇1Φ1
′ (𝑧1) + 𝜆2𝜇2Φ2

′ (𝑧2) + 𝜇3Φ3
′ (𝑧3)] 

𝜏𝑦𝑧𝑏 = −2𝑅𝑒[𝜆1Φ1
′ (𝑧1) + 𝜆2Φ2

′ (𝑧2) + Φ3
′ (𝑧3)]         (4.21) 

The general solution of the stress distribution which consists of the drilling-induced stress σb 

superimposed onto the boundary stresses, σ0, and the expressions are: 

𝜎𝑥 = 𝜎𝑥0 + 𝜎𝑥𝑏 = 𝜎𝑥0 + 2𝑅𝑒[𝜇1
2Φ1

′ (𝑧1) + 𝜇2
2Φ2

′ (𝑧2) + 𝜆3𝜇3
2Φ3

′ (𝑧3)] 

𝜎𝑦 = 𝜎𝑦0 + 𝜎𝑦𝑏 = 𝜎𝑦0 + 2𝑅𝑒[Φ1
′ (𝑧1) + Φ2

′ (𝑧2) + 𝜆3Φ3
′ (𝑧3)] 

𝜏𝑥𝑦 = 𝜏𝑥𝑦0 + 𝜏𝑥𝑦𝑏 = 𝜏𝑥𝑦0 − 2𝑅𝑒[𝜇1Φ1
′ (𝑧1) + 𝜇2Φ2

′ (𝑧2) + 𝜆3𝜇3Φ3
′ (𝑧3)] 

𝜏𝑥𝑧 = 𝜏𝑥𝑧0 + 𝜏𝑥𝑧𝑏 = 𝜏𝑥𝑧0 + 2𝑅𝑒[𝜆1𝜇1Φ1
′ (𝑧1) + 𝜆2𝜇2Φ2

′ (𝑧2) + 𝜇3Φ3
′ (𝑧3)] 
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𝜏𝑦𝑧 = 𝜏𝑦𝑧0 + 𝜏𝑦𝑧𝑏 = 𝜏𝑦𝑧0 − 2𝑅𝑒[𝜆1Φ1
′ (𝑧1) + 𝜆2Φ2

′ (𝑧2) + Φ3
′ (𝑧3)] (4.22) 

where the derivatives of Φ𝑖(𝑧𝑖) will be provided in the next section. Based on the generalized 

plane strain formulation, the axial stress  𝜎𝑧 can be expressed in the following form: 

𝜎𝑧 = 𝜎𝑧0 −
1

𝑎33
(𝑎31𝜎𝑥𝑏 + 𝑎32𝜎𝑦𝑏 + 𝑎34𝜏𝑦𝑧𝑏 + 𝑎35𝜏𝑥𝑧𝑏 + 𝑎36𝜏𝑥𝑦𝑏) (4.23) 

 

4.5 General Expressions for the Analytic Function 𝚽𝒊(𝒛𝒊) 

The problem for borehole stress calculations is now reduced to the derivation of the three 

analytic functions Φ𝑖(𝑧𝑖), which are functions of the complex variable 𝑧𝑖 = 𝑥 + 𝜇𝑖𝑦 in a region 

with cross section  S. As 𝜇𝑖  is always complex or imaginary, 𝑧𝑖  becomes the following 

expression (Amadei, 1983): 

𝑧𝑖 = 𝑥 + 𝜇𝑖𝑦 = 𝑥 + (𝛼𝑖 + 𝑖𝛽𝑖)𝑦 = 𝑥𝑖 + 𝑖𝑦𝑖      (4.24) 

where 

𝑥𝑖 = 𝑥 + 𝛼𝑖𝑦,         𝑦𝑖 = 𝛽𝑖𝑦   (𝑖 = 1,2,3)    (4.25) 

Hence, Φ𝑖(𝑧𝑖) are determined in the regions with cross sections S1, S2, and S3 (Fig. 4.2), which 

are mapped based on S through the affine transformations (Lekhnitskii, 1981). To express the 

cross sections into the cylindrical system, one can write the axis as: 

𝑥𝑖 = 𝑎(cos 𝜃 + 𝛼𝑖 sin 𝜃),      𝑦𝑖 = 𝑎𝛽𝑖 sin 𝜃     (4.26) 

Lekhnitskii (1981) proposed to conformably map 𝑆𝑖 onto the 𝜁𝑖 plane and the exterior of the unit 

circle to solve the problem, as such, the mapping functions become: 

𝑧𝑖

𝑎
=

1−𝑖𝜇𝑖

2
𝜁𝑖 +

1+𝑖𝜇𝑖

2

1

𝜁𝑖
     (4.27) 

whose function inverse is: 

𝜁𝑖 =

𝑧𝑖
𝑎
+√(

𝑧𝑖
𝑎
)
2
−1−𝜇𝑖

2

1−𝑖𝜇𝑖
            (4.28) 
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Figure 4.2 Geometric representation of an affine transformation (Ong, 1994). 

After conformal mapping, the analytic functions Φ𝑖(𝑧𝑖) were introduced by as the following 

(Lekhnitskii, 1981): 

Φ𝑖(𝑧𝑖) = 𝐴𝑖𝑙𝑛𝜁𝑖 + ∑ 𝐴𝑖𝑚𝜁𝑖
−𝑚∞

𝑚=1      (4.29) 

where 𝐴𝑖 and 𝐴𝑖𝑚 are coefficients related to boundary conditions, and their derivation processes 

will not be given in this thesis. After substituting the expressions of 𝐴𝑖𝑚  into Eq. 4.29, the 

analytic functions are shown as the following formulae (Ong, 1994): 

Φ1(𝑧1) = 𝐴1𝑙𝑛𝜁1 +
1

∆
∑ {[�̅�𝑚(𝜇2 − 𝜆2𝜆3𝜇3) + �̅�𝑚(𝜆2𝜆3 − 1) + 𝑐�̅�𝜆3(𝜇3 − 𝜇2)]

1

𝜁1
𝑚}

∞

𝑚=1
 

Φ2(𝑧2) = 𝐴2𝑙𝑛𝜁2 +
1

∆
∑ {[�̅�𝑚(𝜆1𝜆3𝜇3 − 𝜇1) + �̅�𝑚(1 − 𝜆1𝜆3) + 𝑐�̅�𝜆3(𝜇1 − 𝜇3)]

1

𝜁2
𝑚}

∞

𝑚=1
 

Φ3(𝑧3) = 𝐴3𝑙𝑛𝜁3 +
1

∆
∑ {[�̅�𝑚(𝜇1𝜆2 − 𝜇2𝜆1) + �̅�𝑚(𝜆1 − 𝜆2) + 𝑐�̅�(𝜇2 − 𝜇1)]

1

𝜁3
𝑚}

∞

𝑚=1
 

(4.30) 

where 

∆= 𝜇2 − 𝜇1 + 𝜆3𝜆2(𝜇1 − 𝜇3) + 𝜆1𝜆3(𝜇3 − 𝜇2)  (4.31) 
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After applying boundary conditions, one can achieve the following: 

�̅�1 =
𝑎

2
[𝑖𝜏𝑥𝑦0 − (𝜎𝑦0 − 𝑃𝑤)] 

�̅�1 =
𝑎

2
[𝜏𝑥𝑦0 − 𝑖(𝜎𝑥0 − 𝑃𝑤)] 

𝑐1̅ =
𝑎

2
[𝜏𝑦𝑧0 − 𝑖𝜏𝑥𝑧0]       (4.32) 

and for �̅�𝑚, �̅�𝑚, and 𝑐�̅�, if m ≥ 2, they are zero. 𝐴𝑖 (i=1,2,3) are also zero. 

Therefore, the final forms of the analytic functions Φ𝑖(𝑧𝑖) are (Ong, 1994): 

Φ1
′ (𝑧1) = −

1

2∆𝜁1√(
𝑧1
𝑎 )

2

− 1 − 𝜇1
2

[(𝑖𝜏𝑥𝑦0 − 𝜎𝑦0 + 𝑃𝑤)(𝜇2 − 𝜆2𝜆3𝜇3)

+ (𝜏𝑥𝑦0 − 𝑖𝜎𝑥0 + 𝑖𝑃𝑤)(𝜆2𝜆3 − 1) + (𝜏𝑦𝑧0 − 𝑖𝜏𝑥𝑧0)𝜆3(𝜇3 − 𝜇2)] 

Φ2
′ (𝑧2) = −

1

2∆𝜁2√(
𝑧2
𝑎
)
2

− 1 − 𝜇2
2

[(𝑖𝜏𝑥𝑦0 − 𝜎𝑦0 + 𝑃𝑤)(𝜆1𝜆3𝜇3 − 𝜇1)

+ (𝜏𝑥𝑦0 − 𝑖𝜎𝑥0 + 𝑖𝑃𝑤)(1 − 𝜆1𝜆3) + (𝜏𝑦𝑧0 − 𝑖𝜏𝑥𝑧0)𝜆3(𝜇1 − 𝜇3)] 

Φ3
′ (𝑧3) = −

1

2∆𝜁3√(
𝑧3
𝑎 )

2

− 1 − 𝜇3
2

[(𝑖𝜏𝑥𝑦0 − 𝜎𝑦0 + 𝑃𝑤)(𝜇1𝜆2 − 𝜇2𝜆1)

+ (𝜏𝑥𝑦0 − 𝑖𝜎𝑥0 + 𝑖𝑃𝑤)(𝜆1 − 𝜆2) + (𝜏𝑦𝑧0 − 𝑖𝜏𝑥𝑧0)(𝜇2 − 𝜇1)] 

(4.33) 

Inserting Eq. 4.33 into Eq. 4.22, one can get the solution for the stress distribution in the vicinity 

of borehole in a homogeneous anisotropic medium. 

 

4.6 The Effects of Rock Anisotropy on Near-wellbore Stress Distributions 

4.6.1 Boundary Conditions and Material Mechanical Properties 
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Based on the analytical solution introduced in the above, a MATLAB
TM

 based program was 

created to help us visualize the stress distribution around the borehole wall (the program code is 

provided in Appendix B). Utilizing this program, parametric studies are carried out to investigate 

the variation of near-wellbore stress concentrations as a function of the degree of intrinsic 

formation anisotropy. 

Table 4.1 Boundary conditions as the input data for our model 

 SH, MPa Sh, MPa Sv, MPa 

Normal faulting  20 10 50 

Strike-slip faulting  50 10 20 

Reverse faulting 50 20 10 

 

Here, for purposes of illustration we mainly consider the stress and stability analysis for an 

arbitrarily orientated borehole with an inclination angle β1 of 40° and an azimuth α1 of 0° drilled 

in a vertical transversely isotropic (VTI) formation (i.e., one in which the rotational axis of 

symmetry is vertical). The mud pressure is 10 MPa. α2 and β2 are assumed to be zero. These 

conditions do not belong to any of the four special cases of anisotropy mentioned by Amadei 

(1983), as such, the expressions cannot be reduced to any simpler form. To initiate the study, the 

boundary conditions and material properties were assumed and summarized in Tables 4.1 and 

4.2, respectively, where R is the ratio between Eh and Ev indicating the degree of anisotropy. 

Thomsen parameters as introduced in Section 4.1 are defined as (Thomsen, 1986): 

𝜀 =
𝐶11 − 𝐶33
2𝐶33

 

𝛾 =
𝐶66 − 𝐶44
2𝐶44

 

𝛿 =
(𝐶13−𝐶44)

2−(𝐶33−𝐶44)
2

2𝐶33(𝐶33−𝐶44)
      (4.34) 

Furthermore, the TI elastic constants assumed in our study strictly follow the constraints on  

elastic moduli (Chapter 2) stated by Banik and Egan (2012), Sayers (2013) and Sone and Zoback 

(2013), and the shear modulus, Gh is empirically defined as (Batugin and Nirenburg, 1972): 
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        𝐺ℎ =
𝐸ℎ𝐸𝑣

𝐸ℎ+𝐸𝑣+2ν𝑣𝐸𝑣
      (4.35) 

Table 4.2 Elastic properties for the five VTI formations 

 
Mechanical 

Properties 

Thomsen 

Parameters 

Stiffness 

Constants 

R1=Eh/Ev=1 

Eh=Ev=20GPa 

νv= νh=0.25 

Gh=Gv=8GPa 

ε = 0 

γ = 0 

δ = 0 

C11=24GPa 

C44=8GPa 

R2=1.25 

Eh =25GPa 

Ev =20GPa 

νv =0.25 

νh =0.27 

Gv =8.96GPa 

ε = 0.11 

γ = 0.058 

δ = 0.14 

C11=32.0GPa 

C33=26.4GPa 

C44=8.96GPa 

C66=10.0GPa 

C13=11.9GPa 

R3=1.5 

Eh =30GPa 

Ev =20GPa 

νv =0.25 

νh =0.27 

Gv =9.87GPa 

ε = 0.21 

γ = 0.11 

δ = 0.28 

C11=40.2GPa 

C33=28.2GPa 

C44=9.87GPa 

C66=12.0GPa 

C13=15.2GPa 

R4=2 

Eh =40GPa 

Ev =20GPa 

νv =0.25 

νh =0.27 

Gv =11.3GPa 

ε = 0.41 

γ = 0.21 

δ = 0.54 

C11=59.6GPa 

C33=32.7GPa 

C44=11.3GPa 

C66=16.0GPa 

C13=23.6GPa 

R5=2.5 

Eh =50GPa 

Ev =20GPa 

νv =0.25 

νh =0.27 

Gv =12.4GPa 

ε = 0.59 

γ = 0.30 

δ = 0.75 

C11=84.9GPa 

C33=38.9GPa 

C44=12.4GPa 

C66=20.0GPa 

C13=35.0GPa 

 

4.6.2 Results and Discussions 

To better divide the stress distributions into different quadrants and visualize them, we assume 

the azimuth of the borehole is zero. This is actually not that important for a horizontally lying 

vertical transversely isotropic medium (again whose axis of symmetry is vertical) as the 

properties will not vary with azimuth. And we only consider the normal faulting environment in 

this model (Table 4.1). The stress magnitudes shown are normalized with respect to the vertical 

stress, Sv, in order to make the results independent of depth. Note that the color scaling is not the 

same among each panel. Figure 4.3 summarizes the stress concentrations around a circular 
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borehole in the isotropic formation. The minimum principal stress is directly related to the tensile 

failure, as explained earlier. To study the manner in which condition the shear failure will be 

initiated, we adopt the Tresca criterion. This criterion shows that the rock will yield when it 

reaches the maximum shear stress, τm, which can be written as (Fjaer et al., 2008): 

𝜏𝑚 =
1

2
(𝜎1 − 𝜎3)     (4.36) 

where 𝜎1 is the maximum principal stress, and 𝜎3 is the minimum principal stress. Although the 

Tresca criterion does not take the intermediate principal stress σ2 into consideration, some 

criteria, such as the modified Lade criterion and the von Mises criterion do depend on the 

intermediate principal stress (Fjaer et al., 2008; Yi et al., 2005). On the other hand, based on the 

Mohr-Coulomb criteria, shear failure cannot be solely determined from the difference between 

the maximum principal stress and the minimum principal stress. As described in Chapter 2, 

knowing the magnitude of the minimum principal stress (for the position of the Mohr circle) and 

rock elastic properties (for the failure envelope) are also necessary in this case. 

During the progress of building our models, one limitation of the L-A solution caused by the 

affine transformation was revealed. For some TI materials, the corresponding 𝜇𝑖 are not always 

purely imaginary leading to some unreasonable values in the derivatives of the analytic function 

𝜙𝑖
′(𝑧𝑖) after affine transformation. Hence, to eliminate these erroneous values, we shifted them 

back to the correct positions based on the symmetry of 𝜙𝑖
′(𝑧𝑖). 
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Figure 4.3 Illustration of the distributions of (a) the hoop stress, (b) the axial stress, (c) the radial stress (d) the 

minimum principal stress, (e) the maximum shear stress, and (f) the intermediate stress around a circular borehole 

wall (β=40°, α=0°) in the isotropic formation (R1=1) in the normal faulting stress regime as indicated in Table 4.1. 

The directions of the far field stresses are indicated as arrows, and it will be the same case for Fig.4.4, 4.5 and 4.6. 

The stress magnitudes shown here are normalized by the magnitude of Sv. θ is the borehole azimuthal angle. 
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Figure 4.4 The differences of (a) the hoop stress, (b) the axial stress and (c) the radial stress (d) the minimum 

principal stress, (e) the maximum shear stress, and (f) the intermediate principal stress distributions around a 

circular borehole (β=40°, α=0°) in the normal faulting environment in anisotropic formations (upper right: R2 = 

1.25; lower right: R3 = 1.5; lower left: R4 = 2; upper left: R5 = 2.5). The stress magnitudes shown are all subtracted 

by the magnitudes in the isotropic case and normalized with respect to the magnitude of Sv.
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In Fig. 4.3, the “hot” colors (red and yellow) indicate regions under compression; whereas, the 

“cold” colors (blue) indicate less compressional or even pure tension if negative values. The 

stresses here are calculated based on the closed-form expressions derived by Amadei (1983), and 

the results are the same as those from Hiramatsu and Oka (1962) for the isotropic case, thus, it 

conforms Amadei’s (1983) anisotropic solution can reduces to the isotropic solution of 

Hiramatsu and Oka (1962). Moreover, the figure illustrates that the maximum compression is 

generated in the direction of SH on the borehole wall and that is where the tensile failure tends to 

initiate. For the intermediate principal stress, the maximum value, 0.6Sv, occurs in the direction 

of Sh, and the minimum value, 0.2Sv, occurs in the direction of SH. 

Figure 4.4 show the variations in terms of stress magnitudes as for increasing degrees of 

anisotropy in the normal faulting stress regime. Fig. 4.3 is shown in terms of normalized absolute 

stresses. In Fig. 4.4, however, we wish to highlight the differences in stress concentrations using 

the isotropic case of Fig. 4.3 as a reference.  In order to evaluate how much the anisotropy affects 

the stress concentrations, the colors scales in Fig. 4.4 instead indicate the difference in stress 

magnitudes calculated as: 

𝜎𝑑𝑖𝑓𝑓 =
(𝜎𝑎𝑛𝑖𝑠𝑜−𝜎𝑖𝑠𝑜)

𝑆𝑣
            (4.37) 

where 𝜎𝑎𝑛𝑖𝑠𝑜 and 𝜎𝑖𝑠𝑜 are the stress magnitudes in the anisotropic case and the isotropic case, 

respectively. Positive values (“hot” colors) indicate net compression, whereas negative values 

(“cold” colors) indicate net tensional stress relative to the corresponding isotropic case. Each 

panel is divided into four quadrants with different R = Eh/Ev values. The upper right representing 

the case where R2=1.25, the lower right representing the case where R3=1.5, the lower left 

representing the case where R4=2, and the upper left representing the case where R5=2.5 (Table 

4.2).  

The results of sensitivity analysis in Fig. 4.4 (left panel) imply that the hoop stress is influenced 

the most by the rock anisotropy, with variations up to ±0.1Sv. If we look along a specific 

borehole azimuthal angle, θ (indicated in Fig. 4.3a), the changes in stress are not monotonic and 

the maximum change occurs at the borehole wall. On the other hand, the change of radial stress 

is the least, which reaches its maxima to ±0.025Sv as the radius increases to about a quarter of 

the borehole diameter, and then the effects of anisotropy gradually fade out. For the axial stress, 

the variation is monotonic along the radius, and the stress tends to be averaged by up to 0.06Sv. 
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All in all, the variations in the magnitude of stresses relative to the corresponding isotropic case 

increase with increasing degrees of anisotropy. 

Fig. 4.4d illustrates that the tensile stress in the direction of SH (θ=0° and 180°) increases by 

about half of its original tension for the case where R5=2.5, whereas the points in compression 

(i.e., θ=90° and 270°) for the isotropic case become more compressive in the VTI formations. 

This implies that TI media enhances the possibility of tensile fracturing in a normal faulting 

stress regime. On the other hand, Fig. 4.4e shows that TI reduces the compressive stress at θ=90° 

and 270° at points of the largest compression, but enhances the compressional stress at θ=0° and 

180°. Therefore, combining with the stress change in the minimum principal stress, we can 

conclude that in a normal faulting stress regime TI formations suppress the likelihood of shear 

failure on the borehole wall in the direction of Sh, but increase the chance of shear failure in the 

direction of SH for certain borehole orientations. The variation in the intermediate principal stress 

(Fig. 4.4f) is more complex, but the general trends are the least compressive stress, which is in 

the direction of SH, turns out to be more tensile, and the most compressive stress aligned with Sh 

becomes more compressive. 
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Fig. 4.5 Illustration of the distributions of (a) the hoop stress, (b) the axial stress, (c) the radial stress (e) the 

minimum principal stress, (f) the maximum shear stress, and (g) the intermediate stress around a circular borehole 

wall (β=40°, α=0°) in the isotropic formation (R1=1) in the strike-slip faulting stress regime as indicated in Table 

4.1. The stress magnitudes shown here are normalized by the magnitude of Sv. 
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Fig. 4.6 The differences of (a) the hoop stress, (b) the axial stress and (c) the radial stress (d) the minimum 

principal stress, (e) the maximum shear stress, and (f) the intermediate principal stress distributions around a 

circular borehole (β=40°, α=0°) in the strike-slip faulting regime in anisotropic formations (upper right: R2 = 1.25; 

lower right: R3 = 1.5; lower left: R4 = 2; upper left: R5 = 2.5). The stress magnitudes shown are all subtracted by 

the magnitudes in the isotropic case and normalized with respect to the magnitude of Sv. 
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In the strike-slip faulting environment, borehole stresses are shown in Fig. 4.5. Comparing to 

those in the normal faulting environment, it seems that stress patterns is not changing that much, 

but stress gradients become larger due to a higher stress anisotropy in the horizontal direction. 

Based on Fig. 4.5d, the minimum magnitude of the minimum principal stress is smaller than that 

in the normal stress regime; hence, we can refer that tensile fractures are more likely to be 

generated in this case. However, the maximum shear stress, 𝜏𝑚, is significantly larger than that 

in the normal faulting environment, so it is easier to initiate shear failure. 

The results of parametric study in Fig. 4.6 illustrate the variation of borehole stress as a function 

of formation anisotropy. The changes in the hoop stress and the radial stress are not significant 

comparing to that in the normal stress regime. Axial stress is affected the most by formation 

anisotropy with its variations up to ±0.2Sv, and the change in terms of magnitudes is completely 

opposite compared to the case in the normal stress regime.  

The impacts of formation anisotropy on three principal stresses become more complex. For the 

minimum principal stress, the tendency for tensile fractures initiation is increasing as the degree 

of anisotropy increases. On the contrary, the stress nearly does not change on the borehole wall 

at the azimuth of 0°. The TI formation increases the magnitude of maximum shear stress up to 

0.02Sv at the θ=0° and 180°, and combining the change in minimum principal stress, we can 

conclude that the possibility of shear failure initiation is enhanced in the strike-slip environment.  
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Fig. 4.7 Illustration of the distributions of (a) the hoop stress, (b) the axial stress, (c) the radial stress (e) the 

minimum principal stress, (f) the maximum shear stress, and (g) the intermediate stress around a circular borehole 

wall (β=40°, α=0°) in the isotropic formation (R1=1) in the thrust faulting environment as indicated in Table 4.1. 

The stress magnitudes shown here are normalized by the magnitude of Sv. 
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Fig. 4.8 The differences of (a) the hoop stress, (b) the axial stress and (c) the radial stress (d) the minimum 

principal stress, (e) the maximum shear stress, and (f) the intermediate principal stress distributions around a 

circular borehole (β=40°, α=0°) in the reverse faulting regime in anisotropic formations (upper right: R2 = 1.25; 

lower right: R3 = 1.5; lower left: R4 = 2; upper left: R5 = 2.5). The stress magnitudes shown are all subtracted by 

the magnitudes in the isotropic case and normalized with respect to the magnitude of Sv. 
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Figure 4.7 shows the stress concentrations around a borehole wall in a TI formation in the 

reverse faulting environment. With the higher stress anisotropy, the stress gradients in this case 

are still higher than those in the normal faulting environment, especially for the maximum shear 

stress. But the possibility for tensile fracture initiation is zero since the smallest magnitude of the 

minimum principal stress is larger than the rock tensile strength (Fig. 4.7d). An interesting 

phenomenon is the maximum tension is not at θ=90° and 270°, instead, it is at the angle of 0° 

and 180° with a short distance from the borehole wall. 

In terms of the variations of stress magnitude as a function of formation anisotropy, as shown in 

Fig. 4.8, the patterns of changes are almost the same as those in the strike-slip environment for 

the hoop, axial and radial stresses. However, for the three principal stresses, the changes are 

quite complicated.  For the shear failure, at θ=0° and 180°, the minimum principal stress 

increases and the maximum shear stress decreases as an effect of formation anisotropy, which 

means that the tendency for shear failure is smaller. 

 

4.7 Summary 

The purpose of this chapter aims to investigate the effects of formation anisotropy on the stress 

distributions in the borehole vicinity. Firstly, we revisited the L-A solution for borehole stress 

calculations in a homogeneous anisotropic medium, and achieved the final expressions. Second, 

by utilizing this solution, a theoretical model has been successfully implemented in conducting 

sensitivity studies. The results indicate that:  

 The L-A solution reduces to the Hiramatsu and Oka isotropic case. 

 In the normal faulting environment, VTI formations enhance the likelihood of tensile 

failure, but reduce the possibility of shear failure in the direction of Sh in the case 

discussed in this chapter.  

 In the strike-slip faulting environment, the tendencies for both tensile fracture initiation 

and breakout initiation increase in VTI formations. 

 In the reverse faulting environment, VTI formations increase the possibility for tensile 

fracture initiations and reduce the possibility for shear failure. 
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 Tensile fractures are more likely to occur in the strike-slip stress regime and less likely to 

occur in the reverse stress regime. 

This chapter provides a building block for the work in next chapter, which focuses more on the 

consequential creation of drilling-induced tensile fractures. 

 

4.8 References 

Aadnoy, B. (1987), Continuum mehcnaics analysis of the stability of inclined boreholes in 

anisotropic rock formations, PhD Thesis, University of Trondheim, Norway. 

Aadnoy, B., and S. Bernt (1988), Modeling of the stability of highly inclined boreholes in 

anisotropic rock formations (includes associated papers 19213 and 19886 ), SPE Drill 

Engineering, 3(03), 259-268. 

Amadei, B. (1983), Rock anisotrpy and the theory of stress measurements, Springer-Verlag, 

Berlin. 

Banik, N. C., and M. S. Egan (2012), Effects of VTI anisotropy on shale reservoir 

characterization, SPE Middle East Unconventional Gas Conference and Exhibition, Society of 

Petroleum Engineers, Abu Dhabi, UAE, 23-25 Janurary. 

Batugin, S. A., and R. K. Nirenburg (1972), Approximate relation between the elastic constants 

of anisotropic rocks and the anisotropy parameters, Soviet Mining Science, 8(1), 5-9. 

Cholach, P. Y., and D. R. Schmitt (2006), Intrinsic elasticity of a textured transversely isotropic 

muscovite aggregate: Comparisons to the seismic anisotropy of schists and shales, Journal of 

Geophysical Research: Solid Earth, 111(B9), B09410. 

Dewhurst, D. N., and A. F. Siggins (2006), Impact of fabric, microcracks and stress field on 

shale anisotropy, Geophys J Int, 165(1), 135-148. 

Fjaer, E., R. M. Holt, P. Horsrud, A. M. Raaen, and R. Risnes (2008), Petroleum related rock 

mechanics, Elsevier, Amsterdam, the Netherlands. 

Gaede, O., F. Karpfinger, J. Jocker, and R. Prioul (2012), Comparison between analytical and 3D 

finite element solutions for borehole stresses in anisotropic elastic rock, International Journal of 

Rock Mechanics and Mining Sciences, 51(0), 53-63. 

Gazaniol, D., T. Forsans, M. J. F. Boisson, and J. M. Piau (1995), Wellbore Failure Mechanisms 

in Shales: Prediction and Prevention, J. Pet. Eng., 589-595. 



92 

 

Hiramatsu, Y., and Y. Oka (1962), Stress around a shaft or level excavated in ground with a 

three-dimensional stress state., Mem. Fac. Eng, 24(Kyoto Univ.), 56-76. 

Hornby, B. (1995), The Elastic Properties of Shales, PhD Thesis Thesis, University of 

Cambridge. 

Jia, Q., and D. R. Schmitt (2014), Effects of formation anisotropy on borehole stress 

concentrations: implications to drilling induced tensile fractures, 48th US Rock Mechanics / 

Geomechanics Symposium, American Rock Mechanics Association, Minneapolis, MN, USA, 

June 1-4. 

Johnston, J. E., and N. I. Christensen (1992), Shear wave reflectivity, anisotropies, Poisson's 

ratios, and densities of a southern Appalachian Paleozoic sedimentary sequence, Tectonophysics, 

210(1–2), 1-20. 

Kaarsberg, E. A. (1959), Introductory studies of natural and artificial argillaceous aggregates by 

sound-propagation and X-ray diffraction methods, The Journal of Geology, 67(4), 447-472. 

Lekhnitskii, S. G. (1981), Theory of elasticity of an anisotropic body, Mir Publications, Moscow. 

Melendez, J., and D. R. Schmitt (2011), Investigating anisotropy in rocks by using pulse 

transmission method, CSEG Recorder, 36(10), 38-42. 

Melendez, J., and D. R. Schmitt (2013), Anisotropic elastic moduli of carbonates and evaporites 

from the Weyburn-Midale reservoir and seal rocks, Geophys Prospect, 61(2), 363-379. 

Ong (1994), Borehole stability, 344 pp, U. of Oklahoma, Norman, Oklahoma. 

Ong, and J. C. Roegiers (1993), Influence of anisotropies in borehole stability, Int J Rock Mech 

Min, 30(7), 1069-1075. 

Ong, and J. C. Roegiers (1995), Fracture initiation from inclined wellbores in anisotropic 

formations, Society of Petroleum Engineers, SPE-29993-MS, Beijing, China, 14-17 November. 

Sarout, J., and Y. Gueguen (2008), Anisotropy of elastic wave velocities in deformed shales: Part 

1-Experimental results, Geophysics, 73(5), D75-D89. 

Sayers, C. M. (2013), The effect of anisotropy on the Young's moduli and Poisson's ratios of 

shales, Geophys Prospect, 61(2), 416-426. 

Sone, H., and M. D. Zoback (2013), Mechanical properties of shale-gas reservoir rocks - Part 1: 

Static and dynamic elastic properties and anisotropy, Geophysics, 78(5), D378-D389. 

Thomsen, L. (1986), Weak elastic anisotropy, Geophysics, 51(10), 1954-1966. 



93 

 

Vahid, S., and G. Ahmad (2011), Hydraulic fracture initiation from a wellbore in transversely 

isotropic rock, 45th US Rock Mechanics/Geomechanics Symposim, American Rock Mechanics 

Association, 2011/1/1/. 

Vernik, L., and A. Nur (1992), Ultrasonic Velocity and Anisotropy of Hydrocarbon Source 

Rocks, Geophysics, 57(5), 727-735. 

Vernik, L., and X. Z. Liu (1997), Velocity anisotropy in shales: A petrophysical study, 

Geophysics, 62(2), 521-532. 

Walsh, J. J., B. K. Sinha, T. J. Plona, D. E. Miller, and M. Ammerman (2008), Derivation of 

anisotropy parameters in a shale using borehole sonic data, SEG Technical Program Expanded 

Abstracts, American Rock Mechanics Association, 26, 1. 

Wilson, R. C., and D. N. Willis (1986), Successful high angle drilling in the Statfjord Field, SPE 

Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE-15465-MS, 

New Orleans, Louisiana, 5-8 October. 

Wong, R. C. K., D. R. Schmitt, D. Collis, and R. Gautam (2008), Inherent transversely isotropic 

elastic parameters of over-consolidated shale measured by ultrasonic waves and their comparison 

with static and acoustic in situ log measurements, Journal of Geophysics and Engineering, 5(1), 

103-117. 

Yi, X., S. H. Ong, and J. E. Russell (2005), Improving borehole stability analysis by quantifying 

the effects of intermediate principal stress using polyaxial rock strength test data, Alaska Rocks 

2005, The 40th U.S. Symposium on Rock Mechanics (USRMS), American Rock Mechanics 

Association, Anchorage, Alaska, 25-29 June. 

 

 

 

 

 

 

 



94 

 

Chapter 5 

Borehole Tensile Fracture Tracing 

 

5.1 Introduction 

As mentioned in Chapter 3, the stresses can damage the formation in the borehole vicinity by 

either compressive failure caused by compression or tensile failure caused by tension, and 

consequently, generating borehole breakouts and drilling-induced tensile fractures (DITF) in a 

predictable manner. The onset of compressive failure can be defined by various kinds of criteria, 

among which the most prevalent and the simplest one is the Mohr-Coulomb criterion, as 

thoroughly stated and utilized (Fjaer et al., 2008; Peska and Zoback, 1995). Moreover, 

conditions required to initiate tensile fractures have been investigated by (Ong and Roegiers, 

1995; Peska and Zoback, 1995; Prioul et al., 2011), and tensile fracture propagation has been 

probed both analytically (Aadnoy, 1990; Brudy and Zoback, 1993; Ong, 1994; Ong and Roegiers, 

1995) and numerically (Paluszny and Zimmerman, 2011; Wang et al., 2012). Additionally, based 

on the relationship between the orientations of tensile fractures and in-situ stresses, a number of 

researchers (Aadnoy and Bell, 1998; Barton et al., 1997; Brudy and Zoback, 1999; Davatzes and 

Hickman, 2010; Peska and Zoback, 1995; Schmitt et al., 2012) have studied methods of 

constraining the orientation of maximum horizontal principal stresses using tensile fractures 

observed in image logs.  

In this chapter, we first derive the solution for stress components at the borehole wall, which is 

coded into the tracing program, and the MATLAB
TM

 program itself is provided in Appendix C. 

Then, Ong’s borehole stability design code (Ong, 1994; Ong and Roegiers, 1995) is adopted to 

visualize tensile fracture trajectories on the unwrapped borehole wall in a homogeneous 

transversely isotropic medium. A variety of sensitivity studies are carried out in order to 

investigate the influence of rock anisotropy and in-situ stresses on DITF trajectories.  
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5.2 Stresses at the Borehole Wall 

Drilling-induced tensile fractures are less likely to propagate into the formations during drilling 

processes; therefore, to simplify the problem, only stresses at the borehole wall will be analyzed. 

To change the system into the polar coordinate, 𝑧𝑖 can be written as (Ong, 1994): 

𝑧𝑖 = 𝑎(cos 𝜃 + 𝜇𝑖 sin 𝜃)       (5.1) 

where a is the radius of the borehole. Based on Eq. 5.1, we can get: 

√(
𝑧𝑖

𝑎
)
2

− 1 − 𝜇𝑖
2 = 𝑖(𝑠𝑖𝑛𝜃 − 𝜇𝑖𝑐𝑜𝑠𝜃)   (5.2) 

And the function inverse is: 

𝜁𝑖 = 𝑒𝑖𝜃     (5.3) 

Then the derivatives of the analytic functions at the borehole wall becomes (Ong, 1994): 

Φ1
′ (𝑧1) =

1

2Δ(𝜇1 cos 𝜃 − sin 𝜃)
[𝐷′(𝜆2𝜆3 − 1) + 𝐸

′(𝜇2 − 𝜆2𝜆3𝜇3) + 𝐹
′𝜆3(𝜇3 − 𝜇2)] 

Φ2
′ (𝑧2) =

1

2Δ(𝜇2 cos 𝜃 − sin 𝜃)
[𝐷′(1 − 𝜆1𝜆3) + 𝐸

′(𝜆1𝜆3𝜇3 − 𝜇1) + 𝐹
′𝜆3(𝜇1 − 𝜇3)] 

Φ3
′ (𝑧3) =

1

2Δ(𝜇3 cos𝜃−sin𝜃)
[𝐷′(𝜆1 − 𝜆2) + 𝐸

′(𝜇1𝜆2 − 𝜇2𝜆1) + 𝐹
′(𝜇2 − 𝜇1)] (5.4) 

where, 

𝐷′ = (𝑃𝑤 − 𝜎𝑥0)𝑐𝑜𝑠𝜃 − 𝜏𝑥𝑦0𝑠𝑖𝑛𝜃 − 𝑖[(𝑃𝑤 − 𝜎𝑥0)𝑠𝑖𝑛𝜃 + 𝜏𝑥𝑦0𝑐𝑜𝑠𝜃] 

𝐸′ = −(𝑃𝑤 − 𝜎𝑦0)𝑠𝑖𝑛𝜃 + 𝜏𝑥𝑦0𝑐𝑜𝑠𝜃 − 𝑖[(𝑃𝑤 − 𝜎𝑦0)𝑐𝑜𝑠𝜃 + 𝜏𝑥𝑦0𝑠𝑖𝑛𝜃] 

𝐹′ = −𝜏𝑥𝑧0𝑐𝑜𝑠𝜃 − 𝜏𝑦𝑧0𝑠𝑖𝑛𝜃 − 𝑖(𝜏𝑦𝑧0𝑐𝑜𝑠𝜃 − 𝜏𝑥𝑧0𝑠𝑖𝑛𝜃)        (5.5) 

Inserting Eq. 5.5 into Eq. 4.22, the analytical solution for borehole wall stresses is derived. This 

solution will be utilized in the later tracing design code. 
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5.3 Tensile Fracture Tracing Code Development 

Recalling the borehole failure mechanism in Chapter 3, tensile failure is assumed to occur when 

the least effective principal stress 𝜎3
′  exceeds the tensile strength of the formation, which can be 

written in the following mathematical form (Fjaer et al., 2008; Ong, 1994): 

         𝜎3
′ = −𝑇0            (5.6) 

where the prime indicates the effective stress, and 

    𝜎3
′ =

𝜎𝜃
′+𝜎𝑧

′

2
−
1

2
√(𝜎𝜃

′ − 𝜎𝑧
′)
2
+ 4𝜏𝜃𝑧

2             (5.7) 

where 𝜎𝜃
′ , 𝜎𝑧

′ and 𝜏𝜃𝑧 are the effective hoop stress, the effective axial stress and the shear stress, 

respectively. Since DITF tends to grow normal to the orientation of 𝜎3
′ , when the borehole axis is 

aligned with the principal stresses, the axial tensile fractures appear to be in pairs, 180° apart 

from each other on the unwrapped borehole walls, and parallel to the wellbore axis. Conversely, 

when the borehole is inclined with respect to the principal stresses, DITF are oblique, also called 

en echelon fractures, and its orientation is defined by an angle, ω, calculated as: 

  𝜔 =
1

2
𝑎𝑟𝑐𝑡𝑎𝑛

2𝜏𝜃𝑧

𝜎𝜃𝜃−𝜎𝑧𝑧
           (5.8)  

As Ong (1994) mentioned, in order to specify the quadrant for the angle, it is critical to know the 

signs of the numerator and denominator when dealing with the arc-tangent of the quotient. 

Therefore, the MATLAB
TM

 build-in function atan2(a1,a2) is used in our fracture tracing model. A 

0° or 180° of 𝛾 means that fractures are in planes perpendicular to the axis, and a 90° means that 

fractures are in planes parallel to the borehole axis.  

In this model, the algorithm for tensile fracture tracing is built based on the approach developed 

by (Li and Schmitt, 1998; Zhang, 2011). Fig. 5.1 summarizes the overall process for tensile 

fracture tracing in the MATLAB
TM

 code. The mesh is designed with 200×200 nodes distributed 

regularly on the unwrapped borehole wall. The spacings between nodes in both x and y direction 

have a dimension of about 0.016 of the borehole diameter. Since the stress does not change along 

certain azimuth θ, each column can be treated as a “straw” (line 1 to 6 in Fig. 5.1). After the 

formation properties defined and the boundary conditions applied, the program determines 

whether the stress condition meets the requirement of tensile fracturing (Eq. 5.6), and the next 



97 

 

step is to search for the least minimum principal stress within the mesh where the tensile fracture 

is assumed to initiate (node A). In this case, the material is assumed to have no tensile strength. 

 

Figure 5.1 Illustration of tensile fracture tracing method. 

For simplicity, each straw is only allowed to have maximum one tensile fracture initiated, but in 

the realistic case, a series of en echelon tensile fractures can be produced. The fracture 

propagates outward from node A perpendicular to the direction of σ3 until it intersects straw 4. 

At the point of intersection (B), the stress tensor is recalculated and the fracture extends if the 

condition is suitable. The above procedures repeat to continuously propagate the fracture over a 

span of the borehole wall, θt, until σ3 becomes compressive. The length of the fracture in the 

vertical direction is denoted as 𝑙t. 

As mentioned by Zhang (2011),there are some drawbacks of this model. First, this is a static 

model without any consideration of the kinetic energy generated by the creations of tensile crack. 

Second, this model ignores the disturbance on the stress distribution by the creations of tensile 

fractures. Although these flaws set up the goal for our future study, this model still obeys the 

essential physics and provides a valid approach for tensile fracture tracing. 

 

5.4 The Effects of the Far-field Stress and the Degree of Formation 

Anisotropy on Tensile Fracture Trajectory 

Parametric studies are carried out to investigate the effects of the far-field stresses and VTI 

formations on the tensile fracture creation, as summarized in Fig. 5.2. In this case, the orientation 

of the borehole is fixed (β1=40°, α1=45°). The reason that a 40 degree borehole inclination angle 

is chosen is because, for a vertical or a horizontal borehole in a common in-situ stress condition, 

DITFs are always in planes parallel to the borehole axis, so that the stress regime cannot be 

σ3 

σ3 

ω1 

ω2 
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distinguished based on the DITF trajectory (Aadnoy, 1990). Note that the borehole azimuth α1 in 

this case does not equal to 0°, and this is to avoid having fractures plotted on the right or left 

edge of the figure for better illustrations. Three stress regimes are considered as indicated in 

Table 4.1, and for the material properties, two cases: R1 and R3, are taken into account (Table 

4.2). The green lines show the trajectories of the tensile fracture and the arrows represent the 

directions of propagation. The background colors illustrate the magnitudes of minimum principal 

stress which are normalized with respect to Sv. The locations corresponding to the bottom and 

top of the borehole are also shown. 

As shown in Fig. 5.2, tensile fractures appeared to be curved and asymmetrical; this is because ω 

varies asymmetrically over the wellbore circumference. The fracture starts nearly vertically but 

extends away from the borehole axis on one side, and in this case, if ω varies slowly, 𝑙t will be 

larger. However, on the other side, the fracture starts tilted but approaches the vertical direction 

as it extends; in this case, 𝑙t will be larger with a rapidly changing ω. Furthermore, the spans θt 

for the two fractures in a pair are not the same. Zoback (2007), for example, has also mentioned 

the similar appearance of tensile fracture called fish-hook or J-fractures.  

For the isotropic case, 𝑙t are the longest especially for the one on the left side in the strike-slip 

faulting environment, whereas it is the opposite case in the reverse faulting environment. In the 

normal faulting environment and the strike-slip faulting environment, tensile fractures are more 

likely to occur in the VTI formation compared to the isotropic cases. On the other hand, in the 

reverse faulting stress regime, the influence of the VTI formation on the initiations of tensile 

fractures is the reversed. Regarding to the effects of the VTI formation on the length of tensile 

fractures, 𝑙t tends to be lengthened under normal faulting conditions and to be shortened under 

strike-slip faulting and reverse faulting conditions. 

Other than conducting sensitivity studies, this theoretical model can also help us constrain the in-

situ stress condition incorporating with the drilling-induced fractures observed in borehole 

images (Schmitt et al., 2012; Zoback, 2007). The observations provide the locations where 

fractures initiate, the spans of fractures (θt) and the deviations of fractures from borehole axis 

(ω), thus constraining the modeling. 
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Figure 5.2 Theoretical model of the tensile fracture trajectories in normal faulting environments 

(a and d), strike-slip faulting environments (b and e), and reverse faulting environments (c and f); 

the panels in the left column corresponds to the isotropic case (R1) and the panels in the right 

column corresponds to the anisotropic case (R3) as indicated in Table 4.2. Green lines represent 

the tensile fracture trajectories and arrows indicate the directions of propagation. The 

background colors represent the magnitudes of the minimum principal stress. The bottom and top 

of the wellbore are also indicated. Y-axis (height) is in the same scale as that of the x-axis (θ). 

The borehole orientation is not chosen to be as the same as the previous model (Chapter 4) for 

illustration purposes (avoid to have fractures being plotted on the edge of the figure). 

 

5.5 Summary 

A tensile fracture tracing program has been coded based on the L-A model coupled with Ong’s 

wellbore-stability design code. Parametric studies lead to the following interesting findings:  

i) En echelon tensile fractures appear to be in asymmetrical pairs.  

ii) Fracture trajectories are influenced by the formation anisotropy in terms of the spans of 

fractures and the fracture tracing angles.  

Utilizing this model can help us constrain the state of stress incorporating with the DITF 

observed in image logs. 
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Chapter 6 

Numerical Modeling for Displaying Borehole Stress Concentrations 

 

6.1  Overview 

The objectives of this part of the study are: (1) creating a 3-D static numerical model to calculate 

the stress concentration around a circular borehole using the commercial finite element solver 

named ANSYS
TM

; and (2) developing the previous static model into a 3-D dynamic model to 

simulate the fracture behavior in the photoelasiticity tests. However, as this section is only in the 

preliminary stage, only the first step will be described in this chapter. 

The analytical solutions for borehole stress calculations were introduced in Chapters 3 and 4, and 

they work well in terms of dealing with real problems. However, analytical solutions are usually 

restricted to various assumptions, such as simplified boundary conditions, regular geometries, 

infinitely long boreholes, and homogeneous materials. In the lab experiments, tensile fracture 

initiations and propagations are very complex processes so that the development of a 

corresponding analytical model can be significantly time-consuming or perhaps impossible. The 

practical way out is to generate numerical models to mimic these processes.  

In this chapter, we will first describe the 3-D model in details including its basic theories, model 

geometry, types of element used, mesh generations, and boundary conditions (BCs). The second 

part is the model validation using the L-A solutions. The last part contains some suggestions for 

future study.  

 

6.2 Details and Descriptions of the 3D Finite Element Model 

6.2.1 Basic Theory 

Finite element method (FEM) is widely used to simulate physical systems by solving partial 

differential equations numerically. This is a model-based process; hence, model idealization and 

discretization are necessary steps for the generation of a discrete model accompanying with 

simulation errors. Model idealization is a process that builds an idealized mathematical model in 
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order to abstract and predict behaviors of the corresponding actual physical system. This process 

needs to be accomplished by a human. Model discretization results in a more practical discrete 

numerical model by reducing the degrees of freedom (DOF) represented as the unknown 

functions of a set of nodal points. To determine simulation errors and adjust the model, the finite 

element (FE) model should be validated against the experimental database. Basically, the FEM 

calculates each part of the model separately, which is referred to as element in the following 

content, and then the results are obtained by building a global matrix through assembling all 

elements (Chatterjee and Mukhopadhyay, 2003). 

Finite element programs of ANSYS
TM

 consist of three parts (Zienkiewicz et al., 2013):  

1. Pre-processor 

2. Solution module 

3. Post-processor 

In the pre-processer module, the model geometry needs to be set followed by the mesh 

generation and material parameter assignation. The scale of the FEM model is restricted to the 

computational and manpower resources; moreover, the complexity of the model (i.e., mesh 

density) is determined by the requirements on the resolution and quality of the solution (Liu and 

Quek, 2003). After the mesh creation, the model area is constructed by a number of finite 

elements which are connected by nodal points (Liu and Quek, 2003). Each element has its own 

unique number, and is required to be positioned by the coordinate locations of its associated 

nodal points which are also numbered (Liu and Quek, 2003). The type of elements is selected 

based on the similarity of the element characterizations with respect to the mechanical behaviors 

of the original physical system and the expectations regarding to the accuracy of the results. The 

rules of element selections are to always pick the simplest elements that can fulfill the 

requirements and to try to avoid special elements unless necessary. The system of interest may 

contain more than one material. Each element needs to be assigned with a corresponding set of 

material properties. For structural solid system, the required material properties are Young’s 

modulus and Poisson’s ratio; whereas, for the thermal analysis, the thermal conductivity 

coefficient is a key input (Moaveni, 2008). In this study, the whole model domain only consists 

of one material which is required to be linear elastic, homogeneous and continuous.   
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The solution module allows the program to solve linear or nonlinear equations in order to 

achieve nodal results (Moaveni, 2008). One of the most important processes in this portion of FE 

programs is applying appropriate boundary conditions (BCs). For a structural problem, boundary 

conditions mainly include setting displacements, forces, loads, temperatures (if thermodynamic 

is considered) and gravity (Moaveni, 2008). Those can directly affect DOFs, called essential 

BCs, such as displacements, otherwise natural BCs, for instance external forces acting on the 

system. Additionally, many physical systems exhibit some conditions of symmetry. By taking 

advantage of such symmetries we can significantly simplify the FE model allowing only a 

portion of the model to be processed (Liu and Quek, 2003). Recognition of symmetry can reduce 

the DOFs, the BCs, and thus the data storage space and computational time. The determination 

of a system to be structurally symmetrical is based on the symmetry in geometry, support 

conditions, material properties and loading patterns (Liu and Quek, 2003). A system can also be 

anti-symmetrical if the loading condition is anti-symmetric.  

In the post-processor module, the FEM program can record data as a text file or visualize the 

results graphically. The main features of visualizations include the display of the mesh, BCs, 

contours of the stress and displacement distribution.  

As mentioned above, the FEM is a process to solve a series of partial differential equations. The 

governing equations for a 3-D solid FEM model include the strain-displacement relationships 

(Chapter 2), the constitutive equations (Chapter 2), the dynamic equilibrium equation, and the 

boundary conditions; and their mathematical equations are defined as (Liu and Quek, 2003) 

Strain-displacement relationships:  𝜺 = 𝑳𝑼                  

(6.1) 

The constitutive equations:   𝝈 = 𝑪𝜺          

(6.2) 

The dynamic equilibrium equation:       𝑳𝑇𝜎 + 𝒇𝑏 = 𝜌�̈�          

(6.3) 

The displacement (essential) boundary conditions: 

𝑢 = 𝑢 and/or 𝑣 = 𝑣 and/or 𝑤 = 𝑤    (6.4) 

The force (natural) boundary condition:  
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𝒏𝝈 = 𝒕          (6.5) 

where 𝑼 is the displacement vector, 𝑳 is a matrix consists of partial differential operators, 𝑪 is 

stiffness as discussed in chapter 2, 𝒇𝑏  is the vector of external body forces in the x, y, z 

directions, 𝜌�̈�  is the inertial force term only existing in the dynamic system. For the 

displacement boundary conditions, 𝑢 , 𝑣 , and 𝑤  are displacement components, and the bar 

indicates the prescribed displacement value, which is zero in our case. For the force boundary 

condition,  𝒏 is a matrix consists of cosines of the outwards normal on the boundary and the bar 

means the prescribed value of forces (Liu and Quek, 2003). 

 

6.2.2 Model Geometry 

The FE model created here aimed to calculate the stress concentration around the borehole wall 

in a homogeneous, continuous and linear elastic formation. The geometry of the 3-D model is 

illustrated in Fig. 6.1a, which considers a cylindrical borehole drilled in a rock volume with 

dimensions of 10 units×10 units×5 units. Units of dimension are not specified in this case, so 

that the model geometry can be scaled based on the real problem. The ratio of the length of 

rectangular edges with respect to the borehole diameter is 10:1 in order to avoid model edge 

effects being superimposed onto the near-wellbore stresses (Zhang, 2011). A global Cartesian 

coordinate system is defined with its origin located at the bottom of the borehole center and its z-

direction aligned with the borehole axis. 

When the system is only subjected to three principal in-situ stresses along with the alignment 

between the wellbore axis and one of the principal in-situ stresses, the model can be reduced to 

one quadrant in a 2-D plane as the model has symmetrical loading patterns and follows the 

generalized plane strain assumption (Fig. 6.1b). However, in our experiments as discussed in 

chapter 3, holes were not always drilled along the direction of the principal stresses. In order to 

avoid re-generating meshes and keep the same geometry for all borehole orientations of interest, 

the stress components applied on the faces of the model should come from a rotated stress tensor 

transformed from the original in-situ stress based on the specific borehole deviation and azimuth. 

Hence, in that case, the resulted stress boundary conditions of the system contain not only the 

normal stress components, but also the shear stress components. With the existence of shear 
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stresses, the loading pattern is no longer symmetrical and as such the geometry of the 3-D model 

cannot be simplified. Y Y Li (1997) discussed this issue in detail and provided some preliminary 

ideas on the way to overcome these problems. 

 

Figure 6.1 The geometry of the 3-D model and its simplified version when there is no shear 

stress generated. 

 

6.2.3 Element Attributes 

All mechanical elements are assigned with their own intrinsic dimensionality, which can be one, 

two or three dimensions, except for special elements with zero dimension. In a one dimensional 

case, elements are usually either straight or curved lines. In two dimensions, elements are either 

in the shape of triangles or quadrilaterals. And in three dimensions, they are volumes of 

tetrahedral, wedge or bricks shape. Element geometries are defined by nodes. Nodes are usually 

located at the vertices of elements, and for more complicated elements, nodes can be placed in 

the middle of edges, faces or even within the central spaces. Triangles and tetrahedral are quite 

flexible for modeling irregular geometries, therefore, they are commonly utilized in most 

automatic mesh generations  (Liu and Quek, 2003). But they may generate less accurate results 

than those obtained from quadrilateral and brick-like shapes (Liu and Quek, 2003). Moreover, 

during the model discretization, it is very possible to create distorted elements with high aspect 

ratios in geometrically complicated regions. Such elements are not reliable, and the accuracy of 

the results produced from them varies with different conditions in the model. 
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Figure 6.2 From the left to the right: an element with no distortion, an element with acceptable 

distortion and an element with problematic distorted shape. 

In this 3-D FE model, two types of 3-D structural elements are employed: SOLID45 for the main 

body and SURF154 overlaid onto the entire outer surface to accommodate the structural surface 

effects, which are shear stresses. Each of these two elements has at least two geometrical options 

(Fig. 6.3). In this case, the SOLID45 element contains eight nodes with three DOFs at each node 

as shown on the left side of Fig. 6.3a. All properties of SOLID45 are set to be default. On the 

other hand, the geometry of the element SURF154 is set to be constructed by only four nodes 

(Fig. 6.3b right), and the element can be applied by shear stresses on the full area. 

 

6.2.4 Meshing 

There are two types of meshing strategies employed in ANSYS
TM

, free mesh and mapped mesh. 

There is no restrictions in terms of the element shapes being employed in a free mesh, but 

triangular and tetrahedral element are preferred in 2-D and 3-D systems, respectively due to their 

high flexibilities to accommodate irregular geometries (Moaveni, 2008). On the other hand, a 

mapped mesh contains consistent element shapes and patterns defined by the user. Therefore, in 

order to avoid lower order elements for better accuracy, the model domain is discretized into a 

mapped mesh which consists of 26224 nodes and 22600 elements with a more refined mesh near 

the borehole wall (Fig. 6.4). The element size chosen leads to a good balance between 

calculation time and result accuracy. The aspect ratios of all elements are in a reasonable range 

as routinely checked by ANSYS
TM

.  
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Figure 6.3 (a) SOLID45 3-D structural solid geometry in ANSYS
TM

. (b) SURF154 3-D 

structural surface effect element geometry in ANSYS
TM

. 
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Figure 6.4 The finite element mesh of the 3-D numerical model. 

 

6.2.5 Boundary Conditions 

The key difference between essential and natural boundary conditions was discussed previously. 

The natural boundary conditions in this model are the normal and shear stresses applied on the 

faces of the model, which vary with different situations. In this section, we mainly discuss the 

essential boundary conditions defining constraints on displacements (Table 6.1). Without 

symmetries and connections, the BCs only contain structural support constraints. Since the 

model is simulating rocks deeply buried within the earth, nodes on all surfaces of the model are 

assumed to be restricted to move along the vertical direction. Additionally, to suppress unwanted 

rigid body motions, two more BCs are applied: (1) all DOFs at nodes in line A are fixed to avoid 

translational motion; (2) the displacement in the x direction on the front surface colored in grey 

is deleted to better accommodate deformations resulted from shear stresses.  
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Figure 6.5 Illustration purpose for the rigid body motion suppressions. 

 

Table 6.1 Essential boundary conditions in the FE model. 

Location Description Constraints 

x=-5 

x=5 

y=-5 

y=5 

z=0 

z=5 

All Faces UZ=0* 

x=-5 and y=-5 Line A All DOFs are fixed 

x=-5 The Front Face in Grey UX=0 

* UZ=0 indicates the displacement along the z direction is constrained. 
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6.3 Model Development and Validations 

The development of the 3-D model was initially built from a 2-D base model as shown in Fig. 

6.6. The restriction of the simplified 2-D model is that it can only support normal stresses due to 

its requirement on the double symmetry in terms of the geometry and loading patterns. The 2-D 

mesh consists of 1911 nodes and 600 quadrilateral elements. The mesh is refined near the 

borehole where the stresses change rapidly. The element used in this model is a higher order 2-D, 

8-node, having two DOFs at each node, quadrilateral structural element, called PLANE183, 

which is also suitable for irregular meshes (Yazdizadeh, 2010). Boundary conditions are also 

shown in this figure, where arrows represent the direction of compression. Based on the 

symmetry properties, nodes along the lines of symmetries are constrained, and they can only 

slide along the symmetry lines (indicated by rollers). 

 

Figure 6.6 View of the mesh and boundary conditions of the 2-D finite element model. 

 

Figure 6.7 illustrates the stress in the x direction (σx) calculated from the L-A solution (left) and 

the FEM (right). In this case, the formation is assumed to be isotropic with a Young’s modulus 

of 29GPa and a Poisson’s ratio of 0.3. To simplify our model, only the maximum horizontal 

stress exists, which is 1MPa, and the direction is indicated in Fig. 6.7. The actual value is not that 

important as we can always scale the results in terms of Young’s modulus. The same cannot be 
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said about Poisson’s ratio, however, as it is key for controlling the distributions of the stresses (Y 

Li and Schmitt, 1997). In ANSYS
TM

, the color bar shows a reverse value compared to the 

MATLAB
TM

 results. It is important to note here a key change in the rules for positive and 

negative stresses in this chapter; here a positive stress value indicates tension, whereas the 

negative value is compression. This is because commercial finite element codes were designed 

more by physicists and mechanical engineers who employ this convention.  

Note that the original ANSYS data set has a relatively coarse coverage than that of the analytical 

solution. Moreover, Fig. 6.7b is plotted based upon the linear interpolations of the original 

numerical data in order to fit a similar surface plot like Fig. 6.7a. The result range of the 

analytical solution is from -2.9858 to 0.0616 MPa, and the range for the numerical model is from 

-3.3484 to 0.0867MPa. The difference may come from the limitations of gridding of the 

numerical model and the linear interpolation process.  

 

Figure 6.7 The stress in the x direction (σx) around a vertical borehole wall in an isotropic 

formation calculated from the L-A solution (left) and the numerical simulation (right). In this 

case, σx  = 1MPa; other stresses are all zero. The borehole axis co-incides with the vertical 

principal in-situ stress. The results between these two solutions agree well. 
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The next step for the validation processes is to test if the model can correctly calculate the shear 

stresses correctly. The material properties are the same as those in the previous case. The 

boundary conditions in terms of stresses here are as follows: 

𝜎𝑥
0 = 1MPa, 𝜏𝑥𝑦

0  =𝜏𝑦𝑥
0  = 1MPa, Pp = 0MPa, Pw = 0MPa 

Since there are shear stresses acting within the x-y plane, the model has to be upgraded to a full-

size 2-D model. Its boundary conditions are illustrated in Fig. 6.8 (top). Point A has been fixed in 

motion to provide translational restraint, whereas, Point B has been restricted to move along the 

y direction, since the integration of both Support A and support B can stop the rigid body from 

rotational movements. The result obtained from the 2-D numerical model is shown in Fig. 6.8 

(bottom). Applying with the same stress conditions on the analytical model (Fig. 6.9), we 

observe a good agreement between those two results. The 3-D model was developed based upon 

the 2-D model. By comparing the results obtained from the 3-D model under the same loading 

condition (Fig. 6.10) with the other two results, they basically match among one another. 

Therefore, we can conclude that the 3-D numerical model has been validated. 
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Figure 6.8 The stress concentration in the x direction calculated from the 2-D numerical model 

(top) and its boundary conditions on nodal point displacements (bottom). In this case, σx  = 

1MPa and τxy = τyx = 1MPa; other stresses are all zero. 
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Figure 6.9 The stress in the x direction (σx) around a vertical borehole wall in an isotropic 

formation calculated from the L-A solution. This is a comparison with the numerical results. ). In 

this case, σx  = 1MPa and τxy = τyx = 1MPa; other stresses are all zero. 

 

Figure 6.10 The stress concentration in the x direction calculated from the 3D numerical model. 

In this case, σx  = 1MPa and τxy = τyx = 1MPa; other stresses are all zero.  
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6.4 A Roadmap for Future Study 

This part of research including the photoelasticity experiments is still in the preliminary phase. 

After completing the development of the 3-D static numerical model, we hope to utilize this 

model to compare it with the experimental results. Once we acquire the stress data from the 

strain gauge mounted on the glass cube, the data can be rotated into the borehole coordinate 

system and then input into the 3-D numerical model. The static model can provide us the stress 

concentration inside the glass cube any time before the crack initiations. 

However, in order to simulate the fracture growth in real-time, a 3-D dynamic model is required 

and a multi-step load should be applied on the system. The deformations resulted from loading 

vary with time as well. Furthermore, after the moment of the initial fracture generated, stresses 

will be re-distributed as fractures propagate and force changes in each step, and the fracture 

propagation path will be determined simultaneously. Eventually, the model can provide 

simulation results on time-varying stress concentrations, deformations and fracture paths. 

 

 

Figure 6.11 The flowchart showing the plan for the numerical model development. 

 

6.5 Summary 

This chapter presents a 3-D numerical model created from a finite element solver, ANSYS
TM

. 

The aim of developing such a model is to simulate the experimental process and compare its 
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results with those obtained from the photoelasticity tests in terms of stress concentrations and 

fracture propagations. First, some main concepts of the finite element method were reviewed 

followed by the detailed descriptions of the 3-D FE model including the model geometry, 

element attributes, meshing and boundary conditions. Second, we introduced two simplified 2-D 

models upon which the 3-D model was built and the validations of those numerical models 

against the L-A analytical solutions discussed in Chapter 4.  Last, as this study is only in its 

preliminary stage, some suggestions are presented for the future work. The final goal is to build a 

real-time 3-D dynamic model which will be used to mimic the whole experimental process. 

 

6.6 References 

Chatterjee, R., and M. Mukhopadhyay (2003), Numerical modelling of stress around a wellbore, 

SPE Asia Pacific Oil and Gas Conference and Exhibitio, Society of Petroleum Engineers, SPE-

80489-MS, Jakarta, Indonesia, 9-11 September. 

Li, Y., and D. R. Schmitt (1997), Effects of poisson's ratio and core stub length on bottomhole 

stress concentrations, International Journal of Rock Mechanics and Mining Sciences, 34(5), 761-

773. 

Li, Y. Y. (1997), Drilling induced core damage and its relationship to crustal in situ stress states 

and rock properties, Ph.D. Thesis, 231 pp, University of Alberta, Edmonton, Alberta. 

Liu, G. R., and S. S. Quek (2003), Finite element method [electronic resource] : a practical 

course / G.R. Liu, S. Quek, Oxford : Butterworth-Heinemann, 2003. 

Moaveni, S. (2008), Finite element analysis : theory and application with ANSYS / Saeed 

Moaveni, 3rd ed., Upper Saddle River, N.J. : Pearson Prentice Hall, c2008. 

Yazdizadeh, B. (2010), Comparison of different PLANE models in finite element software in 

structural mechancis, Proceeding of Yerevan State University, 3(6), 7. 

Zhang, L. (2011), Three-dimensional numberical models of drilling induced core fractures, MSc 

Thesis, University of Alberta, Edmonton, Alberta. 

Zienkiewicz, O. C., R. L. Taylor, and J. Z. Zhu (2013), Finite element method: its basis and 

fundamentals, 7th ed., Amsterdam ; Boston : Butterworth-Heinemann, 2013. 

 



119 

 

 Chapter 7 

Conclusions 

 

This thesis is part of the study for the development of engineered geothermal systems (EGS) 

funded by the Helmholtz-Alberta Initiative. Developing the geothermal energy technology in 

Alberta can decrease the emission of greenhouse gases and offer us alternative green energy 

resources for oil sands explorations (Chan, 2013). Stress is an important input for geothermal 

system simulations as it makes significant contributions for well stimulation and further controls 

the path of fluid migration. Knowledge of the in-situ stress and rock failure mechanisms enables 

us to better predict the consequential fracture growth in the formation of interest and enhance the 

geothermal energy production. This motivates us to improve the systematic analysis for stress 

estimations and provide a better insight for the mechanical behavior of tensile fractures around 

the borehole wall. This study, which integrates analytical models, numerical models and 

laboratory experiments, aims to provide a more comprehensive workflow from the 

geomechanical perspective and implement it into the geothermal system design. 

 

7.1 Contributions of This Thesis 

A feasible method to build a complete in-situ stress tensor is by utilizing the relationship 

between the failure mechanism of the borehole fractures and stresses, and a direct way to achieve 

the fracture information around a borehole is through the interpretation of borehole images (e.g., 

formation ultrasonic image logs). This approach has been developed and implemented 

extensively in numerous studies. Chapter 3 of this study reviewed some of the principals 

including the analytical solutions of borehole stress calculations, the introduction of borehole 

fractures and the usage of image logs. Moreover, to simulate the behavior of tensile fractures 

around the borehole wall, several photoelasticity tests have been carried out which is also 

discussed in Chapter 3.  

These lab experiments reveal the following observations: 
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 For borehole wall fractures, axial tensile fractures tend to occur around the borehole 

when one of the principal stresses is aligned with the hole’s trajectory; otherwise, en 

echelon tensile fractures occur. 

 For bottom hole fractures, their strike in multiple directions as there is no lateral 

confining pressure, but they propagate along the hole axis initially, and then reoriented  to 

open normal to the minimum principal stress. 

With the increasing need of unconventional reservoir explorations and developments, more and 

more formations with intrinsic anisotropic properties are becoming the targets of deviated 

drilling. The second part of this study is to investigate the manner in which the anisotropy affects 

the borehole stresses and DITF growths. The closed-form solutions based on those pioneer works 

were coded generating direct visualizations of the stresses around a borehole wall and DITF 

traces on an unwrapped borehole wall. As such, the factor of formation anisotropy can be 

integrated into the systematic borehole stability analysis and far-filed stress estimations. The 

results of this section include: 

 The L-A solution for borehole stress calculations in the anisotropic formation can also be 

reduced to the isotropic case. 

 The MATLAB
TM

 code developed for borehole stress visualizations provides us direct 

visualizations on stress concentrations around any arbitrarily oriented borehole in any 

arbitrarily oriented anisotropic formation.  

 An example of the utilization of the MATLAB
TM

 program is presented showing us for 

this specific borehole orientation (β=40°, α=0°), vertical transversely isotropic formations 

can change the tendency of fracture initiations in different ways depending on the 

faulting regime. 

 The other MATLAB
TM

 based program can show us DITF traces on the unwrapped 

arbitrarily oriented borehole wall under different stress conditions in either isotropic or 

anisotropic formations. This program can be used to compare with the fractures observed 

from image logs. 

 En echelon tensile fractures appear to be in asymmetrical pairs. 
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The last section of this study concentrated on presenting the static 3-D numerical model created 

in a finite element software, called ANSYS
TM

. The goal of numerical model development is to 

simulate the photoelastity tests dynamically in three dimensions and then make improvements 

based upon it for predictions in more complex cases. As this part of work is in its preliminary 

stage, we only introduced details of the finite element model (e.g., geometry, elements, BCs, 

etc.) and its validations. A roadmap for the future study was also provided. 

 

7.2 Suggestions for Future Work 

To better predict fracture behavior, future work should focus on two aspects: improving 

photoelasticity tests and building a more advanced finite element model. Regarding to the lab 

experiments, more sophisticated experimental setups are needed especially if we want to apply 

lateral confining pressure on the specimen. A higher rotation speed of the drilling bit is necessary 

to drill glasses as a speed lower than the requirement can lead to micro-cracks and flaws on the 

surface of the hole. Those flaws and cracks can promote the generations of tensile fractures 

resulting in an underestimated fracture initiation pressure, and they can even change the tensile 

fracture path. Furthermore, to further study the impacts of formation anisotropy, we can try to 

find an anisotropic transparent material to substitute glasses, but this kind of material is very 

difficult to achieve. Last, more than one camera should be placed in front of the specimen in 

different positions during the tests in order to avoid any blind spot for crack detection. 

The advanced version of the finite element model should be in dynamic mode as it could 

simulate the lab process in real-time. Therefore, with the time-varying load being applied on the 

system, stresses inside the specimen can be re-calculated and re-distributed. The change of stress 

is significantly especially after the moment of fracture initiation. Eventually, this model can 

provide the final fracture path and the specimen deformation. 
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Chan, J. (2013), Subsurface geophysical characterization of the crystalline canadian shield in 

Northeastern Alberta: Implications for geothermal development, M.Sc. thesis, 259 pp, University 

of Alberta, Edmonton, Canada. 
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Appendix A 

Principles of Birefringence and Photoelasticity 

The purpose of this Appendix is to provide the necessary background information to be able to 

understand the origin of the photoelastic fringes observed in the stressed glass blocks mentioned 

in Chapter 3. In order to fully understand the phenomenon of birefringence, we briefly review 

the nature of light and its polarization.  Visible light propagates as an electromagnetic wave with 

wavelengths range from ~400 nm (violet) to ~700 nm (red). Wavelengths shorter and longer than 

this are in the ultraviolet and infrared portions of the electromagnetic spectrum, respectively. An 

electromagnetic wave consists of oscillating transverse magnetic (H) and electric (E) field 

components.  In a linearly polarized wave (Fig. A.1), the field vectors of these are perpendicular 

to one another.  The wave polarization is described by the plane of the E field vector as 

illustrated in Fig. A.1.  

 

 

Figure A.1  Linearly polarized electromagnetic (EM) waves, consisting of alternating electric E 

field and magnetic H fields, propagating to the right along the x-axis with speed v.  a) Ez with E 

lying in the vertical x-z plane.  b) Ey with E lying in the horizontal x-y plane. Figure courtesy of 

D. R Schmitt from Rock Physics Class Notes. 
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In Fig. A.1, we see the two waves both of which are drawn propagating at the same speed v.  

This situation occurs in vacuum and optically isotropic material.  If the material is optically 

isotropic then the originally polarization of the light does not change upon refraction into the 

second medium. Generally, cubic and transparent minerals such as halite and sylvite are optically 

isotropic and will not change the transmitted polarization of the incident light.  Glass, too, in the 

absence of residual stresses should also be optically isotropic.  This will not be the case in other 

minerals, however.  

Before proceeding, it is useful to discuss the speed of light in materials. The refractive index of a 

material demonstrates the way that light or other electromagnetic waves travel inside this 

material, and its mathematical form is the simple ratio 

𝑛 =
𝑐

𝑣
         (A.1) 

where c is the speed of light in vacuum, currently defined to be 299,792,458m/s (according to the 

NIST reference on Constants, Units, and Uncertainty), and v is the speed in that material. Based 

on Snell’s law, we can also determine how the light path is changed after passing an interface of 

two different (but optically isotropic) materials (Fig. A.2) where Snell’s law is defined as 

𝑛1𝑠𝑖𝑛𝜃1 = 𝑛2𝑠𝑖𝑛𝜃2     (A.2) 

where n1 and n2 are the refractive indices of these two materials, respectively, and 𝜃1and 𝜃2are 

the respective angles of incidence and refraction.  
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Figure A.2 Illustration of light refraction when a beam of light traveling from a material (no 

color) with an index of refraction of n1 into a block (in grey) with an index of refraction of n2. 

This process obeys Snell’s law of refraction. Arrows indicate directions of the light propagation. 

However, when one of the two materials is optically anisotropic, the incident light beam is 

separated upon refraction into two perpendicularly polarized beams each traveling in the same 

material with different speeds v1 and v2, and this phenomenon is called double refraction or 

birefringence. In order to illustrate this, consider the somewhat simplified case in Fig. A.3 that 

shows a green and a red components of white light propagating in the x direction within, say, air 

at a speed v and wavelength .  Note that this wave has already been polarized at an arbitrary 

angle rotated within the y-z plane, that is the original randomly polarized white light passed 

through a polaroid filter, for example. This polarized wave is incident to an optically anisotropic 

crystal (in yellow) with thickness t.  

The crystal structure is a principal factor for the polarization directions and consequently the 

energy of the incoming wave is partitioned into two components polarized in the, here 

conveniently chosen, fast z and slow y directions. The polarizations of those two beams are 

orthogonal to each other, and their directions correlate with the principal elliptical axes of the 

material. The principal axes are defined as the coordinate axes of a system of reference for which 

the dielectric permittivity tensor is diagonalized (Chartier, 2005).  

Within the material these two polarizations will respectively propagate at speeds v1 and v2 with 

corresponding wavelengths 1 and 2.  Fig. A.3 shows green (a) and red (b) components with 
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shorter and longer wavelengths in air denoted by the colored ’s.  The corresponding 

wavelengths of the ‘split’ polarizations within the material will necessarily be shorter because 

lower speeds there and because v1 > v2 then 1 > 2.  The split waves transit the material and exit 

it again into isotropic air at the right side of the crystal without disruption to their polarization 

whereupon both polarizations again travel at the same speed v and wavelength  as the original 

incident wave.  However, the phase of these two polarizations are now shifted by a length  

which depends on v1 and v2, the thickness t, and the frequency f = v/.   The phase is shown as 

a shift in space in Fig. A.3 but it could just as easily be described as a retardation angle  by: 

t











12

11
2


      (A.3) 

If  = 2n where n = 0, ±1, ±2 … then the two waves are in phase with one another.  In contrast 

if  = n where n = 0, ±1, ±2 … then the waves are completely out of phase. 
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Figure A.3  Illustration of the development of phase retardation for a shorter (green) and longer 

(red) wavelength portions of a beam of polarized white light.  The light propagates from left to 

right in the figure.  The speed of light in the air is v, while the material polarizes the light into a 

vertically (a) and horizontally (b) polarized beams that propagate with speeds v1 and v2, 

respectively. These two polarizations persist upon exiting the crystal with different phase 

retardations δ shown in green and red to indicate they will differ for the different colours (i.e. 

wavelengths or frequencies).  

In Fig. A.3 the different polarizations propagate independently once they leave the material.  

Suppose one now places a second polarizing filter to the right of the material.  The analyzer may 

be rotated in order to change the orientation of the polarization that it passes; if oriented 

vertically or horizontally it will pass only the z- or the y-polarized waves, respectively. If 

oriented at some other angle, however, it will partially pass both the z- and y-polarized waves to 

produce a new wave with a single polarization direction that was controlled by the rotation of the 

analyzer. If the two split waves were in phase (case 1:  = 2n ) then these components perfectly 

add together for strong constructive interference and the light can be observed.  In contrast, if 

they are perfectly out of phase (case 2:  = n ) then they will interfere destructively; effectively 

this frequency (colour) cannot be observed. At other values of  portions of the light will still 

have some degree of constructive interference and their frequency is still passed.  The observer 

sees the original spectrum of the white light less those frequencies that experience destructive 

interference; and this is then perceived by the human eye as having color. Conversely, the color 

seen tells us what the phase retardation is. 

Birefringence can be either natural or induced. For natural birefringence, the orientations of the 

principal axes or intrinsic optical anisotropies are resulted from the layout of the crystalline 

lattice (Chartier, 2005). Many materials exhibit inherent birefringence, such as quartz (SiO2) and 

calcite (CaOCO2), and they are utilized in various optical instruments (Cloud, 2008). Another 

class of birefringence is induced by the unsymmetrical external environment, for instance, 

mechanical stresses or a magnetic field, and one of the coordinate axes is aligned with the 

principal direction of the external field (Chartier, 2005).  
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The stress induced birefringence is also called photoelasticity. This gives rise to the stress-optic 

law. For a slab with thickness d, being immersed in a fluid with refractive index n0, under an 

unsymmetrical mechanical stress field, its absolute retardations can be expressed in terms of the 

principal stresses, σ1 and σ2, its absolute photoelastic coefficients, C1 and C2, and its principal 

refractive indexes n1 and n2. The mathematical form is as follows (Cloud, 2008) 

𝑅1 = (𝐶1𝜎1 + 𝐶2𝜎2)𝑑 

𝑅2 = (𝐶2𝜎1 + 𝐶1𝜎2)𝑑        (A.4) 

or 

𝑅 = 𝑅1 − 𝑅2 = (𝐶1 − 𝐶2)(𝜎1 − 𝜎2)𝑑    (A.5) 

where R is the relative retardation, and it can be expressed as 

𝑅 = (
𝑛1−𝑛2

𝑛0
)𝑑            (A.6) 

Moreover, the stress-optic coefficient, Cσ, is defined as 

𝐶𝜎 = 𝐶1 − 𝐶2          (A.7) 

At last, we can get (Cloud, 2008) 

𝑅 = 𝐶𝜎(𝜎1 − 𝜎2)          (A.8) 

That said, the birefringence is directly proportional to the principal stress difference and the 

refraction indices difference. 

The typical configuration for a photoelasticity test as illustrated in Fig. A.4 usually consists of 

two polarizing filters and an optical sample having stress birefringent effects. A beam of natural 

light first passes through a polarizing filter, called ‘polarizer’, generating a polarized light. Then 

two beams of polarized light with different speeds are generated within the optical sample due to 

the photoelastic effect. Their polarization directions are orthogonal to each other and are 

determined by the external principal stresses, 𝜎1  and 𝜎2 . Last, when those two beams travel 

through the second polarizing filter, called ‘analyzer’, their interference between each other lead 
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to a certain visible spectrum as described above. By rotating the analyzer, the characteristic of 

color spectrum can be changed.  

 

Figure A.4 Transmission of a beam of natural light in the photoelasticity experimental setup. 

Green arrows indicate polarization directions of light. Polarizer is the first polarizing filter that 

the light encounters forming in a beam of polarized light. The cube represents an optical sample 

with stress birefringent effects. After traveling through the sample, the light is separated into two 

beams of polarized light with different speeds. Upon rotating the second polarizing filter, also 

known as the analyzer, we can control the appearance of the color spectrum. 

In our study, we discovered that a LED desktop monitor set with a ‘white’ background emits 

polarized light directly obviating the need for an initial polarizer; however, the orientation of the 

light polarization is not known. The analyzer is mounted on the lens of the camera. During the 

experiments, the direction of the analyzer is rotated to be perpendicular to the direction of the 

polarizer in order to achieve the desired color spectrum.  Glass cubes are selected as our optical 

sample. 

References 

Chartier, G. (2005), Introduction to optics, Springer, c2005., New York. 
Cloud, G. (2008), Optical methods in experimental mechanics: Part 30: Photoelasticity II - 
Birefringence in materials, Experimental Techniques, 32(1), 13-16. 
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Appendix B 

MATLAB Code for Borehole Stress Calculation in Anisotropic 

Materials 

Stress_anisotropic_plain.m 

% This script calculates the stress concentration around the borehole 
% wall in anisotropic or isotropic formations. 
clf; 
clear; 
close all; 

  
a=1; 
taoxy0=0; 
taoxz0=0; 
taoyz0=0; 
c11=33.20; 
c13=4.98; 
c33=22.184; 
c44=10.906; 
c66=14.60; 
sigmax0=1; 
sigmay0=0; 
sigmaz0=0; 

  
pw=0; 
%% stress transformation 
stress=stress_transformation(sigmax0,sigmay0,sigmaz0,taoyz0,taoxz0,taoxy0,60,

0,0,0);  
% ATTENTION: the borehole angle in this part should be the same as the later 

one when you transform the compliance matrix. 

  
sigmax0=stress(1); 
sigmay0=stress(2); 
sigmaz0=stress(3); 
taoxy0=stress(6); 
taoxz0=stress(5); 
taoyz0=stress(4); 

  
%% elastic constants 
c12=c11-2*c66; 
c22=c11; 
c23=c13; 

  
S=[c11,c12,c13,0,0,0; 
    c12,c22,c23,0,0,0; 
    c13,c23,c33,0,0,0; 
    0,0,0,c44,0,0; 
    0,0,0,0,c44,0; 
    0,0,0,0,0,c66]; 
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A1=S^(-1); 
A=compliance_transformation(0,0,60,0,A1); %rectilinear anisotropy symmetry 

plane is horizontal and the borehole is horizontal as well. 
a11=A(1,1); 
a12=A(1,2); 
a13=A(1,3); 
a21=A(2,1); 
a22=A(2,2); 
a23=A(2,3); 
a33=A(3,3); 
a34=A(3,4); 
a35=A(3,5); 
a36=A(3,6); 
a44=A(4,4); 
a66=A(6,6); 

  
%% beta 
beta55=A(5,5)-(A(5,3)*A(5,3))/a33; 
beta45=A(4,5)-(A(4,3)*A(5,3))/a33; 
beta44=A(4,4)-(A(4,3)*A(4,3))/a33; 
beta11=A(1,1)-(A(1,3)*A(1,3))/a33; 
beta16=A(1,6)-(A(1,3)*A(6,3))/a33; 
beta12=A(1,2)-(A(1,3)*A(2,3))/a33; 
beta66=A(6,6)-(A(6,3)*A(6,3))/a33; 
beta26=A(2,6)-(A(2,3)*A(6,3))/a33; 
beta22=A(2,2)-(A(2,3)*A(2,3))/a33; 
beta15=A(1,5)-(A(1,3)*A(5,3))/a33; 
beta14=A(1,4)-(A(1,3)*A(4,3))/a33; 
beta56=A(5,6)-(A(5,3)*A(6,3))/a33; 
beta25=A(2,5)-(A(2,3)*A(5,3))/a33; 
beta46=A(4,6)-(A(4,3)*A(6,3))/a33; 
beta24=A(2,4)-(A(2,3)*A(4,3))/a33; 
%% miu1&miu2 
p1=[beta55,-2*beta45,beta44]; 
p2=[beta11,-2*beta16,(2*beta12+beta66),-2*beta26,beta22]; 

  
miu11=roots(p1); 
miu22=roots(p2); 

  
miu3=miu11(1); 
miu1=miu22(1); 
miu2=miu22(3); 

  
%% lamda1 2 3 
l2_miu1=beta55*miu1^2-2*beta45*miu1+beta44; 
l2_miu2=beta55*miu2^2-2*beta45*miu2+beta44; 
l2_miu3=beta55*miu3^2-2*beta45*miu3+beta44; 

  
l3_miu1=beta15*miu1^3-(beta14+beta56)*miu1^2+(beta25+beta46)*miu1-beta24; 
l3_miu2=beta15*miu2^3-(beta14+beta56)*miu2^2+(beta25+beta46)*miu2-beta24; 
l3_miu3=beta15*miu3^3-(beta14+beta56)*miu3^2+(beta25+beta46)*miu3-beta24; 

  
if l2_miu1==0 
    lamda1=0; 
else 
lamda1=-l3_miu1/l2_miu1; 



132 

 

end 

  
if l2_miu2==0 
    lamda2=0; 
else 
lamda2=-l3_miu2/l2_miu2; 
end 

  
if l2_miu3==0 
    lamda3=0; 
else 
lamda3=-l3_miu3/l2_miu3; 
end 

  
%% triangle 
triangle=miu2-miu1+lamda2*lamda3*(miu1-miu3)+lamda1*lamda3*(miu3-miu2); 

  
%% 

  
%t=0:(2*pi/1000):2*pi; 
X1=linspace(0,5,1001); 
Y1=linspace(-5,5,2002); 
[x,y]=meshgrid(X1,Y1); 

  
for jj=1:2002 
    for vv=1:1001 
        r=((x(jj,vv))^2+(y(jj,vv))^2); 
        if r<a 
            x(jj,vv)=NaN; 
            y(jj,vv)=NaN; 
        end 
        if x(jj,vv)==0      % when x=0 or y=0, it is not stable, so I get rid 

of this kind of value. 
            x(jj,vv)=NaN; 
        end 
        if y(jj,vv)==0 
            y(jj,vv)=NaN; 
        end 
    end 
end 
sigmax=zeros(2002,2002); 
sigmay=zeros(2002,2002); 
sigmaz=zeros(2002,2002); 
taoxy=zeros(2002,2002); 
taoxz=zeros(2002,2002); 
taoyz=zeros(2002,2002); 

  
hoop=zeros(2002,2002); 
radial=zeros(2002,2002); 

  
z1=x+miu1.*y; 
z2=x+miu2.*y; 
z3=x+miu3.*y; 

  
eta1=(z1./a+((z1./a).^2-1-miu1^2).^0.5)./(1-1i*miu1); 
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eta2=(z2./a+((z2./a).^2-1-miu2^2).^0.5)./(1-1i*miu2); 
eta3=(z3./a+((z3./a).^2-1-miu3^2).^0.5)./(1-1i*miu3); 

  
phi1=-(1./(2*triangle.*eta1.*((z1./a).^2-1-miu1^2).^0.5)).*((1i*taoxy0-

sigmay0+pw).*(miu2-lamda2*lamda3*miu3)+(taoxy0-

1i*sigmax0+1i*pw).*(lamda2*lamda3-1)+(taoyz0-1i*taoxz0)*lamda3*(miu3-miu2)); 
phi2=-(1./(2*triangle.*eta2.*((z2./a).^2-1-miu2^2).^0.5)).*((1i*taoxy0-

sigmay0+pw).*(lamda1*lamda3*miu3-miu1)+(taoxy0-1i*sigmax0+1i*pw).*(1-

lamda1*lamda3)+(taoyz0-1i*taoxz0)*lamda3*(miu1-miu3)); 
phi3=-(1./(2*triangle.*eta3.*((z3./a).^2-1-miu3^2).^0.5)).*((1i*taoxy0-

sigmay0+pw).*(lamda2*miu1-lamda1*miu2)+(taoxy0-1i*sigmax0+1i*pw).*(lamda1-

lamda2)+(taoyz0-1i*taoxz0)*(miu2-miu1)); 

  
sigmax(1:2002,1002:2002)=sigmax0+2.*real(miu1^2.*phi1+miu2^2.*phi2+lamda3*miu

3^2.*phi3); 
sigmay(1:2002,1002:2002)=sigmay0+2.*real(phi1+phi2+lamda3.*phi3); 
taoxy(1:2002,1002:2002)=taoxy0-

2.*real(miu1.*phi1+miu2.*phi2+lamda3*miu3.*phi3); 
taoxz(1:2002,1002:2002)=taoxz0+2.*real(lamda1*miu1.*phi1+lamda2*miu2.*phi2+mi

u3.*phi3); 
taoyz(1:2002,1002:2002)=taoyz0-2.*real(lamda1.*phi1+lamda2.*phi2+phi3); 
sigmaz(1:2002,1002:2002)=sigmaz0-

(a13*2.*real((miu1^2).*phi1+(miu2^2).*phi2+lamda3*miu3^2.*phi3)+a23*(2.*real(

phi1+phi2+lamda3.*phi3))+a34.*(-

2.*real(lamda1.*phi1+lamda2.*phi2+phi3))+a35.*(2.*real(lamda1*miu1.*phi1+lamd

a2*miu2.*phi2+miu3.*phi3))+a36.*(-

2.*real(miu1.*phi1+miu2.*phi2+lamda3*miu3.*phi3)))./a33; 

  
theta=atan2(y,x); 

  
hoop(1:2002,1002:2002)=(sin(theta)).^2.*sigmax(1:2002,1002:2002)+(cos(theta))

.^2.*sigmay(1:2002,1002:2002)-sin(2.*theta).*taoxy(1:2002,1002:2002); 
radial(1:2002,1002:2002)=sigmax(1:2002,1002:2002).*(cos(theta)).^2+(sin(theta

)).^2.*sigmay(1:2002,1002:2002)+sin(2.*theta).*taoxy(1:2002,1002:2002); 

  
%% the other half 
X2=linspace(-5,0,1001); 
Y2=linspace(-5,5,2002); 
[x,y]=meshgrid(X2,Y2); 

  
for jj=1:2002 
    for vv=1:1001 
        r=((x(jj,vv))^2+(y(jj,vv))^2); 
        if r<a 
            x(jj,vv)=NaN; 
            y(jj,vv)=NaN; 
        end 
        if x(jj,vv)==0 
            x(jj,vv)=NaN; 
        end 
        if y(jj,vv)==0 
            y(jj,vv)=NaN; 
        end 
    end 
end 
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z1=x+miu1.*y; 
z2=x+miu2.*y; 
z3=x+miu3.*y; 

  
eta1=(-z1./a+((z1./a).^2-1-miu1^2).^0.5)./(1-1i*miu1); 
eta2=(-z2./a+((z2./a).^2-1-miu2^2).^0.5)./(1-1i*miu2); 
eta3=(-z3./a+((z3./a).^2-1-miu3^2).^0.5)./(1-1i*miu3); 

  
phi1=-(1./(2*triangle.*eta1.*((z1./a).^2-1-miu1^2).^0.5)).*((1i*taoxy0-

sigmay0+pw).*(miu2-lamda2*lamda3*miu3)+(taoxy0-

1i*sigmax0+1i*pw).*(lamda2*lamda3-1)+(taoyz0-1i*taoxz0)*lamda3*(miu3-miu2)); 
phi2=-(1./(2*triangle.*eta2.*((z2./a).^2-1-miu2^2).^0.5)).*((1i*taoxy0-

sigmay0+pw).*(lamda1*lamda3*miu3-miu1)+(taoxy0-1i*sigmax0+1i*pw).*(1-

lamda1*lamda3)+(taoyz0-1i*taoxz0)*lamda3*(miu1-miu3)); 
phi3=-(1./(2*triangle.*eta3.*((z3./a).^2-1-miu3^2).^0.5)).*((1i*taoxy0-

sigmay0+pw).*(lamda2*miu1-lamda1*miu2)+(taoxy0-1i*sigmax0+1i*pw).*(lamda1-

lamda2)+(taoyz0-1i*taoxz0)*(miu2-miu1)); 

  
sigmax(1:2002,1:1001)=sigmax0+2.*real(miu1^2.*phi1+miu2^2.*phi2+lamda3*miu3^2

.*phi3); 
sigmay(1:2002,1:1001)=sigmay0+2.*real(phi1+phi2+lamda3.*phi3); 
taoxy(1:2002,1:1001)=taoxy0-2.*real(miu1.*phi1+miu2.*phi2+lamda3*miu3.*phi3); 
taoxz(1:2002,1:1001)=taoxz0+2.*real(lamda1*miu1.*phi1+lamda2*miu2.*phi2+miu3.

*phi3); 
taoyz(1:2002,1:1001)=taoyz0-2.*real(lamda1.*phi1+lamda2.*phi2+phi3); 
sigmaz(1:2002,1:1001)=sigmaz0-

(a13*2.*real((miu1^2).*phi1+(miu2^2).*phi2+lamda3*miu3^2.*phi3)+a23.*(2.*real

(phi1+phi2+lamda3.*phi3))+a34.*(-

2.*real(lamda1.*phi1+lamda2.*phi2+phi3))+a35.*(2.*real(lamda1*miu1.*phi1+lamd

a2*miu2.*phi2+miu3.*phi3))+a36.*(-

2.*real(miu1.*phi1+miu2.*phi2+lamda3*miu3.*phi3)))./a33; 

  
theta=atan2(y,x); 

  
hoop(1:2002,1:1001)=(sin(theta)).^2.*sigmax(1:2002,1:1001)+(cos(theta)).^2.*s

igmay(1:2002,1:1001)-sin(2.*theta).*taoxy(1:2002,1:1001); 
radial(1:2002,1:1001)=sigmax(1:2002,1:1001).*(cos(theta)).^2+(sin(theta)).^2.

*sigmay(1:2002,1:1001)+sin(2.*theta).*taoxy(1:2002,1:1001); 

  
X(1:1001)=X2; 
X(1002:2002)=X1; 

  
[x,y]=meshgrid(X,Y2); 

  
figure(1); 
pcolor(x,y,sigmax); 
title('sigmax'); 
shading interp; 
colorbar; 
axis square; 

  
figure(2); 
pcolor(x,y,sigmay); 
title('sigmay'); 
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 shading interp; 
 colorbar; 
 axis square; 

  
figure(3); 
pcolor(x,y,sigmaz); 
title('sigmaz & axial stress'); 
shading interp; 
 colorbar; 
 axis square; 

  
figure(4); 
pcolor(x,y,taoxy); 
title('taoxy'); 
shading interp; 
 colorbar; 
 axis square; 

  
figure(5); 
pcolor(x,y,taoxz); 
title('taoxz'); 
 shading interp; 
 colorbar; 
 axis square; 

  
 figure(6); 
pcolor(x,y,taoyz); 
title('taoyz'); 
 shading interp; 
 colorbar; 
 axis square; 

  
figure(7); 
 pcolor(x,y,hoop); 
title('hoop'); 
 shading interp; 
colorbar; 
axis square; 

  
figure(8); 
 pcolor(x,y,radial); 
 title('radial stress'); 
 shading interp; 
colorbar; 
axis square; 
  

 

Stress_transformation.m 

function 

[sigma_borehole]=stress_transformation(xx,yy,zz,taoyz,taozx,taoxy,beta1,alpha

1,beta2,alpha2) 
% This function calculates the stress transformation from stress coordinate 
% to borehole coordinate. (Maria's thesis) 
% beta1, alpha1 are angle for borehole system with respect to the global 
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% coordinate system 
% beta2, alpha2 are angle for global system with respect to the global one. 
% beta is inclination, alpha is azimuth counterclockwise from x axis. 

  
sigma=[xx;yy;zz;taoyz;taozx;taoxy]; 

  
beta1=beta1*pi/180; 
alpha1=alpha1*pi/180; 
beta2=beta2*pi/180; 
alpha2=alpha2*pi/180; 

  
% sigma_borehole=O*R'*sigma 

  
lxa=cos(beta1)*cos(alpha1); 
mxa=cos(beta1)*sin(alpha1); 
nxa=-sin(beta1); 
lya=-sin(alpha1); 
mya=cos(alpha1); 
nya=0; 
lza=sin(beta1)*cos(alpha1); 
mza=sin(beta1)*sin(alpha1); 
nza=cos(beta1); 

  
O=[lxa^2,mxa^2,nxa^2,2*mxa*nxa,2*nxa*lxa,2*lxa*mxa; 
    lya^2,mya^2,nya^2,2*mya*nya,2*nya*lya,2*lya*mya; 
    lza^2,mza^2,nza^2,2*mza*nza,2*nza*lza,2*lza*mza; 
    lya*lza,mya*mza,nya*nza,mya*nza+mza*nya,nya*lza+nza*lya,lya*mza+lza*mya; 
    lza*lxa,mza*mxa,nza*nxa,mxa*nza+mza*nxa,nxa*lza+nza*lxa,lxa*mza+lza*mxa; 
    lxa*lya,mxa*mya,nxa*nya,mxa*nya+mya*nxa,nxa*lya+nya*lxa,lxa*mya+lya*mxa]; 

  
lx=cos(beta2)*cos(alpha2); 
mx=cos(beta2)*sin(alpha2); 
nx=-sin(beta2); 
ly=-sin(alpha2); 
my=cos(alpha2); 
ny=0; 
lz=sin(beta2)*cos(alpha2); 
mz=sin(beta2)*sin(alpha2); 
nz=cos(beta2); 

  
R=[lx^2,mx^2,nx^2,mx*nx,nx*lx,lx*mx; 
    ly^2,my^2,ny^2,my*ny,ny*ly,ly*my; 
    lz^2,mz^2,nz^2,mz*nz,nz*lz,lz*mz; 
    2*ly*lz,2*my*mz,2*ny*nz,my*nz+mz*ny,ny*lz+nz*ly,ly*mz+lz*my; 
    2*lz*lx,2*mz*mx,2*nz*nx,mx*nz+mz*nx,nx*lz+nz*lx,lx*mz+lz*mx; 
    2*lx*ly,2*mx*my,2*nx*ny,mx*ny+my*nx,nx*ly+ny*lx,lx*my+ly*mx]; 

  
O(abs(O)<power(10,-10))=0; 
R(abs(R)<power(10,-10))=0; 

  
sigma_borehole=O*(R.')*sigma; 
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compliance_transformation.m 

function [A]=compliance_transformation(beta1,alpha1,beta2,alpha2,Compliance) 
% This function calculates the compliance transformation 
% A=T2*T1t*H*T1*T2t (Maria, 2010) 
% t1=tilt angle of the anisotropy with respect to the global coordinate 
% a1=azimuth of the anisotropy with respect to the global coordinate 
% t2=tilt angle of the borehole with respect to the global coordinate 
% a2=azimuth of the borehole with respect to the global coordinate. 
beta1=beta1*pi/180; 
alpha1=alpha1*pi/180; 
beta2=beta2*pi/180; 
alpha2=alpha2*pi/180; 
%% direction cosines of the unit vector in the rectilinear anisotropy 

directions 

  
lxa=cos(beta1)*cos(alpha1); 
mxa=cos(beta1)*sin(alpha1); 
nxa=-sin(beta1); 
lya=-sin(alpha1); 
mya=cos(alpha1); 
nya=0; 
lza=sin(beta1)*cos(alpha1); 
mza=sin(beta1)*sin(alpha1); 
nza=cos(beta1); 

  
T1=[lxa^2,mxa^2,nxa^2,2*mxa*nxa,2*nxa*lxa,2*lxa*mxa; 
    lya^2,mya^2,nya^2,2*mya*nya,2*nya*lya,2*lya*mya; 
    lza^2,mza^2,nza^2,2*mza*nza,2*nza*lza,2*lza*mza; 
    lya*lza,mya*mza,nya*nza,mya*nza+mza*nya,nya*lza+nza*lya,lya*mza+lza*mya; 
    lza*lxa,mza*mxa,nza*nxa,mxa*nza+mza*nxa,nxa*lza+nza*lxa,lxa*mza+lza*mxa; 
    lxa*lya,mxa*mya,nxa*nya,mxa*nya+mya*nxa,nxa*lya+nya*lxa,lxa*mya+lya*mxa]; 

  
%% direction cosines of the unit vector in the borehole coordinate 

  
lx=cos(beta2)*cos(alpha2); 
mx=cos(beta2)*sin(alpha2); 
nx=-sin(beta2); 
ly=-sin(alpha2); 
my=cos(alpha2); 
ny=0; 
lz=sin(beta2)*cos(alpha2); 
mz=sin(beta2)*sin(alpha2); 
nz=cos(beta2); 

  
T2=[lx^2,mx^2,nx^2,mx*nx,nx*lx,lx*mx; 
    ly^2,my^2,ny^2,my*ny,ny*ly,ly*my; 
    lz^2,mz^2,nz^2,mz*nz,nz*lz,lz*mz; 
    2*ly*lz,2*my*mz,2*ny*nz,my*nz+mz*ny,ny*lz+nz*ly,ly*mz+lz*my; 
    2*lz*lx,2*mz*mx,2*nz*nx,mx*nz+mz*nx,nx*lz+nz*lx,lx*mz+lz*mx; 
    2*lx*ly,2*mx*my,2*nx*ny,mx*ny+my*nx,nx*ly+ny*lx,lx*my+ly*mx]; 

  
T1(abs(T1)<power(10,-10))=0; 
T2(abs(T2)<power(10,-10))=0; 
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%% 
A=T2*(T1.')*Compliance*T1*(T2.'); 
end 
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Appendix C 

MATLAB Code for Borehole Tensile Fracture Tracing in 

Anisotropic Materials 

% Fracture tracing (tensile only). Anisotropice case 
% This program doesn't consider fracture width. 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%COPYRIGHT%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program was written for research purposes. 
% AUTHOR:Qing Jia 
% University of Alberta 
% qjia@ulaberta.ca 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%COPYRIGHT ENDS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
clear all; 
close all; 

  
%% dimensions of the mesh (can be changed) 
length0=1; 
width=2; 
nex=200; 
ney=200;   % Number of elements along x and y axis. 
% nex>=ney 

  
%%  
Nelement = nex*ney;   % Number of elements in the Mesh; 
NodeEle = 4;        % Number of nodes per element 
npx = nex+1;         
npy = ney+1;          % Number of nodes along x and y axis 
nnode = npx*npy;      % Number of nodes in the whole mesh 

  
%% Discretization 
nx = linspace(0,length0,npx); 
ny = linspace(0,width,npy); 
[x,y]=meshgrid(nx,ny); 

  
%% Nodal connectivity matrix 
coordinates = [x(:) y(:)]; 
[m,n] = size(coordinates); % m is the number of points in the mesh 

  
theta=coordinates(:,1); 
height=coordinates(:,2); 

  
theta=2*pi.*theta/length0; 

  
%% stress deteremination and assign to each point 
% assume the stress is aligned with the global coordinate. 
sigmax0 = 50; 
sigmay0 = 10; 
Sv = 20; 
inclination = 50; 
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azimuth = 40; 
poisson = 0.25; 
pw = 0; 
sigma_borehole=stress_transformation(sigmax0,sigmay0,Sv,0,0,0,inclination,azi

muth,0,0); 

  
sigmax0=sigma_borehole(1); 
sigmay0=sigma_borehole(2); 
sigmaz0=sigma_borehole(3); 
taoxy0=sigma_borehole(6); 
taoxz0=sigma_borehole(5); 
taoyz0=sigma_borehole(4); 

  
% elastic constants 
c11=40.2326; 
c13=15.2456; 
c33=28.2326; 
c44=9.8684; 
c66=12; 
c12=c11-2*c66; 
c22=c11; 
c23=c13; 

  
S=[c11,c12,c13,0,0,0; 
    c12,c22,c23,0,0,0; 
    c13,c23,c33,0,0,0; 
    0,0,0,c44,0,0; 
    0,0,0,0,c44,0; 
    0,0,0,0,0,c66]; 

  
A1=S^(-1); 
A=compliance_transformation(0,0,inclination,azimuth,A1); 

  
a11=A(1,1); 
a12=A(1,2); 
a13=A(1,3); 
a21=A(2,1); 
a22=A(2,2); 
a23=A(2,3); 
a33=A(3,3); 
a34=A(3,4); 
a35=A(3,5); 
a36=A(3,6); 
a44=A(4,4); 
a66=A(6,6); 

  
beta55=A(5,5)-(A(5,3)*A(5,3))/a33; 
beta45=A(4,5)-(A(4,3)*A(5,3))/a33; 
beta44=A(4,4)-(A(4,3)*A(4,3))/a33; 
beta11=A(1,1)-(A(1,3)*A(1,3))/a33; 
beta16=A(1,6)-(A(1,3)*A(6,3))/a33; 
beta12=A(1,2)-(A(1,3)*A(2,3))/a33; 
beta66=A(6,6)-(A(6,3)*A(6,3))/a33; 
beta26=A(2,6)-(A(2,3)*A(6,3))/a33; 
beta22=A(2,2)-(A(2,3)*A(2,3))/a33; 
beta15=A(1,5)-(A(1,3)*A(5,3))/a33; 
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beta14=A(1,4)-(A(1,3)*A(4,3))/a33; 
beta56=A(5,6)-(A(5,3)*A(6,3))/a33; 
beta25=A(2,5)-(A(2,3)*A(5,3))/a33; 
beta46=A(4,6)-(A(4,3)*A(6,3))/a33; 
beta24=A(2,4)-(A(2,3)*A(4,3))/a33; 

  
p1=[beta55,-2*beta45,beta44]; 
p2=[beta11,-2*beta16,(2*beta12+beta66),-2*beta26,beta22]; 

  
miu11=roots(p1); 
miu22=roots(p2); 

  
miu3=miu11(1); 
miu1=miu22(1); 
miu2=miu22(3); 

  
l2_miu1=beta55*miu1^2-2*beta45*miu1+beta44; 
l2_miu2=beta55*miu2^2-2*beta45*miu2+beta44; 
l2_miu3=beta55*miu3^2-2*beta45*miu3+beta44; 

  
l3_miu1=beta15*miu1^3-(beta14+beta56)*miu1^2+(beta25+beta46)*miu1-beta24; 
l3_miu2=beta15*miu2^3-(beta14+beta56)*miu2^2+(beta25+beta46)*miu2-beta24; 
l3_miu3=beta15*miu3^3-(beta14+beta56)*miu3^2+(beta25+beta46)*miu3-beta24; 

  
if l2_miu1==0 
    lamda1=0; 
else 
lamda1=-l3_miu1/l2_miu1; 
end 

  
if l2_miu2==0 
    lamda2=0; 
else 
lamda2=-l3_miu2/l2_miu2; 
end 

  
if l2_miu3==0 
    lamda3=0; 
else 
lamda3=-l3_miu3/l2_miu3; 
end 

  
triangle=miu2-miu1+lamda2*lamda3*(miu1-miu3)+lamda1*lamda3*(miu3-miu2); 

  
D=(pw-sigmax0).*cos(theta)-taoxy0.*sin(theta)-1i.*((pw-

sigmax0).*sin(theta)+taoxy0.*cos(theta)); 
E=-(pw-sigmay0).*sin(theta)+taoxy0.*cos(theta)-1i.*((pw-

sigmay0).*cos(theta)+taoxy0.*sin(theta)); 
F=-taoxz0.*cos(theta)-taoyz0.*sin(theta)-1i.*(taoyz0.*cos(theta)-

taoxz0.*sin(theta)); 

  
phi1=(D.*(lamda2*lamda3-1)+E.*(miu2-lamda2*lamda3*miu3)+F.*(miu3-

miu2)*lamda3)./(2.*triangle.*(miu1.*cos(theta)-sin(theta))); 
phi2=(D.*(1-lamda1*lamda3)+E.*(lamda1*lamda3*miu3-miu1)+F.*(miu1-

miu3)*lamda3)./(2.*triangle.*(miu2.*cos(theta)-sin(theta))); 
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phi3=(D.*(lamda1-lamda2)+E.*(miu1*lamda2-miu2*lamda1)+F.*(miu2-

miu1))./(2.*triangle.*(miu3.*cos(theta)-sin(theta))); 

  
sigmax=sigmax0+2.*real(miu1^2.*phi1+miu2^2.*phi2+lamda3*miu3^2.*phi3); 
sigmay=sigmay0+2.*real(phi1+phi2+lamda3.*phi3); 
taoxy=taoxy0-2.*real(miu1.*phi1+miu2.*phi2+lamda3*miu3.*phi3); 
taoxz=taoxz0+2.*real(lamda1*miu1.*phi1+lamda2*miu2.*phi2+miu3.*phi3); 
taoyz=taoyz0-2.*real(lamda1.*phi1+lamda2.*phi2+phi3); 
sigmaz=sigmaz0-

(a13*2.*real((miu1^2).*phi1+(miu2^2).*phi2+lamda3*miu3^2.*phi3)+a23*(2*real(p

hi1+phi2+lamda3.*phi3))+a34.*(taoyz-taoyz0)+a35.*(taoxz-taoxz0)+a36.*(taoxy-

taoxy0))/a33; 

  
hoop=(sin(theta)).^2.*sigmax+(cos(theta)).^2.*sigmay-sin(2.*theta).*taoxy; 
axial = sigmaz; 
tao_hoop_axial = cos(theta).*taoyz-sin(theta).*taoxz; 

  
min_stress=0.5.*(hoop+axial)-0.5.*((hoop-

axial).^2+4.*tao_hoop_axial.^2).^0.5; 

  
% normalized by Sv 
min_stress = min_stress./Sv; 
color_number=length(unique(min_stress)); 
% Assign colors 
% Make sure that the color of colorbar colors(ii) is in the arrange as 

min_stress(ID(ii))  
[nothing ID]=sort(min_stress); 
colors1=colormap(gray(color_number)); 

  
colors=zeros(m,3); 
colors(1,:)=colors1(1,:); 
jj=1; 
for ii=2:m 
    if min_stress(ID(ii))==min_stress(ID(ii-1)) 
        colors(ii,:)=colors(ii-1,:); 
    else 
        jj=jj+1; 
        colors(ii,:)=colors1(jj,:); 
    end 
end 

  
figure(1); 
subplot(2,1,1); 
scatter(theta(ID(:)),height(ID(:)),10,colors); 
% Plot stress point from the smallest to the largest and plot the color 

corespondingly. 
xlim([min(theta),max(theta)]); 
set(gca,'ytick',[]); 
ylabel('height'); 
xlabel('theta (unwrapped borehole wall)'); 
h = colorbar; 
hold on; 

  
if min(min_stress) ~= max(min_stress) 
    set(gca,'CLim',[min(min_stress),max(min_stress)]); 
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    colorbar; 
elseif min_stress(:) == 0 
    disp('minimum stress value equals to zero'); 
else 
    printf('minimum stress equals to %d\n',min_stress); 
end 

  
%% find the greatest principal tensile stress within the mesh, which is the 

initiation point of fractures 

  
max_tensile = min(min_stress(:)); 

  
if max_tensile>=0 
    error('no tensile fracture'); 
end 

  
if max(min_stress(:)) <= 0 
    error('borehole fail'); 
end 

  
ID1=find(min_stress==max_tensile); 

  
% based on the azimuth and nodes number in x direction, system sometimes 
% can only detect one max tensile straw. Therefore, if that happens, we  
% arbitrarily define the second max tensile straw, which may not be accurate. 
if length(ID1) < 2*npy && ID1(1) < nnode/2 % the detected max tensile line is 

on the left side 
    ID2 = [ID1;ID1+((npx-1)/2)*npy]; 
    ID1 = ID2; 
elseif length(ID1) < 2*npy && ID1(1) > nnode/2 
    ID2 = [ID1;ID1-((npx-1)/2)*npy]; 
    ID1 = ID2; 
end   

     
if inclination==0 
    % the trace will be a vertical line which is aligned with the borehole 
    % axis. 

     
    xx=zeros(length(ID1),1); 
    yy=zeros(length(ID1),1); 

     
    for ii=1:length(ID1) 
        xx(ii)=theta(ID1(ii)); 
        yy(ii)=height(ID1(ii)); 
    end 

     
    line(xx(1:npy),yy(1:npy),'LineWidth',5,'Color','g'); 
    hold on; 
    line(xx(npy+1:2*npy),yy(npy+1:2*npy),'LineWidth',5,'Color','g'); 
    hold off; 
else 
   % The borehole is inclined, so the fracture will not be vertical. 
   % Find the start point with max tensile, and it is set to be on the top 
   % of the figure. 
   ID_max_height=zeros(2,1); 
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   mm=1; 
   for ii=1:length(ID1) 
       if height(ID1(ii))==fix(width) % initiation point is in the middle of 

the width 
           if mm==3 
               break; % Avoiding three tensile azimuth initiation places 
           end 
           ID_max_height(mm)=ID1(ii); 
           mm=1+mm; 
       end 
   end 
   % Finding which straw is the first fracture in. 
   straw_number = fix(ID_max_height(1)/npy); 
   straw_number2 = fix(ID_max_height(2)/npy); 

    
   %% Calculating slope 
   % Check if the gamma is negative, for negative gamma, reverse theta to 
   % display 
   aa = 2.*tao_hoop_axial(ID_max_height(:)); 
   bb = hoop(ID_max_height(:))-axial(ID_max_height(:)); 

    
   gamma_check = 0.5.*atan2(aa,bb); 

    
   if abs(gamma_check(1)) == pi/2   % Since gamma_check(1) should be the 

opposite of gamma_check(2), we only check the first one. 
       xx=zeros(length(ID1),1); 
       yy=zeros(length(ID1),1); 

     
    for ii=1:length(ID1) 
        xx(ii)=theta(ID1(ii)); 
        yy(ii)=height(ID1(ii)); 
    end 

     
       line(xx(1:npy),yy(1:npy),'LineWidth',5,'Color','g'); 
       hold on; 
       line(xx(npy+1:2*npy),yy(npy+1:2*npy),'LineWidth',5,'Color','g'); 
       hold off; 
       [theta_unique,rows_theta_o1]=unique(theta); 
   else 
   ff=gamma_check>0; 

       
   [theta_unique,rows_theta_o1]=unique(theta);  

    
   rows_theta1 = rows_theta_o1(straw_number:end); 
   rows_theta2 = rows_theta_o1(1:straw_number-1); 
   rows_theta = [rows_theta1;rows_theta2]; 
   if ff(1)==1 % gamma_check(1) is negative, everything in right sequence. 
   % make rows_theta in the right sequence 
      rows_theta_reverse=zeros(length(rows_theta),1); 
      rows_theta_reverse(1)=rows_theta(1); 
      rows_theta_reverse(2:end)=rows_theta(end:-1:2); 
      rows_theta = rows_theta_reverse; 
   end 

    
   rows_theta1 = rows_theta_o1(straw_number2:end); 
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   rows_theta2 = rows_theta_o1(1:straw_number2-1); 
   rows_theta2 = [rows_theta1;rows_theta2]; 

    
   if ff(2)==1 
      rows_theta_reverse=zeros(length(rows_theta2),1); 
      rows_theta_reverse(1)=rows_theta2(1); 
      rows_theta_reverse(2:end)=rows_theta2(end:-1:2); 
      rows_theta2 = rows_theta_reverse; 
   end 

    
   % put the reverse one as the second line 
   if ff(1)==1 
       rows_theta_test=rows_theta2; 
       rows_theta2=rows_theta; 
       rows_theta=rows_theta_test; 
   end 

    
   % Eliminate boundary side-effect 
   if theta(rows_theta(1)) == max(max(theta)) 
       rows_theta = rows_theta(2:end); 
   end 

    
   if theta(rows_theta2(1)) == 0 
       rows_theta2 = rows_theta2(2:end); 
   end 

    
   line_stops=find(min_stress(rows_theta)>=0); 
   rows_theta_o=rows_theta(1:line_stops-1); 

    
   line_stops2 = find(min_stress(rows_theta2)>=0); 
   rows_theta2_o=rows_theta2(1:line_stops2-1); 

    
   gamma = 0.5.*atan2(2.*tao_hoop_axial(rows_theta_o),(hoop(rows_theta_o)-

axial(rows_theta_o))); 
   gamma2 = 0.5.*atan2(2.*tao_hoop_axial(rows_theta2_o),(hoop(rows_theta2_o)-

axial(rows_theta2_o))); 

    
   % check if the gamma change signs during propagation. the number of 
   % gamma of be limited by ney/2 
   oo1 = gamma(:) > 0; 
   rows_reverse1 = find(oo1 == 1); 

    
   if sum(oo1) >= 1 && rows_reverse1(1) ~= length(oo1) 
       rows_reverse = rows_reverse1(1); 
       gamma = 0.5.*atan2(2.*tao_hoop_axial(rows_theta),(hoop(rows_theta)-

axial(rows_theta))); 
       gamma(rows_reverse+1:2:end) = gamma(rows_reverse-1); 
       gamma(rows_reverse+2:2:end) = gamma(rows_reverse); 
       rows_theta(rows_reverse+1:2:end) = rows_theta(rows_reverse-1); 
       rows_theta(rows_reverse+2:2:end) = rows_theta(rows_reverse); 
   else 
       rows_theta = rows_theta_o; 
   end 

    
   oo2 = gamma2(:) < 0; 
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   rows_reverse2 = find(oo2 == 1); 

    
   if sum(oo2) >= 1 && rows_reverse2(1) ~= length(oo2); 
       rows_reverse = rows_reverse2(1); 
       gamma2 = 0.5.*atan2(2.*tao_hoop_axial(rows_theta2),(hoop(rows_theta2)-

axial(rows_theta2))); 
       gamma2(rows_reverse+1:2:end) = gamma2(rows_reverse-1); 
       gamma2(rows_reverse+2:2:end) = gamma2(rows_reverse); 
       rows_theta2(rows_reverse+1:2:end) = rows_theta2(rows_reverse-1); 
       rows_theta2(rows_reverse+2:2:end) = rows_theta2(rows_reverse); 
   else 
       rows_theta2 = rows_theta2_o; 
   end 

    
   slope = tan(gamma);  
   slope2 = tan(gamma2); 
   % gamma is the angle between the direction vertical to the direction 
   % of maximum tensile and the direction parallel to the borehole 
   % axis. 
   % Take absolute value of slope since slopes are in opposite sign for two 
   % opposite positions. 

    
   %% Calculate yy 
   mm=length(rows_theta); 
   nn=length(rows_theta2); 
   yy1=zeros(1,mm); 
   yy2 = zeros(1,nn); 
   yy1(1)=height(ID_max_height(1)); 
   yy2(1)=yy1(1); 
   control = 0; 

    
   for ii=2:mm % ney straw in total, take only half of them 
       % starting from the initial point, the fracture trace follows the 
       % direction vertical to the minimum compressive stress. 
       % Then try to find the intersection point between the trace and the 
       % neighbour straw. 

        
       if theta(rows_theta(ii))==0 && control~=1 
           intercept=yy1(ii-1); 
           yy1(ii) = yy1(ii-1); 
           control = 1; 
       else 
           intercept = yy1(ii-1)-slope(ii-1)*theta(rows_theta(ii-1)); 
           yy1(ii) = slope(ii-1)*theta(rows_theta(ii))+intercept; 
       end 

                
   end 

    
   for ii=2:nn 
       if theta(rows_theta2(ii))==2*pi && control ~= 2 
           intercept2=yy2(ii-1); 
           yy2(ii) = yy2(ii-1); 
           control = 2; 
       else 
           intercept2 = yy2(ii-1)-slope2(ii-1)*theta(rows_theta2(ii-1)); 
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           yy2(ii) = slope2(ii-1)*theta(rows_theta2(ii))+intercept2; 
       end 

              
   end 
   yy1(yy1<0) = NaN; 
   yy2(yy2<0) = NaN; 

    
   xx1 = theta(rows_theta(:)); 
   xx2 = theta(rows_theta2(:)); 

    
   %% Eliminate lines drew across the whole figure. 

    
   decrease_row = 0; 
   decrease_row2 = 0; 

    
   for ii = 2:mm 
       if xx1(ii) < xx1(ii-1) && xx1(ii) == 0 
           decrease_row = ii; 
           break; 
       end 
   end 

    
   if decrease_row ~= 0 % to confirm if there is any cross through the whole 

figure 
       line(xx1(1:decrease_row-1),yy1(1:decrease_row-

1),'LineWidth',5,'Color','g'); 
       

line(xx1(decrease_row:end),yy1(decrease_row:end),'LineWidth',5,'Color','g'); 
       hold on; 
   else 
       line(xx1(:),yy1(:),'LineWidth',5,'Color','g'); 
       hold on; 
   end 

    
   for ii = 2:nn 
       if xx2(ii) > xx2(ii-1) && xx2(ii) == 2*pi 
           decrease_row2 = ii; 
           break; 
       end 
   end 

    
   if decrease_row2 ~= 0 % to confirm if there is any cross through the whole 

figure 
       line(xx2(1:decrease_row2-1),yy2(1:decrease_row2-

1),'LineWidth',5,'Color','g'); 
       

line(xx2(decrease_row2:end),yy2(decrease_row2:end),'LineWidth',5,'Color','g')

; 
       hold off; 
   else 
       line(xx2(:),yy2(:),'LineWidth',5,'Color','g'); 
       hold off; 
   end 
   end 
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gamma_plot = 

0.5.*atan2(2.*tao_hoop_axial(rows_theta_o1),(hoop(rows_theta_o1)-

axial(rows_theta_o1))); 
subplot(2,1,2); 
plot(theta_unique,gamma_plot); 
xlabel('theta'); 
ylabel('fracture inclinations'); 
end 

 

 

 

 

 


