
Latent Variable Modeling with Slowness, Monotonicity, and
Impulsivity Features

by

Ranjith Ravi Kumar Chiplunkar

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

PROCESS CONTROL

Department of Chemical and Materials Engineering

University of Alberta

© Ranjith Ravi Kumar Chiplunkar, 2022

Abstract

Data-driven modeling has been finding increasing prominence in process systems en-

gineering in both academia and industries. Latent variable modeling forms an impor-

tant component of data-driven modeling. Through latent variable modeling, not only

can we deal with issues such as collinearity, noise, and high data dimensionality, but

we can also impart the ”notions” that we have regarding the process into the model.

Imparting such notions makes the latent variables process-relevant and enhances the

accuracy of the models. This thesis explores such ways of making the latent vari-

ables process-relevant by incorporating aspects such as slowness, monotonicity, and

impulsivity that are commonly observed in various industrial processes.

Many chemical engineering processes are typically characterized primarily by slow

variations. The latent variables of such processes will be characterized by high tem-

poral correlation or low velocities. This aspect is considered in slow feature analysis

which is a latent variable method that aims to extract slowly varying features. Since

the basic version of slow feature analysis is unsupervised, the first contribution of

the thesis explores supervised learning of slow features through a linear model. In

this case, the objective function of the slow feature analysis method is modified by

adding a term that maximizes the correlation of the slow features with the output

variables. Two such formulations are proposed to achieve the required objective and

corresponding algorithms to achieve each objective are proposed.

The second contribution extends the supervised slow feature extraction problem

to a nonlinear case. The nonlinearity is achieved through the usage of Siamese neural

networks. Siamese neural networks contain two identical networks that give them

ii

the ability to handle two samples at a time. Since the objective of slow feature

analysis is to reduce the velocity of the latent variables, it needs to handle two samples

simultaneously. Hence, this work uses the Siamese networks to perform supervised

slow feature analysis.

The third contribution of the thesis considers the monotonicity aspect in latent

variable modeling for degrading processes. Processes that have degradation in ei-

ther equipment or the quality of the process are overall non-stationarity in nature.

Since degradation or damage usually evolves monotonically, latent variable modeling

of such processes needs to include the monotonicity condition. This work proposes a

state-space model to characterize such systems where the latent variable correspond-

ing to the degrading component is modeled using a closed skew-normal random walk

model, and other stationary variations are modeled by a Gaussian dynamic model.

Here, the objective is to separate the monotonically degrading component of the

data from other stationary variations for effective monitoring of the process. The

resulting simultaneous state-and-parameter estimation problem is solved using the

expectation-maximization approach and the smoothing algorithm is rigorously de-

rived for a system defined by a closed skew-normal distribution random walk model.

In the fourth contribution of the thesis, processes that are characterized by sudden

or impulsive changes are studied. To characterize such behaviors the system is mod-

eled using a state-space model with the dynamics of one of the states being defined

by a Cauchy distribution. Since the Cauchy distribution has a fat tail, it can model

the sudden jumps in a process. Hence, the resulting model has a mix of Cauchy and

Gaussian latent variables, where the Cauchy latent variable models the sudden jumps

and the Gaussian latent variables model other variations. The states and parame-

ters of the resulting model are identified in a Bayesian manner using the variational

Bayesian inference framework. The efficacy of all the contributions is verified through

both numerical and relevant industrial case studies.

iii

Preface

This thesis is an original work conducted by Ranjith Chiplunkar under the supervi-

sion of Dr. Biao Huang and is funded in part by Natural Sciences and Engineering

Research Council (NSERC) of Canada. Portions of the thesis have been published in

peer-reviewed journals.

1. Chapter 3 of this thesis has been published as: R. Chiplunkar and B. Huang,

“Output relevant slow feature extraction using partial least squares,” Chemo-

metrics and Intelligent Laboratory Systems, vol. 191, pp. 148–157, 2019.

2. Chapter 4 of this thesis has been published as R. Chiplunkar and B. Huang,

”Siamese Neural Network-Based Supervised Slow Feature Extraction for Soft

Sensor Application,” IEEE Transactions on Industrial Electronics, vol. 68, no.

9, pp. 8953-8962, 2021.

3. Chapter 5 of this thesis has been published as R. Chiplunkar and B. Huang,

”Latent variable modeling and state estimation of non-stationary processes

driven by monotonic trends”, Journal of Process Control, vol. 108, pp. 40-

54, 2021

4. Chapter 6 of this thesis will be submitted as R. Chiplunkar and B. Huang,

”Modeling and Bayesian Inference for processes characterized by impulsive

changes”.

The data for the experimental case studies presented in chapters 3 and 4 were

provided by Dr. Lei Fan, Senior Engineer at Amgen who at the time was a

graduate student at the University of Alberta.

iv

Dedicated to

My loving parents Ravi Kumar and Rashmi, and all my teachers.

v

Acknowledgements

This thesis would not have been possible without the efforts and contributions of

many, the foremost of whom is my supervisor Dr. Biao Huang. I express my sin-

cerest gratitude to Dr. Biao Huang for giving me the opportunity to work under

his supervision. Working in his group has been a greatly rewarding experience to me

both in terms of technical and personal aspects. I appreciate his patience and support

throughout my Ph.D. His insightful suggestions have greatly helped me in resolving

many challenges I faced in research as a graduate research student. I am also grateful

to him for exposing me to various real-world process systems engineering problems

through industrial projects.

I want to express my gratitude to the supervisory committee members Dr. Vinay

Prasad and Dr. Jinfeng Liu for their valuable feedback during my candidacy exam,

which has helped me improve my work.

Working in a vast research group has been an enriching experience due to the di-

verse areas of research conducted in the group. I have enjoyed working with Oguzhan

Dogru on applications of state estimation in reinforcement learning, Dr. Jayaram Val-

luru on PSFA, Dr. Xunyuan Yin on the fouling monitoring project, Vamsi Krishna

on the heat exchanger modeling project, and Dr. Yanjun Ma on the steam quality

soft sensor project. I also want to acknowledge the insightful discussions with Dr.

Rahul Raveendran that have helped me in my research. I want to thank the current

and past members of the research group Rui, Yashas, Arun, Dr. Nabil, Alireza, Dr.

Lei, Aswathi, David, and many others for being wonderful colleagues. Special thanks

to Dr. Fadi Ibrahim and Mrs. Terry Runyon for all the support.

I want to acknowledge the financial support from Natural Sciences and Engineering

Research Council (NSERC) of Canada. I also want to express my gratitude to the

University of Alberta, and the Department of Chemical and Materials Engineering

vi

for providing financial support and other resources to conduct research.

I want to acknowledge all my friends Bharath, Bala, Venu, Damayantee, Sourayon,

especially Noureen who have made my graduate studies memorable. The lockdown

periods due to the pandemic have been tougher times and I want to thank all my

friends for making my stay easier. I want to thank my sister Rajani and all the family

members for their continuous love and support. Finally, I am greatly indebted to my

parents for their love and sacrifices without which this journey would not have been

possible.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Slowness . 2

1.1.2 Monotonicity . 3

1.1.3 Impulsivity . 5

1.2 Background Literature . 6

1.2.1 Slowness . 6

1.2.1.1 Deterministic SFA 8

1.2.1.2 Probabilistic SFA . 9

1.2.2 Monotonicity . 10

1.2.3 Impulsivity . 13

1.3 Thesis Outline . 14

1.4 Main Contributions . 16

2 Mathematical Background 18

2.1 PLS . 18

2.1.1 NIPALS . 19

2.1.2 SIMPLS . 22

2.2 SFA . 22

2.2.1 Deterministic SFA . 23

2.2.2 Probabilistic SFA . 24

2.3 Probabilistic Model Estimation Methods 26

2.3.1 EM algorithm . 26

2.3.2 VB Inference . 30

2.4 Sampling-based algorithms . 33

viii

2.4.1 Importance sampling . 34

2.4.2 Particle-based state estimation 36

2.4.2.1 Particle filtering . 36

2.4.2.2 Particle smoothing 38

3 Output-Relevant Slow Feature Extraction Using Partial Least Squares 40

3.1 Introduction . 41

3.2 SFA . 43

3.3 PLS . 43

3.4 Output-relevant SFA . 44

3.4.1 NIPALS for slow feature extraction 44

3.4.2 SIMPLS for slow feature extraction 48

3.4.3 Tuning α and the definiteness of the matrices in the objective

functions . 51

3.5 Results . 52

3.5.1 Simulated case study . 53

3.5.2 Debutanizer column . 56

3.5.3 Hybrid tank system . 60

3.6 Conclusion . 64

4 Siamese Neural Network-Based Supervised Slow Feature Extraction 65

4.1 Introduction . 65

4.2 Siamese neural networks . 68

4.3 Proposed methods . 69

4.3.1 SSFASN1 . 70

4.3.2 SSFASN2 . 74

4.4 Results . 76

4.4.1 Simulated case study . 77

4.4.2 Debutanizer column . 81

4.4.3 Hybrid tank system . 84

4.5 Conclusion . 87

ix

5 Latent Variable Modeling and State Estimation of Non-stationary

Processes Driven by Monotonic Trends 88

5.1 Introduction . 89

5.2 Latent variable model with a hidden monotonic trend 91

5.2.1 Closed skew-normal distribution - Revisit 91

5.2.2 Model formulation . 92

5.3 Maximum likelihood estimation . 96

5.3.1 EM algorithm - Revisit . 96

5.3.2 M-Step . 97

5.3.3 E-step . 99

5.3.3.1 State estimation - Revisit 99

5.3.3.2 Forward pass - Filtering 100

5.3.3.3 Backward pass - Smoothing 102

5.3.3.4 The cross-time joint distribution 103

5.3.3.5 Evaluating the expectations 105

5.4 Case studies . 106

5.4.1 Simulation case study . 107

5.4.2 Fouling monitoring in a Hot Lime Softener 111

5.5 Conclusion . 118

6 Modeling and Bayesian Inference for Processes Characterized by

Impulsive Changes 119

6.1 Introduction . 119

6.2 Proposed model . 123

6.2.1 Model formulation in the probabilistic framework 124

6.3 Variational Bayesian inference of the model 128

6.3.1 Inference of H . 129

6.3.2 Inference of Σu . 130

6.3.3 Inference of A . 131

6.3.4 Inference of b . 131

6.3.5 Inference of σe . 133

6.3.6 Inference of St . 135

x

6.3.7 The iterative procedure . 139

6.3.8 Online implementation . 140

6.4 Results . 140

6.4.1 Simulated case study . 141

6.4.2 Industrial case study on a SAGD process 146

6.5 Conclusion . 150

7 Concluding Remarks 151

7.1 Conclusion . 151

7.2 Future scope . 153

7.2.1 Slowness penalty for efficient feature representation 154

7.2.2 Extensions to the proposed monotonic feature extraction ap-

proach . 154

7.2.3 Distinguishing the outliers and abrupt process jumps 155

7.2.4 Process-relevant dynamic LV modeling through deep learning 155

References 156

Appendix A Detailed derivation of the E-step of Chapter 5 174

A.1 Derivation of the prediction step . 174

A.2 Derivation of the update step . 176

A.3 Derivation of the smoothing step . 177

A.3.1 t = T to t = T − 1 . 177

A.3.2 t = T − 1 to t = T − 2 . 179

A.4 Cross-time distribution . 181

A.5 Calculating the moments of a CSN 182

xi

List of Tables

3.1 RMSE values obtained for the simulated dataset 54

3.2 Concordance correlation coefficient values obtained for the simulated

dataset . 55

3.3 Description of the variables in the debutanizer column process dataset 57

3.4 RMSE values obtained for the debutanizer column dataset 61

3.5 Concordance correlation coefficient values obtained for the debutanizer

column dataset . 61

3.6 RMSE values obtained for the hybrid tank system dataset 63

3.7 Concordance correlation coefficient values obtained for the hybrid tank

system dataset . 64

4.1 Comparison of RMSE and ρc obtained for FNN, HELM, VW-SAE,

SFR and proposed methods for the simulated dataset 79

4.2 Comparison of RMSE and ρc obtained for FNN, HELM, VW-SAE,

SFR and proposed methods for debutanizer column dataset 83

4.3 Comparison of RMSE and ρc obtained for FNN, HELM, VW-SAE,

SFR and proposed methods for the hybrid tank system dataset 85

5.1 Comparing the SSE obtained for the Gaussian model and the CSN model110

6.1 Comparing the values of RMSE and R2 obtained from the Gaussian

model and the proposed model for the simulated case study 144

6.2 Comparing the values of RMSE and R2 obtained from the Gaussian

model and the proposed model for the SAGD process dataset 148

xii

6.3 Comparing the values of RMSE and R2 obtained from the Gaussian

model and the proposed model for the SAGD process dataset in the

shorter time range . 148

xiii

List of Figures

1.1 Depiction of SFA where the observed data x is mapped to the SFs s 3

1.2 An example of a monotonically evolving health factor masked by ob-

servation noise . 4

1.3 Example depiction of impulsive behavior in dynamic processes 5

1.4 The SFA literature classification . 7

1.5 Depiction of commonly used probability distributions to model the

monotonic trend . 12

2.1 A comparison of SFA and PCR for the case where the observed data

is a mixture of sine waves . 23

2.2 Depiction of the SFs in PSFA . 26

2.3 Sample depiction of the EM algorithm 29

2.4 Depiction of importance sampling . 35

3.1 The behavior of error with α for the modified NIPALS method 51

3.2 Plot of predicted response against the actual data for the test data of

the simulated dataset . 52

3.3 A schematic disgram of the debutanizer column 57

3.4 Comparison of the output predicted by PCR, PLS, SFR and proposed

methods on the test data of the debutanizer column dataset 58

3.5 Comparison of the variation of training error with the number of features 59

3.6 Comparison of the variation of validation error with the number of

features . 60

3.7 Experimental setup of the hybrid tank system 62

3.8 Comparison of the liquid level in the middle tank predicted by PCR,

PLS, SFR and proposed methods on the test dataset 63

xiv

4.1 Configuration of a Siamese neural network 68

4.2 Configuration of the network for SSNSFA1. Step 1 and Step 2 architec-

tures correspond to the objective functions in (4.3) and (4.5) respectively. 71

4.3 Configuration of the network for SSNSFA2. Step 1 architecture cor-

responds to the objective in (4.6). Step 2 is same as the Step 2 in

SSNSFA1 . 74

4.4 Scatter plot of predictions vs. actual data for the simulated dataset . 78

4.5 Scatter plot of predictions vs. actual data for the debutanizer column

dataset . 82

4.6 Scatter plot of predictions vs. actual data for the hybrid tank system

dataset . 86

5.1 The pdf of CSN at different values of ρ. 94

5.2 The hierarchical probabilistic graphical model of the proposed ap-

proach to extract the monotonic signal 95

5.3 The latent variables generated for the simulation case study. x is the

sigmoidal monotonic function, and s(1) and s(2) are the two stationary

signals . 108

5.4 The outputs generated for the simulation case study 109

5.5 Comparison of the scatter plot of the monotonic signal extracted from

the Gaussian and CSN models . 111

5.6 Comparison of the scatter plot of the first stationary signal extracted

from the Gaussian and CSN models 112

5.7 Comparison of the scatter plot of the second stationary signal extracted

from the Gaussian and CSN models 113

5.8 Comparison of the rate of change of the monotonic signals obtained

from the Gaussian and CSN models 114

5.9 The flow coefficient calculated for dataset 1 115

5.10 Summary of the fouling monitoring results for the first dataset. . . . 116

5.11 Rate of change of the LMT obtained from the first fouling dataset . . 117

6.1 Comparison of the Cauchy and the Gaussian distributions in terms of

pdfs and generated random-walks . 121

xv

6.2 Stationary and non-stationary Cauchy processes 125

6.3 The hierarchical probabilistic graphical model of the proposed approach128

6.4 Generated latent variables ct and st for the simulated case study . . . 141

6.5 Generated output data yt for the simulated case study 142

6.6 Generated input dataset xt for the simulated case study 143

6.7 Comparison of the performance of the Gaussian model and the pro-

posed approach for the simulated case study 145

6.8 Emulsion flow-rate obtained from the SAGD process 147

6.9 Comparing the predicted emulsion flow-rate obtained from the Gaus-

sian and the proposed model . 148

6.10 Comparison of the performance of the Gaussian model and the pro-

posed approach for the SAGD process dataset in the shorter time range149

xvi

List of Algorithms

2.1 The NIPALS algorithm . 20

2.2 The SIMPLS algorithm . 21

2.3 A generic particle filtering algorithm 37

2.4 Marginal particle filtering algorithm 39

3.1 The modified NIPALS algorithm for output-relevant SFA 46

3.2 The simplified version of the modified NIPALS algorithm for output-

relevant SFA . 47

3.3 The modified SIMPLS algorithm for output-relevant SFA 50

6.1 Marginal particle filtering and particle smoothing for the proposed ap-

proach . 138

xvii

Glossary

Abbreviations

ANN Artificial neural networks

ARMA Autoregressive moving average

CA Cointegration analysis

cdf Cumulative distribution function

CSN Closed skew-normal distribution

DLM Dynamic linear model

DPCA Dynamic principal component analysis

DPLS Dynamic partial least squares

ELBO Evidence lower bound

EM Expectation-maximization

E-step Expectation step

FNN Feedforward neural network

HELM Hierarchical extreme learning machine

HLS Hot lime softener

KL Kullback–Leibler

LMT Latent monotonic trend

xviii

LST Latent stationary trend

LSTM Long-short term memory network

LV Latent variable

MAP Maximum a posteriori

MLE Maximum likelihood estimation

M-step Maximization step

MSV Mean of the squared velocities

NIPALS Nonlinear iterative partial least squares

PCA Principal component analysis

PCR Principal component regression

pdf Probability distribution function

PLS Partial least squares

prop Proposed approach

PSFA Probabilistic slow feature analysis

RBM Restricted Boltzmann machine

ReLU Rectified linear unit

RMSE Root mean squared error

RTS Rauch-Tung-Striebel

SAE Stacked autoencoder

SAGD Steam-assisted gravity drainage

SF Slow features

SFA Slow feature analysis

xix

SFR Slow feature regression

SIMPLS Statistically inspired modification of partial least squares

SSA Stationary subspace analysis

SSE Sum of squared errors

SSFASN Supervised slow feature analysis by Siamese networks

V# Valve number #

VB Variational Bayesian

VW-SAE Variable-wise weighted stacked autoencoder

Notations

⟨·⟩ Expectation operator

A State evolution matrix

ai ith diagonal entry of the matrix A

α Objective function term weight(︂
α
(·)
(·), β

(·)
(·)

)︂
Parameters of Gamma and Beta distributions

b Impulsive random variable evolution coefficient

B(·) Beta distribution

BPLS Regression coefficient of partial least squares

ba ath regression coefficient

β Objective function term weight

C Output weight matrix

xx

C(·) Cauchy distribution

ca ath output weight

Ct Gain matrix in the CSN smoothing step

ct Cauchy (Impulsive) latent variable

cov(·) Covariance matrix

D Input velocity covariance matrix

∆ Fifth parameter of the CSN

δ Fifth parameter of the one-dimensional CSN

∆P Pressure drop

det(·) Determinant

diag(·) Diagonal elements of (·) or Diagonal matrix form of vector (·)

DKL(q(S)||p(S) Kullback–Leibler divergence between q(S) and p(S)

et White noise (state evolution noise for mt and ct)

E[·] Expectation operation

exp(·) Exponential operation

F Flow-rate

f(·) Encoder network function

f(·), f(·),(·) First and second order derivative of f

FA, FB Fluctuation terms

g(·) Output network function

Γ Skewness parameter of the CSN

Γ(·) Gamma distribution

xxi

H, M Latent space to observed data mapping matrix

Jt Gain matrix in the CSN filtering (prediction) step

Kt Kalman gain matrix

L(q, θ) Evidence lower bound

ln(·) Natural logarithm

mt Latent monotonic variable at time t

µ Mean of a Gaussian distribution or the first parameter of the CSN

N Total number of samples

n(·) Dimension of the variable (·)

N (·) Normal (Gaussian) distribution

ν Fourth parameter of CSN

P Input loading matrix

p(·) Probability distribution

pa ath input loading

Φ(·) Cumulative probability distribution of a Gaussian variable

Qa SIMPLS objective function matrix at ath iteration

q(·) Sampling distribution or Proposal distribution

ρ Pearson correlation coefficient (Skewness parameter of p(mt|mt−1))

ρc Concordance correlation coefficient

rt White noise

Σ(·) Covariance matrix of (·)

σ(·) Standard deviation of (·)

xxii

S Set of all the states

S(·) Sphering operation

Sa ath input-output covariance matrix

St Augmented state at time t

s
(i)
t ith slow feature (or a state) at time t

T Final time index (Total number of samples)

T Input scores matrix

θ Parameters

θpr Parameters of the prior distribution

t Time index

ta ath input score

τ Precision

ua ath Output score

ut, wt Observation model noise at time t

V Orthogonal loading matrix

va ath orthogonalized loading

Var[·] Variance of ·

vt State evolution noise

W Input weight matrix

wa ath input weight vector

w(s
(i)
t) Weight of the ith particle of state s at time t

w̃(s
(i)
t) Normalized weight of the ith particle of state s at time t

xxiii

X Observed input dataset

xi ith input sample

Y Observed output dataset

yi ith Output sample

Z A general random variable in the variational Bayesian scheme

Z̃ Random variables other than Z in the variational Bayesian scheme

xxiv

Chapter 1

Introduction

The process industry has been continuously exploring various avenues to enhance the

operation of industrial processes to meet the standards of green, safe and sustainable

production. With improvements in the technology to store and handle vast quantities

of data, the industry is looking to leverage such capabilities to achieve these standards.

Data-driven modeling thus presents an attractive way to model industrial processes

for efficient operation [1]. This chapter outlines the motivation for the proposed

data-driven approaches to model industrial processes and provides an overview of the

relevant existing literature.

1.1 Motivation

For the efficient and smooth running of an industrial process, the accurate knowl-

edge of key variables and indicators through tools such as soft sensors [2] or process

monitoring statistics [3] is of primal importance. Data-driven modeling aims at esti-

mating these based on the observed historical data. Raw industrial data has issues

of collinearity, outliers, high dimensionality, missing values, etc. Hence, the raw data

is usually projected onto a latent space and these latent variables (LV) are then used

to develop models. But, a pure data-based approach may not be the most effective

way of latent variable modeling and hence it is important to make the LVs process-

relevant. Hence, it becomes pertinent to perform LV modeling in such a way that it

allows one to impart the ”notions” that one may have regarding the nature of the

process. These notions could be either based on the knowledge of the physics of the

process or the observed data.

1

Every process possesses its own unique characteristic such as stationarity or non-

stationarity, temporal slowness, impulsivity, multi-modal behavior, oscillatory behav-

ior, etc. Hence, the LVs developed must be tailored to each process such that it reflects

the nature of the process intended to be captured by the model. This thesis mainly

focuses on three key characters of the industrial processes: slowness, monotonicity,

and impulsivity. The following sections will discuss each behavior in detail.

1.1.1 Slowness

Many chemical engineering processes are primarily slow in nature as the process con-

ditions vary slowly. Hence, the LVs that characterize such processes must primarily

be slow in nature. Slow feature analysis (SFA) is a linear LV extracting method that

is based on this notion. SFA [4] extracts the latent space by minimizing the velocity of

the LVs. The slowest LVs are usually used for further modeling as they are considered

to be the most informative if the process in consideration is believed to be primarily

slowly driven. The faster ones are usually attributed to noise or other disturbances

that are not representative of the dynamics of the process. Fig. 1.1 depicts the result

after SFA is performed on the observed data. It can be observed that the extracted

SFs are segregated according to their velocities and usually the slowest ones are used

for modeling.

The vanilla version of SFA is unsupervised in nature [4], meaning the slow features

(SF) are extracted without consideration of the output variable. Hence, if supervised

learning is the task at hand, such as the development of soft sensors, this is not

the most effective way of extracting the SFs. This hence prompts the exploration

of supervised learning of SFs such that the extracted SFs are more relevant to the

outputs they predict and hence improve the accuracy of the model. This argument is

similar to the one used typically in the case of partial least squares (PLS) and principal

component regression (PCR) case where the supervised nature of PLS makes it more

suited for such cases. Motivated by this, this thesis presents a method of performing

supervised slow feature extraction which combines the aspects of PLS with SFA.

The resulting formulation improves the performance of the model on the datasets of

processes where slowness is the key factor.

Deep learning in recent years has seen a big boom owing to the emergence of

2

��
�
�

��

�����������

��
�
�

��

������������

��
�
�

��

�
	

����
���
���

��

� ��� ��� ��� ��� ���
�

��
�
�

��

� ��� ��� ��� ��� ���
�

����
�����

Figure 1.1: Depiction of SFA where the observed data x is mapped to the SFs s.
The observed data is mapped to SFs which are segregated according to the velocities.
The slowest features are more representative of the true nature of the dynamics of
the process.

enhanced computational ability and importantly due to the development of sophisti-

cated algorithms. As a result, artificial neural networks and their variants have been

prominently used in machine learning research and applications [5]. Process systems

engineering too has seen increasing usage of deep learning techniques including soft

sensors [6]. Hence, to model nonlinear processes characterized by slowness, the power-

ful tools of deep learning can be used. This thesis presents a method for achieving the

aforementioned objective of supervised SFA for nonlinear systems through Siamese

neural networks, a neural network architecture containing two identical coupled net-

works [7].

1.1.2 Monotonicity

Processes involving either degradation of process quality (catalyst deactivation, foul-

ing, etc) or damage in physical equipment (wear and tear, corrosion, etc) usually are

non-stationary in nature. In particular, this non-stationarity is characterized by a

monotonically evolving factor. Monotonicity refers to the non-stationary behavior

where a signal is either strictly increasing or strictly decreasing. Tracking signals

which exhibit such behaviors is vital for effective monitoring of such processes.

But in many processes, this health factor is masked by observation noise as shown

in Fig. 1.2. This makes it difficult to monitor the process and hence filtering tech-

3

� �� ��� ��� ���
�

�

��

��

��

��

��

��

	
��
���
���
��
��

������������

���������������

Figure 1.2: An example of a monotonically evolving health factor masked by obser-
vation noise. The objective is to extract this latent monotonic trend for effective
process monitoring.

niques may be used to remove the observed noise. But this filtering cannot be a

straightforward unconstrained filtering scheme as the monotonic nature of the LV

must be respected. This thesis proposes a method for modeling and estimating the

LV of such a system where the monotonicity constraint is implemented through a

closed skew-normal distribution.

The problem depicted in Fig. 1.2 is that of a single variable case, i.e when the

health factor is directly observed, but subject to noise. This thesis also considers

an extended case where the health factor is not directly observed but needs to be

extracted from a multivariate dataset. In such cases, the health factor will not only

be masked by noise but also additionally will be masked by signals of stationary

nature. This is because, in spite of the monotonic degradation nature of the process,

there will also exist some stationary relationships between different process variables.

Hence, the observed dataset of such systems will overall be non-stationary but will be

a mixture of stationary and non-stationary (monotonic in this case) sources. Hence,

for effective monitoring, one needs to separate the signals that correspond to the

4

� �� ��� ��� ���
�

����

���

�

��

�
��

��
��
���

��
��
�

���
��

��
�

�	

�

��
��
��

(a) Non-stationary impulsive changes

� �� ��� ��� ���
�

���

�

��

���

��
��
��
��

��
�

��
��

���
�	

��
	

��
��
��

(b) Stationary impulsive changes

Figure 1.3: Example depiction of impulsive behavior in dynamic processes

monotonic, and stationary sources. In other words, the objective is to estimate and

separate the latent monotonic trend (LMT) and latent stationary trends (LST) from

the observed dataset. This thesis proposes a method of modeling and estimation of

such systems where the monotonic component is modeled using a closed skew-normal

distribution and the stationary components are modeled using Gaussian distribution.

The resulting model is estimated using the expectation-maximization algorithm.

1.1.3 Impulsivity

Another commonly occurring type of dynamic behavior in industrial datasets is that

of impulsive behavior. This is characterized by sudden jumps or abrupt changes in

the variable. An example of such a behavior is depicted in Fig. 1.3a and 1.3b. Such

behaviors can be observed when the process condition itself is moved from one regime

to another quickly, or when there is a sudden injection of a disturbance in some either

observed or unobserved variables. Hence, based on the types, one can have either a

non-stationary or a stationary impulsive behavior respectively. Fig. 1.3a and 1.3b

depict the non-stationary and stationary impulsive behaviors respectively. It needs

to be noted that the abrupt jumps seen in the stationary impulsive behavior case are

not measurement outliers, but true changes that happen due to a sudden injection of

disturbance.

This thesis presents a method to model such systems using a state-space model

where one of the latent variables evolves according to a Cauchy distribution. Cauchy

5

distribution is a fat-tailed distribution and hence can easily have realizations that

are farther from the center when compared with a Gaussian distribution. Hence,

the Cauchy distribution can capture such abrupt jumps better than the Gaussian.

For a single variable case, it may be sufficient to just filter out the available signal.

But in a multivariate case, there will also exist some slower variations mixed with

the impulsive ones which can be characterized by Gaussian state variables. This

thus results in a model containing a mixture of Cauchy and Gaussian LVs. The

resulting model is estimated in a Bayesian manner using the variational Bayesian

inference approach. The Bayesian scheme provides a convenient way of imposing the

beliefs about states, and parameters. Since the objective is to separate impulsive

and slower variations, the preferences regarding slowness can be implemented in a

Bayesian scheme conveniently [8].

While multimodal modeling is a solution to such problems, particularly for the

non-stationary case depicted in Fig. 1.3a, it may not be the most suitable option

always. This is because modeling with such a perspective might need one to model

for a huge number of modes which may not feasible. So a feasible solution in such a

scenario is to separate the abrupt jumps from the slower stationary variations for a

better understanding of the operation.

1.2 Background Literature

This section presents the background literature related to the various algorithms

developed in the thesis. Since three characteristics of the LVs are considered, the lit-

erature overview is divided into three subsections each covering the literature related

to slowness, monotonicity, and impulsivity.

1.2.1 Slowness

Among the various LV methods principal component analysis (PCA) [9] and PLS-

based are still among the most widely used ones [1]. In both of these methods, LVs

are extracted based on the notions of variances; preserving the variance in the case of

PCR and maximizing the covariance with the outputs in the case of PLS. These are

widely used in unsupervised learning applications such as process monitoring [10–13]

6

Literature of SFA

Deterministic SFA-
based methods

Probabilistic SFA-based
methods

Vanilla SFA
 Improved SFA

or
SFA + Other methods

Figure 1.4: The SFA literature classification

and supervised learning applications such as soft sensors [14, 15]. For soft sensor

applications, given the supervised nature of LV extraction in PLS, it is preferred over

PCR. PLS as such does not consider the dynamic nature of the process and hence

various versions of PLS are developed where the dynamic nature of the process is

considered. These include but not limited to dynamic PLS [16–18], dynamic inner

PLS [19, 20], recursive PLS [21], adaptive PLS [22], ensemble PLS [23, 24], locally

weighted PLS [25, 26]. Except for the dynamic inner PLS method, other versions of

PLS do not have an explicit model for the dynamics of the process. As discussed

earlier many chemical processes are characterized primarily by slower dynamics and

hence the LV model that explicitly considers the slowness principle is more desirable.

The aspect of slowness is considered in the framework of SFA. The vanilla version

of SFA was proposed by Wiskott and Sejnowski [4] with the notion that slowly varying

representation of faster appearing sensory signals is of a higher abstraction level.

The idea of the slowness principle is based on a theory in neuroscience according

to which, the processing of imagery in the brain happens based on slowly moving

features. In computer science, this idea is used as a basis to perform SFA for the

analysis of videos [27–30]. SFA has been increasingly used in chemical engineering

applications such as process monitoring, soft sensor design, etc. The literature of SFA

can be broadly categorized into two classes of deterministic SFA and probabilistic slow

feature analysis(PSFA)-based approaches (Fig. 1.4).

7

1.2.1.1 Deterministic SFA

Among the unsupervised applications, SFA has been used in many process monitoring

applications such as control loop performance assessment [31], detection of plant-wide

oscillations [32], operation condition monitoring and anomaly detection [33], batch

process monitoring [34]. Shang et al. [35] demonstrated the effectiveness of vanilla

SFA on quality prediction problems using slow feature regression (SFR) where the SFs

extracted in an unsupervised manner are used for regression. The recent research in

SFA has been either to modify SFA or to use SFA in conjunction with other algorithms

so as to improve the performance and widen the horizon of applicability of the vanilla

SFA (Fig. 1.4).

The natural extension of SFA to dynamic SFA [36,37], recursive SFA [38], ensemble

SFA [39], locally weighted SFR [40] etc have also been explored. Besides these, many

improvements to the vanilla SFA have been proposed. A multi-lag SFA (and multi-

lag dynamic SFA) framework has been proposed to consider multi-lag correlations to

improve the detection and isolation of oscillations [41]. Another such improvement is

the recursive exponential SFA where instead of the covariance matrices of the variables

and their velocities, the exponential of these matrices is taken. This results in SFs

that are further slower than the vanilla SFs [42]. An improvement over dynamic SFA

in the form of dynamic inner SFA is proposed. Similar to its PLS counterpart, an

autoregressive moving average model (ARMA) is assumed for the latent SFs [43, 44]

thus incorporating dynamics into the model explicitly.

Another approach is to use SFA along with other algorithms to cater to a wider

range of problems. Since, SFA does not explicitly consider non-stationarity, for non-

stationary processes SFA can be combined with non-stationary analysis methods to

improve the performance. Zhao and Huang [45] used cointegration analysis (CA)

to monitor the non-stationary components and SFA for the stationary ones. An

extension of this approach for the nonlinear case also has been explored [46]. Another

method where multiple SFA models are developed for different time slices which are

defined based on the process condition is developed to suit the SFA framework for non-

stationary processes [47]. Besides these SFA has been used to complement numerous

methods such as canonical correlation analysis to obtain features that have the quality

8

of slowness and are relevant to the performance variables [48]. The usage of SFA in

various frameworks in literature all point to the effectiveness of extracting a latent

space that considers the slowness aspect explicitly for analyzing chemical engineering

process datasets. And considering the fact that in the existing literature of SFA where

SFA is used for regression, the simultaneous considerations of the input space and

the output space for extracting the SFs have not been done, thus prompting further

exploration of ways to achieve this objective.

1.2.1.2 Probabilistic SFA

Probabilistic modeling has many advantages such as the handling of missing data,

handling outliers, etc because the latent space is defined in terms of probability dis-

tributions rather than deterministic quantities [49]. The probabilistic counterparts of

PCA [50] and PLS [51, 52] certainly have these advantages over their deterministic

counterparts. In consideration of these advantages the probabilistic counterpart of

SFA, PSFA also has been proposed [53]. In this formulation, the slow features are

assumed to evolve as dictated by a Markov chain. The slow features are mapped

to the observed dataset, through a linear transformation. Essentially, PSFA is a

state-space model with special assumptions regarding the parameters of the state

transition equations to make the states the SFs with conditions of decorrelation and

unit-variance. Such a model can be solved for the states and the parameters through

the expectation-maximization (EM) algorithm [54, 55]. This basic PSFA model has

been used to perform process monitoring [56], develop soft sensors [55], model gross

errors [57]. Due to the probabilistic framework of PSFA, it has been shown to be

effective in the cases of missing data, multi-rate measurements, etc.

Various extensions of PSFA have been studied in the literature which combine

various aspects of state-space models, probability theory, etc to tackle common issues

observed in industrial datasets. The PSFA model structure could be tweaked in

multiple ways to attain the objective at hand, thus providing a more convenient

way than the SFA. If the observed dataset has outliers, these could influence the

estimation of the SFs and the model parameters. To make the model robust to

these outliers, a fat-tailed distribution such as the student’s t-distribution can be

used instead of the Gaussian distribution in the measurement equation of the PSFA

9

model [58]. PSFA can be easily extended to systems with non-stationary behavior by

including additional states modeled by a random-walk model [59]. If the system has

oscillations, instead of a diagonal matrix for state transition, a block diagonal matrix

that results in complex poles for the system can be assumed [60]. Such a structure

would result in a better extraction of the oscillating SFs than the conventional PSFA.

For the supervised learning case, one can have an augmented output model combining

both inputs and outputs. Given the probabilistic nature, this framework enables a

convenient way of performing semi-supervised learning [61]. Deep learning is another

avenue that PSFA can utilize to extend its capabilities to nonlinear systems. Jiang

et al [62] proposed a deep Bayesian SFA using the gated recurrent unit.

The probabilistic approach also allows one to not only model the states (SFs) and

observations as random variables but also the parameters (mapping matrices and

variances) as random variables. Such problems can be solved using the variational

Bayesian (VB) inference framework which is an extension of the EM algorithm for

the Bayesian inference of the parameters [63,64]. Ma and Huang [65] proposed a VB

inference scheme for the PSFA model by considering the parameters of the PSFA

model as random variables. The constraints to certain parameters were enforced by

using particular distributions as priors to those parameters (e.g. Gamma distribution

to model the inverse of the variance, also known as precision). An extension of this

method for the multimodal operation is proposed where multiple output models are

trained and then switched appropriately to suit the current operating mode [66]. A

more general extension of this idea is proposed using the concept of transfer learning

where the SFs learned from multiple PSFA models are adaptively weighted to predict

the outputs of the new target domain [67]. In spite of the vast literature, there is still

scope to use PSFA in conjunction with other types of latent models that deal with

various types of processes behaviors such as impulsivity, monotonicity, etc.

1.2.2 Monotonicity

Process quality degradation or damage usually evolves monotonically because once

the damage sets in, it cannot be reversed during the course of the operation. Hence,

modeling of such processes must incorporate this aspect into the LVs. Such problems

may be formulated as regression problems and solved under a constrained optimiza-

10

tion framework. This is commonly referred to as isotonic regression [68]. However, for

online monitoring application of processes driven by LMT, formulating the problem

as that of state estimation of a dynamic linear model (DLM) is more desirable [69].

In these cases, a monotonic random-walk model is commonly assumed for the LMT

and a distribution with support of [0,∞] (for a monotonically increasing trend) is

used. For the output equation, the Gaussian noise is used. In 2004, Gorinevsky [69]

used an exponential distribution to define the evolution of the LMT and proposed a

batch optimization problem to obtain the maximum a posteriori probability (MAP)

estimates of the state. The same method was further extended under a moving hori-

zon estimation framework [70, 71]. Gamma distribution, another distribution with

a positive support, has been more widely used in predictive maintenance to model

the evolution of the LMT [72]. Schirru et al. [73] and Susto et al. [74] modeled the

deteriorating health factor using a hidden gamma process. Since the calculation of

posteriors becomes intractable, these works propose an approximate inference method

using particle filtering schemes to extract the LMT. Besides the gamma distribution,

distributions such as inverse gamma distribution [75] and inverse Gaussian distribu-

tion [76] have been used to model the incremental changes in a degradation process.

These result in analytical solutions to the state estimates, but have been used under

the assumption that the degrading factor is observed without any noise.

The choice of exponential or gamma distributions to model the LMT leads to

the adoption of either numerical optimization approaches or approximate solutions

through particle filtering to obtain the distribution of the monotonic variable. To get

analytical solutions, the distribution of choice should lead to tractable distributions

in the prediction, update, and smoothing steps of a state estimation procedure. Al-

though the Gaussian distribution has these properties, it cannot be used to model

the LMT as its support spans (−∞, ∞). This thesis explores the usage of the closed

skew-normal distribution to model the evolution of the LMT. Closed skew-normal dis-

tribution (CSN) as the name suggests is a skewed distribution and can be considered

as a generalized version of a Gaussian distribution. It is closed under linear transfor-

mation and Bayesian rule which makes it an attractive alternative to the Gaussian

distribution for the cases that desire skewness. In this work, the modeling of LMT as

a CSN process is explored and a simultaneous state and parameter estimation method

11

�� � � � 	

�

���

���

��

���

��

���

���
�

��������������
�������������
���������������������

Figure 1.5: Depiction of commonly used probability distributions to model the mono-
tonic trend. CSN although not strictly truncated ar zero, can be made to look so
through appropriate parameter settings.

is proposed for such processes. Fig. 1.5 depicts a few commonly used distributions

to model the monotonic trend along with the CSN.

The CSN generalizes the skew-normal distributions discussed in Azzalini and

Dalla [77] and the distribution initially was proposed by Copas and Li [78]. It was

used to model the distribution of a variable with another associated variable with

missing data. This can be generalized to define a multivariate CSN distribution [79].

Gonzalez-Farias et al. [79] showed the closedness of the CSN under the operations of

a linear transformation, conditional inference, marginalization, etc. These properties

are vital for developing recursive schemes for filtering and smoothing. The develop-

ment of such methods has been explored in the literature [80]. Karimi et al. [81]

show that the posterior is a CSN when the prior and the likelihood are CSN and

derive equations for the posterior estimate of the CSN. Rezaie and Eidsvik [82] pro-

vide an overview of the prediction and update equations for CSN-Kalman filtering.

For nonlinear systems, ensemble filter [82] and unscented Kalman filter [83] in the

CSN framework have been explored. Arellano-Valle et al. [84] derive the filtering

12

and smoothing scheme of a CSN where the process evolves with a Gaussian noise

and the observations are corrupted by a CSN. The CSN filtering schemes have been

implemented on cases like petroleum reservoir simulations [82], event-based state es-

timation [85], [86], etc.

Although CSN has been used in solving predictive maintenance problems, the

modeling in these cases is not of a DLM with CSN noises. Peng and Tseng [87] pro-

posed a skew-Wiener degradation model where the observations are directly modeled

as a CSN. Huang et al. [88] take the initial value of the state as a CSN, but the

increments in the state are taken as Gaussian. These formulations are not for mono-

tonically deteriorating faults. In this thesis, a model that models the deteriorating

process conditions as a monotonic fault and also separates the LST is proposed. As

discussed earlier, the notion is that in a degrading process, the degrading variable

need not be measured directly. This monotonic trend will be latent in the observed

data which will be a mixture of stationary and non-stationary trends. Our objective

is to separate these two latent trends for effective monitoring and visualization of

faults.

1.2.3 Impulsivity

Certain processes are characterized by sudden jumps as observed through their datasets.

One way of modeling such systems, particularly of the type depicted in Fig. 1.3a is

by modeling them as piecewise constant signals [89,90]. These kinds of problems are

usually solved by optimization-based techniques [91, 92]. If one is to look at the as-

pects such as online predictions, randomness or uncertainties in the predictions, etc,

a stochastic time series modeling of such behavior is useful. Moreover, in multivariate

industrial datasets such a behavior might be observed in multiple variables and also

will be mixed with other variations. Hence, rather than a signal filtering approach,

an LV modeling approach is more useful.

If probabilistic modeling of such systems is to be performed, then the dynamics

of the systems needs to be modeled by a distribution that has heavy tails. Hence,

the Gaussian distribution cannot be used. α-stable distribution is a family of mostly

heavy-tailed distributions that can be used for this purpose. In this family, the

Gaussian and the Cauchy distributions are the only symmetric distributions that

13

have a closed-form expression for the probability distribution function (pdf), and the

rest of them can only be expressed in terms of the characteristic function. Hence, they

cannot be conveniently used to model the dynamics as the inference of the parameters

can be complicated [93]. Cauchy distribution is a fat-tailed distribution that has a

closed-form expression for the pdf and thus can be used to model the impulsive

noises [94]. For a state-space model that is characterized by Cauchy distributions in

both the state transition and output equations, recursive state estimation schemes

can be derived using characteristic function-based filtering schemes [95–97]. Cauchy

noise-based state space models have been used in robust state estimation [98] and

control [99].

Heavier-tailed distributions are commonly used in such problems to achieve ro-

bustness w.r.t the measurement outliers. The most commonly used ones are the

student’s t-distribution [58, 100] and the Cauchy distribution [101]. The latter in

fact is a special case of the student’s t-distribution. While such models consider the

jumps as the outliers, when the process itself has a behavior characterized by abrupt

jumps, one would want to capture those jumps by modeling it in the state transition

equations. The key issue is that, such a LV extraction problem from datasets with

impulsive behavior leads to a simultaneous state and parameter estimation problem.

In this case, one of the LVs is modeled according to a Cauchy distribution and the

remaining follow Gaussian distribution. Such research is scarce in the literature, par-

ticularly in process systems engineering and this thesis aims to bridge this gap by

solving this problem in a VB framework.

1.3 Thesis Outline

With the presented motivations and the background literature reviewed in Chapter

1, the thesis proceeds to detail each of the contributions in the forthcoming chapters.

The rest of the thesis is organized as follows.

In Chapter 2, the mathematical background relevant to the proposed methods is

presented. The first and the second contributions use the principle of slowness and

hence the basic version of the deterministic and probabilistic SFA are revisited. Since

the first contribution also uses PLS to make the SFs output-relevant, the formulation

14

of PLS and algorithms to extract LVs in PLS are also discussed. The third and the

fourth contributions are modeled in a probabilistic framework. These are solved using

the EM algorithm and the VB framework respectively. Hence, these two algorithms

are discussed in detail particularly from the perspective of estimation of linear dy-

namic models. Finally, particle filtering and smoothing algorithms are also revisited

as the fourth contribution relies on these state estimation techniques to extract the

LVs.

The contributions of this thesis are discussed in detail from Chapter 3 to Chapter

6. Each chapter discusses the proposed model, algorithms to solve the proposed

model, and demonstrations of the proposed approaches on relevant numerical and

industrial case studies.

Chapter 3 discusses the first contribution of the thesis in detail which is the

output-relevant slow feature extraction using partial least squares. The proposed

modifications to the objective function of the vanilla SFA are presented. Two such

modifications are proposed and two algorithms to solve the proposed objective are

presented. These algorithms are modifications of the existing well-known algorithm

for PLS. The proposed methods combine the advantages of SFA and PLS and result

in a fewer number of the LVs required to define the system. These advantages are

demonstrated through a numerical case study, an open-source industrial dataset, and

an experimental dataset.

The second contribution of the thesis is discussed in chapter 4 which extends the

same objective as that of Chapter 1 to a nonlinear case. This is achieved through the

power of deep learning using a special type of neural network known as the Siamese

neural network. The slowness aspect is related to the velocity of the LVs which needs

handling two adjacent samples in time simultaneously. Siamese neural networks have

such a provision and thus are employed in the proposed method. Two architectures

based on the Siamese networks are proposed and the efficacy of these is shown through

relevant case studies.

Chapter 5 presents the third contribution of the thesis that deals with the mono-

tonicity in the LV. A state-space formulation of the system is proposed containing two

types of LVs: LMT and LST. The LMT is modeled according to a CSN random-walk

model and the LST is modeled according to a Gaussian distribution. The resulting

15

simultaneous state and parameter estimation problem is solved by the EM algorithm.

The resulting state estimation problem now involved CSN distribution. A rigorous

derivation of the analytical expressions of the filtering and smoothing steps for such a

system is given. The effectiveness of the method is demonstrated through a numerical

case study and an industrial fouling monitoring problem.

Chapter 6 presents the final contribution of the thesis which is the modeling of a

process that shows impulsive behavior. This behavior can be caused by the sudden

injection of a disturbance or a sudden change in process condition. Similar to the

previous monotonic case, a state-space formulation of the system is proposed with

the latent space containing Gaussian variables that model the slower variations and a

Cauchy variable that models the abrupt changes. The resulting model is identified in a

VB framework. The VB framework is adopted here because the modeling preferences

for the slower variations modeled as SFs can be conveniently incorporated. Relevant

prior distributions are assumed for all the parameters considering various constraints

for each of the parameters. The states are estimated using a particle smoother algo-

rithm as the system contains a mix of Gaussian and Cauchy LVs. The efficacy of the

proposed method is demonstrated through a numerical case study and an industrial

dataset obtained from a steam-assisted gravity drainage (SAGD) process.

Chapter 7 is the final chapter of the thesis and it summarizes the conclusions

drawn from the various developed models and algorithms. The possible future work

is also outlined in this chapter.

1.4 Main Contributions

The main contributions of the thesis are outlined in the following points.

1. A method of performing supervised extraction of SFs is proposed that combines

SFA and PLS to result in a more efficient way of extracting meaningful features.

2. Deep learning is used to extract SFs in a supervised manner for nonlinear sys-

tems through the usage of Siamese neural networks.

3. An approach towards the formulation and estimation of systems that have both

monotonical and stationary variations in the latent space of the observed data is

16

proposed. A state estimation procedure for such a system is rigorously derived.

4. An approach towards the formulation and estimation of systems that have both

impulsive and slow variations in the latent space is proposed. The resulting

problem is solved in a VB framework.

17

Chapter 2

Mathematical Background

This chapter provides a review of the various algorithms employed in the methods

proposed in this thesis. As discussed, all the proposed methods are LV modeling

methods. Of the four contributions, the first two are deterministic LV modeling

methods and the next two are probabilistic ones. The first contribution is based on

SFA and PLS and hence mathematical foundations of each of these are presented in

detail. The second contribution involves Siamese neural networks and the relevant

discussion regarding these is presented in Chapter 4. The third and fourth contri-

butions involve probabilistic modeling of latent variables and involve the adoption

of the variational inference framework. The VB method and its special case of EM

algorithm both are presented in detail in this chapter. The final contribution also

involves particle filtering and smoothing and thus description of these algorithms is

also presented here.

2.1 PLS

The PLS method emerged as an alternative to multivariate linear regression and

PCR, and continues to be one of the most widely used methods in process data

analysis [1, 102]. PLS is essentially an optimization algorithm where the objective is

to extract latent features which are most correlated with the outputs. Two of the

popular algorithms for solving PLS objective function are nonlinear iterative partial

least squares (NIPALS) [103] and statistically inspired modification of partial least

squares (SIMPLS) [104]. These algorithms provide a way of systematically solving

the objective function by extracting latent features in a stage-wise manner. Each

18

method slightly differs in terms of the objective function they solve, but the overall

model structure is similar in both cases. The PLS model is given by the following

equations [103]

X = TP ′ + E (2.1)

Y = UQ′ +G (2.2)

Here X is the n × nx dimensional input data matrix containing n samples of input

vectors x arranged as X = [x1, x2, ..., xn]
′. Similarly, Y is the n × ny dimensional

output data matrix. T and U are input and output score matrices with dimensions

n×nl with nl being the number of latent features. P and Q are the input and output

loading matrices. The input and output scores are extracted such that they have

maximum covariance between them. Equations (2.1) and (2.2) represent how the

scores result in the respective observations.

2.1.1 NIPALS

As the name suggests NIPALS is an iterative method and at each iteration, although

not explicitly mentioned, the algorithm essentially maximizes the following objective

function.
maximize

wa

w′
aX

′
aYaY

′
aXawa

subject to w′
awa = 1, t′bta = 0 for a > b

(2.3)

Here a represents the iteration number, and wa is the weight of Xa. Matrices Xa

and Ya represent the original input and output data matrices if a = 1 or the depre-

ciated input and output data matrices if a > 1. The NIPALS algorithm is given in

Algorithm. 2.1. Here, ta and ua represent the scores of Xa and Ya respectively, and

ca represents the weight of Ya. BPLS represents the final regression coefficient, and

W , P , and C are matrices whose columns are wa, pa and ca respectively. Höskulds-

son [105] has shown that if we substitute expression for ua in (2.5) using (3.10), then

substitute ca by (3.8) and substitute ta using (2.7), we will reach the following result

wa ∝ X ′
aYaY

′
aXa wa (2.4)

In the above equation, we can see that wa is nothing but the eigenvector of the matrix

X ′
aYaY

′
aXa. This hence is the solution of the optimization problem shown in (2.3).

19

Algorithm 2.1 The NIPALS algorithm

1. Take a column of Ya as an initial guess for ua.

2. Perform a regression of Xa on ua to get the coefficients wa. The vector wa

contains information about covariance between Xa and ua.

wa =
1

u′
aua

X ′
a ua (2.5)

3. Normalize wa.

wa =
wa√
w′

awa

(2.6)

4. Project Xa onto wa to get scores of Xa.

ta = Xa wa (2.7)

5. Regress Ya on ta to get ca. The regression coefficients ca contain information
about covariance between Ya and scores of Xa.

ca =
1

t′ata
Y ′
a ta (2.8)

6. Normalize ca.

ca =
ca√
c′aca

(2.9)

7. Project Ya onto ca to get scores of Ya.

ua = Ya ca (2.10)

8. Iterate from step 2 to 7 till convergence.

9. Regress ua on ta. Deflate Xa and Ya and continue with step 1.

ba =
1

t′ata
u′
ata (2.11)

pa =
1

t′ata
X ′

a ta (2.12)

Xa+1 = Xa − ta t′a Xa
1

t′ata
(2.13)

Ya+1 = Ya − ta t′a Ya
1

t′ata
(2.14)

10. Iterate from steps 1 to 9 till the required number of features are extracted.

11. Calculate the final regression coefficient matrix as

BPLS = W (P ′W)−1BC ′ (2.15)

20

Algorithm 2.2 The SIMPLS algorithm

1. Define the covariance matrix between X and Y as

S = X ′Y (2.16)

2. Find the dominant eigenvector of S ′
aSa. This gives ca, the weights of Y .

3. Obtain the weights of X as
wa = Sca (2.17)

4. Project X onto wa to get the scores of X.

ta = Xwa (2.18)

5. Normalize ta and scale wa using the norm of ta.

wa =
wa√
t′ata

(2.19)

ta =
ta√
t′ata

(2.20)

6. Find the X and Y loadings, pa and za.

pa = X ′ta (2.21)

za = Y ′ta (2.22)

7. Project Y onto za to get the scores of Y

ua = Y za (2.23)

8. Make the current loading orthogonal to the previous loadings.

va = pa (2.24)

v = va − V V ′pa (2.25)

9. Normalize va.

va =
va√
v′ava

(2.26)

10. Deflate S by projecting it onto a subspace orthogonal to the current loading.

Sa = (I − vav
′
a)Sa (2.27)

11. Repeat steps 2 through 10 till the required number of features are extracted.

12. Calculate the final regression coefficient matrix as

BPLS = WW ′S0 = WT′Y (2.28)

21

2.1.2 SIMPLS

Unlike NIPALS, the SIMPLS approach is formulated such that first an objective

function is specified, and then the algorithm solves the formulated objective function

[104]. The SIMPLS method is a computationally effective and more intuitive version

(in terms of the calculation of the weights) of the original version of the PLS. The

objective of the SIMPLS algorithm is to find weights, wa and ca, such that they

maximize the covariance between input and output scores. The objective function is

given as
maximize

pa,ca
w′

aX
′Y ca

subject to w′
awa = 1, c′aca = 1, t′bta = 0 for a > b

(2.29)

The solution to the above objective function is again in the form of eigenvector ex-

traction. The SIMPLS algorithm extracts eigenvectors from S ′S, where S = X ′Y , in

a stage-wise manner solving the above objective. The SIMPLS algorithm is shown in

Algorithm. 2.2.

Both the SIMPLS and NIPALS algorithms extract latent features from the input

space and the output spaces such that they are maximally correlated. In both cases,

in each step, there is deflation of certain matrices to remove the variance explained

by the extracted LVs and to make the subsequent LVs independent of the current

ones. In NIPALS, X and Y matrices are deflated and hence the scores and loadings

are calculated based on the deflated matrices. The SIMPLS method is designed such

that the matrix S is directly deflated by projecting it onto a subspace orthogonal to

the subspace spanned by the previous loadings. In SIMPLS, the weights are directly

calculated based on original matrices and hence the SIMPLS algorithm involves fewer

computational steps.

2.2 SFA

SFA was proposed as an unsupervised method of extracting features based on tem-

poral slowness [4]. Since the feature extraction is based on the slowness principle,

SFA provides a way of extracting and segregating features based on their ’velocities’.

For processes driven by slower variations, the slower features contain more relevant

information about the process than the faster ones. In general, if the observed data

22

����
���
���

��

�����������

����
���
���

��

� ��� ��� 	��
�� ����
�

����
���
���

��
�

�

�
�

�����������������������

���

���
��

�
�

� ��� 	�� ��� ��� ����
�

���
��

�
�

��
�
�

��
�

�����������������

��
�
�

��
�

� ��� ��� 	��
�� ����
�

��
�
�

��
�

Figure 2.1: A comparison of SFA and PCR for the case where the observed data is
a mixture of sine waves. Three sine waves with different frequencies (velocities) are
mixed to obtain the observed data. PCA does not recover the original sine waves,
whereas SFA does.

is a mixture of multiple sources, each characterized by a unique velocity, then SFA

is a more apt LV modeling approach. A classical example for this case is when the

observed data is a mixture of sine waves with different frequencies. In this case, each

source is characterized by a unique velocity, and hence an analysis in terms of the

velocities of the LVs is more appropriate. As a result, SFA recovers the sources (LVs)

more accurately than PCA as shown in Fig. 2.1.

2.2.1 Deterministic SFA

In the conventional slow feature analysis [4], the aim is to find a function g(y) =

[g1(y) g2(y) ... gk(y)] that maps the data y to its features, s. The following optimiza-

23

tion problem is solved to obtain the slow features.

min
gj
⟨ṡ2j(t)⟩ or ⟨∆s2j(t)⟩ (2.30)

subject to the following constraints

⟨sj(t)⟩ = 0 (2.31)

⟨s2j(t)⟩ = 1 (2.32)

⟨sj′(t) sj(t)⟩ = 0 ∀j′ < j (2.33)

Here ṡj(t) is the velocity of the jth feature. For sampled systems, this can be replaced

by ∆sj(t) = sj(t+1)−sj(t). The angled brackets ⟨·⟩ in the above expressions indicate

the expectation over time.

⟨f⟩ = 1

t1 − t0

∫︂ t1

t0

f(t)dt (2.34)

Constraints (2.31) and (2.32) are imposed to make the features have zero mean and

unit covariance. This is to avoid trivial solutions of the features being mapped to a

constant signal (sj(t) = k). Constraint (2.33) ensures that the obtained features are

not correlated so that there is no duplication of the information that each feature

contains.

For the linear SFA, the solution to the problem is similar to that of PCA. First, the

data is transformed to have zero mean and identity matrix as its covariance matrix.

This process is called sphering. It can be achieved through a PCA on the centered

dataset.

z = S(ỹ − ⟨ỹ⟩) (2.35)

After this, the ’velocities’ of the variables are calculated, and PCA is performed on

∆z(t). The covariance of the ’velocity’ data is ⟨∆z(t)∆z(t)′⟩. The features corre-

sponding to the lowest eigenvalues represent the slowest features. Since we want to

extract latent features with slow temporal variations, low ⟨∆s2j(t)⟩ is preferred. Hence

features with low eigenvalues for ⟨∆z(t)∆z(t)′⟩ are retained.

2.2.2 Probabilistic SFA

The PSFA [53] model is a DLM with a special structure to ensure slowness along with

the constraints in (2.31), (2.32), and (2.33). The PSFA model is represented by the

24

following equations.

st = Ast−1 + vt, vt ∼ N (vt;0,Σv) (2.36)

yt = Hst + ut, ut ∼ N (ut;0,Σu) (2.37)

Here, st represents the LV which is the SF at time instant t, and vt represents the

process noise. The observed data yt is generated by the LVs st as dictated by the

matrix H and observation noise ut. Both noises vt and ut are taken as Gaussian

distributions with zero mean and covariance matrix given by Σv and Σu respectively.

The above equations represent a general state-space model. For PSFA, the state

evolution equation has a particular structure given by the following equations.

A =

⎡⎢⎢⎢⎣
a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · ans

⎤⎥⎥⎥⎦ ; 0 < ai < 1; Σv =

⎡⎢⎢⎢⎣
1− a21 0 · · · 0

0 1− a2 · · · 0
...

...
. . .

...
0 0 · · · 1− ans

⎤⎥⎥⎥⎦
(2.38)

The matrix A is assumed to be a diagonal matrix to ensure that the SFs are un-

correlated with each other. Each diagonal entry of A is restricted to be between

0 and 1. An ai close to 1 indicates a slow feature. The farther it is from 1, the

faster it is. This is because, the expected value of the squared velocity is given as

⟨(s(i)t −s
(i)
t−1)

2⟩ = 2 (1−ai), where s
(i) represents ith SF. This phenomenon is depicted

in Fig. 2.2. The noise covariance structure assumed for Σv in the above equation is

to ensure that the SFs have unit variance.

The estimation of the SFs in the probabilistic formulation involves the estimation

of the LVs st and the parameters H, A, Σu, and Σv. This can be viewed as a simul-

taneous state and parameter estimation problem. Given the probabilistic framework

of the problem, depending upon the estimation preference, the problem can be ap-

proached either from the point of view of maximizing the likelihood of the observed

data or as a maximum a-posteriori estimation problem of estimating the distribu-

tions of the random variables. The next section discusses these approaches from the

perspective of the estimation of the DLM expressed in (2.36) and (2.37).

25

��
�
�

�

��������

����

����

��������

� �� ��� ��� ��� ���
	

����

���

���

�

������
�

Figure 2.2: Depiction of the SFs in PSFA. The closer a is to 1, the slower is the
feature.

2.3 Probabilistic Model Estimation Methods

In probabilistic approaches, the estimation of the models is done in a maximum

likelihood estimation (MLE) framework which is based on the observed data, or a

Bayesian framework where the prior beliefs about the parameters are used along with

the observed data. For models involving LVs, these cannot be implemented in a

straightforward manner because of the unobserved variables and hence other efficient

techniques need to be adopted. This section presents two such methods which are

the EM algorithm and the VB inference approach that are used for MLE and MAP

problems respectively.

2.3.1 EM algorithm

The EM algorithm is a technique that can be used for maximizing the likelihood

function of a system when the data for some of the variables are missing [106, 107].

It is one of the standard techniques used for latent variable modeling. In these cases,

26

maximizing the likelihood directly is infeasible. Let Y be the observed dataset and S

be the latent variables. Let the parameters of the model be represented by θ. For the

DLM shown in (2.36) and (2.37), S = {s1, s2, . . . , sT} represents the set of all latent

variables st, and Y = {y1, y2, . . . , yT} represents the set of all observed variables yt.

θ represents the set of all parameters to be identified in the model, i.e,θ = [A, Σv,

H, Σu]. It can be noted that θ includes Σv separately for a general DLM and for

the PSFA model it will not be so as Σv is a function of A. Since S is not observed,

one cannot maximize the total data likelihood of p(Y, S|θ). Hence the likelihood that

needs to maximize is

ln p(Y |θ) = ln

(︃∫︂
p(Y, S|θ) dS

)︃
(2.39)

Since S is not observable, let q(S) be an arbitrary distribution of S through which S

can be observed. This is also known as the proposal distribution. The likelihood can

be written as

ln p(Y |θ) = ln

(︃∫︂
p(Y, S|θ)
q(S)

q(S) dS

)︃
(2.40)

One can consider the above equation as an expectation of p(Y,S|θ)
q(S)

w.r.t q(S) evaluated

inside a logarithm. Maximizing such quantities is not feasible as there is an integration

inside a logarithm. An easier quantity to maximize would be a logarithm inside an

expectation. This can be arrived at using the Jensen’s inequality according to which

for a concave function such as a logarithm, the following inequality holds.

f(E[x]) ≥ E[f(x)] (2.41)

Hence, the log-likelihood can be written as

ln

(︄∫︂
q(S)

p(Y, S|θ)
q(S)

dS

)︄
≥
∫︂

q(S) ln

(︄
p(Y, S|θ)
q(S)

)︄
dS = L(q, θ) (2.42)

Here, L(q, θ) is called the evidence lower bound (ELBO) as it is a lower bound on the

log-evidence (marginal log-likelihood). Hence, maximizing this lower bound would

be an alternative solution to maximizing the observed data likelihood. A closer look

at the lower bound reveals its relationship with the actual log-likelihood and the

27

inequality gap in the above equation.

L(q, θ) =
∫︂

q(S) ln

(︄
p(Y, S|θ)
q(S)

)︄
dS

=

∫︂
q(S) ln

(︄
p(S|Y, θ) p(Y |θ)

q(S)

)︄
dS

=

∫︂
q(S) ln

(︄
p(S|Y, θ)
q(S)

)︄
dS +

∫︂
q(S) ln

(︁
p(Y |θ)

)︁
dS

= −DKL(q(S)||p(S|Y, θ) + ln
(︁
p(Y |θ)

)︁
(2.43)

Here, DKL(q(S)||p(S|Y, θ) represents the Kullback–Leibler (KL) divergence between

the distributions q(S) and p(S|Y, θ) which is a measure of the distance between two

distributions. This measure is always a positive quantity and it can be observed that

the inequality in (2.42) is plugged by this KL divergence. Finally, we have

L(q, θ) = −DKL(q(S)||p(S|Y, θ)) + ln
(︁
p(Y |θ)

)︁
(2.44)

To arrive at the final steps of the EM algorithm, one needs to further examine the

ELBO. We can simplify ELBO as

L(q, θ) =
∫︂

q(S) ln

(︄
p(Y, S|θ)
q(S)

)︄
dS =

∫︂
q(S) ln

(︁
p(Y, S|θ)

)︁
dS −

∫︂
q(S) ln

(︁
q(S)

)︁
dS

(2.45)

The objective is to maximize the ELBO w.r.t the missing/hidden data (states) S,

and the parameters θ. It can be observed that q(S) appears only in the first term of

ELBO in (2.44), and θ appears only in the first term of ELBO in (2.45). Hence, the

optimization problem can be split into two steps, one where θ is optimized, and the

other where S, or q(S) is optimized. These two steps are iterated till convergence.

1. The first step is finding the q that maximizes the ELBO. For this we consider

(2.44) where q(S) appears in the KL divergence term. As mentioned earlier, KL

divergence is a measure of the distance between two distributions and is a pos-

itive quantity. Since KL divergence is subtracted from ln
(︁
p(Y |θ)

)︁
, maximizing

ELBO is equivalent to minimizing the KL divergence. The minimum value of

KL divergence is zero when the two distributions are equal. Hence,

q∗ = argmax
q

L(q, θold) = p(S|Y, θold) (2.46)

28

��
�	
���

��
��
��

�

θnewθold

(q, θnew)

�
�����θ

Figure 2.3: Sample depiction of the EM algorithm. The ELBO evaluated at θold is
maximized to get the updated parameters to θnew.

2. The second step is finding the θnew that maximizes the ELBO. Since θ appears

on only one term in (2.45), this equation could be used to maximize ELBO w.r.t

θ. Hence, we have

θnew = argmax
θ

L(q∗, θold) =
∫︂

q∗(S) ln
(︁
p(Y, S|θ)

)︁
dS

= ES∼p(S|Y,θold)
[︁
ln
(︁
p(Y, S|θ)

)︁]︁
(2.47)

3. Iterate the two steps till convergence.

The first step where the distribution of the hidden states is estimated is nothing

but the E-step. The expectation step or the E-step involves finding the expected

values of various quantities which are a function of the LVs. This needs the knowledge

of the distribution of the LVs which is obtained in the first step. The second step

updates the parameters by maximizing the expected value of the complete data log-

likelihood, with the expectation being taken according to the conditional distribution

of the latent variables p(S|Y, θold). This step is called the maximization step or the

M-step. Fig. 2.3 shows the evolution of the ELBO during the iterations of the EM

algorithm. The following points include some important aspects of the EM algorithm.

29

1. Maximization aspects: The EM algorithm does not explicitly maximize the

likelihood, rather maximizes a lower bound on it. It can be shown that in

each iteration, maximizing the lower bound also maximizes the observed data

likelihood. Moreover, in each iteration, the likelihood always increases.

2. Local optimum: Even though the likelihood increases in every iteration, there

is no guarantee that the algorithm converges to a global optimum. The case

depicted in Fig. 2.3 corresponds to such a scenario where the EM algorithm

may get stuck in a local minimum.

3. Initial guess: The final result of the EM algorithm depends on the initial

guess of the parameters θ due to the presence of multiple local minima. One

way is to have an initial guess based on some a-priori knowledge of the system

(e.g. for PSFA, the deterministic SFA model can be used to get a good initial

guess [55]). But in the absence of such knowledge, a random initialization is the

best option. The iterations can be started from multiple initial guesses selected

randomly, and the one resulting in the highest likelihood after convergence can

be selected.

The DLM shown in (2.36) and (2.37) can be estimated through the EM algorithm.

The M-step involves the estimation of the parameters θ = [A, Σv, H, Σu]. The LVs

{s1:T} (SFs in this case) are estimated in the estimation step which involves estimating

the first and the second moments of the LVs. This can be achieved through the

Kalman filter and Rauch–Tung–Striebel (RTS) smoother algorithms [55,106]. If any

of the modeling choices results in the case where the analytical realization of the

E-step is not possible (the posterior p(S|Y, θold is not tractable), then other filtering

and smoothing algorithms need to be used including the particle-based algorithms.

2.3.2 VB Inference

The MAP inference is a Bayesian inference method where the prior notions about the

parameters are combined with the observed data to obtain the updated parameters.

In this case, the parameters are also considered as random variables. This approach

is particularly useful in the case where we have certain beliefs or notions about that

30

process and want to integrate them into the modeling process. Such modeling prefer-

ences can be realized by assuming the appropriate prior structure to the parameters.

Besides imparting notions, one can also handle constraints on the parameters such as

the ones in (2.38) through appropriate choice of the prior distribution. The VB infer-

ence framework is suitable for this case which works on similar notions as that of the

EM algorithm, but extends to the case of Bayesian learning of the parameters [63,64].

In the EM algorithm for a DLM, the total data likelihood was p(Y, S|θ). Now,

since the parameters θ are also considered as random variables, the total data like-

lihood is p(Y, S, θ|θpr) where θpr represents the parameters of the prior distribution

of θ which are the hyper-parameters of the model. These result in the meshing of

modeling preferences into the model. Hence, the relationship between the observed

data likelihood and the total likelihood is represented as

ln p(Y |θpr) = ln

(︃∫︂
p(Y, S, θ|θpr)

q(S, θ)
q(S, θ) dS dθ

)︃
(2.48)

Proceeding similar to the EM algorithm case, the ELBO can be expressed as

L(q(S, θ)) =
∫︂

q(S, θ) ln

(︄
p(Y, S, θ|θpr)

q(S, θ)

)︄
dS dθ

=

∫︂
q(S, θ) ln

(︁
p(Y, S, θ|θpr)

)︁
dS dθ −

∫︂
q(S, θ) ln

(︁
q(S, θ)

)︁
dS dθ (2.49)

The objective is now to predict the distribution q(S, θ). Although the ELBO can be

expressed as

L(q(S, θ)) = −DKL(q(S, θ)||p(S, θ|Y, θpr) + ln
(︁
p(Y |θpr)

)︁
, (2.50)

this form only suggests that the best q(S, θ) is the posterior p(S, θ|Y, θpr) and it may

not be feasible to calculate this posterior as it would be a complicated, intractable

distribution of all states and parameters. Hence, an assumption is made regarding

the structure of q(S, θ) that results in an efficient iterative solution to the problem.

This is called the mean-field approximation [64]. According to this, the variational

distribution over all the random variables in the model is factorized as

q(S, θ) = q(S) · q(θ) (2.51)

Since θ = [A, Σv, H, Σu], the assumption is also extended to each of the parameters.

Hence,

q(S, θ) = q(S) · q(A) · q(Σv) · q(H) · q(Σu) (2.52)

31

Minimizing the ELBO in (2.49) w.r.t q(S, θ) as such is not feasible. The above

factorization is thus substituted into (2.49) to further simplify it. Let Z represent

a general random variable of the problem and Z̃ be all the remaining ones. Hence

we have {Z, Z̃} = {S, A, Σv, H, Σu}. The first term of (2.49) can be viewed as an

expectation of the total data likelihood w.r.t the proposal distribution. Due to the

factorization, one can have the following result.∫︂
q(Z, Z̃)⏞ ⏟⏟ ⏞
q(Z) q(Z̃)

ln
(︁
p(Y, Z, Z̃|θpr)

)︁
dZ dZ̃ =

∫︂
q(Z)EZ̃∼q(Z̃)

[︂
ln p(Y, Z, Z̃|θpr)

]︂
dZ (2.53)

Similarly the second term in the ELBO can be expressed as∫︂
q(Z, Z̃) ln

(︁
q(Z, Z̃)

)︁
dZ dZ̃ =

∫︂
q(Z) ln q(Z) dZ +

∫︂
q(Z̃) ln

(︁
q(Z̃)

)︁
dZ̃ (2.54)

Hence, the ELBO can be written as follows.

L(q(Z, Z̃)) =
∫︂

q(Z)EZ̃∼q(Z̃)

[︂
ln p(Y, Z, Z̃|θpr)

]︂
dZ −

∫︂
q(Z) ln q(Z) dZ

−
∫︂

q(Z̃) ln
(︁
q(Z̃)

)︁
dZ̃ (2.55)

One can make the following modification to the first term in the RHS of the above

equation.

L(q(Z, Z̃)) =
∫︂

q(Z) ln
(︂
exp

(︂
EZ̃∼q(Z̃)

[︂
ln p(Y, Z, Z̃|θpr)

]︂)︂)︂
dZ −

∫︂
q(Z) ln q(Z) dZ⏞ ⏟⏟ ⏞

DKL form

−
∫︂

q(Z̃) ln
(︁
q(Z̃)

)︁
dZ̃

(2.56)

Using the definition of KL divergence, the ELBO can be expressed as follows.

L(q(Z, Z̃)) = −DKL

(︂
q(Z)|| exp

(︂
EZ̃∼q(Z̃)

[︂
ln p(Y, Z, Z̃|θpr)

]︂)︂)︂
−
∫︂

q(Z̃) ln
(︁
q(Z̃)

)︁
dZ̃

(2.57)

The objective is to maximize the ELBO as expressed in the above equation. It can

be observed that the term Z appears only in the KL divergence term. Hence, to

maximize the ELBO w.r.t Z, only the KL divergence term needs to be considered.

Since the expression in (2.57) has a negative KL divergence term, the maximum is

reached when the KL divergence is zero. Hence,

q(Z) ∝ exp
(︂
EZ̃∼q(Z̃)

[︂
ln p(Y, Z, Z̃|θpr)

]︂)︂
(2.58)

32

The distribution of each random variable of the model is expressed according to the

above expression. Since each variable mostly appears once each in the likelihood term

and the prior term, usually the above expression boils down to

q(Z) ∝ exp
(︂
EZ̃∼q(Z̃) [ln (likelihood× prior)]

)︂
(2.59)

For example, the total data likelihood for the DLM model can be written as

p(S, Y,A,Σv, H,Σu) = p(S|A,Σv) · p(Y |H,Σu) · p(A) · p(Σv) · p(H) · p(Σu) (2.60)

And, if one is to write an expression for q(A), only the pdf terms that have A in them

need to be considered and rest can be clubbed in the constant term of (2.57). Thus,

the expression for q(A) can be written as

q(A) ∝ exp
(︂
E{S,Σu}∼q(S,Σu

˜) [ln p(S|A,Σv) · p(A)]
)︂

(2.61)

which has the form given in (2.59). While estimating the posterior as in (2.59), if

the prior and the likelihood form a conjugate pair, then q(Z) will have an analytical

expression. If that is not the case, sampling-based methods will need to be followed to

estimate q(Z). For the model parameters, usually importance sampling is employed

for the non-conjugate pair case. For the states, since they are part of a dynamic

equation, particle filtering and smoothing methods need to be used. The fourth

contribution of this thesis uses the Cauchy distribution to model the state transition

of one of the states. Since this results in no tractable expression for the posterior,

particle smoothing is used. The next section presents the sampling-based algorithms

such as importance sampling, particle filtering, and particle smoothing which are used

in this thesis.

2.4 Sampling-based algorithms

It is common to encounter situations where one cannot have a tractable distribution.

The common example is the case of Bayesian learning of a parameter when the prior

and the likelihood do not form a conjugate pair. In such cases, one may not have a

closed-form expression for the posterior distribution. In such cases, it is not possible

to get an analytical expression for the moments of the distribution. In several other

33

cases even with an analytical expression for the distribution, it may not be possible

to calculate the moments analytically. In such cases, one resorts to sampling-based

algorithms which as the name suggests involves generating samples from a distribu-

tion. These samples represent the distribution and are used to calculate the moments

of the distribution. Let {x(1), x(2), . . . , x(N)} represent a set of N samples drawn from

a distribution p(x). The estimate of the distribution is represented as follows [108].

p̂(x) =
1

N

N∑︂
i=1

δ(x− x(i)) (2.62)

Here, δ(x− x(i)) is the Dirac delta function.

δ(x− a) =

{︄
+∞, if x = a

0, otherwise
;

∫︂ +∞

−∞
δ(x− a) dx = 1 (2.63)

With such a definition, it can be observed that any expectation of a function f(x)

evaluated according to p(x) can be approximated as follows.

Ep[f(x)] =

∫︂ +∞

−∞
f(x) p(x) dx ≈

∫︂ +∞

−∞
f(x)

1

N

(︄
N∑︂
i=1

δ(x− x(i))

)︄
dx

=
1

N

N∑︂
i=1

∫︂ +∞

−∞
f(x)δ(x− x(i)) dx =

1

N

N∑︂
i=1

f(x(i))

(2.64)

Hence, any moment of p(x) can be calculated according to the above expression.

It must be noted that in the above case each sample is generated from p(x), i.e.,

x(i) ∼ p(x). For the case where p(x) is not tractable, one cannot generate samples

from p(x), and the approach to solving this problem is discussed in the next section.

2.4.1 Importance sampling

As mentioned earlier, if p(x) is intractable then it is not possible to sample from

it. In such a scenario one can generate samples from an easy-to-sample distribution

q(x), also called the importance distribution, and use these samples to estimate the

distribution. In this case, instead of using the samples directly, an importance weight

is assigned to each sample calculated such that it compensates for the fact that the

sample belongs to a different distribution. The notion behind importance sampling

34

�� �� �� �� � � � � �

���

���

���

���

���

	�
�

p(x)
q(x)
x(i)∼ q(x)

Figure 2.4: Depiction of importance sampling

and importance weights is shown in the following equations. Say the objective is to

evaluate E[f(x)] with x ∼ p(x). We have

E[f(x)] =
∫︂

f(x)p(x)dx =

∫︂
f(x)

p(x)

q(x)
q(x)dx =

∫︂
w(x)f(x)q(x) d(x) (2.65)

Now, f(x)w(x) can be considered as a function and q(x) as the distribution according

to which the expectation is to be evaluated. Hence, one can generate N samples from

q(x) such that the samples {x(i)} represent q(x) and can be represented similar to

(2.62). Substituting the approximate form q̂(x) into (2.65) we get the following result.

E[f(x)] =
1

N

N∑︂
i=1

w(x(i))f(x(i)); w(x(i)) =
p(x(i))

q(x(i))
; x(i) ∼ q(x). (2.66)

Consequently, the distribution can be represented in terms of the importance weights.

p̂(x) =
1

N

N∑︂
i=1

w(i)δ(x− x(i)) (2.67)

Importance sampling results in a biased estimate of the expected value which can

be easily observed for an extreme case when N = 1. Nevertheless, it gives a consistent

estimate, meaning the bias approaches zero as N approaches a large number and the

bias is O (1/N) [109]. Fig. 2.4 depicts the process of importance sampling. In this

35

case, p(x) is a complex distribution that has no tractable posterior. Hence, a Gaussian

distribution is selected as the importance distribution q(x) from which samples can

be generated conveniently.

2.4.2 Particle-based state estimation

The state estimation procedure for a DLM comprises of two main steps: the filtering

and the smoothing step. For the DLM represented in (2.36) and (2.37), the filtering

step involves estimating the pdf p(st|y1:t) and the smoothing step involves estimating

the pdf p(st|y1:T), where T > t. These steps for a DLM with Gaussian process and

observation noises are rather straightforward due to the ”closedness” property of the

Gaussian which is, the resultant distribution after a Bayesian inversion and a convo-

lution operation is always a Gaussian if all the involved distributions are Gaussian.

This results in a recursive estimation procedure which is realized by the Kalman filter

and RTS smoother algorithms. In most of the cases where non-Gaussian distributions

are involved, or if the system model is nonlinear, then such recursive derivations of

the filtering and smoothing steps are not possible because of the tractability issue of

estimating p(st|y1:t) and p(st|y1:T). In such cases, particle (sample)-based algorithms

are used which are essentially performing sequential importance sampling, which is

an extension of the importance sampling discussed in the previous section to the

dynamic model case [109,110].

2.4.2.1 Particle filtering

A hidden Markov model is characterized by two probability distributions: the state

transition distribution p(st|st−1) and the observation noise distribution p(yt|st). Par-

ticle filtering aims at inferring the distribution of the states given the observations.

The popular versions of the particle filtering algorithms focus on the estimation of

the joint density p(s1:t|y1:t). With the Markovian assumption and the assumption of

independence between observation noises, we have the following result.

p(s1:t) = p(st|st−1) · p(s1:t−1) =
t∏︂

i=2

p(si|si−1) · p(s1) (2.68)

p(y1:t|s1:t) = p(yt|st) · p(y1:t−1|s1:t−1) =
t∏︂

i=1

p(yi|si) (2.69)

36

With the above results, the recursive relation between p(s1:t|y1:t) and p(s1:t−1|y1:t−1)

can be arrived at, as follows.

p(s1:t|y1:t) =
p(y1:t|s1:t) · p(s1:t)

p(y1:t)
=

p(yt|st)p(y1:t−1|s1:t−1) · p(st|st−1)p(s1:t−1)

p(y1:t)

=
p(yt|st) · p(st|st−1) · p(s1:t−1|y1:t−1)

p(yt|y1:t−1)
(2.70)

The above relation forms the basis of the particle filtering algorithms which relates

p(s1:t−1|y1:t−1) to its updated form for the next time step p(s1:t|y1:t). Since any of the

posteriors p(s1:i|y1:i) are not tractable, these are represented in terms of weights as

discussed in the previous section of importance sampling. With the help of (2.70),

the weights that correspond to p(s1:t−1|y1:t−1) can be recursively updated using the

state transition pdf and the observation noise pdf to get the weights for p(s1:t|y1:t).

A general particle filtering algorithm is represented in Algorithm. 2.3.

Algorithm 2.3 A generic particle filtering algorithm

At t = 1

1. Sample s
(i)
1 ∼ q(s1|y1)

2. Compute the weights and normalize them.

w(s
(i)
1) =

p(s
(i)
1) p(y1|s(i)1)

q(s
(i)
1 |y1)

; w̃(s
(i)
1) ∝ w(s

(i)
1)

3. Resample (if required) {w̃(s(i)1), s
(i)
1 } to get {1/N, s̄

(i)
1 }

For t ≥ 2

1. Sample s
(i)
t ∼ q(st|s̄(i)t−1, yt) and set s

(i)
1:t ← {s

(i)
t , s̄

(i)
1:t−1}

2. Compute the weights and normalize them.

w(s
(i)
1:t) =

p(yt|s(i)t) p(s
(i)
t |s̄

(i)
t−1)

q(s
(i)
t |s̄

(i)
t−1, yt)

w̃(s
(i)
1:t−1); w̃(s

(i)
1:t) ∝ w(s

(i)
1:t)

3. Resample (if required) {w̃(s(i)1:t), s
(i)
1:t} to get {1/N, s̄

(i)
1:t}

Step 3 in Algorithm. 2.3 is called the resampling step. In sequential importance

sampling, the variance of the estimate increases over time and it may also result in

37

a scenario where many weights are close to zero. In this case, many particles will be

rendered ineffective as they do not represent the distribution. An effective way to

solve this issue is the resampling technique. As the name suggests, this step involves

resampling the current particles with each particle assigned a probability equal to its

normalized weight. This results in particles that are equally weighted and hence the

weight of the new set of particles is 1/N for each particle. It must be noted that

resampling need not be done in every step and can be performed only if the effective

number of samples calculated as 1∑︁N
i=1(w̃(s

(i)
1:t))

2
falls below a certain threshold (typically

N/2). Here w̃(s
(i)
1:t) represents the normalized weight associated with the augmented

sample s
(i)
1:t.

An important aspect to be noted about (2.70) and Algorithm. 2.3 is that the

distribution being learned is a joint distribution of the states over all the instants of

past time i.e., p(s1:t|y1:t). In many cases, the marginal distribution of p(st|y1:t) is of

interest particularly for the case of smoothing which is based on marginal distribution

weights. In such a case, a particle filter that recursively estimates the weights of the

marginal distribution is of interest. One way of achieving this is to extract {s(i)t }

from {s(i)1:t} and associate the weight {w̃(s(i)1:t)} with it. This results in a depletion

problem as only one particular path of s1:t−1 is considered [111]. The proper way

of developing a marginal particle filter should be based on how the general marginal

filtering framework is derived. Thus, the marginal particle filter is based on the

following equation [112].

p(st|y1:t) =
p(yt|st) · p(st|y1:t−1)

p(yt|y1:t−1)
=

p(yt|st) ·
∫︁
p(st|st−1)p(st−1|y1:t−1)dst−1

p(yt|y1:t−1)
(2.71)

In this case, the recursion step is different from the one generic particle filter algorithm

as the previous step’s posterior appears inside an integral. The procedure of the

marginal particle filter [112] is provided in Algorithm. 2.4.

2.4.2.2 Particle smoothing

Smoothing refers to the estimation of the pdf p(st|y1:T) where T is in the future of t.

In this step, the past states are re-estimated based on the future observations. This

procedure is particularly useful for the case where the estimated states are used to

learn the parameters as in the case of learning the DLM through EM algorithm or

38

Algorithm 2.4 Marginal particle filtering algorithm

At t = 1

1. Sample s
(i)
1 ∼ q(s1|y1)

2. Compute the weights and normalize them.

w(s
(i)
1) =

p(s
(i)
1) p(y1|s(i)1)

q(s
(i)
1 |y1)

; w̃(s
(i)
1) ∝ w(s

(i)
1)

3. Resample (if required) {w̃(s(i)1), s
(i)
1 } to get {1/N, s̄

(i)
1 }

For t ≥ 2

1. Sample s
(i)
t ∼

∑︁N
j=1 w̃

(j)
t−1 q(st|s̄(j)t−1, yt)

2. Compute the weights and normalize them.

w(s
(i)
t) =

p(yt|s(i)t)
∑︁N

j=1 w̃
(j)
t−1 p(s

(i)
t |s̄

(j)
t−1)∑︁N

j=1 w̃
(j)
t−1 q(s

(i)
t |s̄

(j)
t−1, yt)

; w̃(s
(i)
t) ∝ w(s

(i)
t)

3. Resample (if required) {w̃(s(i)t), s
(i)
t } to get {1/N, s̄

(i)
t }

VB inference. The equation for smoothing is expressed as follows.

p(st|y1:T) =
∫︂

p(st+1|st)p(st|y1:t)∫︁
p(st+1|st)p(st|y1:t) dst

p(st+1|y1:T) dst+1 (2.72)

As seen from the above equation, in this case, one moves backward in time i.e.,

p(st|y1:T) is estimated based on p(st+1|y1:T). The particle version of the above equation

can be expressed as follows.

w(s
(i)
t|T) = w(s

(i)
t)

[︄
N∑︂
j=1

w(s
(j)
t+1|T)

p(s
(j)
t+1|s

(i)
t)∑︁N

k=1w(s
(k)
t) p(s

(j)
t+1|s

(k)
t)

]︄
(2.73)

It is to be noted that in the above equation all the weights involved represent the

marginal distributions thus requiring a marginal particle filter in the forward pass.

The computational complexities of the marginal particle filter and particle smoother

are high (O(N2T)). Although lesser computationally intensive alternatives exist, they

are not accurate because the marginal distribution weight calculation is not accurate

in those cases. Since the particle filtering and smoothing algorithms are run together

only offline, such high computational complexity may be tolerated.

39

Chapter 3

Output-Relevant Slow Feature
Extraction Using Partial Least
Squares *

This chapter presents the first contribution of the thesis which is based on SFA.

As discussed earlier, SFA is an approach that extracts features from a time series

dataset in an unsupervised manner based on the temporal slowness principle. These

SFs contain relevant information about the dynamics of the process and hence are

useful for developing models. For supervised learning objectives, these SFs need to

be relevant to the outputs. Partial least squares (PLS) is a method used to perform

supervised feature extraction and build models. For time series datasets this approach

cannot be used directly as it assumes each sample to be sequentially independent of

each other. This work proposes an approach to perform feature extraction which

combines the temporal slowness element of SFA and the output-relevance element of

PLS. The proposed approach extracts temporally SFs that are relevant to the outputs,

which is an essential aspect of supervised learning. The proposed formulations can

be solved using the existing PLS algorithms like NIPALS and SIMPLS with proposed

modifications. The proposed methods are applied to three case studies: simulated,

industrial, and experimental case studies to demonstrate their efficacy.

*This chapter has been published as: R. Chiplunkar and B. Huang, “Output-relevant slow
feature extraction using partial least squares,” Chemometrics and Intelligent Laboratory Systems,
vol. 191, pp. 148–157, 2019.

40

3.1 Introduction

For soft sensor development, among the linear regression methods, PCR and PLS

are the commonly used approaches. The conventional PCR and PLS methods have

limitations when it comes to time series models. These methods assume indepen-

dence between samples which is not the case for time series data. In time series data

successive samples are correlated with each other. This relationship between succes-

sive samples needs to be considered while developing models for time series datasets.

Methods like dynamic principal component analysis (DPCA) and dynamic partial

least squares (DPLS) (section 1.2.1) augment current observations with past ones to

incorporate system dynamics. These result in increased dimensionality of the data.

Process datasets generally contain a huge number of variables and these approaches

blow up the dimensionality of the problem and are not suitable for big data problems.

Although various versions of DPLS have been proposed that do not have this issue of

augmentation, they do not consider the aspect of temporal correlation or slowness.

Temporal correlation is an important aspect of time series data. Hence, the latent

variables that underlie the data set, have strong temporal correlations or in other

words, must be smoother or slowly varying. Slow feature analysis (SFA) is an un-

supervised method of extracting features subject to temporal slowness from a time

series dataset [4]. The objective is to obtain slowly varying features that contain use-

ful information about the process. This approach is particularly suitable for chemical

processes whose dynamics is slow by nature and hence the primary latent variables

of the data must be slow in nature. Hence the slower latent variables contain key

information about the data and faster ones are usually associated with noise. As

discussed in section 1.2.1, SFA and its variants have been increasingly studied for

industrial applications. As pointed in that section, the SFA-based algorithms where

the objective is to perform supervised learning using the extracted FSs, do not extract

the SFs in a supervised manner. This thesis hence proposes to achieve this goal by

combining the temporal slowness aspect of SFA with the output-relevance aspect of

PLS.

Shang et al [114] have proposed an approach in which the temporal smoothness

aspect is brought into DPLS as an L2 regularization term, regularizing the differ-

41

ence between the weights of successive samples in the DPLS objective function. The

method resulted in an enhanced performance when compared against the uncon-

strained DPLS method. This approach is applicable to DPLS, but cannot be applied

to PLS as it does not consider temporal slowness directly, rather achieves it by reg-

ularizing weights. This work proposes an approach that extracts SFs in a supervised

manner resulting in SFs that explain the output data well. The objective of the pro-

posed formulation is a combination of PLS and SFA methods. The combined objective

results in features with the properties of high covariance with outputs while retaining

temporal slowness. This work also proposes solutions to the PLS-SFA formulation

which are similar to the conventional PLS algorithms but with modifications. The

formulations of the conventional PLS methods result in objective functions whose

solutions are given by extracting eigenvectors from a certain matrix. Two of the

popular algorithms for solving PLS objective function are nonlinear iterative partial

least squares (NIPALS) [103] and statistically inspired modification of partial least

squares (SIMPLS) [104]. These algorithms provide a way of systematically solving

the objective function by extracting latent features in a stage-wise manner. It will be

shown that the proposed output-relevant SF extraction formulation too results in an

objective function whose solution will be given by successive extraction of eigenvectors

from a certain matrix. It will be shown that the solutions to the proposed formula-

tions will proceed similarly to the NIPALS and SIMPLS algorithms with proposed

modifications to result in the temporal slowness of the extracted features.

The proposed approaches are implemented in three case studies. The first of these

is a simulated example. The second one is the data from a debutanizer column. This

is an open-source industrial dataset [115]. The final case study has an experimental

dataset obtained from a hybrid tank system. The obtained results from these case

studies are compared with conventional linear models PCR, PLS, and SFR. For time-

varying systems, adaptive modeling strategies like recursive PLS [21] and just-in-

time [116] have been proven to be more effective. But since the proposed method

models a static model and is not adaptive in nature, the comparisons are limited to

linear soft sensor models which are not adaptive in nature. The contributions of this

work are as follows.

42

1. Formulation of the problem to extract output-relevant SFs, which combines the

aspects of both PLS and SFA.

2. Algorithms for solving the proposed formulation.

The rest of this chapter is organized as follows. In section 3.2 the conventional

SFA problem is revisited. In section 3.3 the PLS model is discussed. In section

3.4 the proposed formulations of output-relevant SF extraction and modifications

to NIPALS and SIMPLS are presented. Results from the three case studies are

presented in section 3.5. Finally, section 3.6 summarizes the proposed approaches

and the conclusions drawn from the results.

3.2 SFA

The conventional SFA was introduced in section 2.2.1 as proposed by the original

authors [4]. This section revisits it briefly to introduce the objective function in

the concise notation that will be used in this chapter. The SFA extracts LVs by

minimizing the velocity of the LVs. For a linear model, the objective is to obtain a

weight matrix w that map the data matrix X = [x1, x2, ..., xn]
′ such that the velocity

of the scores Xw is minimized. This is same as minimizing the signal ∆Xw where

∆X is the temporal difference data matrix calculated as ∆X = [x2−x1, x3−x2, . . . ,

xn − xn−1]. This results in the following objective function.

minimize
wa

w′
a∆X ′∆Xw

subject to w′X ′Xw = I
(3.1)

Here, I is an identity matrix. The constraint in the above equation realizes the

constraints in (2.31), (2.32), and (2.33). The above problem can be solved as a

generalized eigenvalue problem [55].

3.3 PLS

As discussed in section 2.1, the PLS algorithms are of many types, the primary ones

are the NIPALS and SIMPLS. The objective function for the NIPALS is as follows.

maximize
wa

w′
aX

′
aYaY

′
aXawa

subject to w′
awa = 1, t′bta = 0 for a > b

(3.2)

43

And the SIMPLS objective function is as follows.

maximize
pa,ca

w′
aX

′Y ca

subject to w′
awa = 1, c′aca = 1, t′bta = 0 for a > b

(3.3)

3.4 Output-relevant SFA

In PLS, feature extraction is performed using both input and output data so that the

extracted features aid in improved prediction ability of the model. The feature extrac-

tion in PLS is performed considering the covariance between the extracted features

from the input and output spaces. For these reasons, in the proposed approach SFA is

combined with PLS to obtain output-relevant SFs. NIPALS and SIMPLS algorithms

are among the popular algorithms used to solve PLS problems. In this section, the

proposed formulation of the optimization problem of these two algorithms, and the

solutions to obtain output-relevant SFs are presented.

3.4.1 NIPALS for slow feature extraction

The NIPALS objective function for PLS as expressed in (3.2) maximizes the squared

covariance of the scores ofX with the output. Since the objective in the proposed case

is to obtain slower features with the output-relevance aspect, the proposed objective

function combines the objective of SFA in (3.1) and the objective of the NIPALS

method. The combined objective function is expressed as follows.

maximize
wa

w′
aX

′
aYaY

′
aXawa − α w′

a∆X ′
a∆Xawa

s.t w′
awa = 1

(3.4)

This formulation will achieve two objectives. The first term is the PLS objective

function while the second one is the SFA objective function. The two objectives can

be appropriately weighed using the weight α. This is a hyper-parameter and the

procedure for tuning α is presented in section 3.4.3. In the conventional SFA (sec.

2.2.1) sphering is performed on the original data followed by PCA on the velocity of

the sphered data. So it is similar to solving an optimization problem minimizing the

quantity given by w′
a∆X ′

a∆Xawa. Incorporating this term into the PLS objective

function will bring the temporal slowness aspect into PLS. The new objective function

in (3.4) can be viewed as a PLS objective function that penalizes the velocities of the

44

input features, or as an SFA objective function that extracts SFs which are correlated

with outputs.

The iterative procedure in Algorithm. 3.1 essentially converges in the following

result.

wa ∝ X ′
aYaY

′
aXa wa − α ∆X ′

a∆Xawa (3.16)

This means that wa is the eigenvector of X ′
aYaY

′
aXa − α ∆X ′

a∆Xa. Hence, such

an iterative procedure is not required. Nevertheless, it is presented for the sake of

completeness as the original NIPALS algorithm followed such an iterative procedure.

Algorithm. 3.1 can be simplified as represented in Algorithm. 3.2.

Properties of weights,loadings and scores The weights, scores, and loadings in

the NIPALS algorithm have special properties. The four key properties are

1. The weights are orthogonal to each other i.e., w′
iwj = 0, ∀ i ̸= j

2. The scores are orthogonal to each other i.e., t′itj = 0, ∀ i ̸= j

3. The weights are orthogonal to subsequent loadings i.e., w′
ipj = 0, ∀ i < j

4. The loadings are orthogonal in the kernel space ofX i.e., p′i(X
′X)−1pj = 0, ∀ i ̸=

j

The second property particularly implies that the scores are independent of each

other which is essential because one would want every latent variable to give new

information. The above properties hold for the proposed approach as well. The proofs

for the above properties for the NIPALS method are given in Höskuldsson [105]. The

proof for the first property for the proposed method is presented here. The matrix

deflation equation can be written as

Xi = Xi−1 − ti−1p
′
i−1 = Xi−1 − ti−1

t′i−1Xi−1

t′i−1ti−1

(3.25)

Multiplying both sides by wi−1

Xiwi−1 = Xi−1wi−1 − ti−1

t′i−1Xi−1wi−1

t′i−1ti−1

= 0 (3.26)

45

Algorithm 3.1 The modified NIPALS algorithm for output-relevant SFA

1. Take a column of Ya as an initial guess for ua. Take a column of ∆Xa as an
initial guess for ra.

2. Calculate wa as

wa =
1

u′
aua

X ′
a ua −

α

r′ara
∆X ′

a ra (3.5)

3. Normalize wa.

wa =
wa√
w′

awa

(3.6)

4. Project Xa onto wa to get scores of Xa. Similarly, project ∆Xa onto wa to get
scores of ∆Xa.

ta = Xa wa; ra = ∆Xa wa (3.7)

5. Regress Ya on ta to get ca. The regression coefficients ca contain information
about covariance between Ya and scores of Xa.

ca =
1

t′ata
Y ′
a ta (3.8)

6. Normalize ca.

ca =
ca√
c′aca

(3.9)

7. Project Ya onto ca to get scores of Ya.

ua = Ya ca (3.10)

8. Iterate from step 2 to 7 till convergence.

9. Regress ua on ta. Deflate Xa and Ya and continue with step 1.

ba =
1

t′ata
u′
ata (3.11)

pa =
1

t′ata
X ′

a ta (3.12)

Xa+1 = Xa − ta t′a Xa
1

t′ata
(3.13)

Ya+1 = Ya − ta t′a Ya
1

t′ata
(3.14)

10. Iterate from steps 1 to 9 till the required number of features are extracted.

11. Calculate the final regression coefficient matrix as

BPLS = W (P ′W)−1BC ′ (3.15)

46

Algorithm 3.2 The simplified version of the modified NIPALS algorithm for output-
relevant SFA

1. Find wa as the largest eigenvector of the matrix X ′
aYaY

′
aXa − α ∆X ′

a∆Xa.

2. Project Xa onto wa to get the scores ta.

ta = Xa wa (3.17)

3. Regress Ya onto ta to get ca.

ca =
1

t′ata
Y ′
a ta (3.18)

4. Normalize ca.

ca =
ca√
c′aca

(3.19)

5. Find scores of Ya.
ua = Yaca (3.20)

6. Perform regression between output and input scores and deflate the data ma-
trices.

ba =
1

t′ata
u′
ata (3.21)

pa =
1

t′ata
X ′

a ta (3.22)

Xa+1 = Xa − ta t′a Xa
1

t′ata
(3.23)

Ya+1 = Ya − ta t′a Ya
1

t′ata
(3.24)

7. Continue till the required number of features are obtained.

47

The above property can be proved for any pair of Xj and wk with j > k. From this

result, for the NIPALS method, it can be observed that

w′
iwi−1 ∝ wiX

′
iYiY

′
i Xiwi−1 = 0 (3.27)

For the proposed method, (3.27) becomes

w′
iwi−1 ∝ wi(X

′
iYiY

′
i Xi − α∆X ′

i∆Xi)wi−1 (3.28)

= −αwi(X
t+1
i −X t

i)
′(X t+1

i −X t
i)wi−1 (3.29)

= 0 (3.30)

Here, X t+1
i is nothing but the Xi matrix without the first sample and X t

i is the Xi

matrix without the last sample. The proofs for the remaining properties are similar

to the ones for the NIPALS method and are given in Höskuldsson [105].

3.4.2 SIMPLS for slow feature extraction

Similar to the previous case, the objective function of the SIMPLS algorithm too can

be extended to include the slowness aspect into the LVs. To incorporate temporal

slowness into the objective function of PLS, the new objective function is formed by

adding the temporal slowness term similar to the previous case ((3.4)). The resulting

objective function is expressed as

maximize
wa,ca

w′
aX

′Y ca − α w′
a∆X ′∆Xwa

subject to w′
awa = 1, c′aca = 1 and t′bta = 0 for a > b

(3.31)

The above formulation in this form does not have a solution in terms of eigenvectors.

It can be modified to convert it into a form such that the solutions can be expressed

in terms of eigenvectors. The decision variables, wa and ca can be concatenated to

get the decision variable za.

za =

[︃
wa

ca

]︃
(3.32)

The objective function can now be expressed in terms of za

maximize
za

z′aQaza (3.33)

Q =

[︃
−α∆X ′∆X 1

2
X ′Y

1
2
Y ′X 0

]︃
(3.34)

48

The solution of the above objective is a simple eigenvalue-eigenvector solution with

za being the decision variable. The Q matrix of the proposed formulation can be

written as

Q =

[︃
D 1

2
S

1
2
S ′ 0

]︃
(3.35)

where D = −α∆X ′∆X is the velocity covariance matrix of inputs and S = X ′Y is

the covariance between inputs and outputs. Looking at the Q matrix and (3.35), in

the modified approach the matrices to be deflated are S and D. The deflation of S

is performed similarly to SIMPLS as the constraints for the SIMPLS-SFA objective

are the same as that of SIMPLS (since the matrix deflation equations arise from the

constraints). The matrix D is deflated as given by the (3.45). The modified SIM-

PLS algorithm for supervised SF extraction is given as in Algorithm. 3.3. Although

SIMPLS is computationally more effective than NIPALS, with today’s computational

advances, both methods can be easily implemented. Given the more intuitive defini-

tion of scores and weights in SIMPLS, it could be preferred over NIPALS in general.

Properties of weights,loadings and scores In the SIMPLS method, the input

scores are orthogonal to each other. Also, the input weights are orthogonal to the

loadings [104]. This is because in every step the input weights are projected onto a

subspace orthogonal to the previous loadings. This is achieved by projecting S repeat-

edly onto a subspace orthogonal to the loadings. Since the weights are eigenvectors

of SS ′, the subsequent weights also will be orthogonal to the previous loadings. This

aspect is crucial in achieving independent scores. Since a similar approach is followed

in the proposed method, the proposed method also has similar properties, i.e., the

scores are orthogonal to each other and weights are orthogonal to loadings. In the

proposed method, in addition to S, D is also deflated. If one looks at the objective

function (equation (3.31)), in the slowness term, since wa appears on both sides of the

matrix, to achieve the orthogonal subspace projection of wa, the projection matrix

must appear on both sides of the velocity covariance matrix. Hence, the D matrix

must be deflated as in (3.45). These considerations lead to orthogonality between

weights and loadings and hence orthogonality between the scores in the proposed

method.

49

Algorithm 3.3 The modified SIMPLS algorithm for output-relevant SFA

1. Calculate the matrices Da and Sa

Da = −α∆X ′
a∆Xa; Sa = X ′

aYa (3.36)

2. Form the Qa matrix as

Qa =

[︃
Da

1
2
Sa

1
2
S ′
a 0

]︃
(3.37)

3. Find the largest eigenvector of the matrix Qa which yields the weight vectors,
wa and ca.

4. Project X onto wa to get the scores of X.

ta = Xwa (3.38)

5. Normalize ta and scale wa using the norm of ta.

wa =
wa√
t′ata

; ta =
ta√
t′ata

(3.39)

6. Find the X and Y loadings, pa and za.

pa = X ′ta; za = Y ′ta (3.40)

7. Project Y onto za to get the scores of Y

ua = Y za (3.41)

8. Make the current loading orthogonal to the previous loadings.

va = pa; v = va − V V ′pa (3.42)

9. Normalize va.

va =
va√
v′ava

(3.43)

10. Deflate the matrices Sa and Da

Sa+1 = (I − vav
′
a)Sa (3.44)

Da+1 = (I − vav
′
a)Da(I − vav

′
a) (3.45)

Or, the Qa matrix can be directly deflated as

Qa+1 =

[︃
I − vav

′
a 0

0 I

]︃
Qa

[︃
I − vav

′
a 0

0 I

]︃
(3.46)

11. Repeat the above steps till the required number of features are extracted.

50

0 250 500 750 1000 1250 1500 1750 2000
150

200

250

300

350

400

450

500

Er
ro

r

Figure 3.1: The behavior of error with α for the modified NIPALS method

3.4.3 Tuning α and the definiteness of the matrices in the
objective functions

In both of the proposed methods, the objective function contains two parts. One is

the covariance between the output and input matrices, and the other is the velocity

covariance matrix whose relative importance is controlled by the hyper-parameter α.

In the case of the NIPALS approach shown in (3.4), the matrix that appears in

the objective function is the difference between the square of the covariance between

input and output, and the variance of the velocities of the input scores (weighted

with α). Eigenvector extraction hence is performed on the matrix resulting from the

difference between the two matrices. Both of these matrices, X ′Y Y ′X and ∆X ′∆X

are positive definite matrices. But since a difference of these is taken, the resulting

matrix need not be positive definite. As the value of α increases, at some point, the

matrix loses its positive definiteness and becomes an indefinite matrix and then may

become a negative semi-definite or negative definite matrix. In the results, it has

been found that as α is increased, the prediction errors on training and validation

sets decrease steadily. But beyond a certain value of α, the prediction errors increase

51

2 1 0 1 2
Actual Data

2

1

0

1

2

3

Pr
ed

ict
io

n

PCR
PLS
SFR
Prop 1
Prop 2

Figure 3.2: Plot of predicted response against the actual data for the test data of the
simulated dataset

and start to oscillate. It has been observed that this behavior starts when the highest

eigenvalue of the matrix X ′Y Y ′X − α ∆X ′∆X becomes zero. Hence one needs to

stop at a point before the value of α beyond which the errors become unstable. Fig.

3.1 depicts such behavior for the Debutanizer column case study. In this case, an α

value of 850 is chosen. For the SIMPLS case too, similar behavior is observed when

the highest eigenvalue of the Q matrix approaches zero with an increase in α. In this

case also, α cannot be increased beyond this point.

3.5 Results

The proposed methods have been applied to three case studies. This section presents

the results obtained.

52

3.5.1 Simulated case study

The data for this case study is created using the probabilistic slow feature analysis

(PSFA) model. The PSFA model is a state-space model described by the following

equations.

st = Ast−1 + vt; vt ∼ N (0,Σs) (3.47)

xt = Hst + wt; wt ∼ N (0,Σx) (3.48)

Here s represents the SFs and x represents the observed inputs. The matrix A

defines how SFs evolve, and is diagonal to ensure that the SFs are independent of

each other. Matrix H describes how the SFs generate the observed data. v and

w are Gaussian white noise. Using the PSFA model, eight features with different

velocities are generated. Five inputs are generated using a linear transformation of

all eight features through matrixH. The elements of the matrixH are sampled from a

discrete uniform distribution ranging from -10 to 10 (although some changes are made

after sampling). Two SFs are used to construct the output (equation 3.51). This is

according to the rationale that the observed input data that has underlying SFs and

these SFs result in the outputs. The following parameters are used to construct the

simulated dataset.

A = diag(0.999, 0.99, 0.97, 0.95, 0.94, 0.93, 0.1, 0.05) (3.49)

H ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 5
−1 1 −5 5 7
−10 6 −9 2 9
−3 3 −4 8 6
−5 8 1 0 −2
4 8 −6 −1 −2
7 −10 3 −1 4
−1 −3 −9 −10 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.50)

y(t) = Bs(t) + ey(t) (3.51)

B =
[︁
0 0 0 1 0 −1 0 0

]︁
(3.52)

A total of 2000 samples are generated using (3.47), (3.48) and (3.51). The dataset

is divided into three parts named training, validation, and test sets. The training

dataset is the one used to train the model to get the model parameters. This is the

53

set that is used while solving the objective function of the optimization problems.

The validation dataset is used to tune the hyper-parameters. In this case, the hyper-

parameters are the number of features to be extracted and the weighting factor α

in the objective functions of proposed approaches ahown in (3.4) and (3.31). The

combination of the number of latent variables and α that gives a low error on the

validation dataset are chosen. This is illustrated in the second case study. The test

dataset is the set unseen by the model during training. Hence, the performance

of the model on the test dataset is the true indication of the generalization ability

or the model prediction. For this case study, the data split is done in the ratio of

50:25:25. The test data comes after the validation data which comes after the training

data. The proposed approaches are compared against conventional linear models,

PCR, PLS and SFR w.r.t root mean squared error (RMSE) values and concordance

correlation coefficient. The Concordance correlation coefficient is a measure of the

agreement between two variables. The concordance correlation coefficient ρc, between

two variables x and y is expressed as

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
(3.53)

Table 3.1: Comparing the RMSE values for training, validation and test sets of con-
ventional linear regression methods and proposed methods for the simulated dataset

Method n RMSEtrain RMSEval RMSEtest

PCR 5 0.4395 0.4730 0.5448
PLS 4 0.4412 0.4717 0.5269
SFR 3 0.4605 0.4912 0.5275

Prop - 1 2 0.4580 0.4773 0.4596
Prop - 2 2 0.4682 0.4895 0.4510

In the tables and figures, proposed method-1 and proposed method-2 refer to the

proposed modified NIPALS and modified SIMPLS methods respectively. A plot of

predicted response versus the actual data for the test dataset is presented in Fig. 3.2.

The black line in this figure is the 45◦ line (when observed and predicted values are

equal) and the points are expected to lie close to this line. It can be observed from the

figure that the points corresponding to the proposed methods, particularly from the

54

Table 3.2: Comparing the Concordance correlation coefficient values for training, val-
idation and test sets of conventional linear regression methods and proposed methods
for the simulated dataset

Method n ρctrain ρcval ρctest
PCR 5 0.9123 0.8718 0.7851
PLS 4 0.9116 0.8718 0.7975
SFR 3 0.9030 0.8587 0.7977

Prop - 1 2 0.9041 0.8682 0.8405
Prop - 2 2 0.8993 0.8620 0.8457

SIMPLS based method, lie closer to the 45◦ line. The points corresponding to PCR,

PLS, and SFR are mostly on one side of the line resulting in a higher RMSE. The

obtained results are quantified in the Table. 3.1 and 3.2. The slowness term on the

proposed objective functions can be seen as a regularization term. So the error on the

training dataset for the proposed approaches is more than that for the conventional

approaches as expected since by regularization one sacrifices the performance of the

model on the training set in terms of fitting so that the model has better generalization

ability. It can be observed that the proposed approaches have improved the RMSE.

To test if the RMSE of the proposed methods is significantly smaller than the RMSE

of the conventional methods, a t-test can be performed. The null hypothesis is that

the RMSE values are not significantly different and the alternate hypothesis being

RMSE of conventional methods is larger than that of the proposed methods. Since

PCR and PLS are the most common conventional methods, a t-test is performed

here with the best of the RMSEs among PCR and PLS, which is PLS in this case.

Different estimates of the RMSE are obtained by randomly sampling from the test

data without replacement such that all the samples in the test dataset are used. The

t statistic for the two-sample test is calculated as

t =
(x1 − x2)− (µ1 − µ2)√︂

s21
n1

+
s22
n2

(3.54)

Here x, µ and s2 are the sample mean, population mean, and sample variance respec-

tively. Since, the null hypothesis is that the RMSE values are same, µ1 − µ2 = 0.

Hence the t-statistic is

t =
(RMSEPLS −RMSEprop)√︂

s2PLS

n
+

s2prop
n

(3.55)

55

The degrees of freedom is calculated using the following equation.

dof =

(︂
s21
n1

+
s22
n2

)︂2
1

(n1−1)

(︂
s21
n1

)︂2
+ 1

(n2−1)

(︂
s22
n2

)︂2 (3.56)

Twenty-five sets of samples are obtained from the test data and the mean of RMSE

for PLS is 0.5207 and for the proposed methods is 0.4523 and 0.4435 respectively (The

values in Table. 3.1 are for the whole test data). The critical value of the statistic for

a one-sided, 95% confidence interval test is t0.95,48 = 1.6772. The t values for the two

proposed methods are 2.9180 and 3.2869 respectively. Hence it can be concluded that

the proposed methods have reduced the RMSE. The proposed approaches have also

improved the concordance between the predicted output and the actual output. In

the table, the column labeled n represents the number of latent variables required by

the corresponding method. It can be seen that the proposed methods require a lesser

number of latent variables than the conventional methods in order to explain the

outputs. It can be inferred that the proposed approaches are efficient in extracting

the hidden features. The lesser number of latent variables can be advantageous as

they help in reducing the variance of the predictions as well as reliability for practical

applications.

3.5.2 Debutanizer column

The debutanizer column dataset is a benchmark industrial dataset for soft sensor

designing [115]. The debutanizer column is used to remove butane and other lighter

hydrocarbons from naphtha. The objective is to design a soft sensor to estimate the

butane content in the bottoms stream of the debutanizer column. There are 7 input

variables: top temperature, top pressure, reflux flow, flow to the next process, the

temperature of the sixth tray in the column, and the bottom temperature measured at

two points. The schematic of the process is depicted in Fig. 3.3, and the description

of the variables is shown in Tab. 3.3 [115]. There are a total of 2393 samples in the

data set. The first 2200 are used in this case study. The data is split into three parts

such that the training data accounts for a good amount of variations in the variables.

In this case, the points are split as 1200-400-600 is used for training, validation, and

testing purposes.

56

Figure 3.3: A schematic disgram of the debutanizer column [115]

Table 3.3: Description of the variables in the debutanizer column process dataset

Variable Description

x(1) Top temperature
x(2) Top pressure
x(3) Reflux flow
x(4) Flow to next process
x(5) 6th tray temperature
x(6) Bottom temperature
x(7) Bottom pressure
y C4 content in the debutanizer bottoms

Similar to the previous case, proposed methods are implemented on the dataset

and the performance is compared with PCR, PLS, and SFR. For this case, it is found

that taking just the seven regressors gives poor results. Hence for each input variable,

a lagged variable is also taken to enhance the performance of the soft sensor. The

number of lags is decided based on the correlation of the lagged input variable with

the output. For each variable, a lag of up to 10 samples is considered and the lag

that gives the highest correlation with the outputs is selected. Augmenting lagged

measurements does increase the dimensionality of the problem. But for this case, a

static model gave a poor performance, and hence a dynamic model is used. Hence

in actuality, the comparison here would be made between the dynamic version of

57

0.0 0.2 0.4 0.6 0.8
Actual Data

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ed

ict
io

n

PCR
PLS
SFR
Prop 1
Prop 2

Figure 3.4: Comparison of the output predicted by PCR, PLS, SFR and proposed
methods on the test data of the debutanizer column dataset

the proposed approach and DPCR, DPLS, and DSFR. Due to the augmentation of

the lagged variables, the velocity of the features will appear twice in the velocity

covariance matrix for most of the samples (in the second term of the objective in

(3.4) and (3.31)). But this will be taken care of by the weighting factor α which is

tuned using the validation dataset similar to the previous case.

The plot of predictions versus the observations for the five methods is depicted in

Fig. 3.4. The proposed methods result in a tighter spread around the 45◦ line. This

can be seen particularly when the response is above 0.75. The comparison results

w.r.t RMSE and ρc are tabulated in Table. 3.4 and 3.5. Similar to the previous case,

the proposed methods have resulted in reduced RMSE and increased concordance,

particularly in the case of SIMPLS based method. To test the significance of the

results the t-test is done similar to the previous case study. A t-test is conducted

between the proposed methods and PCR (in this case PCR is better than PLS in

terms of RMSE) to test the significance in RMSE reduction. The t-statistic values

58

2 4 6 8 10 12 14
Number of features

0.11

0.12

0.13

0.14

0.15

Tr
ai

ni
ng

 e
rro

r

PCR
PLS
SFR
Prop 1
Prop 2

Figure 3.5: Comparison of the variation of training error with the number of features

for the proposed methods are 1.2929 and 2.4031 while the critical values are t0.05,48

= 1.6722 and t0.05,47 = 1.6780 respectively. The second proposed method passes this

test while the first one does not. The p-value for the first proposed method is 0.1011.

Nevertheless, the proposed method uses a significantly less number of latent variables

than the PCR. The proposed methods require the least number of features to describe

the dataset. Due to the augmentation of lagged samples, there can be a maximum of

14 latent variables. While PCR, PLS, and SFR required 12, 4, and 10 latent variables

respectively to explain the observed outputs, the proposed methods give enhanced

results with just two latent variables. The proposed approaches hence are efficient at

the extraction of relevant features for the outputs. This can be seen in Fig. 3.5 and

3.6. It can be seen that the training error monotonously decreases with added features

and the error for the proposed methods is lower than the conventional methods. The

validation dataset is used to tune the hyper-parameter α and also select the number of

features. It can be observed that the validation error for the proposed methods drops

quickly to low values when compared with the conventional methods. The number of

59

2 4 6 8 10 12 14
Number of features

0.10

0.12

0.14

0.16

0.18
Va

lid
at

io
n

er
ro

r

PCR
PLS
SFR
Prop 1
Prop 2

Figure 3.6: Comparison of the variation of validation error with the number of features

features required to describe the data is selected when a low value of validation error

is obtained.

3.5.3 Hybrid tank system

The data for this case study is taken from a hybrid tank system containing three

tanks. The experimental setup is located in the process control laboratory at the

University of Alberta. The soft sensor is developed to predict the level of water in

the middle tank. The experimental setup is shown in Fig. 3.7.

The system consists of three vertical tanks at the top and a storage tank at the

bottom. There are two pumps each on the left and right side to pump water into

the left and right tanks respectively. There are nine valves indicated as V1 to V9 in

the figure. Valves V1 to V4, V6, and V8 facilitate water flow between middle and

side tanks. Valves V5, V7, and V9 connect the three vertical tanks and the storage

tank. Except for valves V1 and V2, all other valves were kept open during the course

of the experiment. The liquid level in the middle tank is kept around the halfway

60

Table 3.4: Comparing the RMSE values for training, validation and test sets of
conventional linear regression methods and proposed methods for the debutanizer
column dataset

Method n RMSEtrain RMSEval RMSEtest

PCR 12 0.1040 0.1032 0.1348
PLS 4 0.1052 0.1046 0.1373
SFR 10 0.1043 0.1030 0.1288

Prop - 1 2 0.1082 0.1044 0.1273
Prop - 2 2 0.1065 0.1032 0.1217

Table 3.5: Comparing the Concordance correlation coefficient values for training, val-
idation and test sets of conventional linear regression methods and proposed methods
for the debutanizer column dataset

Method n ρctrain ρcval ρctest
PCR 12 0.6923 0.6888 0.7457
PLS 4 0.6829 0.6802 0.7350
SFR 10 0.6893 0.6897 0.7793

Prop - 1 2 0.6576 0.6850 0.7589
Prop - 2 2 0.6721 0.7033 0.7940

mark of the total height, i.e., between the valves V2 and V4. Ten input variables are

chosen. These are the liquid level, pump outlet flow rate, pump speed, primary and

slave controller outputs that set the level inside the tank and the pump speed. Two

sets of each of these five variables are taken, one for the left side and the other for

the right side.

Similar to the previous case studies, the proposed approaches are implemented on

the dataset and compared against PCR, PLS, and SFR and the results are as given

in Table. 3.6 and 3.7.

The RMSE on the test data of the proposed methods is lower than that of the

existing linear regression methods. Similar to the previous case studies, a t-test is

performed to check for if the reduction in RMSE is significant or not as compared

with PCR. The t values are 3.6473 and 8.8987 while the critical value are 1.6722

and 1.6780 respectively. Both the proposed methods pass the test implying a signifi-

cant reduction in the RMSE of the proposed methods. The concordance correlation

coefficient between data and predictions by the proposed approaches is higher than

the conventional methods. It must also be noted that the number of latent features

61

Figure 3.7: Experimental setup of the hybrid tank system

required for the proposed method is lower than that of the conventional methods. All

these observations follow a trend similar to the previous case studies. In Fig. 3.8, the

predictions by the five methods are plotted against the test data. To avoid cluttering

of the points, the data is down-sampled and then plotted in this figure. The SIMPLS

based method results in a spread on both sides of the 45◦ line and the spread is tighter

than the PCR, PLS, and SFR methods. For the NIPALS based method, although

one-sided, the points are closer to the 45◦ than the conventional methods.

62

46.5 47.0 47.5 48.0 48.5 49.0 49.5 50.0
Actual Data

46.5

47.0

47.5

48.0

48.5

49.0

49.5

50.0

50.5

Pr
ed

ict
io

n

PCR
PLS
SFR
Prop 1
Prop 2

Figure 3.8: Comparison of the liquid level in the middle tank predicted by PCR, PLS,
SFR and proposed methods on the test dataset

Table 3.6: Comparing the RMSE values for training, validation and test sets of
conventional linear regression methods and proposed methods for the hybrid tank
system dataset

Method n RMSEtrain RMSEval RMSEtest

PCR 6 0.4351 0.4963 0.6326
PLS 4 0.4347 0.4983 0.6385
SFR 6 0.4413 0.5140 0.6673

Prop - 1 3 0.4391 0.4314 0.5354
Prop - 2 3 0.4493 0.4038 0.4034

63

Table 3.7: Comparing the Concordance correlation coefficient values for training, val-
idation and test sets of conventional linear regression methods and proposed methods
for the hybrid tank system dataset

Method n ρctrain ρcval ρctest
PCR 6 0.8510 0.7040 0.9280
PLS 4 0.8514 0.7069 0.9285
SFR 6 0.8453 0.7040 0.9144

Prop - 1 3 0.8474 0.7066 0.9486
Prop - 2 3 0.8379 0.6854 0.9672

3.6 Conclusion

A new approach for extracting output-relevant SFs is presented in this article. The

method combines the elements of output-relevant feature extraction from PLS and

feature extraction with temporal slowness from SFA. The proposed method helps to

bring the temporal correlation aspect into PLS, which is essential for time-series data.

Similar to PLS, the proposed problem also results in a solution that can be expressed

in terms of eigenvectors of certain matrices. Algorithms to solve the proposed problem

have also been presented which are modified versions of popular PLS algorithms

NIPALS and SIMPLS and convenient to use. The proposed methods are applied

to three case studies for evaluating the effectiveness of the approaches. It is found

that the proposed approaches not only result in smaller RMSE of predictions and

larger concordance correlation values as compared with PCR, PLS, and SFR, but

also require a lesser number of latent features to explain the relationship between

the inputs and the outputs. This observation implies that the proposed approach

extracts more meaningful features than the conventional methods.

64

Chapter 4

Siamese Neural Network-Based
Supervised Slow Feature
Extraction *

In this chapter, the idea of supervised SF extraction is extended to nonlinear systems.

Although various nonlinear modeling techniques exist, this thesis explores the usage

of deep learning techniques due to their rich representational ability. Artificial neural

networks, owing to their ability to model complex nonlinearities, can be used to

extract slow features (SFs) from a dataset obtained from a complicated process.

A special type of network called the Siamese neural network can be used for this

purpose. Siamese neural networks have a provision of handling two samples at a time

and this aspect helps in extracting SFs. In this chapter, we present two approaches

that extract SFs using Siamese neural networks in a supervised manner. The output-

relevance aspect is brought into feature extraction as a regularization term in the

objective function of the Siamese neural network. Such regularization improves the

performance of the neural network model. The proposed approaches are implemented

on three datasets to demonstrate their effectiveness.

4.1 Introduction

Machine learning algorithms can be categorized into unsupervised, supervised and

reinforcement learning categories and soft sensors fall under the category of supervised

*This chapter has been published as R. Chiplunkar and B. Huang, ”Siamese Neural Network-
Based Supervised Slow Feature Extraction for Soft Sensor Application,” IEEE Transactions on
Industrial Electronics, vol. 68, no. 9, pp. 8953-8962, 2021.

65

learning. Soft sensor models can be broadly classified as linear and nonlinear methods.

Linear methods for soft sensors are mostly based on principal component regression

(PCR) and partial least squares (PLS). Since most industrial processes are nonlinear,

methods like kernel PLS [118], support vector regression [119], and artificial neural

networks (ANN) [6] are used.

ANNs are a class of nonlinear models inspired by the network of neurons in the

brain. The multi-layered nature of the network results in a good representation power.

Algorithms such as greedy layer-wise training [120, 121] enabled the usage of deeper

network architectures. Deep learning has a rich representational ability as it can

extract low-level features from the data. Deep learning has revolutionized fields such

as computer vision, speech recognition, etc [122]. Neural networks have generated a

lot of interest in process systems engineering too. Multilayer perceptrons or vanilla

feedforward neural networks (FNN) have been used to develop soft sensors for various

applications such as the estimation of the concentration of top and bottom products in

a debutanizer column [123], estimation of viscosity in a polymerization process [124],

monitoring NOx emissions in industrial boilers [125], and more.

The recent implementations of deep learning techniques have been increasingly

focusing on extracting latent features with a certain rationale and can be broadly

classified as unsupervised and supervised latent feature extraction methods. Unsu-

pervised layer-wise pre-training methods like deep belief networks [126,127], extreme

learning machine-based stacked autoencoders called hierarchical extreme learning ma-

chine (HELM) [128], stacked denoising autoencoders [129] have been used to extract

nonlinear latent structures which are then used to perform supervised learning. Re-

cently, the focus has been more towards extracting latent features in a supervised

and semi-supervised manner. A technique called the variable-wise weighted stacked

autoencoder (VW-SAE) algorithm to perform deep feature extraction in a super-

vised manner has been developed that trains the autoencoders in a supervised man-

ner [130, 131]. The method is based on SAE, but solves a weighted least squares

problem, with weights calculated based on a correlation measure of latent variables

with the outputs. A variant of the same algorithm named stacked quality relevant

autoencoder in which the latent features extracted using augmented input-output

data has also been proposed [132]. The problem of supervised latent variable extrac-

66

tion has also been explored in the frameworks of variational autoencoders [133, 134].

For processes with long-term dynamic dependencies, soft sensors based on long-short

term memory (LSTM) networks have been used. Sun and Ge [135] proposed a method

where a restricted Boltzmann machine (RBM) was trained in an unsupervised manner

to obtain the latent space which was used to predict the outputs using LSTM. Similar

to the supervised latent feature extraction extensions to autoencoder-based methods,

supervised LSTM schemes have been proposed in recent times. LSTM architectures

that incorporate attributes such as adaptive quality relevant feature selection [136],

supervised learning of the latent space by input-output augmentation [137] have been

studied. The supervised nature of training has been found to enhance the performance

in all these cases.

In this chapter, we combine the two aspects of supervised SF extraction and

deep learning, and present two methods in which SFs are extracted using neural

networks in a supervised manner. Although nonlinear SFA can be achieved using

a nonlinear transformation of the data [4] or by kernel SFA [138], deep learning is

more powerful than these approaches as discussed earlier. We have used the Siamese

neural networks for this purpose [7]. These networks contain two identical neural

networks in parallel. This enables us to handle two samples at a time, a useful feature

when considering temporal relations between samples. Siamese networks can also be

viewed as manifold embedding algorithms [139]. Siamese networks have been used

to perform unsupervised SF extraction in computer vision [140–142]. The focus in

computer vision is more on unsupervised feature extraction to obtain meaningful low-

level features based on the idea that the human brain processes visual information

in an unsupervised manner. In the case of soft sensors, it is more important to

generate features that help in predicting the output accurately. Supervised feature

extraction results in features that contain information relevant to both inputs and

outputs, which leads to better prediction of the outputs; an argument similar to PLS

vs PCR. Hence, the proposed methods here focus on the supervised extraction of

SFs. In both the proposed methods, this is achieved by adding an extra term in the

objective function of the Siamese network. These terms are chosen such that they

regularize the training of the Siamese network in a way that results in supervised

extraction of SFs. The proposed methods are implemented in three case studies. The

67

||s(1)	-	s(2)||Identical	
Networks

x(1)

x(2)

s(1)

s(2)

Encoder	-	f(x)

Encoder	-	f(x)

Figure 4.1: Configuration of a Siamese neural network

first one is a simulated dataset. The second one is an open-source industrial dataset

of a debutanizer column [115]. The final case study is on an experimental setup of a

hybrid tank system.

The rest of the chapter is organized as follows. Section 4.2 gives an overview of the

Siamese neural networks. The proposed approaches are presented in section 4.3. The

two case studies are presented in section 4.4. Section 4.5 discusses the conclusions.

4.2 Siamese neural networks

The proposed methods are based on SFA and Siamese neural networks. As the SFA

is already discussed in section 2.2.1, this section provides an overview of the Siamese

neural networks.

Siamese neural networks are a class of neural networks that contain two identical

subnetworks. The subnetworks are identical to each other both in structure and

parameters. Each of the subnetworks hence provides an identical mapping of inputs

to the latent features. The output of the network is a difference metric between the

two latent features. Since the two networks are identical, if two very similar inputs

are given to the network, then the resulting features also should lie very close to

each other in the feature space. Siamese neural networks are used when we need to

learn about the similarity or dissimilarity between two inputs. The configuration of

the Siamese neural network is depicted in Fig. 4.1. The block named ’Encoder’ in

68

the figure refers to a feedforward network that encodes the input x into the hidden

feature s. Both the encoder networks are identical to each other providing the same

nonlinear function f(x). The output of the network is the difference metric between

the extracted features s(1) and s(2) corresponding to the input samples x(1) and x(2)

respectively. This metric indicates if the samples are similar or not. The input to

a Siamese network should always be in pairs. The objective function for Siamese

networks is given as [143]

L =

{︄
d{f(x(1)), f(x(2))}, if x(1) and x(2) are similar

max(0, δ − d{f(x(1)), f(x(2))}), otherwise
. (4.1)

Here, d{f(x(1)), f(x(2))} is a distance metric between the hidden features f(x1) and

f(x2). If Euclidean distance is taken as the distance metric then this term can be

written as
⃦⃦
f(x(1))− f(x(2))

⃦⃦2
2
. The hyper-parameter δ is the minimum distance

between the hidden features of the dissimilar samples. Hence the objective during

the training of a Siamese neural network is to minimize the distance between the

hidden features of two samples if they are similar and to have a minimum distance of

δ between the features of dissimilar samples. In the proposed approaches, the notion

of similarity between samples is based on the time proximity of the samples. While

training the network, the parameters of both networks are updated simultaneously

and in a similar way so that the networks represent the same nonlinear function.

4.3 Proposed methods

In SFA, feature extraction is performed such that the obtained features vary slowly

or have slow velocities. This means that s(t) will be very close to s(t − 1). In other

words, the difference between s(t) and s(t − 1) will be small. In the case of deep

learning, such mappings from x to s can be obtained using Siamese neural networks.

Thus, x(1) and x(2) become x(t) and x(t−1) and the distance between s(t) and s(t−1)

is minimized. Hence, the objective function for the unsupervised SF extraction using

Siamese networks is given by

L =

{︄
∥f(x(t1))− f(x(t2))∥22 , if |t1 − t2| = 1

max(0, δ − ∥f(x(t1))− f(x(t2))∥22), otherwise.
(4.2)

69

Even though neural networks are a powerful class of nonlinear models, solving SFA

using the above formulations as such may not lead to good results. This is because,

for different configurations of the network, different sets of SFs will be obtained. This

will make it difficult to determine the relevance of these extracted SFs, particularly

for supervised learning cases. As stated earlier, for supervised learning applications,

the extracted features must be able to explain the observed outputs well. Hence,

we propose two methods to perform Supervised Slow Feature Analysis by Siamese

Networks. Here onwards, the proposed methods will be referred to as SSFASN1 and

SSFASN2 respectively.

4.3.1 SSFASN1

The configuration of the network in this approach is shown in Fig. 4.2. A two-step

approach is proposed to train this configuration. In the first step, the network as

shown in the figure is used to extract SFs which are decorrelated with each other

and these SFs are used to construct the outputs. This results in a supervised SF

extraction since only the SFs that can explain the output are extracted. The block

named ’Encoder’ is a feedforward network that maps the inputs x to the hidden

features s. These hidden features are then mapped to the outputs y by the ’Output

network’ which again is a neural network. The loss function to be minimized for this

step is given as

min
f,g

∑︂
∥f(xt)− f(xt−1)∥2)2⏞ ⏟⏟ ⏞
Slowness of features

+ α
∑︂

(y − g(s))2⏞ ⏟⏟ ⏞
Output error

+ β||cov(f(X))− I||⏞ ⏟⏟ ⏞
Independence and unit variance

.

(4.3)

The above objective has three terms in it

� The first term minimizes the Euclidean distance between the features of two

samples that are adjacent to each other in the time series, reflecting the velocity

aspect. This term ensures the extraction of hidden features that vary slowly.

� The second term minimizes the error between the observed outputs and the

outputs predicted using the extracted SFs. Training the encoder network such

70

Encoder	-	f(x)

||s(t)	-	s(t-1)||Identical	
Networks

x(t)

x(t-1)

s(t)

s(t-1)

y(t)

Output		Network	-	g(s)

y(t-1)

Step	1

ys Step	2

Encoder	-	f(x)

Identical	
Networks

Output		Network	-	g(s)

Output		Network	-	g(s)

Figure 4.2: Configuration of the network for SSNSFA1. Step 1 and Step 2 architec-
tures correspond to the objective functions in (4.3) and (4.5) respectively.

that the extracted SFs predict the output makes the SF extraction supervised.

This term is weighted by the hyperparameter α > 0.

� The third term is added to obtain SFs that are decorrelated and have unit

variance. Making the covariance matrix of the extracted features an identity

matrix ensures this. This term is weighted by the hyperparameter β > 0.

It is important to note that it is the covariance matrix that needs to be identity and

not the correlation matrix. The slowness objective tries to make the variations in

features very small and since the neural networks are powerful functions, the features

may be mapped to constant signals. This is avoided by the output error term in this

approach as the variations in outputs influence the feature space and hence constant

signals as features will not be obtained. But, the slowness term will make the variance

in features very small. The obtained features in a true sense will not be slow in such

a scenario (this is because multiplying a very fast signal by a very small number

does not make it a slow signal). Hence the third term is added to achieve this and

to incorporate the constraints in the formulation of conventional SFA ((2.31) and

71

(2.32)).

We can represent each term in (4.3) as inner products. So the slowness term

becomes ∆f(X)T∆f(X), the output error term becomes (Y −g(f(x)))T (Y −g(f(x))),

and the last term is tr((f(X)Tf(X) − I)T (f(X)Tf(X) − I)). If we calculate the

gradient of the above objective function with respect to any of the weights in the

encoder network, we get

∂L
∂wf

= 2∆f(X)T
∂∆f(X)

∂wf

+ 2α(Y − g(f(X)))
−∂g(f(X))

∂wf

+ 2β
∑︂(︄

(f(Xi)
Tf(Xi)− 1)f(Xi)

T ∂f(Xi)

∂wf

)︄

+ 2β
∑︂(︄

(f(Xi)
Tf(Xj))f(Xi)

T ∂f(Xj)

∂wf

)︄
. (4.4)

Here, L is the overall loss function of (4.3) and f(X) is the vector containing latent

features of all the samples in the mini-batch. The parameter wf is any parameter in

the encoder network. From (4.4), we can see that the gradients of the loss function

w.r.t the encoder network parameters are affected by the output error. Therefore,

the updates of the parameters in the encoder network and hence the function realized

by the encoder network will depend on the output error. As a result of this, the

extracted SFs will be performed in a supervised manner making them relevant to the

outputs.

In the second step, the SFs obtained in the first step are used to construct the

output. The objective function for this step is

min
g

∑︂
(y − g(s))2. (4.5)

Only the output network is trained in this step. This is because the features obtained

from the previous steps are used as inputs. The parameters obtained from the first

step are taken as the initial guess and the parameters are tuned according to the

objective function in (4.5).

Both steps can be solved using stochastic gradient descent. For (4.3), to ensure

that samples are generated in pairs for stochastic gradient descent, the sampling can

be done as follows. A random subset of the samples is generated which is to be passed

into one half of the network. For every sample taken, its adjacent sample (preceding

72

or succeeding) is passed through the other half of the network. The same samples are

then used to evaluate the loss functions. During the testing phase, only the upper

half of the network shown in Fig. 4.2 is used. Once a test sample x̃ is obtained, it

is passed through the encoder network to get s̃ = f(x̃) which is then passed through

the output network to get the estimated value ỹ̂ = g(s̃).

Tuning the weights: It can be noted from the objective function in 4.3 that apart

from the weights and biases of the encoder and output networks, there are two hyper-

parameters α and β to be tuned. Hence, the data used for learning the model is split

into two parts, the training and the validation datasets. The weights and biases are

learned directly through the stochastic gradient descent as discussed earlier using the

training dataset. Hyperparameters such as α and β, activation functions and their

parameters, etc are learned using the validation dataset. The validation dataset is

also used for early-stopping of the training procedure so as to avoid over-fitting. All

three weights must be carefully tuned such that all the objectives are achieved to a

satisfactory level. For example, correlation between f(X) and Y , and cov(f(X)) can

be calculated for the validation dataset. If a good correlation with outputs and a

diagonally dominant covariance matrix for cov(f(X)) is obtained, it can be inferred

that the objectives have been met regarding output-relevance and independence. Re-

garding slowness, a good way of judging if the objective is achieved or not is by

calculating the velocities of the latent features and comparing them with those of the

input variables w.r.t the validation dataset. If few of the latent features are slower

than all of the inputs, the nonlinear map has successfully projected the data to a

slower latent surface, thus achieving the objective. Finally, a third set called the test

dataset is used to test the performance of the model and this dataset is not ’seen’ by

the model during the training phase.

Deep learning enables the extraction of deeper features with deeper levels of ab-

straction. So the encoder network can be typically configured to have more hidden

layers than the output network. Once the feature representation is obtained, the out-

put layer will function as a mapping of the features to the outputs. Hence a shallow

network can be used here.

73

Identical
Networks

x(t)

x(t-1)

s(t)

s(t-1)

X
S

Y

STY

Step	1

Step	2ys

Identical
Networks

Encoder	-	f(x)

Encoder	-	f(X)

Output		Network	-	g(s)

Figure 4.3: Configuration of the network for SSNSFA2. Step 1 architecture corre-
sponds to the objective in (4.6). Step 2 is same as the Step 2 in SSNSFA1

4.3.2 SSFASN2

The configuration of the network for SSFASN2 is shown in Fig. 4.3. Similar to

SSFASN1, SSFASN2 is also a two-step procedure. In the first step, the objective is to

obtain SFs via the encoder network that are correlated with outputs. The objective

function of SSFASN2 is as follows.

min
f

∑︂
∥f(xt)− f(xt−1)∥2)2⏞ ⏟⏟ ⏞
Slowness of features

− α∥cov(f(X), Y)∥⏞ ⏟⏟ ⏞
Output covariance

+ β||cov(f(X))− I||⏞ ⏟⏟ ⏞
Independence and unit variance

(4.6)

The above objective has three terms.

� The first term is similar to SSFASN1. It minimizes the distance between ex-

tracted features so that it results in the extracted features being slow.

� The second term tries to maximize the covariance between the extracted feature

and the output. In PLS, feature extraction is performed such the features

74

extracted from input and output spaces have the maximum covariance. This

term is similar to the objective function of PLS [102]. This term is weighted by

a positive α as the negative sign is already included in the loss function.

� The third term is again similar to that in SSFASN1 which results in decorrelated

features.

In the first step of the approach, only the encoder network is trained. Incorporation

of the output covariance terms results in a high covariance between the extracted SFs

and the outputs. This makes the features extracted relevant to the outputs. If we

expand the gradient of (4.6) similar to (4.4), we can observe that the gradient w.r.t

any parameter in the encoder section is affected by the outputs through the output

covariance term making the latent variable learning supervised. Once the training of

the encoder network is done, this can be used to extract the latent features and these

can be used as inputs to the output network which is trained to minimize the output

error with the objective function the same as the one in (4.5).

The training and testing are done similarly to the SSFASN1. The difference

between SSFASN1 and SSFASN2 is that in the former, both encoder and output

networks are trained together in the first step and the second step acts as a tuning

step for the output network. For SSFASN2, the encoder and output networks are

trained separately. The whole network can be tuned again using the parameters

obtained in steps 1 and 2 as initial guesses. But it is possible that tuning the whole

network again may lead to losing the slowness characteristics of latent features which

may lead to noisier predictions of the output. This can be avoided to a certain extent

using smaller steps and keeping the slowness penalty term during the training of the

whole network.

The training times for SSFASN1 and SSFASN2 are higher than those for an un-

regularized neural network training. This is because the added regularizing terms

in the objective functions mean more computational complexity to evaluate the ob-

jective function and its gradients. Besides this, the stagewise training nature of the

proposed algorithms and the number of hyperparameters to be tuned, also mean an

increased computation time. But, since the training is performed offline, the added

computation time will not be a limiting factor.

75

4.4 Results

The proposed methods are implemented in three case studies: a simulated, an indus-

trial, and an experimental dataset. The neural network simulations are performed

using Python’s TensorFlow library. Networks are trained by the stochastic gradient

descent using the Adam algorithm implemented by TensorFlow’s AdamOptimizer. In

the simulations, as discussed earlier, the total data is split into training, validation,

and test datasets. Training and validation sets are used to train the parameters and

tune the hyperparameters respectively. The hyperparameters are the structure of the

network, activation function, weights α and β in the proposed approaches. The pro-

posed methods are aimed at developing static models by incorporating the temporal

correlation (slowness) aspect. Hence, in the comparative analysis, we have selected

two of the recently developed deep learning models HELM [128] and VW-SAE [130]

which are static in nature. Along with these, we have also included results from

FNN and slow feature regression(SFR). In SFR, the SFs are extracted using SFA,

and the features are ordered according to their correlation with output. Regression is

performed between the SFs and outputs and the number of SFs is decided based on

the performance on the validation dataset. A comparison of these methods with the

proposed ones is made in terms of root-mean-squared error (RMSE) and concordance

correlation coefficient (ρc). RMSE is expressed as

RMSE =

√︄∑︁N
i=1(yî − yi)2

N
. (4.7)

Here, ŷ and y are the estimated and the actual value of the output. ρc is a measure

of agreement between a set of paired values. It is a measure of how the data spreads

around the 45◦ line when ŷ is plotted against y. ρc is expressed as

ρc =
2ρσŷσy

σ2
ŷ + σ2

y + (µŷ − µy)2
. (4.8)

Here, ρ is the correlation coefficient between y and ŷ. σ• and µ• are the standard

deviations and means of the corresponding variables. The value of ρc ranges from -1

to 1, with 1 implying perfect agreement between the two sets.

76

4.4.1 Simulated case study

In this case study, SFs are generated using the PSFA model. These are then non-

linearly mapped to get the input and the output signals. This is according to the

rationale that the SFs are primarily responsible for the observed outputs for processes

that are primarily slow in nature. The PSFA model is given as follows.

st = Ast + vt; vt ∼ N (0,Σs) (4.9)

xt = Hst + wt; wt ∼ N (0,Σx) (4.10)

The matrix A is a diagonal matrix with diagonal entries ai lying between 0 and 1. The

closer ai is to 1, the slower the feature is. The noise covariance matrix Σs is diagonal

with the covariance being 1−a2i to make the SFs have unit variance. Equation (4.10)

describes a linear relationship between the SFs and the inputs. In this case study,

the SFs are mapped nonlinearly to get the input data as well as the output data.

In this case study, three SFs are generated using (4.9). The matrix A is taken

as diag(0.999,0.997,0.995). These SFs are mapped using nonlinear functions to get

the input dataset x. The nonlinear functions used in this case study are of the form

sk, s · exp(k · s), exp(k · sk), exp(k
c+s

), log(k · s), tanh(k · s). These functions in

various combinations are used to generate eight input signals from the three SFs. To

generate the outputs, a quadratic polynomial function of the three SFs is used. Using

this formulation, 8000 samples are generated. If we normalize the generated signals

and calculate the mean of the squared velocities (MSV), we get the following results.

⟨(∆x)2⟩ = [0.0165, 0.0534, 0.0185, 0.0676,

0.0252, 0.0318, 0.0313, 0.0325]
(4.11)

The same value for the latent variables and the output signals are [0.0057 0.0067

0.0075] and 0.0106 respectively. Hence, the output is slower than all of the input

signals. Hence it would be pertinent to do an analysis in terms of the velocities or

the slowness of the features that result in the output which is the aspect on which

the proposed approaches are based.

The dataset is split in the ratio of 50:25:25 between training, validation, and test

sets. The split is made such that the temporal sequence of points is maintained, i.e,

the test set comes after the validation set, which comes after the training set in the

77

1 0 1 2 3
Actual Data

2

1

0

1

2

3
Pr

ed
ict

io
n

FNN
HELM
VW-SAE
SFR
SSFASN1

1 0 1 2 3
Actual Data

2

1

0

1

2

3

Pr
ed

ict
io

n

FNN
HELM
VW-SAE
SFR
SSFASN2

Figure 4.4: Scatter plot of predictions vs. actual data for the simulated dataset

time series. The network has the following structure [8-6-4-3-2-1] and the number of

SFs is taken to be three. The activation function used is the leaky rectified linear

unit (ReLU). ReLU activation function is expressed as f(x) =max(x, ax) and the

hyperparameter a is tuned using the validation dataset. For this case, a is 0.05 for

78

Table 4.1: Comparison of RMSE and ρc obtained for FNN, HELM, VW-SAE, SFR
and proposed methods for the simulated dataset

Method RMSE ρc

FNN 0.5902 0.8199

HELM 0.5336 0.8427

VW-SAE 0.5171 0.8608

SFR 0.6848 0.8226

SSFASN1 0.4466 0.8953

SSFASN2 0.4377 0.9001

VW-SAE and the proposed methods, 0.1 for FNN, and 0.2 for HELM. The last layer

is set to be a linear layer. The same structure of the overall network is chosen for

FNN, VW-SAE and the two proposed methods.

The proposed approaches are implemented on the dataset and the performance

is compared with that of FNN, VW-SAE, and SFR. Fig. 4.4 shows the plot of pre-

dicted output against the actual output for the test dataset. The top figure compares

SSFASN1 with FNN, VW-SAE, and SFR and the bottom figure is for SSFASN2.

The closer the points lie to the 45◦ line, the better is the approach. We can observe

that the points are spread more tightly around the 45◦ line for the proposed methods

than that for FNN, VW-SAE, and SFR. The RMSE and ρc values obtained on the

test data for the four methods are presented in Table. 4.1. It can be seen that the

proposed methods have a smaller RMSE and larger ρc than FNN and VW-SAE. The

average reduction in RMSE for the proposed methods is 25.08% w.r.t FNN, 17.14%

w.r.t HELM, 14.49% w.r.t VW-SAE, and 35.45% w.r.t SFR. SFR gives the largest

RMSE as it is a linear method (but results in a better ρc than FNN as the data

has slow latent features). But, the main reason is the supervised nature of latent

feature extraction which can be observed if we consider the correlation of SFs with

outputs. For SFR, the top three correlations are [0.3844, 0.4101, 0.7023]. While for

the SSFASN1 and SSFASN2 are [−0.5373, 0.3334, 0.8229] and [0.2628, 0.7153, 0.6015]

respectively. This higher correlation leads to better predictions. Among the neural

networks, FNN gives the largest RMSE because in training an FNN, the objective

is only to build an input-output model and no attention is paid towards the latent

79

representations of the data. A lack of such considerations may lead to a model with

a poor generalization ability. HELM and VW-SAE extract the latent features from

the inputs in stages, in unsupervised and supervised manners respectively and this

results in a better representation of the latent structure of the data. This leads to

a better generalization ability than FNN. But, in these methods (and also in FNN),

the temporal nature of the data is not considered. Proposed SSFASN1 and SSFASN2

learn the latent structures considering the temporal nature of the data and latent

features are learned in a supervised manner. This results in a better performance on

datasets with the characteristics considered in this work.

Both the proposed approaches have three terms in the objective function and as

a result, there are two weights α and β to be tuned. It is very likely that all the

objectives may not be achieved while training the network. Hence, careful considera-

tions must be given while tuning the weights such that all the objectives are achieved

to a certain degree. In SSFASN1, the objective is to obtain SFs that will construct

the output well (4.3). If α is low, the SFs may not be relevant to the outputs and

if β is low, it is possible that all three features are highly correlated. If the weights

are too high, the obtained features may not be slow at all. Because, with the slow-

ness objective, it is easy to map inputs such that the features overall have a very

low variance satisfying the slowness objective. But such signals are not necessarily

slow and it must be ensured that they have unit variance. A similar analysis follows

for SSFASN2 also. In this study, these facts are considered and weights are tuned

such that all the objectives are achieved. For SSFASN1, the covariance matrix of the

obtained features is

Cov(f(X)) =

⎡⎣ 0.8859 0.0107 −0.1915
0.0107 0.8564 0.0017
−0.1915 0.0017 0.7841

⎤⎦ . (4.12)

Although not exactly an identity matrix, the variances are close to one and the matrix

is diagonally dominant. When it comes to the slowness aspect, the obtained features

have the following MSV: [0.0136, 0.0216, 0.0242]. Overall, these values are lower

than the same for the input signals (4.11). This shows that the trained network has

resulted in SFs. Hence, it can be concluded that all the objectives in the objective

function are achieved. For SSFASN2, a diagonally dominant structure was obtained

80

in step-wise training. But when the whole network was trained (encoder and output

networks trained together), such a structure was lost.

4.4.2 Debutanizer column

The second case study is performed on the debutanizer column dataset [115]. This

is an open-source industrial dataset. Debutanizer column is used in a refinery to

remove the lighter components of propane and butane from the naphtha. One of the

objectives in the operation is to minimize the concentration of butane in the bottoms

for which real-time measurement of the same is needed. This can be achieved using

a soft sensor. The dataset contains 2394 samples with seven input variables. These

variables are top temperature (x1), top pressure (x2), reflux flow (x3), flow to the next

process (x4), sixth tray temperature (x5) and bottom temperatures (x6, x7). The

schematic diagram of the process and the description of the variables of the dataset

are given in Fig. 3.3 and Table. 3.3 respectively [115]. Similar to the previous case,

if we normalize the dataset and calculate the MSV of inputs, we get the following

result.

⟨(∆x)2⟩ =[0.0400, 0.2802, 0.0438, 0.0293,

0.0436, 0.0493, 0.0419]
(4.13)

This value for the output is 0.0067 implying that the output is slower than all the

inputs. The first 2200 samples in the dataset are used for the analysis. Similar to the

previous case, the data is split into three portions, one each for training, validation,

and testing in the ratio of 50:25:25. To enhance the performance of the soft sensors,

delayed inputs are augmented. For every variable, a delayed sample is augmented

based on its correlation with the output. Variables x6 and x7 are combined to get

x6̃ =
x6+x7

2
. Variable x5 overall has a high correlation with the outputs. Hence three

delayed samples are taken. For every variable, up to 10 delays are considered. In

total there are 14 inputs and one output.

x̃(t) =[x1(t), x2(t), x3(t), x4(t), x5(t), x6̃(t),

x1(t− 9), x2(t− 6), x3(t− 9), x4(t− 9),

x5(t− 9), x6̃(t− 9), x5(t− 3), x3(t− 6)]

(4.14)

After augmentation, x̃(t) and x̃(t− 1) are still adjacent in time. Hence the argument

that latent features of two adjacent samples must be close to each other still holds

81

0.2 0.4 0.6 0.8
Actual Data

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ed

ict
io

n

FNN
HELM
VW-SAE
SFR
SSFASN1

0.2 0.4 0.6 0.8
Actual Data

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ed

ict
io

n

FNN
HELM
VW-SAE
SFR
SSFASN2

Figure 4.5: Scatter plot of predictions vs. actual data for the debutanizer column
dataset

here. The structure of the neural network is [14-10-6-3-2-1] with the number of SFs

taken as three. The ReLU parameter a is taken as 0.05 for FNN and 0.1 for VW-SAE.

For the proposed methods, it is taken as {0.2, 0.2, 0.5, 0.2} after tuning. The latent

82

Table 4.2: Comparison of RMSE and ρc obtained for FNN, HELM, VW-SAE, SFR
and proposed methods for debutanizer column dataset

Method RMSE ρc

FNN 0.1430 0.5669

HELM 0.1365 0.6234

VW-SAE 0.1262 0.6685

SFR 0.1260 0.7507

SSFASN1 0.1004 0.7783

SSFASN2 0.1018 0.7673

variable layer required a higher value of a to meet the objectives of decorrelation and

slowness.

Fig. 4.5 shows the scatter plot of predictions vs. actual data for the test dataset.

It can be observed that the proposed methods result in a tighter bound around the

45◦ line indicating better predictive ability. The results are quantified in Table. 4.2

which compares the RMSE and ρc values of the proposed methods against those of

FNN, HELM, VW-SAE and SFR. The average reduction in RMSE in comparison with

FNN, HELM, VW-SAE, and SFR is 29.30%, 25.93% 19.89%, and 19.76% respectively.

It can be observed that SFR performs better than FNN indicating that the process

is primarily driven by slow latent features and incorporating slowness into neural

networks improves the results. The debutanizer column dataset has been used in

[130], [132] and [137]. But it must be noted that in these cases yt−1 is used to predict

yt. We have developed models to predict outputs solely based on the inputs which

are suitable for a scenario when y measurements are not available.

The weights of all the terms in the objective are carefully tuned so as to achieve

each objective. For SSFASN1, the covariance matrix of the hidden features is

Cov(f(X)) =

⎡⎣ 0.8999 0.0194 −0.0005
0.0194 0.8607 0.1198
−0.0005 0.1198 0.9440

⎤⎦ . (4.15)

The diagonal entries are close to one and the matrix is diagonally dominant. The

MSV of the hidden features are 0.0205, 0.0222 and 0.0300 which are overall smaller

83

than the MSV of input signals (4.13). For SSFASN2, we get

Cov(f(X)) =

⎡⎣1.0406 0.1858 0.2222
0.1858 1.0202 0.1769
0.2222 0.1769 1.0344

⎤⎦ . (4.16)

The variances are close to one and the matrix is diagonally dominant. The MSV of

the features are 0.0361, 0.0347, and 0.0489 which indicate that the extracted features

are overall slower than the inputs. These indicate that the weights are properly tuned

in order to achieve all the objectives.

4.4.3 Hybrid tank system

This is an experimental case study and the data is obtained from a hybrid tank

system. The experimental setup consists of three tanks connected as shown in Fig.

3.7, two pumps, and nine valves. Valves V1-V4 connect the middle tank and the

side tanks, and valves V5, V7, and V9 connect the tanks and the storage tank. The

flow of water from the tanks to the storage tank is due to gravity making the system

nonlinear and the interactions between the tanks increase the nonlinear nature of the

system. The objective is to develop a soft sensor to predict the height of water in

the middle tank. Eight input variables are selected: flowrate, side tank liquid level,

pump-speed, slave controller output for both sides of the system. Heights usually

vary slower than the input variables. Hence it would be advantageous to impart the

slowness constraints on the latent variables. This can be seen through MSV for inputs

and outputs. The MSV for inputs is

⟨(∆x)2⟩ =[0.4061, 0.0006, 1.0438, 0.0019,

0.4072, 0.0006, 1.0562, 0.0018]
(4.17)

The MSV for output is 0.0006. We can see that the heights are slower than the

remaining inputs. A total of 10,000 samples are collected and are split as 50:25:25

into training, validation, and test sets. The network structures are taken as [8-6-5-

4-2-1] with the latent structure taken as four. The ReLU parameter for the hidden

layers is taken as {0.2, 0.2, 0.5, 0.2} for the proposed methods and 0.2 and 0.05 for

all layers for FNN and VW-SAE respectively. The RMSE and ρc values are given in

Table. 4.3 and the scatter plot of the predictions against actual data for test data is

shown in Fig. 4.6. The proposed methods gave a tighter spread around the 45◦ line

84

Table 4.3: Comparison of RMSE and ρc obtained for FNN, HELM, VW-SAE, SFR
and proposed methods for the hybrid tank system dataset

Method RMSE ρc

FNN 0.6643 0.7650

HELM 0.8042 0.5861

VW-SAE 0.6165 0.8101

SFR 1.4731 0.5158

SSFASN1 0.5220 0.8552

SSFASN2 0.4823 0.8766

than FNN, HELM, VW-SAE, and SFR. Conventional SFR gave poor results when

compared with nonlinear methods while incorporating slowness into neural networks

by the proposed methods gave the best results both in terms of RMSE and ρc. Similar

to the previous two case studies near-identity covariance matrices are obtained for

the latent space for both methods.

85

46 47 48 49 50
Actual Data

45

46

47

48

49

50

51

52

Pr
ed

ict
io

n

FNN
HELM
VW-SAE
SFR
SSFASN1

46 47 48 49 50
Actual Data

45

46

47

48

49

50

51

52

Pr
ed

ict
io

n

FNN
HELM
VW-SAE
SFR
SSFASN2

Figure 4.6: Scatter plot of predictions vs. actual data for the hybrid tank system
dataset

86

4.5 Conclusion

In this chapter, two approaches are presented that perform output-relevant slow fea-

ture extraction. The proposed methods try to learn the latent space of time-series

data considering two aspects: temporal relations and relevance of latent features to

the outputs. Both these aspects are important to consider in the supervised learning

of time series datasets. The proposed methods are implemented using Siamese neural

networks. In neural networks, it is important that training is performed in a struc-

tured way to get better results. The proposed approaches provide such a structure

from a perspective of temporal relation and output relevance. These methods can also

be seen as a way of regularizing the deep learning process to give a certain structure

to the latent space. The simulation results have shown that it is indeed beneficial

to consider the temporal relations and the output relevance aspect for time-series

data. The performance of the proposed SSFASN1 and SSFASN2 is better than FNN,

HELM, and VW-SAE where such aspects are not considered.

87

Chapter 5

Latent Variable Modeling and
State Estimation of Non-stationary
Processes Driven by Monotonic
Trends *

This chapter presents the latent variable modeling approach considering the mono-

tonicity aspect of the latent variables. In certain non-stationary processes, the non-

stationary dynamics is caused by degradation or wearing of certain process compo-

nents. Such dynamics can be characterized by a latent monotonic signal. Meanwhile,

there also exist stationary dynamics characterizing the regular process variables. It

hence becomes pertinent to distinguish these two sets of latent variables for the mon-

itoring of the process from both the stationary and non-stationary aspects. In this

regard, we propose a methodology to achieve such a goal by modeling the latent

monotonic trend as a closed skew-normal random walk model. The other stationary

relations are characterized by a state-space model with Gaussian noises. The prob-

lem is solved as a simultaneous state and parameter estimation problem using the

expectation-maximization algorithm. As a result of the closed skew-normal random

walk model for the monotonic trend, the state estimation problem becomes a skew-

normal filtering and smoothing problem. The effectiveness of the proposed method is

verified through a numerical simulation, and the algorithm is applied to solve a Hot

Lime Softener fouling predictive monitoring problem.

*This chapter has been published as R. Chiplunkar and B. Huang, ”Latent variable modeling
and state estimation of non-stationary processes driven by monotonic trends”, Journal of Process
Control, vol. 108, pp. 40-54, 2021.

88

5.1 Introduction

Processes accompanied by deteriorating ”health factors” are often driven by a latent

non-stationary variable which is monotonic in nature. Catalyst activity, fouling de-

position, equipment damage, etc would be a few typical examples for such processes

where the process progresses in a monotonic way. Yet there will be many relation-

ships between the variables that would remain the same through time which could

be characterized by a stationary nature. The observed multivariate dataset of such

processes would still have an overall non-stationary character as it is a mixture of

both stationary and non-stationary data trends. For effective monitoring of such

processes, one needs to isolate the latent monotonic trend (LMT) from the latent

stationery trends (LST).

Although such problems may be formulated as constrained optimization problems,

modeling such systems with a DLM and approaching it with a state and parameter es-

timation perspective is more convenient for dynamic systems. As discussed in section

1.2.2, the process noise for a monotonically evolving signal should be a distribution

with a positive support (for a monotonically increasing signal). In the literature, var-

ious distributions such as the exponential distribution, gamma distribution, etc have

been used to model the monotonic signal. With these distributions, the monotonic

signal’s distribution cannot be exactly inferred because of non-conjugacy issue in the

state estimation procedure. This thesis hence explores the usage of the closed skew-

normal distribution (CSN) to model the evolution of the monotonic signal. the CSN

distribution hase the properties of closedness, meaning the resulting distribution is

always a CSN upon a convolution or Bayesian inversion operation as long as the dis-

tributions involved in these operations are CSN. This results in a recursive derivation

of the state estimation procedure for a DLM modeled using CSN.

In deteriorating processes, the monotonic nature will not be apparent as it may be

mixed with other stationary sources. As discussed earlier, the objective in this case

is to model and separate the LMT and LST sources from the observed dataset for

efficient monitoring of the processes. Monotonicity is a special case of non-stationary

behavior. Separation of the stationary and non-stationary trends has been researched

previously. Co-integration analysis (CA) [146–148] is an approach where the non-

89

stationary system, modeled typically as a vector autoregressive model, is linearly

projected onto a stationary subspace. Stationary subspace analysis (SSA) [149–151]

is another approach towards this where the observed data is assumed to be a lin-

ear mixture of stationary and non-stationary sources and an optimization problem is

solved to learn a matrix that maps the data to its stationary subspace. The main lim-

itation of these methods is that they do not consider the monotonicity aspect. Since

the faults considered in this work are assumed to evolve monotonically, CA and SSA

cannot be used for such cases. Secondly, these approaches rely on linear projections of

the available data onto the stationary and non-stationary subspaces. So, if the system

has a mixture of nm non-stationary components and ns stationary components, and

the number of observed signals ny is such that ny < nm+ns, these approaches cannot

be used. Another approach to separate the stationary and non-stationary sources is

based on state-space modeling. Scott et al. [59] approached the problem by having

two independent state-space models, one for stationary and another random-walk

model for non-stationary characteristics, and identifying the state-space models. In

this work, the current problem is approached via the state-space model approach as

it provides two main advantages. The first one is that it is convenient to incorporate

the monotonicity constraint through the state-space model approach as the LMT is

modeled using a CSN. The second one is that the number of observed signals can

be less than the mixed stationary and non-stationary signals. The combined state

and parameter estimation problem is then solved using the expectation-maximization

(EM) algorithm [106,107]. The state estimation portion of the problem then reduces

to a Kalman filtering and Rauch–Tung–Striebel (RTS) smoothing problem with CSN

distribution. In this work, a complete analytical derivation of the recursive equations

of the filtering and smoothing steps is provided. Finally, the efficacy of the proposed

methods is verified on two case studies. The first one is a simulated case study. The

second one is on an industrial fouling dataset where the proposed method is used to

monitor the fouling buildup in a hot lime softener process. The contributions of this

chapter are as follows.

1. Separation of stationary and non-stationary sources of a monotonically deteri-

orating process by formulating the system as a CSN state-space model

90

2. Develop recursive smoothing equations analytically for a CSN model when the

process noise is CSN and observation noise is Gaussian.

The rest of the chapter is organized as follows. In section 5.2, the proposed model is

presented. In section 5.3, the solution for the proposed model by the EM algorithm

is given. Section 5.4 presents the results of the case studies and section 5.5 concludes

the chapter. The derivations involved in this Chapter for the E-step are setailed in

Appendix A.

5.2 Latent variable model with a hidden mono-

tonic trend

The section presents the proposed model to model the LMT and LST. Before that,

the CSN distribution and its notion is visited briefly.

5.2.1 Closed skew-normal distribution - Revisit

The CSN, as proposed in [78] and [79], can be described using two variables, one of

which has truncated observations. Let us consider the following equations.

l = αk + el, el ∼ N (el; 0, σ2
l) (5.1)

m = βk + em, em ∼ N (em; 0, σ2
m) (5.2)

Let the covariance between the two noises be σlm. In the remainder of this chapter, the

following notations are used to denote the Gaussian probability distribution function

(pdf) and cumulative distribution function (cdf) respectively: Ndimension(variable;

mean, variance) for the pdf and Φdimension (limit; mean, variance) for the cdf. The

joint distribution of y and z now can be expressed as[︃
l
m

]︃
∼ N1+1

(︄[︃
l
m

]︃
;

[︃
αk
βk

]︃
,

[︃
σ2
l σlm

σml σ2
m

]︃)︄
. (5.3)

Let us look at the distribution p(l|k,m ≥ 0).

p(l|k,m ≥ 0) =
p(m ≥ 0|l, k) p(l|k)

p(m ≥ 0|k)

=
(1− Φ1(0; µm|l,k, σm|l,k)) N1(l; αk, σ2

l)

(1− Φ1(0; βk, σ2
m))

(5.4)

91

Here,

µm|l,k = βk +
σml

σ2
l

(l − αk); σm|l,k = σ2
m −

σ2
ml

σ2
l

(5.5)

Equation (5.4) can be simplified as

p(l|k,m ≥ 0) =
N1(l; αk, σ2

l) Φ1(
σml

σ2
l
(l − αk); −βk, σm|l,k)

Φ1(0; −βk, σ2
m)

(5.6)

From the above equation, one can see that the distribution has two terms which are

a function of l. The Gaussian pdf and the Gaussian cdf. The cdf term is the one that

causes skewness in the distribution. The denominator is a normalization constant.

Equation (5.6) can be generalized to define the pdf of CSN. The pdf of x distributed

as a CSN is given as

p(x) =
Nn(x; µ,Σ) Φq(Γ(x− µ); ν,∆)

Φq(0; ν,∆+ ΓΣΓ′)
(5.7)

which can be represented in a compact form as

x ∼ CSNn,q(x; µ,Σ,Γ, ν,∆) (5.8)

Here n is the dimension of x and hence the dimension of the Gaussian pdf term.

q is the dimension of the cdf term. The CSN is parameterized by five parameters.

µ(n × 1) and Σ(n × n) are the mean and covariance of the pdf term, while ν(q × 1)

and ∆(q × q) are the mean and covariances of the cdf term. Γ(q × n) is called the

skewness parameter and when Γ = 0, CSN reduces to a Gaussian distribution.

5.2.2 Model formulation

The objective is to extract LMT({mt}) and LST({st}), given the observations ({yt}).

Here { . } represents the set of all variables from time t = 1 to t = T . The proposed

model is defined in the following equations.

st = A st−1 + vt, vt ∼ Nns(vt; 0,Σv) (5.9)

mt = mt−1 + et (5.10)

rt = wt (5.11)

yt = H1 mt +H2 st + ut, ut ∼ Nny(ut; 0,Σu) (5.12)

92

It is assumed that the overall non-stationarity is caused by a single source of degra-

dation which is taken to be the LMT in this case. The stationary part of the system

has no such assumption and hence is represented by a higher-order system as given in

(5.9) of the proposed formulation. Here, the evolution of the stationary component

of the process s is represented by A which is an ns × ns matrix. The matrix A must

have all the eigenvalues within the unit circle for stability, but mainly to ensure that

(5.9) does not model the non-stationary dynamics. vt is the process noise for st with

a mean of a ns × 1 vector of zeros represented by 0 and a covariance matrix of Σv

which is assumed to be diagonal. Here onwards whenever the LST modeled by (5.9)

is referred to as being stationary, we imply weak stationary dynamics, i.e the case

where the mean is constant throughout time, but the covariance need not be. One

could assume special structures in Σv to make the (5.9) strictly stationary. However, a

weak-stationary model is assumed in this work for a more general case. The observed

data is defined as a linear mixture of the LMT and LST and hence is represented as

in (5.12). Here, ut is the observation noise with a zero mean and a covariance matrix

Σu which is taken as a diagonal matrix. Equations (5.10) (a random walk model) and

(5.11) together represent the LMT. Here, mt represents the LMT and rt is a latent

variable that is introduced just to make mt monotonic (similar to m in (5.2)). Noises

et and wt are correlated and the Pearson correlation coefficient is ρ > 0. All other

noises are uncorrelated with each other. The dimensionality of mt (and also rt) is

taken to be one because of the assumption that the overall degradation in the process

can be represented by a single LMT. With these definitions, the joint distribution of

mt and rt can be expressed as[︃
mt

rt

]︃
∼ N2

(︄[︃
mt−1

0

]︃
,

[︃
σ2
e ρσ2

e

ρσ2
e σ2

e

]︃)︄
. (5.13)

The variance of both et and wt is taken to be σ2
e . Here onwards, the model and the

procedure presented is to extract a monotonically increasing trend. The extension for

a decreasing one is straightforward. To ensure that x is monotonically increasing, one

must define the transition probability for x such that mt ≥ mt−1. Hence one would

want to find the pdf p(mt|mt−1, rt ≥ 0). The reason to have the condition that rt is

greater than zero is as follows: the signal rt is nothing but a white noise wt and if wt

is correlated with et, and ρ is set close to 1, rt ≥ 0 or wt ≥ 0 would result in et ≥ 0

93

-3 -2 -1 0 1 2 3

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
(x

)

 = 0

 = 0.9

 = 0.99

 = 0.9999

Figure 5.1: The pdf of CSN at different values of ρ.

with a greater probability. et ≥ 0 ensures that mt ≥ mt−1. The pdf p(mt|mt−1 ≥ 0)

can be written as

p(mt|mt−1, rt ≥ 0) =
p(rt ≥ 0|mt−1,mt) p(mt|mt−1)

p(rt ≥ 0|mt−1)
. (5.14)

It can be observed that this has a form similar to the pdf p(p(l|k,m ≥ 0)) defined in

section 5.2.1. One can now substitute each term in the above equation as follows.

p(mt|mt−1) = N1(mt; mt−1, σ
2
e), (5.15)

p(rt ≥ 0|mt−1) = p(rt ≥ 0) = 0.5 = Φ1(0; 0, σ2
e). (5.16)

The skewness term in the numerator is

p(rt ≥ 0|mt−1,mt) =1− Φ1(0; ρ(mt −mt−1), σ
2
e(1− ρ2))

=Φ1(ρ(mt −mt−1); 0, σ2
e(1− ρ2)). (5.17)

Substituting these terms in (5.14), the following expression is obtained.

p(mt|mt−1, rt ≥ 0) = CSN1,1(mt; mt−1, σ
2
e , ρ, 0, σ

2
e(1− ρ2)). (5.18)

94

st-1 st

mt-1 mt

ytt=1:T

A

H1

H2

Σu

Σv

σe

Figure 5.2: The hierarchical probabilistic graphical model of the proposed approach
to extract the monotonic signal

Ideally, one would want a truncated Gaussian distribution to ensure that mt is always

greater than mt−1. We still define it in terms of a CSN as even a half-truncated

Gaussian distribution would make the states follow CSN in the E-step (discussed later)

due to the fact that the convolution of a half-truncated Gaussian with a Gaussian

leads to CSN, and also a CSN process has a nice recursive structure during filtering.

CSN moreover generalizes a half-truncated Gaussian distribution thus also providing

an extra parameter ρ for tuning. This gives one more flexibility as not all datasets

need a very high ρ to ensure the extracted signal to be monotonic in nature as shown

in the case studies. Fig. 5.1 shows the pdf of CSN(x; 0, 1, ρ, 0, (1− ρ2)) at different

values of ρ. One can observe that as ρ approaches 1, the skewness of the distribution

increases and the pdf resembles a truncated Gaussian distribution when ρ is close to

1. At ρ = 1, the pdf in fact becomes a truncated Gaussian distribution. Although

this parameter adds some flexibility in tuning the LMT, particularly the rate of the

LMT’s evolution, it must be tuned carefully so as to ensure a monotonic trend.

Finally, the proposed model can be summarized in terms of the distributions as

95

follows.

p(st|st−1) = Nns(st; Ast−1,Σv) (5.19)

p(mt|mt−1, rt ≥ 0) = CSN1,1(mt; mt−1, σ
2
e , ρ, 0, σ

2
e(1− ρ2)) (5.20)

p(yt|mt, st) = Nny(yt; H1mt +H2st,Σu) (5.21)

The states to be estimated are {[m′
t s

′
t]
′} and the parameters are {A,H1, H2,Σv, σ

2
e ,Σu}.

This state and parameter estimation problem can be solved using the EM algorithm.

Note that in the remainder of this chapter, mentioning of the condition rt ≥ 0 is

left out for the convenience of presentation. The hierarchical probabilistic graphical

model for the model represented in (5.19), (5.20), and (5.21) is shown in Fig. 5.2

5.3 Maximum likelihood estimation

Given the distributions defined in (5.19), (5.20) and (5.21), the joint likelihood of the

whole dataset conditioned on {rt > 0} can be formulated as follows.

p({mt},{yt}, {st}|{rt ≥ 0})

=
T∏︂
t=1

p(yt|mt, st, rt ≥ 0)×
T∏︂
t=2

p(mt|mt−1, rt ≥ 0)p(st|st−1, rt ≥ 0)

× p(m1|r1 ≥ 0)p(s1|r1 ≥ 0)

=
T∏︂
t=1

p(yt|mt, st)×
T∏︂
t=2

p(mt|mt−1, rt ≥ 0)p(st|st−1)× p(m1|r1 ≥ 0)p(s1)

(5.22)

Maximizing this likelihood directly is infeasible and hence the EM algorithm is used.

5.3.1 EM algorithm - Revisit

The EM algorithm is a technique for maximizing the likelihood function of a system

when the data for some of the variables are missing. It is one of the standard tech-

niques used for latent variable modeling. In these cases, maximizing the likelihood

directly is infeasible. EM algorithm which is an iterative procedure can be followed to

iteratively estimate the latent variables and the parameters. As the name suggests,

the algorithm has two steps: the expectation step (E-step) and the maximization step

(M-step). The details of the algorithm can be found in Bishop [106] and we briefly

96

mention the two steps. Suppose we have observed data Y and latent data S, the joint

likelihood of p(Y, S|θ) can be maximized in the following steps.

1. Initialize the parameters θ as θold

2. E-step: Calculate the expected value of the joint log likelihood as a function of θ,

where the expectation is taken w.r.t the conditional distribution of p(S|Y, θold)

. This is called the Q function.

Q(θ|θold) = ES∼p(S|Y,θold)[log p(Y, S|θ)] (5.23)

3. M-step: Maximize the Q function w.r.t θ to update the parameters.

θnew = argmax
θ

Q(θ|θold)

θold = θnew
(5.24)

4. Iterate till convergence.

5.3.2 M-Step

We first present the M-step of the algorithm. Substituting the distributions defined

in (5.19), (5.20) and (5.21) into the likelihood in (5.22) and taking the logarithm,

the log-likelihood function can be obtained as follows. The constant terms can be

ignored as they will not affect the following derivations and the log-likelihood function

is expressed in terms of the states and parameters.

log p({mt}, {yt}, {st}|{rt ≥ 0}) =

−
T∑︂
t=1

1

2
(yt −H1mt −H2st)

′Σ−1
u (yt −H1mt −H2st)

− T

2
log(det(Σu))

−
T∑︂
t=2

1

2
(st − Ast−1)

′Σ−1
v (st − Ast−1)−

T − 1

2
log(det(Σv))

−
T∑︂
t=2

1

2

(mt −mt−1)
2

σ2
e

− T − 1

2
log(σ2

e)

+
T∑︂
t=2

log(Φ1(ρ(mt −mt−1); 0, σ2
e(1− ρ2))) (5.25)

97

The Q function can be calculated by taking the expectation of the above expression

w.r.t the distribution of the latent variables given all the observations. To obtain the

expression for certain parameters, the Q function is differentiated w.r.t the parameter

and equated to zero. The whole procedure is straightforward and can be accomplished

using some well-known matrix differentiation lemmas. The following equations for the

mapping matrices of the model are obtained [106].

A =

{︄
T∑︂
t=2

E[sts′t−1]

}︄{︄
T∑︂
t=2

E[st−1s
′
t−1]

}︄−1

(5.26)

H =

{︄
T∑︂
t=1

ytE[[m′
t s

′
t]]

}︄{︄
T∑︂
t=1

E

[︄[︃
mt

st

]︃
[m′

t s
′
t]

]︄}︄−1

(5.27)

Here H = [H1 H2] and the two matrices are estimated together as H by augmenting

the LMT and LST. The two covariance matrices can be estimated as

Σu =
1

T

T∑︂
t=1

{︄
yty

′
t − yt E[[m′

t s
′
t]]H

′ −HE

[︄[︃
mt

st

]︃]︄
y′t +HE

[︄[︃
mt

st

]︃
[m′

t s
′
t]

]︄
H ′

}︄
(5.28)

Σv =
1

T − 1

T∑︂
t=2

{︄
E[sts′t]− E[sts′t−1]A

′ − AE[st−1s
′
t]+ AE[st−1s

′
t−1]A

′

}︄
(5.29)

Since we have assumed a diagonal structure for the covariance matrices, only the

diagonal elements of the above matrices are needed to form the updated covariance

matrix.

Σu = diag(diag(Σu)); Σv = diag(diag(Σv)) (5.30)

To obtain the skewness parameter ρ of the LMT, the following term has to be differ-

entiated w.r.t ρ.

E

[︄
T∑︂
t=2

log(Φ1(ρ(mt −mt−1); 0, σ2
e(1− ρ2))

]︄
(5.31)

With the states being inside a nonlinear function of log(Φ()), it is difficult to obtain

closed-form expressions for ρ. Referring back to Fig. 5.1 and the discussion in section

5.2.2, the CSN considered here needs to resemble a half-truncated Gaussian. For

that, ρ needs to be set close to one. Hence ρ is taken as a tuning parameter and

98

manually tuned in a range close to 1 such that monotonic realization of the signal mt

is guaranteed. With CSN resembling a half-normal distribution, the Φ(.) term will

disappear from the distribution and the expected log-likelihood of the LMT will be

as follows.

E

[︄
−

T∑︂
t=2

1

2

(mt −mt−1)
2

σ2
e

− T − 1

2
log(σ2

e)

]︄
(5.32)

Differentiating the above term w.r.t σe, gives us

σ2
e =

1

T − 1

T∑︂
t=2

{︄
E[m2

t]− 2E[mtmt−1]+ E[m2
t−1]

}︄
(5.33)

It can be observed that all the equations for the parameter updates contain the

expected values of the states. These will be estimated in the E-step of the EM

algorithm.

5.3.3 E-step

In the E-step the expected values required to update the parameters are estimated.

As discussed in section 5.3.1, the distribution w.r.t which the expectation of the

quantities are evaluated is p(mt, st|yt, θold). This is now a state estimation problem

where this probability distribution is estimated at each time instant. We briefly visit

the state estimation procedure in the next section. Here onwards, we will denote

the set of measurements from time t = 1 to any time t as Yt = {m1,m2, . . . ,mt}.

Hence YT represents the set of all measurements available and the distributions of

our interest to be estimated are p(mt, st|YT).

5.3.3.1 State estimation - Revisit

The state estimation procedure of a Markov process defined by a state transition

pdf p(st|st−1) and a observation pdf p(yt|st) has two steps. In the first step called

filtering, one moves forwards from t = 1 to t = T to estimate the pdf p(st|Yt) at each

time instant. The filtering step can be further divided into prediction and update

steps. In the second step called smoothing one moves backwards from t = T to t = 1

estimating the pdf p(st|YT) [152]. The state s defined in this revisit denotes a general

hidden state. The whole procedure is summarized in the following equations.

99

Prediction:

p(st|Yt−1) =

∫︂
p(st|st−1) p(st−1|Yt−1) dst−1 (5.34)

Update:

p(st|Yt) =
p(yt|st) p(st|Yt−1)∫︁

p(yt|st) p(st|Yt−1) dst
(5.35)

Smoothing:

p(st|YT) =

∫︂
p(st+1|st)p(st|Yt)∫︁
p(st+1|st)p(st|Yt) dst

p(st+1|YT) dst+1

(5.36)

5.3.3.2 Forward pass - Filtering

In this section we discuss the filtering part of the algorithm which involves solving

(5.34) and (5.35).

Prediction: The prediction step involves calculating the pdf p(mt, st|Yt−1) as in

(5.34). Say at time t, the following distribution is available from t− 1 for the states,

both the LMT and LST.

p(mt−1, st−1|Yt−1) =

CSNns+1,t−1

(︃[︃
mt−1

st−1

]︃
;

[︃
mt−1|t−1

st−1|t−1

]︃
,Σt−1|t−1,Γt−1|t−1, νt−1|t−1,∆t−1|t−1

)︃
(5.37)

The subscripts of the parameters indicate the values of the corresponding parameters

at t− 1 given Yt−1. The transition probability of the states is

p(mt, st|mt−1, st−1) = CSN1,1(mt; mt−1, σ
2
e , ρ, 0, σ

2
e(1− ρ2))×Nns(st; Ast−1,Σv)

= Nns+1

(︃[︃
mt

st

]︃
;

[︃
mt−1

Ast−1

]︃
,

[︃
σ2
e 0
0 Σv

]︃)︃
× Φ1(ρ(mt −mt−1); 0, σ2

e(1− ρ2))

Φ1(0; 0, σ2
e)

(5.38)

Here onwards, we use 0 to represent the vector or matrix of zeros of appropriate size.

The cdf term in the numerator of the above equation can be rewritten as follows

Φ1(ρ(mt −mt−1); 0, σ2
e(1− ρ2)) = Φ1

(︃
γ

[︃
mt −mt−1

st − st−1

]︃
; 0, δ

)︃
(5.39)

with γ = [1 0] and δ = σ2
e(1− ρ2). Finally, the transition pdf can be expressed as

p(mt, st|mt−1, st−1) = CSNns+1,1

(︃[︃
mt

st

]︃
;

[︃
mt−1

Ast−1

]︃
,

[︃
σ2
e 0
0 Σv

]︃
, γ, 0, δ

)︃
(5.40)

100

We also define the two following matrices.

Ã =

[︃
1 0
0 A

]︃
; ΣS =

[︃
σ2
e 0
0 Σv

]︃
(5.41)

We can now substitute (5.40) and (5.37) into (5.34) to calculate p(mt, st|Yt−1). The

resulting pdf is also a CSN and the expressions can be found in Rezaie and Eidsvik [82].

We show the probabilistic approach of the derivation for our case in A.1. Looking

at the integral in the derivation, had we selected a truncated Gaussian to model the

LMT, we would still get a CSN for the predicted distribution. This is because instead

of integrating between the limits of (−∞,∞) one would have integrated between

(−∞,mt) which would again result in a CSN (Lemma 5.1 in He et al. [85]). After

the derivation, the final expressions for the parameters of the CSN are as follows.[︃
mt|t−1

st|t−1

]︃
= Ã

[︃
mt−1|t−1

st−1|t−1

]︃
;

Σt|t−1 = ÃΣt−1|t−1Ã
′
+ ΣS;

Γt|t−1 =

[︄
Γt−1|t−1Σt−1|t−1Ã

′
Σ−1

t|t−1

γΣSΣ
−1
t|t−1

]︄
;

νt|t−1 =

[︃
νt−1|t−1

0

]︃
;

∆t|t−1 =

[︃
∆t−1|t−1 0

0 δ

]︃
+

[︃
Γt−1|t−1

−γÃ

]︃
(I − JtÃ)Σt−1|t−1

[︂
Γ′
t−1|t−1 −Ã

′
γ′
]︂

(5.42)

with Jt = Σt−1|t−1Ã
′
(ÃΣt−1|t−1Ã

′
+ΣS)

−1. It can be observed that the cdf parameters

of the CSN involve augmentation of prior and noise cdf parameters. This leads to an

increase in the dimensionality of the skewness term of the resulting CSN from t − 1

to t. Finally, at the end of the prediction step, we have a CSN expressed as follows.

p(mt, st|Yt−1) = CSNns+1,t

(︃[︃
mt

st

]︃
;

[︃
mt|t−1

st|t−1

]︃
,Σt|t−1,Γt|t−1, νt|t−1,∆t|t−1

)︃
(5.43)

Update step: On observing the measurement at t, the update step updates the

prior pdf of p(mt, st|Yt−1) to the posterior p(mt, st|Yt) using the Bayesian rule as given

in (5.35). As the measurement noise is of a Gaussian distribution, the derivation of

the update step is simpler than the prediction step and the details of the derivation

are provided in A.2. After this implementation of the Bayesian rule, the following

101

expressions to update the parameters are obtained.[︃
mt|t
st|t

]︃
=

[︃
mt|t−1

st|t−1

]︃
+Kt(yt −H1mt|t−1 −H2st|t−1);

Σt|t = (I −KtH)Σt|t−1;

Γt|t = Γt|t−1;

νt|t = νt|t−1 − Γt|t−1

[︃
mt|t −mt|t−1

st|t − st|t−1

]︃
;

∆t|t = ∆t|t−1 (5.44)

where Kt = Σt|t−1H
′(HΣt|t−1H

′ + Σu)
−1. We finally have a CSN given as follows.

p(mt, st|Yt) = CSNns+1,t

(︃[︃
mt

st

]︃
;

[︃
mt|t
st|t

]︃
,Σt|t,Γt|t, νt|t,∆t|t

)︃
(5.45)

One can see that the dimensionality of the skewness term of the CSN has remained

the same in the update step. This is because of the Gaussian noise of the observation

pdf which has no skewness in it. So at every time instant, there is an increase in the

dimensionality by 1 due to the prediction step. Finally, at the end of these recursions

in the forward pass, we would have a CSN with a T dimensional skewness term.

5.3.3.3 Backward pass - Smoothing

From the update equations for the parameters, it can be observed that the distri-

butions p(mt, st|YT) are needed. In the forward pass, only p(mt, st|Yt) are estimated

and hence one needs to move backward recursively updating all the parameters when

all the observations are observed. This is a smoothing procedure. The recursive es-

timates for the smoothened parameters can be derived using (5.36). The detailed

derivation is presented in A.3. As evident from (5.36) and A.3, the smoothing step

is the most difficult to derive. To the best of our knowledge, such equations for the

case when the process noise is CSN or truncated Gaussian, have not been derived.

The recursive estimates of the parameters are provided in this section.

At the end of the forward pass, we would have the distribution

p(mT , sT |YT) = CSNns+1,T

(︃[︃
mT

sT

]︃
;

[︃
mT |T
sT |T

]︃
,ΣT |T ,ΓT |T , νT |T ,∆T |T

)︃
(5.46)

From this, we start to move backwards by estimating p(mT−1, sT−1|YT), and so on

till t = 1 is reached. At any time t, the equations for the recursive estimates of the

102

smoothened distributions are as follows.

Ct = Σt+1|TJ
′
t+1(Jt+1Σt+1|TJ

′
t+1 + (I − Jt+1Ã)Σt|t)

−1

Σ∗
t = (I − CtJt+1)Σt+1|T

Γ∗
t =

[︃
γ(Ct − Ã)
Γ∗
t+1Ct

]︃

ν∗
t =

⎡⎣−γ [︃mt+1|T −mt|T
st+1|T − Ast|T

]︃
ν∗
t+1

⎤⎦
δ∗t =

[︃
δ 0
0 δ∗t+1

]︃
+

[︃
γ

Γ∗
t+1

]︃
Σ∗

t

[︁
γ′ Γ∗

t+1
′]︁[︃

mt|T
st|T

]︃
=

[︃
mt|t
st|t

]︃
+ Jt+1

[︃
mt+1|T −mt+1|t
st+1|T − st+1|t

]︃
Σt|T = Jt+1Σt+1|TJ

′
t+1 + (I − Jt+1Ã)Σt|t

Γt|T =

[︃
Γt|t
Γ∗
t

]︃

νt|T =

⎡⎣νt|t − Γt|t

[︃
mt|T −mt|t
st|T − st|t

]︃
ν∗
t

⎤⎦
∆t|T =

[︃
∆t|t 0
0 δ∗t

]︃
(5.47)

At every time instant, the distribution is

p(mt, st|YT) = CSNns+1,T

(︃[︃
mt

st

]︃
;

[︃
mt|T
st|T

]︃
,Σt|T ,Γt|T , νt|T ,∆t|T

)︃
(5.48)

It can be observe from the equations that in the backward pass the dimension of

the skewness term of the CSN stays the same. With these parameters, we have the

distributions of mt, st|YT . From these, the necessary first-order moments of E[mt],

E[st], E[[m′
t s

′
t]] and the second-order moments of E[m2

t], E[sts′t], E

[︄ [︃
mt

st

]︃
[m′

t s
′
t]

]︄
can

be calculated. First-order moments are nothing but the means of the corresponding

distributions and the second-order moments are the covariance + mean × mean’ of

the corresponding distributions.

5.3.3.4 The cross-time joint distribution

Another important required term is the cross covariance term, which can be seen in

the equation for updating the parameters corresponding to the transition pdf which

103

include A, Σv and σ2
e . The required expectations are E[sts′t−1] and E[mtmt−1]. To

estimate them, we first need to form the distribution of p(mt−1, st−1,mt, st|YT). For

CSN, if the conditional and the marginal distributions are CSN, then the joint dis-

tribution is also a CSN. Hence, p(mt−1, st−1 ,mt, st|YT) is also a CSN. The detailed

derivation of the parameters is given in A.4.

p(mt−1, st−1,mt, st|YT)

=CSN2ns+2,T

⎛⎜⎜⎝
⎡⎢⎢⎣
mt−1

st−1

mt

st

⎤⎥⎥⎦ ; µt−1,t|T ,Σt−1,t|T ,Γt−1,t|T , νt−1,t|T ,∆t−1,t|T

⎞⎟⎟⎠ (5.49)

The parameters of the above CSN are calculated according to the following equations.

µt−1,t|T =

⎡⎢⎢⎣
[︃
mt−1|t−1

st−1|t−1

]︃
+ Jt

[︃
mt|T −mt|t−1

st|T − st|t−1

]︃
[︃
mt|T
st|T

]︃
⎤⎥⎥⎦ ;

Σt−1,t|T =

[︃
JtΣt|TJ

′
t + (I − JtÃ)Σt−1|t−1 JtΣt|T

Σt|TJ
′
t Σt|T

]︃
;

Γt−1,t|T =

⎡⎣γ(I2 − ÃI1)
Γt−1|t−1I1

Γ∗
t I2

⎤⎦ ;

νt−1,t|T =

⎡⎢⎢⎢⎢⎣
−γ(I2 − ÃI1)µt−1,t|T

νt−1|t−1 − Γt−1|t−1

(︃
I1µt−1,t|T −

[︃
mt−1|t−1

st−1|t−1

]︃)︃
ν∗
t − Γ∗

t

(︃
I2µt−1,t|T −

[︃
mt|T
st|T

]︃)︃
⎤⎥⎥⎥⎥⎦ ;

∆t−1,t|T =

⎡⎣δ 0 0
0 ∆t−1|t−1 0
0 0 δ∗t

⎤⎦ (5.50)

with I1 and I2 defined as in (A.31) and (A.32). One can observe that the dimension-

ality of the cdf part of the above CSN is T . For example, the dimensionality of δ,

∆t−1|t−1, and δ∗t are 1× 1, (t− 1)× (t− 1), and (T − t)× (T − t) respectively which

combine to give a total of T × T .

This completes the recursive equations of the parameters to estimate the distri-

butions p(mt, st|YT). Now to estimate the expected value of the quantities appearing

in the parameter estimation equations, one needs to estimate the moments of each

of the pdfs. For Gaussian cases it is easy to do this as the parameters of a Gaussian

104

distribution are the mean and the covariance. But for a CSN this is not the case and

we discuss how to evaluate the mean and the covariance matrix of a CSN in the next

section.

5.3.3.5 Evaluating the expectations

As discussed earlier the µ and the Σ parameter are not the true mean and covariance

of the CSN distribution. The expressions for the moments of a CSN have analytical

expressions only for the case where the dimensionality of the skewness term is 1 [153].

For higher dimensionality, there are no analytical expressions. We hence resort to a

sampling based-method. For a CSN described in (5.8), we can calculate the mean

and variance as

E[x] = µ−Kν +KE[p];

Var[x] = Σ+KΓΣ +K(Var[p])K ′ (5.51)

with K = −ΣΓ′(∆+ΓΣΓ′)−1. Here, p is a dummy variable whose mean and variance

are calculated from the N samples drawn from the following truncated Gaussian

distribution.

p ∼ Nq(p; ν,∆+ ΓΣΓ′)

Φq(0; ν,∆+ ΓΣΓ′)
1(p ≤ 0)

E[p] =
1

N

N∑︂
i=1

pi; Var[p] =
1

N

N∑︂
i=1

(pi − E[p])(pi − E[p])′ (5.52)

The details of these expressions are discussed in A.5. With this, all the necessary

equations to calculate the expectations appearing in the parameter update equations

of the M-step are derived, and hence the E-step is concluded.

The issue of dimensionality: It is to be noted that the dimension of p is nothing

but the dimension of the skewness term of the CSN. For T samples, the dimension

of p is T and hence one would need to sample the variable p from a T -dimensional

truncated Gaussian distribution. This could result in some computational burden.

One possible way of avoiding this is to keep the dimension of the skewness term of the

CSN at a constant number k << T . To achieve this, one has to first approximate the

high dimensional CSN to a lower one at every point in the forward pass. For example,

105

k = 1 requires the CSN to be approximated as a Gaussian at every time instant at the

end of the update step. This would not only decrease the accuracy, but also make the

derivation of recursive estimates for smoothing not possible, necessitating the usage

of particle filters to estimate the distributions of p(mt, st|YT). Given this, and also

particularly when the application of this model is done off-line, the computational

burden caused by the dimensionality of the skewness term may be tolerated, and the

original solution can be applied.

Online implementation: The proposed approach results in a simultaneous state

and parameter estimation solution. The framework of the implementation of the

algorithm for monitoring deterioration and other stationary variations depends on

the timescale of the deterioration. For processes that degrade over smaller timescales

(of the order of weeks to a few months), it would be preferable to visualize the

trends very frequently. In such cases, the iterative estimation procedure which is

computationally expensive needs to be performed offline based on historical datasets

of the same process (previous cycles of operation). With a reasonable model available,

only the state estimation portion may be done online. Although, it needs to be noted

that the parameters may differ between different cycles of degradation and one may

need to intermittently perform the EM algorithm iterations to adjust the parameters

to the current cycle. For degrading processes with larger time scales (years), the

intervals at which the monitoring of degradation is required are larger. For such cases,

the model is run mostly offline, and the EM algorithm iterations can be performed

whenever there is a need to visualize the deterioration.

5.4 Case studies

In this section, we present the results obtained from the implementation of the pro-

posed approach on two case studies. The first one is a simulated case study where the

data is artificially generated from a linear system with LMT and LST. The second

one is an industrial case study where the proposed approach is applied on a hot lime

softener (HLS) process dataset to monitor the fouling buildup in the process.

106

5.4.1 Simulation case study

Given our objective of separating the LMT and LST from a non-stationery process, we

mimic such behavior in this simulated case study. The system under consideration

has two observed variables. These are assumed to be a mixture of one LMT and

two LSTs. A sigmoid function has been used in our case to generate the LMT. The

sigmoid function is a monotonically increasing function and the rate of increase varies

from near zero at the extreme ends to very high in the middle, hence giving a good

variation in the function as far as monotonically increasing ones are concerned. The

following sigmoid function is used in the case study.

mt =
10

1 + exp(−0.04 ∗ (t− 125))
(5.53)

The stationary signals are generated using a state-space model with the absolute

value of the eigenvalues being less than 1. For this case study, the following equation

is used to generate the LST.

st =

[︃
0.95 0.5
−0.4 0.25

]︃
st−1 + Σv (5.54)

The eigenvalues of the A matrix are 0.6000± 0.2784i. Hence the system shows some

oscillatory behavior also. For simplicity, the noise covariances Σu nd Σv are selected

to be identity matrices. The inputs generated for this case study are depicted in Fig.

5.3. The outputs are generated according to the following equations.

yt =

[︃
1
−1

]︃
mt +

[︃
1 −1
1 1

]︃
st + Σu (5.55)

The coefficients are selected to be one in this case as LMT and LST both have

a ’similar’ variation and hence similar contributions of each signal are selected to

generate the output. A total of 250 samples are generated. The output data generated

for this system is depicted in Fig. 5.4. From the figure, it can be observed that the

overall data has a non-stationary characteristic. But this is not apparent because of

the stationary trends that are mixed with it.

Although co-integration analysis and stationary subspace analysis can be used to

separate the stationary and non-stationary components, in this case, one would only

be able to get two latent variables as there are two outputs. This would not result in

107

0 50 100 150 200 250

0

5

10

x

0 50 100 150 200 250

-10

-5

0

5

10

s
(1

)

0 50 100 150 200 250

t

-5

0

5

s
(2

)

Figure 5.3: The latent variables generated for the simulation case study. x is the
sigmoidal monotonic function, and s(1) and s(2) are the two stationary signals

a proper separation of the stationary and non-stationary components. The stationary

space will have a mixture of the two stationary signals and the non-stationary space

would have a mixture of the stationary and non-stationary signals. Hence the results

obtained from the proposed method are compared with an algorithm in which a

Gaussian distribution is assumed. For the Gaussian case, the M-step turns out to

be similar to the M-step we derived for the CSN. The E-step is nothing but the

original Kalman filter followed by an RTS smoother. These two steps are alternatively

performed till convergence. For the CSN algorithm, since there are 250 samples, the

108

0 50 100 150 200 250

-10

0

10

20

y
(1

)

0 50 100 150 200 250

t

-20

-15

-10

-5

0

5

y
(2

)

Figure 5.4: The outputs generated for the simulation case study

size of the CSN at every instant is 250. This requires a large number of samples to

estimate the moments of the CSN at each step. It increases the computation time

significantly.

This problem can be overcome to some extent by using a good initial guess for the

EM algorithm. The EM algorithm can result in a local minimum solution and the

initial guess may influence the final results. In our case, we first trained the Gaussian

model on the data and used the final values of the parameters as initial guesses for the

CSN model. This is equivalent to first training the CSN model with a ρ being equal

to zero and then subsequently increasing ρ. This reduced the number of iterations of

the EM algorithm for the CSN model, hence saving some time. For this case study,

a ρ of 0.8 was able to ensure that the extracted x is monotonic. The results of the

simulations are presented in Table. 5.1. The Gaussian model is compared with the

CSN model in terms of the sum of the squared errors (SSE). The SSE of the state

estimation is calculated w.r.t to the generated data. The SSE is calculated according

109

to the following equation.

SSEm =
T∑︂
t=1

(mt − m̂t)
2; SSEs(i) =

T∑︂
t=1

(s
(i)
t − ŝ

(i)
t)2 (5.56)

Here, mt and s
(i)
t represent the states generated according to (5.53) and (5.54). Vari-

ables m̂t and ŝ
(i)
t represent the estimated states. It can be observed from Table. 5.1

that the SSE for the sigmoid signal is larger for the CSN model case. However, for the

stationary states, the CSN model outperforms the Gaussian model. These phenom-

ena can be explained as follows. The state estimation for the CSN model essentially is

a constrained estimation, with the constraint ensuring a monotonic trend. The Gaus-

sian model allows the non-stationary trend to vary freely hence reducing the SSE. But

this would violate the monotonic trend nature of the signal. Since yt = H1mt+H2st,

the violation of the constraint seen in x, induces an error in the estimated stationary

state s. Since the estimated non-stationary state preserves the monotonic nature of

the signal, it practically improves the estimation of the stationary state. Hence it is

observed that the proposed method increases the accuracy of the extracted stationary

signals. This can also be observed in the scatter plots of the estimated vs. actual

values of the signals depicted in Fig. 5.5, 5.6 and 5.7.

The non-stationary signal extracted by the Gaussian model is not monotonic in

nature. This can be observed in Fig. 5.8 which shows the rates of change of the

non-stationary signals extracted using a Gaussian model and a CSN model. The one

from Gaussian is not monotonic as the rate attains negative values at certain points

and the one from the CSN model is monotonic. It can also be observed that the

CSN one is smoother than the Gaussian one resembling a trend more similar to the

original sigmoid function.

Table 5.1: Comparing the SSE obtained for the Gaussian model and the CSN model

Method SSEm SSEs(1) SSEs(2)
Total SSE of

stationary features

Gaussian model 1.1714 183.7478 88.1470 273.0662

Proposed CSN model 6.9707 142.2412 35.6361 184.8480

110

0 2 4 6 8 10

Actual x
t

-2

0

2

4

6

8

10

12

E
s
ti

m
a
te

d
 x

t

Original data

Gaussian

Proposed CSN

Figure 5.5: Comparison of the scatter plot of the monotonic signal extracted from
the Gaussian and CSN models

5.4.2 Fouling monitoring in a Hot Lime Softener

Hot lime softener (HLS) is an industrial process used to remove the hardness, silica,

etc from water. The hard water is mixed with chemicals such as lime, soda ash, etc

in a tank. The resulting mixture contains suspended solids and is sent for filtering

through a piping section to remove the solids. This piping section suffers from fouling

due to these suspended solids, which increases the cost of operation. On the other

hand, frequent cleaning would need the process to be shut down, hence reducing the

in-operation time. Monitoring the fouling buildup hence becomes essential for the

efficient operation of the process. The data used in this case study is obtained from

an industrial HLS used to soften the boiler feed water in a steam-assisted gravity

drainage (SAGD) process. The fouling indicator is based on the Darcy–Weisbach

equation, according to which (︃
F√
∆P

)︃0.8

∝ A. (5.57)

Here, F is the flowrate through the piping section, ∆P is the pressure drop and A

is the cross-section area. As the fouling material deposits during the course of the

111

-10 -8 -6 -4 -2 0 2 4 6 8

Actual s
(1)

t

-10

-8

-6

-4

-2

0

2

4

6

8

E
s
ti

m
a
te

d
 s

(1
)

t

Original data

Gaussian

Proposed CSN

Figure 5.6: Comparison of the scatter plot of the first stationary signal extracted
from the Gaussian and CSN models

operation, the area A decreases gradually. Hence monitoring (F/
√
∆P)0.8, which

we will refer to as the flow coefficient, will help us to monitor the fouling. Alsadaie

and Mujtaba [154] categorize fouling into different categories based on the interaction

between fouling deposition and removal rates. These categories are the linear rate,

falling rate, asymptotic rate, and sawtooth behavior. In our case, the saw-tooth

nature is seen where there is an initial increase in fouling followed by an oscillatory

behavior. This oscillatory behavior is due to the intermittent flushing away of the

deposited fouling substance. The flow coefficient calculated for the data is depicted in

Fig. 5.9. These oscillations increase over time and one could use this as an indication

of fouling buildup. But these oscillations are mixed with the non-stationary trend and

for the monitoring purpose, we need to separate them. Hence we model the system

112

-5 0 5

Actual s
(2)

t

-6

-4

-2

0

2

4

6

E
s
ti

m
a
te

d
 s

(2
)

t

Original data

Gaussian

Proposed CSN

Figure 5.7: Comparison of the scatter plot of the second stationary signal extracted
from the Gaussian and CSN models

as follows.

st = A st−1 + vt

mt = mt−1 + et

rt = wt(︃
F√
∆P

)︃0.8

= yt = H1 mt +H2 st + ut (5.58)

Here the dimensionality of x and s is 1. The monitoring strategy for this case is

summarized below.

1. Calculate the flow coefficient according to (5.57).

2. Implement the proposed algorithm to separate the LMT and LST.

3. Fig. 5.9 indicates an LMT superimposed by an oscillating variable. Use the

LMT to infer the rate of fouling buildup. A non-monotonic signal extracted by

a Gaussian model cannot be used to monitor the rate of fouling.

113

0 50 100 150 200 250

t

-0.1

-0.05

0

0.05

0.1

0.15

d
t+

1
 =

 x
t+

1
 -

 x
t

Original data

Gaussian

Proposed CSN

Figure 5.8: Comparison of the rate of change of the monotonic signals obtained from
the Gaussian and CSN models

4. Use the stationary trend to monitor the oscillations caused by flushing away

of the fouling material. The decision about cleaning can be made when the

magnitude of the oscillations crosses a certain threshold.

114

0 200 400 600 800 1000 1200 1400 1600 1800

t

0

0.2

0.4

0.6

0.8

1

1.2

y

Figure 5.9: The flow coefficient calculated for dataset 1

115

0 50 100 150 200
0

0.5

1

y

0 50 100 150 200
0

0.5

1

x

Gaussian

Proposed CSN

0 50 100 150 200

t

0

0.5

1

1.5

s

Gaussian

Proposed CSN

Figure 5.10: Summary of the fouling monitoring results for the first dataset. The top
figure shows the calculated flow coefficient. The other two depict the LMT and LST
respectively.

116

0 20 40 60 80 100 120 140 160 180

t

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

d
t+

1
 =

 x
t+

1
 -

 x
t

Gaussian

Proposed CSN

Figure 5.11: Rate of change of the LMT obtained from the first fouling dataset

The proposed method is implemented on the fouling dataset and the results are

shown in Fig. 5.10. We have down-sampled the dataset for both cases so that

the dimensionality of the CSN does not go too high. Also, the flow coefficient is a

decreasing quantity and we have converted it to an increasing one by only subtracting

the trend from its maximum value to facilitate visualization. This does not change

the trend in any way as all the temporal relations and covariances are still intact.

From the results in Fig. 5.10, it can be observed that the Gaussian model does not

extract a signal even close to the monotonic nature. The LST extracted shows a trend

of increasing oscillations for both the Gaussian and CSN models. But this nature is

more apparent for LST obtained from the proposed method. The rate of change of

the LMT is depicted in Fig. 5.11. As expected, the rate of change is oscillatory and

takes values on both sides of the zero line for the Gaussian model. As a result of

this, no clear conclusions can be made about the rate of fouling by looking at this

trend. For the CSN model, the trend is smoother and will be suitable for monitoring

purposes. This shows that the proposed approach is more efficient in extracting the

two sets of latent features.

117

5.5 Conclusion

We propose an approach to perform the simultaneous state and parameter estimation

of a process driven by both latent monotonic and stationary trends. The observed

data is assumed to be a linear mixture of these two trends and we propose an EM

algorithm-based approach to separate them. The problem is modeled as a closed

skew-normal distribution process and we have derived recursive estimation proce-

dures for the E-step (state estimation) of the algorithm. The method is suited for

both off-line modeling and on-line monitoring applications for processes where there

is a slow monotonic drift in the process operation due to degrading health factors

of the process. The results from the simulated and industrial case studies show a

successful demonstration of the proposed method. These promising results prompt

further exploration of process-relevant probabilistic modeling of industrial processes

using distributions beyond the standard Gaussian distribution.

118

Chapter 6

Modeling and Bayesian Inference
for Processes Characterized by
Impulsive Changes

This chapter presents the fourth contribution of the thesis which proposes a method of

modeling and estimating systems characterized by abrupt (impulsive) changes. These

impulsive changes may be due to multiple reasons such as disturbances, capacity

change, etc. All these cases result in signals that appear to have sudden jumps in

the process. But mixed along with these jumps will be the other dynamic variations

characterizing the regular dynamics of the process. Hence, for effective modeling of

such processes, it is important to model both the jumps and the regular dynamic

variations. In chapters 3 and 4 it was argued that temporal slowness is the main

characteristic of most of the chemical processes. Hence, we model the other dynamic

variations using the probabilistic slow feature analysis (PSFA) model. The resulting

model has two types of latent variables (LVs) each characterizing the abrupt jumps

and the slower variations. The inference of the states and parameters is done in

the variational Bayesian (VB) framework. The efficacy of the proposed approach is

demonstrated as a soft sensor application in both a simulated case study and industrial

case study.

6.1 Introduction

Signals with impulsive changes or abrupt jumps are a common occurrence in many

industrial datasets. There could be multiple reasons for such behavior. One such

119

reason is the abrupt injection of a disturbance into the system. This will cause an

abrupt change not only in the variables in the immediate vicinity of the injected

disturbance but might also travel to many other variables due to the coupled nature

of the processes. Another way that an abrupt change is observed is when there is a

sudden capacity change either due to the changes in the supply/demand side or due

to the availability/unavailability of certain units. In other cases, the process itself

could be of impulsive nature. The source of these impulsive jumps will be a common

one and the source itself may not be measured. In such cases, an LV model that

models these jumps is more desirable. Also, these jumps will be mixed with other

sources of dynamic variations which characterize the dynamic relations of various

process variables. The separation of these two sources thus becomes important for

effective modeling of the process. Hence, modeling of such processes must consider

these two different sources of process behavior, i.e., the abrupt jumps and the regular

dynamics in order to capture them effectively.

The literature related to processes with impulsive behaviors has explored various

methods such as the optimization-based approaches to fit piecewise constant signals,

state space estimation using fat-tailed distribution, etc as discussed in section 1.2.3.

The state space approach is more appropriate because the stochastic time series nature

of the model provides more flexibility in modeling through the incorporation of various

types of distributions, special structures in the model matrices, etc. Moreover, for

online implementation, a dynamic model is always better suited. In the state space

model, if a dynamic variable trajectory is to be generated with abrupt jumps, then

a Gaussian distribution cannot be used as the process noise. Rather, a heavy-tailed

distribution must be used because the abrupt jumps can be realized only if there

is a significant probability of obtaining realizations of extreme values. The Cauchy

distribution is a heavy-tailed distribution and has a closed-form expression for its pdf

unlike many heavy-tailed distributions in the α-stable distribution family. Hence,

it can be used to model the dynamics of the LV that corresponds to the impulsive

sources of variations. Fig. 6.1 compares the pdfs and random-walks generated by

Gaussian and Cauchy distributions.

As discussed earlier, in addition to the abrupt jumps, there will be also other

regular variations. These can be modeled according to the Gaussian distribution. As

120

�� �	 � 	 �
!

���

���

��	

��

���

��!
�

�����"������
��������������

� ��� 	��
�� ��� ���
�

��

���

�	�

�

	�

��

��
��
��
�
��
��
���
��
�

�����"�������������� ���
���������������������� ���

Figure 6.1: Comparison of the Cauchy and the Gaussian distributions. The top
figure compares the pdfs of the two distributions and the bottom one compares the
realizations of a random-walk model of the form st = st−1+vt with vt modeled as the
Cauchy and Gaussian distributions.

discussed in chapters 3 and 4, temporal slowness is an important characteristic of

chemical processes. Hence the latent variables related to the process variations are

slow. Hence, in this case, the Gaussian latent variables are modeled according to the

PSFA model to account for the temporal slowness of the sources driving the process.

121

This hence results in a model with two types of LVs: Cauchy LV to account for the

abrupt changes and Gaussian LVs to account for the slower variations. This results

in a state (LV) and parameter identification problem of a state space model with

the states (LVs) having Cauchy and Gaussian distributions. As discussed in section

1.2.3, the literature on impulsive processes mostly focuses on the state estimation

portion where it is assumed that the system model is available. Research to perform

the simultaneous state and parameter estimation is scarce. Moreover, modeling the

system in the aforementioned way to describe both the impulsive sources and the

slower sources of variations has not been done.

This work proposes a method to model systems that have both impulsive and

slower sources of variations. The identification of the resulting model is performed

in the VB inference framework [63, 64]. In this case, the model parameters too are

assumed to be random variables and are inferred in a Bayesian framework combining

the prior beliefs and the observed data. The VB framework is advantageous in the

cases where one has certain modeling preferences, such as the one in this case related

to the Gaussian LVs. The Gaussian LVs are modeled according to the PSFA model

which has a particular structure. In this case, the notions of slowness are better im-

plemented in a Bayesian framework [65–67]. To accommodate the constraints on the

parameters of the model, relevant distributions are assumed as the priors. Bayesian

estimation of the model is performed which involves estimating the posterior distribu-

tion of the states and the parameters. The main challenge to the posterior estimation

is posed by the states and parameters involved in the Cauchy distribution. Since the

Cauchy distribution does not have an exponential form, the estimation of the poste-

riors becomes difficult. This issue is circumvented through an approximation based

on the Taylor series expansion. Hence, the parameters that have a tractable posterior

are estimated through analytical update equations while the ones that do not have

a tractable posterior are evaluated through importance sampling. The state estima-

tion is conducted through particle filtering and smoothing [109, 110] as the Cauchy

distribution makes the analytical state estimation procedure intractable.

The effectiveness of the proposed algorithm is demonstrated through two case

studies. The proposed approach can be used for both process monitoring and soft

sensor applications as both applications may need an accurate model that considers

122

the abrupt jumps and the slower variations. In this work, the main focus is on the

soft sensor application. The first case study is a numerical example where the data

is generated according to the assumed notions through an appropriate state space

model. The second one is a real-world industrial case study. The data is obtained

from a steam-assisted gravity drainage (SAGD) process and the objective is to predict

the emulsion flow-rate.

The rest of the chapter is organized as follows. The proposed model formulation is

presented in section 6.2. Section 6.3 presents the VB inference framework applied to

the proposed model. Derivation of the posterior distribution of each of the parameters

and states is provided. Section 6.4 presents the results from the two case studies.

Finally, the conclusions drawn from the work are summarized in section 6.5.

6.2 Proposed model

The proposed model aims at modeling and estimating the impulsive behavior and

the slower variations. Let {xt} be the set of observed input data with xt ∈ Rnx×1,

and {yt} be the set of the observed output data with yt ∈ Rny×1. The objective is

to build a soft sensor model to predict yt from xt. Since both xt and yt come from a

process with the aforementioned latent spaces, it would be more effective to have an

LV model. Hence, two LVs are defined: ct ∈ R, whose dynamics evolves according to

a Cauchy distribution, and st ∈ Rns×1, whose dynamics evolve according to a Gaus-

sian distribution. These two LVs model the abrupt jumps and the slower variations

respectively. The proposed model is expressed in the following set of equations.

st = A st−1 + vt, vt ∼ N (vt; 0,Σv) (6.1)

ct = b ct−1 + et, et ∼ C(et; 0, σe) (6.2)

xt = M1 ct +M2 st + wt, wt ∼ N (wt; 0,Σw) (6.3)

yt = H1 ct +H2 st + ut, ut ∼ N (ut; 0,Σu) (6.4)

Here, N and C represent Gaussian and Cauchy distributions respectively. Equation

(6.1) models the evolution of the slower variations which are defined by the matrix A

and the state transition noise covariance Σv. Since these Gaussian LVs are modeled

according to the PSFA model (section 2.2.2), A and Σv have a special structure as

123

shown in the following equations.

A =

⎡⎢⎢⎢⎣
a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · ans

⎤⎥⎥⎥⎦ ; 0 < ai < 1; Σv =

⎡⎢⎢⎢⎣
1− a21 0 · · · 0

0 1− a2 · · · 0
...

...
. . .

...
0 0 · · · 1− ans

⎤⎥⎥⎥⎦ (6.5)

Equation (6.2) shows the evolution of the Cauchy LV determined by the coefficient

b and the state transition noise scaling parameter σe. The coefficient b has following

constraint 0 < b ≤ 1. If b is less than 1, this results in a stationary Cauchy trajectory.

This case is more suitable for the situation when the abrupt changes in the process

are caused by a disturbance. Usually, such disturbances are rejected and the system

is returned to the normal operation condition by a controller. Nevertheless, these

jumps cannot be termed as outliers as they are not measurement errors as the abrupt

jump actually happens. If a soft sensor or a monitoring model is to be built, one

would either want accurate predictions in these jumps and not term them as faults

or outliers. Fig. 6.2a shows such a stationary Cauchy trajectory. If b = 1, we get a

non-stationary trajectory as this will be a random walk process. Such a trajectory

may be observed in the case when the abrupt jump is caused either by a capacity

change or changes in the demand or the supply side of the process. Fig. 6.2b shows

such a non-stationary Cauchy trajectory. For simplicity, in this work, the abrupt

jumps are modeled using a single variable and the extension to multiple sources is

straightforward.

Equations (6.3) and (6.4) show how the observed input and output data are gener-

ated from the two LVs respectively. xt is generated through the two matrices M1 and

M2 and has a measurement noise wt, which is white noise with a covariance matrix

Σw. Similarly, yt is generated through the two matrices H1 and H2 and has a white

measurement noise of ut with a covariance matrix Σu.

6.2.1 Model formulation in the probabilistic framework

In this work, the inference of the model in (6.1)-(6.4) is done in a Bayesian framework,

where all the states and parameters are assumed as random variables. As discussed

previously, the evolution of the states st and ct are modeled according to Gaussian

124

� ��� ��� ��� ��� ���
�

����

���

�

��

���

��
	�
�
�	
��
�

��
��

��
��
�

��
	�
�
��

(a) A stationary Cauchy dynamic process (b = 0.9)

� ��� ��� ��� ��� ���
�

����

����

����

����

���

�

��

���

	
��

��
�

���

�

��
�

���
��

���
��
��
�

�
��
��

(b) A non-stationary Cauchy dynamic process (b = 1)

Figure 6.2: Stationary and non-stationary Cauchy processes

and Cauchy distributions respectively.

p(st|st−1, A) = N (st; Ast−1, I − AA′) (6.6)

p(ct|ct−1, b, σe) = C(ct; bct−1, σe) (6.7)

125

For the output model, since the observation noise is modeled as a Gaussian distribu-

tion, the conditional distribution of the observations is represented as

p(xt|ct, st,M1.M2,Σw) = N (xt; M1ct +M2st,Σw) (6.8)

p(yt|ct, st, H1.H2,Σu) = N (yt; H1ct +H2st,Σu) (6.9)

For the parameters, the prior distribution assumed depends on the specific constraints

the parameters have. The following points define the prior distribution assumed for

each of the parameters.

1. Since matrix A is diagonal, the distribution for each of the diagonal elements

ai can be defined separately. Since ai is constrained to be between 0 and 1, the

prior for ai must have distribution with a support of [0,1]. In this work, the

beta distribution is used as a prior for ai as the support of the beta distribution

is between 0 and 1. The beta distribution is parameterized by two parameters

α and β and a prior beta distribution can be specified for each ai. The beta

distribution for an ai henceforth will be represented as B(ai; α
(i)
a , β

(i)
a).

2. Due to the adoption of the PSFAmodel, we have Σv = I−AA′. In a general case,

Σv would be an independent parameter and a suitable prior can be assumed.

3. Like ai, b is also constrained to be between 0 and 1 and hence a beta distribution

of B(b; αb, βb) is assumed as the prior distribution of b.

4. The parameter σe is the scaling parameter of the Cauchy distribution and is a

positive quantity. Hence, a gamma distribution is assumed as the prior. This

is represented as Γ(σe; αe, βe).

5. Since, during the training phase, x and y are not distinguishable in terms of the

role they play in estimating the distributions, they can be augmented to get an

overall observed data vector. This results in the following expression.

[︃
yt
xt

]︃
=yt =

[︃
H1 H2

M1 M2

]︃
⏞ ⏟⏟ ⏞

H

[︃
ct
st

]︃
+ ut; ut ∼ N

⎛⎜⎜⎜⎝
[︃
ut

wt

]︃
; 0,

[︃
Σu 0
0 Σw

]︃
⏞ ⏟⏟ ⏞

Σu

⎞⎟⎟⎟⎠ (6.10)

yt = H

[︃
ct
st

]︃
+ ut; ut ∼ N (ut; 0,Σu) (6.11)

126

Now, one can define the priors for the augmented matrices H and Σu.

6. The elements of H do not have any specific constraints. Also, they appear in

a Gaussian likelihood for which a Gaussian prior serves as a conjugate prior.

Hence, a multivariate Gaussian distribution is assumed as a prior for each row

of H. The prior for a row H ′
i is represented as N (Hi; µ

(i)
H ,Σ

(i)
H).

7. Since the covariance matrix Σu is diagonal, a prior for each element can be

defined separately. It one looks at the estimation of variance in terms of pre-

cision τ
(i)
u defined as the inverse of the variance, i.e., τ

(i)
u = 1/(σ

(i)
u)2, then it is

known that conjugate prior for a Gaussian likelihood is a gamma distribution.

Hence, the prior distribution for the precision is taken as a gamma distribution

represented as Γ(τ
(i)
u ; α

(i)
u , β

(i)
u).

One can write the joint distribution of all the states and parameters to be estimated

as follows.

p(S,A,C, b, σe,Y , H,Σu) =p(Y |H,C, S,Σu) · p(C|b, σe) · p(S|A)

· p(Σu) · p(H) · p(b) · p(σe) · p(A) (6.12)

Here, Y = {yt}, S = {st}, and C = {ct}.

Incorporating all the aforementioned distributions, the following result is obtained.

p(S,A,C, b, σe,Y , H,Σu)

=
T∏︂
t=1

N
(︃
yt; H

[︃
ct
st

]︃
,Σu

)︃
·

T∏︂
t=2

C(ct; bct−1, σe) C(c1;µc1 , σc1)

·
T∏︂
t=2

N (st; Ast−1, I − AA′) N (s1; µs1 ,Σs1)

·
ny+nx∏︂
i=1

Γ(τ (i)u ; α(i)
u , β(i)

u) ·
ny+nx∏︂
i=1

N (Hi; µ
(i)
H ,Σ

(i)
H) ·

ns∏︂
i=1

B(ai; α(i)
a , β(i)

a)

· B(b; αb, βb) · Γ(σe; αe, βe) (6.13)

The probabilistic graphical representation of the model is depicted in Fig. 6.3. Here,

the variables inside a circle represent the random variables whose posteriors need to

be estimated. The quantities in the square boxes represent the observed data and

prior distribution parameters which are fixed.

127

st-1 st

ct-1 ct

yt

t=1:T

A

H1

H2Σu

σeb

xt M1

M2Σw

αa, βa

μH
ΣH

αu, βu

αw, βw

αb, βb αe, βe

Figure 6.3: The hierarchical probabilistic graphical model of the proposed approach

6.3 Variational Bayesian inference of the model

The VB inference framework is used to estimate the posterior distributions of variables

in LV models. The details of the VB method and the process of arriving at the

expression for the posterior distribution in this approach are presented in section

2.3.2. The posterior distribution of a variable Z is expressed as follows.

q(Z) ∝ exp
(︂
EZ̃∼q(Z̃)

[︂
ln p(Y, Z, Z̃|θpr)

]︂)︂
(6.14)

Here, Y represents the observed data, Z̃ represents all the other latent variables of

the model, and q(Z̃) is the distribution of all other LVs at the current iteration. The

distribution p(Y, Z, Z̃|θpr) represents the total data likelihood which in this case is

given in (6.13). Only the distributions that have Z in them need to be retained and

128

the rest become the normalization constants. In this section, the detailed derivation

of inferring the posterior distribution is provided for all the involved variables.

6.3.1 Inference of H

H is a (ny +nx)×ns+1 dimensional matrix, and since the inference is done for each

row H ′
i, there are (ny +nx) number of H ′

i to be inferred. In the total data likelihood,

the distributions where H appears are p(Y |H,C, S,Σu) and p(H). Thus to infer H ′
i,

the distributions are p(Yi|Hi, C, S, τ
(i)
u) and p(Hi). Hence, the following expression is

obtained for q(Hi)

q(Hi) ∝ exp
(︁
⟨ln p(Yi|Hi, C, S, τ

(i)
u)p(Hi)⟩

)︁
(6.15)

Here, ⟨·⟩ represents the expectation. Henceforth, the same notation is used for expec-

tation. For convenience, explicit mentioning of the variable w.r.t which the expecta-

tion is taken has been left out. The expectation taken in each case is w.r.t all other

variables except the one for which the posterior expression is being derived. Since

both the pdfs in the above equation are Gaussian, the following result is obtained.

q(Hi) ∝ exp

(︄
T∑︂
t=1

⟨︃
−1

2

(︂
y
(i)
t −H ′

iSt
)︂′
τ (i)u

(︂
y
(i)
t −H ′

iSt
)︂⟩︃

− 1

2
(Hi − µ

(i)
H)′(Σ

(i)
H)−1(Hi − µ

(i)
H)

)︃
(6.16)

Note that the prior does not contain any other random variables and hence it comes

out of the expectation. Here, St =
[︃
ct
st

]︃
represents the augmented states. The above

equation has a summation of two quadratic terms of Hi. Hence, it can always be

written as a single quadratic of Hi. The objective thus is to express the sum of two

above quadratics of Hi as(︂
Hi − µ̂

(i)
H

)︂′
(Σ̂

(i)

H)−1
(︂
Hi − µ̂

(i)
H

)︂
= Hi(Σ̂

(i)

H)−1H ′
i − 2H ′

i(Σ̂
(i)

H)−1µ̂
(i)
H + µ̂

(i)
H

′(Σ̂
(i)

H)−1µ̂
(i)
H

(6.17)

Here, µ̂
(i)
H and Σ̂

(i)

H represent the mean and covariance matrix of the posterior q(Hi)

which is a Gaussian. The expressions for these can be obtaining by comparing the

second-order and first-order coefficients of Hi in (6.16) and (6.17). The second-order

129

term of Hi in (6.16) is⟨︄
T∑︂
t=1

S ′
tHiτ

(i)
u H ′

iSt

⟩︄
+H ′

i(Σ
(i)
H)−1Hi = H ′

i

⟨︄
T∑︂
t=1

Stτ (i)u S ′
t

⟩︄
Hi +H ′

i(Σ
(i)
H)−1Hi

= H ′
i

(︄
(Σ

(i)
H)−1 +

T∑︂
t=1

⟨StS ′
t⟩ ⟨τ (i)u ⟩

)︄
Hi (6.18)

The simplification of ⟨Stτ (i)u S ′
t⟩ = ⟨StS ′

t⟩ ⟨τ
(i)
u ⟩ can be done because of the mean field

approximation. The new quadratic matrix in the above equation is the posterior

variance of Hi. Similarly, the linear term in of Hi in (6.16) is

−2H ′
i(Σ

(i)
H)−1µ

(i)
H − 2H ′

i

T∑︂
t=1

⟨Stτ (i)u y
(i)
t ⟩ = −2Hi

(︄
(Σ

(i)
H)−1µ

(i)
H + ⟨τ (i)u ⟩

T∑︂
t=1

y
(i)
t ⟨S⟩

)︄
(6.19)

From (6.18), (6.19), and (6.17), the following results are obtained. These parameters

are the posterior mean and variance of Hi which follows a Gaussian distribution.

Σ̂
(i)

H =

{︄
(Σ

(i)
H)−1 + ⟨τ (i)u ⟩

T∑︂
t=1

⟨StS ′
t⟩

}︄−1

µ̂
(i)
H = Σ̂

(i)

H

{︄
(Σ

(i)
H)−1µ

(i)
H + ⟨τ (i)u ⟩

T∑︂
t=1

y
(i)
t ⟨St⟩

}︄
(6.20)

6.3.2 Inference of Σu

The inference of each element of Σu i.e.,
(︂
σ
(i)
u

)︂2
is done through the precision τ

(i)
u for

which a gamma distributed prior is assumed. From the total data likelihood in (6.13)

and the VB inference equation in (6.14), one can write the following.

q(τ (i)u) ∝ exp

(︄
T∑︂
t=1

⟨︃
−1

2
(y

(i)
t −H ′

iSt)′τ (i)u (y
(i)
t −H ′

iSt)
⟩︃)︄

(τ (i)u)T/2

× (τ (i)u)α
(i)
u −1exp

(︁
−β(i)

u τ (i)u

)︁
(6.21)

The above expression has the form of a gamma distribution which can be observed

by looking at the τ
(i)
u and the exponential terms in the likelihood and prior.

α̂(i)
u = α(i)

u +
T

2
(6.22)

β̂
(i)

u = β(i)
u +

(︄
T∑︂
t=1

⟨︃
1

2
(y

(i)
t −H ′

iSt)′(y
(i)
t −H ′

iSt)
⟩︃)︄

(6.23)

130

The expectation in the equation for the posterior β can be simplified as follows

β̂
(i)

u = β(i)
u +

1

2

T∑︂
t=1

(︂
(y

(i)
t)2 − 2y

(i)
t ⟨Hi⟩′⟨St⟩+ tr{⟨StS ′

t⟩ · ⟨HiH
′
i⟩}
)︂

(6.24)

6.3.3 Inference of A

For ai, due to the constraint 0 < ai < 1, a beta distribution is used as a prior.

Substituting the total data likelihood in (6.13) into the VB equation in (6.14), q(ai)

can be expressed as

q(ai) ∝ exp

(︄
−T − 1

2
ln(1− a2i) +

T∑︂
t=2

−⟨(s(i)t)2⟩ − a2i ⟨(s
(i)
t−1)

2⟩+ 2ai⟨s(i)t s
(i)
t−1⟩

2(1− a2i)

+(α(i)
a − 1)ln ai + (β(i)

a − 1)ln (1− ai)

)︄
(6.25)

The above equation does not follow any standard distribution, and hence a closed-

form expression for the pdf and its moments is not possible. Hence, importance

sampling is used to estimate the pdf and its moments. Importance sampling is dis-

cussed in detail in section (2.4.1). In this case, the sampling distribution can be

selected as the prior distribution which is B(ai; α
(i)
a , β

(i)
a). The importance weights

can now be expressed as

w(j)
a ∝ exp

(︄
−T − 1

2
ln(1− (a

(j)
i)2) +

T∑︂
t=2

−⟨(s(i)t)2⟩ − (a
(j)
i)2⟨(s(i)t−1)

2⟩+ 2a
(j)
i ⟨s

(i)
t s

(i)
t−1⟩

2(1− (a
(j)
i)2)

)︄
a
(j)
i ∼ B(ai; α(i)

a , β(i)
a), j = 1, . . . , N (6.26)

The above weights represent the approximate distribution of ai and can be used as

discussed in section (2.4.1) to estimate the moments of the distribution.

6.3.4 Inference of b

Similar to ai, b is also constrained to be between 0 and 1. Hence a beta distribu-

tion B(b; αb, βb) can be used as a prior for b as well. The Cauchy distribution for

p(ct|ct−1, b, σe) is expressed as follows.

p(ct|ct−1, b, σe) =
σe

π(σ2
e + (ct − ct−1)2)

(6.27)

131

Substituting the above distribution and the prior for b into (6.14), the following

expression is obtained for the posterior.

q(b) ∝ exp

(︄
−

T∑︂
t=2

⟨ln(σ2
e + (ct − bct−1)

2)⟩+ (αb − 1)ln b+ (βb − 1)ln (1− b)

)︄
(6.28)

Given the form of the Cauchy pdf, the above expression has the logarithm term inside

the expectation. This makes the inference complicated as evaluating the expectation

of logarithms is difficult. If a Monte-Carlo approach is followed, a very high computa-

tional cost is incurred. The Monte-Carlo approach for evaluating ⟨ln(σ2
e+(ct−bct−1)

2)⟩

would result in the following expression.

⟨ln(σ2
e + (ct − bct−1)

2)⟩ ≈
N∑︂
j=1

N∑︂
k=1

N∑︂
l=1

ln (σ(j)
e

2
+ (c

(k)
t − bx

(l)
t−1)) (6.29)

which is expensive to evaluate. Hence, a simplification based on the Taylor series

expansion of the function is used [155,156].

Say, there is a nonlinear function f(X) whose expectation is to be evaluated.

Here, X is the random variable and the moments of X are known. One can do a

Taylor series approximation of the function around ⟨X⟩ which results in the following

equations.

⟨f(X)⟩ ≈
⟨︃
f(⟨X⟩) + fX(⟨X⟩) (X − ⟨X⟩) +

fXX(⟨X⟩)
2!

(X − ⟨X⟩)2
⟩︃

= f(⟨X⟩) + fXX(⟨X⟩)
2

Var[X] (6.30)

Here, fX(·) and fXX(·) represent the first and second derivative of f(X) w.r.t X

respectively. The above expression simplifies ⟨f(X)⟩ in terms of functions of ⟨X⟩ and

its moments which can be evaluated easily. For a multivariate function, a similar

approach is followed to arrive at the following result.

⟨f(X, Y)⟩ ≈ f(⟨X⟩, ⟨Y ⟩) + fXX(⟨X⟩, ⟨Y ⟩)
2

Var[X] +
fY Y (⟨X⟩, ⟨Y ⟩)

2
Var[Y]

+ fXY (⟨X⟩, ⟨Y ⟩))Cov[X, Y] (6.31)

The above expression is now applied to simplify ⟨ln(σ2
e +(ct−bct−1)

2)⟩. The objective

here is to infer b, meaning to obtain an expression as a function of b. Hence, for this

132

Taylor series approximation, b is treated as a constant and the series approximation

is done around ⟨σe⟩, ⟨ct⟩, and ⟨ct−1⟩.

⟨ln(σ2
e + (ct − bct−1)

2)⟩ =

ln(⟨σe⟩2 + (⟨ct⟩ − b⟨ct−1⟩)2) +
fσe,σe(⟨σe⟩, ⟨ct⟩, ⟨ct−1⟩)

2
Var[σe]

+
fct,ct(⟨σe⟩, ⟨ct⟩, ⟨ct−1⟩)

2
Var[ct] +

fct−1,ct−1(⟨σe⟩, ⟨ct⟩, ⟨ct−1⟩)
2

Var[ct−1]

+ fσe,ct(⟨σe⟩, ⟨ct⟩, ⟨ct−1⟩) Cov[σe, ct] + fct,ct−1(⟨σe⟩, ⟨ct⟩, ⟨ct−1⟩) Cov[ct, ct−1]

+ fct−1,σe(⟨σe⟩, ⟨ct⟩, ⟨ct−1⟩) Cov[ct−1, σe] (6.32)

In the above expression, Cov[ct−1, σe] = 0 and Cov[σe, ct] = 0 due to the mean field

approximation. The remaining second derivatives can be expressed in a simplified

manner according to the following equations.

Fb(b) =
⟨σe⟩2 − (⟨ct⟩ − b⟨ct−1⟩)2

(⟨σe⟩2 + (⟨ct⟩ − b⟨ct−1⟩)2)2
1

2
fσe,σe = −Fb(b);

1

2
fct,ct = Fb(b);

1

2
fct−1,ct−1 = b2Fb(b); fct,ct−1 = −2bFb(b)

(6.33)

The second derivatives in the above equation can be substituted in (6.32), which

in turn can be substituted in (6.28). Finally, the resulting approximated expression

for q(b) would be in terms of moments of σe, ct, and ct−1, rather than the more

complicated form of the expectation of a logarithm function. The final expression

for q(b) does not have a closed-form expression and hence the importance sampling

method is used. The final expression for the weights of the distribution representing

q(b) can be expressed as

w
(j)
b ∝ exp

(︄
−

T∑︂
t=2

{︁
ln(⟨σe⟩2 + (⟨ct⟩ − b(j)⟨ct−1⟩)2)

+Fb(b
(j))(-Var[σe] + Var[ct] + (b(j))2Var[ct−1]− 2b(j)Cov[ct, ct−1])

}︁)︄
b(j) ∼ B(b; αb, βb), j = 1, . . . , N (6.34)

6.3.5 Inference of σe

The inference procedure for σe runs into the similar issue seen in the inference of

b due to the Cauchy distribution. First, since σe is constrained to be positive, the

133

gamma distribution Γ(σe; αe, βe) is used as the prior. Applying (6.14) for inferring

q(σe), the following result is obtained.

q(σe) ∝ exp

(︄
(T − 1) ln σe −

T∑︂
t=2

⟨ln(σ2
e + (ct − bct−1)

2)⟩+ (αe − 1)ln σe − βeσe

)︄
(6.35)

Similar to the previous case, the above expression has a logarithm inside an expec-

tation. The Taylor series approximation is applied to this case as well, the difference

being that now σe is taken as a constant, and the expansion is done around b, ct, and

ct−1.

⟨ln(σ2
e + (ct − bct−1)

2)⟩ =

ln(σ2
e + (⟨ct⟩ − ⟨b⟩⟨ct−1⟩)2) +

fb,b(⟨b⟩, ⟨ct⟩, ⟨ct−1⟩)
2

Var[b]

+
fct,ct(⟨b⟩, ⟨ct⟩, ⟨ct−1⟩)

2
Var[ct] +

fct−1,ct−1(⟨b⟩, ⟨ct⟩, ⟨ct−1⟩)
2

Var[ct−1]

+ fb,ct(⟨b⟩, ⟨ct⟩, ⟨ct−1⟩) Cov[b, ct] + fct,ct−1(⟨b⟩, ⟨ct⟩, ⟨ct−1⟩) Cov[ct, ct−1]

+ fct−1,b(⟨b⟩, ⟨ct⟩, ⟨ct−1⟩) Cov[ct−1, b] (6.36)

Due to the mean field approximation, Cov[ct−1, b] = 0 and Cov[b, ct] = 0. The

remaining second order derivatives can be expressed as

Fσe(σe) =
σ2
e − (⟨ct⟩ − ⟨b⟩⟨ct−1⟩)2

(⟨σe⟩2 + (⟨ct⟩ − ⟨b⟩⟨ct−1⟩)2)2
1

2
fb,b = ⟨ct−1⟩2Fσe(σe);

1

2
fct,ct = Fσe(σe);

1

2
fct−1,ct−1 = ⟨b⟩2Fσe(σe); fct,ct−1 = −2⟨b⟩Fσe(σe) (6.37)

The partial derivatives in the above equation can be substituted into (6.36) which

in turn can be substituted into (6.35). The final expression for q(σe) does not have

a closed-form expression and can be approximated using the following importance

weights.

w(j)
σe
∝ exp

(︄
(T − 1) ln σ(j)

e −
T∑︂
t=2

{︁
ln
(︁
(σ(j)

e)2 + (⟨ct⟩ − ⟨b⟩⟨ct−1⟩)2
)︁

+Fσe(σe
(j))(⟨ct−1⟩2Var[b] + Var[ct] + ⟨b⟩2Var[ct−1]− 2⟨b⟩Cov[ct, ct−1])

}︁)︄
σ(j)
e ∼ Γ(σe; αe, βe), j = 1, . . . , N (6.38)

134

6.3.6 Inference of St

Similar to the previous cases, the inference of the states S1:T is done by writing (6.14)

w.r.t S1:T . This results in the following expression.

q(S) ∝ exp

(︄
−

T∑︂
t=1

1

2
⟨(yt −HSt)′Σ−1

u (yt −HSt)⟩

−
T∑︂
t=2

1

2
⟨(st − Ast−1)

′(I − AA′)−1(st − Ast−1)⟩

−
T∑︂
t=2

⟨ln(σ2
e + (ct − bct−1)

2)⟩

−1

2
(s1 −ms1)

′(s1 −ms1)− ln(σ2
c1
+ (ct − µc1)

2)

)︄
(6.39)

If one observes the above equation without ⟨·⟩, this is the same as the objective of

the smoothing procedure of state estimation. Because of ⟨·⟩, one cannot do the state

estimation directly. Similar to the previous cases where ⟨f(X)⟩ was written in terms

of f(⟨X⟩) and so on, the same procedure is applied here as well. This is known as

the mean and fluctuation decomposition in literature [157].

The idea of mean and fluctuation decomposition is essentially similar to the one

discussed previously in the Taylor series approximations, i.e., bridging the gap be-

tween ⟨f(X)⟩ and f(⟨X⟩). If f(·) is a quadratic function, this gap can be exactly

filled. For other nonlinear functions, this can only be approximated as one usually

restricts only up to the second-order term of the Taylor series. Note that the ex-

pectation in this step is w.r.t all the parameters and hence it would be required to

express (6.39) in terms of ⟨H⟩, ⟨A⟩, ⟨τu⟩, ⟨b⟩, and ⟨σe⟩. In that case, the filtering and

smoothing algorithms can be applied directly.

For the measurement model terms, the gap can be filled as follows.

⟨(yt −HSt)′Σ−1
u (yt −HSt)⟩ =(yt − ⟨H⟩St)′⟨Σ−1

u ⟩(yt − ⟨H⟩St)

+ S ′
t⟨H ′Σ−1

u H⟩St − S ′
t⟨H⟩′⟨Σ−1

u ⟩⟨H⟩St⏞ ⏟⏟ ⏞
S′
tFBSt

(6.40)

Note that Σ−1
u is nothing but the diagonal matrix whose diagonal element is τ

(i)
u .

Hence, ⟨Σ−1
u ⟩ is nothing but a diagonal matrix of ⟨τ (i)u ⟩ elements. For the SFs, the

135

gap can be filled as follows.

⟨(st − Ast−1)
′(I − AA′)−1(st − Ast−1)⟩

= (st − ⟨A⟩st−1)
′⟨(I − AA′)−1⟩(st − ⟨A⟩st−1)

+ S ′
t−1M

′⟨A′(I − AA′)−1A⟩MSt−1 − S ′
t−1M

′⟨A⟩′⟨(I − AA′)−1⟩⟨A⟩MSt−1⏞ ⏟⏟ ⏞
S′
t−1FASt−1

(6.41)

where, M =
[︁
0 I

]︁
such that MSt = st. The two ”gap filling” or fluctuation terms

in (6.40) and (6.41) are expressed as

FB = ⟨H ′Σ−1
u H⟩ − ⟨H⟩′⟨Σ−1

u ⟩⟨H⟩

FA = M ′⟨A′(I − AA′)−1A⟩M −M ′⟨A⟩′⟨(I − AA′)−1⟩⟨A⟩M (6.42)

These two fluctuation terms can be compensated together as follows.

(yt − ⟨H⟩St)′⟨Σ−1
u ⟩(yt − ⟨H⟩St) + S ′

tFBSt + S ′
tFASt

= (ỹt − ⟨H̃⟩St)′⟨Σ̃
−1

u ⟩(ỹt − ⟨H̃⟩St) (6.43)

where,

ỹt =

⎡⎣yt

0
0

⎤⎦ ; H̃ =

⎡⎣⟨H⟩UA

UB

⎤⎦ ; Σ̃
−1

u

⎡⎣⟨Σ−1
u ⟩ 0 0
0 I 0
0 0 I

⎤⎦ (6.44)

with U ′
AUA = FA and U ′

BUB = FB.

Now the remaining term to be expressed in terms of mean and fluctuation decom-

position is the Cauchy distribution term
∑︁T

t=2⟨ln(σ2
e +(ct− bct−1)

2)⟩. The same issue

of logarithm inside an expectation appears here too. The Taylor series approximation

can again be used which results in the following equation.

⟨ln(σ2
e + (ct − bct−1)

2)⟩ = ln(⟨σe⟩2 + (ct − ⟨b⟩ct−1)
2)

+
fσe,σe(⟨b⟩, ⟨σe⟩)

2
Var[σe] +

fb,b(⟨b⟩, ⟨σe⟩)
2

Var[b]

+ fσe,b(⟨b⟩, ⟨σe⟩) Cov[σe, b]

= F (ct|ct−1) (6.45)

Cov[σe, b] = 0 because of the mean field approximation. The second derivatives can

be expressed as follows.

1

2
fσe,σe =

(ct − ⟨b⟩ct−1)
2 − ⟨σe⟩2

(⟨σe⟩2 + (ct − ⟨b⟩ct−1)2)2
;

1

2
fb,b = c2t−1

⟨σe⟩2 − (ct − ⟨b⟩ct−1)
2

(⟨σe⟩2 + (ct − ⟨b⟩ct−1)2)2
(6.46)

136

The above equations can be substituted in (6.45) to get a function of ct and ct−1

for ⟨ln(σ2
e +(ct− bct−1)

2)⟩. Let this function be represented as F (ct|ct−1) as given in

(6.45). Now a pseudo transition distribution can be defined for ct (only for filtering

purposes) that accounts for the fluctuation term. The new distributions is given as

p̃(ct|ct−1) = exp(−F (ct|ct−1)) (6.47)

where F (ct|ct−1) is given by equations (6.45) and (6.46). It can be noted that if b and

σe are taken as deterministic quantities, tildep(ct|ct−1) becomes the original Cauchy

distribution.

Finally, (6.39) can be reinterpreted as a filtering and smoothing problem with the

following pdfs.

p(ỹt|St) = N (ỹt; H̃St, Σ̃u) (6.48)

p(st|st−1) = N (st; ⟨A⟩st−1, ⟨I − AA′⟩) (6.49)

p̃(ct|ct−1) ∝ exp(−F (ct|ct−1)) (6.50)

These pseudo distributions bridge the gap between ⟨ln(·)⟩ and ln(⟨·⟩) for the estima-

tion of the states S.

Since p(ct|ct−1) is a complicated distribution, the analytical derivation of the fil-

tering and smoothing steps is not possible and hence particle filtering and smoothing

methods are used. The algorithms are discussed in detail in section 2.4.2. In this

case, the marginal particle filtering and smoothing algorithms are used. These are

depicted in Algorithm. 6.1. The sampling distribution for the marginal particle fil-

tering algorithm is a mixture distribution. Each q(St|S̄
(j)
t−1, ỹt) is taken as a Gaussian

distribution calculated according to the Kalman filter equations. Let

Ã =

[︃
1 0
0 A

]︃
; Σ̃v =

[︃
σe 0
0 I − AA′

]︃
(6.51)

Now, for each S̄(j)
t−1 Kalman filter update equations are used which assume that ct

evolves according to a Gaussian. Hence,

µ
(j)
t = ÃS̄(j)

t−1 +K
(j)
t (ỹt −HÃS̄(j)

t−1)

P
(j)
t = (I −K

(j)
t H)(ÃΣ̂t−1Ã

′
+ Σ̃v) (6.52)

137

Algorithm 6.1 Marginal particle filtering and particle smoothing for the proposed
approach

Filtering

At t = 1

1. Sample S(i)
1 ∼ q(S1|ỹ1)

2. Compute the weights and normalize them.

w(S(i)
1) =

p(ỹ1|S
(i)
1) p(s1) p(c1)

q(S(i)
1 |ỹ1)

; w̃(S(i)
1) ∝ w(S(i)

1)

3. Resample (if required) {w̃(S(i)
1),S(i)

1 } to get {1/N, S̄(i)
1 }

For t = 2 to T

1. Sample S(i)
t ∼

∑︁N
j=1 w̃

(j)
t−1 q(St|S̄

(j)
t−1, ỹt)

2. Compute the weights and normalize them.

w(S(i)
t) =

p(ỹt|S
(i)
t)

∑︁N
j=1 w̃

(j)
t−1 p(s

(i)
t |s̄

(j)
t−1)p̃(c

(i)
t |c̄

(j)
t−1)∑︁N

j=1 w̃
(j)
t−1 q(S(i)

t |S̄
(j)
t−1, yt)

; w̃(S(i)
t) ∝ w(S(i)

t)

3. Resample (if required) {w̃(S(i)
t),S(i)

t } to get {1/N, S̄(i)
t }

Smoothing

For t = T − 1 to 1

w(S(i)
t|T) = w(S(i)

t)

[︄
N∑︂
j=1

w(S(j)
t+1|T)

p(s
(j)
t+1|s

(i)
t)p̃(c

(j)
t+1|c

(i)
t)∑︁N

k=1w(S
(k)
t) p(s

(j)
t+1|s

(k)
t)p̃(c

(j)
t+1|c

(k)
t)

]︄

138

Here, K
(j)
t = P

(j−)
t H ′(HP

(j−)
t H ′ + Σu), with P

(j−)
t = (ÃΣ̂t−1Ã

′
+ Σ̃v). The quantity

Σ̂t−1 is the covariance of all the particles in the previous step {w̃(S(i)
t−1),S

(i)
t−1}. Hence,

the sampling distribution is a mixture Gaussian distribution.

The filtering step is followed by the smoothing step which uses the weights and the

particles of the filtering step to obtain the new weights that represent the smoothed

distribution. The smoothing step for this system is also shown in Algorithm. 6.1.

6.3.7 The iterative procedure

The VB inference scheme is an iterative procedure that minimizes the evidence lower

bound (ELBO) as discussed in 2.3.2. The ELBO is expressed as follows.

L(q(S, θ)) =
∫︂

q(S, θ) ln
(︁
p(Y, S, θ|θpr)

)︁
dS dθ −

∫︂
q(S, θ) ln

(︁
q(S, θ)

)︁
dS dθ (6.53)

This iterative procedure for the system under consideration is summarized in the

following points.

1. Set the hyper-parameters corresponding to the parameters of the model A, b,

σe, H, Σu. These are the quantities that appear in the squared brackets outside

the dotted boundary in Fig. 6.3.

2. Estimate q(S1:T) as described in Algorithm. 6.1.

3. Estimate H according to (6.20).

4. Estimate Σu according to (6.22) and (6.24).

5. Estimate A according to (6.26).

6. Estimate b according to (6.34).

7. Estimate σe according to (6.38).

8. Iterate steps 2 to 7 till the convergence of ELBO given in (6.53).

The overall scheme can be computationally expensive as this requires the implemen-

tation of the particle smoothing algorithm in each iteration. But since this iterative

procedure is performed offline, such computational burden may be tolerated.

139

6.3.8 Online implementation

During the online implementation of the model for the soft sensor application consid-

ered here, the parameters learned during the iterative procedure of the training phase

are used and only the estimation of the states is conducted. thus, only the particle

filtering algorithm will have to be performed with the original pdfs given below.

p(st|st−1, A) = N (st; Ast−1, I − AA′) (6.54)

p(ct|ct−1, b, σe) = C(ct; bct−1, σe) (6.55)

p(xt|ct, st,M1.M2,Σw) = N (xt; M1ct +M2st,Σw) (6.56)

This hence is not very computationally expensive for online implementation as only

one step of particle filtering needs to be performed before the next xt is available.

It must be noted that yt will not be available during the online implementation and

only xt is available. Hence, the estimation of a state is only based on xt and the

distribution learned is p(St|x:t) with t > T . With these estimated states, yt can be

predicted according to the following equation

ŷt = H1ĉt +H2ŝt (6.57)

In the iterative procedure discussed in the previous section, it was mentioned that

the convergence of the procedure can be decided based on the ELBO value. Alter-

natively, for the soft sensor applications case, the convergence can also be based on

the prediction performance of the model on a validation dataset (different from the

training dataset used for learning the states and the parameters). Since the objective

is to predict yt, this prediction error-based stopping criterion can be useful as a reg-

ularization for the model learning. Additionally, the performance on the validation

dataset may also serve as an indicator in selecting the number of slow latent variables.

6.4 Results

Two case studies are presented in this work to illustrate the effectiveness of the

proposed approach. The first is a numerical example where the data is generated by

a linear model with the characteristics that are considered in this work. The second

140

�

�
�

�	������	�	
����

��

��

�

�

��

� ��� ��� ��� ��� ����
�

��

�

�

��

Figure 6.4: Generated latent variables ct and st for the simulated case study

is an industrial case study obtained from a SAGD process. In both cases, the model

developed through the proposed approach is used as a soft sensor.

6.4.1 Simulated case study

The objective of this work is to model the abrupt jumps and the other slow varia-

tions of the process. These two sources are latent in the observed data and hence are

modeled by two dynamic models, characterized by a Cauchy distribution and Gaus-

sian distribution respectively. Hence, the data corresponding to these two sources is

141

� ��� ��� ��� ��� ����
�

�

�

��

�

Figure 6.5: Generated output data yt for the simulated case study

generated first. The following equations are used to generate the two LVs, ct and st.

st =

[︃
0.99 0
0 0.9

]︃
st−1 + vt, vt ∼ N

(︃
vt; 0,

[︃
1− 0.992 0

0 1− 0.92

]︃)︃
(6.58)

ct = ct−1 + et, et ∼ C(et; 0, 0.01) (6.59)

A total of 1000 points are generated according to the above dynamic equations.

The generated two slow features and one impulsive feature are used to produce the

observed input and output data xt and yt respectively. Five input variables and one

output variable are considered.

xt =

⎡⎢⎢⎢⎢⎣
1.25
0.5
−0.5
0.25
−0.5

⎤⎥⎥⎥⎥⎦ ct +

⎡⎢⎢⎢⎢⎣
−1 2
0.5 1
2 −0.5
−1 1
0.5 −1

⎤⎥⎥⎥⎥⎦ st + wt, wt ∼ N (wt; 0, diag[0.2, 0.1, 0.05, 0.15, 0.25])

(6.60)

yt = 3 ct +
[︁
0.1 −0.025

]︁
st + ut, ut ∼ N (ut; 0, 0.1) (6.61)

It can be noted that in the output equation for yt, more emphasis is given to ct than st.

This choice is to mimic the case where the impulsive behavior is more predominantly

observed in the output and to a lesser extent in the inputs. Such a case is more

difficult to handle by regular regression type of algorithms and is where the proposed

approach is needed. If the abrupt jumps are predominant in xt as well, regular linear

methods may also capture such jumps in the predicted yt. Thus the matrices H1,

H2, M1, and M2 are selected such that the notions underlying the proposed approach

142

�

��

��

�������������������

����

���

���

��

��

�

��

�

�

��

� ��� ��� 	��
�� ����
�

��

�

��

Figure 6.6: Generated input dataset xt for the simulated case study. The abrupt
jumps are not predominantly noticed in xt.

are appropriately incorporated into the generated more challenging scenario which

necessitates the proposed approach. The generated latent variables, output data and

143

the input data are shown in Fig. 6.4, 6.5, and 6.6 respectively.

The generated dataset contains 1000 points of which the first 500 are used for

training and the rest are used for testing. The proposed method is implemented on

the generated dataset to learn the model parameters and is used to predict yt of

the test data. The obtained results from the proposed approach are compared with

those obtained from PCR, PLS, SFR, and a probabilistic model exactly the same as

that of the proposed model shown in (6.1) to (6.4), with the only difference that ct

in (6.2) is modeled as a Gaussian. This last model is similar to the approach used

in Ma and Huang [65]. The obtained results are compared in terms of root mean

squared error (RMSE) and R2, and are shown in Table. 6.1. It can be observed that

the deterministic approaches perform poorly in comparison with the probabilistic

approaches. This is expected because the probabilistic approach handles the noise

well. Among the proposed method and the method with a full Gaussian distribution

including for ct (named Gaussian model in Table. 6.1), the proposed method has an

RMSE 9.46 % less than the Gaussian model.

Table 6.1: Comparing the values of RMSE and R2 obtained from the Gaussian model
and the proposed model for the simulated case study

Method RMSE R2

PCR 2.1686 0.5472

PLS 3.0832 0.0847

SFR 2.1650 0.5487

Gaussian model 1.2728 0.8440

Proposed model 1.1524 0.8721

Fig. 6.7 depicts the performance of the Gaussian model and the proposed model.

Since the deterministic methods perform significantly poorly, the proposed method

is only compared with the next best performer for a clutter-free representation. It

can be observed from the signal plot in Fig. 6.7a, that the Gaussian model has more

variations than the proposed model which degrades the performance of the Gaussian

model. The reasoning for this behavior can be explained by the scaling parameter of

the transition model for ct, which is σe. In the training phase where all the parameters

including σe are learned, both the models observe this abrupt change in yt. Since the

144

� ��� ��� ��� 	��
��
"

��

�

�

	

�

��

��

�	

$

��"#�����"�
��#!!����������������������
� ���!������������������
�	�

(a) Comparison of the signals of predicted yt and the actual one

�� � � � �
 ��
�

��

�

�

�

�

��

��

�����������
���������������������������	�

������������������������������

(b) Scatter plot of the predicted yt vs. actual yt

Figure 6.7: Comparison of the performance of the Gaussian model and the proposed
approach for the simulated case study. The Gaussian model has a high variance for
ct which degrades its performance.

145

Gaussian distribution has thinner tails than the Cauchy distribution, in order to

obtain these jumps, it forces a higher variance for ct. The proposed model does not

face this issue because the Cauchy distribution is able to obtain such jumps which

does not force a high σe. The obtained σe for the Gaussian model and the proposed

Cauchy model are 0.1069 and 0.0107 respectively. Note that the σe value taken to

generate the data is 0.01. It is this high value of σe which magnifies the smaller

variations of ct in the case of a Gaussian model that results in a poor performance in

the regions where the process does not go through abrupt changes. To put it simply,

in trying to model the abrupt jumps, the Gaussian model fails in regions where abrupt

jumps are not seen. The Cauchy model has no such issue as it has heavy tails that

allow it to accommodate both impulsive and stable behaviors.

As far as the overall performance of the Cauchy model is concerned, even when the

does not have the kind of abrupt changes (black curve in Fig. 6.7a), it still performs

better than the Gaussian model because of the correct estimation of σe. The reason

for the absence of the sudden jumps for the Cauchy model is attributed to the fact

that during the testing phase the states are estimated only based on xt in which such

abrupt jumps are not as apparently observed.

6.4.2 Industrial case study on a SAGD process

The second case study is that of a soft sensor development for predicting the emulsion

flow in a SAGD process [158]. The SAGD process is a widely used process for recov-

ering bitumen from oil sands. In this process, two horizontal wells are drilled into the

oil reservoir, one above the other. Steam is injected into the upper well which heats

the reservoir. This reduces the viscosity of the oil which flows into the bottom well

due to gravity. The resulting oil and water emulsion is then pumped to the surface.

The emulsion flow-rate obtained from a particular well is one of the key variables

whose online measurements are required for control and optimization applications.

This measurement will not be available in most cases because the emulsion flow from

multiple adjacent wells is combined in a well pad to make a combined flow. Hence a

soft sensor is needed to estimate the emulsion flow-rate from an individual well. For

this process 16 key variables related to the pump and the reservoir conditions such

as temperature, pressure, etc are available. They are used to develop a soft sensor

146

� ��� ��� ��� 	�� ����
�

��

��

��

��

�

�

�
��
���

��
��

�
���

��

Figure 6.8: Emulsion flow-rate obtained from the SAGD process. The process is
characterized by abrupt changes.

to estimate the real-time emulsion flow-rate. For soft sensor development, sparsely

available measurements of the emulsion flow-rate are used which are obtained when

the flow is directed to a test separator. The overall process goes through many abrupt

changes as observed by the emulsion flow-rate measurement shown in Fig. 6.8.

The overall available data is appropriately down-sampled resulting in a set of 1000

data points. Similar to the previous case, half of this is used for training, and the

other half for testing. To complicate the scenario of the abrupt jumps, additional

synthetic Gaussian white noise is added to the data shown in Fig. 6.8. The proposed

method is compared with PCR, PLS, SFR, and the Gaussian model, and the results

are shown in Table. 6.2 and Fig. 6.9.

Overall, all the methods perform well on this dataset as observed by the R2 values.

The proposed method still has shown some improvement over the Gaussian model.

But if one observes the performance section-wise, the advantages of the proposed

approach become more apparent. If one draws attention to the first 270 points of the

data in Table. 6.2, it can be observed that the proposed method performs better.

147

Table 6.2: Comparing the values of RMSE and R2 obtained from the Gaussian model
and the proposed model for the SAGD process dataset

Method RMSE R2

PCR 0.2322 0.9623

PLS 0.2455 0.9578

SFR 0.2319 0.9624

Gaussian model 0.2230 0.9652

Proposed model 0.1916 0.9743

� ��� ��� ��� 	��
��
!

�	

��

��

��

�

�

#

��!"�����!�
��" ����������������������
����� ���������������������

Figure 6.9: Comparing the predicted emulsion flow-rate obtained from the Gaussian
and the proposed model

Table 6.3: Comparing the values of RMSE and R2 obtained from the Gaussian model
and the proposed model for the SAGD process dataset in the shorter time range

Method RMSE R2

Gaussian model 0.1687 0.3091

Proposed model 0.1272 0.6072

This can be seen in Table. 6.3 Fig. 6.10. These are the results for the first 270 points

where the Gaussian model sees more variation than the proposed Cauchy model.

148

� 	� ��� �	� ��� �	�
!

����

���

���

���

��

���

���

#

��!"�����!�
��" ������������������
���
����� ���������������������

(a) Comparison of the signals of predicted emulsion flow-rate and the
actual one

��� ��� ��� ��� ��	 ��
 ��� ���

����

���

���

���

��	

���

���

"

�� !����� �
������ �����!��������������	�

������ ���������������������
�

(b) Scatter plot of the predicted emulsion flow-rate vs. actual yt

Figure 6.10: Comparison of the performance of the Gaussian model and the proposed
approach for the SAGD process dataset in the shorter time range

149

In this portion, the RMSE reduction is 24.6%, and the R2 almost doubles. The

R2 of 0.3091 for the Gaussian model implies that the Gaussian model almost has

no predictive ability. While R2 of 0.6072 implies a significant predictive ability for

the proposed Cauchy model. This is because of the high variation observed in the

Gaussian model, the reasoning for which is similar to the previous case where it was

explained that the Gaussian model imposes a higher σe on ct than necessary. Hence,

even though there is a high computational burden during the offline modeling step

of the proposed approach, such complexity may be tolerated due to the enhanced

accuracy, particularly as seen in the regions where the process is relatively stable.

6.5 Conclusion

This work presents a method of modeling and estimating systems whose signals ex-

hibit abrupt changes. Modeling of such changes is done in the latent space of the data

by considering a dynamic model whose evolution is defined by the Cauchy distribu-

tion. Meanwhile, the normal slower variations of the process are modeled according

to the PSFA model. The model parameters are estimated in a Bayesian framework

through the VB inference framework. The Cauchy distribution-based model, owing

to its heavier tails of the process noise, is able to capture the jumps more accurately

than its Gaussian counterpart. This results in a more accurate estimation of the

process noise scale parameter through the Cauchy model. In the case of the Gaussian

model, the thinner tails force the model to have a very high variance in order to

capture the jumps. This degrades the performance of the model in the region where

the process does not show abrupt changes. The two case studies presented here point

to the efficacy of the Cauchy model where a performance improvement is observed

particularly in the stable regions of the process due to the more accurate estimation

of the variances.

150

Chapter 7

Concluding Remarks

This chapter outlines the conclusions drawn from the proposed methods and their

implementations in various case studies. Additionally, potential future directions of

research in this area are also outlined.

7.1 Conclusion

The overall underlining principle explored in this thesis is that of process-relevant la-

tent variable modeling. Hence, all the proposed methods focus on certain properties

of the LVs which are based on certain prior knowledge one may have regarding the

process. The three properties explored here are slowness, monotonicity, and impul-

sivity. Each of these qualities is commonly observed in various industrial processes

and are latent in the observed data, thus necessitating algorithms to extract them.

The first contribution presented in Chapter 3 focuses on the slowness aspect. The

proposed approach aims at obtaining slowly varying features for supervised learning

problems. In such cases, it is more appropriate to model the slowly varying LVs that

are correlated with the outputs. To achieve this, the proposed approach combined

SFA with PLS to impart temporal slowness and output correlation properties to

the LVs. From the case studies, it is observed that the proposed method not only

reduces the RMSE of prediction in comparison with methods such as PCR, PLS, etc,

it also requires a fewer number of latent features to achieve it. This implies that the

proposed approach is able to extract more meaningful LVs than other approaches.

This is particularly observed in the second case study where the proposed algorithm

needed only two LVs to describe the data while the conventional approaches needed

151

from 4 to as many as 12. Such an efficient representation of the latent space is

possible due to concurrent considerations of slowness and output-relevance which is

appropriate to processes driven by slowly varying LVs.

The second contribution builds on this idea of supervised learning of slow features

by extending it to nonlinear systems. Complex industrial processes are usually non-

linear in nature and thus can be well modeled through nonlinear models. Deep learn-

ing is a powerful tool capable of obtaining rich representation which can be used to

achieve the aforementioned objective. Slowness implies dealing with velocities which

needs handling of two adjacent samples simultaneously. Hence, the Siamese neural

networks are used. The temporal slowness and output-relevance aspects are imparted

onto the LVs through modifications to the objective function of the Siamese networks.

The proposed approach has been found to be more effective than feed-forward neural

networks and other recent methods such as HELM and VW-SAE.

The third contribution presented in Chapter 5 focuses on the aspect of monotonic-

ity which is an important character of degrading processes. Monotonicity is a special

type of non-stationary character, and in degrading processes this aspect may not be

apparent. The proposed method thus aims at modeling the latent sources of mono-

tonic variation and other stationary variations of the observed dataset. A state space

model is proposed to model such systems where the LMT evolves according to a CSN

and the LSTs evolve according to a Gaussian distribution. The resulting estimation

problem is solved through the EM algorithm which separates the state (E-step) and

parameter (M-steps) estimation steps in an efficient manner. The E-step in particular

is the challenging part of this approach as this requires a state estimation (filtering

and smoothing) procedure for a system with CSN noises. A detailed derivation of

these steps is provided in this work. Through the case studies, it is observed that the

explicit modeling of the two latent sources of monotonicity and stationarity results

in an efficient representation of the system. The consideration of the true nature of

degradation results in accurate modeling of the stationary variations of the process.

If the Gaussian distribution is used to model the non-stationarity, the lack of mono-

tonicity constraints in such a model results in inaccurate modeling of the systems as

it induces unnecessary variations in the extracted LST.

The fourth contribution presented in Chapter 6 considers the impulsivity aspect

152

of processes. This behavior is characterized by abrupt jumps in process variables

observed during the operation. Such jumps which may be caused due to various

reasons such as disturbances, capacity changes, etc need to be modeled explicitly

for an accurate representation of the system. The proposed approach proceeds in

a similar fashion as the third contribution where the two sources of variations of

abrupt jumps and slower variations are modeled separately. These are modeled using

Cauchy and Gaussian distribution respectively. The resulting model is estimated in

a VB inference framework as this approach is more suitable when one has a certain

modeling preference. The effectiveness of the proposed model is in terms of the

accuracy of the estimated parameters, particularly the variance of the LV modeling

the jumps. The proposed approach involves the Cauchy distribution which due to

its heavy tails is able to generate the jumps. This results in more accurate learning

of the variance of the process noise. On the other hand, if a Gaussian variable is

to be used to model the jumps, the thinner tail forces it to have a higher variance

so that the abrupt jumps may be modeled. This results in a degradation in the

performance of the model in the regions where the abrupt jumps are absent. Hence,

the proposed approach although computationally expensive due to the employment

of the particle smoother algorithm (only offline though), is still desirable due to its

enhanced accuracy.

In summary, each process has its own unique character and the LV modeling for

such processes needs to consider its inherent character. Hence, instead of a pure

data-based approach, infusion of the beliefs about the process into the data-based

models through algorithmic modification such as the ones presented in this thesis is

more advantageous.

7.2 Future scope

This section outlines the various possible avenues of research in terms of extensions

and further improvements to the methods presented in thesis.

153

7.2.1 Slowness penalty for efficient feature representation

In Chapter 3, the proposed method resulted in an efficient feature extraction frame-

work as the proposed approach needed fewer LVs than the conventional ones. This

result is attributed to the right combination of the appropriate methods which in this

case are PLS and SFA. Hence, the temporal penalty can be seen as an important

aspect to consider while modeling slow processes. This notion was used in Chapter

3 for supervised learning application. But this notion can be extended to other ap-

plications of data-based modeling approaches involving slow processes. In particular,

process monitoring applications can benefit from such approaches because a smaller

number of representative features is more desirable for process monitoring. Hence,

methods such as PCA, independent component analysis, etc can be designed in such

a way that they have a temporal slowness penalty.

7.2.2 Extensions to the proposed monotonic feature extrac-
tion approach

The proposed approach in Chapter 4 results in a solution that can be computationally

expensive because the dimensionality of the parameters of the skewness part of the

CSN keeps on increasing. This makes the calculation of the moments difficult. It is a

general problem encountered in CSN filtering problems. More research is thus needed

in this regard. One approach could be to approximate the 2-dimensional CSN as a

1-dimensional one in every step of filtering. This would keep the dimensionality of

the CSN constant thus controlling the dimensionality blow-up issue.

Another possible approach towards monotonic feature extraction would be the

usage of the skew-t distribution to model the dynamics of the LMT. The skew-t

distribution has some interesting properties and there are efficient filtering algorithms

reported in the literature for systems with such a noise. The advantage of skew-t

distribution comes from its heavier tails. In degrading processes, the degradation

rate may see abrupt changes. The skew-t distribution can model such sudden jumps

in degradation while the CSN cannot.

154

7.2.3 Distinguishing the outliers and abrupt process jumps

Often when there is an abrupt jump in the data (particularly of the type depicted

in Fig. 6.2a), one is unsure as to whether the observed jump is caused by an actual

change in the process condition or it is a measurement outlier. Thus it is important

to make such distinctions particularly when the model is used under closed-loop

conditions. The proposed method in Chapter 6 can be extended to such a case

by incorporating the aspects of robust identification techniques. In this case, the

measurement model can also be modeled using the Cauchy noise. The identified

model in such a case will be able to predict if a deviation from normalcy is an outlier

or an actual process change. In the case of an actual jump in the process, the latent

feature ct would also show a jump. If that is not the case, then the point must be

deemed an outlier. This type of modeling not only enables such distinctions but also

makes the obtained model robust to measurement outliers.

7.2.4 Process-relevant dynamic LV modeling through deep
learning

Deep learning has been increasingly used in modeling industrial processes and its

usage is only going to increase in the future. There are multiple architectures in

deep learning that deal with the aspect of LVs. These include, but are not limited to

autoencoders, variational autoencoders (VAE), recurrent neural networks and their

variants such as long-short term memory (LSTM), convolutional neural networks,

etc. In all these approaches, particularly for the applications in industrial processes,

pure data-based training may not be effective. This might lead to model reliability

issues. It would thus be important to perform process-relevant LV modeling through

deep learning. In this regard, LSTM networks offer an attractive way of performing

process-relevant LV modeling. LSTM (with a combination along with VAE) can be

viewed as a nonlinear state space model. The PSFA model, and proposed approaches

in chapters 5 and 6, all are state space models that incorporate beliefs about the

process into them. Hence extending such LV models to nonlinear systems through

LSTM networks is worth exploring.

155

References

[1] Z. Ge, Z. Song, S. X. Ding, and B. Huang, “Data Mining and Analytics in

the Process Industry: The Role of Machine Learning,” IEEE Access, vol. 5,

pp. 20590–20616, 2017.

[2] P. Kadlec, B. Gabrys, and S. Strandt, “Data-driven Soft Sensors in the process

industry,” Computers and Chemical Engineering, vol. 33, no. 4, pp. 795–814,

2009.

[3] Z. Ge, Z. Song, and F. Gao, “Review of recent research on data-based process

monitoring,” Industrial and Engineering Chemistry Research, vol. 52, no. 10,

pp. 3543–3562, 2013.

[4] L. Wiskott and T. J. Sejnowski, “Slow feature analysis: Unsupervised learning

of invariances,” Neural computation, vol. 14, no. 4, pp. 715–770, 2002.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[6] Q. Sun and Z. Ge, “A survey on deep learning for data-driven soft sensors,”

IEEE Transactions on Industrial Informatics, vol. 17, no. 9, pp. 5853–5866,

2021.

[7] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature Verifi-

cation using a ”Siamese” Time Delay Neural Network,” in Advances in Neural

Information Processing Systems 6 (J. D. Cowan, G. Tesauro, and J. Alspector,

eds.), pp. 737–744, Morgan-Kaufmann, 1994.

[8] S. Khatibisepehr, B. Huang, and S. Khare, “Design of inferential sensors in the

process industry: A review of bayesian methods,” Journal of Process Control,

vol. 23, no. 10, pp. 1575–1596, 2013.

156

[9] I. T. Jolliffe, Principal Component Analysis. Springer-Verlag New York, 2 ed.,

2002.

[10] J. V. Kresta, J. F. Macgregor, and T. E. Marlin, “Multivariate statistical mon-

itoring of process operating performance,” The Canadian Journal of Chemical

Engineering, vol. 69, no. 1, pp. 35–47, 1991.

[11] J. Yu, “Local and global principal component analysis for process monitoring,”

Journal of Process Control, vol. 22, no. 7, pp. 1358–1373, 2012.

[12] W. Ku, R. H. Storer, and C. Georgakis, “Disturbance detection and isolation

by dynamic principal component analysis,” Chemometrics and Intelligent Lab-

oratory Systems, vol. 30, no. 1, pp. 179–196, 1995.

[13] D. Kim and I. . Lee, “Process monitoring based on probabilistic pca,” Chemo-

metrics and Intelligent Laboratory Systems, vol. 67, no. 2, pp. 109–123, 2003.

[14] J. V. Kresta, T. E. Marlin, and J. F. MacGregor, “Development of inferential

process models using pls,” Computers and Chemical Engineering, vol. 18, no. 7,

pp. 597–611, 1994.

[15] J. Liu, “Developing a soft sensor based on sparse partial least squares with

variable selection,” Journal of Process Control, vol. 24, no. 7, pp. 1046–1056,

2014.

[16] N. L. Ricker, “The use of biased least-squares estimators for parameters in

discrete-time pulse-response models,” Industrial & Engineering Chemistry Re-

search, vol. 27, no. 2, pp. 343–350, 1988.

[17] S. Qin and T. McAvoy, “A data-based process modeling approach and its ap-

plications,” IFAC Proceedings Volumes, vol. 25, no. 5, pp. 93 – 98, 1992. 3rd

IFAC Symposium on Dynamics and Control of Chemical Reactors, Distillation

Columns and Batch Processes (DYCORD+ ’92), Maryland, USA, 26-29 April.

[18] M. H. Kaspar and W. H. Ray, “Dynamic pls modelling for process control,”

Chemical Engineering Science, vol. 48, no. 20, pp. 3447 – 3461, 1993.

157

[19] S. Lakshminarayanan, S. L. Shah, and K. Nandakumar, “Modeling and control

of multivariable processes: Dynamic pls approach,” AIChE Journal, vol. 43,

no. 9, pp. 2307–2322, 1997.

[20] Y. Dong and S. J. Qin, “Regression on dynamic pls structures for supervised

learning of dynamic data,” Journal of Process Control, vol. 68, pp. 64–72, 2018.

[21] S. J. Qin, “Recursive pls algorithms for adaptive data modeling,” Computers

and Chemical Engineering, vol. 22, no. 4-5, pp. 503–514, 1998.

[22] W. Ni, S. D. Brown, and R. Man, “A localized adaptive soft sensor for dynamic

system modeling,” Chemical Engineering Science, vol. 111, pp. 350–363, 2014.

[23] H. Jin, X. Chen, L. Wang, K. Yang, and L. Wu, “Dual learning-based online en-

semble regression approach for adaptive soft sensor modeling of nonlinear time-

varying processes,” Chemometrics and Intelligent Laboratory Systems, vol. 151,

pp. 228–244, 2016.

[24] H. Kaneko and K. Funatsu, “Ensemble locally weighted partial least squares as

a just-in-time modeling method,” AIChE Journal, vol. 62, no. 3, pp. 717–725,

2016.

[25] M. Ma, S. Khatibisepehr, and B. Huang, “A bayesian framework for real-time

identification of locally weighted partial least squares,” AIChE Journal, vol. 61,

no. 2, pp. 518–529, 2015.

[26] K. Hazama and M. Kano, “Covariance-based locally weighted partial least

squares for high-performance adaptive modeling,” Chemometrics and Intelli-

gent Laboratory Systems, vol. 146, pp. 55–62, 2015.

[27] Z. Zhang and D. Tao, “Slow feature analysis for human action recognition,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 3,

pp. 436–450, 2012.

[28] X. Hu, S. Hu, Y. Huang, H. Zhang, and H. Wu, “Video anomaly detection

using deep incremental slow feature analysis network,” IET Computer Vision,

vol. 10, no. 4, pp. 258–265, 2016.

158

[29] K. Fan, P. Wang, and S. Zhuang, “Human fall detection using slow feature

analysis,” Multimedia Tools and Applications, vol. 78, no. 7, pp. 9101–9128,

2019.

[30] L. Sun, K. Jia, T. Chan, Y. Fang, G. Wang, and S. Yan, “Dl-sfa: Deeply-

learned slow feature analysis for action recognition,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

pp. 2625–2632, 2014.

[31] C. Shang, B. Huang, F. Yang, and D. Huang, “Slow feature analysis for monitor-

ing and diagnosis of control performance,” Journal of Process Control, vol. 39,

pp. 21–34, 2016.

[32] X. Gao, C. Shang, F. Yang, and D. Huang, “Detecting and isolating plant-wide

oscillations via slow feature analysis,” in Proceedings of the American Control

Conference, vol. 2015-July, pp. 906–911, 2015.

[33] C. Shang, F. Yang, X. Gao, X. Huang, J. A. K. Suykens, and D. Huang,

“Concurrent monitoring of operating condition deviations and process dynamics

anomalies with slow feature analysis,” AIChE Journal, vol. 61, no. 11, pp. 3666–

3682, 2015.

[34] S. Zhang and C. Zhao, “Slow-feature-analysis-based batch process monitoring

with comprehensive interpretation of operation condition deviation and dy-

namic anomaly,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5,

pp. 3773–3783, 2019.

[35] C. Shang, F. Yang, X. Gao, and D. Huang, “Extracting latent dynamics from

process data for quality prediction and performance assessment via slow feature

regression,” in Proceedings of the American Control Conference, vol. 2015-July,

pp. 912–917, 2015.

[36] X. Ma, Y. Si, Z. Yuan, Y. Qin, and Y. Wang, “Multistep dynamic slow feature

analysis for industrial process monitoring,” IEEE Transactions on Instrumen-

tation and Measurement, vol. 69, no. 12, pp. 9535–9548, 2020.

159

[37] K. Zhong, D. Ma, and M. Han, “Distributed dynamic process monitoring based

on dynamic slow feature analysis with minimal redundancy maximal relevance,”

Control Engineering Practice, vol. 104, 2020.

[38] C. Shang, F. Yang, B. Huang, and D. Huang, “Recursive slow feature anal-

ysis for adaptive monitoring of industrial processes,” IEEE Transactions on

Industrial Electronics, vol. 65, no. 11, pp. 8895–8905, 2018.

[39] H. Hong, C. Jiang, X. Peng, and W. Zhong, “Concurrent monitoring strategy

for static and dynamic deviations based on selective ensemble learning using

slow feature analysis,” Industrial & Engineering Chemistry Research, vol. 59,

no. 10, pp. 4620–4635, 2020.

[40] X. Yuan, J. Zhou, and Y. Wang, “Locally weighted slow feature regression for

nonlinear dynamic soft sensor modeling and its application to an industrial

hydrocracking process,” Measurement Science and Technology, vol. 31, no. 5,

2020.

[41] J. Wang and C. Zhao, “Variants of slow feature analysis framework for auto-

matic detection and isolation of multiple oscillations in coupled control loops,”

Computers and Chemical Engineering, vol. 141, 2020.

[42] W. Yu and C. Zhao, “Recursive exponential slow feature analysis for fine-scale

adaptive processes monitoring with comprehensive operation status identifica-

tion,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3311–

3323, 2019.

[43] Y. Song, S. Yang, C. Cheng, and P. Xie, “A novel fault detection method for

running gear systems based on dynamic inner slow feature analysis,” IEEE

Access, vol. 8, pp. 211371–211379, 2020.

[44] Y. Xu, M. Jia, and Z. Mao, “A novel auto-regressive dynamic slow feature anal-

ysis method for dynamic chemical process monitoring,” Chemical Engineering

Science, vol. 248, 2022.

160

[45] C. Zhao and B. Huang, “A full-condition monitoring method for nonstation-

ary dynamic chemical processes with cointegration and slow feature analysis,”

AIChE Journal, vol. 64, no. 5, pp. 1662–1681, 2018.

[46] C. Zhang, K. Peng, and J. Dong, “A nonlinear full condition process monitoring

method for hot rolling process with dynamic characteristic,” ISA transactions,

vol. 112, pp. 363–372, 2021.

[47] C. Zhao, J. Chen, and H. Jing, “Condition-driven data analytics and monitoring

for wide-range nonstationary and transient continuous processes,” IEEE Trans-

actions on Automation Science and Engineering, vol. 18, no. 4, pp. 1563–1574,

2021.

[48] J. Zheng and C. Zhao, “Online monitoring of performance variations and pro-

cess dynamic anomalies with performance-relevant full decomposition of slow

feature analysis,” Journal of Process Control, vol. 80, pp. 89–102, 2019.

[49] R. Raveendran, H. Kodamana, and B. Huang, “Process monitoring using a gen-

eralized probabilistic linear latent variable model,” Automatica, vol. 96, pp. 73

– 83, 2018.

[50] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analy-

sis,” Journal of the Royal Statistical Society.Series B: Statistical Methodology,

vol. 61, no. 3, pp. 611–622, 1999.

[51] J. Zheng, Z. Song, and Z. Ge, “Probabilistic learning of partial least squares

regression model: Theory and industrial applications,” Chemometrics and In-

telligent Laboratory Systems, vol. 158, pp. 80–90, 2016.

[52] S. el Bouhaddani, H. . Uh, C. Hayward, G. Jongbloed, and J. Houwing-

Duistermaat, “Probabilistic partial least squares model: Identifiability, estima-

tion and application,” Journal of Multivariate Analysis, vol. 167, pp. 331–346,

2018.

[53] R. Turner and M. Sahani, “A maximum-likelihood interpretation for slow fea-

ture analysis,” Neural computation, vol. 19, no. 4, pp. 1022–1038, 2007.

161

[54] L. Zafeiriou, M. A. Nicolaou, S. Zafeiriou, S. Nikitidis, and M. Pantic, “Prob-

abilistic slow features for behavior analysis,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 27, no. 5, pp. 1034–1048, 2016.

[55] C. Shang, B. Huang, F. Yang, and D. Huang, “Probabilistic slow feature

analysis-based representation learning from massive process data for soft sensor

modeling,” AIChE Journal, vol. 61, no. 12, pp. 4126–4139, 2015.

[56] F. Guo, C. Shang, B. Huang, K. Wang, F. Yang, and D. Huang, “Monitoring of

operating point and process dynamics via probabilistic slow feature analysis,”

Chemometrics and Intelligent Laboratory Systems, vol. 151, pp. 115–125, 2016.

[57] C. Shang, B. Huang, Y. Lu, F. Yang, and D. Huang, “Dynamic modeling of

gross errors via probabilistic slow feature analysis applied to a mining slurry

preparation process,” in IFAC-PapersOnLine, vol. 49, pp. 25–30, 2016.

[58] L. Fan, H. Kodamana, and B. Huang, “Identification of robust probabilistic

slow feature regression model for process data contaminated with outliers,”

Chemometrics and Intelligent Laboratory Systems, vol. 173, pp. 1–13, 2018.

[59] D. Scott, C. Shang, B. Huang, and D. Huang, “A holistic probabilistic frame-

work for monitoring nonstationary dynamic industrial processes,” IEEE Trans-

actions on Control Systems Technology, vol. 29, no. 5, pp. 2239–2246, 2021.

[60] V. K. Puli, R. Raveendran, and B. Huang, “Complex probabilistic slow feature

extraction with applications in process data analytics,” Computers & Chemical

Engineering, vol. 154, p. 107456, 2021.

[61] L. Fan, H. Kodamana, and B. Huang, “Semi-supervised dynamic latent variable

modeling: I/o probabilistic slow feature analysis approach,” AIChE Journal,

vol. 65, no. 3, pp. 964–979, 2019.

[62] C. Jiang, Y. Lu, W. Zhong, B. Huang, W. Song, D. Tan, and F. Qian, “Deep

bayesian slow feature extraction with application to industrial inferential mod-

eling,” IEEE Transactions on Industrial Informatics, pp. 1–10, 2021.

162

[63] M. J. Beal, Variational algorithms for approximate Bayesian inference. Univer-

sity of London, University College London (United Kingdom), 2003.

[64] D. Ostwald, E. Kirilina, L. Starke, and F. Blankenburg, “A tutorial on varia-

tional bayes for latent linear stochastic time-series models,” Journal of mathe-

matical psychology, vol. 60, pp. 1–19, 2014.

[65] Y. Ma and B. Huang, “Bayesian learning for dynamic feature extraction

with application in soft sensing,” IEEE Transactions on Industrial Electron-

ics, vol. 64, no. 9, pp. 7171–7180, 2017.

[66] Y. Ma and B. Huang, “Extracting dynamic features with switching models for

process data analytics and application in soft sensing,” AIChE Journal, vol. 64,

no. 6, pp. 2037–2051, 2018.

[67] J. Xie, B. Huang, and S. Dubljevic, “Transfer learning for dynamic feature

extraction using variational bayesian inference,” IEEE Transactions on Knowl-

edge and Data Engineering, pp. 1–1, 2021.

[68] R. E. Barlow and H. D. Brunk, “Isotonic regression problem and its dual,”

Journal of the American Statistical Association, vol. 67, no. 337, pp. 140–147,

1972.

[69] D. Gorinevsky, “Monotonic regression filters for trending deterioration faults,”

in proceedings of the 2004 American Control Conference, vol. 6, pp. 5394–5399,

IEEE, 2004.

[70] S. Samar, D. Gorinevsky, and S. Boyd, “Moving horizon filter for monotonic

trends,” in 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE

Cat. No. 04CH37601), vol. 3, pp. 3115–3120, IEEE, 2004.

[71] D. Gorinevsky, “Efficient filtering using monotonic walk model,” in 2008 Amer-

ican Control Conference, pp. 2816–2821, IEEE, 2008.

[72] J. M. van Noortwijk, “A survey of the application of gamma processes in main-

tenance,” Reliability Engineering & System Safety, vol. 94, no. 1, pp. 2–21,

2009.

163

[73] A. Schirru, S. Pampuri, and G. De Nicolao, “Particle filtering of hidden gamma

processes for robust predictive maintenance in semiconductor manufacturing,”

in 2010 IEEE International Conference on Automation Science and Engineer-

ing, pp. 51–56, IEEE, 2010.

[74] G. A. Susto, A. Schirru, S. Pampuri, A. Beghi, and G. De Nicolao, “A hidden-

gamma model-based filtering and prediction approach for monotonic health

factors in manufacturing,” Control Engineering Practice, vol. 74, pp. 84–94,

2018.

[75] M. Guida and G. Pulcini, “The inverse gamma process: A family of continu-

ous stochastic models for describing state-dependent deterioration phenomena,”

Reliability Engineering & System Safety, vol. 120, pp. 72–79, 2013.

[76] X. Wang and D. Xu, “An inverse gaussian process model for degradation data,”

Technometrics, vol. 52, no. 2, pp. 188–197, 2010.

[77] A. Azzalini and A. Dalla Valle, “The multivariate skew-normal distribution,”

Biometrika, vol. 83, no. 4, pp. 715–726, 1996.

[78] J. B. Copas and H. G. Li, “Inference for non-random samples,” Journal of

the Royal Statistical Society.Series B: Statistical Methodology, vol. 59, no. 1,

pp. 55–95, 1997.

[79] G. González-Faŕıas, A. Domı́nguez-Molina, and A. K. Gupta, “Additive prop-

erties of skew normal random vectors,” Journal of Statistical Planning and

Inference, vol. 126, no. 2, pp. 521–534, 2004.

[80] P. Naveau, M. G. Genton, and X. Shen, “A skewed kalman filter,” Journal of

multivariate Analysis, vol. 94, no. 2, pp. 382–400, 2005.

[81] O. Karimi, H. Omre, and M. Mohammadzadeh, “Bayesian closed-skew gaussian

inversion of seismic avo data for elastic material properties,” Geophysics, vol. 75,

no. 1, pp. R1–R11, 2010.

[82] J. Rezaie and J. Eidsvik, “Kalman filter variants in the closed skew normal

setting,” Computational Statistics & Data Analysis, vol. 75, pp. 1–14, 2014.

164

[83] J. Rezaie and J. Eidsvik, “A skewed unscented kalman filter,” International

Journal of Control, vol. 89, no. 12, pp. 2572–2583, 2016.

[84] R. B. Arellano-Valle, J. E. Contreras-Reyes, F. O. L. Quintero, and

A. Valdebenito, “A skew-normal dynamic linear model and bayesian forecast-

ing,” Computational Statistics, vol. 34, no. 3, pp. 1055–1085, 2019.

[85] L. He, J. Chen, and Y. Qi, “Event-based state estimation: Optimal algorithm

with generalized closed skew normal distribution,” IEEE Transactions on Au-

tomatic Control, vol. 64, no. 1, pp. 321–328, 2019.

[86] H. Yu, J. Shang, and T. Chen, “On stochastic and deterministic event-based

state estimation,” Automatica, vol. 123, 2021.

[87] C. Peng and S. Tseng, “Statistical lifetime inference with skew-wiener linear

degradation models,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 338–

350, 2013.

[88] Z. Huang, Z. Xu, X. Ke, W.Wang, and Y. Sun, “Remaining useful life prediction

for an adaptive skew-wiener process model,” Mechanical Systems and Signal

Processing, vol. 87, pp. 294–306, 2017.

[89] M. A. Little and N. S. Jones, “Generalized methods and solvers for noise removal

from piecewise constant signals. i. background theory,” Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences, vol. 467, no. 2135,

pp. 3088–3114, 2011.

[90] M. A. Little and N. S. Jones, “Generalized methods and solvers for noise removal

from piecewise constant signals. ii. new methods,” Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences, vol. 467, no. 2135,

pp. 3115–3140, 2011.

[91] I. Selesnick, “Total variation denoising via the moreau envelope,” IEEE Signal

Processing Letters, vol. 24, no. 2, pp. 216–220, 2017.

165

[92] D. Lv, W. Cao, W. Hu, and M. Wu, A New Total Variation Denoising Algo-

rithm for Piecewise Constant Signals Based on Non-convex Penalty, vol. 1449

of Communications in Computer and Information Science. 2021.

[93] M. J. Lombardi, “Bayesian inference for α-stable distributions: A random walk

mcmc approach,” Computational Statistics and Data Analysis, vol. 51, no. 5,

pp. 2688–2700, 2007.

[94] M. Idan and J. L. Speyer, “Cauchy estimation for linear scalar systems,” IEEE

Transactions on Automatic Control, vol. 55, no. 6, pp. 1329–1342, 2010.

[95] M. Idan and J. L. Speyer, “State estimation for linear scalar dynamic systems

with additive cauchy noises: Characteristic function approach,” SIAM Journal

on Control and Optimization, vol. 50, no. 4, pp. 1971–1994, 2012.

[96] M. Idan and J. L. Speyer, “Multivariate cauchy estimator with scalar measure-

ment and process noises,” in 52nd IEEE Conference on Decision and Control,

pp. 5016–5023, 2013.

[97] M. Idan and J. L. Speyer, “An estimation approach for linear stochastic systems

based on characteristic functions,” Automatica, vol. 78, pp. 153–162, 2017.

[98] Y. Wang, Y. Qi, J. Zhu, J. Zhang, Y. Wang, G. Pan, X. Zheng, and Z. Wu,

“A cauchy-based state-space model for seizure detection in eeg monitoring sys-

tems,” IEEE Intelligent Systems, vol. 30, no. 1, pp. 6–12, 2014.

[99] J. H. Fernández, J. L. Speyer, and M. Idan, “Stochastic control for linear sys-

tems with additive cauchy noises,” IEEE Transactions on Automatic Control,

vol. 60, no. 12, pp. 3373–3378, 2015.

[100] R. Piché, S. Särkkä, and J. Hartikainen, “Recursive outlier-robust filtering and

smoothing for nonlinear systems using the multivariate student-t distribution,”

in 2012 IEEE International Workshop on Machine Learning for Signal Process-

ing, pp. 1–6, 2012.

166

[101] T. Liu and D. Tao, “On the robustness and generalization of cauchy regres-

sion,” in 2014 4th IEEE International Conference on Information Science and

Technology, pp. 100–105, 2014.

[102] P. Geladi and B. R. Kowalski, “Partial least-squares regression: a tutorial,”

Analytica Chimica Acta, vol. 185, no. C, pp. 1–17, 1986.

[103] S. Wold, M. Sjöström, and L. Eriksson, “Pls-regression: A basic tool of chemo-

metrics,” Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 2,

pp. 109–130, 2001.

[104] S. de Jong, “Simpls: An alternative approach to partial least squares regres-

sion,” Chemometrics and Intelligent Laboratory Systems, vol. 18, no. 3, pp. 251–

263, 1993.

[105] A. Höskuldsson, “Pls regression methods,” Journal of Chemometrics, vol. 2,

no. 3, pp. 211–228, 1988.

[106] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[107] N. Sammaknejad, Y. Zhao, and B. Huang, “A review of the expectation max-

imization algorithm in data-driven process identification,” Journal of Process

Control, vol. 73, pp. 123–136, 2019.

[108] A. Tulsyan, R. Bhushan Gopaluni, and S. R. Khare, “Particle filtering without

tears: A primer for beginners,” Computers and Chemical Engineering, vol. 95,

pp. 130–145, 2016.

[109] A. Doucet, A. M. Johansen, et al., “A tutorial on particle filtering and smooth-

ing: Fifteen years later,” Handbook of nonlinear filtering, vol. 12, no. 656-704,

p. 3, 2009.

[110] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking,” IEEE Transactions

on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.

167

[111] F. Gustafsson, “Particle filter theory and practice with positioning applica-

tions,” IEEE Aerospace and Electronic Systems Magazine, vol. 25, no. 7, pp. 53–

82, 2010.

[112] M. Klaas, N. De Freitas, and A. Doucet, “Toward practical n2 monte carlo: The

marginal particle filter,” in Proceedings of the 21st Conference on Uncertainty

in Artificial Intelligence, UAI 2005, pp. 308–315, 2005.

[113] R. Chiplunkar and B. Huang, “Output relevant slow feature extraction us-

ing partial least squares,” Chemometrics and Intelligent Laboratory Systems,

vol. 191, pp. 148–157, 2019.

[114] C. Shang, X. Huang, J. A. K. Suykens, and D. Huang, “Enhancing dynamic

soft sensors based on dpls: A temporal smoothness regularization approach,”

Journal of Process Control, vol. 28, pp. 17–26, 2015.

[115] L. Fortuna, S. Graziani, A. Rizzo, and M. G. Xibilia, Soft Sensors for Mon-

itoring and Control of Industrial Processes (Advances in Industrial Control).

Springer-Verlag London, 1 ed., 2007.

[116] K. Fujiwara, M. Kano, S. Hasebe, and A. Takinami, “Soft-sensor development

using correlation-based just-in-time modeling,” AIChE Journal, vol. 55, no. 7,

pp. 1754–1765, 2009.

[117] R. Chiplunkar and B. Huang, “Siamese neural network-based supervised slow

feature extraction for soft sensor application,” IEEE Transactions on Industrial

Electronics, vol. 68, no. 9, pp. 8953–8962, 2021.

[118] Y. Zhang, Y. Teng, and Y. Zhang, “Complex process quality prediction using

modified kernel partial least squares,” Chemical Engineering Science, vol. 65,

no. 6, pp. 2153–2158, 2010.

[119] H. Kaneko and K. Funatsu, “Application of online support vector regression for

soft sensors,” AIChE Journal, vol. 60, no. 2, pp. 600–612, 2014.

[120] G. E. Hinton, S. Osindero, and Y. . Teh, “A fast learning algorithm for deep

belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

168

[121] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise

training of deep networks,” in Advances in Neural Information Processing Sys-

tems 19 (B. Schölkopf, J. C. Platt, and T. Hoffman, eds.), pp. 153–160, MIT

Press, 2007.

[122] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[123] L. Fortuna, S. Graziani, and M. G. Xibilia, “Soft sensors for product quality

monitoring in debutanizer distillation columns,” Control Engineering Practice,

vol. 13, no. 4, pp. 499–508, 2005.

[124] J. C. B. Gonzaga, L. A. C. Meleiro, C. Kiang, and R. Maciel Filho, “Ann-

based soft-sensor for real-time process monitoring and control of an industrial

polymerization process,” Computers and Chemical Engineering, vol. 33, no. 1,

pp. 43–49, 2009.

[125] S. A. Iliyas, M. Elshafei, M. A. Habib, and A. A. Adeniran, “Rbf neural net-

work inferential sensor for process emission monitoring,” Control Engineering

Practice, vol. 21, no. 7, pp. 962–970, 2013.

[126] C. Shang, F. Yang, D. Huang, and W. Lyu, “Data-driven soft sensor develop-

ment based on deep learning technique,” Journal of Process Control, vol. 24,

no. 3, pp. 223–233, 2014.

[127] Y. Liu, Y. Fan, and J. Chen, “Flame images for oxygen content prediction of

combustion systems using dbn,” Energy and Fuels, vol. 31, no. 8, pp. 8776–8783,

2017.

[128] L. Yao and Z. Ge, “Deep learning of semisupervised process data with hierarchi-

cal extreme learning machine and soft sensor application,” IEEE Transactions

on Industrial Electronics, vol. 65, no. 2, pp. 1490–1498, 2017.

[129] W. Yan, D. Tang, and Y. Lin, “A data-driven soft sensor modeling method

based on deep learning and its application,” IEEE Transactions on Industrial

Electronics, vol. 64, no. 5, pp. 4237–4245, 2017.

169

[130] X. Yuan, B. Huang, Y. Wang, C. Yang, and W. Gui, “Deep learning-based

feature representation and its application for soft sensor modeling with variable-

wise weighted sae,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7,

pp. 3235–3243, 2018.

[131] X. Yuan, C. Ou, and Y. Wang, “Development of nvw-saes with nonlinear cor-

relation metrics for quality-relevant feature learning in process data modeling,”

Measurement Science and Technology, vol. 32, no. 1, 2021.

[132] X. Yuan, J. Zhou, B. Huang, Y. Wang, C. Yang, and W. Gui, “Hierarchical

quality-relevant feature representation for soft sensor modeling: A novel deep

learning strategy,” IEEE Transactions on Industrial Informatics, vol. 16, no. 6,

pp. 3721–3730, 2020.

[133] R. Xie, N. M. Jan, K. Hao, L. Chen, and B. Huang, “Supervised variational

autoencoders for soft sensor modeling with missing data,” IEEE Transactions

on Industrial Informatics, vol. 16, no. 4, pp. 2820–2828, 2020.

[134] B. Shen and Z. Ge, “Supervised nonlinear dynamic system for soft sensor appli-

cation aided by variational auto-encoder,” IEEE Transactions on Instrumenta-

tion and Measurement, vol. 69, no. 9, pp. 6132–6142, 2020.

[135] Q. Sun and Z. Ge, “Probabilistic sequential network for deep learning of complex

process data and soft sensor application,” IEEE Transactions on Industrial

Informatics, vol. 15, no. 5, pp. 2700–2709, 2019.

[136] X. Yuan, L. Li, Y. Shardt, Y. Wang, and C. Yang, “Deep learning with spa-

tiotemporal attention-based lstm for industrial soft sensor model development,”

IEEE Transactions on Industrial Electronics, pp. 1–1, 2020.

[137] X. Yuan, L. Li, and Y. Wang, “Nonlinear dynamic soft sensor modeling with

supervised long short-term memory network,” IEEE Transactions on Industrial

Informatics, vol. 16, no. 5, pp. 3168–3176, 2020.

170

[138] Y. Huang, J. Zhao, Y. Liu, S. Luo, Q. Zou, and M. Tian, “Nonlinear dimen-

sionality reduction using a temporal coherence principle,” Information Sciences,

vol. 181, no. 16, pp. 3284–3307, 2011.

[139] J. Weston, F. Ratle, and R. Collobert, “Deep learning via semi-supervised

embedding,” in Proceedings of the 25th International Conference on Machine

Learning, pp. 1168–1175, 2008.

[140] H. Mobahi, R. Collobert, and J. Weston, “Deep learning from temporal coher-

ence in video,” in Proceedings of the 26th Annual International Conference on

Machine Learning, ICML ’09, (New York, NY, USA), pp. 737–744, ACM, 2009.

[141] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. Lecun, “Unsupervised

learning of spatiotemporally coherent metrics,” in Proceedings of the IEEE In-

ternational Conference on Computer Vision, vol. 2015 International Conference

on Computer Vision, ICCV 2015, pp. 4086–4093, 2015.

[142] D. Jayaraman and K. Grauman, “Slow and steady feature analysis: Higher

order temporal coherence in video,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 3852–3861, June 2016.

[143] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an

invariant mapping,” in Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, vol. 2, pp. 1735–1742, 2006.

[144] R. Chiplunkar and B. Huang, “Filtering and smoothing of hidden monotonic

trends and application to fouling detection,” in IFAC-PapersOnLine, vol. 54,

pp. 427–432, 2021.

[145] R. Chiplunkar and B. Huang, “Latent variable modeling and state estimation

of non-stationary processes driven by monotonic trends,” Journal of Process

Control, vol. 108, pp. 40–54, 2021.

[146] S. Johansen and K. Juselius, “Maximum likelihood estimation and inference on

cointegration — with applications to the demand for money,” Oxford Bulletin

of Economics and Statistics, vol. 52, no. 2, pp. 169–210, 1990.

171

[147] C. Zhao and B. Huang, “A full-condition monitoring method for nonstation-

ary dynamic chemical processes with cointegration and slow feature analysis,”

AIChE Journal, vol. 64, no. 5, pp. 1662–1681, 2018.

[148] S. Kwak, Y. Ma, and B. Huang, “Extracting nonstationary features for process

data analytics and application in fouling detection,” Computers and Chemical

Engineering, vol. 135, 2020.

[149] P. Von Bünau, F. C. Meinecke, F. C. Király, and K. . Müller, “Finding station-

ary subspaces in multivariate time series,” Physical Review Letters, vol. 103,

no. 21, 2009.

[150] S. Hara, Y. Kawahara, T. Washio, P. von Bünau, T. Tokunaga, and K. Yu-

moto, “Separation of stationary and non-stationary sources with a generalized

eigenvalue problem,” Neural Networks, vol. 33, pp. 7–20, 2012.

[151] J. Chen and C. Zhao, “Exponential stationary subspace analysis for station-

ary feature analytics and adaptive nonstationary process monitoring,” IEEE

Transactions on Industrial Informatics, vol. 17, no. 12, pp. 8345–8356, 2021.

[152] S. Särkkä, Bayesian filtering and smoothing, vol. 3. Cambridge University Press,

2013.

[153] D. H. Iversen, “Closed-skew distributions: Simulation, inversion and parameter

estimation,” Master’s thesis, Institutt for matematiske fag, 2010.

[154] S. M. Alsadaie and I. M. Mujtaba, “Dynamic modelling of heat exchanger

fouling in multistage flash (msf) desalination,” Desalination, vol. 409, pp. 47–

65, 2017.

[155] H. Benaroya, S. M. Han, and M. Nagurka, Probability models in engineering

and science, vol. 192. CRC press, 2005.

[156] Y. W. Teh, D. Newman, and M. Welling, “A collapsed variational bayesian

inference algorithm for latent dirichlet allocation,” in Advances in Neural In-

formation Processing Systems, pp. 1353–1360, 2007.

172

[157] D. B. S. Chiappa, “Unified inference for variational bayesian linear gaussian

state-space models,” in Advances in neural information processing systems 19:

Proceedings of the 2006 conference, vol. 19, p. 81, MIT Press, 2007.

[158] Q. Jiang, B. Thornton, J. Russel-Houston, and S. Spence, “Review of thermal

recovery technologies for the clearwater and lower grand rapids formations in

cold lake, alberta,” Journal of Canadian Petroleum Technology, vol. 49, no. 9,

pp. 57–68, 2010.

[159] A. K. Gupta, G. González-Faŕıas, and J. A. Domı́nguez-Molina, “A multivariate

skew normal distribution,” Journal of Multivariate Analysis, vol. 89, no. 1,

pp. 181–190, 2004.

[160] W. Jeffrey Miller, “Lecture notes on advanced stochastic modeling,” Duke Uni-

versity, Durham, NC, 2016.

173

Appendix A

Detailed derivation of the E-step of
Chapter 5

A.1 Derivation of the prediction step

The derivation of the prediction step for our case is given in this section. Before

proceeding, we state a few lemmas relevant to the derivation. The following lemma

is from Gupta at al. [159].

Lemma 1 If V ∼ Np(V ; µ,Σ), then for a given q × p matrix Γ, and q × 1 vector a,

the following result holds.∫︂
Np(V ; µ,Σ)Φq(a+ ΓV ; ν,∆) dV = Φq(a+ Γµ; ν,∆+ ΓΣΓ′) (A.1)

The following lemma gives expressions for the Bayesian rule for the case of Gaussian

distributions [160].

Lemma 2 Give a conditional distribution p(y|z) ∼ N (y; Az+b, C) and the marginal

p(z) ∼ N (z; m,V), applying the Bayesian rule, the following equation holds.

N (y; Az + b, C)×N (z; m,V) =N (y; Am+ b, AV A′ + C)

×N (z; m+K(y − (Am+ b)), (I −KA)V)

=N
(︃[︃

y
z

]︃
;

[︃
Am+ b

m

]︃
,

[︃
AV A′ + C AV

V A′ V

]︃)︃
(A.2)

with K = V A′(AV A′ + C)−1

174

We can now proceed to derive the equations in the prediction step. Substituting

(5.40) and (5.37) into (5.34) yields

p(mt, st|Yt−1) ∝
∫︂
Nns+1

(︃[︃
mt

st

]︃
;

[︃
mt−1

Ast−1

]︃
,

[︃
σ2
e 0
0 Σv

]︃)︃
Φ1

(︃
γ

[︃
mt −mt−1

st − Ast−1

]︃
; 0, δ

)︃
×Nns+1

(︃[︃
mt−1

st−1

]︃
;

[︃
mt−1|t−1

st−1|t−1

]︃
,Σt−1|t−1

)︃
Φt−1

(︃
Γt−1|t−1

[︃
mt−1 −mt−1|t−1

st−1 − st−1|t−1

]︃
; νt−1|t−1,∆t−1|t−1

)︃
dmt−1 dst−1

(A.3)

A proportionality sign is used in the above equation as the normalizing constants are

ignored in the pdfs. We now define the following two matrices.

Ã =

[︃
1 0
0 A

]︃
; ΣS =

[︃
σ2
e 0
0 Σv

]︃
(A.4)

One can use Lemma 2 to convert the product of the two Gaussian distributions into

the following product.

Nns+1

(︃[︃
mt

st

]︃
; Ã

[︃
mt−1|t−1

st−1|t−1

]︃
, ÃΣt−1|t−1Ã

′
+ ΣS

)︃
×Nns+1

(︃[︃
mt−1

st−1

]︃
;

[︃
mt−1|t−1

st−1|t−1

]︃
+ Jt

(︃[︃
mt

st

]︃
− Ã

[︃
mt−1|t−1

st−1|t−1

]︃)︃
, (I − JtÃ)Σt−1|t−1

)︃
(A.5)

with Jt = Σt−1|t−1Ã
′
(ÃΣt−1|t−1Ã

′
+ΣS)

−1. It can be observed that the first Gaussian

term is independent of the integration variables which are the state variables at t−1.

Hence it comes out of the integration. The two cdf terms in (A.3) can be combined

as follows to get the following cdf.

Φt

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
Γt−1|t−1

[︄
mt−1 −mt−1|t−1

st−1 − st−1|t−1

]︄

γ

[︄
mt −mt−1

st − Ast−1

]︄
⎤⎥⎥⎥⎥⎦ ;

[︃
νt−1|t−1

0

]︃
,

[︃
∆t−1|t−1 0

0 δ

]︃⎞⎟⎟⎟⎟⎠ (A.6)

Substituting (A.6) and (A.5) into (A.3), one can arrive at a CSN whose Gaussian

part is

Nns+1

(︃[︃
mt

st

]︃
; Ã

[︃
mt−1|t−1

st−1|t−1

]︃
, ÃΣt−1|t−1Ã

′
+ ΣS

)︃
(A.7)

175

and the cdf part is the integral∫︂
Nns+1

(︃[︃
mt−1

st−1

]︃
;

[︃
mt−1|t−1

st−1|t−1

]︃
+ Jt

(︃[︃
mt

st

]︃
− Ã

[︃
mt−1|t−1

st−1|t−1

]︃)︃
,

(I − JtÃ)Σt−1|t−1

)︃
× Φt(. . .)dmt−1 dst−1 (A.8)

The above integral can be solved using Lemma 1 and with some algebraic simplifica-

tions, one can arrive at the CSN parameters given in (5.42).

A.2 Derivation of the update step

Given the prior

p(mt, st|Yt−1) = CSNns+1,t

(︃[︃
mt

st

]︃
;

[︃
mt|t−1

st|t−1

]︃
,Σt|t−1,Γt|t−1, νt|t−1,∆t−1|t−1

)︃
(A.9)

and the likelihood

p(yt|mt, st) = Nny(yt; H1mt +H2st,Σu), (A.10)

the Bayesian rule given in (5.35) can be applied to get the posterior distribution.

p(mt, st|Yt) ∝ Nny(yt; H1mt +H2st,Σu)×Nns+1

(︃[︃
mt

st

]︃
;

[︃
mt|t−1

st|t−1

]︃
,Σt|t−1

)︃
×Φt

(︃
Γt|t−1

[︃
mt −mt|t−1

st − st|t−1

]︃
; νt|t−1,∆t|t−1

)︃
(A.11)

Using Lemma 2, the product of the two Gaussian distributions in the above equation

can be rewritten. One of the resulting pdfs will be independent of mt and yt and can

be clubbed into the normalizing constant. This results in the following expression

p(mt, st|Yt) ∝ Nns+1

(︃[︃
mt

st

]︃
;

[︃
mt|t−1

st|t−1

]︃
+Kt(yt −H1mt|t−1 −H2st|t−1),

(I −KtH)Σt|t−1

)︃
× Φt

(︃
Γt|t−1

[︃
mt −mt|t−1

st − st|t−1

]︃
; νt|t−1,∆t|t−1

)︃
(A.12)

where Kt = Σt|t−1H
′(HΣt|t−1H

′ + Σu)
−1. We can redefine[︃

mt|t−1

st|t−1

]︃
+Kt(yt −H1mt|t−1 −H2st|t−1) =

[︃
mt|t
st|t

]︃
; (I −KtH)Σt|t−1 = Σt|t (A.13)

To get a CSN form for (A.12), the cdf term needs to be readjusted such that the

posterior µ parameter as defined in the above equation, is subtracted from the state

variables. This leads to the updated parameters as defined in (5.45).

176

A.3 Derivation of the smoothing step

We derive the equations in the smoothing step by first determining the parameter

updates from t = T to t = T−1, and then from t = T−1 to t = T−2 which leads to the

generalized recursive equations given in (5.47). Substituting the expressions of all the

CSN distributions into (5.36) results in a cluttered and cumbersome representation

of the equations. Hence, the derivation will be explained step by step showing the

necessary expressions resulting from each step.

A.3.1 t = T to t = T − 1

At the end of the forward pass we have

p(mT , sT |YT) = CSNns+1,T

(︃[︃
mT

sT

]︃
;

[︃
mT |T
sT |T

]︃
,ΣT |T ,ΓT |T , νT |T ,∆T |T

)︃
(A.14)

The backward pass involves the calculations given in (5.36). It can be observed from

this equation that there are two steps in this procedure. The first is a Bayesian

inversion followed by a convolution of the obtained pdfs from Bayesian inversion and

the smoothed pdf from the previous step.

p(mT−1, sT−1|YT) =

∫︂
p(mT , sT |mT−1, sT−1) p(mT−1, sT−1|YT−1)∫︁

p(mT , sT |mT−1, sT−1) p(mT−1, sT−1|YT−1) dmT−1dsT−1

× p(mT , sT |YT) dmT dsT (A.15)

The numerator in the Bayesian inference part of the above equation is

CSNns+1,1

(︃[︃
mT

sT

]︃
;

[︃
mT−1

AsT−1

]︃
,

[︃
σ2
e 0
0 Σv

]︃
, γ, 0, δ

)︃
× CSNns+1,T−1

(︃[︃
mT−1

sT−1

]︃
;

[︃
mT−1|T−1

sT−1|T−1

]︃
,ΣT−1|T−1,

ΓT−1|T−1, νT−1|T−1,∆T−1|T−1

)︃
(A.16)

The denominator is nothing but the integration of the numerator w.r.t the state

variables at t = T − 1. It can be observed that this product of two CSNs is nothing

but the product of the CSNs obtained in the prediction step while moving from

t = T − 1 to t = T . This simplifies a few things in the derivation. First, by applying

Lemma 2 we get two Gaussian terms. One is the marginal of states at t = T similar

to the one in (A.7) and the second is a conditional of the form T − 1|T similar to the

177

one in (A.8). The first one comes out of the integration canceling the same term in

the denominator. The evaluation of the integral in the denominator now yields

ΦT

(︃
ΓT |T−1

[︃
mT −mT |T−1

sT − sT |T−1

]︃
; νT |T−1,∆T |T−1

)︃
(A.17)

From the update steps we know that the cdf term does not change in the Bayesian

inference as we only merely readjust it to fit the definition of CSN. Hence this term

cancels the cdf term of p(mT , sT |YT). Equation (A.15) now becomes∫︂
Nns+1

(︃[︃
mT−1

sT−1

]︃
;

[︃
mT−1|T−1

sT−1|T−1

]︃
+ JT

[︃
mT −mT |T−1

sT − sT |T−1

]︃
, (I − JT Ã)ΣT−1|T−1

)︃
× Φp

1(. . .)× ΦT−1(. . .)×Nns+1

(︃[︃
mT

sT

]︃
;

[︃
mT |T
sT |T

]︃
,ΣT |T

)︃
dmT dsT (A.18)

Here, Φp
1(. . .) is the process noise CSN’s cdf term and ΦT−1(. . .) is the cdf term of

the update step’s CSN at t = T − 1. Applying Lemma 2 to the two Gaussian terms,

we get

Nns+1

(︃[︃
mT−1

sT−1

]︃
;

[︃
mT−1|T−1

sT−1|T−1

]︃
+ JT

[︃
mT |T −mT |T−1

sT |T − sT |T−1

]︃
, (I − JT Ã)ΣT−1|T−1

)︃
× ΦT−1(. . .)∫︂

Nns+1

(︃[︃
mT

sT

]︃
;

[︃
mT |T
sT |T

]︃
+ CT−1

[︃
mT−1 −mT−1|T
sT−1 − sT−1|T

]︃
,Σ∗

T−1

)︃
× Φp

1(. . .) dmT dsT

(A.19)

Here,

CT−1 = ΣT |TJ
′
T (JTΣT |TJ

′
T + (I − JT Ã)ΣT−1|T−1)

−1

Σ∗
T−1 = (I − CT−1JT)ΣT |T[︃
mT−1|T
sT−1|T

]︃
=

[︃
mT−1|T−1

sT−1|T−1

]︃
+ JT

[︃
mT |T −mT |T−1

sT |T − sT |T−1

]︃
ΣT−1|T = JTΣT |TJ

′
T + (I − JT Ã)ΣT−1|T−1 (A.20)

The integral in the above equation can be solved using Lemma 1, and with some

algebraic simplifications, we arrive at Φ∗
1(· · ·) characterized by

Γ∗
T−1 = γ(CT−1 − Ã);

ν∗
T−1 = −γ

[︃
mT |T −mT−1|T
sT |T − AsT−1|T

]︃
;

δ∗T−1 = δ + γΣ∗
T−1γ

′ (A.21)

178

Finally, the ΦT−1(. . .) term can be readjusted and combined with the Φ∗
1 term to get

the following parameters of the skewness part

ΓT−1|T =

[︃
ΓT−1|T−1

Γ∗
T−1

]︃
;

νT−1|T =

⎡⎣νT−1|T−1 − ΓT−1|T−1

[︃
mT−1|T −mT−1|T−1

sT−1|T − sT−1|T−1

]︃
ν∗
T−1

⎤⎦ ;

∆T−1|T =

[︃
∆T−1|T−1 0

0 δ∗T−1

]︃
(A.22)

The CSN is defined as

p(mT−1, sT−1|YT) = CSNns+1,T

(︃[︃
mT−1

sT−1

]︃
;

[︃
mT−1|T
sT−1|T

]︃
,ΣT−1|T ,ΓT−1|T , νT−1|T ,∆T−1|T

)︃
(A.23)

It can be observed that the dimensionality of the skewness part of the CSN has

remained constant in this step. It shall be seen that this dimension will remain

constant at T throughout the backward pass.

A.3.2 t = T − 1 to t = T − 2

As in the previous step, the smoothed pdf at t = T − 2 can be defined similar to

(A.15). The important things to be noted in this step are listed in the following

points:

1. Similar to the previous case, in the Bayesian inference, the denominator is left

with ΦT−1(. . .) term which is the same as the one on the forward pass.

2. The skewness term of p(mT−1, sT−1|YT) can be written as ΦT−1(. . .)×Φ∗
1(. . .).

This results in the ΦT−1(. . .) terms getting canceled.

3. The remaining Gaussian terms can be simplified using Lemma 2.

4. At the end, an equation similar to (A.19) is obtained but shifted by one time

instant. The important difference is that, outside the integral, we have T − 2

dimensional ΦT−2(. . .) term and inside the integration, we have the product

transition probability noise cdf term Φp
1(. . .) and Φ∗

1(. . .).

179

p(mT−2, sT−2|YT) ∝ Nns+1

(︃[︃
mT−2

sT−2

]︃
;

[︃
mT−2|T−2

sT−2|T−2

]︃
+ JT−1

[︃
mT−1|T −mT−1|T−2

sT−1|T − sT−1|T−2

]︃
, (I − JT−1Ã)ΣT−2|T−2

)︃
× ΦT−2(. . .)∫︂
Nns+1

(︃[︃
mT−1

sT−1

]︃
;

[︃
mT−1|T
sT−1|T

]︃
+ CT−2

[︃
mT−2 −mT−2|T
sT−2 − sT−2|T

]︃
,Σ∗

T−2

)︃
× Φp

1(. . .)× Φ∗
1. . . dmT dsT (A.24)

5. Upon the application of Lemma 1 and some further algebraic simplifications,

we arrive at a CSN with T dimensional skewness term.

The parameters of the CSN representing p(mT−2, sT−2|YT) are given in the follow-

ing equations.

CT−2 = ΣT−1|TJ
′
T−1

× (JT−1ΣT−1|TJ
′
T−1 + (I − JT−1Ã)ΣT−2|T−2)

−1

Σ∗
T−2 = (I − CT−2JT−1)ΣT−1|T

Γ∗
T−2 =

[︃
γ(CT−2 − Ã)
Γ∗
T−1CT−2

]︃

ν∗
T−2 =

⎡⎣−γ [︃mT−1|T −mT−2|T
sT−1|T − AsT−2|T

]︃
ν∗
T−1

⎤⎦
δ∗T−2 =

[︃
δ 0
0 δ∗T−1

]︃
+

[︃
γ

Γ∗
T−1

]︃
Σ∗

T−2

[︁
γ′ Γ∗

T−1
′]︁[︃

mT−2|T
sT−2|T

]︃
=

[︃
mT−2|T−2

sT−2|T−2

]︃
+ JT−1

[︃
mT−1|T −mT−1|T−2

sT−1|T − sT−1|T−2

]︃
ΣT−2|T = JT−1ΣT−1|TJ

′
T−1 + (I − JT−1Ã)ΣT−2|T−2

ΓT−2|T =

[︃
ΓT−2|T−2

Γ∗
T−2

]︃

νT−2|T =

⎡⎣νT−2|T−2 − ΓT−2|T−2

[︃
mT−2|T −mT−2|T−2

sT−2|T − sT−2|T−2

]︃
ν∗
T−2

⎤⎦
∆T−2|T =

[︃
∆T−2|T−2 0

0 δ∗T−2

]︃
(A.25)

180

The final distribution at t = T − 2 is

p(mT−2, sT−2|YT) = CSNns+1,T

(︃[︃
mT−2

sT−2

]︃
;

[︃
mT−2|T
sT−2|T

]︃
,ΣT−2|T ,ΓT−2|T , νT−2|T ,∆T−2|T

)︃
(A.26)

The parameters can then be updated recursively till t = 1 is reached.

A.4 Cross-time distribution

To estimate the parameters related to the transition probabilities, one needs to find

the cross-time distributions that contain the cross-time covariances. Based on how

the smoothing equation in (5.36) is arrived at, we have the following result:

p(mt−1, st−1,mt, st|YT) =
p(mt, st|mt−1, st−1)p(mt−1, st−1|Yt−1)∫︁

p(mt, st|mt−1, st−1)p(mt−1, st−1|Yt−1) dmt−1 dst−1

× p(mt, st|YT) (A.27)

The smoothing equation is obtained by marginalizing the above equation. Hence by

referring to (A.18) and (A.24), the following result is obtained.

p(mt−1, st−1,mt, st|YT) ∝ Nns+1

(︃[︃
mt−1

st−1

]︃
;

[︃
mt−1|t−1

st−1|t−1

]︃
+ Jt

[︃
mt −mt|t−1

st − st|t−1

]︃
,

(I − JtÃ)Σt−1|t−1

)︃
× Φp

1(. . .)× Φt−1(. . .)

×Nns+1

(︃[︃
mt

st

]︃
;

[︃
mt|T
st|T

]︃
,Σt|T

)︃
× Φ∗

T−t(. . .) (A.28)

The two Gaussian terms can be combined according to Lemma 2. Hence the Gaussian

part of the CSN can be written as

N2ns+2

⎛⎜⎜⎝
⎡⎢⎢⎣
mt−1

st−1

mt

st

⎤⎥⎥⎦ ;

⎡⎢⎢⎣
[︃
mt−1|t−1

st−1|t−1

]︃
+ Jt

[︃
mt|T −mt|t−1

st|T − st|t−1

]︃
[︃
mt|T
st|T

]︃
⎤⎥⎥⎦ ,

[︃
JtΣt|TJ

′
t + (I − JtÃ)Σt−1|t−1 JtΣt|T

Σt|TJ
′
t Σt|T

]︃⎞⎟⎟⎠ (A.29)

181

The cdf terms can be combined as follows.

ΦT

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
γ

[︃
mt −mt−1

st − Ast−1

]︃
Γt−1|t−1

[︃
mt−1 −mt−1|t−1

st−1 − st−1|t−1

]︃
Γ∗
t

[︃
mt −mt|T
st − st|T

]︃

⎤⎥⎥⎥⎥⎥⎥⎦ ;

⎡⎣ 0
νt−1|t−1

ν∗
t

⎤⎦ ,

⎡⎣δ 0 0
0 ∆t−1|t−1 0
0 0 ∆∗

t

⎤⎦
⎞⎟⎟⎟⎟⎟⎟⎠ (A.30)

It can be observed that the dimensionality of the combined Φ(. . .) is T . Considering

the ν term, one can see that the dimensionality of the ν of the noise term, νt−1|t−1,

and ν∗
t are 1, t − 1, and T − t respectively. Now, the above ΦT (. . .) term needs to

be readjusted so that the overall distribution takes the form of a CSN. We define the

following matrices to simplify the notations.

I1 =
[︁
I 0

]︁
; I2 =

[︁
0 I

]︁
;

µt−1,t|T =

⎡⎢⎢⎣
[︃
mt−1|t−1

st−1|t−1

]︃
+ Jt

[︃
mt|T −mt|t−1

st|T − st|t−1

]︃
[︃
mt|T
st|T

]︃
⎤⎥⎥⎦ (A.31)

The dimensions of I1 and I2 are chosen such that

I1

⎡⎢⎢⎣
mt−1

st−1

mt

st

⎤⎥⎥⎦ =

[︃
mt−1

st−1

]︃
; I2

⎡⎢⎢⎣
mt−1

st−1

mt

st

⎤⎥⎥⎦ =

[︃
mt

st

]︃
(A.32)

With these definitions, we can rewrite the Gamma terms in the combined cdf term

as follows.

γ

[︃
mt −mt−1

st − Ast−1

]︃
= γ(I2 − ÃI1)

⎡⎢⎢⎣
mt−1

st−1

mt

st

⎤⎥⎥⎦ (A.33)

The above term and the corresponding ν term can be readjusted by subtracting

µt−1,t|T from both to make it a CSN. The same procedure can be followed for all the

Γ and ν terms of the cdf term in (A.30) to arrive at the CSN given in (5.50).

A.5 Calculating the moments of a CSN

We briefly discuss the evaluation of moments of a CSN with the dimension of the

skewness term greater than 1. The approach is similar to the one given by He et

182

al. [85]. Consider x ∼ CSNn,q(x; µ,Σ,Γ, ν,∆). To evaluate the mean one must

evaluate the following integral.

E[x] =
∫︂ ∞

−∞
x
Nn(x; µ,Σ) Φq(Γ(x− µ); ν,∆)

Φq(0; ν,∆+ ΓΣΓ′)
dx

=
1

Φq(0; ν,∆+ ΓΣΓ′)

∫︂ ∞

−∞
xNn(x; µ,Σ)

∫︂ 0

−∞
Nq(p; ν − Γ(x− µ),∆) dp dx

(A.34)

The Gaussian term with x can be brought into the inner integration. Applying Lemma

2, the following result can be obtained.

E[x] =
1

Φq(0; ν,∆+ ΓΣΓ′)
×
∫︂ 0

−∞
Nq(p; ν,∆+ ΓΣΓ′)

∫︂ ∞

−∞
xNn(x; µ+K(p− ν),

(I +KΓ) dx dp
(A.35)

withK = −ΣΓ′(∆+ΓΣΓ′)−1. The inner integral of the above equation is µ+K(p−ν).

It can be observed that the normalizing term in the denominator is
∫︁ 0

−∞Nq(p; ν,∆+

ΓΣΓ′) dp which is a normalizing constant of a truncated Gaussian distribution with

mean ν and variance ∆+ΓΣΓ′, truncated above zero in every dimension of p. Incor-

porating these, one can arrive at the following result.

E[x] = µ−Kν +KE[p]; p ∼ Nq(p; ν,∆+ ΓΣΓ′)

Φq(0; ν,∆+ ΓΣΓ′)
1(p ≤ 0) (A.36)

Since the mean of a truncated Gaussian cannot be calculated analytically for dimen-

sions greater than 1, one can draw N samples of p from the truncated Gaussian

distribution with the said parameters and calculate the sample mean and hence the

expected value of x. Similarly, one can arrive at the following equation for the co-

variance matrix of a CSN.

Var[x] = Σ+KΓΣ +K(Var[p])K ′ (A.37)

The variance of p can be calculated from the samples generated from its corresponding

truncated Gaussian distribution.

183

	Introduction
	Motivation
	Slowness
	Monotonicity
	Impulsivity

	Background Literature
	Slowness
	Deterministic SFA
	Probabilistic SFA

	Monotonicity
	Impulsivity

	Thesis Outline
	Main Contributions

	Mathematical Background
	PLS
	NIPALS
	SIMPLS

	SFA
	Deterministic SFA
	Probabilistic SFA

	Probabilistic Model Estimation Methods
	EM algorithm
	VB Inference

	Sampling-based algorithms
	Importance sampling
	Particle-based state estimation
	Particle filtering
	Particle smoothing

	Output-Relevant Slow Feature Extraction Using Partial Least Squares
	Introduction
	SFA
	PLS
	Output-relevant SFA
	NIPALS for slow feature extraction
	SIMPLS for slow feature extraction
	Tuning α and the definiteness of the matrices in the objective functions

	Results
	Simulated case study
	Debutanizer column
	Hybrid tank system

	Conclusion

	Siamese Neural Network-Based Supervised Slow Feature Extraction
	Introduction
	Siamese neural networks
	Proposed methods
	SSFASN1
	SSFASN2

	Results
	Simulated case study
	Debutanizer column
	Hybrid tank system

	Conclusion

	Latent Variable Modeling and State Estimation of Non-stationary Processes Driven by Monotonic Trends
	Introduction
	Latent variable model with a hidden monotonic trend
	Closed skew-normal distribution - Revisit
	Model formulation

	Maximum likelihood estimation
	EM algorithm - Revisit
	M-Step
	E-step
	State estimation - Revisit
	Forward pass - Filtering
	Backward pass - Smoothing
	The cross-time joint distribution
	Evaluating the expectations

	Case studies
	Simulation case study
	Fouling monitoring in a Hot Lime Softener

	Conclusion

	Modeling and Bayesian Inference for Processes Characterized by Impulsive Changes
	Introduction
	Proposed model
	Model formulation in the probabilistic framework

	Variational Bayesian inference of the model
	Inference of H
	Inference of Σu
	Inference of A
	Inference of b
	Inference of σe
	Inference of St
	The iterative procedure
	Online implementation

	Results
	Simulated case study
	Industrial case study on a SAGD process

	Conclusion

	Concluding Remarks
	Conclusion
	Future scope
	Slowness penalty for efficient feature representation
	Extensions to the proposed monotonic feature extraction approach
	Distinguishing the outliers and abrupt process jumps
	Process-relevant dynamic LV modeling through deep learning

	References
	Appendix Detailed derivation of the E-step of Chapter 5
	Derivation of the prediction step
	Derivation of the update step
	Derivation of the smoothing step
	t=T to t=T-1
	t=T-1 to t=T-2

	Cross-time distribution
	Calculating the moments of a CSN

