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Abstract 15 

Predicting and optimizing performance in earthmoving operations is critical, because they are 16 

essential to many construction projects. The complexity of modeling earthmoving operations 17 

remains challenging, even with several modeling techniques available, including simulation. This 18 

paper advances the state-of-the-art of modeling earthmoving operations by introducing a hybrid 19 

fuzzy system dynamics–discrete event simulation framework with the capacity to: capture the 20 

dynamism of performance in earthmoving operations; capture subjective uncertainty of several 21 

factors affecting them; model their sequential nature and resource constraints; and determine actual 22 

travel time, in real time, using online navigation systems. Findings from this research confirm the 23 

proposed framework (1) extends the application of simulation techniques for modeling 24 

construction processes involving dynamic input variables and subjective uncertainty, through its 25 

ability to capture the non-probabilistic uncertainty of construction systems, and (2) when combined 26 
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with the use of online navigation systems to assess trucks’ travel time, improves the accuracy of 27 

earthmoving operation models. 28 

Keywords: Construction modeling, hybrid simulation, system dynamics, discrete event 29 

simulation, fuzzy logic 30 

1. Introduction 31 

Due to the increasing complexity of construction systems (e.g., construction activities, 32 

operations, and projects), numerous managerial techniques have been developed or adapted from 33 

other engineering disciplines in order to model and predict the behaviour of these systems. These 34 

techniques also support practitioners in improving the performance of construction systems. 35 

Simulation techniques are among these managerial techniques and were originally developed for 36 

use in operational research (OR) and computer science to model different aspects of real-world 37 

systems (Brailsford et al. 2019). Simulation techniques are naturally designed to improve 38 

understanding about the structure of real-world systems and facilitate their management 39 

(Heermann 1990). Though variations in simulation techniques exist across different disciplines, 40 

there is consensus about the four simulation techniques best suited to the context of construction 41 

engineering and management: Monte Carlo simulation (MCS), discrete event simulation (DES), 42 

system dynamics (SD), and agent-based modeling (ABM) (Raoufi et al. 2018). Each of the 43 

aforementioned simulation techniques suits specific types of construction problems, depending on 44 

the characteristics of the problem being modeled (Raoufi et al. 2016; Brailsford et al. 2019). 45 

The MCS technique is suitable for capturing the probabilistic uncertainty observed in real-46 

world systems but ignores the time dependency of system behavior. The DES technique is best 47 

suited to modeling construction processes, where a sequence of construction tasks are repeated to 48 

complete the process (Raoufi et al. 2016; Brailsford et al. 2009). In addition, the DES technique 49 
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can predict the total time and cost of construction processes and determine performance indicators 50 

for resources, including utilization and idle time (Sadeghi et al. 2015; 2016). SD is another 51 

simulation technique suitable for modeling the complex structure of real-world systems, where the 52 

behaviour of the system is dynamically changing over time and under the effect of numerous 53 

interacting elements (i.e., system variables) (Nojedehi and Nasirzadeh 2017; Gerami Seresht and 54 

Fayek 2018; Rasoulkhani et al. 2019). Finally, ABM is a more recently developed simulation 55 

technique compared to the other three techniques. ABM has the capacity to capture the behaviour 56 

of individual agents within the system in order to derive overall system behaviour (Raoufi and 57 

Fayek 2018). 58 

While each simulation technique has strengths in modeling specific types of real-world 59 

systems, the selection of an appropriate simulation technique is a crucial step for simulation 60 

modeling (Bokor et al. 2019; Brailsford et al. 2019). Although the aforementioned simulation 61 

techniques provide powerful platforms for modeling construction systems, none of them fully 62 

address all the complexities of several processes in construction projects. One such complex 63 

construction process is earthmoving operations, which is included in the majority of construction 64 

projects, ranging from residential and commercial building projects to industrial and civil 65 

megaprojects. Accordingly, developing accurate simulation models for predicting and optimizing 66 

the performance of earthmoving operations can benefit a wide range of construction projects. In 67 

this paper, a hybrid simulation model using SD and DES techniques is developed to address the 68 

several complexities associated with the modeling of earthmoving operations.  69 

In recent years, an increasing number of applications for hybrid simulation techniques in the 70 

OR community have been developed, where two or more simulation techniques are integrated in 71 

a modeling framework. The hybridization of simulation techniques capitalizes on the strengths of 72 
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individual techniques to overcome their limitations, resulting in more capable and comprehensive 73 

techniques for modeling construction systems (Moradi et al. 2015). Numerous efforts have been 74 

made to optimize earthmoving operations in different construction contexts (Yi and Lu 2019; 75 

Salem and Moselhi 2020). While the reliability of optimization results relies extensively on the 76 

accurate definition of the decision space — performance of earthmoving operations in different 77 

settings, in this case — a lack of research still exists regarding how to develop accurate models for 78 

predicting the performance of earthmoving operations, owing to a number of challenges. The first 79 

challenge is choosing an appropriate technique for modeling earthmoving operations. Neither SD 80 

nor DES alone can simulate the process of earthmoving operations effectively. SD is best suited 81 

for modeling the production rate of activities, such as excavation and loading, which are constantly 82 

changing under the effects of multiple interacting factors. In contrast, when predicting the total 83 

duration of earthmoving operations, the sequence of different activities involved needs to be 84 

carefully modeled and is best accomplished by DES. The second challenge is the different types 85 

of uncertainty exhibited by variables affecting earthmoving operations. Many factors that affect 86 

the performance of earthmoving operations exhibit non-probabilistic (i.e., subjective) uncertainty, 87 

but simulation techniques are not equipped to handle this type of uncertainty. The third challenge 88 

is predicting the duration of hauling activities in earthmoving operations, especially for those 89 

projects executed in urban areas. The duration of hauling activities is affected by multiple factors 90 

(e.g., geographical setting and traffic data), and it is best predicted by online mapping platforms. 91 

In this paper, the three aforementioned challenges (i.e., selection of an appropriate simulation 92 

technique, capturing non-probabilistic uncertainties, and predicting the duration of hauling 93 

activities) have been addressed by developing an FSD-DES model of earthmoving operations, 94 

integrated with geographical information system (GIS) and Google Maps®. In the proposed FSD-95 
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DES model, the FSD component captures dynamic changes in the production rate of excavation 96 

and loading, and it addresses the non-probabilistic uncertainty exhibited by different variables that 97 

affect this operation. The DES component determines the total duration of the operation, based on 98 

the sequence of the activities involved, and finally, the GIS and Google Maps® component predicts 99 

the hauling duration using online traffic data. The contributions of this paper are threefold. First, 100 

integrating fuzzy logic with hybrid simulation techniques will advance the state of the art of hybrid 101 

simulation techniques in construction by capturing the non-probabilistic uncertainties in 102 

construction variables. Second, integrating the FSD-DES model with Google Maps® provides 103 

realistic predictions of hauling duration by considering online traffic data. Third, the FSD-DES 104 

model proposed in this paper will improve the planning and management of earthmoving 105 

operations by predicting the performance of these operations, while accounting for their complex 106 

and dynamic nature. 107 

The remainder of this paper is organized as follows. The second section presents a review of 108 

the literature on hybrid simulation techniques and on predictive modeling of earthmoving 109 

operations. The third section presents the research methodology used to develop the hybrid FSD-110 

DES model of earthmoving operations, and the fourth section presents a construction case study 111 

to illustrate a real-world application for the proposed FSD-DES model. Finally, the fifth section 112 

discusses conclusions and future areas for research on this topic. 113 

2. Literature Review 114 

2.1. Hybrid Simulation Techniques 115 

Jackson and Keys (1984) first introduced the idea of hybridizing simulation techniques and 116 

suggested combining two or more OR techniques in order to overcome their limitations and 117 

capitalize on their strengths for modeling complex, real-world systems. In recent years, 118 



6 

 

applications for hybrid simulation techniques (i.e., integration of two or more of MCS, DES, SD, 119 

and ABM techniques) in solving OR problems have increased (Brailsford et al. 2019). There are 120 

four types of hybrid simulation techniques, which can be distinguished based on their architecture 121 

(i.e., how the two simulation techniques are connected) and their interactions (i.e., the flow of 122 

information between the two techniques) (Brailsford et al. 2019; Morgan et al. 2017): 123 

• Enriching models, in which one of the two simulation techniques is dominant. The non-124 

dominant technique is used to enrich specific aspects of the dominant technique. 125 

• Sequential models, in which two (or more) simulation techniques work in sequence. The 126 

first technique simulates specific aspects of the system, and its outputs are delivered to the 127 

next simulation technique to model another aspect of the system. In sequential models, the 128 

flow of information occurs in one direction only (e.g., from the first technique in the 129 

sequence to the second). 130 

• Interactive models, in which the two simulation techniques are constantly connected, and 131 

the outputs or intermediate outputs of the two techniques are constantly exchanged. In 132 

interactive models, the flow of information occurs in both directions and continuously 133 

during the simulation run. 134 

• Integrated models, in which the two simulation techniques are completely integrated and 135 

work seamless and inseparably. The different modeling elements of the two simulation 136 

techniques are integrated to an extent that their boundaries are indistinguishable. 137 

The FSD-DES hybrid simulation model introduced in this paper is interactive, where the FSD and 138 

DES components are continuously interacting during the simulation run time. 139 

Despite their popularity in other disciplines and the demonstrated superiority of hybrid models, 140 

hybrid simulation techniques have received less attention in construction research. The results of 141 
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a literature search in the Scopus search engine revealed that out of a total of 484 articles published 142 

in the area of hybrid simulation, only 19 articles were related to construction. Moreover, the 143 

majority of articles in this group of 19 focused on construction labor productivity and construction 144 

safety. Accordingly, introducing new applications for hybrid simulation techniques in construction 145 

contexts, such as the earthmoving operations model introduced in this paper, will help to advance 146 

the state of the art in construction modeling. 147 

Despite the fact that fuzzy simulation techniques have proven to be more effective than 148 

conventional simulation in modeling real-world construction systems (Raoufi et al. 2016), there is 149 

no hybrid simulation model in the literature that incorporates fuzzy logic. This paper addresses 150 

this research gap by hybridizing FSD with DES, where FSD provides a fuzzy simulation technique 151 

with the capacity to capture the non-probabilistic uncertainties involved in real-world construction 152 

systems. 153 

2.2. Predictive Modeling of Earthmoving Operations 154 

Various techniques have been used for modeling earthmoving operations, each focusing on 155 

specific performance measures such as time, cost, safety, or environmental impacts of the 156 

operation. Artificial intelligence (AI) and simulation are two of the most commonly used 157 

techniques for modeling earthmoving operations. Although AI techniques have the capacity to 158 

mimic the reasoning process of humans and allow for the development of accurate predictive 159 

models, they are commonly static in nature and cannot represent the dynamism of earthmoving 160 

operations. Moreover, AI techniques cannot capture the logical sequence between different 161 

activities involved in the operation. In contrast, simulation techniques have the capacity to address 162 

these limitations by predicting changes that occur in the performance of earthmoving operations 163 

over time, while considering the logical sequence of activities as well as the impact of multiple 164 
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factors affecting the operation. Among the available simulation techniques, DES has been most 165 

commonly used in the context of earthmoving operations, because of its strength in modeling the 166 

repetitive nature of this kind of operation. However, one challenge associated with modeling 167 

earthmoving operations using DES is in defining the duration of activities included in the operation 168 

(e.g., loading and hauling activities), since the duration of such activities constantly change under 169 

the impact of multiple factors. 170 

To address this limitation, Peña-Mora et al. (2008) and Alzraiee et al. (2015) proposed hybrid 171 

SD-DES frameworks for modeling earthmoving operations, in which the SD component captures 172 

the dynamic behaviour of the operation and predicts the duration of activities dynamically, and the 173 

DES component captures the sequential nature of the operation. While the capability of SD for 174 

modeling the performance measures of earthmoving operations is proven in previous research 175 

(Goh and Askar Ali 2016; Gerami Seresht and Fayek 2018), the hybrid SD-DES models (Peña-176 

Mora et al. 2008; Alzraiee et al. 2015) improve the accuracy of modeling earthmoving operations 177 

compared to simulation models developed by the DES technique only. However, the two hybrid 178 

simulation models proposed by Peña-Mora et al. (2008) and Alzraiee et al. (2015) have two 179 

limitations. First, both studies lack the capacity to capture the non-probabilistic uncertainty of 180 

factors affecting earthmoving operations; and second, these models predict the duration of hauling 181 

activities without considering the geographical settings of the operation, nor the road and traffic 182 

conditions. Recent studies by Alshibani (2018) and Montaser and Moselhi (2014) reveal that the 183 

duration of hauling activities in urban areas, where multiple routes are available for trucks to travel 184 

through, is best assessed by considering the geographical setting of the project site using global 185 

positioning system (GPS) and GIS. The existing limitations of SD-DES frameworks for 186 

earthmoving operations (Peña-Mora et al. 2008; Alzraiee et al. 2015) are addressed in this paper 187 
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by integrating the proposed framework with fuzzy logic to address the non-probabilistic 188 

uncertainties of the factors that affect this operation and using Google Maps® to retrieve online 189 

traffic data for predicting the duration of hauling activity. The use of Google Maps® in the 190 

proposed FSD-DES model can improve its accuracy compared to the GIS- and/or GPS-based 191 

models, since Google Maps® combines the geographical systems’ data with online traffic 192 

information to predict trucks’ travel time. 193 

3. Methodology for FSD-DES Modeling of Earthmoving Operations 194 

The methodology for developing the FSD-DES model for earthmoving operations involved 195 

two major steps, which are discussed in greater depth in the following sub-sections. First, an FSD 196 

model is developed to predict the production rate of the excavation and loading activities. Second, 197 

a DES model is developed to model the resource constraints and sequence of activities involved 198 

in the earthmoving operation (i.e., excavation and loading, hauling, dumping, and returning) to 199 

determine the total duration of the operation. The two components of the proposed model (i.e., the 200 

FSD and DES components) interact throughout the simulation run, where the duration of the 201 

excavation and loading activities are dynamically predicted by the FSD component and transferred 202 

to the DES component. The flowchart presented in Figure 1 provides additional details about these 203 

two steps. 204 

As shown in Figure 1, the methodology for developing the proposed FSD-DES model consists 205 

of two major steps, which each focus on development of the two simulation components (FSD and 206 

DES) and connect the two components in the final step. Further details regarding the two steps are 207 

discussed in the following sub-sections. 208 
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 209 

Figure 1. Methodology for developing the FSD-DES model of earthmoving operations. 210 

3.1. Modeling Production Rate of Excavation and Loading Activities Using FSD 211 

In order to model the production rate of earthmoving operations using the FSD technique, the 212 

factors affecting the production rate (hereafter referred to as system variables) first needed to be 213 

identified. System variables were derived from previous research conducted by Gerami Seresht 214 

and Fayek (2019), which identified a total of 201 factors affecting the multi-factor productivity of 215 

equipment-intensive activities. Moreover, because of the large number of factors affecting the 216 



11 

 

performance of earthmoving operations, the number of input variables was reduced by feature 217 

selection in order to improve the accuracy of the FSD model. In predictive modeling problems, 218 

the choice of feature selection method depends on the modeling technique used for mapping input 219 

variables to the outputs. In the case of FSD modeling, relationships between different system 220 

variables need to be qualitatively identified and then numerically defined using a predictive 221 

modeling technique. In the present research, these relationships were defined using fuzzy rule-222 

based systems (FRBS). In addition, the wrapper method of feature selection was used to reduce 223 

the dimensionality of the data, as recommended by Ahmad and Pedrycz (2011). 224 

There are two types of relationships between system variables: hard relationships with a 225 

known mathematical form, and soft relationships with an unknown mathematical form. While hard 226 

relationships are naturally defined using mathematical equations, soft relationships need to be 227 

defined using a predictive modeling technique, such as statistical regression or FRBS (Nasirzadeh 228 

et al. 2018; Gerami Seresht and Fayek 2018). Because of the higher accuracy of FRBSs compared 229 

to linear regression (the most common statistical method used for SD and FSD modeling) and their 230 

higher computational efficiency for processing fuzzy numbers as input variables, soft relationships 231 

between system variables were defined using FRBSs. FRBSs can be developed using empirical 232 

data (i.e., data-driven methods) or expert knowledge (i.e., expert-driven methods). In highly 233 

dimensional problems where a large number of input variables are mapped to the outputs, data-234 

driven methods are superior to expert-driven methods. According to Zadeh’s (1975) principle of 235 

incompatibility, the dimensionality of a system has an inverse relationship with experts’ 236 

understanding of the system structure. Soft relationships in the FSD model were defined using 237 

data-driven Takagi-Sugeno FRBSs, developed using a subtractive clustering method and empirical 238 

data. Takagi-Sugeno FRBSs use a set of crisp functions for inputs (i.e., state functions) to predict 239 
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the output of the system, so that the FRBS outputs are crisp values. The use of Takagi-Sugeno 240 

FRBSs in the proposed methodology enables the representation of subjective system variables 241 

(e.g., site restrictions, crew motivation) using fuzzy numbers rather than the use of lookup 242 

functions as practiced in conventional SD modeling (Nasirzadeh et al. 2019; Gerami Seresht and 243 

Fayek 2020). Representing subjective system variables with fuzzy numbers can improve the 244 

accuracy and applicability of the FSD model by allowing the modeler to use linguistic terms for 245 

evaluating the subjective system variables and transforming the linguistic terms into numerical 246 

values rather than nominal values as used in lookup functions (Khanzadi et al. 2012). Additional 247 

information about the different techniques for defining soft relationships in FSD models is 248 

available in Gerami Seresht and Fayek (2018) and Nasirzadeh et al. (2013). 249 

3.2. Modeling the Process of Earthmoving Operation Using the DES Technique 250 

The process of earthmoving operations consists of four main activities: loading, hauling, 251 

dumping, and returning (Marzouk and Moselhi 2004). Although calculating the total duration of 252 

the operation by considering the sequence of activities is simple for one or two cycles, once the 253 

number of cycles and the number of pieces of equipment increase, the complexity of the problem 254 

increases substantially. The DES technique is appropriate for addressing such complexity and 255 

determining the total duration of operations. Numerous studies have explored modeling of 256 

earthmoving operations using DES, all of which address the four main activities (loading, hauling, 257 

dumping, and returning) (Marzouk and Moselhi 2004; Jassim et al. 2019; Krantz et al. 2019). 258 

Loading and hauling activities can be executed with different types of equipment, such as loaders 259 

and excavators for loading, and scrapers, dump trucks, or haul trucks for hauling, depending on 260 

the characteristics of the operation. Accordingly, the choice of equipment used for earthmoving 261 

operations can affect the production rate and the duration of the operation. In the present research, 262 
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it was assumed that the loading activity was executed by excavators and the hauling activity was 263 

accomplished by dump trucks, which are both commonly used in different types of construction 264 

projects. 265 

While the accuracy of the DES model relies on accurate prediction of the duration of the four 266 

activities, predicting the duration of loading activities is challenging, since it is affected by multiple 267 

factors (e.g., weather conditions, soil conditions) and changes over time. The duration of loading 268 

activities has traditionally been determined as a probabilistic distribution using historical data 269 

(Rodrigues et al. 2018; Krantz et al. 2019). However, using this approach, the effects of the 270 

different factors influencing the duration of this activity are not explicitly accounted for but are 271 

instead implicit in the probabilistic distributions. In order to address this challenge in the present 272 

work, at each cycle of the operation, the duration of loading activity was determined based on the 273 

dynamic prediction of the production rate, which was identified by the FSD component. In 274 

addition, the impact of all influencing factors was explicitly considered. 275 

The next challenge is associated with predicting the accurate duration of hauling and returning 276 

activities, since the duration of these activities depend on multiple factors, including project 277 

location, hauling distance, road conditions, maximum allowable speed, and equipment 278 

specification. Hauling and returning activities can be also decomposed into more detailed activities 279 

in order predict their durations more accurately. For example, in the DES model developed by 280 

Krantz et al. (2019) for earthmoving operations in road construction projects, hauling activities are 281 

further decomposed into “hauling on roads” and “hauling on bridges” because of different speed 282 

limits and safety requirements. Although including such additional activities can improve the 283 

accuracy of the simulation model, it limits the application of the model to the specific context for 284 

which the model was developed. To address this limitation, the durations of hauling and returning 285 
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activities were determined using GIS data and online information retrieved from Google Maps®. 286 

Using an online connection with Google Maps® enables the model to predict the duration of 287 

hauling and returning activities accurately without sacrificing the universality of the model. The 288 

GIS map included in the simulation model allows the modeler to locate the loading and dumping 289 

sites on an interactive map (shown in Section 4). At each simulation time step, the model sends 290 

information regarding the simulation time and location of loading and dumping sites to Google 291 

Maps® and then requests the travel time between the two locations. Since the traffic data is 292 

collected from Google Maps® in real time, the proposed model can simulate the process of 293 

loading/dumping from and to multiple sites (i.e., geographical locations). For this purpose, the 294 

location of loading and dumping sites can be changed before each entity (i.e., loaded truck) enters 295 

the hauling activity manually or else automatically using Java algorithms if the changes are 296 

mathematically predictable. The connection between the simulation model and Google Maps® was 297 

established using MATLAB® and Java programming languages. The methodology proposed in 298 

this paper for predicting the durations of hauling and returning activities allows the model to 299 

accurately simulate earthmoving operations in various contexts, ranging from building projects in 300 

busy urban areas to industrial energy projects in remote areas. 301 

4. Hybrid FSD-DES Model of Earthmoving Operations 302 

The hybrid FSD-DES for earthmoving operations introduced in this paper is an interactive 303 

hybrid simulation model, which means that during the simulation run, the FSD and DES 304 

components are connected and constantly exchanging information. Additionally, ongoing 305 

interaction occurs between the DES component, the GIS map, and Google Maps® during the 306 

simulation run. Figure 2 presents the architecture of the model and the flow of information during 307 

the interactions between the different model components. 308 
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 309 

Figure 2. The architecture of the hybrid simulation model. 310 

As shown in Figure 2, the three components of the model are constantly interacting with 311 

one another during the simulation run. The three components of the model are further discussed in 312 

this section, and the interactions between each are illustrated. The FSD component of the model is 313 

presented in Figure 3, which dynamically predicts the production rate of excavation and loading 314 

activities in earthmoving operations, assuming excavators are used for excavating and loading the 315 

hauling trucks. The 18 factors selected for modelling the production rate of excavation and loading 316 

activities were extracted from an earlier study by Gerami Seresht and Fayek (2018; 2019). Gerami 317 

Seresht and Fayek (2019) identified a total of 201 factors that affect earthmoving operations; using 318 

statistical methods and artificial techniques for feature selection, the number of activities were 319 

reduced to 18 factors (Gerami Seresht and Fayek 2018; 2020). Furthermore, feature selection and 320 

development of the FSD model were based on the empirical data collected from a construction 321 

case study in a pipeline maintenance project in Alberta, Canada. This project included 79 work 322 
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packages (i.e., digs), each of which included the following activities: excavation, sandblasting, 323 

welding, coating, and backfilling. The data utilized in this paper are collected from the excavation 324 

activity only. 325 

 326 

Figure 3. The FSD component for predicting the production rate of loading activity dynamically. 327 

The FSD component dynamically predicts the production rate of excavation and loading 328 

activities based on the value of the 18 system variables shown in Figure 3 and sends the 329 

information to the DES component. The relationships between the system variables of the FSD 330 

component are defined by Takagi-Sugeno FRBSs, which were developed using subtractive 331 

clustering of empirical data collected from a case study of earthmoving operations in Alberta, 332 

Canada (Gerami Seresht and Fayek 2018). Each soft relationship of the system is defined by one 333 

Takagi-Sugeno FRBS, in which the inputs are mapped to the output using a set of linear state 334 

functions. The inclusion of fuzzy logic in the FSD component allows the model to capture the non-335 
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probabilistic (i.e., subjective) uncertainty exhibited by the different factors affecting earthmoving 336 

operations, including crew motivation and site restrictions. Each subjective system variable is 337 

measured by a number of linguistic terms, each of which is represented by a fuzzy membership 338 

function. In the proposed model, shown in Figure 3, crew motivation and site restrictions are 339 

represented by five and three fuzzy membership functions, respectively, as shown in Figure 4. 340 

Figure 4(a) shows the five fuzzy membership functions used to represent crew motivation, 341 

and Figure 4(b) shows the three membership functions used for representing site restrictions. The 342 

number of fuzzy membership functions representing each subjective system variable depends on 343 

the parameters used for subtractive clustering (Gerami Seresht and Fayek 2020). 344 

The output of the FSD component at each time step is the production rate, which is 345 

measured in cubic meters of dirt loaded per hour (i.e., 
𝑚3

ℎ𝑟
). The FSD component of the proposed 346 

hybrid FSD-DES model only includes a cause-and-effect diagram and no stock-and-flow diagram, 347 

since the FSD model does not track the accumulation of any variables in the system, such as total 348 

produced output or total operation time. In the hybrid FSD-DES model proposed in this paper, the 349 

DES component tracks the operation progress (i.e., total produced outputs) and operation time. 350 

The DES component uses Equation 1 to determine the duration of loading activities in minutes. 351 

 𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑖𝑛) =
𝑇𝑟𝑢𝑐𝑘_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑃𝑅𝑙𝑜𝑎𝑑𝑖𝑛𝑔
× 60 1 

where 𝑃𝑅𝑙𝑜𝑎𝑑𝑖𝑛𝑔 stands for the production rate of a loading activity predicted by the FSD 352 

component. Truck capacity is provided by the modeler, based on the equipment specifications. 353 

Next, the duration of the loading activity is used by the DES component to continue the simulation 354 

run. Figure 5 presents the sequence of the activities within the DES component. 355 
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 356 

 357 

Figure 4. Fuzzy membership functions used for representing subjective system variables. 358 
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 359 

Figure 5. The DES component for determining the total duration of the operation. 360 

As presented in Figure 5, in each cycle of an earthmoving operation, once the loading 361 

activity is completed, the excavator returns to the queue to load the next truck, and the loaded truck 362 

starts the hauling activity. In order to determine the duration of the hauling activity, the DES 363 

component receives the location of the loading and dumping sites from the GIS map using the 364 

latitude and longitude of the two locations. Next, the DES component sends the current simulation 365 

time and the two locations to Google Maps® to determine the duration of hauling and returning 366 

activities. 367 

Figure 6(a) shows an example of GIS information for the proposed simulation model, in 368 

which both the loading and dump sites are located within the city of Edmonton, Alberta, Canada. 369 

The loading and dump sites need to be located on the GIS map of the proposed model using the 370 

longitude and latitude of the exact geographical location. Figure 6(b) presents the pseudo code that 371 

established the connection to Google Maps® and determines the duration of hauling activity. 372 

Google Maps® assumes that the maximum speed of travel is determined by the set speed limits of 373 

roads, which might not hold true when commuting with dump or haul trucks. To ensure the 374 

accuracy of the duration predicted by the pseudo code presented in Figure 6(b), the average speed 375 
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of travel must not exceed the top speed of the equipment. The FSD-DES model provides three 376 

outputs after the simulation run: the duration of each cycle of the operation; the total duration of 377 

the operation; and the production rate of the operation, which is calculated using Equation 2. 378 

 𝑃𝑅𝐸𝑎𝑟𝑡ℎ𝑚𝑜𝑣𝑖𝑛𝑔 =
𝑇𝑜𝑡𝑎𝑙_𝑉𝑜𝑙𝑢𝑚𝑒(𝑚3)

𝑇𝑜𝑡𝑎𝑙_𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(ℎ𝑟𝑠)
 2 

 379 

Figure 6. GIS map (by AnyLogic®) and pseudo code to collect traffic data from Google Maps®. 380 

5. Construction Case Study 381 

A case study was conducted to test the practicality of the proposed FSD-DES technique for 382 

modeling earthmoving operations on construction projects. In this case study, empirical data were 383 

collected for the loading activity from earthmoving operations on a pipeline maintenance project 384 

in Alberta, Canada. To illustrate the practicality of the model in handling real-world cases, it was 385 

assumed that a John Deere® 290 G LC was used for loading and MACK Granite® trucks were used 386 

for hauling. The lifting capacity of a John Deere® 290 G LC is 9,777 kg, and the total loaded 387 

weight of MACK Granite® trucks is 42,000 kg. Further details regarding the specifications of these 388 

construction vehicles are provided in their specification sheets (Deere 2021; MACK 2021). 389 

Furthermore, the top speed for the loaded truck is 120 km/hr, the top speed for the empty truck is 390 
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150 km/hr, and the maximum allowable hauling speed is determined by Google Maps using the 391 

pseudo code presented in Figure 6(b). The location of the project was assumed to be in the city of 392 

Edmonton, Alberta, Canada, as shown in Figure 6(a). As mentioned above, the empirical data used 393 

for developing the proposed hybrid FSD-DES model were collected from a pipeline maintenance 394 

project in Alberta, Canada. Accordingly, the only hypothetical component of the presented 395 

construction case study is the location of the loading and dump sites. Further discussions regarding 396 

the accuracy of the FSD component for predicting the production rate of excavation and loading 397 

activities are provided in Gerami Seresht and Fayek (2018). Unlike the actual pipeline maintenance 398 

project, the location of loading and dump sites were moved within the city of Edmonton (in urban 399 

area with variable traffic conditions throughout the day) to illustrate the benefits of real-time 400 

connection with Google Maps for collecting traffic data. The simulation model was run for 100 401 

cycles. Results are presented in Table 1. 402 

The results show that in each simulation cycle, a number of factors caused changes in the 403 

durations of loading, hauling, and returning activities. By using the FSD component and Google 404 

Maps®, the model explicitly accounts for all factors affecting the duration of each activity. This 405 

capability can help the user analyze different scenarios for execution of the operation in order to 406 

improve its performance. The simulation results shown in Table 1 reveal that the duration of each 407 

cycle reached its maximum value between 8:00 AM and 9:00 AM and between 4:00 PM and 6:00 408 

PM, which are rush hour times in the city of Edmonton. Moreover, the production rate of the   409 



22 

 

Table 1. Simulation results for the FSD-DES model of earthmoving operation. 410 

   

Cycle Duration (𝑚𝑖𝑛) Production Rate (
𝑚3

ℎ𝑟
) 

From To: 

Number of 

Data Points 

Average Cycle 

Duration 

Standard 

Deviation 

Average 

Production Rate 

Standard 

Deviation 

8:00:00 AM 9:00:00 AM 11 144.02 47.22 13.81 4.21 

9:00:00 AM 10:00:00 AM 10 118.52 37.60 16.78 5.26 

10:00:00 AM 11:00:00 AM 10 123.96 43.02 15.96 4.47 

11:00:00 AM 12:00:00 PM 10 122.62 24.54 15.39 3.75 

12:00:00 PM 1:00:00 PM 12 120.40 37.99 16.79 5.94 

1:00:00 PM 2:00:00 PM 7 105.69 21.44 17.84 4.01 

2:00:00 PM 3:00:00 PM 9 142.78 34.89 13.69 4.65 

3:00:00 PM 4:00:00 PM 12 128.48 34.97 15.33 5.01 

4:00:00 PM 5:00:00 PM 7 145.85 46.31 13.67 4.38 

5:00:00 PM 6:00:00 PM 12 147.36 40.80 13.34 4.41 

Total 100 129.97 40.10 15.26 4.92 

operation was variable throughout the day. This phenomenon results from factors affecting the 411 

duration of loading activities (refer to Figure 3) as well as changes in traffic conditions throughout 412 

the day. The standard deviation for the cycle duration and production rate also varied for different 413 

time periods throughout the day, and the variability of simulation results (i.e., measured as the 414 

standard deviation of cycle duration and production rate) reached its maximum value during rush 415 
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hours. The ability of the model to retrieve actual traffic data from Google Maps® provides a 416 

realistic prediction of the operation’s duration and allows the user to optimize the operation by 417 

selecting the best time and route for hauling activities. Moreover, the FSD component captures the 418 

effect of multiple factors influencing excavation and loading. It also provides dynamic and realistic 419 

predictions for the duration of loading activities in different scenarios. As a result, the FSD 420 

component can be used to test multiple scenarios by changing the system variables (e.g., crew size, 421 

crew composition, equipment specification, and overtime work) to improve the performance of 422 

the operation. Traditionally, DES models of earthmoving operations have supported planners for 423 

making decisions regarding type and amount of equipment. The FSD-DES model proposed in this 424 

paper has two additional capabilities. First, the integration of the simulation model with Google 425 

Maps® supports decision-making about the timing of the operation. Second, the FSD component 426 

models the complex and dynamic aspects of earthmoving operations, predicting the duration of 427 

excavation and loading, which is affected by multiple system variables (refer to Figure 3). The 428 

proposed FSD-DES model accounts for all of these system variables and allows construction 429 

planners to test multiple scenarios by changing their values. 430 

6. Conclusions and Future Work 431 

Over the past few decades, substantial research has been devoted to the modeling of 432 

earthmoving operations, since these operations are a part of many different types of construction 433 

projects. Traditionally, simulation techniques, and specifically the DES technique, have been used 434 

in this context, because of the repetitive nature of the operation. In the present research, an FSD-435 

DES model of earthmoving operations was developed by combining three components: an FSD 436 

component, which dynamically models the production rate of excavation and loading activities; a 437 

DES component, which models the logical sequence of different activities in the operation; and a 438 



24 

 

GIS and Google Maps® component, which predicts the duration of hauling and returning activities 439 

using geographical information and online traffic data. The inclusion of the FSD component 440 

enables the model to explicitly account for the impact of multiple factors affecting the operation 441 

(i.e., system variables) and dynamically track changes in its production rate. Moreover, the 442 

inclusion of fuzzy logic allows the model to capture the non-probabilistic (i.e., subjective) 443 

uncertainty exhibited by different factors affecting earthmoving operations, such as crew 444 

motivation or site restrictions. The GIS map and Google Maps® component enables the model to 445 

realistically predict the duration of hauling and returning activities, since they account for the 446 

distance between loading and dumping sites, online traffic data, and the top speed of trucks. 447 

The contributions of this paper are threefold. First, this paper advances the state of the art 448 

of hybrid simulation modeling in construction by integrating the SD-DES framework introduced 449 

by Peña-Mora et al. (2008) with fuzzy logic to create the FSD-DES model, in order to capture the 450 

non-probabilistic uncertainty of construction systems. The inclusion of fuzzy logic in the 451 

developed FSD-DES model allows the modeler to assess the value of subjective system variables 452 

with linguistic terms (e.g., “high crew motivation”) rather than numerical values. Second, the FSD-453 

DES model presented in this paper facilitates the management and planning of earthmoving 454 

operations by providing realistic performance predictions. The developed model explicitly 455 

accounts for the impact of multiple factors affecting earthmoving operations and allows 456 

practitioners to simulate different scenarios for project planning purposes. Finally, the integration 457 

of the model with the GIS map and Google Maps® improves the reliability of simulation results, 458 

especially for those projects that are executed in urban areas with varying traffic and road 459 

conditions. 460 



25 

 

Although traffic data are associated with several probabilistic uncertainties, the proposed 461 

model is limited in terms of capturing the probabilistic uncertainties. In future research, the FSD-462 

DES model will be integrated with the MCS technique to capture the probabilistic uncertainty of 463 

earthmoving operations, thus enabling the model to process probabilistic distributions as the inputs 464 

of the FSD and DES components. Although the model proposed in this paper is limited to modeling 465 

earthmoving operations, the FSD-DES modeling framework can be utilized to simulate a variety 466 

of construction operations, such as modular construction and pavement operations, that have 467 

multiple complex and dynamic aspects and are repetitive in nature. In future research, this hybrid 468 

framework will be used for modeling these other types of construction operations. 469 
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