
 MINT 709 Capstone Project Report

Performance Analysis of SDN Devices and

Controllers

 Supervisor: Mr. Gurpreet Nanda Anmol Sachdeva

Performance Analysis of SDN Devices and
Controllers

By

Anmol Sachdeva

A Project Submitted in Partial

Fulfillment of the Requirements for

the Degree of Master of Science in

Internetworking

at

The University of

Alberta

April 2017

Acknowledgements

I would like to express the deepest appreciation to my advisor Dr. Mike MacGregor, for his useful

and continuous guidance throughout the graduate program. I would like to thank my supervisor,

Mr. Gurpreet Nanda for his aspiring guidance and supervision throughout the project. I would also

like to show my gratitude to Mr. Shahnawaz Mir who has always been available for all kinds of

help and assistance. Thank you all for your unwavering support.

Table of Contents

Section 1

Introduction ..5

The Need for Performance Analysis of SDN Controllers..6

Project Purpose ...6

Section 2

About Veryx PktBlaster SDN Testing Tool ...7

About Open Network Operating System (ONOS)..9

About Floodlight...11

Section 3

Test Setup ..13

Details of the SDN Controllers...13

Test Configuration for Throughput Tests..14

Switch Configuration for Throughput Tests..14

Test Configuration for Latency Tests...15

Switch Configuration for Latency Tests...15

Test Configuration for Robustness Tests...16

Switch Configuration for Robustness Tests...16

Section 4

Performance Analysis of Throughput Tests in Normal Mode……………………………………………………….17

Performance Analysis of Throughput Tests in Incremental Switch Mode..24

Performance Analysis of Latency Tests in Normal Mode..31

Performance Analysis of Latency Tests in Incremental Switch Mode...38

Performance Analysis of Robustness Tests...45

Section 5

Issues and Challenges…….….51

Conclusion..52

References..53

Table of Figures………54

Introduction

Despite SDN’s continuing growth in popularity, very few studies have taken place that deal with

performance evaluation of SDN architectures. A. Tootoonchian, S. Gorbunov, Y. Ganjali, M.

Casado, and R. Sherwood (On Controller Performance in Software-Defined Networks) did a

research in which they focused mainly on performance evaluation of the control plane of SDN.

They covered a limited number of controllers-NOX-MT, Beacon and Maestro [1][2].

"An Open Framework for OpenFlow Switch Evaluation" was conducted by C. Rotsos, N. Sarrar, S.

Uhlig, R. Sherwood, and A. W. Moore in which they proposed a tool for evaluating performance

of one specific SDN architecture i.e. several OpenFlow implementations. Raw performance of

OpenFlow without comparison to other SDN solutions, or to non-SDN network systems was

measured in this study [1].

Another study of data plane performance evaluation of OpenFlow softswitch

(OpenFlowSwitching: Data Plane Performance) was carried out by A. Bianco, R. Birke, L. Giraudo,

and M. Palacin using different frame sizes and rules. The results showed that OpenFlow and a

more complicated native (non-SDN) application of routing outperform a simpler native switching

application [1][2].

M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia on "Modeling and

performance evaluation of an OpenFlow architecture" evaluated the forwarding speed of

OpenFlow. In this study, focus was on the effects the controller has on the forwarding plane [1].

All the researches described above does not give the idea about which SDN controllers would

perform best under different switch loads. Neither they discuss about the effect on performance

under different circumstances. In this project, I have taken two industry's leading open source SDN

controllers and compared them against each other under different switch loads to find out which

one among the two turns out to be a winner.

The Need for Performance Analysis of SDN Controllers

Over the last few years there has been a significant growth that IT industry has shown in the area

of Software Defined Networking. Given that SDN controllers are a new class of product, many IT

companies have a hard time in deciding which SDN controller would meet the company’s

requirements and would be best for them.

By doing the performance analysis of SDN controllers, it would become easier for the IT

organizations to decide and choose the best SDN controller according to the organizations’

needs. The performance evaluation of the controllers would give organizations an idea that how

the controllers are going to perform in their network infrastructure and based on that evaluation,

they could decide and finalize which SDN controller to opt for among the shortlisted controllers.

Project Purpose

The major purpose of this project is to do the performance benchmarking of SDN controllers and

compare them. There are numerous open-source SDN controllers available in the market today

like Floodlight Open SDN Controller, OpenDaylight SDN Controller, OpenContrail SDN Controller,

FlowVisor OpenFlow Controller, Ryu OpenFlow Controller, ONOS SDN Controller, NOX, POX,

Beacon and the list goes on. However, the SDN controllers that I have chosen for the comparison

are Floodlight and ONOS.

One of the main reasons for choosing these two controllers is that both are one of the most

prominent figures and major contenders in the industry. The other reasons include both the

controllers are written in Java, both are open source and are carrier-grade oriented as well.

The tool that has been used to do the performance benchmarking of the SDN controllers is

PktBlaster SDN Testing Tool from Veryx.

About Veryx PktBlaster SDN Testing Tool

Veryx PktBlaster SDN tool is a performance benchmarking and network emulation distinct

solution for SDN controllers. It is a software based solution that can run on any Linux based X86

server. The tool offers accurate measurements of throughput, latency and robustness

parameters. PktBlaster can test the controllers with multiple network types and the GUI allows

configuration of multiple switch groups for the same. Both the OpenFlow versions can be tested

simultaneously by configuring the networks. The test methodologies used for benchmarking is

aligned with the IETF benchmarking draft which Veryx has coauthored [3].

The tool has a browser based GUI application and also supports an API based usage for

integration with automated test frameworks. The entry can be created for the SDN controller

that has to be tested. The controller to switch connections is established using TCP. The tool

offers a traffic profile tab which enables traffic types for testing. MAC address, packet size, IP

address, port numbers and number of flows can be configured in the traffic profile. The tool

supports flooded and custom traffic types including TCP, UDP, ARP and custom.

PktBlaster tool offers the flexibility to configure the verification parameter as flow-mod or

packet-out for each tests. The tool supports OpenFlow as their southbound API and also provides

rest API for the northbound interfaces.

The feature that makes this tool unique is that it can be executed in the CLI mode unlike other

testing solutions which gives testers the flexibility to run regression and automated tests by

reducing the test cycle duration. The tool supports up to 1000 switches for the performance

measurement. Each configured switch has the ability to send more than a million packet-ins

towards the controller based upon the count selected in the traffic profile. Using this tool, the

tester can determine throughput, latency and robustness [3].

A throughput test determines the rate at which the controller configures the flow in the switches.

The latency test gives exact time in milliseconds which the controller takes to configure a flow in

the switch. Both these tests can be performed in Normal mode and Incremental Switch mode.

A Normal mode test allows the switches to connect to the controller simultaneously. The

Incremental Switch mode determines the scalability of the controller by increasing the number

of switches by 25% for each test iteration which subjects the controller to variable load testing

and determines that where the controller performance is highest and also the consistency of the

performance. The tool has the flexibility to change number of test iterations and the test duration

for both the modes.

While performing a test, the GUI shows the progress of the test and a live graph is generated

reflecting the values captured for the controller. Detailed statistics for the total number of

transmissions and receptions for every switch are provided which gives the tester granular details

of the controller [3].

The robustness tests help to understand how controller handles enormous packets. Unlike other

tools, PktBlaster offers an added advantage of determining controller behavior during network

impairment scenarios. The packets can be malformed. The percentage of erroneous traffic are

configurable. While a packet-in message is sent, the message type is corrupted to an invalid value.

The erroneous packets are introduced incrementally in the test and a live graph is generated

showing the robustness values.

For Throughput Tests and Latency Tests the maximum number of switches that can be configured

in this tool is 1000 and for Robustness Tests the maximum number of switches is 64.

This tool can be very useful for the equipment vendors while building the controllers and for the

service providers to understand and compare different controller behavior in their networks. It

serves as an ideal solution for testing SDN controllers [4].

About Open Network Operating System (ONOS)

The ONOS (Open Network Operating System) project is an open source community hosted by the

Linux Foundation. The goal of the project is to create a software-defined networking (SDN)

operating system for communications service providers that is designed for scalability, high

performance and high availability [5].

ONOS is architected to provide high availability, scalability, performance and rich northbound

and southbound abstractions.

ONOS is developed by ON.Lab in partnership with a community of leading service providers,

vendors and researchers. Founding members who are funding and contributing to the ONOS

initiative include AT&T, NTT Communications, Ciena, Fujitsu, Huawei, Intel, NEC; and members

who are collaborating and contributing to ONOS include ONF, Infoblox, SRI, Black Duck Software,

Internet2, GARR, CNIT and Create-Net.collaborative projects [6].

The Open Networking Lab (ON.Lab) along with other industry partners including AT&T and NTT

Communications released the ONOS source code On December 5, 2014 to start the open source

community. On October 14, 2015, the Linux Foundation announced that ONOS had joined the

organization as one of its collaborative projects.

ONOS is written in Java and is designed to operate as a cluster of nodes that are identical in terms

of their software stack and can resist failure of individual nodes without affecting its ability to

control the operation of network. One big advantage of ONOS is that its system architecture is

not directly tied to standard protocols and models. It has its own set of high-level abstractions

and models. The platform provides applications with a number of high-level abstractions,

through which the applications can learn about the state of the network and through which they

can control the flow of traffic through the network [5].

The first ONOS release was Avocet on December 5, 2014 Followed by Blackbird (February 28,

2015), Cardinal (May 31, 2015), Drake (September 18, 2015), Emu (December 18, 2015), Falcon

(March 10, 2016), Goldeneye (June 24, 2016), Hummingbird (Sept. 23, 2016) and Ibis (Jan 12,

2017).

Fig. 1: ONOS System Tiers [7]

Fig. 2: ONOS Subsystems [7]

The above figure illustrates the various subsystems that are part of ONOS today and a few that

are planned in the near future.

About Floodlight

The Floodlight Open SDN Controller is an enterprise-class, Apache-licensed, Java-based

OpenFlow Controller. It is supported by a community of developers including a number of

engineers from Big Switch Networks.

Floodlight is designed to work with the growing number of switches, routers, virtual switches,

and access points that support the OpenFlow standard.

Fig. 3: Floodlight Architecture [8]

Features-

-Offers a module loading system that make it simple to extend and enhance.

-Easy to set up with minimal amount of dependencies.

-Support for OpenStack (link) cloud orchestration platform

-Handles mixed OpenFlow and non-OpenFlow networks

-Supports a wide range of virtual and physical OpenFlow switches

-Designed to be high-performance. The controller is multithreaded from the ground up

Fig. 4: How Floodlight Controller works in SDN Environments [9]

The different versions of Floodlight include Version 0.85, Version 0.90, Version .91, Version 1.0,

Version 1.1, Version 1.2 and Nightly.

Test Setup

Both ONOS and Floodlight SDN controllers have been built over different Ubuntu 14.04 (Trusty

Tahr) 64-bit LTS versions with the following configurations-

Virtual Disk Size: 50 GB

Memory (RAM): 16 GB

CPUs: 8

Details of the SDN Controllers

1. Open Network Operating System (ONOS)

Software Build Version: 1.5 (Falcon)

IP Address: 10.3.34.168

OpenFlow Port: 6633

OpenFlow Version: 1.0

Mode of Connection: TCP

2. Floodlight

Software Build Version: Version 1.2

IP Address: 10.3.34.165

OpenFlow Port: 6653

OpenFlow Version: 1.0

Mode of Connection: TCP

Test Configuration for Throughput Tests

Test Type: Throughput

Test Mode: Normal & Incremental Switch

Flow Measurement by: Flow-mod

Test Duration (sec): 1

Number of Iterations: 4

Iteration Delay (sec): 1

Warmup Time (sec): 1

Switch Configuration for Throughput Tests

OpenFlow Version: 1.0

Start MAC Address: 00:00:00:00:00:01

Traffic Profile: TCP

Packet Length: 80

of Group Tables: 1

Max. Entries per Flow Table: 65,536

Switch Capabilities: Flow Stats, Table Stats, Port Stats

of Ports: 8

of Flows: 2

of Flow Tables: 1

of Meter Tables: 1

Switch Buffers Size: 0

Test Configuration for Latency Tests

Test Type: Latency

Test Mode: Normal & Incremental Switch

Flow Measurement by: Flow-mod

Test Duration (sec): 1

Number of Iterations: 4

Iteration Delay (sec): 1

Warmup Time (sec): 1

Switch Configuration for Latency Tests

OpenFlow Version: 1.0

Start MAC Address: 00:00:00:00:00:01

Traffic Profile: TCP

Packet Length: 80

of Group Tables: 1

Max. Entries per Flow Table: 65,536

Switch Capabilities: Flow Stats, Table Stats, Port Stats

of Ports: 8

of Flows: 2

of Flow Tables: 1

of Meter Tables: 1

Switch Buffers Size: 0

Test Configuration for Robustness Tests

Test Type: Robustness

Flow Measurement by: Flow-mod

Test Duration (sec): 1

Number of Iterations: 4

Malform Field: OF Version

OF Version: 99

Malformed Packets (%): 1

Iteration Delay (sec): 1

Warmup Time (sec): 1

Switch Configuration for Robustness Tests

OpenFlow Version: 1.0

Start MAC Address: 00:00:00:00:00:01

Traffic Profile: TCP

Packet Length: 80

of Group Tables: 1

Max. Entries per Flow Table: 65,536

Switch Capabilities: Flow Stats, Table Stats, Port Stats

of Ports: 8

of Flows: 2

of Flow Tables: 1

of Meter Tables: 1

Switch Buffers Size: 0

Performance Analysis of Throughput Tests in Normal Mode

In the throughput test, the controller is loaded to the maximum with Packet-in messages and

Throughput is measured on the basis of Flow-mod messages that are sent back by the controller

in response to Packet-in messages.

The Throughput performance test in Normal Mode was carried out for ONOS and Floodlight

controller with 4, 8, 16, 32, 64 and 128 switches and ONOS clearly outperformed Floodlight in

this test for all the switches.

Screenshots of the graphs and comparison details are attached in the following pages.

As we can see, 4 iterations were carried out for the throughput analysis. In response to the

Packet-in messages, ONOS generated much higher number of Flow-mod messages as compared

to Floodlight in all the 4 iterations for all the tests performed with different number of switches.

Fig. 5: ONOS: 4 Switches (Normal)

Fig. 6: Floodlight: 4 Switches (Normal)

Fig. 7: ONOS: 8 Switches (Normal)

Fig. 8: Floodlight: 8 Switches (Normal)

Fig. 9: NOS: 16 Switches (Normal)

Fig. 10: Floodlight: 16 Switches (Normal)

Fig. 11: ONOS: 32 Switches (Normal)

Fig. 12: Floodlight: 32 Switches (Normal)

Fig. 13: ONOS: 64 Switches (Normal)

Fig. 14: Floodlight: 64 Switches (Normal)

Fig. 15: ONOS: 128 Switches (Normal)

Fig. 16: Floodlight: 128 Switches (Normal)

Performance Analysis of Throughput Tests in Incremental Switch Mode

This test is executed in 4 iterations and 25% of total number of configured switches are added

for each iteration until the total number of configured switches are included for the test.

Just like the Throughput performance tests in Normal Mode, the test was carried out in

Incremental Switch mode for the two controllers and the results were same. ONOS is the clear

winner between the two controllers for all the switches.

As seen in the screenshots on the following pages, the number of Flow-mod messages generated

in response to Packet-in messages are much higher for ONOS as compared to Floodlight in all the

iterations for all the tests done with different loads of switches.

For 32 switches, the test stopped after two iterations and for 64 and 128 switches after one

iteration for both ONOS and Floodlight due to an internal error of the benchmarking tool.

Fig. 17: ONOS: 4 Switches (Incremental Switch)

Fig. 18: Floodlight: 4 Switches (Incremental Switch)

Fig. 19: ONOS: 8 Switches (Incremental Switch)

Fig. 20: Floodlight: 8 Switches (Incremental Switch)

Fig. 21: ONOS: 16 Switches (Incremental Switch)

Fig. 22: Floodlight: 16 Switches (Incremental Switch)

Fig. 23: ONOS: 32 Switches (Incremental Switch)

Fig. 24: Floodlight: 32 Switches (Incremental Switch)

Fig. 25: ONOS: 64 Switches (Incremental Switch)

Fig. 26: Floodlight: 64 Switches (Incremental Switch)

Fig. 27: ONOS: 128 Switches (Incremental Switch)

Fig. 28: Floodlight: 128 Switches (Incremental Switch)

Performance Analysis of Latency Tests in Normal Mode

In a Latency test, the tool measures the controller's request processing time under low-load

conditions.

Each switch sends a Packet-in message to the controller and then waits for a response (Flow-mod

message) from the controller. The difference between the time a packet-in message is sent and

a Flow-mode message is received gives the Latency of the controller.

The Latency tests are performed in Normal mode with different number of switches for 4

iterations and the results are quite interesting.

With 4 and 8 switches, for the first iteration, ONOS takes less time as compared to Flooding in

responding with Flow-mod messages. However, for the rest 3 iterations, Floodlight emerges as

an undisputed winner. It is taking much less time that ONOS in responding with Flow-mod

messages.

When the test was performed with 16 switches, Floodlight was able to outperform ONOS in 1st,

3rd and 4th iterations. ONOS was able to respond a little quicker than Floodlight only for the 2nd

iteration.

With 32 switches, the results were similar as they were with 4 and 8 switches.

With 64 switches, Floodlight again outperformed ONOS for all the 4 iterations.

With 128 switches, for the first 2 iterations, ONOS did a better job than Floodlight. However, for

the remaining 2 iterations, Floodlight left ONOS behind.

In all these tests, there were lots of variations in the results done with different number of

switches. However, talking about the results overall, we would see that Floodlight performed

much better that ONOS in the Latency department.

Fig. 29: ONOS: 4 Switches (Normal)

Fig. 30: Floodlight: 4 Switches (Normal)

Fig. 31: ONOS: 8 Switches (Normal)

Fig. 32: Floodlight: 8 Switches (Normal)

Fig. 33: ONOS: 16 Switches (Normal)

Fig. 34: Floodlight: 16 Switches (Normal)

Fig. 35: ONOS: 32 Switches (Normal)

Fig. 36: Floodlight: 32 Switches (Normal)

Fig. 37: ONOS: 64 Switches (Normal)

Fig. 38: Floodlight: 64 Switches (Normal)

Fig. 39: ONOS: 128 Switches (Normal)

Fig. 40: Floodlight: 128 Switches (Normal)

Performance Analysis of Latency Tests in Incremental Switch Mode

The Latency tests in Incremental Switch mode is executed in 4 iterations and in each iteration,

25% of the configured switches are added and in this way the load is increased by 25% for each

iteration.

In this test, as we can see in the screenshots, Floodlight defeats ONOS with a big margin in all the

4 iterations for different loads of switches ranging from 4 to 128 switches.

When the number of switches are increased, both the controllers start getting unstable.

However, ONOS gets more unstable with higher number of switches compared to Floodlight.

Screenshots of the test results are attached in the following pages.

Fig. 41: ONOS: 4 Switches (Incremental Switch)

Fig. 42: Floodlight: 4 Switches (Incremental Switch)

Fig. 43: ONOS: 8 Switches (Incremental Switch)

Fig. 44: Floodlight: 8 Switches (Incremental Switch)

Fig. 45: ONOS: 16 Switches (Incremental Switch)

Fig. 46: Floodlight: 16 Switches (Incremental Switch)

Fig. 47: ONOS: 32 Switches (Incremental Switch)

Fig. 48: Floodlight: 32 Switches (Incremental Switch)

Fig. 49: ONOS: 64 Switches (Incremental Switch)

Fig. 50: Floodlight: 64 Switches (Incremental Switch)

Fig. 51: 128 Switches (Incremental Switch)

Fig. 52: Floodlight: 128 Switches (Incremental Switch)

Performance Analysis of Robustness Tests

A Robustness test tells the behavior of the controller. In this test, valid Packet-in messages are

sent along with malformed Packet-in messages and robustness is measured based on the

response of the controller (Flow-mod messages) to valid Packet-in messages.

This tool can measure Robustness for upto 64 switches.The test was performed for 4 iterations

for different loads of switches upto 64 switches.

Based on the attached screenshots of test results in the following pages, It can be undoubtedly

said that ONOS is far more robust compared to Floodlight.

All the tests show that in response to Packet-in messages along with Malformed Packet-in

messages, ONOS responded with much higher number of Flow-mod messages as compared to

Floodlight.

The point worth taking note here is that ONOS responded with Flow-mod messages in all the 4

iterations but Floodlight responded with Flow-mod messages only in 1 iteration out of the 4 in

most the tests.

With 4 switches, Floodlight did not respond in either of the iterations. With 8 and 16 switches, it

responded only in the 1st iteration and with 32 and 64 switches, it responded in 3rd and 2nd

iteration respectively.

This clearly indicates that Floodlight is less robust as compared to ONOS. The gap between the

two in the tests is very huge and Floodlight stands nowhere in front of ONOS in the robustness

evaluation.

Fig. 53: ONOS: 4 Switches

Fig. 54: Floodlight: 4 Switches

Fig. 55: ONOS: 8 Switches

Fig. 56: Floodlight: 8 Switches

Fig. 57: ONOS: 16 Switches

Fig. 58: Floodlight: 16 Switches

Fig. 59: ONOS: 32 Switches

Fig. 60: Floodlight: 32 Switches

Fig. 61: ONOS: 64 Switches

Fig. 62: Floodlight: 64 Switches

Issues and Challenges

There were few major challenges and issues faced in the implementation of the project. The very

first challenge was to select the versions of ONOS and Floodlight for comparing against each

other. After doing detailed analysis, Version 1.5.1 (Falcon) of ONOS and Version 1.2 of Floodlight

were chosen as they were released around same time and all the release notes were available

for the two. ONOS was released in April 2016 while Floodlight was released in February 2016.

The other challenge was to build SDN controllers. Lots of steps are involved in building an SDN

controller and one wrong step can make the build unsuccessful. ONOS was the most difficult to

build out of the two controllers. A number of applications are required to install before building

the controller like Java, Maven, Karaf, etc. and only the specific versions of these applications are

compatible with the specific versions of ONOS. Installing other versions of these applications

would result in errors.

Other major issue faced was with the performance benchmarking tool. Sometimes the tests were

not able to complete and used to hang due to the unknown internal issues of the tool due to

which the test had to be performed again.

Conclusion

Out of the three types of tests performed on the two controllers, ONOS emerged as the obvious

winner in the Throughput and Robustness tests. It outperformed Floodlight heavily in the both

sections. However, Floodlight left ONOS behind in terms of Latency. It was able to respond much

more quickly to the configured switches as compared to ONOS.

These results conclude that for big IT organizations where there is a need to manage big network

infrastructure, ONOS SDN controller would serve as an ideal and a better option as compared to

Floodlight controller.

Throughput and Robustness are more important parameters as compared to latency. Latency is

not going to make a very big difference as it is a matter of milliseconds which would have a

negligible effect on the overall functioning of the network infrastructure.

As the tests show, Both ONOS and Floodlight were able to respond to the Packet-in messages of

the switches in milliseconds with Floodlight being little faster in responding as compared to

ONOS. However, taking the other two parameters into consideration i.e. Throughput and

Robustness, the gap between the two is huge and Floodlight is far behind that ONOS which

concludes ONOS could be a more reliable SDN controller than Floodlight.

References

[1]https://www.researchgate.net/publication/262240269_Performance_Analysis_of_Software_

Defined_Networking_SDN

[2]http://thenewstack.io/sdn-series-part-eight-comparison-of-open-source-sdn-controllers/

[3] https://www.youtube.com/watch?v=Q0CSA9xE7rU

[4]http://sdn.veryxtech.com/download/PktBlaster-SDN_Controller_Test-

Performance_Benchmarking_UserGuide_1.4.pdf

[5]https://en.wikipedia.org/wiki/ONOS

[6]http://www.prnewswire.com/news-releases/onlab-delivers-software-for-new-open-source-

sdn-network-operating-system--onos-300004797.html

[7]https://wiki.onosproject.org/display/ONOS/System+Components

[8]http://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343549/Architecture

[9]https://www.sdxcentral.com/sdn/definitions/sdn-controllers/open-source-sdn-

controllers/what-is-floodlight-controller/

[10]http://www.projectfloodlight.org/floodlight/

[11] https://pdfs.semanticscholar.org/47f8/1a0fe08310cc732fbd6ad16ab9da323f395c.pdf

[12]Benchmarking Methodology for SDN Controller Performance

https://tools.ietf.org/html/draft-bhuvan-bmwg-sdn-controller-benchmark-meth-00

 [13]Software-Defined Networking: A Comprehensive Survey

https://arxiv.org/pdf/1406.0440.pdf

https://www.researchgate.net/publication/262240269_Performance_Analysis_of_Software_Defined_Networking_SDN
https://www.researchgate.net/publication/262240269_Performance_Analysis_of_Software_Defined_Networking_SDN
http://thenewstack.io/sdn-series-part-eight-comparison-of-open-source-sdn-controllers/
https://www.youtube.com/watch?v=Q0CSA9xE7rU
http://sdn.veryxtech.com/download/PktBlaster-SDN_Controller_Test-%20%20Performance_Benchmarking_UserGuide_1.4.pdf
http://sdn.veryxtech.com/download/PktBlaster-SDN_Controller_Test-%20%20Performance_Benchmarking_UserGuide_1.4.pdf
https://en.wikipedia.org/wiki/ONOS
http://www.prnewswire.com/news-releases/onlab-delivers-software-for-new-open-source-sdn-network-operating-system--onos-300004797.html
http://www.prnewswire.com/news-releases/onlab-delivers-software-for-new-open-source-sdn-network-operating-system--onos-300004797.html
https://wiki.onosproject.org/display/ONOS/System+Components
http://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343549/Architecture
http://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343549/Architecture
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/open-source-sdn-controllers/what-is-floodlight-controller/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/open-source-sdn-controllers/what-is-floodlight-controller/
http://www.projectfloodlight.org/floodlight/
https://pdfs.semanticscholar.org/47f8/1a0fe08310cc732fbd6ad16ab9da323f395c.pdf
https://tools.ietf.org/html/draft-bhuvan-bmwg-sdn-controller-benchmark-meth-00
https://arxiv.org/pdf/1406.0440.pdf

Table of Figures

Figure 1. ONOS System Tiers

Figure 2. ONOS Subsystems

Figure 3. Floodlight Architecture

Figure 4. How Floodlight Controller works in SDN Environments

Figure 5. ONOS: 4 Switches (Normal)

Figure 6. Floodlight: 4 Switches (Normal)

Figure 7. ONOS: 8 Switches (Normal)

Figure 8. Floodlight: 8 Switches (Normal)

Figure 9. ONOS: 16 Switches (Normal)

Figure 10. Floodlight: 16 Switches (Normal)

Figure 11. ONOS: 32 Switches (Normal)

Figure 12. Floodlight: 32 Switches (Normal)

Figure 13. ONOS: 64 Switches (Normal)

Figure 14. Floodlight: 64 Switches (Normal)

Figure 15. ONOS: 128 Switches (Normal)

Figure 16. Floodlight: 128 Switches (Normal)

Figure 17. ONOS: 4 Switches (Incremental Switch)

Figure 18. Floodlight: 4 Switches (Incremental Switch)

Figure 19. ONOS: 8 Switches (Incremental Switch)

Figure 20. Floodlight: 8 Switches (Incremental Switch)

Figure 21. ONOS: 16 Switches (Incremental Switch)

Figure 22. Floodlight: 16 Switches (Incremental Switch)

Figure 23. ONOS: 32 Switches (Incremental Switch)

Figure 24. Floodlight: 32 Switches (Incremental Switch)

Figure 25. ONOS: 64 Switches (Incremental Switch)

Figure 26. Floodlight: 64 Switches (Incremental Switch)

Figure 27. ONOS: 128 Switches (Incremental Switch)

Figure 28. Floodlight: 128 Switches (Incremental Switch)

Figure 29. ONOS: 4 Switches (Normal)

Figure 30. Floodlight: 4 Switches (Normal)

Figure 31. ONOS: 8 Switches (Normal)

Figure 32. Floodlight: 8 Switches (Normal)

Figure 33. ONOS: 16 Switches (Normal)

Figure 34. Floodlight: 16 Switches (Normal)

Figure 35. ONOS: 32 Switches (Normal)

Figure 36. Floodlight: 32 Switches (Normal)

Figure 37. ONOS: 64 Switches (Normal)

Figure 38. Floodlight: 64 Switches (Normal)

Figure 39. ONOS: 128 Switches (Normal)

Figure 40. Floodlight: 128 Switches (Normal)

Figure 41. ONOS: 4 Switches (Incremental Switch)

Figure 42. Floodlight: 4 Switches (Incremental Switch)

Figure 43. ONOS: 8 Switches (Incremental Switch)

Figure 44. Floodlight: 8 Switches (Incremental Switch)

Figure 45. ONOS: 16 Switches (Incremental Switch)

Figure 46. Floodlight: 16 Switches (Incremental Switch)

Figure 47. ONOS: 32 Switches (Incremental Switch)

Figure 48. Floodlight: 32 Switches (Incremental Switch)

Figure 49. ONOS: 64 Switches (Incremental Switch)

Figure 50. Floodlight: 64 Switches (Incremental Switch)

Figure 51. ONOS: 128 Switches (Incremental Switch)

Figure 52. Floodlight: 128 Switches (Incremental Switch)

Figure 53. ONOS: 4 Switches

Figure 54. Floodlight: 4 Switches

Figure 55. ONOS: 8 Switches

Figure 56. Floodlight: 8 Switches

Figure 57. ONOS: 16 Switches

Figure 58. Floodlight: 16 Switches

Figure 59. ONOS: 32 Switches

Figure 60. Floodlight: 32 Switches

Figure 61. ONOS: 64 Switches

Figure 62. Floodlight: 64 Switches

