INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with smail overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white photographic
prints are available for any photographs or iliustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

uMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

University of Alberta

Image Databases:

A Content-Based Type System and Query By Similarity Match

Irene Lin-Oi, Cheng @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the

requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta

Spring 1999

vl

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Oftawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your fle Voure rélérence
Our file Notre retérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’ auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent €tre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-40038-7

University of Alberta

Library Release Form

Name of Author: Irene Lin-Oi, Cheng

Title of Thesis: Image Databases: A Content-Based Type System and Query By Simi-

larity Match
Degree: Master of Science

Year this Degree Granted: 1999

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this

thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as hereinbefore provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior

written permission.

&2 A%

Irene Lin-Oi, Cheng
93 Lombard Crescent
St. Albert, Alberta

Canada, T8N 3N1

Date: °2 7 . ‘Lh /777

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and
Research for acceptance, a thesis entitled Image Databases: A Content-Based Type System
and Query By Similarity Match submitted by Irene Lin-Oi, Cheng in partial fulfillment of the

requirements for the degree of Master of Science

Dr. M. Tamer Ozsu (Supervisor)

Dr. Curtis Hrischuk (External)

e L

Dr. Xiaobo Li (Examiner)

Date: . &é \7{;4'1 /774f

To my childhood and best friend Becky,
who died of brain cancer

in November, 1997.

Abstract

The use of on-line image repositories is growing and becoming commonplace. Due to the inade-
quacy of traditional databases in handling complex images and voluminous data, new designs and
techniques are needed to efficiently organize, store, manage and retrieve images. It is felt that the
Structural Query Language (SQL) and Object Query Language (OQL) lack the expressive power
to describe image queries. Recently the Multimedia Object Query Language (MOQL) which is an
extended version of OQL was defined in a PhD thesis at the University of Alberta. As part of
the DISIMA (Distributed Image Database Management System) project, one goal of this thesis is
to design and implement a content-based generic type system to support the storage and retrieval
of images. The other goal is to design and implement a query parser and engine for the MOQL
extension.

There has been research conducted in this area but most of it is application specific, focusing
on selected features. The type system, discussed in this thesis, integrates all the features into a

framework, which can be customized to meet the specific needs of applications.

Acknowledgements

This thesis is a part of the DISIMA project. The successful completion of the work depends on the
effort of the whole project team. In addition to my supervisor Professor M. Tamer Ozsu , the
other project members are:

Xiaobo Li, Professor

Paul Iglinski, Research Associate in the Database Research Group
Vincent Oria, Research Associate in the Database Research Group
John Z Li, Ph.D.

Bing Xu, M.Sc. student in Database Systems

Xun Tan, M.Sc. student in Computer Vision

Qi Zhang, B.Sc. student, Computer Science

[would like to express my gratitude to:

¢ Duane Szafron, Professor
Yuri Leontiev, Ph.D. student in Database Systems
Wade Holst, Ph.D. student in Object Oriented Databases
Advised on the Object-Oriented approach.

¢ Andreas Junghanns, Ph.D. student in Parallel Systems
Yuri Leontiev, Ph.D. student in Database Systems
Advised on the use of Flex and Yacc.

e Anne Nield, Administrative Assistant
proofread the thesis document.

e The National Science and Engineering Research Coucil (NSERC) of Canada
Awarded me a scholarship for the M.Sc. degree.

Contents

1 Introduction
L1 Motivation L oL Lo e e e e e e e e e e e e e
1.2 Thesis Objectives,
1.3 Research Context — DISIMA System
1.4 Thesis ScOpe o . e e e e e e e e e e e e e
1.4.1 Type System e e e e
1.4.2 Query System L. e e e e e e e
1.4.3 Why Object-Orientation 7 v ..
1.5 Contributions L e e e e
1.6 Thesis Organization o ot v it e e
2 Related Work
2.1 Image Database Models
2.2 DISIMA vs. Other Models
3 DISIMA Kernel
3.1 Terminology - . . o o e e e e e e e e e e e e e e e e
3.1.1 Logical Salient Object (LSO)
3.1.2 Physical Salient Object (PSO)
3.2 A Content-Based Generic Type System
3.2.1 The Type System Overview
3.2.2 Logical Salient Object (LSO) and Physical Salient Object (PSO)
3.2.3 Spatial Relationship
3.24 TheColorFeature i
3.2.5 Geometric Object Hierarchy (The Shape Feature)
326 The Texture Feature
3.2.7 Image and Image Representation
3.2.8 Methods to support Query Execution_ ...
3.3 Similarity Match L,
3.3.1 Examples of Similarity Match Algorithms
4 Query System
4.1 MOQL Language - . . . v v vttt e e e e e e e e e e e e e
4.2 A Query Parser for the MOQL Extension
4.2.1 New Semanticsand Syntax
4.2.2 Internal Structure of A Query
4.3 A Query Engine for MOQL
4.3.1 Relationalapproach,
4.3.2 DISIMA approach

OO W= OO LW

5 Implementation and Limitations
5.1 Imtroductionm e,
5.1.1 Why ObjectStore?

5.2 How are the programs organized?
5.3 Schema generation
5.4 Datapopulation
5.5 Database images vs. filesystem images.
5.6 Similaritymatch

6 Conclusion
6.1 Contributions L
6.2 Future Work
6.2.1 A full OQL parser and query processor o
6.2.2 Store images in progressive resolutions
6.2.3 Optimization e e
6.2.4 Matching polygons with circles and ellipses
6.2.5 Query on the image hierarchy and image attributes
6.2.6 Information about theimage
6.2.7 Databaseupdate
6.2.8 Replace the grade with astructure
6.2.9 Query by sketchorexample
6.2.10 Extend to 3D stillimage. L.
6.2.11 Thevideoextension,

Bibliography

A An extraction of the code on I_class and C_class
B An extraction of the parser rules

C An example of the user defined file userClasses

D Glossary

69
69
69
70
70
71
72
73

{

75
75
76
76
76
76
78
78
78
79
79
79
79
79

80
82

84

90

List of Figures

1.1
1.2
1.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.2T7
3.28
3.29
3.30
3.31
3.32
3.33
3.34

4.1
4.2
4.3
4.4

DISIMA Architecture 4
The text of a MOQL query 4
Graphical Interface Startup Window 6
Content-Based Generic Type System 15
Each LSO can be associated with more thanone PSO 16
An example of the LSO class hierarchy _ 17
Topological relations 18
Mbbs may not reflect true topology 18
Inconsistency between Mbbs and objects topology 19
An example of using Mbbs to measure direction, i.e.,qiseast ofp 19
Mbb defined byintervals 21
How x-intervals are compared 21
Edge detection may not be accurate L L L. 22
The red, green, blue components of acolor_. 23
Uses polygon to describe arbitrary shape 24
The Geometric Object Hierarchy (Logicaldesign) 25
The Atomic Hierarchy (Flat hierarchy) 26
The Geometric Object Hierarchy (Finaldesign) 27
An exampleofdeepsearch L 27
Orientation of shapes 28
Examples of compositeshapes 29
An example of texture matching 31
Shapes equal or similarto a triangle 33
Boundary represented by chaincode 35
The signature algorithm L 36
Shapes of different scales 37
Problem with the signature algorithm L. 37
An exampleof turning angleo Lo oL 38
Polygon with concaveangle 38
Small variationinshape 39
Implemented version of the turning angle algorithm 40
Polygonsimilarto anellipse 40
A three stages algorithm to compare compositeshapes 41
Spatial comparison on compositeshapes 41
Histograms containing 5 colorsand 1 color 42
Experiment result using average color 43
Match spatial relationship based on centroid 44
An exampleof aquery object L 52
Examplesof query trees 53
A querywithalotofbrackets 54
Anested query e e e e 54

4.5 Relational entities and relationships

4.6 A relational execution tree L
4.7 Navigation from the PSO object,
4.8 DISIMA execution tree
4.9 The result of a condition: The Resultpso and Unitpso objects
4.10 To process “contains” asajoin,
4.11 The result of the and operator
4.12 The result of the oroperator _
4.13 Temporary result illustrated in disjunctive normal form
4.14 Examples of temporaryresult L.
5.1 The DISIMA directories i
5.2 An image containing five golden fish as salient objects
5.3 Theshapeofstarfish

6.1 An example of a query represented by different tree structures

Chapter 1

Introduction

1.1 Motivation

Image databases have been gaining attention in recent years because many industrial applications
including teleconferencing, commerce, education and medicine require the management of large
volumes of images. Database management systems (DBMSs) can be used in this capacity, and there
have been a number of initiatives in this direction. However, further research on enhancing existing
DBMSs is necessary due to their inefficiency in handling image queries. The inadequancy is due to

one or more of the following reasons:

o Keyword matching—
Some databases support only keyword retrieval. In these databases, images and objects in
images are annotated with user-defined keywords. Retrieval of images is based on keyword
matching. However, the assignment of keywords is subjective, and the choice of words can
vary from person to person. A circular object may be viewed as a balloon by one person, and
as a ball by another. It may happen that, the keyword *balloon” is stored in the database,
and “ball” is used in the query. As a result, the image annotated as “balloon” will not be
retrieved. The other disadvantage of using keyword matching is that, image content, such as
color, shape and texture, cannot be precisely described using keywords. An efficient image
DBMS should therefore support content-based matching, both in terms of modeling and in

terms of querying.

e Exact matching—
Image queries on color, shape and texture require similarity match between database objects
and query predicates, but some databases support only exact match. For example, in the
query:
SELECT p.salaxry
FROM person p
WHERE p.name = ‘Happy’;

a person’s name can be either ‘Happy’ or not ‘Happy’. The query does not retrieve the salary
of a person named ‘Happier’ although the first four characters are the same. This kind of
matching is called eract match. However, in image databases similarity match is generally
preferred. For example, the query:

SELECT m

FROM image m, object o

WHERE m contains o

AND o.color similar colorgroup(255,0,0);
requires images containing an object which is similar to the color red, corresponding to the
red, green and blue values (255,0,0). In the database there may be images containing objects
of different degrees of red: dark red, light red, pink, etc. The idea of similarity match is to
have objects, of different degrees of red, retrieved and presented to the user. Images presented
are in decreasing similarity order. An important aspect in image databases is the distance
function or similarity function which compares the database object with the target object and

assigns a similarity grade between 0 to 1. An exact match is represented by ‘1.

o [mage-feature specific—
Most database models focus on one, or a few image features, and not the entire set including

color, shape, texture and spatial relationship.

e Query language-
Existing image DBMSs do not have a semantically rich underlying query language, or the

query language they use is not expressive enough to handle image queries.

1.2 Thesis Objectives

In view of the deficiency of existing DBMSs to handle image queries, the main objective of this
thesis is to design and implement a content-based generic type system which can efficiently support
image storage and retrieval. A secondary objective is to implement a query parser and engine to
process queries, in particular MOQL (Multimedia Object Query Language) queries, and return the
resulting images in similarity order.

To perform similarity match, some image DBMSs apply real-time image processing techniques.
Since images are often complex and voluminous, the content-based type system discussed in this
thesis uses pre-processing in order to reduce the on-line response time. Image features essential
for query execution are extracted during the pre-processing stage and stored in the database. Pre-
processing is important, especially in a distributed environment such as the Internet, where databases
can be located at different sites. Real-time processing of images requires the transmission of gigabytes
of raw data to the processing site while pre-processing requires only the transmission of some pre-

extracted data.

In order to support image queries efficiently, the DISIMA model adopts the following:
o Content-based matching, in addition to keyword matching.
e Similarity match, in addition to exact match.

¢ A generic type system, which includes the whole set of image features, and at the same time,
allows applications to customize these features according to application needs. The type sys-
tem also allows applications to expand the logical salient object class hierarchy by defining

subclasses, such as Person, Athlete, Building, etc.

e The semantically rich MOQL, which is extended from OQL (Object Query Language), as the

underlying query language to handle image queries.

1.3 Research Context — DISIMA System

The thesis is part of the DISIMA (Distributed Image Database Management System) Project carried
out by the Database Research Group at the University of Alberta. DISIMA is funded by The Na-
tional Science and Engineering Research Council (NSERC) of Canada. The DISIMA architecture is
comprised of a number of major components, as shown in Fig.1.1. The focus of Phase [development
is on the User Interface (Visual MOQL), Type System and Query Processor. The Visual MOQL
[23] component provides a user friendly graphical query interface. The MOQL component defines
the underlying query language [18] generated by the interface. The Query Processor handles the
parsing and execution of the generated query. The Type System defines the data structures and
methods which support database population and image retrieval by similarity match.

DISIMA is built on top of object repositories (ObjectStore is used as a repository in the current
prototype). The Image and Spatial Index Manager, and Object Index Manager are included in the
DISIMA architecture, because the object repositories may not have indices, and even if they do,
their indices may not meet the DISIMA requirements. Moreover, these Index Managers need to
dynamically integrate new indexes. Meta-information about images and objects is handled by the
Meta-Data Manager. Meta-data is a kind of important on-line data to ensure the availability and
quality of the information delivered.

Visual query language is expected to be more popular in query language evolution, because it
provides a user friendly interface that allows easy composition of queries. Since images are inherently
visual, users would prefer to use a graphical language instead of typing the query string. An example
will help to understand how the DISIMA type system and query system work with the graphical
interface. Suppose the image query is: “Find images with 2 people next to each other without any
building, or images with buildings without people, or images with animals”. Figure 1.2 shows the
query written in MOQL. Although the user may know exactly what kind of image he/she wants,

typing out the query text without any syntax or semantic error is not straightforward.

Visual MOQL DISIMA API | oDpMGDDL
MOQL
I L : I |
Query Processor ODMG Preprocessor
{ |
1 | 1 1
Image Image and Object Meta-Data
And Salient Object
Spatial Manager Index Manager
Index
Manager Manager
Object Repository (ObjectStore)
< <

e
Salient Meta-
Image
Object Data

Figure 1.1: DISIMA Architecture

Figure 1.2: The text of a MOQL query

A graphical language makes use of pictorial information to represent objects, and the relationships
defined among them. In general, the expressive power of graphical languages is low because they
often do not have an underlying textual query language. The DISIMA model has its textual query
language MOQL, which extends the standard OQL [5] by adding spatial, temporal, and presentation
properties for content-based image and video data retrieval, as well as for queries on structured
documents. The image part of MOQL is implemented in phase I of the DISIMA project. Users can
specify image queries through a graphical interface. The query information is then translated into
MOQL, and executed by the query system.

The DISIMA graphical interface allows users to query the database by specifying the salient
objects in the image. The query can then be refined by defining the color, the shape and other
attributes. The spatial relationships among these salient objects can also be specified. The graphical

interface startup window (Figure 1.3), consists of a number of components:
o A chooser to select the image classes.
e A salient object class browser to choose the desired objects.
e A horizontal slider to specify the maximum number of images that will be returned.

e A horizontally slider to specify the minimum similarity required from the returned images.

A working canvas where queries can be constructed.

e A query canvas where the user can compose compound queries, by using the AND, OR and

NOT operators.

After the user has clicked the “Query” button on the query canvas, the corresponding MOQL will
be generated automatically, and passed to the query system. The MOQL in Figure 1.2 is generated
from the query specified in Figure 1.3.

Another important aspect in the DISIMA model is the separation of logical salient objects (LSOs)
from physical salient objects (PSQOs). DISIMA views the content of an image as a set of salient
objects. Traditional data, i.e., textual descriptions and keywords, are associated with the LSOs
while image features such as spatial relationship, color, shape and texture are associated with the
PSOs. LSOs and PSOs have a one-to-many relationship which allows the same logical entity to
have different physical appearances in images. The detail of LSOs and PSOs will be discussed in
Section 3.2.2. The representation of salient objects and the spatial relationships among them assume
objects detection. Salient object detection combines manual and automatic interpretation of images.
The automatic process applies several pattern recognition and analysis algorithms to capture the
content of an image. The manual process complements the automatic one. The current development
focuses on face detection, for the reason that the driving application of news image database contains

pictures with many person objects.

R Work Canvas : Sevise Query

a1

[insert Retation | [Delete Relation] < image Progerty | [vatidate]

{luery ’“. &y 5 Do I Du
io.l{j.w{’j o I‘jmmmm
| i\ \ Iy

e o] —

Figure 1.3: Graphical Interface Startup Window

Images and their representations are also independent in the DISIMA model. The separation
allows an image to be represented in different formats, i.e. JPEG, GIF, TIF, etc. The JPEG format
is used as the default in the system. How images are related to their representations, and the PSOs

will be discussed in Section 3.2.7.

1.4 Thesis Scope

The design and implementation described in this thesis follow the object-oriented (OQ) approach,
and focus on two main areas: the type system (DISIMA kernel) and the query system. Data popu-
lation, which involves objects extraction and annotation, is a part of the implementation. However,
since the extraction and annotation techniques are related to the research of image processing, their
evaluations are not included in this thesis. The implementation makes use of the techniques currently

availlable, which are not yet fully automatic.

1.4.1 Type System

As mentioned in Section 1.1, modern image DBMSs need to support content-based, rather than
keyword-based, search. Therefore, the DISIMA type system is designed to incorporate the image
features in addition to keywords. The DISIMA type system has the following characteristics:

e In the DISIMA images, spatial relationship between objects are defined in addition to color,

shape and texture.

e Since the shape of an object can vary perceptually depending on the viewing angle and zoom

level, the DISIMA type system allows more than one shape to be associated with each object.

o In the DISIMA system, a shape object can be composite or atomic. A composite shape is

comprised of more than one atomic shape.

o The type system can support image storage either in the file system or in the database. An
image can be displayed in different resolutions, and each resolution can be stored in a different

format, i.e. JPEG, TIF, GIF, etc.

o The image features, i.e. color, shape, texture and spatial relationship, are defined indepen-
dently from each other, allowing an application to use a selected set. For example, a road map

application can use the shape and spatial features, and omit the color and texture features.

o In the logical design of the type hierarchy, a subclass is expected to be more specific than its
superclass by imposing additional constraints. This can cause conflicts during implementation
if the constrained class needs less data element than the non-constrained class. By applying
multiple inheritance, the DISIMA type system resolves this conflict. Detailed discussion can

be found in Section 3.2.5.

Query methods are implemented in the type system to perform similarity match. These query
methods are based on the color, shape, texture and spatial relationship extraction techniques dis-
cussed in the image processing literature. Since image processing is a separate research topic, the

performance evaluation of these techniques is not addressed.

1.4.2 Query System
The query system is comprised of two components: a parser and an engine.

e Parser— It is not the intention of this thesis to duplicate the effort of developing a complete
parser for the Structural Query Language (SQL) or Object Query Language (OQL). Instead,
the focus is on implementing the extension for OQL parsers, in order to handle the new syntax
introduced by MOQL. The DISIMA parser performs two tasks: it checks the syntax of the
input query, and constructs an internal representation {query object) of the query, which will

be executed by the query engine.

e Query Engine— A query object contains all the information specified in the user query. The
search conditions defined in the query are stored in a tree structure, inside the query object.
By traversing the tree structure, the engine is able to retrieve the qualified images, and assign
similarity grades to them. Only images graded higher than the requested similarity threshold

are returned to the user.

A unique feature of the query engine is the data structure used to store intermediate results of

a query. The process is similar to image sketching; objects satisfying the search conditions are

inserted into the structure, in the same way as objects are sketched onto an image. Objects

disqualified by a condition are removed from the structure.

Similar to the DISIMA parser, the engine focuses on the MOQL extension. Comparison
predicates using >, >=, <, <=, =, <>, and the in predicate are supported, while other SQL
and OQL predicates such as like, exists, any, all, and some, are not implemented in the current

phase of the DISIMA system.

1.4.3 Why Object-Orientation ?

Relational databases have proved quite successful in supporting traditional business applications.
However, they are insufficient for more complex applications such as those used in image and graphic
databases, geographic information, and multimedia databases. These new applications require more
complex data structures, longer-duration transactions, new data types for storing images or large
textual items, and the ability to define nonstandard application-specific operations. A key feature
of object DBMSs is the power to specify both the structure of complex objects and the operations
that can be applied to these objects.

In view of the complex structures, efficient retrieval is one of the main goals in image databases.
In relational databases, the entity and relationship tables are in first normal form allowing only
atomic attributes. In order to obtain the data of a composite attribute, expensive join-operations
are performed. On the other hand, the OO approach supports associative access (to find objects with
certain properties in the database) and navigational access (to further investigate the structure of
the found object) based on object identities (oid), reducing the number of expensive join-operations.
Associative access and navigational access are used by the DISIMA query parser to build the query
tree, and by the query engine to execute the query—which will be discussed in Sections 4.2 and 4.3.

Another characteristic of the OO approach is the ability to create classes to organize objects,
to create objects, to structure an inheritance hierarchy to organize classes so that subclasses may
inherit attributes and methods from superclasses, and to call methods to access specific objects.
Inheritance, in particular multiple inheritance, is fully applied in the design of the DISIMA shape
hierarchy which will be discussed in Section 3.2.5.

The OO approach has the advantage of code reusability and interoperability. Reusability is
partly contributed by inheritance and partly by encapsulation. Encapsulation makes the code more
portable and easily adopted by other modules or programs. Encapsulation also facilitates inter-
operability. By defining the access methods or interface, foreign systems can access the database
without worrying about the complex data structures. Interoperability is essential in a distributed

environment, especially between heterogeneous databases running on different platforms.

1.5 Contributions

This thesis has achieved the objective of constructing the framework of a content-based generic type
system to support query by similarity match. The main characteristics of the framework are as

follow:

e Customization—Applications can incorporate user-defined logical salient object classes, or use

a selected set of image features.

e In addition to the spatial relationship concept defined in the MOQL extension, the semantics

covering color, shape and texture are also implemented.

e The thesis introduced the disjunctive normal form concept to process intermediate results for

image queries.

e The current query system provides a stepping stone, on which indexing and optimization can

be developed.

e Future research work inspired by this thesis includes three dimensional images, video and query

by example.

1.6 Thesis Organization

This thesis contains six chapters followed by the Bibliography and Appendix. Chapter 1 is the
introduction. Chapter 2 reviews recent image database models in the literature, and compares them
with DISIMA. Chapter 3 explains the design of the DISIMA kernel and discusses how similarity
match is supported by the system. Chapter 4 explains the design of the query system, and how the
parser and engine retrieve images from the database. Chapter 5 describes implementation aspects.

Chapters 6 is the conclusion and future enhancements.

Chapter 2

Related Work

Before looking at the DISIMA model, this chapter reviews the different image database models in

the literature. These models are designed to serve different application domains.

2.1 Image Database Models

The traditional DBMSs, e.g. Oracle, using SQL as the underlying query language, are based on
textual annotation. Images, or objects in images, are associated with keywords which provide
information about the images. The corresponding images are retrieved when the associated keywords
match the query predicates. Annotation does not rely on image processing techniques, because
the keywords are user-defined, and the data structure to store keywords is simple. However, the
disadvantage is inconsistency because the assignment of keywords is subjective; different users may
use different keywords. Furthermore, the image content—such as color, shape and texture—cannot be
represented precisely by keywords.

The Geographical Information System (GIS) model ([6], [20] and [27]) is designed for analyzing
geographical information such as distances and relative directions. Examples of its applications are
road maps, city maps and satellite images. In this model, predefined symbols, such as a dot, a solid
line or a broken line are used to represent the sites of interest (e.g., beach, hotel, river, etc.). Spatial
relationships, i.e., north and east, and the distances between symbols are stored in the database. An
example query is “select all the beaches within I mile of the Hyatt Hotel”. This model uses geometric
elements such as points, lines, regions and vectors, which can normally be defined in geometry. The
other image features, such as color and texture, are not of particular importance.

The third model is shape-based. Spatial, color and texture features are not essential. An example
application is a trademark database which stores company logos. The database is queried to make
sure that no similar pattern is found before a new company can register its logo. This model gives
more freedom to the shape feature than the GIS model does, because it allows arbitrary shapes
in addition to the basic geometric shapes. However, arbitrary shapes cannot be defined by simple

geometric formulae. Additional information about the object boundaries is required and more

10

complicated shape matching algorithms are necessary. This model is discussed in [9] and [29].

The fourth model focuses on the image content (e.g., [8], [3] and [1]). The user can query on
any of the color, shape and texture features. An image which matches the requested values will
be retrieved and displayed in order of similarity. Different distance functions (similarity functions)
have to be defined for the different features. In order to process and retrieve data efficiently, data
structures and indices which are more complex than the previous models are required.

The above four models handle still images but not video images. The fifth model includes the
temporal feature in order to capture the movements of objects [15]. A video is a collection of frames,
each of which can be considered a still images. The temporal feature defines the time slot between
frames and thus the movement of objects over time can be computed. This model is useful for video
databases.

The work of this thesis is part of the DISIMA project. The DISIMA model is similar to the fifth
model described above, with the addition of the spatial features and distribution capability. The
current phase of the project covers only still images. Video and distribution will be developed later.

An overview of the DISIMA architecture is given in Section 1.3.

2.2 DISIMA vs. Other Models

The traditional entities-relational database model, using SQL as the underlying query language,
supports only keyword and exact matching. The object database model using OQL enhances the
expressive power in queries, by allowing function calls in the predicates, but OQL is still inadequate
to handle image queries, which requires content-based and similarity matching. The DISIMA model
overcomes the inadequacy by supporting content-based and similarity matching, in addition to
keyword and exact matching.

Although in recent years, an increased effort has been dedicated to the research of image DBMSs,
not all of the models discussed in the literature are comparable with the DISIMA model. The GIS
applications ([6], [20] and [27]) deal specifically with geographical information. A set of symbols are
pre-defined to represent the objects of interest. For example, a small, medium and large lake are
represented by the symbols “S”, “M” and “L” respectively [6]. A line segment is used as the symbol
for a road [20]. A star represents a “site of interest” [27]. If there are new objects of interest, more
symbols have to be specified. In contrast, the DISIMA type system provides a Polygon class to define
all arbitrary shape, or objects of interest. These GIS applications handle directional relationship,
but they do not handle topological relationship, which is supported by the DISIMA model. The
GIS applications also lack the expressive power on color and texture.

[9] and [29] focus on the shape feature and omit the spatial, color, and texture issues. [9] discusses
how to apply coded contours to indicate shape similarity, taking into account of contours within the
shape boundary. The DISIMA model uses composite shapes to define such interior contours. In

addition, the DISIMA model allows applications to separate regular shapes, i.e., circle, square,

11

ellipse, etc., from arbitrary shapes, so that the query result can be more precise, and the search can
be limited to the desired type of shape. [29] applies shape matching in two stages: the fast pruning
stage, to reduce the initial size of the search space, and the deformable template matching stage, to
perform the final match. However, it does not support composite shapes.

Most of the papers on image database models, such as those discussed above, are specific to either
color, shape or texture, and do not provide a complete view. Based on the information obtained
from the web-site [1], the photobook system covers more image features. Their research includes
texture modeling, face recognition, shape matching, brain matching and interactive segmentation
and annotation. Their work is more oriented toward image processing, but there is no one system,
which integrates individual components into a framework, like the DISIMA type system. Another
difference between the DISIMA model and other models is that the latter do not have a semantically
rich underlying query language, which can efficiently handle image queries on color, shape, texture
and spatial relationship.

Spatial relationship can be subdivided into directional and topological. While directional re-
lationship is the focus of GIS applications, topological relationship is one of the main concerns in
medical applications. For example, knowing that the tumor is on the left of the lung is not enough,
a medical doctor needs to know whether the tumor and the lung are disjoint, met, overlapped, etc.
A semantic data model is therefore evolved for medical applications ([8]). This model applies object
contour and spatial relationship, together with the temporal element, to analyze medical images.
Although [8] has the temporal feature, which has not been implemented in the DISIMA model, this
medical model is too restrictive. It lacks the other image features, such as color and texture. The
DISIMA model has a generic and flexible design, which can serve a wider application domain.

The one system which is more comparable with DISIMA is IBM’s QBIC [15]. Both QBIC and
DISIMA provide a graphical user interface (GUI) in Java, and are therefore accessible through
the Internet. QBIC has a video component while the video portion of DISIMA has not yet been
developed. In addition, QBIC allows textual information to be obtained by clicking an image,
while this is still being developed in DISIMA. With respect to the work of this thesis, the following

comparison is made based on the information available at the QBIC web-site [3] and from [15].
e Spatial relationship is one of the image features in DISIMA, but it is not supported by QBIC.

DISIMA supports composite objects, while QBIC does not.

o DISIMA allows an object to associate with different shapes, representing different zoom levels,

while QBIC does not.

e The similarity threshold of a query can be defined by the user in DISIMA, but QBIC does not

have this option.

An outstanding feature of DISIMA is its underlying query language, MOQL, which is seman-

12

tically rich. A MOQL query can be executed by the query engine as a structured expression

without using the graphical interface.

e The work of this thesis supports an integrated graphical interface, allowing the different image
features such as spatial, color, and shape to be specified in a query. Instead of allowing the user
to describe the image features, QBIC displays some sample images and limits the retrieval to
images which are similar to those displayed. In this respect, DISIMA provides 2 more flexible

approach.

13

Chapter 3

DISIMA Kernel

The DISIMA project aims at building an image database system which supports content-based
queries combining spatial and other image features such as shape, color and texture. The research
is initially on still images and will be extended to cover video and distribution. Many models in
the literature are designed for specific applications. The DISIMA model aims to provide a generic
content-based type system which can be customized to meet the requirements of most image database
applications. DISIMA system will be distributed, enabling users to retrieve images located at dif-
ferent databases. The DISIMA model includes a graphical user interface available on the World
Wide Web through which MOQL queries can be generated and executed. Detailed discussion of the
DISIMA model can be found in [22].

3.1 Terminology

In the DISIMA type system, an image is viewed as a collection of objects, but not every object in the
image is of interest to an application. Objects that are of importance to the application are called
salient objects. Salient objects are divided into logical salient objects (LSOs) and physical salient
objects (PSOs).

3.1.1 Logical Salient Object (LSO)

A logical salient object can exist in the database even if there is no image in the database referring to
that LSO. For example, “Clinton” is a person (LSO) which has data attributes lastname, firstname,

political party, etc. Clinton’s LSO can exist even if there is no image of him created in the database.

3.1.2 Physical Salient Object (PSO)

LSOs and PSOs have a one-to-many relationship. Each PSO corresponds to an appearance of the
LSO in an image. For example, “Clinton” may have two images in the database, one with his family
and the other with “Chretien”. In this case, two Clinton’s PSOs are constructed in the database

corresponding to one Clinton LSO.

14

3.2 A Content-Based Generic Type System

The goal of a content-based type system in image databases is to support data storage and query
execution based on image content, i.e., shape, color, texture and spatial relationship. The main
difference between a traditional entities-relational database system, and a content-based database
system is that the former uses exact match while the latter uses similarity match. Exact match
returns either true or false. If the answer is true the image is retrieved; otherwise it is not retrieved.
In contrast, similarity match applies distance functions to compare database images with the target
image, and assigns grades between 0 to 1 (1 means an exact match) to the images, in the database.
The images that have grades greater than a specified threshold are retrieved and displayed to the
user in descending grade order.

As explained in Section 2, current image database systems are mostly designed for specific appli-
cations. In contrast, the type system discussed in this chapter is generic and is designed to address
most of the issues in image databases. In other words, it is designed to support color, shape, tex-
ture and spatial relationship, in addition to the traditional keywords. The temporal feature will be
included at a later stage. Futhermore, the type system can be customized so that an application
can decide to implement one or more of the image features. Applications can also expand the LSO

hierarchy to add user-defined classes, such as Person, Building, Animal, and so on.

3.2.1 The Type System Overview

Figure 3.1 shows a high level view of the classes used in the DISIMA type system. The Mbb

(Minimum bounding box) class defines the spatial feature and the Geometric_Object class defines

[\

mage_
Representation A

the shape feature.

Colorgroup Geometric_Object
@

Figure 3.1: Content-Based Generic Type System

In relational databases, query execution requires the joining of tables. The final result is obtained
by selecting the right tuples and projecting the right attributes. In object Database Management

Systems (DBMSs), instead of the join-operations, the associative and navigational techniques are

15

applied based on oids. In the DISIMA type system, the PSO class acts as a bridge to access
other classes. Each PSO instance contains oids which are linked to the corresponding LSO, Mbb,
Geometric_Object, Texturegroup, Colorgroup and Image instances.

Another advantage of using the star shape design, which places PSO at the center of the type
system, is that applications can choose not to implement some of the image features, without losing
the integrity of the remaining features. For example, a GIS application may omit the color and
texture features, while an application designed for fabric manufacturers may omit the spatial feature.

The design of the type system can be customized for an application, if required, by associating
the Colorgroup class with the Geometric_.Object class so that each shape, instead of each PSO,
can have its own colorgroup. The disadvantage of this approach is that applications will lose the
flexibility of implementing the color feature without implementing the shape feature.

The DISIMA type system allows a PSO to associate with more than one shape (shown by the
1-to-n relationship). This is necessary if an application allows the shape of an object to vary in a
way similar to how human eyes perceive objects at different zoom levels. A simple example is that
a circle will become a point when viewed at a distance. In this case, both the point and circle are

stored as shapes of the PSO.

3.2.2 Logical Salient Object (LSO) and Physical Salient Object (PSO)

The concept of LSOs and PSOs will become clear by examining figure 3.2. There are other objects in
the background but suppose only “John Kennedy” and “Marilyn Monroe” are of interest to the ap-
plication and thus there are two LSOs constructed in the database. Every appearance of “Kennedy”
in an image corresponds to a PSO and so does every appearance of “Monroe”. Therefore there are

three PSOs in total, with one associated with “Kennedy” and two associated with “Monroe”.

Figure 3.2: Each LSO can be associated with more than one PSO

An LSO instance maintains the textual information, such as Kennedy’s lastname, birth-year and
political partyname. The LSO can exist independent of the PSOs, but before creating any PSO, the
LSO has to be in the database.

To make use of inheritance in OO design, the LSO classes are defined in a hierarchy with super-
classes and subclasses so that a subclass can inherit attributes and methods from its superclass, as

shown in figure 3.3.

16

LSO

1 T~

/Animal Building Person
Fish Tower Politician
Bird Mammal Ap ent Moviestar

Figure 3.3: An example of the LSO class hierarchy

3.2.3 Spatial Relationship

Since an image is viewed as a collection of objects, when more than one object appears in an image,
spatial relationships are established. Spatial relationship refers to the distance, directional relation
and topological relation between objects [18]. Distance is measured between the centroids of objects.

The centroid of an object is the point (Zavg, Yavg) such that,

’.‘_ .’L‘i
Lavg = Z‘ ";;"1 - (31)
and .
Yavg = % (3.2)

where n is the number of pixels (points) forming the object.

Topological relation can be estimated based on the Mbbs of objects, or computed using the
actual regions of the objects. Directions can either be measured in degrees from 0 to 360, or by
using the eight directions (north, south, etc.) The DISIMA type system applies the Mbb approach,
and the definitions on directions and topology defined in the MOQL extension [18], to measure

spatial relations.

The Minimum Bounding Box (Mbb)

The Mbb approach has been studied and used in research projects to estimate the spatial relations
between objects. The Mbb approach is popular because it is computationally simple and storage
efficient. In order to construct the Mbb of an object, the best fit rectangle horizontal to the x-axis
is drawn to enclose the object. When putting an image in the context of an X-Y plane, the top-left
corner of the image is used as the original. The Mbb is defined by taking the upper left (Xmin,

Ymin) and lower right (Xmaz, Ymaz) corners of the rectangle.

Topological relation

There are eight types of topological relations: disjoints, meets, equals, overlaps, contains (converse

is inside) and covers (converse is covered-by).

17

p [4q] P |q] p (4]

meets(p,q) overlaps(p.q)

disjoints(p.q)

p [4q] plal p 4

covered_by(q,p) inside(q,p) equals(p.q)
covers(p,q) contains(p.q)

Figure 3.4: Topological relations

The topological relation between two objects is estimated by comparing the Xmazr, Xmin, Ymar and
Yimin of the two Mbbs.

Figure 3.5: Mbbs may not reflect true topology

It is important to understand that the Mbb approach works well only for shapes evenly distributed
in the Mbbs like those in Figure 3.5 (left), where the mbbs show that the objects (head and hand)
overlap. However, for shapes not evenly distributed, an estimation based on Mbbs can give a wrong
result. Figure 3.5 (right) shows that, although the photo and the pen are disjoint, their Mbbs meet.

For this reason, the topological relation estimated by the Mbbs does not necessarily imply the
true relation of the objects. In order to obtain an accurate result, more than one topological relation
has to be considered. For example, to identify objects which are disjoint, not only disjoint Mbbs but
also Mbbs which overlap, meet, cover and contain should be retrieved and analyzed further. Two
disjoint objects, with Mbbs showing different topologies, are illustrated in Figure 3.6.

In spite of this discrepancy, the Mbb approach is still useful as a preliminary filter to eliminate
most of the unqualified objects during query execution. The resulting objects can be further ana-
lyzed by more accurate but computationally complex algorithms. Without the preliminary filter,

query execution will take longer due to additional computation.

18

Mbbs disjoint

Mbbs overlap

Mbbs meet

Mbbs cover (covered_by) Mbbs contain (inside)

Figure 3.6: Inconsistency between Mbbs and objects topology

Directional relation

...

Figure 3.7: An example of using Mbbs to measure direction, i.e., q is east of p

The directional relation is valid only when two objects are disjoint or meet [18]. If two objects
overlap, the spatial relation is defined by their topology. Figure 3.7 shows how the Mbb approach
is used to measure direction.

The relative direction of one object from another can be defined as north, south, east, west,

19

northeast, northwest, southeast and southwest. In a 2-dimensional image, above, below, left and
right are generally interpreted as north, south, west and east. Three dimensional spatial relationship

is not yet defined in the DISIMA type system.

Methods to support the Mbb approach: the Interval class

In order to derive the topological or directional relation between two Mbbs, the = and y coordinates,
or intervals, of the Mbbs are examined separately. The Interval class in the DISIMA type system
provides methods to compare intervals. These methods are before(), equal(), during(), start(),
finish(), meet() and overlap().

Each of these functions returns true or false when comparing two intervals. The topological and
directional relations are established based on the true values of a combination of these functions.
For example, given two objects A and B, Mbb,4 is above Mbbg if:

Ay _interval 1S before By _interval OT

Ay _interval meets By _interval-

Defining Mbbs in terms of Intervals

The definitions of spatial relationships can be found in [18], where comparison of Mbbs is divided

into two categories:

o Directional relations include left, right, above, below, front, back, south, north, west, east,
northwest, northeast, southwest, southeast, as well as the combination of front and back with

other directional relations, i.e., front_left.

e Topological relations include inside, cover, touch, overlap, disjcint, equal, coveredBy, and

contain. Cover and coveredBy are inverse of each other and same as inside and contain.

An Mbb is defined by its upper-left and lower-right corners. It is always drawn horizontal to the
x-axis and y-axis. By examining the x and y coordinates separately, an Mbb can be represented by its
x-interval and y-interval. Spatial relationships between two Mbbs can be determined by comparing
their x and y intervals, respectively.

Figure 3.8 follows the convention of an image with the original at the top-left corner. One of
the Mbbs has x-interval {1,3] and y-interval [2,4]. The other Mbb has x-interval [2,5] and y-interval
[1,3]. The spatial relationship between the two Mbbs is described as overlaps because both the x
and y intervals of the two Mbbs overlap each other. If only the x or y interval overlaps but not
both, the spatial relationship is described as disjoint or north, south, west, east, above, below, etc.
depending on the relative positions of the intervals. The primitives used to compare two x-intervals
are illustrated in Figure 3.9. Based on the x and y interval primitives, the directional and topological
relations between two objects can be determined.

MOQL also applies the interval primitives to model temporal elements, i.e., time. For example,

20

Figure 3.8: Mbb defined by intervals

A start B

A finish B

A meet B

A overlap B

-------------------- A before B

Figure 3.9: How x-intervals are compared

21

if the time interval of video-clipl is before the time interval of video-clip2, then video-clipl is before

video-clip2.

Implementation Considerations

. otes

...........

............

................

..............

Figure 3.10: Edge detection may not be accurate

In order to extract image features and store the data in the database, sophisticated image processing
techniques are necessary. One of these techniques is edge detection, which outlines the shape of an
object. From the image processing point of view, each object is a collection of pixels. Depending
on the gray-level or cclor of the pixels, not all of them can be detected accurately. Figure 3.10
shows that the Mbb may not be able to enclose the object because some pixels at the boundary
are not detected accurately. This will affect the Mbb approach because the Mbbs may be disjoint
while the objects overlap. To allow flexibility in the system, the limit variable can be defined by the
application to set the tolerance limit when comparing intervals. For example, to decide whether two

x-intervals z 4 and z g are equal,
| za — zp |< limit (3.3)

can be examined instead of
[za—z5|=0 (3.4)

where litmit can be > 0.
3.2.4 The Color Feature

The color feature can be associated with an object (e.g., apple), or an image (e.g., the sunset scene).
Each color is defined by its three component values: red (R), green (G) and blue (B). The RGB

components of the colors in Figure 3.11 are analyzed in the following table.

[Color [T [2 [3] 4] 5] 6] 7 [8] 9 [I0] 1l [12]13]14]15 [16|
Red [[255] 0 | 25 [255 [255] 0 | 47 [0]255] 0 |103[36] 0 | 0 | 255] 255
Green || 0 | 255| 0 | 0 | 25 | 117 | 0 |0 | 220] 31 | O |36 | 255| 0 | 0 | 142
Blue || O [229 | 255] 22 | 0 | 255|255 0| O | 255 | 255 36| 8 | 255|247 | O

There are two common ways to store the color feature. The first method is to associate a color

22

Figure 3.11: The red, green, blue components of a color

identity (id) with an object, and use the color id (key) to reference the corresponding color values
in a iookup table. The second method is to store the red (R), green (G) and blue (B) values of a
color directly with an object. The RGB values are in the range [0,255] and therefore can be stored
as a CHAR structure.

The first method requires less storage space because each color is stored only once in the lookup
table. On the other hand, the second method is more time efficient because there is no need to
retrieve the color values from the lookup table during query execution. In order to shorten response
time, the DISIMA type system has chosen the second method.

To allow an object or an image to associate with more than one color, the color feature is defined
by the Colorgroup class in the type system. Each colorgroup instance is made up of one or more
color instances.

Depending on the requirements of an application, different color extraction techniques can be

applied. The simplest algorithm is to take the average color (avggr, avgs, avgg) of a region.

avgn = &=Ll (3.5)

avgg = -Zi—zl‘(]-';and (3.6)
b

avgp = z% (3.7)

where n is the number of pixels in the region and (r;, g;, b;) are the color values of the ith pixel.
Another technique is to extract a few dominant colors to represent a region. Since the type

system can store a colorgroup, this technique is possible. Currently, only one color (the average

23

color) is stored with each object. Later in the development, the average color will be replaced by a

number of dominant colors.

3.2.5 Geometric Object Hierarchy (The Shape Feature)

If all the objects can be described using the primitive shapes such as circle, square, rectangle, triangle,
etc., processing will be easier. Unfortunately, the type system has to take into account arbitrary
shapes which cannot be described in simple geometry. To describe arbitrary shapes, the type system
uses polygon. Imagine repeatedly cutting the boundary of a shape into half. It will come to a stage
where the divided portions are very close to straight lines (Figure 3.12). The polygon formed by
these segments can give a reasonably accurate estimation of the shape. The representation becomes

more precise when the number of vertices of the polygon increases.

boundary described by segments

Figure 3.12: Uses polygon to describe arbitrary shape

Why does the type system define other primitives if shapes can be represented by polygons?
This is because some applications, i.e., graphic design, may need precise descriptions of circle, ellipse
and other basic geometric shapes. Separating these primitives from the general Polygon class also
reduces the search and computation time because the algorithm applied to shape matching can be

computationally complex (refer Section 3.3).

Atomic Shape

A geometric shape can either be atomic or composite. Atomic shapes are further categorized into:
point, l-dimensional and 2-dimensional. I-dimensional shapes do not have area. 2-dimensional
shapes have area but not volume. 3-dimensional shapes can be incorporated into the type system

in the future.

Definition of Atomic Shapes

When defining atomic shapes, the image is viewed as an X-Y plane with the origin at the top-left

24

Caomiey

@

x N
CSauare)

Figure 3.13: The Geometric Object Hierarchy (Logical design)

corner. X increases from left-to-right and Y increases from top-to~-bottom. Measurement is made in

terms of pixels.

e A point is defined by its z and y coordinates on the X-Y plane.

¢ A polyline contains n consecutive straight lines with no intersection, i.e., n € [2,00], and the

start point is not equal to the end point.
e A segment is a polyline with n = 2.

An ellipse is defined by its center and the end points of its major and minor axes on the

boundary.

A circle is an ellipse with the two axes of equal length.

A polygon contains n consective segments, i.e., n € [3,00], and the start point is equal to the

end point.

A triangle is a polygon with n = 3.

¢ A rectangle is a polygon with n = 4, and each segment is 90° clockwise from the previous

one.

e A square is a rectangle, but the four segments are of the same length.

The Atomic class can be extended to incorporate more shapes, such as curve or arc, if required.

Design and Implementation Conflicts

In the OO approach, a subclass is more specific than its superclass. In other words, the subclass is
defined by adding more data members or functions. From the data member point of view, Ellipse

should be a subclass of Circle because a circle can be defined by its center and a point on the

25

boundary, while an ellipse has to be defined by three points: the center and the two end points on
its axes. However, from the logical point of view (Figure 3.13), Circle should be the subclass of
Ellipse because a circle is defined by imposing an additional restriction on an ellipse; that is, the two

axes have to be the same length. A similar argument applies to the Rectangle and Square classes.
4
Con >

elc.

Figure 3.14: The Atomic Hierarchy (Flat hierarchy)

To overcome this conflict, a flat hierarchy was once considered (Figure 3.14). The problem with
the flat hierarchy is that it does not take full advantage of the OO inheritance property. After
consultation with some OO design experts, the final design as shown in figure 3.15 evolved.

Figure 3.15 shows the final design of the Geometric_Object class hierarchy. The I_ class defines
the data members, and the C. class is a concrete class that defines the constructor, and other function
members necessary for the manipulation of the objects. The C._ class inherits the data members
from the I_ class, and a set of virtual functions from its abstract superclass. For example, C_Ellipse
inherits the data members from I_Ellipse, and the methods from its abstract superclass Ellipse. The
separation of data members and methods, in [_ and C. classes, preserves the logical concept of Circle
being a subclass of Ellipse and, at the same time, there is no conflict in data members’ and methods’
inheritance. An extraction of the I class and C_ class implementation is included in Appendix A.
In the current design, the I_ classes are independent from each other. An alternative design is to
apply inheritance on the I_ classes, so that I_Ellipse is a subclass of I_Circle, I_Square is a subclass
of I_Rectangle, and so on.

A shape (Geometry_Object) can be composite or atomic. A composite shape is comprised of
more than one atomic shape. Atomic shapes are further divided into three categories: point, 2-
dimensional (2D) and 1-dimensional (1D) shapes. A shape which has an area, e.g. a polygon, is
classified under 2D. A 1D shape has length but not area. Due to the special characteristics of the
point shape, it is not classified under 2D or 1D. In the current design, two class groups are defined
under 2D: the Polygon and Ellipse groups. The Polyline group is defined under 1D.

The Geometric.Object class supports three types of similarity match: full-group, class and sub-

group, depending on the similarity threshold specified in the query.

e Full-group match-
When the similarity threshold specified < 1, the query engine searches all the classes in the
group. The ellipse group includes the Ellipse and Circle classes, and the polyline group includes

26

B JEZER .

Figure 3.15: The Geometric Object Hierarchy (Final design)

the Polyline and Segment classes. The Polygon, Rectangle, Square and Triangle classes belong
to the polygon group. For example, the query

SELECT image

FROM image m, lso o

WHERE m contains o

AND o.shape similar rectangle similarity 0.5;
will retrieve not only the shape on the left in Figure 3.16, but also the one on the right. The
shape on the right is a polygon, but is similar to the target rectangle, and thus should be
returned to the user. It is retrieved by performing a full-group match. A class match, on the

Rectangle class only, will not retrieve this shape.

rectangle polygon

Figure 3.16: An example of deep search

Full-group match applies when the similarity threshold in the search condition < 1. Class
match or sub-group match applies when the similarity threshold = 1 (exact match), depending

on whether coordinates of the shape are specified.

Class match—
Class match searches only the class specified. For example, the condition:
o.shape similar rectangle(1,2 10,1 10,3) similarity 1.0;
requests a rectangle defined by the given coordinates. Since the simialrity required is 1, there

is no need to search classes other than the Rectangle class.

27

e Sub-group match—
However, an exact match can be expressed in a different way, without giving the coordinates.
For example, the condition:
o.shape similar rectangle similarity 1.0;
requests any shape which qualifies as a rectangle. A class match is insufficient in this case,
because Square is a subclass of Rectangle, and squares should also be returned to the user. A

sub-group match searches not only the class specified, but also the subclasses.

Orientation of Atomic Objects

The translation, rotation and scaling of objects should not affect the result of similarity match.
However, to allow for future requirements, the DISIMA type system is designed to store orientation
information without affecting the efficiency of the system. For example, instead of storing the width
and length (or the top-left and bottom-right corners) of a rectangle, in the type system a rectangle is
defined by its center and two neighbouring corners. Similarly, an ellipse is defined by its center and
the two intersecting points, that its major and minor axes meet the boundary. If only the width and
length are stored, the rectangle is assumed to be parallel to the x-axis and the orientation information
is lost. For example, Figure 3.17 shows rectangle,s and rectangleg, with different orientation. The
orientation is defined by the angle between the principal axis and the x-axis. The principal axis can
be calculated based on the center and the two neighbouring corners of a rectangle. In this example,
rectangle 4 has an orientation angle 64 ~ 45°, and rectangleg has an orientation angle g = 90°.

If orientation is specified in a query, similarity can be determined by comparing 84 and 5.

\ Recltangle B

rectangle A

X-axis

------- principal axis

Figure 3.17: Orientation of shapes

If only the width and length of a rectangle is stored, rectangle 4 is the same as rectanglep because
they have the same width and length. Some systems use the top-left and bottom-right corners to
define a rectangle. This is obtained by rotating the rectangle about its center, so that the rotated
rectangle is parallel to the x-axis. The top-left and bottom-right corners are then recorded. The

orientation of the rectangle is lost by the rotation-rectangle 4 also becomes the same as rectanglep.

28

Composite Shape

A composite object is comprised of more than one atomic shape. There are two reasons why
composite shapes are included in the type system. First, the edges of an atomic shape do not
intersect and thus the Atomic class is insufficient to define shapes similar to those illustrated in
Figure 3.18 (a) and (b). The composite shape in (a) is composed of two triangles and in (b), the
shape is composed of a triangle and a polyline.

The second reason that composite shapes are included in the type system is because an application
may want to group disjoint atomic shapes together to represent an object. Figure 3.18 (c), which

contains three circles, one triangle and an ellipse, is of this kind.

OO0

O
()

@) (b) (©)

Figure 3.18: Examples of composite shapes

Methods to support Shape Manipulation

In the DISIMA type system, the translating, scaling or rotating of an object is defined as shape
manipulation. There are two reasons for shape maniupulation. First, the user may want to do a
what-if operation by manipulating the shape of an object in an image, and view the result on the
graphical interface. Either the original shape is restored or the modified version is saved in the
database after manipulation. The second reason for shape manipulation is similarity match. The
target shape may need to be manipulated in order to match the database shape. In order to support
shape manipulation, the type system defines the Vector class.

As discussed earlier, shapes can be inscribed by polygons. A polygon is defined by a list of seg-

ments or a list of points. By manipulating these segments or points, the polygon can be translated,

scaled or rotated. For example, given a point (5,5) and a vector (_23) , the point is translated to
(7.,2).

Methods of the Vector class

The following vector operations are designed to support the manipulation of points and segments.
e magnitude() computes the magnitude of the vector.

e gradient() computes the gradient of the vector.

29

e reverse() reverses the direction of the vector.

e add() computes the sum of two vectors.

e subtract() computes the difference of two vectors.

o dot_product(} computes the dot_product of two vectors.
e angle() computes the acute angle between two vectors.

e clockwise() determines whether the next vector is turning clockwise from the previous vector.

Methods of the Point class The following methods support the manipulation of points.

o distance() computes the distance between two points.

e get_vector() computes the vector from the origin to a given point.

e rotate() computes the rotated point, given a pivot and an angle or rotation.
o reflect() computes the reflected point, given a pivot of reflection.

e scale() computes the scaled point, given a pivot and the scaling percentage in both the x and

y direction.

o translate() computes the translated point, given the vector of translation.

Methods of Segment class The following methods support the manipulation of segments.

e get_intersect() computes the intersection point of two segments.

o parallel() determines whether two given segments are parallel.

e perpendicular() determines whether two given segments are perpendicular.
e vertical() determines whether two given segments are vertical.

e horizontal() determines whether two given segments are horizontal.

e length() computes the length of a segment.

o distance() computes the perpendicular distance of a point from a segment.

e orthogonal() computes the cutting point if a perpendicular line is drawn from a point to a

given segment.

e pass_thr() determines whether a segment passes through a given point.

30

o intersect() determines whether two segments intersect.

o angle() computes the acute angle between two segments.

3.2.6 The Texture Feature

As with the color feature, the texture feature can be associated with an image or an object. The
texture feature is defined by the Texturegroup class, and each texturegroup instance is associated
with one or more texture instance. In contrast to the color instance, which defines three components:
red, green and blue, a texture instance defines only one value in the normalized range [0,1]. The
value is computed using an image texture extraction technique. More complicated textures require
values derived from a number of dimensions. For example, to compare two floral patterns, an
application may need to measure the smoothness, the horizontal, the vertical and the diagonal
dimensions. In this case the texturegroup instance is comprised of four texture instances, each of
which corresponds to one dimension. Other examples of complex textures are discussed in [19] which
uses the dimeunsions: periodicity, directionality and randomness. Applications using simple texture
feature may find it sufficient to use one or two dimensions. Normally, the number of dimensions

improves the result but the trade-off is between accuracy and computation time.

e e) M 3 St e i S T

Figure 3.19: An example of texture matching

Figure 3.19 shows four images of similar texture. Suppose the top-left image is given in a query,
the purpose of similarity match is to retrieve the other three from the database. The DISIMA type

system is designed to store a list of texture values which can be used in similarity match (Section

3.3).

31

3.2.7 Image and Image Representation

The separation between Image and Image Representation classes allows different formats or com-
pression levels of an image to be stored. An image can be stored in JPEG, GIF, BMP and TIF
formats. Different file formats exist because each has characteristics that work best for a specific
purpose. For example, the JPEG format works well for Internet photos, and the TIFF format works
well for desktop publishing. Applications which can afford the conversion time can choose to store
one basic format, i.e., JPEG, and convert to the others whenever required.

The DISIMA type system also allows the same file format to be represented at different compres-
sion levels so that the user can browse thumbnails at low resolution and display the high resolution
versions only if necessary. The latter can be time consuming.

In contrast to other systems which store images in the file system, the DISIMA type system
stores images in the database. The raw image is stored as a byte stream in the image_representation
instance. The advantage of such design is to maintain the integrity of the database, making full
use of the concurrency control, transaction processing and recovery supported by the underlying

Database Management System (DBMS).

3.2.8 Methods to support Query Execution

The DISIMA type system provides a number of query functions to support query processing. There

are three categories of query functions, as described below.

QueryDeep() (Deep search)

QueryDeep() is used to execute a full-group match, or a sub-group match (refer Section 3.2.5), where
the query engine searches a hierarchy of classes. For example, the query

SELECT m

FROM image m, person p

WHERE m contains p;
retrieves not only persons, but also politicians, moviestars, etc., who belong to the subclasses of
Person. Another example is:

SELECT m

FROM image m, person p

WHERE m contains p

AND p.yearOfBirth<1980;

which retrieves all persons, politicians, moviestars, etc., whose yearOfBirth < 1980.

Query() (shallow search)
Query() is used to execute a class match (refer Section 3.2.5). The query engine does not search any

superclass or subclass; only the class specified in the query is included in a shallow search.

32

Equal()
The similarity match algorithms are implemented in the equal() functions. These functions are
provided by the DISIMA type system to compare the database images with the target image, and
return similarity grades, which are then compared with the threshold specified in the query. If the
grade is lower than the threshold, the database image is discarded; otherwise the image will be
retrieved.

A grade of ‘1’ is assigned to any successful spatial matching (e.g. p.mbb above q.mbb) or keyword
matching (e.g. p.yearOfBirth=1975). The grade for shape, color or texture is computed according

to the distance functions which is described in Section 3.3.

3.3 Similarity Match

Understanding similarity match requires a knowledge of image processing. Similarity match tech-
niques are often complex and diverse. They are designed for specific applications and there is no
single general algorithm which can satisfy every requirement. The purpose of this section is not to
analyze all the similarity match algorithms available in the literature, but to introduce the concept
and provide background information of how the DISIMA type system is designed to implement this
concept. Readers interested in the topic can refer to other image processing research papers (e.g.,
[9], [19], [20], [28]) for detailed discussion on similarity match algorithms.

The difference between similarity match and exact match is that the former does not require the
user to remember the precise detail of the image or object. In fact, certain features, i.e., shapes,
are difficult to describe precisely. For example, Figure 3.20 (c) 1s similar to a triangle but it is not
a triangle. When a query asks for a triangle, only (a) and (b) will be retrieved in an exact match

operation. However, a similarity match will retrieve (c) as well.

(a) (b) (©)

Figure 3.20: Shapes equal or similar to a triangle

Similarity match algorithms define distance functions which, depending on the degree of similar-
ity, assign grades to the database objects. ‘0’ means no match and ‘1’ means an exact match. The

user can limit the output by specifying a threshold in the query so that objects with lower similarity

33

grades will not be extracted. The user can also limit the output by restricting the number of images
displayed.

Similarity match is a useful process but it can be expensive. Complex and time comsuming dis-
tance functions are often required in order to produce accurate results. In the DISIMA type system,
distance functions can be defined at condition level or at image level. An image is retrieved only if

its similarity scores are higher than the thresholds both at the condition and image levels.

Applying similarity threshold to a condition

Consider the following query which has a contains condition, and a shape condition.

SELECT m

FROM image m, lso o

WHERE m contains o

AND o.shape similar polygon(i,1 10,2 5,12 3,20) similarity 0.8;

The similarity threshold 0.8 applies to the condition o.shape. If the return value of the distance func-

tion applied to o.shape > 0.8, then the object is retrieved. If no threshold is specified, the default is 1.

Applying similarity threshold to an image

Different from the threshold applied to a condition, global similarity applied to the image.

SELECT m

FROM image m, lso o

WHERE m contains o

AND o.shape similar polygon(i,1 10,2 5,12 3,20)
AND o.color similar colorgroup(200,100,150)

global similarity 0.9;

Here, the similarity threshold 0.9 applies to the whole image (all the conditions). The query has
three conditions:

m contains o,

o.shape and

o.color
After each condition, a similarity grade is scored. The general equation to calculate global similarity
G is given by:

G = eigrade; + eagrades + ... + eqgrade, (3.8)

where e; is a coefficient and Y . e; = 1. Grade; is the similarity score of condition;. In this

example, if G > 0.9, the image will be retrieved.

34

The ultimate goal is to allow applications to set the defaults of e; at installation time and allow
the defaults to be overriden at query level (refer Section 6.2 on future work). At the present, e; is

assigned -}; where n is the number of conditions in the query.

3.3.1 Examples of Similarity Match Algorithms

Various similarity match algorithms on color, shape and texture have been discussed extensively in
the literature; the choice of one is application dependent. An important aspect of all these algorithms

is normalization. In order to compare the return values derived from differeat algorithms, these

values are normalized in the range [0,1].

Algorithms on Shape

A shape is defined by its boundary. If the boundary can be represented by a mathematical formula,
then the comparison can be simplified. Unfortunately this is generally not possible. Over the years,
different algorithms have been suggested. The general focus is to make the comparison invariant of

translation, scale and rotation. Some of these algorithms are discussed below.

e Chain code—
Chain code was one of the early algorithms to compare shapes [11]. The eight directions are

used as the measuring units. The boundary of an object is segmented and represented by these

units.

[Direction [N|S]E| W | NE | NW | SE | SW |
[Code [1]2[314] 5] 617738 |

N

@) ®)

Figure 3.21: Boundary represented by chain code

In Figure 3.21 (a), the object is represented by the chain code (5,7,8,6) clockwise. Objects
of similar shape should have similar chain codes. To make the comparison independent of

rotation, after each comparison the first number is removed and placed at the end of the

chain, and the two chains are compared again.

35

Chain code provides only a rough measurement. For shapes like the one illustrated in Figure
3.21 (b), eight directions are not sufficient. More precise measurement can be obtained by
extending the eight directions to sixteen. However, there are shapes requiring more than

sixteen directions.

e Signatures—
The basic idea behind the signature algorithm is to transform the boundaries of objects into

continuous functions which are easier to compare.

distance distance

L AN

)) degree degree
Signature of a circle Signature of a square

(a) [(b)

circle

. _F
difference W square

(c)

Figure 3.22: The signature algorithm

Figure 3.22 (a) shows the signature of a circle. The horizontal axis represents the measurement
in degrees starting from the positive x-axis and moving counter-clockwise. The vertical axis
represents the distance between the boundary and the center of the circle. When the shape is
a circle, the distance (radius) is constant and thus the signature is a horizontal line from 0° to
360°. The signature of a square is given in (b). Figure 3.22 (c) shows the comparison between
the two signatures. The similarity between a circle and a square is computed by taking the

area between the signatures. The smaller the area, the more similar the shapes.

It is likely that similar shapes of different scales may appear in images, as shown in Figure
3.23. To make the comparison independent of scale, the perimeter of the shape is normalized
to ‘1’.

The distance function is given by:

2 o=1 1D (8)as — D(6)gry | (3.9)

n

stmilarity = 1 —

where @ is the degree anticlockwise from the x-axis and D(#) is the distance between the
boundary and the center. D(8)as and D(8)gry refer to the database object and the desired ob-
Ject respectively. Assuming n pair of corresponding values are selected from the two signatures

for comparison, each pair will contribute % to the similarity.

36

@ (b) ©

Figure 3.23: Shapes of different scales

There are two ways to make the comparison invariant to rotation. The first method is to
ensure that both signatures start at the same point on the boundary, i.e., the farthest point
from the center. The second method is to take many comparisons. Each comparison differs
from the previous one by shifting the target signature horizontally. The minimum similarity

computed from these comparisons is the final result.

The signature algorithm is more accurate than the chain code, but the problem is that an
algorithm suitable for one type of shape may not be good for other shapes. The signature
algorithm performs well to match shapes which are in proportion. When applied to distorted
shapes, the similarity grade can be low even though the shapes are similar. This problem is

illustrated in Figure 3.24.

@) (b)

Figure 3.24: Problem with the signature algorithm

Suppose Figure 3.24 (a) and (b) are two images in the database. The upper three layers of the
trees are of the same shape and in the proportion of 1:1. However, the bottom layers are out
of proportion (= 1:2). As a result of normalization, the shapes cannot match their vertices,

and the corresponding values in the signatures become very different.

Turning angle algorithm—
Another algorithm discussed in the literature is the turning angle algorithm which is based on

the concept that shapes can be represented by polygons.

Take a polygon containing n edges and vertices. Starting from any point on the boundary

and traversing the edge anticlockwise until a vertex is encountered. The first turning angle

37

® 3
65 > firstwming angle

>
N

arbitrary starting point
(a) b

Figure 3.25: An example of turning angle

is the angle between the first edge and the second edge, as illustrated in Figure 3.25 (2). A
total of n turning angles is recorded after traversing all the edges. Since the external angles
of a polygon add up to 360°, the sum of the turning angles should also be 360°. As with
the signature algorithm, the perimeter is normalized to ‘1’. By plotting the cumulative angle
on the vertical axis, and the distance traversed on the horizontal axis, a step-like graph is

obtained-as illustrated in Figure 3.25 (b).

To handle shapes with concave vertices, the turning angle algorithm defines counter-clockwise
as positive and clockwise as negative. In Figure 3.26, angles A, C, D and E are counter-
clockwise, and angle B is clockwise. The graph contains a step down to reflect a concave

angle.

360

Figure 3.26: Polygon with concave angle

The advantage of this algorithm is to allow small variations in shapes. The similarity between
the two triangles shown in Figure 3.27 (a) and (b) is computed by comparing the two plotted
graphs. The graphs in (a) and (c) show greater difference in area reflecting a lower similarity
between the two shapes. When a query asks for a triangle, the user would expect (b) but not

(c) in the result.

38

360} - - === === === ——
90 ;e

120 E

7 150
(a) i

4
]
(b)
1
(c)

Figure 3.27: Small variation in shape

The similarity function between a database object Og, and a query object Og,y is given by:

1.0

min() _ 16(db); — 6(ary):]) (3.10)

i=0.0
where 8(db); corresponds to the the turning angles of Og, 8(qry); corresponds to the the
turning angles of Og4ry and min is the minumum of all the possible horizontal translations of
f(qry);.
The turning angle algorithm is adopted by the DISIMA implementation, because this algo-

rithm is capable of handling small variation in shapes, as illustrated in Figure 3.27.

Implemented version

The original turning angle algorithm starts from an arbitrary point on the boundary. Since
in the DISIMA type system, the vertices of a polygon are known, the traversal can start from

one of the vertices as shown in Figure 3.28.

By starting at a vertex Vg, the traversed distance d; at #;5 vertex can be simply computed by

39

len2

/150 lent

L=lenl +len2 +len3 =1

Figure 3.28: Implemented version of the turning angle algorithm

the equation (1 <7< n):

=\ len; .
d; = Z (3.11)

where L is the length of the boundary and len; is the length of the i;; edge.

The turning angle algorithm is limited to polygons and does not apply to circle, ellipse or any
curve shape implemented in the type system. If a query asks for a polygon like the one in

Figure 3.29, images containing ellipses will not be included in the result.

Figure 3.29: Polygon similar to an ellipse

Composite shape—
To the best of our knowledge, there is no known algorithm that compares composite shapes.
The DISIMA type system proposes an algorithm which contains three stages. A higher stage

produces a more precise result than the lower stage.

Stage I compares shape

At this 1*¢ stage, only shapes are compared, ignoring relative size and location. Suppose Figure
3.30 (a) is the target shape. The patterns shown in (b), (c) and (d) will be retrieved because
they all contain a circle and three triangles.

Stage II compares relative size

At the 2™? stage, the relative sizes of the atomic shapes are examined. Patterns (b) and (c)

will be eliminated because the target shape requires the circle to be smaller than the triangles,

and the triangles are of the same size.

40

2O IY

@ ® © @

Figure 3.30: A three stages algorithm to compare composite shapes

Stage III compares spatial relations between atomic shapes

The matching of composite shapes is different from the matching of atomic shapes. The latter
is independent of translation. The former has to take translation into account in order to
obtain an accurate result. In stage III, the centers of the atomic shapes are used to determine

their relative positions. Pattern (d) will be eliminated after this stage.

.
N
[
\
\

DANAN
e

Figure 3.31: Spatial comparison on composite shapes

To perform the 37 stage comparison, the DISIMA type system makes use of the SIM algo-
rithm ([12], [13]), which is designed for images containing multiple objects. The concept can
be applied to stage III comparison of composite shapes, by treating the atomic shapes of a
composite shape as multiple objects in an image. The idea is to compare the corresponding
edges in the two composite shapes. The edges are formed by linking the centers of the atomic
shapes, as illustrated in Figure 3.31. If there are n edges, each edge contribute ;11— to the sim-
ilarity. Suppose € is the angle between two corresponding edges, the contribution is given by

the equation:
cos(6)

. (3.12)

Algorithms on Color

There are two commonly used color models: the RGB and HSI models. In the RGB model, each

color is defined by its red, green and blue values. Each value is in the range [0,255]. However,

41

the RGB model is not good for color matching because it combines the pure color with intensity
(or degree of brightness). The HSI model is commonly used in color matching. The HSI model
separates a color into the hue, saturation and intensity components corresponding to the pure color,
the amount of white light added to the pure color, and the brightness.

H is in the range [0,360], S is in the range [0,1] and I is in the range [0,255]. In order to perform
similarity match, H and I are normalized to the range of [0,1]. The DISIMA type system allows
applications to decide the weights to put on these components. For example, an application may
emphasize the HS components and assign less or no weight to the [component. The general equation

to compute the similarity between the database color {db) and the target color (qry) is:

stmilarity = 1 — (wph + wss + w;i) (3.13)
where
h= |h4b3—6:qry| (3.14)
s = |sgp — Sqryl (3-15)
i =l — fary 2_5;‘”' (3.16)

The default value for the weights, i.e. wy, w, and w;, is % The RGB values of a region can be

extracted by image processing techniques. The conversion from the RGB model to the HSI model

is given by:
(g("-g)‘f-(r—b)))
cos(H) = 2 (3.17)
Y =9)(r =)+ (r = b)(g — b))
S=1- ﬁmin(r,g, b) (3.18)
I= (’"_+§Lb) (3.19)
where r, g and b are the red, green and blue values, respectively ([11]).
percentage of
color
\ c1
100 100]

Cl
2 ca [as3
1 [

normalized color value 1

Figure 3.32: Histograms containing 5 colors and 1 color

When color matching involves a group of colors, color histograms are commonly used. Suppose

the group of colors is { Cy, Ca, C3, C4,Cs }, and the percentage of C; is p;. Figure 3.32 (left) shows

42

the color histogram. The similarity between two color histograms is given by:

1
similarity = Y |p(db); — p(qry)i (3.20)
=0
where p(db); and p(qry); refer to the percentage of i** color in the database color group and the

target group respectively.

An experiment using average color

Figure 3.33: Experiment result using average color

To extract all the colors in an object is a tedious task and not efficient. Instead, accurate
comparison can be made based on a few dominant colors. In some cases, even average color can
produce a satisfactory result. To illustrate this point, the author conducted an experiment on
seventeen images, two of which were sunset images. An orange color (r = 255,9 = 142,b = 0),
which gives a sunset background, was used as the target color. Four images (Figure 3.33) were
retrieved, including the two sunset images. The comparison was based on the average color of the
image. There are unwanted images in the result, but the purpose of similarity match is to include
the correct images. In this case, average color is sufficient for the query.

In the current implementation, the average color inside the Mbb of an object is used. Provided
the object occupies a large proportion of the Mbb, the background colors should not interfere too
much with the result. This approach is also based on the assumption that there is a dominant color
which is very close to the average color. This method will be replaced by using the dominant colors

in the Mbb.

Algorithms on Texture

Texture is more difficult to analyze than color and shape. An example of the complex texture
algorithms in the literature is the wold model ([1], [19]). In general, the texture of an object can be

defined in different dimensions. Figure 3.19 shows a texture which can be measured horizontally,

43

vertically or diagonally. There are other dimensions such as smoothness, coarseness, regularity,
etc. A texture can be described more accurately by measuring more dimensions. However, more
measurements will make computation more time consuming and inefficient. The trade-off has to be
considered by individual applications.

Given a list of normalized values £, to t,, taken from n dimensions, the simplest distance function
is the linear average, i.e.,

Zx’:nl D"’ (321)

stmilarity =

where D; is the absolute difference between the database t; and the target ¢;, or weighted linear
sum, i.e.,

similarity = Z w; D; (3.22)

i=1

where w; is the weight assigned to the *» dimension and
n
Z w; =1 (3.23)
i=1
Euclidean distance can also be used, i.e.,

(3.24)

stmilarity =

The choice of dimension and distance function is application specific. In the current implementation,

the linear average is used.

Algorithms on Spatial

Two approaches to compare spatial relationships were mentioned in Section 3.2: based on Mbb and
on centroid. If the centroid approach is used, similarity can be measured in terms of angle § given

in Figure 3.34.

i angle

target image database image

Figure 3.34: Match spatial relationship based on centroid

Similarity can be computed by taking | cosé | or 1-| sinf |. In other words, as 8 approaches zero,

the similarity approaches 1.

To add the distance factor, the following general formula can be used:

similarity = wq | dgp — dgry | +we | cos |, (3.25)

44

where wqg and wy are the weights and wg+wg=1. The distance between the objects, in the database
image, is given by das, and the distance between the objects, in the target image, is given by dgry .
In the current implementation, the Mbb approach is used. If two Mbbs satisfy a spatial relation

a grade of 1 is assigned to the result; otherwise the grade is zero (refer Section 3.2.3).

45

Chapter 4

Query System

The DISIMA query system is featured by three components: the MOQL language, the parser and

the engine. These components are explained in this chapter.

4.1 MOQL Language

MOQL is a multimedia query language based on ODMG’s (Object Data Management Group) Object
Query Language (OQL) [18]. MOQL is designed to supplement OQL by adding the expressive power
to specify image queries. Furthermore, MOQL also defines the framework to capture the temporal
element as well as some query functions in multimedia databases.

OQL follows the SELECT-FROM-WHERE syntax similar to SQL. Most of the extensions that
MOQL introduces to OQL are in the WHERE clause [18]. These include the spatial and contain
search conditions. The spatial conditions are constructed by using spatial objects (such as points,
circles, line, etc.), spatial functions (such as length, area, etc.), and spatial predicates (such as cover,
disjoint, etc.}). A spatial condition can thus test whether a line intersects a point, a circle covers
another circle, and so on. The contain condition has the basic form:

m contains o
where m is 2 media object, i.e. image, and o is the salient object (refer Section 3.2.2) in the media.
The contain condition checks whether a salient object is in a particular media object.

The DISIMA project implements the contain and spatial definitions defined in MOQL, and

expands the language by defining the shape, color and texture semantics.

4.2 A Query Parser for the MOQL Extension

SQL (Structural Query Language) is relational oriented and OQL (Object Query Language) is
object oriented. Both languages lack the expressive power to describe image queries. The MOQL
extension is designed to bridge the gap. In order to define queries on color, shape, texture and

spatial relationship, new semantics and syntax are introduced in the MOQL extension.

46

Since MOQL queries follow the same SELECT-FROM-WHERE structure as traditional SQL
queries, the design of the DISIMA parser is able to make use of the basic rules defined in SQL
parsers. An example of these basic rules can be found in [17]. An extraction of the new rules defined
on top of the basic rules is in Appendix B.

The objective of the DISIMA parser is to check the semantics and syntax of the external query,
which is in the form of a character string, and convert the parsed string into an internal representa-
tion. Section 4.2.1 will explain the new semantics and syntax introduced in the MOQL extension,

and Section 4.2.2 will discuss the internal structure representing a query.

4.2.1 New Semantics and Syntax

Query language needs to be user friendly so that users can simply describe “what” they want and

not “how” to get the result. The following semantics and syntax are aimed to achieve this objective.

The contains condition

The result of traditional queries are often data values such as p.age, as in the following example:

SELECT p.age
FROM persom p
WHERE p.lastname=‘Clinton’;

In a MOQL image query the result is a set of images. The contains condition imposes a restriction

on the images retrieved. The query

SELECT m
FROM image m, person p
WHERE m contains p

eliminates all images which do not contain persons.

Each contains condition names an object in an image. For example, if a query has two contains
conditions, l.e.,

m contains ol and m contains o2,
the resulting images contain at least object ol and 02. However, if the conditions are connected by
the operator or instead of and, i.e.,

m contains ol or m contains o2,

the resulting images can contain only object ol, or only 02, or both.

The shape condition

If a condition requires keyword matching, e.g.,
p-lastname=‘Clinton’

the left-hand side of the comparison predicate specifies the object label and the attribute name. To

47

distinguish shape matching from keyword matching, the reserved word shape is used. There are two

types of shape conditions: general and specific.

e General shape condition—
A general shape condition specifies a class name, e.g.
p.shape similar polygon
In this case, all Polygon class objects and objects belonging to the subclasses of Polygon-such

as squares, rectangles and triangles—are retrieved. To retrieve squares and rectangles, the query

is:

SELECT m
FROM image m, lso p
WHERE m contains p

AND p.shape similar rectangle.

To obtain the same query result, the query can also be written as:

SELECT m
FROM image m, rectangle r

WHERE m contains r;

To eliminate squares from rectangles, an additional restriction can be used, i.e.,
p.shape similar rectangle

and not p.shape similar square

e Specific shape condition—
A specific shape condition specifies the dimension of the target shape, e.g.,
p-shape similar polygon(z;,y; Z2,¥2 ... Zn,Yn)-.
The target polygon is defined by the list of points (z;,y1 Z2,¥2 ... Tn,yn). The query result
contains polygons which are similar to the target polygon, taking into account of the given

coordinates.

The color condition

The color condition is written in the form:
p-color similar colorgroup(ry,g1,6) r2,g2,02 ... 7n,gn,bn),

where n > 1 and r, g, b are the red, green and blue values. An object in the database can be associ-

ated with n colors.

48

The terture condition

The texture condition is in the form:
p.-texture similar texturegroup(t; t» ... {,),
where n > 1 and {; is a texture value measured in one of the n dimensions. An object can be

associated with n texture values.

The spatial condition

As explained in Section 3.2, DISIMA uses Mbbs to estimate spatial relations—topological and direc-
tional. The general form of a spatial condition is as follows:

pl.mbb relation p2.mbb,
where “relation” can be left, right, above, below, north, east, west, south, northeast, northwest, south-
east, southwest, equal, cover, covered-by, inside, disjoint, overlap, touch, contain or overlapped-by.
A spatial condition can be expressed by using the inversed relation. For example, “inside” and
“contain” are the inverse of each other and thus,

pl.mbb inside p2.mbb
produces the same result as

p2.mbb contain pi.mbb.
Note that “contain” (without “s”) is a spatial relation, as distinguished from the “contains” in the
contains condition.
The and, or, not conditions, and brackets

As with SQL and OQL, the operators and, or, not and brackets are used in MOQL queries. The

operator “and” has precedence over “or” unless brackets are used to override the precedence. The
syntax of a condition (search_condition) in a query is governed by a set of pre-defined rules, as shown

in Appendix B. A search_condition can appear in the following formats:

e Predicate—
A predicate can be a traditional comparison predicate, i.e., =, >, >, etc., or image predicate,

i.e., contains and similar.
e NOT search_condition
o (search_condition)
e search_condition AND search_condition
e search_condition OR search_condition
Combining different search conditions with the operators, a complex query like:
SELECT m

FROM image m, building o

49

WHERE m contains o

AND o.shape similar polygon

AND NOT o.shape similar rectangle

AND (o.color similar colorgroup(200,200,200)
OR o.color similar colorgroup(0,255,0));

can be generated.

Subquery embedded in a condition

The DISIMA parser allows different ways to express a query, simple or nested. For example, a simple

query like

SELECT m

FROM image m, polygon p, triangle t
WHERE m contains p

AND NOT m contains t;

can be expressed as:

SELECT m

FROM image m, lso o

WHERE m contains o

AND o.shape similar polygon

AND NOT o.shape similar triangle;

or can be written as:

SELECT m

FROM image m, lso o
WHERE m contains o

AND o not in (SELECT m

FROM image m, person WHERE m contains p);

The last one is a nested query which involves the execution of a subquery. Section 4.2.2 and 4.3 will

explain how a subquery string is structured as a subtree and executed by the DISIMA engine.

Similarity required

As mentioned in Section 3.3, the similarity threshold can be defined at condition level, e.g.,
o.color similar colorgroup(200,200,200) similarity 0.8

or at global level, e.g.,

SELECT m

50

FROM image m, lso o

WHERE m contains o

AND o.shape similar circle

AND o.color similar colorgroup(200,200,200)
global similarity 0.8;

Number of images requested

To limit the number of images returned to the user, the image_required clause can be included in

the query,

SELECT m
FROM image m, person p
WHERE m contains p

image_required 30;

4.2.2 Internal Structure of A Query

The input query to the DISIMA parser is a character string. After syntax checking, the query string
is converted to an internal representation (query object) which can be executed by the query engine.
A query object stores all the information given by the query string. Its main components are the

three pointers or oids (object identities) which can navigate to:

the select object which stores the information given in the SELECT clause.
the from object which stores the information given in the FROM clause.
the where object which stores the information given in the WHERE clause.

The similarity thresholds and number of images required, specified in the query, are also stored in
the query object.
The query object shown in Figure 4.1 corresponds to the query:

SELECT m

FROM image m, person p
WHERE m contains p

AND p.lastname=‘Clinton’
global similarity 0.8

image_required 30;

A query can have one or more select objects and from objects. In Figure 4.1 there are two from
objects and one select object.
The where object (or node object) is the root of a tree structure. A query tree can contain a

number of node and condition objects. A node object stores the operators and and or, and the result

51

Select obj

m

Query obj
global similarity=0.8
image_required=30

From obj
person p

From obj
image m

Node obj

and

Condition obj

m contains p

Condition obj
p.lastname="Clinton’

Figure 4.1: An example of a query object

of the search conditions. The query tree built during the parsing stage is constructed following the
order that search conditions are defined in the WHERE clause. Figure 4.2 explains how the node
and condition objects are ordered in the query tree.

In Figure 4.2, node objects are drawn in solid line, and condition objects are drawn in dotted
line. In each node object, the operator “or” can be used instead of the operator “and”. “A”, “B”,
“C” and “D” represent search conditions. A search condition can be a comparison predicate, i.e.,
=, >, >, <, < and <>. For example,

o.lastname = ‘Clinton’

[t can also be a contains or similar predicate, or a not in predicate involving a subquery, e.g.,

m not in (SELECT mi
FROM image ml, person p
WHERE m1 contains p)

Figure 4.3 is a more complex example involving four levels of nodes and conditions. Figure 4.4 is an
example of a condition involving a subquery.

The advantage of using a tree structure to store a query is that the nodes and leaves (condi-
tions) can be rearranged to achieve query optimization similar to how select, project and join are

manipulated in relational query trees.

4.3 A Query Engine for MOQL

After the parsing stage, a query object is ready for execution. It is now the responsibility of the

query engine to execute the query and return the result to the user. Before explaining how the

52

A and B

A and not B

Aand Band C
(Aand B) and C

(A and B) and (C and D)

P - - -
- N s, N e ~
/ \ 4 \ 4 \
4
A] \ B | c |
\ ’ \ ’ \ ’
~ 7 ~ ke ~ Ve
- -~ — -~

Figure 4.2: Examples of query trees

53

not A and not B

not \l / not
A, \ B
_/’ S

A and (B and C)

(A and (B and C)) and D and ((E and F) and G)

S
2

- =~
' N N
’ \ v
D 1 G !
‘\ 4 N 7
/ ~--7 R
e ,-\/ \,-\
’ N 7’ ~ s ~
’ \ ’ \ 7 \
A E 1 ' F 1
AN 4 ‘\ 4 N 4
~_ .7 / \ ~_.7 ~_.7
- =N =~
v N I AY
’ \ ’ \
B 1 v C o
AN ,I ~ ,I

Figure 4.3: A query with a lot of brackets

Select obj
m query obj
rom obj
image m

/ Ny o.shape \

s motin
.From obj N |
Iso 0 ; _ 1, Select obj

P PR R / t
’ \\ 0.sha C\\ A
! contains | ! “similar j query obj .
o ' polygon , From obj
) ’ triangle t

\\ ,
~ - ~ -

- -

select m

from image m, lso o

where m contains o

and o.shape similar polygon

and o.shape not in (select t from triangle t);

Figure 4.4: A nested query

DISIMA engine works, the next section reviews some basic operations in relational query processing

so that a comparison can be made between the relational and the DISIMA approach.

image table mbb table shape table texture table
ininageID mbbID....... shapelD....... LexturelD
£

object table / /
7

v 7

objectID imageID mbbID shapeID textureID colorID textID|
Va

1

color tabl text table

coloriD....... textlD.......

object table: objectID is the primary key
other attributes are foreign keys

Figure 4.5: Relational entities and relationships

4.3.1 Relational approach

In the relational approach, each entity is defined by a table. The attributes of an entity are defined
by the columns in the table. Tables can relate to each other through foreign keys. Figure 4.5 is an
example of a relational database containing seven tables.

When executing a query, tables are joined, tuples are selected and attributes are projected. Re-
lational query trees store the operators select, project and join in the nodes. Tables are stored in
the leaves as shown in Figure 4.6.

The intermediate table after each join operation contains attributes required in the final result
and also the foreign keys which are necessary for the join operations. These foreign keys may not be
required in the final result. In contrast, the DISIMA query engine applies the OO navigation and
associative access techniques. Only the oids of PSO objects are stored in the intermediate results,

Other information on color, shape, texture, spatial, etc. can always be obtained through the PSOs.

4.3.2 DISIMA approach

In the DISIMA approach, entity and relation tables are replaced by objects, and instead of joining
tables, related objects are located through pointers (or oids) as illustrated in Figure 4.7.
In relational queries, the join-attributes have to be specified explicitly, e.g., o.key = p.key, but in

MOQL queries, navigation through oids is implicit and does not need to be specified in the query.

55

project
select m.author
. . m.author
from image m, object o, color c
where m.imageID=o.imageID '
and o.colorID=c.colorID jomn
and c.hue_value=250; o.imagelD=m.imagelD

join / image table

c.colorID=o0.colorID

/ N\

select .
object table

c.hue_value=250

color table

Figure 4.6: A relational execution tree

Z Obje(:t ”

PSO object Mbb object
Colorgroup

object \

Shape object

Texturegroup
object

navigation path

Figure 4.7: Navigation from the PSO object

56

As mentioned in Section 3.2, the bridge that allows navigation is provided by the PSO objects.
From a PSO object, the associated color, shape, texture, spatial relation, image and LSO data can
be obtained. The DISIMA execution tree differs from the relation execution tree in the following

ways:
e Class ertents and not tables are stored in the leaves.

Instead of the join operator, the DISIMA tree stores the operator and (intersect) and or

(union) in the nodes.

The selection and projection operations are applied to the class extents and not the tables.

The intermediate result identifies a set of PSO objects satisfying the conditions.

project
select m image
from image m, 1lso o
where m contains o |
and o.color similar colorxgroup(255,0,255)
and o.texture similar texturegroup(0.6) intersect
project
pso
intersect l
\ select
R texture similar texturegroup(0.6)
i project
project pso]
SO
P texturegroup extent
select
Iso extent color similar colorgroup(255.0.255)

l

colorgroup extent
Figure 4.8: DISIMA execution tree
The rest of this chapter will explain the naming convention used by the DISIMA engine, how

a query is executed at condition and node levels, and then discuss the structure used to store the

query result.

Naming Convention used by the DISIMA engine

In traditional SQL queries, each selected item is considered separately, and the items are not viewed

as objects in images. For example, the SQL query:

SELECT pl.age, p2.age
FROM person pl, person p2
WHERE pi.lastname=‘Clinton’

57

AND p2.firstname=‘Bill’;

will select the age of any person who has either the lastname equal to “Clinton”, or the firstname
equal to “Bill”. A person called “Bill Clinton” satisfying both conditions therefore has his age
selected twice, i.e., pl.age and p2.age. In other words, by default, pl and p2 can refer to the same
entity.

Since spatial relation is one of the features introduced in the MOQL extension, the naming con-

vention of the DISIMA engine is different from that of the SQL engine.

Different labels represent different objects in an image

In the DISIMA query:

SELECT m

FROM image m, person pl, person p2
WHERE m contains pl

AND m contains p2

AND pl.mbb above p2.mbb;

by default, pl and p2 refer to two different PSO objects in an image. The selected images should

contain two persons (at least) with one above the other. Using this naming convention, the query:

SELECT m

FROM image m, person pl, person p2
WHERE (m contains pil

AND pl.lastname=‘Clinton’)

AND (m contains p2

AND p2.lastname=’Clinton’);

will retrieve images containing at least two persons whose lastnames are both “Clinton”, e.g., Bill
Clinton and Hillary Clinton. Images containing only one “Clinton” will not be retrieved. The default
can be overriden by adding the condition “pl = p2”. If so, images containing one or more “Clinton”

will be retrieved. If the query is:

SELECT m

FROM image m, person pl, person p2
WHERE (m contains pi1

AND pi.lastname=‘Clinton’)

AND (m contains p2

AND p2.firstname=’Bill’);

the selected images will contain at least two persons. Images containing “Bill Clinton” alone {without

another person with lastname “Clinton”, or without another person with firstname “Bill”) will not

58

be retrieved.

Execution at Condition Level

The execution plan shown in Figure 4.8 has three conditions:

m contains o
o.color similar colorgroup(255,0,255) and

o.texture similar texturegroup(0.6)

The class extents being searched are the LSO, colorgroup and texturegroup extents. All the objects
in the LSO extent satisfy the contains condition. Only objects which have color similar to color-
group(255,0,255) are selected as the result of the color condition. Similarly, only objects which have
texture similar to texturegroup(0.6) are selected as the result of the texture condition. The result
of each condition is stored in a resultpso object. The resultpso object carries the label o specified by
the condition, and a set of unitpso objects which identifies the PSOs satisfying the condition. The

resultpso object and unitpso objects are illustrated in Figure 4.9.

label: o
result*

Resultpso object

A set of Unitpso objects

Figure 4.9: The result of a condition: The Resultpso and Unitpso objects

An unitpso object carries two pieces of information: the oid of the PSO selected by the condition,

and the grade awarded to the PSO computed based on a distance function discussed in Section 3.3.

An alternative approach to process the contains statement

Like the similar statement, the contains statement is treated as a search condition in the current
implementation. Due to the special semantics of contains, another approach is to process it as a

join similar to the relational join. Consider the following two queries:

SELECT m
FROM image m;

and

SELECT m

FROM image m, person p;

59

Suppose there are n PSOs in all the images and only PSO;;, PSO,2 and PSO,3 are person objects.
In both queries, the result is a set of images. Although person is mentioned in the second query, it
has no effect on the query result because the two sets of PSOs are not joined (Figure 4.10 (a)). By

adding the contains statement, the second query becomes:

SELECT m
FROM image m, person p
WHERE m contains p;

Fhe set of the set of the set of the set of
image PSOs person PSOs image PSOs person PSOs
PSOL1
PSO2
PSOI 1 PSOLL
PSOI12 PSOI12
PSO13 PSO13
PSOn
join operation
@)]

Figure 4.10: To process “contains” as a join

Figure 4.10 (a) shows that without the contains statement, the query selects all the images. The
person PSOs constitute a subset of the image PSOs. When the image PSOs are joined with the
person PSOs, Figure 4.10 (b) shows that only the intersection (images containing PSO1;, PSO:2
and PSO;3) are selected.

Whether navigational access, using oids to process the contains statement, is more efficient than
the join operation is debatable. It was pointed out that the OO approach provides alternative
execution plans that can be considered in addition to using join [4]. Since optimization is not the

focus of this thesis, readers interested in the topic can refer to more specific research papers [4].

Execution at Node Level

In a query tree, each node is associated with either one or two conditions. When there are two
conditions, either intersection or union is taken from the results of conditions, depending on the

operator.

60

When the operator is and, intersection is taken. However, two resultpso objects can intersect
only if they have the same label, i.e., the conditions apply to the same object. If the labels are
different such as that in the following conditions:

o.color similar colorgroup(255,0,255) and

p-texture similar texturegroup(0.6),
the image is expected to contain at least two objects, with one having color similar to color-
group(255,0,255) and the other having texture similar to texturegroup(0.6). In this case, both
resultpso objects, instead of their intersection, are stored in the node as resultset object. Figure 4.11
(2) and (b) show that after the and operation the resultset object can contain one or two resultpso

objects depending on whether their labels are the same.

Resultset object Resultset object

Resultpso object Resultpso object Resultpso object

label: o

result

(a) (d)

Figure 4.11: The result of the and operator

In the example query used in Figure 4.9, since both the color and texture conditions apply to
the same object o, the resultset object contains only one resultpso object — the intersection (Figure
4.11 (a)). Objects which satisfy only one condition are eliminated. When an object satisfies both
conditions, the final grade is the average of the grades awarded from individual conditions.

If the operator is or instead of and, the union of the resultpso objects is taken. Suppose the two
resultset objects shown in Figure 4.11 (a) and (b) are processed by the operator or, the union is a

set of resultset objects shown in Figure 4.12.

How to execute the operator not

The not operator in a query can appear at two levels: condition level and node level.

“Not” at conditon level

In relational queries, not is seldom used except in the not in statement because the comparison
predicate =, <>, >, <, < and > can often do the job. For example,
not o.lastname = ‘Clinton’

can be expressed as,

61

Resultset object Resultset object

A set of Resultset objects

Figure 4.12: The result of the or operator

o.lastname <> ‘Clinton’
However, the MOQL extension has new predicates similar and contains, which do not have an in-
verse. The use of not is therefore necessary to retrieve the complement set of objects, i.e.,

not o.color similar colorgroup(255,0,255)

How to set the search boundary for the operator “not”

Each condition is executed on a class extent and therefore the search set is bounded by the set of
objects in the extent. When not is added in front of the condition, there are two possibilities. One
is like the not-color condition above. In this case the search set is still bounded by the set of objects
in the colorgroup extent; any object which is similar to colorgroup(255,0,255) is selected while the

other objects in the extent are disregarded. A different not operation is illustrated by the following
query:
SELECT m

FROM image m, person p

WHERE not m contains p;

The search set of the condition is the person extent but the not operator requests objects outside
the person extent. To overcome this problem, the concept of closure is required so that the search

space of each condition, with or without the not operator, is bounded.

What is a bounding set and a universal set

Since PSO objects satisfying the conditions are selected and stored in the intermediate results, the
set of PSOs represents the entire search space. The universal set is defined as the set of all PSOs
in the database. A bounding set in the context of DISIMA is defined as the union of set4 and setpg

such that, set4 is the set which satisfies the non-not condition and sefg is the set which satisfies

62

the not condition. The relation between the universal set and a bounding set is:
boundingset C universalset (4.1)

The universal set contains PSOs appearing in all images. Images may include medical_images,
scene_images, painting_images and so on. In the not-contains query above, the condition result seig
is obtained by subtracting set, from the bounding set. In this example, the bounding set is the
same as the universal set because the query uses m (images) in the select clause. If the query selects
medical_image, the universal set is still the set of all PSOs but the bounding set is the set containing
only PSOs appearing in medical_images.

The bounding set is therefore governed by the select clause in the query. The search space of a

condition is closed by the bounding set.

“Not* at node level

To handle not at node level involves propagating the operator to the subtree. An algebraic expres-
sion can explain this concept clearly. Let the query result shown in Figure 4.12 be written in the
algebraic form:

(Rcond1) or (Reond2 and Reonds)
where Re.ongi is the result of condition 7. If not is applied, i.e.,

~ ((Reona1) or (Reona2 and Reonds))
after propagation using De Morgan’s rule, the algebraic equation becomes:

(~ Rcondl) and ("" R.onga or ~ Rcond3)

A similar concept is used by the DISIMA parser and query engine. When the parser detects a
not at node level, it will call the function propagate_not() which will pass the not to each condition
in the subnodes. If the condition has a not already, the two nots will cancel out. Any and operator

in the subnodes will be changed to or and vice versa.

Processing the query tree

Once the query tree is constructed, the query engine initiates post-order traversal. The left-condition
is executed first, before the right-condition, and any subnode is executed before the higher-level node.

The execution plan used in this thesis is based on the query tree translated directly from the
query string. Optimization can be achieved by manipulating the nodes and leaves of the tree. More

about optimization can be found in Section 6.2.

Storage of temporary results

While the query object stores all the information of a query string, the result object stores the

information necessary for the retrieval of final images. The intermediate result after execution at

63

condition or node level is defined by a set of resultset objects. The resultset objects are constructed

using the concept of disjunctive normal form as illustrated in Figure 4.13.

a set of Resultset objects

or...

Figure 4.13: Temporary result illustrated in disjunctive normal form

Take a simple query:

SELECT m
FROM image m, person p
WHERE m contains p;

which has only one condition. The result (a set of resultset objects) is shown in Figure 4.14 (a). The
label associated with the resultpso object is p . If the query has two or more conditions connected by
the operator and, and all the resultpso objects have the same label, the result still contains only one
resultpso object. The pointer (result*) navigates to a set of Unitpso objects. Each Unitpso object
has the grade information and the oid of the PSO object which satisfies the condition(s).

If a query specifies more than one object, e.g.,

SELECT m
FROM image m, person pl, person p2
WHERE m contains pl

64

a set of Resultset objects

Resultpsol

Resultset!

a set of Unitpso objects

grade:
- ©
O e[c-

a set of Resultset objects

label: p2
result*

Resultsetl

®

(a)

a set of Resultset objects

Resultpso3

label: p1
result*

Resultpsol

label: pl
result*
label: p2

Resultset!

or

Resultset2

©

Figure 4.14: Examples of temporary result

65

AND m contains p2
AND p1.lastname=‘Clinton’;

the resuliset will have more than one resultpso object as shown in Figure 4.14 (b). The resultpso ob-
jects of different labels represent different objects in the image. In this example, resultpsol is labelled
pl (objectl), resultpso2 is labelled p2 (object2) and resultpso3 is labelled pl (object1l). That means
two restrictions are imposed on objectl, i.e., objectl is a person and objectl.lastname="Clinton’,
and only one restriction is imposed on object2, i.e., object2 is a person.

Instead of the second and operator, assume it is replaced by the or operator. The result is shown
in Figure 4.14 (c). Although both resultpsol and resultpso3 have the same label pI, the two sets
of unitpso objects are not intersected because the query requires that either objectl is a person
or objectl’s lastname = ‘Clinton’. Intersecting will incorrectly eliminate the person objects whose
name is not ‘Clinton’.

Another way to store the result is to follow conjunctive normal form so that:

Resultpsoiyas and (Resultpsos or Resultpsos)
is used instead of

(Resultpso, and Resultpsos) or Resultpsos.

The disadvantage of using conjunctive normal form is that each “or” group, e.g.,

(Resultpsos or Resultpsog)
does not give the final images, because there are unprocessed “and” operator. On the other hand,
each “and” group, e.g.,

(Resultpso, and Resultpso-)
contains the information of the final images; the unprocessed “or” operator will add more images,
but will not disqualify those obtained from the “and” group.

Resultset; in Figure 4.14 is implemented as a resultset object. Each resultset object is in turn
defined by a set of resultpso objects. A resultset object is added to the result when the or operator is

encountered, while a resultpso object is added to the resultset when the and operator is encountered.

Apply distributive rule to maintain disjunctive normal from

When executing complex queries, it is necessary to combine two intermediate results which may
contain a few resultset objects and a number of resultpso objects within a resultset. In such cases,
the query engine will apply the distributive rule. Suppose the two intermediate results are written

in the following algebraic form:
{Resultpso;andResultpsos)or(Resultpsogand Resultpsos) (4.2)

and

(Resultpsosand Resultpsog)or(Resultpsorand Resultpsos). (4.3)

After applying the distributive rule, the algebraic equation becomes,

66

(ResultpsoyandResultpsoaand Resultpsosand Resultpsog)
or(Resultpsozand Resultpsosand Resultpsosand Resultpsog)
or(Resultpso, and Resultpso,and Resultpsozand Resultpsog)
or(Resultpsosand Resultpsosand Resultpsozand Resultpsog).

Each conjunction group corresponds to a resultset object. The result is a set of resultset objects.

Final result: retrieve images based on the resultset objects

Since the oids of the PSOs satisfying the query are stored in the resultset objects, the oids of the
images containing these PSOs can be obtained (Section 3.2). The reason why the result is stored in
disjunctive normal form and not conjunctive normal form is now clear. If it is in disjunctive normal
form, the images retrieved by scanning each resultsef can be returned to the user without further
processing. On the other hand, if it is in conjunctive normal form the images obtained from each
resultset object are not final because there are unprocessed and operations which may disqualify

some of the images.
Synchronization between different resultpso objects within the resultset object

The synchronize() function is designed to put a final check on each resultset object before the images
are extracted and returned to the user.

A resultset object may contain n resullpso objects of different labels meaning that the image
should contain at least n objects. The synchronize() function ensures that images containing fewer
than n objects will not be retrieved. The similarity grade assigned to the retrieved image is the

average of the grades scored by the n unttpso objects.

How to handle result of subquery?

As with blocks defined in programming languages, a query language also has the concept of block-

but in this case, a subquery block. A label defined within a subquery is visible only to the subquery

and not to the master query. For example,

SELECT m

FROM image m, person p

WHERE m contains p

AND p not in (SELECT mi
FROM image mi, person pl
WHERE ml contains pl
AND pl.lastname=’Clinton’);

The labels m1 and pl are visible only within the subquery. After the subquery is processed, the

result or the set of objects is not associated with the label pl or ml but p, which is a label in the

67

master query. The query engine converts the labels of the resultpso objects when exiting a subquery,

ensuring labelling consistency.

68

Chapter 5

Implementation and Limitations

5.1 Introduction

The design of the DISIMA type system, query parser, and engine has been discussed in previous
chapters. In order to illustrate the concept and show how the system works on live data, a demo
database containing more than one hundred images and thumbnails was constructed. MOQL queries
can be input as a character string or through a graphical user interface [30] at the site:
http://www.cs.ualberta.ca/~database/IDB/Interface.html.

Since the focus of this thesis is not research on image processing, there is no detailed analysis
and evaluation on the various image processing algorithms. It is up to individual applications to
decide which algorithms meet their requirements. In order to show how these algorithms can be
integrated with the type system, some generally used distance functions are taken from the literature
and implemented in this thesis. Other distance functions can be used by modifying the query() and
equal(’} function in the type system.

The type system and query components are built on top of ObjectStore version 5.0, which
provides basic database facilities such as storage management, recovery, and transaction control.
The development environment used in this thesis also includes C/C++, Flex/Yacc and Perl.

Implementation of the type system was demonstrated in Italy in May 1998, and some users
in Germany have been experimenting with it since then. In addition to the demo database, an
application is being developed in collaboration with Photo Services of the University of Alberta.
The intention of this project is to computerize their photo collection which includes convocations,

celebrations, historic scenes, artifacts, and research activities of importance to the university.

5.1.1 Why ObjectStore?

A major advantage of ObjectStore is its close integration with the C*+ language, and its persistent
storage capabilities for C*+ objects. Traditionally, application developers using C++ or C have been
responsible for writing detailed code to create, access, and update persistent values, translating the

disk representation of an object to the representation used during execution. By using new() and

69

a transaction boundary, ObjectStore persistence is transparent to the programmer. Since transient
and persistent objects have the same representation, type checking is possible on ObjectStore pro-
gram variables. This avoids the impedance mismatch problem between a database system and its
programming language, where the structures provided by the database system are distinct from
those provided by the programming language.

ObjectStore allows a relationship to be set up between two objects, which can be 1 to m, m
to 1, or m to n. When a link is established in one direction, the other direction is automati-
cally set up. For example, if the application program writes a_pso—+shape.insert(a_shape), then
ashape—rpso.insert(a-pso) is set up by ObjectStore. When one link is deleted, its counterpart
is deleted automatically. This is particularly useful when setting up the links between the PSO
instances and associated instances, i.e., color, shape, texture, Mbb, and image.

The Collection class in ObjectStore allows programmers to define different structures: array, list,
set, and bag, by calling some built-in functions. The elements in the collection can be ordered or
unordered, with duplicate or without, etc., as specified by the programmer. Complex collections can
be created with minimal effort.

Another reason for using ObjectStore is because an early project~A Generic Type System for
a Multimedia Database System-was also built on top of ObjectStore. Using the same underlying

DBMS facilitates integration of the two projects.

5.1.2 Why Flex and Yacc?

Lex and Yacc perform the work of a lexer and scanner on structured text. Flex is a freely available
version of lex. Since the MOQL extension is a newly defined language [18], there is no current parser
that can be used. The responsibilities of the DISIMA parser are to check the syntax of the query
string and construct the query tree which can be executed by the query engine. The parser can be
written in C/C** or Flex/Yacc. The latter was chosen because it requires less code and thus is
easier to debug, and provides a systematic way for syntax checking and query tree construction.
The two tasks that need to be performed repeatedly on the input query string are: dividing
the input into meaningful units, and discovering the relationship among the units. Flex/Yacc allows
tokens to be constructed and related to each other through a set of rules defined by the programmer.
Once the syntax is validated, objects can be constructed and inserted into the query tree based on

the parsed data. The tokens are defined in the file scan.l and the rules in moql.y.

5.2 How are the programs organized?

The programs are organized in different directories, as shown in Figure 5.1.
The Type, Parser, NewQuery, and Generator directories store the code of the type system, the

parser, the query engine, and the schema generator, respectively. LSO is the root of all LSO classes,

70

Disima root directory

l
I i I |

Lso Type NewQuery Parser Generator

Library Populate LSOs Annotations

Figure 5.1: The DISIMA directories

and is defined in the Type directory. The other user-defined LSO classes are defined in the Lso
directory.

The DISIMA program to populate the database is found in the Populate directory. Data files in
the Annotations and LSOs directories are read during database population.

Three shared libraries: 1ibLSO, libQry, and libType, are created during compilation and are
stored in the Library directory.

Other technical details can be found in the README file in each directory, and the comment

beside the code.

5.3 Schema generation

An integral part of the type system is the LSO class hierarchy, which is application dependent and
user defined. The LSO classes used in the demo database are shown in Appendix C. No matter
which LSO classes are used by an application, the common requirement is to allow a class to be
added, deleted, or modified. For example, a user may want to delete the Office class from the demo
hierarchy or to add a new Tower class, as a subclass of Building. To eliminate the need for the
user to learn how to define the methods of the new class, and modify the code to accommodate the
change, a schema generator is implemented to automatically generate all the necessary code to be
complied with the rest of the system. What is required from the user is simply to specify the new
class name, its super class, and its attributes, according to the format shown in Appendix C-or to
delete the class information which is no longer required. The user-defined LSO class information is
stored in the file UserClasses.

When the code is recompiled by typing make at the DISIMA top directory, the generator is called
automatically. The files that will be regenerated, based on the modified UserClasses file, are: lso-
Classes.hh, IsoClasses.C, schema.C for the Lso directory, initializeLso.C, createLso.C, containLso.C
and conditionLso.C. The old version of these files is saved before it is overwritten by the newly
generated version. In case the compilation is not successful, the user can always revert to the old

version.

71

5.4 Data population

Data population is carried out in two stages: the populateLso stage for LSO objects, and the populate
stage for other objects. PopulateLso uses the annotation files in the LSOs directory to create all the

necessary LSO objects in the database. PopulateLso is implemented by another project member.

Figure 5.2: An image containing five golden fish as salient objects

Included in the work of this thesis is the population of the image, PSO, shape, color, texture,
and Mbb objects. The populate program uses the files stored in the Annotation directory. Each
annotation file contains data of an image. For example, the image containing five gold fish (Figure

5.2) has an annotation file golden_fish.ant, providing the following information:

Fish 98
MBB (393 79) 458 112

Shape rect{(393 79) 458 112]
Color (250 116 31)

Fish 98

MBB (431 232) 229 265

Shape rect[(431 232) 229 265]
Color (251 254 137)

Fish 98

MBB (640 403) 297 226

Shape rect[(640 403) 297 226]
Color (253 103 29)

Fish 98

MBB (325 390) 117 224

Shape rect[(325 390) 117 224]
Color (255 255 255)

Fish 98

MBB (267 176) 130 243

Shape rect[(267 176) 130 243]
Color (249 0 58)

Each fish (PSO) in the image has its own Mbb, shape, and color. Fish is the class name, and 98
is the LSO logical id which is used to retrieve the other LSO information-such as comName and
sciName, already populated in the database during the populateLso stage.

In the demo database, texture data are not yet populated. The populated shapes include rect-
angle, square, circle, and ellipse. Although the type system can associate a set of colors with an
object, only the average color is stored currently. More data will be populated into the database

when they are available.

5.5 Database images vs. file system images

There are two ways to store images. One way is to store them in the file system, and the other is
to store them in the database. Storing data in the database has the advantage of making use of the
underlying facilities such as recovery, transaction, and concurrency control, ensuring consistency in
the database.

The DISIMA type system supports the database approach by storing the raw images and thumb-
nails in the image objects. The data are stored as byte streams. These byte streams will be supplied
to ObjectForm and displayed to the user. ObjectForm is the graphical interface associated with
ObjectStore, and will act as the interpreter between the current MOQL graphical interface and
the query engine. Since the MOQL interface is implemented in Java and cannot access the image
objects in ObjectStore, ObjectForm will transform the query result into a HTML format which is
then returned to the MOQL interface.

Before ObjectForm is fully integrated with the DISIMA components, demo images are stored
in the file system. The access paths to the image and thumbnail are stored in the image object.
When the set of qualified image oids is returned by the engine, the function print_html(), defined
in scan.l, will retrieve and embed the paths in a HTML document, which is then returned to the
MOQL interface. Currently, the access paths for images and thumbnails are:

iglinski/Disima/Images/ and

73

iglinski/Disima/Thumbnails/

respectively.

5.6 Similarity match

Since the choice of distance functions is application dependent, the functions, i.e., the turning anlge
function, which have been implemented in the DISIMA type system serve only as an example of
how similarity match can be performed by the query engine. Further analysis and evaluations have
to be done in the image processing area, in order to compare the performance and efficiency of these
similarity match algorithms.

[n Section 3.3.1, a three-stage filtering is proposed to compare composite objects. To illustrate
the idea, stage [is implemented in the function equal() in file composite.C. The function can be
expanded by adding the code for stages II and III.

The main limitation on the similarity match of shape is the lack of an automatic shape extraction
algorithm. In the absence of such an algorithm, the shape of an object has to be extracted manually
from the image. The work is tedious and time-consuming, and the result is often subjective. For
example, in Figure 5.3, the shape of the starfish was described as a circle instead of the star shape

or polygon shape.

Figure 5.3: The shape of starfish

The graphical interface also imposes a limitation on color matching. Since a color is defined by
three values, each of which can be any number from 0 to 255, the number of possible colors in the
spectrum adds up to 2_563. Only a small selection of these (the most commonly used colors) are
displayed by the interface for the user to choose. As a result, it is not surprising that the “no image
is found to match this query” is returned to the user. To overcome this problem, the similarity

threshold specified in the query has to be reduced so that more colors or images satisfy the query.

Chapter 6

Conclusion

6.1 Contributions

The research on image databases and image processing is complementary. In the image processing
area, there is still a lot to be done before the feature extraction techniques and similarity match
algorithms come to maturity. Given the methods and resources available, this thesis has achieved
the objective of designing and implementing the framework of a content-based generic type system
to support image storage and retrieval, as well as a query parser and engine to execute MOQL

queries and perform similarity match. The main contributions of this thesis are as follows:

e The implementation proves that it is possible to extend the expressive power of OQL to arrive
at a multimedia language, MOQL, which is capable of handling image queries on color, shape,

texture and spatial relationship.

¢ In contrast to other designs, which are application specific, the DISIMA framework illustrates
that a content-based generic type system can be implemented for image applications. The
framework can be customized to meet specific needs of applications. An application can
define its own LSO hierarchy, and the Schema Generator, included in the framework, will
automatically generate the necessary code for compilation based on the user-defined LSO

classes.

e The implementation of the DISIMA parser and engine provides the basic step on which the

development of query indexing and optimization can be based.

e The DISIMA kernel supports objects of composite shapes. While other models focus on con-
tours within contours, this implementation extends the definition of composite shape to include

contours not inside each other.

e The DISIMA kernel implements the idea that allows the shape of an object to vary-an object

can adopt different shapes at different zoom levels.

o The design of the resultset objects, together with the application of the conjunctive normal
form concept, provides an efficient structure to store the information necessary for the retrieval

of the final images (see Section 4.3.2).

6.2 Future Work

The research on image databases is an enormous topic and what is described in this thesis is only
a small part of it. There is still a lot to be done, and this section will discuss some enhancements

that can be considered in future development.

6.2.1 A full OQL parser and query processor

This thesis focuses on spatial relationship, color, shape, and texture~which are defined in the MOQL
extension. In order to support the full MOQL, the current implementation needs to be integrated
with an OQL parser and query processor. Instead of developing these from scratch, an alternative
is to integrate with one already available. During query execution, the query is separated into two
subqueries. One subquery is handled by the OQL parser/processor, and the other is handled by the

MOQL extension parser/processor. The two intermediate results can then be consolidated.

6.2.2 Store images in progressive resolutions

The image resolution requirements vary in different applications. The current implementation stores
the original image and its thumbnail. It is expected that other resolutions will also be stored so
that the viewer can have a wider choice. An image can be displayed from low resolution to high
resolution, allowing the viewer to exit at any point or go further to obtain more precise detail of the

image.

6.2.3 Optimization

Some image retrieval systems apply real-time processing to analyze and compare images. DISIMA
reduces the on-line response time by pre-processing. Image data representing color, shape, etc. are
stored in the database. Analyzing the extracted data is faster than analyzing the raw image itself.

The system can be further optimized and some suggestions are given below.

Searching the intermediate result instead of the database

When processing the first condition in a query, the search is always in the database. For example,

the query

SELECT m
FROM image m, person p
WHERE m contains p;

searches the person_extent in the database when executing the condition
m contains p.
However, subsequent conditions can be processed based on the previous result. For example, the

query

SELECT m
FROM image m, fish o
WHERE m contains o

AND o.color similar colorgroup(255,0,0);

has two conditions. When processing the second condition, the current query engine searches the col-
orgroup_extent and retrieves those matching colorgroup(255,0,0). The results of the two conditions
are then consolidated with the and operator.

Since the result of the first condition reduces the search space to the set of fish objects, the query
engine should have the option to search the fish_extent, instead of the colorgroup_extent, when
executing the second condition. It will be faster because the number of colorgroup objects in the
database is far greater than the number of fish objects. However, this option should be implemented

together with some cost data and functions, in order to evaluate which option is more cost-efficient.

Indexing

Another way to optimize query processing is to use indices for similarity match. In the previous
example, instead of scanning each object in the colorgroup.extent, an index based on binary tree
(10], R-tree [26], or other algorithms (e.g. [21], [24]) can be implemented. For color matching, a
3-dimensional index is required to match the red, green, and blue values or the hue, saturation, and

intensity values. Search by index is faster than a recursive search using brute force.

Manipulating the query tree

A query can be represented by different tree structures. All the six structures shown in Figure 6.1
produce the same query result. However, these tree structures require different processing speeds.
The goal of a query optimizer is to select the structure which requires the least processing speed. In
the current implementation, the leaves and nodes are built in the same order as the conditions are

submitted in the input query string. For example, if the query is:

SELECT m

FROM image m

WHERE condition-A

AND condition-B

AND condition-C;

the tree structure created is like the top left one in Figure 6.1. To identify which structure is most

efficient to execute requires implementing some cost functions.

77

and and

/

/

o
o A

e
&
of

nd

and

/N /

Figure 6.1: An example of a query represented by different tree structures

6.2.4 Matching polygons with circles and ellipses

The turning angle algorithm applies to polygons, but not to shapes with curves, such as circles and
ellipses. To solve the problem illustrated in Figure 3.29, either the turning angle algorithm has to

be modified, or additional code is required to perform additional checking.

6.2.5 Query on the image hierarchy and image attributes

In the current implementation, only a LSO hierarchy, but not an image hierarchy, is defined. An
image hierarchy can be added to the type system so that a query can specify the type of images to

be retrieved, e.g., medical.image instead of all images.

6.2.6 Information about the image

When the final images are displayed, the user may want to obtain the text description of the images.

One possibility is to allow the user to click on any image to obtain the text information.

78

6.2.7 Database update

In addition to storage and retrieval, the utimate goal is to allow image and object data to be updated
in the database. The Vector class is defined for this purpose. Function calls can be initiated from the
graphical interface. By clicking the translate, rotate, or scale button on the interface and supplying
the necessary information, i.e., the angle of rotation, objects in the images can be manipulated and

the modified objects can be stored in the database.

6.2.8 Replace the grade with a structure

The distance function assigns a grade to an object. If the final grade is greater than the sirnilarity
threshold specified in the query, the image containing that object will be retrieved by the engine.
When more than one grade is involved in a query, the average is taken. To make the system more
flexible, a structure, instead of a grade, can be returned by the distance functions. This structure
contains the necessary information to compute the final grade. After all the conditions are executed,
the user can then decide which formula (linear average, weighted average, Euclidean product, etc.)

should be applied.

6.2.9 Query by sketch or example

Instead of describing the image features explicitly, a sample image or sketch can be used as the
target object. The content of the target image is then extracted automatically and passed to the

query engine for execution. This development requires advanced image processing techniques.

6.2.10 Extend to 3D still image

Instead of storing the x and y coordinates of a point, a 3-dimensional representation, i.e., x, y and

z, can be stored in the type system. A 3D subclass can also be added to the Atomic class.

6.2.11 The video extension

The video feature can be incorporated by defining more data elements, such as the temporal element.
The current implementation supports still images; a video image can be handled as a sequence of

still images.

Bibliography

[1] http://whitechapel.media.mit.edu:80/vismod/demos/photobook/index.html.
(2] http://www.cs.ualberta.ca/~database/IDB/Interface.html.
[3] http://www.QBIC.almaden.ibm.com/stage/features.html.

(4] J Blakeley, W McKenna, and G Graefe. Experiences Building the Open OODB Query Opti-
mizer. Proceedings of ACM SIGMOD International Conference on Management of Data, pages
287-296, 1993.

(5] R. Cattell. The Object Database Standard: ODMG-93 (Release 1.1). Morgan Kaufmann, San
Francisco, CA, 1994.

[6] S.K. Chang, Q.Y. Shi, and C.W. Yan. Iconic indexing by 2-D Strings. [EEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI—9(3§:413—427, May 1987.

[7] S. Chaudhuri and L. Gravano. Optimizing Queries over Multimedia Repositories. Proceedings
of ACM SIGMOD International Conference on Management of Data, pages 91-102, May 1996.

[8] W.W. Chu, L.T. leong, and R.K. Taira. A Semantic Modeling Approach for Image Retrieval by
Content. VLDB Journal, 3:445-477, 1994.

[9] G. Cortelazzo, G.A. Mian, G. Vezzi, and P. Zamperoni. Trademark Shapes Description by
String-Matching Techniques. Pattern Recognition, 27(8):1005-1018, 1994.

[10] M. Freeston. A General Solution of the n-dimensional B-tree Problem. Proceedings of ACM
SIGMOD International Conference on Management of Data, pages 80-91, 1995.

[11] R.C. Gonzalex and R.E. Woods. Digital Image Processing. Addison-Wesley, New York, 1993.

[12] V.N. Gudivada and G.S. Jung. An Algorithm for Content-based Retrieval in Multimedia
Databases. Proceedings of IEEE International Conference on Multimedia Computing and Sys-
tems, pages 56-61, June 1996.

[13] V.N. Gudivada and V.V. Raghavan. Design and Evaluation of Algorithms for Image Retrieval
by Spatial Similarity. ACM Transaction on Information Systems, 13(2):115-144, April 1995.

{14] D.Hearn and M.P. Baker. Computer Graphics 2nd edition. Prentice Hall International Editions,
New York, 1984.

[13] IBM. Query by Image and Video Content: The QBIC System. I[EEE COMPUTER Innovative
technology for computer professionals, pages 23-32, september 1995.

[16] S. Kelly and F. Vincent. Nearest Neighbor Queries. Proceedings of ACM SIGMOD International
Conference on Management of Data, pages 7T1-79, 1995.

[17] J.R. Levine, T. Mason, and D. Brown. Uniz Programming Tools: Lex and Yacc. O’Reilly and
Associates, Inc., California, 1995.

(18] J.Z. Li, M.T. Ozsu, D. Szafron, and V. Oria. MOQL: A Multimedia Object Query Language.
3rd International Workshop on Multimedia Information Systems, Como, [taly, pages 19-28,
September 1997.

[19] F. Liu and R.W. Picard. Periodicity, Directionality, and Randomness: Wold Features for Image
Modelling and Retrieval. [EEE Transactions on Pattern Analysis and Machine Intelligence,
18(7):722-733, July 1996.

80

[20] R.C. Nelson and H. Samet. A Consistent Hierarchical Representation for Vector Data. ACM
SIGGRAPH journal, 20(4):197-206, August 1986.

[21] Y. Niu, M.T. Ozsu, and X. Li. 2D-h Trees: An Index Scheme for Content-Based Retrieval of
Images in Multimedia Systems. Proceedings of IEEE International Conference on Intelligent
Processing Systems, ICIPS, pages 1710-1715, October 1997.

[22] V.Oria, M.T. ézsu, L. Liu, X. Li, J.Z. Li, Y. Niu, and P.J. Iglinski. Modeling images for content-
based queries: The DISIMA approach. 2nd International Conference on Visual Information
Systems, San Diego, CA, pages 339-346, December 1997.

[23] V. Oria, M.T. Ozsu, B. Xu, L. L. Cheng, and P.J. Iglinsk. VisualMOQL: The DISIMA Visual
Query Language. Department of Computing Science, University of Alberta.

[24] D. Papadias, Y. Theodoridis, T. Sellis, and M.J. Egenhofer. Topological Relations in the World
of Minimum Bounding Rectangles: A Study with R-trees. Proceedings of ACM SIGMOD
International Conference on Management of Data, pages 92-103, 1995.

[25] D. Papadias, Y. Theodoridis, T. Sellis, and M.J. Egenhofer. Topological Relations in the World
of Minimum Bounding Rectangles: A Study with R-trees. Proceedings of ACM SIGMOD
International Conference on Management of Data, pages 92-103, 1995.

[26] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R*-tree: A Dynamic Index for multi-
dimensional Objects. Proceedings of the 13th International Conference on Very Large Databases,
VLDB, pages 507-517, 1987.

[27] A. Soffer and H. Samet. Pictorial Queries by Image Similarity. Proceedings of [EEE Interna-
tional Conference on Pattern Recognition, pages 114-119, 1996.

(28] M. Stricker and M. Orengo. Similarity of Color Images. Proceedings of Storage and Retrieval
Jor Images and Video Databases I, IS&T/SPIE Symposium on Electronic Imaging Science and
Technology, February 1995.

[29] A. Vailaya, Y. Zhong, and A.K. Jain. A Hierarchical System for Efficient Image Retrieval.
Proceedings of IEEE International Conference on Pattern Recognition, pages 356-359, 1996.

[30] B. Xu. A Visual Query Facility for Image Databases. M.Sc. Thesis, University of Alberta.

81

Appendix A

An extraction of the code on
I_class and C_class

class I_Polygon {
protected:
os_List<Point*>* head;

3y

class I_Rectangle {

protected:
Point center;
Point cornerl; // corneri&2 are consecutive and in clockwise direction
Point cormer2;

};

class I_Square {
protected:
Point center;
Point corner;

};

class C_Polygon : protected I_Polygon, public Polygon {
private:
public:
C_Polygon(os_List<Point#*> *h);
“C_Polygon();
void set_head(os_List<Point#*>#* p);
os_List<Point#*>* get_head();
};

class C_Rectangle : protected I_Rectangle, public Rectangle {
private:
public:
C_Rectangle();
C_Rectangle(Point& pO, Point& pl, Point& p2);
“C_Rectangle();
os_List<Point*>* get_head();
Point* get_center();
Point* get_corneri();
Point* get_corner2();
void set_center(Point* p);
void set_corneri(Point#* p);
void set_corner2(Point#* p);

};

class C_Square : protected I_Square, public Square {
private:

82

public:
C_Square(Point& p1l, Point& p2);
“C_Square();
os_List<Point#*>* get_head();
Point#* get_center();
Point* get_corner();
void set_center(Point* p);
void set_corner(Point* p);

};

class Polygon : public TwoD {

private:

public:
static C_Polygon* Create(os_List<Point#*>* h);
“Polygon();

virtual os_List<Point#>#* get_head()=0;
Point* get_center();

int get_count();

void print();

virtual void* return_this() { return this; }
Booclean equal(Polygon* sh);

};
class Rectangle : public Polygon {
private:
public:
static C_Rectangle#* Create(Point* c, Point#* c1, Point* c2);
“Rectangle();
virtual os_List<Point*>#* get_head()=0;
virtual void# return_this() { return this; }
};
class Square : public Rectangle {
private:
public:
static C_Squarex Create(Point* ¢, Point#* c1);
“Square();
virtual os_List<Point#*>* get_head()=0;
virtual void#* return_this() { return this; }
};

83

Appendix B

An extraction of the parser rules

A new predicate, called image_comparison_predicate, is added to the parser rules.

image_comparison_predicate:
contain_predicate
| shape_comparison_predicate
| color_comparison_predicate
| mbb_comparison_predicate
| texture_comparison_predicate
contain_predicate:
NAME CONTAINS NAME
shape_comparison_predicate:
shape_variable SIMILAR shape_right_exp

color_comparison_predicate:
color_variable SIMILAR color_right_exp

mbb_comparison_predicate:
mbb_variable SPATIALFUNC mbb_right_exp

texture_comparison_predicate:
texture_variable SIMILAR texture_right_exp

shape_right_exp:

NAME '.’ SHAPETYPE
composite_shape_function
shape_function

*(? shape_right_exp ')’

|

]

|
color_right_exp:
NAME °’.’ COLORTYPE
color_function
*(? color_right_exp ’)’

[
[
mbb_right_exp:
NAME ’.’ MBBTYPE
*(’ mbb_right_exp ’)’

I
texture_right_exp:
NAME ’.’ TEXTURETYPE
| texture_function
| ’(? texture_right_exp ’)’

shape_variable:
NAME ’.° SHAPETYPE

84

color_variable:
NAME ’.’ COLORTYPE

mbb_vari;ble:
NAME ’.° MBBTYPE

texture_variable:
NAME ’.’ TEXTURETYPE

composité_shape_function:
COMPOSITEFUNC ’(’ shape_list ’)’
| COMPOSITEFUNC

shape_list:
shape_function
| shape_list shape_function

shape_function:

POINTFUNC ’(’ point_spec ’)’

POINTFUNC

POLYGONFUNC ’(’ point_spec point_spec point_spec¢ point_list ')’
POLYGONFUNC

POLYLINEFUNC ’(’ point_spec point_spec point_list ’)’
POLYLINEFUNC

SEGMENTFUNC ’(’ point_spec point_spec ')’

SEGMENTFUNC

CIRCLEFUNC ’(’ point_spec point_spec ’)’

CIRCLEFUNC

SQUAREFUNC ’(’ point_spec point_spec ')’

SQUAREFUNC

ELLIPSEFUNC ’(’ point_spec point_spec point_spec’)’
ELLIPSEFUNC

RECTANGLEFUNC

TRIANGLEFUNC ’(° point_spec point_spec point_spec’)’

shape_class:

POINTFUNC
I POLYGONFUNC
| POLYLINEFUNC
i SEGMENTFUNC
| CIRCLEFUNC
| SQUAREFUNC
| ELLIPSEFUNC
| RECTANGLEFUNC
| TRIANGLEFUNC
! COMPOSITEFUNC

point_list:
point_spec
i point_list point_spec

point_spec:
INTNUM ’,’ INTNUM

color_function:
COLORFUNC ’'(’ color_list ')’

color_list:
color_spec
| color_list color_spec

color_spec:
INTNUM ',’ INTNUM °’,°’ INTNUM

texture_function:

85

TEXTUREFUNC ’(’ texture_list ')’

’
texture_list:
texture_spec
! texture_list texture_spec
texture_spec:
INTNUM

86

Appendix C

An example of the user defined file
userClasses

B R R R R R R R R R RRREE R R R R
#
DON’T DELETE THE FOLLOWING INSTRUCTION

®H#

file: userClasses

Description: This file is defined by the user but has to follow
the format below.

#
#
#
#
Format: Reserved words must be in lower case.

Reserved words- class, public, char*, int, float

There is no space before class, // and } and no space
after } and ;.

Single comment can be preceded by //

#*

#

Note: The superclass has to be defined before its subclass

#*

BRI R R R R R R R R R R R R R i

// comment
class Person : public Lso {
char* lastName;
char* firstName;
char* middleName;
char* nationality;
char* sex;
int year0fBirth;
};

class Athlete : public Person {
// comment

char* sport;

char* team;

2

class Politician : public Person {
char* party;
char* officeHeld;

};

class MovieStar : public Person {

char* films;

87

class Scientist : public Person {
char* field;

};

class Animal : public Lso {
char* comName;
char* sciName;

};

class Mammal : public Animal {
};

class Bird : public Animal {
};

class Reptile : public Animal {
};

class Insect : public Animal {

};

class Crustacean : public Animal {
};

class Fish : public Animal {

};

class OtherAnimal : public Animal {
};

class Vehicle : public Lso {

char* type;

class Plane : public Vehicle {

};
class Ship : public Vehicle {
};
class Car : public Vehicle {
char* make;
char* model;
int year;
};

class Truck : public Vehicle {
char* make;

};

class Motorcycle : public Vehicle {
char* make;

¥;

class Bicycle : public Vehicle {

?

class Building : public Lso {
char* city;
char* prov_state;
char* country;

class Hospital : public Building {

88

char* name;

};

class School : public Building {
char#* name;

+;

class Stadium : public Building {
char* name;

};

class House : public Building {
char* owner;
char* resident;
char¥* address;

};

class Apartment : public Building {
char* name;
char* address;

};

class Office : public Building {
char* name;

’

class Museum : public Building {
char* name;

};

Appendix D

Glossary

DBMS Database Management System

DISIMA The Distributed Image Database Management System

GIS Geographic Information System

GUI Graphical User Interface

HTML Hyper Text Markup Language

LSO Logical Salient Object

MOQL Multimedia Object Query Language

Mbb Minimum bounding box

OQL Object Query Language

PSO Physical Salient Object

SQL Structural Query Language

associative access -Find objects with certain properties in the database
content-based -Based on the image content, that is color, shape, texture, and spatial features.

distance function ~An equation used to compute the similarity between the database object and
the target object. A grade between 0 and 1 is returned after the computation. An exact match
is represented by 1.

extent —A collection of objects with similar properties.

impedance mismatch —Problem between a database system and its programming language, where
the structures provided by the database system are distinct from those provided by the pro-
gramming language.

navigational access ~Further investigate the object based on any embedded oids after the object
is found.

oid -Object identity or pointer.

resultpso object —Each resultset object defines a set of resultpso objects. A resultpso object is
associated with an object label and a set of unitpso objects.

resultset object —The intermediate result of a query is stored as a set of resultset objects.

unitpso object ~Each unitpso object is associated with a PSO pointer and the similarity grade
assigned to that PSO object.

90

