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Abstract

K-fold cross-validation was used to determine the predictive ability of logistic regression 

estimated resource selection function (RSF) models. M odels were evaluated and selected 

based on their general, spatial, and temporal predictive ability (3-way RPI or 3-way RSF 

Plot Index). This method was used to evaluate which remotely sensed and GIS-based 

predictor variables, acting as proxies for structural habitat characteristics, were effective 

for modelling habitat selection of eleven grassland bird species.

Five years of bird point count data from an area of native prairie were used. The 3-way 

RPI method is dependent on the assignment of output to arbitrary suitability classes. M eth­

ods to partially ameliorate the threshold dependency created by this class assignment were 

developed. The use of random, temporal, and spatial partitions o f the data to evaluate gen­

eral, temporal, and spatial model robustness was demonstrated to be superior to standard 

methods of general testing.
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Abbreviations and Glossary

Pb[ue Blue reflectance. For Landsat this is band 1. For MODIS this is channel 3.

pnir  Near-infrared reflectance. For Landsat this is band 4. For MODIS this is channel 2.

p reci Red reflectance. For Landsat this is band 3. For MODIS this is channel 1.

AIC Akaike’s Information Criteria. Founded on advanced theories of entropy and infor­
mation, this method proposes to select a model from within a group of models that 
is the best. This is not a measure of its absolute fit, only relative to the other models. 
BIC or Bayesian Information Criteria is similar but tends to select more parsimo­
nious models. These methods are founded on the concept o f the existence of a true 
model.

AGRASID Agricultural Region of Alberta Soil Inventory Database. This information 
consists of a detailed use guide, a GIS layer of polygons and a series supporting 
databases.

ANPP Above-ground Net Primary Production or Productivity.

AUC Area Under the Curve. This refers to the area under a ROC graph. Values of 0.5 
indicate a random relationship. Values higher than 0.5 indicate a positive relationship 
and models scoring 0.7 or higher are considered useful.

AWC Available Water Capacity. Water retained within soil of which a proportion is avail­
able for plant use.

Brightness A index derived from the taselled-cap transform. Brightness is a measure of 
soil reflectance.

CFB Canadian Forces Base.

Cook’s Distance This is a measure of the impact of an individual observation on a regres­
sion equation.
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CSM Conserved Soil Moisture. An weighted average o f precipitation over two years, 
designed to approximate the amount of plant available water in soil.

CWS Canadian Wildife Service.

CTI Compound Topographic Index. A  measure of position on a slope with low values 
indicating near the top and large values indicating near the bottom.

DEM Digital Elevation Model.

ERS Ecological Range Site. A range management focused plant community classification 
system.

EVI Enhanced Vegetation Index. A MODIS specific vegetation index.
F V I  =  2 ______PNIR—£>red____

L + P N lR + C lP r e d + C 2 P b lu e

L is a canopy background adjustment term. Ci and C2  affect the aerosol correction 
by Pblue of p red-

FSS Fold Sort Score. A index ranging from 0 to 1 indicating how many k-fold Spearman- 
rank correlation test scores were equal or higher than the critical value to be consid­
ered stronger than could be attributed to random chance.

GIS Geographic Information System.

GVI Green Vegetation Index or greenness. A vegetation index derived from the taselled- 
cap transform. GVI is a measure of reflectance from green vegetation.

MODIS M oderate Resolution Imaging Spectroradiometer. A NASA satellite with 36 
spectal bands and spatial resolutions of 250m, 500m, and 1000m.

MSAVI2 Modified Soil Adjusted Vegetation Index 2. I t’s performance is similar to SAVI, 
but is self calibrating and thus easier to use.

M SA V I2 ~  2Pj™ + i ' \ / ( 2PA '/«+ i)2~ 8(PA'/fl~Pm/)

NDVI Normalized Difference Vegetation Index. N D V I =  p ^ + p '^

NPP Net Primary Production or Productivity.

NWA National W ildlife Area.

Remote Sensing Gathering data from a distance. For the purposes of this thesis, this 
would mean use of satellite or airplane mounted sensors.
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ROC Receiver Operating Characteristics. A method of testing model performance based 
on a matrix of true positives, false negatives, false positives, and true negatives.

RPI RSF Plot Index. Either an individual Spearman-rank value or mean value over series 
of k-folds. This index is an indicator of the strength of the predicted /  observed 
relationship and is bound by the limitations of the Spearman-rank correlation test.

RSF Resource Selection Function. A function proportional to the probability of use by an 
organism.

SAVI Soil-adjusted Vegetation Index. SAVI =  Pĵ + p P̂ +z +  1)

L is a correction factor that ranges from 0 - 1 .  Usually it is set to 0.5.

Taselled-cap transform A method of processing reflectance data from multiple bands via 
means similar to principle components analysis. It was originally created for Landsat 
MSS data and later adapted to other data sources.

VCT Vegetation Cover Type. A physiognomic plant community classification scheme for 
the Suffield NWA.

Wetness A index derived from the taselled-cap transform. Wetness is a measure of re­
flectance from water, either in the soil or in the vegetation.
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1 Models for management

1.1 History and goals

As someone starting a graduate program after more than 10 years of practical experience, 
my interest was in doing research of practical value. I had worked for a number of years 
with different organisations on bird atlas and checklist programs, so the question of species 
distribution was one of particular interest. When speaking with Brenda Dale of the Cana­
dian Wildlife Service (CWS), I became aware o f a m ature data set for grassland birds from 
the Suffield National Wildlife Area (NWA) within the Canadian Forces Base (CFB) Suffield 
in southern Alberta, and their interest in looking at the utility of using remotely-sensed and 
GIS data to model habitat selection for these species.

The interest of CWS in having someone do research with their data provided the means 
to do a Masters of Science research project that was not the classic one field season master’s 
project. Instead, my project would be firmly grounded in real management problems and 
would provide the experience and knowledge I hoped to gain from a graduate program.

The bird data had been gathered as part of a long-term monitoring effort by CWS and 
CFB Suffield. This monitoring was conducted as part of the management strategy for cattle 
grazing in the NWA. As there are many bird species that show marked preference for native 
grasslands, monitoring the abundance and distribution of these species became part of that 
larger management plan. Species chosen for this project were those neither too common or 
too rare, and which depended on native grasslands (Table 2-1).

The research project objectives were clear. Test and confirm the utility of remotely- 
sensed data for constructing habitat selection models and create usable models for as many 
of the target species as possible. As the research unfolded and course work was undertaken, 
the shape of the project evolved and became focused on two basic questions. First, what 
methods were available to evaluate model performance generally, spatially, and temporally? 
Second, what types of predictor variables were needed to model habitat selection over space 
and time with a minimum of cost and effort?
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1.2 Study area

The NWA is a smaller area embedded in CFB Suffield that covers approximately 2600km2. 
The northern portion of the NWA is not subject to cattle grazing, so it was not part of the 
ongoing monitoring program even though field surveys were conducted in 1994 and 1995 
as part of the federal effort to assess this unique area.

The project study area was the south block of the NWA. The south block is approxi­
mately 190km2 or 7% of CFB Suffield. Topographically within CFB Suffield the elevation 
range is 583-846m , but in the south block the range is 619-756m  (Natural Resources Canada 
2004). Thus, it was clear that although the south block was representative of a portion of 
CFB Suffield, models developed within this area would have limited application to the en­
tire base if variables were dependent on characteristics unique to this region. With this 
in mind, I attempted to use variables that would be transferable to areas outside the south 
block and the NWA. In the areas surrounding CFB Suffield, much of that land is under cul­
tivation whereas most of the NWA has never been cultivated, or hasn’t been cultivated for 
many years. This difference also limited the direct application of models developed within 
the NWA to adjacent areas.

The grasslands of southern Alberta are dominated by herbaceous vegetation. Perennial 
grasses dominate net primary production (NPP), but forbs are the primary contributors 
to species diversity (Bragg and Steuter 1996). Trees are generally limited to areas with 
greater moisture, such as riparian areas. As a semi-arid landscape, topography plays an 
important role in moisture availability (Bragg and Steuter 1996) and thus the distribution of 
plants. Related to the issue of topography are wetlands of various classes from permanent 
to ephemeral which are preferred habitats of some species (Lowther et al. 2001).

With relevance to avifauna grasslands consist of three stmctural layers. First, there 
is litter, or dead vegetation fallen on the ground. Second, there is grass cover, meaning 
the density and height of living grass and standing dead. Third there are shrubs. These 
three elements strongly affect reproductive and feeding behaviour and thus are important 
classifiers of grassland bird habitat (Gill and Poole 1993-2004).

CFB Suffield is within the dry mixedgrass natural subregion (Adams et al. 2004). The 
south block is mostly native mixed-grass prairie. Although at first glance the area appears 
to be in a natural state, there is actually a tremendous amount of oil and gas activity in the 
base, though wells are all subsurface. The one obvious impact of this activity that is linear 
disturbance such as roads, trails, and pipelines. Along many roadways there is Crested 
wheatgrass (Agropyron desertorum) which was either seeded or brought in on tires. A n­
other alteration to the landscape has been the placem ent of dugouts and wells for watering 
cattle. In areas close to the watering areas, grazing is more intense, causing changes in the 
amount of litter, standing dead, and green plant cover.
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1.3 Statistical context

Researchers often find themselves with data that are not simple use / non-use data sets. In­
stead, they have data that are listings of used habitats and listings of available habitats that 
may or may not be in use by the species in question. Such data conform to a use / avail­
able, presence only, or presence / available study design. This is further complicated when 
the same locations might be recorded as used sites as well as available sites (Johnson et al. 
2006). This type of study design is likely to occur in situations where field data are com ­
pared against data extracted randomly in a GIS environment. O f critical importance when 
using these study designs is that traditional methods of evaluation for logistic regression 
models are not appropriate (Boyce et al. 2002).

The problems with use / available study designs is that all traditional model evaluation 
techniques for these types of data are dependent upon the use of a confusion matrix. This 
necessitates knowledge of true positives, true negatives, false positives, and false negatives. 
W ith use / available data and designs, true positives are known, but true negatives are not.

K-fold cross-validation to measure model predictive ability is an appropriate means to 
evaluate use /  available models (Boyce et al. 2002). Although this technique was explicitly 
developed for use / available designs, as it is a measure of model predictive ability, its 
expansion to any RSF model is appropriate as the utility of an RSF model is dependent on 
its ability to predict. For this study I employed a use / non-use design with bird point-count 
survey data collected over five years and over a heterogeneous landscape. This situation 
permitted the expansion of the k-fold technique to use k-folds based on year or spatial 
location to evaluate model performance in a robust fashion.

1.4 Unused and unavailable data

During the course of the project, a draft of the new Ecological Range Site (ERS) system 
by Adams et al. (2004) was made available. These data were an amalgamation of soils, 
plant communities, and topography. Since this layer was available for the NWA as well 
as areas outside of CFB Suffield it was considered because it could enable the application 
of constructed models to areas outside the NWA and CFB Suffield. Plant communities 
within the ecological range sites were classified by dominant species which provided some 
indication of some of the critical structural factors thought to be important for birds.

The Vegetation Cover Type (VCT) system based on the report of Adams et al. (1999) 
was also available for the NWA. The VCT data was physiognomic in nature, describing the 
vegetation in terms of structural elements rather than species associations, as used in the 
ERS system. For birds, the VCT classification, although rather general, was more intuitive 
and potentially more useful as it defined communities in terms similar to those used to 
describe bird habitat.
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To examine these two systems thoroughly, I first examined the two systems, both in 
terms of classifications and the distribution of the polygons to try to understand their com­
monalities and differences. I subsequently attempted to use these systems to construct 
models for the study species with varying degrees of success. Finally, I examined some of 
the source field data on shrub cover used to generate the VCT classifications and compared 
this against the final classifications for both the VCT and ERS system. In the end these 
data sources were dropped from consideration because the polygon sizes of these areas 
were very large, so they didn’t have sufficient spatial resolution to model habitat selection 
at the scale of the study area. Associated with this scale issue was the fact that there were 
very few classes to consider in the study area and a few of those constituted the majority of 
the study area.

As discussed in the description of the study area, cattle grazing was ongoing during 
the study and its associated activities affected the abundance of relevant habitat factors. 
Measures o f cattle use were collected by CWS but not for all avian sample points. Cat­
tle will travel only limited distances from water, so measures of distance to water have 
potential as indirect indices of grazing. Unfortunately, neither CFB Suffield nor CWS pos­
sessed an accurate and properly classified layer of wetlands and dugouts. As a result, a 
measure of cattle impact was not available during the course of the project. This was un­
fortunate, as grazing can be an important factor for most of the species under consideration 
(Gill and Poole 1993-2004). In recent discussions with Brenda Dale (October 2005), CWS 
and CFB Suffield are now in the process of creating such a GIS layer.

1.5 Temporal trends

During the course of the field program, there were large variations in seasonal precipitation 
(Figure 3-1) and in bird numbers from year-to-year (Table 3-7). This variability created a 
challenge in creating multi-year models that would accurately predict some of the dramatic 
changes in species relative abundance.

1.6 Summary

There were two questions explored in this thesis. First, what methods exist or could be 
enhanced to robustly evaluate habitat selection models for grassland birds? Second, what 
remotely-sensed or GIS-based predictor variables were effective for modelling this selec­
tion? These questions are addressed in Chapters 2 and 3 respectively. Chapter 4 provides a 
summary of this work and outlines some possible directions for future research in this area.
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2 Three way k-fold cross-validation of logistic regression 
models applied to grassland birds 1

2.1 Introduction

Resource selection functions (RSF) are defined to be proportional to the probability of use 
of a resource unit by an organism (Manly et al. 2002). The utility of these models is depen­
dent on their ability to predict. If a model has a spatial and temporal component, prediction 
will vary in space, in time, and as a function of its stability. Boyce et al. (2002) point out 
that many apparently adequate models fail in new areas or time periods. To use RSF mod­
els effectively, an evaluation of their predictive ability in all three dimensions is needed. 
We put forward a method to evaluate model performance in each of these dimensions and 
to select models based on their predictive ability. Equally important with this method is 
not only a means to select the model that can predict more accurately, but to understand the 
limitations of selected models so that they can be used appropriately.

For use / available (also known as presence only or presence / available) study designs, 
locations where species are observed, can also appear in the model as available locations 
(Johnson et al. 2006). This situation makes traditional methods for model evaluation inap­
propriate (Boyce et al. 2002). Boyce et al. (2002) put forward the concept of using k-fold 
cross-validation as a means to evaluate presence / available models using plots of expected 
vs. observed and the Spearman-rank correlation to generate an index value (hereafter re­
ferred to as RSF Plot Index or RPI). The RPI statistic provides a measure of a models 
predictive ability. Considering that the utility of RSF models lies in their ability to pre­
dict, the application of RPI to any RSF model, regardless of study design, is appropriate. 
In this paper we expanded the RPI technique to examine general, spatial, and temporal 
model stability. We also developed a method to help ameliorate the difficulty of the RPI’s 
sensitivity to number and placement of suitability classes (bins) when conducting k-fold 
cross-validation.

We constructed a series of logistic regression models for grassland birds using a use /

'A version of this chapter is being prepared for submission and review as: Wiens, T.S., Boyce, M.S., 
Dale, B.C., Kershaw, G.P., 2006. Three way k-fold cross-validation of logistic regression models. Ecological 
Modelling
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non-use study design (Manly et al. 2002). We selected models using RPI values from the
set o f potential models that passed the goodness-of-fit (GOF) test of le Cessie and van Houwelingen
(1991) for logistic regression.

2.2 Methods

We modelled habitat selection for eleven species of grassland birds (Table 2-1) in the Cana­
dian Forces Base (CFB) Suffield National W ildlife Area (Suffield NWA), in south-eastern 
Alberta, Canada (50°14'N, 110o37'W), using five years of point-count survey data. Over 
the course of the study there were large variations in precipitation. Drought conditions 
existed in the area in 2001 and in the early spring of 2002. Late spring of 2002, as we 
were conducting our field surveys, higher than normal precipitation occurred but was in­
sufficient to offset the previous year’s deficit. Other years were relatively normal (Figure
3-1). To take advantage of these variable conditions, we selected bird species from the pool 
o f those detected that were known to be sensitive to year-to-year variation in plant growth 
(Gill and Poole 1993-2004) or which we observed to vary in abundance and distribution 
over the course of our study. We also avoided species that were very common or those 
which were extremely rare in our study area (Table 3-1). For a summary of top model 
performance by species see table 2-6.

Table 2-1: Common and scientific names (American Ornithologist’s Union) for modelled 
species ________________________________________________

Common Name Scientifi c Name
Willet Catoptrophorus semipalmatus
Upland Sandpiper Bartramia longicauda
Marbled Godwit Limosa fedoa
Sprague’s Pipit Anthus spragueii
Clay-colored Sparrow Spizella pallida
Vesper Sparrow Pooecetes gramineus
Lark Bunting Calamospiza melanocorys
Savannah Sparrow Passerculus sandwichensis
Baird’s Sparrow Ammodramus bairdii
Grasshopper Sparrow Ammodramus savannarum
McCown’s Longspur Calcarius mccownii

2.2.1 Model Components

Bird data were collected using the point-count procedure outlined in Dale et al. (1999) in 
late May and early June of 2000-2004. Survey sites (263) were placed on 1km spaced
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transects at 500m intervals to give a representative sample of the entire study area. At each 
survey location, birds were recorded by song or sight inside or outside of a 100-m-radius 
for 5 minutes.

We categorised predictor components into temporal and vegetation groups. The veg­
etation variables were used to provide the spatial component of our models. Temporal 
variables consisted of precipitation data which would provide information on inter-annual 
variation in plant growth. The effect of previous year precipitation and above-ground 
net primary productivity (ANPP) on current year ANPP was studied by Oesterheld et al. 
(2001). Regression models with r2 values of 0.58 and 0.60 resulted from current year pre­
cipitation and previous year ANPP or current and previous year precipitation respectively. 
The relationship between inter-annual plant growth and precipitation is however not linear 
(Flanagan et al. 2002); wet years produce a much greater effect on increased production 
than dry years affect decreased production. The relationship between ANPP and grass­
land canopy structure was studied by Lane et al. (2000) who found ANPP increases were 
positively correlated with increases in canopy height and Leaf Area Index.

Based on this research we posited that the use of precipitation data, together with mea­
sures of spatial variation in plant growth, would be sufficient to form good predictive m od­
els for at least some of the birds under study. Elsewhere we explored the relative perfor­
mance o f different combinations of temporal and spatial predictor variables (Chapter 3).

2.2.2 Data Processing

Data were managed using PostgreSQL 8.0. This was chosen because of its ease of use with 
other selected tools. Geographic Resources Analysis Support System (GRASS) version 
6.0 was used for raster and vector analyses. Statistical analysis was conducted using R 
(R Development Core Team 2004). The GRASS v . s a m p le . b u f f e r  module was used to 
extract raster attributes within a 250-m-radius buffer around survey sites and save them in 
a PostgreSQL database.

2.2.3 Predictor Variables

Environment Canada provided precipitation data for the five climate stations surrounding 
the study area within a 60-km-radius. This information was merged to form  regional aver­
age precipitation by month for the period of 1998 through 2004. These regional averages 
were then wrapped up into current year, previous year, and two years previous totals for 
use in the models.

Price et al. (2002) found that discrimination between different grassland plant commu­
nities and management practices was best done using a single image from July rather than 
May or September. We thus used a cloud-free Landsat 7 image from 29 July 2000 which
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was a slightly dry, but close to normal year. The time of year and year chosen provided 
some confidence that this image would provide a good measure spatial variation of plant 
growth at a 30m spatial resolution for the study area. From this image the Normalized D if­
ference Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index 2 (MSAVI2 ) 
(Qi et al. 1994), and the tasselled cap Brightness, Greenness or Green Vegetation Index 
(GVI), and Wetness indices (Crist et al. 1986, Huang et al. 2001, Kauth and Thomas 1976) 
were created.

Table 2-2: Model predictor variables
Variable Group Variable Source Rationale or Comment
Vegetation NDVI Landsat 7 Refbctance o f green vegetation

MSAVI2 Landsat 7 Refbctance of green vegetation
GVI Landsat 7 Refbctance o f green vegetation
bright Landsat 7 Brightness is a measure of re­

fbctance mostly attributable to 
soil

wet Landsat 7 Wetness is a measure of moisture 
in vegetation and soil.

vegetation index 
variance

Landsat 7 Variance within the 250m radius 
survey location is a indicator of 
heterogeneity. Spatial hetero­
geneity is of varying importance 
to different birds (Gill and Poole 
1993-2004).

Temporal precipr Environment Canada Current year precipitation from 
January 1 to May 31

precip,_i Environment Canada Previous year precipitation
precip,_2 Environment Canada Two years previous precipitation
CSM Environment Canada Weighted average of past 2 years 

of precipitation

Determining how best to combine predictor variables based on a priori assumptions 
was difficult due to their general and somewhat ambiguous nature. For instance, similar 
combinations of precipitation and vegetation variables could conceivably model a number 
of different species depending on model beta weights.

Having many possible models presented us with a number o f undesirable options. One 
option would have been to consider the use of backward step Akaike’s Information Criteria 
(AIC) model selection with a series of nested model groups. This technique however, 
is generally unacceptable to statisticians, so we rejected this approach. A second option 
would have been to run all possible combinations, but this could only be perceived as 
fishing. Therefore we took a number of measures to reduce the num ber o f models.
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With the large number of vegetation indices, the number of conceivable combinations 
was very large. Since different vegetation indices have different sensitivities to moisture 
and soil effects, we wanted to include multiple indices to capture this variability. However, 
since the indices were all derived from a single source and thus were correlated we wanted 
to avoid collinearity problems. We calculated a correlation matrix for NDVI, MSAVI2 , 
GVI, Brightness, and Wetness for the entire Landsat scene. We conservatively choose a cut 
point of 0.7 or higher to remove combinations from consideration (M ason and Perreault 
1991). Combinations passing this criteria were MSAVI2 with GVI and Wetness and NDVI 
or MSAVI2 with Brightness and Wetness. The reasons why these combinations are reason­
able are discussed in Chapter 3.

Research into ANPP indicated that antecedent moisture conditions were very impor­
tant for plant growth, thus current year, previous year, and two years previous precipi­
tation was calculated. To limit the number of possible combinations we decided to use 
precipitation data in only three ways. First, we used Conserved Soil M oisture (CSM) 
(Williams and Robertson 1965); an estimate of soil moisture on May I st using a weighted 
combination of precipitation data from the previous two years. Second, we used the cur­
rent and previous year’s precipitation. Third, we used precipitation from  the current year, 
previous year, and two years previous.

These combinations of variables were arranged into four groups of six models each, for 
each species (24 models / species).

2.2.4 Model Considerations

The number of individuals observed at a single location was small. W ith such small num ­
bers, the modelling o f abundance would be difficult. It was decided to reduce the data to 
recorded or not recorded and use logistic regression to model habitat selection.

There has been some recent debate concerning the severity of spatial autocorrelation 
on model accuracy (Diniz-Filho et al. 2003, Lennon 1999, 2000, N ielsen et al. 2002). The 
bird survey technique employed here, of closely spaced survey locations on transects, is a 
possible cause for concern. The issue of spatial autocorrelation in RSF models is related 
to bias in hypothesis testing (Lennon 2000) caused by reduced variance in the model. The 
RPI statistic is not concerned with, or appropriate for, hypothesis testing; it is a measure 
of model predictive ability. Issues related to spatial autocorrelation do not affect the RPI 
statistic and thus, were not relevant.

2.2.5 Model Processing

As recommended by Burnham and Anderson (2002), a series of ecologically reasonable 
models were drafted for each species. These models were then defined in a configuration
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file to be read by a small program which would then run the k-folds and other tests.
During processing, models were trained using the complete data set. From these full 

models the GOF values (using the Design  library for R or S-Plus) were computed. All 
models failing the GOF test (P <  0.10) were excluded from consideration.

At this point, three separate, five-fold cross-validations were conducted. Source data 
were partitioned into 5 equal-sized random blocks using the sam ple function in R. Subse­
quently 4 blocks were selected to train a model and then a fifth partition was predicted. This 
was repeated five times such that all five parts had been predicted by the other four. Sub­
sequently, k-fold cross-validations were conducted by splitting the data apart by field year 
and by five spatially distinct blocks within the study area. These k-fold cross-validations 
were used to measure the temporal and spatial stability of the models.

Since the observed data were binary, data had to be grouped into a series of suitability 
classes or bins in order to generate a plot of observed vs. predicted likelihoods. Ten equal- 
area bins using normalised scores and a moving-window average were employed for this 
purpose (see next section for details). The Spearman-rank correlation test or Spearman rv 
value was calculated for each plot, giving a RPI value for each fold. The RPI values for 
the random, temporal, and spatial components were recorded in tabular format by their 
respective folds as well as a mean value. For the spatial and temporal folds, fold scores 
were compared against the critical value for the Spearman-rank test with a n=10 and an 
alpha of 0.05 (>  0.564 Wagner (1992)). Folds passing this test were counted and divided 
by the num ber of folds. Therefore, each model had a fold sort score (FSS) based on the 
combined performance of the spatial and temporal k-fold RPI values. Recent work by 
Bengio and Grandvalet (2004) point out that there are no unbiased estimators of k-fold 
cross-validation variance. Although some adaptation of boot-strapping might be feasible 
to overcome this, this was not explored. Observationally, different m ns of the same models 
gave quite different individual fold and mean RPI values. The objective of the FSS was 
to generate a consistent measure of a models performance to be used for model selection. 
Thus, random k-folds were not included.

After all models were estimated, a sorted list by FSS was created to identify strong 
models quickly and easily. After manual examination of the lists and models, a single best 
or group of top models were chosen for each species. Residuals plots and Cook’s distance 
plots were examined to identify data points exerting an inordinate influence on the model or 
models. Prior to modelling, the source data had been examined for errors and outliers, yet 
all models had some data points identified as overly influential. These potential offending 
data points (<  2%) were trimmed and the top candidate models were re-run to evaluate 
their performance. If the resulting models were similar in performance after the removal 
of these data, the effects of the removed data points were classified as non-problematic. If 
however the models changed substantially in their predictive ability, they were excluded 
from consideration. In this fashion we could examine the top candidate models thoroughly 
and select a single best model for each species.
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2.2.6 Binning Methods

Boyce et al. (2002) and Hirzel et al. (2006) point out that one of the difficulties with the 
RPI method, is the arbitrary nature of the bins. The results generated by this method can 
be very sensitive to the number and placement of the bins.

This sensitivity is seen in considering two hypothetical situations. For the sake of ar­
gument, we will assume that the model considered is a true RSF function. We will also 
assume that the bins have been evenly distributed from 0 to 1. If the distribution of our 
m odel’s predicted probabilities were skewed right, then the resulting plot would have a 
rise, a peak, and a long tail. Now this would not necessarily mean that the function was 
not a true RSF, but rather it could indicate that a very small percentage of the landscape 
consisted of optimal habitat as defined by the model. Unfortunately, the placement of the 
bins, prevents proper detection of this, and is in fact, insensitive the ecological reality of 
the study area and might generate an artificially low RPI value.

To deal with variation in the distribution of predicted values, equal area bins should 
be used. We constructed equal area bins based on the results of the full model. Predicted 
values were generated and sorted and then bins with equal numbers of records were created. 
Corrections in the case of an uneven number of bins were done in favour of the last bin to 
try to prevent artifactual dips at the upper end of the graph. When k-folds were conducted, 
their distributions were compared against the base distribution and an adjustment factor 
was calculated to force all predicted data into bins as if there had been an even distribution 
of points across all bins. This method ensured that the bins were a reflection of the actual 
probability distribution, and a true measure of the observed vs. predicted relationship.

A second problem situation is the number of bins used. As the number of bins increases, 
eventually zero value bins will appear in the plot. These zero value bins are a function of 
data sparseness, not of an invalid model. However, as above, artificially low RPI values 
would be reported. We started with 10 bins and assessed our data to see if we were likely to 
encounter data sparseness induced zero value bins. In our case, the Clay-colored Sparrow 
was the species with the least data, with only 40 records in total. Divided by 5, this indicated 
that if records were distributed evenly there would be only 8 records per fold. We predicted 
that this would not be a problem as it was likely that the lower 2 or 3 bins might often 
be empty. This prediction was borne out in observation, with using 10 bins providing no 
difficulties related to sparsity of data.

In our situation however, a third problem existed. We had a multi-year model with 
variable numbers of birds from year-to-year (Table 2-5), and we were testing the model 
over diverse spatial blocks. Under these conditions it was reasonable to expect that the 
amount of suitable habitat available from year-to-year, and from spatial block to spatial 
block, would vary greatly. We had determined the break points for the equal area bins based 
on the full model. Thus, we expected variation in the data distribution over the individual k- 
folds, as a reflection of the real variation in the spatial and temporal landscapes. To address
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this issue, we applied a normalisation technique from remote sensing. In order to compare 
images from one year to the next, images are often standardised to account for differences 
in lighting conditions, etc. This standardisation allows for meaningful comparison among 
images. We applied this concept to our k-fold process by transforming all values to a range 
between 0 and 1 using minimum and maximum values. This was done before determining 
our break points based on the full model as well as before bin assignment for the individual 
k-folds. In this manner, we could be assured of these non-random plots, combining in a 
meaningful way.

Hirzel et al. (2006) suggest the use of a moving window to overcome sensitivity to the 
num ber of bins. We applied this method to our normalised equal area bins by including 
one bin above, and one bin below, into an average value plotted for each bin. Thus for bin 
zero, it was an average between bin 0 and bin 1. For bin 1, it was an average between bins 
0, 1, and 2, and so on.

2.3 Results and Discussion

2.3.1 Binning Results

The example in table 2-3 illustrates the value of the methods we employed. The use of equal 
area bins over fixed bins resulted in stronger relationships from the data as predicted. In 
addition the use of normalised bins improved the performance for the spatial and temporal 
k-folds and the use of the moving window average resulted in further improvement. When 
all three were combined, the relationships were the strongest and remained significant, 
although weaker, as the bin number increased causing data scarcity problems.

The use of normalisation with random k-folds could be inappropriate. The random sam­
pling from the data set was intended to provide a representative sample of the population. 
In this context, it could be more theoretically sound not to use the normalisation. The rel­
ative stability in the RPI values generated from the random k-fold for all different binning 
techniques indicated no loss in apparent performance from this conservative action.

For practical usage of the RPI, it is important to determine what minimum value should 
be considered valid. In our case we calculated the Spearman r v values for each bin sepa­
rately and then provided those along with a mean of all folds. This value could he calculated 
in a single step, but in that case, the resulting P values would be artificially low because 
the individual k-folds were not independent. Thus, we chose conservatively and used 0.564 
(based on n=10, alpha=0.05) as the cutoff value for which relationships could be considered 
real and not attributable to random chance. For reference, this value would be equivalent 
to an receiver operating characteristics (ROC) graph area under the curve (AUC) value of 
0.5. At this point however, we are unsure about what value to recommend as an analogue 
to the AUC value of 0.7 or higher for considering a model useful (Boyce et al. 2002).
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Table 2-3: Comparison of different binning methods
Baird’s Sparrow k-fold Spearman rs values (Critical values for alpha 0.05: 
n=10, 0.564; n=15, 0.441; n=20, 0.377) See table 2-4 for model details.
Bins Random Fold Mean Year Fold Mean Block Fold Mean
Normalised equal area bins with moving window average

10 0.9103 0.8066 0.9228
15 0.9064 0.6971 0.8833
20 0.8620 0.6387 0.7976

Equal area bins with moving window average
10 0.8289 0.7042 0.9402
15 0.9109 0.5668 0.9119
20 0.8727 0.5332 0.8790

Normalised equal area bins
10 0.8086 0.5841 0.7319
15 0.7371 0.4492 0.6560
20 0.7439 0.4060 0.5605

Equal area bins
10 0.8390 0.5398 0.8102
15 0.7038 0.3046 0.6987
20 0.7213 0.2966 0.6282

Fixed bins with moving window average
10 0.0517 0.4605 0.1615
15 0.0543 0.4113 0.0962
20 0.0351 0.3572 0.0786

2.3.2 3-way validation

The behaviour of an animal using an ecosystem is incredibly complex, which, quite re­
markably, often can be modelled with only a few variables. Unlike artificial systems such 
as cellular automata, in the real world, we don’t have access to the underlying mechanisms 
from which these complex behaviours arise. Considering this fact, is it reasonable to as­
sume that a single measure will provide all the information needed to assess the stability 
and appropriateness of a model? Our research suggests that measures of a m odel’s perfor­
mance in all dimensions of variance are necessary to have confidence in its validity. We 
were able to generate at least one model for each species that would be considered adequate 
using the GOF and general RPI criteria. Yet only 4 o f these models survived scrutiny of 
their temporal and spatial performance by extending the k-fold validation to those dimen­
sions (Table 2-6). If the individual temporal and spatial k-folds are examined, the status of 
these models becomes more complicated. We use two species to illustrate this.
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Table 2-4: Example Models
Baird’s Sparrow (GOF 0.6089)
X(3 =  —23.2364 — 0.02867 precipt +  0.0304 precipt_ i — 58.4714 ndvi +  
0.0071 bright — 0.0034 wet +  411.1721 ndvivar

k-fold Spearman r, values (Critical value for alpha 0.05: n=10, 0.564)
Fold Random P Year Temporal P Block Spatial P
1
2
3
4
5
Mean

0.9758
1.0000
0.9758
0.9698
0.6303
0.9103

<  0.0001 
<  0.0001 
<  0.0001 
<  0.0001 

0.0061 
0.0012

2000
2001
2002
2003
2004 
Mean

0.7774
0.8788
0.7399
0.6431
0.9939
0.8066

0.0007 
<  0.0001 

0.0014 
0.0053 

<  0.0001 
0.0015

1
2
3
4
5
Mean

0.9521
0.9225
0.7638
1.0000
0.9758
0.9228

<  0.0001 
<  0.0001 

0.0009 
<  0.0001 
<  0.0001 

0.0002
Marbled Godwit (GOF 0.1606)
XP =  -2 .1 8 3 3  -  0.0146 CSM +  3.2831 ndvi -  0.1221 bright -  0.2182 wet +  
389.6775 ndvivar

k-fold Spearman rs values (Critical value for alpha 0.05: n= 10, 0.564)
Fold Random P Year Temporal P Block Spatial P
1
2
3
4
5
Mean

0.9054
0.7038
0.3042
0.9521
0.9286
0.7588

<  0.0001 
0.0024 
0.0984 

<  0.0001 
<  0.0001 

0.0202

2000
2001
2002
2003
2004 
Mean

0.6497
0.7723
0.9521
0.9286
0.9521
0.8510

0.0049 
0.0008 

<  0.0001 
<  0.0001 
<  0.0001 

0.0011

1
2
3
4
5
Mean

0.6497
0.9759
0.2626
0.6303
0.6694
0.6376

0.0049 
<  0.0001 

0.1299 
0.0061 
0.0038 
0.0289

Table 2-5: Number of bird records by year and spatial block
Baird’s Sparrow

Year Block 1 Block 2 Block 3 Block 4 Block 5 Total
2000 19 12 1 16 11 53
2001 2 3 0 0 1 5
2002 2 0 0 1 0 3
2003 9 7 0 32 23 71
2004 18 12 4 28 40 102

Marbled Godwit
Year Block 1 Block 2 Block 3 Block 4 Block 5 Total
2000 10 7 2 4 5 28
2001 17 11 1 20 12 61
2002 23 12 2 15 9 61
2003 12 5 1 11 10 39
2004 11 2 5 6 9 33
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Baird’s Sparrow is a species of mixed-grass or fescue grasslands (Green et al. 2002). 
Although locally abundant, this species is generally rare throughout its range. Its tendency 
to rapidly shift its distribution and abundance from year to year, make determining the 
status of this species difficult (Green et al. 2002, McGillivray and Semenchuk 1998). This 
species prefers areas of mixed grass with intermediate height and density, residual vege­
tation, and little or no scattered low shrubs. Although preferring native grasslands, this 
species will use non-native grasslands with similar structural factors to its preferred habitat 
(Dale et al. 1997, Owens and Myres 1973). In prairie Canada structural factors are shrub 
cover less than 20%, litter of 0.1-4cm  deep, and average grass height between 10-30cm 
(Dale 1983). A series of models were drafted for this species consisting of different com­
binations o f precipitation data, different vegetation indices, and vegetation index variance 
within the site survey area. This species’ best model is summarised in table 2-4.

For Baird’s Sparrow, the spatial blocks scored quite high, but temporally, much of the 
data was marginal. In 2003, the RPI value was low. The species almost disappeared from 
the study area in 2002 (Table 2-5). This information in conjunction with the weather pat­
tern (section 2.2), shows how the model has difficulty predicting the sudden rise in numbers 
after the drought conditions ended. This information provides insight into the limitations 
of the model in regard to moisture cycles. Examination of random RPI values or the mean 
values for the random, temporal, and spatial folds can not provide this information. Prac­
tically, this model likely could be extended outside the study area to the entire NWA if 
conjoined with an appropriate field program to confirm and improve the model.

The M arbled Godwit nests in grasslands with low to moderate vegetative cover and is 
often observed in prairie wetlands, sloughs, and shallow lakes (M cGillivray and Semenchuk
1998). It feeds on insects, aquatic plants, leeches, and small fish using its long bill to probe 
into the benthos (Gratto-Trevor 2000). Nests are usually within 300-350m  from  a wetland. 
Use of non-native habitats as well as wetlands or ephemeral wetlands is reported. Tall grass 
cover is avoided and this species prefers large blocks of grassland (Gratto-Trevor 2000). A 
series of models were drafted for this species consisting of different combinations of pre­
cipitation data, different vegetation indices, and vegetation index variance within the site 
survey area. This species’ best model is summarised in table 2-4.

For the Marbled Godwit, temporally the model has a lower RPI value in 2000, but has 
higher values in other years. Spatially, the model is poor, utterly failing in block 3 and 
having low values in all but block 2. The failure in block 3 could relate to data sparsity and 
a general temporal pattern that is not synchronised with the other blocks or the general trend 
(Table 2-5). The pattern in block 4 is also in contrast to the other blocks and the general 
trends. These complexities however do not suggest bad field data, but rather, there are 
important predictor variables missing from the model. Given the species requires at least 
some wetland habitat, a measure of wetland location and permanency would have likely 
made a better predictor than our Landsat based wet variable. Overall, the model predicts 
well temporally, but is marginal spatially. From a practical point of view, this means the
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model could be used for temporal trends within the study area, but extending its use to the 
entire NWA could not be recommended.

In this comparative example, it is clear that general measures of model stability are in­
sufficient. Further, examination of the individual spatial and temporal RPI values revealed 
difficulties in these dimensions that were not obvious from examining the mean RPI values.

To reiterate the message of Bumham and Anderson (2002), building models based on 
data dredging is a dangerous business, so we did not examine the temporal and spatial 
distribution of the bird records prior to model constmction. Instead, these models were 
built upon the simple, but defensible, ecological premise about the spatial and temporal 
variation of vegetation detected and predicted with vegetation indices and climate data. 
Examining data in detail after the models were constmcted, prompted by the three-way 
testing, provided understanding of model limitations. Our approach to model testing pro­
vides the means to better understand model limitations so that they can be applied within 
the parameters of those limitations and not beyond.

Table 2-6: M odel Summary
Species .5 Mean Spearman r s values and RPI Fold Sort 

Scores (FSS)
GOF

(strong models) Random Temporal FSS Spatial FSS
Willet 0.6701 0.6275 0.8 0.5796 0.6 0.2202
Upland Sandpiper 0.7289 0.6661 0.6 0.5762 0.6 0.1062
Marbled Godwit 0.7422 0.8510 1.0 0.6376 0.8 0.1606
Sprague’s Pipit 0.9579 0.9260 1.0 0.9137 1.0 0.6807
Clay-colored
Sparrow

0.6874 0.6383 0.6 0.7283 0.8 0.5030

Vesper Sparrow 0.8512 0.7650 0.8 0.5852 0.8 0.2901
Lark Bunting 0.9717 0.3972 0.4 0.7208 0.8 0.1294
Savannah Spar­
row

0.9288 0.7541 0.8 0.4374 0.4 0.8792

Baird’s Sparrow 0.9103 0.8066 1.0 0.9228 1.0 0.6089
Grasshopper
Sparrow

0.9763 0.9344 1.0 0.9212 1.0 0.8260

McCown’s
Longspur

0.8935 0.9469 1.0 0.8382 1.0 0.1430

2.4 Conclusion

The utility of RSF models depends crucially on their predictive ability. Prediction can vary 
in space, in time, and as a function of the stability of the model. Therefore, a measure of 
the predictive ability of an RSF in all of these dimensions is required. If  properly tested, 
RSF models then can be applied within the bounds of their limitations and no further. Use 
of improperly tested RSF models could lead to serious errors in management, which in
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turn could have grave consequences for the species of concern. Therefore, we strongly 
recommend the application of this technique in all possible cases.

The comparative example of Baird’s Sparrow and the Marbled Godwit clearly demon­
strates the value of the 3-way approach in selecting the most robust model from a set of 
alternatives and in identifying the limitations and appropriate uses of those models. Our 
summary results (Table 2-6) show that the Baird’s Sparrow / M arbled Godwit example was 
not unique, but representative of our entire study.

The use of normalised equal area bins was shown to be superior both empirically and 
theoretically to fixed or simple equal area bins. The addition of the moving-window average 
put forward by Hirzel et al. (2006), improved performance further and helped to ameliorate 
threshold dependency issues.

M anagers and researchers employing RSF models need to evaluate the predictive abil­
ity of their models. Because models can vary temporally, spatially, as well as generally, 
the predictive ability of models must be evaluated in all these dimensions. Our method 
of using a 3-way k-fold cross-validation with the RPI method of Boyce et al. (2002) was 
demonstrated to be equal to the task. To our knowledge, no other method exists that can 
provide as much useful information or test the robustness of RSF models as thoroughly as 
has been demonstrated here.

Many researchers may have to write their own routines for doing custom k-fold cross- 
validations as this functionality is not available in all software packages. For researchers 
using S-plus or R, copies of our k-fold R scripts are available upon request to the corre­
sponding author.
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3 Predictors of grassland bird habitats in Southeastern 
Alberta, Canada 2

3.1 Introduction

Throughout ornithological literature, description of habitats as plant species associations 
has been, and remains common (Gill and Poole 1993-2004). The importance of structural 
elements, however, has been recognised for some time (M acArthur and M acArthur 1961) 
with the development of the concept for grassland birds first gaining full expression in the 
work of Wiens (1969). Wiens described the habitats of grassland birds using the height 
and density of plant cover in various life form categories. Since then many studies, in­
cluding a number in prairie Canada (Dale 1983, Davis et al. 1999, M cM aster and Davis 
2001) have utilised the Wiens method to describe bird habitats. Associations were found 
between individual grassland bird species and litter depth or distribution, vegetation height 
and thickness, amount of residual cover, and the presence or absence of shrub.

Using these established relationships to create models useful for predicting bird occur­
rence suffers from  several limitations. The first is that, although a given grassland bird 
species might be consistent in using areas with low cover or little litter, the absolute values 
of the structural measures in areas occupied often varies widely within a season or between 
years (Dale 1983). The birds appear to make decisions on a relative rather than absolute 
basis within certain extremes of unacceptably high or low values. This inconsistency in 
structural values makes creation of models that are temporally robust a challenge. In ad­
dition to the variability in the environment and in the behaviour of the birds in question, 
sampling many of these structural measures requires detailed field work. For management 
purposes, this is not practical. Our purpose was to assemble a set of robust models for 
use in the management of priority species in the Canadian Forces Base (CFB) Suffield Na­
tional Wildlife Area (Suffield NWA) using remotely sensed and GIS based data as proxies 
for these structural measures.

Manly et al. (2002) defines a resource selection function (RSF) as a function propor­
tional to the probability of use of resource unit by an organism. M odels having spatial

2 A version of this chapter is being prepared for submission and review as: Wiens, T.S., Dale, B.C., 
Kershaw, G.P., Boyce, M.S., 2006. Predictors of grassland bird habitats. Ecological Applications
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and temporal components will vary in space and time, and as a function of model stability. 
Since the utility of these models is found in their ability to predict, we applied the method 
outlined in (Chapter 2) to evaluate and select models based on their predictive ability. In 
this method k-fold cross-validation is employed to generate index values, or RSF Plot Index 
(RPI) scores, for random, temporal, and spatial folds which are indicators of the models 
predictive ability generally, temporally, and spatially. RPI values for fixed temporal and 
spatial k-folds are then used to assign a value between 0 and 1 describing how many of 
the folds passed the critical value for the RPI test statistic (in this case the Spearman-rank 
correlation test). In this way, models with the best predictive ability can be selected, and 
the predictive limitations of the best models can be clearly understood.

Using five years of point-count survey data we modelled habitat selection for eleven 
species of grassland birds in the Suffield NWA, in south-eastern Alberta, Canada (50° 14'N, 
110°37/W). Using the 3-way RPI method, we evaluated several variables known to affect 
the spatial distribution and growth of plants from year-to-year, and their ability to predict 
habitat selection for grassland birds.

Figure 3-1: M onthly precipitation from weather stations within 60km radius of study area.
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3.2 Methods

During our study there was large variation in precipitation (Figure 3-1). In 2001, precip­
itation was low creating drought conditions in the area. In 2002, precipitation was low 
during the first part of the year and higher than normal in late spring as field surveys were 
being completed. This precipitation was not enough to offset the previous year’s deficit so 
drought-like conditions persisted. Other years were much closer to normal precipitation 
years. To take advantage of these variable conditions, we selected bird species known to 
be sensitive to year-to-year variation in plant growth (Gill and Poole 1993-2004) or that 
we observed to vary in abundance and distribution over the course of our study. We also 
avoided species that were ubiquitous or nearly so, as well as those that were extremely rare 
in our study area (Table 3-1).

Table 3-1: Bird species names (American Ornithologist’s Union) and occurrence
Common Name Scientifi c Name Percent Occurrence over all Survey Sites
Willet Catoptrophorus semipalmatus 35.36
Upland Sandpiper Bartramia longicauda 36.12
Marbled Godwit Limosa fedoa 55.13
Sprague’s Pipit Anthus spragueii 80.23
Clay-colored Sparrow Spizella pallida 10.65
Vesper Sparrow Pooecetes gramineus 55.13
Lark Bunting Calamospiza melanocorys 47.53
Savannah Sparrow Passerculus sandwichensis 69.20
Baird’s Sparrow Ammodramus bairdii 55.51
Grasshopper Sparrow Ammodramus savannarum 77.95
McCown’s Longspur Calcarius mccownii 53.61

3.2.0.1 Bird Surveys

During late May and early June of 2000-2004, bird data were collected using the point- 
count procedure outlined in D a lee ta l. (1999). In total there were 263 survey sites sys­
tematically placed to give a representative sample of the entire study area. Every 500m 
along east/west transects spaced 1 km apart, birds were recorded by song or sight inside 
or outside of a 100m radius during a sampling period of 5 minutes. Time of day, observer, 
and time of year bias were minimised through planned variation of the sample order. Bird 
numbers and inside or outside the 100m radius, or in-transit observations were recorded. 
Models used all observations associated with each survey site.
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Table 3-2: Predictor variables
Variable Group Variable Source Rationale or Comment
Temporal precip, Environment Canada Current year precipitation from 

January 1 to May 31
precip, _! Environment Canada Previous year precipitation
precip,_2 Environment Canada Two years previous precipitation
CSM Environment Canada Weighted average of past 2 years 

of precipitation
MSAVI2 MODIS Refbctance o f green vegetation 

at survey time each year
NDVI MODIS Refbctance of green vegetation 

at survey time each year
EVI MODIS Refbctance of green vegetation 

at survey time each year
Vegetation LsNDVI Landsat 7 TM Refbctance o f green vegetation

LsMSAVI2 Landsat 7 TM Refbctance o f green vegetation
GVI Landsat 7 TM Refbctance o f green vegetation
bright Landsat 7 TM Brightness is a measure of re­

fbctance mostly attributable to 
soil

wet Landsat 7 TM Wetness is a measure o f moisture 
in vegetation and soil.

vegetation index 
variance

Landsat 7 TM Variance within the 250 m radius 
survey location might be an indi­
cator o f habitats heterogeneity.

Landscape CTI GeoBase DEM Compound Topographic Index 
provides a indicator of a loca­
tions position on a slope

soil AGRASID A relative index derived from a 
weighted average soil texture of 
each soil horizon in profi le.

3.2.1 Model Components

Topographic and climatic factors affect the spatial distribution and year-to-year variation 
in vegetation characteristics known to be important to grassland birds. We categorised our 
model components into temporal, vegetation, and landscape groups (Table 3-2). Temporal 
components consisted of climate and annual remote sensing images from the time of the 
bird surveys. The vegetation and landscape variables constituted the spatial component of 
our models.

We first constmcted simple models using precipitation data and vegetation indices from
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Landsat 7 TM  data (30m pixels) as our temporal and spatial measures respectively. We sub­
sequently compared precipitation against Moderate Resolution Imaging Spectroradiometer 
(MODIS) data (250m pixels) to determine which data source was a better predictor of the 
temporal variation of our study species. Last, we added the spatial variables related to 
landscape into our top model groups for each species to assess if this additional informa­
tion would yield stronger models. Survey locations were spaced 500m apart so buffers with 
a radius of 250m were used to avoid overlap. Mean or variance values of vegetation indices 
and landscape variables within these buffers were used.

3.2.1.1 Temporal

In large-scale studies of vegetation response to moisture, grasslands have been shown to 
be highly variable (Huxman et al. 2004). Factors contributing to this variation include pre­
cipitation, temperature, wind, and solar radiation. These data have been used with soils, 
topography, and species associations to estimate the rate of potential evapotranspiration, ac­
tual evapotranspiration, and ultimately changes in soil moisture and plant available water. 
Oesterheld et al. (2001) studied the effect of previous-year precipitation and above-ground 
net primary productivity (ANPP) on current year ANPP. Current-year precipitation gener­
ally accounted for about 40% of the variance in ANPP. W hen they added previous-year 
ANPP or previous-year precipitation into their regression models, r2 values to 0.58 and 
0.60 respectively were obtained. Smoliak (1986) analysed a 50-year-record from south­
eastern Alberta and calculated an r2 values of 0.54 for annual precipitation vs ANPP. The 
authors point out that nutrient availability is limited by moisture, which also can limit de­
composition. These combined effects along with structural changes in response to moisture 
availability in a previous year could have some effect on current year ANPP not directly 
related to conserved soil moisture.

Flanagan et al. (2002) examined inter-annual variation in plant growth. They found 
that although precipitation was a major contributing factor to inter-annual variation, the re­
lationship was not linear; wet years produced a much greater effect on increased production 
than dry years affected decreased production. Lane et al. (2000) examined the relationship 
between ANPP and grassland canopy structure. Increased ANPP was positively correlated 
with increases in canopy height as well as Leaf Area Index. Because vegetation height and 
thickness are commonly useful predictors for grassland birds, we used readily available 
precipitation data as a surrogate for ANPP.

Research into precipitation interpolation suggested that surface interpolation of monthly 
data was not problematic (Shen et al. 2001). Based on the literature about ANPP, it seemed 
that precipitation over the course of the year would be all that was needed. Since however 
we were interested in the vegetation state at the beginning of June we used precipitation in 
the current year up to the first of June which coincided with our field surveys. Upon con­
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sideration of these facts and the relatively small size of our study area, precipitation was 
based on a regional average from the weather stations within a 60km radius of the Suffield 
NWA. Precipitation data was obtained from Environm ent Canada for the climate stations 
in the region.

Precipitation data were included in models in three ways. First we used Conserved Soil 
M oisture (CSM) (Williams and Robertson 1965); an estimate o f soil moisture on May 1st 
using a weighted combination of precipitation data from the previous two years (Equation 
3.1). Second we used the current and previous year’s precipitation. Third, we used pre­
cipitation from the current year, previous year, and two years previous. These calculations 
resulted in common values for all point-count locations for each survey year.

CSM  =  0.36A +  (0.37B —0.2(0 .36A)) +  0 .13C +  (3.1)

(0.30D  -  0.2(0.36A +  (0.37B -  0.2(0.36A)) +  0 .13C))

Where:
A = total precipitation during August, Sept. Oct in year t-2 
B = total precipitation during November of t-2 to April o f t-1 
C = total precipitation during May through October o f t-1 
D = total precipitation during November of t-1 through April of year t

Another method of measuring year-to-year variation due to climate was through the use 
of yearly remotely sensed data that coincided with the bird survey from MODIS. The 
MODIS 16-day vegetation index composite (data product MOD13A1 IV) tiles for the 
Suffield region were downloaded for 2000-2004 for the end o f M ay and the beginning of 
June. Although problems with the MODIS leaf area index algorithm have been identified 
(Shabanov et al. 2005) this did not affect our use of the reflectance and vegetation index 
products. Rahm an et al. (2005) evaluated the use of MODIS Enhanced Vegetation Index 
(EVI) as a measure of gross primary production (GPP) and found it to be useful. Problems 
with MODIS related to our use, appear to be limited to registration variation over multiple 
scenes (Kawamura et al. 2005) which are usually less than 1 pixel, but up to 2 pixels. Since 
values used in the model were mean and variance measures o f an area surrounding individ­
ual survey locations and would include multiple pixels, we did not smooth or resample the 
MODIS imagery to account for this potential error.

The MODIS images were tiled and reprojected using the MODIS Reprojection Tool 
(MRT) (U.S. Geological Survey 2004) and saved in GeoTIFF format. This imagery was 
then imported into GRASS 6.0. Image quality was assessed using the r . b i t p a t t e r n  mod­
ule to extract information in the provided bit pattern layers on the Normalized Difference 
Vegetation Index (NDVI) and EVI. All pixels were designated as useable, so no data were 
removed at this point. In addition to the NDVI and EVI vegetation indices, the Modified
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Soil Adjusted Vegetation Index 2 (MSAVI2 ) (Qi et al. 1994) was calculated. MSAVI2 was 
selected due its demonstrated good performance in areas with low plant cover.

3.2.I.2 Vegetation

Satellite reflectance is commonly used to generate classification maps based on field sur­
veys or within-image similarities. This technique allows researchers to construct a priori 
models based on previously observed habitats correlations. Plant communities are abstrac­
tions of reality and thus represent artificial groupings across a gradient of biological reality. 
Useful as the classification approach can be, it is our opinion that birds select areas for 
breeding from the range of existing heterogeneity that exists in the real world at any given 
time. In consideration of this, we felt it was more appropriate to model bird habitats selec­
tion using the full range of information available to us. Therefore, we used vegetation index 
values as proxies for plant cover, bare ground, and moisture. If  successful, this approach 
could provide a starting point for detailed field surveys to determine the physical factors 
measured by the vegetation indices. From a practical perspective however, this approach 
provides a working model for identifying areas of potential use by study species, without 
reliance on possibly irrelevant habitats classifications.

Price et al. (2002) evaluated which Landsat TM  band combinations and times of year 
were optimal for discriminating between different grassland plant communities in tallgrass 
prairie in Kansas. They found that for single image employing standard vegetation indices, 
an image from July performed much better than one from M ay or September. Because 
we wanted to characterise our landscape with a single image, we used a Landsat 7 ETM+ 
source image from 29 July 2000. During our study period, 2000 was close to a normal 
precipitation year, so the image was likely to provide a reasonable indicator of the spatial 
variation of growth at a 30m spatial resolution for the study area. NDVI and MSAVI2 

vegetation indices (Vis) as well as the tasselled-cap Brightness, GVI or Green Vegetation 
Index (GVI), and Wetness indices (Crist et al. 1986, Huang et al. 2001, Kauth and Thomas 
1976) were calculated. NDVI, MSAVI2 , and GVI were thus used as proxies for grass cover 
and density. Brightness was used as a proxy for percent bare soil cover, which as we had no 
measure o f litter, acted as its inverse. Wetness was used to provide information on spatial 
variation in soil moisture conditions.

When predictor variables are strongly correlated, the standard errors of the regression 
coefficients can be inflated (Harrell 2001). This collinearity can then make it difficult to 
interpret regression coefficients but does not affect the jo in t influence of highly correlated 
variables (Harrell 2001). Because the different vegetation indices have different sensi­
tivity to soil and moisture effects, where possible we wanted to use multiple indices to 
better describe the spatial variation of habitats. A correlation matrix for NDVI, MSAVI2 , 
GVI, Brightness, and Wetness for the entire Landsat scene was produced. A conservative
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value of lower than 0.7 acceptable correlation between pairs (M ason and Perreault 1991) 
of variables was used because this data was all derived from a single source and was thus 
correlated. Acceptable combinations were MSAVI2 with GVI and Wetness and NDVI or 
MSAVI2 with Brightness and Wetness. The theoretical foundation for these combinations 
relates to the difference among these indices. MSAVI2 , like the Soil Adjusted Vegeta­
tion Index (SAVI), was designed to reduce soil variation effects in the vegetation index 
signal. MSAVI2 is very similar in performance to SAVI (Qi et al. 1994) and is in fact a 
self calibrating version of SAVI. Many other vegetation indices like NDVI and GVI have 
been demonstrated to vary more with the soil substrate than SAVI (Huete 1989) and thus 
MSAVI2  also. Therefore, combining MSAVI2 with GVI provides a means to identify areas 
of variation in soil and vegetation reflectance. Brightness and Wetness are representative 
o f soil reflectance and moisture. These comhinations were included in model comparisons 
with index mean and variance for each o f the vegetation indices. Spatial heterogeneity is 
a factor of known importance to many grassland birds (Gill and Poole 1993-2004, Wiens 
1974). Therefore, variance of MSAVI2 , GVI, or NDVI within the 250m radius buffer 
around each survey site was included in models for some species as a measure of spatial 
heterogeneity.

3.2.1.3 Landscape

Topography plays an important role in moisture availability in a semi-arid landscape and 
can influence the occurrence and productivity of plants (Bragg and Steuter 1996). Soil tex­
ture influences drainage and also is likely to influence plant growth. Both general discus­
sions (Scott 1995) and classification system of grassland ecosystems (Adams et al. 2004) 
included topographic and soil texture elements in their descriptions. Based on this knowl­
edge we included these elements in our models to enhance spatial discrimination. Land­
scape components consisted of a Digital Elevation Model (DEM) derived attribute and soil 
texture.

The DEM  data from GeoBase (Natural Resources Canada 2004) with an approximate 
resolution of 25m was downloaded, merged, and reprojected to make a layer for CFB 
Suffield at 30m resolution. The challenge with using topographic features in the prairies 
is that they are subtle. However, within the study area, there was considerable variation 
in topography (Figure 3-2). Simple attributes such as slope and elevation do not provide 
information about where a location is in relationship to other elements. In simple terms, 
these variables can’t inform the model if the point is at the top of a hill or in a drainage 
channel. We considered the use of morphometric features, such as planar, pit, channel, etc, 
but because such classifications are dependent on an arbitrary window size for calculation, 
it was not pursued. Instead, we calculated the Compound Topographic Index (CTI) (Equa­
tion 3.2) described by Gessler et al. (2000) using r . to p id x . The original application of the
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Figure 3-2: Digital elevation model view of study area with survey points and spatial 
blocks used for k-fold cross-validation shown on surface
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CTI was in hydrological modelling and was called the wetness index which was renamed 
and applied to soil science by Gessler et al. (1995). The CTI is a measure of position on a 
slope, with lower values indicating position near the top of a slope, middle values indicat­
ing a position in the middle of a slope and high values indicating places near the bottom of 
a slope.

C77 =  l n ( A r )  (3.2)
tan (3

where:
A.s = specific catchment area (area per unit width orthogonal to flow direction)
(3 = slope angle

CFB Suffield provided a 1:50,000 soils map following the Agricultural Region of Alberta 
Soil Inventory Database (AGRASID) (Alberta Soil Information Centre 2001) conventions. 
The AGRASID data has lab-estimated Available Water Capacity (AWC) values, which 
are crucial for soil moisture tracking, vegetation growth modelling, or the calculation of 
drought indices. Research by De Jong and Loebel (1982), Oosterveld and Chang (1980) 
has shown that if calibrated locally, soil texture can be used to calculate AWC for a soil. 
Thus, we used soil texture as a component that was indicative of soil moisture available for 
plant growth. To simplify, a relative soil texture or particle size index was created using a 
weighted mean by profile contribution to the entire horizon. This relative soil texture index 
was calculated for each soil type with small values indicating fine texture or small particles 
and large values indicating course texture or large particles.
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3.2.2 Data Processing

All data were managed using PostgreSQL 8.0. Raster and vector analyses were conducted 
using the Geographic Resources Analysis Support System (GRASS) version 6.0. Sta­
tistical analysis was conducted using R (R Development Core Team 2004) and the Rpy 
and pyPgSQL  libraries to enable Python 2.4 scripting of R processes and the production 
of DTpiX 2g documentation. Raster attributes were extracted within a 250m radius buffer 
around survey sites using the v .s a m p le .b u f f e r  module which can calculate maximum, 
minimum, mean, variance, diversity, and mode and save the attributes into a PostgreSQL 
database.

3.2.3 Statistical Methods

The number of individuals observed at a single location was small, so the modelling of 
abundance would be difficult. Therefore, data were reduced to recorded or not recorded 
and logistic regression was used to model habitat selection employing a use / non-use study 
design Manly et al. (2002).

Although the application of k-fold cross-validation was developed to deal specifically 
with use / available data and study designs (Boyce et al. 2002), its use with use /  non-use 
study designs is not precluded. In fact, since the utility of RSF functions depends on their 
predictive ability, the application of the 3-way RPI method is recommended (Chapter 2).

The RPI method is based on the application of k-fold cross-validation. Individual k- 
folds are used to measure the relationship between predicted likelihoods and observed data. 
As a general measure, we used five equally sized random k-folds. The five years of field 
data was used for temporal k-folds. The study area was divided into five geographically- 
distinct blocks (Figure 3-2). Once divided, four parts were used to predict the fifth, which 
was then repeated five times removing a different part each time. These data were grouped 
into 10 bins, or suitability classes for each k-fold. From these data, Spearman-rank correla­
tion was used to compare the relationship between predicted and observed. Both individual 
and average values were recorded for random, temporal, and spatial folds. Individual folds 
from the temporal and spatial folds were compared against the critical value for Spearman 
rv for which the relationship is considered to be higher than can be attributed to random 
chance; for example, with n=10, and an alpha of 0.05, the critical value of r , is 0.564 
(Wagner 1992). The number of folds passing this test was divided by the total number 
of folds to give an index between 1.0 (for all) to 0.0 (for none). Therefore, each model 
had a fold sort score (FSS) based on the combined performance o f the spatial and tem­
poral k-fold RPI values. Concurrent with this procedure, the goodness-of-fit (GOF) test 
of le Cessie and van Houwelingen (1991), as implemented in the Design  library for R or 
S-Plus, was conducted and models failing this test (P <  0.10) were excluded. This test was 
chosen over the commonly employed Hosmer-Lemeshow GOF test because in their review
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of a series of GOF tests for logistic regression, Hosmer et al. (1997) concluded that test of 
le Cessie and van Houwelingen (1991) was as good as any they examined and did not suf­
fer from some of the theoretical problems of the Hosmer-Lemeshow test. This, combined 
with the fact that the le Cessie and van Houwelingen (1991) test was readily available in R 
and the Hosmer-Lemeshow test was not, made the choice obvious.

After all models were estimated, a single best or group o f top models were chosen for 
each species. This choice was made both on RPI scores and through examination of the 
model beta values in relation to their predictor variables. Models that were ecologically 
unreasonable were discarded. Residuals plots and Cook’s distance plots were examined 
to identify data points exerting an inordinate influence on the model or models. Prior to 
modelling, the source data had been examined for errors and outliers, yet all models had 
some data points identified as overly influential. These potential offending data points (<  
2%) were removed and the top candidate models were re-run to evaluate their performance. 
If the resulting models were similar in performance after the removal of these questionable 
data, the effects of the removed data points were classified as non-problematic. If how­
ever, the models changed substantially in their predictive ability, they were excluded from 
consideration. In this fashion, we could examine the top candidate models thoroughly and 
select a single best model for each species.

3.2.4 Limitations

In modem computing environments, when researchers are presented with a large number 
of possible models, the temptation exists to try them all. Burnham and Anderson (2002) 
strongly argue against this practice and we agree that this is an approach that is likely 
to cause more problems than it will solve. Determining how best to com bine predictor 
variables based on a priori assumptions was difficult in this study due to their general 
and somewhat ambiguous nature compared to the specific stmctural values informing our 
choices and the different influence of these variables on individual bird species. For in­
stance, similar combinations of precipitation and vegetation variables could conceivably 
model a number of different species depending on model beta weights.

Vegetation indices are built upon the differences in the strength of reflectance of materi­
als at different spectral frequencies. They do not however, provide a means to deal with the 
fact that individual pixels are composed of heterogeneous landscapes. As a result, all veg­
etation indices are sensitive to variations in substrate soils and moisture to varying degrees 
(Huete 1989). This limitation has stimulated many research efforts to explore the use of 
spectral unmixing as a way of providing better detection of vegetation and other landscape 
features. Despite the limitations of vegetation indices, they can still be o f great utility in 
habitats selection modelling if their lack of precision is understood.

Making ecological inference from our models is unwise because of the limitations of
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our approach and the predictor variables used. Our goal however, was to create predictive 
models for management and conservation purposes within the NWA and surrounding areas. 
For other researchers and land managers, we expect that similar models will also be found 
to be effective, yet we recommend caution in drawing conclusions about a species biology 
based on models using these types o f criteria. A summary of the b irds’ ecology is provided 
(Table 3-5) to assist in the understanding of the best models presented in table 3-6 and in 
understanding the limitations of the predictor variables used.

Table 3-3: Top MODIS and precipitation models. Scores listed are M ean RSF k-fold index 
values (Mean RPI) which is a Spearman-rank correlation value indicating predictive ability, 
Fold Sort Scores (FSS) which are the proportion of folds with scores higher than random, 
and the le Cessie and van Houwelingen (1991) goodness-of-fit (GOF) test for logistic re- 
gression.__________________ ________________________ _________________________

Species MODIS and Landsat Precipitation and Landsat
Mean RPI FSS GOF Mean RPI FSS GOF

Willet 0.8488 0.6 0.2472 0.6701 0.7 0.2202
Upland Sandpiper 0.8879 1.0 0.1016 0.7289 0.7 0.1062
Marbled Godwit 0.7541 0.9 0.6542 0.7422 0.9 0.1606
Sprague’s Pipit 0.9143 0.8 0.1085 0.9579 1.0 0.6807
Clay-colored Sparrow 0.6890 0.7 0.2048 0.6874 0.7 0.5030
Vesper Sparrow 0.8353 0.7 0.2239 0.8512 0.9 0.2900
Lark Bunting n/a1 n/a n/a 0.9717 0.8 0.1294
Savannah Sparrow 0.7832 0.7 0.3289 0.9288 0.6 0.8792
Baird’s Sparrow 0.9703 0.9 0.7444 0.9510 1.0 0.6089
Grasshopper Sparrow 0.9196 0.9 0.1106 0.9763 1.0 0.8260
McCown’s Longspur 0.8444 0.8 0.3127 0.8935 1.0 0.1430

'A ll models failed GOF test indicating the predicted model output differed significantly 
from the observed values

3.3 Results and Discussion

3.3.1 Annual remote sensing

For the MODIS set of models, these were divided into 4 groups of 6 models each giving 
a total of 24 possible models. This MODIS model set was com pared against our climate- 
based models which consisted o f different combinations of vegetation indices and precip­
itation data which were also divided into 4 groups of 6 giving a total of 24 models. The 
relative performance by species is listed with M ean RPI, FSS, and GOF values (Table 3-3). 
Examination of this table reveals that for most species, clim ate-based models had bet­
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ter predictive capability than their MODIS counterparts. Detailed ground measurements 
of structure have found considerable year-to-year variation in the values associated with 
a given species (Dale 1983). Although MODIS is spatially cmde (250m pixels), it did 
provide a spatially explicit temporal measure, unlike the precipitation data, so this result 
was somewhat surprising. For most species these additional spatial data appeared to have 
acted as confounding variables. For Upland Sandpiper and Savannah Sparrow however, the 
M ODIS-based models were superior.

3.3.2 Landscape variables

Soil texture and CTI were added to the Landsat and precipitation models to determine if 
model performance could be enhanced. In the cases of Upland Sandpiper and Savannah 
Sparrow, MODIS and Landscape models were tested also. For many of the species, the 
changes were subtle and required detailed examination of the RPI values for each fold to 
assess which models were superior. However, in general, the inclusion of CTI and soil 
texture improved model performance (Table 3-4). For Clay-colored Sparrow there was a 
dramatic improvement with the inclusion of landscape variables. That is probably related 
to their dependence on shrubs for nesting. Woody vegetation occurrence could not be 
predicted by the vegetation indices utilised in this study, but slope position or drainage 
would provide some information in this regard.

Table 3-4: Top Landsat models with and without landscape variables. Scores listed are 
Mean RSF k-fold index values (Mean RPI) which is a Spearman-rank correlation value 
indicating predictive ability, Fold Sort Scores (FSS) which are the proportion of folds with 
scores higher than random, and the le Cessie and van Houwelingen (1991) goodness-of-fit 
(GOF) test for logistic regression._____________________________________________

Species With Landscape Without Landscape
Mean RPI FSS GOF Mean RPI FSS GOF

Willet 0.8370 0.7 0.1143 0.6701 0.7 0.2202
Upland Sandpiper 0.8103 1.0 0.1318 0.8879 1.0 0.1016
Marbled Godwit 0.7113 0.9 0.7831 0.7422 0.9 0.1606
Sprague’s Pipit 0.9720 1.0 0.5157 0.9579 1.0 0.6807
Clay-colored Sparrow 0.8581 0.8 0.7241 0.6874 0.7 0.5030
Vesper Sparrow 0.9431 0.9 0.6059 0.8512 0.9 0.2900
Lark Bunting 0.9107 0.7 0.1293 0.9717 0.8 0.1294
Savannah Sparrow 0.7471 0.8 0.9267 0.9288 0.6 0.8792
Baird’s Sparrow 0.9855 0.9 0.4897 0.9510 1.0 0.6089
Grasshopper Sparrow 0.9855 1.0 0.8093 0.9763 1.0 0.8260
McCown’s Longspur 0.9763 1.0 0.8763 0.8935 1.0 0.1430
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Table 3-5: Bird Ecology Summary
Species Cover Moisture Heterogeneity Source
Willet short, low cover breed near wet­

lands
low Lowther et al. (2001)

Upland Sandpiper low to moderate 
grass, moderate 
to high litter

dry 3 types of
habitats
needed

Houston and Bowen (2001)

Marbled Godwit low to moderate ephemeral wet­
lands

low Gratto-Trevor (2000)

Sprague’s Pipit intermediate 
height grasses, 
with moderate 
litter

well-drained ar­
eas

moderate Robbins and Dale (1999)

Clay-colored
Sparrow

shrubby grass­
lands

moderate to 
high

moderate Knapton (1994)

Vesper Sparrow moderate, some 
bare ground, 
and some shrub 
or edge

moderate high Jones and Comely (2002)

Lark Bunting moderate with 
shrub or sage­
brush

moderate to dry high Shane (2000)

Savannah Spar­
row

dense, some 
shrub

moderate low W heelwright and Rising (1993)

Baird’s Sparrow moderate with 
residual vegeta­
tion

moderate high Green et al. (2002)

Grasshopper
Sparrow

moderate with 
patchy bare 
ground

moderate to 
moist

moderate to 
high

Vickery (1996)

McCown’s
Longspur

very sparse dry homogeneous With (1994)

3.3.3 Model Strengths and Weaknesses

Due to the somewhat inexact nature of the predictor variables, understanding the likely 
ecological causes for model failures and successes is not immediately obvious. We will use 
three species to examine the relative strength and weakness of these models and areas that 
are in need of improvement.

Sprague’s Pipit prefers well-drained areas in open grasslands with grasses of intermedi­
ate height and thickness with moderate litter, but areas with shrubs are avoided (Robbins and Dale
1999). These habitat requirements are congruent with the observation that this bird is in­
tolerant of heaving grazing. This bird breeds in native grasslands and tends to avoid tame 
pasture (McGillivray and Semenchuk 1998).
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Table 3-6: Best models by species with mean RPI scores for random, temporal, and spatial 
k-folds and fold scort scores (FSS) indicating the proportion of folds with Spearman rv 
values equal to or above critical value._______________________________________________

Species Mean RPI values and Fold Sort 
Scores (FSS)

GOF Model (without beta 
weights values)

(strong models) Random Temporal FSS Spatial FSS
Willet 0.5118 0.6275 0.8 0.5796 0.6 0.2202 -a - biprecip, + 

b 2 precip,_] - b 3precip , _ 2  

+ b4 LsNDVI + bsbright - 
bgwet + b7LsNDVIvar

Upland Sand­
piper

0.6327 0.7619 1.0 0.7447 1.0 0.1016 a - biM SAVI2+
b2LsNDVI
b3LsNDVIvar

Marbled Godwit 0.7985 0.8510 1.0 0.6376 0.8 0.1606 -a - biC SM  + b 2LsNDVI 
- b3bright - b 4 wet + 
b5LsNDVIrar

Sprague’s Pipit 0.9579 0.9260 1.0 0.9137 1.0 0.6807 a - biprecip, + 
b 2 precip,_i - b3GVI 
+ b4wet + b5GVIvnr

Clay-colored
Sparrow

0.7075 0.7184 0.8 0.7216 0.8 0.7241 a + b iC T I + b 2 Soil + 
b3precip, + b 4 precip,_i + 
b5precipr_2 + bgGVl + 
b7wet + b8GVIv„r

Vesper Sparrow 0.9475 0.9259 1.0 0.7609 0.8 0.6059 a + b iC T I + b 2 S0 il - 
b3CSM + b4LsMSAVI2 
- bsGVI + bgwet - 
b7LsMSAVI2var

Lark Bunting 0.8351 0.3350 0.4 0.8104 1.0 0.1293 a - b iC T I + b 2 Soil - 
b3precip, + b 4 precip,_i + 
b5LsMSAVI2 - b 6GVI + 
b7wet - bsLsMSAVUvar

Savannah Spar­
row

0.7645 0.8686 1.0 0.4843 0.6 0.9267 -a + b iC T I - b 2 Soil 
+ b3MSAVI2 
b4LsMSAVI2 + b5GVI - 
bgwet + b7LsMSAVl2 var

Baird’s Sparrow 0.9103 0.8066 1.0 0.9228 1.0 0.6089 -a - biprecip, + 
b 2 precip,_i - b 3LsNDVI 
+ b4 bright - bswet + 
bgLsNDVIynr

Grasshopper
Sparrow

1.0000 0.9334 1.0 0.9952 1.0 0.8093 a + b iC T I + b 2 precip, 
+ b3precip,_i + 
b4precip,_2 + bsGVI 
- b6GVIvar

McCown’s
Longspur

0.8935 0.9469 1.0 0.8382 1.0 0.1430 -a + biprecip, 
b2precip,_i 

b3LsMSAVI2 + b4GVI - 
bswet
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The model for the Sprague’s Pipit with the best predictive power consisted of five pre­
dictor variables. Current year precipitation was negative and previous year precipitation 
was positive. This would indicate that antecedent moisture conditions are very important. 
Also, this is logical considering this species need for moderate litter which is the product 
o f the previous growing season. This is also congruent with the observed variation in bird 
number for this species. In 2001, which was the first drought year, the number of records 
for Sprague’s Pipit dropped to 56% of the number observed in 2000 (Table 3-7). In 2002, 
as the drought continued, the numbers dropped to 22% of 2000 values. In 2003, with litter 
being affected by the summer precipitation in 2002, numbers rebounded to 68% of 2000 
values and in 2004, the number of observations for Sprague’s Pipit were 108% of 2000 val­
ues. This pattern clearly shows the litter and previous year production effect on the relative 
abundance of this species.

Table 3-7: Number of species records by year
Species 2000 2001 2002 2003 2004
Willet 22 35 35 9 10
Upland Sandpiper 13 42 26 32 21
Marbled Godwit 28 61 61 39 33
Sprague’s Pipit 112 63 25 76 121
Clay-colored Sparrow 5 6 5 14 10
Vesper Sparrow 44 73 88 60 42
Lark Bunting 43 32 21 65 83
Savannah Sparrow 80 94 41 86 80
Baird’s Sparrow 59 6 3 71 102
Grasshopper Sparrow 97 89 43 115 130
McCown’s Longspur 7 77 122 38 30

GVI was weighted negatively and wetness positively, as well as GVI variance. As 
described earlier, GVI is known to be sensitive to soil effects (Huete 1989). Given this 
sensitivity, it would appear that the reflectance indices selected areas that are wet, but with­
out the most vegetation, and areas with some spatial heterogeneity. If  an area is wet, but 
doesn’t have dense plant cover, this seems to indicate good drainage. These observations 
about the model are in agreement with the general ecology of this bird as it relates to grass 
cover, litter, and shrub. Although this model performed well, it clearly could benefit from 
a better measure of litter.

M cCown’s Longspur uses areas such as moderately grazed short-grass prairie, or struc­
turally similar habitats such as overgrazed pastures (With 1994). This bird breeds in open 
areas with sparse plant cover. In Alberta its distribution is localised (M cGillivray and Semenchuk 
1998). Structural studies report a preference of about 25% bare ground and an average plant 
height of 5 cm, with nests usually placed beside clumps of grass or beneath shrubs (With
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1994).
The best predictive model for M cCown’s Longspur has five predictor variables. Cur­

rent year precipitation is weighted positively and previous year precipitation is weighted 
negatively. This combination worked well in this model to accurately tracking the rise and 
fall of this bird’s relative abundance during and after the drought (Table 3-7). This pat­
tern is expected with the documented affinity of this species for dry and sparsely vegetated 
habitats. The negative weighting of the wetness index is also in agreement with this. The 
combination of negative MSAVI2 and positive GVI demonstrates avoidance of the green­
est areas but selection of areas where the two indices disagree. GVI is more sensitive to 
soil effects than MSAVI2 which suggests selection of areas without litter. M odels for this 
bird which included brightness performed poorly suggesting that it was a poor proxy for 
litter. As with Sprague’s Pipit, a better litter proxy would likely have improved this models 
performance.

The Grasshopper Sparrow prefers moderately open grasslands with areas o f patchy bare 
ground. This species is easily overlooked and has a broad range with an uneven local distri­
bution where it is often absent from seemingly suitable habitat (M cGillivray and Semenchuk 
1998). This bird tends to select areas that are more lush and have shrub cover, but avoids 
areas with extensive shrub (Vickery 1996). It forages exclusively on the ground for in­
sects and seeds and thus requires sites with bare ground as it is a visual predator. Besides 
native prairie, it is also found in abandoned pastures and other tall-grass dominated areas 
in southeastern Alberta (McGillivray and Semenchuk 1998). Nests are domed with over­
hanging grasses and have a side entrance making them difficult to locate (Vickery 1996).

The best model for Grasshopper Sparrow has six predictor variables. CTI was weighted 
positively indicating a positive relationship to areas near the bottom of slopes, and thus wet­
ter areas. Current, previous year, and two years previous precipitation were all weighted 
positively as would be expected of a species requiring moister conditions and which dropped 
to 50% of its 2000 observations in 2002, the second year of the drought. GVI was also pos­
itively weighted as expected, but GVI variance was negatively related. Because Grasshop­
per Sparrow is known to need areas with a spatial heterogeneity, the negative weighting 
of vegetation index variance raises doubts about its validity as a measure of spatial hetero­
geneity that is meaningful to this species or other grassland birds. Thus this model would 
have likely performed better with a better measure of spatial heterogeneity. To address this 
question, the use of imagery with finer spatial resolution is the next logical step.

The examination of these models clearly demonstrates the need for better measures 
of litter and spatial heterogeneity. Not discussed above were the models of Willet and 
Upland Sandpiper that both performed poorly spatially, probably due to the absence of a 
properly classified wetland layer. For species like these, that are dependent on wetlands at 
different times of the year or Marbled Godwit which is known to chose ephemeral wetlands 
(Gratto-Trevor 2000), this additional layer would be very useful.

On the positive side, the use of precipitation data was very useful and provided pre­
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dictive capability that was easily understood in ecological terms. The ease of use over 
annual remote sensing imagery and superior performance provides some confidence in rec­
ommending its use for other grassland models with a temporal component. In addition to 
precipitation, soil texture and CTI had a positive effect on the performance of many models 
in a manner that was easy to understand, so they too can be recommended.

3.4 Conclusion

The models constructed for the eleven study species were based on the simple concept that 
changes in vegetation in space and time directly effect changes in bird distributions over 
space and time. We found that simple models based on vegetation indices and precipitation 
data were often quite usable, but the addition of soil texture and CTI contributed to better 
models in many cases. Examination of a series of models hightlighted the need for better 
measures o f spatial heterogeneity, litter, and wetland types and distribution. The application 
of this approach outside grassland ecosystems is uncertain because many other ecosystems 
are slower to respond to year-to-year changes in climate.

Annual images from MODIS did not appear to be as useful for temporal predictors as 
precipitation. However since our study area was relatively small, it is likely that for larger 
areas, MODIS data could be a very powerful tool when combined with finer scale data such 
as Landsat 7 TM  imagery, and landscape characteristics derived from DEM  data.
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4 Application of research

4.1 Summary

In this thesis I developed a method for selection and robust evaluation of Resource Selection 
Function (RSF) models and applied it to the evaluation of remotely sensed and GIS-based 
data sources for modelling the habitat selection of grassland birds. M odels were built using 
five years of point-count data. Low numbers of birds were observed at each survey location 
so the data was reduces to presense / absence and logistic regression was used to estimate 
an RSF. RSF’s are defined as proportional to the probability o f use of a resource unit by 
an organism (Manly et al. 2002). In this context, Boyce et al. (2002) put forward a method 
o f using k-fold cross-validation to create predicted vs. observed line graphs using a set of 
suitability classes. Spearman-rank correlation tests were calculated on these results were 
summarised by an RSF Plot Index or RPI. This method allowed for the evaluation of the 
predictive ability of an RSF.

One challenging facet of this research was finding ways to ameliorate the R PI’s thresh­
old dependency. Threshold dependency is created through the selection of cut or break 
points for binning the results because this selection is arbitrary and can significantly affect 
the resulting RPI score. Hirzel et al. (2006) suggested using a moving window to create a 
pseudo-continuous function. This was shown to be a good concept, but failed to address 
variations in the predicted probability distributions for each fold. I demonstrated that a 
method using normalised scores within equal area bins was more stable and resulted in 
stronger RPI scores. To this method, I added the moving-window average to provide more 
consistent score values and help liberate the RPI method from its threshold-dependency 
problems.

The core of my work with the RPI method was applying it to show how model predic­
tions varied in time and space. This was done by using temporal folds based on the five 
seasons of field study and spatial folds using five distinct spatial blocks within the study 
area. Examination of RPI values for individual spatial and temporal divisions proved to be 
an easy method of identifying potential weakness in models and understanding how they 
might be used appropriately within and beyond the spatial and temporal borders of a study. 
To my knowledge this is the first study of its kind and represents an advance in robust 
model testing methods.
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Chapter 3 of this thesis examined the utility of remotely sensed and GIS data in creating 
habitat selection models for grassland birds. Remotely sensed data sources were Landsat 
7 TM  and MODIS. Additional data sources were DEM, a soils map, and precipitation 
data. A  series of base models were constructed using vegetation indices derived from the 
Landsat 7 TM  data and precipitation data to model the spatial and temporal variation in 
habitat respectively. Some of these simple models performed quite well. A  second step 
was to compare the performance of annual remote sensing images from MODIS against 
precipitation data. Precipitation data performed better in most cases. Lastly, soil texture 
and CTI were added to the top model groups and yielded improved models for most species. 
The general results from this were that simple precipitation and single year vegetation index 
models can be effective for some species, but both soil texture and CTI are useful attributes 
to improve on these models. The study area was not large, so MODIS did not perform 
well in most cases. MODIS performance was good enough however to raise interest in its 
application in models for larger areas.

4.2 Future work

During the research in RPI model selection and evaluation, I observed a great deal of vari­
ance in the random k-folds. Recent work by Bengio and Grandvalet (2004) has demon­
strated that there are no unbiased estimators of variance for k-fold cross-validation. A l­
though the RPI method proved to be a useful tool for fixed temporal and spatial k-folds, the 
issue of variance among folds in cross-validation needs to be addressed.

The work on remotely sensed predictors for grassland bird habitat selection models 
clearly indicated that issues of scale need to be explored. There are two main issues. First, 
habitat heterogeneity is a fine-scale issue from the perspective of remote sensing, so al­
though vegetation index variance was used as a proxy for this with some success, finer spa­
tial resolution imagery is needed to capture this information. SPOT imagery (2.5m pixels) 
is now available for the Suffield region and this would be an excellent data source for eval­
uating this question. The other side of the scale question could be addressed with Breeding 
Bird Survey data and MODIS. Both data sources are freely available, which would make 
the perfect compliment to the SPOT work and would allow for exploration o f scale depen­
dency in our models, such as that conducted by Davidson and Csillag (2003).

Finally, further research is needed to evaluate the effectiveness of grazing information 
as a predictor variable. The distance-to-water index discussed in chapter 1, based on a 
properly classified GIS layer of wetlands and dugouts, would be a good starting point. 
Such a layer would improve models for species affected by grazing and would also be 
invaluable for some species, such as the Willet, Upland Sandpiper, or M arbled Godwit, 
which are known to have strong associations with wetlands at different times during their 
breeding cycle.
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A Top models

In this appendix the details on the single best model for each species are presented. The 
format of this presentation is one species per page with the common name, the model 
formula, Goodness-of-fit statistics, Wald statistics, and RPI statistics.
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A .l Willet

XP =  — 10.1597 — 0.0223 precipt +  0.0019precipt- i
— 0.0042 precipt_ 2  +  6.0487 Lsndvi +  0.0378 bright
— 0.0454 wet +  132.0096 Lsndvivar

Table A -l: Willet goodness Table A-2: Willet Wald statistics
r  n.  72 J f  D

o f  fit t d . f . P
Sum o f squared errors 95.7601 precip, 7.60 1 0.0058
Expected value—HO 95.2682 precip,_i 0.53 1 0.4647
SD 0.4012 precip;_ 2 2.26 1 0.1331
Z 1.2260 Lsndvi 0.31 1 0.5749
P 0.2201 bright 0.78 1 0.3760

wet 1.07 1 0.3001
Lsndvirar 1.31 1 0.2525
TO TAL 44.96 7 <  0.0001

Table A-3: Willet RPI values
Fold Random P Year Temporal P Block Spatial P
1 0.5028 0.0217 2000 0.8788 <  0.0001 1 0.3747 0.0600
2 0.8116 0.0004 2001 0.9225 <  0.0001 2 0.7937 0.0005
3 0.9698 <  0.0001 2002 0.6636 0.0041 3 0.2273 0.1635
4 0.2066 0.1869 2003 0.0121 0.7625 4 0.7723 0.0008
5 0.0679 0.4671 2004 0.6606 0.0043 5 0.7302 0.0016
Mean 0.5118 0.1352 Mean 0.6275 0.1542 Mean 0.5796 0.0453
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A.2 Upland Sandpiper

x p =  1 0 . 5 2 1 6 - 3 . 2 3 6 9  M S A V I 2 +  5 3 . 3 7 2 2  L s n d v i - 1 2 2 1 . 0 8 4  L s n d v iv a r

T a b l e  A - 4 :  U p l a n d  S a n d p i p e r  T a b l e  A - 5 :  U p l a n d  S a n d p i p e r  W a l d  s t a t i s t i c s

good ness o f  fit x 2 d. f . P
Sum o f squared errors 113.0529 MSAVU 3.44 1 0.0636
Expected value—HO 112.2815 Lsndvi 41.54 1 <  0.0001
SD 0.4711 Lsndvirar 7.41 1 0.0065
Z 1.6373 TOTAL 45.49 3 <  0.0001
P 0.1016

T a b l e  A - 6 :  U p l a n d  S a n d p i p e r  R P I  v a l u e s

Fold Random P Year Temporal P Block Spatial P
1 0.7126 0.0021 2000 0.6324 0.0060 1 0.8547 0.0001
2 0.6303 0.0061 2001 0.6694 0.0038 2 0.7879 0.0006
3 0.7937 0.0005 2002 0.8825 <  0.0001 3 0.6894 0.0029
4 0.2608 0.1315 2003 0.7937 0.0005 4 0.6431 0.0053
5 0.7663 0.0009 2004 0.8315 0.0002 5 0.7484 0.0012
Mean 0.6327 0.0282 Mean 0.7619 0.0021 Mean 0.7447 0.0020
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A.3 Marbled Godwit

XP =  -  2.1833 -  0 .0146CSM +  3.2832Lsndvi-  0 .1222bright 

— 0.2182 wet +  389.6775Lsndvivar

Table A-7: M arbled Godwit Table A-8: M arbled Godwit Wald statistics
good ness o f  fit X2 d. f . P

Sum of squared errors 163.4240 CSM 7.41 1 0.0065

Expected value—HO 162.6065 Lsndvi 0.15 1 0.7026

SD 0.5826 bright 13.10 1 0.0003

Z 1.4032 wet 38.45 1 <  0.0001

P 0.1606 Lsndvi V(,r 11.94 1 0.0005
TO TAL 82.33 5 <  0.0001

Table A-9: Marbled Godwit RPI values
Fold Random P Year Temporal P Block Spatial P
1 0.9759 <  0.0001 2000 0.6497 0.0049 1 0.6497 0.0049
2 0.6303 0.0061 2001 0.7723 0.0008 2 0.9759 <  0.0001
3 0.7937 0.0005 2002 0.9521 <  0.0001 3 0.2626 0.1299
4 1.0000 <  0.0001 2003 0.9286 <  0.0001 4 0.6303 0.0061
5 0.5924 0.0092 2004 0.9521 <  0.0001 5 0.6694 0.0038
Mean 0.7985 0.0032 Mean 0.8510 0.0011 Mean 0.6376 0.0289
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A.4 Sprague’s Pipit

Yj3 =4.0256 — 0.0275 precipt +  0.0196precipt_ i — 0.1890 GVI 

+  0.2187 wet +  0.0031 GVI var

Table A-10: Sprague’s Pipit Table A -l 1: Sprague’s Pipit Wald statistics
good ness o f  fit x 2 d. f . P

Sum of squared errors 195.8105 precip, 80.03 1 <  0.0001
Expected value—HO 196.2231 precipr_i 118.98 1 <  0.0001
SD 1.0026 GVI 13.97 1 0.0002
Z -0 .4 1 1 6 wet 64.82 1 <  0.0001
P 0.6807 GVIW 0.58 1 0.4462

TO TAL 185.63 5 <  0.0001

Table A-12: Sprague’s Pipit RPI values
Fold Random P Year Temporal P Block Spatial P
1 0.9759 <  0.0001 2000 1.0000 <  0.0001 1 1.0000 <  0.0001
2 1.0000 <  0.0001 2001 0.9879 <  0.0001 2 0.8155 0.0003
3 0.9521 <  0.0001 2002 0.9698 <  0.0001 3 0.8704 <  0.0001
4 1.0000 <  0.0001 2003 0.8788 <  0.0001 4 1.0000 <  0.0001
5 1.0000 <  0.0001 2004 0.7937 0.0005 5 0.8825 <  0.0001
Mean 0.9856 <  0.0001 Mean 0.9260 0.0001 Mean 0.9137 <  0.0001
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A.5 Clay-colored Sparrow

x p  =25.6012 +  0.8254 CTI +  0.0611 soil +  0.0106precipt 

+  0.0019 precipt_i +  0.0024precipt_2 +  0.3420 GVI 
+  0.0872 wet +  0.0048 GVIvar

Table A-13: Clay-colored Table A-14: Clay-colored Sparrow Wald statis-
Sparrow goodness of fit________ tics ________________________________ _______

Sum o f squared errors 36.0923 X2 d . f .  P
Expected value-410 35.9490 CTI 1.03 1 0.3099
SD 0.4062 soil 0.45 1 0.5007

Z 0.3530 precipr 0.58 1 0.4478
P 0.7241 precip,-i 0.16 1 0.6932

precipr_ 2 0.41 1 0.5227
GVI 6.01 1 0.0142
wet 1.27 1 0.2591
GVIW 0.46 1 0.4993
TO TAL 42.10 8 <  0.0001

Table A -15: Clay-colored Sparrow RPI values
Fold Random P Year Temporal P Block Spatial P
1 0.8727 <  0.0001 2000 0.6606 0.0043 1 0.6896 0.0029
2 0.9152 <  0.0001 2001 0.6606 0.0043 2 0.8297 0.0002
3 0.4472 0.0345 2002 0.8545 0.0001 3 0.7723 0.0008
4 0.3632 0.0652 2003 0.4526 0.0330 4 0.8255 0.0003
5 0.9394 <  0.0001 2004 0.9638 <  0.0001 5 0.4909 0.0240
Mean 0.7075 0.0200 Mean 0.7184 0.0083 Mean 0.7216 0.0057
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A.6 Vesper Sparrow

Y(3 =2.0677 +  0.4615 CTI +  0.2116 soil -  0.0179 CSM 

+  24.7991 Lsmsavi2 -  0.4913 GVI +  0.3200 wet 
— 44.7246 Lsmsavi2 var

Table A -16: Vesper Sparrow Table A -17: Vesper Sparrow Wald statistics
good n ess o f  fit X2 d. f . P

Sum o f squared errors 188.1633 CTI 1.72 1 0.1895
Expected value—HO 188.5817 soil 26.25 1 <  0.0001
SD 0.8109 CSM 12.95 1 0.0003
Z -0 .5 1 6 0 Lsmsavi2 70.13 1 <  0.0001
P 0.6059 GVI 34.46 1 <  0.0001

wet 60.61 1 <  0.0001
Lsmsavi2var 4.16 1 0.0415
TO TAL 143.13 7 <  0.0001

Table A -18: Vesper Sparrow RPI values
Fold Random P Year Temporal P Block Spatial P
1 0.9521 <  0.0001 2000 0.9759 <  0.0001 1 0.6112 0.0075
2 0.9054 <  0.0001 2001 1.0000 <  0.0001 2 0.9521 <  0.0001
3 0.9521 <  0.0001 2002 0.7723 0.0008 3 0.8598 0.0001
4 0.9759 <  0.0001 2003 0.9054 <  0.0001 4 0.4526 0.0330
5 0.9521 <  0.0001 2004 0.9759 <  0.0001 5 0.9286 <  0.0001
Mean 0.9475 <  0.0001 Mean 0.9259 0.0002 Mean 0.7609 0.0081
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A.7 Lark Bunting

X|3 =17.0859 -  0.2635 CTI +  0.1824 soil -  0.0093 precipt 

+  0.0120 precipt- 1  +  27.6232 Lsmsavi2 — 0.3254 GVI 
+  0.3037 wet — 31.2577 Lsmsavi2var

Table A-19: Lark Bunting  
goodness o f  fit

Table A-20: Lark B unting W ald statistics 
t  d. f .  P

Sum of squared errors 141.6894 CTI 0.41 1 0.5212
Expected value—HO 143.4961 soil 15.03 1 0.0001
SD 1.1911 precip. 7.94 1 0.0048
Z -1.5168 precipf_i 44.11 1 < 0.0001
P 0.1293 Lsmsavi2 67.52 1 < 0.0001

GVI 11.60 1 0.0007
wet 40.49 1 < 0.0001
Lsmsavi2 var 2.52 1 0.1122
TOTAL 182.71 8 < 0.0001

Table A-21: Lark Bunting RPI values
Fold Random P Year Temporal P Block Spatial P
1 1.0000 < 0.0001 2000 0.0133 0.7514 1 0.9521 < 0.0001
2 0.9759 <  0.0001 2001 0.1032 0.3655 2 0.7511 0.0012
3 0.5201 0.0186 2002 0.5924 0.0092 3 0.8375 0.0002
4 0.9759 < 0.0001 2003 0.0606 0.4929 4 0.8015 0.0005
5 0.7038 0.0024 2004 0.9054 < 0.0001 5 0.7097 0.0022
Mean 0.8351 0.0042 Mean 0.3350 0.3238 Mean 0.8104 0.0008
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A.8 Savannah Sparrow

X p =  -  2.8212 +  0.2117 C T I - 0.0117 s o i l + l .8398 MSAVI2
— 14.7542 Lsmsavi2 +  0.2283 GVI — 0.1019 wet +  91.9517 Lsmsavi2 var

Table A-22: Savannah Spar- Table A-23: Savannah Sparrow Wald statistics
row goodness o f  fit t d . f . P

Sum of squared errors 240.1365 CTI 0.41 1 0.5205
Expected value—HO 240.1611 soil 0.12 1 0.7254
SD 0.2673 MSAVI2 2.27 1 0.1317
Z -0 .0 9 1 9 Lsmsavi2 34.43 1 <  0.0001
P 0.9267 GVI 10.45 1 0.0012

wet 9.16 1 0.0025
Lsmsavi2var 21.00 1 <  0.0001
TO TAL 46.72 7 <  0.0001

Table A-24: Savannah Sparrow RPI values
Fold Random P Year Temporal P Block Spatial P
1 0.1957 0.2004 2000 0.6497 0.0049 1 0.0290 0.6383
2 0.9521 <  0.0001 2001 0.9054 <  0.0001 2 0.9054 <  0.0001
3 0.9521 <  0.0001 2002 0.9759 <  0.0001 3 0.7065 0.0023
4 0.7937 0.0005 2003 0.8598 0.0001 4 0.2066 0.1869
5 0.9286 <  0.0001 2004 0.9521 <  0.0001 5 0.5739 0.0111
Mean 0.7645 0.0402 Mean 0.8686 0.0010 Mean 0.4843 0.1677
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A.9 Baird’s Sparrow

Xj3 =  — 23.2364 — 0.0287 precipt +  0.0304 precipt_i — 58.4714 Lsndvi 

+  0.0071 bright — 0.0034 wet +  411.1721 Lsndvivar

Table A-25: B aird’s Sparrow Table A-26: Baird’s Sparrow Wald statistics
good ness o f  fit X2 d. f . P

Sum of squared errors 149.3114 precip, 35.50 1 <  0.0001
Expected value—HO 148.7249 precip;_i 69.86 1 <  0.0001
SD 1.1463 Lsndvi 38.76 1 <  0.0001
Z 0.5117 bright 0.04 1 0.8385
P 0.6089 wet 0.01 1 0.9256

Lsndvivar 11.78 1 0.0006
TOTAL 124.11 6 <  0.0001

Table A-27: Baird’s Sparrow RPI values
Fold Random P Year Temporal P Block Spatial P
1 0.9758 <  0.0001 2000 0.7774 0.0007 1 0.9521 <  0.0001
2 0.9759 <  0.0001 2001 0.8788 <  0.0001 2 0.9225 <  0.0001
3 0.9517 <  0.0001 2002 0.7399 0.0014 3 0.7638 0.0009
4 0.9939 <  0.0001 2003 0.6431 0.0053 4 1.0000 <  0.0001
5 0.9759 <  0.0001 2004 0.9939 <  0.0001 5 0.9758 <  0.0001
Mean 0.9746 <  0.0001 Mean 0.8066 0.0015 Mean 0.9228 0.0002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

A.10 Grasshopper Sparrow

x p  =13.9587 +  0.7973 CTI +  0.0006 precipt +  0.0103 precipt_i 

+  0.0063 precipt_ 2  +  0.2977 GVI -  0 . 0 1 2 1  GVIvar

Table A-28: Grasshopper Table A-29: Grasshopper Sparrow Wald statis­
tics

Sum o f squared errors 206.4078 d. f . P

Expected value—HO 206.1962 CTI 5.43 1 0.0198
SD 0.8765 precip, 0.01 1 0.9188
Z 0.2413 precip(_i 28.72 1 < 0.0001
P 0.8093 precip(_ 2 16.18 1 0.0001

GVI 101.91 1 < 0.0001
GVIvar 8.38 1 0.0038
TO TAL 208.49 6 < 0.0001

Table A-30: Grasshopper Sparrow RPI values
Fold Random P Year Temporal P Block Spatial P
1 1.0000 <  0.0001 2000 0.9054 <  0.0001 1 0.9759 <  0.0001
2 1.0000 <  0.0001 2001 0.9759 <  0.0001 2 1.0000 <  0.0001
3 1.0000 <  0.0001 2002 0.9759 <  0.0001 3 1.0000 <  0.0001
4 1.0000 <  0.0001 2003 0.9044 <  0.0001 4 1.0000 <  0.0001
5 1.0000 <  0.0001 2004 0.9054 <  0.0001 5 1.0000 <  0.0001
Mean 1.0000 <  0.0001 Mean 0.9334 <  0.0001 Mean 0.9952 <  0.0001
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A .l l  McCown’s Longspur

— 11.8256+ 0.0077 precipt —0.0111 precipt- 1  — 11.2871 Lsmsavi2 

+  0.2438 G V I-0 .2 4 7 1  wet

Table A-31: M cCown’s Table A-32: M cCown’s Longspur Wald statis-
Longspur goodness of fit tics

Sum of squared errors 165.4682 X2 d. f . P

Expected value—140 164.0818 precip, 6.72 1 0.0095

SD 0.9466 precipr_i 85.65 1 <  0.0001

Z 1.4646 Lsmsavi2 14.09 1 0.0002

P 0.1430 GVI 9.29 1 0.0023
wet 42.31 1 <  0.0001
TO TAL 175.10 5 <  0.0001

Table A-33: M cCown’s Longspur RPI values
Fold Random P Year Temporal P Block Spatial P
1 0.7723 0.0008 2000 0.9515 <  0.0001 1 0.9759 <  0.0001
2 0.9939 <  0.0001 2001 1.0000 <  0.0001 2 0.9759 <  0.0001
3 1.0000 <  0.0001 2002 0.9697 <  0.0001 3 0.5997 0.0085
4 0.9759 <  0.0001 2003 0.8375 0.0002 4 0.6694 0.0038
5 1.0000 <  0.0001 2004 0.9759 <  0.0001 5 0.9698 <  0.0001
Mean 0.9484 0.0002 Mean 0.9469 <  0.0001 Mean 0.8382 0.0025
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