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ABSTRACT

A  weakly nonlinear theory is developed for m arginally stable or unstable, 

tim e varying fronta l geostrophic currents on sloping topography w ith  dissi­

pation. The evolution o f fronta l geostrophic currents is modelled by the use 

o f the two layer system of coupled differential equations derived in Swaters 

(1993). This model allows us to account for the large am plitude variations 

in  the upper layer flu id  thickness. Linear stab ility  theory is used to  generate 

two marginal s tab ility  curves. Following this, we include nonlinear terms and 

study the evolution of a weakly unstable, tim e varying, wedge front. Dissipa­

tion  terms are then introduced. Upon expanding our equations asym ptotically, 

we introduce slow tim e and large space parameters, and derive an amplitude 

equation describing the slow tim e evolution of the amplitude o f the normal 

mode perturbations. The resulting equation is then solved num erically for a 

selection of parameter values.
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Chapter 1

Introduction

Fronts play an im portant role in  ocean circulation, acting to hinder horizontal 

heat and momentum transfer, while aiding vertical transfer (Cushman-Roisin, 

1986). As well, they are a significant source o f available potential energy (the 

portion of the to ta l potential energy which is available for transform ation 

to  kinetic energy), which may be released in  the form  of eddies and rings 

(Cushman-Roisin, 1986). Fronts are geostrophic, ie., the leading order veloc­

ity  is determined by a balance between pressure gradients and the Coriolis 

effect (Robinson, 1983). In  addition, fronts are defined as regions having large 

horizontal density gradients. These gradients are so large tha t often the depth 

variation of an isopycnic (a surface of constant density) w ill be o f the order 

o f the isopycnic depth (Roden, 1975). Thus, one is not able to  apply the 

classic quasigeostrophic model (as in  Pedlosky (1987, §3)) which requires the 

assumption o f small isopycnal deflections.

There are two approaches tha t may be taken when dealing large hori­

zontal density gradients. The firs t approach is to  analyse the fu ll p rim itive  

equations (see, for example, G riffiths et al. (1982); K illw o rth  (1983); Paldor 

(1983a,b); K illw o rth  et al. (1984); Paldor and K illw o rth  (1987); Paldor and 

G hil (1990)). There are drawbacks to  th is approach, one of these stemming 

from  the d ifficu lty  in  generalizing the prim itive  equation solutions to  large 

scale open ocean fronts (as discussed in  Karsten and Swaters (2000); Benilov

1
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and Reznik (1996)). In  fact, such models neglect the /5-effect, which plays 

a significant role in  fronta l evolution (Rhines, 1975). I t  is valuable to  fu lly  

understand such effects in  the context o f our sim plified models as a means 

of enriching our understanding o f what is seen when dealing w ith  the more 

complex fu lly  ageostrophic models. This brings us to  the second approach.

In  the second approach, we make note o f the fact th a t the flows can be 

geostrophic w ith  large amplitude if  the ir length scales are larger than the 

Rossby radius o f deformation (Phillips, 1963). Such flows are called large 

amplitude geostrophic (LAG ) flows. As noted in  Karsten and Swaters (2000), 

there are many examples o f ocean fronts and motions for which length scales 

exceed the Rossby deformation radius, including Rossby waves (Chelton and 

Schlax, 1996), mesoscale ocean eddies (Olson et al., 1985), and various N orth 

Pacific fronts (Roden, 1975; Ikeda and Emery, 1984; Ikeda et al., 1984).

The simplest fron ta l model is the reduced gravity model w ith  an outcrop­

ping interface (as described in  Cushman-Roisin (1986)). In  th is model, only 

the top layer is taken to  be active, w ith  surface and interface boundaries in­

tersecting along one or more lines. These lines are termed outcrop lines, w ith  

each outcrop line representing a surface front. A  drawback of th is model was 

demonstrated by K illw o rth  et al. (1984) who showed tha t, i f  there is m otion in­

troduced in a second layer, the s ta b ility  properties of the front are significantly 

changed.

Cushman-Roisin (1986) applied th is reduced gravity model to  a monotonic 

front w ith  spatia lly varying potential vortic ity. Solving the linear s ta b ility  

problem, while keeping only leading order ageostrophic terms, they showed 

the front to  be unconditionally linearly stable. This leads us to conclude 

tha t baroclinic processes and/or higher order ageostrophic effects may need to 

be added into the model in  order for instabilities to be generated. This has 

been noted by Benilov (1992, 1995), Benilov and Cushman-Roisin (1994), and, 

Slomp and Swaters (1997).

Swaters (1993) extended the Cushman-Roisin (1986) model by the inclu­

sion of baroclinic processes and a sloping bottom . Quasigeostrophic methods

2
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were used to model the dynamics of the underlying slope water, which take 

in to  account a background vo rtic ity  gradient due to  the sloping bottom . Here, 

Swaters (1993) deals w ith  LAG flows. There is a coupling o f the two layers 

via the process o f baroclinic vortex-tube stretching of the perturbed density 

driven current. They were able to  show th a t, in  the barotropic lim it o f the 

linear s tab ility  problem, a ll fronts are linearly stable in  the sense of Liapunov. 

Thus, the instabilities of the baroclinic model are not sim ply baroclinically 

modified versions o f previously derived modes, but instead they represent a 

new class o f instabilities not previously discussed (Swaters, 1993).

Reszka (1997) and Reszka and Swaters (1999), used the Swaters (1993) 

model to study the baroclinic dynamics of buoyancy driven surface flows over 

a sloping bottom . The authors derived an am plitude equation which was used 

to  examine the growth o f perturbations in  an idealized, m arginally unstable 

steady, parallel shear flow. They found th a t the perturbations oscillate in  

tim e as a result o f the interaction between linear and nonlinear terms, and 

found conditions for which the flow exhibits explosive growth. The authors 

then introduced slow tim e and large space parameters, which lead to a space 

dependent amplitude equation, which was solved, providing an analytical non­

linear wave-packet s tab ility  theory for a m arginally unstable flow.

The purpose o f th is thesis is to  establish a weakly nonlinear theory for 

a m arginally stable or unstable, time varying fronta l geostrophic current on 

sloping topography w ith  dissipation. We extend the research o f Reszka (1997) 

and Reszka and Swaters (1999) by the inclusion of tim e va ria b ility  and dissi­

pation terms, using the methods described in  Pedlosky and Thomson (2003). 

The model used in  th is thesis is a two-layer system of LAG surface currents 

over a sloping bottom . An amplitude equation analogous to  tha t of Reszka 

(1997) and Reszka and Swaters (1999) is derived. This am plitude equation is 

seen to  have the same form  as tha t derived for the Phillips model by Pedlosky 

and Thomson (2003).

This thesis is outlined as follows. In  Chapter 2, we derive the governing 

equations for a two layer shallow water system. The flu id  is taken to  be in-

3
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compressible and inviscid, and we are working in  a ro ta ting  reference frame. 

We w ill perform  a scale analysis, which w ill allow us to  apply the hydrostatic 

relation, and remedy the problem o f geostrophic degeneracy. Upon sim plifying 

the resulting equations in  the one layer case, w ith  use of the hydrostatic rela­

tion, we w ill expand our system to  two layers, each having a different density. 

This w ill provide us w ith  mass conservation and continuity equations for each 

layer, as well as a reduced gravity equation, which relates the two pressures.

Next, we nondimensionalize our equations using the scalings of Swaters 

(1993). A fte r asym ptotically expanding our variables about a small scaled 

slope parameter, we w ill match terms having the same magnitude, which gives 

us a series of equations. A fte r perform ing some algebraic m anipulations, we 

w ill arrive at the governing equations of the Swaters (1993) model. We w ill also 

repeat the calculation starting w ith  the equations o f conservation for potential 

vo rtic ity  in  each layer, obtaining the same result.

In  Chapter 3, we derive the linear s ta b ility  equations. These are derived by 

w riting  the height and pressure variables as a mean part plus a perturbation 

part. We then set the mean flow in  the lower layer to  be zero in  order to prevent 

barotropic shear instabilities, which enables us to  focus on the pure baroclinic 

problem. Also, we assume the steady solution for the upper layer thickness 

to  be of the form  of a simple wedge. We then obtain s ta b ility  conditions 

by examining the averaged-energy form  of the linearized upper layer equation, 

follow ing the derivation from Swaters (1993). This allows us to find a necessary 

condition for perturbation growth, and a sufficient condition to  in h ib it th a t 

growth.

Next, we perform a normal mode analysis by firs t assuming th a t the per­

turbation field is a superposition of waves. I t  is known tha t an instab ility  in  

the flow arises when a perturbation grows in  time. We w ill determine when 

instab ility  occurs by noting tha t the perturbations w ill grow in  tim e i f  the 

imaginary part of the complex-valued phase velocity is positive. We substi­

tu te  our normal mode equations into the linear s tab ility  equations, perform 

an order analysis, and neglect a ll terms above a particular order. This leads

4
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us to a pair o f coupled ordinary differentia l equations for our perturbation 

amplitudes. A fte r subsequent calculations, we arrive at a dispersion relation. 

We then establish a sufficient condition for stability, and therefore, a neces­

sary condition for instab ility. We then determine equations for the marginal 

s tab ility  curves, which are curves lying on the boundary between s ta b ility  and 

instability. We note th a t there are two curves in  our case, which we call the 

Upper and Lower Branches of the M arginal S tab ility  Curve (MSC). Having 

these two marginal s ta b ility  curves results in  a unique critica l slope and phase 

velocity value for each o f the Upper and Lower Branches. We also determine a 

high frequency cutoff, which is a cuto ff o f the to ta l wavenumber above which 

the flow is always stable.

In  Chapter 4, we w ill study the evolution of a wedge front which is weakly 

unstable, ie. the nonlinear terms are small but nonnegligible. By assuming 

th a t the perturbation is in itia lly  small, and expanding our equations asymp­

totica lly, we are able to  derive an am plitude equation describing the slow tim e 

evolution o f the perturbation. In  deriving our amplitude equation, we w ill 

follow  Pedlosky (1987).

F irst, we begin by adding in  dissipation terms, which are chosen to be pro­

portional to  the perturbation potential vortic ity. This form  for the dissipation, 

firs t introduced by K lein and Pedlosky (1992), is a purely heuristic choice tha t 

assumes th a t smaller scale turbulence acts directly to  degrade the larger scale 

potential vo rtic ity  (K lein and Pedlosky, 1992).

We next add in a wedge front and scale our variables by the wedge slope 

parameter. We then introduce a perturbation into the critica l slope parameter. 

Depending on the sign of th is perturbation term , we w ill either have a sub- or a 

super- critica lity. In  the region of supercriticality, the critica l slope parameter 

is perturbed from the marginal s tab ility  curve into the unstable region, giving 

us m arginally unstable solutions, while, in  the region o f subcritica lity, it  is 

perturbed into the stable region, giving us m arginally stable solutions. In  the 

case where the sign of the perturbation term  is both positive and negative, 

we have regions of super- and sub- c ritica lity : tha t is, regions o f marginal

5
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ins tab ility  w ith  regions o f marginal stability.

This follows the calculations of Reszka (1997), however, here we introduce 

a tim e va riab ility  parameter in to  the critica l slope perturbation. We then 

rederive the dispersion relation w ith  our new slope parameter. A  scale analysis 

on the complex part o f the slope parameter gives us the order o f our growth 

rate. We introduce slow tim e and large space parameters, and expand our 

perturbation functions in  asymptotic series. We then derive the the 0 (1 ), 

0 (s ), and 0 (s 2) equations from  th is expansion. This leads us to  our amplitude 

equation, which is a coupled set of ordinary differential equations.

Then, we w ill derive the Lorenz equivalent of our am plitude equation in  the 

case where there is no tim e va riab ility  in  the perturbations and the perturba­

tion  amplitude is real-valued. This w ill allow us to show th a t the observation 

of nontriv ia l tim e dependence in  our solutions is due to  the presence of the 

tim e-varying component of the perturbations.

The slow space term  is dropped in  Chapter 5. A fte r firs t deriving the 

Reszka (1997) solution, we obtain solutions on the Lower Branch w ith  the ad­

d ition  of either a sub- or super- c ritica lity  and tim e variab ility , while keeping 

dissipation zero. We then examine plots of these solutions and discuss the ir 

properties. Next, we choose five cases to  explore w ith  dissipation included, rep­

resenting a selection of curve shapes. We discuss the magnitude o f dissipation 

required for each curve shape in  order to  observe significant damping.

In  Chapter 6, we summarize and analyse our results; as well as making 

concluding remarks, and suggestions for further research.

6
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Chapter 2 

Derivation of the Governing  

Equations

2.1 Introduction

In  th is chapter, we w ill derive the governing equations for a two layer shallow 

water system. The flu id  is taken to  be incompressible and inviscid, and we are 

working in  a ro ta ting  reference frame. In  the leading order problem, we w ill 

see th a t the curl of the pressure gradient is zero, and the curl o f the Coriolis 

acceleration is the divergence of the geostrophic velocity, which is almost zero. 

Thus, when we take the curl of the equations o f motion, the problem is tr iv ia lly  

satisfied to  leading order. This is called geostrophic degeneracy (Pedlosky, 

1987, §2.10).

Due to geostrophic degeneracy, we w ill see tha t there are more unknowns 

than there are equations in  the leading order problem. To deal w ith  this, 

we w ill perform a scale analysis which w ill allow us to apply the hydrostatic 

relation. In  addition, we w ill apply the rigid lid approximation. The rig id  

lid  approxim ation is used where surface displacements are small compared to 

interface displacements; it  approximates the free surface as being fixed (G ill, 

1982, §6.3). Upon sim plifying the resulting equations in the one layer case 

w ith  use of the hydrostatic relation, we expand our system to two layers,

7
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each having different density. This gives us mass conservation and continuity 

equations for each layer, as well as a reduced gravity equation which relates 

the two pressures.

Next, we nondimensionalize our equations using the scalings of Swaters 

(1993). A fte r asym ptotically expanding our variables about some small para­

meter, we match terms having the same magnitude, which gives us a series of 

equations. These equations are evaluated up to  the point where we are able to 

determine the leading order behaviour o f our unknown quantities. Performing 

some algebraic manipulations, we arrive at the governing equations o f the Swa­

ters (1993) model. We also repeat the calculation starting w ith  the equations 

of conservation for potential vo rtic ity  in  each layer, obtaining the same result.

2.2 The Two-Layer Shallow Water Equations

Starting w ith  the inviscid, incompressible Navier-Stokes equations for a con­

stant density flu id , we w ill derive the shallow water equations upon which our 

model is based. We sta rt by deriving equations for the one layer model, and 

then expand the system to two layers o f differing density. In  the case of the 

one layer model, we examine a channel of flu id  bounded between walls at y =  0 

and y — L, unbounded in  the ^-direction, and w ith  depth h(x, y, t ) (as seen in  

Figure 2.1). That is, x  is the along channel coordinate, y is the across channel 

coordinate, and z the vertical height.

The Navier-Stokes equations for conservation o f momentum and mass take 

the form

u* +  (u - V )u  +  /(k x u) =  - - V p - k g ,  (2.1)
P

V  • u  =  0. (2.2)

where we have the flu id  velocity, u (x ,y ,z , t )  =  (u ,v ,w ), w ith  u, v, and w 

representing the along-channel, cross-channel and vertical velocity components 

respectively, p the flu id  density, p (x , y, z, t) the to ta l pressure, V  =  (dx, dy, dz)

the gradient operator, and k the u n it vector normal to  the earth ’s surface.

8
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y=0
z-H

z=0

f / 2

Figure 2.1: Model geometry for the one-layer model.

We take into account the rota tion  of the earth by the inclusion o f the Coriolis 

parameter / .  We w ill assume th a t our phenomena occur over a region w ith  

small enough spatial extent such th a t /  w ill not vary significantly from  its 

value at a mean latitude, 9q. Therefore, we apply the f-plane approximation, 

defining /  to  be /o =  2f2sin(0o), where i l  =  2n radians/day. In  the oceans, 

the f-plane approximation is considered appropriate i f  the horizontal length 

scale is less than 100 km (Pond and Pickard, 1983), which is the case here.

I t  w ill be more convenient in  our derivations to work w ith  the component 

forms of (2.1) and (2.2),

ut +  uux +  vuy +  wuz -  f v  = - ~ p x, (2.3)
P

vt +  uvx +  Wy +  wvz +  f u  =  -  - p y, (2.4)

wt +  uwx +  vwv +  wwz =  —~pz ~  g, (2.5)
P

ux +  Vy +  wz — 0. (2.6)

To sim plify our calculations, we introduce scalings for a ll o f the variables. We 

represent our horizontal and vertical length scales by H  and L , respectively.

For example, for the G u lf Stream, L  is of order 100 km and H  is of order 1

9
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km (Pond and Pickard, 1983). The aspect ra tio , A r , is then given by A r — 

where Ar «  1 on the scales given above.

We scale the horizontal velocities by U  and the vertica l velocity by W. We 

note tha t, in  the G ulf Stream, U is o f order 1 m s_1 (Pond and Pickard, 1983). 

W riting  the continuity equation (2.2) w ith  scalings underneath, we get

ux +  vy +  wz =  0. (2.7)

u u w
L L H

Taking wz to  scale like ux and vy, we see tha t

W  =  —  =  A r U. (2.8)
] j

Applying our scalings to the vertical momentum equation, we obtain

wt +  uwx +  vwy +  wwz =  ~~Pz ~  9i (2-9)

w uw uw ww
T  L  L  H

where T  is taken to  be the advective tim e scale, T  =  j j .  There are two natural 

tim e scales in  the governing equations - the ine rtia l tim e scale, / -1 , and the 

advective tim e scale, In  the theory we develop here, it  is assumed tha t 

T = i « f - K

A ll o f the terms on the le ft hand side of equation (2.9) scale as O >

im plying the relation

> — »(??)■
Taking our rough ocean values for H , U, and L  from  above gives us a value for

of order 10~7 m /s2. Noting th a t the gravitational acceleration, g, is of 

order 10 m /s2, the pressure gradient term  must balance w ith  the gravitational 

term, giving us the hydrostatic relation,

P z =  ~P9■ (2.11)

Integrating th is relation w ith  respect to  z, and applying the boundary condi­

tion  p(x, y, h, t ) =  p0, where pQ is a constant, gives us

p =  p g ( h - z )  + p 0. (2.12)

10
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Thus, the horizontal gradient of p takes the form

(2.13)

where V #  is used to  denote the horizontal gradient. We see th a t the horizontal 

pressure gradient is independent o f 2. This suggests tha t, i f  u and v are in itia lly  

independent o f z, they may stay independent o f z, ie. uz — vz — 0 for a ll t  >  0.

Next, we consider a two layer model w ith  each model layer having a d if­

ferent density, as shown in  Figure 2.2. We denote the upper layer thickness 

by h (x ,y ,t) ,  and the two-layer thickness by H . In  addition, we introduce a 

deformation o f the flu id  surface, denoted by p (x ,y ,t) ,  and a sloping bottom , 

w ith  slope —s. The labels ‘1’ and ‘2’ denote the upper layer and the lower 

layer, respectively. We assume each layer to have constant density, and tha t 

the pressure must be continuous across the interface, ie. p i =  p2 at z =  H  — h. 

This allows us to  form  pressure equations by use of (2.11). The pressures in 

the upper and lower layers are given by

We now develop the continuity equation for our two layer shallow water 

model. We w ill use the notation V  to denote the horizontal gradient operator, 

(dx, dy), and D / D t  =  dt +  u  • V  to denote the to ta l derivative w ith  respect to 

tim e of any property follow ing individual flu id  elements, where u  represents 

the velocity in  the layer under consideration. We require th a t flu id  parcels 

on the surface, and on the interface between layers, remain there for a ll time. 

This provides us w ith  the follow ing kinematic conditions for layer 1

Since p «  H  in  our investigations, we w ill impose the rig id  lid  approximation 

by approximating H  +  p by H . This reduces (2.16) to

p1 =  p !g (H  +  p -  z),

P 2 =  P i9 ( h  +  p )  +  p 2g ( H  - h - z ) .

(2.14)

(2.15)

Wi =  — (H  +  p) on 2 =  H  +  p, 

Wl =  E . ( h  -  h) on 2 =  H  -  h.
j—J L

(2.16)

W\ — 0 on z — H. (2.17)

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



y=0 y=L
z=H

f / 2

z=0

sy

Figure 2.2: Model geometry for the two-layer model.

Next, we integrate the continuity equation (2.2), w ith  respect to  z, over the 

upper layer,
f H/ u Xx +  vXy +  wlz dz =  0, (2-18)

JH-h
which yields the equation,

(^ ix  +  v iy) (H  -  (H  -  h)) +  wx(x, y , H, t ) -  u>i(x, y ,H  - h , t )  =  0. (2.19)

Applying equation (2.16) gives us

r>
(2.20)

Sim plifying gives us our kinematic condition for the upper layer,

ht +  V  • (uih) =  0. (2.21)

The kinematic condition for the lower layer is obtained sim ilarly. We note 

tha t the upper and lower boundaries of the abyssal layer are at z =  H  — h and

z =  — sy, respectively. Since the flow component perpendicular to the bottom

must be zero, we have

(uXx +  vly) h +  -  0.

SV2 H~ u>2 =  0 on z =  —sy. 

12
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For our second equation, we w ill again have

w2 =  B - { h  - h )  on z =  H - h .  (2.23)
JL/v

Integrating the continuity equation (2.2), w ith  respect to  z, over the lower 

layer, we get
r H - h

U2x +  v2y +  w2z dz — 0, (2.24)
-sy

which evaluates to,

/J  —S

(u2x +  v2 y)(H  - h -  ( -s y ) )  +  w2(x, y , H - h , t ) ~  w2(x, y , - s y ,  t) =  0. (2.25) 

Applying equations (2.22) and (2.23) gives us

(u2x +  v2y) (H  - h  +  sy) +  dt (H  — h) +  u 2 • V ( H  -  h) +  sv2 =  0, (2.26)

or equivalently,

V  • u 2(H  — h +  sy) — dth — u 2 • V / i +  sv2 =  0. (2.27)

Sim plifying gives us our kinematic condition for the lower layer,

ht +  V  ■[u2( h - s y - H ) } = 0 .  (2.28)

We w ill now summarize our derivations. Asterisks are introduced to denote 

dimensional variables. The momentum equations and kinem atic conditions for 

our two layer model are

u;« + k  • v > ;  + /„(k « ; )  = - sv y , (2.29)
ft* +  V *  • (uJft*) =  0, (2.30)

14  +  K  • v*K +  / . ( k  X u5) =  - - v y ,  (2.31)
P2

h* +  V *  • [uZ(h* -  s*y* -  H)\ =  0, (2.32)

where

P 2*  =  P igrf -  p2g'h*, (2.33)

and g' is the reduced gravity g(p2 — p i) /p 2 >  0.

13
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2.3 Scalings for the Two Layer Shallow Water 

Equations

We now scale our dimensional variables to  obtain the Swaters (1993) model. 

Henceforth, a ll non-asterisked variables w ill be nondimensional. F irst, we 

define the parameter 5 as

6 =  f , (2-34)

where h is a representative thickness of the upper layer and H  is a scale for 

the to ta l flu id  depth. Q ualitatively, 5 is measure of the magnitude of vortex 

tube stretching in  the lower layer, which is caused by a perturbed upper layer 

(Swaters, 1993). We now scale our horizontal spatial coordinates by

(x*,y*) =  L (x ,y ) ,  (2.35)

where L  =  8_1^ R ,  and R  =  y / t f h / f 0 is the internal Rossby radius o f deforma­

tion for the upper layer. The Rossby radius o f deformation is the horizontal

scale for which rota tion  effects balance buoyancy effects (G ill, 1982, §7.5). This

scaling acts to  ensure we achieve a balance between the Coriolis and pressure 

gradient terms in  our fina l equations.

We take a subinertial tim e scale,

f  =  f j ,  (2.36)
JoV

since the processes under consideration occur on a tim e scale for which the 

ro ta tion  of the earth is im portant (ie. the tim e scale w ill be much longer than 

the period of the ro ta tion  o f the earth). We scale the upper layer thickness as

h* =  hh, (2.37)

where h =  5H.

Next we w ill derive the scaling for U2. Vortex tube stretching is the domi­

nant process driving lower layer dynamics. The magnitude of vo rtic ity  produc­

tion  from vortex tube stretching is 8 f0 (Swaters, 1993). The relative vo rtic ity

14
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of layer two, v*. — u*,, must balance the production o f vo rtic ity  from  vortex 

tube stretching. Since relative vo rtic ity  scales as U /L , we must have U /L  

balancing w ith  8 f0. Solving for the velocity scale, U, gives us

-  8 f0L u 2. (2.38)

The upper layer scaling is taken to  be,

(2.39)

As discussed in  Swaters (1993), these scalings are required as a result o f the 

isopycnal deflections being 0 (1).

Requiring the flow to  be geostrophic to  leading order causes r] and p to  

scale as

r f  =  (2.40)
9

p\ =  p25 (f0L )2p. (2.41)

Finally, we scale the slope parameter,

s* =  j s .  (2.42)
Ju

As w ill be seen further on, th is results in  the bottom  slope parameter being of 

the same order of magnitude as the relative vorticity.

15
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2.4 Governing Equations

Applying the scalings derived in  §2.3 to  equations (2.29) through (2.33), we 

get the nondimensional two layer shallow water equations,

<5uu +  <52 (ui • V)ui +  k x u i  + Vry =  0, (2.43)

8*h t +  V  • (U lh) =  0, (2.44)

8u.2t +  <5(u 2 • V )u2 +  k x u2 +  Vp =  0, (2.45)

V  • u2 =  8ht +  <5V • [u2(h -  sy)], (2.46)

r) =  h +  S^p, (2.47)

where terms of order g '/g  have been neglected in  (2.47) since we are assuming

th a t p2 — p\ is small when compared to  p2. This is consistent w ith  the rig id

lid  approxim ation. We assume an asym ptotic expansion of the form

(ux,u 2 ,h ,p ,r i)  =  (uu u2, h,p, r])(0) + S ^ ( u i , u 2,h ,p ,r ]) il) +  0(S), (2.48)

and substitute i t  into equations (2.43) through (2.47). We w ill start by devel­

oping our lower layer governing equations.

Expanding the variables in (2.45) gives us the leading order equation,

k  x u^0) +  V p (0) =  0, (2.49)

or, equivalently,

u<0) = k x V P<°> =  ( -p f.p ™ ) . (2.50)

Thus, to  leading order, the lower layer velocity is geostrophically determined.

In  order to  develop an equation for the tim e evolution of p, we sta rt by

w riting  down (2.45) in  its  component form,

<5(̂ 21 +  w2u2x +  V2 U2 y) — V2 +  px =  0, (2-51)

+  u 2v 2x +  v 2v 2y) +  u 2 +  Py =  0. (2.52)

Taking the curl (ie. —^(2 .51 ) +  ^ (2 .5 2 )) we get,

&(P2x ^2y)t T  &(U2x'V2x T  ^2^2xx ^‘2^2xy (2.53)

+ v 2x^2y +  v 2v 2xy ~  ^ 2 y u 2y ~  v 2u 2yy) +  u 2x +  v 2y =  0 .

16
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By defining a new variable, £ =  v2x — m2j/, where £ is the relative vo rtic ity  for 

the lower layer, th is can be rew ritten  as,

<*£t +  <5(w2£x +  v2^y +  W2x£ +  v2y0 +  «2x +  v2y — 0. (2-54)

This expression can be compacted further by employing the to ta l derivative 

notation,

^  +  M V .u 2 =  °. (2.55)

Isolating for the divergence o f u2 in  the mass conservation equation 

(2.46) gives us

V - U 2 =  6ht +  6 V - [ u 2{ h - s y ) ] ,  (2.56)

which is then substituted in to  (2.55) to  get

s m  +  (1 +  5^ {Sht +  6 V  ‘ ~ sy)] ) =  ° ' (2'57)

Now, we expand the variables using (2.48), and divide through by <5,

D ^ 0) +  (1 +  <5£(0)) ('h<0) +  V  • u (20)h(0) +  4 0) • V(h(0) -  sy )) =  0, (2.58)
D t

o) _  ..(o)
2 y

£ ^ = A p (0), (2.59)

where £ ^  =  v f j  — u f ] ,  which becomes

after applying (M2° \ f 2°^) =  (—Py°\pi°^j, where we have used the Laplacian 

operator A  =  dxx +  dyy. Note tha t we have restricted ourselves to  w ritin g  the 

firs t term  of each expansion, as th is w ill be sufficient. The 0 (1 ) problem is 

given by

-^-Ap(0) +  h f ] +  V  • i40)h(0) + 140) • V(h(0) -  sy) =  0, (2.60)
J-S L

where D /D t  — dt +  • V . We note tha t, since sy is independent o f tim e,

we can w rite (h^  — sy)t instead of h [° \  Also, the th ird  term  drops out, since 

V  • u !^  =  —Pyx +  ply* =  0. Thus, (2.60) reduces to

- ^ (A p (0) +  h(0) -  sy) =  0. (2.61)

17
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We now make use o f the Jacobian operator,

J(A, B ) =  A xBy -  A yBx, (2.62)

to  w rite  our governing equation for layer 2 as

(A p (0) +  h(0))t +  J(p (0), A p(0) +  / i(0) -  sy) =  0. (2.63)

Now we w ill derive our governing equation for the upper layer. Upon ex­

panding the variables in  the momentum equation (2.43), and applying (2.47), 

we get the 0 (1) equation

u f ^ k x V # ,  (2.64)

which tells us th a t the leading order velocity is geostrophic. To derive an 

equation for the tim e evolution of h, we again start by w ritin g  down the 

momentum equation (2.43) in  component form,

Suu +  &  (« i« ix  +  viuiy) -  vi +  rjx =  0, (2.65)

Sun +  <5̂ (uivix  +  viviy) +  Mi +  r)y =  0. (2.66)

Taking the curl, and setting C =  V\x — Uiy,

SCt +  +  ^lCy +  u lxC +  th»C) A u ix A v ŷ =  (2.67)

which then simplifies to

S(t +  £311! • VC +  (1 +  £3^)V  • U! =  0. (2.68)

Rearranging the continuity equation (2.44) gives us

h 1
V  • u i =  -£ 5  -A _  U l. V h . (2.69)

h h

Substituting th is in to  (2.68),

6(t +  S^ui • VC -  (1 +  £ * C ) r ( ^  + w  • V h ) =  °- (2-7°)h

A fte r expanding the variables using (2.48), we get the 0 (1 ) problem,

u (°) . V h (0) == 0. (2.71)

18
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I f  we substitute (2.64) into the above equation, we w ill see th a t it  is satisfied 

triv ia lly . Thus, the leading order problem provides us w ith  no new inform ation 

regarding hf®. We next take the hydrostatic re lation (2.47), and expand its  

variables in  an asym ptotic series which gives us,

77{0) =  h(0), (2.72)

which again is not helpful in  determ ining h^°\

Thus, we continue w ith  the next highest order approxim ation, 0(<5^), for

(2.43), (2.44), and (2.47).

k  x  +  V?7(1) =  -(uS 0) • V ) u f \  (2.73)

+  V  • (u f>hw  + 14 1}/i(0)) =  0, (2.74)

ryW =  h^  + p ( ° \  (2-75)

Solving for and in (2.73) and (2.75) respectively,

u<1} = k x  V t7(1) +  J (V h (0),h (0)), (2.76)

fcW = r j 0-) - p(°). (2.77)

Extracting the 0 ( 8 ^) problem from  (2.70), and making use of (2.77),

-  hi0) +  h(0)u ? } • VC (0) -  C(0)u (1°) • V / i(0) (2.78)

-  u50) • V(r?(1) -  p(0)) -  u jx) • V h (0) =  0.

Substituting in  equations (2.64) and (2.76) for and respectively,

h j0) +  h(0)J (A h {0\  h(0)) +  A h (0) J (h (0), / i(0)) (2.79)

+  ( - h $ \ h W ) . ( V£ \ r )U )  +  J(p M ,h M )

+  4 ] ) • ^ 0)) +  J (v /i(0 )’ ^ (0)) • v /i(0 ) =  °-

S im plifying provides us w ith  our upper layer governing equation,

h f ] +  J  ( p {0) +  h(0)A h (0) +  i V / i (0) • V h {0), h^  =  0. (2.80)

19
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2.5 Derivation from Potential Vorticity

Equations (2.80) and (2.63) can also be derived by making use of potential

vo rtic ity  conservation. We note th a t for the shallow water model under con­

sideration, potential vo rtic ity  (PV) is defined as,

relative +  planetary vo rtic ity  .
thickness o f layer

where PV is conserved follow ing the flow, ie.

§ f ( P V )  =  o.  ( 2 . 8 2 )

For the lower layer, in  dimensional variables, (2.82) is given by

m \ H - h -  +  s- r  j - 0’ (2'83)

where D * / D t  represents the to ta l derivative in  dimensional variables. Making 

use o f our scalings we get

w a + % u 2 ■ v )  ( ^ ^ 1 ; )  -  °- <2-84>

Sim plifying and applying the quotient rule,

( l - 5 h  +  6 sy ) j^ (8 (v2x- u 2y) +  l ) (2.85)

~(8(v2x -  u2y) +  1 ) ^ ( 1 - 5 h  +  8sy) =  0.

Expanding the variables in  an asymptotic series gives us the 0 (1 ) problem:

- § j ( v 2x -  u 2y +  h(0) -  s y )  =  0.  ( 2 . 8 6 )

Recalling tha t, to  firs t order, £ =  — u2̂  =  A p(°\  th is becomes

£ - ( A p M + h M - s y )  =  0, (2.87)

which is identical to (2.61), and thus our governing equation simplifies to

(A p ^  +  h ^ ) t +  A p®  +  — sy) =  0, (2.88)
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as before.

We now use the same technique to  derive the upper layer governing equa­

tion . Conservation of potential vo rtic ity  for the upper layer is defined by

< » >

Applying our scalings, we get the nondimensional form:

(Sfodt +  ^ / oUl • V )  ^ 2/o(^ ~ “ ly) +  / ° j  . (2.90)

Sim plifying and applying the quotient rule,

Sh(vix—u iy) t+S^hui- 'V(v ix—u iy)[S^(vix—u iy)+ l ] [S^h t+u i - 'Vh ]  =  0. (2.91)

Expanding the variables in  an asymptotic series, we obtain the 0 (1 ) problem

u (° ). =  0, (2.92)

which is again triv ia l, prom pting us to  seek the next higher order problem 

which takes the form,

/ i(0)uS0)-V (A /i(0)) - A h (0)uS0)-V /i(0)- /4 0)— i4 0)-V /i(1)— u ^ - V h (0) -  0. (2.93)

Expanding, applying (2.92), and substituting (2.77) and (2.76) for and 

respectively gives us

h\0) +  J  ^p(0) +  h(0)A h (0) +  ^ V h (0) • V h (0), h(0)^  =  0, (2.94)

the same as before.

We conclude the chapter by summarizing our governing equations. We 

w ill drop the subscript notation to  m aintain a cleaner appearance, however, 

we must remember tha t we are s till dealing w ith  the leading order variables 

and p^ . Thus we represent our upper and lower layer equations as

fk +  J  ( p  +  hAh  +  iV h  • V ft, h j  =  0, and (2.95)

(A p +  h)t +  J (p ,Ap  +  h -  sy) =  0, (2.96)

respectively.
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Chapter 3

The Linear Stability Problem

3.1 The Linear Stability Equations

To derive the linear s tab ility  equations, we firs t note tha t the substitution of 

tim e independent solutions, h =  ha(y) and p =  p0(y),  in to (2.95) and (2.96) 

causes them to  be triv ia lly  satisfied, since hot(y) =  0, p0t(y)  =  0, hox(y) — 0, 

and Pox{y) =  0. Now, we may represent h and p by a tim e independent 

part which represents the exact solutions to  (2.95) and (2.96), plus a small 

perturbation (where we use prime to  denote a perturbation te rm ),

Substituting (3.1) and (3.2) into (2.95) and (2.96), neglecting a ll nonlinear 

terms in  the perturbations, and dropping the primes, gives us

in a channel w ith  0 <  y <  L, where UQ =  —Poy is the mean flow in  the lower 

layer.

We w ill set the mean flow in  the lower layer, UQ, to  be zero in  order to 

prevent barotropic shear instabilities, which enables us to  focus on the pure

h =  ho(y) +  t i (x ,y,t) ,  

P =  Po(y) +  p'(x , V, *)•

(3.1)

(3.2)

h f  T  hgyPx  +  \Uo T  h o yh 0^  T  (J^oy) [ ^ /oh/oyy)y \ — 65

{dt +  U0dx)(Ap +  h) + (hoy -  Uoyy -  s)px =  0,

(3.3)

(3.4)
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baroclinic problem (Swaters, 1993). We assume the steady solution for the 

upper layer thickness to be o f the form  o f a simple wedge,

ho(y) =  l  +  a [ y -  - j  , (3.5)

where a  represents the slope o f the interface in  the cross channel direction of

the interface between the two layers. In  dimensional variables, the slope is 

given by

a* — y°>.  (3.6)
L/

Thus, the linear s tab ility  equations for our model take the form

ht +  apx +  a  ^1 +  a  ^  A hx +  a 2hxy =  0, (3.7)

(A p +  h)t +  (a -  s)px =  0. (3.8)
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3.2 Perturbation Energetics

We can obtain s ta b ility  conditions by examining the averaged-energy form  of 

the linearized upper layer equation. We w ill follow the derivation from  Swaters 

(1993). F irst, we assume tha t the cross channel w id th  o f the upper layer is 

equal to  the channel w idth, L. We define an operator

The averaged energy form  of the linearized upper layer equation is obtained 

by m ultip ly ing (3.7) by the perturbation amplitude, h(x, y, t), integrating over 

y from  0 to L, and then integrating over the length of the channel from  —x\  

to  aq, where X\ is constant, which gives us:

Noting tha t hQ is independent of re, we sp lit up the ( ( ...) )  term  into  a sum of 

terms, w ith  the hQ parts taken out o f the x-integral, so tha t (3.10) becomes:

We integrate each term  by parts in  order to  sim plify the expression. The 

second and last terms vanish through integration by parts, when we take into 

account the periodicity condition at —x\  and aq, ie.

(3.9)

(3.12)

0 -  \ { (h xf ] % ,  

0,

(3.13)

0.
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Next, we combine the th ird  and fourth  integrals, and sim plify

hoyhQ i^hhxyy) "1~ ij^oy) (fohxy) (3.14)

— hoylfyo (h h x y y )  4”  hoy ifo h x y )\

— h o y  ( h ^ h 0 h x y y  “I-  h o y h x y \ )

— ifoihohxy)y)

— {hoyhijlohxy^y) •

Then we integrate by parts,

I

L

(hoy h (h0 hXy )y)dy  (3.15)
o

/ x i  p X l  pb

\^oyhhohxy\^dx J j  hohxyi^hoyh^ydydx
■xi J —xi Jo

/ Xl
\hohjoyh/xh'y\() dx

■xi

/ x i  pL

j  hohxyi^hpyyh -F  h oyh y )d y d x .

■xi Jo
-X l

The firs t integral w ill vanish due to  the periodicity, the second w ill vanish due 

to  the condition of having no normal flow at the boundaries (ie. hx =  0 at 

y — 0, L ).Th is leaves us to  work on the th ird  integral,

r L/ xi  pb

j  hohxyi^hoyyhhoyhy)dydx (3.16)
xi Jo

pL px  i pL px i
I  I hohoyyhhxydxdy ~ I  j  h0hoy{(J%y} )Xdxdy

JO J —xi  J  0 J —xi
pL pL px i
I  \hohoyyhhy] Xldy ~h I  I  hohoyyhxhydxdy

Jo Jo J —xi

j ^ K K i h . f r ^ d v

/ x i pL

I  h0h(yyyhxhydydX)

■xi Jo

where we have again used the periodicity property of h and hy w ith  respect to 

x.
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Now we substitute our wedge front form  of hQ, and see th a t /iw  =  0, 

causing the m iddle integrals to  evaluate to  zero as well. We are le ft w ith  only 

the firs t term  in  (3.11), which simplifies to

Thus, it  is a necessary condition for perturbation growth th a t ahpx is negative 

somewhere in  the flow. On the other hand, i t  is sufficient th a t ahpx be every­

where positive to  in h ib it the perturbation growth. In  addition, (3.17) shows 

th a t no ins tab ility  w ill occur in  the case where p — 0 unless we introduce baro- 

clinic coupling, ie. a second layer is required (th is was also shown by Swaters 

(1993) and Reszka and Swaters (1999)).

(3.17)
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3.3 Normal M ode Analysis

Each perturbation fie ld  is assumed to  be a superposition of waves. Thus, we 

take p and h to  be o f the form,

where c.c. denotes the complex conjugate, k is the real-valued along-channel 

wavenumber, and c is the along-channel complex phase velocity. An instab ility  

in  the flow arises when a perturbation grows in  time. We w ill determine when 

instab ility  w ill occur using the follow ing analysis. We note th a t p and h w ill 

grow in  time if  the im aginary part of the phase velocity is positive.

Substituting (3.18) and (3.19) into (3.7) and (3.8) gives us

walls. Thus, hx and px must vanish at y =  0,L .  However, because we have 

taken h and p to  have the exponential forms (3.18) and (3.19), the boundary 

conditions reduce to  ( if k ^  0)

Examining equations (3.20) and (3.21), we see th a t these are not easily 

solved analytically. We w ill take a  to  be small, and s, the bottom  slope, to  be 

0 (a ) .  As w ill be shown later, th is w ill cause c to  be 0 (a )  as well, perm itting 

us to  neglect a ll 0 (a )  terms, while retaining terms of order ^ and A We note 

tha t the assumption of a  to  be small is in  effect taking our wedge to have a 

gentle slope. Dropping the tildes, and applying our assumptions, leads us to  

a pair of coupled ordinary differential equations,

p(x, y, t) =  P(y) exp[ifc(:r -  r f j]  +  c.c., 

h(x, y, t ) =  h(y) exp \ ik{x — ct)] +  c.c.,

(3.18)

(3.19)

The flu id  must satisfy the condition o f having no normal flow at the channel

p — h =  0 on y =  0, L. (3.22)

(3.23)

(3.24)
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where primes refer to  derivatives w ith  respect to  y, and the boundary condi­

tions at the channel walls are given by

p(0) =  p ( L ) =  h( 0) =  h(L)  =  0.

Thus, the normal mode solutions are of the form

p(y) =  Asin(ly), 

h(y) =  Ban( ly ) ,

(3.25)

(3.26)

(3.27)

where A  and B  are constants, and I is the cross channel wavenumber, which 

is given by
77 7f

; =  n s  {1 ,2 ,3 ,.. .} .  (3.28)

Thus, our normal mode perturbation solutions take the form,

p(x, y , t ) =  Asin( ly)  exp[zfc(a: — ct)\ +  c.c., 

h(x, y , t )  =  B  sin (ly) exp[ ik(x — ct)] +  c.c.

(3.29)

(3.30)

'a o"

B 0
(3.31)

Applying our solutions to (3.23) and (3.24), and w riting  them in m atrix 

form,
' K 2 +  2=2 _ i

C

-1  K 2 +  â-

where we have let K 2 =  k2 +  I2, the to ta l wavenumber squared. The linear 

system given above puts a constraint on A  and B,  th a t they must be linearly 

dependent. Thus, in  order for the problem to  have nontriv ia l solutions, we 

need the determ inant o f the coefficient m atrix to  be zero, ie.

(.c K 2 +  a  — s ) (a K 2 +  c) — ac — 0.

Applying the quadratic formula yields the dispersion relation 

s -  a K 4 ±  [(a K 4 -  s)2 -  4a(a -  s )K 4] i

(3.32)

c =
2 K 2

(3.33)

For K 2 0 (1), C rs-/ 0 (a )  as we required previously, we see th a t c w ill be 

complex wherever the discrim inant is negative. Thus, there are two complex
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phase velocities, w ith  one being the complex conjugate of the other. I f  we 

represent c as a real part plus an im aginary part, ie.

c =  cR +  ic/, (3.34)

then, for c j ^  0, we must have c j <  0 for one o f our two complex phase 

velocities, ie. there is an instability.

We now establish a sufficient condition for stab ility. Note th a t the system 

is stable whenever c is real, which happens when the discrim inant is positive, 

ie.

(.a K 4 -  s)2 -  4a(a -  s )K 4 >  0. (3.35)

Expanding the quadratic, d ivid ing by a 2 and rearranging gives us

f - V  +  2K 4-  + K 8 >  AK4, (3.36)
\ a /  a

which collapses down to

^  +  K 4y  > A K 4, (3.37)

or, equivalently,

-  +  K 4 >  2 K 2, (3.38) 
a

-  +  K 4 < - 2 K 2. (3.39) 
a

Isolating these inequalities for and rearranging, gives us

-  >  K 2(2 -  K 2), (3.40) 
a

-  <  - K 2(2 +  K 2), (3.41) 
a

which are sufficient conditions for stability. Thus, a necessary condition for 

instab ility  is

- K 2( 2 +  K 2) < - <  K 2(2 -  K 2). (3.42)
a

We define marginal stability curves as curves which lie on the boundary

between stab ility  and instability, ie. where the discrim inant is zero,

( a K 4 -  s)2 =  Aa(a -  s )K 4. (3.43)
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Solving for we obtain the marginal s ta b ility  curves,

-  =  K 2(2 -  K 2) and, (3.44) 
a

-  =  - K 2(2 +  K 2). (3.45) 
a

Prom now on, we w ill refer to  (3.44) and (3.45) as the Upper and Lower 

Branches o f the Marginal Stability Curve (MSC) respectively - see Figures 

3.1 and 3.2. The point of marginal stability is defined as the point below 

which there exists wavenumbers for which the flow is unstable. On the Upper 

Branch, the point o f m arginal s ta b ility  occurs at (^ , K 2) =  (1 ,1). The model 

also exhibits a high frequency cutoff, defined as the K 2 value above which the 

flow is guaranteed to  be stable, which occurs on the Upper Branch o f the MSC 

when K 2 >  1. The high frequency cuto ff was found by solving (3.44) for K 2 

and taking the larger root, ie.

-^cutoff =  1 +  l / 1 ~  ~  for ~  L  (3‘46)V ol a

We note th a t ^  is necessarily 0 (1 ) since we previously assumed s to  be 0 (a ).

We define a new variable a c to  be the critica l slope which satisfies one of

(3.44) or (3.45), for a given s, ie.

s
ac =  j£2 2̂ — 7̂ 2) on Upper Branch and, (3.47)

—

ac =  — —— on the Lower Branch. (3.48)
2 +  K  )

Substituting ac into (3.31), we find th a t on the Lower Branch, A =  —B,  and 

on the Upper Branch, A  =  B.  The firs t case, where the two solutions (h and 

p) are in  phase, is known as the barotropic mode, while the second case, where 

the two solutions are 180 degrees out of phase, is called the baroclinic mode.

Substituting a c in to the dispersion relation gives us the real valued phase 

velocities as shown in  Figures 3.3 and 3.4,

0 =  7̂ 0/0--on the Upper Branch and, (3.49)
xv (2 — K  )
s (K 2 +  1)

c =  7̂ 0/ on the Lower Branch. (3.50)K  yK +  2)
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Figure 3.1: M arginal S tab ility  Curves versus K 2.
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Figure 3.2: M arginal S tab ility  Curves versus K 2 from  another perspective.
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Figure 3.3: Phase velocity versus K 2 for the Upper Branch of the MSC.
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Figure 3.4: Phase velocity versus K 2 for the Lower Branch of the MSC.
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Chapter 4

The W eakly Nonlinear Case

4.1 Introduction

We have solved for h and p, as well as the marginal s tab ility  curves, for the 

linear s tab ility  problem. These solutions are adequate when the nonlinear 

terms are negligible. However, as our perturbations become larger, the non­

linear terms become increasingly im portant. Since we are unable analytica lly 

to  solve the fu lly  nonlinear equations, we w ill study the evolution o f a wedge 

front which is weakly unstable, ie. the nonlinear terms are small yet play a cu­

m ulatively im portant role. Assuming th a t the perturbation is in itia lly  small, 

and expanding our equations asym ptotically, enables us to form  an amplitude 

equation describing the slow tim e evolution of the leading order perturbation 

amplitude.

W hile using a wedge profile w ithout isopycnal outcroppings is a highly ide­

alized configuration, it  allows us to  analytica lly fu lly  investigate available po­

ten tia l energy release and nonlinear interactions which w ill in h ib it the growth 

predicted by our linear analysis. The wedge profile was firs t used by G riffiths 

and Linden (1981) who were able to  recreate the instab ility  characteristics ob­

served in the ir laboratory. In  deriving our amplitude equation, we w ill follow 

Pedlosky (1987) and Reszka (1997).

Following this, we w ill derive the Lorenz equivalent of our am plitude equa-
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tio n  in  the case where there is no tim e variab ility  in  the perturbations and 

the perturbation am plitude is real-valued. This w ill allow us to  show tha t 

the observation o f nontriv ia l tim e dependence in  our solutions is due to  the 

presence of the tim e-varying component of the perturbations.
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4.2 Nonlinear Perturbation Equations

Adding dissipation terms to  the governing equations, we have

ht +  j ( p  +  h A h + ^ V h - V h , h j = - v h ,  (4.1)

(A p +  h)t +  J(jp, Ap  +  h -  sy) =  - v ( A p  +  h), (4.2)

where we have chosen our dissipation terms to  be proportional to  the potential 

vo rtic ity . This form  of the dissipation, firs t introduced by K le in and Pedlosky 

(1992), is a purely heuristic choice tha t assumes tha t smaller scale turbulence 

acts d irectly to  degrade the larger scale potentia l vo rtic ity  (K lein and Pedlosky, 

1992).

As in  chapter 3, we introduce perturbations h' and p',

h =  ha(y) +  h'(x, y, t ), (4.3)

P  =  P o ( y ) + p ' ( x , y , t ) .  (4.4)

Substituting these into (4.1) and (4.2), and again setting the mean flow in  the 

lower layer to  zero (ie. p0(y) =  0), we arrive at the nonlinear perturbation 

equations:

hf T  hoyhgAhx T  hxy (^>ioh/oyy)y ^oyPx 4” h0«/(Ah, h) (4.5)

~\~hoy\hAhx "I- 2hyhXy hXhyy hXhXX] hoyyhXhy

hoyyyhhx t/(p , fl) —

(Ap  +  h)t +  (hvy -  s)px +  J(p, Ap  +  h) =  - v ( A p  +  h), (4.6)

where we have dropped primes and are no longer neglecting nonlinear terms. 

As before, we let

ha =  1 +  a ( y  -  , a  «  1, (4.7)

a gently sloping wedge front. We now rescale a  and t  by taking

a  =  sa, (4.8)

t = ~ ,  (4.9)
s

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which implies th a t phase velocity c w ill scale as

c =  sc. (4.10)

Now we w ill drop tildes on these new variables.

Defining

H =  ±  1, (4.11)

where the plus sign gives the Upper Branch equations, and the minus sign the 

Lower Branch equations; our new critica l slope, ac, and phase velocity, c, are:

ac =  K 2(2 -  n K 2y  (4‘12^

and
1 -  p K 2

"  K 2( 2 - n K 2Y  ^ ‘13)
In  order to discern the appropriate balance in  which nonlinearity and dis­

sipation arise at the same order, we rescale our perturbation quantities and 

our dissipative term  by s2:

h =  s2h, (4.14)

p — s2p, (4-15)

v  =  s2v. (4.16)

Substituting these into (4.5) and (4.6), d ivid ing by s2, and dropping the tildes, 

we obtain

ht 4- a  A  hx +  apx =  - s a 2hxy - s a 2 [ y - - )  A  hx (4.17)
L '

—sJ(Ah  +  p,h)  — s2a  |  y — ^  J(Ah, h) 

s OL^iAhx -I- 2hyhXy hxhyy hxhxx\ 4- swh^

(Ap +  h)t +  ( a -  1 )px =  s[J(Ap +  h,p) — v(Ap  4- h)], (4.18)

where we have le ft o ff terms o f 0 (s3) and higher, since these do not appear

later, and we assume tha t a  and v are 0 (1) parameters.
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4.2.1 Multiple Scales

We introduce a small perturbation in to  a  by setting

a  =  a c +  h (t0 +  r (s t ) )A ,  (4-19)

where A  is in itia lly  only defined to  be a positive, small quantity, and we recall 

tha t /x =  1 on the upper branch and /x =  — 1 on the lower branch. Also, we 

let t 0 +  r (s t)  be 0 (1 ) w ith  r a — ±1 . The r (s t )  parameter introduces tim e 

variability. I f  r a +  r (s t )  is always positive, we w ill have a supercriticality, 

and if  it  is always negative, we w ill have a subcriticality. In  the region of 

supercriticality, we are perturbing a  from  the MSC in to  the unstable region, 

giving us m arginally unstable solutions, while, in  the region of subcriticality, 

we perturb into the stable region, giving us m arginally stable solutions. In  

the case where r 0 +  r (s t )  is both positive and negative, we have regions of 

super- and sub- c ritica lity : th a t is, regions o f m arginal ins ta b ility  w ith  regions 

of marginal stability.

We note tha t, given the form  of (4.19),

h =  h0 = l  +  a ( y - ^ j ,  (4.20)

y  =  V o  =  o ,

is no longer an exact solution to  the homogeneous part of (4.1) and (4.2). In  

order for h0(y, T)  to  be a solution to  the governing equations, as in  Ha and 

Swaters (2006), we must introduce a forcing term  on the righ t hand side of 

(4.2) given by F  =  hot +  vh0. However, the forcing term  does not appear in  

perturbation equations (4.5) and (4.6).

Applying scalings (4.8) through (4.10) to our dispersion relation (3.33), 

transforms c such th a t its  im aginary part has the form, upon taking the posi­

tive root,

c, =  2^ [ 4Q(a -  1 ) K “ -  ( a K 4 -  l ) i ] i ,  (4.21)

noting tha t c/ is the same, independent of whether fi is plus or minus one.
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Substituting in (4.19), we obtain

^ [ 4 - A A ^ A : 4 - #  (4.22)

A * 
2 K

1 [4 K 2 -  A { K 2{ K 2 - 2 ) } { K 2{ K 2 +  2)}]
K 2

=  o ( A * i ) ,  (4.23)

where we have used our assumptions th a t K 2( K 2 — 2), K 2( K 2 +  2) and K 2 

are 0 (1 ); and A  < <  1, to  determine th a t the function in  the square brackets 

is 0 (1 ). Thus, the growth rate, kci, is O We w ill define y/\o] — kci,

which allows for sim plification in  our later equations. To make the growth rate 

marginal, we define A  =  s2.

We w ill now introduce slow tim e and large space parameters. Since the 

growth rate is 0 (s), we scale tim e as

T  -  st, (4.24)

noting tha t dt —> dt +  sdr,  giving us

a =  ac +  h (tq +  t (T))s2. (4.25)

We also introduce a large space parameter,

X  =  s2x ; dx -> dx +  s2dx , (4-26)

noting tha t Reszka (1997) showed th a t the (shorter) large space scale x  =  sx 

dropped out.

Substituting (4.24) through (4.26) in to  (4.17) and (4.18), sim plifying, and
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sorting by order of s, we obtain

ht +  Oicpx +  occA h x (4-27)

+s  j [ # r  +  v] h +  J  {jp +  Ah, h) +  a 2 ( h xy +  ( v  ~  |

“ 1“  S ^  “ (“  QihyhXy hXhyy ~ F  hxhxx]

+ /x(r0 +  r ) (p  +  A  h)x +  ac(px  +  A  hx  +  2hXxx) }  =  0,

(Ap +  h)t +  (ac -  1 )px +  s {[d r +  ^ ](A p  +  h) +  J(p, Ap  +  h)}  (4.28)

+s2{p ( r 0 +  r )px +  2ptXx+ p x (ac -  1)} =  0.

We expand h and p in  an asymptotic series,

(p, h ) =  (p(0), / i(0)) +  s(p{1\ h {1)) +  s2(p{2\  h(2)) +  . . . ,  (4.29)

where p(°\  h^°\ p ^ \  h ^ \  p(2\  h^2\  etc. are functions of x, y, t, X  and T.
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4.2.2 0(1) Problem

Substituting (4.29) in to  (4.27) and (4.28), the 0 (1 ) problem is

h[0) +  a cp ^ ] +  a cA  =  0, (4.30)

(A p(0) +  h(0))t +  (ae -  1 )pf^ =  0. (4-31)

Assuming pW and have normal mode solutions, our problem is equiv­

alent to  the linear case. Thus, our 0 (1 ) solutions are:

=  A(X ,  T ) exp(ikQ) sin(ly) +  c.c., (4.32)

/i(°) =  B (X ,  T )  exp (ik9) sin (ly) +  c.c., (4.33)

where, as before, B (X ,  T)  =  p A(X ,  T),  9 =  x  — ct,

0 =  K 2( 2 - » K 2y  and 4̂ '34^

p  =  ±1  w ith  the plus sign denoting the phase velocity on the upper branch of 

the MSC, and the minus sign denoting the phase velocity on the lower branch 

of the MSC.
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4.2.3 O(s) Problem

The O(s) problem is:

+  a cp^  +  acA  (4.35)

=  ~ [d r  +  v]h(0) -  a 2c +  ( y  -  A ,

(A p(1) +  +  (ac -  l ) ^  (4.36)

=  — [dr +  v](hf® +  A p ^ ) .

The solutions to  (4.35) and (4.36) are taken to  be the sum o f a particular 

solution and a homogeneous solution.

Particular solutions to  (4.35) and (4.36) are

P^icnlu =  P ( y > x ’ T ) exp(tfc0) +  C.C., (4.37)

C t o i -  =  *(» ■ *■ T ) exp<<* 9) + &c-  ■ t4-38)

For our homogeneous solutions, we take

(4-39)

h !£ L *m m  =  iH v , x , n  (4.40)

which triv ia lly  satisfy the homogeneous part o f (4.36) since tk and $  are inde­

pendent of x  and t.

Using the term inology introduced in Pedlosky (1987), $  and *k w ill act

to  balance the zonal flow alterations forced by nonlinear wave fluxes o f the

wave perturbation (Pedlosky, 1987). Thus, we refer to $  and *k as mean flow 

correction terms since they account for changes in  the mean flow caused by 

nonlinear terms. We note tha t, since ’k and $  are m odifications to  the 0 (s ) 

streamfunction, they are also streamfunctions.

Combining the particular and homogeneous solutions, our second order 

perturbation functions are assumed to  be of the form

PW =  P{y, X, T ) exp(ik6) +  c.c. +  $ (y , X, T ), (4.41)

hW =  h(y, X , T)  exp(ik9) +  c.c. +  $ (y , X , T ) , (4.42)
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Since the flu id  must satisfy the condition of having no normal flow on 

the channel walls, p ^  and must vanish at y =  0, L. However, since we 

have taken p^  and to  be of the form  (4.41) and (4.42) respectively, the 

boundary conditions reduce to  ( if k ^  0)

p =  h =  0 on y =  0, L. (4.43)

Substitution o f (4.41) and (4.42) in to  (4.35) and (4.36), after division by 

i a ck and —ick respectively, gives us

c
d ,yy k2 -

OLr
h +  p =  —a cpA l  cos (ly) (4.44)

+ a c ( y  -  ^  J K 2pAsin( ly )  +  +  u]Asm(ly),

0 — k2 — —__ -Uyy tV p +  h =  - - { K 2 -  n) [d r  +  v]Asm(ly).  (4.45)
CK

P rior to  deriving our solvability condition for th is system of differential 

equations, we sim plify the operators on h and p in  (4.44) and (4.45) respectively 

by observing th a t they sim plify as:

c
f) — k2U y y  ft.

Oin
\ d y y  +  I  p \ (4.46)

Now we may w rite  the system of d ifferential equations in  the m atrix  form  

Ch{y)  =  F  (y):

Oyy +  I 2 ~  P

1

p  1 'h

Oyy +  I 2 — P P.

(4.47)

-acpA l  cos (ly) +  ac ( y -  | )  K 2pAsin( ly) +  £ j [ d r  +  v]Asm(ly)  

± { K 2 -  p) [d r  +  u ]A w i ( ly )

We note th a t

Oyy +  I 2 — P  1

1  8 y y  + l 2  ~  P _

c  = (4.48)

is a self-adjoint operator since

[  d (y )C b (y )dy=  !  b{y)Cd(y)dy  
Jo Jo
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fo r any smooth test vector-function d(y)  th a t satisfies the boundary conditions 

d(0, L ) — 0. This can be shown d irectly using integration by parts.

We w ill now derive a solvability condition for the system in  (4.47). We 

begin by noting tha t the homogeneous problem,

£ b  =  0 ,

w ith  boundary conditions given in  (4.43), and where

(4.50)

=  0 on y =  0, L (4.51)

b„ = (4.52)

has solution
A (X ,T )w n ( ly )

B (X ,T )sm ( ly ) \  

where B ( X , T )  =  /j,A (X ,T) ,  jus t as in  the 0 (1 ) case.

Since we have a self-adjoint operator for the homogeneous problem, and 

a nontriv ia l homogeneous solution exists, the Fredholm alternative theorem 

(Haberman, 1998) tells us th a t the nonhomogeneous problem has solutions if  

and only i f  <  b 0, F  > =  0 over the domain y =  [0, L ], where

—a c(j,Al cos (ly) +  a c ( y -  § ) K 2fj,Asin(ly) 4- - ^ [ d T +  i']Asin(Zy)

^ ( K 2 -  y ) [d r  +  v]Aam(ly)
(4.53)

Thus, the solvability condition on (4.44) and (4.45) is th a t the ir homogeneous 

solutions must be orthogonal to  the inhomogeneity (Haberman, 1998), ie.

f L
[fxA sin (ly) A  sin(ly)]F(y) =  0,

F =

/Jo

which upon expansion becomes

rL

J  | - a cn lA  cos (ly) +  acK 2 ^y  -  y,A sin (ly)

+ - ^ r [ d r  +  v]Asm(ly) \f j ,Asm(ly)dy 
ack J

+  j  — lAi&r  +  H ^ s in ( /y ) | Asin( ly)dy =  0.

(4.54)

(4.55)
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The first two terms,

J | - a c//M cos(Zy) +  acK 2 ( y  -  /M sin(Zy) y,Asin( ly)dy,

vanish as the integrand is odd over the region o f integration. The remaining 

terms,

[.&t +  v]a J^ +  “ a2(*!/)<*!/,

evaluate to zero since ^  +  - ^ ( K 2 — n) =  0. Thus, (4.55) vanishes triv ia lly , 

and the 0 (s ) problem gives us no condition on A, forcing us to  examine the 

0 (s2) problem.

Before moving on to  the 0 ( s 2) problem, we must determine h and p. Iso­

la ting  for h in  (4.45) gives us:

h — -  [dyy +  l2 -  y ] p  +  - ^ ( K 2 -  y ) [d r  +  u]Asin( ly). (4.56)

Substituting (4.56) into (4.44), and rearranging, we obtain:

{[dyy + 12 -  y ]2 -  l } p  (4.57)

=  ~  +  v\A[dyy +  I2 -  fi) sin (ly)

+ a cfiAlcos(ly) -  ac ( y  - 77) K 2fj,Asin(ly) -  +  v\Asin(ly),
\  I  J OLrK

or equivalently,

[Oyy +  I2 ~  2/i] [Oyy +  P]P

=  a cf iA l  cos (ly) - a c ( y -  K 2fxAsin(ly)

+ [d r  +  u ] A ^ ( K 2 -  n)[dyy + 12 -  /j]  sin (ly) -  ^  sin(Zy)}.

Observing tha t

■ ^ {K 2 -  (j,)[dyy +  I2 -  fi] sin (ly) -  ^  sin(Zy) 

i  (1

(4.58)

(4.59)

=  ^ { ~ ( K2 -  V)[-12 sin {ly) +  (12 -  n) sin(Zy)] -  sin(Zy)}

sin(Zy)
k 

=  0,

% i r  k 2 -  n  i
/ i -------- ^  +  —

I c ac
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and creating a new variable, £, we can rewrite (4.58) as the system:

[dyy +  I 2 [l]P —

[dyy +  Z2]/; =  a c\xAl cos (ly) - a c ( y

(4.60)

K 2p A  sin (ly),

which is identical to  the system seen in  Reszka (1997). The solution to (4.60) 

is given by:

p(y, T)  =  7i  (y -  f  ) 2 cos (ly) +  72 (y -  f ) sin (ly) +  73 cos (ly) (4.61) 
*
74 s in (ry) +  75 s in (r(y  — L)  where L 2 — 2p >  0

■T <
k74 exp(—ry)  +  7se xp (f(y  — L )) where L 2 — 2/i <  0 ,

where r  =  -y/Z2 — 2 /i,, r  =  \j2\x — I2, and the coefficients are given by:

K 2
7i =  — %[acA ' 72

^ 2 - 1 i f 2 
4 +  8Z2

7s =  

75 =

74 =

75 =

RT2L 2 l ( K 2 -  n)
a cA, 74

32/ ' 4

a , 1
4sin(rL) ’
((—l ) n exp(—f L )  — 1 ) (K 2 — 1)1 

4(1 — exp(—2 fL ))
(exp(—f L )  — (—1 )n) ( K 2 — 1)/

acA,

l ( K 2 -  p ) ( - l ) n+1 
4 s in (rL )

olcA ,

acA,

4(1 — exp(—2 rL )) 

and where h  is given by:

occA ,

h =  -  [dyy +  I2 -  fi\ p +  ^ ( ^ 2 -  f i) [dr +  v\Asin(ly).  (4.62)
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4.2.4 0 (s2) Problem

The 0 (s 2) problem is:

h f ) +  a cp ^  +  a cA  h®  (4.63)

— —[dr +  u ]h ^  — +  A h^°\ h ^ )  — J(p^  +  A h ^ \  h ^ )

-ajftg* - a l ( y -   ̂) A/i® -  /»(r„ + r)(pm +  Ahm )x

-ac(p<°> + Ak<">)x -  2 ach(° l  - a c ( y -  ^) J(Aft<°>,

- Qc(/.<»» Aftf + -  /,<»)/.<»' + h?>k£>),

A p f  +  h ?  +  ( a c -  l)p<?> (4.64)

=  — [dr +  u K h ^  +  A p ^ )  — J ( p ^ \ A p ^  +  h ^ )

- J ( p {Q), A p (1) +  / i (1)) -  2 p fx x ~  p ( r 0 +  t )p ^ } -  (a c  -  1 ) p f .

Substituting our solutions for the 0 (1 ) and 0(s)  problems in to  (4.63) and 

(4.64),

/ i f ) +  acA / i f ) +  acpf> (4.65)

=  \  ~ [d r  +  v]h +  A i k [ ( p K 2 -  l) $ y -  p ^ y +  p $ yyy] sin (ly)

-ikaz hy +  [ y -  § )  ( - k 2h +  h „ ) +  A x ac[2k2p  -  (1 -  p K 2)] sin (ly)

—A ik p f o  +  r ) ( l  — p K 2) sin(ly) j  exp(ik9) +  G(h,p ) exp(2ifc0) +  c.c. 

- [ d r  +  v)$ -  ~ (K 2 ~  A4) sin(2 ly ) [dr  +  2z/](|A|2) +  non-resonant terms,

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A p f '1 +  h f ] +  (ac -  1 ) p f ) (4.66)

=  {~ (& r  +  v)(h +  pyy -  k2p) -  i k A ^ y y y  - ' $ y  +  (K 2 -  p )$ y) sin (ly)

—(ac — 1 )A x  sin (ly) — p ( r0 +  T)AiA;sin(Zy) j  exp(ik$)

+ F (h ,p ) exp(2 ikO) +  c.c.

— [dr +  v}$ -  l-Ak2 -  p) sm(2ly)[dr +  2v\(\A\2) -  [dr +  v\^yy 

+  non-resonant terms, 

where asterisks denote complex conjugate, and we have used the relations,

([# r +  v\AJ)A - f ([dr  +  =  [dr +  2i/](|A |2), (4-67)

2 sin(Zy) cos(Zy) =  sin(2Zy). (4.68)

Also, the terms associated w ith  exp(2ikd) have not been w ritten  out, since 

we w ill not be using them. These terms do not cause resonance since the ir 

frequency is not the underlying frequency, u  — \kcR\, and thus they w ill not be 

responsible for secular growth (wave am plitude growth w ith  respect to  tim e).

We note th a t terms on the righ t hand side of (4.65) and (4.66), which 

do not have fast phase oscillation, w ill cause the particu lar solution to  grow 

linearly in time. Since we want to  in h ib it th is secular growth, we set the sum 

of these terms to  zero, ie.

[&r +  iA& — - ( K 2 — p) sin(2 ly ) [dr +  2^](|A |2) =  0, (4.69)
c

[dr +  v ]($  +  Vyy) +  l- { k 2 -  p) sin(2 ly ) [d r  +  2u](\A\2) =  0. (4.70)

Integrating (4.69), and applying the in itia l condition $ (T  =  0) =  0, we obtain

® (y ,X ,T )  =  - - ( K 2 -  p)sin(2ly)  f  exp(vs)[2v +  ds](|A (X , s)\2)ds.
c exp(vT) Jo

(4.71)

We define

f (X,T)  =  j—  f  exp(i>s){2u +  d,)( \A(X,s)\2)ds, (4.72)
exp(z/T) J0

so th a t we may w rite  $  as a product of a function o f y w ith  a function of X  

and T  for simpler integration w ith  respect to  y later. Thus,

■b(y, X ,  T)  =  - - ( K 2 -  sin(2 l y ) f ( X ,  T).  (4.73)
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Using (4.69) to simplify (4.70), we obtain

-[d r  +  * ]» „  =  0, (4.74)

or equivalently,

[exp (uT)^yy]T =  0. (4.75)

Integrating once, we obtain

^yy =  exp ( -v T )q (y ,  X ) ,  (4.76)

where q(y, X ) is the integration “constant” . Since the mean flow correction is 

taken to  be zero at T  =  0, we may also take ^ yy{T  =  0) =  0, w ithout loss 

of generality. Applying th is to  (4.76) gives us q (y ,X )  =  0, and thus 4/ra =  0, 

im plying th a t 4/ takes the form,

<t(y, X , T )  =  y a ( X , T )  +  b ( X , T )  +  d ( X ) ,  (4.77)

where a (X ,T ) ,  b (X ,T ),  and d(X)  are unknown.

We now derive a boundary condition on 4/vt  at y =  0, L. The rate of change 

of the circulation, T, in  the presence of dissipation, is given by (Pedlosky, 1987),

f  =  - „ r ,  (4.78)

where T is given by

T =  dr. (4.79)

W riting  (4.78) in  terms of the lower layer streamfunction, we obtain

 ̂I  Py>̂ x =  ~ l> J p f )dx +  0 {5^),  o n y  =  0, L, (4.80)

where we note th a t the domain is periodic in  x, and we have taken the integral 

over a closed curve of length 2aq. Expanding (4.80) in  an asymptotic series, 

adding in  tim e scaling, and scaling the dissipation term , we obtain

/ X I

[(A  sin (ly) +  sp)y exp (ik8) +  s ^ y]dx (4-81)

-X\

/ X I

[(Asin(Zy) +  sp)y exp(ikd) +  s^fy]dx, on y =  0, L.

•X l
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Since a ll terms w ith  exp(ik6) integrate to zero, and 'h is independent of x  and 

t, to  leading order, we have,

/ x i  rx i
s'&y dx — —vs2 /  s^y dx, on y =  0, L, (4.82)

■Xl J  —Xl

which simplifies to

^ y r  =  —v^y,  on y =  0, L, (4.83)

which implies

tyy =  q(X)  exp(vT), on y =  0, L. (4.84)

Since the mean flow correction is taken to be zero at T  =  0, we may also take

tyyiT — 0) to  be zero at T  =  0, w ithout loss o f generality, which implies tha t 

q {X ) — 0. Thus, (4.84) becomes

ikj, =  0, on y — 0, L. (4.85)

Applying (4.85) to  (4.77) shows us th a t a(X, T ) =  0, and (4.77) becomes

tt(y , X , T ) =  b(X, T)  +  d(X),  on y =  0, L. (4.86)

Since 4/(T  =  0) = 0 ,  we require b(X, 0) +  d (X ) =  0 on y =  0, L. Thus,

d {X ) =  -b (X ,  0), and

V (y ,X ,T )  =  b ( X , T ) - b ( X ,  0). (4.87)

However, since $  is a streamfunction and is only defined up to  a constant 

(w ith  respect to  x  and y), w ithout loss of generality, we can set

9 ( y ,X ,T )  =  0. (4.88)

We now assume the 0 (s 2) problem to have normal mode solutions

p®  =  p(y, T)  exp(ik6) +  c.c., (4.89)

=  h(y, T ) exp(ikd) +  c.c., (4.90)
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and consider a ll terms w ith  coefficient exp(+ik6). Upon d ivid ing (4.65) and 

(4.66) by ik a c and —ick respectively, and applying (4.69) and (4.74), we obtain

k 2 -------
Oic

h +  p (4.91)

ka,
[dr + v]h

a, Otn
Asin(ly)

Otr K  +  ( v  ~  (h y y  ~  k 2h j ^  -  p ( r 0 +  t ) ^ - A ( 1  -  p,K2) sin(/y)

-ikAx 2/x_  _ ^ 2) sin(^)-

d y y  + p +  h (4.92)

=  ^ &r +  Û + Pyy ~  +  +  ®y +  ^  “  ^ 2) ^ y ]A sin(Zy)

—Axik 2 +
ck2

sin(ly) +  - p ( r 0 +  r)A s in (/y ).

Substituting in  our solutions for $  and

k
OLc

h +  p (4.93)

- t e c [ a T + , / ] h +
ixK2)

\212
( K 2 — p) cos(2ly)f (X , T)

+ E
Otr.

(K 2 -  p) cos(2l y ) f {X ,  T ) >Asin(/y)

~Otr

814

fc2h) j - y ( 1
t 0 +  t ) — A(1 -  p,K ) sin ( l y )

a

-ikA x
1

Oyy + p +  h (4.94)

=  - ^ [ d r  +  v](h +pyy -  k2p) -  2 l- ( K 2 -  p)cos(2 ly)f(T)Asin(ly)

—Axik 2 + a.
ck2

sin (ly) +  - p ( r 0 +  r)A sin(Zy). 
c
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We w ill now derive a solvability condition for the system (4.93) and (4.94). 

We firs t w rite  the system in  the m atrix  form  Cb(y) — F (y ), making use o f the 

relation in  (4.46):

dyy + l 2 —H 1 'h RHS (4.93)'

1 Oyy + I2 ~  [J, P. RHS (4.94)_

As before, £  is a self-adjoint operator.

We recall from  §4.2.3 th a t the homogeneous problem,

£b =  0,

(4.95)

(4.96)

where

b =

and b (y) =  0 on y =  0, L, has the solution

b 0 =
A (X ,T )sm (ly )  

y,A(X , T )  sin (ly)

(4.97)

(4.98)

Since we have a self-adjoint operator for the homogeneous problem, and 

a nontrivia l solution to  the homogeneous problem exists, the Fredholm alter­

native theorem (Haberman, 1998) tells us th a t the nonhomogeneous problem 

has a solution if  and only i f  <  b0, F > =  0 over the domain y — [0, L ], where

F =
RHS (4.93) 

RHS (4.94)
(4.99)

Thus, the solvability condition on (4.93) and (4.94), is th a t the ir homogeneous 

solutions must be orthogonal to  the inhomogeneity, ie.

pL pL

/  (RHS A.9S)fiAsm(ly)dy +  /  (RHS A M )As in( ly )dy  =  0, (4.100)
Jo Jo
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which simplifies to:

(4.101)

2l2K \ K 2 -  2p f
[.K 2{ K 2 -  2p) -  412{ K 2 -  p)]A cos(2ly) sin( ly ) f ( X ,T )

K 2 - p

flOic hy + [ y  2 J i^yy k ^  j

—^ 9t  +  v\ (Pyy ~  k2P) +  P(T° +  r ) ■Jf(l _ f.K2) + -
OLc 0

A s in ( ly )

'}
iA x  sin (ly ) Asiu(ly)dy  =  0.

S im plifying and rearranging, (4.101) becomes the Amplitude Equation,

[dr +  v\2A {X , T ) =  a (T )A (X , T) +  iP A x (X, T ) -  N A (X ,  T )Q (X , T),

(4.102)

where Q is defined by [dr +  u ]Q (X ,T ) =  [dr +  2u ]( \A (X ,T )\2),

and where Q (X ,  0) =  0, and our parameters are: 

Apkz{ K 2 -  p)
P  =

K 6( K 2 — 2p)2’

N  =  l 2k2 ( 2  - p K 2 +  j ^ - ( K 2 -  p)

°(T) = +
2k2{ K 2 -  p) 

' L K * ( K 2 - 2 p ) 2 fJo
<*C T t s r / t s o  n  \ o  I  p ^ i y  “f "  ( y  o  ) f t i w  k

where h i =  —[dyy + 12 -  p] ( ^  ) .

(4.103)

(4.104)

(4.105) 

sin (ly)dy,

Note tha t y/\a\ — 0 ( k / K )  i f  0 ( a c) terms are neglected, which is the order of 

the growth rate from  linear theory. As well, we note tha t a is now a function of 

T  due to the addition of tim e variab ility  in  the supercritica lity term , w ith  <r(0) 

being equal to  the a o f Reszka (1997). Also, i f  r(T ) =  0, we have cr(T) =  <x(0).
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4.2.5 The Lorenz Equivalent

In  the case where we have no tim e va riab ility  in  the perturbations (ie. t (T )—0), 

and the perturbation am plitude is real-valued (ie. A x  — 0), we can determine 

some stab ility  properties of our amplitude equation by converting it  in to  a 

Lorenz system. We w ill follow the procedure discussed in  K le in  and Pedlosky 

(1992). F irst, we note th a t the Lorenz equations w ith  variables F,G, and H  

typ ica lly  take the form

where (f> is the P randtl number, R  is the Rayleigh coefficient, and b is a sec­

ondary damping coefficient. Transforming these variables using

(4.106)

^  =  T,

F  =  A 0A,

(4.107)

gives us

(4.108)

Qt  +  -^Q =  (a 2)t  +

W riting  the am plitude equation in  the same form  as (4.108):

Axt 4“ 2uAt  T  {y  ̂— <r2)A  -I- NAQ  — 0, 

Qt  +  vQ =  (A2)t +  2 uA2,

(4.109)

and matching coefficients, gives us the relations

b =  4> =  1 (4.110)
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and
(P — iP

R =  1 +  . (4.111)

The Raleigh number, R, is a measure of forcing in  the Lorenz system (K lein 

and Pedlosky, 1992). I t  is necessary th a t R  >  1 for there to  be nontriv ia l 

asymptotic solutions to  the Lorenz system (K lein and Pedlosky, 1992). We 

note th a t R >  1 whenever cP >  u2. That is, the damping coefficient cannot 

be too large.

The steady solutions are linearly stable since 4> < b + 1 (K le in  and Pedlosky, 

1992). In  addition, when the P randtl number is one, for a rb itra rily  large R, 

the asymptotic solutions to  our system are always stable (K le in  and Pedlosky, 

1992), meaning tha t chaotic or self-maintained periodic behaviour cannot take 

place (Pedlosky and Thomson, 2003). This result tells us th a t the observation 

of non-triv ia l tim e dependence in our solutions is due to  the presence o f the 

tim e-varying component o f the perturbations.
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Chapter 5 

Solutions to  the A m plitude  

Equation

5.1 Introduction

To determine underlying properties and analyse how the Reszka (1997) solu­

tion  changes w ith  the addition of tim e va riab ility  and dissipation, we om it the 

slow space term , A x,  in  th is chapter. W ithou t the slow space term , A (X ,T )  

is real-valued, and we denote it  by R(T). Now, (4.102) becomes

[&r +  v f R  =  a R -  NRQ, (5.1)

\dr +  v\ Q =  [d r 4- 2u]R2.

w ith  in itia l conditions,

R(0) =  0, Rt (0) =  V W W \R 0, <3(0) =  0. (5.2)

This particular linear growth rate -y/|er(0)| was chosen since the solution to

Rtt  =  a (0)R, R(0) -  0 (5.3)

is

R(T) =  R0sinh(Ty/a(Q)), a >  0, (5.4)

R(T) =  R0sm(T \/|< t(0 )|), o <  0.
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We w ill review the solution presented in  Reszka (1997) for the case where 

the tim e va riab ility  and dissipation terms are absent. Next, we w ill compare 

these solutions to  numerical solutions w ith  r0 +  r  nonzero, and no dissipation. 

Then, we take several curves w ith  specific characteristics, and examine the 

influence of dissipation.

5.2 The case where r (T )  = 0 and v = 0

In  the case where r(T )  =  0 and v =  0, the amplitude equation can be solved 

analytica lly follow ing Reszka (1997). Substituting r (T )  =  0 and v  =  0 into 

(5.1), we obtain

Rrpr =  v(0)R -  N R (R 2 -  R l ), (5.5)

w ith  in itia l conditions
r\

R{0) -  R0 and — R (0) =  V W W \R c  (5.6)

For the remainder of th is section, we w ill use a to  denote cr(0).

M u ltip ly ing  (5.5) by Rt , and integrating, gives us

R2 =  oR2 +  (M  -  a )R l -  ^ ( R 2 -  R l )2. (5.7)

Equation (5.7) may be solved by considering four regions (defined by the signs 

o f N  and a):

{ { N  <  0, a <  0 }, { N  >  0, a <  0}, { N > 0 , a >  0 }, { N  <  0, a >  0}} ,  (5.8)

which we w ill denote as Regions I, II, I I I ,  and IV  respectively. Given values

for /q L, and n, we can determine which region we are in, for any given k, by 

examining a p lo t of N  and a versus k. Since the upper and lower branches 

exhib it sim ilar behaviour in  the same regions, we have chosen to examine the 

lower branch only, and have chosen the parameters L  =  8 and n =  1. A  p lo t 

o f N  and a versus k w ith  those parameters is given in  Figure 5.1.

We w ill demonstrate properties of the solutions in  the firs t three regions 

by choosing K 2 =  {0 .1,0.4,1.4}, which correspond to  k m  {0.23,0.50,1.12},
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and are in  regions I, II , and I I I  respectively. We continue using the parameters 

L  =  8 and n =  1, and consider solutions w ith  a supercritica lity only, ie. r D =  1. 

We also consider solutions only on the lower branch, since, as described above, 

there is sim ilar behaviour in  both the upper and lower branches o f the MSC.

0.1 0.2 0.3 0.4

0.05

- 1-

- 0.05-

-2

Figure 5.1: N  and a  versus k on the lower branch where L  =  8, and n =  1. 

Inset corresponds to  blow up of region in  dotted box.
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5.2.1 Region I

Substituting o <  0 and N  <  0 into (5.7), and sim plifying, we obtain 

Next, we transform  the variables using

(5.9)

i2± P  n  - J h p  T -  K 
K ° - \ l  N

R =

which allows (5.9) to  be rew ritten as

0 2 = ( p 2 - p« - 5 ) 2 +  p» - I '

which can be separated into three cases: P% =  \ ,  P% <  | ,  and P% >  

Case 1: P% =  |  (i.e. P0 is either — \  or \ )

Here, (5.11) simplifies to

(5.10)

(5.11)

' d P \
J k )

P  7 (5.12)

F irst, we consider the case of PQ =  | ,  which gives us ^ (0 )  — \  >  0. I t  w ill be 

shown a posteriori th a t \P\ <  which allows us to  solve for

dP  
dtc

P  — — (5.13)

Separation of variables gives us the integral

/ v w *JPo s ~  4 Jo
. p2   3
*Po > 4

which, upon integrating and substituting in PQ =  | ,  gives us

(5.14)

k — ~^= In 
v/3

(v/3 +  2P)(v/3 - l )

( > /3 - 2 P ) ( V 3  +  l)

Now, solving for P  as a function of «,

\ / 3 \  1 -  \ /3  +  (1 +  \/3 ) exp(V3/t)

(5.15)

P M
2 J \/3  — 1 +  (1 +  V5) exp(^/3/c)

(5.16)
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We note tha t P (0) =  |  and \P\ <  ^  as required. Applying the same approach 

for P0 — — we get

P ( K) =  - ( £ )  l - v ' S + t l  +  v ^ e x p ^ )  (5 17)
J  y j 3 — 1 -f  (1 +  y / z )  exp(-\/3/c)

Case 2: P 2 <  ±

Since P 2 <  | ,  the constant in  (5.11) is negative, and we factor the quadratic4

as
/ J D \ Z

=  (01 -  P 2)(C2 -  P 2), (5.18)

where we have introduced the constants

?2 =  P ! +  l  +  J \ - P S > 0 <  (5-19)

and

<2 =  P 2 +  l ~ J \ - P i > 0 .  (5.20)

W ithou t loss of generality, we take /3 and (  to  be positive quantities. To

sim plify the equation, we define new variables by

P  =  0Q, P0 =  (3Q0, (5.21)

and (5.18) becomes

( ^ Y  =  /?2(1 - Q 2)(m2 - < 3 2), (5.22)

where m  =  w ith  0 <  m <  1.

We w ill sta rt by solving for the case where P0 >  0 (noting th a t ^ ( 0 )  > 0 

here). Examining (5.22), we see tha t \Q\ <  m  necessarily, allowing us to take 

the square root of both sides, which gives us

^  =  M l  - e 2)(m 2 - C 2), (5.23)

which can be rew ritten as the integral

[ Q ^   =  p  [ K dK. (5.24)
jQo V ( l - O K - e )  Jo
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Once put in  standard form, we w ill see th a t th is is an e llip tic  integral which 

may be solved for Q w ith  the use of function tables (Milne-Thomson, 1950).

We decompose the le ft hand side in to  two parts, and evaluate the righ t 

hand side (making use o f the fact th a t 0 <  Q <  Q0 for P0 >  0),

f *  g  f ° -  %
Jo y(i-a(m2-f2) Jo v(i-a(">2- a

Upon rearranging, th is becomes

rQ dt,

/J o
P(k - k0), (5.26)k v(i-a<™2-a

where

Kc = ~ l l  vd - ai>2 - «2)' (5'27)
Prom Milne-Thomson (1950), the le ft hand side of (5.26) has the solution

r  ,  *  =  sn~x ( —
Jo y / { l  - e ) ( m 2 - e )  Vm

m2 ) , (5.28)

where we have made use of the relation Q <  m <  1, and sn(-) is the Jacobi 

e llip tic  snoidal function. Substituting (5.28) into (5.26), we obtain the relation

sn-1 m 2̂  =  (3(k — k0), (5.29)

which we then invert, and m u ltip ly  through by m, to  obtain

Q =  m  sn (P(k  — K0)\m2). (5.30)

Transforming back into our orig inal variables, R  and T , we have

/ n _
R =  y  —  f3m sn — K0)\m2). (5.31)

We have plotted th is solution in  Figure 5.2, where we have used the para­

meter values /i =  —1, L  — 8, r G =  1, and K 2 =  0.1. The curve is periodic and

has a period of approximately 4.2.

Solving sim ilarly for the PQ <  0 case (making use of the fact th a t 0 >  Q >  

Q0 for P0 <  0), we obtain

Q = —m sn (/3(k — K0)\m2), (5.32)
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Figure 5.2: R  vs. T  on the lower branch w ith  K 2 =  0.1, L  =  8, and r0 =  1 in  

Region II.

where

K° =  ] i L  ( 5 ' 3 3 )

Case 3: P 2 >  \

We w ill show th a t the solution is unbounded, and th a t i t  becomes a rb itra r­

ily  large in  a fin ite  tim e, when P 2 >  Since P 2 — |  is now a s tric tly  positive 

quantity, so too is the righ t hand side of equation (5.11). Taking the square 

root o f both sides, we see th a t P  w ill approach either oo or —oo depending on 

the sign of PK(0). We w ill prove the result fo r the case PK(0) >  0, noting th a t 

the case PK(0) <  0 is proven by the equivalent argument.

Claim: P  becomes a rb itra rily  large in fin ite  tim e if  P 2 >  \

Proof: We know tha t P  grows monotonically w ithout bound. The tim e 

required for P  —» oo can be w ritten  as the integral

dP
K* =  /  ------------- 2 L  , (5.34)

JPo ^ P 2 _ P 2 _ 1 )2 +  P 2 _ 1

which may be rew ritten as the sum of two integrals,

_  f p* __________ dP__________  r ° ° __________ dP__________

J P .  ^ p 2  _  P 2 _  1)2 +  P 2 - l  J P - j ( P 2 -  J>2 _  1)2 +  p 2  _  I  ’

(5.35)

for any P* >  \ J p 2 jt \ ■
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Examining (5.35), we see tha t i t  satisfies

K* <  I \  +  I%i (5.36)

where

w ith  I i  fin ite , and

h
- L

dP

- IJ P

dP

P* \P2 -Po2 - k \

(5.37)

(5.38)

Since P 2 -  P 2 -  § >  0 for a ll P  >  P *, we can remove the absolute value signs, 

and integrate to  obtain

=  lim  [
I —►OO J

dP
P 2 - a 2

l i m b i n ' *  °
i->oo 2a 11 +  a

where to II

— 7̂ - In 
2 a

P* - a  
P* +  a

P* - a
P* +  a

1
2

=  —  In 
2a

P* +  a
<  oo.

P* — a

Since ^  and 72 are both fin ite , k* is also fin ite . Q E D

(5.39)

5.2.2 Region II

Substituting a <  0 and N  >  0 into (5.7), and sim plifying, we obtain 

Next, we transform  the variables using

P = t / - ^ P ,  Ro =  \ I ^ P o ,  T =  K
N  \  N

which allows (5.40) to  be w ritten  as

a

(5.40)

(5.41)

© 2 =  ^  +  I - ( p 2 - p » +  5 ) 2 - (542)
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Since P% +  \  is s tric tly  positive, (5.42) may be factored as,

f d P \ ‘ 1
'f ?  + j  +  p 2 - / ?

Since \ J p % +  \  +  P% — \  > 0 , there are three cases, PG2 =  2, P ‘0 

P I >  2.

Case 1: P 2 =  2

Here, equation (5.42) simplifies to

2 n /  o\ 2

We define new variables

P  =  V3Q, P0 =  VSQo,

and apply separation o f variables to  obtain

r0 d£

IJo,
\/3 f  dn. 

Joho  v W  -  0 2

This equation may be solved by making a change of variables

£ =  sin 9 , d£ =  cos 0

to  obtain the solution

k =  — -= In | esc 6 — cot 0\ +  const 
v 3

which, after applying

~ l n 1 +  y / l - W
Q

Qo

Q° ~ V 3 ’ P° ~ \ 3 ’
and taking the exponential of both sides, becomes

exp[—V 3*] -  1 +  ^  ^  .
' 1 Q l+v /1^2 /3
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(5.45)
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(5.47)

(5.48)
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Solving for Q, we obtain

Q =  V2  ^  ^  exp[\/3/t] +  ^  e x p [-\/3 K ]^  . (5.51)

Finally, we can find P (k ) by application o f (5.45).

Case 2: P 2 <  2

Here, equation (5.42) simplifies to

( f r )  =  { p 2 + c2)(/?2 “ p 2 ) ’ (5,52)

w ith

P2 =  P Z ~ 1  +  J p S +  \ > 0 ,  (5-53)

and

e = - P !  +  l  +  J p S  +  \ > 0 .  (5.54)

We then substitute the transform ation

P  =  (3Q, P0 =  (3Q0, (5.55)

in to  (5.52), to  get

( ^ ) 2 =  /?2(<?2 +  m2) ( l - Q 2), (5.56)

where m =  and 0 <  m  <  1. We note tha t, given the form  of (5.56), 

necessarily we have 0 <  Q <  1.

Transforming (5.56) into integral form , we get the e llip tic  integral

f  , «  - e  r * .  (5.57)
Jo. \ / « 2+™2) ( i - e 2) Jo

Following the procedure used previously, we rewrite the le ft hand side as two 

integrals, and evaluate the righ t hand side,

f 1  f 1
Jo „ \ / (£ 2 +  ra2) ( l  — £2) Jo>Qo a / ( £ 2  + ^ 2 ) ( l  — £2) Jq \/(£2 + ™ 2 ) ( l  ~ £ 2 )

which we rearrange to  obtain

^  =  /3 k , (5.58)

f  / ^ l u i  ^  =  ~ ^ K - ( 5'59)■/q V (^  + m K 1 - n
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where

K°~l L
d ( (5.60)

ho V ( e + m ^ ) ( i - e )

We note th a t the le ft hand side of (5.59) can now be solved using integral 

tables (Milne-Thomson, 1950), where we have used the fact th a t 0 <  Q <  1, 

to  obtain

r>l/JoQ V^(£2 +  ra2) ( l  -  £2) v T T r r ?
cn [ Q 1 + m 2 J ’ (5.61)

where cn (•) denotes the Jacobi cnoidal function. Substituting th is relation 

into 5.59, and m ultip ly ing  through by y / l  +  m2 gives

cn 1 ( Q
1 V l + m 2P(K — k0). (5.62)

1 +  m2j

Inverting th is relation, and noting tha t the cnoidal function is even about zero,

we obtain the solution

Q — cn ^ V m 2 +  1/3(k — k0)
m2 +  1 /  ’

Transforming back in to  orig inal variables (R (T ) and T ), we find

1 >

(5.63)

R(T) =  cn (^Jm 2 +  1 ( 3 { \ / -a T  -  k0)
m 2 +  1

(5.64)

This is p lotted in  Figure (5.3) w ith  parameter values — — 1, K 2 =  0.4, r 0 =  1, 

and L  =  8. This curve is periodic as well w ith  a period o f approxim ately 22. 

Case 3: >  2

Here, equation (5.42) simplifies to

  ( r > 2  / - 1 \ (  r &  d 2 \

\ d n  J
=  (P2 - ( Z)(P2 - P 2),

w ith

and

/52 =  ^ 2 - o  +  \ / n 2 +  T > 0>

C2 -  P 2 -  o Po + l > ° -

(5.65)

(5.66)

(5.67)
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Figure 5.3: R  vs. T  on the lower branch w ith  K 2 =  0.4, L  — 8, and r a =  1 in  

Region II.

Substituting the transform ation

P  =  PQ P0 =  PQ0, (5.68)

we get

( c k )  = ^ 2(<32 ~ m 2) (1 - ( 22) ’ (5-69)

where m  =  w ith  0 <  m  <  1. We note th a t the form  o f (5.69), combined

w ith  the bounds on m, im ply th a t m <  Q <  1.

Taking the square root of both sides and w riting  in integral form, we have

f \  <  (5 .7 0 )
j q . V i e  -  m2)(i - a  J°

We now sp lit the le ft hand side into two integrals, and evaluate the righ t hand 

side, to  obtain

f  - 1  , = e * ,  ( 5 .7 D
Jq. v / iF r f F ? )  Jq Vie -  ™2)(i -  e2)

which we then rearrange to get

L  v ( e - m * ) ( l - P ! =  _ /? (k "  K°) ’ (5,72)

where
dt

k° = I L V i e - m * ) {  i - a '  
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The le ft hand side o f (5.72) is an e llip tic  integral whose solution is given by 

(Milne-Thomson, 1950)

dZ
fJq

=  dn x( Q \ l - m 2), (5-74)
IQ y / ( ? - m * ) { l - e )

where dn(-) denotes the Jacobi dnoidal integral making use o f the relation 

m <  Q <  1.

Substituting th is in to  (5.72), we obtain

dxT1(Q \l — m 2) = —/3(k — k0). (5.75)

Inverting, and using the fact th a t the Jacobi dnoidal function is even about 

zero, we fina lly  have

Q =  dn (/?(«; —k0)|1 — m 2). (5.76)

5.2.3 Region III

Substituting a  >  0 and N  >  0 in to  (5.7), we obtain

R^. =  crR2 -  ^ ( R 2 -  R20)2. (5.77)

Applying the transform ation

p  =  \ / f p > * > - $ * > •  t  =  7 S ’ ( 5 ' 7 8 )

we have
=  _ p 4  +  (2p2  +  I ) p 2  _  p4  (5.79)

We now rearrange (5.79) to  obtain

- t ^ 0 2+( t - ( p| + 8 p2)' ( s ' 8 0 )

Looking at (5.5), we notice tha t i t  has the same form  as the equation governing 

the rectilinear m otion of a particle under the action of a restoring force, tha t 

is dependent on displacement alone (ie. the harmonic oscillator). Thus, we 

can consider (5.80) as a decomposition of to ta l energy, E, in to  kinetic energy
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(KE) and potential energy (PE), where E  =  — and K E  =  \ { ^ ) 2. Then, 

we see tha t P E  =  \ P 4 -  (P 2 +  | )  P 2.

The maximum value of P  occurs where the to ta l energy of the system is

in  potential form . Thus, we can find the maximum value of P  by setting the

kinetic energy to  zero, which results in  the relation

- P 4 +  (2P i  +  1)P2 -  P 4 =  0. (5.81)

Applying the quadratic formula, we obtain

=  ( p !  +  \ )  ±  J  v / 5 ? + T  ■ (5-82)

We may w rite  (5.79) in  the form

=  ~ (P 2 -  P U ( p2 -  O -  (5.83)

To sim plify, we rewrite the previous equation by normalizing our amplitude

Q =  - s ~  • (5-84)
-̂ max

scaling tim e

K =  Pmax^ > (5.85)

and defining a new variable /3 by

P =  ? r L , (5.86)
* max

where we see 0 <  f3 <  1, resulting in  a new equation,

d Q ^  = ( 1  _ Q 2 ) ( g 2 _ / 5 2 ) _  ( 5 g 7 )

\d K ' J

We note tha t, due to  the form  o f th is equation, together w ith  the bounds on 

/3, we must have tha t (3 <  Q <  1. This equation can be rew ritten as

pit' rQ
/  dn' =

Jo J Qo

dQ

VO -  Q2)(Q2 -  i? ) ’
(5.88)

to which we apply the same techniques used in our Region I I  dnoidal solution, 

to arrive at the solution

Q — dn (k' — ACofl — P2) ’ (5.89)
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Figure 5.4: R  vs. T  on the lower branch w ith  K 2 — 1.4, r Q =  1, and L  =  8 in 

Region II I.

where k'q is defined as

< = / ' dQ
(5.90)

V ( i  -  Q W  -  £2)

Transforming back into our original variables, the solution for R  is given by

R = -Pmaxdn(/c' -  k '0\ 1 -  P ), (5.91)

which we have p lotted in  Figure 5.4 w ith  parameter values K 2 — 1.4, r 0 =  1, 

L  — 8, and n — — 1. The solution is bounded above zero, having a period 

o f approximately 7.5; we also note th a t the function has softer troughs and 

sharper peaks when compared to  a sinusoidally shaped function.

5.2.4 Region IV

Substituting o >  0 and N  <  0 into (5.7), and sim plifying, we obtain 

R%> — aR2 — 2aR 20 -  ^ ( R 2 -  R?0)2 .

Next, we transform  the variables using

2(7 „  _  K P T  z= -----
N  y fB '

(5.92)

(5.93)
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which allows (5.92) to  be rew ritten as

(5.94)

When P 2 > \ ,  the righ t hand side of (5.94) is s tric tly  positive, resulting in  PK 

itse lf being s tric tly  positive. We rewrite (5.94) as

coefficient of P 2 is positive, and, as a result, is s tric tly  positive here as 

well. Thus, one may conclude tha t P, and likewise R, grows either positively 

or negatively w ithout bound. We now prove th a t th is occurs in  fin ite  time. 

We consider only the case where P  —» oo, as the other case is proved sim ilarly. 

Also, we neglect the situation where P 2 =  0, since, as we see from  (5.4), when 

P 2 =  0, R(T) is tr iv ia lly  0 everywhere (for a ll a).

Claim: P  becomes a rb itra rily  large in  fin ite  tim e in  Region IV .

Proof: We have already established tha t P  grows m onotonically and w ith ­

out bound. By applying separation o f variables to (5.95), the tim e required 

for P  —► oo may be w ritten  as the integral

We consider th is under two cases. F irst, we look at P 2 <  \ .  In  th is case, 

the denominator in  the integral is s tric tly  positive, and we have the follow ing 

relation for k*:

which is a fin ite  integral since the exponent on P  is greater than one. 

Now, looking at the P 2 >  |  case, we w rite  (5.96) in  the form

(5.95)

Inspecting the equation in  its  above form, we see th a t for 0 <  P 2 <  | ,  the

(5.96)

(5.97)

(5.98)
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Since P% — \  is s tric tly  greater than zero, we arrive at the inequality

* < r
JPn

dP
(5.99)

Ip, I P 2 - P 2o+ \ \ '

As P  is m onotonically increasing, P 2 — P% +  |  is s tric tly  greater than zero, 

and we may om it the absolute value signs. To find a bound on the inequality, 

we integrate the righ t hand side directly, and introduce a new variable a2 — 

P i  -  1/2 >  0,

K * <  r
JPo

dP

P 2 -  P I  + 1 /Jp

dP
Po P 2 - a ?

1
lim  I —  In
i-*oo 2a

a
P  +  a

1_ 
2 a 
1_ 

2 a
In

ln ( l)  -  In 

P0 +  a

Po 

P a -  a

P0 -  a

P0 +  a

<  oo.

(5.100)

(5.101)

(5.102)

(5.103)

Therefore, k* is fin ite , and P  w ill become a rb itra rily  large in  fin ite  time. Q E D
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5.3 Solutions on the Lower Branch w ith r Q + r  

nonzero and v — 0

5.3.1 Introduction

Setting v — 0, (5.1) reduces to

R t t  =  <tR -  N R (R 2 -  R l). (5.104)

We recall tha t a =  ^ ( t 0 +  t ( T ) )  +  0(otc), and we w ill consider the case where 

r (T )  =  H cos(u;T). This form  o f t ( T ) sets up the tim e dependence of the flow 

as a periodic oscillation of the current’s vertical shear. This is an idealized 

representation o f tim e dependence which occurs due to  phenomena such as 

seasonal va riab ility  and tides (See Pedlosky and Thomson (2003)).

Recalling our earlier discussion in  §4.2.1, if  the sign o f r a +  t (T)  is always 

positive, we w ill have a supercritica lity, and if  it  is always negative, we w ill have 

a subcritica lity; otherwise, we have regions of both sub- and super- critica lity . 

The sign of r 0 +  r  =  ±1 +  H  cos (u T )  is s tric tly  dependent on r Q when H  <  

1. That is, fo r H  <  1, our pertu rba tion  is subcritical for r0 =  —1, and 

supercritical for t g =  1. I f  H  >  1, r 0 +  r  goes both positive and negative, 

switching between sub- and super- c ritica l.

For the nonzero H  cases, we have chosen the set {0.1, 1, 3}. The H  =  0.1 

case gives us very weak tim e variab ility . In  the H  — 1 case, our tim e va riab ility  

term  is of the same order as our tim e invariant term  r a. In  the H  =  3 case, 

our tim e variab ility  term  has a magnitude of 3, which exceeds the magnitude 

of r 0, causing both large sub- and super- criticalities. We note tha t, in  the 

H  =  3 case, the sign of r0 +  r  is s till largely determined by the sign of r G. This 

can be seen in  Figures 5.5 and 5.6, and is summarized in  Table 5.1.

For uj, we consider cases where uj is small, o f equal order, or large in 

relation to the underlying period (w ith  no dissipation or tim e variab ility) of 

R. We denote the underlying period by Tp, and take u> to  have the values 

{ 7t / ( 5Tp), 2ir/Tp, lOrc/Tp}. A ll solutions are numerical, and are found using 

the dsolve routine in  Maple 8.0© .
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Am plitude of r (T )

r*H1II To =  1

H  =  0.1 subcritical supercritical

H  =  1 subcritical supercritical

H  =  3 both sub- and 

super- critica lities

both sub- and 

super- critica lities

Table 5.1: Sub- , or Super-, c ritica lity  of r  versus H

-2H

Figure 5.5: 1 +  H  cos(uT) versus u T  for H  G {0.1, 1, 3 } where greater ampli­

tude corresponds to  larger H.

ooT

x  -1

-2

-3

-4H

Figure 5.6: —1 +  H  cos(uT) versus u T  for H  G {0.1, 1, 3 } where greater 

amplitude corresponds to  larger H.
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5.3.2 Stability Properties of the Linear Case

Note that, when r 0 — —1, (5.104) becomes a nonlinear M athieu equation. Sub­

stitu tin g  in  our chosen form  of r (T ) ,  ignoring terms o f 0 (a c), and linearizing 

(by taking N  =  0), equation (5.104) becomes

k2
Rtt  =  - ^ ( - 1  +  Hcos(uT))R ,  (5.105)

which is a linear M athieu equation. This equation has several notable s ta b ility  

properties (as discussed in  Bender and Orszag (1978)). Note th a t i f  we also 

have H  — 0, the solution to  (5.105) is simply

R (T)  =  R0 (5.106)

Thus, in  th is case, the solutions sim ply oscillate in  tim e, which is a result of 

the neutral s ta b ility  of the underlying normal mode. However, i f  instead we 

take the lim it as H  —► 0, the Mathieu equation has unstable, exponentially 

growing solutions for the discrete frequency spectrum

u> =  for n  E Z + . (5.107)
n

For H  further from  zero, these discrete values become intervals of fin ite  length, 

which lengthen as H  becomes larger. Thus, for sufficiently large H ,  almost 

any value of u  results in  instability. This process of destabilization is known 

as parametric instability, and occurs as a result of resonance caused by the 

interaction of the underlying unforced periodic solution w ith  the periodicity 

contained in  r (T ) .

Thus, we have demonstrated tha t, in  the linear lim it, a periodic fronta l 

flow can lead to  instab ility, despite the neutral s tab ility  o f the tim e averaged 

periodic flow.
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Region Subcritical Case: 

To =  “ I

Supercritical Case:

To =  1

I: K 2 =  0.1 3.81 4.24

II: K 2 =  0.4 5.49 22.19

II I :  K 2 =  1.4 6.78 9.10

Table 5.2: The Underlying Period

5.3.3 Introducing Subcriticalities and Supercriticalities

We begin by noting the underlying periods, ie. the period where H  =  0, for 

our chosen K 2 parameter values, w ith  both a sub- and super- critica lity . These 

can be seen in  Table 5.2, and have been calculated using formulas from M ilne- 

Thomson (1950) in  conjunction w ith  M aple© . Periods in  the case where H  is 

nonzero were calculated using the fast Fourier transform  in  M atlab© .

In  several cases, we w ill see th a t the curve is bounded w ith in  a modulational 

wave packet. The equation of the m odulational curve is called either a mod­

ulating amplitude function or an envelope function. The m odulation stems 

from  the addition of slow tim e variability. W ithou t th is modulation, using 

the chosen parameter values, the curve would continue to  grow in magnitude 

exponentially. Thus, it  is the nonlinear terms th a t stabilize growth in  these 

cases. When the upper and lower curves o f the envelope are vertical transla­

tions o f one another, th is is called a sinuous instability. When the upper and 

lower curves o f the envelope are m irroring each other, th is is called a varicose 

instability.

F irst, we w ill compare the effect of introducing sub- and super- critica lities 

across Regions I  through II I ,  for the moderate values (u, H ) =  (|? , 1). These 

may be seen in  Figures 5.7 through 5.9 respectively. In  Region I, there is little  

effect in  taking a supercriticality. Both curves are periodic, w ith  the subcritical 

case having a slightly shorter period of oscillation than the supercritical case, 

as was the case in  the underlying curve. We note th a t the periods w ith  a 

moderate u  and H  are approximately equal to  the underlying periods in  this
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region in  both the sub- and super- c ritica l cases.

In  Region I I  (Figure 5.8), we see th a t a supercritica lity leads to erratic 

function behaviour, w ith  no d istinct periodicity. However, in  the case o f a 

subcritica lity, the curve remains periodic, but is contained w ith in  a m odulating 

wave packet, w ith  the shape of the envelope denoting a varicose instability. The 

period for the subcritical case is approxim ately 5.4, w ith  the envelope function 

having a period of approximately 204.

In  Region I I I  (Figure 5.9), for both the sub- and super- c ritica l cases, we see 

th a t the peaks and troughs of the function are sharper. Each case exhibits an 

envelope function. We note a d istinct difference between the envelopes. In  the 

supercritical case, the shape o f the envelope is sinuous. On the other hand, in  

the subcritical case, the shape of the envelope is varicose. In  the supercritical 

case, there is a dominant local period of 6.2, and, in  the subcritical case, 

there is a local period of 6.7. The envelope function, however, has a period 

of approxim ately 16.7 in  the supercritical case, and approximately 33.8 in  the 

subcritical case.

Next, we w ill examine the case where H  =  3, which is illustra ted in Figure 

5.10. As discussed previously, when H  =  3, the solution exhibits regions of 

both sub- and super- critica lity . Region I  displays a varicose envelope function 

w ith  a period o f approximately 180. The local period is approximately 4.3 here. 

Note, tha t when looking closely at the curve, it  is seen tha t the am plitude is 

not s tric tly  increasing or decreasing during the bowing process. Moving on 

to  Regions I I  and I I I ,  we see th a t the behaviour has become erratic, w ith  no 

obvious period.

We w ill now move on to  compare the effect of K 2 on the solution where 

we have chosen a moderate a; of i f  and we have a supercriticality. This w illIp

be examined for the H  =  0.1 and H  — 1 cases, shown in Figures 5.11 and

5.12, respectively. In  both of the H  =  0.1 and H  =  1 cases, we get a periodic 

structure in  Region I, both having a period of approximately 4.3. In  Region II, 

for H  =  0.1, we have a periodic function which has a period of approxim ately 

22, and a varicose envelope, having a period of approximately 242. In  the
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H  =  1 case, there is erratic behaviour. In  Region II I ,  we have erratic behaviour 

in  the H  =  0.1 case. In  the H  =  1 case, the local period is approxim ately 6.2, 

and there is a sinuous envelope w ith  period o f approxim ately 17.

We now fix  K 2 =  1.4, and H  =  1, and vary u. This is seen in Figure

5.13. A t a; =  there is a local period of 6.2. A t the other uj values,Ip
we do not see local periodicity. For u  =  Jp , there is a sinuous envelope 

function w ith  an approximate period o f 96. A t u  =  there is a varicoseIp
envelope function w ith  an approximate period of 18, and at u  =  there isIp
a varicose envelope function w ith  a period of approxim ately 15, th a t starts at 

approximately T  =  32.

Examining th is inform ation on the whole, we now summarize the behaviour 

o f the function A (T ). F irs t, we looked at the effect o f taking either a sub- or 

super -c ritica lity  in  Regions I through II I .  In  Region I, w ith  moderate u  and H  

values, there was lit tle  effect to  taking a sub- or super- c ritica lity , and both 

curves are periodic. In  Region II, a supercriticality lead to  erratic function 

behaviour; whereas a subcritica lity lead to  periodic behaviour, w ith  a varicose 

envelope function, and fixed local and envelope periods. In  Region I I I ,  both the 

sub- and super- c ritica l cases were found to have sharper peaks and troughs. 

In  the subcritical case, there was a varicose envelope function whereas in  the 

supercritical case, there was a sinuous envelope function - both w ith  fixed 

period.

Next, we looked at the case of large H , where there was both sub- and 

super- critica lity. In  Region I, the curve was nearly periodic w ith  a varicose 

envelope function. Looking closely at its  envelope function, we saw tha t the 

amplitude was not s tric tly  increasing or decreasing during the bowing process. 

In  regions I I  and I I I ,  the behaviour became erratic, w ith  no obvious period.

We also examined the effect o f differing K 2 for the H  — 0.1 and H  =  1 

cases, where we had chosen a moderate value of to, and we have a supercriti­

cality. In  both cases, in  Region I, we obtained a periodic structure. In  Region 

II, w ith  H  =  0.1, we obtained a periodic structure w ith  a varicose envelope. 

In  Region II, w ith  H  =  1, we obtained erratic behaviour. In  Region II I ,  w ith
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H  — 0.1, we obtained erratic behaviour; whereas in the H  — 1 case, the curve 

was periodic and was contained w ith in  a fixed period sinuous envelope.

We examined the effect of differing u , w ith  fixed K 2, in  Region I I I ,  and 

moderate H . For small u, we observed a sinuous envelope function. For 

moderate u>, we observed a varicose envelope function and a fixed local period. 

For large u , we observed a varicose envelope function w ith  a delayed onset.
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Figure 5.7: R (T ) versus T  on the lower branch w ith  parameters r (T )  — 

c o s (^ ) ,  L  =  8, and K 2 =  0.1. (a) Here, there is an approximate period of 

4.3, and a peak-to-trough amplitude variation o f about 1.42. (b) Here, there 

is an approximate period of 3.8, and a peak-to-trough amplitude variation of 

1.42.
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(b ) T0 =  - 1

Figure 5.8: R (T ) versus T  on the lower branch w ith  parameters r (T )  =  

c o s (^ ) , L  =  8, and K 2 =  0.4. (a) Here, there is a dominant period of 

8.5, and a maximum vertical extent of about 17.8. (b) Here, there is an ap­

proximate period of 5.4, and a peak-to-trough amplitude variation of 10.5.
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Figure 5.9: R (T ) versus T  on the lower branch w ith  parameters r (T )  =  

c o s (^ ) ,  L  =  8, and K 2 =  1.4. (a) Here, there is an approximate period 

of 6.2, and a peak-to-trough amplitude variation o f about 6.0. (b) Here, there 

is an approximate period of 6.7, and a maximum vertical extent of 2.3.
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Figure 5.10: R(T) versus T  on the lower branch w ith  parameters t (T ) =  

3 c o s (^ ) , L  =  8, and r Q =  1, and variable K 2. (a) Here, there is an approx­

imate period of 4.3, and a maximum vertical extent o f about 3.4. (b) Here, 

there is an dominant period of 4.5, and a maximum vertical extent of 36. (c) 

Here, there is a dominant period of 3.8, and a maximum vertical extent of 8.1.
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Figure 5.11: R (T ) versus T  on the lower branch w ith  parameters r (T )  =  

0.1 cos(^r-), r0 — 1, L  =  8, and variable K 2. (a) Here, there is an approximate 

period of 4.3, and a peak-to-trough amplitude variation of about 1.4. (b) Here, 

there is an approximate period of 22, and a maximum vertical extent o f 3.8. 

(c) Here, the function is aperiodic w ith  a maximum vertical extent of 4.3.
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Figure 5.12: R (T ) versus T  on the lower branch w ith  parameters r (T )  =  

cos(^r-), t 0 — 1, L  =  8, and variable i f 2, (a) Here, there is an approximate 

period of 4.3, and a peak-to-trough amplitude variation of about 1.4. (b) Here, 

there is a dominant period o f 8.5, and a maximum vertical extent of 18. (c) 

Here, there is an approximate period of 6.2, and a peak-to-trough amplitude 

variation of 6.0.
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Figure 5.13: R (T ) versus T  on the lower branch w ith  parameters r(T )  =  

cos(u;T), r Q =  1, K 2 =  1.4, L  =  8, and variable a;, (a) Here, there is a 

dominant period o f 8.1, and a peak-to-trough amplitude variation of about 

5.6. (b) Here, there is an approximate period of 6.2, and a peak-to-trough 

amplitude variation o f 6.0. (c) Here, there are dominant periods of 3.6 and 

3.0, and a maximum vertical extent o f 8.5.
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5.4 The Influence of Dissipation

To investigate the influence o f dissipation, we w ill examine the effect o f v on 

five cases representing a selection o f curve shapes. A ll curves w ill have the 

supercritical value r 0 =  1. The firs t curve in  our analysis is the periodic curve 

arising in  Region II, for the case of r (T )  =  0. Figure 5.14 illustrates the results 

for v =  0, v =  0.05, and v =  0.1. We see th a t dissipation acts to  damp the 

function to zero smoothly, as expected.

Next, we look at the dnoidal curve in  Region II I ,  for the r (T )  =  0 case. 

This curve has sharp peaks and soft troughs, as shown in  Figure 5.15, where we 

have plotted the curve for the parameters v =  0, u =  0.1, v =  0.15. Moderate 

dissipation, as shown in  5.15(b), causes R (T ) to  damp toward 1.0. Enhanced 

dissipation, as shown in  5.15(c), causes the curve to damp more rap id ly to  the 

same value.

We now examine a case in  which the original function has both sharp peaks 

and troughs. In  Figure 5.16, we continue w ith  Region II I ,  th is tim e examining 

the case of nonzero r (T ) , w ith  parameter values H  =  1 and u) =  The 

dissipation is found to  soften these peaks, changing the local period in to  the 

period o f the envelope function. The amplitude o f the curve is also seen to 

decrease. Upon fu rther increasing of the dissipation, the am plitude continues 

decreasing, eventually damping to zero.

Next, we look at a case in  which R {T) appears to  be periodic and is con­

tained w ith in  an envelope function. This is seen in Figure 5.17. We see tha t 

the curve is damped rap id ly upon applying the relatively low dissipation pa­

rameter values v =  0.02 and v — 0.05.

Our last case is sim ilar to  the previous case, except w ith  sharper peaks 

and troughs, and is shown in  Figure 5.18. In  5.18(b) we see th a t the envelope 

has been damped. In  5.18(c), using v — 0.15 (strong damping), we see the 

function rapid ly damps to  zero.

We would like to conclude by by making a note about the degree o f dissi­

pation required to  result significant damping in  each solution. For a cnoidal,
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or snoidal, curve shape, we found significant damping using v — 0.05. For the 

dnoidal curve, a dissipation parameter of v — 0.15 was required to observe 

comparable damping. For the curve w ith  sharp peaks and troughs contained 

w ith in  a sinuous envelope, v =  0.07 was required to  observe the same level of 

damping. For the periodic curve w ith  a varicose envelope, significant damping 

was found to  require a relatively low value of v — 0.05. F inally, for the function 

w ith  sharp peaks and troughs contained w ith in  a varicose envelope, a relatively 

high parameter value of v =  0.15 was needed to  yield sim ilar damping.
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Figure 5.14: R (T) versus T  on the lower branch w ith  parameters r [T )  =  0, 

r 0 =  1, K 2 =  0.4, L  — 8, and variable v . (a) Here there is a period of 22. (b) 

Here there is a period of approximately 22, and an approximate e-folding tim e 

o f 19.6. (c) Here there is an approximate period of 23, and an approximate 

e-folding tim e of 9.9.
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Figure 5.15: R (T ) versus T  on the lower branch w ith  parameters r (T )  =  0, 

r 0 =  1, K 2 =  1.4, L  =  8, and variable v . (a) Here there is a period of 9.1. (b) 

Here there is an approximate period of 7.8, and an approximate e-folding tim e 

of 55.6. (c) Here there is an approximate period of 7.7, and an approximate 

e-folding tim e of 47.6.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10 20 30 40 50 60 70

(a) V  =  0

2 5

15

£  0 5

*0.5

-1 .5

-2 .5
7010 20 30 40 50 60

(b ) V =  0.3

15

0 5

-0 .5

10 20 40 50 60 7030

(c) V  =  0.7

Figure 5.16: R (T ) versus T  on the lower branch w ith  parameters r (T )  — 

cos(^r^), r0 =  1, L  =  8, K 2 — 1.4, and variable z/. (a) Here there is an 

approximate period o f 6.2. (b) Here there is an approximate period of 18. (b) 

Here the function is aperiodic.
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Figure 5.17: R (T) versus T  on the lower branch w ith  parameters r (T )  =  

O .lc o s (^ ) , t q =  1, L  —  8, K 2 =  0.4, and variable v .  (a) Here, there is an 

approximate period o f 22. (b) Here, there is an approximate period of 22, and 

an approximate e-folding time of 635. (c) Here, there is an approximate period 

of 22, and an approximate e-folding tim e o f 11.0.
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Figure 5.18: R (T ) versus T  on the lower branch w ith  parameters r (T )  =  

c o s (^ ) , r 0 =  —1, L  =  8, K 2 =  1.4, and variable v. (a) Here there is an 

approximate period of 6.7. (b) Here there is an approximate period of 6.8. (c) 

Here there is an approximate period o f 6.8, and an approximate e-folding tim e 

of 19.6.
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Chapter 6 

Summary and Conclusions

A  weakly nonlinear theory for a m arginally stable or unstable, tim e varying 

fronta l geostrophic current on sloping topography w ith  dissipation has been 

established. We extended the research o f Reszka (1997) and Reszka and Swa- 

ters (1999) by the inclusion o f tim e variab ility  and dissipation terms, using 

the methods described in  Pedlosky and Thomson (2003). The governing equa­

tions were firs t derived in  Swaters (1993), who developed a model to  describe 

the baroclinic dynamics of large amplitude geostrophic (LAG ) surface currents 

and fronts over a sloping continental shelf. The model used in  th is thesis was 

a two-layer system o f LAG surface currents over a sloping bottom .

We began by deriving the governing equations for a two layer shallow water 

system. The flu id  was taken to  be incompressible and inviscid, and we worked 

in  a rotating reference frame. A  scale analysis was performed, which allowed 

us to  apply the hydrostatic relation, and remedy the problem of geostrophic 

degeneracy. Upon sim plifying the resulting equations in  the one layer case, 

we expanded our system to two layers, each having a different density. This 

provided us w ith  mass conservation and continuity equations for each layer, as 

well as a reduced gravity equation, which related the pressures between both 

layers.

Next, we nondimensionalized our equations using the scalings of Swaters 

(1993). A fter asym ptotically expanding our variables about some small para-
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meter, we matched terms having the same magnitude, which gave us a series 

of equations. A fte r perform ing some algebraic m anipulations, we arrived at 

the governing equations of the Swaters (1993) model. We then repeated the 

calculation starting  w ith  the equations of conservation for potential vo rtic ity  

in  each layer and obtained the same result.

Following th is, we derived the linear s ta b ility  equations by w riting  the 

height and pressure variables as a mean part plus a perturbation part. We then 

set the mean flow in  the lower layer to  be zero in  order to  prevent barotropic 

shear instabilities in  the lower layer, which enabled us to  focus on the pure 

baroclinic problem. Also, we assumed the steady solution for the upper layer 

thickness to  be o f the form  of a simple wedge. We then obtained stab ility  

conditions by examining the averaged-energy form  of the linearized upper layer 

equation, follow ing the derivation from  Swaters (1993). This allowed us to  

find a necessary condition for perturbation growth, and a sufficient condition 

to  in h ib it th a t growth.

Next, we performed a normal mode analysis by firs t assuming the pertur­

bation field to be a superposition of waves. To determine when instab ility  

occurs, we noted th a t perturbations grow in  tim e if  the im aginary part o f the 

phase velocity is positive. We substituted our normal mode equations into 

the linear s ta b ility  equations and performed an order analysis. This lead us 

to  a pair of coupled ordinary differential equations for our perturbation func­

tions. A fte r subsequent calculations, we arrived at a dispersion relation. We 

then established a sufficient condition for stab ility, and therefore, a necessary 

condition for instability.

We then determined equations for the m arginal s ta b ility  curves. We noted 

tha t there were two curves in our case, which we called the Upper and Lower 

Branches of the M arginal S tab ility Curve. Having these two marginal s tab ility  

curves resulted in  a unique critica l slope and phase velocity value for each of 

the Upper and Lower Branches. We also determined a high frequency cutoff, 

which is a cutoff o f the to ta l wavenumber above which the flow is always stable.

We studied the evolution of a wedge front which was weakly unstable, ie.
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the nonlinear terms were small but nonnegligible. By assuming th a t the per­

turbations were in itia lly  small, and expanding our equations asym ptotically, 

we were able to derive an amplitude equation describing the slow tim e evolu­

tion  o f the perturbation amplitude. In  deriving our am plitude equation, we 

followed Pedlosky (1987).

F irs t, we began by introducing dissipation terms, which were chosen to 

be proportional to  the perturbation potential vortic ity. We next assumed a 

wedge front and scaled our variables by the wedge slope parameter. We then 

introduced a perturbation into the c ritica l slope parameter. Depending on the 

sign o f th is perturbation term, we had either a sub- or a super- critica lity . In  

the region of supercriticality, we perturbed the critica l slope parameter from  

the marginal s ta b ility  curve into the unstable region, giving us m arginally 

unstable solutions, while, in  the region of subcriticality, we perturbed in to  the 

stable region, giving us m arginally stable solutions. In  the case where the sign 

of the perturbation term  was both positive and negative, we had regions of 

super- and sub- critica lity .

M odifying the analysis performed by Reszka (1997), we introduced a tim e 

va riab ility  parameter into the c ritica l slope perturbation. We then rederived 

the dispersion relation w ith  our new slope parameter. A  scale analysis on 

the complex part o f the slope parameter gave us the order of the growth 

rate. We introduced slow time and large space parameters, and expanded our 

perturbation functions in  asymptotic series. We then derived the the 0 (1 ), 

0 (s ), and 0 (s 2) equations from  th is expansion. Solving these equations by the 

use o f a weakly nonlinear analysis lead us to our amplitude equation, which 

was a coupled set o f ordinary differential equations.

Then, we derived the Lorenz equivalent o f our amplitude equation in  the 

case where there is no tim e va riab ility  in  the perturbations, w ith  a real-valued 

perturbation amplitude. This allowed us to  show tha t the observation of non­

tr iv ia l tim e dependence in our la ter solutions was due to the presence of the 

tim e-varying component of the perturbations.

Next, we dropped the slow space term. A fte r firs t deriving the Reszka
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(1997) solution, we obtained solutions on the Lower Branch w ith  the addition 

of tim e variab ility, while keeping dissipation zero. We divided our analysis 

into four regions o f parameter space, depending upon the sign o f the growth 

rate and the sign o f the nonlinear term , and denoted these Regions I through 

IV . Region IV  was found to  have exponentially growing solutions, and thus 

we restricted further analysis to  the firs t three regions. We restricted our 

analysis to the Lower Branch, since, on the Upper Branch, the solutions are 

analogous. We then examined the behaviour of our am plitude function w ith  

a sub- or super- c ritica lity , and tim e variability, by investigating plots o f the ir 

numerical solutions.

F irst, we observed the effect o f taking either a sub- or super -c ritica lity  in  

Regions I  through II I .  In  Region I, w ith  moderate frequency and moderate 

tim e variab ility, there was little  effect to  taking a sub- or super- critica lity , 

and both curves were periodic. In  Region II, a supercritica lity lead to erratic 

function behaviour, whereas a subcritica lity  lead to  a periodic curve contained 

w ith in  a varicose envelope function having fixed local and envelope periods. In  

Region I I I ,  both the sub- and super- critica l cases were found to  have sharper 

peaks and troughs when compared to  the case w ith  no perturbation in  the 

slope parameter. In  the subcritical case, the perturbation am plitude had a 

varicose envelope function, whereas in  the supercritical case, i t  had a sinuous 

envelope function, both w ith  fixed period.

We next looked at the case of large time va riab ility  w ith  both sub- and 

super- criticalities. In  Region I, the curve was nearly periodic, having a varicose 

envelope function. Looking closely at this envelope function, we saw tha t 

the amplitude was neither s tric tly  increasing or decreasing during the bowing 

process. In  Regions I I  and I I I ,  the behaviour became erratic, w ith  no obvious 

period.

We also examined the effect o f varying the to ta l wavenumber for the small 

and moderate tim e variab ility  cases, where we chose a moderate frequency, 

and we had a supercriticality. In  both cases, in  Region I, we obtained a 

periodic structure. In  Region II, w ith  small tim e variab ility, we obtained
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a periodic structure w ith  a varicose envelope. In  Region II, w ith  moderate 

tim e variab ility, we obtained erratic behaviour. In  Region I I I ,  w ith  small 

tim e variab ility, we obtained erratic behaviour; whereas in  the moderate tim e 

variab ility  case, the solution was locally periodic, and was contained w ith in  a 

fixed period sinuous envelope.

Furthermore, in  Region I I I ,  we studied the effect of varying frequency, w ith  

fixed to ta l wavenumber and moderate tim e variab ility. For low frequency, we 

observed a sinuous envelope function. For moderate frequency, we observed 

a varicose envelope function w ith  a fixed period. For large frequency, we 

observed a varicose envelope function w ith  delayed start time.

Next, we chose five cases to  explore w ith  dissipation added, representing 

a selection o f curve shapes, and examined plots at various dissipation levels 

to  determine the magnitude o f dissipation required for each curve shape to 

exhib it significant damping. For a cnoidal, or snoidal, curve shape, we found 

significant damping at a low dissipation level. For the dnoidal curve, a very 

high dissipation parameter was required to  observe significant damping. For 

the curve w ith  sharp peaks and troughs, and a sinuous envelope, a moderate 

dissipation parameter was required. For the locally periodic curve w ith  a 

varicose envelope, significant damping was found to require a re latively low 

dissipation parameter. F inally, for the function w ith  sharp peaks and troughs, 

and a varicose envelope, a relatively high dissipation parameter was needed.

The main weakness o f the calculation completed in  th is thesis was the 

neglecting o f the slow space term. A  possible future research direction could 

involve leaving th is  term  in, and perform ing a soliton calculation to  derive an 

analytical solution to  the fu ll amplitude equation.
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A ppendix A  

Symbols

A.0.1 Symbols Introduced in Chapter 2

Dimensional Parameter or Constant Description

f  =  fo Coriolis parameter

9 G ravitational constant

L Channel w id th

Pi Lower layer flu id  density

P2 Upper layer flu id  density

H Scale for to ta l flu id  depth

s* Magnitude o f bottom  slope

g' =  g(p2 -  p i) / p2 Reduced gravity

h Scale for upper layer thickness

R =  y /g 'h /fo Rossby radius of deformation

L  -  5~l^ R Horizontal length scale

(where seen in  scaled variables)

Nondimensional Parameter Description

8 — h /H Scaled thickness parameter

s — s*L /h Scaled bottom  slope parameter
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Dimensional Variable Description

X* Along channel coordinate

y* Across channel coordinate

z* Vertical coordinate

t* Time

u * (x * ,y * ,z * ,t* )  — (u*,v*,w *) Dimensional flu id  velocity

Deformation o f flu id  surface

h *(x *,y *,t*) Upper layer thickness

p i =  p ig (H  +  p* -  z*) Upper layer flu id  pressure

P\ =  Pi9(h* +  V*) +  p 2 9 { H  - h *  -  z*) Lower layer flu id  pressure

P I  =  Pi9V* ~  Pzg'h* Total flu id  pressure

Nondimensional Variable Description

x =  x * /L Along channel coordinate

y =  y * /L Across channel coordinate

t  =  t*fo6 Time

h =  h */h Upper layer thickness

ux =  u l / ( 8 l/2L f0) Layer 1 flu id  velocity

u2 = u *2/{S L f0) Layer 2 flu id  velocity

P =  P*2/[HfoL)2p2} Total flu id  pressure

V =  v*g/[S1/2( f 0L )2} Deformation of flu id  surface

h =  h*/h Upper layer thickness
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A.0.2 Symbols Introduced in Chapters 3 through 5

Here, a ll variables are nondimensional. Note tha t the upper layer thickness 

and pressure variables are now leading order variables.

Parameter Description

k Along-channel wavenumber

I =  rwr j L Cross-channel wavenumber

K 2 =  k2 +  I2 Total wavenumber

H =  ±1 Positive denotes we are on the upper MSC,

negative denotes we are on the lower MSC

c =  [1 -  h K 2\ / [K 2(2 -  n K 2)) Phase velocity

ac =  LL/{K2( 2 - n K 2)\ C ritica l slope

T0 =  ±1 Steady part of interfacial slope perturbation

V Dissipation parameter

H Magnitude of tim e va riab ility

u Frequency o f tim e va riab ility

T1 p Period w ithout tim e variab ility

Variable Description

hQ =  1 +  a(y  -  L /2 ) Steady solution for upper layer thickness

h Upper layer thickness perturbation

P Pressure perturbation

T  =  st Slow tim e

X  =  s2x Large space

a — a c +  h (t0 +  r (T ) )s 2 Slope of the interface between layers

A (X ,T ) Perturbation amplitude

R(T) Real-valued perturbation amplitude

r(T )  =  H cos(uT) Time va riab ility  term
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