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Chapter 1

Introduction

1.1 The Conjugacy and Word Problems

The conjugacy problem  for a group G  is the problem  o f determ ining, given 

x ,y  G G, whether or not there exists an element z  G G  such th a t z~ lx z  = y. 

I f  there is an a lgorithm  which, fo r any x ,y  G G, always term inates in  a 

fin ite  number o f steps w ith  a defin ite  yes or no, answer then the conjugacy 

problem  for G  is said to  be solvable. O therw ise it  is said to  be unsolvable. 

The problem  o f producing such a z, given th a t x  and y  are conjugate in  

G is called the generalized conjugacy problem . The word problem  fo r G  is 

sim ilar and consists o f determ ining , given x ,y  G G, whether or not x  = y 

in  G. A n  equivalent characterization o f the word problem  is the problem  o f 

determ ining, given d g G ,  whether or not v is equal to  the id e n tity  element 

in  G, which w ill always be denoted e in  th is  thesis. The equivalence o f the

1
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previous two problem s is obvious if  one considers th a t x  — y i f  and only if  

y~ lx  =  e.

The word and conjugacy problem s are no t equivalent bu t they are closely 

linked because v =  e if  and on ly if  3x  G G  such th a t x ~ lvx  =  e if  and on ly if  

Mx e  G, x~ lvx  =  e. Th is means a so lu tion to  the conjugacy problem  im plies 

a so lution to  the word problem .

Another re lated problem  which is even stronger than  the word problem  is 

called the power problem . This is the problem  o f determ ining a lgorithm ica lly, 

given two elements x, and y  o f a group G, whether or no t there exists an 

integer k  such th a t x k — y.

1.2 Open Problems

This thesis improves results on three open problem s in  group theory and 

discloses a new cryptosystem  which uses autom atic and word hyperbolic 

groups in  place o f b ra id  groups, to  im prove on the speed and security o f 

the b ra id  cryptosystem . The b ra id  cryptosystem  was shown in  [15] to  be 

insecure. The open problems are as follows.

1. Does there exist a fin ite ly  presented group w hich has solvable word 

problem , unsolvable conjugacy problem  and is right-orderable?

2. Can every torsion-free group w ith  solvable word problem  be embedded 

in  a group w ith  solvable conjugacy problem?

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. Is the class o f loca lly  fin ite -ind icab le  groups equal to  the class o f groups 

which have a norm al system w ith  fin ite  factors?

A lthough th is  thesis does not deal exclusively w ith  the conjugacy problem  

the tit le  fo r the thesis is s t ill appropriate because the firs t two problems 

deal w ith  the conjugacy problem , and the unso lvab ility  o f the conjugacy 

problem  for the group used in  the cryptosystem  is essential to  its  security. 

The relevant chapters require a m a jo rity  o f the tim e and e ffo rt and page are 

the longest. The last problem  is d is tinctive  and is given its  own chapter, 

in  which we define the term inology and provide previous results th a t are 

d is tin c tly  pertinen t here.

A n a ffirm ative answer to  the firs t problem  would be an im po rtan t step 

tow ard solving the problem  posed by A .M .W . Glass in  [12] as to  the existence 

o f a finitely-presented lattice-ordered group w ith  solvable word problem  and 

unsolvable conjugacy problem . I t  is listed as one o f the p rim ary open prob

lems in  the study o f la ttice-ordered groups. Question two, posed by D. J. 

Collins, is well known among group theorists and remains open to  th is  day. 

A  lesser result, showing th a t every torsion-free group w ith  solvable power- 

problem  can be embedded in  a group w ith  solvable conjugacy problem  is 

cited in  the paper [25]. However, i t  was proved as a coro lla ry to  a more 

com plicated result, the proof o f which is very com plicated and draws on a 

lo t o f previous work o f the authors o f [25]. We therefore give a much sim pler 

and more self-contained proof o f the result d irectly.

3
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Q uestion three was suggested to  the author by Akbar R hem tulla and is 

answered conclusively in  chapter six.

1.3 Main Results

This section o f the te x t details the m ain results which answer the above ques

tions. Subsequent chapters w ill be devoted in  tu rn  to  proving the fo llow ing 

results.

In  Chapter 3, we prove the fo llow ing result in  response to  question one.

T h e o re m  1  There exists a finitely presented group G, with solvable word 

problem and unsolvable conjugacy problem, that is right-orderable.

In  C hapter 4 we give a more d irect, simple, and self-contained p roo f to  

the fo llow ing already known result.

T h e o re m  2  Every torsion-free group with solvable power problem can be 

embedded in a torsion-free group with solvable conjugacy problem.

In  Chapter 5, we exh ib it groups which have a ll o f the desirable charac

teristics o f the b ra id  group as w ell as extra  characteristics which allow  for 

faster key exchange and increased security in  a pub lic  key cryptosystem .

As stated earlier, Chapter 6  is a self-contained paper in  which we con

struc t a fam ily  o f fin ite ly  generated groups th a t are loca lly  fin ite -ind icab le  

b u t do no t have a norm al system w ith  fin ite  factors.

4
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Chapter 2 

Background

I t  w ill be assumed th a t the reader is fam ilia r w ith  the fundam ental concepts 

o f group theory, bu t when the necessary concepts fo r dealing w ith  each open 

question are not fundam ental to  group theory, these w ill be examined in  

the appropriate chapter im m ediate ly before proving the corresponding m ain 

result. The exception to  th is  convention is the fo llow ing section on Novikov 

Groups, which are used in  the next chapter.

2.1 Novikov Groups

I t  is known th a t fo r any recursively enumerable degree o f unso lvab ility  there 

is a fin ite ly  presented semigroup o f the form  S  = (a j,A i — Bi \ 1 <  i < 

A, 1 <  j  < n) whose word problem  is o f th a t degree. I t  was shown by B okut 

th a t the degree o f unso lvab ility  o f the word problem  for S  is equal to  the

5
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degree o f unso lvab ility  of the conjugacy problem  fo r APlP2, when APlP2 is 

defined using S  as follows.

The group A PlP2 is most easily dealt w ith  when defined v ia  an ascending 

sequence o f four groups as follows:

• Go =  {E0; $ 0)

•  G \ =  (Eo U Ei; $0 U ^1)

•  (?2 =  (Eo U E  ̂U E25 $0 U $1 U $2)

•  A p lP2 = G% — (U|=0 E j; u |_o$ i)

W here

• E0 =  {ft, U, <lt, t f , 1 < i < A}

•  E i =  { a j ,a f ,  1  <  j  < n}

• E2 =  {kGtA < i  < A}

•  S 3  =  {p i,p 2}

•  $0  =  0

•  $ i =  =  m h  f2i aj = ajU, a p l t  = (/it)2o p  pa +  = a f ( t t ) 2}

•  $ 2  =  {kaj =  djli, I f = p I f )

•  $ 3  =  { ( A f y p t p p i  =  P i A l q p l ~ \  ( t f y l P i  =  P i t i ,  B p t i l i P i  =

P2Bt(tf)-1(lt)~l , q~lP2 = p2ft+} 

w ith  A iS  and B ^s  d is tin c t words in  (a3, 1  <  j  <  n).

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 A Standard Basis for AP1P2

A  group G  has a standard basis i f  there exists a subset L  o f words in  the 

generators o f G , and a b ijec tio n  between L  and G, such th a t each element 

o f the basis is equivalent to  one and on ly one group element. Thus i f  we 

assume the axiom  o f choice, then technica lly every group has a standard 

basis. However, g iv ing  an e xp lic it fin ite  presentation o f the basis is usually 

no t possible because o f the dependence on the axiom  o f choice. Therefore 

we reserve the te rm  standard basis fo r those groups th a t have a fin ite , or at 

least recursive, presentation.

Even in  th is  s tric te r sense o f the term , APlP2 has a standard basis which 

is defined in  term s o f the ascending sequence o f groups G0 C G\ C G2 C 

( ? 3  =  APlP2 as follows:

Each o f the sets C0, C\, C2, and C?J is a standard basis fo r Go, G \, G2, 

and G3  respectively.

C0 consists o f a ll irreducib le group words o f the alphabet E0. A  word is 

said to  be irreducib le if  i t  does not contain subwords o f the form  x x ~ l or 

x ~ lx.

Ci consists o f a ll words o f the from

(* * )  w  =  U ix\1u 2x e22...ukx lku k+1,

where k > 0 , E E i, e* =  ± 1 , tq € Co and w  is irreducib le and does not 

contain the subwords:

1 - qtaii Qi2aj l -‘ (i C j \  t f aj , t \ a j l

7
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2. (ft+)V . ta+J-'o?. (tfJ 'W )"1. (‘ * K ,  «,+(a /r ‘ , (? )"2(a;)_1

where e =  ± 1 , 1 <  % < A, 1 < j  < n .

C2 consists o f irreducib le words o f the form  o f (* * )  in  which k > 0 , Ui £  

Ci, Xi £  £ 2, e* =  ± 1 , and which do not contain the follow ing subwords:

3- ajV(ql,t,)l‘ , o.,V(q„ t*)l‘

where e =  ± 1 , 1  < j  < n , I < i < X and V (x , y) are irreducib le words o f Gq 

in  x  and y.

C'i consists o f irreducib le words o f the fo rm  (* * )  in  which k  >  0 , U{ £ 

C2 , X{ £  E 3 , €i =  ± 1 , and which do not contain the fo llow ing subwords:

5. ( t iY p u  q‘p 2 , i q t r p i '

6. ltV{a+)W(t*)pu l - 'V ia j iW itJ p i1

7. k V (a j)W (qi)p2, { l t)~ lV (a f)W (q 7 )p 2 l ,

8 . ( I t r ' V i a t f C t t q t r ' A t W W p , ,  k V t f C f a ^ W ^ p ; 1,

9. l - 'V {aj) C ( t - 'B iW iq ^ ,  i,+V'(at)C(tt(B+)->)W'(?/)p2-1

where V  and W  are reduced words and C(U) denotes a canonical word equal 

to  U.

The reader has probably noticed th a t APlP2 does not, in  the strictest 

sense refer to  a single group bu t ra ther a fam ily  o f groups because d is tinc t

8
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choices fo r the semigroup S  produce d is tin c t examples o f APlP2. Th is fam ily  

o f groups was firs t discovered by Novikov in  [24] and shown by B okut in  [4] to  

have a standard basis, so we refer to  the fam ily  as Novikov groups. Thus, in  

th is  te x t, by A P1P2 we refer to  an example o f a Novikov group. A ny theorem 

proved fo r A PiP2 w ill hold fo r any Novikov group.

I t  was B okut in  [5] who proved th a t fo r any recursively enumerable degree 

d o f unso lvab ility, there is a Novikov group whose conjugacy problem  has 

degree d. He also proved th a t the word problem  fo r A PlP2 is solvable and the 

conjugacy problem  fo r each o f G0, G i,  and G 2  is solvable.

We have adopted B o ku t’s no ta tion  when dealing w ith  A PlP2 (except th a t 

our t i’s are actua lly  r* ’s in  his paper b u t they look like  tao ’s). A lso the 

sym bol G'2, in  th is  paper as w ell as his, refers to  the group (%,<&, L , | 1  <  

j  <  A, 1  <  i < n). Thus G'2 ^  [G2, G2]. However fo r any other group G, H  

or K , in  th is  te x t, we keep w ith  convention, i.e. G' =  [G, G] the com m utator 

subgroup o f G.

We end th is  section w ith  a statem ent o f B ritto n ’s Lemma w ith  a pre lim 

inary, explanatory excerpt from  [3].

Let G =  (E ; 4>) be a group w ith  generators E and re lations <f>. The lemma 

was proved by B ritto n  as a too l, useful in  dealing w ith  groups like APlP2. In  

fact we shall re ly  on it  several tim es in  Chapter 3 when proving th a t A PlP2 is 

right-orderab le .

Let G =  (E ; 4>) be a group w ith  generators E and re lations $ . The group

G =  (E , B\ <f>, Aipmi = pniBi, % G I)

9
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where £ f |  B  is empty, pmi,Pni G B  and Ai, Bi are £ -words in  the group w ith  

stable le tte rs B  and base group G.

L e m m a  1 ( B r it to n ’s le m m a  [3 ]) Let B  be a regular system of stable let

ters o f the group G, with base group G and let W  be a (£ (J  B)-word. I f  

W  = e in G then either W  is a E-word and W  = e in G or W  contains a 

subword o f the form  p~€Up€m where U is a E-word and for some U = UVimV̂ .

By a a-word, where a  is an alphabet, we mean a group word constructed 

from  th is  alphabet. A  system o f stable le tters B  o f the group G  is a subset o f 

the defin ing alphabet o f G  such th a t no re la tion  o f G  decreases the number 

o f occurences o f 23-letters in  any word in  G, except the tr iv ia l re lations where 

stable le tters are juxtaposed w ith  th e ir inverses. For example p\ and p2 are 

the stable le tte rs o f A PlP2, the I f  s are the stable le tters o f G2, and the a /s  

are the stable le tters o f G \. A  system o f stable le tters is regular if  fo r every 

re la tion  Aipmi — pniBi, Bi = e i f  and on ly if  Ai =  e. F ina lly, a word U — 

UpfnK is sim ply a product o f A fs  and /o r B f s such th a t p f €Upem = p f €penU' 

or p fH J p l = U"p-n;jfnv fo r some U' or U".

10
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Chapter 3 

The Conjugacy Problem  in 

Right-Orderable and 

Lattice-Orderable Groups

3.1 Ordered Sets

The fo llow ing defin itions and results on partia lly-o rdered sets, la ttice-ordered 

groups and right-ordered groups are reproduced from  [18] and [19].

A  non-em pty set M  is called partia lly-o rdered if  i t  is equipped w ith  a 

b inary re la tion  <  on M  satisfying the axioms:

1. Vx G M , x  < x

2. V x , y  G M , if  x  < y  and y  <  x  then x  — y

11
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3. Vx, y , z  £  M , i f  x  < y  and y <  z then x  <  z.

This b inary re la tion  <  is called the partia l-o rde r on the set M . I f  x  <  

y  or y <  x, then x  and y  are said to  be comparable, otherw ise they are 

incomparable; x  <  y means x  <  y  and x  ^  y.

A  partia lly-o rdered set M  is to ta lly-o rdered or linearly-ordered if  every 

two elements o f M  are comparable. A  to ta lly-ordered set M  is well-ordered 

i f  every non-em pty subset o f M  has a least element. I t  is conventional in  

ordered-group theory to  suppose th a t Zerm elo’s theorem  is true  ( it  is equiv

alent to  the axiom  o f choice), i.e., any a rb itra ry  set can be well-ordered.

Let x , y  be elements o f the partia lly-o rdered set M . I f  3m € M , such th a t 

x  <  u and y <  u, then u  is an upper bound fo r x  and y. Lower bound is 

defined analogously. I f  there exists an upper bound z for x  and y, such th a t 

z <  u fo r every upper bound u o f x  and y, then z is called the least upper 

bound or jo in  o f x  and y and is denoted x V y .  The greatest lower bound or 

meet is defined analogously and is denoted x  Ay .  A  p a rtia lly  ordered set M  

fo r which x  V y  and x  A y  exist Vx, y £ M  is called a la ttice-ordered set, or 

sim ply a la ttice . Note th a t every to ta lly-o rdered set is also a lattice-ordered 

set bu t the converse is not true.

Any la ttice  can be characterized by the fo llow ing identities:

1. x V  x  =  x,  x  A x  — x

2 . x V y  =  y V x ,  x A y  =  y A x

3. (x V y)  V z =  x  V (y V z), (x A y )  A z — x  A (y A z)

12
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4. (a; V y) A x  = x, (x  A y) V x  = x, 

as dem onstrated in  the fo llow ing theorem.

T h e o re m  3 [19] For any lattice L, the identities 1 to 4 are valid in L. Con

versely, let L  be an algebraic system o f signature {V , A } such that identities 

1 to 4 are valid in L. Then L  is a lattice under the partial order defined by 

the rule: x  < y  i f  and only i f  x  V y  =  y.

The la ttice  L  is called d is trib u tive  if  Vx, y , z  E L  the follow ing are valid:

x  V (y A z) =  (x V y) A (x V z)

and

x  A (y V z) = (x  A y) V (x  A z).

There is a weaker no tion  o f a m odular la ttice  bu t it  is not necessary for 

th is  report since every d is trib u tive  la ttice  is m odular. Note th a t any to ta lly - 

ordered set is a d is trib u tive  la ttice . The class o f d is trib u tive  la ttices is closed 

under card inal products, homomorphisms and sublattices.

T h e o re m  4 [19] A ny distributive lattice is isomorphic to some sublattice of 

the lattice S ( M ) o f subsets fo r  some set M .

3.2 Ordered Groups

A  partia lly-o rdered group is a non-em pty set G  w ith  b inary operation • and 

a b inary operation <  such th a t [G] •} is a group and {(?; < }  is a p a rtia lly - 

ordered set and the fo llow ing axioms are fu lfilled :

13
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1. Vx, y ,z  €  G, x  < y  im plies x z  < y z

2. Vx, y ,z  G G, x  < y  im plies zx  < zy

I f  the order on G  is a la ttice , then G is called a la ttice-ordered group (1- 

group). I f  the order is a to ta l-o rder, then the G  is a to ta lly-o rdered or ju s t 

an ordered group (o-group).

The de fin ition  o f a partia lly-o rdered group stipulates th a t the order must 

be invarian t under m u ltip lica tio n  from  bo th  sides. However, there is the 

no tion  o f a group which is invariant under m u ltip lica tio n  on ly on the rig h t- 

hand-side. I f  the firs t o f the axioms above hold then G  is called p a rtia lly  

right-ordered. I f  the order is to ta l then G is called a right-ordered group. 

Note th a t if  a group is p a rtia lly  right-ordered then m u ltip lica tio n  on the le ft 

by inverses gives a p a rtia l le ft-o rder so every p a rtia lly  right-orderable group 

is also p a rtia lly  le ft-orderable bu t not necessarily sim ultaneously, i.e., w ith  

respect to  the same order.

Let G  be a p a rtia lly  right-ordered group. A n element x  € G  is called 

positive (s tr ic tly  positive) i f  x  >  e (x >  e). I t  is negative (s tr ic tly  negative) 

i f  x  <  e (x  <  e). The set o f positive elements o f a p a rtia lly  right-ordered 

group G  is called the positive cone.

T h e o re m  5 [18] For a partially right-ordered group G with a positive cone 

P , the following relations hold:

P - P C P

14
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P n p - 1 = {e}

I f  G is a right-ordered group, then

G — P U P -1

Conversely, i f  in a group G there is a subset P  satisfying the first two relations 

then it is possible to introduce a partial-order < on G such that {G; •; < }  is 

a partially right-ordered group with the positive cone P . I f  P  also satisfies 

the third relation, then G is a right-ordered group.

T h e o re m  6  [18] A partially right-ordered group G with positive cone P  is a 

partially-ordered group if  and only i f  P  satisfies the first two relations o f the 

previous theorem and also satisfies:

x~ l ■ P  ■ x  C P, V r G G

T h e o re m  7 [18] A partially-ordered group G with positive cone P  is a lattice- 

ordered group i f  and only i f  it is directed and P  is a lattice with respect to 

the induced order.

T h e o re m  8  [18] The free product G* o f right-ordered [Ga \ a  £  1} is a 

right-orderable group, and fo r  every group Ga its right-order can be extended 

to a right-order on the group G*.

T h e o re m  9 (c o ro lla ry  to  K u ro s h  S u b g ro u p  T h e o re m  [22 ]) Let G be

a free product o f A , B , C  with amalgamations from  the factor A, i.e., all

15
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defining relations either involve one type of generator, or have the form  

U{av) = Vihfj, or U(au = W(c(f). Then any subgroup H  o f G, whose in

tersection with the conjugates o f A, B , and C  is e, m ust be a free group.

T h e o re m  10 [18] A group G is fully-orderable (right-orderable) i f  and only 

i f  every finitely generated subgroup is fully-orderable (right-orderable).

Lattice-ordered, right-ordered, and to ta lly-o rdered groups share the prop

e rty  th a t they m ust a ll be torsion free, i.e. x  ^  e =$* x n e,Vn. I t  is 

also true  th a t, fo r any element o f such a group, x > e =>■ x ~ l < e and 

x  > e =>• x n > e, Vn >  0

However, there are m any fundam ental group theoretic properties th a t 

they do not share as the fo llow ing results indicate.

T h e o re m  11 [19] I f  G is an ordered group or a right-ordered group and H  

is any subgroup o f G then H  is ordered or right-ordered respectively. I f  G is 

a lattice-ordered group then H  need not be a lattice-ordered group.

T h e o re m  12 [18] (Levi) Let N  be a normal subgroup of a group G, Pm be 

a partial right-order on the group N , and P  be a partial right-order on the 

quotient group G = G /N . Then there is a partial right-order P  on the group 

G such that (G , P ) is the lexicographic extension o f ( N , PN) by (G , P ). I f  the 

groups (N , Pm) and (G , P) are partially-ordered and g~1PNg — Pn fo r any 

g €  G, then the group (G , P) is also partially-ordered i f  P  is a partial-order 

on G.

16
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According to  th is  theorem, fo r a lattice-ordered norm al subgroup to  have 

a lexicographic extension, it  must be invarian t under conjugation by the 

extension group.

T h e o re m  13 (u n iq u e  e x tra c tio n  o f ro o ts  [19 ]) I f  G is a totally-ordered 

group then Vx, y e G , x n = yn =$■ x  = y. I f  G is a lattice-ordered group then 

Vx, y  G G, xn = yn => 3z E G such that z~ lx z  — y

3.3 A Right-Ordering of APIP2

In  th is  section we prove theorem 1  o f the m ain results, i.e. the existence o f 

a fin ite ly  presented group, which adm its a right-ordering and has solvable 

word problem  and unsolvable conjugacy problem . We do so by proving the 

fo llow ing theorem.

T h e o re m  14 The group A PlP2 is right-orderable.

We prove the above result by defining the norm al series A PlP2 <s H K  < 

K  and constructing right-orders on APlP2/H K , H K /K  and K  separately. 

Theorem  12 then im plies th a t APlP2 is right-orderable. F irs t, however, we 

need the fo llow ing result.

3.3.1  G2 is right-orderable

L e m m a  2 The subgroup G 2 o f A P1P2 is right-orderable.

17
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To show th a t G 2 is right-orderable, i t  is enough to  construct a righ t-o rder 

on G'2 because G2 is the free product o f anti-isom orphic subgroups G'2 and 

G2 ■ We begin by labeling certa in subgroups o f G'2 fo r easier reference.

A  (Uj., •••) 0>n)

Q =

L = { h ,.. . , lx)

T = ( t u .. . , tx)

Let B  = (Q * T  * L )a  — (u~lvu  \ u  G A, v G Q  * T  * L). Then by 

de fin ition  A  < N g'2(B) so B  is norm al in  G2 w ith  G2 =  A B . Furtherm ore, 

G2/ B  = A B J B  = A  = Fn so G'2/ B  is right-orderable. As usual Fn denotes 

a free-group o f rank n. Thus to  show G2 is right-orderable, by Theorem  12 

it  is sufficient to  show th a t B  is rig h t orderable.

Recall the  relations o f G2 are

a-'q id j = qj, fo r  1 <  i < A, 1 < j  < n,

a j t ia j 1 =  t?, fo r  1 <  i < A, 1 <  j  < n, and

a f l liOj =  k fo r  1 <  i < A, 1 <  j  < n.

In  lig h t o f these relations we can th in k  o f elements o f B  o f the form  u~ lxu  

where u G A  and x  € { q{, t l }  as /c-th roots o f (x ) because we w ill show th a t fo r

each u~lxu  there exists a smallest positive integer k  such th a t (u~lxu )k G (x).

18
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I t  is obvious, as there are no n o n -triv ia l re la tions which hold in  (Q , T, L ), 

th a t B  = ({qi) *  (q2) * ... * (qx) * ( t i)  * -  *  (t\)  *  (h) *  ... *  (l\ ) ) A• We now 

show, using B ritto n ’s Lemma, th a t in  fact

B  = (qX)A * (q2)A *  ... *  (qx)A * ( ti)A *  ... * (tx)A * {h) *  ... * (lx)-

Recall th a t we used { h , ..., l\}  as the stable le tte rs o f G2 because — dj

and th a t we used { a i, ..., an} as the stable le tters o f G[ because a~l qidj = qf 

and d jt id j 1 =  tf. However we could also view { a i, ..., dn} as the stable le tters

o f G'2 because a j xlidj = li, so long as we realize th a t the base group would

then be (Q , T , L) instead o f G[.

W ith  th is  new set o f stable letters, suppose th a t R  = e is a re la tion  th a t 

holds in  B. Then R  is a word in  the generators (and th e ir inverses) o f B  

th a t is equal to  e in  B  and hence in  G'2. Therefore, by B ritto n ’s Lemma, 

e ither R  is a word in  the generators (and th e ir inverses) o f (Q, T , L), or there 

exists a pinch o f the form  d~€Udj where U is a word in  the generators (and 

th e ir inverses) o f (Q ,T ,L )  and e =  ±1  and dJeUdj = U 'a jedej. Therefore U 

is generated by:

•  { < l t \ I f 1, t f 2 \ l  < i  <  \ }  i f  e =  l

•  (& ± 2 > l t l , t f 1 \ l < i <  X}  i f  e =  - 1.

Since R  =  e, we can perform  as many pinches o f the above form  as 

necessary u n til we arrive a t R  =  R 2 where R 2 is a word in  { q fx, i f 1, t f 1} 

and R 2 = e. B u t { q f1, i f 1, t f 1}  generates a free group so R2 free ly reduces to
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the iden tity , i.e., R  — V\V2 ...va such th a t fo r each Vj there is a fixed Xj from  

{q i,k ,t i}  such th a t Vj is a word in  powers o f x t , w ith  the sum o f the powers 

being 0. This proves th a t B  is the free product we claim ed because R  must 

be the w ord v[v'2...v'a where u ' =  Vj in  G2 and so v'- £  {{xi))A where Vj is a 

word in  { x ^ 1}.

Therefore, Theorem 8  im plies th a t, to  show B  is right-orderable, we need 

on ly show th a t {qi)A =  (u~l q\u j u £ A) is right-orderable because B  is a free

product o f groups isom orphic to  {qi)A. Theorem   fu rthe r reduces the task

to  showing th a t a ll fin ite ly  generated subgroups o f (qi)A are right-orderable.

For ease o f nota tion , as i t  does not m atte r w hich we dem onstrate on, le t

Qi = q-

We begin by showing th a t every subgroup o f (q)A generated by two ele

ments is right-orderable. F ix  u2 £ A  and consider the group (u^ 1 qu i, u2xqu2) .

In  a c tua lity  the most general fo rm  o f a subgroup o f (q)A generated by two 

elements would be (u ^ lqklu i )u 2 lqk2u 2) where k\ and /C2  are integers bu t 

( u i 1qklU i,u2 1qk2U2 ) is a subgroup o f ( u i lq u i ,u 2 lqu2), so rig h t-o rd e ra b ility  

o f the la tte r im plies rig h t order a b ility  o f the form er.

L em m a 3 There exist integers ni,ri2 such that {u^ 1 qui)ni £ (q), and{u2xqu2)n2 £ 

(q). We may assume that n\, n 2  have the smallest magnitude possible.

Proof: Since u\ — a“ ’ a“ 2 ...a“ fc, such th a t are integers and each €

{ a i , ..., an} ,  we set di = m in { a i,« i +  0 :2 ,..., E k=la.i\.
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F irs t we show th a t if  di >  0 then u x 1qu1 G (q) and rii =  0. Proceeding 

by induction , an >  0 so a~a iqa^ = q2<n G (q). B y the inductive  assump

tio n  (a%a%...a%)-iqa%a%...<%  =  q2̂  G (q). Thus =

q2 i=1 1 which is in  (q) since T,3i=1ai >  0.

Otherw ise i f  di < 0  then le t n\  =  2~dl >  0. Then (t r f  Y i ) ni =  u ^ q 2 dlu\ 

q2 dl+E<=1“ t £  Q  We can fin d  n 2 in  the same m anner so the p roo f is complete. 

To illu s tra te  the m ethod we use the fo llow ing example. Let

ui — afa^a^,

u2 =  a^3a^2aQ2.

Then

di =  m in{  3, —2, —1} =  —2, 

d2 — m in { —3, —5, —7} =  —7

so n i =  2 ~dl =  2 2  and

 i  , o 2 ___________i  r   o  o 2  o  _ c   i  c  o 5   k  _ 1  o  , »

W1 Y b )  =  a 3 a 2 « i  9  U xU 2 a 3 =  a 3 a 2¥  a 2 a 3 =  a 3 9 a 3 =  9  ^  W / *

S im ila rly  rc2  =  2- d 2  =  27  and

(u2 1gu2)27 =  a6a5a3?27a43% 2a62 =  a6a5924a5 2°6 2 =  al<f %'* =  9 ^ (</)•

In  the p roo f above we do not show th a t n i  and n 2  are o f m in im a l m agni

tude, even though they are. Because the na tu ra l order on the positive (neg

ative) integers is a well ordering, we are guaranteed th a t integers o f smallest 

m agnitude exist so we can assume th a t m i  and m 2  are said integers. C learly

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(u^qiUi)™1, ( u ^ q ^ ) 1712 €  {<&) and {$ ) is cyclic so there exist sm allest in 

tegers m i and m 2 such th a t (u^q jU i)171̂ = (u2 1qiu 2)m2 . Th is im plies th a t 

every re la tion  th a t holds in  the group {x) * (y) / al so holds 

in  H  — ( u i 1qui ,U2 1qu2 ) v ia  the homom orphism  x  —> u ^ q u i ,  y  —* u 2 lqu2. 

We now show th a t in  fact these groups are isom orphic by showing th a t the 

re lations o f (x) *  (y)/  (xrn'iy-m2 )(x)*(y) are the on ly n o n -triv ia l re lations th a t 

hold in  H.

F irs t note th a t the element ( u ^ q u i ) ”̂  is a power o f bo th  u { lqui and 

U2 1qu2 so it  generates a centra l subgroup o f H  th a t is identica l to  the one 

generated by (u ^1 qu2)m'2. For ease o f no ta tion  le t x\ — u ^ q u i  and x 2 = 

u 2 1qu2 - I f  R  =  e is a re la tion  th a t holds in  H, then we can express R  as R  =  

v\uu22 ...Vp3 where each ij is a non-zero integer except i\ and ip e ither or bo th  

o f which m ight be zero and such th a t Vi =  x \  i f  i  is odd and u* =  x 2 i f  i is even. 

Note th a t if  | i2j+1 |>  m[  then we can rew rite  R  as x ^ miv%iV l2 ...v2-+{±mi...Vp 

and s im ila rly  if  | i2j | > m 2. Therefore we can assume th a t R  has the form  

(pv%xVl2 ...Vp where each | *2 .7 + 1  |<  m [ and | *2 j |<  m 2 -

We now apply B ritto n ’s Lemma to  R. E ithe r R  is a power o f q or we 

have a pinch or the form  a~eqaej. We can continue to  apply pinches u n til we 

have an expression equivalent to  R  w ritte n  on ly  in  term s or powers o f q, the 

powers o f which sum to  0. B u t and rn'2 are the smallest in tegra l powers 

o f U i1qui and u 2 lqu2 respectively, which lie  in  (q). Therefore, because each 

I *2,7+1 | <  m '\ and | i2j |<  rn2, we must have th a t they are a ll zeros; i.e., 

R  — qy and 7  =  0 . Th is proves th a t no other re lations can hold in  H.
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Therefore,

H  = (x) * (y ) / (x miy - mt y x)*M

where (xm>1 y~m2 )(x)*(y) =  (u~xvu  | «  G (x ) * (y ) ,v  G {xmiy~m'2))-

Thus H  is an amalgamated free product which we show is right-orderable, 

by firs t considering the subgroup

I{[H, H]) = { w e H \ 3 n ^  0, wn G [H, H])

called the iso la tor o f [H,H]. N a tu ra lly  H /[H ,H ]  is abelian and [H,H] < 

I ( [H ,H ]) so H /I([H \ H}) is an abelian group. Furtherm ore, H /I([H , H]) 

is torsion-free because if  wI([H, H\) has fin ite  order then B ii such th a t 

wil G I([H, H ]) which im plies th a t 3i2 such th a t w1112 G [H, H] which means 

w E I([H, H]). Therefore H/1([H, H}) is torsion-free abelian and hence rig h t- 

orderable. To show th a t I([H ,H])  is right-orderable, by v irtu e  o f Theorem 

8 , we need on ly show th a t it  is a free group. Theorem 9 however, im plies 

th a t I([H, H}) is free if

t f ] ) H f | K V i >  =  I([H ,H })H f ] ( u ^ q u 2) = e

where I([H ,H })H = { u ^ v u  \ u  e  H ,v  e  I{[H,H})). B u t I([H,H}) is a nor

m al subgroup o f i f  so / ( [# ,  H})H =  I([H,H]). Suppose there exists integer 

ii such th a t ( u ^ q u i ) 11 G I([H, H]). Then by de fin ition , there exists integer i2 

such th a t ( u i lqu\)1112 G [H,H]. Therefore, u i —lqu-i G I([H,H]). B u t there 

exist integers m i and m 2 such th a t ( u i lqui)rni = {u2 xqu2)m2 so {u2 lqu2)m2 G 

I([H, H]) and thus U2 lqu2 G / ( [ / / ,  FI}). Th is im plies H /I([H ,H }) = e and
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th a t H  has no n o n -triv ia l abelian torsion-free quotients. B u t H /[H, H] =  

(x, y  | [x,y\ = e ,x mi = ym'2) by v irtu e  o f the isomorphism  between H  and 

(x) * (y)/ (xm'iy~m Thus H /I([H ,H ])  has an in fin ite  cyclic subgroup 

and so an in fin ite  cyclic quotient group which is a contradiction. Therefore, 

the supposition th a t there exists integer ii  such th a t ( u i lqui)11 G I ( [H ,H ]) 

is false and I([H ,H])  is free and hence right-orderable.

T h is proves th a t every subgroup { x i ,x 2) o f {q)A generated by two ele

ments is right-orderable. We extend the p roo f to  cover subgroups (aq, x 2, ..., x*), 

generated by i  elements, by expressing H / s  ite ra tive ly  as amalgamated free 

products o f the firs t j  generators. T ha t is, given the subgroup

{xi,...,Xi  | Xj = u j lqu j,u j  G A) 

we express the subgroup generated by ( x i , x 2) as

H 2 =  (xi) * (x2) / (h2) l'Xl'!*('X2'> where h2 — x ^ x ^ ™ 2 

and in  general we say

h, =

Such a construction is always possible b u t may not y ie ld  a presentation 

o f the intended group, unless the Xj's are firs t arranged in  non-descending 

order w ith  respect to  the sm allest positive integers ki such th a t x "li =  qlK 

as the fo llow ing  example illustra tes.

I f  ( x i, £ 2 ,£ 3 ) =  { u iXq u i ,u ^ lqu2,u $ lquz) such th a t

Ui =  «T2 a |,
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Then find ing  n i,  n 2, and n 3  as before we have

( u ^ q u i ) 22 =  a ^ a \ q 22a~2al =  a2'Jqa'2 = q2*

/  —1 1 —4 —9 9 4  —4 22 4  26(u2 lqu2y  =  a4 *a 3  <?a3 a4  -  a4  q a4 = q

(u ^ q u z )23 =  =  a ^ V e  =  V

Now if  we keep the order x i =  u ]V wi i  x 2  =  u2 lqu2, x 3 = u 3 lqu3 then

H 2 — (xi) * (x2) / { x f  x 2 1) {'Xl)*{'X2) and

H 3 = H 2 * (x3) / { ( x f x 2 1)1x f 6)Ĥ Xsl  

B ut note th a t x f  ^  x f  in  H3 bu t ( t t j 'V i ) 2 2  — q2,5 and (u3 lqu3)25 =

((u3 V 3)23)22 =  V ) 2" = q 25 in  ( u r V i , W 2 V 2,m3 V 3).

However we can remedy th is  problem  by tak ing  x\ = u3 lqu3, x 2 =

u ^ q u i ,  and x 3 = u 2 lqu2. Then

H 2 — (xi) * (x2) / { x f x - 2 2 )<xi)*(;r2 > an(i

H3 = H 2 * {x3) / { { x f  x 222)2x ^ ) H2*{x3) =  ( u ] ~ V i , u jV 2 ,u 3  V 3)

because H3 has defining re lations x f  =  x f  and x f  =  x 3 which are precisely 

the defining relations o f ( u ^ q u i ,  u2 1qu2, u3 lqu3) under the above mapping.

I t  remains to  show Hj is right-orderable. B u t th is  is done analogously to  

the two-generator subgroup case. H j/I([H j,H j])  is torsion-free abelian and
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hence right-orderable. B y Theorem 1, if  I ( [ H j , H j ] )  is not a free group then 

there exists w / e  such th a t w  G # j - i  or w  G (xj )  and w  G I ( [ H j ,  Hj ] ) .  To 

see th a t th is  is not possible, recall th a t every element o f (q)A has a power in  

(q) so every element o f H j - 1 and every element or (xj) must also have a power 

in  (q). Therefore if  w  G I ( [ H j , H j ] )  then some power o f q is in  I ( [ H j , H j ] )  

and thus every power or q in  H j  is in  I ( [ H j ,  Hj ] ) .  B u t then every element o f 

H j  is in  I ( [ H j : Hj ] )  since every element or H j  has a power which is a power 

o f q. B u t H j  /  I ( [ H j ,  H j ] )  since H j  has an in fin ite  cyclic quotient. Therefore 

I ( [ H j , H j ] )  is a free group and hence right-orderable and hence so is Hj .

Therefore every fin ite ly  generated subgroup o f (qi)A is right-orderable 

and therefore (qi)A itse lf is right-orderable fo r every i  G {1 ,2 , ...,A }. B u t 

the groups (ti)A are com pletely analogous if  we replace each u  w ith  u~l in  

the above p roo f so each {ti)A is also right-orderable. Now (li)A =  (k) which 

is in fin ite  cyclic and so de fin ite ly  right-orderable. Thus the free product o f 

these groups is right-orderable so B  is right-orderable . And A  is free and so 

right-orderable so G'2 =  B A  is right-orderable , and hence G2 is also rig h t- 

orderable. F in a lly  G2 = G2 * G2 so G 2 is right-orderable.

3.3 .2  APiP2/ K  is r ight-orderab le

Let

K  = ([u,v] | u e G 2,v  e  P)
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where P  is the free group {pupf}- Further, le t H 1 be the subgroup generated 

by the diagonal elements, x ~ lx + and x +x ~ l as x  runs over the generators o f 

G'2 and th e ir inverses, and le t H  be the norm al closure of Hi  in  A P1P2. By 

de fin ition  H  is norm al in  A PlP2. To see th a t K  is also norm al in  APlP2 we 

note th a t Mg G G2,g~1[u,v\g = [ug,v]\g,v]~l G K  and Mg G P ,g~l [u, v]g — 

[u, g]~1[u,vg\ G K .  Thus to  righ t-o rder A P1P2, we can sim ply righ t-o rder the 

groups A PlP2/ H K ,  H K / K , and K .

Note th a t ApiP2/ H K  is isom orphic to  P  x  G2 because G2 =  G2 m odulo 

H  and elements o f P  and G 2 commute m odulo K .  As shown earlier, G2 and 

G 2 are right-orderable, P  is a free group o f rank 2 and so also right-orderable, 

and so A PlP2/ H K  is right-orderable.

Now H K / K  = H /H C \K  is isom orphic to  a subgroup o f G2 because the 

elements o f H  are conjugates o f elements o f G2, which m odulo K  are only 

conjugated by elements o f G2, i.e. Mw G (x _ 1 a;+ ), Mp G {pi,p2), p~lw p K  — 

w K .  Thus H K / K  inherits  from  G2 a right-order.

3.3 .3  K  is right-orderab le

F ina lly, we show th a t K  is ju s t a free group o f countable rank and thus also 

right-orderable.

Le m m a  4  The subgroup K  — ([u,v] \ u  G G2,v  G P ) of A PlP2, is a free 

group of countable rank.
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The group A PlP2 is fin ite ly  generated, and thus countable. K  < A PlP2 

so it  must be countably generated. To show K  is free, we apply B ritto n ’s 

Lemma to  the groups G 3 , G2, G i, and G0 in  tu rn  to  show th a t no n o n -triv ia l 

re la tion  o f the fo rm  W  =  e holds in  K .

Beginning our p roo f by way o f contrad iction, assume we have

W  =  [uu v ip [ u 2 ,v2r . . . [ u k,v kr  =  e.

A pp ly ing  B ritto n ’s Lemma in  K  < G 3  (recall G 3  = A P1P2), i t  is not possible 

fo r the above presentation o f W  to  be a E 0  U U S2-word since each Vi is a 

E ;!-word. Thus W  contains a subword p]Up~€ where U is a word generated 

by

•  { ( A j ) - lq t l t ,  ( i t ) ”1; 1 <  i < A } if  Pj =  P i 1

•  { A i q ^ l A ,  U; 1 <  i < X} i f  p) =  p l

•  {B -H ik ,  q - 1; 1 <  i < A } i f  p£ = p2 x

•  { B t i t t ) - 1^ ) -1 , q f;  1 <  i < A} if  p) =  p2

Let us consider how such a subword p^UpJ6, also called a pinch, can occur 

in  W .

One poss ib ility  is th a t a pinch could be com pletely contained in  a single 

com m utator [u j,x/j]. In  th is  case Vi must equal pi, p2, p f 1 or p2 l because if  

one o f the subwords p ^ U  can be replaced, using the group relations, w ith  

a subword o f the fo rm  UpI1 then p f U  can not be replaced using the group
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re lations in  a s im ila r way, unless p f p f  =  e, which is tr iv ia l. A  s im ila r 

argum ent applies to  subwords o f the form  U p f .  For example p iU  can be 

replaced by ( t f  )~1Pi b u t P i{ t f)~ l and p f 1 ^ ) ” 1 can not be replaced using 

the group relations.

Therefore we have

[Ui,Vi\ = U~lV~lUiVi -  u~ l~j{ui)v~lVi =

where 7  is the map defined by

7  : re- 1  1—> , x G G'2

7 : x̂ ~ 1—̂ x _1, x G

The other poss ib ility  is th a t Vi = vi+i for some i and n jn i + 1 <  0, and 

the pinch occurs between [u*, Vj\ and [ui+ i,u i+ i]. Assume, w ith o u t loss o f 

generality, th a t 7 7  <  0. We have

[U i,V i)[u i+ 1, vi+ i ] -1  =  U~ 1 V~ 1 U i V i V ^ v i + l u i + i  =  U i 1 u r  1 u i u l l 1v i+ !Ui+ 1 

in  which case G {pi,P 2 -,Pi1,P2 1} and

[uijUiJttti+ijVi+i]-1 =  «i7(witt^.11)ui+1 .

Thus, a ll o f the pinches from  G3 y ie ld  subwords o f the form

1 . M i'V O i)

2 . Ui^UiU^+Jui+i
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where each tt* in  1  and UiUj+x in  2 , is generated by one o f the bulle ted

sets above. Note th a t each pinch can use one and only one bulle ted set

in  th is  way, b u t any and a ll o f the bulle ted sets may be used in  different 

pinches th roughout the expression W .  We can continue app lying B ritto n ’s 

Lemma u n til we produce a E 0  U S i U S2-word equivalent to  W . We label th is  

equivalent expression W 2. Note th a t W 2 w ill be the product o f subwords o f 

the form  o f 1 and 2. Furtherm ore note th a t each such subword can be created 

in  one and on ly one way, i.e. given the subword we can te ll exactly w hat the 

p inch was and recover the o rig ina l com m utator or pa ir o f com m utators.

We again apply B ritto n ’s Lemma, th is  tim e to  W 2 in  G2. In  G2, {k, I f  \ 

1  <  i  <  A } is the set o f stable le tters so e ither W 2 is a E0  (J S i-w o rd  or W 2 

has a pinch o f the form

i r u n

or

K ) - ' u ( i t r

where U is a {(i j  | 1  < j  < n }-w o rd  fo r Z* and U is a { a f  | 1  <  j  <  n }-w ord  

fo r I f .  However there is no way to  produce such a pinch using a product o f 

words o f the form  o f 1  and 2 .

I t  is very easy to  see th a t If and l f e in  the same Ui or 7 (ui) or

can not form  a pinch because they are necessarily separated by a word o f 

the  form  (A f ) ~ lq f  or A ^ 1 or B ~ l tl or B f ( l f ) ~ l and in  order fo r or

{ lt)~ eU ( l tY  to  be a pinch, we must have U €  (a f  or U G (af )  respectively.
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Now consider the le ftm ost subword o f the form  1. or 2. I f  the le ft most 

subword is o f type 1, then any Zf or I p  in  u p  is no t pa rt o f a pinch and 

therefore no t removable, since the pinches invo lv ing 7 (ui) w ill not com pletely 

remove 7  (ttj)  and any pinch involving le tters o f u p  can not involve le tters 

o f 7 (ui). The case fo r type 2 is the same for the Zf o r I p  in  'y(uiu p 1).

Therefore W 2 must already be a E0 IJ E j-w ord . B u t if  the subwords o f 

the form  o f 1 and 2 , do not contain Zf and (Z+)€, then they can not contain 

a p  and a p s  e ither, which are the stable le tte rs o f G 1 .

Therefore, W 2 must be a E 0 -word. B u t G0 is a free group so W 2 m ust 

already be the identity. Th is means th a t the subwords o f the form  1 and 2 in  

W ‘2 must cancel one another out, so one the subwords must be adjacent to  its  

inverse. Since each o f these subwords is created in  a unique way, one o f the 

com m utators o f W  must be adjacent to  its  inverse, yie ld ing a contradiction. 

We have shown th a t K  is free and, therefore, right-orderable.

3.4 The Lattice-Ordered Group L(APiP2)

We end th is  chapter by showing how to  construct a lattice-ordered group 

L (A PlP2) th a t may be a candidate to  answer the question by A .M .W . Glass 

affirm ative ly. The author plans to  investigate th is  poss ib ility  in  the fu tu re . 

The m ethod o f embedding a right-ordered group in to  a la ttice-ordered one 

is not new. We have shown th a t A PiP2 is right-orderable , so tak ing  the rig h t 

regular representation o f A rnP2 yields a fa ith fu l homom orphism  o f A P1P2 in to
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the group o f order preserving perm utations o f the to ta lly  ordered set A PlP2. 

To avoid confusion between the group APlP2 and the ordered set APiP2, we 

denote the la tte r Cl. Then fo r g ,h  G APlP2, and x  €  Cl, we set (g V h)(x) = 

m a x {xg ,x h }  and (g A h)(x) = m in {x g ,xh } .  Th is gives a lattice-ordered 

group generated by the generators o f AP1P2, and such th a t APlP2 is a subgroup. 

We denote th is  group L (A piP2).

I t  is im po rtan t to  note here th a t under the logica l signature {e, •, A, V } 

L (A PlP2) is a fin ite ly  presented lattice-ordered group; the generators and 

defining re lations o f L (A PlP2) are ju s t those o f A PlP2. However, when viewed 

s tric tly  as a group L (A PlP2) is not even fin ite ly  generated. Thus, i t  could 

possibly be used to  prove the existence o f a group which is fin ite ly  presented 

in  the class o f la ttice-ordered groups which have solvable word problem  and 

unsolvable conjugacy problem . I t  would no t be a group which is fin ite ly  

presented as a group.
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Chapter 4

The Em bedding Question for 

Torsion-Free Groups

T h is chapter is devoted to  g iving an a lterna tive  proof to  the fo llow ing theo

rem, which p a rtia lly  answers a question by Collins.

T h e o re m  15 Every torsion-free group G, with solvable power problem, can 

be embedded in a torsion-free group H , with solvable conjugacy problem.

The result has already been established as a coro lla ry to  the follow ing 

result

T h e o re m  16 (O ls h a n s k ii, S a p ir [25 ]) Every finitely generated group with 

solvable conjugacy problem is embeddable into a finitely presented group with 

solvable conjugacy problem. Moreover, every finitely generated recursively 

presented group G can be embedded into a finitely presented group H  in such
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a way that the degree of unsolvability of the conjugacy problem in H  coinsides 

with the degree o f undecidability of the conjugacy problem in G.

However, to  quote the authors,

’’ The construction in  the p roo f o f th is  theorem  is com plicated and employs 

ideas o f three previous papers...”  [25]

As our p roo f is short and self-contained we hope th a t it  can be seen to  

have m erit. The on ly previous result on which we re ly  here is the fo llow ing 

w ell known theorem  o f H .N .N . and a sim ple construction th a t results from  

it.

T h e o re m  17 (th e o re m  2 o f H .N .N . [14 ]) Let n a (where a ranges over 

an index set H) be an isomorphism of a subgroup A a of a group G onto a 

second subgroup B a, not necessarily distinct from A a. Then there exists a 

group H  containing G, and also containing a group T  freely generated by a 

set of elements ta (o €  T), such that for  any a in  S the transform by ta of 

an element in A a is its image under jia:

f j laatcr =  jaa(aa) fo r  all a  G S and aa e A a

C ollins’ actual question, which remains open, can not be proven using 

the m ethod we give here. We w ill explain th is  in  the closing remarks o f th is  

chapter.

I t  was noted in  [14] th a t H  is torsion-free if  G  is so, because the only 

re lations added are t~ laata =  /uCT(aCT), which become tr iv ia l i f  we set the
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elements o f G equal to  the id en tity ; therefore the generators added in  the 

extension do not satisfy a n o n -triv ia l re la tion  on th e ir own.

Follow ing the construction ou tlined in  [14], for each pa ir o f d is tin c t, 

non -iden tity  elements (a, b) o f G, we create an element £(a,6 ,i) such th a t 

^labi)a^(abi) — Because G is assumed to  be torsion-free, a ll non -iden tity  

elements have the same (in fin ite ) order, so th is  is possible. Then setting 

G — Gq and G* =  (G i-i,t^a<bti) | a, b € G j_ i,a  ^  b ^  e) we create the tower 

G = Go < Gi < ... < Gn < ... and set

OO
H  =  [J  Gi-

i= 1

I t  was shown in  [14] th a t every two d is tin c t non -identity  elements o f H  

are conjugate in  H ,  and th a t if  Go is countable and torsion-free, then so 

is H. Th is, however, does not im p ly  th a t the conjugacy problem  for H  is 

solvable because, i f  H  has an unsolvable word problem , then i t  m ust have 

an unsolvable conjugacy problem . However, if  H  has solvable word problem , 

and any two non -iden tity  elements o f H  are conjugate, then we can solve the 

conjugacy problem  in  H. In  order to determ ine if  a and b are conjugate in  

H  we need only determ ine whether or not one or bo th  o f a and b are the 

identity.

I f  Go has solvable power problem , and hence word problem , then, by 

induction , we w ill show th a t H  has solvable power problem . Assume n > 1 

and Gn_ i has solvable power problem . We begin creating a norm al form  fo r 

elements o f Gn by deleting as many occurrences o f generators o f Gn\G n_ i
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as possible. A lthough th is  norm al form  w ill no t be unique, in  th a t a given 

element may be expressed by more than one word in  th is  form , we w ill have 

the result th a t an element reduced to  such a norm al form  is the id e n tity  

on ly if  i t  contains no occurrences o f generators (or inverses o f generators) o f 

Gn\G n- 1 - Th is im plies th a t the word problem  w ill then be reduced to  the 

word problem  in  Gn_ i, which, by inductive assum ption, is solvable. Prom 

now on we refer to  the occurrence o f a subword o f the form  t^ n , in  a word 

w  as a singleton subword o f Gn\G n- i  .

Let w  be a word in  the generators and th e ir inverses o f Gn. I f  w  contains 

no singleton subwords o f Gn\G n - 1  we are done. O therwise, p icking each pa ir 

o f consecutive singleton subwords o f w th a t lies in  Gn\G n - 1  we get a subword 

o f the form

(*) w h e r e  ei =  ± l

We begin by freely reducing w.

Recall th a t t~ l ,a t lahi = b so t ^ b t ^  = a. Thus, w ith  each (*); we do 

the follow ing.

1 . Determ ine if  ta^ n — tc,d,n- I f  not, we move to  the next (* ) , otherwise 

we proceed to  step 2 .

2. I f  €i =  1 and e2 =  —1, determ ine if  w = bk fo r some integer k  less 

than  or equal to  the length o f w '. B o th  w' and bk lie  in  Gn_i so we can 

do th is  in  a fin ite  number o f steps. I f  w' — bk, replace (*) w ith  ak. I f  

€i 1 or e2  7^ —1 or w' ^  bk do nothing. Move to  step 3.
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3. I f  ex =  —1, e2  =  1, determ ine if  w' =  ak. I f  so replace (* ) w ith  bk; 

otherwise do nothing. Move to  the next (*).

We then make successive passes by repeating the above a lgorithm , freely 

reducing afte r each pass, u n til we complete a pass where no singleton sub

words have been deleted. Note th a t w  has on ly a fin ite  number o f such sin

gleton subwords o f Gn\G n- 1 , so we need to  make on ly fin ite ly  m any passes.

There is no other way to  delete a singleton subword o f Gn\G n- \  so if  

any rem ain, w  can not be the id e n tity  element. O therw ise w  is reduced to  

an expression solely in  the generators and inverse o f generators o f G n- \ .  By 

our inductive assumption, Gn_ i has solvable word problem , so we can te ll 

whether or no t th is  norm al form  o f w  is equal to  the identity. Th is proves 

the fo llow ing lemma.

L e m m a  5 In  the above construction, i f  Go is a torsion-free group and Gn- i  

has solvable power problem, then Gn has solvable word problem.

Note th a t the above lemma does not im ply, by induction  or otherwise, 

th a t H  has solvable word problem  and therefore solvable conjugacy problem . 

However if  we can show th a t Gn also has solvable power problem , then the 

result w ill fo llow  by induction.

G iven wi, in  Gn, i t  remains to  show whether or not we can determ ine 

if  there exists an integer k such th a t W\ =  w k. Since Gn was shown to  have 

solvable word problem , we may assume th a t W\ ^  u i2-
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We begin by applying the above a lgorithm  to  W\ and w 2 to  delete any 

deletable singleton subwords o f Gn. Th is gives

Wi =  UiViU2V2...UmVm

w2 = r iS ir2S 2 -r LSL

where w*, n  G {Gn\G n- i )  and st , v{ G Gn- i .

Define wi = <j)(wi) where <fi \ Gn G n /G ^-i ,  the facto r group being 

isom orphic to  a free group. The hom om orphism  essentially sets each Sj =  

Vi =  e.

The power problem  in  Gn/G ^ l \  is easily solvable because G n /G ^-i  is a 

free group. I f  fo r some k , we have W[ =  W2 k then we need on ly check whether 

or not w\ =  u >2 fo r th a t pa rticu la r k. Th is is so because if  there exists some 

k  such th a t W\ =  w2, then certa in ly  W[ =  w^h must also be true . Since Gn 

has solvable word problem , fo r fixed k  we can check whether or no t W\ — w% 

is true.

The on ly case th a t remains occurs when W[ =  W2 =  e. In  th is  case the 

t(a,bn) are ’balanced’ in  the sense th a t fo r every occurrence o f the singleton 

subword t êa bn?j in  w2 (wi)  there is a corresponding occurrence o f t ^ bny  We 

therefore assume th a t w\ and w2 have been reduced to  a norm al form  by 

applying the above a lgorithm  and proceed by induction  on the number m  of 

such pairs o f singleton subwords o f Gn\G n - 1 in  w2.

I f  w2 has no pairs o f singleton subwords o f Gn\G n- i ,  then e ither w\ has 

pairs o f singleton subwords o f Gn\G n - 1 or it  does not. I f  i t  does, then there
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is no integer k  such th a t w x — w%, o r w>i has no such pairs. I f  W\ has no such 

pairs, then bo th  wi and w2 lie  in  G n - 1  and we can solve the power problem  

fo r them  by the inductive assum ption th a t G n - 1  has solvable power problem .

I f  w2 has one pa ir o f singleton subwords o f Gn\G n- 1 , then

w2 =  Vitla M v2t{a\ n ) v3

where Vi, v2, v3 G Gn- 1 . W ith o u t loss o f generality we tre a t on ly the case 

where e =  — 1. Three cases arise by applying the above reduction a lgorithm  

to  w \  to  see if  the number o f non-deletable pairs o f singleton subwords of 

Gn\G n - 1  increases, decreases or remains constant a t one.

For case one, if  the number o f singleton subwords increases, then w% has 

two pairs o f singleton subwords and has the norm al form

W2 =  v lt(a,b,n)V2t(aAn)v4t(afi,n)V2t(a,b,n)v3

where u4  is the freely reduced form  o f v3V\ . Then clearly fo r every integer 

k , w k has k pairs o f singleton subwords o f Gn\G n- \ .  Therefore we need 

on ly count the number o f pairs, say A;, o f singleton subwords o f w\ and test 

Wi — w% fo r th is  value o f k  only. We can do so because the previous lemma 

shows th a t the word problem  in  Gn is solvable.

For the second case, if  w \  has fewer singleton subwords o f Gn\G n - 1  than 

w 2, then obviously te f £ Gn- 1 . In  th is  case, i f  w x — w^k fo r some integer k 

then Wi G G n - 1  and if  Wi — w2k+1 then w iw 2 x G G'n- i-  Therefore, to  solve 

th is  case we sim ply check whether or not Wi or the reduced form  o f WiW2 l 

are in  Gn- i .  I f  e ither is, we solve the corresponding power problem s in  Gn-\ .
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For the fin a l case, i f  w% has exactly one pa ir o f singleton subwords o f 

Gn\G n~ i  then

w2 ~  V^(a,b,n)V2 (̂a,b,n)vS

i f  Vi =  u j 1 or

wl  =  Vit(albn)v2aJv2t iaAn)v3

i f  fo r some integer j , v3vi = bP. In  e ither case, fo r any integer k we have 

respectively

W2 = Vlt(a,b,n)v2h*MV3

or

W2 = Vltla\n)V2(aj V2)kt {aAn)V3.

In  bo th  cases we use the above reduction a lgorithm  to  delete as many sin

gleton subwords o f Gn\G n- 1 o f t{a^n)V ilw iv ^ l t^afi,n) as possible and check 

whether or no t it  is an element o f Gn- \ .  The power problem  now reduces to  

th a t o f Gn- 1 -

We now assume th a t if  w2 has fewer than m  pa ir o f singleton subwords o f 

Gn\G n- i  then the power problem  for w\ and w2 is solvable. For w2 having 

exactly m  such pairs, we again consider the same three cases o f the reduced 

form  o f w\.

The firs t case is com pletely analogous to  case one above so we om it the 

details. In  the second case, if  w\  has fewer singleton subwords o f Gn\G n- 1 

than  w2, then by our inductive hypothesis, we can solve the fo llow ing ques

tions th a t together, constitu te  the power problem  in  th is  case.
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1. Does there exist an integer k  such th a t Wi = w ^ l

2. Does there exist an integer k  such th a t W1W2 1 =

The fin a l case is also com pletely analogous to  the th ird  case above and 

so is le ft to  the reader. This completes the proof theorem  1.

Recall th a t D .J. C ollins asked i f  every torsion-free group w ith  solvable 

word problem  could be embedded in  a group w ith  solvable conjugacy prob

lem. This stronger result can not be derived from  the above m ethod because

the word problem  in  Gn is equivalent to  the power problem  o f Gn- i  and

therefore im plies a solution to  the power problem  in  G0.
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Chapter 5 

An application of the  

Conjugacy Problem

5.1 The Braid Cryptosystem

Com m ercial applications are by no means necessary to  ju s tify  the study o f 

any area o f m athem atics, th is  being p a rticu la rly  true  o f areas o f pure m ath

ematics, b u t they are always greeted w arm ly when they appear. In  th is  

chapter we present a pub lic key cryptosystem  which, u tiliz in g  groups w ith  un

solvable conjugacy problem , s ign ifican tly  improves the security o f the B ra id  

Cryptosystem , w hile m ainta in ing w hat appears to  be comparable efficiency.

A  cryptosystem , i.e. a m ethod for securely exchanging secret in form ation, 

is called a pub lic key, or asym m etric, cryptosystem  if  i t  is believed th a t the 

decoding key can not be deduced from  the encoding key in  a reasonable
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am ount o f tim e w ith  available and hopefu lly even w ith  fu tu re  com puting 

technology. This allows fo r the encryption key to  be made pub lic  w ith ou t 

com prom ising the cryptosystem .

The B ra id  C ryptosystem  is a pub lic  key cryptosystem  developed p rim a rily  

by Ko, Lee, Cheon, Han, Kang and Park [15]. The b ra id  group on n  +  1- 

strands has the fo llow ing presentation:

B n = (cri , ..., crn | OiOj — i f  \i -  j \  > 1, OiOjOi =  OjOiOj i f  \i -  j \  = 1).

where Ui can be represented graph ica lly as a crossing o f strand i over strand 

i +  1  and fo r use in  the cryptosystem  we assume th a t n  is even.

Before describing the B ra id  cryptosystem  we firs t po in t ou t the properties 

o f the b ra id  group th a t make the cryptosystem  possible. Note th a t the firs t 

set o f defining relations im p ly  th a t any element from  B R =  (c ri,..., onj i - \ )  

commutes w ith  any element o f B R =  (crn/ 2 + i, ■■■, crn). A nother im po rtan t 

feature o f the B ra id  group stems from  the fact th a t it  is an autom atic group. 

We w ill discuss autom atic groups in  more de ta il in  the next section, b u t for 

now it  is sufficient to  note th a t the word problem  for any autom atic group 

can be solved in  quadratic tim e. Th is means th a t fo r any autom atic group 

G, there exists a positive constant c such th a t given any word w  o f length n  

in  the generators and th e ir inverses, we can determ ine a lgo rithm ica lly  in  cn2  

steps or fewer whether or not w = e in  G. F in a lly  it  is im po rtan t th a t the 

word problem  in  autom atic groups is solved in  quadratic tim e by converting 

any element o f the group to  its  unique norm al form  in  quadratic tim e and
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then com paring if  the norm al form  is identica l to  e.

Cryptosystem s are conventionally explained in  term s o f two parties A lice 

and Bob exchanging secret in fo rm ation  v ia  the cryptosystem . Follow ing th is  

convention, the B ra id  cryptosystem  works as follows.

1. A lice chooses an element x  G B n and a £ B L, computes the norm al 

form  o f c — a~lxa  and passes c and x  to  Bob, re ta in ing  a as her secret.

2. Bob chooses an element b £ B r , computes the norm al fo rm  o f d — b~lxb 

and passes it  to  A lice re ta in ing  b as his secret.

3. A lice computes a~lda , maps it  v ia  a hashing function  h to  a b inary 

word and then encodes her b ina ry message m  as m! =  h(a~lda) ® m  

to  send to  Bob. Here • denotes the ’exclusive o r’ function  on b inary 

strings.

4. Bob then computes h{b~lcb) © m !. Since a and b commute, a~lda — 

b~lcb and h{b~lcb) ■ m! =  m

According to  its  creators in  [15], the beauty o f th is  a lgorithm  lies in  i t ’s 

efficiency to  encode and decode the messages, and the lim ite d  m emory and 

CPU capacity needed to  run  it: m aking it  ideal fo r use in  cell phones, pda’s, 

etc.

The success o f the bra id  cryptosystem  depends on A lice and Bob keep

ing a and b secret respectively. Th is is achieved if  given a~1xa  and x, i t  is 

a lgo rithm ica lly  infeasible to  a and analogously fo r b. B y ’a lgo rithm ica lly  in -
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feasible’ we usually mean th a t the so lu tion  should take a t least exponential 

tim e in  the sum o f the lengths o f words x  and a~xxa. The fastest known 

a lg o rithm  fo r solving the conjugacy problem  in  b iautom atic groups is expo

nentia l; however there have been numerous attacks on the conjugacy problem  

o f the b ra id  cryptosystem  which take on ly po lynom ia l tim e in  most cases. 

T h is requires A lice and Bob to  be very selective in  th e ir choice o f a, 6 , and 

x , which requires add itiona l tim e and lowers the safety against a bru te  force 

attack. In  fact, the m ethod fo r selecting them  to  ensure safety against the a t

tack detailed in  [2 0 ], is d ire c tly  a t odds w ith  the m ethod fo r selecting them  to  

ensure safety against bru te  force attacks. In  1992, the authors o f [9], on page 

204, state ’’ there is probably a polynom ia l tim e a lgorithm  [which solves the 

conjugacy problem  in  the b ra id  groups] using pseudo-Anosov homotopies.” 

The recent paper [10] proves the existence o f a polynom ia l tim e a lgorithm  

which solves the D iffie-H elm an conjugacy problem  in  the b ra id  group. The 

paper concludes th a t the cryptosystem  is no longer secure.

However, i f  we could apply the same or s im ila r cryptographic a lgorithm  

to  a group th a t had a ll o f the positive aspects o f the bra id  group detailed 

above b u t also had an unsolvable conjugacy problem , then the resulting 

cryptosystem  would be as efficient as the b ra id  cryptosystem  a t encoding 

and decoding messages and, a t the same tim e, would be much more secure 

because it  is d iffic u lt to  even conceive o f a an a ttack other than bru te  force 

against a problem  th a t can be proven to  be a lgo rithm ica lly  unsolvable. I t  

should be noted th a t even if  the problem  is unsolvable, by lim itin g  the length
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o f a possible so lu tion we can always test a ll possibilities o f equal or lesser 

length to  see if  a so lu tion exists. Th is is, by de fin ition , a brute-force attack. 

In  fact as explained a t the end o f th is  chapter, if  a problem  is a lgorithm ica lly  

unsolvable b u t solutions fo r the problem  can be confirm ed in  polynom ia l 

tim e, the problem  has new po ten tia l fo r proving th a t P  7  ̂N P.

In  the sections 5.2, 5.3, and 5.4, we de ta il properties o f autom atic, b iau

tom atic and hyperbolic groups. In  the section 5.5 we use these results to  give 

an exp lic it example, w ith  proof, having a ll o f the necessary properties o f the 

b ra id  group b u t also having unsolvable conjugacy problem. In  section 5.6, we 

give two new algorithm s deta iling  cryptosystem s based on th is  new group. 

In  the fin a l section, 5.6, we discuss the security o f these new cryptosystems.

5.2 Autom ata theory

As th is  is probably the area th a t the reader is least fam ilia r w ith  we w ill try  

to  give a less form al in troduction . M ost o f the defin itions and theorems are 

stolen shamelessly from  [9] and [2], b u t discussions are not.

F irs t we make the fo llow ing defin itions.

D e fin it io n  1  [9] The set o f all strings over an alphabet A  is denoted A*.

D e fin it io n  2  (lang uage  [9 ]) A language over A  is a subset o f A*, together 

with the alphabet A . Mention of the alphabet A  is frequently suppressed. 

Nevertheless, i f  we are being rigorous, we m ust distinguish between the null 

language over the alphabet{x} and the null language over the alphabet {x , y}.
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W hen theoretica l com puter science was in  its  infancy, the question arose 

as to  which languages over a fin ite  alphabet could be recognized or accepted 

by a com puter. The de fin ition  o f ’accepted’ w ill be form alized shortly, bu t 

fo r now we sim ply mean th a t a com puter accepts a language L  over an 

alphabet A  i f  given any word w  in  A* i t  can determ ine in  a fin ite  number 

o f steps whether or not w  G L. The notion  o f such a com puter w ill also 

be form alized sho rtly  bu t fo r now we note only th a t its  behavior m ust be 

com pletely explainable by a fin ite  number o f rules, which take up a fin ite  

number o f words and symbols; therefore the number o f such computers must 

be countable. Now, if  A  has a t least one element, then A* is countably 

in fin ite  and the number o f languages on A  must be uncountable. So not 

every language can be accepted by a com puter.

Several constructs such as Turing  machines, context sensitive grammars, 

context free grammars, and autom ata were created (in  the sense th a t a pre

cise de fin ition  o f w hat rules they could fo llow  and w hat behaviors they could 

perform ) which accept d ifferent types o f languages. I t  tu rns ou t th a t au

tom ata are the most restric tive  in  th a t the subset o f languages th a t they 

accept is the smallest. However there are com putational advantages to  au

tom ata because the languages th a t they accept are in  a sense much bette r 

behaved. For comparison between these types o f languages and computers 

we refer the reader to  any in trodu c to ry  te x t in  the theory o f form al languages. 

For the rem ainder o f the section we re s tric t ourselves to  autom ata and the 

languages they accept.
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Languages recognized by autom ata are said to  be regular. As the def

in itio n  o f a regular language is often easier to  comprehend than  th a t o f a 

fin ite  state autom aton, we give the de fin ition  o f a regular language firs t. I t  is 

hoped th a t the tedious de fin ition  o f fin ite  state autom ata w ill be made more 

bearable w ith  the m otiva tion  th a t i t  is the means fo r a com puter to  accept 

the very log ica l construction, i.e. the regular language. To th is  end we firs t 

give the de fin ition  o f a regular expression.

D e fin it io n  3 (re g u la r e xp re ss io n  [9 ]) A regular expression over an al

phabet A  is a particular type o f string (specified below) over the alphabet E  

formed by adjoining to A  the following five symbols, which are assumed not 

to lie in A  already: (, ), *, +, and e

We pronounce +  as ” or” , and * as ’’ star” . In fo rm ally, parentheses are 

used for grouping, * denotes repe tition , +  is used to  combine a lterna tive  

patterns, and e is the n u ll string. A  regular expression over A  can be seen as 

a s tring  which defines a subset o f A *. B y the regular expression o f a word of 

A * , we mean a regular expression which it  satisfies.

Above, we gave the de fin ition  o f A * where A  is a fin ite  alphabet b u t the 

im m ediate ly preceding de fin ition  requires the use o f the * operator on words 

and languages. The next de fin ition  explains th is  concept.

D e fin it io n  4 (c o n c a te n a tio n  o f languages [9 ]) I f K  and L  are languages 

over the same alphabet A, we define their concatenation K L  to be the set o f
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strings w fo r  which w =  WiW2 in  A*, where Wi £ K  and w2 G L. I f  K  or L  

is empty, so is K L . We define the star closure o f K  as

K * =  |J K n,
n>0

whereK0 =  { e }  and K n — K n~l K  fo r  n >  0.

A  regular language can now be defined as any language th a t is the set o f 

a ll words over an alphabet A  th a t have the same regular expression. In  order 

fo r th is  de fin ition  to  be rigorous we need either th a t regular expressions are 

unique or a m ethod fo r determ ining the equality o f two regular expressions. 

The firs t cond ition cannot be satisfied since we can always add extra  paren

theses w ith o u t effect. However, the fo llow ing rules allow  us to  compare any 

two regular expressions and determ ine if  they are equal. We denote by L (r)  

the language defined by the regular expression r .

•  M (r) )  =  L {r)

.  L (r*) =  (L (r))*

•  L { r \ r 2) =  L ( r i) L ( r 2)

W ith  these languages in  m ind we now give a characterization o f the ma

chines which recognize them.

D efin ition  5 (fin ite  s ta te  au tom aton  [9]) A fin ite  state automaton(or sim

ply automaton) is a quintuple (S, A, p.,Y, s0), where S is a fin ite  set, called
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the state set, A  is a finite set, called the alphabet, p  : S  x  A  —» S' is a func

tion, called the transition function, Y  is a (possibly empty) subset o f S  called 

the subset o f accept states, and sq G S  is called the start state or the initial 

state.

There are generalizations o f the fin ite  state autom aton w hich tu rn  ou t to  

be very useful in  understanding examples o f the o rig ina l de fin ition  because 

the generalizations are easier to  m anipulate and by the fo llow ing theorem, 

are equivalent.

T h e o re m  18 (K le e n e , R a b in , S c o tt [9 ]) Let A  be a finite alphabet. The 

following four conditions on a language over A  are equivalent:

1. The language is recognized by a deterministic finite state automaton.

2. The language is recognized by a non-deterministic finite state automa

ton.

3. The language is recognized by a generalized finite state automaton.

4- The language is defined by a regular expression.

D e fin it io n  6  (n o n -d e te rm in is tic  f in ite  s ta te  a u to m a to n  [9 ]) A non-deterministic 

finite state automaton is a quintuple (S, A, p, Y, So), where A  is a finite set, 

called the alphabet, So is a subset o f S  called the subset o f initial states, Y  is 

a subset o f S  called the subset o f accept states, and p  is• a set o f arrows with 

labels in the enlarged alphabet A  U {e }. The symbol e is assumed not to lie in 

A  and it is meant to denote the null string.
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A  determ in istic fin ite  state autom aton can be considered a special case of 

a non-determ inistic fin ite  state autom aton fo r which the fo llow ing conditions 

are satisfied.

•  There are no arrows labeled e.

•  Each state is the source o f exactly one arrow w ith  any given label from  

A.

•  The subset So has exactly one element.

The convention o f a non-determ inistic fin ite  state autom aton is useful 

in  proving th a t a language is regular because non-determ inistic fin ite  state 

autom ata are often easier to  construct than th e ir determ in istic equals.

D efin ition  7 (generalized  fin ite  s ta te  au tom aton  [9]) A generalized f i 

nite state automaton is the same as a non-deterministic fin ite  state automa

ton, except that each arrow is labeled by a regular expression over A.

Generalized fin ite  state autom ata are useful to  determ ine the language 

th a t a standard autom aton recognizes because we can use interm ediate gener

alized autom ata to  convert the determ in istic or non-determ inistic autom aton 

to  a regular expression.

We end th is  section w ith  the theorem from  [2] which w ill be useful to  the 

orig ina l section o f th is  chapter.

T heorem  19 [2] Suppose K  and L  are regular sets contained over A. Then 

the following hold:
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1 . A  finite subset o f A* is a regular language.

2. A * \K  is a regular language.

3. K  U L  is regular.

4- K  f l  L  is regular.

5. K L  is regular.

6 . K* is regular.

1. A* and the empty set are regular.

8 . I f  B  is a second finite set and (p is a homomorphism o f the monoid A* 

into the monoid B*, then cp(L) is regular over B .

9. I f  (p is a homomorphism o f A* into B* and if  J  is a regular subset o f 

B*, then (p~l {J) is regular over A.

5.3 many-variable regular languages

In  order to  define the concept o f an autom atic group we need to  deal w ith  

ordered pairs o f elements o f a regular language, so we firs t consider the gen

era liza tion to  sets o f n-tuples o f elements.

D e fin it io n  8  (m a n y -v a ria b le  language  [9 ]) Let A i , ..., A n be alphabets. 

By a language over ( A i , A n) we mean a set o f n-tuples of strings (wi, ...,w n)
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where Wi £ A*, together with the n-tuples o f alphabets (A i, . . . ,A n). A lan

guage over an n-tuple o f alphabets is called an n-variable language.

This de fin ition  allows us to  consider languages which are subsets o f A \ x 

... x  A *. However these languages may not be generated by subsets o f A i x 

... x  A n because there are no null-elem ents in  the alphabets A*. The fo llow ing 

two defin itions alleviate th is  problem .

D efin ition  9 (padding [9]) Let A i , ..., A n be alphabets. We adjoin to each 

A4 an end-of-string or padding symbol, denoted by $ j; which is assumed not 

to lie in A i; and we define Bi ~  Ai U {$ *}. The padded alphabet associated 

with (A i, . . . ,A n) is the set

B  =  B \ x  ... x .Bn\ ( $ i , ..., $n)-

D efin ition  10 (padded ex ten sion  [9]) Given a language L  over ( A i , ..., A n), 

we define a one-variable language L $ over the padded alphabet B  associated 

with ( A i, ..., A n), as follows: For each n-tuple (wi, ...,w n) £ L, let m  be the 

maximal length of the Wi, fo r  1 < i < n. We pad each u>i with $ j’s at the 

end so as to make its length m . The resulting n-tuple o f strings is a string 

o f length m  in the alphabet B ; these are the strings o f L$. We call L $ the 

padded extension o f L.

We can now define a regular m any-variable language.

D efin ition  11 (regular m any-variable language [9]) We say that L is 

a regular language over ( A i, ..., A n) i f  L $ is a regular language over the padded
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alphabet B  associated with (A i , ..., A n). A  finite state automaton over B  ac

cepting the language L % is said to be an n-variable automaton over (A i , ..., A n) 

accepting L.

We end th is  section w ith , in  some sense, the  analog o f the fin a l theorem 

o f the previous section.

T h e o re m  20 ([9 ]) Let L  and L ' be regular languages over (A l5 ..., A n).

1. The languages -<L, LUL' and L n L ' are regular languages over (A 1 ;..., A n).

2. For any alphabet A n+\, the language

{( iw i, ...,w n, wn+1) | ( w i , ..., wn) G L}  

is a regular language over ( A i, ..., A n+i).

S. For any permutation a  o f {1 , the language

La = | ( ^ ( 1 ) , . . . , ^ ) )  € L}

is a regular language over (A a(i ) , A a(n))-

5.4 autom atic groups

W ith  the previous de fin ition  we can now define the concept o f an autom atic 

group.

I f  X  — {x i, X2 , x n} is a fin ite  set and G  a fin ite ly  generated group such 

th a t the map x  x (x  G X , x  G G) from  X  in to  the generators o f G, and
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th e ir inverses, extends to  a surjective hom om orphism  7r from  some regular 

subset (language) L  o f X *  to  G, then G is said to  be an autom atic group if  

the fo llow ing subsets o f v (X *  x  X *)  are also regular:

•  L = — {v (w i,w 2) | w i, w2 6  L, W[ =  w2}

• L Xi =  {v (w u w2) | w i, w2 e L ,w f  =  wixj}

In  the above de fin ition  v is the map defined as follows. I f  w\ = a\...an, 

w2 =  6 1  ...bm then

•  V  : ( w i ) W 2 ) I > (® l j  ^ l ) ( ® 2 ? b2^ j . . . ( ( l m , 6 m )(® m + l i  $ )  if  m  <C 77..

•  v : {w i,w 2) i  ̂ (ai,&i)(a2,&2) - ( a n A )  if rn =  n.

•  U : (W i,W 2) •“ + if  m  >77.

•  u : (e, e) i—>• e.

Here $ is used as a padding sym bol to  allow  fo r the comparison o f two strings 

o f X *  o f different length.

Another way to  characterize autom atic groups is v ia  a geom etric in te r

p re ta tion  using the ir so-called Cayley graphs.

D efin ition  12 (C ayley  graph [9]) For a group G with generating set A, 

the Cayley graph of G relative to A  is a directed graph where the vertices are 

the elements of G and the edges are the set o f triples (g,a,ga), where a G A  

and g G G. For each such edge, g is called the base point and ga the terminus.
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A n alternate de fin ition  o f autom atic groups is th a t w ith  respect to  some 

inverse closed generating set A, two travelers proceeding a t the same speed 

along the words w\ and w2 from  the same base po in t in  the Cayley graph 

w ill always rem ain a bounded distance apart. This is the k-fe llow  traveler 

property. M ore form ally, fo r a word w  e A*, we denote the length o f w by 

l(w ), and fo r g G G, 1(g) denotes the length o f the shortest word w  G A* such 

th a t w =  g. The te rm  w(t) denotes the p re fix  o f w o f length t  when t  <  l(w) 

and w (t) — w i f  t  > l(w ). Then we have the fo llow ing defin ition .

D e fin it io n  13 (K - fe llo w  tra v e le r p ro p e r ty  [9 ]) I f  fo r language L on al

phabet A, the group G has the map x  —> x  defined above and there exists 

some constant k such that fo r  every w2 ■€ L  such that W[a =  wd fo r  some 

a € A  we have l ( w f l (t)w 2(t)) <  k then G has the k-fellow traveler property 

(with respect to A  and L .)

I t  tu rns out th a t

T h e o re m  21 ( [9 ]) A group G has automatic structure (A ,L ) i f  and only 

i f  L  is a regular language and G has satisfies the k-fellow traveler property 

fo r  some k.

There are several ways to  improve on the autom atic structure  o f a group. 

T ha t is we can impose s tric te r conditions to  gain fu rthe r properties. Among 

them  are shortlex autom atic groups, b iautom atic groups and word hyperbolic 

groups. Let A  be an ordered alphabet. Recall th a t lexicographic order ranks
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the strings o f the same length in  A*, by com paring the le tters in  the firs t 

position  where the strings differ.

D efin ition  14 (S h ortlex  order [9]) For a set or language L  on an alpha

bet A, the shortlex order is defined by w <  v i f  l(w ) <  l(v ) or l(w ) — l{v ) 

and w comes before v in  the lexicographical order. Note that this is a well 

ordering.

A  string  w G A* is called a geodesic if  i t  has m in im al length  among a ll 

strings representing the same element o f G or equivalently if  i t  is the shortest 

pa th  between to  fixed points o f the Cayley graph o f G. The language o f a ll 

geodesic strings maps fin ite -to -one onto G, b u t in  general th is  language does 

not have to  be regular or even recursively enumerable.

D efin ition  15 (stron g ly  geod esica lly  au tom atic  [9]) I f  the language of 

all geodesics L ' is part o f an automatic structure(A , L ') fo r  G, we say that G 

is strongly geodesically automatic.

D efin ition  16 (w eakly geod esica lly  au tom atic  [9]) I f  some language con

sisting of only geodesics is part o f an automatic structure fo r  G, we say that 

G is weakly geodesically automatic.

A  string  w E A* is a shortlex-geodesic if  i t  is m inim um  in  the shortlex 

order among a ll strings representing the same element o f G as w.

D efin ition  17 ( [9]) I f  the language of shortlex-geodesics is part of an au

tomatic structure, we say the group is shortlex automatic.
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T heorem  22 ( [9]) Let G be an automatic group with automatic structure 

(A, L ) . Let L ' C L  be the set o f all strings w  e  L  such that w is shortlex- 

minimal in L C I Then (A ,L ') is an automatic structure fo r  G. In

particular, G  has an automatic structure over A  with the uniqueness property.

The uniqueness property m entioned above is sim ply th a t (A, L) has the 

uniqueness property i f  ir : L  —► G  is one-to-one. A n autom atic structure  

(A, L) is p re fix  closed i f  every p re fix  o f a word in  L  is also a word in  L.

T heorem  23 ( [9]) A shortlex automatic structure (A, L) fo r  a group G is 

necessarily prefix closed and has the uniqueness property.

A n even stronger type o f au tom a tic ity  is b iau tom atic ity.

D efin ition  18 (b iau tom atic  [9]) Let G be an automatic group with auto

matic structure (A , L) where A  is closed under the inversion. We say that 

the structure is biautomatic i f  (A , L ~l ) is also an automatic structure.

T heorem  24 (b iau tom atic  im plies solvable conjugacy problem  [9])

I fG  has a biautomatic structure, the conjugacy problem is solvable in G, that 

is, one can algorithmically determine whether or not two words represent con

jugate elements in G.

I t  should be noted th a t so fa r the fastest such a lgorithm  takes a tim e which 

is exponentia l in  the length o f the elements.

However there is a fam ily  o f groups fo r which the word problem  can be 

solved in  linear tim e and the conjugacy problem  in  0(nlogn). We refer o f
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course to  word hyperbolic groups. A  fo rm al de fin ition  o f word hyperbolic 

groups can be found in  [2] and [9] b u t a basic de fin ition  is th a t there exists a 

constant 6  such th a t any triang le  in  the Cayley graph o f the group, consisting 

o f geodesic sides must have an area less than  5. I t  tu rns out th a t calcula ting 

th is  S is necessary fo r the a lgorithm  fo r the word and conjugacy problems 

b u t it  is d iffic u lt to  calculate in  general. We can however, calculate i t  when 

the group is the fundam ental group o f a two dim ensional surface, which w ill 

be im po rtan t in  subsequent sections o f th is  chapter.

I t  tu rns ou t th a t word hyperbolic groups are strongly (and hence weakly) 

geodesically autom atic w ith  respect to  any ordering o f the generating set. 

They are also b iau tom atic w ith  respect to  any generating set.

We end th is  section by s ta ting  the d e fin ition  o f ’Turing m achine’ th a t we 

w ill adopt as convention. In  th is  thesis, by a ’Turing  machine’ we always 

refer to  a fin ite  lis t o f four-tuples which define the actions o f a theoretica l 

com puter. The the theoretica l com puter has a fin ite  number o f states qo,,qn, 

and a fin ite  number o f tape symbols so, , s m. I t  is assumed th a t qo is the 

ha lting  state which, when entered, forces the com puter to  stop. The types o f 

four tuples are {qh ,s h ,s h , qH), {qn ) s]2) R, qh ), and (qn , sh , L, qH). The firs t 

te lls  the com puter, when in  state qix and reading sym bol Sj2, to  w rite  sym bol 

Sj3 and enter state qJ4. The second four tup le  te lls  the com puter, when in 

state Qjx and reading sym bol Sj2, to  move rig h t one space and enter state 

qj4. The th ird  four-tup le , is the same as the second except th a t it  te lls  the 

com puter to  move one space to  the le ft instead o f to  the rig h t.
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5.5 A candidate for a new cryptosystem

In  th is  section we m odify a group, proven in  [1] to  be b iautom atic and have 

a subgroup w ith  unsolvable conjugacy problem , to  produce a group th a t re

ta ins these properties b u t fo r which the subgroup w ith  unsolvable conjugacy 

problem  also has com m uting subgroups. Further we w ill show th a t the nor

m al form  provided by the autom atic structure  provides a security level th a t 

greatly exceeds th a t o f the b ra id  cryptosystem .

As in  [11], we begin w ith  a Turing machine T  w ith  unsolvable h a lting

problem , tape alphabet sQ, s1}..., s m - i  and in te rna l states qo, q \ , ..., w ith

qi  as the s ta rt state and q0 as the unique h a lting  state. M arkov and Post, 

are credited in  [1 1 ] w ith  the fo llow ing construction o f a fin ite ly  presented 

semigroup 7  (T ) w ith  unsolvable word problem

m(T ) =  {h, So, Si, ..., SM- I , q ,  q i ,  q n  I R ( T ))

where the re la tions R (T )  are

q%Sj =  qisk i f  qiSjSkqt G T

and for a ll b G {0 ,1 ,..., M  — 1} :

qiSjSb = Sjqtsb i f  qiSjRqi G T,

qiSjSM = sJqls0 sM i f  qiSjRqi G T,

SbQtSj = qiSbSj i f  qiSjLqi G T,

SMqiSj =  s MqiSoSj i f  qiSjLqi G T,
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qoSb = qo 

SbqoSM =  qo$M

SMqo^M = q

Using th is  semigroup we next construct w hat is term ed, in  [11], as Boone’s 

group. Note th a t each o f the relations in  R (T ) is o f the fo rm  Fiq^Gi =  

HiQi2K i , where i is an element o f a fin ite  indexed set I  and the F ’s, G ’s, 

H ’s, and K ’s are positive s-words or e. I f  X  =  then denote

X * — s £ ' s ^ . . . s b̂ .  Then Boone’s group, denoted B (T ), has the fo llow ing 

presentation.

Generators: q,q0, $o, •••, S M ,x ,t ,k ,r i , i  G / ;  Relations: V i G I ,  and

a ll 6 =  0 ,..., M ,

XSb =  SbX2 

n s b =  SbXViX

U l F*qtlGin  =  H tq n K t 

t r { =  r tt  

tx  -- x t 

k rt =  Tik 

kx — xk  

k(q-Hq) =  (q~Hq)k.
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Boone showed th a t the above has unsolvable word problem  and C ollins 

and M ille r, in  [11], showed th a t the Boone group has cohomological dim en

sion 2. Th is allows B (T )  to  take the place o f the group Q  in  the follow ing 

construction discussed in  [1], [6] and [27].

Let Q = { x i , ..., x i  | f? i, ..., R k ) be the presentation for B (T )  given above, 

i.e., Q = B (T ). We apologize fo r the change o f no ta tion  bu t the b iautom atic 

group th a t we w ish to  construct spans four d is tin c t papers each w ith  different 

no ta tion . Let

r  =  (z i, ..., a j  I x^c ijX i = Wij+, z ^ z ^ 1 =  W^-_, R k =  W k)

where the above re lations hold for every 1 < i < I, 1 < j  < J, I < k  < K  

and each Wij± and W k are positive words o f length 14 and 2 | R k | +8  

respectively in  the le tters { z i,  . . . ,z /}  and such th a t no two le tte r subword 

appears more than once in  the concatenation o f a ll o f the Wij± and W k in  

some order. In  [27], i t  was shown th a t it  is possible to  create a word o f length 

J 2 using J  d is tin c t le tters, such th a t no two le tte r subword is repeated, so 

we need to  choose J  such th a t

K

J 2 > ( 2 I J ) U + '£ ( 2 \ R k \+ 8).
k=1

Then according to  [1], by le ttin g  N  be the subgroup generated by the a /s , 

we have the fo llow ing properties:

•  The short sequence 1 — > N  — ► F — >p Q  — ► 1 is exact, (i.e. N  <sF 

and T /N  =  Q;
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•  N  is fin ite ly  generated b u t in  general no t fin ite ly  presentable;

•  T is tors ion  free and word hyperbolic, and thus strongly geodesically 

autom atic;

•  T x  T is short-lex b iau tom atic ;

•  The group P  defined by

p  := { ( 7 1 , 7 2 ) l.p (7 i) =  p (72)} c  r x  r

is fin ite ly  presented, has unsolvable membership problem  and unsolv

able conjugacy problem .

•  P  is generated by ((x^au), (e ,a j), (a j,e)  | i £  ( 1 j  €  (1 ,..., J } )

Because F x  T is b iautom atic, even though P  does not in he rit th is  prop

erty, it  must in h e rit the Q uadratic tim e so lu tion to  its  word problem , so 

P  already has a ll o f the properties th a t we require except the presence of 

com m uting subgroups. O f course the subgroups {(e,a,j) | j  £  {1 ,..., J } )  and 

((ctj, e) | j  £  {1 ,..., J } )  commute b u t if  the a lgorithm  for the b ra id  cryptosys

tem  were applied using these groups in  the place o f B L and B R then hacking 

the code could be reduced to  solving the conjugacy in  each coordinate o f 

T x  T separately which can be done in  O (nlogn) as F is word hyperbolic. 

This would provide no security at a ll.

Before m odifying T to  produce a group more suited to  our application, 

we firs t b rie fly  describe the proof in  [1] th a t the conjugacy problem  fo r P  is
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unsolvable. Note th a t a word generated by the set {(e , o^)} is an element 

o f P  if  and on ly i f  the corresponding word in  ju s t the Xi s is equal to  the 

id e n tity  in  Q. Therefore as Q has unsolvable word problem , P  has unsolvable 

membership problem . A lso noted in  [1], in  a word hyperbolic group, the 

centralizer o f any element is cyclic. Thus C r(a j) is (a j) and CVxr((% : aj))  

is ( (e,aj), (a, j ,e)}  C N  x  N  < P  Now N  x  N  is norm al in  T x  T, so for 

any word in  w E  ((e, £*), (x i; e)), we can express w ~ l (a,j, a j )w  in  term s o f the 

generators o f N  x  N ,  ca ll th is  word g. We now ask i f  g is conjugate to  (aj, aj )  

in  P.  Suppose there exists w'  E P  such th a t (w ')~ l (a j , aj )w '  =  g. Then 

w'w E C p x r((aj,  fy )) C P  and w' E P  so w E P.  Therefore we can determ ine 

if  (a j, a j) is conjugate to  g in  P  i f  and on ly if  we can determ ine membership 

in  P.  B u t determ ining membership in  P  is an unsolvable problem , so P  has 

unsolvable conjugacy problem .

In  order fo r the above p roo f to  app ly to  the new group we w ish to  con

struct, we need two subgroups which play the role o f Q  and commute w ith  

each other, b u t s t ill act by conjugation on elements in  N  in  manner which is 

hard to  untangle; i.e. in  such a way th a t it  is d iffic u lt to  d istinguish between 

the actions o f the two Q ’s on N.  F irs t we choose two d is tin c t Turing  ma

chines T  and T ', each w ith  unsolvable h a lting  problem  and form  Q  =  B (T )  

and Q' — B {T ' )  fo llow ing the construction above. N ext we choose J  so th a t

P  >  ( 2(7 +  7 ) 7)14 +  £ ( 2 | Rt  | + 8 ) +  £ ( 2  | Rk \ + 8).
k=1 k=l

This allows us to  produce positive a j -words Wjj±,  and W[j± each o f length
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14 and W k and W'k each o f length 2 \ R k \ +8 , and 2 | R'k | + 8  respectively 

and such th a t the concatenation o f a ll o f these words contains no two le tte r 

subword more than  once. Next we set

G =  (xu  .. . ,x I ,x /1 ,...,x 'I, ,a 1, . . . ,a j  \ x ^ a jX i  =  W i j+ , x ^ x j 1 =  W y_,

Rk = Wk, ( x T \ <  = z ' a j t i r 1 =  a k = W i K . o  = i).

Then the sequence

1 — >• N  —  ̂G  — >p Q x  Q' — >• 1

is exact where N  is as before and Q  x  Qf denotes the in te rna l d irect product 

( x i , . . . ,x i  | R k) x  (x[ ,...,x 'r  | R!k). F ina lly, we set

P  =  ((7 1 , 7 2 ) | p (7 i) =  P ili))  C G x G .

Note th a t a lthough we w ill show th a t it  is autom atic, G  is no t word 

hyperbolic. From  the previous section we know th a t word hyperbolic groups 

can not have torsion-free abelian subgroups th a t are no t cyclic and any pa ir 

x ix , x 'i2  would generate a torsion-free abelian group o f rank two. Define the 

fo llow ing subgroups o f G,

Gx =  fa, aj | 1 < i < / ,  1 < j  < J)

Gx'  =  (x a , j  | 1 <  % <  I 1, 1 <  j  ̂ <  J}

I t  is im po rtan t to  realize th a t, although we defined T and G x  on the 

same subset o f generators G  and they do have some relations in  common,
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the subgroup G x  is not actua lly  isom orphic to  F because the x'^s in  G  w ill 

in troduce new relations among the a /s  th a t w ill be va lid  in  G x  b u t not in

r.
For example suppose we have a sequence { c i , Cm} where q  =  w ^ R fa i ,  

the WiS are words in  the Xi s, e =  ± 1  and IIQ  is freely equal to  e. Since 

each R kW k e — e in G, we have

m

n  w~l R lW k eWi =  e.
1 = 1

B u t th is  id e n tity  together w ith  n  Q — e im plies th a t

m

II w ^ W ^ W i  =  e.
i=l

Since N  is norm al in  G, we can express fl^ L i w ^ lW k ewi as a word in  the a /s  

alone. Thus th is  re la tion  would be va lid  in  T bu t no t in  F ' (defined below) 

b u t it  would also be va lid  in  bo th  G x  and G'x .

This fact w ill be im portan t fo r the security o f the cryptosystem  we design. 

Thus T is word hyperbolic bu t G x  may not be. We w ill define T ' to  be the 

word hyperbolic group

I* =  (x'1 , . . . ,x ,I, ,a u ...,a J | (x -y 'a jx 'i = W[j+, R'k =  W'k).

Again, i t  w ill no t be isom orphic to  G x' although every re la tion  in  F ' w ill also 

be va lid  in  G x >■ Note th a t some o f the extra  re lations in  the a /s  va lid  in  

Gx which are not va lid  in  T ', w ill be va lid  in  T, and s im ila rly  some o f the 

re lations in  the a /s  which are va lid  in  G x  bu t not in  T w ill be va lid  in  F'.
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A  fin a l note on these extra  re la tions is th a t they are necessarily longer 

than the shortest means o f expressing the same elements as words using 

X j’s, x '!s and the a /s . Th is is because the construction calls fo r replacing 

words o f the form  x j^d jx l  w ith  its  corresponding Wije and any two o f these 

concatenated and reduced, provided they are no t the inverse o f each other, 

w ill give a word o f length a t least (14 — 1) +  (14 — 1) =  26 since on ly  the last 

le tte r o f the firs t W yie could possibly cancel w ith  the firs t le tte r o f the last 

Wij2e, since d is tin c t 11 /,/s  have no two le tte r subwords in  common. Compare 

th is  to  the length o f a ^ a ^ a ^ x f.

Because the d irect product o f autom atic groups is autom atic, in  order to  

ensure th a t we can reduce an element o f G  x  G  to  its  norm al form  in  quadratic 

com putation tim e we need on ly show th a t G  is autom atic. Furtherm ore if  

we can show th a t G  is shortlex autom atic, fo r a t least one ordering o f the 

generators, then we have the op tion  o f using the software package K M A G  

developed by Derek H o lt et. al. to  a lgo rithm ica lly  determ ine an e xp lic it 

presentation o f the autom atic structure.

T h e o re m  25 The group G defined above has a shortlex automatic structure 

( A , V ) .

N a tu ra lly  A  is taken to  be the set o f generators o f G and th e ir inverses. 

We place them  in  the fo llow ing descending order {aq, aq"1, • ••,£/, x j 1, x [ 1 

(x 'i) -1 ) ..., x ’r , (xf i )^1, ai, a f 1, ..., aj ,  a j1}. Then in  the shortlex order, 

v < w  i f  and only if  v is shorter than w  or they have the same length and v
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comes before w  in  the lexicographical order w ith  respect to  the above ordering 

o f the generators. Recall th a t th is  gives a w ell ordering.

Let Li  and L 2  be regular languages consisting o f the  shortlex geodesics o f 

T and F ' respectively, according to  the descending order { x 1; x j"1, ...,x j, x j 1, 

o i, o f1, ..., aj,  a j1} , and {x 'x, ( x i) -1 , ..., x'r , (x^,)-1 , au  a ];1, aJt a J1}, on 

th e ir generators respectively. We are assured th a t such languages are indeed 

regular since word hyperbolic groups are shortlex autom atic w ith  respect 

to  any ordering o f the generators. Le t X  =  { x l 5 ..., X/, x j"1, ..., X71} and le t 

X '  —  { x i,  . . . j X j / ,  (x^)-1 , ..., (x 'j/)-1 }  and le t A  = { a i , ..., aj, a i 1, ..., a ] 1} as 

unordered sets. Then clearly My =  X*  and M 2  =  (X')* are regular. Le tting  

e denote the em pty word we have, by the properties o f regular languages dis

cussed in  the last section, th a t the fo llow ing languages are regular, since they 

are formed by concatenating and tak ing  the star closure o f regular languages.

Ci = (M 2 U e )(L 1 M 2 )* (L 1 U e)

and

£ 2  = {My U e)(L 2 M 1 )* (L 2  U e).

Next we note th a t since there are a fin ite  number o f x /s  and x '\s  the set 

M  =  {x ^ 1 {x'i2)± l} is fin ite  and therefore regular and thus X 2 = A*MA*  is 

also regular. We now make the fo llow ing claim .

Lem m a 6 The regular set

L = £\ n £ 2 ~ X 2 
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contains the set o f shortlex geodesics of G, with respect to the above ordering 

o f the generators.

To prove th is  we firs t note th a t since the x f s  commute w ith  the x '’s, for 

any w i,w 2 € G, we have w ix fll (x'i2 )± 1w 2 — wi(x'i2 )±1xfllw 2 in  G. However, 

since the x^’s are greater than the x'fs in  the above ordering, we know th a t 

w ix fjl (x'i2 )±1w 2 can not be the shortlex presentation o f the element because 

i t  is larger than w\(x'i2 )± lx f^ w 2 according to  the shortlex ordering on (A  U 

X  U X')*. Therefore any shortlex geodesic o f the Cayley graph o f G  can not 

be a word in  X 2.

Next we recall th a t the extra re lations among the a f s  which may not be 

va lid  in  T and /o r T ' a ll have a shorter presentation using the x fs ,  x ’f s  and 

the a /s , and so would not be present as subwords o f geodesics o f the Cayley 

graph o f G. Thus when reducing a word in  A* to  its  shortlex geodesic if  it  

contains a subword which using the re lations a f s  has a shorter form , then 

th is  shorter form  can s till be reached by using the shorter presentation o f the 

relations in  the x /s , x'fs and the a f  s. Therefore, when reducing a word in  

A* to  its  shortlex geodesic, we need on ly use the re lations which are va lid  in  

T and /o r T '.

Thus if  w  €  A* is a shortlex geodesic, then w has expression w  =  

wiv[w 2v'2 ...wnv'n where each w , G (X  U A)* and each v[ e  ( X 1)* and pos

s ib ly  Wi or v'n or bo th  is the em pty word. Then each wt must be a shortlex 

geodesic o f the Cayley graph o f T or else we could replace it  w ith  i t ’s shortlex 

geodesic and thereby give a new word u  such th a t u < w  and u = w, con-
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tra d ic tin g  the assum ption th a t w  is a shortlex geodesic. Thus any shortlex 

geodesic o f the Cayley graph o f G  m ust be a word in  C\. S im ila rly  it  must 

also be a word in  £ 2  so i t  must lie  in  L. Th is completes the p roo f o f the 

lemma.

By theorem  19 o f section 5.4, to  show G  has a shortlex autom atic struc

ture , i t  is sufficient to  show th a t (A, L ) is an autom atic structure  fo r G. 

However, we prefer to  fin d  L' — shortlex(G, A) e xp lic itly  and show th a t 

(A , L ') is an autom atic structure. shortlex(G, A) denotes the set o f shortlex 

geodesics o f the Cayley graph o f G  w ith  respect to  the ordered generating 

set A. We have shown th a t any word in  L' is also in  L  bu t in  fact they are 

not equal. Th is is because a word w  €  L  w ritte n  as w  — w 1v'1W2Vl2...w nv'n , 

fo r example could have a reduction in  a subword u =  WiV^w^i even though 

Wi and w i+ i are bo th  geodesics, u  has no subwords o f the form  (x'i2)± l , 

and the largest subword o f u  contained in  G x 1 is also a geodesic. To illu s 

tra te  th is , le t R k = Wk be one o f the defining relations o f T and le t R ki, 

Rk2  be fro n t and end subwords respectively, which when concatenated give 

Rk- T ha t is, Rk =  R kiRk 2 as an equivalence o f words in  A* ra ther than an 

equivalence o f group elements. R k 2  could be the em pty word. S im ila rly  le t 

W k =  WkiWk2 , chosen so th a t the word W ^ R k i  is larger than in

the shortlex ordering. Now, suppose Wi =  Wnw i 2  where wn  is any word in  

(X  U A)* and w i 2  — W ^ 1 or w i 2  — Wj^Zx  where R k = z xz 2 in  A*. Fur

the r suppose v\ is any word in  {X')*. F in a lly  suppose wi+i = wi+ltlwi+ifi 

in  A* where w i+ u  =  R ki i f  w i 2  =  W ^  or wi+lA = z2 i f  w i 2  = W ^ z l
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and Wi+ i , 2  is any word in  (X  U .4)*. Then in  G  the fo llow ing equalities 

hold: u  = w n W ^ 1 R klvlw i + 1 < 2 = w n W k2 Rk2 viwi+1 , 2  and u  is larger than 

w nW k 2 Rk2 viwi+y,2 in  the shortlex order.

I f  we trea t the re lations x~eajx\ =  Wije as being o f the same form  except 

w ith  x~^cbjx\ tak ing  the place o f R k and noting  th a t Wi+iti must always be 

x \,  then we get s im ila r possib ilities for reductions o f words in  L  which are 

no t in  I / .  We can also use the inverse re lations R k l =  W k l in  the same way. 

Fortunate ly however, in  each o f the decompositions the words Wn , Wi+ and 

v[ can be any words in  { X U A )* , ( X U A )* , and X '(X ')*  respectively, and the 

rem aining subwords w i 2  and w i+ lfl have only a fin ite  number o f possibilities. 

Thus the set o f a ll such subwords o f the form  o f u  which have such a reduction 

fo rm  a regular language, nam ely

(X  U AywaX'{X')*Wi+lt l{X  U A)*

where w i 2  and w i+ lti  are taken from  a fin ite  set o f ordered pairs. F in a lly  we 

note th a t reductions o f subwords o f the form  u = w ,iViw'i + 1  are com pletely 

analogous and also form  a regular language. Therefore le t L 3 be the language 

o f a ll words in  A* which have a subword o f the above form . Then

L' = L -  L3.

Therefore L' is a regular language.

We are now le ft w ith  the task o f showing th a t (A , L') is an autom atic 

structure  fo r G. To show th is  we need only show th a t if  W\ , w 2 G L' such
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th a t wxb =  wq. in  G  fo r any b G A, then w x and w 2 satisfy the k-fe llow  traveler 

property also called the Lipschitz property.

AS Wib =  W2 -, and w 2 is a geodesic, by perform ing a fin ite  num ber o f 

substitu tions using the defining re lations o f G  (and th e ir inverses) we can 

reduce w xb to  w 2 v ia  these substitu tions.

Let l(w) denote the length o f the word w  G A* and fo r g G G  le t L A{g) 

denote the shortest presentation o f g according to  the shortlex order on A. 

Now Wib =  w i  im plies w i  =  w 2 b~l and Wi is a geodesic so l(w i)  <  l{w2) +  1. 

Therefore l{wxb) — l(w 2 ) <  2.

I f  we express the defining re lations o f G  as words equal to  the id e n tity  

then, disregarding the relations [xil}  x ' ^ , we can see th a t the m inim um  length 

o f the other defin ing relations is 17. To see th is  note from  the presentation 

o f Q th a t the m inim um  length o f each is 4 and Wk has length 2 | Rk | + 8  

fo r a to ta l length o f 3(4) +  8  =  20 and each Wij± has length 14 which added 

to  the length l { x i ea,jx\) =  3, gives 17. Thus if  one o f these defin ing re lations 

is used to  make a substitu tion  then the m inim um  length o f the subword 

replacing the substitu ted one is 8 .

Using the fact th a t w\ is a p re fix closed geodesic, we must have w xb = A, 

y u xb and the firs t substitu tion , if  i t  exists, must be o f the form  y u xb —► yu 2. 

Recall th a t no two defining relations o f G  have a two le tte r subword in  

common. Therefore if  a substitu tion  occurs o f the form  yuxz —> yu2z then 

the next substitu tion , if  i t  exists, can and must use on ly the le ftm ost le tte r of 

u 2. Furtherm ore, if  b2 is the firs t le tte r o f u 2) so th a t u 2 =  bus and there is a
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subsequent substitu tion  then we m ust have y =a* 2/2 ^ 4  and the substitu tion  

m ust be o f the form  y2 uxbu3z  —> y 2u$u3 z. Hence successive substitu tions must 

’trave l’ from  rig h t to  le ft along words equivalent to  W\ in  G. Th is im plies 

th a t if  a subword o f w xb is involved in  a substitu tion , then every le tte r to  the 

rig h t o f th a t subword must also have been substituted.

The language L' is p re fix  closed so is there is a p re fix  u  o f w x no pa rt 

o f which is substitu ted in  any o f the substitu tions which reduce w xb to  w 2 

then V i <  /(a ), w x l (t)w 2 (t) =  0 and W\{t) and w 2 (t) are identica l. In  the 

worst case, we can therefore assume th a t every le tte r o f w xb is substitu ted to  

produce w2.

We now proceed by induction  on the number o f substitu tions which use 

the defining re lations o f G, other than  those o f the form  [x jx, or b~lb for 

b G A*. Note th a t we tre a t the substitu tions which occur in  subwords o f the 

form  Wiv'jWi+i and w'iviw li + 1  as single substitu tions even though they involve 

one or possibly several substitu tions o f relations o f the form  [xix, followed 

by a single substitu tion  using the defin ing relations other than  [x ix,a^ ] and 

b~l b.

By the above argum ent, wxb — unun^i.. .u2uib  and W\b can be reduced to  

w2 by the fo llow ing sequence o f substitu tions:

un...u2uib —> un...u2b2Zi -»  un...u3b3z2zi ... —>• unbnzn- X...Zx —> zn...zx = A w2.

Recall th a t l (w xb) — l(w2) <  2 and bi+xZi =cj Uibi fo r 1 <  i <  n  — 1 and 

vn = G vnbn, even when the reduction is over a subword o f the form  v^Vi+ i
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or v ' t y v ^  where are in  { X  U (A )}*  and f ' ’s are in  { X ' U (A )}* .

I f  t  = l(un), then (-un)~l zn =  6 n, Wi(t) — un and w 2 (t) — znzn^ i  where 

zn- 1 , 1  is e ither the em pty word, the firs t le tte r o f zn_i or the firs t and second 

le tte r o f zn- I n  any case,

w i( t ) -% 2 (t) =  {un)~l znzn- 1 , 1  =  bnzn_ i, i

so

l(w 1 (t)~lw 2 (t)) =  l(bnzn- i, i)  <  3.

In  general, i f  t = l(un...uk), then wi(t)  =  un...uk} and w2 (t) = zn...zkzk^ x  

so th a t

wi ( t ^ w ^ t )  = bkzk- 1 ;1

and

= l(bkZk-iti) <  3.

I t  remains to  show th a t the distance is bounded when t  = l(un...uk) + t 2 

where 1 < t 2 < l(uk- i) .  Then wi(t)  =  un...uk(uk- i ( t 2) ) , where u k- i ( t 2) is the 

firs t t 2 le tters o f x. Also, w 2 (t) = zn...zk(vk- i ( t 2 ))vk- 2 ii, where zk_ 1 (t2) is 

the firs t t 2 le tters o f zk„\ and zk- 2ti is e ither the em pty word, the firs t or the 

firs t and second le tters o f zk- 2. I f  uk_i is p a rt o f a sim ple reduction invo lving 

exclusively the le tters o f { X  U (A )}*  or { X ' U (A )}*  bu t no t bo th , then

W i  { t ) ~ l W 2 { t )  =

However, bkvk- i  = u k^ibk_i is a re la tion  in  G so ( u ^ 1 ( t2 ))& fc(^fc-i(i2 )) is a 

subword o f the re la tion  and so if  m  is the m axim um  length o f the defin ing
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relations of G, then

l ( w i ( t ) ~ 1W2(t)) <  m  +  2.

Finally we consider the case where t = l(un...uk) + t2 w ith 1 < t2 < 

l(uk -1), and Uk-i is of the form V k - i v ^ V k - i ^  or on^

with the case where Uk~ 1 is of the form Vk-iv'k_xVk-i,\, the other case being 

completely analogous. It t2 < l(vk~i) then the result reduces to the previous 

case. The only interesting case occurs when l(vk~1) < t2 < l(vk-iv'k_i). Let 

ta = t2 — l(vk -1)- Note that

• Zk-1 = Sk-is1̂  such that

• 6fcsfc_i = vk-ivk- ltlbk-i in G and

• v'k_]_ is identical to in A*.

Thus w 1 (t)~1w 2 (t) = ( ^ _ 1 )_ 1 ( i3 )uAhl;1 6 fc(sfc-i4 - i ) ( i 2  +  ^) where 6  € { 0, 1, 2}. 

I f  t 2 < l(sk-i)  then v ^^ b k is k - i ) (h )  is a subword o f a defin ing re la tion  and so 

reduces in  G  to  a word o f length less than m, and t:i is bounded by l(sk~i) < m  

so the <  2m . A  be tte r bound can be deduced bu t is unneces

sary fo r the proof. F in a lly  if  t 2 > (sk-i)  then v^^bkSk-i = vk- i ti which neces

sarily  commutes w ith  v'k^ x so w i(t)~ lw 2 (t) =  (v'k_ 1 )~1 (t3 )vk^ 1bk(sk-is'k_1 )(t2+ 

6 ) = K _ 1 ) “ 1 ( t3 )vfc_i,i6fc_i(s/fc_ i)(i2 + < 5 -/(s fc -i)) =  Vfc-i,ibfc-i (v*._i) _ 1  (*3) (Sfc-i 

5—l(sk- 1 )). Now l(vk-i,ibk-i) < m  so we only need a bound fo r l{{vk_ i)~ l (t2— 

l(vk-i)(s'k_ i)( t2 + 5 — l(sk~ i) ) ) .  B u t recall th a t vk_x is identica l to  in  A* 

so the length Idv'k^i ) ^ 1 (t2 — l(vk- i ) ( s ,k_ 1 )(t2 +  <5 — l(sk- 1 ))) is the difference
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o f the lengths o f ( u j^ )  l {t2 -  l{vk~ 1 ) and (s'fc_ + S — Z(sfc_ i)) . T ha t is 

=  t 2 -  l(vk- i )  -  (t 2 + S -  l(sm(k -  1 )) =  S -  l(vk„i)  +  /(sfc_i) < 2  + m.

Therefore every pa ir o f words w i ,w 2 e L' such th a t W\b =  w jj, are fc-fellow 

travelers fo r k =  2 +  2to. Therefore (A, L') is a shortlex autom atic structure 

fo r G.

Before discussing the im plem entation o f the a lgorithm  based on th is  

group, we d e ta il the properties o f the group G  x  G  and its  subgroup P  

which make the cryptosystem  possible. F irs t, as the previous p roo f shows, G 

and therefore G x  G  is shortlex autom atic. Th is means th a t we can reduce 

any word in  the generators (and th e ir inverses) o f G  x  G  to  its  unique norm al 

form  in  quadratic tim e. This p roperty is inherited by P .

P  also has the fo llow ing two, fin ite ly  generated, com m uting subgroups. 

I f  we take a ll ordered pairs o f words (w i,w 2) such th a t w ^ lw 2 = e in  Q or 

w \w 2 l =  e in  Q  together w ith  the ordered pairs (x{, Xi) they generate the 

firs t subgroup. The second subgroup is generated by the ordered pairs o f 

s im ila r word equal to  the id e n tity  in  Q' and the pairs (x (,x ().

F in a lly  P  has unsolvable membership and conjugacy problem . We w ill 

discuss in  the analysis o f the a lgorithm  how th is  should increase security in  

the cryptosystem .

To im plem ent a va ria tion  o f the b ra id  cryptosystem  in  w hat we term  

a lgorithm  1 , we also need the subgroups T and F ' which are word hyperbolic 

and generate words on the same set o f generators as subgroups G x  and Gx< o f 

G. They should make encoding the a lgorithm  faster because word hyperbolic
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groups have a linear tim e word problem , whereas autom atic groups have 

quadratic tim e algorithm s.

5.6 The algorithm

Now th a t we have a group w ith  the desired properties, we can construct a 

cryptographic p ro toco l which u tilizes these properties. We actua lly  exh ib it 

two new key exchange algorithm s, the firs t u tiliz in g  calculations in  word 

hyperbolic groups to  increase the speed o f the exchange and the second u ti

liz ing  the unso lvab ility  o f the conjugacy problem  fo r P  to  g rea tly  increase 

the security o f the key exchange. I t  should be noted however, th a t the faster 

a lgorithm  should s t ill have stronger security than  the b ra id  group cryptosys

tem  because solving the conjugacy problem  in  a generic b iau tom atic group 

can curren tly  on ly be done in  exponentia l tim e, w hile the conjugacy prob

lem for the b ra id  group was shown to  be solvable in  polynom ia l tim e. For 

the faster a lgorithm  (a lg o rith m l), we begin w ith  the assum ption th a t Pe

te r, the program m er o f the a lgorithm , rather than users A lice and Bob, has 

perform ed the fo llow ing tasks.

•  Peter chooses two not necessarily d is tin c t Turing machines T  and T '  

each w ith  unsolvable ha lting  problem , constructs G and calculates the 

autom atic structure  fo r G  x  G.

•  Peter generates a fin ite  and hence p a rtia l lis t o f relations in  the a / s  

which hold in  G  bu t not in  F and a fin ite  lis t o f re lations in  the a /s
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which hold in G but not in T.

N orm ally these tasks w ouldn’t  be included bu t as they involve a certa in  

am ount o f choice which affects the speed and security o f the a lgorithm  we 

include them  to  make the a lgorithm  as general as possible. However, because 

they on ly have to  be perform ed once, we do not need to  analyze the speed 

in  perform ing these tasks. The a lgorithm  1 is as follows.

1. A lice  chooses (a,b) G N  x  N  and applies d ifferent substitu tions on each 

coordinate from  a fin ite  and hence p a rtia l lis t o f relations in  the a j’s 

which hold in  G  b u t no t in  T to  produce (a ', b'). (Recall N  =  ( a i, ..., aj). 

She then chooses words w i,w 2 G X*  such th a t w\ = w 2 in  Q ) calculates 

W ila'wi and W2 lb'w2 and transm its (a, b) and c =  (w± la'wi, w ^ b 'w ^  

to  Bob. She keeps (w i, w2), and {a!,b') secret.

2. Bob applies d ifferent substitu tions on a and b each from  a d iffe rent fin ite  

lis t o f relations in  the o /s  which hold in  G  bu t not in  T ' to  produce 

(a", b"). He then chooses y i ,y 2 G (A ')* , such th a t y\ =  y 2 in  Q', 

calculates y i la"yi and y2 1b"y2 and transm its d =  ( y i 1a "y i,y 2 1b"y2) to 

A lice. He keeps (y i ,y 2), (a",b") secret.

3. A lice  computes (wi, w 2 )~1d(wi, w2), maps it  v ia  a hashing function  h 

to  a b inary word, and then encodes her b inary message m  as m! =  

h ((w i,w 2 )~1d(wi, w 2 )) © m  to  send to  Bob. Here © denotes the exclu

sive or function  on b inary strings.
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4. Bob then computes h ((y i ,y2) lc(yi, y 2 ))@m'. Since {wu w2) and (y i ,y 2) 

commute, (w i,w 2 )~1d(wu w2) =  (?/i,?/2 )_ 1 c (y i, 2/2 ) and h{(yu y2 )~lc(yu y2))- 

m! — m

Recall th a t the conjugacy problem  for P  = ((xi, Xi), (2 ',  2 ') ,  (a j, 1), (1, cij)) 

is unsolvable because although we can solve the conjugacy problem  in  the 

larger group G, we can’t  determ ine to  which o f G \P  or P,  the element 

which perform s the conjugation belongs. However, in  the above a lgorithm ,

(a, 6 ) G N  x  N  < P  and the centralizer o f (a, b) is also in N  x  N  and 

hence in  P  and fin a lly  (w i,w 2) £ P . I f  there exists (T i, z2) G G  such th a t 

( ^ ! , ^ ) _ 1 (a>&) ( ^ i^ 2 ) =  (w i,W 2 )~ 1 (a,& )(«h,W 2 ) then (zu z 2 )(wu  w 2 ) - 1  cen

tra lizes (a, b) so ( z i , z 2) = c(w i,w 2) for some c in  the centralizer o f (a, b) in  

G. Therfore since bo th  c and (w i,w 2) are in  P  so must (cii, z2) be in  P. 

Therefore in  the above algorithm , any so lution to  the conjugacy problem  for 

(a, b) and (w 1 ,w 2 )~l (a,b)(w i,w2) must au tom atica lly be in  P.  However, as 

we have stated, the conjugacy problem  for G  should be exponentia l and once 

solved we s till need to  pick (w i,w 2 ) out o f the coset C oda , b))(w i,w 2).

Suppose, in  place o f (a, b) in  the above a lgorithm , we took a more generic 

te rm  ( ^ 1 ,^ 2 ) €  P.  Note th a t (w i,e )) G Cq{{v i,u 2)) bu t (u i,e ) ^  P  unless 

Vi =  e in  Q. The im so lvab ility  o f the word problem  o f Q  makes th is  im possi

ble to  check in  general. Therefore, using (v \ ,v2) in  place o f (a, b) in  the above 

a lgorithm , we do ensure an unsolvable conjugacy problem . T h a t is, i f  we find 

( 2 1 , 2 2 ) € G  such th a t (zi, z 2 ) - 1 (vu v2 )(zi, z2) = (w i,w 2 )~ 1 (vl ,v 2 )(wl ,w 2) 

then there is no a lgorithm  to  determ ine whether or not (z 1 }z2) G P  le t
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above if  (zi-,z2) — (w h w 2 )- O f course, in  order fo r the secret to  be un

covered a hacker only needs a ( 2 1 ,^ 2 ) such th a t (z i, ^2 ) ’~1 (^ i, ^ 2 X ^ 1 , z2) =  

(w i,w 2 )~1 (v i ,v 2 ) (w i,w 2) and such th a t (zl: z2) commutes w ith  the a;'-’s. I f  

however, the in itia l so lution to  the conjugacy problem  in  G  x  G  doesn’t  y ie ld  

such a candidate, the deriving one th a t does from  ( z i ,z2) is equivalent to  

the membership problem  o f the centralizer o f (v i ,v2) which has been shown 

to  also be unsolvable. Furtherm ore, (v i ,v2) can easily be chosen so th a t the 

p ro b a b ility  th a t the centralizer o f C g ( ( v  i , v2))  intersects n o n -triv ia lly  w ith  

the centralizer o f the Xj's is low. This requires the hacker to  find  the exact 

(wu w2).

Therefore fo r even more security we incorporate th is  technique in to  the 

a lgorithm  below. However, th is  added security may come a t a price. Because 

(v i ,v2) now contains bo th  X j’s and x '’s we can not do the ca lcu la tion th a t 

reduces (uq, w 2 )~ 1(vi, v 2 )(wi, w2) to  its  norm al form  in  a word hyperbolic 

group; we must instead do a ll ca lcu la tion in  the autom atic group G  x  G.

For the a lgorithm  w ith  even stronger security, (a lgorithm  2), we also begin 

w ith  Peter.

•  Peter chooses two not necessarily d is tin c t Turing  machines T  and T'  

each w ith  unsolvable ha lting  problem , constructs G  and calculates the 

autom atic structure  fo r G x G .

Once th is  task is perform ed we move to  the actual key exchange.
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1. A lice  chooses (vx,v 2) £ P  She then chooses words w x,w 2 G X*  such 

th a t Wi = w 2 in  Q, calculates the norm al form  o f {wx lvxwx, w ^ v iw -^ ,  

in  G  x  G, and transm its (vx,v 2) and c =  {wx lViWi,W2 lv iw 2) to  Bob.

She keeps (w x,w 2) secret.

2. Bob chooses yx,y 2 G (X ')* , such th a t y x =  y 2 in  Q', calculates the nor

m al form  o f { y \ lv iy i ,y 2 lv 2 y2) in  G x G  and transm its d =  ( y \ lvxy i , y 2 lv 2 y2) 

to  A lice. He keeps ( y i ,y 2) secret.

3. A lice  computes (w1 ,w 2 )~1d (w i,w 2), maps i t  v ia  a hashing function  h 

to  a b inary word, and then encodes her b ina ry message m  as m! — 

h((wx, w 2 )~1d(wi, w2)) © m  to  send to  Bob. Here © denotes the exclu

sive or function  on b inary strings.

4. Bob then computes h((yx, y 2 )~1c(yx, Z/2 ) ) © ^ .  Since (wx,w 2) and (yx, y2) 

commute, {wx,w 2 ) - ld(wu w2) =  ( y i ,y 2 )~ 1c (y i ,y2) and h((yu y 2 )~1c(y i,y2))’ 

m! =  m

5.7 Analysis of the Algorithm

For several reasons, a t firs t glance the new cryptosystem  m ight appear to  be 

slower than the b ra id  cryptosystem  even though it  should actua lly  be faster 

to  im plem ent. F irs t the no ta tion  is more complex because we are w orking at 

tim es in  a d irect product o f groups and a t other tim e its  coordinate groups.

We can consider the d irect product an in te rna l one when determ ining the
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length o f the elements chosen so th a t, fo r example, the element a G B l  o f 

the b ra id  cryptosystem  can have the same length as the sum o f the lengths o f 

a and b fo r (a, b) €  N  x  N .  Also, w hile the calculations o f (y i,y 2 )_ 1 c (t/i,t/2 ) 

and (wi,W 2 )~1d(wi,W 2 ) w ill be perform ed in  quadratic tim e as are the ir 

counterparts in  the b ra id  cryptosystem , the in itia l keys w ^ a 'w i ,  w ^ b 'w 2 , 

y f 1 a"?/i, and U2 1b"y2 can be calculated in  linear tim e because they are ele

ments o f hyperbolic groups whose elements can be reduced to  a norm al form  

in  linear tim e. Thus key exchange in  the new cryptosystem  should be faster.

A nother reason the new cryptosystem  looks slower is the need to  compute 

a' from  a and b' from  b. In  practice however, the can be created quickly and 

sim ultaneously as follows. Express each o f the relations in  N  which hold 

in  G  bu t not in  T in  the form  r ; =  s*. Then add the ?Ys to  the generating 

set for a and b and add the s^s  to  the generating set for a' and b'. We can 

create W\ ,w2 and yi, y 2 in  a s im ila r way. C reating a" and b" should be 

possible in  a constant tim e since i t  should only involve a few substitu tions. 

The necessity o f com puting a', a", b' and b" results from  the fact th a t T and 

T ' are word hyperbolic and thus allow  fo r very fast calculations. We wish to  

exp lo it th is  fact when we create and exchange keys, bu t we want to  prevent 

po ten tia l hackers from  u tiliz in g  th is  p roperty in  try in g  to  recover Wi and yi 

from  tu f la'wi, w ^ 1 6 /re2, V i 1a"yi, and y 2 1 bny2. Thus since, fo r example a' ^  a 

in  r ,  x ~ la!x is no t conjugate to  a in  T. The conjugacy problem  can be solved 

in  nlogn  tim e in  word hyperbolic groups which is too  fast to  be allowed. The 

hacker has no choice bu t to  a ttem pt to  solve the conjugacy problem  in  the
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b iau tom atic  group, w hich cu rren tly  takes exponentia l tim e.

I t  should be noted however th a t even find ing  gu  g2 €  T such th a t g ^ a g i  — 

w ^ a 'w i  and g^bg-i — w ^ b 'w  2  does not give away the secret (w i, u>2) because 

there is no way o f determ ining i f  gi = g2 in  Q  and thus if  (gi, g2) is {w\, w 2). 

However, i f  the hacker has the o rig ina l message and the encrypted message 

he/she can try  the (<7 i,< 72) and see if  he/she recovers the o rig ina l from  the 

encrypted so it  w ill be necessary from  com puter tria ls  to  determ ine how often 

solving the conjugacy problem  in  G  x  G  w ill y ie ld  the appropriate so lu tion 

in  P.

As a fin a l note we m ention th a t the cryptosystem  may be vulnerable to  a 

length based a ttack which consists o f conjugating u / f la'w\ by each element 

o f X  in  tu rn  to  see if  the length o f la'wi decreases. I t  may be possible to 

prevent such an a ttack by ensuring th a t the suffix o f 1 and the pre fix  o f 

a ' form  a subword o f a defin ing re la tion  which is more than h a lf the length 

o f said defin ing re la tion.
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Chapter 6

Locally Finite-Indicable Groups

In  1940, in  [13], Graham  Higm an introduced the term  indicable to  describe 

a group having a homom orphism  onto a n o n -triv ia l subgroup o f the add itive 

rationa ls, i.e. an in fin ite  cyclic factor group. In  [6 ], Burns and Hale proved 

th a t lo ca lly  indicable groups are rig h t orderable. Kopytov and Medvedev 

explore loca lly  indicable groups in  7.4 o f [18] and in  pa rticu la r give a short 

p roo f using u ltra filte rs  as introduced by M alcev in  [21] th a t the class o f 

loca lly  indicable groups form s a quasi-variety. B rodskii [7] then proved th a t 

i f  5ft is any quasi-variety then the class L(5ft), o f loca lly  5ft-indicable groups- 

groups having a n o n -triv ia l homom orphism  onto a 5ft-group- is equal to  the 

class N(5ft) o f groups which have a norm al system w ith  factors in  5ft. Loca lly 

5ft-indicable is also called loca lly  5ft-projectable and loca lly 5ft-decomposable.

The equa lity L(5ft) =  iV(5ft) fo r quasi-varieties seems to  depend largely on 

the fact th a t quasi-varieties are closed under u ltra  products as defined in  [18]
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and [21]. To see th a t closure under u ltraproducts is a defin ing characteristic 

o f quasi-varieties one need on ly consult 11.1.2 o f [21]. I t  is therefore possible 

th a t L(3?) =  N($t) i f  and on ly i f  3? is a quasi-variety, b u t the question remains 

open. Even fo r the class S  o f fin ite  groups is m erely the union o f an ascending 

sequence o f quasi-varieties, b u t no t a quasi-variety itse lf, L($s) ^  N($t) as 

we show here.

In  section 2, a fter some p re lim inary discussion, we exh ib it a subclass o f 

L(^s) th a t is not in  V (9 f). Then, in  section 3, we embed each member o f the 

subclass in  its  own 2 -generator group to  create a class o f fin ite ly  generated 

groups which are loca lly  fin ite  indicable bu t do no t have norm al systems w ith  

fin ite  factors.

6.1 Groups W ithout Normal in S

For a rb itra ry  class 3?, the inequa lity  L (3?) D N($i) is easily proved. I f  G E 

N ( 3?), there exists a to ta lly  ordered set A such th a t VA €  A, 3D X, Cx C G 

which satisfies the follow ing:

1. C \ < D \

2. D x/C x e 3?

3 . / i C A ^ ^ C C A 

4- U aca D x\C x = G \ 1
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Let H  be a fin ite ly  generated subgroup o f G. B y properties 3 and 4, there 

exists A such th a t H  < D \  and H  f l  C \ ^  H. Therefore

1 ^ H / H D C X ~  H C \ /C \  < D \ / C \  e K,

which completes the p roo f th a t L(5R) D N($l).

We therefore res tric t our discussion to  the reverse inequa lity  from  now 

on. Le tting  $sn denote the class o f groups o f order a t most n, we see th a t 

3  A n is a quasi varie ty fo r each positive integer n, so, if  G  is a

group and there exists a positive integer n  such th a t every fin ite ly  generated 

subgroup o f G  has a n o n -triv ia l hom om orphic image o f order a t most n  

then G  has a norm al system w ith  factors o f order a t most n. In  order to  

show L(^s) ^  AT(Qf), i t  is therefore necessary to  e xh ib it a group G  w ith  the 

p roperty th a t every fin ite ly  generated subgroup o f G  has a n o n -triv ia l, fin ite , 

hom om orphic image. B u t G  m ust also have the property th a t the orders of 

these facto r groups increase w ith ou t bound. I t  is fu rth e r required th a t these 

factors be sim ple or we could take sm aller ones. The sim plest such example is 

the d irect lim it A ^  of fin ite  a lte rna ting  groups A n, n = l,2 ,3 ,... Every fin ite ly  

generated subgroup o f is contained in  some A n and so is fin ite . Hence 

Aoo £ L ((A). However, A ^  is sim ple and we now show th a t i t  can no t have 

a norm al system o f fin ite  factors.

By way o f contrad iction, assume there exists a to ta lly  ordered set A such 

th a t VA G A, 3 D \, C \  C A inf ty which satisfies the four c rite ria  above w ith  2
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replaced by

D \ /C \ i s  f in i te .

Take any n  > 4. Then A n is simple. There exists 7  such tha tV a  > 7 , A 5 < 

D a so take A to  be m in im a l in  th is  respect. Then 3 m  > 5, such th a t A m D \  

and so 3/x >  A such th a t A m < D^. Now f l  A m < D^Ci A m = Am so A m 

simple im plies th a t CM f l  A m =  e. B u t p roperty 3 o f the norm al systems 

im plies th a t D \  C C \  so f l  A m D A n g iv ing a contradiction.

Aoo is one group ly ing  in  L (A ) \N (A ) ,  b u t is by no means an exceptional 

example. In  fact com bining theorems 4.5 and 4.6 o f [16], we get

T h e o re m  1 i f  G is a countable infinite, locally finite, simple group isomor

phic to a subgroup o fG L n(F), for  some field F  and positive integer n, then G 

is the union of an ascending sequence of finite subgroups almost all of which 

are simple.

Groups m eeting the c rite ria  above must also lie  in  L (^) \N (^ s ) .

6.2 Two-generator Groups

Perhaps the only inelegance o f the members o f L(Q)\N($s)  above is th a t, 

like Am  fo r example, they can no t be fin ite ly  generated. However [23] gives 

a method for embedding any countable group G  two-subnormally in a two- 

generator group H. A fte r presenting the embedding, we show th a t i t  pre

serves loca lly  fin ite  ind ica b ility . Furtherm ore, since the embedding is sub-
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norm al, the resu lting group H can not have a norm al system o f fin ite  factors, 

given th a t G doesn’t.

I t  should be noted th a t [23] deals s tric tly  w ith  ordered groups so the 

embedding is constructed so th a t the order on G  can be extended to  an order 

on H. A lthough  th is  makes the construction s lig h tly  more cumbersome than 

necessary fo r our purposes, it  in  no way restricts us to  using ordered groups.

6.2 .1  E m b ed d in g  in  a T w o-gen erator G roup

Follow ing [23], i f  G  is any countable group we begin w ith  the sequence o f 

subgroups o f C rG z :

G (0) =  (x | Xi = e i f  i ±  0, x 0 = g, g e G)

and for k  >  0 ,

Q(k+1 ) _  | Xi — e i f  i < o, Xi =  </( k ) i f  i > 0, g G G),

Let t  be the autom orphism  o f C rG z  defined by G\ — Gi+\ and

K = ( t ,  G (i) | i > 0 )

Note th a t [t, G'(fc+1)] =  G ^  so the G®  generate K '  w ith  G ^  norm al in  

K ' . The coun tab ility  o f G  im plies th a t K  is also countable and so can be 

w ell ordered as K  =  { a i,a 2 ,a 3, ...}. Let u  be the element o f C r K z  defined 

by:

U 2 rn ^771
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un = e i f  n  ^  2m, m  =  1 ,2 ,...

F ina lly, we le t r  be the autom orphism  o f C r K z  defined by K J  =  K i+1 . O ur 

desired A  is (u ,r) .

6 .2 .2  T w o-gen erator G roups in  L(Q;)\A^(^)

We are le ft w ith  the task o f proving the fo llow ing theorem:

T h e o re m  2 I f  G is a countable group in L($s)\N($s) and H  is the two- 

generator group constructed from G as above, then H  also lies in L ( f s ) \N (£y).

Proof As m entioned earlier, i f  G does not have a norm al system o f fin ite  

factors then neither can H. Assume every fin ite ly  generated subgroup o f G 

has a n o n -triv ia l hom om orphism  onto a fin ite  group. Then we show as an 

in term ediate step th a t A  in  the above construction also has th is  property. 

Let L be a n o n -triv ia l, fin ite ly  generated subgroup o f A . L' — L r I C rG z  

ju s t as A ' =  A  D C rG z  so if  L  =  L' then L < C rG z . A t least one o f the ith 

components o f one o f the generators o f L  are n o n -triv ia l, so the pro jection  o f 

the generators o f L  onto th is  i th component yields a homomorphism from  L 

onto a fin ite ly  generated subgroup o f G, which, by assumption, has a fin ite  

factor. O therw ise, if  i  ^  I / ,  then L /L '  is a non triv ia l, fin ite ly  generated 

abelian group and so also has a n o n -triv ia l fin ite  factor. Thus if  G  is in  

L (9 ) \A r(9 ), then so is A . H E  L($s)\N(fs)  is proved in  s im ila r manner -  a 

fin ite ly  generated subgroup J  o f H  is e ither a subgroup o f C r K z  or J /  J '  is 

a fin ite ly  generated abelian group. □
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