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Chapter 1

Introduction

1.1 The Conjugacy and Word Problems

The conjugacy problem for a group G is the problem of determining, given
x,y € G, whether or not there exists an element z E G such that z7lxz = y.
If there is an algorithm which, for any z,y € G, always terminates in a
finite number of steps with a definite yes or no, answer then the conjugacy
problem for G is said to be solvable. Otherwise it is said to be unsolvable.
The problem of producing such a z, given that r and y are conjugate in
G is called the generalized conjugacy problem. The word problem for G is
similar and consists of determining , given x,y € G, whether or not z = y
in GG. An equivalent characterization of the word problem is the problem of
determining, given v € G, whether or not v is equal to the identity element

in G, which will always be denoted e in this thesis. The equivalence of the
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previous two problems is obvious if one considers that z = y if and only if
ylz =e.
The word and conjugacy problems are not equivalent but they are closely

lyz = e if and only if

linked because v = ¢ if and only if 3z € G such that x~
Vz € G, z~lvz = e. This means a solution to the conjugacy problem implies
a solution to the word problem.

Another related problem which is even stronger than the word problem is
called the power problem. This is the problem of determining algorithmically,

given two elements x, and y of a group G, whether or not there exists an

integer k such that zF = 4.

1.2 Open Problems

This thesis improves results on three open problems in group theory and
discloses a new cryptosystem which uses automatic and word hyperbolic
groups in place of braid groups, to improve on the speed and security of
the braid cryptosystem. The braid cryptosystem was shown in [15] to be

insecure. The open problems are as follows.

1. Does there exist a finitely presented group which has solvable word

problem, unsolvable conjugacy problem and is right-orderable?

2. Can every torsion-free group with solvable word problem be embedded

in a group with solvable conjugacy problem?
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3. Is the class of locally finite-indicable groups equal to the class of groups

which have a normal system with finite factors?

Although this thesis does not deal exclusively with the conjugacy problem
the title for the thesis is still appropriate because the first two problems
deal with the conjugacy problem, and the unsolvability of the conjugacy
problem for the group used in the cryptosystem is essential to its security.
The relevant chapters require a majority of the time and effort and page are
the longest. The last problem is distinctive and is given its own chapter,
in which we define the terminology and provide previous results that are
distinctly pertinent here.

An affirmative answer to the first problem would be an important step
toward solving the problem posed by A.M.W. Glass in [12] as to the existence
of a finitely-presented lattice-ordered group with solvable word problem and
unsolvable conjugacy problem. It is listed as one of the primary open prob-
lems in the study of lattice-ordered groups. Question two, posed by D. J.
Collins, is well known among group theorists and remains open to this day.
A lesser result, showing that every torsion-free group with solvable power-
problem can be embedded in a group with solvable conjugacy problem is
cited in the paper [25]. However, it was proved as a corollary to a more
complicated result, the proof of which is very complicated and draws on a
lot of previous work of the authors of [25]. We therefore give a much simpler

and more self-contained proof of the result directly.
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Question three was suggested to the author by Akbar Rhemtulla and is

answered conclusively in chapter six.

1.3 Maiﬁ Results

This section of the text details the main results which answer the above ques-
tions. Subsequent chapters will be devoted in turn to proving the following
results.

In Chapter 3, we prove the following result in response to question one.

Theorem 1 There exists a finitely presented group G, with solvable word

problem and unsolvable conjugacy problem, that is right-orderable.

In Chapter 4 we give a more direct, simple, and self-contained proof to

the following already known result.

Theorem 2 Every torsion-free group with solvable power problem can be

embedded in a torsion-free group with solvable conjugacy problem.

In Chapter 5, we exhibit groups which have all of the desirable charac-
teristics of the braid group as well as extra characteristics which allow for
faster key exchange and increased security in a public key cryptosystem.

As stated earlier, Chapter 6 is a self-contained paper in which we con-
struct a family of finitely generated groups that are locally finite-indicable

but do not have a normal system with finite factors.
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Chapter 2

Background

It will be assumed that the reader is familiar with the fundamental concepts
of group theory, but when the necessary concepts for dealing with each open
question are not fundamental to group theory, these will be examined in
the appropriate chapter immediately before proving the corresponding main
result. The exception to this convention is the following section on Novikov

Groups, which are used in the next chapter.

2.1 Novikov Groups

It is known that for any recursively enumerable degree of unsolvability there
is a finitely presented semigroup of the form S = (a;,4; = B; | 1 <1 <
A, 1 < j < n) whose word problem is of that degree. It was shown by Bokut

that the degree of unsolvability of the word problem for S is equal to the
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degree of unsolvability of the conjugacy problem for A, ,,, when A, ,, is
defined using S as follows.

The group A,,,, is most easily dealt with when defined via an ascending

sequence of four groups as follows:
o Go = (Zo; Do)
o Gy =(LoUX;;@U D)
o Gy =(ZqUX ULy ®UD UDy)
o Apipe = G3 = (UioZi; U0 Ds)
Where

o Yo ={gt;q  tF, 1 <i <A}

%y ={aj,af,1<j <n}

Yo ={l;,lF,1<i <A}

23 = {p1,p2}

[ J (I)():@

O, = {qa; = a;¢}, t}a; = ajti, af ¢ = (¢ )’af,
[ @2 = {liaj = ajli, l;*_(l;_ = aflf}

®; = {(AN) 7'l p = pAGT Y, )7 = piti, Biltilipy, =

P2 B (tF) 71U, ¢ pe = pagit}

with A;’s and By’s distinct words in (a;,1 < j < n).

6
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2.2 A Standard Basis for A, ,,

A group G has a standard basis if there exists a subset L of words in the
generators of G, and a bijection between L and G, such that each element
of the basis is equivalent to one and only one group element. Thus if we
assume the axiom of choice, then technically every group has a standard
basis. However, giving an explicit finite presentation of the basis is usually
not possible because of the dependence on the axiom of choice. Therefore
we reserve the term standard basis for those groups that have a finite, or at
least recursive, presentation.

Even in this stricter sense of the term, Ap,,, has a standard basis which
is defined in terms of the ascending sequence of groups Gy C G; C Gy C
G3 = Ay, p, as follows:

Each of the sets Cy, Ci, Cy, and Cj is a standard basis for Gy, G, Gs,
and G3 respectively.

Cy consists of all irreducible group words of the alphabet ¥y. A word is
said to be irreducible if it does not contain subwords of the form zz~! or
x 2.

C1 consists of all words of the from

— € € €
(#k) W = U TT UL . UL UL 11,

where £ > 0, z; € &4, ¢ = %1, u; € Cy and w is irreducible and does not
contain the subwords:

-1

-1 42 -1 e, —1
i s qiaj y t,L-CLj, ti aj, tia

€ -2
1. gfa;, ¢; “a £a;

7
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2. (")), (@) 'af, (&) (a) ™, (@) ey, 7(af)™ (&) (a) ™

where e =41, 1 <i< A, 1<j57<n.
C, consists of irreducible words of the form of (xx) in which k¥ > 0, v; €

C1, 1; € Xy, € = 1, and which do not contain the following subwords:
3. a;V (g2, ts)lE, a;V(gs, t2)IE
4. afV(af, (tHD) () (af) V(g2 e ()

where e = +1, 1 <7 < n, 1 <i < Xand V(z,y) are irreducible words of Gg
in z and y.
C; consists of irreducible words of the form (#%) in which & > 0, u; €

Cy, x; € X3, ¢, = %1, and which do not contain the following subwords:
5. (&)1, tipr"s 4¢P, (@)P7"
6. LV (aH )Wt p1, 17V (a)W (t5)pr
7. LV (a))W(gy)pe, (I5)7V ()W (g )p2",
8. (1) (a))C((@) AW (1, LV (@)C(g:ATW (4)pi,
9. 7'V (a))C (&7 B)W (g5)pe, 1V (af)C(tFH(BF) )W (g} )p3"

where V and W are reduced words and C(U) denotes a canonical word equal
to U.
The reader has probably noticed that A, does not, in the strictest

sense refer to a single group but rather a family of groups because distinct
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choices for the semigroup S produce distinct examples of Ay p,. This family
of groups was first discovered by Novikov in [24] and shown by Bokut in [4] to
have a standard basis, so we refer to the family as Novikov groups. Thus, in
this text, by Ap,p, we refer to an example of a Novikov group. Any theorem
proved for A,,,, will hold for any Novikov group.

It was Bokut in [5] who proved that for any recursively enumerable degree
d of unsolvability, there is a Novikov group whose conjugacy problem has
degree d. He also proved that the word problem for A, ,, is solvable and the
conjugacy problem for each of Gy, GGy, and G5 is solvable.

We have adopted Bokut’s notation when dealing with A,,,, (except that
our ¢;’s are actually r;’s in his paper but they look like tao’s). Also the
symbol G, in this paper as well as his, refers to the group (a;, ¢, ¢, | 1 <
7 <A 1<i<n). Thus G} # [Ga, Gs). However for any other group G, H
or K, in this text, we keep with convention, i.e. G' =[G, G] the commutator
subgroup of G.

We end this section with a statement of Britton’s Lemma with a prelim-
inary, explanatory excerpt from [3].

Let G = (X; @) be a group with generators ¥ and relations ®. The lemma
was proved by Britton as a tool, useful in dealing with groups like A4,,,,. In
fact we shall rely on it several times in Chapter 3 when proving that A,,,, is
right-orderable.

Let G = (Z; ®) be a group with generators ¥ and relations ®. The group

9
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where XN B is empty, pm,;, Pn, € B and A;, B; are ¥-words in the group with

stable letters B and base group G.

Lemma 1 (Britton’s lemma [3]) Let B be a regular system of stable let-
ters of the group G, with base group G and let W be a (XUB)-word. If
W = e in G then either W is a X-word and W = e in G or W contains a

subword of the form p;“Up;, where U is a X-word and for some U = Upe pe .

By a o-word, where o is an alphabet, we mean a group word constructed
from this alphabet. A system of stable letters B of the group G is a subset of
the defining alphabet of G such that no relation of G decreases the number
of occurences of B-letters in any word in GG, except the trivial relations where
stable letters are juxtaposed with their inverses. For example p; and p, are
the stable letters of Ay, ,,, the I;’s are the stable letters of G, and the a;’s
are the stable letters of G;. A system of stable letters is regular if for every
relation A;pm,, = pn,Bi, B; = e if and only if A; = e. Finally, a word U =
Upe ps 1s simply a product of A;’s and/or B;’s such that p,<Upt, = p,pcU’

or p,Upf, = U"p, cps,, for some U’ or U”.

10
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Chapter 3

The Conjugacy Problem in
Right-Orderable and

Lattice-Orderable Groups

3.1 Ordered Sets

The following definitions and results on partially-ordered sets, lattice-ordered
groups and right-ordered groups are reproduced from [18] and [19].
A non-empty set M is called partially-ordered if it is equipped with a

binary relation < on M satisfying the axioms:
lL.VieM,z<zx

2. Ve,ye M,fr<yandy<zthenz=y

11
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3. Vo,y,z€ M,ifxr <yandy < zthenz < 2.

This binary relation < is called the partial-order on the set M. If z <
y or y < z, then z and y are said to be comparable, otherwise they are
incomparable; x < y means z < y and z # y.

A partially-ordered set M is totally-ordered or linearly-ordered if every
two elements of M are comparable. A totally-ordered set M is well-ordered
if every non-empty subset of M has a least element. It is conventional in
ordered-group theory to suppose that Zermelo’s theorem is true (it is equiv-
alent to the axiom of choice), i.e., any arbitrary set can be well-ordered.

Let z,y be elements of the partially-ordered set M. If Ju € M, such that
z < u and y < u, then v is an upper bound for x and y. Lower bound is
defined analogously. If there exists an upper bound z for x and y, such that
z < u for every upper bound u of x and y, then z is called the least upper
bound or join of z and y and is denoted z V y. The greatest lower bound or
meet is defined analogously and is denoted z A y. A partially ordered set M
for which z Vy and = A y exist Vz,y € M is called a lattice-ordered set, or
simply a lattice. Note that every totally-ordered set is also a lattice-ordered
set but the converse is not true.

Any lattice can be characterized by the following identities:
l.zvx=2z, zAzx==z

2.zVy=yVz, zAy=yAx

. (xVy)Vz=zV(yVz), (@AyYAz=zA(yAz)

12
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4. (zVy)Az =2z, (zAy)Vz=r,
as demonstrated in the following theorem.

Theorem 3 [19] For any lattice L, the identities 1 to 4 are valid in L. Con-
versely, let L be an algebraic system of signature {V, A} such that identities
1 to 4 are valid in L. Then L is a lattice under the partial order defined by

the rule: x <y if and only if x Vy =y.
The lattice L is called distributive if Vz,y, z € L the following are valid:
zV(yAz)=(xVy)A(zVz)

and
zA(yVz)=(xAy)V(zAz2).
There is a weaker notion of a modular lattice but it is not necessary for
this report since every distributive lattice is modular. Note that any totally-
ordered set is a distributive lattice. The class of distributive lattices is closed

under cardinal products, homomorphisms and sublattices.

Theorem 4 [19] Any distributive lattice is isomorphic to some sublattice of

the lattice S(M) of subsets for some set M.

3.2 Ordered Groups

A partially-ordered group is a non-empty set G with binary operation - and
a binary operation < such that {G;-} is a group and {G; <} is a partially-

ordered set and the following axioms are fulfilled:

13
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1. Vz,y,z € G, x < y implies zz < yz
2. Vz,y,z € G, z <y implies zzx < zy

If the order on G is a lattice, then G is called a lattice-ordered group (I-
group). If the order is a total-order, then the G is a totally-ordered or just
an ordered group (o-group).

The definition of a partially-ordered group stipulates that the order must
be invariant under multiplication from both sides. However, there is the
notion of a group which is invariant under multiplication only on the right-
hand-side. If the first of the axioms above hold then G is called partially
right-ordered. If the order is total then G is called a right-ordered group.
Note that if a group is partially right-ordered then multiplication on the left
by inverses gives a partial left-order so every partially right-orderable group
is also partially left-orderable but not necessarily simultaneously, i.e., with
respect to the same order.

Let G be a partially right-ordered group. An element x € G is called
positive (strictly positive) if x > e (z > e). It is negative (strictly negative)
if z < e (xz < e). The set of positive elements of a partially right-ordered

group G is called the positive cone.

Theorem 5 [18] For a partially right-ordered group G with a positive cone
P, the following relations hold:
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Pn P! ={e}

If G is a right-ordered group, then
G=PupP?

Conversely, if in a group G there is a subset P satisfying the first two relations
then it is possible to introduce a partial-order < on G such that {G;-; <} is
a partially right-ordered group with the positive cone P. If P also satisfies

the third relation, then G is a right-ordered group.

Theorem 6 [18] A partially right-ordered group G with positive cone P is a
partially-ordered group if and only if P satisfies the first two relations of the

previous theorem and also satisfies:
t.P.xCP Vel

Theorem 7 [18] A partially-ordered group G with positive cone P is a lattice-
ordered group if and only if it is directed and P s a lattice with respect to

the induced order.

Theorem 8 [18] The free product G of right-ordered {G, | @ € I} is a
right-orderable group, and for every group G, its right-order can be extended

to a right-order on the group Gx.

Theorem 9 (corollary to Kurosh Subgroup Theorem [22]) Let G be

a free product of A, B, C with amalgamations from the factor A, i.e., all

156
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defining relations either involve one type of generator, or have the form
U(a,) = V(b or U(a, = W(ce). Then any subgroup H of G, whose in-

tersection with the conjugates of A, B, and C is e, must be a free group.

Theorem 10 [18] A group G is fully-orderable (right-orderable) if and only

if every finitely generated subgroup is fully-orderable (right-orderable).

Lattice-ordered, right-ordered, and totally-ordered groups share the prop-
erty that they must all be torsion free, i.e. = # e = 2" # e,Vn. It is
also true that, for any element of such a group, > e = 7! < e and
r>e=>z">e,Vn>0

However, there are many fundamental group theoretic properties that

they do not share as the following results indicate.

Theorem 11 [19] If G is an ordered group or a right-ordered group and H
is any subgroup of G then H is ordered or right-ordered respectively. If G is

a lattice-ordered group then H need not be a lattice-ordered group.

Thedrem 12 [18] (Levi) Let N be a normal subgroup of a group G, Py be
a partial right-order on the group N, and P be a partial right-order on the
quotient group G = G/N. Then there is a partial right-order P on the group
G such that (G, P) is the lezicographic extension of (N, Py) by (G, P). If the
groups (N, Py) and (G, P) are partially-ordered and g~*Pyg = P, for any
g € G, then the group (G, P) is also partially-ordered if P is a paﬁial-order

on G.

16
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According to this theorem, for a lattice-ordered normal subgroup to have
a lexicographic extension, it must be invariant under conjugation by the

extension group.

Theorem 13 (unique extraction of roots [19]) If G is a totally-ordered
group thenVz,y € G, 2" =y" = x =vy. If G is a lattice-ordered group then

Vz,y € G, 2" =y = 3z € G such that 27 'zz =y

3.3 A Righf—Ordering of A, ,,

In this section we prove theorem 1 of the main results, i.e. the existence of
a finitely presented group, which admits a right-ordering and has solvable
word problem and unsolvable conjugacy problem. We do so by proving the

following theorem.
Theorem 14 The group A,,p, is Tight-orderable.

We prove the above result by defining the normal series A4,,,, < HK <
K and constructing right-orders on Ap,,,/HK, HK/K and K separately.
Theorem 12 then implies that A, ,, is right-orderable. First, however, we

need the following result.

3.3.1 (5 is right-orderable

Lemma 2 The subgroup Gy of Ap,p, is right-orderable.

17
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To show that G, is right-orderable, it is enough to construct a right-order
on G% because G is the free product of anti-isomorphic subgroups G and

G5 . We begin by labeling certain subgroups of Gj, for easier reference.

A= {ay,..,an)
Q = <q1""7q)\)
L=l ly)
T= <t1,...,t)\>

Let B= (Q*T*L)* = (u'vu | u € Ajv € @+ T * L). Then by
definition A < Ng;(B) so B is normal in G with G; = AB. Furthermore,
G,/B = AB/B = A = F, so G}/B is right-orderable. As usual F,, denotes
a free-group of rank n. Thus to show Gj is right-orderable, by Theorem 12
it is sufficient to show that B is right orderable.

Recall the relations of G}, are
aj_lqiaj=qi2, for1<i< A 1<j<n,
ajtia;t =17, for 1<i< ) 1<j<n, and
a;'la; =1; for 1<i< A 1<j<n.

In light of these relations we can think of elements of B of the form v 'zu
where u € A and x € {q, |} as k-th roots of (z) because we will show that for

each u™'zu there exists a smallest positive integer & such that (u~'zu)* € (z).

18
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It is obvious, as there are no non-trivial relations which hold in (Q, T, L),

that B = ({q1) * (o) * - * (@) * {t1) * ... % (£} * (l1) * ... * (1)) We now

show, using Britton’s Lemma, that in fact

B = (g} % () % . (@) ) % ok (8 (1) * .o ().

Recall that we used {l1,...,1»} as the stable letters of G, because [j 'a,l; = a;
and that we used {ay, ..., a,} as the stable letters of G because aj_lqiaj = ¢?
and ajtiaj_l = t2. However we could also view {ay, ..., a,} as the stable letters
of G, because aj‘lliaj = l;, so long as we realize that the base group would
then be (@, T, L) instead of Gi.

With this new set of stable letters, suppose that R = e is a relation that
holds in B. Then R is a word in the generators (and their inverses) of B
that is equal to e in B and hence in G). Therefore, by Britton’s Lemma,
either R is a word in the generators (and their inverses) of (Q, T, L), or there
exists a pinch of the form a;“Ua$ where U is a word in the generators (and
their inverses) of (@, T, L) and € = £1 and a;“Ua = U'a; “a;. Therefore U

is generated by:
o {GL L 1<i< A} ife=1
o {gP It |1<i< A} ife=—1.

Since R = e, we can perform as many pinches of the above form as
necessary until we arrive at R = R, where Rj is a word in {¢F', !, ¢!}

and Ry = e. But {qf:l, IF tiﬂ} generates a free group so Ry freely reduces to

19
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the identity, i.e., R = v19s...U, such that for each v; there is a fixed z; from
{@,1;,t;} such that v; is a word in powers of x;, with the sum of the powers
being 0. This proves that B is the free product we claimed because R must
be the word v{v}...v}, where v} = v; in G and so v} € ((z;))* where v; is a
word in {2zF'}.

Therefore, Theorem 8 implies that, to show B is right-orderable, we need
only show that {q;)* = (u™'qu | u € A) is right-orderable because B is a free
product of groups isomorphic to {g;)#. Theorem ...... further reduces the task
to showing that all finitely generated subgroups of {g;)# are right-orderable.
For ease of notation, as it does not matter which ¢; we demonstrate on, let
@ =4q

We begin by showing that every subgroup of (g)“ generated by two ele-
ments is right-orderable. Fix u;,us € A and consider the group (u7 quy, u3  qus).
In actuality the most general form of a subgroup of (g)# generated by two
elements would be (u7'g¥u;,u;'q*uy) where k; and k, are integers but
(urtg* uy, us tq™u,) is a subgroup of (u7lquy,us'qus), so right-orderability

of the latter implies right orderability of the former.

Lemma 3 There exist integers ny, ny such that (uy quy)™ € (q), and (uy quq)™ €

(q). We may assume that ny, ny have the smallest magnitude possible.

&1 Q2

. : — O
Proof: Since u; = a3;'a;)}...d

i » Such that o are integers and each a;; €

{ai,...,an}, we set di = min{ay, a; + ag, ..., ZF_j04}.
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First we show that if d; > 0 then ullqu, € (g) and n; = 0. Proceeding
by induction, a; > 0 so a;;*'qaf! = ¢*"' € (g). By the inductive assump-
tion (ag! az...agj)‘lqaﬁlagz...a? = q22§=1a,~ € {(g). Thus a;. ’“qz = ’a;"ﬁl =
q iy which is in (g) since XI*Ta; > 0.

Otherwise if d; < 0 then let ny = 27% > 0. Then (uyqu;)™ = urt¢® “u; =

g=d1+5E_ o

€ . We can find n, in the same manner so the proof is complete.

To illustrate the method we use the following example. Let
Uy = a‘;’ag 5a3,
3 -2 —2

Uy = Ay Qg “Gg ~.

Then
d; = min{3, -2, -1} = -2,

dy = min{-3,-5,-7} = -7

sony =2"% =22 and
2 _ 15 3 —5 ~15 25 5 2
(ul'qu)? = a3'alar?¢” alay a3 = a5'adq? a7%as = azlqas = ¢ € (g).

Similarly ny = 27% = 27 and

27 2 2 3 o7 2 2 94 2 92 _92
(uy'qua)® = adazalq® az’a5ag” = afaiq” az’ag® = ajq’ g5~ = q € (q).

In the proof above we do not show that n; and n, are of minimal magni-
tude, even though they are. Because the natural order on the positive (neg-
ative) integers is a well ordering, we are guaranteed that integers of smallest

magnitude exist so we can assume that m; and my are said integers. Clearly
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(urtqauy)™, (ug'qiuz)™ € (¢;) and (g;) is cyclic so there exist smallest in-
tegers m, and m), such that (u7lqu;)™ = (u3'quz)™. This implies that
every relation that holds in the group (x) * (y)/(z™y~™2)@*®  also holds
in H = (uyquy,u;'quy) via the homomorphism z — ui'qus, y — uj qus.
We now show that in fact these groups are isomorphic by showing that the
relations of (x) * (y)/{z™y~™2)@)*W) are the only non-trivial relations that
hold in H.

First note that the element (u7’qu;)™: is a power of both ui'qu; and
u; 'qus so it generates a central subgroup of H that is identical to the one
generated by (uylqus)™2. For ease of notation let z; = ui'qu; and x5 =
uy 'quy. If R = e is a relation that holds in H, then we can express R as R =
vi‘v?...vff where each ¢; is a non-zero integer except 4; and ig either or both
of which might be zero and such that v; = z; if 7 is odd and v; = x5 if 7 is even.
Note that if | 23,41 |[> m/} then we can rewrite R as a:limll i vgzvg’jl’ mi ...v;ﬁ
and similarly if | é5; |[> m5. Therefore we can assume that R has the form
q”vf‘v?...v? where each | 49511 |< m| and | ig; |< mj.

We now apply Britton’s Lemma to R. Either R is a power of ¢ or we
have a pinch or the form a;“qa$. We can continue to apply pinches until we
have an expression equivalent to R written only in terms or powers of ¢, the
powers of which sum to 0. But m)| and m are the smallest integral powers
of uilqu, and wuj'qu, respectively, which lie in (g). Therefore, because each
| 49j41 |< m{ and | i9; |< mj, we must have that they are all zeros; i.e.,

R = ¢" and v = 0. This proves that no other relations can hold in H.
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Therefore,

H 2 (z) % () /(a™y ™)@

where (zmiy—m'z>(m)*(y) — (U_I’U’u, ' u e (:E) N (y),v c (:L‘mlly_m’2>),
Thus H is an amalgamated free product which we show is right-orderable,

by first considering the subgroup
I({H,H]) = (w € H | 3n #0,w" € [H, H])

called the isolator of [H, H]. Naturally H/[H, H| is abelian and [H, H] <
I([H,H]) so H/I(|H, H]) is an abelian group. Furthermore, H/I([H, H])
is torsion-free because if wI([H, H|) has finite order then 3Ji; such that
wh € I([H, H]) which implies that Ji; such that w2 € [H, H] which means
w € I([H, H). Therefore H/I([H, H]) is torsion-free abelian and hence right-
orderable. To show that I([H, H]) is right-orderable, by virtue of Theorem
8, we need only show that it is a free group. Theorem 9 however, implies

that I([H, H]) is free if

I([H, HD™ ((ug 'qui) = I((H, H)™ (ugqua) =€

where I([H, H))? = (u™'vu | u € H,v € I([H, H])). But I({H, H]) is a nor-
mal subgroup of H so I([H, H|)¥ = I([H, H]). Suppose there exists integer
i1 such that (uy'qu,)® € I([H, H]). Then by definition, there exists integer 4,
such that (u7'qui)"* € [H, H]. Therefore, u;—~1qu; € I([H, H]). But there
exist integers m; and my such that (u] qui)™ = (u3 qua)™ so (uj 'qus)™ €

I([H, H]) and thus u;'qu, € I([H, H]). This implies H/I([H, H]) & e and
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that H has no non-trivial abelian torsion-free quotients. But H/[H, H] &
(z,y | [z,9] = e,&™ = y™) by virtue of the isomorphism between H and
(z) * (y)/(@™y~ ™)@ Thus H/I([H, H]) has an infinite cyclic subgroup
and so an infinite cyclic quotient group which is a contradiction. Therefore,
the supposition that there exists integer 4, such that (uy'qu;)" € I{[H, H))
is false and I([H, H]) is free and hence right-orderable.

This proves that every subgroup (z;,zs) of (g} generated by two ele-
ments is right-orderable. We extend the proof to cover subgroups (1, T2, ..., Zs),
generated by 7 elements, by expressing H;'s iteratively as amalgamated free

products of the first j generators. That is, given the subgroup
(15 ey @i | T = U7 quj, u; € A)
we express the subgroup generated by (z;,zs) as
Hy = (1) * (z2) /(ho) ®*@2) where hy = a1 2;™
and in general we say

Hj = Hj_y * (z;)/(R]-i "z

mi)%‘—l*(%‘)
7 .

Such a construction is always possible but may not yield a presentation
of the intended group, unless the z;’s are first arranged in non-descending
order with respect to the smallest positive integers k; such that zj" = q2k"
as the following example illustrates.

If (1, Zo, z3) = {uyquy, us qua, uz 'qus) such that
u; = aj %as,
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2 4

Uy = G304,
Uz = ag3a2.

Then finding n;, ng, and ng as before we have

22 -5 2 92 _2 5

(u;lqul) =ay707q¢" a; “ay = ay qa2 = q

-1 1_ —4 -2 2 4_  —-4.92 4 _ 96
(us'quq)” = ag*az’qazay = a; "¢“ ag =q
28 _ 3393 -3 3 _

( qu;:,) = g~ 059" G5 Qg = Qg qa6 q

Now if we keep the order =1 = uT quy, zo = ug qug, T3 = u3 qus then
Hy = (1) * () /(2% 23 ®*2) and

H3 = Hy <933>/<(~’C1 )1-'3526)}{2*(353)

But note that 22 # z2° in Hs but (ui'qui)? = ¢© and (u3lqus)” =
(us'qus)™)” = (¢)* = ¢* in (uiqui, uz" qua, u5"qus).

However we can remedy this problem by taking z; = uz’qus, T =
ul_lqul, and z3 = u{lun. Then

5

Hy = (z1) * (z2) /(2] x5

22)(331)*(1‘2) and

Hs = Hy x (w3)/{(a? 2772251 ) ) = (urquy, uz qua, u3 qus)

because Hj has defining relations 22° = z2* and z2° = x5 which are precisely
the defining relations of (u7'qu;, us 'qus, u3 'qus) under the above mapping.
It remains to show H; is right-orderable. But this is done analogously to

the two-generator subgroup case. H,;/I([H;, H;]) is torsion-free abelian and
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hence right-orderable. By Theorem 1, if I([H;, H;]) is not a free group then
there exists w # e such that w € H;_; or w € (z;) and w € I([H}, Hj]). To
see that this is not possible, recall that every element of (g)# has a power in
(q) so every element of H;_; and every element or (z;) must also have a power
in (q). Therefore if w € I([H;, H;]) then some power of ¢ is in I([H;, H;])
and thus every power or q in H; is in I([H;, H;]). But then every element of
H; is in I([H;, H;]) since every element or H; has a power which is a power
of q. But H; # I([H;, H;]) since H; has an infinite cyclic quotient. Therefore
I([H;, H;]) is a free group and hence right-orderable and hence so is H;.
Therefore every finitely generated subgroup of (g;)* is right-orderable
and therefore {g;)# itself is right-orderable for every i € {1,2,...,A}. Buf
the groups (t;)4 are completely analogous if we replace each u with 4! in
the above proof so each (¢;)4 is also right-orderable. Now ([;)* = (I;) which
is infinite cyclic and so definitely right-orderable. Thus the free product of
these groups is right-orderable so B is right-orderable. And A is free and so
right-orderable so G = BA is right-orderable, and hence G§ is also right-

orderable. Finally G; = G} x G so G is right-orderable.

3.3.2 A, /K is right-orderable

Let
K = ([u,v] | u€ Ga,veEP)
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where P is the free group (p1,ps). Further, let H; be the subgroup generated

! as z runs over the generators of

by the diagonal elements, —'z* and z+z~
G}, and their inverses, and let H be the normal closure of H; in A, p,. By
definition H is normal in Ap,,,. To see that K is also normal in A, we
note that Vg € Gy, g u,v]g = [ug,v]lg,v]™* € K and Vg € P,g7{u,v]g =
[u, 9] u,vg] € K. Thus to right-order Ay,p,, we can simply right-order the
groups A, /HK, HK/K, and K.

Note that A,,,,/HK is isomorphic to P x G} because G5 = G§ modulo
H and elements of P and G5 commute modulo K. As shown earlier, G, and
GY, are right-orderable, P is a free group of rank 2 and so also right-orderable,
and so A,,p,/HK is right-orderable.

Now HK/K = H/H (N K is isomorphic to a subgroup of G; because the
elements of H are conjugates of elements of G5, which modulo K are only
conjugated by elements of Gy, i.e. Yw € (z71z%), Vp € (p1,p2), p lwpK =
wK. Thus HK/K inherits from G a right-order.

3.3.3 K is right-orderable

Finally, we show that K is just a free group of countable rank and thus also

right-orderable.

Lemma 4 The subgroup K = ([u,v] | u € Ga,v € P) of Ap,p,, is a free

group of countable rank.
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The group A,,,, is finitely generated, and thus countable. K < Ay,
so it must be countably generated. To show K is free, we apply Britton’s
Lemma, to the groups Gs, Gz, G1, and Gy in turn to show that no non-trivial
relation of the form W = e holds in K.

Beginning our proof by way of contradiction, assume we have
W = [uy, v1])™ [ug, vo]™2...[uk, v ™ =e.

Applying Britton’s Lemma in K < G3 (recall G = A,,;,), it is not possible
for the above presentation of W to be a ¥ %, | 29-word since each v; is a

Z3-word. Thus W contains a subword piUp; where U is a word generated

by
o {(AN gL, (tH 1< <AYifpf =pr
o {Ag'L, t51<i < A}ifpf =p
o {B'tili, ¢71 <i < A}if pf =p;’
o {Bf(tf) ') ¢ 1<i <A} if ps = po

Let us consider how such a subword pUp;*, also called a pinch, can occur
in W.

One possibility is that a pinch could be completely contained in a single
commutator [u;,v;]. In this case v; must equal p;, ps, p7* or py! because if
one of the subwords p;'U can be replaced, using the group relations, with

a subword of the form Up{' then p?U can not be replaced using the group
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relations in a similar way, unless p;'p;® = e, which is trivial. A similar

argument applies to subwords of the form Up;'. For example p;t; can be
replaced by (£F)~'p; but pi(¢F)~! and p3'(t7)~! can not be replaced using
the group relations.

Therefore we have

1 1

[wi, vi] = w7 Mg = ui by (w)vy Mo = ui y(ws)

where 7y is the map defined by
1

yizTl=aot zeG,

" -1 +
vzt 2T, v €G]

The other possibility is that v; = v;4; for some 7 and n;n;y; < 0, and
the pinch occurs between [u;,v;] and [u;y1,vi41]. Assume, without loss of

generality, that n; < 0. We have

[ug, v [y, vipr) =ity luivivﬂ.11uff1vi+1ui+1 = u; 'y 1uiui—+11vi+1ui+l
. . -1 -1
in which case v; € {p1,p2,p7 ", Pz } and

[ui, v [Uira, Uz’+1]—1 = uz")’(uiuz:rll)uiﬂ-

Thus, all of the pinches from G3 yield subwords of the form

1oyt y(ug)

2. wiy(usui Ui
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where each u; in 1 and uiu;_ll in 2, is generated by one of the bulleted
sets above. Note that each pinch can use one and only one bulleted set
in this way, but any and all of the bulleted sets may be used in different
pinches throughout the expression W. We can continue applying Britton’s
Lemma, until we produce a ¥ {J &; U Ze-word equivalent to W. We label this
equivalent expression W,. Note that W, will be the product of subwords of
the form of 1 and 2. Furthermore note that each such subword can be created
in one and only one way, i.e. given the subword we can tell exactly what the
pinch was and recover the original commutator or pair of commutators.

We again apply Britton’s Lemma, this time to W in Gy. In Gq, {l;, 1] |
1 <1 < A} is the set of stable letters so either W is a ¥y |J £q1-word or W,
has a pinch of the form

ITeUl

or

GO

where U is a {a; | 1 < j < n}-word for l; and U is a {a] | 1 < j < n}-word
for I;'. However there is no way to produce such a pinch using a product of
words of the form of 1 and 2.

It is very easy to see that I§ and [;* in the same u; or v(u;) or y(uuz})
can not form a pinch because they are necessarily separated by a word of
the form (AF)~'g;" or Aig;* or By 't; or B (I )~! and in order for I7<UI¢ or

(IX)=°U(If )¢ to be a pinch, we must have U € (a;) or U € (a]) respectively.
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Now consider the leftmost subword of the form 1. or 2. If the left most

! is not part of a pinch and

subword is of type 1, then any I§ or [} in u;
therefore not removable, since the pinches involving (u;) will not completely
remove y(u;) and any pinch involving letters of u; ! can not involve letters

1 in y(uug)-

of y(u;). The case for type 2 is the same for the If or

Therefore W, must already be a Yo X;-word. But if the subwords of
the form of 1 and 2, do not contain I§ and ()¢, then they can not contain
a;’s and a;-* ’s either, which are the stable letters of G;.

Therefore, W, must be a Yp-word. But Gy is a free group so W, must
already be the identity. This means that the subwords of the form 1 and 2 in
W, must cancel one another out, so one the subwords must be adjacent to its
inverse. Since each of these subwords is created in a unique way, one of the

commutators of W must be adjacent to its inverse, yielding a contradiction.

We have shown that K is free and, therefore, right-orderable.

3.4 The Lattice-Ordered Group L(4,,,)

We end this chapter by showing how to construct a lattice-ordered group
L(Ap,p,) that may be a candidate to answer the question by A.M.W. Glass
affirmatively. The author plans to investigate this possibility in the future.
The method of embedding a right-ordered group into a lattice-ordered one
is not new. We have shown that A, ,, is right-orderable, so taking the right

regular representation of A, ,, yields a faithful homomorphism of A4, ,, into
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the group of order preserving permutations of the totally ordered set A, ,,.
To avoid confusion between the group A,,,, and the ordered set A,,,,, we
denote the latter Q. Then for g,h € Ap,p,, and = € Q, we set (g V h)(z) =
maz{zg,th} and (g A h)(z) = min{zg,zh}. This gives a lattice-ordered
group generated by the generators of Ap,,,, and such that A, ,, is a subgroup.
We denote this group L(Ap,p,)-

It is important to note here that under the logical signature {e,-,A,V}
L(A,,p,) is a finitely presented lattice-ordered group; the generators and
defining relations of L(A,,p,) are just those of A, ,,. However, when viewed
strictly as a group L(A,,,,) is not even finitely generated. Thus, it could
possibly be used to prove the existence of a group which is finitely presented
in the class of lattice-ordered groups which have solvable word problem and
unsolvable conjugacy problem. It would not be a group which is finitely

presented as a group.
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Chapter 4

The Embedding Question for

Torsion-Free Groups

This chapter is devoted to giving an alternative proof to the following theo-

rem, which partially answers a question by Collins.

Theorem 15 FEvery torsion-free group G, with solvable power problem, can

be embedded in a torsion-free group H, with solvable conjugacy problem.

The result has already been established as a corollary to the following

result

Theorem 16 (Olshanskii, Sapir [25]) Every finitely generated group with
solvable conjugacy problem is embeddable into a finitely presented group with
solvable conjugacy problem. Moreover, every finitely generated recursively

presented group G can be embedded into a finitely presented group H in such

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a way that the degree of unsolvability of the conjugacy problem in H coinsides

with the degree of undecidability of the conjugacy problem in G.

However, to quote the authors,

”The construction in the proof of this theorem is complicated and employs
ideas of three previous papers...” [25]

As our proof is short and self-contained we hope that it can be seen to
have merit. The only previous result on which we rely here is the following
well known theorem of H.N.N. and a simple construction that results from

it.

Theorem 17 (theorem 2 of H.N.N. [14]) Let p, (where o ranges over
an indezx set 3) be an isomorphism of a subgroup A, of a group G onto a
second subgroup B,, not necessarily distinct from A,. Then there exists a
group H containing G, and also containing a group T freely generated by a
set of elements t, (o € 3), such that for any o in ¥ the transform by t, of

an element in A, is its image under piy:
t-lagt, = po(as) for all o € ¥ and a, € A,

Collins’ actual question, which remains open, can not be proven using
the method we give here. We will explain this in the closing remarks of this
chapter.

It was noted in [14] that H is torsion-free if G is so, because the only

relations added are t;'a,t, = w,(a,), which become trivial if we set the
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elements of G equal to the identity; therefore the generators added in the
extension do not satisfy a non-trivial relation on their own.

Following the construction outlined in [14], for each pair of distinct,
non-identity elements (a,b) of G, we create an element #(31) such that
t(;fbg)at%a,b;) = b. Because G is assumed to be torsion-free, all non-identity
elements have the same (infinite) order, so this is possible. Then setting
G = Go and G; = (Gi-1,1ep1) | a,b € Gi_1,a # b # e) we create the tower

G=G, <G <...<G, < ... and set

It was shown in [14] that every two distinct non-identity elements of H
are conjugate in H, and that if Gy is countable and torsion-free, then so
is H. This, however, does not imply that the conjugacy problem for H is
solvable because, if H has an unsolvable word problem, then it must have
an unsolvable conjugacy problem. However, if H has solvable word problem,
and any two non-identity elements of H are conjugate, then we can solve the
conjugacy problem in H. In order to determine if @ and b are conjugate in
H we need only determine whether or not one or both of a and b are the
identity.

If Gy has solvable power problem, and hence word problem, then, by
induction, we will show that H has solvable power problem. Assume n > 1
and G,_; has solvable power problem. We begin creating a normal form for

elements of G, by deleting as many occurrences of generators of G,\G,—1
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as possible. Although this normal form will not be unique, in that a given
element may be expressed by more than one word in this form, we will have
the result that an element reduced to such a normal form is the identity
only if it contains no occurrences of generators (or inverses of generators) of
Gn\Gn-1. This implies that the word problem will then be reduced to the

word problem in G,_;, which, by inductive assumption, is solvable. From

+1

abns i @ word

now on we refer to the occurrence of a subword of the form ¢
w as a singleton subword of G,\G,,—1 .

Let w be a word in the generators and their inverses of G,. If w contains
no singleton subwords of G,\G,-1 we are done. Otherwise, picking each pair
of consecutive singleton subwords of w that lies in G,\G,-1 we get a subword
of the form

€1 /€2 —
(%) tehp W'ty ,,  where = &1

We begin by freely reducing w.
Recall that ¢33 atl,; = bso t1,:bt;; . = a. Thus, with each (x); we do

a,b,iva,

the following.

1. Determine if ¢4y = tcan- If not, we move to the next (), otherwise

we proceed to step 2.

2. If ¢ = 1 and ¢ = —1, determine if w = b* for some integer k less
than or equal to the length of w’. Both w' and b* lie in G,,_; so we can
do this in a finite number of steps. If w’ = b*, replace () with a*. If

€1 # 1 or €2 # —1 or w' # b* do nothing. Move to step 3.
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k

3. If ¢, = —1, €5 = 1, determine if w’' = a*. If so replace () with b*;

otherwise do nothing. Move to the next (*).

We then make successive passes by repeating the above algorithm, freely
reducing after each pass, until we complete a pass where no singleton sub-
words have been deleted. Note that w has only a finite number of such sin-
gleton subwords of G,\G,-1, so we need to make only finitely many passes.

‘There is no other way to delete a singleton subword of G,\G,_; so if
any remain, w can not be the identity element. Otherwise w is reduced to
an expression solely in the generators and inverse of generators of G,,_;. By
our inductive assumption, G,_; has solvable word problem, so we can tell
whether or not this normal form of w is equal to the identity. This proves

the following lemma.

Lemma 5 In the above construction, if Gy is a torsion-free group and G,_1

has solvable power problem, then G, has solvable word problem.

Note that the above lemma does not imply, by induction or otherwise,
that H has solvable word problem and therefore solvable conjugacy problem.
However if we can show that G, also has solvable power problem, then the
result will follow by induction.

Given w;, wy in Gy, it remains to show whether or not we can determine
if there exists an integer k such that w; = w%. Since G, was shown to have

solvable word problem, we may assume that w; # ws.
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We begin by applying the above algorithm to w; and ws to delete any

deletable singleton subwords of G,,. This gives
W1 = UV1UV... UmUm

W9 = T1817282...TLSL

where u;, 7; € (G \Gn-1) and s;, v; € Gp_1.

Define w; = ¢(w;) where ¢ : G, — G,/GS",, the factor group being
isomorphic to a free group. The homomorphism essentially sets each s; =
U; = €.

The power problem in G, /G%", is easily solvable because G,,/GS", is a
free group. If for some k, we have Wi = w,"* then we need only check whether
or not w; = wk for that particular k. This is so because if there exists some

k such that w; = w¥, then certainly @7 = @W;* must also be true. Since G,

has solvable word problem, for fixed k we can check whether or not w, = w§
is true.

The only case that remains occurs when w; = W; = e. In this case the
t{a,bn) are 'balanced’ in the sense that for every occurrence of the singleton
subword &, , in wa (w1) there is a corresponding occurrence of ¢, .. We
therefore assume that w; and w; have been reduced to a normal form by
applying the above algorithm and proceed by induction on the number m of
such pairs of singleton subwords of G, \G,-1 in ws.

If wy has no pairs of singleton subwords of G,\G,—1, then either w; has

pairs of singleton subwords of G,,\G,,—1 or it does not. If it does, then there
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is no integer k such that w; = wg, or w; has no such pairs. If w;, has no such
pairs, then both w; and ws lie in G, and we can solve the power problem
for them by the inductive assumption that G,,_; has solvable power problem.

If wy, has one pair of singleton subwords of G,\Gy_1, then

_ € —€
Wy = Vg t(a,b,n) 'Uzt(a,b,n) (%:

where vy, v, v3 € Gh_1. Without loss of generality we treat only the case
where € = —1. Three cases arise by applying the above reduction algorithm
to w2 to see if the number of non-deletable pairs of singleton subwords of
Gn\Gy-1 increases, decreases or remains constant at one.

For case one, if the number of singleton subwords increases, then w? has

two pairs of singleton subwords and has the normal form

wh = Uﬂ(}fb,n)wt(a,b,n)U4t@fb,n)vzt(a,b,n)vs

where v, is the freely reduced form of vgv;. Then clearly for every integer
k, wk has k pairs of singleton subwords of G,\G,_1. Therefore we need
only count the number of pairs, say k, of singleton subwords of w; and test
w; = wh for this value of k only. We can do so because the previous lemma
shows that the word problem in G,, is solvable.

For the second case, if w3 has fewer singleton subwords of G,\G,_1 than
wy, then obviously w? € G,,_;. In this case, if w; = w?* for some integer k
then w; € Gn_; and if wy, = w2**! then wyw; ' € Gn_1. Therefore, to solve
this case we simply check whether or not w; or the reduced form of w,w;?

are in G,_;. If either is, we solve the corresponding power problems in G,,_;.
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For the final case, if w2 has exactly one pair of singleton subwords of
Gp\Gp-1 then
wg = vlt@fb,n)vgt(a,b,n)v;;
if v; = v3! or

2 _ a1 j
wy = vlt(a,b’n)vga Vat(a,b,n) V3

if for some integer j, vsv; = . In either case, for any integer k£ we have
respectively

k -1k
Wy = V1t b nyV2t(a,bm)U3

or

k -1 RY
wy = vlt(a,b,n)vz(a’vg) t(a,b,m)V3-

In both cases we use the above reduction algorithm to delete as many sin-
gleton subwords of Gp\Gn-1 of t(apn)v1 Ywyvg lt(a,b,n) as possible and check
whether or not it is an element of GG,,_;. The power problem now reduces to
that of G,,_;.

We now assume that if w, has fewer than m pair of singleton subwords of
G, \Gp-1 then the power problem for w;, and w, is solvable. For wy having
exactly m such pairs, we again consider the same three cases of the reduced
form of w2.

The first case is completely analogous to case one above so we omit the
details. In the second case, if w3 has fewer singleton subwords of G,\Gp_1
than w,, then by our inductive hypothesis, we can solve the following ques-

tions that together, constitute the power problem in this case.
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1. Does there exist an integer k such that w; = w2?

2. Does there exist an integer k such that wywy! = w2*?

The final case is also completely analogous to the third case above and
s0 is left to the reader. This completes the proof theorem 1.

Recall that D.J. Collins asked if every torsion-free group with solvable
word problem could be embedded in a group with solvable conjugacy prob-
lem. This stronger result can not be derived from the above method because
the word problem in G, is equivalent to the power problem of G,_; and

therefore implies a solution to the power problem in Gy.
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Chapter 5

An application of the

Conjugacy Problem

5.1 The Braid Cryptosystem

Commercial applications are by no means necessary to justify the study of
any area of mathematics, this being particularly true of areas of pure math-
ematics, but they are always greeted warmly when they appear. In this
chapter we present a public key cryptosystem which, utilizing groups with un-
solvable conjugacy problem, significantly improves the security of the Braid
Cryptosystem, while maintaining what appears to be comparable efficiency.

A cryptosystem, i.e. a method for securely exchanging secret information,
is called a public key, or asymmetric, cryptosystem if it is believed that the

decoding key can not be deduced from the encoding key in a reasonable
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amount of time with available and hopefully even with future computing
technology. This allows for the encryption key to be made public without
compromising the cryptosystem.

The Braid Cryptosystem is a public key cryptosystem developed primarily
by Ko, Lee, Cheon, Han, Kang and Park [15]. The braid group on n + 1-

strands has the following presentation:
Bn = (0'1, o3 Op ‘ 0,05 = 0504 Zf ]'L —]l > 1, 0;00; = 04005 7,f |Z —]l = 1)

where g; can be represented graphically as a crossing of strand ¢ over strand
1+ 1 and for use in the cryptosystem we assume that n is even.

Before describing the Braid cryptosystem we first point out the properties
of the braid group that make the cryptosystem possible. Note that the first
set of defining relations imply that any element from By = (01,...,0n/2-1)
commutes with any element of Bg = (0n/241,...,0n). Another important
feature of the Braid group stems from the fact that it is an automatic group.
We will discuss automatic groups in more detail in the next section, but for
now it is sufficient to note that the word problem for any automatic group
can be solved in quadratic time. This means that for any automatic group
G, there exists a positive constant ¢ such that given any word w of length n
in the generators and their inverses, we can determine algorithmically in cn?
steps or fewer whether or not w = e in G. Finally it is important that the
word problem in automatic groups is solved in quadratic time by converting

any element of the group to its unique normal form in quadratic time and
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then comparing if the normal form is identical to e.
Cryptosystems are conventionally explained in terms of two parties Alice
and Bob exchanging secret information via the cryptosystem. Following this

convention, the Braid cryptosystem works as follows.

1. Alice chooses an element x € B,, and a € By, computes the normal

1

form of ¢ = a™"'za and passes ¢ and x to Bob, retaining a as her secret.

2. Bob chooses an element b € Bg, computes the normal form of d = b~'zb

and passes it to Alice retaining b as his secret.

3. Alice computes a~'da, maps it via a hashing function h to a binary
word and then encodes her binary message m as m' = h(a™'da) ® m
to send to Bob. Here - denotes the ’exclusive or’ function on binary

strings.

4. Bob then computes h(b~'cb) @ m'. Since a and b commute, a"lda =

b~tcb and h(b~lch) -m' = m

According to its creators in [15], the beauty of this algorithm lies in it’s
efficiency to encode and decode the messages, and the limited memory and
CPU capacity needed to run it: making it ideal for use in cell phones, pda’s,
etc.

The success of the braid cryptosystem depends on Alice and Bob keep-
ing a and b secret respectively. This is achieved if given a~'za and z, it is

algorithmically infeasible to a and analogously for b. By ’algorithmically in-
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feasible’ we usually mean that the solution should take at least exponential
time in the sum of the lengths of words = and a™'za. The fastest known
algorithm for solving the conjugacy problem in biautomatic groups is expo-
nential; however there have been numerous attacks on the conjugacy problem
of the braid cryptosystem which take only polynomial time in most cases.
This requires Alice and Bob to be very selective in their choice of a, b, and
x, which requires additional time and lowers the safety against a brute force
attack. In fact, the method for selecting them to ensure safety against the at-
tack detailed in [20], is directly at odds with the method for selecting them to
ensure safety against brute force attacks. In 1992, the authors of [9], on page
204, state “there is probably a polynomial time algorithm [which solves the
conjugacy problem in the braid groups| using pseudo-Anosov homotopies.”
The recent paper [10] proves the existence of a polynomial time algorithm
which solves the Diffie-Helman conjugacy problem in the braid group. The
paper concludes that the cryptosystem is no longer secure.

However, if we could apply the same or similar cryptographic algorithm
to a group that had all of the positive aspects of the braid group detailed
above but also had an unsolvable conjugacy problem, then the resulting
cryptosystem would be as efficient as the braid cryptosystem at encoding
and decoding messages and, at the same time, would be much more secure
because it is difficult to even conceive of a an attack other than brute force
against a problem that can be proven to be algorithmically unsolvable. It

should be noted that even if the problem is unsolvable, by limiting the length
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of a possible solution we can always test all possibilities of equal or lesser
length to see if a solution exists. This is, by definition, a brute-force attack.
In fact as explained at the end of this chapter, if a problem is algorithmically
unsolvable but solutions for the problem can be confirmed in polynomial
time, the problem has new potential for proving that P # NP.

In the sections 5.2, 5.3, and 5.4, we detail properties of automatic, biau-
tomatic and hyperbolic groups. In the section 5.5 we use these results to give
an explicit example, with proof, having all of the necessary properties of the
braid group but also having unsolvable conjugacy problem. In section 5.6, we
give two new algorithms detailing cryptosystems based on this new group.

In the final section, 5.6, we discuss the security of these new cryptosystems.

5.2 Automata theory

As this is probably the area that the reader is least familiar with we will try
to give a less formal introduction. Most of the definitions and theorems are
stolen shamelessly from [9] and [2], but discussions are not.

First we make the following definitions.
Definition 1 [9] The set of all strings over an alphabet A is denoted A*.

Definition 2 (language [9]) A language over A is a subset of A*, together
with the alphabet A. Mention of the alphabet A is frequently suppressed.
Nevertheless, if we are being rigorous, we must distinguish between the null

language over the alphabet{x} and the null language over the alphabet {z,y}.
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When theoretical computer science was in its infancy, the question arose
as to which languages over a finite alphabet could be recognized or accepted
by a computer. The definition of ’accepted’ will be formalized shortly, but
for now we simply mean that a computer accepts a language L over an
alphabet A if given any word w in A* it can determine in a finite number
of steps whether or not w € L. The notion of such a computer will also
be formalized shortly but for now we note only that its behavior must be
completely explainable by a finite number of rules, which take up a finite
number of words and symbols; therefore the number of such computers must
be countable. Now, if A has at least one element, then A* is countably
infinite and the number of languages on A must be uncountable. So not
every language can be accepted by a computer.

Several constructs such as Turing machines, context sensitive grammars,
context free grammars, and automata were created (in the sense that a pre-
cise definition of what rules they could follow and what behaviors they could
perform) which accept different types of languages. It turns out that au-
tomata are the most restrictive in that the subset of languages that they
accept is the smallest. However there are computational advantages to au-
tomata because the languages that they accept are in a sense much better
behaved. For comparison between these types of languages and computers
we refer the reader to any introductory text in the theory of formal languages.
For the remainder of the section we restrict ourselves to automata and the

languages they accept.
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Languages recognized by automata are said to be regular. As the def-
inition of a regular language is often easier to comprehend than that of a
finite state automaton, we give the definition of a regular language first. It is
hoped that the tedious definition of finite state automata will be made more
bearable with the motivation that it is the means for a computer to accept
the very logical construction; i.e. the regular language. To this end we first

give the definition of a regular expression.

Definition 3 (regular expression [9]) A regular expression over an al-
phabet A is a particular type of string (specified below) over the alphabet E
formed by adjoining to A the following five symbols, which are assumed not

to lie in A already: (, ), *, +, and €

We pronounce + as "or”, and * as "star”. Informally, parentheses are
used for grouping, * denotes repetition, + is used to combine alternative
patterns, and € is the null string. A regular expression over A can be seen as
a string which defines a subset of Ax. By the regular expression of a word of
Ax, we mean a regular expression which it satisfies.

Above, we gave the definition of A* where A is a finite alphabet but the
immediately preceding definition requires the use of the * operator on words

and languages. The next definition explains this concept.

Definition 4 (concatenation of languages [9]) If K and L are languages

over the same alphabet A, we define their concatenation KL to be the set of
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strings w for which w = wyws in A*, where w; € K andwy € L. If K or L
is empty, so is KL. We define the star closure of K as
K* _ U Kn,
n>0

whereK® = {¢} and K™ = K" 'K forn > 0.

A regular language can now be defined as any language that is the set of
all words over an alphabet A that have the same regular expression. In order
for this definition to be rigorous we need either that regular expressions are
unique or a method for determining the equality of two regular expressions.
The first condition cannot be satisfied since we can always add extra paren-
theses without effect. However, the following rules allow us to compare any
two regular expressions and determine if they are equal. We denote by L(r)

the language defined by the regular expression r.
o L((r)) = L(r)
o L(r*) = (L(r))"
o L(rire) = L(r1)L(rs)

With these languages in mind we now give a characterization of the ma-

chines which recognize them.

Definition 5 (finite state automaton [9]) A finite state automaton(or sim-

ply automaton) is a quintuple (S, A, 1,Y,so), where S is a finite set, called
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the state set, A is a finite set, called the alphabet, pp: S x A — S is a func-
tion, called the transition function, Y is a (possibly empty) subset of S called
the subset of accept states, and so € S is called the start state or the initial

state.

There are generalizations of the finite state automaton which turn out to
be very useful in understanding examples of the original definition because
the generalizations are easier to manipulate and by the following theorem,

are equivalent.

Theorem 18 (Kleene, Rabin, Scott [9]) Let A be a finite alphabet. The

following four conditions on a language over A are equivalent:

1. The language is recognized by a deterministic finite state automaton.

2. The language is recognized by a non-deterministic finite state automa-

ton.
3. The language is recognized by a generalized finite state automaton.
4. The language is defined by a regular expression.

Definition 6 (non-deterministic finite state automaton [9]) A non-deterministic
finite state automaton is o quintuple (S, A, u,Y, So), where A is a finite set,
called the alphabet, Sy is a subset of S called the subset of initial states, Y is
a subset of S called the subset of accept states, and p is a set of arrows with
labels in the enlarged alphabet AU {e}. The symbol € is assumed not to lie in

A and it is meant to denote the null string.
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A deterministic finite state automaton can be considered a special case of
a non-deterministic finite state automaton for which the following conditions

are satisfied.

o There are no arrows labeled e.

e Each state is the source of exactly one arrow with any given label from

A.
o The subset Sy has exactly one element.

The convention of a non-deterministic finite state automaton is useful
in proving that a language is regular because non-deterministic finite state

automata are often easier to construct than their deterministic equals.

Definition 7 (generalized finite state automaton [9]) A generalized fi-
nite state automaton is the same as a non-deterministic finite state automa-

ton, except that each arrow s labeled by a reqular expression over A.

Generalized finite state automata are useful to determine the language
that a standard automaton recognizes because we can use intermediate gener-
alized automata to convert the deterministic or non-deterministic automaton
to a regular expression.

We end this section with the theorem from [2] which will be useful to the

original section of this chapter.

Theorem 19 [2] Suppose K and L are regular sets contained over A. Then
the following hold:
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1. A finite subset of A* is a regular language.
2. A*\K is a regular language.

3. KU L is regular.

4. KN L is regular.

5. KL is regular.

6. K* is reqular.

7. A* and the empty set are regular.

8. If B is a second finite set and ¢ is a homomorphism of the monoid A*

into the monoid B*, then ¢(L) is reqular over B.

9. If ¢ is a homomorphism of A* into B* and if J is a regular subset of

Bx, then ¢~1(J) is regular over A.

5.3 many-variable regular languages

In order to define the concept of an automatic group we need to deal with
ordered pairs of elements of a regular language, so we first consider the gen-

eralization to sets of n-tuples of elements.

Definition 8 (many-variable language [9]) Let Aj, ..., A, be alphabets.

By a language over (Ay, ..., An) we mean a set of n-tuples of strings (wy, ..., wy)
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where w; € AY, together with the n-tuples of alphabets (Ay, ..., Ay). A lan-

guage over an n-tuple of alphabets is called an n-variable language.

This definition allows us to consider languages which are subsets of A] x
... X AX. However these languages may not be generated by subsets of A; X
... X A, because there are no null-elements in the alphabets A;. The following

two definitions alleviate this problem.

Definition 9 (padding [9]) Let Ay, ..., A, be alphabets. We adjoin to each
A; an end-of-string or padding symbol, denoted by $;, which is assumed not
to lie in A;, and we define B; = A; U {$;}. The padded alphabet associated
with (Ay, ..., Ap) is the set

B = Bl X ... X Bn\($1;--~;$n)-

Definition 10 (padded extension [9]) Given a language L over (Ay, ..., An),
we define a one-variable language L® over the padded alphabet B associated
with (A1, ..., A,), as follows: For each n-tuple (w1, ...,wy,) € L, let m be the
mazimal length of the w;, for 1 < i < n. We pad each w; with $;’s at the
end so as to make its length m. The resulting n-tuple of strings is a string
of length m in the alphabet B; these are the strings of L¥. We call L® the

padded extension of L.
We can now define a regular many-variable language.

Definition 11 (regular many-variable language [9]) We say that L is

a regular language over (A, ..., A,) if L¥ is a reqular language over the padded
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alphabet B associated with (Aj, ..., An). A finite state automaton over B ac-

cepting the language L® is said to be an n-variable automaton over (A, ..., Ap)

accepting L.

We end this section with, in some sense, the analog of the final theorem

of the previous section.
Theorem 20 ([9]) Let L and L' be regular languages over (A, ..., An).

1. The languages —L, LUL' and LNL' are regular languages over (Ay, ..., Ay).

2. For any alphabet A, 1, the language

{(w, ., Wny Wny1) | (w1, ..., wn) € L}
is a regular language over (A1, ..., Ans1)-
3. For any permutation o of {1,...,n}, the language
Ly = {(w1, ..., Wn) | (Wo(1), -y Worn)) € L}

is a regular language over (As(1), -y Ao(n))-

5.4 automatic groups

With the previous definition we can now define the concept of an automatic
group.
If X = {z1,22,...,x,} is a finite set and G a finitely generated group such

that the map z — Z(z € X,Z € G) from X into the generators of G, and
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their inverses, extends to a surjective homomorphism 7 from some regular
subset (language) L of X* to G, then G is said to be an automatic group if

the following subsets of v(X™* x X*) are also regular:
o L = {v(wy,ws) | w1, wy € L, Wi = Wa}
o L, = {v(wi,ws) | wy,wq € L, W1 = WZ;}

In the above definition v is the map defined as follows. If w; = ay...a,,

Wy = by...bm then
o v: (wi,wg) > (a1,01)(az, b2)...(Gm, b) (Gms1s $)---(am, B) i ™ < 7.
o v (w1, ws) — (a1, b1)(az, bs)...(an, bn) if m = n.
o v (w1, ws) — (a1, b1)(az, ba)-..(@ny bn) (8, bs) (8, b) i m > 7.
o v:(ee) e

Here $ is used as a padding symbol to allow for the comparison of two strings
of X* of different length.
Another way to characterize automatic groups is via a geometric inter-

pretation using their so-called Cayley graphs.

Definition 12 (Cayley graph [9]) For a group G with generating set A,
the Cayley graph of G relative to A is a directed graph where the vertices are
the elements of G and the edges are the set of triples (g,a,ga), where a € A

and g € G. For each such edge, g is called the base point and ga the terminus.
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An alternate definition of automatic groups is that with respect to some
inverse closed generating set A, two travelers proceeding at the same speed
along the words w; and w, from the same base point in the Cayley graph
will always remain a bounded distance apart. This is the k-fellow traveler
property. More formally, for a word w € A*, we denote the length of w by
1(w), and for g € G, l(g) denotes the length of the shortest word w € A* such
that @ = g. The term w(t) denotes the prefix of w of length ¢ when t < l(w)

and w(t) = w if t > [(w). Then we have the following definition.

Definition 13 (K-fellow traveler property [9]) If for language L on al-
phabet A, the group G has the map x — T defined above and there exists
some constant k such that for every wq,wy € L such that Wia = W; for some
a € A we have Z(W) < k then G has the k-fellow traveler property
(with respect to A and L.)

It turns out that

Theorem 21 ( [9]) A group G has automatic structure (A, L) if and only
if L is a regular language and G has satisfies the k-fellow traveler property

for some k.

There are several ways to improve on the automatic structure of a group.
That is we can impose stricter conditions to gain further properties. Among
them are shortlex automatic groups, biautomatic groups and word hyperbolic

groups. Let A be an ordered alphabet. Recall that lexicographic order ranks
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the strings of the same length in A*, by comparing the letters in the first

position where the strings differ.

Definition 14 (Shortlex order [9]) For a set or language L on an alpha-
bet A, the shortlex order is defined by w < v if l(w) < l(v) or {w) = v)
and w comes before v in the lericographical order. Note that this is a well

ordering.

A string w € A* is called a geodesic if it has minimal length among all
strings representing the same element of G or equivalently if it is the shortest
path between to fixed points of the Cayley graph of G. The language of all
geodesic strings maps finite-to-one onto G, but in general this language does

not have to be regular or even recursively enumerable.

Definition 15 (strongly geodesically automatic [9]) If the language of
all geodesics L' is part of an automatic structure(A, L) for G, we say that G

1s strongly geodesically automatic.

Definition 16 (weakly geodesically automatic [9]) If some language con-
sisting of only geodesics is part of an automatic structure for G, we say that

G is weakly geodesically automatic.

A string w € A* is a shortlex-geodesic if it is minimum in the shortlex

order among all strings representing the same element of G as w.

Definition 17 ( [9]) If the language of shortlez-geodesics is part of an au-

tomatic structure, we say the group is shortlexr automatic.
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Theorem 22 ( [9]) Let G be an automatic group with automatic structure
(A,L). Let L' C L be the set of all strings w € L such that w is shortlez-
minimal in L N\ 7w~ }(W). Then (A, L) is an automatic structure for G. In

particular, G has an automatic structure over A with the uniqueness property.

The uniqueness property mentioned above is simply that (A, L) has the
uniqueness property if # : L — G is one-to-one. An automatic structure

(A, L) is prefix closed if every prefix of a word in L is also a word in L.

Theorem 23 ( [9]) A shortlex automatic structure (A, L) for a group G is

necessarily prefix closed and has the uniqueness property.
An even stronger type of automaticity is biautomatiéity.

Definition 18 (biautomatic [9]) Let G be an automatic group with auto-
matic structure (A, L) where A is closed under the inversion. We say that

the structure is biautomatic if (A, L™') is also an automatic structure.

Theorem 24 (biautomatic implies solvable conjugacy problem [9])
If G has a biautomatic structure, the conjugacy problem is solvable in G, that
18, one can algorithmically determine whether or not two words represent con-

jugate elements in G.

It should be noted that so far the fastest such algorithm takes a time which
is exponential in the length of the elements.
However there is a family of groups for which the word problem can be

solved in linear time and the conjugacy problem in O(nlogn). We refer of
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course to word hyperbolic groups. A formal definition of word hyperbolic
groups can be found in [2] and [9] but a basic definition is that there exists a
constant § such that any triangle in the Cayley graph of the group, consisting
of geodesic sides must have an area less than §. It turns out that calculating
this 6 is necessary for the algorithm for the word and conjugacy problems
but it is difficult to calculate in general. We can however, calculate it when
the group is the fundamental group of a two dimensional surface, which will
be important in subsequent sections of this chapter.

It turns out that word hyperbolic groups are strongly (and hence weakly)
geodesically automatic with respect to any ordering of the generating set.
They are also biautomatic with respect to any generating set.

We end this section by stating the definition of 'Turing machine’ that we
will adopt as convention. In this thesis, by a "Turing machine’ we always
refer to a finite list of four-tuples which define the actions of a theoretical
computer. The the theoretical computer has a finite number of states qo, , ¢y,
and a finite number of tape symbols sg,, Sp,. It is assumed that ¢q is the
halting state which, when entered, forces the computer to stop. The types of
four tuples are (g;,, 8555 Sj3» Ga)s (Qia» Sjar By @je)» and (gjy, Sjps Ly gj). The first
tells the computer, when in state g;, and reading symbol s;,, to write symbol
sj; and enter state g;,. The second four tuple tells the computer, when in
state g;, and reading symbol s;,, to move right one space and enter state
¢jo- The third four-tuple, is the same as the second except that it tells the

computer to move one space to the left instead of to the right.
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5.5 A candidate for a new cryptosystem

In this section we modify a group, proven in [1] to be biautomatic and have
a subgroup with unsolvable conjugacy problem, to produce a group that re-
tains these properties but for which the subgroup with unsolvable conjugacy
problem also has commuting subgroups. Further we will show that the nor-
mal form provided by the automatic structure provides a security level that
greatly exceeds that of the braid cryptosystem.

As in [11], we begin with a Turing machine T with unsolvable halting
problem, tape alphabet s,, sy, ..., spr—1 and internal states qqg, ¢4, ..., gv With
q1 as the start state and gy as the unique halting state. Markov and Post,
are credited in [11] with the following construction of a finitely presented

semigroup y(7") with unsolvable word problem
Y(T') = (h, 80, S4 -y SM=1,4,q1, -y qn | B(T))
where the relations R(T) are
%s; =qse if Gsjskq €T
and for all b € {0,1,..., M — 1} :
gGsisy = s;qsy 1f  qsjRq €T,

¢Sjsm = Sjqsosm  tf  qisjRq €T,
spqis; = qsps;  if  @sjLq €T,
SM@GS; = Smqsos; tf  @sjLg €T,
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doSy = qo
SpdoSM = GoSMm
SMqoSM =4

Using this semigroup we next construct what is termed, in [11], as Boone’s
group. Note that each of the relations in R(T) is of the form Fq;,G; =
H;q;,K;, where ¢ is an element of a finite indexed set I and the F’s, G’s,
H’s, and K's are positive s-words or e. If X = sils;2...s5p™ then denote
X#* = Sy, 8y, 2..-8-™. Then Boone’s group, denoted B(T'), has the following
presentation.

Generators: q, qo, ---, IN, S0, ---» Sa, X, t, k, 75,1 € I; Relations: Vi € I, and

allb=0,.., M,

ISy = 551172
TiSp = SpXT; X

ri—lﬂ#QilGiri = Hi#QizKi

tr; =r;t
tr =zt
kr; =rik
kx = xk

k(g 'tq) = (g tq)k.
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Boone showed that the above has unsolvable word problem and Collins
and Miller, in [11], showed that the Boone group has cohomological dimen-
sion 2. This allows B(T) to take the place of the group @ in the following
construction discussed in [1], [6] and [27].

Let Q = (x1,...,z1 | Ry, ..., Rk) be the presentation for B(T') given above,
i.e., @ = B(T'). We apologize for the change of notation but the biautomatic
group that we wish to construct spans four distinct papers each with different

notation. Let
-1 -1
I'= <.’E1, vy Tr,A1, .04, Qg l Z; a;T; = I/V1;j+, a:iajxi = VVij._, Rk = Wk>

where the above relations hold forevery 1 <i<I, 1<j<J, 1 <k<K
and each W;;+ and W, are positive words of length 14 and 2 | Ry | +8
respectively in the letters {zy,...,x;} and such that no two letter subword
appears more than once in the concatenation of all of the W;;, and Wy in
some order. In [27], it was shown that it is possible to create a word of length
J? using J distinct letters, such that no two letter subword is repeated, so
we need to choose J such that

K

J* > (210)14+ S (2| Ry | +8).

k=1

Then according to [1], by letting N be the subgroup generated by the a;’s,

we have the following properties:

e The short sequence 1 — N — I' —P @ — 1 is exact, (i.e. N<aT

and I'/N =2 @,
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N is finitely generated but in general not finitely presentable;

' is torsion free and word hyperbolic, and thus strongly geodesically

automatic;

I' x T is short-lex biautomatic ;

The group P defined by

P :={(v,7) | p(n) =p(n)} cTxT

is finitely presented, has unsolvable membership problem and unsolv-

able conjugacy problem.
e P is generated by ((z;,z;), (e, a5), (aj,¢e) |t € {1, ..., I}, 7€ {1,...,J})

Because I' x I is biautomatic, even though P does not inherit this prop-
erty, it must inherit the Quadratic time solution to its word problem, so
P already has all of the properties that we require except the presence of
commuting subgroups. Of course the subgroups ((e,a;) | j € {1,...,J}) and
((aj,e) |7 €{1,...,J}) commute but if the algorithm for the braid cryptosys-
tem were applied using these groups in the place of By, and Bpg then hacking
the code could be reduced to solving the conjugacy in each coordinate of

I' x T" separately which can be done in O(nlogn) as I' is word hyperbolic.

This would provide no security at all.
Before modifying I' to produce a group more suited to our application,

we first briefly describe the proof in [1] that the conjugacy problem for P is

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



unsolvable. Note that a word generated by the set {(e,z;)} is an element
of P if and only if the corresponding word in just the z;'s is equal to the
identity in @. Therefore as @ has unsolvable word problem, P has unsolvable
membership problem. Also noted in [1], in a word hyperbolic group, the
centralizer of any element is cyclic. Thus Cr(a;) is (a;) and Crxr((aj,a;))
is {(e,a;),(aj,e)) C N x N < P Now N x N is normal in I x I, so for
any word in w € ((e, z;), (i, €)), we can express w'(a;, a;)w in terms of the
generators of N x N, call this word g. We now ask if g is conjugate to (a;, a;)
in P. Suppose there exists w' € P such that (w')"!(a;,a;)w’ = g. Then
w'w € Crxr((a;,a;)) C P and w' € P sow € P. Therefore we can determine
if (a;,a;) is conjugate to g in P if and only if we can determine membership
in P. But determining membership in P is an unsolvable problem, so P has
unsolvable conjugacy problem.

In order for the above proof to apply to the new group we wish to con-
struct, we need two subgroups which play the role of ¢} and commute with
each other, but still act by conjugation on elements in N in manner which is
hard to untangle; i.e. in such a way that it is difficult to distinguish between
the actions of the two ’s on N. First we choose two distinct Turing ma-
chines T and 1", each with unsolvable halting problem and form Q = B(T)

and @' = B(T") following the construction above. Next we choose J so that

J2> @I+ INJ)14+ i(Q | Rp | +8) + §(2 | B, | +8).
k=1 k=1

This allows us to produce positive a;-words W;;4, and Wi+ each of length
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14 and W, and W] each of length 2 | R, | +8, and 2 | R}, | +8 respectively
and such that the concatenation of all of these words contains no two letter

subword more than once. Next we set
G= <ZE1, ...,LE[,ZE’I, ...,ZL'II/, A1,y ...,Q7 | iEi_lG,jIEi = VVij.Q_, x,-aj:ri_l = VVij—;
Ry, = W, (x:l)—lajxé = i,j+? mgaj(x;)—l = I/Vi,j—’ ;c - Wl& [zinx;g] = 1)'
Then the sequence
1—N-—G—PQxQ —1

is exact where N is as before and @ x ) denotes the internal direct product

(@1, -y @1 | Rg) X {z}, ..., 2} | Ry,). Finally, we set

P = ((71,72) | p(n) = p(1r)) CG xG.

Note that although we will show that it is automatic, G is not word
hyperbolic. From the previous section we know that word hyperbolic groups
can not have torsion-free abelian subgroups that are not cyclic and any pair
T, x;, would generate a torsion-free abelian group of rank two. Define the

following subgroups of G,
GX=(:cz~,aj|1_<_i§I, 1S3SJ>

Gx = (zj,a; |1<i<I, 1<j<J)

It is important to realize that, although we defined I" and Gx on the

same subset of generators G and they do have some relations in common,
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the subgroup Gx is not actually isomorphic to I' because the z;’s in G will
introduce new relations among the a;’s that will be valid in Gx but not in
T.

For example suppose we have a sequence {c;, ..., ¢ } Where ¢; = w; ' Rfw;,
the w;’s are words in the z;’s, ¢ = *1 and [[¢; is freely equal to e. Since
each RiW, ¢ = e in G, we have

m
T wi ' ReWiew; = e.
i=1
But this identity together with []¢; = e implies that
m
[ wi'Wiw; =e.
i=1
Since NV is normal in G, we can express [[7; w; 'W; “w; as a word in the a;’s
alone. Thus this relation would be valid in I" but not in I" (defined below)
but it would also be valid in both Gx and G'x.

This fact will be important for the security of the cryptosystem we design.

Thus I' is word hyperbolic but Gx may not be. We will define I to be the

word hyperbolic group

ay(e) ™ = W,

I = (2}, ... 20, a1, ..., az | (7)) a2l = W, i B = Wy).

7+

Again, it will not be isomorphic to G although every relation in IV will also
be valid in Gx:. Note that some of the extra relations in the a;’s valid in
Gx+, which are not valid in I, will be valid in T', and similarly some of the

relations in the a;’s which are valid in Gx but not in I will be valid in I".
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A final note on these extra relations is that they are necessarily longer
than the shortest means of expressing the same elements as words using
z;’s, =;’s and the a;’s. This is because the construction calls for replacing
words of the form z; “a;x§ with its corresponding W;;. and any two of these
concatenated and reduced, provided they are not the inverse of each other,
will give a word of length at least (14 — 1) + (14 — 1) = 26 since only the last
letter of the first W;;,. could possibly cancel with the first letter of the last
Wijqe, since distinct W;;’s have no two letter subwords in common. Compare
this to the length of z; “a;,a;,;.

Because the direct product of automatic groups is automatic, in order to
ensure that we can reduce an element of G X GG to its normal form in quadratic
computation time we need only show that G is automatic. Furthermore if
we can show that G is shortlex automatic, for at least one ordering of the
generators, then we have the option of using the software package KMAG
developed by Derek Holt et. al. to algorithmically determine an explicit

presentation of the automatic structure.

Theorem 25 The group G defined above has a shortlex automatic structure

(A, ).

Naturally A is taken to be the set of generators of G and their inverses.
We place them in the following descending order {z;, =7, ...z, z7!, #f,
() ., 2, (@9)7Y ay, aily ..., ag, a3'}. Then in the shortlex order,

v < w if and only if v is shorter than w or they have the same length and v
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comes before w in the lexicographical order with respect to the above ordering
of the generators. Recall that this gives a well ordering.

Let L; and L, be regular languages consisting of the shortlex geodesics of
I" and I" respectively, according to the descending order {z;, it .z, TR
ay, arl, ..., ay, a3}, and {z}, (z})7Y, ..., 4, (z)7L, a1, a7l ..., ag, a7'}, on
their generators respectively. We are assured that such languages are indeed
regular since word hyperbolic groups are shortlex automatic with respect
to any ordering of the generatbrs. Let X = {z1,...,z,27},...,x7'} and let
X' = {z}, ., 2, ()7, oy ()71} and let A = {ay,...,as,a7},...,a7'} as
unordered sets. Then clearly M; = X* and M, = (X')* are regular. Letting
€ denote the empty word we have, by the properties of regular languages dis-
cussed in the last section, that the following languages are regular, since they

are formed by concatenating and taking the star closure of regular languages.
Ll = (M2 U €)(L1M2)*(L1 U 6)

and

£2 = (Ml U 6)(L2Ml)*(L2 U 6).

Next we note that since there are a finite number of z,’s and z}’s the set
M = {z!(z} )*'} is finite and therefore regular and thus X, = A*MA* is

also regular. We now make the following claim.

Lemma 6 The regular set

Lzﬁlﬂﬁz—Xg
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contains the set of shortlex geodesics of G, with respect to the above ordering
of the generators.

To prove this we first note that since the z;’s commute with the z;’s, for
any wi,we € G, we have wizi! (2, ) w, = wy(z),)* 1z w, in G. However,
since the z;’s are greater than the z’s in the above ordering, we know that
wlmil (xgz)ﬂwg can not be the shortlex presentation of the element because
it is larger than wi(z} )*'z; w, according to the shortlex ordering on (AU
X U X")*. Therefore any shortlex geodesic of the Cayley graph of G' can not
be a word in X,.

Next we recall that the extra relations among the a;’s which may not be
valid in I and/or I' all have a shorter presentation using the z;’s, z}’s and
the a;’s, and so would not be present as subwords of geodesics of the Cayley
graph of G. Thus when reducing a word in A* to its shortlex geodesic if it
contains a subword which using the relations a;’s has a shorter form, then
this shorter form can still be reached by using the shorter presentation of the
relations in the z;’s, z;’s and the a;’s. Therefore, when reducing a word in
A* to its shortlex geodesic, we need only use the relations which are valid in
I and/or T".

Thus if w € A* is a shortlex geodesic, then w has expression w =
W1 V] Wal5...WnY, Where each w; € (X U A)* and each v} € (X')* and pos-
sibly w; or v;, or both is the empty word. Then each w; must be a shortlex

geodesic of the Cayley graph of I or else we could replace it with it’s shortlex

geodesic and thereby give a new word u such that v < w and @ = W, con-
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tradicting the assumption that w is a shortlex geodesic. Thus any shortlex
geodesic of the Cayley graph of G must be a word in £;. Similarly it must
also be a word in £, so it must lie in L. This completes the proof of the
lemma.

By theorem 19 of section 5.4, to show G has a shortlex automatic struc-
ture, it is sufficient to show that (A, L) is an automatic structure for G.
However, we prefer to find L' = shortlex(G, A) explicitly and show that
(A, L') is an automatic structure. shortlex(G, A) denotes the set of shortlex
geodesics of the Cayley graph of G with respect to the ordered generating
set A. We have shown that any word in L' is also in L but in fact they are
not equal. This is because a word w € L written as w = w,vjwa}...w,vy,
for example could have a reduction in a subword u = wvjw;; even though
w; and w41 are both geodesics, u has no subwords of the form ril(mgz)il,
and the largest subword of u contained in Gx- is also a geodesic. To illus-
trate this, let By = Wy be one of the defining relations of I" and let Ry,
Ry be front and end subwords respectively, which when concatenated give
Ry,. That is, Ry = Ry Rye as an equivalence of words in A* rather than an
equivalence of group elements. Ry, could be the empty word. Similarly let
Wi = Wi1Whia, chosen so that the word Wk_llel is larger than WkgR;; in
the shortlex ordering. Now, suppose w; = w;w;; where w;; is any word in
(X UA)* and wis = W' or wyy = W'z, where Ry = 2,2, in A*. Fur-
ther suppose v; is any word in (X’)*. Finally suppose w;y1 = Wi1,1Wit12

H * — H — -1 . : o -1
in A" where wiy11 = Ry if wyp = Wi or w11 = 20 if wp = W'z
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and w;,12 is any word in (X U .A)*. Then in G the following equalities
hold: u = waWi ' Rpvjwis1e = wi Wia Ry Viwig12 and u is larger than
Wy WkQR,;zlv;wiﬂ,g in the shortlex order.

If we treat the relations z; ‘a;x; = Wije as being of the same form except
with 7 “a;z§ taking the place of Ry and noting that w;,;; must always be
x5, then we get similar possibilities for reductions of words in L which are
not in I/. We can also use the inverse relations R;' = W, ! in the same way.
Fortunately however, in each of the decompositions the words w;;, w;1 2 and
v; can be any words in (X UA)*, (XUA)*, and X'(X’)* respectively, and the
remaining subwords w;, and w;41,; have only a finite number of possibilities.
Thus the set of all such subwords of the form of u which have such a reduction

form a regular language, namely
(X U .A)*wigX'(X')*wiH,l(X U A)*

where w;e and w;41; are taken from a finite set of ordered pairs. Finally we
note that reductions of subwords of the form u = wjy;w],, are completely
analogous and also form a regular language. Therefore let L3 be the language

of all words in A* which have a subword of the above form. Then
L, =L- L3.

Therefore L' is a regular language.
We are now left with the task of showing that (A, L) is an automatic

structure for G. To show this we need only show that if w;,w, € L’ such
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that w1b = W5 in G for any b € A, then w; and w, satisfy the k-fellow traveler
property also called the Lipschitz property.

AS wib = W5, and we is a geodesic, by performing a finite number of
substitutions using the defining relations of G (and their inverses) we can
reduce wib to wy via these substitutions.

Let {(w) denote the length of the word w € A* and for g € G let La(g)
denote the shortest presentation of g according to the shortlex order on A.
Now w;b = W5 implies Wy = wob~! and w, is a geodesic so l(wy) < l(wq)+ 1.
Therefore I(wqb) — l(w;) < 2.

If we express the defining relations of G as words equal to the identity
then, disregarding the relations [z;,, z,], we can see that the minimum length
of the other defining relations is 17. To see this note from the presentation
of () that the minimum length of each Ry is 4 and W, has length 2 | Ry | +8
for a total length of 3(4) 4+ 8 = 20 and each W;;4 has length 14 which added
to the length {(z; “a;xf) = 3, gives 17. Thus if one of these defining relations
is used to make a substitution then the minimum length of the subword
replacing the substituted one is 8.

Using the fact that w, is a prefix closed geodesic, we must have w;b =4«
yu1b and the first substitution, if it exists, must be of the form yu;b — yus,.
Recall that no two defining relations of G have a two letter subword in
common. Therefore if a subs.titution occurs of the form yu;2 — yuyz then
the next substitution, if it exists, can and must use only the leftmost letter of

uy. Furthermore, if b, is the first letter of u,, so that uy = bug and there is a
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subsequent substitution then we must have y =4+ you4 and the substitution
must be of the form yousbusz — yoususz. Hence successive substitutions must
‘travel’ from right to left along words equivalent to w; in G. This implies
that if a subword of w;b is involved in a substitution, then every letter to the
right of that subword must also have been substituted.

The language L' is prefix closed so is there is a prefix u of w; no part
of which is substituted in any of the substitutions which reduce wyb to we
then V¢t < I(u), w (t)wa(t) = 0 and wy(t) and wy(t) are identical. In the
worst case, we can therefore -assume that every letter of w,b is substituted to
produce ws.

We now proceed by induction on the number of substitutions which use
the defining relations of G, other than those of the form [z;,, z},] or b™'b for
b € A*. Note that we treat the substitutions which occur in subwords of the
form w;vjw;41 and wjv,wy,, as single substitutions even though they involve
one or possibly several substitutions of relations of the form [z;,, zj,] followed
by a single substitution using the defining relations other than [x;,,z},] and
b~1b.

By the above argument, wb = upu,—1...uu1b and w;b can be reduced to

wy by the following sequence of substitutions:
Up...UgU1D — Up... Usbo 2y — Upy.. Uzb32021 — ... — Upbp2Zpn_1...21 — Zp...21 =4 Wo.

Recall that {(wib) — l(wy) < 2 and bip12; =¢ ub; for 1 < i < n—1 and

Un, =@ Unbp, even when the reduction is over a subword of the form v;ufv; 41
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or vjv;v},, where v;'s are in {X U (A4)}* and v;’s are in {X' U (A)}*.
If t = l(u,), then (up) 'z, = by, wi(t) = u, and wy(t) = 2n2,-1,1 Where
Zyn—1,1 is either the empty word, the first letter of z,_; or the first and second

letter of z,_1. In any case,
wl(t)_1w2(t) = (un)mlznzn—l,l = bnzn—l,l

S0
w1 ()~ ws(t)) = Ubaza-1,1) < 3.
In general, if ¢ = {(up...ug), then wy(t) = ty...ux, and wa(t) = zp...262K-1,1
so that
W = br2k-1,1
and
Hws(8)"Tw,(8)) = U(brzk—1,1) < 3.

It remains to show that the distance is bounded when ¢ = l(up...ux) + to
where 1 <ty < l{ug—1). Then wy(t) = up...ug(ug—_1(t2)), where ug_1(to) is the
first to letters of uy_1. Also, wa(t) = zp...2k(Vk—1(t2))Uk—2,1, Where zx_1(to) is
the first ¢ letters of z;—; and 2;_g; is either the empty word, the first or the

first and second letters of zx_s. If ug—_; is part of a simple reduction involving

exclusively the letters of {X U (A)}* or {X’U (A)}* but not both, then

wi (8) " g (8) = (ue; (t2))be(2e-1(t2)) 21,1

However, byug—1 = uk—1be—; is a relation in G so (uz?;(t2))be(2zx—1(t2)) is a

subword of the relation and so if m is the maximum length of the defining
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relations of G, then

l(w1 (t)_le(t)) S m+ 2.

Finally we consider the case where t = [(up...ux) + to with 1 < 5 <
Huk-1), and ug_; is of the form vp_1v}_;vp_1,1 OF V3 Vk—17}_; ;. We deal only
with the case where ug_; is of the form vg_1v}_,vk_1 1, the other case being
completely analogous. It to < I(vgx—1) then the result reduces to the previous
case. The only interesting case occurs when [(vg_1) < to < l(vk_1v)_;). Let

ty = to — [(vg—1). Note that
® 21 1 = Sk_15,_; such that
® bySg—1 = Uk—1Vk—1,1bk—1 in G and
e v;_, is identical to s)_; in A*.

Thus wi (8) Twa(t) = (vh_;) " (t3) vt br(sk_15%_;) (ta+6) where 6 € {0,1,2}.

If ty < I(sg—1) then vy bp(sk-1)(t2) is a subword of a defining relation and so
reduces in G to a word of length less than m, and 3 is bounded by I(sx-1) < m

so the [(wy (t) " wsy(t)) < 2m. A better bound can be deduced but is unneces-

sary for the proof. Finally if ty > (sp_;) then vy bpsp_ = vk—1,1 which neces-

sarily commutes with v, _, so wy (£)Twa(t) = (vj,_,) 7 (ts)vgt br(Sk_15,_ ;) (ta+

8) = (V—1) T (ta)vk—1,100-1 (83 _1) (B2 +-0—1(sk—1)) = Ve—11br—1 (V1) T (3) (S ) (B2
0—1(sk—1)). Now l(vg—-1,1bx—1) < m so we only need a bound for {((v}_;) ! (t2—
l(wp—1)(8h_1)(t2+ 0 —1(sk—1))). But recall that v;_, is identical to sj_, in A*

so the length 1((v}_,) " (ta — l{vp_1)(8}_1)(ta + & — I(sp_1))) is the difference
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of the lengths of (vj_;)~!(ta — l(vk-1) and (sf_;)(t2 + 6 — l(sk-1)). That is
=ty —l{vp_y1) — (ba + 0 — U(sm(k — 1)) =8 — U(vg—1) + I(8k-1) <2+ m.

Therefore every pair of words w;,wy € L' such that w;b = 03, are k-fellow
travelers for k = 2 + 2m. Therefore (A, L) is a shortlex automatic structure
for G.

Before discussing the implementation of the algorithm based on this
group, we detail the properties of the group G x G and its subgroup P
which make the cryptosystem possible. First, as the previous proof shows, G
and therefore G x G is shortlex automatic. This means that we can reduce
any word in the generators (and their inverses) of G X G to its unique normal
form in quadratic time. This property is inherited by P.

P also has the following two, finitely generated, commuting subgroups.
If we take all ordered pairs of words (w;,w;) such that wilw, = e in Q or
wiwy; ' = e in Q together with the ordered pairs (z;, x;) they generate the
first subgroup. The second subgroup is generated by the ordered pairs of
similar word equal to the identity in Q' and the pairs (z}, z}).

Finally P has unsolvable membership and conjugacy problem. We will
discuss in the analysis of the algorithm how this should increase security in
the cryptosystem.

To implement a variation of the braid cryptosystem in what we term
algorithm 1, we also need the subgroups I and I'" which are word hyperbolic
and generate words on the same set of generators as subgroups Gx and Gy of

G. They should make encoding the algorithm faster because word hyperbolic
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groups have a linear time word problem, whereas automatic groups have

quadratic time algorithms.

5.6 The algorithm

Now that we have a group with the desired properties, we can construct a
cryptographic protocol which utilizes these properties. We actually exhibit
two new key exchange algorithms, the first utilizing calculations in word
hyperbolic groups to increase the speed of the exchange and the second uti-
lizing the unsolvability of the conjugacy problem for P to greatly increase
the security of the key exchange. It should be noted however, that the faster
algorithm should still have stronger security than the braid group cryptosys-
tem because solving the conjugacy problem in a generic biautomatic group
~ can currently only be done in exponential time, while the conjugacy prob-
lem for the braid group was shown to be solvable in polynomial time. For
the faster algorithm (algorithml), we begin with the assumption that Pe-
ter, the programmer of the algorithm, rather than users Alice and Bob, has

performed the following tasks.

o Peter chooses two not necessarily distinct Turing machines T and 7"
each with unsolvable halting problem, constructs G' and calculates the

automatic structure for G x G.

e Peter generates a finite and hence partial list of relations in the a;’s

which hold in G but not in ' and a finite list of relations in the a;’s

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which hold in G but not in I'.

Normally these tasks wouldn’t be included but as they involve a certain
amount of choice which affects the speed and security of the algorithm we
include them to make the algorithm as general as possible. However, because
they only have to be performed once, we do not need to analyze the speed

in performing these tasks. The algorithm 1 is as follows.

1. Alice chooses (a,b) € N x N and applies different substitutions on each
coordinate from a finite and hence partial list of relations in the a;’s
which hold in G but not in I to produce (¢/,¥). (Recall N = (ay, ..., a;).
She then chooses words wy, ws € X* such that w; = w, in @, calculates

1

wi 'a'w; and w3 'H'w, and transmits (a,b) and ¢ = (wila'wy, wy bws)

to Bob. She keeps (w;,ws), and (d/,b’) secret.

2. Bob applies different substitutions on a and b each from a different finite
list of relations in the a;’s which hold in G but not in I to produce
(a”,b"). He then chooses y1,y2 € (X')*, such that y; = ¥, in Q,
calculates y; 'a"y; and y; 0"y, and transmits d = (y7ta"yy, y3 'b"ys) to

Alice. He keeps (y1,y2), (a”,b") secret.

3. Alice computes (w1, ws)  d(w;, ws), maps it via a hashing function h
to a binary word, and then encodes her binary message m as m/ =
h((wr, wa) " *d(wy, ws)) ® m to send to Bob. Here @ denotes the exclu-

sive or function on binary strings.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. Bob then computes h((y1, y2) "Lc(y1,y2))dm’. Since (wy,ws) and (yi, y2)
commute, (w;, wa) " d(wy, wa) = (y1,%2) " c(y1,¥2) and h((y1, y2) " c(y1, ¥2))-

m=m

Recall that the conjugacy problem for P = ((;, 2;), (z}, z}), (a5, 1), (1, a;))
is unsolvable because although we can solve the conjugacy problem in the
larger group G, we can’t determine to which of G\P or P, the element
which performs the conjugation belongs. However, in the above algorithm,
(a,b) € N x N < P and the centralizer of (a,b) is also in N X N and
hence in P and finally (wq,ws) € P. If there exists (z1,22) € G such that
(21, 22) " Ha, b) (21, 22) = (w1, wa) (a, b)(wy, wq) then (21, 22)(wy, ws)™! cen-
tralizes (a,b) so (21,29) = ¢(wy,ws) for some c in the centralizer of (a,b) in
G. Therfore since both ¢ and (w;,ws) are in P so must (ai,z2) be in P.
Therefore in the above algorithm, any solution to the conjugacy problem for
(a,b) and (wi,ws) " (a,b)(w;, ws) must automatically be in P. However, as
we have stated, the conjugacy problem for G should be exponential and once
solved we still need to pick (wy,ws) out of the coset Cq((a, b)) (wr,ws).

Suppose, in place of (a, b) in the above algorithm, we took a more generic
term (vy,v9) € P. Note that (vi,e)) € Cg((v1,v2)) but (vi,e) ¢ P unless
v; = e in ). The unsolvability of the word problem of Q) makes this impossi-
ble to check in general. Therefore, using (v;,v;) in place of (a, b) in the above
algorithm, we do ensure an unsolvable conjugacy problem. That is, if we find
(z1,22) € G such that (z1,2) (v1,v2)(21,22) = (wy,w2) (w1, va) (w1, ws)

then there is no algorithm to determine whether or not (z;,23) € P let
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above if (z1,2) = (wy,ws). Of course, in order for the secret to be un-
covered a hacker only needs a (z1,22) such that (z1,22) 2 (v1,v2)(%1,22) =
(wy, we) (v, v2) (w1, ws) and such that (2, 2;) commutes with the z7’s. If
however, the initial solution to the conjugacy problem in G X G doesn’t yield
such a candidate, the deriving one that does from (z;,2;) is equivalent to
the membership problem of the centralizer of (v;,vs) which has been shown
to also be unsolvable. Furthermore, (v, v2) can easily be chosen so that the
probability that the centralizer of Cg((v1,v2)) intersects non-trivially with
the centralizer of the x;’s is low. This requires the hacker to find the exact
(w1, ws).

Therefore for even more security we incorporate this technique into the
algorithm below. However, this added security may come at a price. Because
(v1,v2) now contains both z;’s and z}’s we can not do the calculation that
reduces (wy, ws) vy, ve)(wy, wy) to its normal form in a word hyperbolic
group; we must instead do all calculation in the automatic group G x G.

For the algorithm with even stronger security, (algorithm 2), we also begin

with Peter.

e Peter chooses two not necessarily distinct Turing machines T and T"
each with unsolvable halting problem, constructs G and calculates the

automatic structure for G x G.

Once this task is performed we move to the actual key exchange.
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1. Alice chooses (v1,v2) € P She then chooses words wy,ws € X* such
that w; = wy in Q, calculates the normal form of (w;lviwy, w3 'viws),
in G x G, and transmits (v;,v;) and ¢ = (wi 'vywy, w3 'vyw,) to Bob.

She keeps (w1, ws) secret.

2. Bob chooses y1,y2 € (X')*, such that y; = y, in @', calculates the nor-
“mal form of (37 v1y1, 75 'vays) in GXG and transmits d = (y7 v1y1, 5 “v2y2)

to Alice. He keeps (y1,¥2) secret.

3. Alice computes (w,ws)  d(w,ws), maps it via a hashing function h
to a binary word, and then encodes her binary message m as m' =
h((wy, ws) " d(w;, wq)) ® m to send to Bob. Here @ denotes the exclu-

sive or function on binary strings.

4. Bob then computes h((y1, y2) " c(y1, y2))®m'. Since (w1, ws) and (y1, y2)

commute, (wy, we) " d(wy, wy) = (y1,y2) " *e(y1,y2) and h((y1,y2) " e(y1,y2))-

m =m

5.7 Analysis of the Algorithm

For several reasons, at first glance the new cryptosystem might appear to be
slower than the braid cryptosystem even though it should actually be faster
to implement. First the notation is more complex because we are working at
times in a direct product of groups and at other time its coordinate groups.

We can consider the direct product an internal one when determining the
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length of the elements chosen so that, for example, the element a € By, of
the braid cryptosystem can have the same length as the sum of the lengths of
a and b for (a,b) € N x N. Also, while the calculations of (y1, ) c(y1,¥2)
and (wy,ws) td(w;, ws) will be performed in quadratic time as are their
counterparts in the braid cryptosystem, the initial keys wi'a'w;, wy *bws,,
y1 ta"y,, and y; 10"y, can be calculated in linear time because they are ele-
ments of hyperbolic groups whose elements can be reduced to a normal form
in linear time. Thus key exchange in the new cryptosystem should be faster.

Another reason the new cryptosystem looks slower is the need to compute
a' from a and V' from b. In practice however, the can be created quickly and
simultaneously as follows. Express each of the relations in N which hold
in G but not in I' in the form r; = s;. Then add the r;’s to the generating
set for a and b and add the s;’s to the generating set for a’ and b'. We can
create w; ,ws and y;, ¥, in a similar way. Creating a” and b” should be
possible in a constant time since it should only involve a few substitutions.
The necessity of computing a/, a”, b’ and b” results from the fact that I and
I'" are word hyperbolic and thus allow for very fast calculations. We wish to
exploit this fact when we create and exchange keys, but we want to prevent
potential hackers from utilizing this property in trying to recover w; and y;
from wia'wy, wy b'w,, y7 'a"yy, and y5 'b"y,. Thus since, for example ' # a
inT', z7la’z is not conjugate to a in I". The conjugacy problem can be solved
in nlogn time in word hyperbolic groups which is too fast to be allowed. The

hacker has no choice but to attempt to solve the conjugacy problem in the
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biautomatic group, which currently takes exponential time.
It should be noted however that even finding g1, g, € I' such that g 'ag; =

la'w, and g5 'bg, = wy *b'w, does not give away the secret (w;, w;) because

wy
there is no way of determining if g; = g5 in @ and thus if (g1, g2) is (w1, ws).
However, if the hacker has the original message and the encrypted message
he/she can try the (g1, 92) and see if he/she recovers the original from the
encrypted so it will be necessary from computer trials to determine how often
solving the conjugacy problem in G x GG will yield the appropriate solution
in P.

As a final note we mention that the cryptosystem may be vulnerable to a
length based attack which consists of conjugating wi'a'w; by each element
of X in turn to see if the length of w;a’'w; decreases. It may be possible to
prevent such an attack by ensuring that the suffix of w;! and the prefix of

a' form a subword of a defining relation which is more than half the length

of said defining relation.
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Chapter 6

Locally Finite-Indicable Groups

In 1940, in [13), Graham Higman introduced the term indicable to describe
a group having a homomorphism onto a non-trivial subgroup of the additive
rationals, i.e. an infinite cyclic factor group. In [6], Burns and Hale proved
that locally indicable groups are right orderable. Kopytov and Medvedev
explore locally indicable groups in 7.4 of [18] and in particular give a short
proof using ultrafilters as introduced by Malcev in [21] that the class of
locally indicable groups forms a quasi-variety. Brodskii [7] then proved that
if R is any quasi-variety then the class L(R), of locally R-indicable groups—
groups having a non-trivial homomorphism onto a R-group- is equal to the
class N(R) of groups which have a normal system with factors in R. Locally
R-indicable is also called locally R-projectable and locally -decomposable.

The equality L(R) = N(R) for quasi-varieties seems to depend largely on

the fact that quasi-varieties are closed under ultra products as defined in [18]
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and [21]. To see that closure under ultraproducts is a defining characteristic
of quasi-varieties one need only consult 11.1.2 of [21]. It is therefore possible
that L(R) = N(R) if and only if R is a quasi-variety, but the question remains
open. Even for the class S of finite groups is merely the union of an ascending
sequence of quasi-varieties, but not a quasi-variety itself, L(Y) # N(R) as
we show here.

In section 2, after some preliminary discussion, we exhibit a subclass of
L(S) that is not in V($). Then, in section 3, we embed each member of the
subclass in its own 2-generator group to create a class of finitely generated
groups which are locally finite indicable but do not have normal systems with

finite factors.

6.1 Groups Without Normal in &

For arbitrary class R, the inequality L(R) DO N(R) is easily proved. If G €
N(R), there exists a totally ordered set A such that VA € A,3D,,C\ C G

which satisfies the following;:

1. C\ < D,
2. D)\/C,\E%
3.u§)\:>Du§C,\

4. Usea D2\Cy = G\1
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Let H be a finitely generated subgroup of G. By properties 3 and 4, there
exists A such that H < D, and H N C), # H. Therefore

I#H/HHC)\ ~ HC,\/CA < D,\/C,\ € R,

which completes the proof that L(R) D N(R).

We therefore restrict our discussion to the reverse inequality from now
on. Letting &, denote the class of groups of order at most n, we see that
S = {Sn}22;. SOn is a quasi variety for each positive integer n, so, if G is a
group and there exists a positive integer n such that every finitely generated
subgroup of G has a non-trivial homomorphic image of order at most n
then G has a normal system with factors of order at most n. In order to
show L(S) # N(S), it is therefore necessary to exhibit a group G with the
property that every finitely generated subgroup of GG has a non-trivial, finite,
homomorphic image. But G must also have the property that the orders of
these factor groups increase without bound. It is further required that these
factors be simple or we could take smaller ones. The simplest such example is
the direct limit A, of finite alternating groups A,, n=1,2,3,... Every finitely
generated subgroup of A, is contained in some A, and so is finite. Hence
A € L(S). However, A, is simple and we now show that it can not have
a normal system of finite factors.

By way of contradiction, assume there exists a totally ordered set A such

that VA € A,3D,, Cy C Ainpy, which satisfies the four criteria above with 2

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



replaced by
D, /Cyisfinite.

Take any n > 4. Then A, is simple. There exists v such thatVa > v, As <
D, so take ) to be minimal in this respect. Then Im > 5, such that A,, € D,
and so Iy > A such that A, < D,. Now C,NA, <D, NA, = A s0 A,
simple implies that C, N A,, = e. But property 3 of the normal systems
implies that Dy C Cy so C,N A, 2 A, giving a contradiction.

Ao 18 one group lying in L($)\N(S), but is by no means an exceptional

example. In fact combining theorems 4.5 and 4.6 of [16], we get

Theorem 1 if G is a countable infinite, locally finite, simple group isomor-
phic to a subgroup of GL,(F), for some field F' and positive integer n, then G
is the union of an ascending sequence of finite subgroups almost all of which

are simple.

Groups meeting the criteria above must also lie in L(SJ)\N(S).

6.2 Two-generator Groups

Perhaps the only inelegance of the members of L(S)\N(S) above is that,
like A, for example, they can not be finitely generated. However {23] gives
a method for embedding any countable group G two-subnormally in a two-
generator group H. After presenting the embedding, we show that it pre-

serves locally finite indicability. Furthermore, since the embedding is sub-
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normal, the resulting group H can not have a normal system of finite factors,
given that G doesn’t.

It should be noted that [23] deals strictly with ordered groups so the
embedding is constructed so that the order on G can be extended to an order
on H. Although this makes the construction slightly more cumbersome than

necessary for our purposes, it in no way restricts us to using ordered groups.

6.2.1 Embedding in a Two-generator Group

Following [23], if G is any countable group we begin with the sequence of

subgroups of CrG%:
GO =(z|z;=eifi#0, zo=g, g€G)
and for £ > 0,
GH) = (g m=eifi<0, z;=g(E) if i >0, ge @),
Let t be the automorphism of CrG?# defined by Gt = G;4, and
K={(t G» | i>0)

Note that [t, G®¥*V)] = G*) so0 the G®) generate K’ with G normal in
K'. The countability of G implies that K is also countable and so can be
well ordered as K = {ai,as,a3,...}. Let u be the element of CrK?Z defined
by:

Ugm = Uy
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u, =eifn#2" m=1,2,..

Finally, we let 7 be the automorphism of CrK?Z defined by K] = Kj41. Our
desired H is (u, 7).

6.2.2 Two-generator Groups in L(S)\N(S)
We are left with the task of proving the following theorem:

Theorem 2 If G is a countable group in L(S)\N(S) and H is the two-

generator group constructed from G as above, then H also lies in L(S)\N(S).

Proof As mentioned earlier, if G does not have a normal system of finite
factors then neither can H. Assume every finitely generated subgroup of G
has a non-trivial homomorphism onto a finite group. Then we show as an
intermediate step that K in the above construction also has this property.
Let L be a non-trivial, finitely generated subgroup of K. L' = LN CrG%
just as K' = KNCrG? so if L = L' then L < CrGZ. At least one of the it"
components of one of the generators of L are non-trivial, so the projection of
the generators of L onto this i® component yields a homomorphism from L
onto a finitely generated subgroup of GG, which, by assumption, has a finite
factor. Otherwise, if L # L', then L/L’ is a nontrivial, finitely generated
abelian group and so also has a non-trivial finite factor. Thus if G is in
L($)\N(S), then so is K. H € L(S)\N(S) is proved in similar manner — a
finitely generated subgroup J of H is either a subgroup of CrK?Z or J/J' is

a finitely generated abelian group. O
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