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Abstract 

Computational methods are nowadays essential tools employed in the field of drug design. 

Indeed, bringing a molecular compound from bench to clinic is a challenging, time-consuming 

and expensive goal to achieve. Computer-aided drug design (CADD) techniques aim to simplify 

this process, by in-silico identifying compounds active against a critical macromolecular target. 

With the knowledge of the molecular structure of the compounds and preferably also of the 

target of interest, virtual screening can produce a high-confidence, limited set of small molecules 

to be tested experimentally, reducing enormously both the time and the cost otherwise required 

for the in-vitro screening. Computer simulations of ligand-receptor complexes provide also 

structural insights of the interactions which can rationally drive the hit-to-lead optimization 

process. 

In this thesis, CADD techniques are used to identify and optimize DNA repair inhibitors. 

Although DNA repair mechanisms are essential to maintain genome integrity in normal cells, 

they counteract the action of many DNA-damaging therapies used in cancer. Hence a drug able 

to inhibit DNA repair in cancer cells could be used in combination with these therapies to 

enhance their effect and reduce drug resistance effect. The nucleotide excision repair (NER) 

pathway, responsible for repairing bulky DNA damages, is the main focus of this thesis. The 

excision repair cross-complementation group 1 (ERCC1)-xeroderma pigmentosum, 

complementation group F (XPF) heterodimer is a critical NER complex involved in repairing 

platinum-based chemotherapy and radiation-induced DNA damages. Hence, inhibiting the action 

of ERCC1-XPF, through disrupting essential protein-protein interactions or blocking the 
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catalytic activity, is one of the most promising strategies to enhance the effects of these 

therapeutic approaches. 

Therefore, the CADD effort discussed in this work has been directed towards three different 

aspects of ERCC1-XPF: first, the interaction between ERCC1 and the xeroderma pigmentosum, 

complementation group A (XPA) protein, essential to recruit the repair machinery to the 

damaged DNA zone. Second, the catalytic activity, performed by the active site present on the 

XPF surface. Last, the ERCC1-XPF heterodimerization, required to have a functional 

endonuclease. 

The results reported in this thesis are of great importance for the field of combination cancer 

therapy. On one hand, this work presents a number of new hit or lead compounds able to inhibit 

DNA repair. Thanks to the collaborative environment of the Alberta DNA Repair Consortium 

(of which this work is part), many of these small molecules are currently under optimization and 

experimental testing with the final aim to translate them to clinical use. On the other hand, 

detailed biophysical and structural characterization of these compounds and their binding to the 

targets are covered as well, opening new venues for future rational drug design works. 
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Chapter 1 - Introduction 

Developing a new drug is a complicated, expensive and time-consuming process. Serendipity 

played an important role in the discovery of active compounds for many years. With the recent 

advent of the omic era, however, pharmacological research has become more and more 

dependent on rational drug design techniques. A typical rational drug design pipeline is divided 

in three steps: identification of a biomolecule critically involved in the development or 

progression of a disease; biological and structural characterization of such target; rational design 

of compounds able to modulate its action. In this context, computer-aided methods cover today a 

role at least as important as traditional “wet” experimental techniques. Techniques such as 

homology modeling and molecular dynamics can, for example, predict the 3D structure and the 

dynamics of a protein or nucleic acid in a limited amount of time, especially when compared 

with structural biology methods such as x-ray crystallography. Molecular docking is another 

computational method which allows to quickly identify the native bound conformation of a 

ligand to a target at the atomistic scale, as well as to estimate the binding affinity. Structure-

based computational drug design includes one or more of the mentioned methods. Indeed, the 3D 

structure of the target can be obtained from a repository of experimentally-determined structures 

such as the Protein Data Bank (PDB), or modeled computationally. Molecular docking and 

scoring can then be employed to target a specific site of the target and in-silico screen large 

compound libraries, retaining just high scoring entries for experimental testing (virtual screening, 

VS) or to design better analogues of a known lead compound by optimizing its interactions with 

the target and the surrounding solvent. Ligand-based drug design, on the other hand, uses the 

information of known active compounds to identify novel small molecules without making use 

of the target structure. Using these methodologies, drug design is on its way to become a high-
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confidence, cheaper and faster process, with the hope to provide optimized novel therapies for 

many diseases. 

The focus of this thesis work is DNA repair. Our genome is constantly under attack by a number 

of endogenous and exogenous agents that can damage it. To protect against these damages and 

the deleterious effects they can cause, cells are provided with DNA repair mechanisms that can 

recognize, remove and replace damaged DNA zones. Indeed, an aberrant or deficient repair 

pathway in healthy cells can lead to mutations during the DNA replication and consequently to 

cancer and other diseases. In cancer cells, however, DNA repair can interfere with widely-used 

DNA-damaging therapies such as platinum-based chemotherapy and radiotherapy, leading to 

acquired drug resistance. Developing inhibitors that can switch off the DNA repair in tumor cells 

is therefore a promising strategy to enhance the effect of such DNA-damaging strategies. Hence, 

the rationale I have adopted in this thesis was to design inhibitors of the action of the DNA 

excision repair protein ERCC-1-DNA repair endonuclease XPF (ERCC1-XPF), a protein 

complex essential for one of these pathways, the nucleotide excision repair (NER) pathway. 

NER protein expression and action in cancer cells is linked with the response to platinum-based 

chemotherapy, one of the gold standards of cancer treatment around the world. The two main 

questions this thesis is trying to address are: is it possible to rationally design compounds able to 

optimally bind to one of the three critical binding sites of ERCC1-XPF? Will these compounds 

be able to inhibit the NER activity and potentiate the effect of DNA-damaging cancer therapies? 

The following chapters are my attempt to answer these two questions. 

This thesis is based on a series of book chapters and articles that were or are being published: 

Chapter 2 covers the theoretical background of computational methods used in computer-aided 

drug design (CADD). Chapter 3 presents a systematic review of recent research studies 
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investigating various aspects of NER through computational approaches. Chapter 4 reports the 

development and application of a VS pipeline aimed to inhibit the DNA repair protein 

complementing XP-A cells (XPA)-ERCC1 interaction, essential to recruit ERCC1-XPF to the 

damaged site. In chapter 5, the focus is switched to the catalytic activity of the complex, where I 

investigated the binding modes of known inhibitors of the active site of XPF and carried out a 

VS campaign aimed to identify novel inhibitors. In Chapter 6, a rational drug optimization effort 

for ERCC1-XPF dimerization inhibitors is reported. Chapter 7 summarizes the reported results 

and suggests possible future directions. Appendix A and B includes all the published 

supplementary materials of the chapters before. Appendix C is a commentary of the results 

reported in Chapter 4. Appendix D is a computational investigation of a possible off-target 

interaction of a tubulin dimerization inhibitor, which I carried out as side project along with my 

thesis’s main topic. The chapter order follows the chronological order in which the different 

projects were developed, and each of them is structured as a review or research article in the field 

of CADD. 
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Chapter 2 - Molecular Dynamics and Related Computational Methods with 

Applications to Drug Discovery1 

2.1 Abstract  

The main objective of this review chapter is to give the reader a practical toolbox for 

applications in quantitative biology and computational drug discovery. The computational 

technique of molecular dynamics is discussed, with special attention to force fields for protein 

simulations and methods for the calculation of solvation free energies. Additionally, 

computational methods aimed at characterizing and identifying ligand binding pockets on protein 

surfaces are discussed. Practical information about available databases and software of use in 

drug design and discovery is provided. 

2.2 Introduction 

Computational drug discovery is a conceptual approach to finding drug-like molecules by 

rational design, based on the information regarding their intended biomolecular target. A drug 

target is an important molecule, usually a protein, involved in a particular metabolic or signaling 

pathway that is specific to a disease condition. Most approaches attempt to inhibit the 

functioning of an aberrant or over-expressed pathway in the diseased state by interfering with the 

normal activity of the target. Medicinal compounds as candidate drugs can have their structures 

rationally designed at a molecular level in such a way as to optimize their binding to the active 

region of their target biomolecule in order to inhibit its activity and to simultaneously minimize 

                                                 

1 This chapter is part of a book chapter published as Preto, J.; Gentile, F.; Winter, P.; Churchill, C.; Omar, S. I.; 

Tuszynski, J. A. Molecular Dynamics and Related Computational Methods with Applications to Drug Discovery. 

In Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications; Bonilla 

L.L., Kaxiras E., Melnik R., Eds.; Springer, Cham, 2018; pp. 267–285. 
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their effects on other important biomolecules that may cause undesired side effects. Since many 

challenges are posed by the large chemical and biological spaces involved in designing drugs 

with high specificity and selectivity, serendipity has traditionally played an additional important 

role in finding potential new drugs. Conversely, structure-based drug design requires knowledge 

of the structure of the biomolecular target, and it utilizes 3D information about biomolecules 

obtained from techniques such as x-ray crystallography and NMR spectroscopy. 

The first step in the rational drug design process is usually the identification and characterization 

of the biomolecular target, such as a protein or a DNA sequence. From here, computational 

techniques can be used to model a drug within the binding site of the biomolecular target, and 

this information can be used to design novel drug panels with enhanced activity. Of the 

computational techniques available, molecular dynamics (MD) is particularly important in the 

investigation of target characterization and drug-target interactions. In Section 2.3, an overview 

of the main aspects of MD simulations—including force field descriptions—and related methods 

intended to characterize drug-target binding is provided. In Section 2.4, other computational 

drug-discovery strategies, such as binding pocket prediction and molecular docking, are 

described. Virtual screening (VS) techniques are also discussed. 

2.3 Molecular Dynamics 

2.3.1 General 

Like most experimentally-measured properties of molecular systems, the binding affinity of a 

drug to its target is a thermodynamic quantity, i.e., an ensemble average over a representative 

statistical ensemble of a system. As a result, the knowledge of a single 3D structure of a given 

protein complex—obtained, e.g., from x-ray crystallography or cryo-electron microscopy—even 
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if associated with a global energy minimum, is not enough to theoretically predict such 

macroscopic properties. Instead, it is necessary to generate a representative ensemble of 

conformations of the same system at a given (typically physiological) temperature. Two popular 

computational methods may be applied to this end: molecular Monte Carlo simulations (MC) [1] 

and MD [2]. For the study of dynamic or non-equilibrium properties (e.g., the transport of 

molecules across biomembranes, chemical reactions, etc.), only the second method may be 

utilized. Although MC simulations are simpler than MD ones, they usually do not lead to any 

better statistics in a given amount of time [3]. That is why MD is generally preferred over MC. 

Popular MD engines include Amber [4], GROMACS [5], LAMMPS [6], and NAMD [7]. 

MD simulations usually involve the numerical integration of Newton’s equations of motion for a 

system of N interacting atoms representing the system of interest, possibly including the 

molecules of the surrounding solvent: 

𝑚𝑖

𝑑2𝑟𝑖

𝑑𝑡2
= 𝐹𝑖 , 𝑖 = 1 … 𝑁, (2.1) 

where 𝑟𝑖 is the position of atom 𝑖, 𝑚𝑖 its mass and 𝐹𝑖 is the force acting on it, equal to the 

negative derivative of the molecular potential 𝑈, i.e., 𝐹𝑖 = −𝜕𝑈/𝜕𝑟𝑖. 

Using Newton’s equations of motion automatically implies the use of classical physics, classical 

MD having the advantage of being far less computationally demanding than real quantum-

dynamical simulations, which require solving the time-dependent Schrödinger equation for the 

system of interacting particles forming the molecule. However, because of classical 

approximations, standard MD simulations suffer from several limitations that the reader should 

be aware of. First, electronic motions are not considered per se. Instead, it is supposed that 
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electrons are always in their ground state adjusting their dynamics instantly when atoms are 

moved (Born-Oppenheimer approximation). Secondly, most potential energy functions U used to 

model atomic interactions, commonly referred to as force fields in chemistry and biology, are 

empirical thus approximate. They usually consist of a summation of bonded forces and non-

bonded pair-additive forces. Such analytical potentials include free parameters (e.g., coupling 

constants, equilibrium bond lengths, van der Waals radii, etc.), which are estimated by fitting 

against detailed electronic calculations or experimental properties (e.g., spectroscopy 

measurements, elastic constants) in order to reproduce observed experimental equilibrium 

behaviors [8–10]. Typical classical MD force fields adopt the following functional form: 

𝑈 = ∑ 𝐾𝑏 (𝑏 − 𝑏0)2

bonds

+ ∑ 𝐾θ(θ − θ0)2

angles

 + 

+ ∑ 𝐾𝜙[cos(𝑛𝜙 + 𝜑) + 1] + ∑ (
𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐵𝑖𝑗

𝑟𝑖𝑗
6 )

𝑁

𝑖<𝑗

+ ∑
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗

𝑁

𝑖<𝑗torsions

. (2.2) 

The first term in Equation 2.2 represents the potential between two chemically-bound atoms, 

modeled as a simple harmonic potential, 𝑏 being the distance between the two atoms and 𝑏0 the 

equilibrium bond length. The proximity between three atoms, which are connected via chemical 

bonds can be described with an angle. The second term in Equation 2.2 stands for this angle-

dependence involving three atoms and is also modeled by a harmonic potential, θ being the angle 

between the three atoms in the structure and θ0 its equilibrium value. The third term represents 

the dihedral angle (torsion) potential and depends on four atom coordinates. Such a potential is 

periodic and is represented by a cosine function with 𝑛, the number of maxima and 𝜑, the 

angular offset. The variable 𝜙 is obtained from dihedral angles in the structure. Noticeably, an 
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additional term may be included in Equation 2.2 to model out-of-plane bending motions, i.e., 

improper dihedral angles. This is usually done through a cosine or a harmonic function. The last 

two terms in Equation 2.2 account for non-bonded interactions and are calculated pairwise 

between atoms i and j. The fourth term is the van der Waals potential, which is typically 

represented by a Lennard-Jones 6-12 potential. The 1/𝑟6 term is the attractive component while 

the 1/𝑟12  term approximates Pauli repulsion. Parameters 𝐴𝑖𝑗 and 𝐵𝑖𝑗 are atom specific while 𝑟𝑖𝑗 

stands for the distance between atoms i and j. The final term corresponds to the electrostatic 

potential between atoms, and is modeled as a Coulomb potential. Parameters 𝑞𝑖 and 𝑞𝑗 represent 

(fixed) charges on atoms i and j, while the constant 𝜀0 is the vacuum permittivity. Electrostatic 

interactions dominate over van der Waals forces for long-range intermolecular interactions and 

they play a significant role in non-chemical binding. 

MD simulations result in trajectories, which contain information about the changes of atomic 

positions over time, which can be analyzed in great detail to extract pertinent information 

regarding the dynamics of the system. This includes the root-mean-square deviation (RMSD) of 

ligand and protein atoms, supramolecular (non-covalent) interactions, changes in the potential 

energy of the system, short-lived reaction intermediates [11], conformational changes, flexibility, 

and optimum binding modes [12] among many various properties of the biomolecule and its 

environment. In a computer-aided drug design process, the mobility of crystal water molecules 

near proteins observed in MD simulations can help identify the amino acid residues that play an 

important role in ligand binding. MD simulations can also be used for studying ionic 

conductivity [13,14], where the simulations provide atomic level insights into ionic mobility. In 

terms of particular applications, MD has been successfully used to study clinically important 
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proteins such as HIV-1 gp120 [15], binding sites [16], drug resistance mechanisms [17], and 

protein folding [18,19] to name but a few. 

2.3.2 Molecular Dynamics and Drug Discovery 

Molecular dynamics can be used together with other methods to solve a host of problems in 

biomolecular modeling [20,21]. In the case of VS methods that involve large libraries of 

chemical compounds in order to identify a high-affinity small molecule that is expected to act as 

an enzyme inhibitor, or a protein-protein interaction blocker, the calculation of the binding 

energy of potential hits may help prioritize compounds for experimental testing. 

While docking and scoring remain the most widely used computational techniques to predict the 

binding mode and affinity of a drug to its target due their low computational cost, these methods 

are not particularly accurate. More precise approaches utilize appropriate sampling of the 

molecular system generated beforehand with MD simulations as is required when estimating 

ensemble-averaged quantities like binding free energies. End-point methods such as linear 

interaction energy (LIE) and the molecular mechanics Poisson-Boltzmann Surface Area 

(MM/PBSA) technique, which rely only on appropriate samplings of the end states, i.e., the 

complex and possibly the free receptor and ligand, have intermediate efficiencies. The LIE 

method, originally introduced by Aqvist et al. [22], assumes that the binding free energy can be 

written as a linear combination of average interaction energies between the ligand and the rest of 

the system (protein, water and ions). More explicitly, the binding free energy of the ligand is 

expressed as [23]: 

∆𝐺𝑏𝑖𝑛𝑑 = 𝛼〈∆𝐸𝑣𝑑𝑊
𝐿−𝑆 〉 +  𝛽〈∆𝐸𝑒𝑙

𝐿−𝑆〉, (2.3) 
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where 〈∆𝐸𝑣𝑑𝑊
𝐿−𝑆 〉 = 〈𝐸𝑣𝑑𝑊

𝐿−𝑆 〉 𝑏𝑜𝑢𝑛𝑑 − 〈𝐸𝑣𝑑𝑊
𝐿−𝑆 〉 𝑢𝑛𝑏𝑜𝑢𝑛𝑑 refers to the change in van der Waals 

interactions between the bound and unbound states of the ligand. The averages stand for 

ensemble averages obtained from MD simulations whereas the L-S label indicates that the 

interaction energies are computed only between the ligand and the surroundings. Similarly, 

〈∆𝐸𝑒𝑙
𝐿−𝑆〉 = 〈𝐸𝑒𝑙

𝐿−𝑆〉 𝑏𝑜𝑢𝑛𝑑 − 〈𝐸𝑒𝑙
𝐿−𝑆〉 𝑢𝑛𝑏𝑜𝑢𝑛𝑑 corresponds to the change in intermolecular 

electrostatic interactions between the bound and unbound states. Parameters α and β are 

generally obtained empirically using an appropriate fitting procedure.  

Alternatively, MM/PBSA [24], which is arguably the most popular end-point method, turned out 

to be successful in a number of drug-design case studies [25–27]. The method basically provides 

an estimate of the binding free energy as: 

∆𝐺𝑏𝑖𝑛𝑑 = 〈∆𝐸𝑀𝑀〉 − 𝑇∆𝑆 +  ∆𝐺𝑠𝑜𝑙𝑣, (2.4) 

where 〈∆𝐸𝑀𝑀〉 − 𝑇∆𝑆 can be regarded as the change in the free energy of the system in vacuum 

(gas phase); it includes the change in the molecular mechanics energy due to the binding 

〈∆𝐸𝑀𝑀〉 = 〈𝐸𝑀𝑀〉𝑏𝑜𝑢𝑛𝑑 − 〈𝐸𝑀𝑀〉𝑢𝑛𝑏𝑜𝑢𝑛𝑑 and the change in the conformational entropy ∆𝑆, 

usually estimated from normal mode analysis (NMA) performed on the complex structure and on 

the free ligand and protein structures. As in the LIE method, every average quantity corresponds 

to an ensemble average obtained from output MD trajectories. The entropy contribution, which is 

relatively time-consuming and inaccurate to compute using NMA, can be neglected if a 

comparison of states of similar entropy is desired such as in the case of comparing two or more 

ligands binding to the same protein binding site. Finally, ∆𝐺𝑠𝑜𝑙𝑣 stands for the difference of 

solvation free energies due to the binding, it is given as ∆𝐺𝑠𝑜𝑙𝑣 = ∆𝐺𝑠𝑜𝑙𝑣
𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − ∆𝐺𝑠𝑜𝑙𝑣

𝑙𝑖𝑔
− ∆𝐺𝑠𝑜𝑙𝑣

𝑝𝑟𝑜𝑡
 

where every term on the right-hand side is given as the sum of polar and nonpolar contributions. 
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The polar parts are obtained by solving the Poisson-Boltzmann (PB) equation or by using the 

Generalized-Born (GB) model (as in the MM/GBSA method) whereas the nonpolar terms are 

estimated from a linear relation to the solvent accessible surface area (SASA). Despite the fact 

that MM/PBSA and MM/GBSA are computationally-inexpensive methods, they contain several 

crude and questionable approximations, e.g., due to the use of implicit solvent models to 

compute the solvation energies [28]. The capability of the MM/PBSA method to predict the 

correct binding free energy turns out to be more sensitive to the investigated system compared to 

the MM/GBSA method, the latter being more useful in multi-target comparisons [29]. 

Noticeably, the MM/PBSA and GBSA techniques can be used to perform per-residue-free-

energy decompositions. The benefit of such decompositions is twofold: providing important 

information about residues which significantly contribute to the binding energy (hot spots) and 

giving insights into the changes in binding free energies due to mutations, especially single point 

mutation. 

2.4 Other Computational Drug-Discovery Methods 

This section is intended to provide an account of other popular useful techniques for drug design 

and VS studies that can be used instead or in conjunction with MD-based methods discussed in 

the previous section. 

2.4.1 Binding Pocket Prediction 

Identifying and characterizing a suitable binding pocket in a 3D protein structure is a central 

aspect of any drug discovery study. This step is also relevant to shed light on biomolecular 

functions as many proteins are biologically functional only after interacting with cofactors or 

other biological molecules. 
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A common way to define a binding pocket, if a ligand is already bound to it, is to introduce a 

distance cut-off. Binding pocket atoms are typically defined whenever their distance to the 

ligand is below 4–8 Å. Following is a list of physicochemical key properties of binding pockets: 

• The solvent-accessible surface area (SASA) which is usually computed as the atoms of the 

pocket reachable by a solvent probe sphere rolling over the protein surface. 

• The volume of the pocket and its depth which corresponds to the average distance of the 

pocket atoms to their nearest water molecules from bulk solvent [30]. 

• The pocket hydrophobicity which depends on polar and non-polar residues involved in the 

binding site. 

• The number of hydrogen bond donors and acceptors on the pocket surface. 

• The conservation of residues over similar binding pockets of other proteins, which is 

particularly relevant for functional sites. 

In addition to experimental binding site detection techniques such as NMR-based methods [31], 

a number of computational methods can be found which may be helpful in the process of binding 

pocket identification of a molecular target. Pocket finder algorithms are usually tested and 

validated on protein and ligand datasets. Such tests are intended to estimate the reliability of 

identifying the correct binding pocket within the first one to three hits provided by an algorithm. 

Two popular publicly-available databases are the Protein Data Bank (PDB) [32], which provides 

3D protein structures for input into the pocket finding algorithms, and the PDBbind database 

[33], which contains bound protein structures filtered from the PDB database. The current 

version of PDBbind has around 3100 protein-ligand complexes, 1300 of these having been 
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manually selected to form the refined set with the focus on the quality of structures and binding 

data. Due to its large size and manual curation, the refined set of the PDBbind database provides 

a suitable benchmark for most case studies. Further reduced from this, is the core set of 210 

complexes. Optimal databases for pocket prediction testing should include high-resolution, 

diverse and non-redundant protein-ligand complexes. Pocket finder algorithms are generally split 

into two classes, namely, geometric-based and energetic-based approaches. 

Geometry-based algorithms have the advantage of a low computational cost. The underlying 

assumption behind such methods is that the ligand binding pocket corresponds to the larger cleft 

within the protein structure [34,35]. Therefore, geometrical criteria may be sufficient to identify 

the correct binding location on a protein. One such example, SURFNET [36] is an early-

developed program which fits spheres between pairs of atoms so that they do not contain more 

than one atom. The binding pocket is defined as the volume containing the largest number of 

adjacent spheres. An improvement of the program, called SURFNET-ConSurf [37], refines the 

binding pocket prediction also considering the residue conservation within the binding site. The 

SURFNET-ConSurf algorithm was tested on a set of 244 non-redundant, diverse and 

representative ligand-protein complexes, obtained by a filtered version of the PDB database. A 

75% rate of successfully recognized native ligand pockets is reported in the original paper about 

this method [37]. 

Another algorithm called VisGrid [38] is based on geometrical hashing and identifies cavities by 

considering the visibility of each point in a 3D grid, that is, the fraction of directions that are not 

blocked by protein atoms. In this way, a cluster of closely-located grid points with limited 

visibility indicates a pocket. VisGrid was compared with other pocket prediction methods, 
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including SURFNET and LIGSITE, and the observed success rates on a set of bound and 

unbound structures were comparable with existing methods. 

LIGSITE [39] uses a grid-based method in which points are either assigned to the solvent or 

protein category, and cavities are defined as groups of points in which solvent points are 

surrounded by protein points. Although the LIGSITE original validation identified the correct 

binding pocket in all the testing cases, a big limitation of this study was the reduced size of the 

dataset, with only ten ligand-receptor complexes. Its extension, LIGSITEcsc [40], improves the 

original algorithm by calculating more accurately the contact between protein surface and 

solvent using the Connolly surface, and by re-ranking the identified pockets by their degree of 

residue conservation in homolog proteins. The LIGSITEcsc testing process is more significant 

than the LIGSITE one, and a comparison with other geometry-based methods is also provided. 

The success rates calculated on a set of 210 non-redundant bound structures were 75% for 

LIGSITEcsc, 65% for LIGSITE and 42% for SURFNET. The algorithm also showed good 

performances in recognizing the correct binding pocket in unbound structures. 

Another class of methods dedicated at identifying binding pockets are energy-based methods 

which rely on the energetic properties of a binding site. A common approach of these methods is 

to use molecular probes to search for favorable interaction sites on a protein, and cluster them 

together to identify putative pockets. An early effort resulted in the GRID Fortran code [41]. The 

probes employed by this algorithm include water, methyl group, the hydroxyl, amine nitrogen 

and carboxy oxygen. Energetic contours are calculated with a function considering a 12-6 

Lennard-Jones term, an electrostatic term and a hydrogen bond term, and negative energy levels 

indicate promising interaction sites for each probe. 
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Laurie and Jackson’s Q-SiteFinder method [42] calculates the interaction energy of a methyl 

probe and the grid points generated on the protein structure. A clustering analysis step links 

favorable interaction sites to rank putative binding pockets based on their total interaction 

energy. Q-SiteFinder was tested on a diverse set of bound and unbound protein conformations, 

resulting in success rates of 74% and 71%, respectively. 

EasyMIFs and SITEHOUND [43] are two complementary energy-based tools developed at the 

Sanchez lab. The first algorithm calculates the interaction energy between grid points and 

molecular probes using the GROMOS force field, while SITEHOUND recognizes putative 

binding sites by filtering and clustering the spatial variation of the interaction energy fields 

calculated by EasyMIFs or any other grid-based program. Multiple probes are used, as well as 

different site clustering algorithms. SITEHOUND’s success rate was evaluated on a set of 77 

complexes and it was reported as 95% (bound structures) and 79% (unbound structures) 

considering the binding pocket identified when present in the top three ranked sites. 

Another similar energy-based algorithm, AutoLigand [44], was created by the developers of the 

popular molecular docking software Autodock. AutoLigand was reported to have a success rate 

of 73% when tested on a set of 187 bound structures and 80% when tested on 96 unbound 

structures. 

2.4.2 Ligand-Receptor Docking 

Molecular docking methods have been developed to predict how a given compound naturally 

binds to its biomolecular target, i.e., its binding mode, and to provide an estimate of its binding 

affinity. Docking software usually rely on optimization algorithms which include both a search 

algorithm and a scoring function. Such methods require at least one ligand structure and one 
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target structure as inputs. The location of the targeted site should be provided although blind 

docking approaches [45,46] can help deal with unknown binding locations in addition to the 

pocket prediction methods discussed in the previous section. 

The search algorithms are dedicated to exhaustively explore the conformational space of the 

ligand within the targeted pocket. Three groups of such functions have been described, namely 

matching, systematic and stochastic methods. Matching algorithms are based on shape 

complementarity between the ligand and the receptor site, and, possibly, chemical 

complementarity. Systematic search algorithms explore the degrees of freedom of the ligand in a 

progressive way. This class of methods can be divided in three subgroups: 

• Exhaustive algorithms systematically rotate all ligand dihedral angles until an optimal solution 

is reached. 

• Fragment-based methods break down the ligand into different fragments which are separately 

placed within the binding site and re-connected in the last step of the process. 

• Ensemble-based methods pre-generate a large number of ligand conformations, which are then 

rigidly placed within the binding site. 

The last class of search algorithms includes stochastic methods such as MC and evolutionary 

algorithms, which introduce random changes of the degrees of freedom of the ligands to rapidly 

reach an optimal solution. 

In molecular docking, the binding free energy is calculated using a position-dependent scoring 

function. This is required not only to identify the correct binding pose corresponding to the 

lowest binding energy, but also to rank a set of tested compounds according to their affinity to a 
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target. Force-field-based scoring functions used for docking are similar to MD force fields 

discussed in Section 2.3.1. In empirical scoring functions, the different contributions in the 

binding energies are weighted with coefficients, set beforehand to reproduce experimental 

dissociation constants of known ligand-receptor complexes. The Autodock4 scoring function 

[47] is an example of an empirical scoring function where a non-bonded interaction potential is 

calculated as 

𝑉 = 𝑊𝑣𝑑𝑊 ∑ (
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The first term represents van der Waals contributions, the second is a hydrogen bond term, the 

third is a Coulombic term for electrostatic interactions, and the last is a desolvation potential. 𝑊 

represents the empirical coefficients, obtained from the training over 188 bound complexes from 

a PDB calibration subset. The coefficients 𝐴 and 𝐵 derive from the AMBER force field, while 𝐶 

and 𝐷 are Autodock internal parameters. 𝐸(𝜃) depends on the angle of deviation 𝜃 from the 

ideal hydrogen bond geometry. 𝑆 and 𝑉 are a solvation parameter and the volume of the atoms 

surrounding one atom, respectively. 𝜎 is distance-weighting factor of Autodock. The total 

Autodock score of a binding pose is calculated by summing the difference of intra-molecular 

energies between the bound and unbound form of the ligand and the protein, then subtracting the 

difference of inter-molecular energies. A simple entropic term is also included in the final score 

to model the variation of the system entropy upon binding. Knowledge-based scoring functions 
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use the potential of mean force (PMF), derived from protein-ligand structures and calculated for 

each 𝑖𝑗 ligand-receptor atom pair type as: 

𝑤𝑖𝑗(𝑟) =  −𝑘𝐵𝑇𝑙𝑛 (
𝜌(𝑟𝑖𝑗)

𝜌∗(𝑟𝑖𝑗)
) (2.6) 

where 𝑘𝐵  is the Boltzmann constant, 𝑇 is the temperature in Kelvin degrees, 𝜌(𝑟𝑖𝑗) is the number 

density of the 𝑖𝑗 atom pair derived from the structural training set and 𝜌∗(𝑟𝑖𝑗) is the number 

density in a reference state. Although knowledge-based scoring functions do not provide a 

precise interaction energy potential due to difficulties arising from the reference state calculation, 

they directly connect the atomic interactions between ligand and protein to structural data instead 

of to kinetics as is the case for empirical methods. Knowledge-based scoring functions turn out 

also to be more computationally efficient than force-field-based methods [48,49]. Finally, 

consensus scoring methodologies combine different scoring function outputs of the same ligand 

to obtain a single, consensual score. Different combination strategies can be employed, such as 

weighting and summing up the ranks or performing a regression analysis [50]. 

Accounting for the flexibility of the binding site is an important issue in molecular docking. As a 

result, different approaches have been proposed to address this problem. Soft docking algorithms 

use modified short-range repulsion parameters for the binding site atoms, which allow the ligand 

to slightly penetrate through the surface of the pocket to mimic the induced fit of the binding. 

Many algorithms also include the possibility to treat the side chains of pocket residues as 

flexible, although such methods still ignore backbone dynamics, while increasing noticeably the 

computational cost. Using multiple receptor conformations when performing molecular docking 

is a popular way to take into account the backbone flexibility [51]. This approach, called Relaxed 
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Complex Scheme (RCS), relies on NMR or MD-derived conformational ensembles, which are 

used as molecular docking targets. 

Testing of docking software is usually performed by evaluating the percentage of docking poses 

with small enough RMSD (typically 2 Å) compared to the co-crystallized poses extracted from a 

high-resolution structural database. 

The original implementation of DOCK [52] is an example of geometry-matching algorithm, 

where the binding site and the ligand atoms are represented as spheres that are systematically 

matched using a shape-based routine. DOCK 6 [53], the latest version of the program, applies a 

fragment-based algorithm and a set of different force-field-based scoring functions which can be 

selected, such as PBSA, GBSA and Amber scoring methods. In addition, a minimization step is 

performed for the ligand in order to remove minor protein-ligand clashes and relax its internal 

geometry. The success rate of the latest DOCK release was estimated around 73% in reproducing 

crystallographic poses. The authors tested the algorithm on 1043 structures obtained from a 

ligand-receptor database designed as a benchmark for assessing docking software performances 

[54]. 

Autodock [55], probably the most popular docking software, uses a Lamarckian genetic 

algorithm to independently generate a large number of binding poses, scored with the empirical 

scoring function described in Equation 2.5. A clustering algorithm can be optionally used to 

identify the most populated portion of the conformational space of the ligand, from which the 

lowest energy pose should match the native one. The success rate of the latest version, 

Autodock4 [56], was around 53% when the software was tested on the calibration structural set. 
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Autodock Vina [57] utilizes an iterated local search global optimizer searching method. The 

Vina scoring function combines aspects from knowledge-based and empirical potentials. Tested 

on the same set used for Autodock4, Vina was able to identify the correct binding pose in 78% of 

the cases. Noteworthy, Vina scoring function was trained with the PDBbind refined set, much 

bigger than the training set used for the Autodock scoring function. 

Glide [58] is a docking software included within the Schrödinger molecular modeling package. It 

is based on an exhaustive systematic search algorithm used to sample the ligand conformational 

space, followed by a minimization step. An optimal choice for the scoring method [58] is given 

as a combination of a force-field-based function, an empirical function (GlideScore) and the 

strain energy of the ligand conformation. The pose success rate was reported around 66% when 

tested on 282 ligand-receptor complexes selected from the PDB database. 

GOLD [59] is another popular docking program. The software maps together complementary 

chemical features of the ligand and the receptor within the binding site. A genetic algorithm is 

then used to explore different binding modes. Three main scoring functions are available, 

namely, Goldscore (force-field-based), Chemscore (empirical) and Astex Statistical Potential 

[60] (knowledge-based). Testing of GOLD on the CCDC/Astex database [61], a PDB subset 

designed to test docking software, resulted in success rates up to 87% depending on the scoring 

function used. The correlation coefficients (R2) between experimentally-measured and GOLD 

binding affinities were reported between 0.51 and 0.55. 

2.4.3 Virtual Screening 

The discovery of a new drug is an expensive and long process. It is estimated that up to two and 

half billion dollars and twenty years are required to bring a new product from the bench to the 
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clinic [62,63]. Consequently, efforts are made to shorten the process and reduce the cost. Some 

of the time and funding savings are expected to result from a wider use of computational 

techniques applied to drug discovery. One of such techniques is called virtual screening (VS). 

VS refers to an in-silico active compound search against biomolecular targets [64]. It has the 

advantage of being fast and inexpensive compared with traditional high throughput screening. 

Nowadays, libraries including billions of compounds can be virtually screened depending on the 

available computational resources. 

A typical VS workflow consists of sequential series of filtering and scoring steps aimed at 

providing a set of promising compounds for experimental validation. VS methods can be divided 

in ligand-based VS (LBVS) and structure-based VS (SBVS). LBVS approaches are 

computationally faster but they do not provide any estimate of the binding energy of the ligand. 

On the other hand, SBVS methods are more computationally expensive but they enable to rank 

potential hits based on their predicted binding affinity. Regardless of the chosen approach, a 

compound database is always required as starting point for VS. Examples of extensive small 

molecule repositories are PubChem [65,66], ZINC [67] and the National Cancer Institute 

databases [68]. Such collections usually include millions of compounds that can be downloaded 

for screening purposes [69]. 

LBVS techniques rely solely on the 2D or 3D structure of ligands, ignoring the biological target. 

The main assumption behind these methods is that structurally related compounds share similar 

activities [70]. Therefore, the structure of at least one known active compound should be 

available as template for the computational search, and a measure of the distance between 

structures needs to be computed. Simple ways to represent the chemical structure of a compound 

in a computer-readable format are chemical fingerprints or pharmacophore representations. 
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Chemical fingerprints [71] are binary strings in which each bit codes for the presence or the 

absence of particular chemical groups. A widely-used way to compare two fingerprints is to use 

the Tanimoto index, given by 

𝑇𝐴,𝐵 =
𝑐

𝑎 + 𝑏 − 𝑐
, (2.7) 

where A and B are the two fingerprints, c is the number of bits set to 1 at the same position in 

both the fingerprints, and, a and b are the total number of bits set to 1 in A and B, respectively. A 

publicly-available package which can be used for fingerprint-based VS is chemfp [72]. 

Another way to perform LBVS is to use a pharmacophore model of the active compounds [73], 

which provides a representation of the ligand from its spatially-distributed chemical features 

(hydrogen bond acceptor, hydrogen bond donor, hydrophobic moiety, ring structure, polar or 

charged residue) including the distances between centers forming a chemical structure. In 

pharmacophore-based VS, the distance between two ligand structures is usually calculated as the 

RMSD between the superposed pharmacophore points. The main benefit of this approach is to 

identify molecules with different chemical groups but similar generic features, providing novel 

scaffolds to medicinal chemistry. Contrary to most chemical fingerprints, pharmacophore models 

also include 3D properties of the ligand. 

Data mining and machine learning methods including support vector machines, neural networks, 

Bayesian networks and decision trees, are also utilized for LBVS [74]. LBVS methods are useful 

in case a 3D structure of the target is not available, but they can also be used to clean up large 

databases in order to generate focused libraries [75]. Indeed, these structurally-related subsets are 

designed to interact with a specific target and they are built by screening larger and diverse 
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databases. Focused libraries have a limited size compared with the parent databases. Therefore, 

they can be rapidly and efficiently screened with SBVS or experimental techniques. LBVS 

methods have led to the discovery of novel and promising compounds with low-range potency 

[76]. Examples of such successes are the discovery of anti-cancer tubulin dimerization inhibitors 

[77], inhibitors of the 17β-HSD2 enzyme for osteoporosis treatment [78] and novel scaffolds for 

the inhibition of the HIV-1 integrase [79]. 

SBVS methods provides a ranking of the screened compounds based on their computed binding 

affinities. Therefore, one or multiple structures of the target are required. SBVS always relies on 

molecular docking methods, which are used to place the compounds within the targeted pocket, 

and to estimate the binding affinity from the resulting binding poses. We have already discussed 

all the docking-related aspects in Section 2.4.2. The docking scoring functions are designed to 

quickly estimate the binding energy from a ligand pose, therefore they often do not lead to very 

accurate results. Several strategies have been developed to deal with this, including the already 

mentioned consensus scoring, MD simulations of the complex structures and/or more accurate 

scoring functions (e.g., MM/PBSA or GBSA) [80,81]. Recently, SBVS techniques were 

successfully applied to the discovery of DNA repair inhibitors [80,82–85], anti-malarian 

compounds [86], kinase inhibitors [87] and HIV-1 inhibitors [88,89]. 

2.5 Conclusions 

This review chapter provides introductory information regarding the computational tools 

currently used in the drug design and discovery process. We have given an overview of 

molecular dynamics methods that are very useful in biomolecular target characterization for drug 

action. We have also given practical information regarding the identification of binding pockets 
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for putative inhibitors of proteins, as well as an overview of molecular docking techniques that 

are based on the protein-ligand inter-actions. These interactions and their ranking involving the 

binding free energy of the ligand-target pair are used in massive searches for specific and 

selective inhibitors of particular protein, a methodology referred to as virtual screening. The 

latter methodology relies on large and diverse databases of pharmacologically-acceptable com-

pounds. Lists of databases and software packages used in all stages of computational drug design 

have been presented in this chapter to assist in practical aspects of research in this area. 
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Chapter 3 - Modeling NER Repair Pathway: Recent Advances and Future 

Directions2 

3.1 Abstract 

Background: A major class of chemotherapy drugs targets the genome of cancer cells. These 

DNA damaging agents induce damage to the DNA helix, resulting in the programmed death of 

cancer cells. An over-activated DNA repair mechanism in cancer cells can reduce the efficacy of 

these drugs, thereby eliminating their therapeutic benefit and developing an acquired resistance 

to these otherwise effective drugs. A promising approach to enhance the therapeutic window of 

DNA damaging agents is to target the DNA repair pathways causing this type of resistance. 

Methods: Computational approaches have been applied successfully to study many of these 

DNA repair mechanisms at different scales and focusing on various aspects. The ultimate goal of 

these studies has been to identify the key players in developing resistance to DNA damaging 

agents and to design regulators for their activities. This review covers the most important and 

recent computational efforts toward this goal. This includes modeling the mechanisms involved 

in DNA repair and identifying novel pharmacological inhibitors for their activities. Results: We 

focus here mainly on the pathways associated with an acquired drug resistance to DNA 

damaging agents, concentrating on the recent advances in modeling the key mechanisms and 

foreseeing the future directions in this field. Conclusions: We hope that this short, yet 

comprehensive review can help in discovering novel strategies to overcome the resistance effects 

inherent in various cancer treatments. 

                                                 

2 This chapter is part of a review article published as Gentile, F.; Tuszynski, J. A.; Barakat, K. H. Modelling DNA 

Repair Pathways: Recent Advances and Future Directions. Curr. Pharm. Des. 2016, 22, 3527–3546. 
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3.2 Introduction 

Our genome is constantly exposed to internal and external damaging agents. Five major DNA 

repair pathways are working against these continuous environmental attacks on the integrity of 

DNA in humans. Each of these pathways specifically acts on certain types of lesions. Some of 

these lesions can be removed by a single enzyme while others can involve multiple and intricate 

networks of protein-protein interactions. For example, the simplest of these DNA damages is O6-

methylguanine lesions, which can be directly repaired by a single enzyme, namely the O6-

methylguanine-DNA methyltransferase (MGMT) protein. A multi-protein and more complicated 

example is base excision repair (BER) which removes non-bulky DNA damages such as base 

modifications. A similar but more intricate pathway is nucleotide excision repair (NER) 

mechanism, which is involved in identifying and repairing lesions that distort the DNA double 

helix structure. Mismatch repair (MMR) is active on base-base mismatches and insertion-

deletion loops coming from the DNA replication process. Homologous recombination (HR) and 

nonhomologous end joining (NHEJ) pathways repair double strand breaks that can lead to 

genomic instability and cell death response. An excellent review of these pathways can be found 

in Iyama and Wilson’s paper [90]. 

In the context of cancer treatment, DNA repair pathways can be considered as a double-edged 

sword. On one hand, these mechanisms are invigilating the integrity of the genome, repairing the 

damages that are constantly generated within the DNA chains. These damages can in fact 

interfere with the correct base pairing occurring during the replication of DNA, thus leading to 

dangerous mutations, which can be cytotoxic and lead to the cell death. Impairment of the 

activity of repair pathways and/or DNA damage accumulation is correlated with different 

pathological conditions. On the other hand, many chemotherapy approaches target the DNA of 
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cancer cells to induce their apoptosis leading to tumor shrinkage. The same repair pathways that 

protect the organism from carcinogenic mutations can act also against cancer treatment, by 

fixing the induced damages and restoring the native functionality of the tumor cells [91]. In 

addition, over-expression of DNA repair proteins is often found in certain types of cancer, 

therefore showing a stronger resistance effect compared with normal cells [92–94]. Exploiting 

DNA repair mechanisms as a way to improve cancer therapy requires a delicate approach to get 

the optimal benefit for patients while keeping the balance between these two extremes.  

There is ample evidence regarding the relation between DNA damage and the genomic 

instability of cancer cells [95]. DNA damages and repair deficiencies have been linked to 

neurodegenerative pathologies as well, such as Alzheimer’s, Huntington’s and Parkinson’s 

diseases [96]. In addition, three rare degenerative syndromes, which are directly related to the 

impairment in the NER pathway, act on helix-distorting lesions. This includes xeroderma 

pigmentosum (XP), an inherited condition of inefficiency of the XP complementing group A-G 

proteins, which is associated with impaired global-genome NER functionality. Affected 

individuals are over-sensitive to UV radiation and are likely to develop skin cancer. The disease 

is sometimes associated with accelerated neurodegeneration when the transcription-coupled NER 

is also defective. Cockayne’s (CS) syndrome is due to defects on CSA and CSB encoding genes. 

The disease is initiated by an impaired TC-NER activity, causing premature aging, 

neurodegeneration, cessation of growth and drastic reduction of life span. Trichothiodystrophy is 

another genetic disorder caused by the alteration of the XPB/XPD helicase activity of NER. 

Specific symptoms of this disease can vary from hair modifications to neurological deficiencies 

and skeletal abnormalities [97,98].  
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The modulation of the activity of DNA repair pathways in the context of cancer treatment has 

been proposed in two different ways. The first approach involves small molecules that can target 

the normal repair activity in cancer cells in combination with alkylating agents or other therapies 

to enhance the DNA damaging effect and the treatment outcomes [99,100]. Another promising 

approach targets defective repair pathways in cancer cells to induce selective cell death. The 

latter strategy has been termed as the lethal approach in which DNA repair inhibitors can be used 

as monotherapy [99].  

DNA repair pathways rely on the nucleotide/side pools for the essential DNA synthesis and 

substitutions’ building blocks. Maintaining the correct level of nucleotides in this pool is 

important for the full activity of the repair mechanisms [101]. In particular, low concentrations 

of the available nucleotides/sides correlate with deficiencies in the repair mechanism [102]. An 

interesting difference between tumor and healthy cells is the resistance of the former to oxidative 

damages occurring to the nucleotide pool [103]. Two recent studies performed by Gad et al. 

[104] and Huber et al. [105] showed that the 7,8-dihydro-8-oxoguanine triphosphatase (MTH1) 

protein is essential for the survival of cancer cells by clearing the pool of 8-Oxo-2'-

deoxyguanosine-5`-Triphosphate (8-oxoGTP) mutated bases, avoiding their incorporation in the 

DNA that can lead to cell death. Its activity is not essential for normal cells, probably because of 

the strict redox balance occurring in the latter compared with the impairment state observed in 

cancer cells. This impairment state can lead to an accumulation of damaged nucleotides. Worth 

to mention is the cytotoxic effect of MTH1 inhibitors in cancer cells, which was not altered even 

by over-expressing many BER proteins such as oxoguanine glycosylase (OGG1) and mutY 

homolog (MUTYH). MTH1 constitutes therefore an attractive pharmacological target for 

selective cancer treatment, with the possibility to overcome the BER activity in tumor cells. 
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Computational methods have been employed for several decades as powerful, inexpensive and 

fast tools to help investigate the biological world. The recent advances made in the field of high 

performance computing and the development of multi-scale modeling approaches have in fact 

given rise to a new era for the use of computers to model biological structures and processes 

[106,107]. Today it is not only possible but routinely done to investigate, for example, the 

nanoscale nature of protein-protein interactions, to model chemical reactions and to discover 

novel drugs using completely in-silico strategies. DNA repair mechanisms represent an example 

of multi-scale biological processes, and are thus perfect candidates for computational 

investigations. In this review, we focus on the computational studies produced in the last ten 

years to investigate the NER pathway, which is highly involved in producing cancer treatment 

resistance. We discuss below studies performed at different time- and space-scales, from the 

simulation of enzymatic chemical reactions to the coarse-grained prediction of protein-DNA 

complexes. Special attention is paid to atomic simulations of key proteins and rational drug 

design efforts of DNA repair inhibitors. An introductory section presents NER mechanism. It is 

our hope that this work will encourage the research community to find novel solutions for cancer 

therapy and to develop new computational methodologies for advanced DNA repair studies.  

3.3 DNA Repair Pathways and Resistance to Cancer Treatment 

DNA damage occurs frequently in each cell of the human body. Some of the endogenous sources 

of damage are nitrogen and oxygen reactive species, hydrolytic reactions or occasional errors 

occurring during the replication. DNA damage can be also induced by many external damaging 

agents such as tobacco products, ionizing radiations and reactive chemicals [96]. The 

introduction of a lesion within the DNA chain can lead to errors in DNA replication and 

ultimately to mutations causing cancer or other diseases [98]. In order to repair these damages 
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before the replication, the cells have developed a complex network of multiprotein pathways to 

efficiently recognize and fix a wide range of lesions [90]. The deficiency of these mechanisms is 

associated with a hypersensitivity to damaging agents and can lead to severe pathological 

conditions; specific examples are the already discussed CS and the XP syndromes, two rare 

genetic diseases associated to the impaired functionality of the NER pathway (see above). 

Although these pathways play an important role in conserving the genome integrity, they can 

also represent a barrier to cancer therapy. Most of the current cancer treatments are indeed 

designed to damage the DNA of the tumor cells, damages that these pathways can repair may 

largely eliminate the benefit of the cure [91]. Therefore, the inhibition of these mechanisms 

represents a powerful strategy to sensitize the cells to therapies such as chemotherapy or ionizing 

radiation [99]. Moreover, a novel role of DNA repair inhibition as cancer monotherapy that 

targets  the defective repair mechanisms in cancer cells is attracting considerable interest 

(synthetic lethality approach) [108]. Cancer is often caused by mutations occurring because of a 

defective repair mechanism, due to alteration of expression for key proteins or their 

modifications. The main idea behind the synthetic lethal approach is to destroy the residual 

repair action of tumor cells, causing them to not be able to fix natural occurring damages and 

therefore to die [109–111]. 

Among DNA repair pathways, the BER and the NER mechanisms are two of the most involved 

in generating cancer treatment resistance. The lesions generated by common chemotherapies 

such as alkylating agents or radiotherapy are indeed natural substrates for these two pathways, 

and the modulation of their activities in cancer cells represents a promising strategy to enhance 

the effect of the treatment [99]. 
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3.3.1 Nucleotide Excision Repair 

NER pathway is a multi-protein mechanism that acts on bulky lesions. These lesions can distort 

the helical structure of the DNA and removing them is essential for a successful DNA 

replication. Similar to BER, depending on the localization of the damage, two different sub-NER 

pathways can be adopted, namely the transcription-coupled NER (TC-NER) and the global-

genome NER (GG-NER). The TC-NER pathway acts on DNA lesions present on the transcribed 

strands of the genome and is associated with the DNA transcription process [112], while the GG-

NER detects damages present on the whole genome [113].  

The recognition step is the main difference between the two sub-NER mechanisms. In TC-NER, 

the blockage of an RNA polymerase II (RNA pol II) at the damaged site is the triggering signal 

for the pathway. The stalled polymerase engages the CS group A and B (CSA and CSB) 

proteins. In GG-NER, the XPC-UV excision repair protein RAD23 homolog B (XPC-RAD23B) 

complex recognizes the DNA lesion instead [114]. Other than the initial recognition of the 

damage, the two sub-pathways involve the same successive steps. Firstly, both pathways recruit 

the transcription factor II Human (TFIIH) [115]. TFIIH shows a helicase activity to both DNA 

directions as a result of involving the XPB (3′-5′) and XPD (5′-3′) proteins. In this way, the 

TFIIH complex removes the damaged zone and creates a bubble around the lesion [116,117]. 

The opening of the DNA duplex facilitates the recruitment of XPA and replication protein A 

(RPA) [118,119]. XPA then recruits the XPF-DNA excision repair protein (XPF-ERCC1) 

complex [120], which shows an endonuclease activity by cutting the 5′ terminal of the lesion 

[121,122], while another endonuclease, XPG, is recruited by the TFIIH complex to incise the 3′ 

terminal [123,124]. Finally, the gap-filling is performed by a DNA polymerase (δ, ε or κ) in 
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collaboration with PCNA and RFC, and finally sealed by the XRCC1-LIG3 complex or LIG1 

[90]. The steps of NER are shown in Figure 3.1, adapted from the KEGG database [125,126]. 

 

Figure 3.1. Steps of human global-genome and transcription-coupled NER pathways. The 

recognition step is different for the two pathways. In transcription-coupled NER, a stalled 
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polymerase at the damaged site is the trigger for the repair activity. The polymerase recruits then 

the CSA and CSB proteins. In global-genome NER the XPC-RAD23B complex recognizes 

instead the lesion and starts the repair action. The subsequent steps are common to both the 

pathways. See text for more details. Adapted from KEGG database 

(http://www.genome.jp/kegg/) [125,126]. 

NER is responsible for the removal of DNA damages caused by bifunctional alkylators such as 

cisplatin [99,127]. Several independent studies have provided evidence that the over-expression 

of NER proteins is correlated with cisplatin resistance in cancer, whereas low-expression causes 

hypersensitivity [100,128,129]. On the other hand, small molecules able to modulate the activity 

of NER proteins have shown a sensitizing effect of chemotherapy on cancer cells 

[80,84,130,131]. The incision of the lesion is the limiting step of the pathway. For this reason, 

key proteins to target for disrupting NER activity are RPA, XPA, ERCC1, XPF and XPG [132]. 

3.4 Modeling NER Repair Mechanisms at the Atomistic Level 

NER’s key proteins have been investigated with the help of computational tools. RPA is a 

hetero-trimeric protein composed by a 70 kDa (616 amino acids), 32 kDa (270 amino acids) and 

14 kDa (121 amino acids) kDa subunits comprising eight domains (RPA70N, RPA70A, 

RPA70B, RPA70C, RPA32N, RPA32C, RPA32D and RPA14) [133]. Nuss et al. employed MD 

simulations of the 70 kDa subunit to highlight the flexibility of this structure, especially around 

the residue K551. In addition, a series of protein-protein docking simulations were employed to 

propose models for the trimeric form and to identify buried and exposed residues. The best 

model was structurally close to the crystallographic one [134]. Other studies focused on the 

conformational changes occurring in the same subunit after single-stranded DNA (ssDNA) 

binding. MD simulations and X-ray/NMR observation were used in combination to study 
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possible interactions between ssDNA and the RPA70N domain. The findings elucidated no 

direct interactions as the zone remain structurally independent after the binding, opposite to the 

observed coordination of RPA70A/B, supporting its role as a recruiter. The important function of 

interdomain linkers was also investigated in latter studies [135,136]. BH3 interacting-domain 

death agonist (BID) protein is one of the RPA70N interacting partners, for which the function is 

thought to be a recruiter and stabilizer for other proteins such as ataxia telangiectasia and Rad3 

related (ATR), and ATR-interacting protein (ATRIP). A model for this interaction was obtained 

through docking simulations by Liu et al. [143] A series of salt bridges between acidic residues 

of BID and basic ones from RPA70N were detected and proved the electrostatic 

complementarity of the two protein surfaces [137]. The binding of BID with ssDNA is mediated 

by the RPA70A/B structure. Carra et al. [138] employed MD simulations, PCA and MM-

PB(GB)SA methods to investigate the nature of this interaction as well as the effect of single and 

double mutations. In their first study, they were able to reproduce the experimental binding 

affinities using the MM-PB(GB)SA method over separated MD trajectories for the DNA 

structure and RPA70A/B complex, elucidating the necessity to include suitable geometries in the 

calculations. For example, the consideration of a S-S bond between C200 and C289 

(overstretched in the X-ray structure of the free protein) was found to yield a better agreement 

with experimental data. This work provided a solid benchmark for the computational study of 

this protein. In their second study, the authors investigated the effect of different mutations in 

RPA70A/B on ssDNA binding using again a computational approach. Here they used the 

MM/PBSA method over MD trajectories of different mutants-DNA complexes to estimate the 

energetic differences with the native structure. Again their findings were in good agreement with 

the experimental data and provided structural insights of this interaction [139]. In Brosey et al.’s 
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work [133] MD simulations of various RPA and RPA-ssDNA complexes were run in implicit 

solvent. The DNA binding domain of RPA that was modeled in this study contains residues from 

RPA70A, B, C and RPA32D. These simulations, combined with X-ray and neutron scattering 

experiments, provided a novel model where the free form of RPA is flexible and the domain 

motions are uncorrelated, becoming more compact after ssDNA binding. This proposed 

mechanism differed from the previously proposed ones also for the absence of an intermediate 

state between before and after the binding occurs. The study provided a new framework for 

understanding the action of RPA in incorporating the DNA into the processes. Pavani et al. 

employed homology modeling, MD simulations and sequence alignment to identify RPA70 from 

Leishmania amazonensis (LaRPA1) as structurally different from other eukaryotic RPA proteins. 

Their findings support a role of LaRPA1 as telomere end-binding protein [140]. Compared with 

double-stranded DNA (dsDNA), the prediction of protein-ssDNA complexes is usually difficult 

due to the high flexibility of the single stranded chain and the heterogeneity of the interaction 

interface. In a recent work of Mishra and Levy [141], a coarse-grained model was developed and 

tested to overcome this limit and predict the correct protein-ssDNA complex. The molecular 

interactions dominating the model potential were the electrostatic interactions established 

between basic residues of the protein and the DNA phosphates, and the hydrophobic stacking 

between aromatic residues and DNA bases. The ssDNA was placed at different starting positions 

and the complex formations were simulated. The final conformations were then compared with 

the crystallographic structures. The method successfully reproduced six crystallographic 

complexes, including RPA and ssDNA, opening a new pathway to model these protein-DNA 

interactions for which an experimental structure is not available. Noticeably, it allows also to 

explore different binding modes depending on the salt concentration and to observe the binding 
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process of ssDNA to the protein, as shown in Figure 3.2. Besides NER, RPA is involved in 

multiple other cellular processes, such as HR and checkpoint processes. During the intra-S 

checkpoint the RPA32C domain is interacting with the TIMELESS-interacting protein (TIPIN). 

A homology model of TIPIN was built by Ali et al. [142] and then docked to the RPA domain. 

Their findings elucidated a binding mechanism occurring at a common interface but different to 

other proteins binding at the same site, such as XPA and UNG2, where in addition to the helix 

interaction an interaction with an N-terminal loop is also established. The results of this work 

supported a role of RPA32C as an exchange point for many proteins involved in different 

activities within the cell.  
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Figure 3.2. Simulation of binding mechanism between ssDNA and RPA. The CG model for 

RPA-ssDNA interaction not only permits to reproduce the crystallographic complex, but also to 

simulate the binding process, where DNA gradually interacts with four sites through a sliding 

process. The approaching of the DNA with each binding site is represented on the left, where the 

purple line indicates the interacting nucleotide index and the black one the difference between 

the site-nucleotide minimal distance in the model and the crystal structure. A-D refers to binding 

site I-IV. The four snapshots occurred at the simulation times indicated by the respective arrow. 

Adapted with permission from [141]. 

XPA is a 31 kDa, 273 amino acid long protein involved in damage recognition during NER. The 

C-terminus binds with TFIIH, whereas the N-terminus interacts with RPA32 and ERCC1. The 
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central domain is dedicated to recognize the damaged DNA through a zinc finger motif as well 

as to interact with RPA70 [143]. Its interaction with ATR after UV irradiation is required for a 

good repair efficiency. ATR phosphorylates XPA at S196, present in a helix-turn-helix (HtH) 

motif within the DNA binding domain. Molecular modeling and electrostatic calculations 

allowed to observe the change of charge distribution after this happens. Accumulation of 

negative charges was detected on the computational model on the HtH motif after the 

phosphorylation [144]. The interaction between XPA and ERCC1 is essential for the NER 

activity. Barakat et al. employed MD simulations of an XPA binding peptide-ERCC1 complex 

and free energy decomposition (MM/PBSA) to study the XPA residue contributions to the 

binding with ERCC1. F75 was stacked against R110 during the simulation and was found to be 

the highest XPA contributor to the binding free energy [145]. Fadda’s works carefully 

investigated the nature of the interaction between the XPA binding motif and ERCC1, as well as 

the recognition process. In her first paper [146], MD simulations of the XPA’s ERCC1-binding 

peptide (native and two mutant forms) free or in complex with ERCC1 were performed. The 

investigated mutants were F75A and D70A. The 500 ns-long simulations of the wild form were 

performed for two different protonation states of ERCC1’s H149 (Nδ1 and Nε2). Nε2 was found 

to be the optimal state, in contrast with the NMR structure. Direct residue interactions were 

identified for the wild type as H149-D70, Y145-D70, R156-G73, Q107-G73, S142-G74 and 

N110-F75, where the first residue belongs to ERCC1 and the second to XPA. Changes 

introduced by the mutated peptides were studied, as well as the XPA free form and the effect of 

the protonation state of H149 of ERCC1 in complex with these forms was assessed. In her 

second paper on the topic [147], MD simulations on a µs time scale suggested a recognition 

model of XPA by ERCC1. The motif that was thought to be responsible for the recognition was 
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a hairpin prominently represented during the simulations (36% of the time over 10 µs) and 

similar to the one of the bound form of XPA. The superposition of the representative structures 

with the experimental one is reported in Figure 3.3. The same motif was less prominent during 

the simulation of mutant forms, explaining the decreasing of binding affinity observed by 

experiments and providing a strong theoretical base for the molecular recognition process of 

XPA by ERCC1. Another work [148] adopted a combination of bioinformatics and molecular 

modeling tools to study the effect of mutations of the XPA gene. Firstly, the authors employed 

the sorting intolerant from tolerant (SIFT) bioinformatics tool to predict deleterious XPA 

mutations, identifying the C108F as the most deleterious one. The authors then ran MD 

simulations of the native and mutant form of XPA. Root mean square deviation and root mean 

square fluctuation (RMSD and RMSF, respectively) comparisons demonstrated a strong 

structural change in the mutant form, validating the in mutation as deleterious for XPA 

functions.  
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Figure 3.3. Superposition of predicted XPA binding motif and NMR structure of bound XPA 

peptide. The representative structures of the most populated clusters of the XPA peptide, 

obtained over 10 s seconds of MD simulations of the XPA free form, are represented in cyan 

and superposed to the NMR bound structure of XPA peptide (red). ERCC1 central domain is 

represented in grey. The similarities between the hairpin motif and the experimental bound one 

provided evidences of this structure being responsible for XPA recognition by ERCC1 in 

Fadda’s work. Adapted with permission from [147]. 

The endonuclease cutting 5′ the lesion is a heterodimer formed by XPF and ERCC1, where 

ERCC1 is the non-catalytic part of it. It associates with XPF through interactions between the 

(HhH)2 motifs present in the C-terminals. The protein is composed by 297 amino acids (32 kDa) 

with two noticeable domains, the C-terminal domain including the (HhH)2 motif and a central 

domain. The XPF-ERCC1 complex binds two ssDNA arms with the two HhH2 domains of XPF 

and ERCC1 and the 5′-ssDNA arm with the central domain of ERCC1. The central domain 

interacts also with XPA [121]. XPF contains the catalytic domain of the enzyme. The protein 

includes 916 amino acids (104 kDa) divided into three domains, the C-terminal domain involved 
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in the ERCC1 interaction through the (HhH)2 motif, the active nuclease domain and a helicase-

like domain [149]. In an early work [150] the authors used the Eph receptor sterile α motif 

(SAM) domain and the UvrC C-terminal as templates for the homology modeling of ERCC1 and 

XPF binding motifs. Then docking simulations predicted the structure of the heterodimer, 

subsequently found to be in agreement with another homology model built using the archaeal 

XPF homodimer as template. The already cited Barakat et al.’s paper [145] provided insights 

into the ERCC1 residues involved in XPA binding as well (Y145 was shown to be the highest 

contributor in terms of the binding free energy) and a detailed description of the central domain 

of ERCC1. The same authors produced a similar work [84] which studied the ERCC1-XPF 

interaction using MD simulations of the XPF-ERCC1 C-terminals and MM/PBSA calculations. 

F293 was identified as the most contributing ERCC1 residue towards the binding energy; on the 

other hand F894 was the highest contributor for XPF. This work investigated in detail the 

interface between the two proteins aiming to identify druggable sites in order to target it 

pharmacologically. Similarly to what they have done for XPA, Priya Doss and Nagasundaram’s 

study [151] explored the conformational changes introduced by predicted deleterious mutations 

in the ERCC1 gene. Three ERCC1 polymorphisms (V116M, R156Q and A199T) were docked to 

XPF and simulated using MD, in addition to the native form. Solvent Accessible Surface Area 

(SASA), RMSD/F and hydrogen bond analysis elucidated the effect of these mutations on the 

protein-protein interaction. 

3.5 Computer-Aided Drug Design for NER Repair Modulators 

The involvement of NER in repairing DNA damage caused by anticancer drugs prompted the 

development of inhibitors for this pathway. There are several recent works that employed in-

silico screening of databases to search for novel drugs that can target essential protein-
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protein/DNA interactions or the activity of NER enzymes. As described above, RPA is involved 

in multiple processes, including ssDNA binding and protein-protein interactions for DNA 

damage signaling and repair. The binding site and mode of action of compound 505, an inhibitor 

of the ssDNA binding to RPA, was predicted using docking simulations [152]. The authors of 

the study targeted three possible binding sites within the RPA70 DNA-binding domain (DBD), 

identifying the most probable one (DBD-B). A validation with an inactive compound was also 

performed to confirm their findings. In another study, the binding to RPA70 N-terminal by NSC-

15520 (an inhibitor of functionality of RPA70N discovered using in-vitro screening) was 

demonstrated to be competitive with Rad9, essential for DNA damage signaling, through 

molecular docking simulations [153]. The same authors used MD simulations [154] to generate 

an ensemble of configurations of the RPA DNA-binding zone interacting with the trans-

activation domain of p53, the DBD-F domain. The work produced a novel representation for the 

RPA70N DNA-binding domain that was demonstrated to be more accurate than the 

crystallographic data by using docking simulations of the p53 domain and fumaropimaric acid 

(an inhibitor for the DBD-F domain) to the MD-generated structures. 

XPA is a central protein in NER and therefore represents an attractive target for CADD studies.  

The interaction with ERCC1, RPA and DNA are the key activities influencing the function of 

this protein. Neher et al. [155] targeted the DNA-binding zone of XPA (loop 2 of the C-terminal) 

with VS for 200,000 compounds, which were docked to the binding domain. A two-phase 

scoring protocol followed by clustering and visual inspection was employed, resulting in a 

hundred of compounds for in-vitro testing. One compound shows μM IC50 in inhibiting XPA 

binding with ssDNA and dsDNA (both intact and cisplatin-damaged). 
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The XPF-ERCC1 heterodimer is another key protein for NER, as it is an endonuclease cleaving 

the 5′ extremity of the lesion. For this reason, the disruption of the dimer or the inhibition of the 

catalytic activity may result in the complete shutting down of NER activities. Barakat et al. 

focused on the XPA-ERCC1 interaction, through which the endonuclease is recruited to the 

damaged zone recognized by XPA. In their first study [145] a library composed of about 3,500 

compounds was virtually screened against the ERCC1’s XPA binding domain. The NCI 

Diversity Set (NCIDS) [68] and the DrugBank databases were merged to obtain the initial 

library. A set of representative structures for the free form of ERCC1 was extracted from 

exhaustive MD simulations and used for flexible docking. The top ranked hits were then used to 

build a pharmacophore model for XPA-ERCC1 inhibitors. In the second work produced by the 

authors [80], the NMR structures of ERCC1, XPA-bound form, were used for flexible docking. 

In addition, MD refinement and MM/PBSA rescoring were used to reduce the number of false 

positives from the in-silico screening. The Chimioteque Nationale (CN) database (~50,000 

compounds) was screened in this work. One compound showed encouraging activity in 

sensitizing cancer cells to UV irradiation and synergy with cisplatin treatment. The same authors 

focused also on the inhibition of XPF-ERCC1 protein-protein interaction to disrupt the active 

form of the endonuclease [84]. After MD simulations and analysis of putative binding pockets, 

they decided to target one site within the C-terminal domain of XPF. Again a RCS approach was 

employed to flexibly dock and score the NCIDS and DrugBank repositories to the targeted 

binding pocket. Compound labelled as NSC-130813 showed synergy with DNA damaging 

agents in cancer cells, resulting in a sensitizing effect to UV irradiation and ability to disrupt the 

XPF-ERCC1 interaction. The orientation of this molecule within the XPF binding site and its 

chemical structure are reported in Figure 3.4. Finally, a recently published study has employed 
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VS in addition to traditional in-vitro screening to identify novel selective inhibitors for this 

endonuclease. McNeil et al. [85] employed a multistep docking protocol to screen a library 

composed of several commercial databases (~5,000,000 structures in total, including different 

conformers). A combination of structure-based and ligand-based VS techniques and the 

application of a consensus scoring scheme were employed to obtain a set of potential inhibitors. 

The authors targeted both the XPF active site (obtained through homology modeling) and the 

XPF-ERCC1 complex on three ERCC1 interacting sites on XPF. Regarding the catalytic 

activity, two compounds obtained from VS showed a moderate inhibitory effect in the 

endonuclease assay. On the other hand, one compound showed activity in a NER assay as XPF-

ERCC1 inhibitor and enhanced cancer cell sensitivity to cisplatin. The reader is referred to  

Table 3.1 for the details about these in-silico discovered NER inhibitors. 

Table 3.1. In-silico discovered NER protein inhibitors. The details about the experimentally 

measured activities are reported as well. If not indicated, IC50 values refer to the best obtained in 

the related experiment. See text and referred papers for more details. 

Compound(s) Target Database Activity IC50 (μM) Reference 

X80 XPA ChemDiv DNA binding1 28 [155] 

AB-00026258 ERCC12 CN 

Cytotoxicity in 

cancer cells 

4.80 [80] 

NSC-130813 XPF3 NCIDS 

Cytotoxicity in 

cancer cells 

0.79 [84] 

E-X PPI2 XPF3 Specs 

NER in cancer 

cells 

20 [85] 

E-X AS1 XPF Enanime and Endonuclease 18.30- [85] 
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E-X AS2  Asinex 27.60 

1Refers to dsDNA containing cisplatin damage.  

2XPA-ERCC1 interaction. 

3XPF-ERCC1 interaction. 

 

Figure 3.4. Binding mode and chemical structure of NSC-130813. This small molecule binds to 

XPF, inhibiting the XPF-ERCC1 protein-protein interaction. This compound has been 

discovered with a structure-based VS protocol targeting the XPF C-terminal by Jordheim et al. 

Adapted with permission from [84]. 

3.6 Conclusions 

The DNA repair mechanisms constitute an interesting, still largely under-explored field of study 

in cell biology and molecular medicine. We are far from completely understanding the complex 

network of protein interactions and signaling involved in these intricate processes. However, 

several efforts have been recently made to investigate the key steps of the repair pathways. The 

study of these mechanisms is in fact important to understand how the human body is protected 
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against DNA damaging agents and the consequences occurring when this protection is deficient. 

Inhibition of DNA repair in cancer cells can be used as adjuvant therapy for treating cancer, with 

the goal to enhance the effect of standard chemotherapy and radiation therapy. On the other 

hand, targeting repair defects in tumor cells may be a selective synthetic lethal approach to be 

adopted in cancer therapy, as indicated in recent advances in research on this topic. In this 

context, BER and NER are two interesting pathways to target for cancer therapy. 

Computational approaches, ranging from micro-scale (QM) to meso-scale (CG), have been 

largely employed to investigate major aspects of DNA repair pathways. We have reviewed 

studies that modelled the biochemical reactions of the most important endonucleases, as well as 

simulations of biological complexes elucidating the role of structural effects introduced by 

mutations. We have also critically reviewed a large number of reported studies where novel 

modulators of NER pathway have been discovered using in-silico protocols. The insights 

provided by these efforts constitute a framework for the future introduction of efficacious 

combination therapies for cancer treatment. The outstanding results of these studies are 

supportive of a continuously increasing role played by computational modeling in the 

investigations of different aspects of DNA repair pathways (and biological processes in general) 

at different scales. Arguably, once these methods reach a satisfactory level of accuracy and 

reproducibility, biomedical research will benefit from an enormous saving of time and economic 

resources in an effort to obtain specific and selective results in the search for optimized 

therapeutic agents.  

In spite of these encouraging consideration, there is still a lot of room for improvement in the 

development of computational techniques. In the specific study of NER and other DNA repair 

pathways, many key points have not been sufficiently and accurately investigated yet. It also 
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appears that a real therapeutic solution is still far away from clinical applications. For example, 

the mechanisms of DNA cleavage have been just partially investigated, which is also true for the 

key protein-protein/DNA interactions dominating the repair machinery. Moreover, although for 

some targets (PARP1 for example) a lot of inhibitors have been revealed, many repair proteins 

are difficult to selectively target due to the structural similarities with others involved in different 

processes. Future studies focusing on these aspects may result in more effective pharmacological 

solutions, with reduced side effects of these novel therapies. 

More efforts are required to extend the spatial-temporal scales of simulations or, alternatively, to 

develop more efficacious sampling techniques. Also, there is a need for more accurate and 

selective structure/ligand-based drug design techniques. Serious limitations involve the lack of 

computing power. With the continuous development of innovative computational hardware and 

software, it is likely that simulations that today are prohibitive on a large scale in terms of 

computational cost will be totally accessible in the next few years, starting a new era of 

biological system modeling. 
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Chapter 4 - New Design of NER Inhibitors for Combination Cancer Therapy3 

4.1 Abstract 

Many cancer chemotherapy agents act by targeting the DNA of cancer cells, causing substantial 

damage within their genome and causing them to undergo apoptosis. An effective DNA repair 

pathway in cancer cells can act in a reverse way by removing these drug-induced DNA lesions, 

allowing cancer cells to survive, grow and proliferate. In this context, DNA repair inhibitors 

opened a new avenue in cancer treatment, by blocking the DNA repair mechanisms from 

removing the chemotherapy-mediated DNA damage. In particular, the nucleotide excision repair 

(NER) involves more than thirty protein-protein interactions and removes DNA adducts caused 

by platinum-based chemotherapy. The excision repair cross-complementation group 1 (ERCC1)- 

xeroderma pigmentosum, complementation group A (XPA) protein (XPA-ERCC1) complex 

seems to be one of the most promising targets in this pathway. ERCC1 is over expressed in 

cancer cells and the only known cellular function so far for XPA is to recruit ERCC1 to the 

damaged point. Here, we build upon our recent advances in identifying inhibitors for this 

interaction and continue our efforts to rationally design more effective and potent regulators for 

the NER pathway. We employed in-silico drug design techniques to: 1) identify compounds 

similar to the recently discovered inhibitors, but more effective at inhibiting the XPA-ERCC1 

interactions, and 2) identify different scaffolds to develop novel lead compounds. Two known 

inhibitor structures have been used as starting points for two ligand/structure-hybrid virtual 

screening approaches. The findings described here form a milestone in discovering novel 

                                                 

3 This chapter has been published as research article as Gentile, F.; Tuszynski, J. A.; Barakat, K. H. New design of 

nucleotide excision repair (NER) inhibitors for combination cancer therapy. J. Mol. Graph. Model. 2016, 1, 71–82. 
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inhibitors for the NER pathway aiming at improving the efficacy of current platinum-based 

therapy, by modulating the XPA-ERCC1 interaction. 

4.2 Introduction 

Cancer is a set of diseases whose main cellular result is the transformation of normal cells into 

anomalous cells, which grow, proliferate, undergo uncontrolled division, and often invade the 

organism by metastases. The disease is affecting millions of patients worldwide, raising 

immense economical and social burdens on the patients and their families. DNA damage is 

among the major factors that contribute to cancer initiation and progression [156]. Several 

exogenous and endogenous agents can interact with the DNA, leading to critical mutations in the 

human genome. This includes reactive oxygen and nitrogen species [157], UV radiations [158] 

and polycyclic aromatic hydrocarbons [159]. To protect the genome from such frequently 

occurring lesions, the cells have developed an intricate enzymatic network of DNA repair 

mechanisms to detect, isolate and repair the damaged part of the DNA chain, allowing for proper 

genome replication and correct cell division and differentiation [90].  

The nucleotide excision repair (NER) pathway is responsible for removing bulky DNA adducts 

induced by UV radiation, external agents, lipid peroxidation or reactive oxygen species [90]. 

These adducts distort the helix structure, halting the replication cycle and inducing apoptosis 

[160]. While these adducts could cause severe damage to normal cells, inducing them is, in fact, 

a desirable and promising way to destroy cancer cells. In this context, platinum-based therapy 

(e.g. cisplatin) has been developed to deliberately crosslink the DNA molecule, causing bulky 

lesions in cancer cells resulting in apoptosis. However, in this case, an over-activated NER 

pathway can act in a reverse way to this therapy, reducing its efficacy and benefit [91]. A 
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relatively new promising approach is to design selective NER inhibitors to potentiate the efficacy 

of platinum-based therapy in a synergistic fashion.  

NER involves at least thirty proteins that interact with each other at different stages of the 

pathway. Among these proteins is the excision repair cross-complementation group 1 (ERCC1) 

protein. ERCC1 is over-expressed in many cancer cells and its high expression is also correlated 

with resistance to cisplatin treatment [129,161,162]. Targeting this protein has been 

demonstrated to enhance the sensitivity of cancer cells to cisplatin [100,163]. ERCC1 forms a 

heterodimer endonuclease complex with the excision repair cross-complementation group 4 

(XPF) protein. The ERCC1-XPF endonuclease cleaves the damaged DNA strand at the 5′ 

position [121,122]. The endonuclease complex is recruited to the damage through a specific 

interaction between ERCC1 and another member of the NER proteins, namely xeroderma 

pigmentosum, complementation group A (XPA) protein [164]. Besides ERCC1, also the 

expression level of XPA has been shown to directly influence the response to cisplatin treatment 

[128,165,166]. Interestingly, the XPA-ERCC1 interaction is specific, essential to NER and no 

other functions have been known for XPA apart from the recruitment of the ERCC1-XPF 

complex [120]. The schematic representation of NER is reported in Figure 3.1 (adopted from the 

KEGG database [125,126]). 

Two different strategies to regulate the NER pathway through the XPA-ERCC1 interaction have 

been proposed so far.  The first employs a short peptide that mimics the XPA binding domain to 

ERCC1, which has the ability to compete with the full-length XPA protein for binding to 

ERCC1 [164]. The second approach, which we follow here, is to use small molecules binding to 

ERCC1, preventing its interaction with XPA. The first proof of concept for the latter strategy 

was provided through the cell cycle checkpoint abrogators, such as UCN-01, which was shown 
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to inhibit the XPA-ERCC1 interaction [167]. Following that, our group rationally identified a set 

of novel XPA-ERCC1 inhibitors by modelling the interaction and employing a sophisticated 

relaxed complex scheme (RCS) docking approach. These efforts led to the discovery of NERI01, 

a selective inhibitor of the XPA-ERCC1 interaction. This inhibitor was successfully validated 

experimentally as a regulator of the NER pathway in cancer cell lines. Another similar 

compound (compound 10) showed a less potent but still interesting modulator activity [80].  

Here, we build upon these discoveries aiming at identifying chemically similar but biologically 

more effective molecules as well as new scaffolds for the XPA-ERCC1 inhibition.  In this work, 

we employed both ligand-based and structure-based virtual screening techniques to identify 

novel potential inhibitors for the XPA-ERCC1 interaction. On one hand, we concentrated our 

efforts on searching a large library of compounds similar to the two previously identified lead 

structures, in order to find more potent structures. On the other hand, we developed a hybrid 

structure/ligand-based pharmacophore model to screen a library containing diverse structures to 

identify novel scaffolds that can be further optimized to obtain additional structures inhibiting 

the interaction. 

4.3 Results and Discussion 

4.3.1 Similarity Search-Based Virtual Screening 

The structures of the two lead compounds (hereafter referred as NERI01 and compound 10) are 

depicted in Figure 4.1. Both the compounds were able to sensitize cancer cells (especially colon 

cancer) to UV radiation and NERI01, in particular, was demonstrated to act in synergy with 

cisplatin. Moreover, the direct binding of both structures to ERCC1 was also validated [80]. The 

traditional similarity search has been performed using each structure as input; for NERI01, there 
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were 8,848 compounds from the PubChem database (containing ~68,370,000 compounds) 

showing a Tanimoto score equal or higher than 0.80, whereas 1,401 have been obtained for 

compound 10. The turbo similarity search method applied to the top 100 neighbors of the lead 

structures resulted in 5,937 compounds for NERI01 and 5,798 for compound 10. In total we 

extracted 21,984 unique structures from PubChem, of which 10,250 came from the traditional 

similarity search and 11,734 from the turbo approach. The number of unique small molecules 

has been reduced to 19,828 due to the filtering step in ADMET Predictor. Finally, around 28,600 

structures have been considered for protein docking, including various conformations as well as 

the ionizations states calculated with LigPrep.  

 

Figure 4.1. Chemical structures of NERI01 (left) and compound 10 (right). The two compounds 

share similar chemical features, in particular a hydrophobic backbone with two nitro groups at 

the extremities. 

4.3.2 Pharmacophore-Based Virtual Screening 

The docked poses of NERI01 and compound 10 on ERCC1 structure #7 (see below) have been 

used to generate a pharmacophore model. Out of the twenty Consensus Query suggested 

common features, five of them have been selected for the pharmacophore model, including three 

hydrogen bond acceptors and two hydrophobic features (Figure 4.2). The choice of the features 

as well as the size have been manually adjusted based on the acceptor and hydrophobic features 
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maps calculated as iso-surfaces at -2 kcal/mol and the excluded volume calculated on the binding 

poses. 

The four libraries from the NCI repository contained 2,642 unique molecules. Tautomer and 

conformer generation resulted in 92,340 entries that have been successively screened using the 

pre-generated pharmacophore query. The rank of top hits from the pharmacophore search was 

obtained by scoring their conformations based on the root-mean-squared deviation (RMSD) of 

their annotation points using the pharmacophore features’ model as a reference. A total of 126 

unique hits have been identified at the end of the screening, where just the conformation with the 

lowest RMSD value was considered for each ligand. At this stage, we decided to proceed with a 

refinement of the results using structure-based techniques for two reasons. First, although 

pharmacophore generation involved the target structures, the ligand conformer search step, 

performed in MOE, used a random search technique without considering the target binding site. 

Therefore, it was possible that some of the predicted configurations would not be physiologically 

relevant. Second, it was not possible to obtain an energetic score to rank the binding affinities of 

potential hits using only the pharmacophore search protocol adopted in MOE. 
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Figure 4.2. The ligand/structure-based pharmacophore model built in MOE. ACC means 

acceptor feature, HYD means hydrophobic feature and ARO means aromatic feature. The radius 

and the tolerance of the features have been adjusted in order to satisfy the receptor-based 

electrostatic maps, calculated in MOE (see text for more details). 

4.3.3 Molecular Docking 

Ten XPA-ERCC1 structures have been deposited in the Protein Data Bank. Each model includes 

the central domain of ERCC1 (residues 99-214) interacting with the small peptide from the XPA 

binding domain (residues 67-77). The ERCC1 residues that energetically contribute the most to 

the interaction with XPA have been previously identified as Arg106, Gln107, Gly109, Asn110, 

Pro111, Phe140, Leu141, Ser142, Tyr145 and Tyr152 [145]. From Figure 4.3 it is possible to 

observe the flexibility of these key residues among the different NMR structures even after the 

relaxation of the side chains in explicit water. 
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Figure 4.3. Superposition of the NMR configurations of ERCC1 key residues. This set of ten 

residues is mainly responsible of the interaction with the XPA peptide. The residues are colored 

according to their names. 

Because the number of structures obtained at the end of the similarity search was quite high 

(more than 28,000), we decided to perform the docking studies on this library in two steps in 

order to employ the RCS, that is performing rigid docking simulations on multiple relevant 

conformations of the same target [51,145,168,169] and using a smaller set of molecules. The 

first step was therefore to dock the whole library of compounds using one target structure and 

select the top hits for the flexible receptor docking protocol. From the ensemble of available 

NMR conformations (PDB entry 2JNW, containing ten models), we selected the seventh 

conformation. We initially docked the two lead structures to all the ten conformations and 

evaluated the twenty resulting poses. The seventh structure showed the best binding affinities 

among the ensemble with both the two known inhibitors, as well as complementary orientations 
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of the poses with respect to the pocket features. The selection of the snapshot showing the lowest 

binding energy with an active compound as a single starting structure for high-throughput 

docking has been successfully tested previously [170]. The binding energy predicted by the 

Autodock scoring function of NERI01 was -8.07 kcal/mol while for compound 10 it was -8.58 

kcal/mol. The two nitro groups at the two extremities of the structures allow to establish polar 

interactions with the Arginine residues of the binding pocket (Arg106, Arg144 and Arg156). 

Another noteworthy feature is the stacking of the aromatic rings of the two compounds between 

the hydrophobic bottom of the binding pocket and the aromatic rings of Tyr145 and Tyr152. 

Finally, the polar zones of the binding pocket are in proximity of the central polar groups of the 

ligands (Figure 4.4). Therefore, we performed the docking of all the compounds using structure 

#7 as the target. The range of the obtained binding energies was between -10.27 kcal/mol and -

4.09 kcal/mol. We then selected the top 25% unique hits (4,590 structures including different 

conformations and tautomers) to be docked using the Relaxed Scheme Complex protocol. The 

binding energy results in this case ranged between -10.54 kcal/mol and -4.32 kcal/mol. After a 

refining step of visual analysis we selected only 200 compounds for further, more detailed 

analysis. 

62% and 29% of these 200 hits were respectively retained from the traditional and the turbo 

similarity searches using NERI01 as input. The same indexes were 1% and 8% when compound 

10 has been used; in this last case the turbo approach contributed more than the traditional one to 

the final set.  



 57 

 

Figure 4.4. Binding poses of NERI01 and compound 10 in the binding site of structure #7. The 

polar extremities of the two compounds are interacting with the Arg residues delimiting the 

binding site (Arg106 and Arg144). The hydrophobic backbone is stacked between the aromatic 

layers constituted by the hydrophobic residues of the binding pocket and Tyr145, 152. The 

surface of the binding pocket is colored depending on the type of residues, in white where 

hydrophobic, in green where polar, in blue where basic and in red where acidic. 

For the hits that resulted from the pharmacophore-based virtual screening, we performed docking 

simulations using only the ERCC1 structure #7 as a target, as we have designed and refined the 

pharmacophore model using this structure (see above). The predicted binding affinities following 

this approach ranged from -8.79 kcal/mol to -4.80 kcal/mol. After the visual inspection to 

identify the best solution for each ligand, we selected only thirteen structures for further analysis. 

4.3.4 Molecular Dynamics Simulations and MM/PBSA Rescoring 

Although docking methods have been shown to well predict the binding pose of a ligand, their 

scoring functions usually lack in accuracy in favor of speed and reduced computational cost. 

Moreover, just the final docked pose is considered for the energy calculation, without accounting 

for the natural dynamicity of the binding. For these reasons, we performed 2ns-long molecular 
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dynamics simulations of the complexes, applying the MM/PBSA method to the resulting 

trajectories for the estimation of the binding energies. 

The entropic contributions calculated using normal mode analysis over a diverse sample of the 

identified hits were in the same order of magnitude. Therefore, entropy was neglected for the rest 

of the compounds (Table A.1 in Appendix A) and, consequently, we relied mainly on the relative 

binding energies of the compounds. This is consistent with the fact that all the identified hits 

came originally from a similarity search approach (i.e. either using Tanimoto or pharmacophore-

based methods), consequently they all share similar structural features and the entropy can be 

neglected for the final ranking purposes as it will be cancelled out when calculating the relative 

binding energies [171]. The computed binding energy for NERI01 was -23.24 kcal/mol, whereas 

for compound 10 it was -24.86 kcal/mol. The binding pose of NERI01 is shown in Figure 4.5A. 

The two nitro groups established hydrogen bonds with Arg144 and Arg106, where the negatively 

charged oxygens interacted with the positive charges of the Arg. The central polar groups formed 

other hydrogen bonds with Ser142 and Gln107. The visualization of the trajectory revealed 

possible interactions also with Arg156, which was however involved in a solid salt bridge with 

Asp129 and in a hydrogen bond network with the surrounding residues. It is worth to note that 

these hydrogen bonds, especially the ones involving the Arg residues were disappearing and 

recreating continuously during the trajectory, often substituted with other hydrogen bonds or 

mediated by water molecules. The hydrophobic rings were stably stacked within the hydrophobic 

cleft created by the Tyr rings (Tyr145 and Tyr152), the backbones of Arg106 and Gln107, the 

interaction between the side chains of Asn110 and Phe140, and Pro111. Compound 10 showed a 

similar binding mechanism, dominated by hydrophobic stacking rather than really stable 

electrostatic interactions. 
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Figure 4.5. Predicted binding poses of A) NERI01 and B) 6971912. Hydrogen bond networks are 

also represented. The nitro/positive groups can interact with the positive charged parts of the Arg 

residues. The hydrogen bond acceptors of the ligands interact with Ser142 or Gln107. 

Sixty-nine compounds from the similarity set showed an MM/PBSA score more favorable than 

the original lead compounds. The top hits shared a common hydrophobic backbone composed of 

aromatic rings which included at least one polar atom. Additionally, one or two polar terminals 

are usually present in most of the identified structures and are often represented by negatively 

charged groups. In particular, at least one nitro group was always conserved in the highly ranked 

hits, highlighting the importance of this moiety in this class of inhibitors. By visually analyzing 

the top hit complexes, we identified a number of common binding features, as expected. 

Noticeably, the hydrophobic rings constituting the backbone of the compounds were stably 

stacked within the hydrophobic cleft of the binding pocket, constituted by the rings of Tyr145 

and Tyr152, the interactions between Asn110 and Phe140, the backbones of Arg106 and Gln107. 

We also observed conserved interactions between polar/charged groups of the ligands and the 

basic zones of the binding site, especially with Arg106. The polar atoms of the backbone were 

able to interact with the central polar zone of the binding pocket, constituted by Ser142 and 

Gln107. During the simulations, we often observed the cyclic disruption and reconstruction of 
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the hydrogen bonds. The top fifteen structures are reported in Figure 4.6 and the energetic scores 

are reported in Table 4.1. The contributions to the binding energies of the residues in the binding 

pocket are reported in Figure 4.7A. A common interaction pattern can be identified among the 

hits and the lead compounds. For example, Tyr145 was reported as the highest contributor to the 

binding with the XPA peptide by Barakat et al. [145].  The residue was the highest contributor 

for the binding of all the ligands as well. Arg106 and Gln107 constituted another group of 

conserved interacting residues, as well as Phe140, Leu141, Ser142 and Tyr152. Interestingly the 

interactions with Asp129 were often unfavorable, because the presence of the negative charge on 

the residue and the negative charged atoms of the small molecules (e.g. the oxygens of the nitro 

group). The ligand binding was dominated by the van der Waals interactions due to the 

hydrophobic stacking of the ligand backbone‘s rings, as observed also for the lead compounds. 

Arg106, Gln107, Asn110, Phe140 and Tyr145 were in particular involved in hydrophobic 

interactions (Figure 4.7B). The pattern of these interactions reflected the one of the total energy, 

and unfavorable contributors were not observed. A more fragmented pattern was observed for 

the electrostatic contributions (Figure 4.7C), consistently with the instabilities observed during 

the simulations. Arg106 was in general the most important contributor for these terms. Due to its 

positive charge, the residue was indeed involved in hydrogen bonds with partial negative charges 

of the hits in many cases. As expected and already discussed, the Asp129 electrostatic 

contribution was unfavorable in many cases. Noticeably, most of the newly discovered hits 

showed an attenuated unfavorable electrostatic interactions established with Arg108, Asn110 and 

Phe140, when compared to the lead compounds. 
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Figure 4.6. Chemical structures of the top fifteen hits derived from the turbo similarity search. 

The compounds have been ranked using the MM-PBSA binding energies. The PubChem 

Compound ID is reported below each structure. 
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Table 4.1 MM/PBSA binding energies of the top fifteen hits. 

Rank # PubChem ID MM/PBSA binding energy (kcal/mol) 

1 6210903 -33.84 

2 7324126 -33.41 

3 8486248 -31.49 

4 7730851 -31.25 

5 1696060 -30.29 

6 1161060 -30.11 

7 1098945 -30.11 

8 53684246 -29.75 

9 7260552 -29.48 

10 6971912 -29.47 

11 5105640 -29.33 

12 2645792 -28.56 

13 8013886 -28.23 

14 1705254 -28.16 

15 24539908 -28.06 
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Figure 4.7. Heat maps of the A) total B) van der Waals and C) electrostatic contributions of the 

ERCC1 residues to the binding energies. NERI01 and c10 are the two lead structures. Compound 

names followed by (ph) are derived from the pharmacophore-based virtual screening. The other 
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ligands are indicated with the PubChem Compound ID. A clear binding pattern can be observed 

for the total energy, with Tyr145, Arg106, Gln107 and Phe140 being the highest and most 

conserved contributors. The pattern is very similar for the van der Waals contributions, 

indicating the dominating role of hydrophobic interactions due to the stacking of ligand rings. 

Consistently with the instabilities observed during the molecular dynamics simulations, it is not 

possible to observe a well-defined pattern for the electrostatic interactions, although Arg106 is 

the main partner for the major part of the compounds. Asp129 contribution is often unfavorable, 

due to the electrostatic interference with the negatively charged atoms of the ligands. 

For example, the hit coded as 6971912 in PubChem scored -29.47 kcal/mol, and also established 

hydrogen bonds with Arg106, Arg144, Ser142, Phe140, Gln107 and water molecules. 

Noticeably, the net negative charge on the carboxylic group strongly interacted with the positive 

charge of Arg106, making the charge-assisted interaction completely stable during the 

simulation. The hydrophobic features of the binding are similar to the one present in the two lead 

compounds (Figure 4.5B). The RMSD of the heavy atoms of the compound during the 

production simulation shows fluctuations around an average value of 0.5 Å relative to the first 

snapshot after the release of restraints (Figure 4.8). The docked pose of the compound seems to 

be more stable than NERI01 (about 1 Å of displacement from the beginning of the simulation), a 

fact that can be explained by the larger number of stable electrostatic interactions present in the 

former (evident also from the decomposed electrostatic contributions in Figure 4.7C). 
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Figure 4.8. RMSD trend of NERI01 and 6971912 during the 2 ns of production simulation. Only 

the heavy atoms of the compounds have been considered. 6971912 shows a smaller displacement 

from the original docking pose during the simulation, but also higher, still stable fluctuations. 

Regarding the thirteen hits obtained from the pharmacophore-based virtual screening followed 

by docking simulations, three structures showed a MM/PBSA score better than that of the two 

lead compounds (hereinafter denoted as ligand 1, ligand 63 and ligand 80) and can therefore be 

considered potential candidates for new scaffolds. The binding poses are reported in Figure 4.9. 

As expected, these compounds establish strong interactions with the key residues that have been 

reported to interact with the lead compounds. These three structures possess bulky, hydrophobic 

cores with a number of polar branches that allowed them to establish hydrogen bonds with the 

residues of the binding pocket. The first compound (ligand 1, 106408 from the Mechanistic set) 

showed a binding energy of -25.41 kcal/mol, the second one (ligand 63, 5113 from the Natural 

Products set) was the best ranked with -28.24 kcal/mol whereas the last (ligand 80, 107582 from 

the Diversity set) scored -25.25 kcal/mol. Noticeably, ligand 63 was already the best ranked hit 

among the pharmacophore driven hits in the docking simulations. The residue contributions to 

the binding energies for these molecules are also reported in Figure 4.7, showing consistency 

with the patterns discussed before.  
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Figure 4.9. Binding poses and hydrogen bond networks of the new scaffolds from the NCI sets, 

A) ligand 1, B) ligand 80 and C) ligand 63. These three compounds are the top hits identified 

through the pharmacophore-based screening and represent promising scaffolds to be optimized. 

The hydrophobic backbones are well-stacked within the hydrophobic cleft of the ERCC1 central 

domain. The polar extremities can form hydrogen bonds with the Arg residues, although these 

interactions were generally unstable during the simulations. 

4.4 Conclusion 

The inhibition of the NER repair pathway has been demonstrated as a promising approach to 

overcome drug resistance to platinum-based therapies in cancer cells. One of the essential steps 

of this machinery is the interaction between the XPA and the ERCC1 proteins, which represents 

an attractive target for pharmacological intervention. This is mainly due to the specificity of this 
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interaction to the NER pathway and its correlation with resistance to platinum-based treatment. 

Our group has previously identified two lead structures that target this interaction. Here, we 

continue our efforts to discover similar but more potent molecules, as well as new potential 

scaffolds. We employed an extensive and modified similarity search approach to screen the 

PubChem Compounds database, one of the largest available databases, for novel hits. The 

outcomes of this ligand-based virtual screening have been refined using structure-based 

techniques, resulting in a set of promising compounds to be validated experimentally. In 

addition, we also constructed a pharmacophore model and used this model to screen four NCI 

databases containing diverse sets of molecules to identify new scaffolds with the same chemical 

features as the reference lead structures. Again, target-based methods have been used to refine 

the results, resulting in three scaffolds that can potentially result in novel inhibitors of the XPA-

ERCC1 interaction. In addition, we performed the decomposition of the binding energies among 

the residues constituting the binding pocket. A common pattern, dominated mainly by stable and 

conserved hydrophobic interactions rather than the electrostatic ones, was observed for the 

identified hits. The key residues for ligand binding have been therefore defined as Arg106, 

Gln107, Phe140 and Tyr145. The ligand motifs that seemed to be specific for the binding to the 

target are a backbone constituted by chemical rings and at least one negatively charged 

extremity. 

Experimental validation of our findings will be the next goal, with two aims: first, to validate 

novel XPA-ERCC1 inhibitors; second, to demonstrate the effectiveness of our computational 

workflows in identifying active molecules. 

In conclusion, we have employed two hybrid ligand/target-based protocols that can be adopted in 

virtual screening to identify new active compounds starting from the structures of already known 
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active ones; these two strategies can be indeed used to screen very large databases of small 

molecules in a reasonable amount of time. Our future directions will include the optimization 

and the use of these protocols to discover small molecules modulating other protein-protein 

interactions involved in DNA repair mechanisms. 

4.5 Materials and Method 

4.5.1 Similarity Search 

A similarity score is usually calculated between the chemical fingerprints of known active 

molecules and the compounds in a database. The objective is to identify new active structures 

[172]. Among the different similarity scores, here we used the Tanimoto index due to its rapidity 

and reliable performance [71]. The score can be computed between two binary chemical 

fingerprints of the same length as Equation 2.7. In this study, we selected the 2D PubChem 

Compounds database [65] as the library from which to identify molecules similar to our 

previously identified hits. The PubChem database is suitable for virtual screening [66] and was 

chosen for two main reasons: first, the database contains more than 68 million structures; second, 

for each structure in the repository a PubChem substructure fingerprint is already available. 

These fingerprints are composed of 881 binary bits describing the element counting, ring 

presence, atom pairs and neighbors, and SMART patterns [173]. We employed the turbo 

similarity search technique in this study [71,174,175], using the following protocol. The sdf2fps 

tool from chemfp1.1 package [72] was used to extract all the fingerprints from the PubChem 

repository. Following that we used the simsearch routine to select the compounds that showed a 

Tanimoto score equal or higher than 0.80. The top 100 hits for each reference structure have 

been then used as references for similarity search of the PubChem compounds, using a Tanimoto 
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threshold of 0.85. The overlap between the four obtained libraries was finally eliminated, 

resulting in a non-redundant collection of molecular structures. 

4.5.2 Ligand Preparation 

In order to focus our study on drug-like molecules, the ligand structures obtained from the turbo 

similarity search step have been filtered using an upper limit of 6.5 for the ADMET Risk score 

(combination of physicochemical, metabolic and toxicity predictions) computed with ADMET 

Predictor 7.1, an artificial intelligence software able to predict the ADMET properties 

(Adsorption, Distribution, Metabolism, Elimination and Toxicity) of small molecules based on 

their chemical structures [176]. The compounds that successfully passed the filtering step have 

been imported into LigPrep where relevant 3D conformations, tautomers and ionization states at 

pH 7 have been obtained [177]. The AutodockTools prepare_ligand4.py [56] script was finally 

used to prepare the output structures for the docking simulations in Autodock. 

4.5.3 Pharmacophore-Based Virtual Screening 

The concept of pharmacophore was first introduced by Ehrlich in 1909 as a molecular 

framework describing the essential physiochemical features for a molecule to successfully 

interact with a specific biological target [178]. The design of a 3D pharmacophore is mainly used 

to identify new scaffolds (scaffold hopping) from pre-computed, multi-conformational 

compound libraries [179]. In this technique novel inhibitors/activators can be discovered by 

changing the central core of the active compounds while still conserving their essential binding 

features [180]. To identify new inhibitory scaffolds for the XPA-ERCC1 interaction, we 

developed a pharmacophore model using MOE software [181]. The predicted binding poses of 

the two known active compounds obtained from the previous studies have been used to define 
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the model using the Pharmacophore Consensus Query tool [182], with 2 Å of spatial tolerance 

for the superposition of features of the two molecules to be considered as pharmacophore 

annotations. The model was then manually refined by computing the electrostatic features maps 

in MOE within 4.5 Å of the docked ligands for the binding site of ERCC1. These maps are 

indicative of favourable zones for acceptor, donor and hydrophobic atoms as they are iso-

surfaces of the potential 𝑞𝑢 + 𝑣, where 𝑞 is the partial charge of the probe atom depending on 

the type of map, 𝑣 is the van der Waals potential of the same atom and 𝑢 is the electrostatic 

potential calculated by solving numerically the Poisson-Boltzmann equation [183].  Four 

libraries from the National Cancer Institute (NCI) Compound Sets repository [68], namely the 

Approved Oncology Drugs Set VI, the Diversity Set V, the Mechanistic Set III and the Natural 

Product Set III, have been selected as targets for the pharmacophore-based virtual screening, as 

they are generally designed to guarantee structural diversity of the compounds and their proper 

pharmacological features. A multi-conformational database has been created using Conformation 

Import by generating at maximum 10 tautomers and 500 conformations for each structure; two 

conformations were considered different if the RMSD value was equal or higher than 0.6 Å. The 

Oprea‘s filter has been applied to the results to remove non-lead-like compounds [184]. Finally, 

the Pharmacophore Search routine was run using the designed pharmacophore as the query and 

the multi-conformational filtered database as the target. The AutodockTools prepare_ligand4.py 

script was used to prepare the output structures for the docking simulations. 

4.5.4 Target Preparation 

NMR experiments can accurately determine the 3D structures of sufficiently small proteins and 

also extensively sample their conformational space [185,186]. Structures obtained from an NMR 

ensemble are therefore reflecting the dynamical nature of the protein structure and are suitable 
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for docking experiments based on a RCS approach. The goal is to introduce the full flexibility of 

both the backbone and the side chains of the target protein during docking [51]. In this context, 

here, we used the available NMR structure of the ERCC1 central domain in complex with the 

XPA binding peptide (PDB entry: 2JNW) [164]. Prior to docking, we removed the XPA peptide 

from each NMR snapshot and the protonation states for the ERCC1 structures have been 

assigned using the H++ online server [187], using pH 7, a salinity of 0.15 M, an internal 

dielectric constant of 10 (for protein) and an external dielectric constant of 80 (for water) as 

input parameters. Each structure has been then solvated with an octahedral box of TIP3P explicit 

water molecules (buffer of 12 Å). The systems have been neutralized at a physiological 

concentration of 0.15M of explicit Na - Cl ions using the AmberTools13 tleap program [188]  

with the parameters from the ff14SB force field [189]. The systems have been minimized in 

Amber pmemd.cuda [190,191] using the following protocol. Initially the positions of water and 

ions have been relaxed with 1,000 steps of the conjugate gradients method, keeping restrained 

the whole protein; then a strong harmonic restraint was applied just to the protein backbone 

atoms and other 1,000 steps were run to relax the side chain conformations. The pdbqt files for 

the structures have been prepared for Autodock simulations by computing Gasteiger charges, 

Autodock atom types and by merging nonpolar hydrogen charges on the respective carbons 

using the AutodockTools prepare_receptor4.py script [56]. 

4.5.5 Molecular Docking Simulations 

Docking simulations have been prepared using AutodockTools and run on Autodock 4.2. For 

each target, a 70 X 70 X 70 points grid has been centered on the XPA binding site within ERCC1 

to include all key residues mediating this interaction, using 0.375 Å as the spacing between the 

grid points. Affinity, electrostatic and desolvation maps have been calculated using Autogrid. The 
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Lamarckian Genetic Algorithm [55] has been used for the docking protocol. We used the docking 

parameters as described in our earlier studies [45,56]. This included 10,000,000 maximal 

energetic evaluations, 27,000 maximal generations, 300 individuals and one survival for each 

generation with the rates of mutation and crossover set to 0.02 and 0.8. Each docking simulation 

employed 50 trials and the solutions have been clustered based on the RMSD metric using 2 Å as 

tolerance. Only the simulations showing at least a cluster with 12 poses (25%) or more have been 

retained for further analysis; Autodock scoring function has been used for the estimation of the 

binding affinities [47]. 

4.5.6 Molecular Dynamics Simulations 

The force field parameters for selected ligands have been obtained using the GAFF force field 

[192] and the Antechamber utility [193]. The AM1-BCC charges were assigned for the ligands 

[194] and the ff14SB parameters were assigned for the protein. The complexes have been 

neutralized, solvated in a Na-Cl concentration of 0.15 M with tleap using the same process as 

described above. The simulations have been performed in pmemd.cuda: an initial minimization 

step was performed in order to relax the water and ionic positions. The whole system was then 

minimized and heated gradually up to 300 K in 100 ps using Langevin dynamics. During the 

heating process we restrained the backbone of the protein and the heavy atoms of the ligand; a 

time step of 0.5 fs and constant volume conditions have been employed during this phase. The 

time step has been set to 2 fs, constant pressure conditions (1 atm) have been imposed and the 

restraints have been gradually released in four phases of 50 ps each; finally 2 ns of production 

simulation have been performed; the coordinates of the system were recorded every 2 ps during 

this last phase. The choice of the length for production simulations was a critical point, as we 

needed to balance the time required and the accuracy of the calculations. In the past, we have 
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employed the 2 ns scale for the refinement of docking-derived poses with excellent results 

[80,168]. A recent study evaluated the impact of different times of simulations to the MM/PBSA 

performance. A deterioration of the correlation coefficients between experimental and 

computational data was observed among the six investigated systems for longer simulations (3-5 

ns) [171]. A similar conclusion was reached by Xu et al., where MM/PBSA showed consistent 

ranking performances among different lengths of simulation (1-4 ns) [195]. Really recently, Su et 

al.’s work aimed to testing the effect of different radii sets on different lengths of simulation to 

MM/PBSA results: just 0.25-2 ns trajectories led to satisfactory determination coefficients (> 

0.7), whereas trajectories longer than 2 ns seemed to cause a decrease in accuracy. By 

successively investigating this behavior, the authors observed a rapid convergence of the binding 

energy values, concluding that the predictive power was likely to decrease due to the 

amplification of force field errors [196]. The 2 ns length of the simulations was therefore chosen 

based on our previous experience and the literature discussed above. 

4.5.7 MM/PBSA 

The enthalpic contribution to the change in free energy due to the binding of the ligands has been 

estimated using the MM/PBSA method using the script MMPBSA.py [197]; the change of the 

energy of a complex configuration is calculated as 

∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣 = ∆𝐺𝑀𝑀,𝑣𝑎𝑐+∆𝐺𝑠𝑜𝑙𝑣,𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (∆𝐺𝑠𝑜𝑙𝑣,𝑙𝑖𝑔𝑎𝑛𝑑+∆𝐺𝑠𝑜𝑙𝑣,𝑝𝑟𝑜𝑡𝑒𝑖𝑛) − 𝑇∆𝑆 (4.1)      

where ∆𝐺𝑀𝑀,𝑣𝑎𝑐 is calculated as the sum of electrostatic and van der Waals interactions 

occurring between the protein and the ligand. 𝑇∆𝑆 is the term modeling the change in 

conformational entropy due to the binding. The solvation terms are modeled as 
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∆𝐺𝑠𝑜𝑙𝑣 = ∆𝐺𝑠𝑜𝑙𝑣,𝑝𝑜𝑙𝑎𝑟 + ∆𝐺𝑠𝑜𝑙𝑣,𝑛𝑝𝑜𝑙𝑎𝑟 (4.2) 

where the polar contribution of the solvent is calculated using the numerical solution of the 

Poisson-Boltzmann equation and the Amber pbsa solver with a grid spacing of 0.5 Å; the 

optimized radii from Luo and Tan were used [198] because this set of parameters performs better 

in ranking small molecules when compared with other PB and GB methods [171,195]. The ionic 

concentration was set to 0.15M. The hydrophobic contribution to the solvation free energy has 

been calculated as 

∆𝐺𝑠𝑜𝑙𝑣,𝑛𝑝𝑜𝑙𝑎𝑟 = 𝛾 ∙ 𝑆𝐴𝑆𝐴 (4.3) 

where 𝛾 is the surface tension equal to 0.0072 kcal/mol/Å2 and 𝑆𝐴𝑆𝐴 is the solvent accessible 

surface area. The change in free energy has been calculated for 200 snapshots (extracted every 

10 ps) of each production simulation and the final value has been obtained as the average. A 

pairwise decomposition of the binding energy was performed for seventeen residues located in 

the binding zone, in order to quantify the role of the key interactions with the ligands. In 

particular, van der Waals and electrostatic solute-solute interactions have been separately 

investigated to determine the predominant nature of the binding. In addition, the changes of 

conformational entropy (𝑇∆𝑆 term) were calculated for a diverse set of the top hits using normal 

mode analysis. This term is critical to calculate, highly fluctuating and computationally 

demanding. In fact, focused studies observed no improving or even worsening of MM/PBSA 

results when the entropies were added [171,199,200]. Although it is necessary for estimating the 

absolute affinities, it can be neglected for ranking purposes if the ligands are sufficiently similar. 



 75 

4.5.8 Visual Analysis 

The visual inspections of the ERCC1 structures, docking poses and molecular dynamics 

conformations and trajectories have been performed using Visual Molecular Dynamics (VMD)  

[201] and MOE software. The RMSD values have been computed using AmberTools ptraj, 

considering the first snapshot after the release of the harmonic restraints as the reference 

structure. 
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Chapter 5 - Computational Characterization of Small Molecules Binding to 

the Human XPF Active Site and Virtual Screening to Identify Potential New 

DNA Repair Inhibitors Targeting the ERCC1-XPF Endonuclease4 

5.1 Abstract 

 The DNA excision repair protein ERCC-1-DNA repair endonuclease XPF (ERCC1-XPF) is a 

heterodimeric endonuclease essential for the nucleotide excision repair (NER) DNA repair 

pathway. Although its activity is required to maintain genome integrity in healthy cells, ERCC1-

XPF can counteract the effect of DNA-damaging therapies such as platinum-based 

chemotherapy in cancer cells. A promising approach to enhance the effect of these therapies is, 

therefore, to combine their use with small molecules able to inhibit the repair mechanisms in 

cancer cells. Currently, there are no structures available for the catalytic site of the human 

ERCC1-XPF which performs the metal-mediated cleavage of a DNA damaged strand at 5′. We 

adopted a homology modeling strategy to build a structural model of the human XPF nuclease 

domain, containing the active site, and to extract dominant conformations of the domain using 

molecular dynamics simulations followed by clustering of the trajectory. We investigated the 

binding modes of known small molecule inhibitors targeting the active site to build a 

pharmacophore model, and we then performed virtual screening of the ZINC Is Not Commercial 

15 (ZINC15) database to identify new ERCC1-XPF endonuclease inhibitors. Our work provides 

structural insights regarding the binding mode of small molecules targeting the ERCC1-XPF 

                                                 

4 This chapter has been published as research article as Gentile, F.; Barakat, K.; Tuszynski, J. Computational 

Characterization of Small Molecules Binding to the Human XPF Active Site and Virtual Screening to Identify 

Potential New DNA Repair Inhibitors Targeting the ERCC1-XPF Endonuclease. Int. J. Mol. Sci. 2018, 19, 1328. 
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active site that can be used to rationally optimize such compounds. We also propose a set of new 

potential DNA repair inhibitors to be considered for combination cancer therapy strategies. 

5.2 Introduction 

The human genome is continuously exposed to damage caused by endogenous and exogenous 

agents. The effects resulting from these lesions range from interfering with cellular processes to 

inducing mutations which can lead to several pathological conditions. In order to maintain 

genome integrity, cells have developed a series of DNA repair pathways, which are able to 

recognize and repair specific DNA damages through the action of dedicated proteins [90]. In the 

context of cancer, DNA repair pathways can be seen as both friends and enemies at the same 

time. Indeed, although the obvious role of these pathways is to maintain genome stability and 

remove mutation-causing damages, they can interfere with cancer therapies, which aim to 

damage the cancer cell genome and hence induce apoptosis. Examples of such therapies are 

platinum-based chemotherapy and ionizing radiation therapy. Unsurprisingly, the success of 

these strategies highly depends on the DNA repair capability of the targeted cell population 

[128,129,202]. Hence, a relatively new direction to improve the efficacy of these treatments is to 

use them in combination with drugs able to inhibit the DNA repair mechanisms [99,100]. 

Among the five main repair pathways found in humans, the nucleotide excision repair (NER) 

pathway is dedicated to the repair of bulky DNA lesions, which distort the helix structure, thus 

interfering with the replication cycle. Such lesions can be caused by ultraviolet light radiation 

(UV), environmental chemical agents or reactive oxygen species [90,160]. NER is also 

responsible for the removal of DNA damages caused by platinum-based chemotherapy drugs 

such as cisplatin [99]. Over-expression of NER proteins results in cisplatin resistance in cancer 
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cells, whereas cell populations with low-expression of NER proteins are hypersensitive to DNA 

damaging agents [128,129]. In addition, modulation of NER results in sensitizing cancer cells to 

DNA-damaging chemotherapy [83]. 

The NER pathway involves about thirty proteins whose role is to recognize, remove and replace 

a damaged DNA strand. One of the essential players of NER action is the DNA excision repair 

protein ERCC-1-DNA repair endonuclease XPF (ERCC1-XPF) complex, a 5`- 3` structure-

specific endonuclease, which cuts the strand at 5` of the damaged zone. ERCC1-XPF is also 

involved in inter-strand crosslink (ICL) and double-strand break (DBS) repair pathways. 

ERCC1-XPF is an heterodimer composed by two proteins: ERCC1 that contains 297 residues 

divided in a central domain and a double helix-hairpin-helix (HhH2) domain; and XPF, which is 

constituted by 916 residues divided in an helicase-like domain, which lacks the helicase activity, 

a nuclease domain, which contains the catalytic site, and finally a HhH2 domain as well. 

Dimerization occurs mainly through the two HhH2 domains. An excellent review article about 

the structure and function of ERCC1-XPF can be found in McNeil et al. [203].  

ERCC1-XPF is an attractive target for designing small molecule inhibitors of DNA repair. In 

order to inhibit the activity of the ERCC1-XPF endonuclease, three major ways have been 

explored in the last few years. The first approach is to target the interaction between the central 

domain of ERCC1 and the DNA repair protein complementing XP-A cells (XPA), through 

which the endonuclease is recruited to the damage site in NER [80,82]. This approach would, 

however, be effective just in inhibiting NER, while the ICL and DBS repair activity would be 

preserved as XPA is not involved in these pathways [203]. A second approach is to target the 

ERCC1-XPF protein-protein interaction. Our group and others identified and targeted binding 

pockets at the interface of the dimerized HhH2 domains to inhibit the dimerization of the ERCC1 
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and XPF, essential to build a functional endonuclease [84,85]. Although this approach would 

result in stopping any activity of ERCC1-XPF, it presents some difficulties due to the high-

affinity, hydrophobic nature of the involved protein-protein interaction [203]. Finally, the third 

approach is to target the XPF active site. Recently, McNeil et al. [85], Chapman et al. [204,205] 

and Arora et al. [206] discovered several small molecule inhibitors targeting the catalytic site of 

XPF with promising biological activities. The lack of an experimentally determined crystal 

structure for the XPF nuclease domain, as well as the similarity of the active site with related 

nucleases are the two main drawbacks of this latter approach. Nevertheless, targeting the XPF 

active site is a promising strategy to inhibit the endonuclease activity due to the presence of 

metal ions in the catalytic site (ideal for metal chelators), the weak contacts established by the 

domain and the DNA, and the number of successful drug discovery programs targeting DNA 

repair-related similar enzymes [203].  

In this work, we employed computational methods to: 1) build a structural model of the human 

XPF nuclease domain, which can be used in structure-based drug design and virtual screening 

(VS); 2) investigate the binding modes of known XPF active site inhibitors, identifying key 

residues involved in small molecule binding; 3) perform a pharmacophore and structure-based 

VS campaign against the ZINC Is Not Commercial 15 (ZINC15) compound database [67] in 

order to propose potential novel inhibitors binding to the XPF catalytic site. The reported results 

provide for the first time a detailed investigation of the interactions between the XPF active site 

and small molecules binding to it. Our findings should be of considerable interest to rationally 

modify these molecules in order to improve the binding affinities as well as their specificity to 

the target. Additionally, we provided a set of commercially-available compounds which can 

potentially bind to the XPF catalytic site and inhibit the endonuclease activity of ERCC1-XPF, 
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and that can be therefore considered in combination with DNA-damaging cancer therapies to 

amplify their effects. 

5.3 Results and Discussion 

5.3.1 Homology Modeling and Molecular Dynamics Simulation 

The results obtained from the Molecular Operating Environment (MOE) MOE-Search PDB 

protocol are reported in Table 5.1. We identified top templates based on an expectation value (E-

value) equal or lower than 1e-12. Other potential templates with E-values between the accepted 

value and the cutoff were retained only if the associated Z-scores were at least 6. 

Table 5.1. Results from different substitution matrices available in MOE 2013 for the detection 

of homologs of the human XPF nuclease domain. Proteins are reported with their PDB ID. Top 

templates were identified as sequences with a E-value lower than the E-value acceptance (1e-

12). Others templates showed a E-value between E-Value acceptance and E-value cutoff (10), 

and a Z-score of at least 6. 

Substitution matrix Top templates Others 

BLOSUM50 2BGW, 2BHN 1J22, 2ZIU, 4P0P 

BLOSUM62 2BGW, 2BHN, 1J22 2ZIU, 2ZIX, 4P0P 

Gonnet 2BGW, 2BHN 1J22 

PAM250 2BGW, 2BHN 1J22 

All the four tested matrixes identified XPF-related proteins from the Aeropyrum pernix (PDB ID 

2BGW, 2BHN) [149] and Pyrococcus furiosus (PDB ID 1J22) [207] archaea. In addition to the 

hits identified using the Gonnet and Point Accepted Mutation 250 (PAM250) methods, the 

BLOcks SUbstitution Matrix (BLOSUM) matrices led to the identification of the Mus81 protein 
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(PDB ID 2ZIU (human/Dario rerio), 2ZIX (human) and 4P0P (human)) as template as well, 

known to be related to XPF [208]. In contrast to the other three matrices, BLOSUM62 included 

the Hef protein (1J22) from Pyrococcus furiosus within the top templates. Hence, we selected 

the BLOSUM62 results for the successive steps, this matrix having showed the best 

performances in detecting biological relationships even for distantly-related proteins [209–211]. 

The nuclease motif is conserved among XPF family, putative RNA helicases (SF2) and Mus81 

family and it is represented in human XPF by residues D687, E690, D715, E725, R726, K727 

and D731 [212]. In addition to this motif, we observed seven other conserved residues from the 

multiple sequence alignment, corresponding to V686, L711, G714, S733, G739, Q744 and E760 

in the human XPF sequence. The sequence alignments of the XPF nuclease domain and the six 

templates are reported in Figure A.1 in Appendix A. 

The top templates identified by MOE were 2BGW, 2BHN and 1J22. The metal-binding site of 

the XPF is likely to employ a two-metal-ion catalysis process to cleave the DNA [213]. 

However, the available structures contain from zero to one metal ion. The absence of a second 

ion may be due to the requirement of a catalytic complex for its stable binding, as in the case of 

the related Mus81-Eme complex [214]. Also, the vast majority of known XPF active site 

inhibitors contain at least one metal-binding motif. For these reasons, we included also the HeF 

protein from Pyrococcus furiosus associated with the PDB ID 1J25, which is the same structure 

as 1J22 but containing one coordinated metal ion. The four nuclease domains (from 2BGW, 

2BHN, 1J22 and 1J25) shared a very similar and superimposable structure (Figure 5.1). Finally, 

we selected the nuclease domain of the 1J25 structure as template to build the homology model 

of the human XPF nuclease domain, based on the highest sequence identity (35.2%) and 

similarity (60.7%) scores observed among the four sequences and the presence of one metal ion. 
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The alignment of the sequences of the human XPF nuclease domain, 2BGW and 1J25 is reported 

in Figure A.2 in Appendix A. 

 

Figure 5.1. Structural superposition of the four top templates for the human XPF nuclease, 

2BGW (blue, XPF from Aeropyrum pernix), 2BHN (yellow, XPF from Aeropyrum pernix), 

1J22 (purple, HeF from Pyrococcus furiosus) and 1J25 (green, HeF from Pyrococcus furiosus). 

Once the homology model of the human XPF nuclease domain was obtained, we manually 

modified the Mn2+ ion deriving from the HeF structure to a Mg2+ ion, which is the biologically-

relevant cofactor for the ERCC1-XPF endonuclease [203]. The metal ion was stably coordinated 

by the negatively-charged side chains of residues D715 and E725 and the backbone oxygen of 

R726.  

The best predicted structure derived from the 1J25 template was simulated with molecular 

dynamics (MD) for 170 ns. The root-mean-square deviation (RMSD) trend of the backbone 

atoms of the modeled domain reached a plateau after about 60 ns, with stable fluctuations around 

3 Å for the remaining time of the simulation. The backbone atoms of the active site residues 
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fluctuated steadily around 1 Å for all the simulated time, after the initial equilibration phase 

following the restrain release. The RMSD plots are reported in Figure 5.2. After visually 

inspecting the zone surrounding the metal ion during the simulation, and considering the 

previously sequence alignments, we defined the active site as the residues D687, R689, E690, 

D715, E725, R726, K727 and D731. During the simulation, three stable water molecules 

completed the coordination of the Mg2+ ion (coordination number of 6). 

 

Figure 5.2. RMSD trends for the backbone atoms of the human XPF nuclease domain (red) and 

the active site (blue), defined as residues D687, R689, E690, D715, E725, R726, K727 and 

D731. 

Clustering of active site conformations was performed over the last 106 ns of the MD simulation. 

At cluster counting equal to 10, we observed the highest peak of the pseudo-F statistic (pSF) 

value, a kink in the curve of the ratio between the sum of square regression and the number of 
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total squares (SSR/SST) and a local minimum for the David-Bouldin (DBI) index, indicating 

optimal cluster counting (see Figure A.3 in Appendix A). Cluster compositions are reported in 

Table A.2 in Appendix A. In order to exclude rarely occurring active site conformations from the 

molecular docking simulations, we selected the representative structures from the top six most 

populated clusters including 99% of the total conformations, to be used as targets. We also 

included the lowest potential energy structure (~-98.831 kcal/mol) of the XPF domain extracted 

by the equilibrated part of the MD simulation. 

5.3.2 Modeling of Small Molecules Binding to the Human XPF Active Site 

In order to account for the flexibility of both the side chains and the backbone of the active site, 

we considered the seven XPF structures described previously as single targets for our docking 

protocol. A detailed view of these conformations is reported in Figure 5.3. 

 

Figure 5.3. Superposition of the seven conformations of the human XPF active site obtained by 

clustering the MD trajectory and including the lowest potential energy conformation as well. The 
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set of conformations was then used as target for the molecular docking simulations. Red spheres 

indicate the positions of the Mg2+ ion present in the active site and coordinated by D715, E725 

and R726. 

From the resulting binding poses, we identified a pattern of conserved interactions between the 

small molecules and specific parts of the XPF active site. As expected, the metal-binding motifs 

present in the ligand structures carried a negative charge and were in close proximity of the Mg2+ 

ion. Also, we observed two hydrogen bonds being consistently established between ligand 

hydrogen bond donor and acceptor groups and E712 and K727, respectively. Therefore, the 

resultant three-point pharmacophore model included three features, namely one anionic (Ani) 

with radius of 2 Å, one donor projection (Don2) with radius of 3.2 Å and one acceptor projection 

(Acc2) with radius of 2.7 Å, as represented in Figure 5.4. It is noteworthy that this 

pharmacophore model accounted for multiple conformations of the active site, as we designed it 

considering ligands bound to different XPF structures. 
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Figure 5.4. Pharmacophore model designed by considering the predicted binding poses of the 

known XPF inhibitors. Three features were present for all the ligand-protein complexes, namely 

the anionic one (Ani, in green) in proximity of the Mg2+ ion, the donor projection (Don2, in blue) 

close to E712, and the acceptor projection (Acc2, in gold) close to K727. Two docked ligands 

satisfying the pharmacophore model are also reported (13 [205] in dark grey, 33 [204] in light 

grey). All the conformations of the active site extracted from clustering the MD trajectory are 

represented. 

5.3.3 Virtual Screening 

Around 80,600,000 structures from ZINC15 were downloaded. After the filtering step and the 

pharmacophore-based screening, we reduced the number of compounds to undergo the structure-

based VS step to 2,013,120. We then performed VS of the compounds against the set of 

structures of the XPF nuclease domain and retained just the resulting binding modes satisfying 

the pharmacophore features leading to only 104,714 unique compounds kept for consideration. 

The highest-ranked XPF inhibitor was compound 15, with a London dG score of -29.543 

kcal/mol. 285 hits from the ZINC15 resultant set showed a better score than compound 15. 

Visual analysis of the binding modes was then performed, in order to further narrow down the hit 

set. Additional details about the resulting top fifty hits, including chemical structures, ZINC IDs 

and London dG binding energies, are reported in Figure A.4 in Appendix A. 

Among the resulting binding modes of the top hits, we observed charge-assisted hydrogen bonds 

between charged groups of the compounds and the charged residues of the XPF active site as 

dominant interactions. The predicted binding modes of two VS-derived hits are reported in 

Figure 5.5, as are examples of such non-bonded interactions. Hit #5 (Figure 5.5A) showed 

hydrogen bonds between the guanidine group and the side chains of E712 and D715, in addition 

to a hydrogen bond between the same group and the backbone oxygen of L711. The Mg2+ ion 
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interacted with one of the oxygens of the compound, while the other one was involved in a 

hydrogen bond with K727. Hit #13 (Figure 5.5B), a smaller and less flexible compound, 

interacted with the Mg2+ ion and K727 via one of its carboxyl groups, and with E712 through a 

hydrogen bond with the imidazole ring. 

Based on the binding poses of our predicted hits, we were able to identify in detail the 

electrostatic features of the active site, which are important for ligand binding. The active site of 

the human XPF is divided between two zones with different electrostatic properties: a 

negatively-charged part constituted by acidic residues such as E712, D715 and E725 (in red in 

Figure 5.5), favorable to establish interactions with electropositive moieties of the ligands; a 

positively-charged part constituted by the metal ion and K727, favorable for interactions with 

electronegative moieties of the ligands. 

 

Figure 5.5. Binding modes of two promising hits derived from the VS. A) ZINC000049131978, 

hit #5 B) ZINC000038550857, hit #13. Hydrogen bonds are represented in purple dotted lines. 

The surface of the active site is colored depending on the electrostatic potential, ranging from -

40 (intense red) to +40 (intense blue). See text for a detailed description of the electrostatic 

interactions. 



 88 

5.4 Materials and Methods 

5.4.1 Homology Modeling of the Human XPF Nuclease Domain 

The amino acid sequence of the human XPF nuclease domain was defined as residue 658 to 813 

from the entry Q92889 in the UniProt database [215]. For the entire homology modeling process, 

we used the MOE2013 package [181]. Initially, we used the MOE-SearchPDB module [216] to 

align the target sequence with a database of pre-clustered families of proteins [217] for which 

experimental structures are available in the Protein Data Bank (PDB) [32], identifying in this 

way potential template structures to be used for homology modeling. The parameters for the 

homology search have been chosen as follows: a gap start penalty of -12, a gap extend penalty of 

-2, an E-value cutoff of 10, an E-value acceptance of 1e-12, 100 Z-iterations and a Z-score cutoff 

of 6. As a substitution matrix, we tested the BLOSUM62, BLOSUM50 [218], Gonnet [219] and 

PAM250 [220], all available in MOE 2013. MOE-Align [216] using sequence and structural 

alignment was used for the multiple alignment in the following way: first, the whole XPF 

sequence was aligned to the identified templates. Second, the XPF nuclease sequence was 

aligned to the first multiple alignment, in order to obtain a better alignment of the nuclease 

domains of the templates.  Just the nuclease domain sequences were used for the successive 

steps, by trimming the sequences of the templates to the residues aligned within residues 658 and 

813 of the human XPF nuclease domain. The best template obtained from this step was then used 

for the homology model building. The parameters were set as 10 intermediate models, one side 

chain model for each intermediate at 300 K, Medium refinement for intermediates, the 

Generalized Born/volume integral (GB/VI) [221] scoring for the selection of the final model; the 

final refinement was set to “Fine” with a root-mean square (RMS) gradient of 0.1 kcal/mol and 

the protonation states of the final model were assigned using Protonate3D [222]. Amber ff12SB 
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force field [223] was selected for the entire process. Coordinated metal ions present in the 

template were included in the process as environment for the induced fit. 

5.4.2 Molecular Dynamics Simulation and Clustering of the Trajectory 

Amber ff14SB force field parameters were assigned to the protein [224], whereas the Li, Song 

and Merz’s 12-6-4 parameters for mono and divalent ions in TIP3P water were assigned to the 

ions [225,226]. The protein was solvated with an octahedral box of TIP3P explicit water 

molecules with 15 Å of minimal distance between the protein atoms and the box edges. Na+ and 

Cl- ions were added to neutralize the system and simulate a physiological ionic concentration of 

0.15 M. The system was simulated in Amber pmemd.cuda [190,191] using the following 

protocol: relaxation of the NaCl ions and water molecules using 1,000 steps of steepest descent 

and 1,000 steps of conjugate gradients minimization, keeping the whole protein and the metal 

co-factor harmonically restrained (force constant of 500 kcal/mol/Å2). 2,000 steps of steepest 

descent followed by 3,000 of conjugate gradients method for the whole system. We then 

performed gradual heating of the system from 0 to 300 K in 100 ps using the Langevin 

thermostat, keeping the backbone atoms and the co-factor restrained (force constant of 2 

kcal/mol/Å2) and using an integration time step of 0.5 fs and constant volume conditions. 

Gradual release of the restraints followed from 2 to 0 kcal/mol/Å2 in four phases of 50 ps each at 

constant pressure (1 atm), using an integration time step of 2 fs. We then ran 170 ns of NPT 

production simulation, recording the atomic coordinates every 2 ps. The SHAKE algorithm was 

used to keep the bonds involving hydrogens frozen [227]. The cutoff for long-range interactions 

was set to 9 Å. In order to assess the equilibration of the system we evaluated the time evolution 

of the mass-weighted RMSD calculated over the backbone atoms of the protein and the active 

site, using cpptraj from AmberTools12 [223]. In addition, the trajectory was visually analyzed 
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using Visual Molecular Dynamics (VMD) program [201]. In order to extract a set of 

representative and diverse conformations of the active site to be used a relaxed complex scheme 

(RCS) docking protocol [51], we performed RMSD-based clustering of the last 106 ns of the 

simulation, using the conformations extracted every 10 ps. Firstly, all the translation and rotation 

motions were eliminated by RMS-fitting the backbone atoms’ positions of the trajectory to the 

first frame. The average-linkage clustering algorithm as implemented in cpptraj was then used to 

divide the frames in clusters and extract the centroid or representative conformation of each one, 

based on the positions of all the atoms of the active site. In general, the optimal number of 

clusters is not known a priori. In order to identify the optimal number of clusters in which the 

trajectory should be divided, we varied it from 1 to 200 and evaluated three metrics each time, 

namely the DBI index, pSF and the SSR/SST. A local minimum of the DBI, a maximum of the 

pSF and a kink in the SSR/SST plot are expected at the optimal cluster counting [80,169,228].  

5.4.3 Molecular Docking of Known Inhibitors and Pharmacophore Modeling 

Molecular docking simulations were run for ERCC1-XPF endonuclease small molecule 

inhibitors, which are likely to bind to the XPF active site: compounds E-X AS7 from [85], 3, 14, 

15, 21, 27, 33 and 34 from [204], 4, 13, 25, 29, 36, 37 from [205], and NSC16168 and 

NSC143099 from [206]. The selection criteria we used to select these compounds were the high 

potencies as ERCC1-XPF activity inhibitors and the specificities to the target. Indeed, we aimed 

to identify the intramolecular interactions which were essential for a strong and specific binding 

to the XPF active site. Different accessible protonation states and tautomeric forms of the 

compounds were obtained using the MOE Database Wash tool. The chemical structures of the 

small molecules are reported in  

Figure 5.6. We extracted the centroid conformations of the top six clusters found by clustering 

the MD trajectory, in order to use them as target structures for the docking. In this set, we 

included also the lowest potential energy protein conformation found in the equilibrated fraction 

of the MD trajectory. Because all the selected active site inhibitors contained a metal-binding 

motif in their structure, we used MOE Site Finder to identify a potential binding zone in each 

structure, by selecting each time the highest ranked site close to the metal ion. For the docking 
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simulations, we used the Triangle Matcher placement algorithm [229] returning thirty poses, and 

the Rigid Receptor refinement method returning one final pose, as implemented in MOE Dock. 

The London dG method [221,230] was used to score the poses in both the steps. The binding 

energy of a ligand-receptor complex was calculated with the London dG method as  

∆𝐺𝐿𝑑𝐺 = 𝑐 +  𝐸𝑓𝑙𝑒𝑥 + ∑ 𝑐ℎ𝑏𝑓ℎ𝑏

ℎ𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑐𝑚𝑓𝑚

𝑚𝑒𝑡𝑎𝑙−𝑙𝑖𝑔

+  ∑ ∆𝐷𝑖

𝑖

(5.1) 

where 𝑐 is an empirically-derived term modeling the change in rotational/translational entropy 

upon binding, 𝑐ℎ𝑏 and 𝑐𝑚 are the energies of ideal hydrogen bonds and metal ligations, 

respectively, 𝑓ℎ𝑏 and 𝑓𝑚 range between 0 and 1 and measure the geometric imperfections of 

hydrogen bonds and metal ligations, respectively, and ∆𝐷𝑖 is the desolvation contribution 

modeled by using a volume integral London dispersion [221]. Pharmacophore features common 

to all the docked compounds were automatically generated using the Consensus method in the 

Pharmacophore Editor in MOE and the Unified pharmacophore scheme [182]. 
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Figure 5.6. Chemical structures of the ERCC1-XPF inhibitors used to build the pharmacophore 

model after molecular docking simulations targeting the human XPF nuclease domain were run. 

All the small molecules investigated in this step included at least one metal-binding motif. 
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5.4.4 Virtual Screening of the ZINC15 Database 

To identify potential novel ERCC1-XPF inhibitors acting by binding to the XPF active site, we 

performed a VS campaign against the ZINC15 database, containing ~120 millions of compounds 

overall. Prior to performing the VS, the database needed to undergo different filtering and 

preparation steps, in order to reduce the enormous number of compounds and at the same time to 

consider different states of the retained small molecules. Hence, we downloaded all the 

compounds which satisfied the following ZINC15 filters: availability of 3D conformers, standard 

reactivity, commercial purchasability as wait-ok, standard protonation state at pH of 7.4, and 

charges ranging from -2 to +2. We then used again the MOE Database Wash tool to calculate 

other accessible protonation states and tautomers, and we filtered the resulting database in order 

to retain just compounds satisfying the Oprea’s lead-like filter [184]. The Oprea’s rules are a) the 

number of N or O atoms that are hydrogen bond donors must be maximum 5; b) the number of N 

and O atoms must be maximum 8; c) the molecular weight must be maximum 450; d) the logP 

must be between -3.5 and 4.5; e) the number of rings of size three through eight must be 

maximum 4; and, f) the number of rotatable bonds must be maximum 10. A compound is 

considered a lead-like one if its structure violates at most one of Oprea’s rules. Our goal was to 

screen just lead-like compounds which can be optimized in drug-like compounds once the 

activities have been assessed. As the last preparation step, we generated up to five 3D 

conformations for each compound in MOE, imposing a strain limit of 4 kcal/mol. The 

pharmacophore obtained previously was then used to screen the resulting multi-conformational 

database, retaining just compounds with at least one conformation satisfying the pharmacophore. 

We then performed structure-based VS of the resulting ZINC15 subset of small molecules, using 

the same docking parameters described previously. The resulting top-scored poses were filtered 
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again using the same pharmacophore model, in order to retain just the binding modes satisfying 

the pharmacophore features. Duplicates of the same compound scoring worse than the top pose 

were removed. 

5.5 Conclusions 

The ERCC1-XPF endonuclease plays a primary role in several DNA repair pathways, including 

NER, ICL and DSB. Since in cancer cells these pathways are involved in the repair of damages 

caused by DNA-damaging cancer therapies, blocking its activity is expected to result in 

enhancement of the effect of such therapies. Inhibiting the endonuclease activity by using small 

molecules binding to the catalytic site of XPF is a relatively new strategy, which has not been 

fully explored yet. Indeed, despite the recent discovery of several XPF active site inhibitors, 

there is a lack of structural information about the mode of binding of these compounds, due 

mainly to the unavailability of experimental structures of the human XPF nuclease domain. Here, 

we generated a homology model for such a domain, based on templates that were carefully 

selected between all the structures of protein domains related to the human XPF one. 

Consequently, we used MD simulations and iterative clustering of the MD trajectory to identify 

dominant conformations of the active site and used the resulting set of structures as targets in 

molecular docking simulations of the most potent and selective known XPF inhibitors. As a 

result, we built a pharmacophore model elucidating the key interactions required for an effective 

ligand binding to the site, involving E712 and K727 and the coordinated Mg2+ ion. A multi-step 

VS campaign was then performed to identify potential novel XPF inhibitors by sequentially 

filtering the ZINC15 database. 
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This work provides a detailed picture of the binding modes of small molecules to the human 

XPF active site. The results presented here can be effectively used in the rational design of XPF 

inhibitors, which are potent and specific to the target. In addition, we identified a set of 

commercially available chemical compounds, which can potentially show improved binding 

compared to the set of known inhibitors. In order to validate our model of ligand binding, 

mutation studies regarding the residues identified as essential for binding would be ideal. Based 

on previous studies, residue E712 would be the best candidate for a mutation study, as it is not 

conserved among other XPF-related proteins and its mutation does not affect the endonuclease 

activity. K727, on the other hand, would stop the activity when mutated [212]. Also, the top hits 

we reported in this study represent a good starting point to rationally develop optimized 

analogues, after their experimental validation as XPF binders and DNA repair inhibitors. 
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Chapter 6 – Novel ERCC1-XPF Inhibitors for Resistant Colorectal Cancer 

Treatment Based on Targeting DNA Repair5 

6.1 Abstract 

The ERCC1-XPF heterodimer is a 5´-3´ structure-specific endonuclease, which plays an 

essential role in several DNA repair pathways in mammalian cells. ERCC1-XPF is primarily 

involved in the repair of chemically-induced helix-distorting and bulky DNA lesions, such as 

cyclobutane pyrimidine dimers (CPDs), and DNA inter-strand crosslinks. Inhibition of ERCC1-

XPF has been shown to potentiate cytotoxicity of platinum-based drugs and cyclophosphamide 

in cancer cells. In this study, the previously described ERCC1-XPF inhibitor 4-((6-chloro-2-

methoxyacridin-9-yl)amino)-2-((4-methylpiperazin-1-yl)methyl)phenol (F06) was used as a 

reference compound. Following the outcome of docking-based virtual screening (VS), we 

synthesized seven novel derivatives of F06 that were identified in silico as being likely to have 

high binding affinity for the ERCC1-XPF heterodimerization interface by interacting with the 

XPF double helix–hairpin–helix (HhH2) domain. Two of the new compounds, 4-((6-chloro-2-

methoxyacridin-9-yl)amino)-2-((4-cyclohexylpiperazin-1-yl)methyl)phenol (compound 3) and 4-

((6-chloro-2-methoxyacridin-9-yl)amino)-2-((4-(2-(dimethylamino)ethyl) piperazin-1-yl) 

methyl) phenol (compound 4), were shown to be potent inhibitors of ERCC1-XPF activity in 

vitro. Compound 4 showed a significant inhibition of the removal of CPDs in UV-irradiated cells 

and the capacity to sensitize cells to UV radiation and cyclophosphamide.  

                                                 

5 This chapter is under consideration for publication as Elmenoufy A.H.; Gentile F.; Jay D.; Karimi-Busheri F.; 

Yang X.; Soueidan O.M.; Weilbeer C.; Mani R.S.; Barakat K.H.; Tuszynski J.A.; Weinfeld M.; West F.G. 

Targeting DNA Repair in Tumor Cells via Inhibition of ERCC1-XPF in ACS Cent. Sci. 
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6.2 Introduction 

The ERCC1-XPF heterodimer is a highly-conserved DNA repair endonuclease. It plays a pivotal 

role in nucleotide excision repair (NER) of bulky adducts and helix-distorting DNA lesions such 

as UV-induced pyrimidine-(6,4)-pyrimidone photoproducts (6-4PPs) and CPDs 

[85,203,231,232]. ERCC1-XPF is also involved in DNA inter-strand crosslink (ICL) repair [233] 

in cells treated with platinum-based and other chemotherapeutic agents such as 

cyclophosphamide and mitomycin C (MMC) [234]. There is also evidence that ERCC1-XPF 

participates in DNA double-strand break (DSB) repair [235,236]. It thus contributes significantly 

to the response of cancer cells to a range of DNA-damaging chemotherapeutic agents and 

radiotherapy. In the ERCC1–XPF complex structure, ERCC1 is considered to be catalytically 

inactive but rather regulates DNA–protein and protein–protein interactions, whereas the 

endonuclease activity is provided by XPF, which also contains an inactive helicase-like motif 

that is likely to be involved in protein–protein interactions and DNA binding [237,238]. 

Dimerization and localization of ERCC1 and XPF is essential for the enzyme’s stability and 

endonuclease activity [239]. The dimerization of C-terminal regions of ERCC1 and XPF is the 

key interaction to form a stable heterodimer. C-terminal regions dimerize through the interaction 

of their HhH2 motifs [240]. It is thought that XPF acts as a scaffold for ERCC1 during protein 

folding, and ERCC1 may exhibit improper folding in vitro in the absence of XPF [241]. It was 

demonstrated that without dimerization the activity of ERCC1-XPF was abolished because 

neither protein was stable, and therefore they were rapidly degraded [121,150]. As a result, 

development of small molecule inhibitors that can disrupt the HhH2 domain interactions between 

ERCC1 and XPF would be expected to sensitize cancer cells to chemotherapy whose DNA-

damaging effects are repaired by ERCC1–XPF-dependent pathways [203]. Moreover, rational 
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drug design methodology can be employed due to the availability of multiple experimental 

structures of the dimerized HhH2 domains (for example, PDB code 2A1J and 1Z00) [121].  

Recently, McNeil et al employed an in-silico screening approach targeting three sites on the XPF 

HhH2 domain to identify possible inhibitors for the dimer. They discovered a small molecule 

able to inhibit the NER activity in melanoma cells and slightly sensitize them to cisplatin 

treatment. However, the reported Kd and IC50 values for this compound were suboptimal, in the 

medium-high µM range, and the cisplatin IC50 reduction was only 1.3-fold [85]. In addition, 

Chapman et al. [204,205], and Arora et al. [206] identified and optimized different small 

molecules targeting the active site on the XPF nuclease domain. These efforts resulted in several 

endonuclease inhibitors with IC50 in the nanomolar range, able to diminish NER activity and 

enhance the cytotoxicity of platinum-based drugs in cancer cells. Although the specificity of 

these inhibitors to the ERCC1-XPF endonuclease was assessed in some cases, the similarity 

between endonuclease active sites could still lead to off-target interactions of these compounds; 

as well as no structural insights of the ligand-protein complexes were provided. Finally, Yang et 

al. proposed the cellular delivery of therapeutic peptides mimicking the ERCC1 HhH2 domain 

(residues 220-297) as a promising alternative strategy to inhibit NER activity and sensitize 

cancer cells to DNA-damaging agents [242]. 

Development of small molecule inhibitors of the HhH2 domain interaction in our study would be 

expected to sensitize cells to radiotherapy whose DNA-damaging effects are repaired by 

ERCC1–XPF-dependent pathways. Jordheim et al. focused on developing small molecule 

inhibitors of the NER pathway acting through the inhibition of ERCC1-XPF heterodimerization 

and reported that F06 (also called NSC-130813 or NERI02) interacted with XPF, repressed the 

interaction between ERCC1 and XPF in vitro and sensitized cancer cells to MMC and cisplatin 
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[84]. This affirms that targeting this protein-protein interaction can enhance the cytotoxic activity 

of crosslinking agents such as cisplatin. The initial hit, F06, arose from a VS of a large 

compound library, and the study also provided a characterization of the XPF binding pocket and 

the binding mode of the compound to it [84]. F06 was predicted to interfere with the 

heterodimerization of ERCC1 and XPF, a necessary step to attain DNA repair activity.  

Preliminary in-vitro assays confirmed that F06 shows promising inhibitory activity, and acts 

synergistically with cisplatin. However, the activity of F06 is suboptimal in terms of clinical 

properties including potency and safety, and a derivatization strategy, suggested by Jordheim et 

al. [84], was adapted to optimize the action of the compound. Using F06 as a reference hit, we 

employed computer-aided drug design techniques such as electrostatic mapping of the F06 

binding pocket, molecular docking, pharmacophore modeling and molecular dynamics (MD)-

based rescoring to rank F06 derivatives based on their predicted binding affinities to the XPF 

domain. The reference compound (compound 1) and top hits (compounds 2-8) were synthesized 

and tested for their ability to inhibit the in-vitro endonuclease activity of ERCC1-XPF, and the 

most active compound was further assessed as an inhibitor of the repair of UV-induced 

thymidine dimers in cells, as well as a sensitizing agent to UV radiation and cyclophosphamide. 

6.3 Materials and Methods 

6.3.1 Molecular Docking of F06 

The first step of our VS study was to investigate the binding mode of the lead compound F06 

[84] to the pocket on the XPF C-terminus. We used twenty XPF structures as single targets for a 

relaxed complex scheme (RCS) docking protocol, in order to accurately account for protein 

flexibility [185,186]. These structures were extracted from the Protein Data Bank (PDB) [32] 
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entry 1Z00 [241], reporting the NMR ensemble of the dimerization complex between the ERCC1 

and XPF HhH2 domains. The XPF structures were optimized with a minimization process, 

details of which are reported in section B.1.1 in Appendix B. The binding site of each target was 

defined as the geometric center of the residues Y833, N834, P837, Q838, M856, K860, N861 

and I862 on the XPF HhH2 domain, as reported in our previous study [84], where the residues 

are numbered according to the 1Z00 PDB file. Molecular docking simulations were performed 

using the Lamarckian Genetic Algorithm (LGA) [55] and the built-in scoring function [47] of 

Autodock4 [56]. Technical details regarding the docking simulations are reported in section 

B.1.1 in Appendix B. 

6.3.2 Characterization of the Binding Pocket and Pharmacophore Modeling 

To characterize the binding site and the binding mode of F06, electrostatic maps were generated 

in the Molecular Operating Environment 2015 software package (MOE2015) [181] based on the 

docked pose of F06, using -2 kcal/mol for the potential iso-surfaces of hydrophobic, acceptor and 

donor probe atoms, and the Poisson-Boltzmann equation to compute the potentials. The maps 

were built within 4.5 Å of the ligand pose obtained from docking. Using the information from 

the docking and electrostatic mapping, a pharmacophore model for F06 was built with the MOE 

Pharmacophore Query Editor and the EHT scheme [182].  

6.3.3 Docking-Based Virtual Screening of F06 Analogues 

57 analogues of the F06 structure were designed by replacement of the piperazine N-methyl 

group with other moieties expected to capture additional binding interactions of the piperazine 

ring. The structures were prepared using Schrödinger LigPrep [177] to account for multiple 

tautomers, protonation states and low-energy ring conformations, using the same approach as for 
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F06 (section B.1.1 of Appendix B). The molecular docking simulations were performed with 

MOE Dock. Only the XPF structure from the best F06 complex was used as a target for the VS 

study. Different conformations of the analogues were obtained using Conformation Import. The 

previously built pharmacophore model was used for the placement step, in which 30 poses are 

returned according to the London dG scoring method [221]. To account for the local 

arrangement of the pocket residues upon ligand binding, the Induced Fit method was selected for 

the refinement step, where the side chains of the binding pocket were left to move freely. At the 

end, one pose scored with the Generalized Born Volume Integral/Weighted Surface Area 

(GBVI/WSA) function was returned [221]. Water/octanol partition coefficients (logP) of the 

molecules were calculated in MOE using the SlogP function [243], which takes into account the 

given protonation state of the molecule under examination. Ligand efficiencies were calculated 

as the ratio between the computed binding energies and the number of heavy atoms of each 

analog. 

6.3.4 Molecular Dynamics Simulations and MM/GBSA Rescoring of the Analogues 

To calculate an average binding energy for the hits, we performed 2 ns of MD simulations for the 

top ranked compound-XPF complexes. Details of the preparation method and the parameters 

used in these simulations are reported in section B.1.2 of Appendix B. Free energy calculations 

were performed over the trajectories with the Molecular Mechanics-Generalized Born Surface 

Area (MM/GBSA) method, using the MMPBSA.py script [197]. For technical details regarding 

the calculations refer to section B.1.2 of Appendix B. The calculations were performed on 

snapshots extracted every 10 ps from the MD trajectories, and per-residue decompositions of the 

binding energies were also performed for the residues within 10 Å of any analog atom at the 

beginning of the simulations. We also calculated the entropic contribution of ligand binding 
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using the normal mode analysis (NMA) method [244]. The final binding energies used to rank 

the compounds were calculated combining the MM/GBSA and entropy contributions with the 

Equation B.1 in Appendix B. 

6.3.5 General Experimental Procedures for Top F06-Based Analogues Synthesis 

Synthesis and characterization of compounds 1-8 were reported in Appendix B, section B.2.2. 

Reactions were carried out in flame-dried glassware under a positive argon atmosphere unless 

otherwise stated. Transfer of anhydrous solvents and reagents was accomplished with oven-dried 

syringes or cannulae. Solvents were distilled before use. Chemicals were purchased from Sigma 

Aldrich Inc., and were used without further purification. Thin layer chromatography was 

performed on glass plates pre-coated with 0.25 mm silica gel. Flash chromatography columns 

were packed with 230-400 mesh silica gel. Proton nuclear magnetic resonance spectra (1H NMR) 

were recorded at 500 MHz, and coupling constants (J) are reported in hertz (Hz). Standard 

notation was used to describe the multiplicity of signals observed in 1H NMR spectra: broad (br), 

multiplet (m), singlet (s), doublet (d), triplet (t), etc. Carbon nuclear magnetic resonance spectra 

(13C NMR) were recorded at 125 MHz and are reported (ppm) relative to the center line of the 

triplet from chloroform-d (77.0 ppm) or the center line of the heptuplet from methanol-d4 (49.0 

ppm). Infrared (IR) spectra were measured with a FT-IR 3000 spectrophotometer. Mass spectra 

were determined on a high-resolution electrospray positive ion mode spectrometer. 

6.3.6 ERCC1-XPF Protein Preparation 

Human ERCC1-XPF wild-type protein was obtained as previously described [245]. Basically, 

the recombinant protein was expressed from a bicistronic plasmid (kindly provided by Dr. 

Richard Wood, University of Texas MD Anderson Cancer Center, Smithville, TX) in the E. coli 
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BL21 (DE3) strain. Since both XPF and ERCC1 contained a polyhistidine (His-6) tag, the 

proteins extracted from E. coli were incubated with a ProBond Nickel-Chelating Resin (Thermo 

Fisher Scientific). Protein eluted from the Ni affinity column was subsequently loaded into a Hi-

trap heparin column (GE Healthcare). Fractions recovered from the heparin column that 

contained ERCC1-XPF were dialyzed, concentrated and stored at -80ºC in 10 mM HEPES pH 

7.4, 2.5 mM β-mercaptoethanol, 0.01% CHAPS, 0.25 mM EDTA, 50% glycerol and 25 mM 

NaCl. 

6.3.7 Microplate Fluorescence Incision Assay 

We followed a previously described protocol [85,245]. Briefly, reactions were carried out in 384-

well black, flat-bottomed microtiter plates (OptiPlate – 384 F, Perkin Elmer) in a total volume of 

20 µl containing the indicated concentrations of inhibitor compounds, 100 nM stem-loop 

substrate [6-FAM-5′-CAGCGCTCGG(20T)CCGAGCGCTG-3′-dabcyl], 25 ng ERCC1-XPF, 50 

mM Tris-Cl pH 8, 20 mM NaCl, 0.5 mM DDT and 0.75 mM MnCl2 at 25ºC. Fluorescent 

readings were obtained using a FLUOstar Optima fluorimeter (BMG Labtech) with Optima 

software at an excitation of and emission wavelengths of 485 and 520 nm respectively, for 12 

minutes. 

6.3.8 Steady-State Fluorescence Assays 

Steady-state fluorescence spectra were measured at room temperature on a Perkin-Elmer LS-55 

spectrofluorometer (Freemont, CA) with 5 nm spectral resolution for excitation and emission 

using 30-80 nM solution of purified recombinant ERCC1-XPF protein complex.  Protein 

fluorescence was excited at 295 nm, and fluorescence emission spectra were recorded in the 300-

400 nm range: changes in fluorescence intensity was monitored at the emission maximum (330 
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nm).  In studying the effects of inhibitors on protein fluorescence intensities, additions to protein 

samples were made from inhibitors stock solutions, keeping the protein dilution below 3%. 

6.3.9 Cell Culture  

The human colorectal cancer HCT-116 cell line was obtained from the American Type Culture 

Collection (ATCC). The cell population was expanded immediately after arrival, aliquoted and 

stored frozen in liquid nitrogen. Freshly thawed cells were used for each experiment. The cells 

were cultured in a 1:1 DMEM/F12 media supplemented with 10% FBS, 50 units/mL penicillin, 

50 μg/mL streptomycin, mM l-glutamine, 0.1 mM nonessential amino acids, 1 mM sodium 

pyruvate and maintained under 5% CO2 in a humidifier incubator at 37°C. All the supplies for 

cell culture were obtained from Gibco/BRL. 

6.3.10 Cellular Repair of Cyclobutane Pyrimidine Dimers 

We followed the protocol of Mirzayans et al. with minor modifications [246]. Approximately 1 x 

105 HCT-116 cells were seeded on each coverslip and allowed to attach overnight. Medium was 

then removed and cells were treated for one hour with the desired compound. The medium was 

removed, and cells were exposed to 8 J/m2 UV-C radiation (G15T8 254 nm lamp, Ushio 

America Inc, Cypress, CA) followed by adding fresh medium containing the compound.  Plates 

were incubated at 37°C for different periods of time up to 24 hours and fixed in 50:50 

methanol/1X phosphate-buffered saline (PBS) solution, followed by replacing the methanol/PBS 

solution with 100% methanol and incubation in -20°C. After 20 minutes, methanol was removed, 

and cells were treated with PBS for 5 minutes in room temperature. After fixing, cells were 

permeabilized in 0.5% Triton/PBS and washed with PBS, denatured in 2 N HCl, and neutralized 

by twice washing with 0.1 M borate buffer pH 8.5. Cells on cover slips were washed once with 
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PBS followed by blocking with 5% non-fat dry milk/PBS for 30 minutes. Mouse anti-thymine 

dimer monoclonal antibody (Cat. No. MC-062, Kamiya Biomedical Company, Seattle, WA) was 

applied to the cover slips for one hour in the dark and at room temperature. Cells were then 

washed with PBS containing 0.1% Tween-20 and incubated with rabbit anti-mouse IgG-

Alexafluor antibody (Invitrogen, Carlsbad, CA) followed by two washes with 

PBS/(0.1%)Tween-20. Cells on coverslips were then washed with PBS, rinsed with water, and 

mounted on slides using DAPI glycerol mounting solution. Slides were kept at 4°C before 

fluorescent microscopic evaluation and measurement of fluorescence intensity with MetaXpress 

Version: 6.2.1.704 software (Molecular Devices, Sunnyvale, California). 

6.3.11 Clonogenic Survival Assay 

UV treatment: HCT-116 cells (100-800 cells depending on the UV dose) were plated in triplicate 

in 60-mm petri dishes. The cells were incubated overnight at 37°C in a humidified atmosphere 

containing 5% CO2 to allow for cell attachment. Medium was then removed, and cells were 

treated with 1 or 2 μM compound 4 (TFA salt) for one hour.  Medium was removed again, and 

cells were exposed to increasing doses (0-10 J/m2) of UV-C radiation and then incubated for a 

further 10 days in the presence of inhibitor at 37°C in a 5% CO2 atmosphere to allow for colony 

formation. After this period plates were stained with crystal violet and colonies were counted 

using a Colcount instrument (Oxford Optronix, Abingdon UK). Finally, plating efficiency and 

surviving fraction were calculated. 

Cyclophosphamide treatment: A similar protocol was followed as described for the UV 

treatment, except that cells were treated with 1 or 2 μM compound 4 (TFA salt) for 4 hours 

followed by addition of increasing doses of cyclophosphamide (0-300 μM). After 24 hours 
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medium was replaced with fresh medium containing compound 4 alone. Plates were incubated 

for another 8 days at 37°C in a 5% CO2 atmosphere for colony formation. After this period plates 

were stained with crystal violet, colonies were counted, and plating efficiency and surviving 

fraction were calculated. 

6.4 Results and Discussion 

6.4.1 Molecular Docking of F06  

The first step was to investigate the binding mode of the lead compound, F06, to the pocket on 

the XPF C-terminus, followed by functionalization and extension of the piperazine ring in the 

F06 compound to: 1) provide potential key interactions via hydrogen bond formation or 

hydrophobic interactions, and 2) optimize the physicochemical properties and binding affinity 

for better potency and reduced toxicity of the F06-based compounds.  

The binding energy for the best docked conformation of the F06 molecule to the XPF structures 

was -10.23 kcal/mol, as calculated by the Autodock scoring function. The compound showed a 

high shape complementarity with the XPF pocket, which interacts with the F293 residue of 

ERCC1 in the dimerized complex (Figure B.2A in Appendix B). Three ligand-receptor hydrogen 

bonds were observed in the docked pose, namely with the side chain of E829, the backbone of 

N834 and the backbone of K860. In addition, the hydrophobic core of F06, constituted by the 

three aromatic rings, was positioned within a hydrophobic zone constituted by XPF residues 

Y833, Q838, M856 and H857 (Figure B.2B in Appendix B). Also, the binding mode of the 

ligand was in accordance with the spatial distribution of the affinity maps calculated in MOE 

(Figure B.2C in Appendix B). 
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6.4.2 Virtual Screening of F06 Analogues 

To correctly place the scaffold common to all the analogues within the binding site, a 

pharmacophore model based on the binding pose of F06 was built using MOE. This model 

included six features, namely four aromatic moieties, one hydrogen bond donor, and one 

hydrogen bond acceptor features (Table B.1 in Appendix B). Upon generation of such features 

using MOE, we manually adjusted their radii consistently with the spatial distribution of the 

affinity maps. The total number of molecular structures that were docked was 57, accounting for 

all the different states generated during the preparation step.  After the docking was performed, 

just the top scored molecular structure for each analog was retained. The results were ranked 

according to their Generalized Born Volume Integral/Weighted Surface Area (GBVI/WSA) 

score, as calculated by MOE. Then, we performed the MD simulations of the complexes, and 

rescored the analogues using the Molecular Mechanics-Generalized Born Surface Area 

(MM/GBSA) method. A subset of the top ranked hits was selected for chemical synthesis. 

The results of the docking-based VS for this subset are reported in Table B.2. The first two hits 

(compounds 3 and 4) were particularly interesting because of their binding energies in the range 

of the lead compound, reasonable logP values and conserved ligand efficiencies with respect to 

the hit structure. The decomposition of the binding energies among the residues of the binding 

pocket revealed a similar pattern of ligand-receptor interactions of the top hits (compound 3 and 

4) and the lead compound. 

The most important residues for ligand binding of F06 analogues were observed to be E829, 

N834 and V859 where the interaction energy is dominated by the electrostatic component, and 

Y833, M856, H857 and K860 where the van der Waals interactions dominated the binding 
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(Figure 6.1A). A more detailed analysis of the binding mode of one of our best hits, compound 4, 

is reported in Figure 6.1B. The structure of the analogue common to the lead compound interacts 

in a similar fashion with the residues constituting the binding site, although the backbone of 

V859 replaces K860 as hydrogen bond partner during the simulation. In addition, compound 4 

interacted with several water molecules surrounding the binding site, during the 2-ns simulation 

(Figure 6.1C), although the charge-charge interactions with the E829 and E831 residues were 

maintained in terms of average magnitude, when compared with the lead compound. 

6.4.3 Synthesis of F06-based analogues  

Synthesis of compounds 1-8 was achieved through a one-pot sequential addition reaction in 3 

steps as shown in Figure B.1 in Appendix B. Mannich reaction of p-acetamidophenol with 

formaldehyde and appropriate secondary amine in 2-propanol was carried out under reflux for 12 

h. The solvent and excess of the unreacted formaldehyde from the resulted mixture was removed 

under vacuum and without isolating the compound, the resulting viscous residue was treated with 

6 M HCl to deacetylate the acetamido group to result in primary amine as depicted in Figure B.1 

in Appendix B. Afterwards, equimolar of 6,9-dichloroacridine was added in the mixture to result 

in compounds 1-8 in moderate to good yields after isolation. The reaction is general, facile and 

reproducible. The intermediates expected to be formed are illustrated in Figure B.1 in Appendix 

B.  

According to the in-silico screening, seven compounds were selected to be synthesized among 

the top hits due to their promising ligand efficiencies and binding energy values in comparison to 

F06. Derivatization focused primarily on extension of the piperazine ring with different 

functionalities (i.e alicyclic (compound 3), substituted aromatics with electron donating group 
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(EDG) or EWG (compounds 2, 5, 6 and 7), and an aliphatic chain installed with HBA atom 

(compound 4) as shown in Table 6.1. Compound 8 was synthesized as a control to investigate 

whether the piperazine ring is crucial for the activity of compounds.  

 

Figure 6.1. Analysis of the binding features of the top hits. A) Per-residue decomposition of 

ligand-receptor binding energy. Compound 4 showed a slightly different pattern of total 
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interaction energy, while the lead compound and compound 3 had more similar patterns. Blue 

cells indicate favorable interactions, while red cells indicate unfavorable interactions. B) Lowest 

potential energy snapshot extracted from the MD simulation of compound 4 bound to XPF. 

Hydrogen bonds are colored in purple. The highest pocket contributors in terms of total 

interaction energy are labelled. C) Interaction diagram for compound 4 and surrounding residues 

and water molecules. K860 was a strong contributor to the binding energy due to arene-H 

interaction with one of the aromatic rings of compound 4. The diagram refers to the lowest 

potential energy snapshot extracted from the MD simulation. 

Table 6.1. F06-based analogues functionalized with different R substituents. 

Compound R Yield 

 

1 (reference) 
 

 

78 % 

 

2 

 

 

73 % 

 

3 

 
 

 

81 % 

 

4 

 

 

80 % 

 

 

5 

 

 

 

71 % 
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6 
 

 

 

65 % 

 

 

7 
 

 

 

59 % 

8  73 % 

6.4.4 Inhibition of ERCC1-XPF Endonuclease Activity  

We used an in-vitro real-time fluorescence-based assay to assess the inhibitory effect of the 

synthesized compounds (except compound 2 due to its instability over time) on ERCC1-XPF 

endonuclease activity. This assay has been previously described [245], and utilizes a stem-loop 

substrate (composed of a 10mer-duplex stem and a 20mer-oligodT single-strand loop), labelled 

on the 5′-terminus with 6-FAM and 3′ with the quencher dabcyl. Upon ERCC1-XPF cleavage in 

the 10mer-duplex region an 8-base 5′ FAM-labelled product is released resulting in a fluorescent 

signal (Figure 6.2A, control). 

The other tracings in Figure 6.2A indicate to what extent the different compounds (10 µM each) 

could inhibit incision of the substrate.  

As shown here, three compounds exhibited a marked capacity to inhibit the incision activity of 

ERCC1-XPF, i.e. compounds 1 (F06), 3 and 4. For these three compounds, different 
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concentrations of the drugs were plotted against the initial velocity (Vo, change in relative 

fluorescence units (RFU)/time) of the enzyme.  

Figure 6.2B (inset) shows an example of data obtained with compound 4. Half-maximum 

inhibitory concentrations (IC50) for these compounds were estimated from at least three different 

experiments for every compound (Table B.3). 

 

Figure 6.2. A microplate fluorescent assay to measure inhibition of ERCC1-XPF endonuclease 

activity by the different compounds. Incubation of the stem-loop substrate with ERCC1-XPF 

resulted in the release of a fluorescent 8-base fragment. A) Shows the increase in fluorescence 

(RFU) with time. A representative tracing of the effect of the different compounds (8 µM each) 
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on the incision activity is shown. B) (Inset) shows a representative plot of enzyme rate 

(∆RFU/time) vs compound (4) concentration. 

Since acridine compounds are known to bind nucleic acids, the possibility existed that a 

disruption of the structure of the stem-loop substrate by compound 4 could have been responsible 

for the inhibition observed in the ERCC1-XPF kinetic assays. To rule out this possibility the 

experiment shown in Figure B.4 in Appendix B was carried out. Pre-incubation of ERCC1-XPF 

with compound 4 (3 μM) in the reaction medium resulted in a time-dependent loss of enzyme 

activity. The reactions were started either with addition of the substrate (T0) or with substrate 

that had been pre-incubated in the reaction medium in the presence of compound 4 (3 μM) for 12 

minutes (T12). The data indicate that the time-dependent inactivation of ERCC1-XPF by 

compound 4 was the consequence of the interaction of the drug with the enzyme, and not altered 

by addition of substrate that had been pre-incubated with the inhibitor. The data in Figure B.4A 

in Appendix B were obtained with a concentration of compound 4 approximately 9 times higher 

than the observed IC50 value of the compound and in the presence of 10% DMSO. When the 

same test was carried out in the presence of 5% DMSO, a similar time-dependent inhibition was 

observed and the substrate exhibited comparable behavior (Figure B.4B in Appendix B). (The 

IC50 values reported in the present study were obtained by incubating ERCCI-XPF in the 

presence of the indicated concentrations of the drug for 30 minutes in the reaction medium 

containing 5% DMSO.) 

6.4.5 Inhibitor Binding to ERCC1-XPF 

Intrinsic fluorescence spectroscopy (of the protein tryptophan residues) was utilized to study the 

binding affinity of compound 4 (active compound) and compound 5 (non-active compound) to 

ERCC1-XPF (Figure 6.3).  Addition of 2 µM of compound 5 had no significant effect on protein 
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fluorescence and the observed fluorescence quenching at 330 nm was only 3 ± 1%, thus 

providing no evidence of any interaction.  In contrast, addition of compound 4 induced nearly 23 

± 2% quenching in protein fluorescence at 330 nm, clearly indicating interaction of compound 4 

with ERCC1-XPF complex as depicted in Figure 6.3B.  Binding affinity (in terms of dissociation 

constant, Kd) of compound 4 for ERCC1-XPF complex was determined by following 

fluorescence quenching (a measure of ligand binding) as a function of ligand concentration.  A 

representative plot of relative fluorescence intensities versus the concentration of compound 4 is 

shown in Figure 6.3C (inset).  Nonlinear regression analysis (GraphPad Prism Software, San 

Diego, CA) of the binding data was carried out as described in our earlier paper [247], and 

revealed a unimodal binding with a Kd value of 100 ± 5 nM as also shown in Figure 6.3. 

 

Figure 6.3. Fluorescence spectroscopy. A) Fluorescence of ERCC1-XPF (13 nM and 20 nM) 

incubated with compound 5 (negative control), and B) compound 4 (active inhibitor) 
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respectively. C) Unimodal binding pattern and the binding affinity of compound 4 with ERCC1- 

XPF (70 nM). 

6.4.6 Inhibition of Cellular Repair of Cyclobutane Pyrimidine Dimers   

Immunofluorescence results of the exposure of HCT-116 colorectal cells to 8 J/m2 treated with 

compound 4 showed a significant inhibition of NER determined by the removal of CPDs 

compared with control cells over 24 hours as depicted in Figure 6.4. Based on our results and 

others [246], approximately 80% of CPDs are removed over 24 hours after exposure of HCT-116 

cells, but this was reduced to approximately 60% in the presence of compound 4. On the other 

hand, compound 5, which demonstrated very limited inhibition in vitro, failed to inhibit the 

cellular removal of CPDs. Figure 6.4B shows the relative quantification of CPDs after treatment 

with positive and negative compounds.  

 

Figure 6.4. A) Immunofluorescence images of the UV-based assay for detecting CPDs in cells 

treated with compounds 4 and 5. B) Normalized fluorescence intensity of the treated cells. 
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6.4.7 Increased Sensitization to UV Radiation and Cyclophosphamide 

We also evaluated the effectiveness of compound 4 (1 and 2 µM) to sensitize cells to UV 

irradiation based on clonogenic survival as shown in Figure 6.5A. In accord with the repair data, 

2 µM compound 4, significantly reduced survival of the UV irradiated cells. 

We then examined the combined effect of compound 4 (1 and 2 µM) on cellular survival 

following exposure to the DNA interstrand crosslinking agent cyclophosphamide. The survival 

curves shown in Figure 6.5B indicate that, at a concentration of 2 µM, compound 4 significantly 

sensitized the cells to cyclophosphamide (starting at 50 µM) and no colonies were detected on 

the plates with a cyclophosphamide concentration of 300 µM.   

 

Figure 6.5. A) Survival of HCT-116 cells exposed to increasing doses of 254 nm UV radiation 

and treated with 1 and 2 µM compound 4 determined by the clonogenic survival assay. D) 

Survival of HCT-116 cells exposed to increasing doses of cyclophosphamide and treated with 1 

and 2 µM compound 4 determined by the clonogenic survival assay. 
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6.5 Conclusion  

The ERCC1-XPF heterodimer is a structure-specific endonuclease, which is required especially 

for NER and ICL DNA repair pathways. Although its action is essential to maintain genome 

integrity and to protect against damage-induced mutations, as part of the NER and ICL 

machinery it can counteract the effect of DNA damaging therapies such as platinum-based 

chemotherapy and radiotherapy. A promising approach to enhance the effect of such therapies is 

to inhibit the action of DNA repair in cancer cells using small molecules. In this work, we used a 

computational drug design workflow to provide a rational design for novel analogues of the F06 

molecule, a lead inhibitor targeting the dimerization between XPF and ERCC1, which is required 

for endonuclease activity. We identified seven compounds whose in-silico simulations predicted 

attractive properties, namely binding affinities and ligand efficiency towards an XPF site on the 

dimerization interface. The synthesis of the computationally designed compounds was 

successfully carried out using a feasible, robust and reproducible synthetic strategy. Interestingly, 

compound 4 has good physicochemical properties i.e reasonable logP and ligand efficiency 

values, and small molecular weight, thus compound 4 is a potential candidate that obeys 

Lipinski’s rules. Following structure-activity relationship studies and in-vitro screening, this 

approach yielded compounds 3 and 4 as potent inhibitors of ERCC1-XPF activity. An in-vitro 

ERCC1-XPF endonuclease assay identified compound 4 as the best ERCC1-XPF inhibitor with 

an IC50 value of 0.33 µM compared to 1.86 µM for F06. In addition, the Kd value for this 

compound was experimentally measured as 100 nM. Compound 4 also showed a significant 

inhibition of the removal of cyclobutane pyrimidine dimers compared with control cells after 

exposure of HCT-116 cells to UV radiation and sensitized the cells to UV and 

cyclophosphamide-induced cytotoxicity, indicating inhibition of NER and ICL repair. We 



 118 

suggested that the in-vitro activity of compound 4 is well correlated with our in-silico results 

through enhanced van der Waals binding interactions with V859 and charge-charge interaction 

with E831 relative to the binding patterns of either F06 or the other non-active compounds. In 

summary, the use of in-silico modelling to design a superior compound to F06 led to compound 

4 that can potentially be used in combination with other existing DNA-damaging therapies to 

amplify their effects by sensitizing cancer cells. 
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Chapter 7 - Conclusions and Future Works 

In this thesis I discussed the application of CADD techniques to identify novel DNA repair NER 

inhibitors. The target of my research has been the ERCC1-XPF endonuclease, a heterodimeric 

complex responsible for the excision step of NER and involved in drug resistance to platinum-

based chemotherapy. The second chapter of the thesis provided a review of the employed CADD 

methods. Theoretical details are provided for molecular dynamics simulation techniques, 

molecular docking, and structure/ligand-based virtual screening (S/LBVS). The third section of 

the thesis is a systematic review of the state-of-the-art of NER proteins modeling and CADD 

studies targeting the pathway. The three successive chapters presented the results obtained by 

targeting with CADD three different sites of the ERCC1-XPF complex, namely the interaction 

site with XPA, the active site and the dimerization interface. In this conclusive chapter, I 

summarize the results achieved in each thesis section, and I suggest possible future directions 

which I hope will be pursued with the final goal to translate ERCC1-XPF inhibitors from the 

research environment to the clinical one. 

7.1 Identification of XPA-ERCC1 Inhibitors Using Virtual Screening 

In NER, the recruitment of ERCC1-XPF endonuclease to the damaged DNA zone occurs 

through an interaction with XPA protein with the ERCC1 central domain. If this does not 

happen, the NER machinery is blocked. A drug able to inhibit the XPA-ERCC1 interaction can 

therefore prevent repair of damages induced by DNA damaging cancer therapies, although this 

would be limited to NER and not to other pathways in which ERCC1-XPF is involved (e.g. ICL 

repair pathway). The choice of this target is encouraged by the near-to-optimal results of 

cisplatin in the treatment of testicular cancer, due to low expression of XPA in testicular germ 
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cells. Early efforts in this direction were made by using VS to identify small molecules able to 

bind to the central site of ERCC1.  

The study presented in Chapter 4 was performed by conducting a VS campaigns to identify 

potential, more potent compounds similar to the top hits identified in [80] and able to sensitize 

cancer cells to UV radiation and synergize cisplatin action. The study had two distinct goals: 1) 

Identify compounds similar to NERI01 and compound 10 (the two original hits) but with 

improved potency and drug-like properties. 2) Identify compounds with a different scaffold to 

propose new starting points for drug optimization. In order to accomplish the first objective, a 

ligand-based VS campaign as pursued using the two original hits as input. Using the Tanimoto 

score (Equation 2.7) as comparison score and the turbo similarity search approach, it was 

possible to quickly filter the whole PubChem repository (~68,370,000 compounds) and retain a 

subset of compounds similar to the two hits. Because of the goal was to identify molecules with 

drug-like properties, ADMET Predictor was used to furtherly refined the subset. This subset was 

then subjected to a multi-step structure-based VS protocol to predict the binding poses and rank 

the compounds by their computed binding affinities. The NMR structure of the ERCC1 central 

domain bound to XPA was chosen as target for this step. On the other hand, four NCI compound 

repositories were screened using a pharmacophore model based on the binding pose of the two 

hits. The use of these diverse databases and the pharmacophore, which identifies compounds 

sharing similar moieties but not necessarily similar structures, led to a filtered set of new 

different scaffolds. A structure-based VS protocol similar to before was adopted then to rank the 

resulting compound based on their binding affinities. In future, the top ranked compounds 

deriving from both the subsets should be purchased and validated experimentally. Once active 

compounds have been identified, structures coming from the similarity search will in theory be 
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already drug-like and not many steps of derivatives would be needed to optimize their properties. 

On the other hand, compounds resulting from the pharmacophore screening are in fact new 

scaffolds which can be fully explored through CADD medicinal chemistry techniques to improve 

binding affinities and drug-like properties. 

7.2 Exploring the ERCC1-XPF Active Site as Potential Target for Inhibitors 

The endonuclease activity of ERCC1-XPF occurs through the catalytic site present on the XPF 

nuclease domain, where the damaged DNA strand is cleaved at its 5′ extremity. Targeting this 

site to stop ERCC1-XPF-mediated repair would present many advantages, due to the presence of 

metal ions in the site (ideal for metal chelators), weak contacts made by the domain containing 

the active site and the DNA, and previous successful studies targeting similar sites in DNA repair 

enzymes. In addition, the first series of inhibitors targeting the XPF active site were recently 

reported. Nevertheless, targeting directly the ERCC1-XPF nuclease activity is not an easy task. 

First, the 3D structure of the human XPF nuclease domain has not been solved experimentally 

yet. Second, the active site is highly conserved in other related proteins, and a detailed 

description of the key binding residues is required to design highly-specific ERCC1-XPF 

inhibitors, in order to limit off-target interactions. The work reported in Chapter 5 of this thesis 

employed CADD techniques in order to address both these issues. Additionally, I performed a 

VS campaign aimed to identify new inhibitors of the ERCC1-XPF nuclease activity. 

The first step of the study was to obtain a 3D model of the human XPF nuclease domain. Using 

bioinformatics techniques, we identified similar domains with a publicly available experimental 

structure. The nuclease domain was then built using the HeF protein from Pyrococcus furiosus as 

template for the homology modeling. A molecular dynamics simulation was then performed for 
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the model, followed by RMSD-based clustering of the active site residues to extract dominant 

conformations. The resulting structures were then used as single targets for molecular docking 

simulations, where the known XPF active site inhibitors were used as ligands. The docking poses 

allowed to identify a repeated binding pattern involving residues E712, K727 and the 

coordinated Mg2+ ion, as well as to build a dynamic pharmacophore, accounting for multiple 

receptor conformations. In this way, we described in details the features required for successful 

ligand binding to the XPF active site. The pharmacophore model was successively employed to 

filter lead-like compounds from a subset of nearly 80,600,000 molecules from the ZINC15 

database, in order to retain only the ones with the appropriate chemical features. Finally, SBVS 

was used to rank the compounds based on their predicted binding affinity. To summarize, the 

results of Chapter 5 provide, for the first time, a detailed biophysical picture of small molecule 

inhibitors binding to the XPF active site, opening a new venue for rational drug design targeting 

this domain. At the same time, future steps will include the experimental validation of the 

potential top hits and the design of more potent and drug-like analogues. 

7.3 Targeting the ERCC1-XPF Heterodimerization Interface with Small Molecules to 

Disrupt the Functional Complex 

The last strategy to inhibit ERCC1-XPF encompassed in this thesis is the target of the protein-

protein interaction. Heterodimerization of ERCC1-XPF is required to generate a functional 

complex with full endonuclease activity. Successful inhibition of the heterodimerization would 

be ideal because, differently to targeting the XPA-ERCC1 interaction, will be effective against 

all the activities of the complex and not only the NER-related one. Also, it will be less difficult to 

design drugs specific to the ERCC1-XPF interface rather than to the XPF active site, well 

conserved in similar endonuclease. Targeting the ERCC1-XPF interface, however, is challenging 
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due to the hydrophobic, strong nature of the interaction between the two proteins. Chapter 6 of 

this thesis reports the results of a CADD effort for the pre-clinical development of inhibitors of 

the ERCC1-XPF dimer. Chemical synthesis and testing of the compounds in protein-based 

assays and cell lines were performed at the University of Alberta by the Alberta DNA Repair 

Consortium team. 

Our lab previously identified a promising hit compound able to disrupt the ERCC1-XPF dimer 

and stop the repair activity. The compound, named F06, was discovered by carrying out an 

extensive VS campaign targeting a binding pocket at the XPF of the interface. Starting form this 

lead structure, we built a library of analogue structures and carried out molecular docking 

simulations followed by MM-GBSA rescoring to identify a limited set of optimized compounds 

to synthesize and test. Following our rank of compounds, top molecules were synthesized. 

Following in-vitro assessment, compound 4 showed the most promising potential as drug 

candidate, with an observed IC50 value of 0.33 µM compared to 1.86 µM for F06. The Kd value 

for compound 4 was measured as 100 nM. The compound also showed a significant inhibition of 

the removal of UV-induced damages in colorectal cancer cell lines and sensitized colorectal 

cancer cell lines to cyclophosphamide-induced cytotoxicity, indicating inhibition of NER and 

ICL repair. Compound 4 is therefore a promising drug candidate for combination cancer therapy. 

Currently, the compound is under the patenting process, and future steps will include evaluation 

of the ADMET profile and validation in animal models. At the same time, two new generations 

of derivatives are being synthesized and tested with the objective to furtherly optimize the profile 

of compound 4.  

Chapter 6 concludes the work of my thesis with the hope that my findings will benefit the future 

of cancer treatment for patients in Canada and around the world. 
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Appendix A - Supplementary Materials of Chapter 4 and 5 

A.1  Chapter 46 

Table A.1. Conformational entropy changes (TS), calculated using normal mode analysis for a 

set of diverse hit structures. The ligands were selected to possess different features (for example 

the number of rings and flexible bonds). The unfavorable contributions oscillate between ~20 

and 24 kcal/mol and they overlap within the standard deviations. The calculations were run on 

100 snapshots extracted from the last 4 ns of 10 ns-long molecular dynamics simulations of each 

complex. 

Compound Entropy (kcal/mol) Standard deviation (kcal/mol) 

6210903 -24.20 3.26 

7324126 -23.82 3.13 

1696060 -22.25 3.93 

1098945 -21.11 2.66 

53684246 -22.91 2.83 

6971912 -20.29 2.49 

Ligand 1 -19.70 2.68 

Ligand 63 -21.47 2.88 

Ligand 80 -19.48 3.95 

 

 

                                                 

6 This section has been published as Supplementary Data of Gentile, F.; Tuszynski, J. A.; Barakat, K. H. New design 

of nucleotide excision repair (NER) inhibitors for combination cancer therapy. J. Mol. Graph. Model. 2016, 1, 71–

82. 
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A.2 Chapter 57 

 

Figure A.1. Alignment of the human XPF nuclease domain sequence and all the sequences 

identified as templates by the template search step in MOE, using the BLOSUM62 matrix. 

Conserved residues are highlighted in green. 

 

Figure A.2. Alignment of the amino acid sequences of the human XPF nuclease domain, 2BGW 

and 1J25. Fully conserved residues are reported in the Consensus line in bold. Partially 

                                                 

7 This section has been published as Supplementary Materials for Gentile, F.; Barakat, K.; Tuszynski, J. 

Computational Characterization of Small Molecules Binding to the Human XPF Active Site and Virtual Screening 

to Identify Potential New DNA Repair Inhibitors Targeting the ERCC1-XPF Endonuclease. Int. J. Mol. Sci. 2018, 

19, 1328. 
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conserved residues are reported in the Consensus line in normal font. Residue columns are 

colored based on their degree of conservation when compared with the XPF nuclease sequence, 

ranging from red (not conserved) to blue (fully conserved). 

 

Figure A.3. A) DBI (blue) and SSR/SST ratio (purple) and B) pSF (green) trends obtained by 

varying the number of clusters of human XPF active site conformations. At 10 clusters (black 

vertical line), we observed a local minimum of the DBI, a kink in the SSR/SST curve and a 

maximum of the pSF, indicating optimal cluster counting. 
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Table A.2. Composition of the 10 clusters resulting from clustering of the last 106 ns of MD 

trajectory. The ratio is calculated as number of frames in the cluster divided by the total number 

of frames (10601). Selected refers to the representative structure of a cluster being included in 

the molecular docking simulation as target or not. 

Cluster Number of frames Ratio Selected  

1 4160 0.392 yes 

2 2125 0.200 yes 

3 5 0.000 no 

4 1 0.000 no 

5 1370 0.129 yes 

6 156 0.015 yes 

7 15 0.001 no 

8 1496 0.141 yes 

9 1264 0.119 yes 

10 9 0.001 no 
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Figure A.4. Chemical structures, ZINC IDs and London dG scores (in kcal/mol) of the top fifty 

hits obtained by screening the ZINC15 compound database. 
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Appendix B – Supplementary Materials to Chapter 68 

B.1 Materials and Methods 

B.1.1 Molecular Docking of F06 

Target Preparation 

We prepared the twenty NMR structures of the ERCC1-XPF complex (PDB entry 1Z00). We 

initially removed the ERCC1 terminus, as our previous study identified the best suitable binding 

pocket being on the XPF dimerization surface [84]. We then assigned the protonation states of 

the XPF residues the H++ server [187] using pH 7, a salinity of 0.15 M, a protein and solvent 

dielectric constants of 10 and 80, respectively. In AmberTools14 tleap [189], Amber ff14SB 

force field parameters were assigned to the protein [224], whereas the Li, Song and Merz ’s 12-

6-4 parameters for mono and divalent ions in TIP3P water have been used for the ions [225,226]. 

The protein was solvated with an octahedral box of TIP3P explicit water molecules with 15 Å of 

buffer (minimal distance between any protein atom and the edge of the box). Na+ and Cl- ions 

have been added to the system to neutralize it and reach a 0.15 M physiological ionic 

concentration. We then performed a two steps minimization in Amber pmemd.cuda [191] with 

the following procedure: 1000 steps of conjugate gradients method keeping harmonically 

restrained the whole protein (force constant of 500 kcal/mol/Å2) to relax ion and water positions; 

followed by 1000 steps of conjugate gradients method keeping restrained the backbone atoms 

with a force constant of 2 kcal/mol/Å2. A cutoff of 9 Å was used during this relaxation process. 

                                                 

8 This appendix is under consideration for publication as Supplementary Materials to Elmenoufy A.H.; Gentile F.; 

Jay D.; Karimi-Busheri F.; Yang X.; Soueidan O.M.; Weilbeer C.; Mani R.S.; Barakat K.H.; Tuszynski J.A.; 

Weinfeld M.; West F.G. Novel ERCC1-XPF Inhibitors for Resistant Colorectal Cancer Treatment Based on 

Targeting DNA Repair in Mol. Cancer Ther. 
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Docking Simulations 

The 2D structure of F06 was downloaded from the PubChem repository [65] (entry 421105). 

Different protonation states were obtained using Epik, tautomers and up to three low energy ring 

conformations at pH 7.0 +- 2.0 of the compound have been calculated in Schrödinger LigPrep, 

using the OPLS-2005 force field [177]. The docking box for each XPF structure was defined as 

56X50X56 points spaced by 0.375 Å and centered in the geometric center of the residues 

Tyr833, Asn834, Pro837, Gln838, Met856, Lys860, Asn861 and Ile862 [84], as calculated in 

Visual Molecular Dynamics (VMD) [201]. Affinity, electrostatic and desolvation maps were 

obtained using Autogrid4 [56]. The Lamarckian genetic algorithm (LGA) of Autodock4 [55] was 

used for the docking simulations, with a population size of 300, 25000000 maximal energetic 

evaluations, 27000 maximal generations and one survival for each generation with the rates of 

mutation and crossover set to 0.02 and 0.8, respectively. For each simulation, 100 LGA runs 

were performed and the results were clustered based on the root-mean squared deviation 

(RMSD) metric using 2 Å as tolerance; just the simulations resulting in at least a cluster with 

more than 25 conformations were considered. The Autodock scoring function [47] was used to 

rank the results. Hydrogen bonds were detected in VMD with the following parameters: distance 

cutoff of 3.5 Å and angle cutoff of 120o (60o of deviation from linearity). 

B.1.2 MD Simulations and MM/GBSA Rescoring of the Analogues 

Molecular dynamics simulations of top hit complexes 

Antechamber [193] was used to assign the General Amber Force Field (GAFF) [192] parameters 

to the compounds. The ff14SB force field parameters were used for the protein. The same 

explicit solvation and ionic concentration setup introduced previously was employed. Molecular 
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dynamics (MD) simulations of the systems were performed on pmemd.cuda using the following 

procedure: 1) relaxation of ions and water molecule positions using 1000 steps of steepest 

descent and 1000 steps of conjugate gradients minimization, keeping all the complex atoms fixed 

through an harmonic restraint (force constant of 500 kcal/mol/Å2). 2) 2000 steps of steepest 

descent followed by 3000 steps of conjugate gradients methods without restraints. 3) Gradual 

heating of the system from 0 to 300 K in 100 ps using Langevin dynamics, keeping restrained the 

backbone atoms (2 kcal/mol/Å2) and using a time step of 0.5 fs and NVT conditions. 4) Gradual 

release of the restraint in four phases of 50 ps each at constant pressure (1 atm). The time step 

was set to 2 fs. 5) 2 ns of production simulation, recording the coordinates every 2 ps, similar to 

what was done in our previous work [82]. 

The enthalpic contribution to the change in free energy due to the binding of the ligands has been 

estimated using the MM/GBSA method using the script MMPBSA.py [197]; the change of the 

energy of a complex configuration is calculated as 

∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣 = ∆𝐺𝑀𝑀,𝑣𝑎𝑐+∆𝐺𝑠𝑜𝑙𝑣,𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (∆𝐺𝑠𝑜𝑙𝑣,𝑙𝑖𝑔𝑎𝑛𝑑+∆𝐺𝑠𝑜𝑙𝑣,𝑝𝑟𝑜𝑡𝑒𝑖𝑛) − 𝑇∆𝑆 (𝐵. 1) 

where ∆𝐺𝑀𝑀,𝑣𝑎𝑐 is calculated as the sum of electrostatic and van der Waals interactions 

occurring between the protein and the ligand. TS is the term modeling the change in 

conformational entropy due to the binding. The solvation terms are modeled as 

∆𝐺𝑠𝑜𝑙𝑣 = ∆𝐺𝑠𝑜𝑙𝑣,𝑝𝑜𝑙𝑎𝑟 + ∆𝐺𝑠𝑜𝑙𝑣,𝑛𝑝𝑜𝑙𝑎𝑟 (𝐵. 2) 

where the polar contribution of the solvent is calculated solving the Generalized Born equation 

[28]. The ionic concentration was set to 0.15 M. igb flag was set to 5 [248] and mbondi2 radii 

were used. The hydrophobic contribution to the solvation free energy has been calculated as 
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∆𝐺𝑠𝑜𝑙𝑣,𝑛𝑝𝑜𝑙𝑎𝑟 = 𝛾 ∙ 𝑆𝐴𝑆𝐴 (𝐵. 3) 

where γ (surface tension) was 0.005 kcal/mol/Å2 and A the solvent accessible surface area 

(SASA) calculated using the linear combinations of pairwise overlaps (LCPO) model method 

[249]. 

B.1.3 Synthesis of F06-Based Analogues 

 

Figure B.1. A) One-pot sequential addition reaction for synthesis of compounds 1-8. B) Main 

steps and intermediates included in the one pot sequential addition reaction. 

B.1.4 Cell Proliferation Assay 
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The Cell Titer 96® Aqueous One Solution Cell Proliferation Assay (MTS) (Promega, Madison, 

WI) was used to measure the proliferation of HCT-116 colorectal cancer cells. Briefly, 3,000 

cells were seeded in 100 µl of culture medium. After 24 hours, the medium was aspirated and 

new culture medium without (control) and with inhibitory compounds were added to each well. 

After 72 hours 20 μl of MTS [3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium] solution was added to each well and plates were incubated for 2 

hours at 37°C in a humidified atmosphere containing 5% CO2 followed by reading the 

absorbance of treated and untreated cells at 490 nm wavelength with a microplate reader, and 

plotting the corrected absorbance at 490 nm versus concentration of drug as shown in Figure B.3 

in Appendix B.  

B.2 Results 

B.2.1 Virtual Screening of F06 Analogues 
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Figure B.2. Visual analysis of the F06 docking pose. A) Shape complementarity between the 

docked pose of F06 and the XPF binding site. The compound was docked to the XPF pocket that 

wraps around residue Phe293 of ERCC1 in the dimerization complex. B) Non-bonded 

interactions. Observed hydrogen bonds are represented in purple. Residues involved in hydrogen 

bonding or hydrophobic interactions with the ligand are explicitly represented. See text for more 

details.  C) Affinity mapping of the F06 binding site on the XPF HhH2 domain. Blue color 

indicates zones of interaction where a donor probe atom shows a potential of -2 kcal/mol, 

therefore where a ligand donor atom will contribute favourably to the free energy of binding. 

Red indicates acceptor favorable zones, and white hydrophobic favorable zones. D) 
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Pharmacophore model designed for the lead compound binding to the XPF binding site. Aro 

features are aromatic, Acc are hydrogen bond acceptors and Don hydrogen bond donors. 

Table B.1. Pharmacophore features built from the docking pose of F06 to the XPF site. 

Feature Type Radius (Å) 

F1 Aromatic 1.5 

F2 Aromatic 1.5 

F3 Aromatic 1.5 

F4 Donor 3 

F5 Aromatic 1.5 

F6 Acceptor 2 

Table B.2. Computational results for the subset of analogues chosen for synthesis. The ligand 

efficiency was calculated using the GBVI/WSA MOE score divided for the number of heavy 

atoms of each molecule. The analogues are ranked based on their MM/GBSA score which 

includes the entropy contributions. The lead compound F06 is reported as the last entry. 

Compound GBVI/WSA (kcal/mol) Ligand efficiency 

((kcal/mol)/h.a.) 

logP MM/GBSA 

(kcal/mol) 

3 -7.06 -0.19 5.80 -21.73 

4 -7.52 -0.20 2.61 -13.12 

2 -6.83 -0.17 6.24 -11.60 

7 -6.93 -0.18 5.50 -11.40 

5 -7.57 -0.19 6.98 -9.62 

6 -7.13 -0.15 7.63 -9.03 

8 -6.44 -0.26 5.50 -4.46 
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1 (F06) -6.70 -0.20 4.10 -17.78 

B.2.2 Synthesis and Characterization of Inhibitors (1-8) 

4-((6-Chloro-2-methoxyacridin-9-yl)amino)-2-((4-methylpiperazin-1-yl)methyl)phenol (1)  

Synthesis of compound 1 was achieved through one pot sequential addition reaction in 3 steps. A 

mixture of N-methyl piperazine (0.12 mL, 1.0 mmol), acetaminophen (0.15 g, 1.0 mmol) and 

37% formaldehyde (0.10 mL, 5 mmol) in isopropyl alcohol (2 ml) was taken in 10 mL single 

neck round bottom flask. Then, the reaction mixture was stirred and heated under reflux at 65 °C 

for 6 h. Upon completion of the reaction (monitored by TLC with 15% MeOH/DCM eluent 

system), the solvent was removed on a rotatory evaporator. Next, the residue was dissolved in 3 

mL ethanol and 3 drops of 12 M HCl were added. Subsequently, the reaction mixture was heated 

at 90 °C under reflux for 90 min. Afterwards, 6,9-dichloro-methoxyacridine (0.28 g, 1.0 mmol) 

was added to the mixture and further stirred at 90 °C under reflux and the course of reaction 

followed by TLC until little or no starting material was detected (around 12 h).  On cooling to 

room temperature, the reaction mixture was diluted with cold water and neutralized to pH of 8-9 

with 28% v/v ammonia solution. The alkaline solution was extracted with dichloromethane. The 

organic layer was washed with brine, concentrated in vacuum, and purified by column 

chromatography (gradient elution with 5% to 10% MeOH:DCM system) to afford compound 1 

as orange reddish semisolid (0.08 g) in 78 % yield; Rf 0.50 (2:8, MeOH:DCM); IR (cast film) 

νmax = 3272, 2923, 1629, 1254, 1231, 1032, 926, 816, 815, 775 cm-1; 1H NMR (500 MHz, 

CDCl3) δ 7.99 (s, 1H), 7.91 (d, J = 8.7 Hz, 1H), 7.80 (d, J = 9.2 Hz, 1H), 7.29 (dd, J = 9.4, 2.6 

Hz, 1H), 7.11 (d, J = 10.7 Hz, 1H), 7.03 (s, 1H), 6.77 – 6.70 (m, 2H), 6.49 (d, J = 2.5 Hz, 1H), 

3.63 (s, 3H), 3.53 (s, 2H), 2.75 – 2.32 (m, 8H), 2.27 (s, 3H), OH and NH protons were not 
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observed; 13C NMR (125 MHz, CDCl3) δ 155.9, 153.2, 147.8, 143.9, 137.0, 135.0, 125.0, 124.9, 

122.0, 121.8, 120.0, 119.9, 119.7, 117.61, 116.8, 116.5, 116.1, 115.9, 100.3, 61.1, 55.2, 54.8 

(2C), 52.4 (2C), 45.8; HRMS (ESI) calcd for C26H28ClN4O2 [M + H]+ 463.1895; found 

463.1890. 

4-((6-Chloro-2-methoxyacridin-9-yl)amino)-2-((4-(3-methylbenzyl)piperazin-1-

yl)methyl)phenol (2) 

The previous method was employed to synthesize compound 2 with the following stoichiometric 

amounts; 1-(3-methylbenzyl)piperazine (0.19 g, 1.0 mmol) and 6,9-dichloroacridine (0.28 g, 1.0 

mmol) to afford it as orange reddish semisolid (0.14 g) in 73 % yield; Rf  0.44 (1:9, 

MeOH:DCM); IR (cast film) νmax = 3258, 2921, 1629, 1560, 1493, 1253, 1133, 1007, 927, 826, 

775 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.05 (s, 1H), 7.95 (d, J = 9.2 Hz, 1H), 7.83 (d, J = 9.2 

Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.17 – 7.06 (m, 5H), 6.87 (d, J = 7.1 

Hz, 1H), 6.77 (d, J = 8.6 Hz, 1H), 6.62 (d, J = 1.9 Hz, 1H), 3.70 (s, 3H), 3.59 (s, 2H), 3.49 (s, 

2H), 2.79 – 2.40 (m, 8H), 2.35 (s, 3H). OH and NH protons were not observed; 13C NMR (125 

MHz, CDCl3) δ 156.1, 153.9, 150.4, 146.8, 144.5, 137.9, 137.6, 136.3, 135.5, 129.9, 128.2, 

127.9, 126.2, 125.4, 125.0, 122.1, 121.8, 120.6, 120.3, 119.2, 116.9, 116.5, 116.1, 115.9, 100.4, 

62.8, 61.2, 55.4, 52.8 (2C), 52.5 (2C), 21.4; HRMS (ESI) calcd for C33H34ClN4O2 [M + H]+ 

553.2357; found 553.2365. 

4-((6-Chloro-2-methoxyacridin-9-yl)amino)-2-((4-cyclohexylpiperazin-1-yl)methyl)phenol (3) 

The previous method was employed to synthesize compound 3 with the following stoichiometric 

amounts; 1-cyclohexyl piperazine (0.17 g, 1.0 mmol) and 6,9- dichloroacridine (0.28 g, 1.0 

mmol) to afford it as orange reddish semisolid (0.13 g) in 81 % yield; Rf  0.52 (0.5:9.5, MeOH: 
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EtOAc); IR (cast film) νmax = 3313, 2918, 1736, 1560, 1468, 1255, 1235, 1181, 1032, 929, 829, 

722 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.03 (d, J = 1.4 Hz, 1H), 7.92 (d, J = 9.6 Hz, 1H), 7.80 

(d, J = 9.5 Hz, 1H), 7.28 (d, J = 5.7 Hz, 1H), 7.11 (d, J = 9.1 Hz, 2H), 6.91 (d, J = 9.3 Hz, 1H), 

6.77 (d, J = 8.5 Hz, 1H), 6.69 (s, 1H), 3.71 (s, 3H), 3.60 (s, 2H), 2.73 – 2.22 (m, 8H), 1.83 (m, 

4H), 1.63 (d, J = 12.8 Hz, 1H), 1.26 – 1.18 (m, 6H). OH and NH protons were not observed; 13C 

NMR (125 MHz, CDCl3) δ 156.1, 153.8, 146.9, 144.5, 136.3, 135.5, 125.4 – 116.8 (10 C), 101.3, 

100.4, 98.8, 63.4, 61.3, 52.9 (2 C), 48.7 (2 C), 29.7, 28.9 (2 C), 26.2, 25.8 (2 C); HRMS (ESI) 

calcd for C31H35ClN4O2 [M + H]+ 531.2521; found 531.2527. 

4-((6-Chloro-2-methoxyacridin-9-yl)amino)-2-((4-(2-(dimethylamino)ethyl) piperazin-1-yl) 

methyl) phenol (4) 

The previous method was employed to synthesize compound 4 with the following stoichiometric 

amounts; 1-[2-(dimethylamino)ethyl] piperazine (0.16 g, 1.0 mmol) and 6,9-dichloroacridine 

(0.28 g, 1.0 mmol) to afford it as orange reddish semisolid (0.13 g) in 80 % yield; Rf  0.40 (1.3: 

8.5: 0.2, MeOH: DCM: Et3N); IR (cast film) νmax = 3361, 2918, 1736, 1562, 1467, 1295, 1255, 

1143, 1032, 945, 828, 763, 722 cm-1; 1H NMR (500 MHz, CDCl3) δ 8.10 (s, 1H), 8.00 (s, 1H), 

7.89 (d, J = 9.1 Hz, 1H), 7.40 (d, J = 9.8 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.09 (s, 1H), 6.85 

(dd, J = 8.6, 2.7 Hz, 1H), 6.78 (d, J = 8.6 Hz, 1H), 6.56 (d, J = 2.3 Hz, 1H), 3.74 (s, 3H), 3.59 (s, 

2H), 2.70 – 2.40 (m, 12H), 2.27 (s, 6H). OH and NH protons were not observed; 13C NMR (125 

MHz, CDCl3) δ 156.2, 153.6, 147.5, 144.0, 136.6, 135.2, 125.3, 125.1, 124.8, 122.0, 120.3, 

120.2, 120.0, 119.8, 119.6, 117.5, 116.9, 116.3, 100.2, 61.2, 56.7, 56.7, 55.3, 53.3 (2C), 52.4 

(2C), 45.8 (2C); HRMS (ESI) calcd for C29H35ClN5O2 [M + H]+ 520.2474; found 520.2473. 
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4-((6-Chloro-2-methoxyacridin-9-yl)amino)-2-((4-(3,4-dichlorophenyl)piperazin-1-

yl)methyl)phenol (5) 

The previous method was employed to synthesize compound 5 with the following stoichiometric 

amounts; 1-(3,4-dichlorophenyl) piperazine (0.23 g, 1.0 mmol), acetaminophen (0.15 g, 1.0 

mmol), 37% formaldehyde (0.10 mL, 5 mmol) and 6,9- dichloroacridine (0.28 g, 1.0 mmol) to 

afford it as orange reddish semisolid (0.16 g) in 71 % yield; Rf  0.56 (0.5:9.5, MeOH:DCM); IR 

(cast film) νmax = 3271, 2918, 1736, 1563, 1227, 1180, 1080, 1031, 803, 721 cm-1; 1H NMR (500 

MHz, CDCl3) δ 8.09 (s, 1H), 8.00 (s, 1H), 7.88 (d, J = 9.2 Hz, 1H), 7.40 (d, J = 9.3 Hz, 1H), 7.28 

(d, J = 8.7 Hz, 1H), 7.24 (d, J = 9.0 Hz, 1H), 7.09 (s, 1H), 6.95 (d, J = 2.8 Hz, 1H), 6.87 (dd, J = 

8.6, 2.7 Hz, 1H), 6.80 (d, J = 8.6 Hz, 1H), 6.73 (dd, J = 8.9, 2.8 Hz, 1H), 6.54 (d, J = 2.6 Hz, 

1H), 3.74 (s, 3H), 3.63 (s, 2H), 3.27 – 3.15 (m, 4H), 2.72 – 2.62 (m, 4H), OH and NH protons 

were not observed; 13C NMR (125 MHz, CDCl3) δ 156.3, 153.1, 150.2, 147.9, 143.3, 137.0, 

135.0, 132.9, 130.5, 125.2, 124.7, 122.9, 121.6, 121.4, 120.2, 120.0, 119.7, 117.9, 117.6, 117.0, 

116.7, 116.2, 115.6, 115.5, 100.0, 61.2, 55.4 (2C), 52.2 (2C), 48.7; HRMS (ESI) calcd for 

C31H28Cl3N4O2 [M + H]+ 593.1272; found 593.1272. 

2-((4-(Bis(4-fluorophenyl)methyl)piperazin-1-yl)methyl)-4-((6-chloro-2-methoxyacridin-9-

yl)amino)phenol (6) 

The previous method was employed to synthesize compound 6 with the following stoichiometric 

amounts; 1-bis (4-fluorophenyl)methylpiperazine (0.29 g, 1.0 mmol), acetaminophen (0.15 g, 1.0 

mmol), 37% formaldehyde (0.10 mL, 5 mmol) and 6,9- dichloroacridine (0.28 g, 1.0 mmol) to 

afford it as orange reddish semisolid (0.19 g) in 65 % yield; Rf  0.56 (0.5:9.5, MeOH:DCM); IR 

(cast film) νmax = 3275, 2919, 1737, 1566, 1255, 1217, 1181, 1032, 828, 722 cm-1; 1H NMR (500 
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MHz, CDCl3) δ 8.07 (s, 1H), 7.98 (d, J = 9.0 Hz, 1H), 7.84 (d, J = 9.2 Hz, 1H), 7.34 (m, 6H), 

7.18 (d, J = 8.0 Hz, 1H), 7.06 (d, J = 1.8 Hz, 1H), 6.97 (m, 5H), 6.83 (dd, J = 8.5, 2.6 Hz, 1H), 

6.75 (d, J = 8.6 Hz, 1H), 6.53 (d, J = 2.2 Hz, 1H), 4.23 (s, 1H), 3.69 (s, 3H), 3.57 (s, 2H), 2.74 – 

2.21 (m, 8H); 13C NMR (125 MHz, CDCl3) δ 161.9 (2C), 156.2, 153.5, 150.3, 147.7, 143.7, 

137.8 (2C), 136.7, 135.0, 129.2 (4C), 125.2, 124.8, 121.9, 121.7, 120.2, 119.9, 119.7, 117.6, 

116.8, 116.5, 116.1, 115.5 (4C), 100.0, 74.3, 61.1, 55.3, 52.6 (2C), 51.5 (2C); HRMS (ESI) calcd 

for C38H34ClF2N4O2 [M + H]+ 651.2333; found 651.2328. 

4-((6-Chloro-2-methoxyacridin-9-yl)amino)-2-((4-(4-hydroxyphenyl)piperazin-1 

yl)methyl)phenol (7) 

The previous method was employed to synthesize compound 7 with the following stoichiometric 

amounts; 1-(4-hydroxyphenyl)piperazine (0.30 g, 1.0 mmol), acetaminophen (0.15 g, 1.0 mmol), 

37% formaldehyde (0.10 mL, 5 mmol) and 6,9- dichloroacridine (0.28 g, 1.0 mmol) to afford it 

as orange reddish semisolid (0.17 g) in 59 % yield; Rf  0.58 (1.5:8.5, MeOH:DCM); IR (cast 

film) νmax = 3334, 2918, 1737, 1564, 1468, 1235, 1181, 1031, 930, 830, 722 cm-1; 1H NMR (500 

MHz, CD3OD) δ 8.07 (d, J = 9.3 Hz, 1H), 7.87 (d, J = 1.8 Hz, 1H), 7.82 (d, J = 9.3 Hz, 1H), 

7.51– 7.46 (m, 1H), 7.41 (d, J = 2.5 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.04 (dd, J = 8.7, 2.4 Hz, 1H), 

6.93 – 6.89 (m, 1H), 6.88 – 6.81 (m, 3H), 6.70 (dd, J = 8.9, 2.3 Hz, 2H), 3.72 (s, 3H), 3.61 (s, 

2H), 3.11 – 2.99 (m, 4H), 2.82 – 2.67  (m, 4H), OH and NH protons were not observed; 13C 

NMR (125 MHz, CDCl3) δ 156.3, 153.5, 152.1, 150.2, 150.1, 145.3, 145.2, 144.0, 125.3, 124.7, 

122.5, 121.9, 121.5, 120.4, 120.0, 118.8 (2C), 118 (2C), 118.4, 118.1, 117.0, 116.5, 116.1, 115.9, 

61.3, 55.4, 52.7 (2C), 50.7 (2C); HRMS (ESI) calcd for C31H30ClN4O3 [M + H]+ 541.2001; 

found 541.2010. 
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4-((6-Chloro-2-methoxyacridin-9-yl)amino)phenol (8) 

Synthesis of compound 7 was carried out by mixing 4-aminophenol (0.11 g, 1.0 mmol) and 6,9-

dichloroacridine (0.28 g, 1.0 mmol) in 10 mL single neck round bottom flask and stirred at 90 °C 

under reflux. The course of reaction followed by TLC until little or no starting material was 

detected (around 12 h).  On cooling to room temperature, the reaction mixture was diluted with 

cold water and neutralized to pH of 8-9 with 28% v/v ammonia solution. The alkaline solution 

was extracted with dichloromethane. The organic layer was washed with brine, concentrated in 

vacuum, and purified by column chromatography (gradient elution with 1% to 5% MeOH:DCM 

system) to afford it as orange reddish semisolid in 73 % yield; Rf  0.47 (1.5:8.5, MeOH:DCM); 

IR (cast film) νmax = 3325, 2918, 1737, 1562, 1468, 1236, 1180, 1103, 1050, 722 cm-1; 1H NMR 

(500 MHz, CD3OD) δ 8.12 (d, J = 9.4 Hz, 1H), 7.84 – 7.83 (m, 1H), 7.78 (d, J = 9.3 Hz, 1H), 

7.61 (dd, J = 9.3, 2.6 Hz, 1H), 7.48 (d, J = 1.5 Hz, 1H), 7.35 (dd, J = 9.4, 2.1 Hz, 1H), 7.27 – 

7.22 (m, 2H), 6.95 – 6.91 (m, 2H), 3.88 (s, 1H), 3.69 (s, 3H). OH proton was not observed; 13C 

NMR (125 MHz, CD3OD) δ 158.9, 157.7, 141.7, 137.9, 133.2, 129.8, 128.4, 127.8 (2C), 126.6, 

125.7, 122.2, 120.1, 119.3, 117.8 (2C), 116.1, 113.3, 104.5, 56.1.; HRMS (ESI) calcd for 

C20H16ClN2O2 [M + H]+ 351.0908; found 351.0896.  

Table B.3. Half-maximum inhibitory concentrations for the compounds with the highest 

inhibitory potentials. The data was obtained from at least three different experiments of Vo 

versus compound concentration. 

Compound IC50 ± SD (µM) Kd ± SD (nM) 

1 (F06) 1.86 ± 0.25 140 ± 5 

3 0.38 ± 0.10 145 ± 5 

4 0.33 ± 0.07 100 ± 5 
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B.2.3 Cytotoxicity Profile of Compound 4 

 

Figure B.3. Cell proliferation of HCT-116 cells treated with compounds 4 (active inhibitor) and 5 

(non-active inhibitor) using MTS assay. 
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Figure B.4. The inactivation experiments were carried out at 25°C in the reaction medium 

indicated in the “Materials and Methods” section which also included 10% or 5% DMSO final 

concentration (A or B, respectively). The reaction was started (T0) by the addition of ERCC1-

XPF (2.5 μg protein/ml) followed by the addition of 3 μM compound 4. 10 μl aliquots from these 

media (25 ng protein) were withdrawn at the indicated times and the activity (ΔRFU/time) was 

measured for 6 minutes by adding 200 nM stem-loop substrate and additional compound 4 

diluted in DMSO (10% or 5% DMSO final concentration, A and B, respectively) to render final 

concentrations of 100 nM stem-loop substrate and 3 μM compound 4 in 10 μl for a final total 

reaction volume of 20 μl. In T12, the activity was measured by the addition of 200 nM stem-loop 

substrate which had already been pre-incubated with 3 μM compound 4 for 12 minutes to give 

the same final concentrations of reagents as indicated for T0. 
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Appendix C - Commentary of Chapter 49 

We recently published a scientific article [82] on the discovery of small molecule inhibitors for 

the nucleotide excision repair (NER) protein complex, XPA-ERCC1. In this paper, we reported 

on the computational workflow we adopted to screen for compounds that bind to ERCC1 and 

block their interactions with XPA. Following this workflow, we identified promising scaffolds 

with the potential of modulating the NER pathway. In this commentary, we discuss the relevant 

findings of this study as well as its limitations and future directions. 

In our recent study, we identified small molecule compounds with the potential of regulating the 

NER DNA repair pathway. The compounds were selected to disrupt the XPA-ERCC1 protein-

protein interaction. Combining such drugs with DNA damaging agents can improve their 

effectiveness and allow for the use at a reduced dose in cancer therapy [99]. We employed a 

computational workflow to screen the entire PubChem [65] and National Cancer Institute (NCI) 

small molecule [68] repositories to identify potential binders to the XPA-binding site within the 

ERCC1 protein. This binding site lies within the central domain of ERCC1.  

The rationale for our study was to build upon an earlier study by our group [80] which identified 

two small molecule structures that target the XPA-ERCC1 interaction. These compounds were 

used as a starting point for our virtual screening (VS) campaign. In this context, we followed two 

independent screening approaches, namely a similarity-based approach and a pharmacophore-

based approach.  

                                                 

9 This appendix has been published as commentary as has been published as Gentile, F.; Tuszynski, J. A.; Barakat, 

K. H. Commentary: New design of nucleotide excision repair (NER) inhibitors for combination cancer therapy. J 

Cancer Treat Diagnosis 2017, 1, 1–3. 
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For the similarity-based approach, we filtered the PubChem database for compounds that are 

structurally similar to these two lead molecules. Using a similarity Tanimoto score between 

chemical fingerprints, we retained only around 22,000 small molecules out of the 68 million 

compounds in the database. In addition, we performed an in-silico filtering step to retain only the 

molecules with drug-like properties, based on their Adsorption, Distribution, Metabolism, 

Elimination and Toxicity (ADMET) properties. This approach provided a significant 

improvement over the original study [80] as it focused on compounds with drug-like properties. 

This strategy reduced the enormous number of compounds in PubChem and built a focused 

library of compounds.   

As a second screening approach, we used molecular docking simulations to study the binding 

modes of the originally identified compounds [80] and build a consensus pharmacophore model 

based on their docked poses. We then employed this model to filter four different subsets of the 

NCI databases for compounds that satisfy conditions imposed by this pharmacophore. For this 

approach, we aimed to identify new scaffolds that are able to inhibit the protein-protein 

interaction, with different chemical structures other than the original lead compounds. As a 

result, we used a lead-like filter to retain only the structures that can be used as lead compounds 

for further optimization. These two ligand-based strategies complemented each other. On the one 

hand, we identified improved drug-like analogues over the original lead compounds and on the 

other hand, we provided a set of diverse lead scaffolds.  

Compounds coming from the two different screening funnels (i.e. similarity-based and 

pharmacophore-based) were ranked based on their binding energies within ERCC1. Therefore, 

we adopted a target-based VS protocol. For our docking simulations, we used seven optimized 

ERCC1 NMR conformations in order to accommodate the flexibility of both the side chains and 
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backbone atoms of the binding site. After the docking simulation for each compound, we ran 

short molecular dynamics (MD) simulations for the top hits, followed by molecular 

mechanics/Poisson Boltzmann surface area (MM/PBSA) rescoring [28]. We concluded our study 

by providing not only a more reliable rank of the top hits compounds, but also to quantitatively 

represent the binding mode of the molecules to the key residues of the ERCC1 binding site.  

Although the two screening approaches provided a comprehensive way to identify new scaffolds 

with drug-like properties, there are two critical points that we discuss next in this commentary. 

First concerns the relatively short MD simulations (2 nanoseconds) that were used to relax the 

top hits from docking simulations. Second is the neglect of the conformational entropy 

contribution when calculating the binding energies using the MM/PBSA method. For the first 

aspect, we decided to use this short simulation time scale, because of a deterioration of the 

ranking power of the MM/PBSA method was reported when applied to longer simulations 

[195,196]. Moreover, our group has used short timescales in a number of successful drug design 

studies [80,84]. These considerations, together with the limits derived by the availability of 

computational resources, drove our choice to use 2 nanoseconds of simulation for the docked 

complexes. We are aware of the fact that 2 nanoseconds is an insufficient amount of time to 

simulate any major conformational change of a molecule or a complex. However, we believe this 

was not relevant to our study. Regarding the entropy contribution, we performed the 

computationally-expensive calculations only for a subset of structurally-diverse hits. We found 

entropy values of the same order of magnitude for all the complexes, and hence we neglected 

that for the remaining hits. It is noteworthy that entropy contributions were shown to introduce 

large fluctuations to the binding energies in different studies. Also, these contributions can be 
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safely ignored to obtain a relative rank of compounds with similar size and flexibility binding to 

the same target, as in our case. 

In our work, we have adopted a multi-step VS protocol to identify XPA-ERCC1 inhibitors. We 

initially selected compounds that are either similar in structure or pharmacophore features to the 

known active inhibitors. In our opinion, this step should reduce the number of false positive 

results obtained from target-based screening methodologies. We then performed a first target-

based screening retaining compounds which showed better binding energies than the lead 

structures, as calculated with the docking scoring function. Being aware of the limitations of 

such kind of methods regarding the ranking, we ran MD simulations followed by MM/PBSA 

rescoring. We believe that our approach was able to identify active inhibitors, having taken into 

account the physicochemical similarities with the lead compounds and also the binding energy 

values calculated with two different methods (docking scoring function followed by MM/PBSA 

rescoring). In conclusion, the outcome of our study was a set of seventy-two small molecules 

with a binding energy value more favorable than the two lead compounds. The top eighteen hits 

are reported in Table C.1. The details of the remaining fifty-four compounds are available upon 

request. Our hits showed similar interaction patterns among the residues constituting the XPA 

binding site of ERCC1.  Although it was our strong belief that our hits can be the key to the next 

generation of NER inhibitors, we recognized that the lack of experimental evidence constitutes a 

critical limitation of our findings. Hence, we strongly recommend to test these compounds in 

protein and cell-based assays for their ability to bind to the ERCC1 central domain and to inhibit 

the interaction with the XPA protein and, consequently, inhibit the NER pathway in cancer cells. 

Also, further experiments will be required to test the ability of these compounds to act 

synergistically with DNA damaging cancer therapy such as platinum-based drugs. 
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Table C.1. Top eighteen hits of the VS experiment, scored according to their MM/PBSA binding 

energy. All the compounds showed better values of the energy than the lead structures (rank 19 

and 20). In total, seventy-two molecules showed lower binding energy values. The ID column 

indicates the ID associated to the compound in its original database. The MM/PBSA energies do 

not include the entropy contribution. The VS method column indicates the ligand-based 

screening technique used to include the compound in the target-based VS step from the indicated 

database (last column).  

Rank ID MM/PBSA binding 

energy (kcal/mol) 

VS method Database 

1 6210903 -33.84 Similarity search PubChem 

2 7324126 -33.41 Similarity search PubChem 

3 8486248 -31.49 Similarity search PubChem 

4 7730851 -31.25 Similarity search PubChem 

5 1696060 -30.29 Similarity search PubChem 

6 1161060 -30.11 Similarity search PubChem 

7 1098945 -30.11 Similarity search PubChem 

8 53684246 -29.75 Similarity search PubChem 

9 7260552 -29.48 Similarity search PubChem 

10 6971912 -29.47 Similarity search PubChem 

11 5105640 -29.33 Similarity search PubChem 

12 2645792 -28.56 Similarity search PubChem 

13 8013886 -28.23 Similarity search PubChem 

14 1705254 -28.16 Similarity search PubChem 

15 24539908 -28.06 Similarity search PubChem 
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16 5113 -28.24 Pharmacophore NCI Natural Products 

17 106408 -25.41 Pharmacophore NCI Mechanistic 

18 107582 -25.25 Pharmacophore NCI Diversity 

19 Compound 10 -24.86 Lead compound - 

20 NERI01 -23.24 Lead compound - 
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Appendix D - A Novel Interaction Between the TLR7 and a Colchicine 

Derivative Revealed Through a Computational and Experimental Study10 

D.1 Abstract 

The Toll-Like Receptor 7 (TLR7) is an endosomal membrane receptor involved in the innate 

immune system response. Its best-known small molecule activators are imidazoquinoline 

derivatives such as imiquimod (R-837) and resiquimod (R-848). Recently, an interaction 

between R-837 and the colchicine binding site of tubulin was reported. To investigate the 

possibility of an interaction between structural analogues of colchicine and the TLR7, a recent 

computational model for the dimeric form of the TLR7 receptor was used to determine a possible 

interaction with a colchicine derivative called CR42-24, active as a tubulin polymerization 

inhibitor. The estimated values of the binding energy of this molecule with respect to the TLR7 

receptor were comparable to the energies of known binders as reported in a previous study. The 

binding to the TLR7 was further assessed by introducing genetic transformations in the TLR7 

gene in cancer cell lines and exposing them to the compound. A negative shift of the IC50 value 

in terms of cell growth was observed in cell lines carrying the mutated TLR7 gene. The reported 

study suggests a possible interaction between TLR7 and a colchicine derivative, which can be 

explored for rational design of new drugs acting on this receptor by using a colchicine scaffold 

for additional modifications. 

D.2 Introduction 

                                                 

10 This appendix has been published as has been published as Gentile, F.; Deriu, M. A.; Barakat, K.; Danani, A.; 

Tuszynski, J. A Novel Interaction Between the TLR7 and a Colchicine Derivative Revealed Through a 

Computational and Experimental Study. Pharmaceuticals 2018, 11, 22. 



 190 

In humans, Toll-like receptors (TLRs) are a family of ten receptors (TLR1-10), which are part of 

the innate immune system. The innate immune system’s main function is to recognize pathogen-

associated molecular patterns (PAMPs), which belong to microbial pathogens such as bacteria, 

viruses, fungi and protozoa, in addition to damage-associated molecular patterns (DAMPs) 

coming from damaged cells [250,251]. It is commonly assumed that each TLR receptor 

recognizes specific molecular patterns, and all of them are multi-domain, trans-membrane 

proteins localized in the cellular membrane, except for TLR7, 8 and 9 which are found on the 

endosomal membrane [250]. The common structure of TLRs involves an ectodomain comprising 

leucine-rich repeats (LRR), a transmembrane domain and a Toll/IL-1 receptor (TIR) domain, 

which initiates the cascade of signaling after a PAMP/DAMP recognition event by engaging TIR 

domain-containing proteins such as myeloid differentiation primary response 88 (MyD88) and 

TIR-domain-containing adapter- inducing interferon-β (TRIF) proteins. This transduction 

pathway results in the production of cytokines, chemokines and type I interferons to protect the 

cells from microbial invasion [251].  

The TLR7 is an endosomal transmembrane protein composed of 1049 amino acid residues, 

divided between an endosomal ectodomain with twenty-seven LLR arranged in a horseshoe 

structure, a trans-membrane domain and a TIR domain located in the cellular compartment. The 

functional form of TLR7 is a homodimer complex [252]. The natural ligands recognized by 

TLR7 are viral single-strand RNA (ssRNA). The signaling cascade is mediated through the 

interaction with MyD88 [253]. Synthetic ligands that bind to TLR7 are synthetic ssRNA and 

nucleoside analogues, such as imidazoquinoline, adenosine and guanosine derivatives [254,255]. 

Recently, different TLR7-targeting small molecules were developed as immune response 

modifiers for anti-cancer and anti-viral therapy. Imiquimod (R-837) (see Figure D.1A) was the 
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first Food and Drug Administration (FDA)-approved TLR7 agonist, and its formulation 

containing 5% of cream (Aldara®) is used to treat genital warts caused by human Papilloma 

virus (HPV) infection, and malignant skin cancers. This imidazoquinoline derivative induces the 

production of pro-inflammatory cytokines and other molecules upon TLR7 activation [256,257]. 

Resiquimod (R-848) and CL097 are two dual TLR7/8 agonists with a similar effect on R-837 

[257–259]. Interestingly, efforts were made for developing both activators and inhibitors of 

TLR7. While activation of the receptor is sought to enhance the immune response to viral agents, 

its inhibition gains interest in the treatment of autoimmune disease such as lupus [260]. In the 

context of cancer treatment, again the interest is in both directions. First, TLR7 activation is an 

assessed strategy for cancer immunotherapy, where its stimulation leads to the secretion of anti-

tumor cytokines [261–263]. However, it has been reported that the receptor expression is 

upregulated in human pancreatic tumor cells, its signaling regulates carcinogenesis, TLR7 

ligation promotes tumor progression and TLR7 blockade protects against cancer development 

[264]. This suggests a possible role of TLR7 inhibitors in the treatment of pancreatic cancer 

[265]. 

 

Figure D.1. Chemical structure of A) R-837, B) colchicine and C) CR42-24. For the latter two, 

the rings are named according to the convention used in the article (A, B, C).  
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Colchicine is a natural compound extracted from the meadow saffron (Colchicum autumnale). It 

was identified as the first microtubules-destabilizing agent, and it is an FDA-approved drug for 

the treatment of familial Mediterranean fever and gout. Colchicine acts by binding to a binding 

site in the β-tubulin monomer, resulting in a curved tubulin dimer conformation, which prevents 

microtubule assembly, thus inhibiting mitosis. Although it has a cytotoxic effect against cancer 

cells due to their accelerated rate of mitosis, the use of colchicine in chemotherapy is limited by 

high toxicity affecting normal cells and multidrug resistance [266]. To overcome these problems, 

numerous colchicine derivatives were synthesized and tested in the past few years, mainly by 

modifying the B and C rings of the original structure (Figure D.1B) [267]. Through an iterative 

process of computational screening and subsequent cytotoxicity testing the Tuszynski lab 

identified a number of compounds that showed enhanced binding affinity for βIII tubulin. A 

compound coded CR42-24 was selected based on its high affinity to bind βIII tubulin, and 

showing improved cytotoxicity over other derivatives. CR42-24 is a colchicine analogue with the 

following modifications of the original structure (see Figure D.1C): one of the methoxy groups 

of the A ring is replaced by an ethoxy group, the acetamide in B ring is replaced by a methyl 

carbamate, and the methoxy group of the C ring is substituted by a methyl sulfanyl group. CR42-

24 had shown great promise in its ability to treat cancer and it had been shown to be highly 

effective against breast cancer, leukemia, and lung cancer cell lines. An extensive review of this 

compound and a number of similar structures has been recently published where detailed 

information about their profiles can be found [268].  

Recently, it has been reported for the first time that R-837 might bind to the colchicine-binding 

site of tubulin, hence inhibiting tubulin polymerization [269]. Molecular docking of R-837 to this 

site revealed a binding mode similar to the experimentally obtained colchicine one, showing 
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agreement with the colchicine site pharmacophores published earlier for active compounds 

[270]. In this research, we explored the reverse process, i.e. we aimed to understand if 

compounds binding to the colchicine binding site in tubulin could possibly bind to the R-837 

binding site at the interface between the two TLR7 monomers. Starting from our recent 

computational model of the human TLR7 model [271], we employed a series of in-silico 

methods in order to identify and quantitatively characterize the binding mode of CR42-24 to the 

TLR7 site. We also employed a cell line-based experiment to demonstrate the possible 

interaction between the compound and TLR7, by studying the effect that CR-24-42 has on 

cancer cells carrying either a wild-type or a mutant TLR7 gene, respectively. 

CR42-24 is an in-house discovered and developed, potent microtubules-destabilizing agent with 

promising anti-cancer activities. The results reported in this article are of potential interest not 

only to predict possible side effects of CR42-24 on the immune system, but also to enable the 

design of novel small molecules targeting TLR7 with structures based on this scaffold. 

D.3 Results and Discussion 

D.3.1 Homology Modeling 

We have already reported the validation results for our TLR7 model in [271]. To summarize, the 

sequence identity between the TLR7 and TLR8 ectodomains was around 46%. The model that 

was generated includes 1514 residues equally divided in two monomers (757 residues each, 

hereinafter referred to as monomer a and b, respectively), excluding the residues that are 

removed after the proteolytic cleavage required for TLR7 activation [272]. Our model showed 

ERRAT scores and dihedral angle values (calculated with PROCHECK) comparable with the 

experimental template and the other TLR7 homology models reported in literature [273–275], 
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especially after the minimization step. In fact, just 1% of modeled residues showed dihedral 

values in the disallowed zone of the Ramachandran plot. The 3D structure of our TLR7 model is 

reported in Figure D.2. 

 

Figure D.2. Structure of the homodimeric model of the TLR7 ectodomains obtained in our 

previous work from the TLR8 template. The a and b monomer surfaces are represented in brown 

and cyan, respectively. Each monomer secondary structures are colored as follow: helices in red, 

strands in yellow, loops and turns in white. The R-837 binding site targeted in this study, lying at 

the interface of the two monomers, is represented as green surface. 

D.3.2 Molecular Docking 

Among the top five poses obtained from the docking simulations, we identified one which 

showed a binding geometry similar to the R-837 pose obtained and validated in our previous 

study [271] (Figure D.3A). The remaining four poses are reported in Figure D.7. The binding 

energy of the selected pose, calculated with the Generalized Born Volume Integral/Weighted 

Surface Area (GBVI/WSA) scoring function [221], was -8.194 kcal/mol. The binding energy of 
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R-837, calculated by rescoring the docking pose with the GBVI/WSA method, was -4.991 

kcal/mol. Regarding the specific interactions with the residues of the binding pocket, R-837 was 

involved in hydrophobic contacts mainly with residue aL557 and bF408 (where a and b refer to 

the first and second monomer, respectively), having the three-ring structure interposed between 

the two hydrophobic residues. The same contacts, in addition to others, were observed for the 

three rings of CR42-24, although the higher flexibility of the B ring resulted in a less planar 

geometry, when compared with R-837. R-837 also showed hydrogen bonding with the charged 

side chain of aD555 and the backbone oxygen of aT586. Although we did not observe any 

hydrogen bonds being established in the CR42-24-TLR7 complex, the amine of the acetamide 

group of the compound was positioned in the same zone of the amine group of R-837, a polar-

favorable site of the binding pocket surrounding the negatively charged side chain of residue 

aD555. Also, the carbonyl group of the C ring of CR42-24 was positioned in a polar-favorable 

zone lying around the positively charged side chain of residue bK432  

Finally, we observed some similarities between the docking pose of CR42-24 and the colchicine 

conformation co-crystallized in the tubulin binding site as reported by Courbet et al [269], 

especially in terms of hydrophobic contacts. Indeed, in tubulin, the C ring of colchicine 

interacted through van der Waals interactions with a first hydrophobic pocket composed by 

αV181, αS178, and βV315, where α and β indicate the respective tubulin monomer. In our 

TLR7-bound model of CR42-24, the corresponding C ring was embedded in a hydrophobic cleft 

composed by aL557 and the aromatic rings of bY356 and bF408 (labelled in purple in Figure 

D.3B). In tubulin, the A ring of colchicine was embedded in a second hydrophobic pocket, 

constituted by several residues. In TLR7, similarly, the corresponding A ring in CR42-24 is also 

embedded in a second hydrophobic zone, constituted by residues aI585, aT586, bF351 and 
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bV381 (in orange in Figure D.3B). The superposition between the CR42-24 docked pose in 

TLR7 and the N-deacetyl-N-(2-mercaptoacetyl)-colchicine (DAMA-colchicine) binding pose to 

tubulin found in the pdb structure 1SA0 [28] is reported in Figure D.8. 

 

Figure D.3. Analysis of the predicted binding pose of CR42-24 to the R-837 binding site of 

TLR7. A) Comparison between the docking poses of R-837 (dark green carbons) and CR42-24 

(cyan carbons) to the TLR7 binding site. Red surface indicates solvent-exposed zones, white 

surface indicate hydrophobic zones and purple surface indicates polar zones of the site. Key 

common interactions are the position of the three-ring moieties in the hydrophobic zone of the 

binding pocket and the orientation of amine groups in both the compounds towards the polar 

zone surrounding aD555. In addition, the carbonyl group of the C ring of CR42-24 was oriented 

in proximity of bK432. B) Hydrophobic contacts of CR42-24 with the TLR7 residues of the 

binding pocket. From the reported docking pose, we observed two distinct hydrophobic zones 

interacting with the compound, one constituted by aL557, bY356 and bF408 (represented in 

purple) and the other one by aI585, aT586, bF351 and bV381 (represented in orange). Two 

hydrophobic clefts, interacting with the same compound rings (A and C) as in our model, were 

observed for colchicine bound to the tubulin site. The pose is represented in an orientation 

similar to Figure S6 from [269] for comparison with the colchicine binding pose to the tubulin 

site. 



 197 

D.3.3 Molecular Dynamics Simulations and MM/GBSA Calculations 

Although the assessed power of docking to identify near-native poses of ligands within binding 

sites, some limitations arise when using these methods. Firstly, the binding site flexibility is at 

least fully neglected, although it is possible to introduce some degrees of flexibility for its side 

chains. Also, docking simulations provide a static picture of the binding interactions, and a 

binding energy calculated from on single pose rather than an average made over an ensemble. 

Lastly, the water molecules around the site are usually treated implicitly during docking. In the 

light of these considerations, we performed explicit solvent MD simulations of the ligand-

receptor complex obtained from the docking. The root-mean square deviation (RMSD) trends of 

the protein backbone, the backbone and side chain atoms of the binding site and the heavy atoms 

of CR42-24 are reported in Figure D.4. We observed RMSD values consistent with a stable, 

active ligand-receptor complex. Indeed, CR42-24 stabilized around 1 Å of RMSD value after 

about 4 ns of production simulation, and maintained the same fluctuation trend for the remaining 

simulated time. In our previous study, we observed a similar trend for the RMSDs of activators 

of TLR7, and consistently more unstable trends for inactive compounds in complex with the 

receptor [271]. The equilibrated RMSD trends of the protein backbone and the binding pocket 

were also similar to the trends observed in our earlier study. Stable RMSD trends were also 

observed when the average structure of the last 5 ns was used as reference (Figure D.9). 
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Figure D.4. RMSD trends for the TLR7 backbone atoms (green), the backbone atoms of the 

binding pocket residues (blue), the side chain atoms of the binding pocket (cyan) and the heavy 

atoms of the CR42-24 molecule (green), calculated between the initial phase of restraint release 

and the end of the 10 ns-long production simulation (10.2 ns of total time). 

The results of the molecular mechanics-generalized Born surface area (MM/GBSA) calculations 

are reported in Table A.1. The total binding energies of the two complexes (TLR7 bound to R-

837, from the previous study, and CR42-24) are comparable, with the CR42-24 complex 

showing a slightly more favorable energy. The highest differences observed in the single terms 

were for the van der Waals interactions (~11 kcal/mol less for the CR42-24 complex) and the 

polar solvation terms, calculated with the GB method. For these terms, the change in free energy 

for CR42-24 binding to the TLR7 was considerably larger (~14 kcal/mol more for the CR42-24 

complex) than the R-837 one. This result suggests a binding of CR42-24 to the TLR7 dimer, 
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which involves stronger hydrophobic interactions than the R-837 binding. Also, CR42-24 

showed a more favorable energy value for the polar ligand-receptor interactions (~6 kcal/mol 

less than R-837). The two non-polar terms were comparable.  

Table D.1. Results from the MM/GBSA calculations over the last 5 ns of MD production 

trajectories of the R-837-TLR7 and CR42-24-TLR7 complexes. The total binding energies of the 

two compounds are in a comparable range, with the more favorable van der Waals and 

electrostatic contributions of the CR42-24-TLR7 complex being partially compensated by a 

larger, unfavorable polar desolvation term, when compared to R-837. The total values reported 

here do not include the entropic terms. The value of the standard deviation is reported in brackets 

for each term. 

 MM/GBSA G (kcal/mol) 

Compound Total Van der 

Waals 

Electrostatic Polar 

solvation 

Non-polar 

solvation 

R-837 -31.081 

(2.531) 

-35.028 

(2.600) 

-18.251 

(2.912) 

27.331 

(2.653) 

-5.133 

(0.216) 

CR42-24 -36.055 

(3.090) 

-46.841 

(2.719) 

-24.050 

(5.273) 

41.089 

(5.105) 

-6.252 

(0.239) 

In addition, we performed the decomposition of the MM/GBSA energies among the residues 

constituting the binding site of TLR7, in order to quantitatively assess the pattern of 

intermolecular interactions established between CR42-24 and the TLR7 dimer, and to compare it 

to the pattern observed for the R-837-TLR7 complex. The decompositions of the total binding 

energy between the residues within 5 Å of the docking poses, as well as the van der Waals and 

electrostatic terms, are reported in Figure D.5. The residues aL557, aI585, bF351and bF408 

showed the most similar contribution to the binding energies of the two compounds. 
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Interestingly, these residues showed similar contributions also for the hydrophobic terms, 

whereas the electrostatic terms were either negligible or different between the two complexes. 

Also, CR42-24 showed a considerably more favorable total interaction energy with bY356 and 

bK432. For the first residue, the hydrophobic contribution was clearly more negative than the R-

837 complex. Regarding bK432, we observed a very favorable electrostatic interaction energy 

for CR42-24 (~-11 kcal/mol), not present in the R-837-TLR7 complex. As already mentioned, 

this was due to a polar interaction involving the carbonyl group of the C ring of CR42-24, which 

established a stable, strong hydrogen bond with the side chain of bK432 during the simulation. 

This compensated the unfavorable total and electrostatic interactions between CR42-24 and 

aD555, which was reported as a key residue for the binding of imidazoquinoline and adenine 

derivatives to the TLR7 binding pocket [271], as in the case of R-837. By visually inspecting the 

MD production trajectory, this unfavorable contribution was observed to be due to a salt bridge 

established between aD555 and bK432, which locked the location of the former in close 

proximity to the carbonyl group of the CR42-24 C ring and far from the amine of the acetamide 

group (Figure D.10). 
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Figure D.5. Decomposition of total, van der Waals and electrostatic interaction energies between 

the residues of the TLR7 pocket and the two compounds R-837 (violet) and CR42-24 (green). 

Similar patterns were observed for the total and van der Waals interactions of the two 

compounds with the TLR7 dimer, while the electrostatic interaction pattern was different. The 

unfavorable interaction of CR42-24 with the key residue aD555 was compensated by a 
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favorable, electrostatic-driven interaction with bK432, which was not observed for other TLR7 

ligands in our previous study. 

D.3.4 Experiments 

The results from the type II Anova test performed over the subset of cancer genes, including 

TLR7, are reported in the volcano plot in Figure D.6. The cell lines carrying the mutated TLR7 

gene were more sensitive to CR42-24, as it is clearly visible from the reported negative IC50 

shift. 

 

Figure D.6. Volcano plot reporting the Anova analysis performed over thirty-nine cancer genes, 

including TLR7. The x-axis represents the factor of IC50 shift, while the y-axis reports the p-

values, i.e. the confidence level for genetic association of mutations in a particular gene with a 

IC50 shift. The areas in the circles are proportional to the number of mutants present in the cell 

panel (each reported gene was present in at least three OncolinesTM cell lines). 

D.4 Materials and Methods 
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D.4.1 Model Building and Validation 

The model for the endosomal domain of the human TLR7 heterodimer was the same described in 

our previous work [271]. Briefly, the x-ray structure of the human TLR8 dimer (Protein Data 

Bank [32] ID 3W3J) in complex with the TLR7/8 dual agonist CL097 [276] was selected as 

template for a homology modeling procedure in Molecular Operating Environment (MOE) 2013 

[181]. MOE-Align [277] was used to align the two amino acid sequences. The modeling step was 

performed using the automated homology modeling tool of MOE, choosing the final model 

based on the Generalized Born Integration/Volume Integral (GB/VI) scoring function [221]. The 

Amber ff12SB force field parameters [223] were used for the protein. The two CL097 molecules 

present in the template were conserved as environment for the Induced Fit during the modeling 

protocol, assigning them the Extended Hückel Theory (EHT) parameters [278]. The protonation 

states of the model residues were assigned using MOE Protonate3D [222]. The ff12SB 

parameters were used for the protein, while the General Amber Force Field (GAFF) [192] 

parameters were assigned to the two ligand molecules using Antechamber [193]. An octahedral 

box of TIP3P water molecules [279] was built around the model, with a buffer of at least 12 Å 

between any complex’s atom and the edge of the box. The system was neutralized by adding Cl- 

ions. The TLR7 dimer was then minimized using the Amber pmemd.cuda engine [191]. The 

cutoff for long range interactions was set to 9 Å. Water molecule and ion positions were relaxed 

using a sequence of 1,000 steps of steepest descent and 1,000 steps of conjugate gradients 

minimization methods, keeping the protein and ligand atoms highly restrained through a 

harmonic potential with a force constant of 500 kcal/mol/Å2. Then a second minimization 

procedure was performed, with 2,000 and 3,000 steps of steepest descent and conjugate gradients 

methods, respectively. For this step, we restrained the protein backbone and the ligand heavy 
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atoms only using a harmonic potential with a force constant of 4 kcal/mol/Å2. The optimized 

structure was then evaluated using the ERRAT [280] and PROCHECK [281] programs. 

D.4.2 Ligand Preparation and Molecular Docking 

The CR42-24 structure was prepared using the LigPrep module from Schrödinger’s Maestro 

[177], in order to obtain possible protonation states, tautomers and low-energy ring 

conformations at pH 5.5, which corresponds to the endosomal compartment value. The OPLS 

2005 force field [282] was used for this process.  

The docking was performed using MOE Dock. The target structure was the R-837-TLR7 dimer 

complex obtained and validated in our previous work [271]. The choice of the target structure 

was made based on the evidence of a possible interaction of R-837 with the colchicine-binding 

site of tubulin [269], where CR42-24 is also likely to bind. The site to which performs the 

simulations was defined as the one occupied by the R-837 atoms, a cleft present at the interface 

of the two TLR7 monomers around residue aD555. The placement method was chosen as 

Triangle Matcher [229], returning thirty poses based on the London dG scoring [221]. The 

receptor was kept rigid for the refinement step, where five poses were retained based on the 

GBVI/WSA scoring function [221]. The five final poses were visually inspected. 

D.4.3 Molecular Dynamics Simulations 

The parameters required for the simulation of the small molecule were assigned from the 

General Amber Force Field (GAFF) [192] using Antechamber [193], whereas the parameters for 

the protein were chosen from the Amber ff12SB force field. Again, we inserted the system in an 

octahedral box of TIP3P water molecules, with at a minimum of 12 Å of buffer between any 

atom of the complex and the edge of the box. The system was neutralized by adding the correct 
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number of Cl- ions. A value of 9 Å was set as cutoff for long range interactions. Using the 

pmemd.cuda engine, the system were initially minimized with the same minimization protocol 

used for the homology model. They were then heated up to 310 K in a time of 100 ps, using the 

Langevin thermostat with a time collision frequency of 2 ps and an integration time step of 0.5 

fs. The target temperature was gradually reached after 150,000 steps and maintained for the last 

50,000 of the heating protocol. A restraint of 2 kcal/mol/Å2 was imposed to the protein backbone 

and on the heavy atoms of the small molecule during this step, and constant volume conditions 

were applied. The restraints were slowly removed in four phases of 50 ps and constant pressure 

conditions, in each of which the force constant was reduced of 0.5 kcal/mol/Å2. The production 

NPT simulation was then run for 10 ns with a time step of 2 fs at 1 atm, using the Berendsen 

barostat. During the production run, the bonds which involve hydrogens were frozen with the 

SHAKE algorithm [227]. AmberTools12 ptraj [223] was used to compute the RMSDs of the 

protein, the binding site and the small molecule from the initial restraint release phase to the end 

of the production simulation, using the first snapshot as reference. The RMSDs were also 

calculated over the production trajectory, using the average structure of the last 5 ns of 

simulation as reference. 

D.4.4 MM/GBSA Binding Energy Calculations 

One of the goals of the MD simulations of the complex was to obtain an ensemble of ligand-

receptor configurations over which it is possible to calculate an average binding energy. Similar 

to our previous work [271], we adopted the MM/GBSA method [248,283] as implemented in the 

AmberTools12 script MMPBSA.py [197]. The binding energy of a ligand-receptor complex was 

calculated as 

∆𝐺𝑏𝑖𝑛𝑑,𝑠𝑜𝑙𝑣 = ∆𝐺𝑀𝑀,𝑣𝑎𝑐+∆𝐺𝑠𝑜𝑙𝑣,𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − (∆𝐺𝑠𝑜𝑙𝑣,𝑙𝑖𝑔𝑎𝑛𝑑+∆𝐺𝑠𝑜𝑙𝑣,𝑝𝑟𝑜𝑡𝑒𝑖𝑛) − 𝑇∆𝑆 (𝐷. 1) 
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where ∆𝐺𝑀𝑀,𝑣𝑎𝑐 is the sum of electrostatic and van der Waals interactions established between 

the protein and the ligand. The 𝑇∆𝑆 term models the change in conformational entropy due to the 

binding, which was neglected in our study. Indeed, we did not require any ranking of the 

compounds in this case. When using the MM/GBSA method, the solvation terms are given by 

the equation  

∆𝐺𝑠𝑜𝑙𝑣 = ∆𝐺𝑠𝑜𝑙𝑣,𝑝𝑜𝑙𝑎𝑟 + ∆𝐺𝑠𝑜𝑙𝑣,𝑛𝑝𝑜𝑙𝑎𝑟 (D. 2) 

where the polar contribution of the solvent is calculated solving the Generalized Born equation 

[283]. All the ∆S in the above equations are calculated as the contribution value of the complex 

minus the values of the ligand and the protein alone, where each contribution is computed as the 

averaged value over a single MD trajectory where each time the complex is maintained, the 

protein is removed or the ligand is removed, respectively. The salt concentration was set to 0.15 

M. The igb flag was set to 5 [248]. The hydrophobic contribution was calculated as 

∆𝐺𝑠𝑜𝑙𝑣,𝑛𝑝𝑜𝑙𝑎𝑟 = 𝛾 ∙ 𝑆𝐴𝑆𝐴 (𝐷. 3) 

where γ (surface tension) was set to 0.005 kcal/mol/Å2, and 𝑆𝐴𝑆𝐴 is the solvent-accessible 

surface area (SASA) calculated using the linear combinations of pairwise overlaps (LCPO) 

model method [249]. Per-residue decomposition of the computed binding energies was 

performed among the residues within 5 Å of the docked pose of CR42-24. We performed all the 

energy calculations considering the last 5 ns of production MD simulation of the system, using 

250 snapshots extracted at regular intervals of 20 ps from the trajectory. 
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D.4.5 Cell Preparation 

All cell lines have been licensed from the American Type Culture Collection (ATCC) Manassas, 

Virginia (US). Master and working cell banks (MCB and WCB) were prepared by sub-culturing 

in ATCC-recommended media and freezing according to ATCC recommended protocols 

(www.atcc.org). Cell line stocks for the assays were prepared from the WCB. The MCB, WCBs 

and assay stocks were prepared within respectively 3, 6 and 10 passages of the ATCC vial. The 

complete list of the cell lines used in this study, as well as their genetic status, is reported in 

Table D.2. 

D.4.6 Compound Preparation 

Solid powders of reference compounds were stored as indicated by supplier. Compounds were 

weighed on a calibrated balance and dissolved in 100% DMSO. DMSO samples were stored at 

room temperature. At the day of the experiment, the compound stock was diluted in 3.16-fold 

steps in 100% DMSO to obtain a 9-point dilution series. This was further diluted 31.6 times in 

20 mM sterile Hepes buffer pH 7.4. A volume of 5 µl was transferred to the cells to generate the 

test concentration range in duplicate. The final DMSO concentration during incubation was 0.4% 

in all wells. If a compound showed very potent activity, the testing range was expanded to ensure 

a full dose-response curve could be measured in duplicate. If a compound can only be dissolved 

in an aqueous solution, the recommended buffer is used instead of 100% DMSO.  

D.4.7 Cell Proliferation Assay 

Cells were diluted in the corresponding ATCC recommended medium and dispensed in a 384-

well plate, depending on the cell line used, at a density of 200 - 6400 cells per well in 45 µl 

medium. For each used cell line the optimal cell density was used. The margins of the plate were 

filled with phosphate-buffered saline. Plated cells were incubated in a humidified atmosphere of 

http://www.atcc.org/
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5% CO2 at 37 ºC. After 24 hours, 5 µl of compound dilution was added and plates were further 

incubated. At t=end, 24 µl of ATPlite 1Step™ (PerkinElmer, Waltham, MA, USA) solution was 

added to each well, and subsequently shaken for 2 minutes. After 10 minutes of incubation in the 

dark, the luminescence was recorded on an Envision multimode reader (PerkinElmer).  

D.4.8 Data Analysis 

IC50 values were calculated by non-linear regression using IDBS XLfit 5. The percentage growth 

after incubation until t=end was calculated as follows:  

 %𝑔𝑟𝑜𝑤𝑡ℎ = 100% × (
𝑙𝑢𝑚𝑖𝑛𝑒𝑠𝑐𝑒𝑛𝑐𝑒𝑡=𝑒𝑛𝑑

𝑙𝑢𝑚𝑖𝑛𝑒𝑠𝑐𝑒𝑛𝑐𝑒𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑,𝑡=𝑒𝑛𝑑
) (𝐷. 4) 

This was fitted to the 10log compound concentration (conc) by a 4-parameter logistics curve:  

%𝑔𝑟𝑜𝑤𝑡ℎ,𝑓𝑖𝑡 = 𝑏𝑜𝑡𝑡𝑜𝑚 + (
𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚

1 + 10(𝑙𝑜𝑔𝐼𝐶50−𝑐𝑜𝑛𝑐)×ℎ𝑖𝑙𝑙
) (𝐷. 5) 

where hill is the Hill coefficient, and bottom and top the asymptotic minimum and maximum cell 

growth that the compound allows in that assay.  

D.4.9 Curve Fitting 

Curves calculated automatically by the software were adjusted manually according to the 

following protocol: the curve bottom was fixed at 0% when the calculated curve had a bottom 

below zero. The hill was fixed on -6 when the software calculated a lower value. Curves were 

invalidated when the F-test value for fitting quality was >1.5 or when the compound was inactive 

(<20% maximal effect), in which cases curves were removed from the graphs.  When a curve 

had a biphasic character, it was fitted on the most potent IC50. Incidentally, when technical 

failures were likely, concentration points were knocked out. This is always shown in the dose-
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response graphs. The maximal effect (Max effect) was calculated as 100% (signal of untreated 

cells) minus the curve bottom when the dose-response curve was completely determined for 

more than 85%. A dose-response curve is considered 100% complete when the data points at the 

highest concentrations reach the curve bottom. If the completeness was smaller than 85%, Max 

effect was calculated as 100% minus the average of the lowest signal. In cases where the bottom 

of the curve was locked on 0%, the maximal effect was always calculated as 100% minus the 

growth inhibition at the highest concentration. 

D.4.10  Cell Genetics 

The mutation status of cell lines was established from a combination of public and proprietary 

data. Based on public data (COSMIC Cancer Genome Project, version 80) [284], we collected 

mutations, amplifications and deletions in established cancer driver genes that occur in 

Oncolines™ [285,286]. For further validation, a selection of twenty-three cancer genes were 

sequenced by nitrogen regulatory protein (NTRC) by targeted and full exome sequencing 

directly from the cell lines used in Oncolines™. As an extra filter, genetic changes were required 

to be observed with a preset frequency in patient tumor samples in COSMIC, depending on the 

type of genetic alteration. This discards sporadic, non-cancer-causing mutations. Cell lines were 

classified as having a wild type or a mutated genotype, where mutated means: at least one allele 

changed by point mutation, insertion, deletion, amplification or copy number variation. Analysis 

was performed on genes that were mutated in at least three different OncolinesTM cell lines 

(ninety-eight genes in total). 

D.4.11 Drug Sensitivity 

The relation between measured IC50s (calculated as explained in section 3.8) and cell line 

genetics was determined as follow: a larger subset of the most commonly occurring and best-
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known cancer genes (thirty-eight in total, plus TLR7) was analyzed with type II ANOVA 

analysis in the statistical program R. The results were displayed in a volcano plot. For more 

information about the OncolinesTM methods, refer to [287]. 

D.5 Conclusions 

TLR7 is an endosomal, trans-membrane, homodimeric receptor which is involved in the innate 

immune response, by initiating the signaling cascade upon binding to PAMPs and DAMPs. Its 

main activators are viral ssRNA and nucleoside analogues. R-837 (also called imiquimod) was 

the first small molecule to be FDA-approved for the treatment of gout and skin cancer, in its 

cream form. R-837 was shown to bind also to the colchicine-binding site of β-tubulin, inhibiting 

microtubule polymerization in an analogous way to colchicine and its derivatives. Due to this 

suggested binding site promiscuity, which leads to off-target interactions of R-837, we explored 

the possibility of CR42-24, a potent colchicine analogue, to bind to the R-837 binding site in 

TLR7. We employed a series of computational tools to identify and fully characterize the 

potential binding pose of CR42-24 in such site. Also, we tested the compound in a 

comprehensive cancer cell line panel, which includes TLR7 mutations among other common 

cancer mutated genes, to observe the possible TLR7-mediated anti-cancer effect of this 

compound. 

Molecular docking simulations targeting the TLR7 site revealed a binding pose of CR42-24 

which was consistent with the R-837 one, showing conserved hydrophobic contact patterns. In 

addition, the CR42-24 predicted pose showed similarities with the binding pose assumed by 

colchicine in β-tubulin. In particular, the A and C rings of CR42-24 were involved in van der 

Waals contacts with two hydrophobic zones within the TLR7 site, in an analogue way of the A 
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and C rings of colchicine in tubulin. MD simulations of the CR42-24-TLR7 complex revealed a 

stable binding conformation. Also, the averaged binding affinity calculated with the MM/GBSA 

method for CR42-24 was more favorable than the R-837 one. Finally, an important hydrogen 

bond between the carbonyl group of the C ring of CR42-24 and residue bK432 was identified by 

decomposing the free energy of binding between the pocket residues. Regarding the testing in 

cancer cell lines, we observed a considerable negative IC50 shift in terms of cell growth, in 

cancer cells carrying the TLR7 mutated gene, when compared to wild type cell lines. This 

suggests a possible interaction between CR42-24 and TLR7, and a TLR7-mediated anti-cancer 

effect of the compound. 

In conclusion, we fully characterized the possible binding mode of CR42-24 to the TLR7’s R-

837 binding site through a sophisticated computational workflow. Taking into account the 

following factors: 1) the similarity between the predicted binding mode of CR42-24 and the R-

837 one, which was assessed experimentally, 2) the similarities between the CR42-24 pose in 

TLR7 and the colchicine pose in tubulin and 3) the negative IC50 shift observed for TLR7-

mutated cell lines, we suggest a possible off-target interaction between our colchicine derivative, 

CR42-24, and the TLR7 dimer, with a possible anti-cancer effect. This result is interesting not 

only to extend the known off-target interactions of colchicine derivatives and provide a potential 

mechanistic elucidation of immune system suppression by these compounds, but also to develop 

novel TLR7-targeting small molecules based on the CR42-24 scaffold. The results of the 

biological assay used in this study were not conclusive in terms of identifying the effect of 

CR42-24 to TLR7 as agonistic or inhibitory. However, the similarity between the binding poses 

of CR42-24 and R-837 may suggest a similar activating effect upon binding to the receptor. In 

addition, R-837 is known to inhibit cell growth especially in skin cancer [54], and we observed a 
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higher sensitivity of TLR7-mutated cell lines to the CR42-24 compound. Future works will 

include more detailed biochemical and biological testing to assess the direct binding of CR42-24 

to TLR7 and the effect that this has on the receptor, i.e. if CR42-24 has an activating or 

inhibiting effect to the signaling process initiated by TLR7 upon binding to it. 

D.6 Supplementary Materials 

 

Figure D.7. The additional four poses of CR42-24 obtained with molecular docking to the R-837 

binding site of TLR7. Computed binding energies are also reported. 
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Figure D.8. Superposition of the crystallographic pose of DAMA-colchicine (dark green 

carbons) in tubulin from pdb ID 1SA0 and the CR42-24 docking pose in TLR7 (carbons in light 

green). The first hydrophobic cleft of the tubulin binding site, interacting with the C ring of the 

DAMA-colchicine, is reported in blue sticks. The corresponding first hydrophobic zone of TLR7 

is reported in purple sticks. The second hydrophobic zone is reported in cyan sticks for tubulin 

and orange sticks for TLR7. Tubulin backbone is reported in yellow ribbons, TLR7 backbone in 

grey ribbons.  
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Figure D.9. RMSD trends of the MD production simulation for the TLR7 backbone atoms 

(green), the backbone atoms of the binding pocket (blue), the side chain atoms of the binding 

pocket (cyan) and the heavy atoms of CR42-24 (red), calculated using the average structure of 

the last 5 ns as reference. The highest fluctuations are observed for the side chain atoms of the 

binding pocket, as they adapted to the bound conformation upon ligand binding. 
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Figure D.10. Salt bridge (in purple) established between aD555 and bK432, keeping the former 

far from the amine of the acetamide group of CR42-24. 

Table D.2. Cell lines in the Oncolines™ panel used in this study and their genetic status. 

Indicated in the second column are the genes that are either mutated, part of a translocation or 

that have altered copy numbers (italic) in that cell line. 

Cell line Cancer genes 

5637 ERBB2, RB1, TP53 

769-P No coding alterations found in 38 cancer driver genes 

786-O CDKN2A, PTEN, TP53 

A-172 CDKN2A, PTEN 

A-204 ABL-driven 

A-427 CDKN2A, CTNNB1, KRAS 

A-498 CDKN2A, SETD2 

A-549 CDKN2A, KRAS, SMARCA4, STK11 
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A-704 PBRM1, TP53 

A375 BRAF, CDKN2A, CDKN2A 

A388 EGFR, NOTCH1, PIK3CA, TP53 

ACHN CDKN2A, PBRM1 

AN3 CA CCND1, FBXW7, NSD1, PIK3R1, PTEN, SETD2, TLR7, TP53, ZFHX3 

AsPC-1 CDKN2A, FBXW7, KRAS, TP53 

AU-565 ERBB2, MYC, SMAD4, TLR7, TP53 

BT-20 CDKN2A, EGFR, PIK3CA, RB1, SPEN, TP53 

BT-549 PTEN, RB1 

BxPC-3 BRAF, CDKN2A, EP300, SMAD4, TP53 

C-33 A ARID1A, FBXW7, PIK3CA, PTEN, SMARCA4, TP53, ZFHX3 

CAL 27 CDKN2A, SMAD4, TP53 

CCF-STTG1 PTEN 

CCRF-CEM CCND1, CDKN2A, FBXW7, KRAS, NRAS, NSD1, PTEN, TLR7, TP53 

COLO 205 APC, BRAF, SMAD4 

COLO 829 BRAF, CDKN2A, PTEN 

Daoy CDKN2A, NF1, PIK3R1, TP53 

DB TP53 

DLD-1 APC, EP300, KRAS, NCOR1, PIK3CA, SMARCA4, TP53 

DoTc2 4510 BRCA2, FAT1, NSD1 

DU 145 CDKN2A, CREBBP, FAT1, KRAS, RB1, STK11, XIRP2 

DU4475 APC, BRAF, RB1 

ES-2 BRAF, CCND1, TP53 
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FaDu CCND1, FAT1, SMAD4, TP53 

G-361 BRAF, CDKN2A, STK11 

HCT-15 APC, BRCA2, EP300, KRAS, NCOR1, PIK3CA, TP53, ZFHX3 

HCT 116 BRCA2, CDKN2A, CHD4, CTNNB1, EP300, KRAS, NCOR1, NF1, 

PIK3CA, SMARCA4, XIRP2 

HL-60 CDKN2A, MYC, NRAS 

Hs 578T MYC, PIK3R1, TP53 

Hs 746T TP53 

Hs 766T ARID1A, KRAS, LRP1B, SMAD4 

HT EP300, SPEN, TP53 

HT-1080 CDKN2A, NRAS 

HuTu 80 CTNNB1, SMARCA4 

J82 ERBB2, PTEN 

JAR No coding alterations found in 38 cancer driver genes 

Jurkat E6.1 APC, ARID1A, CDKN2A, CREBBP, FAT1, FBXW7, PTEN, SMARCA4, 

TP53 

K-562 ABL-driven, CDKN2A, TP53 

KATO III NOTCH1 

KG-1 No coding alterations found in 38 cancer driver genes 

KLE CCNE1, FBXW7, KRAS, TP53 

KU812 ABL-driven, TP53 

LNCaP FGC ATM, BRCA2, PIK3R1, PTEN, SETD2, XIRP2 

LoVo APC, ARID1A, FBXW7, KRAS, SPEN 
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LS 174T ARID1A, CTNNB1, KRAS, PBRM1, PIK3CA, TLR7, ZFHX3 

LS411N APC, ARID1A, BRAF, EP300, FBXW7, PTEN, TP53, XIRP2 

MCF7 CDKN2A, EP300, PIK3CA 

MeWo CDKN2A, NF1, TP53, XIRP2 

MG-63 CDKN2A, MYC 

MIA PaCa-2 CDKN2A, KRAS, TP53 

MOLT-4 CDKN2A, CHD4, EP300, NOTCH1, NRAS, PTEN, SMARCA4, TP53 

NCCIT PTEN, TP53 

NCI-H460 ARID1A, CDKN2A, KRAS, LRP1B, MYC, PIK3CA, STK11 

NCI-H661 CCNE1, TP53 

NCI-H82 MYC 

OVCAR-3 CCNE1, LRP1B, TP53 

PA-1 NRAS 

PC-3 MYC, PTEN, TP53 

PFSK-1 TP53 

RD NF1, NRAS, TP53 

RKO ARID1A, BRAF, BRCA2, EP300, FAT1, NCOR1, NF1, NSD1, PIK3CA, 

ZFHX3 

RL EP300 

RL95-2 ARID1A, ATM, BRCA2, EP300, PIK3R1, PTEN, SMARCA4, SPEN, TP53, 

ZFHX3 

RPMI-7951 BRAF, PTEN, TP53 

RS4-11 CDKN2A, SMARCA4 
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RT4 CDKN2A, SMAD4 

SHP-77 KRAS, TP53 

SJCRH30 TP53 

SK-N-AS NRAS, TP53, XIRP2 

SK-N-FI NF1, TP53 

SNU-5 ARID1A, CDKN2A 

SNU-C2B ERBB2, KRAS, SMARCA4, TP53 

SR CDKN2A, ZFHX3 

SU-DHL-1 CREBBP, TP53 

SU-DHL-6 CREBBP, EP300, TP53 

SUP-T1 CDKN2A, CHD4, PBRM1, PIK3CA, TP53 

SW48 BRCA2, CTNNB1, EGFR, EP300, FBXW7, NCOR1, SETD2, ZFHX3 

SW480 APC, KRAS, TP53 

SW620 APC, EP300, KRAS, KRAS, MYC, TP53 

SW626 APC, KRAS, SMAD4 

SW837 APC, FBXW7, KRAS, TP53 

SW872 BRAF, CDKN2A, PTEN 

SW900 CDKN2A, FAT1, KRAS, KRAS, NF1, NSD1, TP53 

SW948 APC, ATM, KRAS, PIK3CA, SMAD4, TP53 

SW982 BRAF, CDKN2A 

T24 EP300, FAT1, TP53 

T98G CDNK2A, TP53 

TCCSUP ARID1A, PIK3CA, RB1, TP53 
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THP-1 ARID1A, CDKN2A, NRAS, PTEN, TP53 

TT TP53 

U-118 MG CDNK2A, TP53 

U-2 OS LRP1B 

U-87 MG CDNK2A, NF1 

VA-ES-BJ CDNK2A 

 

 

 

 

 

 


