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Abstract 

With over 300 new varieties of wheat registered in the past 15 years (Canadian Food Inspection 

Agency, n.d.), Canadian wheat producers have plenty of options to choose from when deciding 

which variety(ies) to grow. However, each year, wheat acreage in Western Canada is 

concentrated in a select few of these available varieties. While no single factor appears to impel 

this result, increasing volatility in growing conditions due to climate change is expected to 

significantly impact the importance of the adaptability of varieties (i.e., the ability to yield 

consistently under a range of conditions) in these decisions moving forward. Filling a gap in the 

agricultural economics literature, this research aims to empirically identify which factors drive 

adoption of new wheat varieties in the Canadian Prairies, focusing primarily on the role that 

adaptability plays in these decisions.   

 To do this, I first develop a conceptual framework rooted in the theory of the firm that 

explains the predicted relationship between varietal adaptability, measured using Torshizi’s 

(2015) degree of specificity, and adoption. Then, using risk area level data spanning from 2009 

to 2018, I empirically examine which variety attributes factor most heavily into the adoption of 

new wheat varieties at the prairie-wide, provincial, and wheat class levels. I also compare these 

results to those acquired when yield variance is alternatively used to measure varietal 

adaptability. In each case, I employ Pesaran and Zhou’s (2018) fixed effects filter empirical 

approach to obtain these estimates.  

 Prairie-wide results reveal that more widely adopted varieties are those that have higher 

adaptability. These estimates also indicate that the overall success of a variety is linked to its 

height, protein content, fusarium head blight tolerance, and yield potential, with slight variations 

in results for provincial and wheat class level modeling. Further, comparison of the explanatory 
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power of different models points to the degree of specificity as the better measure of adaptability, 

relative to yield variance.  

These insights into variety adoption indicate that prioritizing breeding for varietal 

attributes such as wider adaptability and improved yield potential may be beneficial, although 

balancing this with the continued need for some varieties tailored to perform under specific 

conditions remains important. Additionally, reporting an intuitive measure of varietal 

adaptability along side the other variety attribute information currently available in provincial 

publications would allow farmers to easily compare different varieties and ensure they are 

selecting the one(s) that best meet their needs. Finally, some of the challenges associated with 

obtaining data for this research suggest a need for more easily accessible, consistent, and 

representative data across Alberta, Manitoba, and Saskatchewan, to the benefit of Canadian 

wheat producers and industry researchers.  
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Chapter 1: Introduction 

 

1.1 Motivation 

Wheat is an important element of much of the world’s diet and a key agricultural product for 

Canada. Aggregate wheat production contributes an estimated $7 billion annually in gross farm 

values to Canada’s economy and utilizes approximately 24 million acres (Agriculture and Agri-

Food Canada & Cereals Canada, 2020). Over 90% of this production occurs in the prairie 

provinces of Alberta, Manitoba, and Saskatchewan (Statistics Canada, n.d.b). Outproducing 

domestic needs, Canada exports nearly 70% of this output to countries such as Japan, Indonesia, 

and Italy (Agriculture and Agri-Food Canada & Cereals Canada, 2017). As a result, Canada is 

one of the top five wheat exporters worldwide (United States Department of Agriculture (n.d.), 

with a reputation for delivering consistently high-quality wheat (Agriculture and Agri-Food 

Canada & Cereals Canada, 2020).  

 Investment in the continued development of improved wheat varieties is essential to 

maintaining this global market position, especially as climate conditions become increasingly 

volatile due to climate change. The development of new varieties with consistently higher yields 

and improved disease tolerance gives farmers some of the tools they need to better adapt to the 

changing environmental conditions they face, but it does come at a financial cost. This cost, 

estimated at $46 million annually in a 2015 report by JRG Consulting Group, is predominately 

incurred by the public sector, and supplemented by voluntary producer check-offs and private 

sector investments (JRG Consulting Group, 2015).  

 Not all new varieties are successful. Over the past 15 years, the Canadian Variety 

Registration Office (VRO) has registered over 300 new varieties of wheat (Canadian Food 

Inspection Agency, n.d.); however, adoption rates of new varieties remain significantly lower. 

Moreover, many registered varieties are never adopted. For example, the VRO registered 21 new 

varieties in 2014 (Canadian Food Inspection Agency, n.d.); but by 2019, less than half were in 

use by Saskatchewan wheat producers (Saskatchewan Crop Insurance Corporation, 2018). 

Alberta and Manitoba provide further examples of similarly low uptakes of most new varieties, 

as I will demonstrate in chapter four. One potential explanation for these low adoption rates is 
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the possibility that many new varieties lack the properties Western Canadian wheat producers 

desire most and this in turn points to a potential disconnect in the flow of information along the 

Canadian wheat supply chain.  

 Addressing this inefficiency in Canada’s wheat supply chain is crucial, especially as 

increasingly unpredictable growing conditions resulting from climate change add challenges for 

wheat producers and increase the need for the seamless flow of information between these 

farmers and breeders. Ensuring that producers have access to the necessary information 

regarding new varieties and allocating resources to breeding programs that maximize the returns 

on investment by producing varieties with desirable traits is important. Such actions will benefit 

Western Canadian wheat producers and strengthen Canada’s international market position. The 

first step towards this is developing a clearer understanding of wheat producer variety decisions 

in the Canadian Prairies through identifying the key factors in these choices.  

 Existing literature has sought to identify some of these factors. Barkley and Porter’s 

(1996) study of Kansas wheat producer variety decisions points to end-use values and expected 

yields as key variety traits. Comparing North Dakotan producers with those in the Canadian 

Prairies, Dahl et al. (1999) find that agronomic traits carry relatively more weight than end-use 

values north of the border. However, neither of these studies consider the influence of the 

adaptability of a variety in adoption decisions. Referring to varieties that perform consistently 

well under a greater range of environmental conditions, more adaptable varieties can reduce the 

risks to farmers that stem from increasing climate volatility due to the effects of climate change. 

To the best of my knowledge, none of the economic literature on Canada’s wheat variety 

adoption factors considers the influence of this trait in these decisions. Further, the general 

approach to modeling crop variety adoption decisions relies on pooled data approaches due to the 

time invariant nature of several varietal traits and associated limitations of panel data empirical 

models. No studies account for the effects of both time invariant variables and the differentiated 

nature of varieties within this context.   

This thesis provides two key contributions to the literature on crop adoption. First, it 

explicitly explores the role of adaptability on wheat variety adoption in Canada. Second, it 

applies Pesaran and Zhou’s (2018) fixed effects filter (FEF) panel data approach in the context of 

wheat varietal decisions, which has advantages over more commonly used methods such as the 
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pooled ordinary least squares (pooled OLS), fixed effects, and Hausman-Taylor instrumental 

variable (Hausman-Taylor IV) approaches. Such advantages include accounting for the panel 

nature of the data, while allowing for the estimation of time invariant trait effects which the 

standard fixed effects approach cannot handle. This is important for the literature on the 

economics of innovation in general, and for the case of innovation adoption modelling in 

particular, where dealing with both time variant and invariant factors is common.  

 Insights gained from this research may be beneficial to various wheat industry 

stakeholders. For breeders, the empirical results of this study provide a closer look at the 

importance of several varietal attributes to Canadian wheat producers. Further, several of the 

variety characteristics that I examine are identified by Agriculture and Agri-Food Canada and 

Cereals Canada (2020) as key wheat research priorities. These include improvements in yield 

potential, disease tolerances, and adaptability. By empirically examining the relationship 

between these variety characteristics and adoption, I provide additional insights that may further 

inform such initiatives. Finally, by using the varietal information available to Canadian wheat 

producers, I am able to provide some insights into some of the challenges associated with 

accessing consistent and representative information on the wheat varieties available across 

Western Canada.  

 

1.2 Objective 

The main objective of this thesis is to empirically examine the factors (i.e., seed traits such as 

disease tolerance, protein content, yield potential, etc.) that drive the adoption of new wheat 

varieties in the Canadian Prairies. Wheat is grown in several Canadian provinces, however, 

Alberta, Manitoba, and Saskatchewan account for approximately 93% of planted acres (Statistics 

Canada, n.d.b). For this reason, I concentrate on identifying what makes some varieties more 

successful than others in these three provinces. Data used in this research comes from the 

Canadian Food Inspection Agency (CFIA) 1 and from provincial Seed Guides2 and Yield 

 
1 Canadian Food Inspection Agency (n.d.) 
2 Alberta Seed Growers & Alberta Seed Processors (n.d.), Manitoba Agriculture and Resource Development, 

Manitoba Seed Growers’ Association, & the Manitoba Co-operator (n.d.), Saskatchewan Seed Growers’ Association 

(n.d.) 
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Magazines3, which provide information on characteristics such as yield, maturity rates, and 

disease resistance factors. In particular, I focus on identifying the relationship between the 

adaptability of new wheat varieties and their adoption rates.  

1.3 Empirical approach 

To establish the expected relationship between a variety’s adaptability and its adoption, I develop 

a framework rooted in the theory of the firm and based primarily on the approach of Torshizi 

(2015). Under this framework, farmers select varieties with the varietal traits that they believe 

will perform best in the growing conditions they face, thereby maximizing their expected 

producer surplus. Assuming that more adaptable varieties reduce the risks and uncertainty 

around realized yields, this framework indicates adoption should increase with varietal 

adaptability.  

 Addressing the research question empirically, I use a FEF regression approach to 

estimate adoption rates of various wheat varieties as a function of varietal traits at three levels: 

prairie-wide, provincial, and wheat class. This approach follows that of Dahl et al. (1999), but 

accounts for the intrinsically differentiated nature of wheat varieties. Further, it provides an 

applied example of Pesaran and Zhou’s (2018) modified fixed effects model within the context 

of crop variety adoption decisions.  

 Longitudinal (or panel) data on the insured acreage of each variety forms the dependent 

variables, while numerous varietal traits (e.g., yield potential, adaptability, and other agronomic 

and quality characteristics) form the set of explanatory variables. The model also allows for a 

hill-shaped lifecycle that characterizes variety adoption. This dataset covers the period 2009 to 

2018 for Alberta, Manitoba, and Saskatchewan, the major wheat producing provinces. Variety 

characteristics come from the respective provincial Seed Guides and yield data from the Yield 

Magazines.  

 

 
3 Agriculture Financial Services Corporation (n.d.), Manitoba Agricultural Services Corporation (n.d.), 

Saskatchewan Crop Insurance Corporation (n.d.) 
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1.4 Organization of the study 

Chapter two provides an overview of the Canadian wheat supply chain, followed by a review of 

the relevant literature. The background portion of this chapter is a discussion the key elements of 

each point on the supply chain, from initial research to final consumers and the monitoring role 

of the Canadian Grain Commission. Following this, the literature review portion begins by 

summarizing previous findings on agricultural technology adoption, narrowing in focus to 

general determinants for technology, and more specifically crop variety adoption. Finally, 

chapter two discusses the existing literature on wheat variety decisions in particular and 

concludes with a look at previous studies that consider the importance of variety adaptability.  

 Chapter three presents the conceptual framework of this thesis. As previously discussed 

in section 1.4, this framework uses a producer surplus maximization approach to explain the 

relationship between variety adaptability and adoption levels. I use the results from my 

conceptual model to guide my empirical modeling of variety adoption and form testable 

hypotheses in chapter five.  

 Chapter four, provides a summary of the dataset collection and construction process. I 

begin this chapter by discussing the construction of provincial datasets, and the process to 

aggregate these into a prairie-wide dataset. Following this, I discuss the distribution of acres 

across varieties, based on observations from this dataset. This chapter concludes by elaborating 

on some of the challenges of the data collection process and provides an overview of the 

representativeness of the dataset.  

 Chapter five outlines the empirical approach. I begin with a brief overview of some of the 

empirical approaches used in the existing literature, followed by an outline of the research aims. 

Next, I provide a discussion of the advantages and disadvantages of various relevant empirical 

approaches available, concluding that Pesaran and Zhou’s (2018) FEF approach is the most 

appropriate. Following this, I provide the dependent and independent variables used in modeling 

adoption, as well as summary statistics for each. The chapter concludes with the presentation of 

the econometric models and a discussion of the estimation procedures. 

 Chapter six presents the empirical estimates for variety adoption. I begin by noting some 

of the empirical considerations contributing to the selection of results presented. Estimated 
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results for the prairie-wide level follow next, with subsequent sections on provincial and wheat 

class level results. Next, I summarize the main findings and implications of the empirical 

estimates, followed by a discussion of possible explanations for unexpected estimated signs for 

some varietal trait coefficients. Finally, the chapter concludes with a few notes on some of the 

limitations of these results.  

 Chapter seven summarizes the thesis and its findings. It includes the conclusions and 

insights drawn from these results. Additionally, chapter seven revisits some of the limitations of 

this study and provides suggestions for further research. 
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Chapter 2: Background and literature review 

 

2.1 Introduction 

This chapter is divided into two main sections: a background of the Canadian wheat supply chain 

and a review of the relevant literature. The first section breaks down the key stages of wheat 

production in Canada, from research and breeding to final consumption and end uses. The 

second section considers the literature in agricultural technology adoption, with focuses on wheat 

variety adoption factors and more specifically, the importance of a variety’s adaptability.  

 

2.2 Background of the Canadian wheat supply chain 

This section outlines the Canadian wheat supply chain. This complex chain is comprised of 

several steps, from initial research, to final consumption with various institutions taking on 

important roles at each stage. Each step and the flow of information between them play crucial 

roles in the Canadian wheat industry. Therefore, it is important to understand the mechanics of 

the whole supply chain in order to examine the flow of information within it. Organized into 

eight sections (Figure 2.1), this overview looks at who the big players in the wheat industry are 

and what happens at each point on the supply chain.  

 

Figure 2.1 Canadian wheat supply chain 

 

 

Given the scope of this thesis, my primary focus is on farmers in the fourth element. 

Developing a better understanding of this point on the supply chain generates insights that may 

be relayed to earlier stages to ensure these stages are meeting the needs of those farther down the 

supply chain. Further, given the interconnected nature of Canada’s wheat industry, farmers 

variety decisions reflect their perceptions of end user desires. Therefore, these insights from one 

Research 
and 

Breeding

Variety 
Registration

Seed  
Distributors

Farmers
Grain 

Companies
Transporation 

to Markets
Final 

Consumers

Canadian Grain Commission 
Monitoring

Canadian Grain Commission 
Monitoring



8 

 

particular point in the supply chain contribute to the overall understanding of wheat production 

in Canada.  

 

2.2.1 Research and breeding in Canada 

Several institutions conduct research on wheat variety improvement in Canada. Much of this 

research is conducted by public institutions, however, some private companies contribute to new 

wheat varieties. Table 2.1 provides a list of 2019 breeders, obtained from provincial Seed 

Guides. 

 

Table 2.1: Wheat breeders in Canada (2019) 

Sources: Saskatchewan Seed Growers’ Association (2019), Alberta Seed Growers & Alberta 

Seed Processors (2019) 

*Some CWRS are in the process of being moved to CNHR (select AAFC and Syngenta CWRS 

varieties) 

Class key: Canada Western Red Spring (CWRS); Canada Western Special Purpose (CWSP); 

Canada Western Amber Durum (CWAD); Canada Prairie Spring Red (CPSR); Canada 

Northern Hard Red (CNHR); Canada Western Hard White Spring (CWHWS); Canada Western 

Red Winter (CWRW); Canada Western Special Purpose Winter (CWSPW); Canada Western Soft 

White Spring (CWSWS); Canada Western Experimental Winter (CWEW) 

 

 A combination of public and private investments fund research on new wheat varieties, 

with total Canadian expenditures on wheat varietal development estimated at $46 million per 

year (JRG Consulting Group, 2015). Approximately 73% of this investment comes from public 

Sector Breeders  Wheat Classes 

Public 

Agriculture and Agri-Food Canada 
CWRS; CWSP; CWAD; CPSR; CNHR*; 

CWHWS; CWSWS; CWRW; CWEW 

Field Crop Development Centre CWSPW 

North Dakota State University CWRS; CNHR 

University of Alberta CWRS 

University of Saskatchewan – 

Crop Development Centre 

CWRS; CWSP; CWAD; CPSR; CNHR; 

CWHWS; CWRW; CWSPW 

Private 

KWS – UK CWSP 

Syngenta Seeds Canada Inc.  CWRS; CWSP; CNHR*; CPSR 

Wiersum Plant Breeding CWSP 
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sources, with the remaining 26% split evenly between producer and private sources (JRG 

Consulting Group, 2015). Some examples of public sources include the Canadian Wheat 

Alliance’s $97 million five-year commitment and the National Wheat Improvement Program’s 

$25 million investment (JRG Consulting Group, 2015). Voluntary producer check-offs, 

administered by the relevant provincial wheat commission upon delivery of grain to a licensed 

elevator, serve as a major source of producer contributions to industry research, development, 

and technical support (Quorum Corporation, 2019). The Western Grains Research Foundation 

(WGRF) collects these check-offs and then invests them back into the industry (Froystad, 2012). 

With a Western Canadian Deduction levy of $0.48 per tonne, the 2018 WGRF’s Wheat Fund 

balanced at nearly $29 million (Western Grains Research Foundation, 2019). Limited private 

sector research and investments occur, however, competition from farm-saved seed limits 

breeder’s abilities to capture majority shares of the surplus gains from innovation, reducing the 

attractiveness of private sector investments into the advancement of Canadian wheat varieties 

(JRG Consulting Group, 2015). 

 

2.2.2 Variety registration process 

Variety registration (VR) aims to ensure the delivery of desired end-use qualities to buyers and 

pertains to most major Canadian crops, including wheat (Agriculture and Agri-Food Canada, 

2013a). Development and registration of new wheat varieties in Canada often takes upwards of 

12 years, from initial breeding to the marketing of seed (see Figure 2.2) (Agriculture and Agri-

Food Canada, 2013a; Agriculture and Agri-Food Canada 2013b). I outline this registration 

process, administered by the Variety Registration Office (VRO) of the Canadian Food Inspection 

Agency (CFIA), in Figure 2.2 (Agriculture and Agri-Food Canada, 2013a). According to the 

CFIA (2012), to be eligible for registration, wheat varieties must:  

➢ Not be detrimental to humans, animals, and the environment, 

➢ Meet the Canadian Seed Growers Association’s varietal purity standards, 

➢ Be distinguishable from all other registered varieties, 

➢ Meet name regulations (e.g., not offensive or misleading), and 

➢ Have sufficient and accurate information to be evaluated. 
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Figure 2.2: Canadian variety registration process 

 

Source: Agriculture and Agri-Food Canada (2013b) 

Initial breeding and early 
testing

Part I and II Crops: 

Official variety registration 
trials 

Recommending Committee 
(RC) evaluation team support

RC main committee support

Part I Crops:

RC determination of merit 

Submit variety registration 
application to the VRO

Variety registered (restricted 
or unrestricted)

Part II Crops: 

Sumbit variety registration 
application to the VRO

Variety registered (restricted 
or unrestricted)

Part III Crops: 

Submit variety registration 
application to the Variety 

Registration Office (VRO) 

Vareity registered (restricted 
or unrestricted)



11 

 

 To allow some flexibility for different crops, the VR system divides seeds into three tiers, 

with wheat designated a Part I crop (Agriculture and Agri-Food Canada, 2013b). All tiers 

undergo an initial breeding and early testing stage (Agriculture and Agri-Food Canada, 2013b). 

For wheat, this stage generally entails a minimum of six years (Agriculture and Agri-Food 

Canada, 2013b). Following this, proposed wheat varieties enter into official trials under the 

supervision of a recommending committee (RC) (Agriculture and Agri-Food Canada, 2013b). In 

Western Canada, this is the Prairie Recommending Committee for Wheat, Rye and Triticale 

(PRCWRT) (Agriculture and Agri-Food Canada, 2013b). To obtain support from the PRCWRT, 

agronomy, disease, and quality teams within the PRCWRT evaluate three years of trial results 

for the proposed variety (Agriculture and Agri-Food Canada, 2013b). Receiving the approval of 

these teams, the main committee then votes on granting or withholding support for the new 

variety (Agriculture and Agri-Food Canada, 2013b). For the PRCWRT, this main committee 

vote typically occurs in February of each year (Prairie Grain Development Committee, 2019).  

 In addition to these steps, Part I crops must also receive a designation of having merit by 

the RC (Agriculture and Agri-Food Canada, 2013b). To be granted this designation, the new 

wheat variety must demonstrate equal or superior performance to specific characteristics of the 

reference variety (Agriculture and Agri-Food Canada, 2013b). These minimum standards are 

crop specific and set by the RC, with a focus on relative overall performance (Agriculture and 

Agri-Food Canada, 2013b).  

 The final requirement of the VR application is the basic registration package, submitted 

by all tiers to the VRO (Agriculture and Agri-Food Canada, 2013b). This package requires 

several pieces of information, including: 

➢ Scientific, proposed, and common variety names, 

➢ Pedigree, history, and development methods, 

➢ A detailed description of characteristics, 

➢ Information about novel traits, if applicable, 

➢ Specific to wheat, a statement of eligibility from the Canadian Grain Commission (CGC), 

➢ Appropriate fees.  
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Once all requirements are met, a completed application is submitted to the VRO. After 

reviewing and verifying the application, the VRO registers the new wheat variety. There are four 

possible registration statuses (Canadian Food Inspection Agency, 2012): 

(1) Unrestricted registration: no restrictions, valid across Canada unless otherwise stated 

(2) Regional registration: restricted to certain regions due to the potential adverse effects if 

grown in other regions 

(3) Interim registration: full rights (regional or national) for a specified period of time 

(maximum life of 5 years) 

➢ This status is granted either for conducting market acceptability tests or for 

emergency reasons. 

(4) Contract registration: due to biochemical or biophysical traits, quality control systems 

and isolation distances are potentially required to protect the traditional variety 

➢ For wheat and barley, the CGC and VRO co-determine the acceptability of a 

quality control system. 

The VRO’s review process standard is 8 weeks for processing an application (Agriculture and 

Agri-Food Canada, 2013b). Once approved by the VRO, the applicant receives a certificate of 

registration and the variety appears on the CFIA’s list of registered varieties (Canadian Food 

Inspection Agency, 2012).  

 

2.2.3 Western Canadian seed distributors 

The third step of Canada’s wheat supply chain is seed distribution. Canadian seed distributors 

facilitate the purchase of CFIA certified seeds by farmers (Canadian Seed Growers’ Association, 

2020). By providing these distribution channels, seed distributors give Canadian farmers access 

to high quality seeds with strong genetic potential (FP Genetics, n.d.). Table 2.2 provides a list of 

these distributors for wheat seeds in Canada. 
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Table 2.2: Wheat seed distributors in Western Canada (2019) 

Distributors 

Alliance Seed 

Canterra Seeds 

Cargill 

Faurschou Farms Ltd. III 

FP Genetics 

Lefsrud Seed 

Mastin Seeds 

Nutrien Ag Solutions 

Proven Seed 

Public release University of Saskatchewan – Crop Development Centre 

Richardson International 

SeCan Members 

Seed Depot 

SeedNet Inc.  

Syngenta Canada 

United Suppliers Canada 

Western Ag 

Western Feed Grains Development Co-op Ltd.  

Sources: Alberta Seed Growers, & Alberta Seed Processors (2019), Saskatchewan Seed 

Growers’ Association (2019) and Manitoba Agriculture and Resource Development, Manitoba 

Seed Growers’ Association, & the Manitoba Co-operator (2019) 

 

2.2.4 Farmers and production statistics 

Canadian wheat farmers are the next key players in the supply chain. According to the 2016 

census, Canada allocates approximately 23 million acres to wheat production each year 

(Statistics Canada, n.d.b). Based on the roughly 52,500 reporting farms, the average wheat farm 

in Canada is about 450 acres (Statistics Canada, n.d.b). Table 2.3 provides a provincial 

breakdown of the number of farms in the prairie provinces. 
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Table 2.3: The number of Canadian wheat farms and average farm size by prairie province 

(2016) 

Province Number of farms Acres Average wheat acreage Share of total acres 

Alberta 11,634 7,008,542 602 29.9% 

Manitoba 5,913 2,997,013 507 12.8% 

Saskatchewan 17,650 11,840,688 671 50.5% 

Canada 52,497 23,436,513 446  

Source: Statistics Canada (n.d.b) 

 

 Planting decisions are believed to centre around net financial returns per acre (Quorum 

Corporation, 2014b). Farmers consider their own technical expertise, land and climate 

conditions, and a balance of financial returns with acceptable costs and risks (Quorum 

Corporation, 2014b).  

 One element of this decision process is crop rotation. Most Canadian wheat farmers 

rotate their crops, which means that they change the crop planted in a field each crop year in 

order to provide optimal growing conditions and to respond to changing commodity prices 

(Government of Saskatchewan, 2017). In the case of wheat, the Government of Saskatchewan 

(2017) recommends using different cereals each year, and planting a non-cereal, such as oilseed, 

pulse, or legume crops, every third year. These rotations serve to manage water use, nutrient 

levels, and disease tolerance (Government of Saskatchewan, 2017).  

 Wheat production levels dominated overall grain production in Canada between 1975 and 

2017 (Figure 2.3). Over this period, production of wheat trended upwards, though the gap 

between wheat and canola production diminished. Breaking Canadian wheat production down 

into its different varieties and grouping them into spring, durum, and winter varieties for the 

2017-2018 crop year, Table 2.4 reveals that spring wheat varieties compose the largest share of 

production for that season.   
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Figure 2.3: Canadian key crop production (1975-2017) 

 
Source: Statistics Canada (n.d.a) 

 

Table 2.4: Canadian wheat production (2017-2018 crop year) 

Wheat Class Production (tonnes) Share of Production 

Durum 4,977,000 15.4% 

Spring 25,670,400 79.4% 

Winter 1,700,500 5.3% 

Total 32,347,900  

Source: Statistics Canada (n.d.a) 

 

 Geographically, wheat is primarily grown in Western Canada. According to the 2016 

Statistics Canada census, the three prairie provinces account for approximately 93% of total 

wheat acres (Statistics Canada, n.d.b). British Columbia, Ontario, and Quebec also grow wheat, 

however these provinces account for a significantly smaller portion of total Canadian acres. 

Focusing on the Canadian Prairies, Saskatchewan historically leads the way in wheat production 

(Figure 2.4). 
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Figure 2.4: Wheat production in the Canadian prairie provinces (1968-2018) 

 
Source: Statistics Canada (n.d.a) 
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2.2.5 Grain companies 

Grain companies purchase grain from producers to sell in domestic and international markets. 

There are several grain companies in Canada, with six of the largest being: 

➢ Viterra, 

➢ Richardson International, 

➢ Cargill Canada, 

➢ Parrish and Heimbecker, 

➢ Louis Dreyfus, and 

➢ Paterson Global Foods. 

In 2014, these six grain companies owned 246 of 391 licensed primary and process elevators, 

with 75% of the 6.85 million metric tonnes of total storage capacity for grain (Quorum 

Corporation, 2014b). Another 76 grain companies ran the remaining 145 elevators. Of the 29 

Canadian port terminal facilities, grain companies operated 25 (Quorum Corporation, 2014b). An 

updated list includes G3 and Bunge (Torshizi & Gray, 2017), with most primary elevators in 

Canada owned by one of these eight grain companies. In addition, these eight own all export 

facilities at the ports of Metro Vancouver, Prince Rupert, and Thunder Bay (Torshizi & Gray, 

2017).  

 In the US, grain companies and farmers use forward contracts or cash purchases (Quorum 

Corporation, 2014a). This system mitigates some of the risk to producers (Quorum Corporation, 

2014a). As of 2014, forward contracts are uncommon in Canada, in part due to the Canadian 

wheat industry’s historic use of a single desk system (Quorum Corporation, 2014a). However, 

with the end of the Canadian Wheat Board (CWB), the use of contracts in grain markets is 

expected to increase (Quorum Corporation, 2014a).  

 

2.2.6 Transportation to export positions and domestic markets  

Canadian grain headed for international markets is exported mainly via rail to port movement, 

with some direct rail or road export. As, according to Quorum Corporation (2014b), grain travels 

an average of 1500 kilometres from elevator to port, 95% of this grain movement occurs on 

Canadian National and Canadian Pacific railways. Eighteen short line rails supplement these 
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longer tracks (Quorum Corporation, 2014b). Due to this reliance on the Canadian rail system, 

factors such as car supply significantly impact the movement of grain to export markets. 

However, progress has been made on increasing the number of hopper cars available for grain 

shipments (Quorum Corporation, 2020). This effort contributed to a decline of 4.4% in average 

days to move grain through the Grain Handling and Transportation system to 43.8 days in the 

2018-2019 crop year (Quorum Corporation, 2020).  

 Canadian freight rate policy has changed over the past 30 years, beginning as the Crow 

Rate and evolving to the Maximum Revenue Entitlement (MRE) program (Quorum Corporation, 

2014b). The MRE acts as an inflationary control mechanism, where increases in rate should 

reflect higher underlying costs (Quorum Corporation, 2014b).  

 Ports also influence the movement of grain, as rail cars must be emptied in a timely 

fashion in order to avoid rail system delays. The four wheat export ports are Vancouver, Prince 

Rupert, Thunder Bay, and Churchill, though access to the port of Churchill was blocked for 

nearly four years due to necessary rail repairs, with shipments resuming by the end of 2018 

(Quorum Corporation, 2020). At the other ports, the 2018-2019 crop year saw a decline in 

storage time at terminal elevators which aided in reducing overall transportation time (Quorum 

Corporation, 2020). 

 Movement of grain to domestic consumers differs by the intended use. Feed grain is 

generally sold locally, with little significant influence on the grain supply chain (Quorum 

Corporation, 2014c). However, non-local movement of grain for milling use parallels that of 

export sales. Grain companies purchase product from farmers, and transport it via rail and roads 

to domestic millers responsible for processing and selling the resulting product to consumers 

(Quorum Corporation, 2014c). 

 

2.2.7 Final consumers and end uses 

Canadian wheat has a variety of end uses. The largest production class, CWRS, is used for bread, 

noodles, and pasta while durum wheat is a key input in pasta and couscous production (Canadian 

Grain Commission, 2019b). Other varieties are used in various types of breads, noodles, cookies, 

cakes, and pastries (Canadian Grain Commission, 2019b). However, CWSP wheats are generally 
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limited to use in biofuels or for animal feed due to their starch and protein contents (Canadian 

Grain Commission, 2019b).  

 Annual domestic consumption of wheat increased overall since 1968, however, it is well 

below annual production levels (Figure 2.5). As a result, Canada exports the majority of its 

wheat production. For the 2017-2018 crop year, the top three destinations of Canadian wheat 

were Indonesia, the United States, and Japan, each importing over 1.5 million metric tonnes 

(Canadian Grain Commission, 2019a). Western Europe accounts for a small portion of Canadian 

wheat exports, with roughly 75% of exports going either to other nations in the Western 

Hemisphere or to Asia (Figure 2.6) (Canadian Grain Commission, 2019a). With its large surplus, 

Canada generally ranks in the top five globally in wheat exports (Figure 2.7).  

 

Figure 2.5: Canadian domestic consumption and production of wheat (1968-2018) 

 
Source: Statistics Canada (n.d.a) and Index Mundi (n.d.) 

 

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

D
o

m
es

ti
c 

C
o

n
su

m
p

ti
o

n
 a

n
d

 P
ro

d
u
ct

io
n
 (

to
n
n
es

)

Year

Overal

Production

Domestic

Consumption



20 

 

Figure 2.6: Canadian wheat export destinations (2017-2018 crop year) 

 
Source: Canadian Grain Commission (2019a) 

 

Figure 2.7: Wheat export rankings for select countries (2019) 

 

 

 

 

 

 

 

 

  

Source: United States Department of Agriculture (n.d.) 
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Food, the CGC runs quality, research, and safeguard programs with the aim of protecting 

Canada’s reputation for dependable and safe grain in both domestic and international markets 

(Canadian Grain Commission, 2019c). Further, the CGC provides the official grain grading 

scale, used to determine what grade outputs can be marketed as (Canadian Grain Commission, 

2019c). For wheat, these grades are applied within wheat classes and establish three to five 

quality levels for marketing, depending on the class (Canadian Grain Commission, 2018). If a 

variety is not registered in Canada, it can only be sold under the lowest grade for its wheat class 

(Canadian Grain Commission, 2018). Other roles of the CGC include ensuring farmers receive 

appropriate compensation for their grain (Canadian Grain Commission, 2019c), and 

administering producer railcar orders (Quorum Corporation, 2014b).  

 

2.2.9 Wheat prices and seed costs 

Canadian wheat producers receive a cash bid price from grain companies equal to the free on 

board (FOB) port price, less an export basis reflecting grain handling and transportation costs for 

their output (Torshizi & Gray, 2017; Slade & Gray 2018). As Canada is a small player in the 

world wheat market, the FOB price may be considered exogenous to domestic supply (Slade & 

Gray, 2018). According to Slade & Gray (2018), the combination of exogenous FOB prices and 

MRE restricted freight prices means that domestic supply shocks are largely absorbed by 

producers. While it is plausible that the CWB dampened the effects of these domestic supply 

shocks in the past, in its absence farmers feel the full effects of these price changes (Slade & 

Gray, 2018).  

 Seed costs to Western Canadian wheat farmers are relatively low, reflecting reproduction 

and bagging costs, and come in two forms. The first are direct seed and treatment costs, 

estimated at $29.00 per acre for hard red spring wheat in Manitoba for 2021, which is 

substantially lower than seeding and treatment costs for many other grains and oilseeds (e.g., 

canola runs a $67.50 bill per acre seeded) (Government of Manitoba, 2021). This difference in 

seeding costs is likely in part due to wheat’s largely public and producer investment driven 

variety development market, which minimizes private seed companies’ market power. The 

second cost is the voluntary collection of check-offs upon delivery to a grain elevator that are 
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then invested back into the industry (Froystad, 2012). For 2018, this levy was set at $0.48 per 

tonne (Western Grains Research Foundation, 2019).  

However, the percentage of wheat producers who purchase certified seed each year is 

relatively low. This is because Canada allows wheat producers to save and clean seed from their 

own production for future use, though trade or sale of these saved seeds is prohibited 

(Government of Alberta, 2018). Due to perceived lower costs and relatively equivalent quality, 

combined with the security in “knowing what they are getting”, reports indicate that roughly 

70% of producers choose farm saved seed over purchasing certified seed each year (Government 

of Alberta, 2018). According to the Government of Alberta (2018), the costs to producers of this 

practice largely reflect the foregone revenue of the grain saved for seeding the next year and 

associated cleaning costs. 

 

 

2.3 Literature review 

This section reviews the relevant literature on agricultural technology and, more specifically, 

crop variety adoption. It begins with a summary of the literature on agricultural technology 

adoption. This summary outlines the process of adoption, diffusion, and the uncertainty 

associated with agricultural technology. Next, I discuss the general characteristics of agricultural 

technology that contribute to its adoption. Following this, I focus on the factors of crop variety 

adoption and then more specifically, wheat variety adoption. The last section examines the 

literature on the role of adaptability in decisions regarding adoption of varieties.  

 

2.3.1 Adoption, diffusion, and uncertainty in agricultural technology adoption 

As new technology is introduced, the process by which farmers choose to adopt or not provides 

key insights into which factors contribute to the successful adoption of these innovations. 

Extensive literature on this adoption process places emphasis on the factors that affect it and the 

learning process that reduces uncertainty, starting from the seminal works of Griliches (1957) 

and Rogers (1962).  
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 The diffusion process reflects the lag observed between the time that new technology is 

introduced and the time that the average producer decides to adopt it. This delay stems from the 

initial uncertainty surrounding the performance and benefits of a new agricultural technology for 

individual producers due to differences in other factors of production, such as farmer experience, 

regional weather patterns, and soil quality (Pannell et al., 2006). Pannell et al. (2006) break this 

adoption process for individual producers into six stages: awareness, non-trial evaluation, trial 

evaluation, adoption, revision, and disadoption. In the first stage, producers are aware that a new 

technology is available and that it may be beneficial to them. Once aware of the innovation, 

farmers collect information on its viability and gauge whether or not it is worthwhile to move 

onto the trial stage. For divisible technology like crop varieties, the likelihood of adoption falls 

significantly if the technology is not conducive to small-scale trialling. Where small-scale trials 

are successful, or farmers are able to obtain adequate information via alternative sources, the 

technology moves on to the adoption stage where its use increases. For many agricultural 

technologies, including new crop varieties, partial adoption is possible. This means that farmers 

decide whether or not to adopt, as well as the intensity of adoption. However, adoption is a 

continuous process, and farmers revise their decisions regarding the technology as new 

information becomes available over time. This creates a possible shift towards disadoption in 

later stages, as circumstances change and older technology is phased out in favour of updated 

production techniques or improved varieties (Dinar & Yaron, 1992; Fernandez-Cornejo & 

McBride, 2002; Pannell et al., 2006).  

 Reflecting aggregate adoption, diffusion paths of agricultural technology are generally 

assumed to follow an S-shaped pattern over time (Griliches, 1957; Rogers, 1962; Sunding & 

Zilberman, 2000; Fernandez-Cornejo & McBride, 2002; Brethour & Weersink, 2003; Weersink 

& Fulton, 2020). A slow rate of diffusion is observed initially as early adopters accept the new 

technology, followed by a rapid increase as adoption of the technology spreads through the 

industry, tapering off as it reaches its upper limit (Fernandez-Cornejo & McBride, 2002; 

Weersink & Fulton, 2020). As diffusion is commonly measured either as the proportion of total 

farms or the share of total land using the innovation, peak adoption is constrained between 0% 

and 100% (Griliches, 1957). 
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 Justifications for the S-shaped path commonly centre around imitation or threshold 

models in the literature (Sunding & Zilberman, 2000). Imitation models of diffusion paths 

assume technology spreads via communication with others in the industry. As a result, initial 

increases in marginal diffusion rates level off as the market becomes saturated with better 

informed producers (Sunding & Zilberman, 2000). Threshold models assume adoption occurs 

above some threshold level of producer heterogeneity (Sunding & Zilberman, 2000). When farm 

size is the source of this heterogeneity, the marginal diffusion rate reflects the fraction of farms 

that adopt at a particular point in time, and this rate initially increases but eventually declines as 

higher market penetration is achieved (Sunding & Zilberman, 2000).  

 

2.3.2 General determinants of agricultural technology adoption 

A large volume of literature focuses on identifying the factors influencing adoption of new 

agricultural technologies and quantifying their effects. Several studies (Rogers, 1962; Batz et al., 

1999; Fernandez-Cornejo & McBride, 2002; Pannell et al., 2006; Weersink & Fulton, 2020) 

point to the characteristics of the technology itself as significant influences on its adoption. 

Specifically, the adoption of a new technology is hypothesized to be influenced by five of its 

attributes: relative advantage, compatibility, complexity, trialability, and observability (Rogers, 

1962).  

 Pannell et al. (2006) and Weersink and Fulton (2020) aggregate these attributes into the 

relative advantage and trialability, encompassing compatibility in relative advantage, 

observability in trialability, and complexity as a factor of both. In this context, relative advantage 

refers to the extent to which the new technology is an improvement over the existing systems 

(Weersink & Fulton, 2020). This characteristic is a function of farm and agro-ecological 

characteristics, as well as the degree to which it aids farmers in reaching their goals (e.g., wealth 

and financial security, environmental protection, social approval, etc.) (Pannell et al., 2006; 

Weersink & Fulton, 2020). Trialability reflects both the ability to test the new technology and the 

quantity of additional information to be gained from trials (Pannell et al., 2006; Weersink & 

Fulton, 2020). Weersink and Fulton (2020) also include social, cultural, and personal networks 

as factors impacting the adoption of new technologies. These networks represent the roles that 

social networks and cognitive abilities play in producers’ adoption decisions (Weersink & 
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Fulton, 2020). From these characterizations, one is able to identify the influential attributes 

unique to specific technologies. 

The relative importance of each of these factors depends on the stage of the individual 

adoption process. Social networks have the largest impact in the early stages of adoption, as 

informal (e.g., family, community) or formal (i.e., extension services) networks contribute to 

producers’ awareness and perceptions of a new technology (Weersink & Fulton, 2020). In the 

trial evaluation stage, the trialability of a new technology is the most important factor, where 

technologies that are difficult to trial face reduced likelihood of adoption (Pannell et al., 2006). 

Further, when the uncertainty reducing information gleaned from trials is limited, a technology 

faces an increased risk of remaining unadopted (Weersink & Fulton, 2020). In the later stages of 

adoption, an innovation’s relative advantage is the critical factor. Farmers adopt, revise, and 

disadopt technology based on changes in the relative profitability (Weersink & Fulton, 2020).  

 

2.3.3 Crop variety characteristics and adoption 

In the crop variety literature, many studies have sought to identify the key factors that contribute 

to successful adoption (Barkley and Porter, 1996; Dahl et al., 1999; Fernandez-Cornejo & 

McBride, 2002; Dalton, 2004; Abadi Ghadim et al., 2005; Asrat et al., 2010; Cavatassi et al., 

2011; Abebe et al., 2013; Michler et al., 2018). A general emphasis is placed on the end-use and 

production attributes of the new variety. In some cases, the influences of producer 

characteristics, such as farm size and farmer education, are also examined.  

 The importance of end-use factors appears to differ by crop. In their studies, Asrat et al. 

(2010), Abebe et al. (2013), and Michler et al. (2018) include end-use values in empirical 

analyses of adoption. For modern sorghum and teff varieties, Asrat et al. (2010) find that 

adoption does partially depend on the value of the output. Abebe et al. (2013) also consider 

market-value factors, finding that the marginal effect of improved stew quality for adoption of 

new potato varieties outweighs improvements in yields and disease resistance. Similarly, in 

adoption of improved chickpea varieties, Michler et al.’s (2018) results indicate that it is the 

market returns to new varieties driving adoption, even where yield remain unchanged from 
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previous varieties. However, Dalton (2004) suggests that in addition to post harvest 

characteristics, the impacts of production traits should be considered.  

 The role of the agronomic traits of different varieties in the variety decision process 

generally centres on the comparative advantage and profitability. Dahl et al. (1999), Wale and 

Yalew (2007), and Asrat et al. (2010) examine these for wheat, coffee, and sorghum and teff 

varieties, respectively. Each point to disease tolerance, yield potential and stability, as well as 

resilience in various environments as key factors, although the significance of traits as factors 

depends on crops and regions. Further, Dalton (2004) finds that for rice varieties in Western 

Australia, it is the plant maturity rate and height that help explain producer willingness to pay for 

new varieties. 

 

2.3.4 Determinants of wheat variety adoption 

Barkley and Porter’s (1996) study of the Kansas wheat industry is one of two key papers that 

examine the determinants of wheat variety adoption in North America. Dahl et al.’s (1999) work 

comparing the adoption of hard red spring wheat in Western Canada and North Dakota is the 

second. More recent studies in this area focus on developing countries, but these regions often 

experience differences in determinants from OECD countries as farmers face different economic 

conditions (Dixon et al., 2006; Di Falco et al., 2011; Gebresilassie & Bekele, 2015).  

 Barkley and Porter (1996) use an input characteristic model and pooled regression 

analysis to identify the key determinants of spring wheat variety demand between 1974 and 

1993. They find that Kansas wheat producers account for end-use values and production 

characteristics when deciding which varieties to plant (Barkley & Porter, 1996). Relative yield, 

yield stability (measured as yield variance), and past production decisions significantly impact 

these adoption decisions (Barkley & Porter, 1996). Further, Barkley and Porter (1996) find 

evidence of a significant trade-off between desirable wheat characteristics as increases in traits 

such as yield potential may also lead to higher variations in realized yields.  

 Following a similar approach, Dahl et al. (1999) find differences between North Dakota 

and Western Canada spring wheat variety determinants. In North Dakota, economic factors such 

as end-use qualities carry more weight than the agronomic traits of varieties (Dahl et al., 1999). 
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However, results for Western Canada differed, with economic factors insignificant in the 

empirical analysis (Dahl et al., 1999). They point to the observed higher concentration of acres in 

the top variety reducing the variability in end-use quality as a possible explanation for this 

outcome (Dahl et al., 1999). Further, tighter Canadian regulations on new variety releases that 

also serve to minimize the variation in end-use quality may contribute to the lack of significance 

in producer decisions (Dahl et al., 1999).  

 Covey (2012) employs the approaches of these papers to identify key adoption factors of 

CWRS wheat in Saskatchewan. This analysis finds significant effects of a variety’s expected 

yield, rate of maturity, age, and resistance to disease attributes on its adoption rate (Covey, 

2012). Covey (2012) notes that the number of varieties on the market also significantly impacts 

adoption rates.  

 Each of these three papers use pooled data econometric approaches to examine wheat 

variety adoption. However, Baltagi et al. (2003) note that such approaches face potential bias by 

neglecting the panel nature of the data. Standard panel data approaches (i.e., the fixed effects and 

random effects models) come with their own limitation.4 Hausman and Taylor (1981) and 

Pesaran and Zhou (2018) propose additional panel data approaches as potential solutions: the 

Hausman-Taylor instrumental variable model and the fixed effects filter model, respectively. To 

date, neither of these econometric approaches is widely used in the crop technology adoption 

literature; the latter due to its relative newness, the former due to challenges associated with its 

additional assumptions.  

 

2.3.5 The role of adaptability in variety adoption 

The adaptability of a crop or variety has long been studied, primarily in the agronomy literature 

(Nor and Cady, 1979; Chloupek & Hrstkova, 2005; Roy & Kharkwal, 2004; Sikder, 2009). The 

agricultural economics literature on variety adaptability is smaller, but considers its role in 

adoption. Variety adaptability is closely related to yield stability, however, there is a slight 

distinction between these two terms in the literature. Asrat et al. (2010) define adaptability as the 

 
4 Chapter five of this thesis provides a detailed discussion of several available econometric approaches, including 

their respective advantages and disadvantages.  
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ability of a variety to remain resilient under environmental stresses resulting from various factors 

such as soil quality, drought, or frost. Yield stability refers to the ability of a variety to produce 

consistent yield every year, regardless of crop disease and pest problems (Asrat et al., 2010). 

Similar definitions used by the agronomy literature more succinctly note that adaptability reflects 

performance variations across locations, while stability refers to variations across years (Roy & 

Kharkwal, 2004).5 Given the trade-off between different variety attributes found in Barkley and 

Porter (1996), combined with the risk averse nature of farmers, the question of how important 

yield stability and yield adaptability are to adoption decisions arises. Higher yield potential 

improves profit prospects, but if it comes at the cost of decreased yield stability or varietal 

adaptability, farmers may be less inclined to adopt the variety.  

 Asrat et al. (2010) examine this and find that Ethiopian sorghum and teff farmers are 

willing to forego increase yield prospects if it means improved environmental adaptability and 

yield stability. Similarly, Wale and Yalew (2007) determine that farmers facing higher 

challenges in obtaining a subsistence income level prefer varieties with better environmental 

adaptability and yield stability over increased yield. Further, Coromaldi et al. (2015) note that 

non-adopters of improved varieties in Uganda tend to do better than adopters, as a result of the 

relatively higher adaptability features of the traditional local varieties. In general, it appears that 

risk vulnerable farmers prefer adaptable seeds with stable yields over the potential gains from 

higher yielding new varieties.  

 North American farmers are unlikely to be subsistence farmers. This means that the roles 

of a variety’s adaptability and its yield stability may differ from developing countries. Several 

studies include yield stability, generally measuring it as the yield variance (Barkley & Porter, 

1996; Barkley et al., 2010; Diffenbaugh et al., 2012). However, few consider the importance of 

adaptability in North American farming decisions, at least as it differs from yield stability.6 

Torshizi (2015) does so, building the concept of adaptability into a model of Canadian canola 

adoption. The degree of specificity (the inverse of adaptability) reveals the interaction between 

land characteristics and seed variety performance (Torshizi, 2015). Using this measure, Torshizi 

 
5 Chapter four of this thesis provides a more in-depth discussion of yield adaptability and stability.  
6 Most papers use yield variance to reflect all yield variations. This captures what is referred to here as yield 

stability, but as chapter four explains in more detail, this variance captures variations over time and not necessarily 

across locations.  
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(2015) finds that adaptability plays a key role in the adoption of canola varieties in Canada. 

Varieties with higher degrees of specificity attain less market share than those able to perform 

well in a wider range of environments (Torshizi, 2015). However, this does not mean that highly 

specific varieties are not useful; such varieties are necessary and beneficial in locations where 

conditions are highly specific (e.g., high rainfall location) (Roy & Kharkwal, 2004). To date, no 

studies look specifically at the role of adaptability in Canadian wheat variety adoption decisions.  
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Chapter 3: Conceptual framework 

 

3.1 Introduction 

To explain the relationship between the adaptability of a variety and its adoption, I develop a 

conceptual framework that draws from the theory of the firm, specifically Hotelling’s (1929) 

seminal work on modeling product differentiation. I draw from recent applications of that work 

by Fulton and Giannakas (2004), Malla and Gray (2005), Torshizi (2015), and Hosseini et al. 

(2017). My main assumption is that wheat producers seek to maximize their returns through 

variety selection tailored to their growing conditions. Central to this decision – and the focus of 

this research – is the adaptability of varieties to various climate and soil conditions. 

This chapter begins with a brief review of some of the literature on conceptual frameworks 

for agricultural technology adoption. Following this, I develop the conceptual framework for this 

thesis.  

  

3.2 Literature on adoption conceptual frameworks  

Selecting a conceptual framework is important when attempting to understand which attributes 

of a new agricultural technology influence the extent of market share that is captured. As Lindner 

(1987) points out, reduced explanatory power or contradictory findings are frequently the result 

of failure to employ a sound conceptual framework prior to empirical analysis. These 

frameworks set out the objectives, choices, and constraints faced by potential technology 

adopters and better inform empirical model specifications and interpretations.  

 The literature in this area generally employs either a profit maximization (Barkley & 

Porter, 1996; Greene et al., 1996; Abadi Ghadim & Pannell, 1999; Dahl et al., 1999; Barkley et 

al., 2010; Michler et al., 2018), or a utility maximization framework (Batz et al., 1999; Wale & 

Yalew, 2007; Asrat et al., 2010; Coromaldi et al., 2015). Both approaches have their merits, 

although profit maximization appears to be more widely used. Under a profit maximization 

framework, producers adopt a new variety when their net returns are higher, relative to their 

current process. Such net returns in agricultural technology adoption generally depend on land 
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allocation, production technology, and the prices of both inputs and outputs (Abadi Ghadim & 

Pannell, 1999; Michler et al., 2018). 

 The simplest form of this economic framework, the static profit optimization model, 

considers a farmer whose objective is to maximize their profits in the current period only. Abadi 

Ghadim and Pannell (1999) represent this decision problem in the context of a farmer deciding 

how much land to allocate to a new crop, chickpeas. Here, chickpeas are allocated land when 

profits, in this case depending on the gross margins of both crops and the associated fixed costs, 

are greater than when zero land is allocated to chickpeas (Abadi Ghadim & Pannell, 1999). In the 

optimum, this implies that a new crop is adopted when its average gross margin less its fixed 

costs per acre are greater than when all land is allocated to the alternative crop (Abadi Ghadim & 

Pannell, 1999). However, this neglects to take into consideration the uncertainty farmers face 

regarding costs, environment, and production as well as the timeline of the adoption process.  

 As Weersink and Fulton (2020) point out, agriculture producers do not know the impacts 

on production and costs when initially considering investing in a new technology. Nor do they 

know with certainty which disease, pest, and climate conditions they will face during the 

growing season when they make their decisions. Further, farmers’ subjective perceptions of a 

new technology’s performance may change over time as additional information becomes 

available through the diffusion process and uncertainty surrounding it is reduced (Feder & 

O’Mara, 1981). These aspects of agriculture production necessitate the inclusion of risks 

associated with the innovation, as well as the use of a dynamic economic framework.  

 Abadi Ghadim and Pannell (1999) address these issues, expanding their framework to 

consider dynamic uncertainty, and later to include risk preferences and perceptions. Their 

dynamic profit function takes into consideration increases in farmer efficiency and the adoption 

process by expanding the profit function to include the net returns in the current period, as well 

as the sum net present value of net returns in future periods (Abadi Ghadim & Pannell, 1999). 

Incorporating uncertainty into this profit maximization framework means that it is now the 

expected profits being maximized. Under this approach, trialing the crop or variety in the first 

period reduces the subjective uncertainty farmers face surrounding the gross margin of the new 

technology in subsequent periods (Abadi Ghadim & Pannell, 1999). Even if the farmer does not 
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undertake his own trial, information generated by the experiences of those who do will diminish 

this uncertainty over time (Feder & O’Mara, 1981).  

Risk attitudes also play a role in profit optimization. Noting that farmers are most 

commonly risk averse, Abadi Ghadim and Pannell (1999) suggest that incorporating risk 

attitudes and utilities in adoption frameworks improves the accuracy of predictions. To 

incorporate such attitudes, Barkley et al. (2010) use portfolio theory. Applied to agriculture, 

farmers may choose to plant multiple varieties on different fields to reduces potential yield losses 

in much the same way that a business investor diversifies their stock portfolio to minimize their 

risk. To model this, Barkley et al. (2010) develop an expected profit maximization framework 

that accounts for the yield risks of each variety of wheat, using an input characteristic model 

(ICM) derived from the theory of the firm. In their economic model, expected profits depend on 

the output price, expected output, input costs, and yield variability cost. Demand for a given 

variety is a function of the output prices, own and substitute seed prices, the cost of yield 

variability, and the agronomic characteristics of the variety. This approach parallels those of 

Barkley and Porter (1996) and Dahl et al. (1999), however, Barkley et al.’s (2010) study goes 

further by developing a mean-variance efficiency frontier using the average yield, yield variance, 

and pairwise co-variances of varieties. They find that portfolio strategies can significantly reduce 

the risks faced by Kansas wheat growers.  

Weersink and Fulton (2020) counter that profit maximization neglects early-stage 

decisions as the new technology is first introduced. Considerations, such as the relative 

advantage, trialability, and farmers social networks impact adoption of innovations and 

conceptual models should consider these factors and their timing when determining adoption 

rates (Weersink & Fulton, 2020). Weersink and Fulton (2020) note that if these non-economic 

factors are expected to negatively (positively) impact the adoption rate, predictions under 

traditional profit maximization theory will be upper (lower) bounds.  

Coming out of the literature on the theory of the firm, several studies in the agricultural 

economics literature have applied the concepts of Hotelling’s (1929) product differentiation 

models to crop technology decisions. Fulton and Giannakas (2004) use a vertical differentiation-

based framework to understand behaviours and welfare effects for three scenarios related to 

genetically modified product labeling. Hosseini et al., (2017) study the incentives for signing 
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cross-licensing agreements when each firm has multiple horizontally differentiated products. 

More specific to crop varieties, Malla and Gray (2005) use a two-stage game theory-based 

framework to look at the dynamics of public and private investments in variety development, 

where varieties are horizontally differentiated products. Finally, Torshizi (2015) develops a 

conceptual framework that considers n horizontally differentiated canola varieties and the 

dynamics between certain characteristics and producer variety choices. Expanding on this and 

Hotelling’s (1929) models, Torshizi et al. (2018) investigate the role of the relationship 

(correlation) between the differentiating characteristics of two consumer products and 

consumer’s ranking of one relative to the other, subsequently identifying the equilibrium 

conditions.  

 

3.3 Framework 

As wheat producers seek to maximize their returns, the first consideration is a variety’s yield. 

This yield depends on the attributes of the variety, including its disease tolerance, yield potential, 

and adaptability to various growing conditions. In this conceptual framework I consider the role 

of adaptability in the adoption of two competing varieties that are horizontally differentiated with 

respect to their drought/moisture tolerance. As mentioned previously, adaptability is the ability 

of a variety to perform consistently across various locations or growing conditions (Roy & 

Kharkwal, 2004; Asrat et al., 2010).  

 Yield curves for varieties 1 and 2 are shown in Figure 3.1, an adaptation of Hotelling’s 

(1929) model of horizontal differentiation. The horizontal axis represents location in the 

characteristic space, scaled between 0 (the location with the lowest soil moisture level) and 1 (the 

location with the highest soil moisture level). The vertical axis measures yield levels. While 

variety 1 is designed to perform well in dry soil (i.e., on the left side of Figure 3.1), variety 2 is 

bred for locations with high soil moisture levels (i.e., on the right side of Figure 3.1). Variety 1 

(2) reaches its yield potential (�̂�) at the lowest (highest) moisture point 0 (1). The difference in 

response to soil moisture levels for these two varieties results in different degrees of adaptability, 

as represented in different slopes for their yield curves (i.e., different rates of reduced 

performance as area expands beyond the optimal location).  
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 These varieties are available for sale to 𝑓 = 1, … , 𝐹 farmers located on the horizontal 

axis. Each farmer owns one parcel of land (i.e., each farmer purchases one unit of seed). These 

parcels of land differ with respect to one characteristic (i.e., soil moisture). As it is conventional 

in Hotelling-type models (e.g., Fulton and Giannakas (2004), Malla and Gray (2005), Hosseini et 

al. (2017), Torshizi (2015), and Torshizi et al. (2018)), I rank the locations based on their 

moisture level so that the corresponding yield levels are in descending (ascending) order.  

Each farmer makes a binary decision between growing variety 1 or variety 2. 7 Following 

Torshizi (2015) and Torshizi et al. (2018), I assume that yield levels of variety i have a uniform 

distribution between the maximum and minimum yield levels (i.e., 𝑦𝑖~𝑢(�̂�, �̂� − 𝜇𝑖)). As a result, 

variety 1 performs best for the farmer located at 0 (i.e., dry soil location), variety 2 performs best 

for the farmer located at 1 (i.e., moist soil location), and yield per acre is linearly declining as 

area expands (i.e., as I move away from the variety’s optimally ranked farmer, the yield per acre 

declines due to increasingly less optimal soil moisture).8 Further, to simplify the model, I assume 

the yield potentials and costs of seeds for both varieties are equal.9 Then, the yield per acre of 

variety i (yield curve) is:  

 𝑦𝑖 = �̂� − 𝜇𝑖𝑥𝑓 , (3.1) 

 

where 𝑖 = 1,2, �̂� is the yield potential of each variety, 𝜇𝑖 is the degree of specificity of variety i, 

and 𝑥𝑓 is the distance of farmer f from the top ranked location for variety i.10 Here, yield 

potential refers to the yield of each variety on its optimal land parcel. Therefore, yield for variety 

1 is greatest for the farmer located at 0, and is diminishing linearly with the rate of its degree of 

specificity as one moves towards location 1. Similarly, variety 2’s yield declines as one moves 

 
7 At the time of variety decisions, the farmer has already decided to produce wheat on their parcel of land. 

Therefore, farmer’s only decision is selecting which of the two varieties available to use. 
8 Torshizi et al. (2018) show that this linearity is the result of “the implicit assumption of perfectly correlated 

preferences in the original Hotelling model” (p. 1). When the characteristics, or the buyers’ preferences for them, are 

imperfectly correlated, this linearity does not hold.  
9 The model can be extended to allow for differences in yield potential and seed costs. However, to focus on the 

impact of changes in adaptability on adoption, I choose to use these simplifying assumptions. 
10 For variety 2, this is measured as (1 − 𝑥𝑓) in the adapted Hotelling (1929) model. 
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from location 1 towards location 0. Implied by Equation (3.1), a more rapid decline in overall 

yield per acre is observed for the less adaptable variety (i.e., greater 𝜇).   

 This is illustrated in Figure 3.1, where the yield curves for both varieties are shown in an 

adaptation of Hotelling’s (1929) model of horizontal differentiation. I assume that variety 1 is 

less adaptable to shifts in growing conditions (e.g., soil moisture) than variety 2 (𝜇1 > 𝜇2). 11 In 

Figure 3.1, �̃� represents the indifferent farmer who, based on her “location”, obtains the same 

yield regardless of the variety she chooses. It is important to note that �̃� does not represent an 

actual geographic location. Rather, it is the ranked land parcel (or farmer) where the varieties’ 

yield performances are equal based on the specified yield curves. Farmers located to the left of �̃� 

face growing conditions that lead them to select variety 1 as the yield per acre is higher than it is 

for variety 2. Likewise, farmers located to the right of �̃� select variety 2 for its relatively higher 

yield in their growing conditions. Therefore, 𝑥1 and 𝑥2 represent the respective market shares of 

each variety, with the more adaptable variety 2 capturing a larger portion of the market. 

 

 
11 This assumption generates a steeper yield curve for variety 1, stemming from a higher degree of specificity that 

reduces the marginal gains in yield of increasing acreage allocated to this variety.  
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Figure 3.1: Hotelling’s linear city applied to wheat variety adoption and adaptability 

 

 

 Following Perloff and Salop (1985), Torshizi (2015), and Torshizi et al. (2018), to 

determine demand (adoption) for each variety, I adopt a surplus maximization approach,12 where 

surplus is a function of these yield curves. I specify surplus from variety i to farmer f, located at 

𝑥𝑓 as: 

 𝑠𝑓𝑖 = 𝑃𝑦𝑖(𝑥𝑓) − 𝑤 , (3.2) 

 

 
12 Alternatively, I could use a profit maximization approach; however, because the fixed costs associated with 

switching between wheat varieties is negligible, it is both simpler and more accurate to shift to producer surplus 

maximization under perfect competition. While switching between different crops may require the purchase of new 

equipment and incurring other fixed costs, production methods for varieties within the same crop type (e.g., wheat) 

are generally similar enough that such costs are minimal (Dahl et al., 1999). There may be small costs of learning 

(e.g., how the variety actually performs on their land, changes in maturing time impacting harvest) but given that 

most varieties would not substantially vary in this respect, such fixed costs could reasonably be assumed to be zero.  
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where 𝑃 is the per unit value of output, yield per acre is a function of location 𝑥𝑓, as defined in 

equation (3.1), and 𝑤 is the cost of seeds to the farmer, previously assumed to be the same for 

both varieties. Adding the assumption that wheat production is perfectly competitive (i.e., famers 

are price takers), total surplus across producers is the sum of the surplus accruing to each 

individual farmer located between 0 and 1 (Figure 3.1). Further, I assume total land area is �̅� =

𝑥1 + 𝑥2 = 1. 13 The aggregate producer surplus optimization problem is: 

 

𝑀𝑎𝑥𝑥1,𝑥2
 𝑆 = ∑ 𝑠𝑓𝑖

𝐹

𝑓=1

= 𝑃 (∫ (�̂� − 𝜇1𝑥1)𝑑𝑥
�̃�

0

+ ∫ (�̂� − 𝜇2𝑥2)𝑑𝑥
1

�̃�

) − 𝑤(𝑥1 + 𝑥2 ) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥1 + 𝑥2 = 1 , 

(3.3) 

 

where 𝑥𝑖 reflects total parcels of land allocated to variety i across all wheat producers and all 

other variables are as previously defined. This constraint is assumed to be binding, implying that 

all land allocated to wheat production by producers is used for either variety 1 or variety 2. To 

simplify, normalize the output price to 𝑃 = 1, which results in the following Lagrangean: 

 
𝑀𝑎𝑥𝑥1,𝑥2,𝜆 𝐿𝑠 = ∫ (�̂� − 𝜇1𝑥1)𝑑𝑥

�̃�

0

+ ∫ (�̂� − 𝜇2𝑥2)𝑑𝑥
1

�̃�

− 𝑤(𝑥1 + 𝑥2) + 

𝜆(1 − 𝑥1 − 𝑥2) , 

(3.4) 

where 𝜆 is the shadow price of land. Taking first order conditions yields: 

 𝑥1
∗ =

 𝜇2

𝜇1 + 𝜇2
  (3.5) 

and 

 𝑥2
∗ =

 𝜇1

𝜇2 + 𝜇1
 , (3.6) 

 

where 𝑥𝑖
∗ reflects demand for variety i. Differentiating demand with respect to the degree of 

specificity of the respective variety, I find:  

 
13 Alternatively, 𝑥𝑖 may reflect the share of the market allocated to variety i, making the constraint on the sum more 

intuitive.  
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 𝑑𝑥1

𝑑𝜇1
= −

 𝜇2

(𝜇1 + 𝜇2)2
< 0 (3.7) 

and 

 𝑑𝑥2

𝑑𝜇2
= −

𝜇1

(𝜇2 + 𝜇1)2
< 0. (3.8) 

 

 This shows that an increase in 𝜇𝑖 reduces 𝑥𝑖, ceteris paribus. That is, as a variety 

becomes less adaptable (i.e., higher degree of specificity) to variations in growing conditions, 

wheat producer demand for that variety declines. From this, I expect to find a negative impact 

from increases in the degree of specificity on adoption in my empirical analysis. 

Now consider a shift in local climate such that variety 2 becomes relatively less adaptable 

to these new growing conditions, while the performance of variety 1 is unaffected. This could 

occur if a decrease in local rainfall resulting from climate change disproportionally affects the 

less drought tolerant variety 2, for example. This increases the sensitivity of variety 2 to its 

growing conditions, thereby increasing its degree of specificity. As a result, the yield curve for 

variety 2 becomes steeper (𝑦2
′ ) and our indifferent farmer shifts from �̃� to x̃′ (see Figure 3.2). 

Demand for variety 2 declines, and a corresponding increase in market share for variety 1 is 

observed even though the yield potential for variety 2 remains unchanged in this model. This 

resulting reduced demand for variety 2 reflects our findings in Equation (3.8) regarding the 

relationship between a variety’s adaptability and its adoption. Therefore, when growing 

conditions shift such that one variety is less capable of maintaining its performance across 

locations (i.e., more sensitive to a shift in climate), demand for this variety is expected to decline. 

To what degree depends on the magnitude of the change in 𝜇𝑖 and the relative adaptability of the 

other variety.  
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Figure 3.2: Hotelling’s linear city applied to a shift in wheat variety adaptability 
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Chapter 4: The data 

 

4.1 Introduction  

This chapter describes the dataset and configurations for this thesis. This includes a complete 

account of the data sources and availability, as well as the construction process of the dataset that 

I use to examine the adoption behaviour of Western Canadian wheat producers. Observations on 

the distribution of wheat acreage across varieties follow this discussion. Finally, this chapter 

concludes by highlighting necessary data adjustments and some of the challenges of data 

collection for this project. Noting these complications is important, as unavailable and 

inconsistent data reporting presents obstacles for both Canadian wheat producers and 

researchers. 

 

4.2 Data regions and sources 

The data for this thesis comes from provincial publications intended to relay varietal information 

to farmers. Provincial Yield Magazines14 provide insured acreage and yield data in their annual 

publications. Additional varietal traits are obtained from provincial Seed Guides15 and varieties’ 

ages from the Canadian Food Inspection Agency’s (CFIA) 16 variety registration database. The 

resulting dataset containing spring wheat varieties ranges from 2009 to 20018 for Manitoba and 

Saskatchewan, and 2013 to 2018 for Alberta.17 Aggregating this into a prairie-wide dataset 

containing both yield and non-yield trait data from all three provinces provides 1,230 

 
14 Agriculture Financial Services Corporation (n.d.), Manitoba Agricultural Services Corporation (n.d.), 

Saskatchewan Crop Insurance Corporation (n.d.) 
15 Alberta Seed Growers & Alberta Seed Processors (n.d.), Manitoba Agriculture and Resource Development, 

Manitoba Seed Growers’ Association, & the Manitoba Co-operator (n.d.), Saskatchewan Seed Growers’ Association 

(n.d.) 
16 Canadian Food Inspection Agency (n.d.) 
17 Limited winter variety data is available in the full dataset. However, it is not used in the analysis of this thesis 

because the differentiated natures (i.e., different planting times, environmental factors, etc.) of winter and spring 

wheat varieties mean that variety selection processes are inherently different. As a result, winter wheat varieties 

require separate analysis but the limited available data (24 total observations) is not sufficient to conduct such an 

analysis. Therefore, this thesis focuses on spring wheat variety only, and all summary statistics exclude winter wheat 

variety data.  



41 

 

observations on 139 varieties, with 350 observations from Alberta, 319 from Manitoba, and 561 

from Saskatchewan.  

 

4.3 Construction of the data 

Since the data for this thesis comes from several sources, it is important that I describe how I 

generate my final dataset for the sake of transparency and future research. Initially, I construct 

provincial datasets with the dependent variable, variety acreage, and the yield based explanatory 

variables derived from provincial Yield Magazine data. I explain the calculations for the latter 

variables in the discussion below. Following this, I discuss the collection of non-yield varietal 

traits such as disease tolerance, maturity rate, and varietal height from provincial Seed Guides. 

Next, I calculate variety age based on information from the CFIA and then present the process 

for matching up the corresponding observations from each of these sources to create complete 

provincial datasets. Finally, I explain the process of merging these datasets into an aggregated 

prairie-wide dataset and summarize each of the dependent and independent variables in Table 

4.2. 

 

4.3.1 Construction of the provincial datasets 

In this section, I discuss the process for constructing the provincial datasets. This includes the 

calculation of the yield-based variables, as well as the process to obtain and configure the other 

varietal trait variables. Following this, I explain the determination of the indicator of varietal 

adoption. Concluding this section, I discuss the process for merging these variables into a single 

dataset.  

  

4.3.1.1 Yield-based variables 

The first step in constructing the provincial datasets is calculating four yield-based variables: 

yield potential, average yield, the degree of specificity, and yield variance. For Manitoba, this 

data is available at the rural municipality level, while Saskatchewan and Alberta report yields at 

the risk zone level. Moving forward, I refer to these municipalities and zones as risk areas.   
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 Yield potential and average yield provide relative indicators of expected variety output 

for Canadian wheat farmers. Calculations for these two variables are straightforward. Yield 

potential is simply the maximum yield observed for a variety in a particular province and year. 

Similarly, average yield is the mean yield of that variety observed within a province in a given 

year. Provincial Yield Magazines provide the information for all insured acreage above a 

province specific threshold used in these calculations.18  

 Calculations for yield variance and the degree of specificity, both potential measures of 

variety adaptability, are slightly more complex. Variety adaptability is defined as “reduced 

variation in performance across locations” (Roy & Kharkwal, 2004, p. 573), or the interaction 

between genotype and location. Previous studies in agricultural economics, including Barkley 

and Porter (1996) use yield variance as the indicator of varietal adaptability, where lower 

variances indicate less volatile and therefore theoretically preferable varieties. I calculate this 

yield variance within a given year as:  

where 𝑠𝑖
2 denotes the yield variance for variety i, y𝑖𝑗 indicates the observed yield of variety i in 

risk area j, and �̅�
𝑖
 is the average yield across the number of risk areas 𝑅𝐴 that variety i is planted 

in a given year. However, Torshizi (2015) argues that using the yield variance as an indicator of 

the adaptability of a variety is potentially misleading; it is possible that two varieties with the 

same yield variance are bred to respond to different growing conditions and have different 

adaptability levels (Torshizi, 2015). Consequently, Torshizi (2015) proposes an alternative 

measure of adaptability to yield variance that better captures this genotype × location interaction 

through considering the range of yields that a variety achieves across various locations. Referred 

to as the degree of specificity, this alternative measure reflects the slope at any point along the 

yield curve when yield levels are ranked in descending order (i.e., the rate of reduction in yield 

as area expands beyond the optimal growing location). As long as the uniform distribution 

assumption is met, the overall slope of the yield curve (i.e., its degree of specificity), as defined 

in chapter three, is:  

 
18 See section 4.5 for an explanation of these thresholds.  
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𝜇𝑖 =

𝑦𝑖
𝑚𝑎𝑥 − 𝑦𝑖

𝑚𝑖𝑛

𝑅𝐴
  , 

(4.2) 

where 𝜇𝑖 is the degree of specificity and 𝑦𝑖
𝑚𝑎𝑥 (𝑦𝑖

𝑚𝑖𝑛) is the annual maximum (minimum) yield 

of variety i across risk areas 𝑅𝐴.  Since the degree of specificity reflects the mathematical 

inverse of adaptability, larger values indicate varieties that are less adaptable to various growing 

conditions (Torshizi, 2015). As chapter five discusses in more detail, I estimate two model forms 

in this thesis, one with yield variance and average yield, the other with the degree of specificity 

(alternatively referred to as variety specificity) and yield potential to compare the performance of 

each potential measure of adaptability.  

 

4.3.1.2 Other variety trait variables 

Following the calculation of these four yield variables, I collect data for non-yield varietal traits 

such as disease tolerance, maturity rate, and varietal height from the provincial Seed Guides. 

Each provincial dataset includes protein content, stem rust, leaf rust, stripe rust, loose smut, bunt, 

leaf spot, fusarium head blight, sprouting, lodging, height, head awn, maturity rate, and seed 

weight variables. Additionally, Alberta and Saskatchewan’s datasets include test weight data.  

For resistance (or tolerance) to lodging, sprouting, and diseases, each province reports on 

a five-category relative scale with slight variations in terminology by province and between 

years. Here, relative refers to the comparative rating each province gives a variety based on its 

performance on a select trait, relative to the check variety. Annual provincial publications update 

these ratings as knowledge about a variety’s reaction to disease increases or if a variety shows a 

change in this reaction (Kirk, 2020b). For example, Saskatchewan rates tolerance from very poor 

to very good for 2009-2014, and susceptible to resistant for 2015-2018. Converting these for all 

provinces to numeric values on a 1 to 5 scale, where 1 indicates very poor or susceptible, I 

maintain the relative ratings while simplifying the data analysis process. The variables measured 

on these 1 to 5 scales are resistances to stem rust, leaf rust, stripe rust, loose smut, bunt, leaf spot, 

fusarium head blight, sprouting, and lodging.  



44 

 

Other variety traits collected from provincial Seed Guides differ slightly in measurement 

across the provincial datasets. For example, after some adjustments, protein content in Manitoba 

reflects the actual percentage, while the other two provincial datasets report the percentage 

content relative to a check variety.19 Maturity rates in Alberta use a five-point scale similar to 

that of the disease tolerances, with 1 indicating relatively slower maturing varieties. However, 

Manitoba and Saskatchewan differ from this, instead reporting the number of days to maturity 

relative to the check varieties. Height and seed weight data again differ between the three Seed 

Guides. Data collected for Alberta reflects the actual height in centimetres, paired with the 

thousand kernel weight in grams. Saskatchewan’s data provides both height and seed weight 

relative to the check variety, using centimetres and milligrams for respective units. Manitoba’s 

height, again requiring some internal adjustments, is on a 1 to 4 scale, with 1 indicating shorter 

varieties. 20 Seed weight refers to the relative four-point scale used to report seed size in this third 

province. Finally, test weight is only available for Alberta (lb/bu) and Saskatchewan (relative 

kg/hl).  

Each provincial dataset also includes assigned wheat classes, whether or not the variety 

has an awned (bearded) head, and the age of each variety. I convert head awn, reported as either 

yes or no in provincial Seed Guides, to a dummy variable where 1 indicates that a variety does 

have an awned head. For variety age, I use the CFIA variety registration database to identify the 

date of registration. With this information, I calculate the age of each variety in months at the 

time of selection. Since planting of wheat in Saskatchewan, the largest producer, generally 

occurs in May (He et al., 2012), I use April 30 of each year as the annual cut-off for variety 

selection in these calculations.  

 

4.3.1.3 Adoption indicator and number of varieties available 

Next, I calculate annual total insured acres of each variety based on risk area level data from the 

provincial Yield Magazines. This data represents the adoption level for each wheat variety, used 

 
19 The reporting format for protein in Manitoba shifts after 2012, thereby requiring some adjustments to obtain a 

consistent measurement over time. For further details on these adjustments, see section 4.5. 
20 The reporting format for height in Manitoba shifts after 2010, thereby requiring some adjustments to obtain a 

consistent measurement over time. For further details on these adjustments, see section 4.5.  
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as the dependent variable in this thesis. I also calculate the provincial shares of insured acres 

allocated to each variety. However, each province only reports yield and acreage data for 

varieties planted above a threshold level of insured acres or producers in the respective risk 

areas. I outline the impacts of this limitation on data availability in more detail in section 4.5. 

One final variable included in the provincial data sets is the number of varieties 

considered available on the market. Although not used directly in the regression models, this 

piece of information is useful in understanding the distribution of wheat acreage across varieties 

and therefore included in the provincial datasets. For consistency in the measure across provinces 

and due to data availability, the number of varieties available reflects the annual number of 

varieties that report yield data in a province. This means that for a variety to be counted as 

available in a given year, it must be planted on insured acres above the minimum threshold for 

each province. As a result, this number does not fully reflect all varieties officially registered 

each year. However, seed distributors are unlikely to actively carry all varieties officially 

registered, as some have been registered for over 30 years. For this reason, using the annual 

number of varieties listed in the Yield Magazine more closely reflects what is actually available 

to farmers, compared to the number of varieties registered to be grown in these three provinces.  

 

4.3.1.4 Merging variables into provincial datasets   

Following the calculations and collection of both yield and non-yield varietal trait variables, I 

merge these observations into a single dataset for each province. This process entails matching 

available data from all three sources: provincial Yield Magazines, provincial Seed Guides, and 

the CFIA variety registration database. Complicating this process is that in several cases, 

corresponding yield and non-yield trait data are unavailable. This is likely in part due to 

Canada’s variety registration system (Kirk, 2020a), which I explain further in section 4.5. 

However, due to their relative nature of measurement, non-yield attributes vary little over time. 

Therefore, farmers may refer to previous publications when Seed Guide data for a particular 

existing variety is unavailable in the latest edition. Assuming this is the case, I fill missing non-
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yield trait data with data from the next closest previous edition.21 This improves the size of the 

provincial level datasets by 37 observations for Alberta, 28 for Manitoba, and 78 for 

Saskatchewan.  

 

4.3.2 Construction of the aggregate prairie provinces dataset 

The aggregate prairie provinces dataset contains all three provincial datasets. In order to be able 

to empirically examine variety adoption using this larger dataset, I add a province identifier 

variable and adjust three other variables: 

(1) Height, 

(2) Protein content, 

(3) Maturity rate. 

All three prairie provinces report slight variations of these variables, making the adjustments 

outlined below necessary to obtain consistent measurement. 

 Since Manitoba’s dataset measures variety height on a four-point scale, I convert Alberta 

and Saskatchewan’s heights to the same unit of measurement. This is done by shifting 

Saskatchewan’s heights from a relative measure to actual centimetres using information on the 

check varieties, converting heights for both provinces to inches, and then assigning the height 

ratings in line with Manitoba’s. In this case, I assign heights less than 27.75 inches a value of 1, 

indicating relatively shorter varieties. Height ratings of 2 indicate varieties between 22.75-33.49 

inches, and ratings of 3 indicate heights of 33.5-39.24 inches. Relatively tall varieties are those 

39.25 inches or taller, assigned a value of 4.22  

 Similarly, protein content is reported at percentage levels in Manitoba, but relative to a 

check in the other two provinces. However, check variety protein contents are available in both 

 
21 Missing non-yield varietal trait data is only filled forwards in time (i.e., only where variety data is available in at 

least one of the previous years). The same argument of farmers referencing an early edition does not apply where 

varietal data is only available in later years and therefore does not exist prior to those years.  
22 Heights in Manitoba range from 22 inches to 45 inches. Thresholds for each rating on the four-point scale were 

determined by dividing this range into four intervals of 5.75 inches. This same scale is then applied to Alberta and 

Saskatchewan.  
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Alberta and Saskatchewan’s Seed Guide data. Using these, I shift protein for both provinces to 

the actual percentage content.  

 Alberta’s reported maturity rate which uses a five-point scale similar to disease tolerances 

means that maturity rates for Saskatchewan and Manitoba must be shifted to a similar scale. 

However, due to differences in growing season lengths across these three provinces, what 

constitutes early maturity in one province is not necessarily early in another. To address this, I 

first shift Saskatchewan and Manitoba from relative days to maturity to the actual number of 

days. Then, using a variety common to all three provinces, I centre the five-point scale for each 

province on AC Barrie’s maturity rate. Common to all three provinces, AC Barrie is reported at 

106 days to maturity in Alberta, 100 in Saskatchewan, and 99 in Manitoba. Table 4.1 provides 

further details on the division into maturity ratings. Using this structure maintains relative 

performances within provinces while providing consistent units in the aggregated dataset.   

 

Table 4.1: Conversion of days to maturity to five-point scale for Manitoba and 

Saskatchewan 

Scale value Manitoba Saskatchewan 

Lower Bound Upper Bound Lower Bound Upper Bound 

1 102  104  

2 100 101 102 103 

3 98 99 99 101 

4 96 97 97 98 

5  95  96 

 

4.3.3 Summary 

Figure 4.1 provides a brief overview of the process of constructing the aggregated dataset for the 

Canadian Prairies. For simplicity, this dataset is used in all modeling for chapter five, with the 

provincial identification variable employed to filter by province where required. This is to 

prevent multiple units for each variable complicating the discussion of the empirical results. 

Table 4.2 summarizes each of these variables in the aggregate prairie provinces dataset, 

including short definitions and sources.    
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Figure 4.1: Construction process for the aggregate dataset for the Canadian prairie 

provinces 
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Table 4.2: Description and sources of variables in the aggregate prairie provinces dataset 

 Variable Description Source(s) 

Adoption 

indicators 

Acres 
Total insured acres allocated to a variety in a given 

year (acres). 

Agriculture Financial Services Corporation (n.d.), Manitoba Agricultural 

Services Corporation (n.d.), Saskatchewan Crop Insurance Corporation 

(n.d.) 

 

Share 
Share of total insured acres allocated to a variety in a 

given year (%). 

Yield variables 

Yield potential 
Maximum reported yield across risk areas for a variety 

in a given year (bu/acre). 

Average yield 
Average reported yield across risk areas for a variety in 

a given year (bu/acre). 

Yield variance 
Variance of reported yields across risk areas for a 

variety in a given year ((bu/acre)2). 

Degree of 

specificity (or 

variety specificity) 

The degree of specificity for a variety in a given year 

(the inverse of adaptability). 

Tolerances (or 

Resistances)  

Lodging Relative scale rating of the variety’s resistance (1-5) 

Alberta Seed Growers & Alberta Seed Processors (n.d.), Manitoba 

Agriculture and Resource Development, Manitoba Seed Growers’ 

Association, & the Manitoba Co-operator (n.d.), Saskatchewan Seed 

Growers’ Association (n.d.) 

Sprouting Relative scale rating of the variety’s resistance (1-5) 

Stem rust Relative scale rating of the variety’s resistance (1-5) 

Leaf rust Relative scale rating of the variety’s resistance (1-5) 

Stripe rust Relative scale rating of the variety’s resistance (1-5) 

Loose smut Relative scale rating of the variety’s resistance (1-5) 

Bunt Relative scale rating of the variety’s resistance (1-5) 

Leaf spot Relative scale rating of the variety’s resistance (1-5) 

Fusarium head 

blight 
Relative scale rating of the variety’s resistance (1-5) 

Other variables 

Protein Protein content of a variety (%). 

Alberta Seed Growers & Alberta Seed Processors (n.d.), Manitoba 

Agriculture and Resource Development, Manitoba Seed Growers’ 

Association, & the Manitoba Co-operator (n.d.), Saskatchewan Seed 

Growers’ Association (n.d.) 

Maturity Relative scale rating of maturity for a variety (1-5). 

Head awn 
Dummy variable where 1 indicates head awned, and 0 

indicates not. 

Height Relative height of plant scale rating (1-4). 

Seed weight 

Seed weight in thousand kernel weight for Alberta, 

relative milligrams to check variety in Saskatchewan, 

and relative scale rating of seed size (1-4) in Manitoba. 

Test weight 
Test weight in kg/hl for Saskatchewan, and bu/lb in 

Alberta. 

Variety age 
Number of months since a variety was registered with 

the VRO (months). 
Canadian Food Inspection Agency (n.d.) 
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4.4 Observations from the data 

In Table 4.3, I present summary statistics for annual total acres allocated to varieties in the full 

dataset, as well as the number of varieties considered available each year. Average total acres 

allocated to a particular variety varies by province, observed at over 76,000 acres in 

Saskatchewan, over 78,000 acres in Alberta, and nearly 69,000 acres in Manitoba. Aggregating 

to the prairie-wide level, average total acres for a given variety is approximately 75,000. 

However, the high associated standard deviations for each of these averages point to large 

differences in adoption across varieties.  

 

Table 4.3: Summary statistics for acres and number of varieties available 

 Alberta Manitoba Saskatchewan 
Aggregate prairie 

provinces 

Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev 

Total acres 

(acres) 
78,095 149,348 68,976 164,161 76,729 152,101 75,107 154,473 

Share of total 

provincial acres 

(%) 

1.64 3.31 3.01 7.23 1.67 3.41 2.01 4.72 

Number of 

varieties 

available 

65.21 3.82 41.03 5.74 74.27 11.32 63.07 15.99 

Sources: Saskatchewan Crop Insurance Corporation (n.d.), Agriculture Financial Services 

Corporation (n.d.), Manitoba Agricultural Services Corporation (n.d.) 

 

Such high standard deviations may stem from the differences between the number of 

varieties available and the number of varieties actually used each year. In Figure 4.2, it is clear 

that there is a substantial gap between the number of varieties registered for use relative to the 

number actually used in each province. This in itself is not overly surprising as several varieties 

are registered prior to 1980 and likely unavailable for purchase from seed distributors by 2009. 

Alternatively using the number of varieties considered available in each year based on Yield 

Magazines, the discrepancy is significantly smaller (Figure 4.3). However, this figure does not 

provide information regarding the distribution of acres across varieties, therefore neglecting to 

show the adoption rates of each particular variety.  
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Figure 4.2: Annual number of varieties adopted above the provincial threshold compared 

to the number of varieties registered for use in the prairie provinces 

 
Sources: Canadian Food Inspection Agency (n.d.), Saskatchewan Crop Insurance Corporation 

(n.d.), Agriculture Financial Services Corporation (n.d.), Manitoba Agricultural Services 

Corporation (n.d.) 

 

Figure 4.3: Annual number of varieties adopted above the provincial threshold compared 

to the number of varieties considered available for use in the prairie provinces 

 
Sources: Saskatchewan Crop Insurance Corporation (n.d.), Agriculture Financial Services 

Corporation (n.d.), Manitoba Agricultural Services Corporation (n.d.) 
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 Plotting the density function reveals that the distribution of acres across varieties is 

heavily skewed to the right (Figure 4.4).23 In all three provinces, the majority of varieties are 

planted on fewer than 500,000 insured acres in any given year, while only a few varieties are 

more widely used. This distortion in distribution is also observable for the second indicator of 

adoption, the annual share of total provincial acres allocated to a particular variety. Considering 

the second density plot in Figure 4.4(a), it is apparent that very few varieties achieve a provincial 

market share of 20% or higher. In fact, it is only in the province of Manitoba (Figure 4.4(c)) that 

any varieties surpass 30% of provincial market share. 

 

 
23 This density function includes all observations over the entire 10-year span of the data. This means it ignores the 

panel nature of the data, treating all observations of acreage for each variety in each year separately.  
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Figure 4.4: Distribution of adoption across varieties and time measured in acres and share of provincial acres for each 

province and in aggregate 

 

Figure 4.4(a): Adoption measured in acres 
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Figure 4.4(b): Adoption measured in share of provincial acres 

 
 

Sources: Saskatchewan Crop Insurance Corporation (n.d.), Agriculture Financial Services Corporation (n.d.), Manitoba Agricultural 

Services Corporation (n.d.) 
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Similar to Dahl et al.’s (1999) observation of a high concentration in few varieties of hard 

red spring wheat in the Canadian prairie provinces, the data appears to reveal a high 

concentration of wheat acreage in a small number of varieties. For example, in 2018, the five 

most popular varieties in each province account for at least 50% of total insured provincial wheat 

acreage that year (Figure 4.5). Of note is AAC Brandon, the top variety by 2018 across the 

Prairies, which accounts for over 65% of Manitoba’s total acreage. In this same year, 

approximately 120 varieties were registered for use in Manitoba, with 33 considered available, 

leaving the remaining 35% of acres allocated across 32 other varieties. This phenomenon is not 

limited to 2018. As Figure 4.6 reveals, the preceding five years exhibit similar concentrations of 

acreage in a handful of varieties, although which varieties form the top five does vary across 

years.  

 

Figure 4.5: Provincial distribution of acres across five most popular varieties (2018) 
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Sources: Saskatchewan Crop Insurance Corporation (n.d.), Agriculture Financial Services 

Corporation (n.d.), Manitoba Agricultural Services Corporation (n.d.) 
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Figure 4.6: Provincial market share of the top five wheat varieties by acreage each year 

(2013-2018) 

 
Sources: Saskatchewan Crop Insurance Corporation (n.d.), Agriculture Financial Services 

Corporation (n.d.), Manitoba Agricultural Services Corporation (n.d.) 
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record height as semi-dwarf, medium, medium-tall, or tall and in centimetres relative to the 

check variety in the following years. Confirming with a contact for Manitoba that only the 

reporting format changed between 2010 and 2011, not the actual nature of measurement (Kirk, 

2020a), I convert both the ratings for 2009-2010 and the reported heights for 2011-2018 to a 

four-point scale. The breakdown of quartiles for converting heights from inches to a four-point 

scale is the same one used to similarly transform heights for Alberta and Saskatchewan in section 

4.3.2, where 1 is indicative of shorter varieties. A similar issue occurs with Manitoba’s protein 

measurement, although in this case it simply shifts from reporting percentage relative to the 

check variety from 2009-2012 to reporting the actual protein percentage in the remaining years. 

To correct this, I use reported protein percentages for the check varieties from 2009-2012 to 

determine the actual percentages for all varieties.  

 CNHR varieties Faller, Elgin ND, and Prosper present their own challenges. All three 

varieties are grown in Manitoba and Saskatchewan over the time period of concern. However, 

yield publications report on these varieties prior to their registration dates as CNHR in 2018, 

some as early as 2010. This complicates the age determination as Seed Guides do not report on 

these varieties until 2016, where they are initially classed as CWIW. According to the CFIA, 

protective direction was granted for Faller in 2008, Prosper in 2012, and Elgin ND in 2014 

(Canadian Food Inspection Agency, 2020). As a result, I use these dates to determine ages of 

these three varieties. Although using the date of protective direction granting fails to fully 

represent the length of time that these varieties have been available, it does provide an 

approximate age.  

 Additionally, Faller, Elgin ND, and Prosper yields are only available in metric 

(tonnes/acre) in Manitoba for 2014 through 2017. Using a ratio of 36.744 bu/tonne of wheat 

(Manitoba Agriculture Statistics, n.d.), I converted these yields to the imperial measure (bu/acre). 

The reason for this discrepancy is unclear, as reported yields for other varieties during these use 

imperial units.   

 Another obstacle in dataset construction is the discrepancies between Yield Magazine 

and Seed Guide reported varieties. In several cases, a variety listed in the Yield Magazine for a 

particular year is not included in the corresponding Seed Guide. The reverse scenario is also 

prevalent which results in a subset of corresponding data between the two provincial 
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publications. According to industry experts, this issue appears to stem at least in part from the 

registration system. For a variety to be registered, it must have three years of official trial data, 

conducted by a recognized organization (Agriculture and Agri-Food Canada, 2013b). Under this 

system, a variety may be registered without going through provincial trials (Kirk, 2020a). For 

example, AAFC or private trials may collect the trait data, leaving it unreported in the provincial 

Seed Guide (Kirk, 2020a). However, Yield Magazines still list data for all varieties planted on 

insured acres in a given year. This allows varieties to appear in the provincial Yield Magazine 

even though the Seed Guide for that year did not report on them (Kirk, 2020a). In the opposite 

scenario, it may be that the distributor has not yet picked up a variety listed in the Seed Guide, 

resulting in no yield reports for that year (Kirk, 2020a). The combination of these two scenarios 

leaves a subset of data containing both non-yield agronomic characteristics and yield 

performance for a variety.  

 Reporting format differences across provinces complicated aggregating the three 

provincial datasets into a single dataset for the Canadian Prairies. Section 4.3.2 provides a 

discussion of the process for addressing these issues. However, consistent measurements across 

provinces for variety seed weight and test weight variables are not possible, meaning that these 

variables are only used in provincial level modeling. This is due to differences in reporting 

formats between provinces, with no data available for test weights and insufficient information 

regarding how the four-point scale used to measure variety seed size is determined in Manitoba.  

 

4.5.2 Missing data 

Another challenge in the data collection process is missing data. Yields are not reported by crop 

insurance corporations for varieties below a minimum threshold. In Saskatchewan, this threshold 

is a minimum allocation of 400 acres to the variety withing a risk zone. Similarly, Manitoba 

reports yields only when at least 500 acres of the variety is grown in a rural municipality, and 

Alberta requires a minimum of 5 producers of the variety within a risk zone. As a result, the 

datasets do not contain complete information on insured acres. In order to identify the 

representativeness of the data, I obtained total acreage of each wheat class from the Canadian 

Grain Commission, the Agriculture Financial Services Corporation, and the Manitoba 

Agricultural Services Corporation. From this, I determined the relative share of missing data for 



60 

 

each wheat class in each province. This information is presented in Table 4.4. The largest wheat 

class, hard red spring (HRS), is missing less than 8% of its total acres in Manitoba and only 4.6% 

in Alberta. However, Saskatchewan’s rate of missing data is relatively high for this class, at 

27.5%. Consequently, the empirical analyses in this thesis are conducted with strong confidence 

for HRS wheat in Alberta and Manitoba, but caution is necessary when interpreting modeling 

results for Saskatchewan. Additional care is needed when interpreting modeling results for most 

other classes due to their relatively higher rates of missing information.   

In addition to a summary of the rates of missing information, Table 4.4 provides 

important information regarding the definition of wheat classes. While official wheat classes are 

determined by the Canadian Grain Commission, each provincial publication has small 

differences in how they refer to these classes. To simplify this, I aggregate wheat classes into 

seven groups: hard red spring (HRS), Canada prairie spring (CPS), durum, extra strong (ES), 

hard white spring (HWS), Khorasan, and winter. The second, third, and fourth columns of Table 

4.4 show which classes from each publication fall into each of these seven larger classes. 

Moving forward, wheat class refers to these larger groups found in column two.  
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Table 4.4: Overview of missing data in various wheat classes based on yield data available 

Province Wheat classes 

Average percentage of 

insured harvested 

acres without yield and 

acreage data 

Share of 

class in total 

area (%) 

Weighted 

average of 

missing data 

across all classes 

(%) 

 (Thesis) (Yield Magazine) (Seed Guide)  

Alberta 

2013-2018 

HRS HRS CWHWS, CWRS, 4.61 72.90 

5.47 

CPS 
CPS CPSR, CWGP, CWSP, CPSW 9.16 12.46 

SWS CWSWS 8.84 2.64 

Winter HRW CWRW 28.37 1.12 

Durum DURUM  3.23 10.70 

CNHR CNHR**  38.33 0.18 

Manitoba 

2009-2018 

HRS RS CWRS 7.40 80.85 

9.51 

HWS HWS CWHWS 29.34 0.66 

CNHR NHR CNHR 14.29 7.73 

ES ES CWES 75.00 0.06 

CPS 
OS CWSWS, CWGP 38.12 2.09 

PS CPSR, CPSW 32.19 0.83 

Durum DURUM  52.63 0.07 

Winter Winter  14.09 7.70 

Saskatchewan 

2009-2018 

CPS CPSW 
CPSR, CPSW, CWGP, CWSP, 

CWSWS 
53.70 5.76 

31.23 

ES ESRSW CWES no total acres available - 

Durum Durum  31.79 34.20 

HRS HRSW CNHR, CWRS 27.47 58.03 

HWS HWSW CWHWS 64.44 0.23 

Khorasan Khorasan  no total acres available - 

Winter Winter  66.03 1.78 

Sources: Canadian Grain Commission (n.d.a), Saskatchewan Crop Insurance Corporation (n.d.), Agriculture Financial Services 

Corporation (n.d.), Manitoba Agricultural Services Corporation (n.d.).  
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A final issue is the unavailability of Seed Guide data for Alberta prior to 2013. The lack 

of available data for 2009-2012 reduces the scope of Alberta’s analyses by four years, relative to 

the other two provinces. However, the number of available observations is still comparable to 

Manitoba’s, and the rates of missing yield data are relatively low for the years that trait data is 

available.  

 

4.5.3 Summary of data collection challenges 

In short, unavailable and inconsistent data reporting are the greatest challenges of data collection. 

The length of time that it took to obtain the necessary data is a key indicator of these issues. 

From a producer perspective, such challenges could create information asymmetries that 

negatively impact their ability to maximize profits. As a researcher, these challenges may reduce 

the generalizability of my results. However, aggregating this data into a dataset containing all 

three Prairie provinces improves on the overall number of observations, allowing me to capture 

an overall idea of which varietal traits factor into variety decisions most within the context of 

available data.  
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Chapter 5: Empirical model 

 

5.1 Introduction 

Chapter five outlines the empirical approach of this thesis. The first section provides a short 

overview of some of the empirical approaches to modeling agricultural technology adoption in 

the literature. The next section discusses several viable empirical models based on the 

approaches of this existing literature and current panel data econometric techniques. Following 

this are sections describing the dependent and independent variables. Finally, I present the 

specification of the econometric model and associated estimation procedures.  

 

5.2 Empirical modeling approaches in the literature 

Empirical analysis of technology adoption behaviour relies on the conceptual frameworks 

outlined in section 3.2 to quantify the effects of various factors of adoption. Using this empirical 

approach, the effects of specific factors in the decision process can be used to understand current 

conditions and predict the success of new technologies in the future. These analyses conducted 

are either ex-ante or ex-post.  

 Ex-ante empirical studies aim to predict market acceptance of a new technology prior to 

its release (Weersink & Fulton, 2020). One approach in this setting is the use of choice 

experiments to estimate farmers’ willingness to pay (WTP). This type of approach to empirical 

modeling of agricultural technology adoption is most helpful for products not yet available or in 

the absence of well-functioning markets for the technology (Asrat et al., 2010). Considering 

sorghum and teff variety adoption in Ethiopia, Asrat et al. (2010) elicit farmers’ WTP for various 

attributes of each variety. Farmers were asked to choose one of three varieties of either sorghum 

or teff based on the productivity, value, environmental adaptability, and yield stability of the 

variety. Using a random parameters logit model to examine responses, Asrat et al. (2010) find 

that farmers are willing to forego some income in favour of more stable yields and better 

environmental adaptability.  

 Ex-post empirical studies rely on the availability of economic data and examine revealed 

preferences for new technology based on the current behaviours of agriculture producers. In 
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general, ex-post approaches employ one of the conceptual frameworks, outlined in chapter three, 

as a guideline (Weersink & Fulton, 2020). Both individual farm and aggregate adoption 

behaviours can be examined in these empirical studies, depending on the nature of the data.  

Where either panel or cross-sectional data is available, analysis is focused on individual 

farm adoption behaviour (Weersink & Fulton, 2020). This approach is used in several studies 

(Barkley & Porter, 1996; Dahl et al., 1999; Fernandez-Cornejo & McBride, 2002; Barret et al., 

2004; Dahl et al., 2004; Abadi Ghadim et al., 2005; Coromaldi et al., 2015), in part because 

cross-sectional and panel data are often more readily available. Using cross-sectional data, 

Coromaldi et al. (2015) apply an endogenous switching regression model to understand which 

factors affect uptake of modern varieties in Uganda and Barkley and Porter (1996) use two-stage 

weighted least squares in their study of Kansas wheat adoption. 

Dahl et al. (1999), Fernandez-Cornejo and McBride (2002), and Abadi Ghadim et al. 

(2005) employ Tobit models to for their empirical analyses. The Tobit model is often used in 

cross-sectional and panel data adoption studies where the dependent variable is constrained or 

the data is truncated. Further, unlike binary adoption modeling, Tobit models estimate both the 

likelihood and the extent of adoption (Fernandez-Cornejo & McBride, 2002; Abadi Ghadim et 

al., 2005). Given that for many agricultural technologies, the decisions to adopt and the intensity 

of this adoption are simultaneous (Fernandez-Cornejo & McBride, 2002), this empirical 

approach provides additional relevant information not captured in other models. Dahl et al. 

(1999) employ a Tobit model in their study of wheat adoption, using the input characteristic 

model previously described for specification of the empirical model. However, they also 

consider a pooled linear approach to empirically estimating adoption of HRS wheat using the 

same specification (Dahl et al., 1999).   

Empirical analyses using time-series data concern aggregate adoption behaviour and the 

diffusion path (Weersink & Fulton, 2020). These studies are generally concerned with predicting 

and explaining diffusion paths. For example, Kuehne et al. (2017) develop an adoption and 

diffusion outcome prediction tool (ADOPT) to predict the level of and the time to peak adoption 

of agricultural technology. ADOPT relies on factors of adoption which indicate the relative 

advantages and the ease of learning associated with the new technology (Kuehne et al., 2017). 

Testing ADOPT’s ability to accurately predict aggregate adoption levels and speed, Kuehne et 



65 

 

al. (2017) find that for Mace wheat in Western Australia, ADOPT estimations of both the 

predicted level and predicted timeline for peak adoption are reasonably close to actual 

observations. Other studies in the literature of aggregate adoption behaviour for agricultural 

technology use random effects models when dealing with panel data (Fischer et al., 1996) or 

logistic estimation (Dinar & Yaron, 1992) to predict diffusion paths over time.  

While the above review summarizes many of the approaches of the existing literature in 

crop adoption, many of these empirical models are not capable of accounting for unobservable 

variety specific time invariant effects while simultaneously providing estimates for observable 

time invariant variety traits. This is an issue in the case of wheat variety adoption, where both 

time invariant traits and variety specific effects are included in the adoption model. Most existing 

approaches in the agricultural literature have relied on pooling panel data in order to be able to 

identify effects for time invariant varietal traits (Barkley & Porter, 1996; Dahl et al., 1999). 

However, in neglecting to address the panel nature of the data the resulting estimates are likely 

biased and inconsistent (Baltagi, 2005; Verbeek, 2017).  

In the following section, I explore some of these empirical approaches and the advantages 

and disadvantages of each in more detail. Additionally, I consider several other empirical models 

that were not used by this subsample of the literature but may have desirable empirical properties 

for this application.  

 

5.3 Research aims and empirical models 

The key aim of this study is to determine which varietal attribute(s) are most important to variety 

adoption decisions by wheat producers on the Canadian prairies. Of particular interest is the 

relationship between a variety’s adaptability to various growing conditions and its adoption. I 

explore these relationships empirically for overall variety adoption, as well as for particular 

wheat classes and provinces using several econometric models.  

 The dependent variable in the adoption models takes two forms: first as the total insured 

acreage, and second as the percentage share of total insured acres. Therefore, I consider both 

least squares and maximum likelihood based econometric models. Further, the empirical models 

deal with three types of independent variables: time variant, slowly changing, and time invariant. 
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Time variant independent variables such as average yield, and the degree of specificity change 

over time for each variety. Slowly changing, or rarely changing variables exhibit minimal 

within-group (i.e., within-variety) variation from year to year (Breusch et al., 2011; Greene, 

2011). Some examples are variety disease tolerance, maturity rate, and height, which change 

slowly across years either due to changes in the provincial rating scale or as knowledge about a 

particular variety improves (Kirk, 2020b). Finally, time invariant attributes remain constant over 

the time period (e.g., head awn), the variety either has the trait or it does not.  

The following sections present the relevant empirical models and their respective 

advantages and disadvantages in modeling wheat variety adoption. This includes the abilities of 

these econometric models to deal with the various types of dependent and independent variables. 

Table 5.1 in the final section provides a brief summary of the key elements of each approach. 

 

5.3.1 Pooled ordinary least squares 

The first model, the pooled ordinary least squares (pooled OLS) regression model, is specified as 

follows: 

 
𝑦𝑖𝑡 =  𝛼 + 𝑥𝑖𝑡𝛽 + 𝑧𝑖𝜂 + 𝜀𝑖𝑡 , 

 

(5.1) 

where 𝛼 is the constant, 𝑖 = 1, … , 𝑛 varieties and 𝑡 = 1, … , 𝑇 time periods. Here 𝑦𝑖𝑡 represents 

the adoption level measured in acres, 𝑥𝑖𝑡 represents the set of time variant and slowly changing 

independent variables and 𝑧𝑖 is the set of observed time invariant regressors. 𝛽 and 𝜂 are the 

parameters of interest to be estimated and 𝜀𝑖𝑡 is the error term. Alternatively, Equation (5.1) is 

written as: 

 𝑦 = 𝑋𝛽 + 𝑍𝜂 + 𝜀 , (5.2) 

where y and 𝜀 are 𝑛𝑇 × 1 vectors, X is a 𝑛𝑇 × 𝐾 matrix, Z is a 𝑛𝑇 × 𝐺, 𝛽 is a 𝐾 × 1 vector, and 

𝜂 is a 𝐺 × 1 vector. The pooled OLS estimators of 𝛽 and 𝜂 are: 

 �̂�𝑃𝑂𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑦 , (5.3) 
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�̂�𝑃𝑂𝐿𝑆 = (𝑍′𝑍)−1𝑍′𝑦 , (5.4) 

where �̂�𝑃𝑂𝐿𝑆 is a 𝐾 × 1 vector and �̂�𝑃𝑂𝐿𝑆 is a 𝐺 × 1 vector. Under the Gauss-Markov 

assumptions, �̂�𝑃𝑂𝐿𝑆 and �̂�𝑃𝑂𝐿𝑆 are best linear unbiased estimators (BLUE) (Verbeek, 2017).24 

This straightforward approach examines the relationship between adoption (measured as 

total insured acreage) and both time variant and time invariant variety characteristics. However, 

pooled OLS ignores the panel nature of the data, instead stacking it and estimating using OLS. If 

there is minimal variation within a panel across years, this approach may be more efficient than a 

fixed effects approach (Verbeek, 2017). But, where sufficient heterogeneity between panels 

exists, pooled OLS produces biased and inconsistent estimators (Baltagi, 2005; Verbeek, 2017). 

Given that the registration process requires differentiation between new and existing varieties, I 

expect biased pooled OLS estimates (Canadian Food Inspection Agency, 2012). In this case, a 

panel data econometric approach is more appropriate.  

 

5.3.2 Fixed effects 

The fixed effects regression is one panel data econometric approach. With a specific set of n 

varieties, this model captures unobserved heterogeneity and time invariant factors by allowing 

the variety specific coefficients to vary across varieties (Baltagi, 2005; Verbeek, 2017). To do 

this, the standard fixed effects model uses a one-way error component with a single cross section 

variable, in this context the variety, to measure changes within a variety over time (Baltagi, 

2005; Verbeek, 2017). A more complex fixed effects model is the two-way error component 

model which captures both time fixed effects and variety fixed effects (Baltagi, 2005). This 

alternative model and its appropriateness for modeling variety adoption is discussed in more 

detail in Appendix C with results included in Appendix D.25 Key to both of these models is the 

 
24 The Gauss Markov assumptions are: (1) 𝑦𝑖𝑡 is linear in parameters (2) 𝐸(𝜀𝑖𝑡) = 0 (3) Homoskedasticity: 𝑣(𝜀𝑖𝑡) =

𝛿2 (4) No autocorrelation: 𝐶𝑜𝑣(𝜀𝑖𝑡 , 𝜀𝑖𝑠) = 0 (5) No endogeneity: 𝐶𝑜𝑣(𝜀𝑖𝑡 , 𝑥𝑖𝑡) = 0 (6) 𝑥𝑖𝑡  and 𝑧𝑖 are non-stochastic 

(7) 𝜀𝑖𝑡~𝑁(0, 𝜎2). 
25 The two-way fixed effects model is not included in the main analysis due to a combination of unclear 

interpretations of the results in this context and a lack of severe shocks or visible trends in total insured and seeded 

acreages at either the provincial or prairie-wide levels. Further details on this are available in Appendix C, with 

results for a two-way fixed effects model included in the tables of alternative models in Appendix D. 
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allowance of endogeneity between all regressors and the variety specific fixed effects (Baltagi et 

al., 2003; Baltagi, 2005; Verbeek, 2017). 

Using the least squares dummy variable estimator (LSDV), which adds a dummy variable 

for each variety into the model, the fixed effects equation is:  

 𝑦𝑖𝑡 =  𝛼 + 𝑥𝑖𝑡𝛽 + 𝜀𝑖𝑡 , (5.5) 

where, following Baltagi’s (2005) definition, the one-way error component  𝜀𝑖𝑡 is specified as: 

 𝜀𝑖𝑡 = 𝑑𝑖𝛾 + 𝑤𝑖𝑡 . (5.6) 

Here, 𝑑𝑖 denotes variety dummy variables, 𝛾 represents the variety specific fixed effects, and 𝑤𝑖𝑡 

is the stochastic error component. The 𝑧𝑖’s from Equation (5.1) in this case are a linear 

combination of the dummy variables; therefore 𝜂 cannot be separated from 𝛾. However, when 

the number of varieties n is large, the LSDV approach requires too many individual dummy 

variables (Baltagi, 2005; Verbeek, 2017).  

Alternatively, the within estimator is identical to the LSDV, but uses a regression model 

in deviations from variety means (Baltagi, 2005; Verbeek, 2017). Subtracting the variety means 

from Equation (5.5), the within transformed model is: 

 �̃�𝑖𝑡 = �̃�𝑖𝑡 𝛽 + �̃�𝑖𝑡 ,  (5.7) 

where �̃�𝑖𝑡 = 𝑦𝑖𝑡 −
∑ 𝑦𝑖𝑡

𝑇
𝑡=1

𝑇
, �̃�𝑖𝑡 = 𝑥𝑖𝑡 −

∑ 𝑥𝑖𝑡
𝑇
𝑡=1

𝑇
, and �̃�𝑖𝑡 = 𝑤𝑖𝑡 −

∑ 𝑤𝑖𝑡
𝑇
𝑡=1

𝑇
. The time invariant fixed 

effects cancel out in this step. Rewriting this in matrix form, the model is: 

 �̃� = �̃�𝛽 + �̃�, (5.8) 

where �̃� and �̃� are 𝑛𝑇 × 1 matrices, �̃� is 𝑛𝑇 × 𝐾, and 𝛽 is 𝐾 × 1. The fixed effects estimator of 

𝛽 is: 

 �̂�𝐹𝐸 = (�̃�′�̃�)
−1

�̃�′�̃� . (5.9) 
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Here, �̂�𝐹𝐸 is a 𝐾 × 1 vector. Assuming that all 𝑥𝑖𝑡 are independent of all 𝑤𝑖𝑡, the fixed effects 

estimator �̂�𝐹𝐸 is unbiased (Verbeek, 2017).  

Advantages of the fixed effects approach are that it produces a consistent estimator and 

allows us to address variety specific omitted variable bias by focusing on within-variety 

variations (Verbeek, 2017). However, no coefficients on the observable time invariant attributes 

are generated using this method. As one of the aims of empirical modeling includes determining 

the coefficients on time invariant variety attributes such as head awn, this approach will not be 

sufficient to answer all of the research questions. 

 

5.3.3 Random effects 

To capture time invariant attribute effects, one alternative is the random effects regression 

model. This model estimates the time invariant variable effects while accounting for the panel 

nature of the data within a single regression using generalized least squares estimation (Baltagi, 

2005). Combining Equation (5.1) and Equation (5.6), the random effects model is: 

 𝑦𝑖𝑡 =  𝛼 + 𝑥𝑖𝑡𝛽 + 𝑧𝑖𝜂 + 𝑑𝑖𝛾 + 𝑤𝑖𝑡 , (5.10) 

where all variables are as previously defined. This random effects model is better than the fixed 

effects in that it provides estimates for the time invariant variety traits. However, in contrast to 

the fixed effects model which allows correlation between the independent variables and the 

variety specific effects, the random effects approach assumes that all independent variables are 

exogenous, meaning that there is no correlation between the variety specific effect 𝛾 and all 

independent variables (i.e., 𝑥𝑖𝑡 and 𝑧𝑖) (Baltagi et al., 2003; Baltagi, 2005; Verbeek, 2017). This 

key assumption of the random effects models does not hold for variety adoption, as at least some 

of the explanatory variables (i.e., yield potential) are impacted by unobservable variety specific 

traits. Therefore, this approach is not appropriate for this thesis. 
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5.3.4 Hausman-Taylor instrumental variable 

Alternatively, I consider the Hausman-Taylor instrumental variable (Hausman-Taylor IV) model. 

Developed to address the limitations of the fixed effects and random effects models, the 

Hausman-Taylor IV model allows some regressors to be correlated with the variety specific 

effects, alleviating the restrictive all or nothing assumptions of the other two models (Baltagi et 

al., 2003; Baltagi, 2005). This alternative approach splits the independent variables into 

exogenous and endogenous groups and uses the within and between variation of the strictly 

exogenous variables as internal instruments for the endogenous variables (Baltagi et al., 2003; 

Baltagi, 2005).  

 The Hausman-Taylor model is: 

 𝑦𝑖𝑡 =  𝛼 + 𝑥1𝑖𝑡𝛽 + 𝑥2𝑖𝑡𝛽 + 𝑧1𝑖𝜂 + 𝑧2𝑖𝜂 + 𝑑𝑖𝛾 + 𝑤𝑖𝑡 , (5.11) 

where the 𝑥1𝑖𝑡 and 𝑧1𝑖 regressors are exogenous to the variety specific effects 𝛾 by assumption. 

Conversely, 𝑥2𝑖𝑡 and 𝑧2𝑖 are endogenous regressors. As in the other models, 𝑥1𝑖𝑡 and 𝑥2𝑖𝑡 

represent the time variant regressors, while 𝑧1𝑖 and 𝑧2𝑖 indicate the time invariant regressors. An 

alternative representation of Equation (5.11) is: 

 𝑦 =  𝑋𝛽 + 𝑍𝜂 + 𝐷𝛾 + 𝑊 . (5.12) 

Here, 𝑋 = [𝑋1, 𝑋2] is a 𝑛𝑇 × 𝐾 matrix where 𝑋1 is a 𝑛𝑇 × 𝑘1 vector of the 𝑥1𝑖𝑡, 𝑋2 is a 𝑛𝑇 × 𝑘2 

vector of the 𝑥2𝑖𝑡, and 𝐾 = 𝑘1 + 𝑘2. Similarly, 𝑍 = [𝑍1, 𝑍2] is 𝑛𝑇 × 𝐺 matrix where 𝑍1 is a 

𝑛𝑇 × 𝑔1 vector of the 𝑧1𝑖, 𝑍2 is an 𝑛𝑇 × 𝑔2 vector of the 𝑧2𝑖, and 𝐺 = 𝑔1 + 𝑔2. Finally, 𝐷 is a 

𝑛𝑇 × 𝑛 matrix of variety dummy variables, 𝛾 is a 𝑛 × 1 vector, and W is a 𝑛𝑇 × 1 vector of the 

random error component. Pre-multiplying by the variance covariance Ω−
1

2 matrix of the error 

term 𝑑𝑖𝛾 + 𝑤𝑖𝑡, the Hausman-Taylor model performs a two-stage least squares estimation using 

𝐴 = [�̃�, �̅�1, 𝑍1] as the instrumental variables (Baltagi et al, 2003; Baltagi, 2005). Here, �̃� is the 

within transformation of 𝑋 and �̅�1 is the time averages of 𝑋1. The Hausman-Taylor estimators of 

𝛽 and 𝜂 are: 
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 �̂�𝐻𝑇 = (�̆�′𝑃𝐴�̆�)
−1

�̆�′𝑃𝐴�̆� , 

�̂�𝐻𝑇 = (𝑍′𝑃𝐴�̆�)
−1

�̆�′𝑃𝐴�̆� , 

(5.13) 

(5.14) 

where 𝑃𝐴 is the projection matrix of 𝐴 = [�̃�, �̅�1, 𝑍1] and �̆�, �̆�, and �̆� are generalized least squares 

transformations (Baltagi, 2005). 

 In theory, this approach addresses some of the weaknesses of the pooled OLS, fixed 

effects, and random effects models. First, it accounts for heterogeneity between varieties, 

reducing the risk of bias inherent with a pooled OLS approach. Second, this approach has the 

added advantage over the standard fixed effects model of allowing us to estimate the coefficients 

on the observed time invariant regressors. Third, as long as there are more exogenous time 

variant regressors than endogenous time invariant regressors (i.e., 𝑘1 > 𝑔2), the Hausman-Taylor 

IV model is more efficient than the standard fixed effects model (Baltagi et al., 2003; Baltagi, 

2005). Finally, this approach relaxes the restrictive exogeneity assumption of the random effects 

model (Baltagi et al., 2003; Baltagi, 2005).  

 In practice, the additional assumptions of the Hausman-Taylor IV model are potentially 

problematic. Due to the model’s use of exogenous variables as internal instruments for the 

endogenous variables, this model requires knowledge of which variables are uncorrelated with 

the variety specific effects. However, in the absence of a pretest for this exogeneity, identifying 

viable internal instruments with certainty is difficult, if not impossible, in empirical applications. 

As Chatelain and Ralf (2021) explain, “without a pretest for the exogeneity of internal 

instruments, the Hausman-Taylor estimator faces potential endogeneity bias by wrongly 

assuming that all internal instruments are exogenous” (p.157).  

In the context of wheat variety adoption, this endogeneity bias is a likely issue. While 

confidence in the exogeneity of variety head awn is fairly strong, for several other variety 

attributes, the argument for exogeneity is less obvious. For example, in this thesis, I argue that 

variety disease tolerance is intrinsic to the variety and that including varietal adaptability 

explicitly in the model removes any possible correlation between disease tolerance and the 

variety specific effects that stem from growing condition sensitivity. However, there is a degree 

of doubt in this argument. This challenge of confidently identifying exogenous variables, paired 
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with a limited number of time variant independent variables, most of which are likely correlated 

with the variety effects, indicates the Hausman-Taylor IV model is not the best approach for this 

thesis.  

 

5.3.5 Fixed effects filter 

A third alternative to the fixed effects model is the fixed effects filter (FEF) model. Developed 

by Pesaran and Zhou (2018), this relatively newer approach builds on the standard fixed effects 

model by allowing for the estimation of effects for time invariant variety traits and involves two 

steps: 

Step (1): Estimate the standard fixed effects model containing all time variant regressors 

on the level of adoption using Equation (5.5) and Equation (5.6).  

Step (2): Estimate the effects of the observable time invariant regressors on the time 

averages of the residuals obtained in the first step �̅�𝑖 using OLS. This secondary 

regression is specified as: 

 �̅�𝑖 = 𝜌 + 𝑧𝑖
′𝜂 + 𝛿𝑖 , (5.15) 

where �̅�𝑖 =
∑ (�̃�𝑖𝑡−�̃�𝑖𝑡

′ �̂�𝐹𝐸
𝑇
𝑡=1 )

𝑇
,  𝜌 is the constant, 𝛿𝑖 represents the error term of this second 

regression, 𝑧𝑖 is the set of observed time invariant regressors and 𝜂 the FEF estimated effects of 

these variables. In matrix form, the FEF estimator for 𝛽 is �̂�𝐹𝐸𝐹 = �̂�𝐹𝐸 and for 𝜂 is: 

 �̂�𝐹𝐸𝐹 = (𝑍′𝑍)−1𝑍′�̅� , (5.16) 

where �̅� is a 𝑛𝑇 × 1 matrix of the time averaged residuals in Step (1). The first step of the FEF 

filters out the effects of the time variant regressors, allowing the second step to provide estimated 

coefficients for the observed time invariant traits (Law & Zhou, 2017; Pesaran & Zhou, 2018). 

Conditioning on the orthogonality of the observed time invariant traits and the variety specific 

fixed effects (i.e., 𝑐𝑜𝑣(𝑧𝑖, 𝛿𝑖) = 0), Pesaran and Zhou (2018) show that this FEF estimator is 

consistent, even in the presence of residual serial correlation.  
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 Although its relative newness means that Pesaran and Zhou’s (2018) FEF approach is not 

as widely used in the agricultural technology adoption literature as some of the other models 

previously discussed, this model has several advantages. First, the FEF includes variety specific 

effects, accounting for the variety specific heterogeneity ignored by a pooled OLS approach. In 

the context of wheat adoption, this is important, as by nature of the variety registration system, 

wheat varieties are inherently differentiated (Canadian Food Inspection Agency, 2012). Second, 

the FEF model utilizes the well-established fixed effects model but adds the ability to provide 

estimated coefficients for time invariant variables. Third, it does not require the critical 

assumption of the random effects model that there is no correlation between regressors and 

variety specific effects which, as discussed above, cannot be met in the context of this thesis. 

Fourth, the FEF approach conditions only on orthogonality between the time invariant variables 

and variety specific effects. This is advantageous to the Hausman-Taylor IV which requires 

assumptions regarding the orthogonality of all variables and these variety effects; assumptions 

that come with limited confidence for wheat variety traits. Further, because the first step of the 

FEF is a fixed effect model, only the second step estimates are impacted if the orthogonality 

assumptions are incorrect. This is preferable to the Hausman-Taylor IV model, where all 

estimates suffer from bias when one of its many assumptions fail (Chatelain and Ralf, 2021). 

Finally, the FEF model has the same respective advantages over the Tobit and fixed effects Tobit 

models discussed in the next section as it does over the pooled OLS and fixed effects 

approaches.  

Overall, the FEF model addresses variety specific heterogeneity, while providing 

estimates for all independent variable types with minimal exogeneity assumptions. In aggregate, 

these advantages suggest that this approach is the most appropriate for empirically modeling 

wheat variety adoption decisions in this thesis. However, this approach is not possible when the 

dependent variable takes the form of the percentage share of total acreage.  

 

5.3.6 Tobit and fixed effects Tobit  

In the models where I treat the adoption dependent variable as the percentage share of total 

acreage, I consider the two-limit Tobit model where the dependent variable is constrained 

between 0% and the highest provincial market share achieved (Baltagi, 2005; Verbeek, 2017). 
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Analysis with this alternative dependent variable provides a robustness test of the results in the 

other models previously discussed and the Tobit approach avoids impossible predictions given 

the limited nature of this dependent variable (i.e., percentage by definition must be between 0 

and 100). The model is: 

 𝑦𝑖𝑡
∗ =  𝛼 + 𝑥𝑖𝑡𝛽 + 𝑧𝑖𝜂 + 𝜀𝑖𝑡 , (5.17) 

where 

 

𝑦𝑖𝑡 = {

𝑦𝑖𝑡
∗  𝑖𝑓 0 < 𝑦𝑖𝑡

∗ < ℎ

0 𝑖𝑓 𝑦𝑖𝑡
∗ ≤ 0

0 𝑖𝑓 𝑦𝑖𝑡
∗ ≥ ℎ

 

(5.18) 

and 𝑦𝑖𝑡
∗  denotes the latent dependent variable, measured as the percentage share of acres and ℎ is 

the highest provincial market share achieved. All other variables are as previously defined in the 

pooled OLS model. The estimated marginal effects are:  

 
𝑀𝐸𝑋

𝑇 = 𝛽TΦ(
𝑥𝑖𝑡𝛽𝑇

𝜎
) , 

𝑀𝐸𝑍
𝑇 = 𝜂TΦ(

𝑧𝑖𝜂𝑇

𝜎
) , 

(5.19) 

(5.20) 

where 𝑥𝑖𝑡 are again the time variant regressors, 𝑧𝑖 are the time invariant regressors,  𝛽𝑇 and 𝜂T 

are the parameters from the Tobit model, Φ is the cumulative density function, and 𝜎 is the 

standard deviations of the residuals.  

 This model is well established as an approach to dealing with continuous limited 

dependent variables, using maximum likelihood to generate estimates (Baltagi, 2005; Verbeek, 

2017). However, similar to the pooled OLS, the two-limit Tobit model ignores the panel nature 

of the data (Baltagi, 2005; Verbeek, 2017). If sufficient unobservable heterogeneity between 

varieties exists, then the estimates in this approach are biased (Baltagi, 2005).  

 An alternative is to use the fixed effects Tobit model. By including variety specific fixed 

effects 𝛾 in the model, it accounts for some of the omitted variable bias of the standard two-limit 



75 

 

Tobit (Baltagi, 2005). In this case, the error term is again split into Equation (5.6) with the 

estimated marginal effect:  

 
𝑀𝐸𝑋

𝐹𝐸𝑇 = 𝛽𝐹𝐸𝑇Φ(
𝑥𝑖𝑡𝛽𝐹𝐸𝑇

𝜎
) , (5.21) 

Here, 𝛽𝐹𝐸𝑇 are the parameters from the fixed effects Tobit model, Φ is the cumulative density 

function, and 𝜎 is the standard deviations of the residuals for the fixed effects Tobit. However, 

this model is subject to finite sample bias in the estimated standard errors and does not provide 

estimated coefficients for time invariant traits (Greene, 2004a; Greene, 2004b). As these 

estimated standard errors are used to determine marginal effects, the fixed effects Tobit model is 

potentially biased.   

 

5.3.7 Summary of models 

The preceding discussion outlines the various advantages and disadvantages of seven regression 

models, summarized here in Table 5.1. From this discussion, it appears that Pesaran and Zhou’s 

(2018) FEF model is the best fit for modeling wheat variety adoption. This model overcomes the 

shortcomings of each of the other six empirical models; allowing the estimation of both time 

variant and time invariant variety attribute effects without requiring as many challenging 

assumptions as the Hausman-Taylor IV model. Further it reduces the risk of bias, relative to the 

pooled OLS and Tobit models by accounting for variety differentiation. For these reasons, the 

preferred model is FEF model because it allows me to examine which varietal attribute(s) are 

most important in Western Canadian wheat producers’ variety decisions. I include results from 

the other models for comparison purposes.  
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Table 5.1: Summary of key elements for relevant econometric approaches 

Econometric Model 

Limited 

dependent 

variable 

Accounts 

for panel 

nature 

Observable 

time invariant 

effects 

Does not require assumptions 

regarding variety specific 

effects and: 

    
Time variant 

regressors 

Time invariant 

regressors 

Pooled OLS   ✓  ✓  ✓  

Fixed effects  ✓   ✓  NA* 

Random effects  ✓  ✓    

Hausman-Taylor IV   ✓  ✓    

Fixed effects filter  ✓  ✓  ✓   

Tobit ✓   ✓    

Fixed effect Tobit ✓  ✓   ✓  NA* 

*These models do not include estimated effects for time invariant regressors. 

 

5.4 Variables 

This section outlines the variables of the empirical models. I present the two dependent variable 

forms first, followed by the time variant independent variables. Next, I discuss the time invariant 

and slowly changing independent variables. Finally, I provide the variable summary statistics for 

the prairie-wide (Table 5.3), provincial (Table 5.4), and wheat class (Table 5.5) levels.  

 

5.4.1 Dependent variables 

Following the approach of Torshizi (2015), the dependent variable takes two forms. I measure 

adoption as the insured acres (acres) that a given variety is grown on each year in the pooled 

OLS, Hausman-Taylor IV, and FEF models. For the two-limit Tobit and FE Tobit, I use the 

percentage share of provincial acres (share) to measure variety adoption. In this case, the 

dependent variable is constrained between 0% and the highest provincial market share achieved 

by a variety. However, the primary analysis of this thesis focuses on the FEF model due to its 

advantageous properties in this context, and therefore uses acres as the dependent variable in the 

discussions below.  
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5.4.2 Time variant independent variables 

As defined earlier in this chapter, variety attributes which change over time for a particular 

variety are called time variant. Based on a review of the relevant literature, discussions with 

wheat industry members, and data availability in provincial publications, the degree of 

specificity, yield variance, yield potential, average yield, life cycle, and protein content form the 

set of time variant factors of wheat variety adoption for this thesis. Below is a short discussion of 

each of these variables. 

The degree of specificity serves to indicate the sensitivity of a variety to its growing 

environment, which impacts varietal yields. Literature in this area of agricultural economics is 

limited, and much of the existing literature relies on yield variance to measure the impacts of 

yield uncertainty in crop adoption decisions (e.g., Barkley and Porter (1996)). However, as I 

previously discuss in chapter four, yield variance may be misleading. Therefore, I estimate 

varietal adaptability using the degree of specificity but include a second set of models with yield 

variance for comparison. From the conceptual framework developed in the previous chapter, I 

hypothesize that varieties with higher degrees of specificity will be less widely adopted. As this 

measure is the inverse of adaptability, it follows that I predict a positive relationship between 

variety adaptability and adoption.  

Yield is another significant factor in adoption decisions, and as such, a majority of the 

crop adoption literature includes relative advantages in yield in some form (Barkley and Porter, 

1996; Dahl et al., 1999; Abadi Ghadim et al., 2005; Asrat et al., 2010; Torshizi, 2015). Varieties 

with either higher average yield or superior yield potential offer an increase in expected profits 

for farmers. Therefore, I estimate the effects of both measures of yield on adoption in separate 

models, predicting that varieties with higher values of either yield measure have higher adoption 

rates.  

Based on the existing literature, variety age is another determinant of adoption (Dahl et 

al., 1999; Torshizi, 2015). New varieties follow a cycle of initial growth in adoption, reaching a 

maximum market share, and then declining in use as newer varieties enter the market and older 

varieties become more susceptible to evolving diseases (Dahl et al., 1999). Therefore, I follow 

the approach of these studies, including variety age to the third-degree polynomial in the 
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regressions, measured in months since release, to account for this pattern and allow for 

asymmetries in adoption and disadoption.  

Protein content, the fourth time variant attribute, is a key determinant of both the wheat 

class of a variety and the quality grade wheat receives under the Canadian Grain Commission’s 

grading standards (Canadian Grain Commission, n.d.b). Measured as the percentage content 

reported by each province and based on a long-term moving average (e.g., approximately 20 

years in Manitoba), these values vary slightly from year to year (Kirk, 2020b). Such slight 

changes over time reflect the influences of growing and harvest conditions on realized protein, 

but are notably smaller than variations in the other time variant traits included in the dataset due 

to being a long-term moving average (i.e., the ratio of the standard deviation to mean is visibly 

smaller for protein content in the summary statistic tables available Section 5.4.4). Since the 

grade that a delivery of wheat receives within its wheat class influences the sale price, protein 

content serves as an end-use value indicator in this thesis. I anticipate that higher protein 

percentage varieties are more widely adopted.  

 

5.4.3 Slowly changing and time invariant independent variables 

As with the other explanatory variables outlined in this section, the slowly changing and time 

invariant factors of wheat adoption are based on the information available from the literature, 

industry, and provincial publications. Slow changing variety traits, as defined in section 5.3, vary 

slowly over time due to changes in the rating scale or improvements in knowledge about a 

particular variety (Kirk, 2020b). This means that these traits do not necessarily change in a 

tangible way (e.g., improved genetics), but do so as an artefact of grading on a relative scale 

leading to slight differences in their values across time. Depending on the scope of analysis (i.e., 

prairie-wide, provincial, wheat class), some of these traits are time invariant over the period of 

interest. 26 One variable, head awn, is time invariant at all analysis levels. Using the data 

available in the provincial Seed Guides, I consider the following additional determinants of 

wheat variety adoption.  

 
26 Time invariant variables: head awn at all levels; all other slowly changing variables except for test weight become 

time invariant over the relevant time period in at least one of the subset models (see Appendix B for complete list).  
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 The first is disease tolerance. Tolerance of wheat varieties to stem rust, leaf rust, stripe 

rust, loose smut, bunt, leaf spot, and fusarium head blight are reported in Seed Manitoba, Sask 

Seed, and the Alberta Seed Guide27. Table 5.2 provides an overview of the favourable conditions 

and impacts of disease outbreaks. Increased tolerance (i.e., higher tolerance ratings) to these 

diseases improve wheat quality and reduce the risk of loss to the producer, thereby increasing 

expected yields. As such, I expect each of these traits to impact variety selection. However, 

Alberta lacks sufficient available data for leaf rust and stem rust. To avoid omitting all 

observations for this province as a result of this incomplete information, I include leaf rust and 

stem rust only in provincial level modeling for Saskatchewan and Manitoba. 

It also is important to clarify that when changes to disease tolerance ratings of a particular 

variety occur, it stems either from changes to the rating scale itself, or as more information is 

gathered on the variety and adjustments are made to its rating. In other words, the inherent 

disease tolerance (i.e., tolerance stemming from genetic design) does not change over time, but 

the perception of it may. Since farmer’s variety decisions are based on the perceived disease 

tolerance published in Seed Guides, disease tolerances are time variant in some cases studied in 

this thesis. 

 

  

 
27 Alberta lacks sufficient available data for leaf rust and stem rust. To avoid omitting all observations for this 

province due to incomplete information within observations, leaf rust and stem rust are not included in modeling for 

prairie-wide, wheat class, and Alberta.  
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Table 5.2: Overview of favourable conditions and impacts of disease outbreaks 

Disease Conditions Impacts 

Stem rust 
Favours excess moisture and 

moderate to high temperatures. 

Early-stage infections can be severe, 

costing grain weight and quality. 

Leaf rust 

Favours moderate to high 

temperatures and excess moisture 

(rain or dew). 

Negatively impacts kernels and test 

weights. 

Stripe rust 
Favours cooler temperatures and 

excess moisture. 

Negatively impacts kernels and test 

weights. 

Loose smut 
Favour cooler, humid planting 

conditions. 

Losses depend on affected spikes, 

with generally low incidence. 

Bunt 
Favours cooler temperatures at the 

germination stage. 

Results in considerable yield loss for 

susceptible varieties. 

Leaf spot 
Favours a wide range of temperatures 

and long periods of excess moisture. 

Severe cases reduce test weights by 

prematurely killing leaves. 

Fusarium 

head blight 

Favours humid conditions and 

moderate to high temperatures. 

Negatively impacts grain quality. 

May also produce a harmful 

mycotoxin. 

Source: Duveiller et al. (2012) 

 

 Sprouting resistance reduces the risk of lower grain quality that results from premature 

kernel germination prior to harvest (Mohan et al., 2009). This is more common under humid 

conditions, and results in a loss of starch content in end-use quality (Mohan et al., 2009) As 

sprouted wheat receives a lower grade by the Canadian Grain Commission, profits to farmers are 

reduced (Canadian Grain Commission, n.d.b). Therefore, I include sprouting tolerance as an 

explanatory variable in variety selection. As with variety disease tolerance, changes to the 

sprouting resistance rating over time reflect a change in relative perception, not in inherent 

resistance. As a result, changes within a variety are infrequent, making sprouting a slow 

changing variable.  

 Variety height and lodging tolerance are additional agronomic traits that impact the 

profitability of wheat. Lodging tolerance is a combination of plant height and the root and stalk 

structures keeping the plant upright, thereby protecting against associated yield losses (Kelbert et 

al., 2004). Semi-dwarf varieties are a common way to reduce susceptibility, as it is the taller 

wheat varieties that are most prone to lodging (Kelbert et al., 2004). However, semi-dwarf genes 

tend to result in lower protein content creating a trade off between the two traits (Kelbert et al., 
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2004). Given that both height and lodging tolerance influence variety profitability, I include 

them in the variety adoption model.  

 Wheat varieties with awned heads (bearded) are argued to be better protected against 

animals and have higher rates of photosynthesis, increasing the potential yield (Li et al., 2010; 

Bruening, 2019). As this is an advantage, I expect that varieties with awned heads will see higher 

rates of adoption. For this reason, I include a dummy variable indicating whether or not a variety 

has this trait. 

 As Barkley and Porter (1996) and Dahl et al. (1999) indicate, the expected days to 

maturity of a variety likely influences the adoption decision. Given the limited number of frost-

free days across much of Western Canada, it is plausible that farmers prefer faster maturing 

varieties. Therefore, I anticipate a positive relationship between faster maturity rates and 

adoption.  

 Like protein, the test weight is a key determinant of the quality grade wheat receives 

under the Canadian Grain Commissions grading standards (Canadian Grain Commission, n.d.b). 

As these grades influence the price producers receive, the test weight is treated as an additional 

end-use value indicator where higher values are expected to increase adoption. Reported only for 

Alberta (lb/bu) and Saskatchewan (relative kg/hl), this variable is only included in the provincial 

level analyses.  

 Finally, I consider variety seed weight. A factor of seeding rates and therefore a factor in 

variety decisions, each province measures variety seed weight differently (Gray, 2021). Alberta 

reports this variable as the thousand kernel weight (TKW) in grams. Saskatchewan provides seed 

weight in milligrams relative to the check and Manitoba uses a four-point rating of seed size. 

Due to these differences in reporting, seed weight is only included in the provincial level models.  

 

5.4.4 Summary statistics  

This section presents the summary statistics at the prairie-wide, provincial, and wheat class 

levels for each variable. In the full prairie-wide dataset there are 1,230 potential observations 

available obtained from the CFIA’s variety registration database, provincial Seed Guides, and 

Yield Magazines. Chapter four of this thesis provides a detailed discussion of the configuration 
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and representativeness of this data. Of note, I omit leaf rust and stem rust tolerance from 

Alberta’s summary statistics due to insufficient provincial data for these traits. Additionally, the 

prairie-wide and wheat class level analyses exclude these two variables as including them omits 

all observations for Alberta from the models. 

 

Table 5.3: Prairie-wide level summary statistics 

Variables Unit Obs. Mean St. Dev. 

Acres acres 1,230 75,106.74 154,472.60 

Share % 1,230 2.01 4.72 

Lag yield potential bu/acre 945 56.91 13.65 

Lag average yield bu/acre 945 47.36 10.66 

Lag variety specificity  824 3.23 2.58 

Lag yield variance bu/acre2 824 81.86 93.58 

Age months 1,230 103.04 75.86 

Age2 months2 1,230 16,365.90 23,761.88 

Age3 months3 1,230 3,393,756.00 7,521,464.00 

Protein % 1,139 14.04 0.90 

Stripe rust scale 1-5 1,143 3.35 1.16 

Loose smut scale 1-5 1,216 3.00 1.17 

Bunt scale 1-5 1,227 3.50 1.36 

Leaf spot scale 1-5 1,206 2.41 0.67 

Fusarium head blight scale 1-5 1,225 2.31 1.01 

Sprouting scale 1-5 1,133 3.30 0.94 

Lodging scale 1-5 1,230 3.88 0.81 

Height scale 1-4 1,230 2.67 0.59 

Head awn dummy variable 1,103 0.62 0.48 

Maturity rate scale 1-5 1,230 2.74 1.00 

Sources: Canadian Food Inspection Agency (n.d.), Saskatchewan Crop Insurance Corporation 

(n.d.), Agriculture Financial Services Corporation (n.d.), Manitoba Agricultural Services 

Corporation (n.d.), Saskatchewan Seed Growers’ Association (n.d.), Alberta Seed Growers & 

Alberta Seed Processors (n.d.), Manitoba Agriculture and Resource Development, Manitoba 

Seed Growers’ Association, & the Manitoba Co-operator (n.d.) 
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Table 5.4: Provincial level summary statistics 

Table 5.4 (a): Alberta 

Variables Unit Obs. Mean St. Dev. 

Acres acres 350 78,094.58 149,347.80 

Share % 350 1.64 3.31 

Lag yield potential bu/acre 255 59.24 16.38 

Lag average yield bu/acre 255 50.05 11.75 

Lag variety specificity  212 4.02 2.69 

Lag yield variance (bu/acre)2 212 103.73 116.94 

Age months 350 119.69 84.01 

Age2 months2 350 21,362.78 28,861.41 

Age3 months3 350 4,874,367.00 9,594,330.00 

Protein % 311 13.58 0.93 

Stripe rust scale 1-5 345 3.32 1.22 

Loose smut scale 1-5 350 2.90 1.16 

Bunt scale 1-5 347 3.49 1.38 

Leaf spot scale 1-5 346 2.33 0.68 

Fusarium head blight scale 1-5 345 2.16 0.97 

Sprouting scale 1-5 347 3.13 0.89 

Lodging scale 1-5 350 3.97 0.70 

Height scale 1-4 350 2.44 0.50 

Head awn dummy variable 239 0.59 0.49 

Maturity rate scale 1-5 350 2.97 0.70 

Test weight lb/bu 350 62.54 1.13 

Seed weight TKW 350 39.52 4.11 
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Table 5.4 (b): Manitoba 

Variables Unit Obs. Mean St. Dev. 

Acres acres 319 68,976.26 164,160.70 

Share % 319 3.01 7.23 

Lag yield potential bu/acre 239 60.84 14.03 

Lag average yield bu/acre 239 49.19 11.18 

Lag variety specificity  208 2.68 2.41 

Lag yield variance bu/acre2 208 87.72 64.16 

Age months 319 95.19 70.03 

Age2 months2 319 13,950.24 18,924.29 

Age3 months3 319 2,598,989.00 4,872,253.00 

Protein % 267 14.36 0.74 

Stem rust scale 1-5 319 4.50 0.66 

Leaf rust scale 1-5 319 4.11 1.08 

Stripe rust scale 1-5 276 3.32 1.01 

Loose smut scale 1-5 311 3.35 1.10 

Bunt scale 1-5 319 3.30 1.38 

Leaf spot scale 1-5 306 2.40 0.66 

Fusarium head blight scale 1-5 319 2.61 0.99 

Sprouting scale 1-5 225 3.58 1.04 

Lodging scale 1-5 319 4.20 0.72 

Height scale 1-4 319 2.66 0.72 

Head awn dummy variable 303 0.53 0.50 

Maturity rate scale 1-5 319 2.77 0.97 

Seed weight scale 1-4 205 1.66 0.90 
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Table 5.4 (c): Saskatchewan 

Variables Unit Obs. Mean St. Dev. 

Acres acres 561 76,728.63 152,101.30 

Share % 561 1.67 3.41 

Lag yield potential bu/acre 451 53.50 10.60 

Lag average yield bu/acre 451 44.86 9.06 

Lag variety specificity  404 3.09 2.51 

Lag yield variance bu/acre2 404 67.36 90.16 

Age months 561 97.11 72.12 

Age2 months2 561 14,622.02 22,241.56 

Age3 months3 561 2,921,949.00 7,166,271.00 

Protein % 561 14.15 0.85 

Stem rust scale 1-5 561 4.48 0.67 

Leaf rust scale 1-5 561 4.19 1.08 

Stripe rust scale 1-5 522 3.38 1.20 

Loose smut scale 1-5 555 2.87 1.17 

Bunt scale 1-5 561 3.63 1.34 

Leaf spot scale 1-5 554 2.45 0.67 

Fusarium head blight scale 1-5 561 2.23 1.01 

Sprouting scale 1-5 561 3.30 0.91 

Lodging scale 1-5 561 3.64 0.86 

Height scale 1-4 561 2.81 0.52 

Head awn dummy variable 561 0.69 0.46 

Maturity rate scale 1-5 561 2.58 1.13 

Test weight +/- kg/hl 561 -0.31 1.20 

Seed weight +/- mg 561 0.33 2.83 

Sources: Canadian Food Inspection Agency (n.d.), Saskatchewan Crop Insurance Corporation 

(n.d.), Agriculture Financial Services Corporation (n.d.), Manitoba Agricultural Services 

Corporation (n.d.), Saskatchewan Seed Growers’ Association (n.d.), Alberta Seed Growers & 

Alberta Seed Processors (n.d.), Manitoba Agriculture and Resource Development, Manitoba 

Seed Growers’ Association, & the Manitoba Co-operator (n.d.) 
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Table 5.5: Wheat class level summary statistics 

Table 5.5 (a): HRS 

Variables Unit Obs. Mean St. Dev. 

Acres acres 827 80,242.60 157,526.70 

Share % 827 2.29 5.25 

Lag yield potential bu/acre 653 55.85 11.81 

Lag average yield bu/acre 653 46.35 9.41 

Lag variety specificity  570 2.89 2.27 

Lag yield variance bu/acre2 570 72.60 63.32 

Age months 827 103.57 73.74 

Age2 months2 827 16,157.77 21,760.10 

Age3 months3 827 3,206,290.00 6,284,941.00 

Protein % 783 14.38 0.49 

Stripe rust scale 1-5 757 3.16 1.03 

Loose smut scale 1-5 821 3.38 1.07 

Bunt scale 1-5 824 3.33 1.23 

Leaf spot scale 1-5 811 2.35 0.69 

Fusarium head blight scale 1-5 822 2.54 1.01 

Sprouting scale 1-5 752 3.48 0.97 

Lodging scale 1-5 827 3.91 0.73 

Height scale 1-4 827 2.75 0.57 

Head awn dummy variable 772 0.52 0.50 

Maturity rate scale 1-5 827 3.03 0.92 
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Table 5.5 (b): CPS 

Variables Unit Obs. Mean St. Dev. 

Acres acres 173 35,953.66 64,514.61 

Share % 173 0.77 1.52 

Lag yield potential bu/acre 120 70.59 15.20 

Lag average yield bu/acre 120 58.64 10.32 

Lag variety specificity  99 5.02 3.40 

Lag yield variance bu/acre2 99 159.73 175.87 

Age Months 173 101.41 68.14 

Age2 months2 
173 14,899.69 17,620.18 

Age3 months3 173 2,662,993.00 4,255,357.00 

Protein % 160 12.46 1.15 

Stripe rust scale 1-5 170 3.05 1.33 

Loose smut scale 1-5 173 2.29 0.91 

Bunt scale 1-5 173 3.28 1.78 

Leaf spot scale 1-5 165 2.70 0.56 

Fusarium head blight scale 1-5 173 2.01 1.00 

Sprouting scale 1-5 161 2.63 0.88 

Lodging scale 1-5 173 4.39 0.82 

Height scale 1-4 173 2.18 0.52 

Head awn dummy variable 165 0.91 0.29 

Maturity rate scale 1-5 173 2.24 0.86 
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Table 5.5 (c): Durum 

Variables Unit Obs. Mean St. Dev. 

Acres acres 184 103,259.20 201,864.10 

Share % 184 2.26 4.46 

Lag yield potential bu/acre 145 49.64 10.96 

Lag average yield bu/acre 145 41.97 8.69 

Lag variety specificity  132 3.21 2.20 

Lag yield variance bu/acre2 132 57.69 61.59 

Age Months 184 110.36 93.59 

Age2 months2 
184 20,891.21 35,805.81 

Age3 months3 184 5,494,966.00 13,300,000.00 

Protein % 151 14.06 0.35 

Stripe rust scale 1-5 173 4.56 0.56 

Loose smut scale 1-5 184 1.92 0.70 

Bunt scale 1-5 184 4.76 0.50 

Leaf spot scale 1-5 184 2.45 0.64 

Fusarium head blight scale 1-5 184 1.55 0.50 

Sprouting scale 1-5 183 3.07 0.46 

Lodging scale 1-5 184 3.22 0.74 

Height scale 1-4 184 2.75 0.56 

Head awn dummy variable 123 1.00 0.00 

Maturity rate scale 1-5 184 1.92 0.91 

Sources: Canadian Food Inspection Agency (n.d.), Saskatchewan Crop Insurance Corporation 

(n.d.), Agriculture Financial Services Corporation (n.d.), Manitoba Agricultural Services 

Corporation (n.d.), Saskatchewan Seed Growers’ Association (n.d.), Alberta Seed Growers & 

Alberta Seed Processors (n.d.), Manitoba Agriculture and Resource Development, Manitoba 

Seed Growers’ Association, & the Manitoba Co-operator (n.d.) 

 

5.5 Econometric model and estimation procedures 

Building upon the theoretical model and the crop adoption literature, I estimate the effects of 

agronomic characteristics, including variety adaptability, and end-use values on wheat variety 

adoption at three levels:  

(1) Prairie-wide, 

(2) Provincial level: Alberta, Manitoba, and Saskatchewan, and 

(3) Wheat class level: hard red spring (HRS), Canada prairie spring (CPS), and durum, 
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as it is plausible that adoption factors may vary in magnitude and significance by province and 

wheat class. These estimates use the econometric specification and estimation procedures 

presented below.  

 

5.5.1 Econometric model  

Equation (5.22) displays the simplest form of the variety adoption model, specified for the 

prairie-wide level:  

 

𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖𝑡 =  𝛼 + 𝛽1𝑦𝑖𝑒𝑙𝑑𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑖,𝑡−1 + 𝛽2𝑣𝑎𝑟𝑖𝑒𝑡𝑦𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑖,𝑡−1

+ 𝛽3𝑎𝑔𝑒𝑖𝑡 + 𝛽4𝑎𝑔𝑒𝑖𝑡
2 + 𝛽5𝑎𝑔𝑒𝑖𝑡

3 + 𝛽6𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑖𝑡

+ 𝛽7𝑠𝑡𝑟𝑖𝑝𝑒𝑟𝑢𝑠𝑡𝑖𝑡 + 𝛽8𝑙𝑜𝑜𝑠𝑒𝑠𝑚𝑢𝑡𝑖𝑡 + 𝛽9𝑏𝑢𝑛𝑡𝑖𝑡

+ 𝛽10𝑙𝑒𝑎𝑓𝑠𝑝𝑜𝑡𝑖𝑡 + 𝛽11𝑓𝑢𝑠𝑎𝑟𝑖𝑢𝑚ℎ𝑒𝑎𝑑𝑏𝑙𝑖𝑔ℎ𝑡𝑖𝑡

+ 𝛽12𝑠𝑝𝑟𝑜𝑢𝑡𝑖𝑛𝑔𝑖𝑡 + 𝛽13𝑙𝑜𝑑𝑔𝑖𝑛𝑔𝑖𝑡 + 𝛽14ℎ𝑒𝑖𝑔ℎ𝑡𝑖𝑡

+ 𝛽15𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑟𝑎𝑡𝑒𝑖𝑡 + 𝜂1ℎ𝑒𝑎𝑑𝑎𝑤𝑛𝑖 + 𝜀𝑖𝑡 

(5.22) 

where 𝛼 is the intercept, 𝑖 = 1, … , 𝑛 varieties, and 𝑡 = 2009, … ,2018. 28 Some variables are 

lagged one period to reflect that at the time of variety selection, farmers use information 

provided in the previous years yield publication. Provincial Seed Guides for the current growing 

season are available at the time of variety selection, so variables pulled from these sources do not 

need to be lagged. 𝛽 and 𝜂 represent the parameters to be estimated and 𝜀𝑖𝑡 is the error term. 

Finally, additional dummy variables for province and wheat class are included where 

appropriate.  

 

5.5.2 Expected signs of independent variable parameters 

Table 5.6 provides a summary of the explanatory variables, their type (time variant vs. time 

invariant; correlated with the variety specific effect or not), and the expected sign of the 

 
28 Provincial and wheat class level models differ slightly as some variables are not available across all three 

provinces and are therefore not included in the prairie-wide models (i.e., test weight, seed weight, etc.). Further, 

some variables become time invariant when measured within a province or wheat class (see Appendix B for more 

details).  
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estimated parameter with supporting reasoning. 29 It is important to note that this table includes 

slow changing variables in the set of time variant regressors and is based on the aggregate prairie 

model.  

 

 

 
29 For the Hausman-Taylor IV model, lag yield potential, lag variety specificity, lag average yield, lag yield 

variance, protein, and test weight are assumed to be the variables that are correlated with the variety specific effects. 

All other variables are argued to be exogenous. A table with justifications for these decisions is provided in 

Appendix A.  
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Table 5.6: Independent variable type and expected signs of the estimated parameters (using the prairie-wide dataset) 

Independent 

variable 

Time variant/ Time 

invariant/ Slow 

changing 

Exogenous/ 

endogenous 

Expected 

Sign 
Reasoning 

Lag yield 

potential 
Time variant Endogenous (+) Higher yield potential is expected to increase adoption. 

Lag average 

yield 
Time variant Endogenous (+) 

Varieties with higher average yield are expected to have higher 

adoption rates. 

Lag variety 

specificity 
Time variant Endogenous (-) 

Varieties with higher degrees of specificity are expected to be less 

widely adopted. 

Lag yield 

variance 
Time variant Endogenous (-) 

Higher variability in yield is expected to be associated with lower 

adoption. 

Life cycle  

(age, age2, 

age3) 

Time variant Exogenous  

The number of months since a variety’s release is expected to follow 

a diffusion path, initially positively associated with adoption but 

eventually subject to disadoption as newer varieties replace it. 

Protein Time variant Endogenous (+) 

Higher percentage protein content increases the end-use value of 

wheat and should be associated with increased adoption of such 

varieties. 

Stem rust* Slow changing Exogenous (+) 
It is expected that increases in stem rust tolerance ratings increase 

variety adoption. 

Leaf rust* Slow changing Exogenous (+) 
It is expected that increases in leaf rust tolerance ratings increase 

variety adoption. 

Stripe rust Slow changing Exogenous (+) 
It is expected that increases in stripe rust tolerance ratings increase 

variety adoption. 

Loose smut Slow changing Exogenous (+) 
It is expected that increases in loose smut tolerance ratings increase 

variety adoption. 

Bunt Slow changing Exogenous (+) 
It is expected that increases in bunt tolerance ratings increase variety 

adoption. 
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Leaf spot Slow changing Exogenous (+) 
It is expected that increases in leaf spot tolerance ratings increase 

variety adoption. 

Fusarium head 

blight 
Slow changing Exogenous (+) 

It is expected that increases in Fusarium head blight tolerance 

ratings increase variety adoption. 

Sprouting Slow changing Exogenous (+) 
It is expected that increases in sprouting resistance ratings increase 

variety adoption. 

Lodging Slow changing Exogenous (+) 
It is expected that increases in lodging tolerance ratings increase 

variety adoption. 

Height Slow changing Exogenous (-) 
It is expected that increases in height ratings (i.e., taller varieties) 

decrease variety adoption. 

Head awn Time invariant Exogenous (+) Head awn is expected to positively impact adoption. 

Maturity rate Slow changing Exogenous (+) 
A positive association between faster maturity rates and adoption is 

expected. 

Test weight* Slow changing Endogenous (+) 
Increased test weight is expected to increase adoption as it leads to a 

higher grain grade. 

Seed weight* Slow changing Exogenous (-) 

Increased seed weight increases the seeding rate. Therefore, it is 

expected that heavier seeds increase seeding costs and negatively 

impact adoption. 

* These variables are not included in prairie-wide and wheat class level modeling due to data limitations. 
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5.5.3 Estimation procedures 

 Three sets of regressions are estimated, one for each adoption level (see Table 5.7). Each 

set contains pooled OLS, Hausman-Taylor IV, and FEF models, as shown in Figure 5.1 below. 

Specifications for these models vary slightly from Equation (5.22), depending on the level of 

adoption examined and the regression model. As previously mentioned, I measure the dependent 

variable 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛𝑖𝑡  as total insured acres (𝑎𝑐𝑟𝑒𝑠𝑖𝑡) allocated to variety 𝑖 in period 𝑡. 

Additionally, I estimate the adoption model using 𝑠ℎ𝑎𝑟𝑒𝑖𝑡 as the dependent variable with two-

limit Tobit and fixed effects Tobit approaches in order to examine the robustness of the results. 

However, these are considered secondary sets due to potential bias limitations and therefore not 

included in the primary sets of regressions.30  

 
30 See Appendix D for these results.  
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Figure 5.1: Map of regressions 
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Table 5.7: Overview of the sets of regression models 

Set Subset Models 
Key independent 

variables 

Excluded control 

variables 

(1):  

Prairies 
 

1, 3, 5 
Lag average yield, lag 

yield variance 
Excludes leaf rust, 

stem rust, test weight 

and seed weight 2, 4, 6 
Lag yield potential, lag 

variety specificity 

(2): 

Provincial 

Alberta 

7, 9, 11 
Lag average yield, lag 

yield variance Excludes stem rust 

and leaf rust 
8, 10, 12 

Lag yield potential, lag 

variety specificity 

Manitoba 

13, 15, 17 
Lag average yield, lag 

yield variance 
Excludes test weight 

14, 16, 18 
Lag yield potential, lag 

variety specificity 

Saskatchewan 

19, 21, 23 
Lag average yield, lag 

yield variance 
 

20, 22, 24 
Lag yield potential, lag 

variety specificity 

(3):  

Wheat class 

Hard red spring 

25, 27, 29 
Lag average yield, lag 

yield variance 
Excludes leaf rust, 

stem rust, test weight 

and seed weight 26, 28, 30 
Lag yield potential, lag 

variety specificity 

Canada prairie 

spring 

31, 33, 35 
Lag average yield, lag 

yield variance 
Excludes leaf rust, 

stem rust, test weight 

and seed weight 32, 34, 36 
Lag yield potential, lag 

variety specificity 

Durum 

37, 39, 41 
Lag average yield, lag 

yield variance 
Excludes leaf rust, 

stem rust, test weight 

and seed weight 38, 40, 42 
Lag yield potential, lag 

variety specificity 

 

Set (1) estimates adoption factors for all non-winter wheat varieties at the prairie-wide 

level, using data spanning from 2009 to 2018. Models (1), (3), and (5) contain the key parameter 

of interest, the lag variety specificity. The remaining models in this set are included for 

comparative purposes and alternatively use lag yield variance to measure yield volatility. I 

exclude stem rust and leaf rust tolerances due to lack of available data in Alberta. Additionally, I 

exclude seed weight and test weight due to differences in measurement across provinces. 

Provincial aggregate estimates for all non-winter varieties form Set (2). The available 

data spans from 2013 to 2018 for Alberta, and 2009 to 2018 for Manitoba and Saskatchewan. 
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Odd numbered models between Model (7) and Model (24) contain lag yield potential and lag 

variety specificity, while even numbered models in this set use lag average yield and lag yield 

variance for each province. Leaf rust and stem rust are not included in Alberta due to lack of data 

availability. Similarly, test weight is not available for Manitoba.  

Set (3) estimates varietal attribute effects at the wheat class level for those with sufficient 

data (i.e., HRS, CPS, Durum). As in Set (2), odd numbered models in this set use lag variety 

specificity as an independent variable, while even numbered models rely on lag yield variance 

Since these wheat class level models use the combined prairie-wide dataset, I again exclude stem 

rust, leaf rust, test weight and seed weight from the set of regressors.  

The decision to examine varietal adoption decisions for three different levels stems from 

the plausible differences in varietal trait preferences across provinces and wheat classes. While 

prairie-wide modeling uses the largest dataset for an aggregate analysis of variety adoption 

choices, the analysis at this level provides limited information on inherent differences across 

provinces and wheat classes. Dummy variables for provinces included in modeling for the 

prairie-wide level indicate how much total acreage of a particular variety changes by province, 

relative to the omitted provincial dummy, Saskatchewan, which accounts for the largest share of 

observations. But these values do not reveal anything about the differences in effects of variety 

traits on adoption unless I include interaction terms. Given the large number of regressors, this 

approach is unwieldy. Instead, I use provincial models for Alberta, Manitoba, and Saskatchewan 

to gain insights into differences in variety trait preferences between provinces. I take a similar 

approach for wheat classes, where it is plausible that the effects of some variety traits will differ. 

For example, hard red spring varieties generally have higher protein content, which may reduce 

the relative importance of this factor in selecting a variety when the scope is limited to this class. 

Since the number of interaction terms required again substantially diminishes the available 

degrees of freedom in the models, I conduct analyses at the wheat class level for three major 

wheat classes with sufficient data: HRS, CPS, and durum. Ultimately, these provincial and wheat 

class level analyses are limited by reduced observations, however, they do provide valuable 

insights into trait preference differences across each level with minimal loss of degrees of 

freedom. 
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In total, this empirical approach estimates a combined 42 models across various levels. 

From the discussions in section 5.3 and poolability F-testing indicating that sufficient variety 

specific heterogeneity exists to support a panel data approach, the FEF is the favoured empirical 

model. This is in part due to the lower number of required assumptions, relative to the Hausman-

Taylor model. However, by presenting the least squares estimations from the FEF along side the 

pooled OLS and Hausman-Taylor IV models, the empirical approach provides a means to 

examine the robustness of the FEF results. Additionally, Appendix D provides the maximum 

likelihood estimates of the Tobit and fixed effects Tobit models, offering further comparison to 

the results available of the FEF, presented in the next chapter.  
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Chapter 6: Results and discussion 

 

6.1 Introduction 

In this chapter, I present empirical results for factors of variety adoption across the Canadian 

Prairies. I include the results of three estimated models (pooled OLS, Hausman-Taylor IV, and 

FEF) at each level (prairie, provincial, and wheat class) using acres allocated to variety i in 

period t as the dependent variable. In each case, empirical modeling is based on varieties grown 

in a minimum of four risk areas in a given year and province. Prior to presenting these results, I 

provide a brief discussion of the empirical considerations contributing to the selection of results 

presented in this chapter. In the following sections, even numbered models use lag yield 

potential and lag variety specificity as the key independent variables, while odd numbered 

models use lag average yield and lag yield variance. The discussion centres on the FEF results, 

as this model is the best fit for this analysis.  

 

6.2 Empirical considerations 

The decision to estimate three empirical models for varieties grown in a minimum of four risk 

areas within a province and year at three different levels of adoption stems from several 

considerations. These include minimum requirements on the amount of risk area level data for 

reliable yield variables and potential model biases. The following discussion elaborates on some 

of these considerations.  

 Due to the nature of measurement for both lag yield variance and lag variety specificity, 

the main discussion focuses on empirical results based on varieties grown in at least four risk 

areas, with full dataset results available in Appendix D. Both yield variance and variety 

specificity are functions of the number of risk areas with available data and when only one risk 

area is available, neither measure is calculable. In order for either measure to be a reliable 

measure of adaptability, the data must be available in at least a few different risk areas. For 

example, if only one yield data point is available for a variety at the risk area level, variety 

specificity 𝜇𝑖 is: 
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 𝜇𝑖 =
𝑦𝑖

𝑚𝑎𝑥 − 𝑦𝑖
𝑚𝑖𝑛

𝑅𝐴
 = 0 

(6.1) 

where 𝑌𝑚𝑎𝑥 = 𝑌𝑚𝑖𝑛 since only one yield data point is included in the calculation. In this case, 

 𝜇𝑖 = 0 suggests that the variety is perfectly adaptable to all growing conditions but this is 

misleading as it was grown in only one specific location. A similar issue is observed for yield 

variance, where values calculated using only one observation are meaningless. Even when two 

are available, the variance is not very helpful in identifying the adaptability of the variety. 

However, excluding data from varieties grown in fewer risk areas in a given year and province 

does truncate the available data. Balancing this with accuracy in these two measures, I choose a 

somewhat arbitrary minimum of four risk areas of data within a year and province at a cost of 

reduced total insured acreage represented by the model, ranging from 1.33% to 6.36% depending 

on the modeling level (see Table 6.1).  

 

Table 6.1: Share of total acreage lost due to minimum four risk area requirement 

Analysis level 
Share of total acreage lost by truncation  

(below min 4 risk areas) 

Prairies 3.23% 

Alberta 6.25% 

Manitoba 1.33% 

Saskatchewan 2.28% 

Hard red spring 2.12% 

Canadian Prairie spring 4.89% 

Durum 6.36% 

Sources: Saskatchewan Crop Insurance Corporation (n.d.), Agriculture Financial Services 

Corporation (n.d.), & Manitoba Agricultural Services Corporation (n.d.) 

 

 Pooled OLS models for each level of analysis, while included, likely suffer from omitted 

variable bias as poolability F-tests indicate that sufficient variety heterogeneity is present to 

justify a panel data econometric approach.31 The Hausman-Taylor IV model’s usefulness is also 

limited. As mentioned in the previous chapter, for the Hausman-Taylor IV model I assume only 

the yield related variable, protein, and test weight are endogenous with respect to variety specific 

 
31 See Appendix E for poolability F-test results.  
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effects. I assume all other traits are exogenous (see justifications in Appendix A). However, it is 

plausible that extent of varietal resilience to diseases is not independent of other unobservable 

variety genetics. As it is this observed extent of resistance measuring varietal disease tolerance 

here, it is likely that the Hausman-Taylor IV model estimates are biased under these exogeneity 

assumptions. Alternatively, assuming all disease resistance ratings are endogenous presents a 

problem for model identification due to insufficient internal IVs. This limitation of the Hausman-

Taylor model is why the analysis of this chapter focuses on the FEF estimates, where fewer 

assumptions are necessary. In fact, at the prairie-wide level the FEF model requires only the 

additional assumption that head awn is exogenous from the variety specific effects.32 As the head 

of a variety is either awned (bearded) or not, this assumption is reasonably sound.  

 

6.3 Prairie-wide results 

Estimation results at the prairie-wide level in Table 6.2 reflect data from varieties grown in a 

minimum of four risk areas. As noted in the previous chapter, Models (1), (3), and (5) include 

lag average yield and lag yield variance as the key independent variables, in line with existing 

literature (Dahl et al., 1999). Models (2), (4), and (6) pair lag yield potential and lag variety 

specificity as the key regressors, as per the conceptual framework in chapter three and the 

approach of Torshizi (2015). Simple pooled OLS regressions form Models (1) and (2),33 while 

Models (3) and (4) use the Hausman-Taylor IV approach. The remaining two models, Models (5) 

and (6), use the preferred FEF estimation procedure. Testing reveals heteroskedasticity of the 

errors, due to differences in variety effects on adoption.34 To address this, all models use 

corrected standard errors, that are clustered by variety.  

 Results for the pooled OLS models indicate a higher explanatory power when lag yield 

potential and lag variety specificity are the key independent variables. Model (1), explaining 

approximately 19% of the variation around the mean adoption level indicates that taller varieties 

of wheat are associated with lower adoption levels. Faster maturity rates negatively affect 

 
32 This assumption is in addition to the standard FE assumptions, which include the OLS assumptions. 
33 Saskatchewan and the hard red spring wheat class represent the province and wheat class with the largest acreage. 

These are omitted from the pooled OLS model to avoid the dummy variable trap.  
34 See Appendix E for heteroskedasticity testing results.  
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adoption levels, while most disease tolerances and protein content appear to have no significant 

effects with the exception of lodging resistance. Additionally, lag average yield displays no 

significant association with adoption levels. However, significance of the variety life cycle 

indicators (i.e., 𝑎𝑔𝑒, 𝑎𝑔𝑒2, and 𝑎𝑔𝑒3) support an S-shaped adoption pattern for wheat variety life 

cycles, with rapid growth in adoption, followed by a period of continued growth but at a 

declining rate as the variety approaches the end of its life cycle. Model (2) presents similar 

findings for the estimated effect of variety height. However, by using lag yield potential and lag 

variety specificity as key independent variables, the explanatory power of this model increases to 

29%. In each case, these variety traits are statistically significant at the 5% level. Model (2) also 

points to significant effects of lag yield potential and lag variety specificity on adoption at the 

1% level, each with the expected signs (i.e., positive and negative, respectively). This negative 

relationship between variety specificity and adoption levels suggests that more adaptable 

varieties are in fact more widely adopted. These should be interpreted cautiously though, as 

estimates from the pooled OLS approach do not account for variety specific heterogeneity – 

heterogeneity which poolability F-tests indicate is present – which means that these pooled OLS 

estimates are likely biased.   

 Using the Hausman-Taylor IV in an effort to account for these variety effects, I find that 

the estimates in Models (3) and (4) differ from the previous two models. While taller varieties 

remain negatively correlated with variety adoption in Model (3), this result does not hold in 

Model (4). Further, lodging resistance effects are now significant at the 10% level and positive in 

both models. Interestingly, it appears from these estimates that tolerance to loose smut negatively 

impacts adoption, albeit only when at a significance level of 10% in Model (4). The life cycle of 

varieties continues to be significant at a 5% significance level, supporting a S-shaped adoption 

path. Finally, for the key independent variables in either model, only lag variety specificity is 

significant at the 10% level, again indicating a positive association between variety adaptability 

and variety adoption. However, as I discuss in chapter five, these estimates depend on a large 

number of assumptions that may or may not be correct.  

 With this in mind, results for the favoured FEF model that account for variety specific 

effects and rely on fewer strong assumptions are the primary focus of this analysis. As in the 

pooled OLS model, explanatory power is relatively higher for Model (6), the model which relies 
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on lag yield potential and lag variety specificity, when compared to Model (5). Further, Models 

(5) and (6) have Step 1 R2 values of 52% and 56%, respectively, which are higher than those 

from the comparable pooled OLS models. The intercept, indicating a baseline of Saskatchewan 

hard red spring varieties acreage when all independent variables take the value zero, is positive 

and significant at the 5% significance level in both Models (5) and (6). Variety height again 

negatively impacts adoption, though for a 10% significance level in these models. Protein 

content is also negatively associated with adoption, an interesting observation that supports the 

idea that some trade-offs exist between varietal traits.35 Most disease tolerances do not appear to 

significantly impact variety decisions, with one exception, fusarium head blight tolerance. 

Increased tolerance to this particular disease appears to decrease variety popularity, possibly due 

to an unknown trade-off between this tolerance and another varietal trait, as I discuss later in this 

chapter. Estimates for both Model (5) and (6) indicate that life cycles of varieties take an S-

shaped adoption path. Estimates of the FEF for lag average yield and lag yield variance in 

Model (5) are again not significantly different from zero. Lag yield potential and lag variety 

specificity are significant at the 1% level, taking the expected positive and negative signs 

respectively. Magnitudes of the estimated associations between variety adoption and these two 

variables are lower in the FEF, relative to the pooled OLS. Since it is the FEF that accounts for 

variety specific heterogeneity with higher explanatory power, I place more confidence in these 

estimates. Finally, the second stage looks at the single time invariant variety trait for this level of 

analysis, variety head awn, finding a negative and significant effect on variety acreage in Model 

(5) only.  

  Overall, the results of the FEF analysis at the prairie-wide level indicates that variety 

height, fusarium head blight tolerance, protein content, yield potential, and varietal adaptability 

are significantly correlated with variety adoption decisions. Additionally, variety adoption life 

cycles appear to take an S-shape. These results are generally consistent with the other modelling 

approaches presented in Table 6.2 and in Appendix D, though magnitudes and significance of 

 
35 Iqbal et al. (2007) indicate that there is a negative relationship between protein content and yield which generates 

a trade-off between these two traits. Evidence of this relationship is observed in Table 5.5, where differences in yield 

potential and protein averages for CPS and HRS classed varieties are shown (i.e., within the dataset, CPS varieties 

are higher yielding on average, while HRS varieties have higher average protein contents).  
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trait effects vary due to various differences in the statistical properties of each model. Further, 

these results are generally consistent with the findings of Barkley and Porter (1996) and Dahl et 

al. (1999), though with fewer disease tolerances presenting significant estimated effects here. An 

additional observation worth noting is that, in all models, explanatory power is higher when the 

yield potential and variety specificity are included, relative to when the key variables are average 

yield and yield variance. This suggests that when paired with variety yield potential, adaptability, 

measured by the degree of variety specificity, better explains variations in varietal acreage on the 

Canadian Prairies.  
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Table 6.2: Prairie-wide estimates 

 (1) (2) (3) (4) (5) (6) 

Variables 
Pooled OLS Pooled OLS HT-IV HT-IV 

FEF FEF 

 Step 1 Step 2 Step 1 Step 2 

Dependent variable: acres 

         

Lag yield potential  3,770***  418.77   3,289***  

  (1,083)  (719.05)   (858.14)  

Lag average yield 1,204  -896.46  563.64    

 (1,427)  (718.58)  (812.90)    

Lag variety specificity  -41,649***  -11,559*   -30,068***  

  (8,066)  (5,942)   (8,913)  

Lag yield variance -234.92*  87.82  46.19    

 (124.91)  (62.79)  (132.11)    

Age 3,224** 1,669 4,782** 4,192** 4,476**  2,762  

 (1,359) (1,156) (2,227) (2,106) (2,106)  (2,010)  

Age2 -17.70** -8.94 -40.01*** -35.45*** -36.71***  -25.63**  

 (7.67) (6.45) (14.50) (13.70) (13.60)  (12.67)  

Age3 0.03** 0.01 0.07*** 0.06** 0.06**  0.04**  

 (0.01) (0.01) (0.03) (0.02) (0.02)  (0.02)  

Protein 25,049 12,488 7,761 6,159 -151,853**  -125,068**  

 (28,967) (26,598) (102,519) (95,918) (75,411.23)  (60,256)  

Stripe rust 6,422 9,896 2,392 6,306 -60,807  -48,626  

 (10,429) (9,485) (14,454) (14,354) (41,358)  (35,396)  

Loose smut -3,629 1,602 -44,143** -39,389* -17,475  -13,631  

 (13,857) (13,528) (22,253) (22,501) (42,204)  (40,028)  

Bunt -22,462 -19,988 20,274 17,192 46,245  37,441  

 (18,675) (16,475) (32,615) (32,174) (46,520)  (43,444)  

Leaf spot 36,905 29,476 -5,787 -6,284 2227  -17,272  

 (28,053) (26,213) (32,543) (36,147) (79,468)  (69,042)  

Fusarium head blight 2,571 -4,949 -23,622 -27,221 -111,289*  -121,078**  

 (18,617) (17,096) (23,994) (23,271) (56,312)  (56,814)  

Sprouting -3,582 -5,965 -3,251 -6,977 -32,821  -21,212  

 (14,797) (13,878) (23,840) (23,184) (73,001)  (64,992)  

Lodging 25,138* 11,574 65,963* 63,505* 44,074  36,013  

 (14,596) (14,632) (34,942) (34,508) (33,446)  (28,752)  

Height -75,535** -60,921** -47,565* -42,697 -77,844*  -57,079*  

 (31,715) (29,013) (27,907) (26,549) (40,759)  (31,484)  
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Head awn 24,120 31,290 -39,295 -23,472  -149,917**  -91,188 

 (42,535) (39,176) (90,216) (89,236)  (68,196)  (57,513) 

Maturity rate -18,579* -11,345 9698 13,982 -16,795  -5,743  

 (9,887) (9,514) (10,556) (11,084) (18,742)  (19,069)  

Provincial dummy 

variables 
✓  ✓  ✓  ✓  ✓   ✓   

         

Wheat class dummy 

variables 
✓  ✓        

         

Constant -279,835 -102,979 -60,825 -70,016 2,734,145** 97,064** 2,278,531** 58,369 

 (532,313) (485,326) (1,580,083) (1,475,232) (1,265,911) (46,598) (1,014,711) (38,860) 

         

Observations 529 529 529 529 538 529 538 529 

R2 0.19 0.29   0.52 0.07 0.56 0.03 

Number of varieties 76 76 76 76 76 76 76 76 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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6.4 Provincial results 

As noted in chapter five, it is plausible that varietal trait preferences vary across provinces. By 

dividing the dataset into provinces and completing provincial level analyses, I gain insights into 

some of these differences. The following discussion looks at these results, starting with an 

analysis of Alberta’s wheat varietal trait preferences, followed by similar analyses for Manitoba 

and Saskatchewan. This section concludes with a brief summary of the empirical findings at the 

provincial level of analysis. 

 

6.4.1 Alberta 

Alberta’s estimates rely on the subset of data sourced from its provincial publications between 

2013 and 2018. As in the previous table, the first two models (i.e., Models (7) and (8)) present 

estimates from pooled OLS regressions. Following these are results for the Hausman-Taylor IV 

(i.e., Models (9) and (10)) and the preferred FEF (i.e., Models (11) and (12)) approaches. Again, 

even numbered models use lag yield potential and lag variety specificity as the key regressors, 

while odd numbered models use lag average yield and lag yield variance. Post-estimation testing 

again indicates the presence of heteroskedasticity due to varietal differences; therefore, I include 

corrected standard errors, clustering on variety. 36 

 In the pooled OLS regressions, explanatory power is higher when lag yield potential and 

lag variety specificity are the key independent variables. Model (7) explains approximately 51% 

of the variation around the mean adoption level in Alberta, compared to 57% in Model (8). 

Provincial modeling includes test and seed weights, but neither show a statistically significant 

relationship with adoption decisions in Alberta. Models (7) and (8) indicate a link between 

variety acreage and faster maturity rates at a 5% significance level. Similarly, varieties more 

tolerant to stripe rust and loose smut diseases are grown on more acres. Model (8) confirms the 

cubic life cycle for variety adoption, though Model (7) suggests that a quadratic life cycle control 

may be sufficient in that model. Finally, lag yield potential and lag variety specificity show the 

expected significant associations with variety acreage, with at least 90% confidence in these 

 
36 See Appendix E for heteroskedasticity testing results.  
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estimates. However, while these pooled OLS results provide some insights, the differentiated 

nature of varieties is ignored in these estimates. 

 The panel data approach of the Hausman-Taylor IV generates qualitatively similar 

estimates, though the magnitudes differ. The main differences between these estimates and those 

of the pooled OLS models are the statistical significance of leaf spot tolerance and the lack of 

significance of any of the key variables. Models (9) and (10) point to improved leaf spot 

tolerance negatively impacting variety adoption, while lag yield potential and lag variety 

specificity no longer display any statistical significance.  

 Turning to the FEF results in Models (11) and (12), the insignificance of the key 

independent variables remains. From Step 1 of each model, varietal height effects lack 

significance, but lodging resistance in Model (11) positively impacts variety acreage at the 1% 

significance level. Increased bunt tolerance is negatively associated with varietal adoption in 

both models, while increased stripe tolerance positively relates to adoption, though at the 5% 

level. This negative correlation between variety bunt tolerance and adoption may stem from an 

unaddressed trade-off with another varietal trait or may potentially be from limited within variety 

variations challenging the accuracy of empirical estimates for this trait. Age to the second-degree 

polynomial shows significance, suggesting a quadratic life cycle pattern for varieties in Alberta. 

Finally, the explanatory power of Step 1 in both Models (11) and (12) is relatively high at 92%. 

 Step 2 of the FEF contains more estimates than prairie level modeling did, as variety head 

awn, height, maturity, fusarium head blight tolerance, and loose smut tolerance are time invariant 

for Alberta. Of these, both loose smut resistance (at the 5% significance level) and variety head 

awn (at the 1% significance level) appear to be assets for varieties, with both associated with 

increased acreage. Each of these models explain over 25% of the variations around the mean 

variety specific fixed effect.  

 From these findings, it appears that tolerances to stripe rust, loose smut, bunt, and variety 

head awn are the significant factors in explaining Albertan variety adoption decisions.37 

However, the lack of significance of either yield variable suggests that caution is necessary when 

using these estimates. These results may be due to a small number of observations containing full 

 
37 For additional modelling approach results, see Appendix D.  
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information and a large number of regressors and panels (i.e., varieties), limiting the degrees of 

freedom of each model. Alternatively, insufficient within variety variability in some variables 

may contribute to the limitations of these results.  
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Table 6.2: Alberta provincial estimates 

 (7) (8) (9) (10) (11) (12) 

Variables 
Pooled OLS Pooled OLS HT-IV HT-IV 

FEF FEF 

 Step 1 Step 2 Step 1 Step 2 

Dependent variable: acres 

         

Lag yield potential  2,980*  424.90   -191.23  

  (1,574)  (1,159)   (1,145)  

Lag average yield 668.94  793.13  159.93    

 (2,011)  (1,020)  (1,107)    

Lag variety specificity  -33,024***  -213.67   833.44  

  (10,376)  (3,454)   (3,562)  

Lag yield variance -133.92  173.86*  150.82*    

 (167.04)  (91.78)  (86.27)    

Age 10,172** 9,487** 11,320** 10,404** 8,837**  8,556**  

 (4,821) (4,606) (4,669) (4,605) (4,102)  (4,135)  

Age2 -69.58* -66.13* -85.27** -74.92** -63.00*  -58.83*  

 (37.58) (35.56) (38.63) (37.09) (32.75)  (32.19)  

Age3 0.15 0.15* 0.17* 0.14 0.10  0.09  

 (0.09) (0.08) (0.09) (0.09) (0.08)  (0.07)  

Protein -53,794 -86,528 84,669 85,837 25,839  40,901  

 (96,591) (82,186) (83,357) (80,163) (46,773)  (49,640)  

Stripe rust 55,700* 55,119** 31,739** 33,734** 23,759**  27,217***  

 (27,967) (23,879) (13,816) (13,784) (9,620)  (9,763)  

Loose smut 85,965** 77,519** 70,613** 70,412**  125,992**  123,420** 

 (40,837) (35,626) (30,550) (30,870)  (58,068)  (56,418) 

Bunt 1,972 46.15 -11,445 -18,294 -229,202***  -236,549***  

 (30,517) (27,681) (25,021) (25,813) (33,800)  (34,891)  

Leaf spot -102,531 -101,215 -173,020*** -166,688*** -  -  

 (93,157) (86,250) (51,608) (53,570)     

Fusarium head blight -11,474 9,298 -54,735 -51,912  -116,845  -112,335 

 (36,480) (30,985) (42,449) (40,715)  (107,181)  (104,148) 

Sprouting**** -1,528 -804.28 -662.28 -100.70  31,579  29,803 

 (29,002) (23,532) (38,869) (37,284)  (81,083)  (77,290) 

Lodging -38,250 -85,997 59,686 53,813 34,677*  21,880  

 (107,618) (94,657) (43,129) (43,931) (19,113)  (19,499)  

Height -155,303 -143,767 -66,008 -57,051  40,209  39,761 

 (118,428) (106,342) (111,342) (110,548)  (158,639)  (155,417) 

Head awn -6,167 -27,906 -153.85 13,166  499,846***  514,799*** 

 (115,162) (107,182) (95,953.21) (93,539)  (152,242)  (151,606) 
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Maturity rate 165,098** 145,998** 114,931** 105,779** 97,214  96,609  

 (80,527) (70,353) (46,269) (45,679) (95,870)  (85,352)  

Test weight 6,061 5,406 8,567 15,923 -5,879  -298.21  

 (34,327) (27,460) (26,577) (26,660) (14,404)  (14,076)  

Seed weight 822.69 3,361 -8,263 -6,056 1,286  5,380  

 (21,607) (17,813) (23,642) (22,308) (24,495)  (22,371)  

Wheat class dummy 

variables 
✓  ✓        

         

Constant -61,561 520,692 -1,855,890 -2,358,942 105,026 -681,966 -512,860 -681,795 

 (2,506,127) (2,104,857) (2,439,046) (2,420,318) (1,074,955) (510,316) (1,072,007) (487,387) 

         

Observations 103 103 103 103 114 103 114 103 

R2  0.51 0.57   0.92 0.27 0.92 0.28 

Number of varieties 32 32 32 32 37 32 37 32 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

**** sprouting is time invariant in Alberta when the restriction of a minimum of four risk areas is imposed 
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6.4.2 Manitoba 

Estimated results for Manitoba, presented in Table 6.4, include two pooled OLS models (Models 

(13) and (14)), two Hausman-Taylor IV (Models (15) and (16)), and two FEF (Models (17) and 

(18)). As in the previous results tables, even numbered regressions rely on lag yield potential and 

lag variety specificity as the key regressors. Again, due to the presence of heteroskedasticity, I 

cluster standard errors on varieties. 38
 

 Results of the pooled OLS approach indicate using lag yield potential and lag variety 

specificity as the key independent variables increases the explanatory power by approximately 

1%. However, none of the key independent variables is statistically significant. Based on Models 

(13) and (14), it appears that only faster maturity rates improve adoption rates. Other traits 

reporting significant negative effects (for a 10% significance level) include stem rust, loose smut, 

and sprouting resistances. Variety head awn and seed weights also decrease adoption rates 

according to the pooled OLS estimates.  

 Accounting for variety specific heterogeneity, estimates of the Hausman-Taylor IV 

approach differ slightly. Results indicate negative associations between varietal acreage and 

variety specificity, stem rust resistance, and fusarium head blight resistance for a 10% 

significance level. Estimated results again support an S-shaped variety life cycle.  In contrast to 

findings of the prairie-wide analysis, Models (15) and (16) report positive coefficients for variety 

protein content. Further, improved sprouting resistance appears a significant asset to varieties.  

 Estimates from the preferred FEF models show reduced explanatory power for Step 1 

when lag average yield and lag yield variance are the key independent variables, consistent with 

observations from the pooled OLS regressions. In Models (17) and (18), estimates of all four key 

variable effects are insignificant. Higher stem rust and fusarium head blight tolerances exhibit 

negative associations with variety acreage, while all of the time invariant traits from Step 2 of the 

FEF show no consequential effects on varietal adoption.  

 Placing more weight on the estimates of Models (17) and (18) due to the more desirable 

properties of the FEF empirical approach, I find two disease tolerances (i.e., stem rust and 

fusarium head blight) contribute to Manitoba producer variety decisions. However, all yield 

 
38 See Appendix D for heteroskedasticity testing results.  



112 

 

related variety traits lack consequential effects for this level of modeling. Given the relatively 

small number of observations, paired with high numbers of regressors which limit degrees of 

freedom, confidence in these results for Manitoba is somewhat limited.  
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Table 6.3: Manitoba provincial estimates 

 (13) (14) (15) (16) (17) (18) 

Variables 
Pooled OLS Pooled OLS HT-IV HT-IV 

FEF 

 

FEF 

 

 Step 1 Step 2 Step 1 Step 2 

Dependent variable: acres 

         

Lag yield potential  -2,184  -1,500   162.24  

  (2,287)  (1,226)   (1,348)  

Lag average yield -2,245  -660.08  951.15    

 (2,056)  (930.30)  (2,294)    

Lag variety specificity  -20,326  -9,306*   -16,651  

  (12,229)  (5,294)   (13,939)  

Lag yield variance -276.21  -239.40  0.89    

 (237.00)  (150.71)  (279.15)    

Age -2,224 -2,265 875.31 881.37 6,185  5,393  

 (2,827) (2,636) (895.92) (748.04) (4,160)  (3,876)  

Age2 3.70 1.30 -35.54*** -35.14*** -77.37**  -71.61**  

 (24.40) (23.46) (4.26) (4.08) (32.14)  (27.59)  

Age3 0.00 0.01 0.09*** 0.09*** 0.17**  0.16**  

 (0.05) (0.05) (0.01) (0.01) (0.07)  (0.06)  

Protein 87,290 99,599 104,148* 117,704* 368,235  332,771  

 (79,153) (75,478) (58,550) (60,351) (355,545)  (311,616)  

Stem rust -206,713* -191,110* -233,446*** -228,570*** -246,191***  -249,842***  

 (106,768) (94,665) (65,284) (63,058) (82,940)  (70,409)  

Leaf rust 18,227 23,302 -17,915 4,642  -138,506  -110,995 

 (89,599) (90,261) (154,052) (154,953)  (170,901)  (151,555) 

Stripe rust 8,895 -1,655 10,529 6,047 63,221  58,414  

 (39,175) (32,452) (13,051) (12,422) (56,656)  (52,125)  

Loose smut -151,369** -138,707** 47,733 37,322  52,231  45,625 

 (59,014) (57,030) (68,091) (68,311)  (32,939)  (29,262) 

Bunt 49,415 37,509 -32,569 -30,396 -64,362  -58,198  

 (36,396) (34,309) (27,463) (25,858) (45,514)  (37,364)  

Leaf spot -456,512*** -419,278*** -236,619 -227,924  49,198  31,069 

 (94,960) (104,285) (334,297) (316,967)  (261,367)  (231,385) 

Fusarium head blight 54,752 43,541 -142,654*** -130,862*** -186,256***  -173,566***  

 (143,946) (132,230) (23,948) (26,171) (62,012)  (58,241)  

Sprouting -65,140*** -58,918** 108,187*** 121,543*** 67,273  68,782  

 (19,612) (23,541) (22,933) (29,539) (79,781)  (86,546)  

Lodging 12,054 17,259 -32,628 -2,307  3,222  18,667 
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 (21,834) (28,336) (188,863) (187,936)  (127,129)  (115,019) 

Height -48,544 -43,798 -23,744 -30,288 -21,148  -18,092  

 (32,077) (28,056) (33,564) (29,764) (57,532)  (53,067)  

Head awn -807,357*** -744,937*** -32,264 -17,775  83,459  73,128 

 (207,540) (223,053) (259,141) (248,847)  (213,508)  (188,126) 

Maturity rate -618,632*** -561,104*** -334,249 -308,709  -129,594  -124,222 

 (103,384) (113,465) (298,004) (282,514)  (311,728)  (275,929) 

Seed weight -281,724** -248,668* -45,485 -13,888  -12,850  5,561 

 (127,755) (136,975) (326,043) (312,943)  (239,629)  (212,026) 

Wheat class dummy 

variables  
✓  ✓        

         

Constant 4,266,404** 3,719,046* 1,582,214 1,031,482 -3,741,291 567,515 -3,181,587 412,263 

 (1,718,851) (1,898,572) (3,706,283) (3,557,722) (4,987,587) (2,596,315) (4,327,323) (2,300,910) 

         

Observations 67 67 67 67 118 67 118 67 

R2 0.77 0.78   0.77 0.31 0.77 0.32 

Number of varieties 13 13 13 13 28 13 28 13 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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6.4.3 Saskatchewan  

With the largest share of observations in the full dataset, Saskatchewan’s results are largely 

similar to the prairie-wide level. As in each of the previous cases, Table 6.5 presents these 

results, with even numbered models containing lag yield potential and lag variety specificity as 

the key regressors. Models (19) and (20) are the pooled OLS regressions, Models (21) and (22) 

use the Hausman-Taylor IV approach, and Models (23) and (24) rely on the FEF approach. I 

correct standard errors for heteroskedasticity by clustering on varieties.  

 As observed in several of the other models, when lag yield potential and lag variety 

specificity are the key independent variables, explanatory power of the pooled OLS model is 

relatively higher. Slower maturity rates and leaf spot resistance show positive relationships with 

adoption in both pooled OLS models, while increased loose smut tolerance appears to be 

negatively associated with adoption in Model (19). As in the prairie-wide estimates, both Models 

(19) and (20) indicate S-shaped variety life cycles. Further, variety yield potential displays a 

positive relationship with adoption and the significant coefficient on variety specificity a 

negative relationship, both as expected in the conceptual framework. 

 Moving to the Hausman-Taylor IV models (i.e., Models (21) and (22)), variety life cycle 

effects remain significant. However, in contrast to the pooled OLS approach, several disease 

tolerances display significant coefficients. Estimates in both models indicate that lodging 

resistance and leaf rust tolerance are assets to varieties, while variety acreage declines with 

higher loose smut tolerance ratings. Models (21) also presents significant negative relationships 

between both average yield and stripe rust tolerance, and adoption levels.  

 Modelling using the FEF approach to examining Saskatchewan producer varietal 

decisions again supports an S-shaped variety life cycle. Further, both Models (23) and (24) 

indicate that stripe rust tolerance, loose smut tolerance, and variety head awn are significantly 

correlated with lower adoption levels at a 10 % significance level. Increased lodging resistance 

appears to positively impact adoption in both models, while protein content exhibits negative 

effects in Model (23). Finally, of the yield related traits only the coefficient for average yield is 

statistically significant, but again oddly negative.  
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 Overall, based on estimates from Model (24) using the FEF approach, paired with lag yield 

potential and lag variety specificity as the key independent variables, significant factors in 

Saskatchewan wheat producer variety decisions include variety stripe rust and loose smut 

tolerance, lodging resistance, and whether or not a variety has an awned head. Degrees of freedom 

in provincial modeling for Saskatchewan are relatively less restricted than in the other two 

provinces but the number of available observations is still much lower than in the prairie-wide 

analysis. This may be why lag yield potential and lag variety specificity display more significance 

in Saskatchewan’s pooled OLS models, where fewer regressors are included, retaining more 

degrees of freedom.   
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Table 6.4: Saskatchewan provincial estimates 

 (19) (20) (21) (22) (23) (24) 

Variables 
Pooled OLS Pooled OLS HT-IV HT-IV 

FEF 
FEF 

 

 Step 1 Step 2 Step 1 Step 2 

Dependent variable: acres 

         

Lag yield potential  4,112 **  668.05   362.58  

  (1,617)  (1,115)   (1,125)  

Lag average yield 883.00  -1,652*  -1,812*    

 (1,483)  (954.02)  (978.15)    

Lag variety specificity  -31,575***  -10,008   -8,288  

  (8,584)  (7,853)   (7,742)  

Lag yield variance -26.61  127.22  114.45    

 (94.58)  (135.11)  (145.71)    

Age 4,836** 3,469** 5,9958*** 5,584*** 6,007***  5,718***  

 (1,931) (1,547) (2,033) (2,032) (2,038)  (2,022)  

Age2 -29.48** -20.91** -45.42*** -42.01*** -46.67***  -43.95***  

 (11.41) (8.93) (13.49) (13.52) (12.61)  (12.58)  

Age3 0.05** 0.03** 0.07*** 0.07*** 0.07***  0.07***  

 (0.02) (0.01) (0.02) (0.02) (0.02)  (0.02)  

Protein 21,980 11,951 -156,047 -145,217 -282,191*  -270,778  

 (41,687) (38,298) (147,755) (146,780) (163,487)  (168,037)  

Stem rust -8,948 -5,419 18,406 15,657 -9,129  -18,396  

 (16,787) (16,026) (28,341) (24,755) (37,595)  (37,833)  

Leaf rust 14,828 11,538 76,943* 74,362* 40,696  41,642  

 (16,573) (15,214) (42,739) (42,319) (26,349)  (25,165)  

Stripe rust -9,845 -1,246 -41,738** -32,132 -48,209**  -38,160*  

 (19,615) (16,886) (20,449) (20,088) (19,913)  (20,089)  

Loose smut -25,580** -15,801 -65,098*** -60,847** -80,869**  -77,509**  

 (11,662) (11,028) (23,578) (23,984) (31,266)  (32,064)  

Bunt -10,175 -5,545 66,088 63,975 62,105  60,587  

 (14,422) (13,340) (44,622) (44,860) (52,763)  (53,266)  

Leaf spot 59,469** 55,584** 16,320 12,440 29,158  24,922  

 (23,284) (21,819) (43,629) (36,654) (52,031)  (45,486)  

Fusarium head blight 6,140 -4,657 -20,037 -26,608 -69,542  -79,848  

 (19,144) (18,879) (27,373) (28,914) (55,732)  (59,450)  

Sprouting -12,122 -9,623 -6,222 -10,677 8,801  177.42  

 (18,406) (16,831) (27,427) (26,415) (35,992)  (34,490)  

Lodging 18,894 5,829 95,014*** 92,397*** 108,429***  107,571***  
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 (16,332) (14,274) (36,207) (35,708) (39,344)  (39,218)  

Height -21,934 -19,082 -18,148 -18,667 -38,091  -39,187  

 (35,305) (34,343) (28,129) (29,716) (33,052)  (33,816)  

Head awn -38,405 -19,440 -205,104 -184,336  -258,962**  -235,501** 

 (45,376) (41,295) (129,005) (126,012)  (106,606)  (103,440) 

Maturity rate -28,752** -20,294* 9020 14,039 10,311  14,875  

 (11,638) (10,440) (13,441) (13,897) (13,852)  (14,250)  

Test weight -6,299 -3,941 11,100 9,880 13,986  13,296  

 (10,730) (9,733) (13,947) (13,420) (14,152)  (14,240)  

Seed weight 6,094 5,563 9,256 8,357 14,927  14,741  

 (8,297) (7,609) (13,204) (12,926) (13,785)  (13,538)  

Wheat class dummy variables ✓  ✓        

         

Constant -322,075 -279,768 1,764,569 1,550,633 3,864,118 175,426** 3,687,628 159,533** 

 (717,036) (660,711) (2,112,913) (2,072,757) (2,441,988) (77,776) (2,487,165) (75,847) 

         

Observations 310 310 310 310 310 310 310 310 

R2 0.26 0.33   0.76 0.10 0.75 0.09 

Number of varieties 68 68 68 68 68 68 68 68 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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6.4.4 Summary of provincial results 

The above results indicate that factors of variety adoption decisions differ by province. FEF 

estimates for Alberta in Model (12) suggest significant relationships between adoption and 

variety stripe rust, loose smut, and bunt tolerances, as well as variety head awn. In contrast, 

Manitoba’s Model (18) results point to stem rust and fusarium head blight tolerance. Yet in both, 

neither yield potential, nor variety specificity display statistically significant correlations with 

variety adoption. However, as I note in the preceding discussion, this may be the result of 

insufficient degrees of freedom. Saskatchewan’s empirical results suffer less from degrees of 

freedom limitations, but both yield related variety characteristics remain statistically insignificant 

in Model (24). Variety head awn and tolerances to stripe rust, loose smut, and lodging do appear 

to matter. Interestingly, the signs for the estimated effects of stripe rust and variety head awn in 

Saskatchewan (negative) differ from Alberta’s (positive), suggesting significant differences in 

the factors of variety decisions between these neighbouring provinces. However, this may simply 

be the result of statistical limitations. Finally, relative to the prairie-wide results, the estimated 

effect for fusarium head blight tolerance in Manitoba is the only trait matching in both sign and 

statistical significance.  

 

6.5 Wheat class results 

As is the case with different provinces, it is likely the differences in end uses influence the 

importance of select variety traits. Take for example, the case of HRS discussed in the final 

section of chapter five. To be classed as HRS, varieties generally produce higher protein 

contents, making it plausible that the importance of protein content is diminished when variety 

decisions within this particular wheat class are examined. Below I discuss the results of 

empirical analyses at the wheat class level for the three largest (in terms of allocated acreage) 

wheat classes: HRS, CPS, and durum.  

 

6.5.1 Hard red spring 

As the dominant wheat class, HRS varieties account for the largest share of the dataset when 

split by wheat classes. Table 6.6 provides the empirical results for this level of analysis. It 
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follows the same format as the previous results tables, including two estimated pooled OLS 

models, two estimated Hausman-Taylor IV models, and two estimated FEF models. Due to the 

presence of heteroskedasticity, I cluster standard errors on varieties again.  

 Pooled OLS modeling with the key variables of lag yield potential and lag variety 

specificity again provide relatively higher explanatory power. Both models indicate varietal 

stripe rust tolerance significantly and positively impacts adoption decisions, while varietal height 

and maturity rates display a negative relationship with varietal acreage. As in the prairie-wide 

analysis, estimated coefficients for lag variety specificity and lag yield potential are significant, 

and have the expected signs. One notable difference from the previous analyses is that the lack of 

significant support for an S-shaped adoption. As I discuss later, this holds true in Model (30), the 

preferred FEF estimation.  

 Hausman-Taylor IV estimates, presented in Models (27) and (28), coincide in terms of 

significance and sign at a 5% level with the pooled OLS estimates in only two traits: varietal 

height and variety specificity. However, magnitudes of the coefficients for these traits differ. The 

only other significant variables for HRS observed with the Hausman-Taylor IV approach are the 

indicators of the shape of the variety life cycle (i.e., 𝑎𝑔𝑒, 𝑎𝑔𝑒2, and 𝑎𝑔𝑒3). All other variety 

traits display no statistically significant estimated coefficients.  

 Turning to the estimated FEF models in Models (29) and (30), I observe higher 

explanatory power when key variables lag yield potential and lag variety specificity are included. 

Estimates of the coefficients on varietal height and fusarium head blight tolerance indicate 

negative relationships with variety adoption in both models. Model (29) suggests that relatively 

higher stripe rust tolerance has negative implications for varietal acreage, while Model (30) 

points to a negative effect for leaf spot resistance and positive effect for loose smut tolerance. 

Statistically significant estimates for variety yield potential and specificity produce the expected 

signs on these two variety traits, but the shape of the life cycle is less clear. Model (29) reports 

significant coefficients for all three degrees of variety age, suggesting an S-shaped adoption path, 

but Model (30) does not, instead lining up with what is observed in the pooled OLS model (i.e., 

Model (26)).   

 Placing the analytical focus on the results of Model (30), variety decisions of Canadian 

Prairie wheat producers within the HRS wheat class depend on the yield potential, variety 
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specificity, variety heights, and the loose smut, leaf spot, and fusarium head blight tolerances. 

While more disease traits display significant estimated relationships, results for the HRS wheat 

class are largely consistent with the prairie-wide results. However, protein content does appear to 

not be a factor in variety decisions within this class, plausibly supporting the idea that the 

relative importance of certain traits is impacted by wheat classes. For example, there may be 

insufficient variability in protein content across varieties within the HRS wheat class, reducing 

the importance of this trait in decisions between HRS varieties.  
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Table 6.5: Hard red spring wheat class estimates 

 (25) (26) (27) (28) (29) (30) 

Variables 
Pooled OLS Pooled OLS HT-IV HT-IV 

FEF FEF 

 Step 1 Step 2 Step 1 Step 2 

Dependent variable: acres 

         

Lag yield potential  3,308**  401.16   3,923***  

  (1,237)  (970.51)   (1,075)  

Lag average yield -625.34  -1,018  814.32    

 (1,443)  (1,015)  (1,095)    

Lag variety specificity  -54,537***  -19,353**   -47,398***  

  (11,061)  (7,650)   (11,696)  

Lag yield variance -167.50  140.90  32.64    

 (203.55)  (163.60)  (220.12)    

Age 3,854* 952.67 9,608** 7,783** 7,102*  3,238  

 (2,247) (1,921) (3,945) (3,435) (3,785)  (3,494)  

Age2 -26.42 -10.15 -91.97*** -77.85*** -64.43**  -39.46  

 (16.19) (13.50) (29.69) (25.94) (31.40)  (29.06)  

Age3 0.05 0.03 0.20*** 0.17*** 0.13*  0.09  

 (0.04) (0.03) (0.06) (0.06) (0.07)  (0.06)  

Protein -44,145 -34,347 -994.64 547.70 -119,618  -64,334  

 (42,613) (42,085) (167,015) (158,678) (116,205)  (102,847)  

Stripe rust 29,159** 31,101*** -805.77 5,700 -69,230*  -44,720  

 (11,035) (10,402) (13,062) (14,543) (37,368)  (32,417)  

Loose smut -2,009 3,566 22,568 22,780 67,350  98,220*  

 (17,208) (17,102) (21,004) (19,924) (65,361)  (53,530)  

Bunt -32,275 -27,558 -27,123 -26,507 1,854  -5,607  

 (21,313) (19,211) (24,964) (24,130) (50,478)  (38,286)  

Leaf spot 10,601 3,685 -34,959 -32,107 -128,823  -128,758*  

 (31,931) (28,690) (28,274) (26,280) (103,063)  (72,223)  

Fusarium head blight 13,994 1141.8 -23,300 -24,833 -175,228***  -146,279**  

 (22,804) (21,775) (30,845) (29,466) (56,155)  (61,838)  

Sprouting -1,422 138.11 8,123 4,547 19,152  17,973  

 (13,998) (13,325) (20,406) (18,870) (98,116)  (81,330)  

Lodging -2,620 -18,242 49,612 39,758 50,727  22,164  

 (20,068) (20,984) (43,393) (40,119) (40,607)  (30,482)  

Height -114,631*** -89,605*** -78,863*** -69,525*** -131,301***  -85,154***  

 (32,297) (27,386) (27,653) (24,969) (39,634)  (30,680)  

Head awn -18,724 -6.18 -30,770 -10,714  21,007  62,533 

 (43,910) (41,132) (84,713) (84,488)  (85,685)  (75,043) 
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Maturity rate -23,347** -19,839* 15,934 19,046 -1,103  10,685  

 (9,269) (10,595) (15,934) (16,154) (15,242)  (15,950)  

Provincial dummy variables ✓  ✓  ✓  ✓  ✓   ✓   

         

Constant 1,045,874 899,286 108,739 95,733 2,525,531 -10,402 1,497,478 -34,085 

 (646,464) (636,114) (2,596,408) (2,433,107) (1,628,241) (58,655) (1,480,556) (53,514) 

         

Observations 378 378 378 378 380 378 380 378 

R2 0.22 0.33   0.51 0.00 0.58 0.02 

Number of varieties 47 47 47 47 47 47 47 47 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1  
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6.5.2 Canada Prairie spring 

A smaller wheat class than HRS, CPS varieties on average yield higher than HRS varieties but 

face increased protein content volatility, as seen in Table 5.5. Below, Table 6.7 provides 

estimation results for variety decisions within the CPS wheat class. In line with the other tables 

in this chapter, Models (31) and (32) are the pooled OLS approach, (33) and (34) are the 

Hausman-Taylor IV approach, and (35) and (36) reflect FEF estimates. I again correct for 

heteroskedasticity using clustered standard errors.  

 Few variety traits show statistical significance as factors in the pooled OLS models for 

the CPS class. With relatively better explanatory power, Model (32) indicates that lag variety 

specificity is significantly (at the 10% level) and negatively associated with adoption of CPS 

varieties. Additionally, lag yield potential and variety height show positive associations with 

adoption in this model. Model (31) shows a similar positive correlation between variety height 

and variety adoption within this class.  

 Hausman-Taylor IV estimates find no significance of any of the yield related variety 

traits. However, an S-shaped patter for variety life cycles is supported by these results. Sprouting 

resistance also appears to be a positively contributing factor in variety adoption decisions.  

 In contrast, estimates of the favoured FEF approach used in Models (35) and (36) point to 

several additional significant factors, although with differences between the two. Model (35), 

finds significant positive associations between variety loose smut tolerance and oddly, variety 

height. This last observation suggests that taller CPS varieties are more widely used within the 

portion of acres allocated to this wheat class by producers across the prairie provinces and holds 

for Model (36) as well. Factors with significant coefficients in Model (36) include the variety 

specificity (negative in sign as expected), variety head awn, lodging resistance, and tolerance to 

fusarium head blight.  

 In short, looking at the results of Model (36), adoption intensity levels for CPS wheat 

varieties seem to depend on varietal height, fusarium head blight tolerance, variety head awn, 

and lodging resistance. Further, the estimated coefficient for a variety’s adaptability (i.e., inverse 

of variety specificity) shows significant correlations with variety acreage. Protein content is not 

significantly correlated with adoption levels in any of the CPS models but the positive estimated 



125 

 

effects of variety heights are interesting, as in general, such varieties face increased susceptibility 

to lodging. However, this result may be the product of reduced degrees of freedom due to the 

small number of observations for the CPS class and large number of regressors.  
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Table 6.6: Canada Prairie spring wheat class estimates 

 (31) (32) (33) (34) (35) (36) 

Variables 
Pooled OLS Pooled OLS HT-IV HT-IV 

FEF FEF 

 Step 1 Step 2 Step 1 Step 2 

Dependent variable: acres 

         

Lag yield potential  1,727*  -247.28   678.10  

  (957.26)  (465.78)   (1,112)  

Lag average yield 446.23  -766.34  -271.37    

 (990.59)  (599.43)  (1,252)    

Lag variety specificity  -10,828*  -794.61   -7,673*  

  (5,228)  (1,519)   (3,519)  

Lag yield variance -69.02  17.44  -18.39    

 (6.01)  (27.30)  (33.61)    

Age 1,084 976.44 -3,299** -3,245** -1,475  -1,750  

 (3,758) (3,525) (1,504) (1,445) (3,088)  (2,512)  

Age2 -9.21 -10.67 33.25** 34.13** 20.48  24.04  

 (34.80) (32.40) (14.81) (14.66) (27.15)  (23.18)  

Age3 0.03 0.03 -0.11*** -0.11*** -0.08  -0.09  

 (0.08) (0.08) (0.04) (0.04) (0.07)  (0.06)  

Protein -46,664 -50,562 45,920 47,449 -33,400  -27,536  

 (29,460) (29,356) (29,987) (36,305) (22,817)  (18,006)  

Stripe rust -3,863 -6,539 1,116 -2,666 -10,246  -32,681  

 (13,906) (11,997) (36,614) (31,562) (37,765)  (25,527)  

Loose smut 31,703 30,266 20,506 27,983 70,653**  22,683  

 (29,325) (27,832) (37,999) (35,227) (25,701)  (18,509)  

Bunt 28,599 34,188 -18,758 -22,636 -45,382  -  

 (26,017) (23,421) (22,436) (22,311) (29,991)    

Leaf spot 27,047 12,981 -28,603 -27,627  -216,645  -91,824 

 (26,402) (27,839) (61,357) (58,659)  (134,063)  (106,119) 

Fusarium head blight 26,916 22,281 -56,918 -55,134 -  -72,118**  

 (24,104) (22,156) (36,583) (37,471)   (28,998)  

Sprouting -14,069 -32,297 52,295** 45,152** -105,801  -114,119  

 (40,303) (40,558) (23,108) (18,862) (99,942)  (83,017)  

Lodging 20,850 30,606 13,565 11,395 -39,493  -35,554*  

 (45,213) (43,156) (14,365) (15,250) (27,051)  (16,630)  

Height 35,083* 25,308* 4,174 5,303 51,052***  42,742***  

 (17,480) (13,671) (17,738) (18,196) (16,074)  (9,551)  

Head awn -55,946 -81,004 47,730 42,827  -96,676  -235,313** 

 (63,303) (63,977) (64,965) (64,901)  (103,183)  (93,916) 
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Maturity rate 7,509 15,495 -2,172 -1,495 -1,186  1,171  

 (25,821) (27,289) (10,715) (12,561) (20,622)  (18,866)  

Provincial dummy 

variables 
✓  ✓  ✓  ✓  ✓   ✓   

         

Constant 168,323 263,892 -445,706 -464,834 904,353** 670,579 1,035,533*** 449,936 

 (437,644) (445,628) (438,468) (513,970) (318,936) (402,188) (138,653) (318,356) 

         

Observations 67 67 67 67 67 67 67 67 

R2 0.43 0.50   0.82 0.19 0.85 0.17 

Number of varieties 12 12 12 12 12 12 12 12 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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6.5.3 Durum 

Wheat class level estimates for durum varieties, presented in Table 6.8, differ from the other two 

examined wheat classes, particularly in the signs of estimated effects of some disease tolerances 

(i.e., bunt, loose smut, and leaf spot). The format of the table remains the same, containing two 

pooled OLS, two Hausman-Taylor IV, and two FEF regressions. As in all other analyses in this 

chapter, I correct standard errors through clustering on varieties.  

 In the pooled OLS models, explanatory power is again higher when lag yield potential 

and lag variety specificity form the key independent variables. Slower maturity rates, taller 

varieties, and improved sprouting and bunt resistance display significant (at the 5% level) 

associations with variety adoption in both Models (37) and (38). Relatively higher fusarium head 

blight tolerance is negatively related to variety adoption levels according to both pooled OLS 

models. All indicators of the variety life cycle show significance, supporting an S-shaped 

adoption path for varieties in both models, while protein content displays a positive association 

with acreage in Model (37). Across the key independent variables, coefficients for both lag 

average yield and lag yield potential are positive in their respective models. Further, variety 

specificity has the expected negative sign, significant at the 10% level in Model (38). But the 

pooled OLS estimates remain subject to bias by leaving variety specific effects unaddressed. 

 The Hausman-Taylor IV model, which accounts for these variety effects with the help of 

several assumptions produces different results from the first two models in Table 6.8. While 

coefficients on maturity rates, variety heights and bunt tolerance in both Models (39) and (40) 

remain consistent with the results of the pooled OLS models, the effect of sprouting resistance is 

now estimated as negative. Further, several other disease tolerances (i.e., lodging, leaf spot, and 

stripe rust) show significant and positive associations with adoption levels. Loose smut maintains 

its negative sign and support for the S-shape life cycle of varieties continues. However, none of 

estimated coefficients for the yield based varietal traits display significance.  

 Moving to the FEF estimates in Models (41) and (42), this lack of significance for the 

yield related variety traits continues. However, I still observe significant coefficients for maturity 

rates, leaf spot tolerance, and bunt tolerance, although magnitudes differ with each empirical 

approach. Fusarium head blight resistance, variety height and loose smut resistance also remain 

significant factors based on these estimated models.  
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 Focusing on the results of Model (42) which uses the preferred empirical approach and 

includes the main variety trait of interest, variety specificity, it appears that several traits factor 

into durum classed variety decisions. These include variety maturity rates, variety heights, and 

bunt, leaf spot, fusarium head blight, and loose smut tolerances. From the results of this 

particular model, variety specificity exhibits no association with variety acreage. However, 

observations are again limited for this level of analysis, reducing the degrees of freedom in all 

models and in particular, for the panel approaches that include variety specific effects.   
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Table 6.7: Durum wheat class estimates 

 (37) (38) (39) (40) (41) (42) 

Variables 
Pooled OLS Pooled OLS HT-IV HT-IV 

FEF FEF 

 Step 1 Step 2 Step 1 Step 2 

Dependent variable: acres 

         

Lag yield potential  5,587**  -1,342   -1,085  

  (2,004)  (1,244)   (950.94)  

Lag average yield 5,804*  -2,181  -2,297    

 (3,124)  (1,846)  (1,709)    

Lag variety specificity  -34,847*  -3,291   133.82  

  (16,410)  (10,230)   (10,161)  

Lag yield variance -195.57  -54.51  78.73    

 (348.08)  (327.38)  (315.27)    

Age 17,323** 16,871** 14,244*** 14,840*** 14,649**  15,085**  

 (6,476) (5,847) (4,727) (5,085) (5,482)  (5,626)  

Age2 -117.62** -116.95*** -79.28*** -83.58*** -88.14**  -90.34**  

 (41.26) (37.21) (22.69) (24.58) (30.91)  (30.42)  

Age3 0.18** 0.18*** 0.11*** 0.12*** 0.12**  0.13**  

 (0.06) (0.06) (0.03) (0.03) (0.04)  (0.04)  

Protein 243,908* 171,914 289,941 290,325 -74,082  -43,057  

 (134,733) (134,013) (177,621) (185,927) (158,162)  (175,447)  

Stripe rust -190,133 -106,057 94,273** 91,089** 19,624  12,910  

 (122,937) (113,652) (42,262) (43,398) (73,615)  (76,888)  

Loose smut 521.01 5,639 -51,709** -47,648** -66,553**  -63,067*  

 (33,495) (30,940) (20,307) (19,345) (27,699)  (27,298)  

Bunt 306,710*** 280,376*** 338,235*** 333,736*** 212,994***  210,120***  

 (85,394) (79,846) (33,847) (35,752) (68,623)  (69,794)  

Leaf spot -151,500 -118,647 235,266** 224,188** 195,979*  182,997*  

 (155,684) (126,286) (91,967) (87,824) (116,274)  (116,143)  

Fusarium head blight -231,997* -285,836** -183,282 -186,806  -418,921***  -400,919*** 

 (122,380) (124,452) (163,990) (156,458)  (121,499)  (118,347) 

Sprouting 188,533** 145,653** -123,600* -122,024* -8,198  -1,362  

 (72,952) (60,539) (70,692) (70,832) (83,005)  (82,274)  

Lodging -20,559 -33,717 141,820* 133,648* 154,919  147,717  

 (42,654) (42,696) (79,907) (74,502) (92,374)  (89,081)  

Height 737,875** 724,007** 232,026* 259,615*  566,125***  568,295*** 

 (325,289) (281,236) (152,846) (155,443)  (86,046)  (85,142) 

Head awn - -    -  - 
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Maturity rate -106,126** -80,780** -49,918*** -53,187** -50,368**  -54,613*  

 (42,126) (37,488) (18,842) (21,951) (24,925)  (26,476)  

Wheat class dummy 

variables 
✓  ✓  ✓  ✓  ✓   ✓   

         

Constant -6,449,957*** -5,455,753*** -7,284,081** -7,316,307** -997,741 -1,095,388** -1,414,961 -1,129,955** 

 (1,948,308) (1,971,364) (2,898,628) (3,040,609) (2,101,095) (396,178) (2,421,683) (389,885) 

         

Observations 74 74 74 74 81 74 81 74 

R2 0.65 0.68   0.89 0.70 0.89 0.70 

Number of varieties 15 15 15 15 15 15 15 15 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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6.5.4 Summary of wheat class results 

Results at the wheat class level of analysis suggest variety adoption factors vary by class. FEF 

estimates for HRS varieties in Model (30) are largely consistent with prairie-wide results, with 

yield potential, variety specificity, variety heights, and fusarium head blight tolerance 

maintaining significance. Differences include the insignificance of protein content, replaced by 

significant effects for loose smut and leaf spot tolerances. Further, some key differences are 

observable between HRS results and those from CPS and durum class modeling, although the 

latter two models are subject reduced degrees of freedom. In CPS’s Model (36), estimated effects 

for yield potential and leaf spot tolerance are now insignificant. However, variety head awn and 

fusarium head blight tolerance are negatively associated with variety adoption within the CPS 

class and the estimated effect for variety height is positive. This positive association is also 

observed in the empirical results for the durum wheat class. Additional significant factors for this 

class include bunt, leaf spot, and loose smut tolerances, as well as variety maturity rates.  

 

6.6 Discussion of overall findings 

In this section, I summarize the main findings of the empirical estimates and discuss the possible 

explanations and implications. This discussion focuses primarily on the findings and implications 

of Model (6), the estimated FEF model at the prairie-wide level that includes yield potential and 

variety specificity as independent variables. I focus on these estimates for four reasons: 

(1) the FEF approach has advantageous statistical properties in the context of variety 

adoption empirical modeling; 

(2) the prairie-wide dataset provides the largest degrees of freedom which results in more 

reliable estimates; 

(3) explanatory power is higher in Model (6) than in Model (5), indicating that the pairing of 

yield potential and variety specificity explains more of the variations in acreage across 

varieties, when compared to using average yield and the yield variance; and 

(4) this model examines the relationship between variety adoption and varietal adaptability 

(measured as the variety specificity), one of the main aims of this research.  
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Based on estimates in Model (6), five varietal traits are significant factors in variety decisions of 

Canadian Prairie wheat producers. These are varietal height, protein content, fusarium head 

blight tolerance, yield potential, and adaptability (or specificity).   

The estimated FEF coefficient for varietal height is negative and significant at the 10% 

significance level. Recall that I measure heights on a four-point scale, where a value of four 

indicates a relatively taller variety. Based on the estimated sign, taller wheat varieties are less 

desirable to Western Canadian wheat producers, with the model predicting that on average, a one 

unit increase in the relative height of a variety is associated with an approximately 57,000 acre 

decline in its allocated acreage. Since the height of a variety factors into its lodging resistance, 

with semi-dwarf varieties facing reduced susceptibility (Kelbert et al., 2004), this negative 

association between variety height and adoption lines up with expectations. This result is also 

consistent with the pooled OLS result in Table 6.2 that includes lag variety specificity (i.e., 

Model (2)) in terms of sign and a 10% significance level, although the magnitude of the 

correlation differs. Further, all alternative models in Appendix D report a negative and 

significant relationship between variety height and adoption levels at the prairie-wide level of 

analysis (i.e., Models (D2), (D4), and (D6)). In fact, even when I relax the minimum risk area 

constraint, variety height remains significantly, negatively associated with variety adoption 

levels across the Canadian Prairies.39  

Examining the importance of variety height at provincial and wheat class levels produces 

different results. In the corresponding models at these secondary analysis levels (i.e., Models 

(12), (18), (24), (30), (36), and (42)), it appears that varietal height matters most for HRS and 

CPS varieties. However, in the case of the latter wheat class, taller varieties appear more widely 

used. This is an odd result given the negative implications of heights for other variety traits, but 

may stem from a lack of adequate degrees of freedom. 

An important factor of end use value, I expect advantages in relative protein content 

increase the desirability of a wheat variety. However, Model (6) suggests that this relationship is 

actually negative. At a 5% significance level, the estimated FEF empirical model finds a 1 

percentage point increase in the protein content of the average variety corresponds to a decline of 

 
39 Results for the full dataset, without the minimum requirement of four risk areas of data in a given year and 

province, are available in Appendix C.  
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approximately 125,000 acres. In other words, if the average acreage per variety is roughly 

137,000 acres (as is the case for the subset of varieties with complete observations and meeting 

the minimum risk area requirement) a variety with a protein content 1 percentage point higher 

than the average across all varieties is predicted to achieve only 10% of the average acreage (i.e., 

14,000 acres). However, it is worth noting that a 1 percentage point increase in protein content 

between varieties is relatively high, with protein contents falling between 13-15 percentage 

points for 68% of varieties in the sample.  

It is plausible that the observed negative association between a variety’s protein and 

adoption levels is the product of a trade-off between protein content and variety yield. Evidence 

of such a trade-off is found by Iqbal et al. (2007), where higher yielding varieties typically 

provide lower protein contents. Comparing these FEF results with all other fixed effects-based 

models (i.e., the fixed effects Tobit and two-way fixed effects approaches), even when the 

minimum risk area requirement is lifted, protein maintains a negative relationship with variety 

adoption. Pooled OLS, Hausman-Taylor IV, and Tobit modelling results differ, finding no 

significant effect of protein content. However, as I discuss in the previous chapter, these models 

are subject to bias and limitations which may explain these differing results.  

In contrast, provincial and wheat class level analyses generally find no significant effect 

of varietal protein content. One possible explanation comes from the statistical power of these 

levels of analysis. With reduced observations in each set of models, there may not be sufficient 

degrees of freedom available, resulting in diminished power of these empirical models to 

estimate variety adoption.  

Fusarium head blight is the only significant estimated coefficient for disease tolerances in 

Model (6). Measured on a five-point scale, where higher values indicate better tolerance, I expect 

to find a positive relationship between this disease tolerance and variety adoption. However, the 

estimated coefficient for fusarium head blight tolerance when yield variations are measured 

using variety specificity is negative. From Model (6), it appears that on average, a one unit 

increase in a variety’s tolerance to fusarium head blight corresponds to a roughly 121,000 acre 

decrease in its adoption. Although the magnitudes, and in some cases significance, differ, this 

empirical result is consistent in sign across most of the other models estimated using lag variety 

specificity as one of the independent variables and the subset of data that meets the minimum risk 
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area requirement (i.e., Models (2), (4), (D2), (D4), and (D6)). Overall, this result suggests that, 

ceteris paribus, wheat varieties with relatively higher tolerance to fusarium head blight are less 

widely adopted by wheat producers in the Canadian Prairies. One possible explanation for this is 

that, like protein content, some trade-off with another desired varietal trait exists, but which trait 

this may be is unclear. If such trade-offs exist, this estimated negative relationship between 

variety adoption and fusarium head blight tolerance may stem from the fact that current 

mitigation strategies recommend the integrated use of fungicides, crop rotation, and cultivar 

resistance in combating this particular disease, and not cultivar resistance alone (Ye et al., 2017). 

Revisiting Table 5.3, the average variety within the dataset has a resistance (or tolerance) rating 

of two, indicating relatively marginal resistance. If there is a trade-off between fusarium head 

blight tolerance and another desirable varietal trait, this low average resistance rating for 

fusarium head blight may push farmers to prioritize the other trait. Alternatively, it may be that 

over the entire span of the dataset, fusarium head blight resistance was less important in some 

periods, making any trade-off not worth it. Therefore, results may differ if focusing on a time 

period after significant outbreaks. Section 6.7 revisits these possible explanations for this 

unexpected empirical result. 

 At provincial and wheat class levels, the estimated effect of fusarium head blight shows 

significance in Manitoba and for each of the three wheat class models. Fusarium head blight is 

more likely to be found in black soil zones, of which Manitoba’s allocated wheat acreage largely 

is (Clear & Patrick, 2010). However, the model again indicates a negative correlation between 

fusarium head blight and variety adoption within the province of Manitoba. Similarly, modeling 

at the HRS, CPS, and durum levels again produce negative relationships between these two 

variables.  

 The predicted relationship between variety adoption and yield potential is, as I expect, 

highly significant at the 1% significance level and positive. Assuming that farmers gauge 

expected yields based on these yield potentials, this positive link with variety adoption makes 

sense. In selecting varieties that are more likely to yield higher, the wheat producer increases 

their expected yield and therefore, potential profits. Model (6) points to an additional bushel per 

acre in yield potential from the average variety corresponding with an increase of over 3,000 

acres allocated to it. This estimate is slightly lower in magnitude than the coefficient for yield 
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potential estimated by the pooled OLS approach (i.e., Model (2)), but as the FEF accounts for 

variety specific heterogeneity while the pooled OLS does not, the difference is likely the result of 

omitted variable bias in Model (2). While the Hausman-Taylor IV approach reflects no 

significant correlation, variety yield potential maintains a significant, positive estimated 

relationship with variety adoption in all other empirical approach at the prairie-wide level.  

 Reviewing the results of FEF modeling relying on variety specificity and yield potential 

for varietal yield indicators at the provincial and wheat class levels of analysis, a significant 

correlation between yield potential and variety adoption is only observed for HRS varieties. One 

possible conclusion is that yield potential is less important in CPS and durum variety selection. 

However, given the comparatively smaller degrees of freedom available in empirical modeling 

for these two classes, it is more plausibly the case that the insignificance of these estimated yield 

potential coefficients is due to limited statistical power. 

As expected, empirical results indicate that more adaptable varieties are more widely 

adopted. Recall from chapter three that the degree of variety specificity (i.e., the mathematical 

inverse of adaptability) is the slope of the yield curve, reflecting the rate of change in yield (i.e., 

change in bushels per location or acre in this context) as the area allocated to variety i expands 

beyond the optimal location. From the estimated coefficient in Model (6), it appears that on 

average, a one-bushel decline in variety specificity corresponds to a more than 30,000 acre 

increase in variety adoption. That is, improving the adaptability of a variety such that the average 

loss in yield is reduced by one bushel as area expands from the best yielding location to the 

second-best location, and so on, correlates with an expansion in allocated acreage to 

approximately 122% for the average variety acreage. This significant link between the 

adaptability and adoption of varieties may at least partially explain the phenomenon observed in 

Figure 4.5, where a handful of varieties dominate each provincial market. Further, as climate 

change continues to escalate the volatility in growing conditions for wheat producers across the 

Canadian Prairies, I expect this varietal adaptability will become increasingly important as a 

means of reducing some of the risks they face.  

This significant, negative (positive) correlation between variety specificity (adaptability) 

and variety adoption levels is consistent across results for the alternative empirical approaches 

when a minimum requirement of four risk areas of data is imposed. Comparing this result to 
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provincial and wheat class level FEF estimates, only HRS and CPS results report a significant 

estimate. When analysis is done at the provincial level, or for the durum wheat class, I find no 

significant link between variety specificity and adoption. However, this may stem from a 

shortage of available degrees of freedom, limiting the power of the FEF model to estimate 

accurate coefficients on variety traits.  

In addition to showing a strong association between variety adoption levels and varietal 

adaptability in the main model (i.e., Model (6)), the empirical results support the idea that variety 

specificity better captures varietal adaptability, relative to using yield variance. Comparing 

Models (5) and (6) for the clearest example of this, the explanatory power when yield potential 

and variety specificity form the key independent variables is approximately 4% higher than when 

using average yield and yield variance. Further, neither of the estimated effects for average yield 

and yield variance in Model (5) are significant, while both yield potential and variety specificity 

show the expected strong positive and negative respective correlations with adoption. Across the 

provincial and wheat class level results, models relying on yield potential and variety specificity 

perform at least as well as those relying on average yield and yield variance in all but one case 

(Saskatchewan). In capturing the interaction of several seed traits and land, it is shown that 

wheat variety specificity does serve as a better indicator of adaptability than yield variance, 

which focuses on changes over time. 

As Table 6.9 summarizes, provincial and wheat class level analyses point to additional 

factors in variety decisions, some of which I discuss in the previous section of this chapter. For 

example, a variety’s lodging resistance appears to matter to producers in Saskatchewan but this 

trait is not significant in any other analysis level. However, as I have previously mentioned, 

many of these empirical models face reduced statistical power due to reduced observations 

leading to a small number of available degrees of freedom. Therefore, the most reliable results 

are that of the prairie-wide level analysis but some of these models provide additional insights 

that should be explored further if more data is obtained.  

One final thing to note is that, by using risk area level data across the Canadian Prairies 

instead of farm level data (which was unavailable for this thesis), the results above are general. 

This may explain why some varietal trait effects appear insignificant or have unexpected 

estimated signs, as it is plausible that certain varietal traits matter only in select regions. Take for 
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example, fusarium head blight, which favours humid conditions. Producers in regions that 

typically face such conditions more regularly likely place an increased weight on a variety’s 

tolerance to this disease. However, because this study looks at the overall insured acreage across 

three provinces such significant regional preferences are lost in the aggregate estimates. 
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Table 6.9: Significant factors of variety adoption and signs based on FEF estimates with lag 

yield potential and lag variety specificity as key independent variables (for significance level 

of 10%) 

Variables Prairies Alberta Manitoba Saskatchewan 
Hard red 

spring 

Canada Prairie 

spring 
Durum 

        

Lag yield potential +    +   

Lag variety 

specificity 
–    – –  

Age + +  +   + 

Age2 – – – –   – 

Age3 +  + +   + 

Protein –       

Stem rust . . –  . . . 

Leaf rust . .   . . . 

Stripe rust  +  –    

Loose smut  +  – +  – 

Bunt  –    . + 

Leaf spot     –  + 

Fusarium head 

blight 
–  –  – – – 

Sprouting        

Lodging    +  –  

Height –    – + + 

Head awn  +  –  –  

Maturity rate       – 

. indicates variable not included in FEF model estimation 

 

6.7 Discussion of unexpected results for select disease tolerances 

Estimated effects in Model (6) for several disease tolerances such as bunt, fusarium head blight, 

and leaf spot, as well as for other variety traits like protein content, lodging resistance, and 

maturity rates are either insignificant or in some cases opposite in sign from expectations. 

However, there is a strong correlation between variety yields and these traits. Improved traits like 

higher disease tolerances ratings both increase the yield potential of a variety, and are more 

likely to be bred into higher yielding varietal lines to begin with. The combination of this multi-

collinearity between lag yield potential and several of these varietal traits and the slow changing 
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nature of the ratings used to measure such traits may be what is causing these different results, as 

most of the variability is captured in the yield term effect and obtaining a true ceteris paribus 

effect for each trait is challenging. With this in mind, I take a deeper look into the trends in 

shares of provincial acres for varieties with higher fusarium head blight tolerance.  

 As I discuss in the preceding section of this chapter, the estimated coefficient for 

fusarium head blight differs from expectations at the prairie-wide level. Reducing the risk of 

grain spoilage due to this disease, and thereby improving the yield potential, varieties with higher 

tolerance for (or resistance to) fusarium head blight should be more desirable to producers, 

particularly in regions where outbreaks are prevalent. As a result, I would expect a positive 

association between variety tolerance to fusarium head blight and adoption levels. In contrast, 

prairie-wide level modeling indicates a negative association.  

 While I offer a possible trade-off argument in the previous section, here I take a more 

detailed look at the data in order to gain a better understanding of trends in the adoption of 

varieties with improved fusarium head blight tolerance that the empirical models may not be 

picking up. Figure 6.1 shows the trend in the aggregate share of provincial acres allocated to 

varieties with lower fusarium head blight tolerance. The decline in overall provincial shares of 

acreage for these varieties is notable, with the steepest decline beginning around 2011 in 

Manitoba. A corresponding increase in the proportion of provincial acreages allocated to 

varieties with fusarium head blight tolerance ratings of at least four is observable in Figure 6.2. 

This apparent shift from lower tolerance rated varieties to those more resistant to fusarium head 

blight is what I expected to find, especially in Manitoba. While this disease has gradually spread 

across the prairie provinces, it is most frequently problematic in black soil zones, of which 

Manitoba’s acreage allocated to wheat production largely is (Clear & Patrick, 2010). Therefore, 

varieties with relatively higher fusarium head blight tolerance should be more widely adopted, 

particularly in Manitoba.  

 What exactly is causing this divergence between the empirical estimates and the 

behavioural pattern shifts observed in Figures 6.1 and 6.2 remains unclear. However, one 

possibility is that most of the variation is picked up through the estimated effect for yield 

potential, as I discuss above. Alternatively, it may result from a lack of sufficient variation in 

fusarium head blight ratings over time within varieties. Fusarium head blight tolerance ratings 
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are slow to change within a variety, generally only shifting from one rating to the next as 

information about the relative performance of a variety is updated over time (Kirk, 2020b). Often 

these changes occur once within the 10-year span of the data, making fusarium head blight 

tolerance a slow changing variable. This data limitation impacts the ability of the FEF to 

accurately estimate its effect and may be why a negative correlation with adoption is observed in 

the empirical models.  

 

Figure 6.1: Trends in aggregate shares of provincial acres of low fusarium head blight 

tolerance rated varieties (rated 1, 2, or 3) 

 
Sources: Agriculture Financial Services Corporation (n.d.), Alberta Seed Growers & Alberta 

Seed Processors (n.d.), Manitoba Agricultural Services Corporation (n.d.), Manitoba Agriculture 

and Resource Development, Manitoba Seed Growers’ Association, & the Manitoba Co-operator 

(n.d.), Saskatchewan Crop Insurance Corporation (n.d.), Saskatchewan Seed Growers’ 

Association (n.d.) 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

A
g
g
re

g
at

e 
sh

ar
e 

o
f 

p
ro

v
in

ci
al

 a
cr

es
 (

an
n
u
al

)

Year

AB

MB

SK



142 

 

Figure 6.2: Trends in aggregate share of provincial acres of high fusarium head blight 

tolerance rated varieties (rated 4 or 5) 

 
Sources: Agriculture Financial Services Corporation (n.d.), Alberta Seed Growers & Alberta 

Seed Processors (n.d.), Manitoba Agricultural Services Corporation (n.d.), Manitoba Agriculture 

and Resource Development, Manitoba Seed Growers’ Association, & the Manitoba Co-operator 

(n.d.), Saskatchewan Crop Insurance Corporation (n.d.), Saskatchewan Seed Growers’ 

Association (n.d.) 
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correlation between a variety’s common bunt tolerance and its yield potential. However, 

Alberta’s estimated negative relationship between these two variables remains unexpected.  

 Looking at the available data for Alberta, there is a visible one-time shift towards 

varieties with relatively higher bunt tolerance (Figure 6.3). As a result, I again observe a 

divergence between the estimated empirical effect and the trend in aggregate shares of provincial 

acreage towards more bunt tolerant varieties. There are several possible explanations for this 

different result. One possible explanation that I note earlier in this chapter is that it may stem 

from a trade-off between varietal bunt tolerance and another more desired varietal trait for 

Albertan wheat producers. Alternatively, given that the main shift seems to occur in a single 

year, it could be that some event in 2013 pushed farmers towards varieties with higher bunt 

tolerance (e.g., an outbreak in common bunt in Alberta). Another possibility is that it stems from 

limited variations in bunt tolerance ratings within varieties over the available time period. 

Finally, it may be that there are insufficient degrees of freedom at this level of analysis, 

impacting the accuracy of the empirical estimates. If it is limited degrees of freedom generating 

this divergence between the estimated results and expected relationship between adoption and 

this varietal disease, then using an interaction term between bunt tolerance and Alberta in the 

prairie-wide level analysis may offer more reliable empirical results for the importance of this 

trait to Albertan wheat producers. 
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Figure 6.3: Trends in aggregate share of Alberta’s provincial acres of for high and low 

bunt tolerance rated varieties  

 
Sources: Agriculture Financial Services Corporation (n.d.), & Alberta Seed Growers & Alberta 

Seed Processors (n.d.) 
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Chapter 7: Conclusion 

 

7.1 Introduction 

This chapter summarizes the conclusions of this thesis and the resulting implications. It begins 

with a summary of the objective and empirical approach, followed by an overview of the main 

findings. A discussion of the implications of these findings and a look at some of the key 

limitations follows. The chapter concludes with some areas of potential future research. 

 

7.2 Thesis summary 

The main aim of this thesis is to empirically examine which traits drive wheat variety adoption 

decisions in the Canadian Prairies, with a focus on the relationship between the adaptability of a 

new variety and its adoption. To do this, I first develop a conceptual framework based on 

Hotelling’s (1929) horizontal differentiation model to explore the relationship between adoption 

and varietal adaptability. Then, using risk area level data spanning from 2009 to 2018 and 

Pesaran and Zhou’s (2018) panel data fixed effects filter (FEF) econometric model, I estimate 

the effects of agronomic traits and end-use value indicators on wheat variety adoption at the 

prairie-wide, provincial, and wheat class levels.  

Results from the econometric analysis indicate that producers across the Prairies are 

concerned with varietal height, protein content, fusarium head blight tolerance, yield potential, 

and adaptability (measured by the degree of variety specificity). Consistent with expectations, 

taller varieties show negative relationships with adoption. This negative association plausibly 

reflects the trade-off between varietal height and susceptibility to lodging, as I discuss in more 

detail in chapter six. Empirical results show strong positive associations between adoption levels 

and varieties with relatively higher yield potential and improved adaptability. For the latter, the 

estimated coefficient for variety specificity indicates that for this sample, improving the 

adaptability of a variety by 1 bushel corresponds to an over 30,000 acre increase in adoption of 

the variety on average. That is, decreasing the rate of decline in yield as area expands beyond the 

optimal location for a variety correlates with an increase in how widely a variety is adopted. 

These results suggest that varieties with comparative advantages in potential yields and those 



146 

 

more adaptable to various growing conditions achieve higher adoption rates. Further, the 

explanatory power is higher for models relying on yield potential and variety specificity than for 

those using average yield and yield variance, suggesting that variety specificity is a better 

measure of adaptability in this setting. Lifecycle indicators support an S-shaped adoption pattern 

for wheat varieties, with the initially rapid adoption rates decreasing and then turning negative as 

varieties near the end of their lifecycle. Counter to expectations, varieties with higher protein 

content and those better resistant to fusarium head blight show negative relationships with 

adoption. As I discuss in the previous chapter, it is plausible that these negative relationships 

reflect either trade-offs with other varietal traits (e.g., Iqbal et al. (2007) find some evidence of 

such a trade-off existing between protein content and yields) or data limitations (i.e., strong 

correlations with yield potential and challenges associated with modeling slow changing 

variables). Figures 6.1 and 6.2 reveal a clear shift towards varieties with higher tolerance ratings, 

suggesting that this latter explanation may be why empirical modeling results counter intuition. 

Finally, provincial and wheat class level analyses produce slight variations from these results, 

but limited available data impedes the ability to obtain more accurate estimates at these levels. 

In addition to these insights into the key factors of wheat variety decisions in the 

Canadian Prairies, there are two empirical modeling related findings. First, as previously 

mentioned, modeling using yield potential and variety specificity as variety yield indicators 

performs better for this sample in terms of explanatory power, relative to using average yield and 

yield variance. Second, FEF modeling results in higher explanatory power of the model than the 

pooled OLS approach for this sample, while maintaining the ability to estimate time invariant 

trait effects. 

 

7.3 Implications 

Insights into Canadian Prairie wheat producer variety decisions gained from these results may be 

used by both public and private players in the early stages of the Canadian wheat supply chain 

to: 

(1) help inform the allocation of resources to breeding programs that target variety 

traits most important to producers; and 
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(2) aid in ensuring producers have access to the information they need when selecting 

varieties.  

 Ensuring that current wheat research priorities align with the needs of producers is 

critical to improving the efficiency of breeding programs, and insights gained from this thesis 

provide additional information that may be helpful in these decisions. Though I cannot assign 

causality, correlations between some varietal characteristics and adoption suggest that 

prioritizing breeding programs focused on improving these attributes may be beneficial. For 

example, the strong association observed between variety adaptability and adoption suggests that 

the overall success of a variety is linked to how widely or narrowly adaptable it is (i.e., its degree 

of specificity). Therefore, prioritizing breeding programs which aim to improve the wide 

adaptability of varieties may be beneficial to Canada’s wheat industry. This finding aligns with a 

recent report by Agriculture and Agri-Food Canada and Cereals Canada (2020) that identifies 

improved wheat yield reliability as a research priority, with a goal of enhancing yield stability 

under variable climate conditions (i.e., adaptability). However, as Roy and Kharkwal (2004) 

note, developing varieties with certain traits for specific needs and areas may remain important 

and necessary as well. Finding the right balance between breeding for specific and for wider 

ranges of growing conditions is key, though challenging and subject to changes over time.  

 Providing Canadian wheat producers with convenient access to accurate and complete 

information on new wheat varieties assists them in making fully informed decisions. Such 

information is available in provincial Seed Guides and Yield Magazines; however, a measure of 

varietal adaptability is not currently reported. This leaves it up to farmers to undertake the 

calculation of some form of yield stability under varying climates themselves, a time-consuming 

endeavour. In light of the findings of this thesis regarding the relationship between varietal 

adaptability and variety adoption, developing an intuitive indicator of how well a variety is able 

to adapt to a range of growing conditions and including this in such publications along side other 

variety data could be beneficial to Western Canada’s wheat industry. Particularly, by including 

an intuitive measure of adaptability along side other yield related information for each variety in 

provincial Yield Magazines, farmers will be better equipped to make the best varietal decisions 

for their operations, even as climate change continues to increase the volatility in growing 

conditions that these producers face. 
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 In addition to these two implications, and related to the latter, this research provides a 

look at some of the challenges associated with access to data. As I discuss in more detail in 

chapter four, obtaining reliable, consistent, and representative data across the three Prairie 

Provinces is extremely difficult. This in turn complicates research efforts aimed at identifying the 

challenges that Western Canadian wheat farmers face and limits the ability of farmers to analyze 

all of this variety data at seeding time. Making the data as accessible as possible to farmers is 

important, particularly as climate change adds to the factors that they must consider when 

deciding between wheat varieties. More readily available data gives farmers the tools needed to 

compare varietal characteristics such as yields, adaptability, and disease tolerances more easily. 

Further, increasing the both the accessibility and consistency of data across Western Canada 

allows for more efficient and effective research. 

Several stakeholders in the Canadian wheat supply chain stand to potentially benefit from 

the information garnered from this research, with the most direct benefits going to breeders and 

government agencies involved in wheat research and development. Added information on which 

variety characteristics correlate with higher adoption rates makes it easier for them to ensure that 

they are targeting the right attributes. While the impacts of most breeding decisions today will 

not be realized for another 12-15 years (Alston et al., 1995; Agriculture and Agri-Food Canada, 

2013a; Agriculture and Agri-Food Canada 2013b), changing climates and corresponding 

increases in extreme weather events mean it is likely that factors such as varietal adaptability will 

only increase in importance.  

In addition, this information may be useful in trial design and reporting decisions. Even 

though most Canadian wheat producers use farm saved seeds, results of this thesis reflect 

information on all insured acreage decisions (where sufficient data is reported), regardless of 

whether production seeds were purchased or saved. Therefore, it may be helpful in evaluating 

potential updates to trial reports for the producers who do choose to purchase certified seeds, as 

well as in improving marketing of new varieties to those who typically choose to use farm saved 

seeds.  

Finally, these insights may be indirectly beneficial to both Western Canadian wheat 

producers and the overall economy through realized benefits resulting from the improved 

allocation of resources within the early stages of the Canadian wheat supply chain.  
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7.4 Limitations 

Limited data availability is one of the key limitations of this study. Not all data for insured 

acreage across Alberta, Manitoba, and Saskatchewan between 2009 and 2018 is available. Also 

unavailable are farm level observations. By alternatively using risk area level data across the 

Canadian Prairies, some insights into individual farmers’ variety preferences are lost.  

 Another limitation is the endogenous nature of some variables. Calculations for both 

variety specificity and yield variance rely on the number of risk areas in which a variety is 

reported for a given province and year. As a result, the values of both of these variables depend 

on adoption, and are therefore endogenous, limiting the interpretations of the coefficient 

estimates to those of correlation. However, this approach is inline with that of Barkley and Porter 

(1996), who include yield variance in their adoption model for Kansas wheat producers. With no 

obviously strong instrumental variables available, I use variety specificity and yield variance to 

understand the relationships between these measurements of yield volatility and adoption but 

note the limitation that no causal relationship can be established without first addressing this 

endogeneity. 

7.5 Future research 

This thesis does not explicitly look at the role that seed distributors play in Western Canadian 

wheat variety adoption. As the agents between breeders and farmers, it is plausible that the 

decisions of these seed distributors impact farmer variety choices since they are the ones 

providing the certified seed to the local farmers who choose to purchase each year. However, in 

the absence of adequate farm level data, empirically identifying this influence is challenging. If 

such data becomes available, further research on the role of these intermediary agents in the 

wheat supply chain is needed to understand the extent of this influence on which new varieties 

are successfully adopted by wheat producers.  

 Additionally, it may be beneficial to consider trial yields as opposed to realized yields 

collected from Yield Magazines. Trial yields published in provincial Seed Guides reflect long 

term yield data from various test sites (Kirk, 2020b). Particularly for newer varieties with less 

available realized yield data, these trial yields provide additional information that farmers likely 
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considered when deciding between varieties. Comparing these trial yields with realized yields 

may provide further insights into Western Canadian wheat varietal decisions.  
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Appendix A   

 

Table A.1: Hausman-Taylor model regressors and possible endogeneity with respect to the 

variety specific effects 

Independent 

variable 

Exogenous 

(𝑥1𝑖𝑡 , 𝑧1𝑖)/ 

endogenous 

(𝑥2𝑖𝑡 , 𝑧2𝑖)* 

Reasoning 

Lag yield 

potential 
𝑥2𝑖𝑡 

Yield depends on both observed and unobserved variety specific traits. 

Traits such as sawfly tolerance are both specific to the variety and 

potentially significantly impact variety yield potential.
40

 

Lag average 

yield 
𝑥2𝑖𝑡 

Yield depends on both observed and unobserved variety specific traits. 

Traits such as sawfly tolerance are both specific to the variety and 

potentially significantly impact variety yield potential. 

Lag variety 

specificity 
𝑥2𝑖𝑡 

The degree of variety specificity is a function of the number of risk areas a 

variety is insured in, as well as the maximum and minimum yields. Since 

these yields are assumed endogenous, variety specificity is also likely 

endogenous with respect to the variety specific attributes. 

Lag yield 

variance 
𝑥2𝑖𝑡 

Yield variance is a function of the number of risk areas a variety is insured 

in, as well as the sum of the deviations from the mean yield. Since these 

yields are assumed endogenous, yield variance is also likely endogenous 

with respect to variety specific attributes. 

Life cycle  

(age, age2, 

age3) 

𝑥1𝑖𝑡  

The lifecycle itself could be endogenous as the speed at which a variety is 

adopted and disadopted is a function of its specific attributes, some of 

which may be unobservable. However, the age of a variety is exogenously 

determined and this is used to capture variety lifecycles in the models. In a 

sense, age to the third-degree polynomial acts as an IV for variety 

lifecycle. 

Protein 𝑥2𝑖𝑡 

Protein content is influences by seed colour, texture, and whether a variety 

is spring or winter wheat (Schuh, 2020). Dummy variables for wheat 

classes to control for these unobserved trait effects on protein are not 

included in the Hausman-Taylor IV model, as they are also correlated with 

variety effects. Therefore, protein content is assumed endogenous. 

Stem rust 𝑧1𝑖 

Stem rust favours excess moisture and moderate to high temperatures 

(Duveiller et al., 2012). As a result, maturity timing and variety nutrient 

uptake efficiency could impact variety susceptibility. However, the 

inclusion of maturity and variety specificity as regressors allow for the 

assumption of stem rust resistance exogeneity. 

Leaf rust 𝑧1𝑖 

Leaf rust favours excess moisture and moderate to high temperatures 

(Duveiller et al., 2012). As a result, maturity timing and variety nutrient 

uptake efficiency could impact variety susceptibility. However, the 

inclusion of maturity and variety specificity as regressors allow for the 

assumption of leaf rust resistance exogeneity. 

Stripe rust 𝑧1𝑖 

Stripe rust favours excess moisture and cooler temperatures (Duveiller et 

al., 2012). As a result, maturity timing and variety nutrient uptake 

efficiency could impact variety susceptibility. However, the inclusion of 

maturity and variety specificity as regressors allow for the assumption of 

stripe rust resistance exogeneity. 

 
40 Yield potential is measured as the maximum observed yield for a variety within a province and year in this thesis. 

Measured in this manner, the yield potential is not exogenous to variety specific effects.  
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Loose smut 𝑧1𝑖 

Loose smut favours cooler, humid planting conditions (Duveiller et al., 

2012). As a result, maturity rates could impact variety susceptibility where 

slower maturing varieties are planted earlier and more likely to face such 

conditions. However, the inclusion of maturity as a regressor allows for 

the assumption of loose smut resistance exogeneity. 

Bunt 𝑧1𝑖 

Bunt favours cooler germination stage temperatures (Duveiller et al., 

2012). As a result, maturity rates could impact variety susceptibility where 

slower maturing varieties are planted earlier and more likely to face such 

conditions. However, the inclusion of maturity as a regressor allows for 

the assumption of loose smut resistance exogeneity. 

Leaf spot 𝑧1𝑖 

Leaf spot favours a wide range of temperatures and long periods of excess 

moisture (Duveiller et al., 2012). As a result, maturity timing and the 

interaction between genotype and land (i.e., variety specificity) potentially 

influence variety susceptibility. However, the inclusion of maturity and 

variety specificity as regressors allow for the assumption of leaf spot 

resistance exogeneity. 

Fusarium head 

blight 
𝑧1𝑖 

Fusarium head blight favours humid conditions and moderate to high 

temperatures (Duveiller et al., 2012). As a result, maturity timing and 

variety nutrient uptake efficiency could impact variety susceptibility. 

However, the inclusion of maturity and variety specificity as regressors 

allow for the assumption of fusarium head blight resistance exogeneity. 

Sprouting 𝑧1𝑖 

Sprouting, referring to pre-harvest sprouting, favours humid conditions in 

later stages (Mohan et al., 2009). As a result, maturity timing could impact 

variety susceptibility. However, the inclusion of maturity as a regressor 

allows for the assumption of sprouting resistance exogeneity. 

Lodging 𝑧1𝑖 

Lodging tolerance depends on plant height and root and stalk structures 

(Kelbert et al., 2004). As a result, variety height and nutrient uptake 

efficiency could impact variety susceptibility. However, the inclusion of 

height and variety specificity as regressors allows for the assumption of 

lodging tolerance. 

Height 𝑧1𝑖 

Variety height depends on nutrient uptake efficiency, with both of these 

factors impacting lodging tolerance (Kelbert et al., 2004). Including 

variety specificity as a regressor allows for the assumption of variety 

height exogeneity. 

Head awn 𝑧1𝑖 
Head awn is built into the genetic code of a variety; the variety either has 

an awned head or not. Therefore, head awn is assumed exogenous. 

Maturity rate 𝑧1𝑖 

Variety nutrient uptake efficiency could influence the observed maturity 

rate of a variety. Including variety specificity as a regressor allows for the 

assumption of maturity rate exogeneity. 

Test weight 𝑧1𝑖 

Test weight depends in part on variety disease resistance (Duveiller et al., 

2012). While several of these are included in the models, some lesser 

diseases do not have available data. As a result, test weight is assumed 

endogenous for the Hausman-Taylor IV models. 

Seed weight 𝑧1𝑖 

Seed weight should be largely determined by genetics and impacts variety 

decisions by influencing the seeding rate. It is also generally positively 

correlated with test weight and therefore included to prevent endogeneity 

of test weight (Gray, 2021). It is assumed exogenous. 

* 𝑥𝑗𝑖𝑡  where 𝑗 = 1,2 indicate the regressors that vary over time, 𝑧𝑗𝑖 indicate the regressors that are time 

invariant 
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Nutrient uptake efficiency rates are intrinsic to the genotype, differing across varieties 

(Chanda et al., 2011). These can affect other traits of the variety, such as the lodging 

susceptibility, protein content, yield, and disease tolerance due to their impacts on the overall 

health of plant (i.e., plants lacking sufficient nutrition have lower yields and weaker tolerances 

for diseases). A variety’s adaptability measures this interaction of the genotype with the growing 

conditions it faces (e.g., soil nutrients, weather patterns, etc.) and therefore should capture the 

intrinsic ability of a variety to adapt to its growing environment. I include this adaptability in the 

models via lag variety specificity and lag yield variance, the latter believed a less accurate 

measure. By doing so, the effect of nutrient uptake efficiency is removed from the variety 

specific effect 𝛾𝑖, and the 𝑧𝑖’s that are impacted by this factor are no longer endogenous with 

respect to 𝛾𝑖.   

Finally, the assumption here is that if a fixed variety trait is not reported in the seed 

guide, it is not an important factor in variety decisions and therefore should not have a significant 

correlation with any of the observed variety traits. This does not mean that no unobserved time 

invariant traits impact the observed time invariant traits, but that there is unlikely to be a 

significant correlation due to the relative importance of the trait in farmer variety selection. Any 

believed to significantly impact other traits are already included in the model, as noted in Table 

A.1.  

While I make a case in support of each of these exogeneity and endogeneity assumptions, 

it is plausible that at least some of these do not hold. Alternatively, assuming that most variety 

traits are endogenous results in a lack of available exogenous variables to serve as IVs in the 

Hausman-Taylor IV model. Unfortunately, these assumptions are the key limitation of using the 

Hausman-Taylor IV model. The FEF model’s advantage is that for the Prairie-wide level 

analysis, only variety head awn requires an orthogonality assumption. Since a variety either has 

the genetics to produce a bearded head or it does not, this assumption comes with a fair degree of 

confidence.  
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Appendix B   

 

Table B.1: Table of time invariant regressors for all levels (Prairie, provincial, and wheat 

class) 

Independent variable Prairies AB MB SK HRS CPS Durum 

Stem rust  -    ✓  ✓  

Leaf rust  - ✓    ✓  - 

Stripe rust        

Loose smut  ✓  ✓      

Bunt        

Leaf spot   ✓    ✓   

Fusarium head blight  ✓      ✓  

Sprouting*  ✓       

Lodging   ✓      

Height  ✓      ✓  

Head awn ✓  ✓  ✓  ✓  ✓  ✓  - 

Maturity rate   ✓      

Test weight -  -  - - - 

Seed weight -  ✓   - - - 

(-) denotes variables omitted from the sets of slowly changing and time invariant variables 

* sprouting is time invariant in Alberta when the restriction of a minimum of four risk areas is imposed 
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Appendix C   

 

Within the fixed effects portion of the FEF models, the possible presence of systematic 

differences over time presents a potential for omitted variable bias. These effects impact the 

dependent variable but do not differ in effect across cross-sections (Baltagi, 2005). In the context 

of wheat variety adoption, potential causes of such differences are: 

(1) persistent upwards or downwards linear trends in overall acreage, or 

(2) one-time shocks in growing or economic conditions (e.g., drought, flood, disease 

outbreak, etc.).  

As shown in Figures C.1 and C.2, neither are apparent over the time frame considered. Even so, 

given another setting (e.g., longer time period) where these effects are visibly present, inclusion 

of a time trend variable controls for the former issue (Baltagi, 2005). To address the latter issue, 

using a two-way fixed effects approach instead of the FEF captures both variety and time fixed 

effects. However, this two-way approach is most commonly used in causal effect models with 

only two time periods, not ten, as is the case here. This complicates interpretations of these time 

effects within the context of wheat variety adoption. Further, even if time fixed effects capture a 

poor weather event or economic year, farmers rarely know with certainty what type of season 

they face at the time of selecting a variety and insuring their acreage. When they do, there is no 

need to insure acres against uncertainty. Since I use insured acres as the dependent variable, it 

appears unlikely that the time fixed effects reveal much about farmer variety decisions, except in 

the case where a one-time event becomes more frequent. Then farmers may shift their behaviour 

to varieties more tolerant to such an event (e.g., consistent increases in fusarium head blight 

prevalence causing a shift to varieties with higher resistance ratings).  

 The combination of unclear interpretations with lack of severe shocks or visible trends in 

total insured and seeded acreage at either the provincial or prairie-wide levels supports using the 

one-way fixed effects model. However, testing suggests statistical differences between time 

effects when included in the model. Paired with a possibility of a trend in disease intensity, some 

support for the inclusion of time fixed effects exists. With these considerations in mind, I include 

estimates of the two-way fixed effects model at the prairie-wide level in Appendix D, but the 
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primary analysis of focuses on the one-way fixed effects model within Pesaran and Zhou’s 

(2018) FEF model.  

 

Figure C.1: Total insured wheat acreage in the full dataset (2013-2018) 

 
Sources: Saskatchewan Crop Insurance Corporation (n.d.), Agriculture Financial Services 

Corporation (n.d.), Manitoba Agricultural Services Corporation (n.d.) 

 

Figure C.2: Total seeded acreage (2009-2018) 

 
Source: Statistics Canada (n.d.a) 
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Appendix D   

 

Appendix D contains results tables for comparison of the results presented in chapter six. Tables 

D.1 to D.7 display estimates for the alternative econometric approaches not included in chapter 

six (i.e., Tobit, fixed effects Tobit, and two-way fixed effects models) at each analyses level 

where a minimum of four risk areas of data within a year and province is required. Tables D.8 to 

D.14 present estimated results using the full dataset (i.e., no minimum risk area requirement).  
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Table D.1: Prairie-wide estimates using alternative econometric approaches 

 (D1) (D2) (D3) (D4) (D5) (D6) 

Variables Tobit Tobit Fixed effects Tobit Fixed effects Tobit Two-way fixed effects Two-way fixed effects 

Dependent variable: share acres 

       

Lag yield potential  0.13***  0.10***  6,018*** 

  (0.04)  (0.03)  (1,585) 

Lag average yield 0.01  0.00  2,362  

 (0.04)  (0.04)  (1,735)  

Lag variety specificity  -1.99***  -1.46***  -35,029*** 

  (0.20)  (0.19)  (9,267) 

Lag yield variance -0.01**  -0.00  36.01  

 (0.00)  (0.00)  (149.88)  

Age 0.06* -0.02 0.12*** 0.04 6,205 4,446 

 (0.04) (0.04) (0.04) (0.04) (5,388) (4,504) 

Age2 -0.00 0.00 -0.00*** -0.00** -39.50*** -26.88** 

 (0.00) (0.00) (0.00) (0.00) (14.41) (12.37) 

Age3 0.00 -0.00 0.00*** 0.00* 0.06*** 0.05** 

 (0.00) (0.00) (0.00) (0.00) (0.02) (0.02) 

Protein 0.11 -0.71 -4.45*** -3.67*** -161,764* -138,216** 

 (0.71) (0.67) (1.22) (1.16) (76,995) (59,141) 

Stripe rust 0.42 0.64** -1.71** -1.13* -60,084 -43,329 

 (0.31) (0.29) (0.70) (0.67) (41,445) (34,350) 

Loose smut -0.34 -0.09 -2.60** -2.41** -26,510 -23,245 

 (0.32) (0.30) (1.10) (1.05) (43,529) (37,813) 

Bunt -0.95*** -0.88*** 0.59 0.43 46,013 36,059 

 (0.28) (0.26) (0.82) (0.79) (45,272) (41,990) 

Leaf spot 1.24** 0.92* -1.69 -2.72** -2,823 -29,381 

 (0.51) (0.47) (1.39) (1.33) (79,342) (65,046) 

Fusarium head blight -0.01 -0.41 -10.21*** -10.03*** -128,041** -128,075** 

 (0.36) (0.34) (2.86) (2.66) (53,258) (53,064) 

Sprouting -0.19 -0.29 0.31 0.38 -27,061 -9,746 

 (0.33) (0.31) (1.52) (1.45) (75,271) (64,135) 

Lodging 1.26*** 0.70 1.29 1.09 35,117 23,291 

 (0.52) (0.50) (0.88) (0.85) (34,929) (29,215) 

Height -2.71*** -2.09*** -2.89*** -2.04** -80,171* -54,875* 

 (0.71) (0.67) (0.82) (0.79) (41,419) (30,280) 

Head awn 1.12 1.59* -1.24 0.52   

 (0.95) (0.88) (2.89) (2.76)   

Maturity rate -1.12*** -0.78* -0.58 -0.17 -22,296 -15,388 
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 (0.43) (0.40) (0.49) (0.47) (22,681) (22,375) 

Provincial dummy 

variables 
✓  ✓  ✓  ✓  ✓  ✓  

       

Wheat class dummy 

variables 
✓  ✓      

       

var(share) 39.62*** 33.63*** 23.17*** 20.85***   

 (2.76) (2.32) (1.60) (1.43)   

Constant 3.33 15.14 127.40*** 112.25*** 2,969,956** 2,480,281*** 

 (12.07) (11.42) (23.98) (22.84) (1,215,379) (929,583) 

       

Observations 529 529 529 529 538 538 

R2     0.53 0.59 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.2: Alberta estimates using alternative econometric approaches 

 (D7) (D8) (D9) (D10) (D11) (D12) 

Variables Tobit Tobit Fixed effects Tobit Fixed effects Tobit Two-way fixed effects Two-way fixed effects 

Dependent variable: share acres 

       

Lag yield potential  0.10*  -0.00  641.78 

  (0.05)  (0.03)  (1,862) 

Lag average yield 0.02  0.00  274.23  

 (0.07)  (0.03)  (2,888)  

Lag variety specificity  -0.99***  -0.00  -5,392 

  (0.22)  (0.13)  (5,976) 

Lag yield variance -0.00  0.00  86.04  

 (0.00)  (0.00)  (63.20)  

Age 0.17 0.14 0.14** 0.14* 7,460** 7,061** 

 (0.12) (0.11) (0.07) (0.07) (3,635) (3,407) 

Age2 -0.00 -0.00 -0.00* -0.00 -46.36 -41.46 

 (0.00) (0.00) (0.00) (0.00) (27.61) (25.45) 

Age3 0.00 0.00 0.00 0.00 0.05 0.05 

 (0.00) (0.00) (0.00) (0.00) (0.07) (0.06) 

Protein -1.24 -1.92 0.08 0.53 -50,654 -71,251 

 (1.55) (1.39) (2.06) (2.03) (58,313) (65,904) 

Stripe rust 1.63*** 1.59*** 1.14* 1.24* 20,829 23,574 

 (0.44) (0.40) (0.66) (0.68) (14,227) (16,357) 

Loose smut 2.35*** 2.10*** 2.24 2.13   

 (0.49) (0.45) (193.00) (196.02)   

Bunt 0.11 0.05 -0.59 -0.93 -278,684*** -282,143*** 

 (0.45) (0.40) (55.15) (56.02) (36,301) (35,604) 

Leaf spot -2.13** -1.98** -6.17 -5.82 - - 

 (0.94) (0.87) (55.15) (56.02)   

Fusarium head blight -0.54 0.10 -1.79 -1.98   

 (0.57) (0.54) (275.69) (280.01)   

Sprouting**** -0.19 -0.19     

 (0.50) (0.46)     

Lodging -1.32 -2.82** 0.64 0.39 -3,721 -16,786 

 (1.28) (1.22) (1.98) (2.04) (23,353) (20,243) 

Height -4.60** -4.35*** -2.51 -3.44   

 (1.74) (1.59) (539.26) (547.56)   

Head awn 0.56 0.08 1.81 1.51   

 (1.63) (1.50) (512.39) (519.66)   

Maturity rate 3.98*** 3.25** 1.66 1.74 42,561 53,408 
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 (1.38) (1.26) (2.12) (2.17) (91,723) (79,304) 

Test weight 0.62 0.57 -0.36 -0.18 -19,758 -18,353 

 (0.58) (0.54) (0.68) (0.69) (18,053) (15,911) 

Seed weight -0.03 -0.01 0.45 0.36 20,321 24,376 

 (0.32) (0.29) (1.01) (1.02) (31,201) (25,454) 

Wheat class dummy 

variables 
✓  ✓      

       

var(share) 12.56*** 10.40*** 1.91*** 1.96***   

 (1.99) (1.64) (0.30) (0.31)   

Constant -27.33 -10.52 4.83 -4.58 1,748,229 1,792,326 

 (44.37) (40.36) (1,248.05) (1,268.98) (1,604,732) (1,341,189) 

       

Observations 103 103 103 103 114 114 

R2     0.93 0.93 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

**** sprouting is time invariant in Alberta when the restriction of a minimum of four risk areas is imposed 
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Table D.3: Manitoba estimates using alternative econometric approaches 

 (D13) (D14) (D15) (D16) (D17) (D18) 

Variables Tobit Tobit Fixed effects Tobit Fixed effects Tobit Two-way fixed effects Two-way fixed effects 

Dependent variable: share acres 

       

Lag yield potential  -0.10  -0.06*  -6,979 

  (0.07)  (0.04)  (5,178) 

Lag average yield -0.16**  -0.03  -10,740*  

 (0.07)  (0.03)  (6,161)  

Lag variety specificity  -1.46***  -0.83***  -22,918 

  (0.52)  (0.27)  (16,724) 

Lag yield variance -0.01  -0.02***  -245.48  

 (0.01)  (0.00)  (222.84)  

Age -0.20** -0.21** 0.00 0.00 6,868 7,125 

 (0.09) (0.09) (0.04) (0.04) (4,825) (4,718) 

Age2 0.00 0.00 -0.00*** -0.00*** -69.02* -62.87* 

 (0.00) (0.00) (0.00) (0.00) (35.98) (32.18) 

Age3 -0.00 -0.00 0.00*** 0.00*** 0.16* 0.15* 

 (0.00) (0.00) (0.00) (0.00) (0.08) (0.07) 

Protein 5.01 5.70* 3.29 3.64* 352,281 357,371 

 (3.30) (3.17) (2.14) (2.05) (289,644) (277,959) 

Stem rust -11.85*** -10.21*** -7.37*** -7.00*** -269,996* -294,256*** 

 (3.60) (3.43) (2.17) (2.09) (135,570) (99,723) 

Leaf rust 1.13 0.21 -6.73 -10.64*   

 (3.46) (3.27) (6.00) (5.95)   

Stripe rust 1.65 0.69 1.55 1.19 84,467 62,472 

 (2.03) (1.90) (1.26) (1.21) (56,198) (41,670) 

Loose smut -6.67*** -6.16*** 9.71*** 9.43***   

 (1.89) (1.83) (1.47) (1.42)   

Bunt 3.25** 1.93 -2.64*** -2.56*** -57,097 -23,708 

 (1.31) (1.33) (0.82) (0.79) (60,707) (56,184) 

Leaf spot -20.80*** -18.84*** 18.65*** 16.82**   

 (5.18) (5.15) (6.63) (6.40)   

Fusarium head blight 0.16 0.35 -12.26*** -11.36*** -196,438*** -128,816** 

 (2.90) (2.67) (1.81) (1.80) (36,788) (62,410) 

Sprouting -3.59*** -3.28*** 7.65*** 8.98*** 102,328** 94,851* 

 (1.17) (1.11) (1.48) (1.50) (46,850) (52,720) 

Lodging -0.11 -0.34 2.02 -0.03   

 (1.77) (1.75) (4.59) (4.47)   

Height -1.74 -0.84 0.53 0.35 -57,383 -114,585 
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 (1.45) (1.42) (0.71) (0.69) (149,945) (166,334) 

Head awn -37.68*** -34.18*** 10.39 10.12   

 (8.62) (8.53) (7.79) (7.45)   

Maturity rate -30.39*** -26.32***     

 (5.41) (5.67)     

Seed weight -12.91** -12.21** -4.01 -10.02   

 (5.35) (5.00) (9.84) (9.69)   

Wheat class dummy 

variables 
✓  ✓      

       

var(share) 11.85*** 11.18*** 2.42*** 2.30***   

 (2.13) (2.00) (0.43) (0.41)   

Constant 204.00** 175.99** -48.57 -20.82 -2,921,836 -3,105,153 

 (78.65) (76.08) (56.01) (56.19) (3,880,030) (3,750,890) 

       

Observations 67 67 67 67 118 118 

R2     0.40 0.42 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.4: Saskatchewan estimates using alternative econometric approaches 

 (D19) (D20) (D21) (D22) (D23) (D24) 

Variables Tobit Tobit Fixed effects Tobit Fixed effects Tobit Two-way fixed effects Two-way fixed effects 

Dependent Variable: share acres 

       

Lag yield potential  0.15***  0.04*  3,127** 

  (0.03)  (0.02)  (1,565) 

Lag average yield 0.04  -0.02  677.49  

 (0.04)  (0.03)  (1,389)  

Lag variety specificity  -1.29***  -0.48***  -13,320* 

  (0.19)  (0.13)  (7,851) 

Lag yield variance -0.00  0.00  73.29  

 (0.01)  (0.00)  (158.99)  

Age 0.15*** 0.09*** 0.20*** 0.18*** 6,723*** 6,003*** 

 (0.03) (0.03) (0.02) (0.03) (2,456) (2,253) 

Age2 -0.00*** -0.00*** -0.00*** -0.00*** -50.59*** -45.58*** 

 (0.00) (0.00) (0.00) (0.00) (13.85) (12.76) 

Age3 0.00*** 0.00** 0.00*** 0.00*** 0.08*** 0.07*** 

 (0.00) (0.00) (0.00) (0.00) (0.02) (0.02) 

Protein 0.16 -0.26 -6.17*** -5.75*** -360,848*** -360,357*** 

 (0.64) (0.61) (1.60) (1.56) (135,440) (119,908) 

Stem rust -0.36 -0.20 -2.19 -2.35 -27,398 -33,658 

 (0.49) (0.45) (1.90) (1.82) (38,382) (36,410) 

Leaf rust 0.27 0.17 0.86 0.76 83,176** 71,540** 

 (0.34) (0.32) (2.04) (2.00) (33,097) (32,401) 

Stripe rust -0.31 0.06 -1.77*** -1.33** -45,928*** -29,414* 

 (0.29) (0.28) (0.58) (0.57) (16,753) (17,428) 

Loose smut -1.03*** -0.69*** -2.31*** -2.25*** -90,287*** -85,233*** 

 (0.28) (0.26) (0.47) (0.46) (29,334) (27,483) 

Bunt -0.53** -0.34 1.16* 1.15* 61,183 59,974 

 (0.25) (0.23) (0.60) (0.59) (50,317) (51,085) 

Leaf spot 1.46*** 1.27*** 0.88 0.57 27,316 19,912 

 (0.46) (0.43) (0.89) (0.88) (41,856) (38,542) 

Fusarium head blight 0.07 -0.39 -6.16*** -6.19*** -59,049 -55,740 

 (0.33) (0.32) (2.25) (2.07) (55,866) (56,354) 

Sprouting -0.53 -0.42 1.01 0.72 -16,964 -21,746 

 (0.35) (0.33) (1.05) (1.02) (37,212) (39,531) 

Lodging 0.63 0.22 1.95*** 1.83*** 93,441** 85,738** 

 (0.43) (0.40) (0.50) (0.49) (44,217) (40,481) 

Height -0.41 -0.35 -0.57 -0.65 -33,858 -37,478 
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 (0.72) (0.67) (0.78) (0.77) (32,162) (31,396) 

Head awn -1.14 -0.33 37.30 36.22   

 (0.88) (0.82) (547.74) (1,309.89)   

Maturity rate -1.41*** -1.06*** -0.01 0.13 -23,268 -26,650 

 (0.34) (0.31) (0.24) (0.23) (21,179) (21,118) 

Test weight -0.29 -0.18 0.02 -0.00 -4,678 -8,490 

 (0.25) (0.23) (0.25) (0.25) (13,506) (13,172) 

Seed weight 0.05 -0.01 -0.16 -0.23 14,663 13,695 

 (0.20) (0.18) (0.27) (0.26) (14,929) (14,545) 

Wheat class dummy 

variables 
✓  ✓      

       

var(share) 14.93*** 12.82*** 3.75*** 3.61***   

 (1.40) (1.19) (0.35) (0.33)   

Constant 0.78 3.65 81.17 76.85 4,966,694** 4,957,456*** 

 (11.38) (10.73) (548.36) (1,310.14) (2,052,023) (1,801,957) 

       

Observations 310 310 310 310 310 310 

R2     0.41 0.42 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.5: Hard red spring estimates using alternative econometric approaches 

 (D25) (D26) (D27) (D28) (D29) (D30) 

Variables Tobit Tobit Fixed effects Tobit Fixed effects Tobit Two-way fixed effects Two-way fixed effects 

Dependent variables: Share acres 

       

Lag yield potential  0.11**  0.12***  6,120*** 

  (0.05)  (0.04)  (1,822) 

Lag average yield -0.06  0.00  1,579  

 (0.05)  (0.05)  (2,066)  

Lag variety specificity  -2.85***  -2.23***  -51,242*** 

  (0.30)  (0.29)  (12,526) 

Lag yield variance -0.01  -0.01  5.09  

 (0.01)  (0.01)  (261.25)  

Age 0.09 -0.05 0.22*** 0.06 10,832 4,845 

 (0.07) (0.06) (0.07) (0.07) (8,159) (6,811) 

Age2 -0.00 0.00 -0.00*** -0.00* -68.58** -40.34 

 (0.00) (0.00) (0.00) (0.00) (31.15) (27.24) 

Age3 0.00 -0.00 0.00*** 0.00* 0.14** 0.10 

 (0.00) (0.00) (0.00) (0.00) (0.07) (0.06) 

Protein -1.51 -1.05 -4.54** -1.92 -127,170 -69,853 

 (1.31) (1.20) (2.02) (1.89) (118,742) (102,395) 

Stripe rust 0.91** 1.02*** -2.47*** -1.27 -70,308* -41,196 

 (0.40) (0.37) (0.86) (0.81) (39,217) (34,328) 

Loose smut -0.36 -0.03 -0.43 1.71 31,803 85,491 

 (0.39) (0.36) (5.34) (5.20) (68,237) (56,035) 

Bunt -1.29*** -1.13*** 0.06 -0.12 1,116 -6,160 

 (0.33) (0.30) (1.01) (0.94) (51,300) (37,479) 

Leaf spot 0.55 0.23 -2.88 -3.70* -129,203 -134,114* 

 (0.61) (0.56) (2.07) (1.95) (105,132) (70,471) 

Fusarium head blight 0.50 -0.19 -10.42*** -9.09*** -186,778*** -137,134*** 

 (0.46) (0.43) (3.52) (3.27) (45,054) (48,651) 

Sprouting -0.06 -0.03 2.13 1.94 26,831 34,162 

 (0.39) (0.35) (1.96) (1.82) (103,428) (81,890) 

Lodging 0.89 0.37 0.80 -0.13 32,146 -4,474 

 (0.66) (0.62) (1.26) (1.20) (38,082) (24,413) 

Height -4.10*** -2.94*** -4.14*** -2.23** -141,573*** -89,453*** 

 (0.84) (0.77) (1.03) (0.99) (43,454) (32,947) 

Head awn -0.24 0.84 -2.11 -0.13   

 (1.14) (1.04) (3.37) (3.16)   

Maturity rate -1.17** -1.00** -0.84 -0.42 -13,019 -7,990 
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 (0.54) (0.49) (0.65) (0.61) (19,995) (23,637) 

Provincial dummy 

variables 
✓  ✓  ✓  ✓  ✓  ✓  

       

var(share) 44.06*** 35.89*** 28.80*** 24.70***   

 (3.58) (2.88) (2.32) (1.98)   

Constant 35.40* 29.57 124.95*** 69.56* 2,771,787* 1,489,239 

 (20.88) (18.92) (43.60) (41.68) (1,552,840) (1,396,786) 

       

Observations 378 378 378 378 380 380 

R2     0.53 0.60 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.6: Canada Prairie spring estimates using alternative econometric approaches 

 (D31) (D32) (D33) (D34) (D35) (D36) 

Variables Tobit Tobit 
Fixed effects 

Tobit**** 
Fixed effects Tobit Two-way fixed effects Two-way fixed effects 

Dependent variable: share acres 

       

Lag yield potential  0.06*  0.01  1,583 

  (0.03)  (0.02)  (1,715) 

Lag average yield -0.00  -0.00  -9.31  

 (0.04)  (0.02)  (1,152)  

Lag variety specificity  -0.34***  -0.16**  -12,377*** 

  (0.12)  (0.08)  (2,516) 

Lag yield variance -0.00  -0.00  -48.58  

 (0.00)  (0.00)  (82.30)  

Age -0.02 -0.03 -0.11** -0.13** 27.22 -7,257 

 (0.08) (0.07) (0.05) (0.05) (10,210) (7,456) 

Age2 0.00 0.00 0.00** 0.00** 21.60 27.74 

 (0.00) (0.00) (0.00) (0.00) (30.90) (20.76) 

Age3 -0.00 -0.00 -0.00** -0.00*** -0.08 -0.10 

 (0.00) (0.00) (0.00) (0.00) (0.07) (0.05) 

Protein -2.06** -2.16*** -2.32** -2.24** -42,024 -52,934** 

 (0.79) (0.74) (0.67) (0.68) (24,407) (19,723) 

Stripe rust -0.19 -0.18 0.68 -0.22 -21,901 -41,845** 

 (0.49) (0.45) (1.07) (1.11) (34,483) (18,314) 

Loose smut 1.26* 1.07 -4.40 -3.47 46,628 -94,980 

 (0.69) (0.68) (226.40) (223.66) (174,927) (132,587) 

Bunt 0.69 0.89* 4.68 3.85 19,860 144,501 

 (0.50) (0.46) (226.40) (223.66) (159,320) (120,580) 

Leaf spot 1.40 0.89 2.91*** 2.33***   

 (1.21) (1.14) (0.79) (0.83)   

Fusarium head blight 1.24* 0.96* -10.77 -10.52 28,164 -167,155 

 (0.57) (0.54) (1,132) (1,118) (219,939) (178,910) 

Sprouting -0.42 -0.98 -0.52 -0.72 -131,343 -120,785 

 (0.97) (0.94) (0.98) (0.99) (110,390) (80,437) 

Lodging -0.38 -0.29 -0.60 -0.81 -41,874 -11,142 

 (1.03) (0.98) (0.78) (0.77) (54,657) (33,402) 

Height 1.49* 1.15 1.62** 1.48*** 19,118 3,437 

 (0.81) (0.77) (0.50) (0.49) (23,351) (15,562) 

Head awn -2.36 -3.13 -21.37 -21.09   

 (2.10) (1.97) (2,038) (2,013)   
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Maturity rate 0.26 0.55 0.61 0.63* 1,312 6,259 

 (0.52) (0.50) (0.37) (0.36) (20,463) (16,948) 

Provincial dummy 

variables 
✓  ✓  ✓  ✓  ✓  ✓  

       

var(share) 3.12*** 2.70*** 0.78*** 0.73***   

 (0.67) (0.58) (0.16) (0.15)   

Constant 15.42 18.52 57.40 61.79 799,037 1,585,581** 

 (12.80) (12.21) (3,622) (3,579) (1,119,656) (663,469) 

       

Observations 67 67 67 67 67 67 

R2     0.85 0.89 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

**** For Model (D33) convergence is not achieved.  
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Table D.7: Durum estimates using alternative econometric approaches 

 (D37) (D38) (D39) (D40) (D41) (D42) 

Variables Tobit Tobit Fixed effects Tobit Fixed effects Tobit Two-way fixed effects Two-way fixed effects 

Dependent variable: share acres 

       

Lag yield potential  0.18***  0.01  3,414 

  (0.06)  (0.03)  (3,103) 

Lag average yield 0.21**  0.01  2,902  

 (0.08)  (0.04)  (4,612)  

Lag variety specificity  -1.36***  -0.38*  -8,606 

  (0.37)  (0.21)  (10,242) 

Lag yield variance -0.01  -0.01  144.47  

 (0.01)  (0.01)  (366.49)  

Age 0.38*** 0.35*** 0.33*** 0.33*** 11,966 8,986 

 (0.07) (0.06) (0.06) (0.06) (9,407) (8,722) 

Age2 -0.00*** -0.00*** -0.00*** -0.00*** -130.56*** -129.01*** 

 (0.00) (0.00) (0.00) (0.00) (39.18) (35.01) 

Age3 0.00*** 0.00*** 0.00*** 0.00*** 0.19*** 0.19*** 

 (0.00) (0.00) (0.00) (0.00) (0.06) (0.05) 

Protein 5.05** 2.78 -2.30 -3.55 -428,597 -490,939 

 (2.36) (2.23) (5.38) (5.24) (308,330) (301,400) 

Stripe rust -4.34** -1.60 1.13 0.93 -113,259* -132,480* 

 (1.79) (1.80) (2.16) (2.14) (58,423) (65,723) 

Loose smut -0.79 -0.74 -1.54*** -1.50*** -43,336 -40,911 

 (0.83) (0.76) (0.46) (0.45) (27,886) (25,027) 

Bunt  6.89*** 6.05*** 7.57*** 7.51*** 179,796** 192,446** 

 (1.58) (1.48) (1.62) (1.58) (72,179) (66,605) 

Leaf spot -4.08** -2.83* 5.34*** 5.26*** 234,490* 238,479* 

 (1.56) (1.43) (1.42) (1.39) (117,733) (114,386) 

Fusarium head blight -6.80*** -8.41*** -6.57 -5.66   

 (2.27) (2.11) (5.24) (5.17)   

Sprouting 4.39*** 2.79* -2.91 -2.64 -39,501 -7,183 

 (1.42) (1.40) (2.75) (2.72) (64,101) (62,190) 

Lodging -0.25 -0.61 2.33** 2.34** 145,101 146,861 

 (0.94) (0.87) (0.97) (0.92) (128,785) (131,674) 

Height 18.67*** 17.55*** 7.33 7.56   

 (4.06) (3.65) (6.91) (6.74)   

Head awn - - - -   

       

Maturity rate -3.55*** -2.56*** -2.25*** -2.05*** -114,885*** -101,596** 
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 (1.06) (0.96) (0.61) (0.57) (37,614) (34,207) 

Provincial dummy 

variables 
✓  ✓  ✓  ✓  ✓  ✓  

       

var(share) 12.02*** 10.46*** 2.46*** 2.40***   

 (2.21) (1.91) (0.45) (0.44)   

Constant -141.35*** -106.87*** -29.64 -12.31 4,234,517 4,941,162 

 (31.47) (30.42) (84.34) (81.89) (3,743,304) (3,648,341) 

       

Observations 74 74 74 74 81 81 

R2     0.92 0.92 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.8: Prairie-wide estimates for full dataset 

 (D43) (D44) (D45) (D46) (D47) (D48) 

Variables Pooled OLS Pooled OLS Hausman-Taylor IV Hausman-Taylor IV FEF FEF  

     Step (1) Step (2) Step (1) Step (2) 

Dependent variable: acres 

         

Lag yield potential  3,764***  -65.37   2,267***  

  (866.93)  (509.20)   (594.73)  

Lag average yield 1,527  -881.81*  626.36    

 (1,188)  (532.58)  (641.20)    

Lag variety specificity  -22,459***  -3,486   -13,464***  

  (5,257)  (2,739)   (4,741)  

Lag yield variance -53.27  44.57  44.51    

 (66.10)  (31.83)  (60.08)    

Age 2,544** 1,772* 3,887** 3,744** 2,901*  2,333  

 (1,196) (1,012) (1,758) (1,707) (1,607)  (1,554)  

Age2 -15.84** -10.69* -32.89*** -31.20*** -28.09***  -22.60**  

 (6.88) (5.68) (11.14) (10.88) (10.25)  (9.98)  

Age3 0.03** 0.02* 0.05*** 0.05*** 0.05**  0.04**  

 (0.01) (0.01) (0.02) (0.02) (0.02)  (0.02)  

Protein 21,621 15,661 16,606 18,340 -120,499**  -110,194**  

 (23,706) (21,791) (89,099) (86,889) (57,812)  (52,104)  

Stripe rust 9,384 9,326 6,750 7,627 -60,853  -50,836  

 (9,600) (8,347) (13,331) (13,209) (37,279)  (33,336)  

Loose smut -3,315 -3,166 -42,614** -40,941* -23,835  -19,389  

 (13,007) (11,987) (21,502) (21,460) (38,453)  (36,273)  

Bunt -17,898 -13,683 20,368 18,625 47,163  41,154  

 (15,816) (14,153) (27,896) (27,910) (43,453)  (42,159)  

Leaf spot 36,016 32,650 -2,775 -1,313 22,819  21,785  

 (26,093) (23,733) (35,103) (34,751) (55,596)  (51,698)  

Fusarium head blight 5,075 -1,901 -11,043 -11,512 -9,522  -13,124  

 (17,042) (15,340) (17,570) (17,682) (31,607)  (31,946)  

Sprouting 1,670 -4,450 -2,222 -3,814 -50,894  -34,347  

 (14,557) (13,662) (19,749) (19,027) (63,341)  (57,743)  

Lodging 23,139* 4,809 59,016** 56,806* 22,826  22,643  

 (14,271) (14,347) (29,259) (29,092) (23,554)  (22,352)  

Height -57,629** -55,784** -49,405** -50,463** -53,490*  -54,605**  

 (28,563) (26,431) (20,542) (20,749) (27,853)  (25,375)  

Head awn 19,976 22,764 -46,587 -37,877  -180,808***  -139,871*** 

 (39,034) (34,030) (80,232) (81,193)  (57,996)  (49,551) 
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Maturity rate -9,720 -5,950 10,209 12,429* -1,311  3,661  

 (9,016) (8,164) (7,072) (7,327) (13,343)  (12,970)  

Provincial dummy 

variables 
✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  

         

Wheat class dummy 

variables 
✓  ✓        

         

Constant -344,697 -221,820 -193,142 -240,379 2,090,138** 115,801** 1,807,750** 88,811** 

 (442,009) (397,332) (1,355,023) (1,318,551) (941,268) (46,884) (856,611) (38,898) 

         

Observations 661 661 661 661 692 661 692 661 

R2 0.15 0.25   0.52 0.13 0.55 0.11 

Number of varieties 81 81 81 81 83 81 83 81 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.9: Alberta provincial estimates for full dataset 

 (D49) (D50) (D51) (D52) (D53) (D54) 

Variables Pooled OLS Pooled OLS Hausman-Taylor IV Hausman-Taylor IV FEF FEF 

     Step (1) Step (2) Step (1) Step (2) 

Dependent variable: acres 

         

Lag yield potential  3,786***  186.14   -274.37  

  (1,341)  (719.98)   (711.84)  

Lag average yield 1,312  479.17  -37.31    

 (1,466)  (652.96)  (661.03)    

Lag variety specificity  -20,262***  1,211   -298.53  

  (5,151)  (1,862)   (1,596)  

Lag yield variance -161.17  157.48***  56.92    

 (121.79)  (60.15)  (47.33)    

Age 7,701* 8,942** 9,145*** 8,538*** 8,347**  7,987**  

 (4,050) (3,996) (3,288) (3,245) (3,227)  (3,228)  

Age2 -49.45 -58.50* -72.65*** -65.26*** -65.50**  -61.37**  

 (31.12) (30.20) (26.06) (25.12) (25.99)  (25.71)  

Age3 0.10 0.11* 0.15** 0.13** 0.12**  0.11**  

 (0.07) (0.07) (0.06) (0.05) (0.06)  (0.05)  

Protein -66,362 -49,712 50,898 35,204 92,105  92,141  

 (67,749) (56,453) (43,208) (38,848) (59,870)  (59,319)  

Stripe rust 43,538* 40,166* 30,930*** 30,704*** 27,785***  28,961***  

 (25,152) (23,051) (10,998) (10,612) (7,885)  (8,101)  

Loose smut 71,964 60,551 47,378 50,268*  76,533  78,731 

 (42,948) (39,311) (29,422) (29,143)  (49,794)  (49,998) 

Bunt -11,542 -6,068 -20,029 -29,894 -244,683***  -249,035***  

 (24,997) (20,764) (22,248) (23,179) (35,449)  (35,198)  

Leaf spot -63,594 -59,688 -143,287*** -135,734*** -  -  

 (83,921) (78,813) (48,242) (49,075)     

Fusarium head blight -16,311 -1,374 -44,616 -47,154  -122,522  -119,092 

 (32,463) (29,047) (41,545) (42,523)  (86,470)  (86,476) 

Sprouting**** 29,214 22,562 19,390 23,170 81,990***  81,099***  

 (28,891) (24,264) (26,764) (25,545) (25,211)  (25,605)  

Lodging -35,662 -58,307 19,432 16,929 31,200  12,330  

 (88,818) (79,165) (43,061) (40,040) (26,022)  (23,102)  

Height -118,256 -99,009 -127,684 -116,574  84,692  83,516 

 (93,405) (78,698) (87,094) (84,998)  (146,438)  (142,927) 

Head awn 76,945 44,228 31,636 50,067  473,579***  482,092*** 

 (82,774) (68,829) (71,370) (70,079)  (158,240)  (156,259) 
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Maturity rate 78,889 64,772 91,607* 91,061** 106,028*  101,273**  

 (50,177) (45,030) (48,468) (46,112) (53,022)  (49,931)  

Test weight 15,103 15,550 3,793 7,420 -1,333  709.00  

 (32,107) (28,074) (15,028) (14,710) (12,695)  (11,650)  

Seed weight 11,254 9,180 4,643 13,514 16,757  19,245  

 (16,213) (14,530) (13,095) (12,897) (24,366)  (21,534)  

Wheat class dummy 

variables 
✓  ✓        

         

Constant -772,959 -996,893 -1,166,698 -1,501,640 -1,888,814 -468,930 -1985268 -480,214 

 (1,967,779) (1,741,196) (1,603,276) (1,598,890) (1,755,292) (456,146) (1,603,138) (448,873) 

         

Observations 143 143 143 143 178 143 178 143 

R2 0.43 0.51   0.92 0.24 0.91 0.25 

Number of varieties 39 39 39 39 53 39 53 39 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

**** sprouting is time variant in Alberta when no restriction on a minimum of risk areas is imposed 
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Table D.10: Manitoba provincial estimates for full dataset 

 (D55) (D56) (D57) (D58) (D59) (D60) 

Variables  Pooled OLS Pooled OLS Hausman-Taylor IV Hausman-Taylor IV FEF FEF 

     Step (1) Step (2) Step (1) Step (2) 

Dependent variable: acres 

         

Lag yield potential  -1,050  -1,354**   -691.47  

  (824.67)  (640.44)   (714.54)  

Lag average yield -1,326*  -891.65  118.89    

 (731.38)  (607.50)  (1,445)    

Lag variety specificity  -3,448  620.58   -3,426  

  (7,278)  (2,837)   (7,022)  

Lag yield variance -64.78  -181.46  -53.94    

 (165.40)  (110.85)  (198.87)    

Age -1,429 -1,592 840.92 810.99 4,607  4,656  

 (2,384) (2,314) (1,099) (1,071) (3,397)  (3,232)  

Age2 0.93 2.26 -28.26*** -27.95*** -58.90**  -58.42**  

 (16.86) (17.25) (8.14) (7.86) (24.13)  (22.24)  

Age3 0.00 -0.00 0.07*** 0.06*** 0.13**  0.13**  

 (0.03) (0.03) (0.02) (0.02) (0.05)  (0.05)  

Protein 74,304 75,724 121,429** 140,363** 339,660  332,098  

 (64,627) (65,480) (52,252) (56,681) (262,491)  (243,139)  

Stem rust -142,998 -140,948* -261,116*** -265,640*** -264,861***  -269,527***  

 (81,209) (72,816) (67,307) (65,068) (88,543)  (70,563)  

Leaf rust 32,069 31,473 67,036 69,578  61,690  71,257 

 (52,053) (63,310) (146,685) (149,888)  (114,471)  (109,758) 

Stripe rust -10,457 -11,741 -1,723 2,760 58,082  57,116  

 (29,382) (29,928) (17,683) (16,686) (47,538)  (42,466)  

Loose smut -135,481*** -132,983*** 43,423 36,054  46,259  40,606 

 (16,573) (23,170) (61,166) (62,774)  (37,785)  (36,985) 

Bunt 50,437* 48,137* -28,400 -22,496 -55,486  -51,406*  

 (26,164) (23,906) (24,636) (24,008) (36,616)  (30,271)  

Leaf spot -386,561*** -377,233*** -273,557 -278,272  -60,808  -72,753 

 (98,742) (75,691) (306,929) (301,297)  (256,705)  (247,169) 

Fusarium head blight 47,278 44,430 -142,169*** -135,498*** -201,667***  -195,487***  

 (51,355) (66,494) (48,033) (47,713) (43,927)  (41,960)  

Sprouting -43,661* -42,021** 89,100*** 82,134** 72,505  75,994  

 (20,227) (15,565) (30,807) (36,049) (66,429)  (57,956)  

Lodging 23,364 24,440 -4,566 401.59  -12,136  -74.35 

 (30,693) (30,949) (169,765) (171,503)  (142,599)  (138,556) 
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Height -49,332 -49,573 -35,199 -37,286 -36,008  -40,472  

 (30,853) (29,147) (25,548) (26,294) (31,952)  (31,208)  

Head awn -697,191*** -679,131*** -87,553 -126,707  -59,329  -61,323 

 (110,835) (99,933) (233,457) (229,071)  (164,504)  (158,001) 

Maturity rate -510,347*** -499,875*** -358,405 -371,665  -182,211  -190,188 

 (125,542) (93,209) (274,154) (269,490)  (280,027)  (270,093) 

Seed weight -227,430*** -222,547** -22,979 -26,169  92,700  98,093 

 (70,560) (79,727) (295,704) (294,268)  (236,140)  (226,727) 

Wheat class dummy 

variables 
✓  ✓        

         

Constant 3,286,794** 3,199,731** 1,246,494 1,073,872 -147,141 147,141 -3,001,588 115,301 

 (1,346,727) (1,407,267) (3,415,813) (3,357,008) (2,584,537) (2,584,537) (3,429,113) (2,491,199) 

         

Observations 88 88 88 88 147 88 147 88 

R2 0.73 0.73   0.78 0.23 0.78 0.24 

Number of varieties 14 14 14 14 32 14 32 14 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.11: Saskatchewan provincial estimates for full dataset   

 (D61) (D62) (D63) (D64) (D65) (D66) 

Variables Pooled OLS Pooled OLS Hausman-Taylor IV Hausman-Taylor IV FEF FEF 

     Step (1) Step (2) Step (1) Step (2) 

Dependent variable: acres 

         

Lag yield potential  2,794**  -103.95   -337.09  

  (1,231)  (774.28)   (770.24)  

Lag average yield 271.06  -1,643**  -1,851**    

 (1,155)  (799.75)  (821.05)    

Lag variety specificity  -13,908***  -1,423   -296.68  

  (4,610)  (3,521)   (3,443.58)  

Lag yield variance 4.88  74.49  82.85    

 (47.13)  (50.21)  (50.87)    

Age 4,378** 3,614** 4,903*** 4,884*** 4,837***  4,929***  

 (1,717) (1,447) (1,616) (1,606) (1,660)  (1,639)  

Age2 -27.98*** -22.67** -36.83*** -36.09*** -37.78***  -37.79***  

 (10.32) (8.61) (9.94) (10.26) (9.54)  (9.79)  

Age3 0.05*** 0.04** 0.06*** 0.06*** 0.06***  0.06***  

 (0.02) (0.01) (0.02) (0.02) (0.02)  (0.02)  

Protein 16,185 12,195 -138,657 -126,574 -247,042  -233,772  

 (33,865) (31,922) (138,577) (137,334) (164,557)  (168,853)  

Stem rust -7,358 -4,228 20,745 20,694 14,670  14,402  

 (16,258) (14,354) (26,433) (24,260) (33,970)  (31,291)  

Leaf rust 12,464 11,942 69,760** 67,483** 83,224***  83,297***  

 (15,574) (14,920) (33,305) (32,732) (27,112)  (25,405)  

Stripe rust -3,211 -2,392 -36,635* -33,722* -43,254**  -40,663*  

 (17,174) (15,857) (19,391) (19,527) (20,900)  (21,365)  

Loose smut -27,222** -22,680** -62,000*** -60,567*** -80,435***  -79,156***  

 (10,688) (10,175) (22,247) (22,691) (28,409)  (29,311)  

Bunt -8,775 -5,326 66,874* 66,292* 68,875  68,766  

 (12,810) (11,838) (39,269) (38,868) (46,224)  (46,024)  

Leaf spot 61,542*** 56,334*** 16,434 16,718 26,742  26,719  

 (21,248) (19,583) (38,505) (34,766) (47,237)  (42,948)  

Fusarium head blight 12,198 3,317 -12,914 -11,802 -26,701  -24,991  

 (17,794) (17,490) (13,259) (14,044) (20,943)  (22,604)  

Sprouting -3,157 -5,767 -19.78 -3,422 6,561  2,412  

 (15,535) (14,835) (27,011) (26,287) (39,521)  (38,121)  

Lodging 22,349* 6,933 82,030*** 79,479*** 92,089***  90,754***  

 (12,088) (10,759) (30,265) (29,809) (33,077)  (32,849)  
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Height -509.09 -8,580 -16,990 -19,595 -16,437  -18,863  

 (27,128) (24,586) (19,437) (20,288) (21,275)  (22,723)  

Head awn -35,711 -30,818 -208,020* -198,876*  -290,814***  -282,581*** 

 (37,840) (34,055) (114,529) (114,093)  (81,668)  (80,015) 

Maturity rate -17,874* -13,650 8,658 11,377 11,293  13,944  

 (9,713) (8,965) (8,340) (8,905) (8,875)  (9,456)  

Test weight -6,386 -2,293 13,310 14,136 16,261  16,740  

 (8,863) (8,494) (11,348) (11,611) (11,876)  (12,201)  

Seed weight 8,965 8,104 4,877 3,896 11,731  11,170  

 (6,947) (6,754) (8,898) (8,546) (10,051)  (9,979)  

Wheat class dummy 

variables 
✓  ✓        

         

Constant -374,836 -322,776 1,533,436 1,308,693 2,951,388 201,570*** 2,701,421 195,863*** 

 (563,156) (512,369) (1,944,397) (1,907,489) (2,368,325) (64,587) (2,411,201) (63,596) 

         

Observations 378 378 378 378 378 378 378 378 

R2 0.25 0.29   0.76 0.17 0.75 0.17 

Number of varieties 72 72 72 72 72 72 72 72 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.12: Hard red spring wheat class estimates for full dataset 

 (D67) (D68) (D69) (D70) (D71) (D72) 

Variables Pooled OLS Pooled OLS Hausman-Taylor IV Hausman-Taylor IV FEF FEF 

     Step (1) Step (2) Step (1) Step (2) 

Dependent variable: acres 

         

Lag yield potential  2,878***  -355,40   2,579***  

  (882.34)  (571.80)   (745.78)  

Lag average yield 276.15  -1,027  1,204    

 (1,284)  (694.00)  (778.13)    

Lag variety specificity  -30,318***  -3,538   -20,434***  

  (6,057)  (2,672)   (6,259)  

Lag yield variance -109.88  87.75  35.82    

 (122.68)  (85.26)  (123.51)    

Age 3,114 1,438 8,000** 7,534** 4,551  2,645  

 (1,928) (1,721) (3,396) (3,188) (3,147)  (2,988)  

Age2 -22.98 -10.96 -75.14*** -70.60*** -47.55*  -30.55  

 (13.76) (12.37) (25.15) (23.53) (26.41)  (25.42)  

Age3 0.05 0.02 0.16*** 0.15*** 0.10*  0.07  

 (0.03) (0.03) (0.05) (0.05) (0.06)  (0.06)  

Protein -25,916 -25,548 -9,343 -9,022 -114,325  -99,895  

 (36,985) (35,350) (140,752) (136,749) (97,277)  (89,527)  

Stripe rust 26,673** 23,560** 1,704 2,253 -75,127**  -54,390*  

 (10,378) (8,842) (11,011) (11,489) (36,482)  (31,262)  

Loose smut -1,328 -1,707 15,942 14,734 36,377  52,286  

 (16,243) (15,113) (17,441) (17,461) (48,875)  (49,844)  

Bunt -29,499 -23,942 -22,031 -22,450 -5,549  -9,276  

 (19,421) (17,489) (22,361) (22,098) (48,875)  (40,314)  

Leaf spot 13,940 13,152 -23,283 -20,366 -38,761  -37,598  

 (31,411) (28,394) (30,417) (30,662) (65,829)  (56,130)  

Fusarium head blight 17,286 6,643 -8,568 -8,536 593  5,136  

 (20,695) (18,901) (22,114) (22,092) (45,633)  (44,321)  

Sprouting 5,624 3,168 3,000 3,053 -24,300  950.15  

 (14,652) (13,512) (19,858) (18,430) (80,270)  (70,636)  

Lodging 7,952 -4,105 62,241* 63,996* 32,303  38,782  

 (20,812) (19,813) (37,401) (38,589) (33,392)  (30,010)  

Height -94,068*** -90,388*** -76,804*** -77,724*** -83,155**  -82,142***  

 (29,608) (26,272) (26,545) (26,495) (32,944)  (29,261)  

Head awn -11,354 4,377 -32,285 -22,306  -125,982**  -66,922 
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 (40,204) (36,235) (77,827) (79,684)  (56,302)  (49,483) 

Maturity rate -5,700 -4,723 20,323** 22,522** 14,852  19,714  

 (9,886) (9,360) (9,574) (10,048) (12,548)  (11,861)  

Provincial dummy 

variables 
✓  ✓  ✓  ✓  ✓   ✓   

         

Constant 554,874 586,173 141,743 110,754 2,051,556 69,562 1,586,163 36,568 

 (573,308) (545,769) (2,121,441) (2,060,903) (1,392,579) (47,583) (1,329,499) (40,375) 

         

Observations 467 467 467 467 480 467 480 467 

R2 0.19 0.30   0.50 0.11 0.54 0.05 

Number of varieties 49 49 49 49 50 49 50 49 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.13: Canada Prairie spring wheat class estimates for full dataset 

 (D73) (D74) (D75) (D76) (D77) (D78) 

Variables  Pooled OLS Pooled OLS Hausman-Taylor IV Hausman-Taylor IV FEF FEF 

     Step (1) Step (2) Step (1) Step (2) 

         

Lag yield potential  869.90  131.40   312.16  

  (595.88)  (310.55)   (619.75)  

Lag average yield 129.01  -305.69  -251.51    

 (803.11)  (404.15)  (843.27)    

Lag variety specificity  -4,824*  -606.46   -5,117*  

  (2,505)  (731.32)   (2,409)  

Lag yield variance -32.41  14.27  -35.05    

 (36.84)  (11.02)  (23.96)    

Age 210.36 195.76 -2,701* -2,539* -3,935  -3,817  

 (2,658) (2,637) (1,408) (1,361) (2,722)  (2,519)  

Age2 -4.95 -5.30 31.41** 30.58** 38.66  38.03  

 (24.39) (23.93) (15.65) (15.31) (23.28)  (22.17)  

Age3 0.02 0.02 -0.11** -0.10** -0.12*  -0.12*  

 (0.06) (0.06) (0.04) (0.04) (0.06)  (0.06)  

Protein -43,690* -44,707* 12,428 15,526 -31,927  -32,876**  

 (23,259) (23,604) (21,491) (24,210) (19,021)  (13,621)  

Stripe rust -512.28 -1,632 -6,718 -9,634 -8,368  196.45  

 (11,450) (11,632) (27,973) (26,222) (20,517)  (14,397)  

Loose smut 11,594 12,335 23,993 28,667 -  -  

 (15,874) (15,970) (21,167) (21,560)     

Bunt 22,121 24,274 3600 641.84 52,564**  -39,591*  

 (20,325) (18,854) (16,638) (16,085) (22,995)  (22,278)  

Leaf spot 13,490 7,284 -10,300 -13,930  -38,065  -62,427 

 (13,329) (14,069) (38,370) (38,737)  (59,876)  (59,002) 

Fusarium head blight 10,031 9,122 -21,883 -18,079 -55,257**  -46,457  

 (12,934) (12,215) (21,637) (20,954) (22,995)  (30,278)  

Sprouting 5,951 -2,241 26,018** 20,041** -72,088  -80,049  

 (25,024) (22,601) (11,166) (8,534) (72,539)  (66,024)  

Lodging 20,130 16,379 1,988 -1,046 -16,542  -24,665*  

 (26,171) (24,397) (7,621) (6,411) (16,309)  (13,664)  

Height 33,685 31,122 8,840 10,359 44,031**  37,740**  

 (20,199) (17,645) (11,879) (12,051) (17,127)  (17,537)  

Head awn -17,279 -33,391 10,185 3,747  -262,724***  -238,818*** 

 (47,876) (44,050) (48,910) (51,901)  (46,798)  (43,198) 

Maturity rate 11,340 15,332 -11,082* -8,117 -5,412  -930.87  
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 (15,497) (15,089) (6,098) (6,608) (11,317)  (11,025)  

Provincial dummy variables ✓  ✓  ✓  ✓  ✓   ✓   

         

Constant 229,506 281,485 -100,503 -132,184 746,607* 336,350* 793,879** 384,018* 

 (356,177) (363,727) (337,813) (356,974) (384,999) (179,628) (270,008) (177,006) 

         

Observations 88 88 88 88 93 88 93 88 

R2 0.45 0.48   0.79 0.30 0.81 0.29 

Number of varieties 13 13 13 13 14 13 14 13 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table D.14: Durum wheat class estimates for full dataset 

 (D79) (D80) (D81) (D82) (D83) (D84) 

Variables Pooled OLS Pooled OLS Hausman-Taylor IV Hausman-Taylor IV FEF FEF 

     Step (1) Step (2) Step (1) Step (2) 

Dependent variable: acres 

         

Lag yield potential  3,605*  -1,588   -897.59  

  (1,803)  (1,069)   (961.66)  

Lag average 4,536**  -2,604  -1,943    

 (2,062)  (1,619)  (1,253)    

Lag variety specificity  -25,565**  129.09   2,603  

  (9,038)  (6,934)   (5,517)  

Lag yield variance -413.94  -29.43  79.63    

 (316.88)  (246.52)  (161.65)    

Age 12,524** 11,019** 10,092** 10,439** 7,476*  7,815*  

 (5,156) (4,780) (4,023) (4,282) (4,035)  (4,109)  

Age2 -82.60** -73.32** -47.70*** -49.66*** -41.32**  -43.02**  

 (30.09) (28.22) (15.44) (17.00) (18.11)  (18.47)  

Age3 0.13** 0.11** 0.06*** 0.07*** 0.06**  0.06**  

 (0.04) (0.04) (0.02) (0.02) (0.02)  (0.02)  

Protein 321,156** 292,677** 345,494* 359,472 -31,146  -17,627  

 (135,031) (128,858) (213,483) (218,915) (86,627)  (80,152)  

Stripe rust -215,880* -169,727 66,303* 58,762* -5,136  -9,863  

 (120,013) (102,541) (34,885) (35,070) (43,697)  (44,796)  

Loose smut -39,383 -37,907 -66,683*** -64,559*** -93,149***  -91,510**  

 (38,056) (33,378) (17,107) (17,238) (30,892)  (32,007)  

Bunt 271,244*** 254,309*** 423,491*** 422,877*** 296,186***  294,890***  

 (63,992) (64,287) (23,609) (24,065) (51,961)  (51,055)  

Leaf spot -117,551 -69,741 243,101*** 233,781*** 114,748  107,032  

 (89,460) (77,864) (89,406) (86,583) (118,722)  (119,702)  

Fusarium head blight -82,753 -95,667 -17,207 -9,787  -184,776  -177,976 

 (127,307) (118,276) (136,419) (140,188)  (129,205)  (128,255) 

Sprouting 132,441* 99,601 -118,242** -118,920** -11,657  -14,995  

 (71,917) (63,586) (58,371) (60,005) (56,191)  (52,621)  

Lodging -12,747 -10,130 134,471* 129,805* 100,943  98,189  

 (40,635) (40,398) (72,381) (69,139) (67,269)  (66,001)  

Height 410,930** 311,182* -7,682 -1,079  192,714***  198,517*** 

 (166,334) (147,094) (142,745) (137,877)  (18,919)  (20,126) 

Head awn - -    -  - 
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Maturity rate -63,998 -40,691 -34,185* -39,011* -32,842  -36,849  

 (44,118) (41,900) (19,710) (22,334) (21,620)  (23,181)  

Provincial dummy variables ✓  ✓  ✓  ✓  ✓   ✓   

         

Constant -6,228,809** -5,598,687** -7,824,971** -8,016,486** -1,325,985 -313,734 -1,500,525 -341,723 

 (2,243,834) (2,162,401) (3,135,183) (3,259,023) (1,140,783) (239,696) (1,062,143) (238,680) 

         

Observations 88 88 88 88 104 88 104 88 

R2 0.59 0.61   0.87 0.27 0.87 0.27 

Number of varieties 17 17 17 17 17 17 17 17 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix E   

 

Table E.1: Poolability F-test results when variety specificity is one of the key independent 

variables and a minimum of four risk areas of data is imposed 

Analysis level F-statistic Prob>F 

Prairies 4.17 0.00 

Alberta 11.90 0.00 

Manitoba 4.63 0.00 

Saskatchewan 6.04 0.00 

Hard red spring 4.11 0.00 

Canada Prairie spring 8.84 0.00 

Durum 10.84 0.00 

Ho: variety specific effects equal 

 

Table E.2: Testing results for heteroskedasticity when variety specificity is one of the key 

independent variables and a minimum of four risk areas of data is imposed 

Analysis level 
Breusch-Pagan/ Cook-Weisberg 

test for heteroskedasticity 

Modified Wald test for groupwise 

heteroskedasticity 

 𝜒2- statistic Prob>𝜒2 𝜒2- statistic Prob>𝜒2 

Prairies 664.52 0.00   

Alberta   3.1e+31 0.00 

Manitoba   60767.17 0.00 

Saskatchewan   1.5e+05 0.00 

Hard red spring 392.11 0.00   

Canada Prairie 

spring 
10.92 0.010   

Durum 56.40 0.00   

Ho: variances equal 

 

Due to the nature of the dataset, I estimate adoption at the Prairie-wide and wheat class 

levels using the regression command and a factorial variety identifier in Stata. This allows for 

each province reporting on the same variety within a year. Alternatively, at the provincial level 

of analysis, this approach is not necessary and I use the xtreg command in Stata to estimate the 

models. As a result, I use the Breusch-Pagan / Cook-Weisberg test for heteroskedasticity at the 
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Prairie-wide and wheat classes analysis levels, and the modified Wald test for groupwise 

heteroskedasticity at the provincial levels. In each case, the null hypothesis of homoskedasticity 

is rejected when the significance level is set at 5%. Given this presence of heteroskedasticity, and 

the differential nature of wheat varieties, I correct the standard errors by clustering on variety in 

the empirical results presented in chapter six.  

 

 


