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Abstract

Micropalaeontology, a discipline that contributes to climate research and

hydrocarbon exploration, is driven by the taxonomic analysis of huge vol-

umes of microfossils. Unfortunately, this repetitive analysis is a serious

bottleneck to progress because it depends on the scarce time of experts.

These issues propel research into computerized taxonomic analysis, includ-

ing a promising new approach called computer-aided microfossil identifi-

cation. However, the existing computer-aided system relies on image-based

representations, which severely limits its ability to discriminate specimens.

These limitations motivate using computer vision to support richer video

and shape-based representations, which is the focus of this thesis. An im-

portant contribution is a scheme to localize, capture, and extract video and

shape-based representations from large microfossil batches. These repre-

sentations encapsulate information across multiple lighting conditions. In

addition, the thesis describes a method based on photometric stereo to cor-

rect misalignments in images of the same object illuminated from different

directions. Not only does this correction benefit the application at hand, but

it can also benefit a variety of other applications. The thesis also introduces

a visual-surface reconstruction method based on maximum likelihood es-

timation, which constructs usable depth maps even from extraordinarily

noisy images. State of the art methods lack this capability. By freeing clas-

sification from the bounds imposed by images, these contributions signifi-

cantly advance computerized microfossil identification toward the ultimate

goal of a practical and reliable tool for high-throughput taxonomic analysis.
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Chapter 1

Introduction

1.1 Biostratigraphy: An Important Field

Biostratigraphy, the science of identifying and dating sedimentary rock lay-
ers through the study of fossils, is an important area for both climatology
and the energy industry. Marine microfossils found within sediment sam-
ples are often of species that evolved at a very rapid rate. Consequently,
there is a direct correlation between the presence of a certain species and
the time period of its sample. Species that are used for time correlation are
called index fossils. Ideal index fossils typically possess three characteris-
tics [1]:

• Easily recognized;

• Spread rapidly and widely and then quickly became extinct;

• Easily preserved.

Among other benefits, this correlation between species and time periods
allows scientists to determine whether two very distinct sediment samples
originate from the same time period or not.

An important field in its own right, biostratigraphy also plays a very im-
portant role in academia and industry. For instance, an inherent problem
with climate models is that there is no way to run full-scale experiments
for testing cause and effect. As a result, climate scientists must use past
data to compile a rich dataset. The information held within microfossil
samples is key in providing vital information in understanding prehistoric
climate [2]. The petroleum industry is another area where microfossil iden-
tification plays a significant role. Because biostratigraphy provides sup-
plementary information, industry often employs micropalaeontologists to
improve their geological models of an area. Using biostratigraphy to date

1



Chapter 1: Introduction

rock layers, these models provide vital guides in locating hydrocarbon de-
posits [3]. Thus, biostratigraphy is crucial in scientific and industrial appli-
cations that are of great import to our society.

1.2 Motivation for a Computerized Solution

1.2.1 Biostratigraphy Today

In Simmons et al’s look ahead to the future of biostratigraphy [4], the au-
thors assert that taxonomy is the driving force behind their field. Taxonomy
is key in identifying good index fossils, and in providing reliable relative
time scales between biozonation schemes (intervals of rock strata charac-
terized by their fossil species). Detailed taxonomic study is especially re-
quired when dealing with biozonation schemes that tend to only possess
very localized fossil specimens. Typically, microfossil identification is ac-
complished through manual study of samples under an optical microscope.
Those performing taxonomy usually require three to four months of train-
ing [3].

Unfortunately, much taxonomic work still needs to be accomplished. In
particular, Simmons et al warn that certain biozonation schemes are in seri-
ous need of more taxonomic study. Paradoxically, despite the great need for
further taxonomy, the authors warn that the field is experiencing decline in
interest and funding. The authors point out that in particular biostratig-
raphy must continually combat the misconception that taxonomic study is
“all done” [4]. This problem is so serious that Simmons later devoted an
entire article to the subject [5].

Yet, a major problem with taxonomy is that identifying microfossils in a
rock sample is extremely time-consuming. This problem is compounded by
the enormous amounts of taxonomic study still required to fill in existing
knowledge gaps [4]. Projects such as the Ocean Drilling Project (ODP), and
its successor the Integrated Ocean Drilling Project (IODP), have been ex-
traordinarily successful at collecting vast amounts of samples. However,
the prospect of classifying species based on this data is daunting to say
the least—altogether the ODP collected 130 miles of core samples over the
length of its program [6]. As a typical microfossil is the size of a grain of salt,
it is apparent that taxonomic classification of these samples is an enormous
task. As a result, the problem facing biostratigraphy is two-fold: classifica-
tion is labour intensive, and a huge amount of taxonomic work still must be
performed. Since the industrial and academic applications of biostratigra-
phy are of such importance to society, solutions should be explored to help
overcome the issues with taxonomy that biostratigraphy faces today.
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Figure 1.1: Inside the IODP Bremen Core Repository. Each repository holds
vast stores of samples. The Bremen repository has a capacity of 1100m2,
and contains 130 km of deep-sea cores within roughly 100,000 boxes (taken
from the Bremen repository website).

1.2.2 Computerized Microfossil Identification

The capacity for engineering skills and techniques to be effectively applied
towards important scientific endeavours has been demonstrated in the past.
Take, for instance, the decoding of the human genome. Decoding the hu-
man genome required sifting through an incredible amount of data. More-
over, traditional gene sequencing is a very lengthy and expensive process
requiring the use of expert labour. As Hodgson [7] illustrates (see Fig. 1.2),
without automation techniques the human genome project would still be
in its infancy and would have had no prospect of finishing within our life-
times. When automation techniques were brought in, the decoding of the
human genome finally became feasible. Hodgson notes that, “a single DNA
sequencing machine [in 2000] can produce over 330 000 bases (units of se-
quence information) per day, more than 100 researchers could manage in a
year and a half using manual techniques.” When put in that way, the bene-
fits brought about by automation to the human genome project are simply
astounding.

Inmanyways, the problem geneticists faced is analogous to the one bios-
tratigraphers face today. Both must accomplish an analysis of an enormous
amount of data by performing repetitive work. However, biostratigraphy’s
problem is different, as the identification of a microfossil is a purely visual
task. Designing an automatic system to identify or discriminate between
fossil samples is a challenging problem. Nonetheless, the continuing ad-
vances in image processing, pattern recognition, and computer vision indi-
cate that computer engineering is poised to develop breakthroughs for this
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Figure 1.2: Gene sequencing was immensely accelerated because of the in-
troduction of automation (taken from [7]).

important field.
In fact, recent progress in the automatic identification of other biological

entities suggest that computerized microfossil identification is an attainable
goal. For instance, the Automatic Diatomic Identification and Classification
(ADIAC) project has enjoyed promising preliminary success rates in classi-
fying live diatoms (unicellular algae) using optical microscopy [8]. While
both problems possess their own respective challenges, the success in iden-
tifying live diatoms provides much encouragement with respect to micro-
fossils. There is now great reason to believe that a collaborative enterprise
between computer engineering and micropalaeontology will significantly
accelerate biostratigraphic work. To become a viable contribution to bios-
tratigraphy, such a collaboration must accomplish two tasks:

• Identify microfossil species based on their visual features

• Sort microfossil samples based on their identification.

In addition to an acceleration in classification, such a system would also
have the potential to provide consistent accuracy. People, especially those
with training, have a considerable capacity for identification and classifi-
cation. However, even experts are not infallible to fatigue and bias. Cul-
verhouse et al studied the accuracy of expert taxonomic classification in
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the case of phytoplankton specimens and concluded that accuracy was con-
siderably lower than what the authors had expected [9]. The authors con-
cluded that fatigue was a major player in the results. Even though the study
focused on phytoplankton, the conclusions of the paper are relevant to mi-
crofossil classification, as both deal with taxonomic classification under a
microscope. Similar results were reported in the ADIAC project, where the
authors concluded that even experience was not a good indicator of classi-
fication accuracy [8]. Regarding microfossil identification, the report of the
Second Conference on Scientific Ocean Drilling went even so far as to state
that inconsistency is a “fundamental weakness” [10]. As a result, if one
could develop a computerized microfossil classification system with high
accuracy one would avoid having fatigue and bias skew the results.

For these reasons, an automated approach to microfossil identification
has been an acknowledged goal within the field for some time [10]. With the
advance of trans-disciplinary applications for complex problems, computer
engineering offers a unique contribution to particular scientific problems
and challenges. Of interest to the field of biostratigraphy is the develop-
ment of a computerized microfossil identification and sorting system. The
topic of this M.Sc. thesis is on the identification side of this problem.

1.3 State of the Art of Computerized Solutions

The benefits of developing a computerized microfossil identification sys-
tem have been recognized by a variety of researchers. Apart from the work
conducted at the University of Alberta (UA) Electronic Imaging Lab (for-
merly the Imaging Science Lab), previous work can be broadly separated
into those that use rule sets (the same rules micropalaeontologists use dur-
ing manual examination) and those that employ a fully-automated artificial
neural network (ANN) using supervised learning.

As a way to lesson human error and training requirements, earlier sys-
tems often focused on aiding those tasked with manual identification [3,
11, 12]. These systems all rely heavily on human interaction; as such, they
do not provide a significant lessening of workload. Of particular note is the
most recent system called the Video Identification Expert System
(VIDES) [3]. Developed through BP Plc (British Petroleum at the time),
VIDES functions by presenting the user with a set of identifying attributes.
Based on the sample in question, the user selects values for as many of the
attributes as possible. Considerable effort was invested in making attribute
selection as easy as possible. As the user selects more attributes, the system
infers with greater confidence the identity of the microfossil.

As noted, VIDES does not provide an automated approach to microfossil
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identification. Even so, using rule sets to infer microfossil species are attrac-
tive as they directly correspond to the criteria that micropalaeontologists
use for manual identification. Attempting to retain the use of these rule
sets, Dr. Thonnat’s research group, based at the French National Institute
for Research in Computer Science and Control, proposed an identification
system that incorporates rule-sets into an automated scheme [13, 14]. The
system creates correspondences between mathematical shape descriptors
and knowledge-based rules. Although an interesting direction to take, the
research group never made clear which low-level features were included
and no results were reported. Another serious weakness is that all work
was based on holotype images (high quality example of taxa). Yet, practical
systems must function “in the wild”, where they will encounter specimens
of all ranges of quality. Moreover, the system used scanning electron mi-
croscopy (SEM) images. Relying on SEM images presents several serious
problems. For one, obtaining SEM images is difficult and time-intensive,
impacting any time-reductions due to automation. In addition, the system
required SEM images from three different views, which is difficult to ac-
complish under SEM. As well, SEM samples must be treated prior to image
acquisition, often making subsequent analysis and sorting impossible.

In contrast to rule-based approaches, other systems use low-level arti-
ficial neural networks to classify microfossils. Current examples of ANN
approaches all train and classify directly in pixel space. One of the leading
examples of an ANN-based classifier is SYRACO 2, developed by Beaufort
et al [15]. Initially, SYRACO 2 relied on pre-processed images that were
normalized with respect to rotation and translation. Unfortunately, the
authors found that their normalization technique was unreliable and later
developed an improved version [16] that handles translation and rotation
by using a somewhat unwieldy combination of 6 parallel neural networks.
However, even in its original form, when using very low resolution 64× 64
images, SYRACO 2 tuned 800,000 parameters during training. According
to neural network theory, such a network would require a lower bound of
800,000 images in the training set [17]. As their number of training images
was a small fraction of that, the authors were unable to fully explain why
their network worked at all. The number of parameters using the bank of
parallel neural networks was not reported.

The ANN approach is also used by the Micropaleontology/Geophysiol-
ogy group at ETH Zurich [18]. The group tested their system, called COG-
NIS, using reflected-light microscopy, transmitted-light microscopy, and
SEM. Out of all of these modalities, only SEM was used in testing whether
the system could identify multiple species. Although SEM did produce sat-
isfactory results, the use of SEM poses several problems, as mentioned be-
fore. Regarding optical microscopy, the authors performed an experiment
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testing whether specimens of a certain species (Florisphaera profunda) could
be identified from a set of images of varying species. While the system had
a high correct classification rate, it was also very unreliable, producing a
false positive rate of 80%.

As noted, the state of the art can be separated into approaches using
traditional rule-sets and approaches using ANNs. Apart from Dr. Thon-
nat’s research group, which did not produce results anyway, the rule-set
based approaches are not designed to lessen identification workload. As a
result, the state of the art is broadly defined by two extremes in term of au-
tomation: those providing little to no automation, represented by rule-set
based approaches, and those aiming to provide complete automation, rep-
resented by ANN-based approaches. While solutions using rule-sets may
lessen training requirements or misclassification rates, they do not address
the significant issues regarding the heavy workload and specimen volumes
required for detailed microfossil taxonomy. In contrast, the ANN approach
does aim to solve these issues, but the practicality of supervised learning is
doubtful when applied to the domain of microfossil identification.

For instance, the nature of supervised learning requires that a significant
training set be in place that consists of classified data. Developing a large
training set is difficult in any situation; however, the time-consuming and
expert-labour driven nature of traditional manual microfossil identification
makes dataset collection an especially daunting challenge. In fact, it is this
difficulty that has motivated research into computerized identification in
the first place. Each species one wishes to identify requires a significant
number of associated images in the training set. For example, COGNIS [18]
reported that on average 70 images were used for each species in its training
set. This perhaps explains why SYRACO 2 [16] and COGNIS [18] were only
trained to identify 16 and 14 species respectively. When dealing with or-
ders of microfossils possessing very large numbers of species, this problem
is especially acute. For instance, estimates of the number of extant benthic
foraminifera species (protozoic marine life forms) and diatoms (aquatic al-
gae) are upwards of 40,000 [19] and 100,000 respectively [20]. Thus, the
prospect of using an ANN-based approach for general identification of these
microfossils is next to impossible.

If the sheer numbers of microfossil species are not enough of an ob-
stacle for ANN-based approaches, the rigid nature of the training process
certainly provides its own significant disadvantages. If one wishes to add
or amalgamate species, the system must be completely retrained. As many
types of microfossils, including but not limited to benthic foraminifera [21],
diatoms [22], and conodont elements (tooth-like microfossils) [23], have an
ever-evolving taxonomy, this is not a trivial problem.

For these reasons, the ANN-based approach suffers from serious draw-
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backs toward becoming a practical and useful implementation. As a result,
these problems motivate the alternative direction pursued for this thesis:
an unsupervised semi-automated scheme, designated from here on in as
computer-aided microfossil identification.

1.4 Computer-Aided Identification

Computer-aided identification is a promising alternative to the fully-super-
vised approaches pursued in the state of the art. Serving as the basis of
this thesis, an existing implementation of a computer-aided identification
system, developed by the UA Electronic Imaging Lab, has demonstrated
feasibility [24]. The author was also a contributor to this work. Sec. 1.4.1
outlines the steps behind this implementation of computer-aided identifi-
cation. Sec. 1.4.2 discusses its performance.

1.4.1 Method

The challenges associated with the extensive and ever-evolving nature of
microfossil taxonomy can be avoided if one implements a system designed
to keep experts in the loop. More specifically, one could envision a system
that automatically clusters specimens based on their visual similarity (and
not pre-existing taxonomic knowledge), chooses a template for each cluster,
and then presents the templates to an expert for identification. Experts
could either examine templates using a digital representation or the actual
particle under a microscope. The template’s label would then be applied to
all of the particles in its associated cluster. Unlike ANN-based approaches,
the goal of such a system would be a significant reduction in identification
workload, but not an elimination.

Even so, such an approach benefits from an extraordinarily high level of
flexibility, as it is not hampered by the uncertain state of microfossil taxon-
omy and requires no prior training set collection. As a result, a computer-
aided identification system could be applied to all species or taxonomic
groups, an impractical proposition for identification schemes relying on
training sets. Additionally, such a system can be tuned to either aim for
fewer or more clusters, thus providing a means to control the tradeoff be-
tween work reduction and accuracy. As well, an unsupervised clustering
approach also provides more flexibility in the order of steps needed to
identify and sort microfossils in a complete system. Unlike a supervised
approach, physical specimens can be first sorted into clusters based on
their visual similarity and identification of each cluster template can be
performed later.
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Figure 1.3: The state of the art of computer-aided identification. (1) As
a first step, an appropriate specimen set must be collected; (2) Single im-
ages of the particles in this set are captured; (3) The objects in the images
are canonized so that they are centered and their principal axes are at an
orientation of 0◦; (4) A similarity matrix for all image pairs in the set is
computed; (5) A clustering algorithm uses the similarity matrix as input. A
user-defined similarity threshold controls the degree of similarity required
between members of the same cluster; (6) For each cluster, a template is
automatically chosen. An expert identifies the template using either the
specimen image or the actual particle. The template’s label is applied to
every member of its cluster.

Such an approach, using image-based representations ofmicrofossil par-
ticles, has been developed in a preliminary stage at the UA Electronic Imag-
ing Lab [24]. As much of the work in this thesis involves advancing the
capabilities of the preliminary system, particularly by incorporating com-
puter vision, it is worthwhile devoting space to the methodology of this
implementation. In addition, a first contribution of this thesis is to identify
limitations of this preliminary approach.

In its preliminary state, computer-aided microfossil identification can
be broadly broken down into several steps. These are illustrated in Fig 1.3.
The following subsections explain these individual steps in more detail. For
a full explanation of the preliminary system, the reader is encouraged to
consult [24].
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1.4.1.1 Specimen Set

The specimen set used for the preliminary implementation was comprised
of foraminiferal tests (forams). A key oceanic life form for millions of
years, countless numbers of foram specimens have been extracted over the
years by several different ocean drilling programs, including the ODP. The
study of their morphology, as in [25], and their chemical composition, as
in [26, 27], has advanced the current understanding of prehistoric climate.
In addition, forams have also played important roles in locating hydro-
carbon deposits [28].

1.4.1.2 Image Acquisition

As a first step to image acquisition, a user must sieve the particles and sprin-
kle them onto an opaque glass slide. The base equipment requirements of
the image capture system comprise a microscope, an attached digital cam-
era, and custom-built software to properly capture and store images. As the
described equipment is also used for this thesis, further details on the mi-
croscope and digital camera can be found in Sec. 3.1.1. Providing an opaque
black background, the glass slide allows the system to localize particles by
segmenting the current field of view using simple thresholding and search-
ing for any silhouettes within the size ranges allowed by the sieve. Both
silhouettes and images of each particle were captured.

1.4.1.3 Invariant Transform

As images of particles sprinkled on a slide exhibit arbitrary rotation, image
location, and possibly even scale, normalizing against these factors is an
important consideration. For this reason, the system mapped images into
a canonical space using an invariant transform. Implementing an invariant
transform to guard against these factors requires first computing specimen
location, rotation, and scale. As shown in Fig. 1.4(a) and (b), computation of
these characteristics used the particle’s silhouette. The centroid of the sil-
houette provides coordinates of the specimen’s location in the image while
computing the principal components of the silhouette [29] provide the ro-
tation and scale.

With these measurements computed, each image underwent a normal-
ization transform such that:

• The centroid of the object rests in the middle of a 640 × 640 pixel
image.

• The length of the major axis of the object silhouette is 256 pixels.

• The major axis of the silhouette is horizontal.
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(a) (b)

(c) (d) (e) (f)

Figure 1.4: The invariant transform (taken from [24]). (a) input photograph
containing multiple specimens; (b) silhouette of each specimen after seg-
mentation, with principal components superimposed on one of them; (c)
silhouette of one specimen centered in an image of fixed size, with fixed
rotation and scale of the first principal component; and (d) canonical image
of one specimen. There would be a 180◦ rotational ambiguity in the canon-
ization, i.e. compare (e) to (c) and (f) to (d), if not for the use of third central
moments in the x and y directions, which are indicated by vectors. In both
(c) and (e), the third central moment is largest in the x direction. However,
the largest third central moment is positive only in (c).

The results of such a transformation applied to an image and its silhouette
are shown in Fig. 1.4(c) and (d). However, as demonstrated by Fig. 1.4(c)
and (e), orientating an object so that its major axis is horizontal leaves a 180◦
ambiguity. However, by forcing one of the third-central moments in the x
or y direction to be positive, the ambiguity is removed. The best choice is
to compute both third-central moments, and force the one with the largest
magnitude to be positive [24]. Thus, in the example of Fig. 1.4, the image
in (c) represents the correct choice.
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1.4.1.4 Similarity Estimation

The next step in the process is to compute a similarity matrix consisting
of correlation scores between all pairs of specimen images. A well estab-
lished measure of similarity in areas of pattern recognition [29], the corre-
lation coefficient was used as a similarity measure. Two important reasons
motivate the choice of correlation coefficient as a similarity measure [24].
For one, correlation is a well-understood measure, allowing the merits of
computer-aided identification to be evaluated without the worry of having
a less-established metric confounding results. Secondly, should other simi-
larity measures be evaluated, having results using a proven metric provides
a useful basis of comparison.

Removing the effect of background pixels on the computation, the sys-
tem used a modified form of the correlation coefficient [24]. The modified
correlation coefficient, r, between canonical two specimens a and b is de-
fined as:

r =

∑
k∈I∪J (A′k)(B

′
k)√∑

i∈I (A′i)2
∑

j∈J (B′j )2
, (1.1)

where A and B represent the image-based representations of a and b re-
spectively. Here, i and j represent pixel coordinates belonging to canonical
silhouettes I and J corresponding to a and b, and k represents pixel coor-
dinates belonging to the union I ∪ J . Differing from the traditional compu-
tation of correlation, A′(.) and B′(.) are the pixel intensities of A and B after
subtraction of the mean foreground intensity (as opposed to mean intensity
of the entire image) from the foreground, where foreground is defined as
the region bounded by the canonical silhouette.

1.4.1.5 Clustering

Computing a similarity matrix between specimen pairs is a popular and
established method to represent data for clustering [30]. The computer-
aided system processed this data by constructing a virtual graph composed
of vertices for every specimen and edges only between vertices of visually
similar specimens. Two specimens were considered similar if their corre-
lation score was above a user-defined threshold. As the only parameter in
the system, the threshold parameter controls whether the system would be
inclined to produce fewer or less clusters. Consequently, the threshold pa-
rameter determines the degree of importance placed on work reduction vs.
classification accuracy. Clusters were extracted from the graph by searching
for maximal cliques.
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1.4.1.6 Template Identification

With specimens grouped into clusters, a template must be selected from
each group. Based on the criteria of maximum intra-cluster similarity, the
system automatically chose a template from each cluster. Here, an image’s
intra-cluster similarity is defined as the sum of correlation coefficients that
the image has with the other images in its cluster. The specimen with the
image holding the highest intra-cluster similarity is chosen as the template.

Up to this point all steps have been automatic. However, for the next
step the system requires an expert to identify each template. Two variations
exist on the identification process:

• In the image-based variation, templates are identified from their
images, i.e. a digital representation of physical specimens;

• In the particle-based variation, templates are identified by tradi-
tional examination under a microscope, i.e. from physical repre-
sentations.

To enable image-based identification, after images of each specimen were
captured, they were automatically uploaded to an online-wiki1, designed to
provide a user-friendly and interactive interface in which experts can search
for and identify individual specimens.

In terms of flexibility and ease, image-based classification is the most
desirable variation. However, as Sec. 1.4.2.1 will demonstrate, it may not
always be possible to identify microfossils from images. Regardless of the
identification method used, once an expert applies a class label to a tem-
plate specimen the same classification is applied to every member of its
corresponding cluster.

1.4.2 Results

The UA Electronic Imaging Lab performed two studies pertinent toward
testing the capabilities of computer-aided classification. The first study did
not test computer-aided identification per se, but instead explored the ac-
curacy and reliability of image-based template identification [31]. Since,
image-based template identification is preferred due to its flexibility and
relative ease, this is an important question to explore. As well, the results
of the first study influenced the direction and scope of the second, which
examined the performance of the preliminary computer-aided identifica-
tion system [24]. Both studies reveal important directions to pursue to

1http://www.ece.ualberta.ca/ imagesci/microfossil/wiki/wiki.php
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further improve computer-aided classification performance and have im-
portant implications for this thesis. The results of both studies, which use
the metrics described below, are summarized in Secs. 1.4.2.1 and 1.4.2.2.

In the hierarchy of Linnaean taxonomy, the ability to classify the two
ranks of Genus and Species are of primary importance. The correctness or
incorrectness of a classification represents a binomial trial with a true or
false outcome. For a given microfossil dataset, particle-based classifications
of each specimen represents the ground truth. For both studies, four met-
rics were used to judge the accuracy and reliability of the classifications and
are defined as follows [31]:

• The correct genus rate (CGR) is the proportion of specimens, with
known genus in the ground truth, that were correctly identified. A
similar definition applies for the correct species rate (CSR).

CGR =
Number correctly identified
Number with known genus

. (1.2)

• The incorrect genus rate (IGR) is the proportion of specimens, with
known genus in the ground truth, that were incorrectly identified.
A similar definition applies for the incorrect species rate (ISR).

IGR =
Number incorrectly identified
Number with known genus

. (1.3)

The CGR and IGR, and the CSR and ISR, may not sum to unity as it
is possible for a genus or species field to be classified as unknown. As any
classification scheme will experience varying degrees of success depend-
ing on the proportions of each class within a sample set, it is important to
construct an appropriate basis of comparison. The random a priori (RAP)
classifier serves this purpose by performing classifications based on the dis-
tribution of classes within the sample. For RAP classifications, the CGR and
IGR were computed as follows:

CGR =
N∑
i=1

p2i , (1.4)

IGR = 1−CGR. (1.5)

Here, N represents the number of known genera and pi represents the
ground truth proportion of the ith genus amongst specimens with known
genera. The RAP CSR and ISR are similarly defined.

Regardless of the manner of classification, confidence intervals provide
a means to extrapolate these results from the sample to the entire popu-
lation. 95% confidence intervals were computed using the Wilson score
method [32].
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1.4.2.1 Accuracy of Image-Based Template Identification

As images are the preferred means to identify a template, and are also the
representations used to cluster specimens, an important question to explore
is whether images contain enough information to reliably identify a spec-
imen. Quantifying how accurately an expert can classify specimens based
on their images is one way to determine this. As a precursor to computer-
aided microfossil identification, the UA Electronic Imaging Lab conducted
a study on exactly this subject, focusing on mainly planktonic foramini-
fera [31]. This question is not trivial because taxonomists often vary the
focal plane and manipulate samples during identification—actions that are
impossible when examining a simple digital image. As of yet no one else
has reported findings on whether digital images actually contain enough
information for identification. The results of this study impacted the pre-
liminary implementation of computer-aided identification and also signifi-
cantly influenced the work of this thesis.

To study this issue, the authors performed experiments quantifying the
agreement between image-based classifications of 244 forams and the
ground truth, which as mentioned is considered to be the corresponding
particle-based classifications of the same forams. As Fig. 1.5 demonstrates,
when compared to the RAP classifier, image-based classification performs
markedly better at genus identification. Even so, experts were only able to
correctly classify specimen genera roughly 80% of the time. At the species
level, image-based classifications suffer from a worse correct classification
rate. Even so, species level identification still exhibits a low incorrect clas-
sification rate. The low IGR and ISR demonstrated in Fig. 1.5 indicate
that if an image-based identification of a foram can be performed, it is al-
most always accurate. However, the expert was not always able to perform
image-based classifications, opting to apply an “unknown” label, which re-
duced the correct classification rates. This problem is especially acute at
the species level.

The variability of these results was tested across a variety of factors.
Only image quality affected the classification rates with any significance.
As a result, the authors concluded that digital images do contain enough
information for identification, but only at the genus level.

These results underscore the importance of the quality and detail of dig-
ital representations presented to experts when performing identification
tasks. Should one wish to have experts identify specimens using some dig-
ital representation, alternatives other than images will be needed to obtain
high correct classification rates.
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Figure 1.5: Accuracy of image-based classification. (a) correct and incorrect
classification rates at the genus level; and (b) correct and incorrect clas-
sification rates at the species level. Error bars represent 95% confidence
intervals. As can be seen, when identifying specimen genera from images,
the expert is correct 81% of the time, and is only incorrect 4.2% of the time.
On the other hand, at the species level images can only correctly identify a
specimen 47% of the time. Despite the poor correct classification rate at the
species level, the incorrect classification rate remained very low.

1.4.2.2 Performance of Computer-Aided Identification

The performance and limitations of image-based identification explored
in [31], which the previous section summarized, steered the preliminary
implementation of computer-aided identification toward only aiming for
genus-level identification. Using the same dataset in [31], the computer-
aided classifier in [24] applied the clustering scheme outlined in Sec. 1.4.1
to the samples. This section presents the results in [24], with particular
emphasis on elements influencing the course of this thesis.

Ideally, the number of clusters should be as low as possible. While, the
correlation coefficient as a similarity measure can be used to cluster speci-
mens together, clusters must also be as homogenous as possible to be useful.
In addition, the system must also choose an appropriate template for each
cluster and present it to the expert for identification. Finally, an expert must
produce accurate classifications of each template. These challenges present
the computer-aided classifier with three possible sources of error:

1. Inhomogeneity of clusters;

2. Inability of the template(s) to represent the majority of members
in its cluster;
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3. Inaccuracy of identifying a template by its image-based represen-
tation.

The first error is primarily a judgement on the performance of the clus-
tering algorithm. However, if a cluster is completely homogenous, then
the second error, in addition to the first, is completely negated, as all speci-
mens in the cluster are equally appropriate representatives. Even so, for any
useful amount of work reduction, heterogenous clusters are unavoidable,
which places considerable importance on selecting appropriate templates.
This makes it somewhat difficult to separate the contributions of Errors 1
and 2 from each other. Finally, if the expert is performing particle-based
template identification, Error 3 does not come into play.

Constructing a classifier that chooses the ideal template every time is an
excellent way to measure the contribution of Error 1 without having Error 2
confound the results. This can be accomplished by labelling a cluster with
the class belonging to the majority of specimens in the group. Since such a
classifier requires that every specimen be classified in the sample set, this is
not a practical scheme; however, for the purposes of analysis it does allow
the clustering algorithm to be judged on its own merits. Such a classifier
will be called an ideal-template classifier (ITC). Alternatively, a practical-
template classifier (PTC), the scheme used in an actual implementation of
computer-aided identification, chooses templates based on the visual simi-
larity criteria outlined in Sec. 1.4.1.6.

Measuring cluster count vs. similarity threshold revealed that the num-
ber of clusters varies nonlinearly with the similarity threshold parame-
ter [24]. The nature of this nonlinear relationship holds sway over the de-
gree of work reduction the system can provide—which is a major criterion
by which to judge the performance of the system. Performance of a com-
puter aided classifier is only meaningful when compared against the work
it reduces. System accuracy and reliability can be quantified using CGR
and IGR values, but quantifying work reductions requires another measure
called relative effort:

Relative effort = Number of templates examined
Total number of specimens

. (1.6)

Fig. 1.6 demonstrates the contribution of each error to the existing
computer-aided classification scheme by graphing the CGRs and IGRs of
both the ITC and PTC across different degrees of relative efforts. The top
row of Fig. 1.6 depicts classification rates using particle-based template
identification, while the bottom row illustrates image-based template iden-
tification rates.

The superimposition of the ITC onto Fig. 1.6 offers an excellent way to
study the system limitations more closely. For instance, as the particle-
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Figure 1.6: Performance of image-based computer-aided identification. (a)
and (b) give the correct and incorrect genus rates of the particle-based ITC
and PTC; whereas, (c) and (d) do the same for the image-based classifiers.
In (a) and (b), the CGR and IGR of the ITC demonstrates the performance
and error contributions of the clustering algorithm (Error 1). A comparison
between the ITC and PTC rates of (a) and (b) illustrates the degree of error
resulting from incorrect template selection (Error 2). Finally, comparing the
performance between the image-based and particle-based classifiers of the
top and bottom rows respectively illustrates errors stemming from identi-
fying templates by their image-based representations (Error 3).

based ITC of Fig. 1.6(a) and (b) chooses ideal templates and identifies them
without error, focusing on these results uncovers the contribution of cluster
inhomogeneity, or Error 1, to the system limitations. As evidenced by the
ITC performance, the clustering algorithm does perform very well at rela-
tive efforts of 60% and higher. However, at lower amounts of relative effort
the clustering algorithm begins to create clusters with greater heterogene-
ity. As a result, there is need to improve automatic clustering performance.

Differing from the ITC, the PTC is subject to errors resulting from in-
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correct template selection. By comparing the ITC and PTC rates of the first
row of Fig. 1.6, one can notice that for relative efforts of 40% and above,
template selection performs well. However, at lower relative efforts the sys-
tem begins to increasingly select templates that do not best represent their
clusters. While limitations associated with template selection certainly do
contribute errors, when compared to issues arising from inhomogeneity of
clusters, the magnitude of the errors is relatively small.

In contrast to any issues related to template selection, limitations asso-
ciated with image-based template identification can clearly become a dom-
inating factor. Although Error 3 is only applicable when templates are
identified by their images, the greater ease and flexibility of using a digi-
tal representation for template identification establishes the importance of
minimizing this error. As previously demonstrated in Sec. 1.4.2.1, when an
expert identifies forams by their images, he or she can only correctly iden-
tify their genus 81% of the time. It is for this reason that the CGRs of the
classifiers using image-based template identification in Fig. 1.6 (c) is also
limited to 81%. Even so, the system maintained low IGRs. These results in-
dicate that the limitations of image-based representations for templates can
dominate all other factors hampering classification performance. Mitigat-
ing this problem requires alternative digital representations for templates.

While the results, especially the consistent low IGRs, are promising pre-
liminary findings, performance must be improved to progress the computer-
aided identification system toward practical uses. The results of the pre-
liminary system indicate that cluster inhomogeneity (Error 1) and template
identification errors (Error 3) are responsible for the majority of perfor-
mance limitations. Comparatively, errors in the template selection scheme
(Error 2) are negligible. As the following chapter will continue to empha-
size, system performance is hampered by the inherent limitations of image-
based representations. This affects the system’s performance by limiting
the ability of experts to identify templates through their digital represen-
tations. Alleviating the magnitude of these errors may enable species-level
classification of microfossils—a task the preliminary system is simply un-
able to accomplish. Incorporating alternative digital representations into
computer-aided classification represents a crucial area of future work and
is a main focus of this thesis.

1.5 Organization of Thesis

As argued in the preceding sections, computer-aided classification offers the
most promising direction yet in automating microfossil identification in a
practical and usable manner. Although the preliminary computer-aided

19



Chapter 1: Introduction

identification system developed at the UA Electronic Imaging Lab success-
fully demonstrated feasibility, it suffers from significant limitations. In its
broadest sense, the goal of this thesis can be seen as addressing and alleviat-
ing some of these limitations by investigating digital representations other
than images.

Chapter 2 explores the limitations of the preliminary system further and
argues that encapsulating the information across multiple light directions
can produce richer digital representations for templates. In doing so, the
chapter makes the case for the use of computer vision in computer-aided
classification. As part of this exploration, photometric stereo andmaximum
likelihood concepts are introduced. Chapter 3 details the significant exten-
sions made to the computer-aided system to allow the incorporation of two
alternative digital representations into the identification scheme. As well,
the chapter summarizes results on data collection using the extended sys-
tem. Chapter 4 introduces a novel image alignment technique developed
to address localization problems in the extended system. The applicabil-
ity of the alignment technique is broad enough to include any photometric
stereo image sequences suffering from relative misalignments from image
to image. Finally, Chapter 5 describes a novel visual-surface reconstruction
technique using maximum likelihood estimation. This technique is able to
be used, amongst other applications, to construct 3D models of microfos-
sils.
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Chapter 2

Computer Vision for
Computer-Aided Identification

In its current form, the state of the art of computerized identification of mi-
crofossils focuses on techniques applied to intensity levels of simple images.
In other words, in addition to employing concepts related to machine learn-
ing, the current state of computerized microfossil identification uses tech-
niques belonging to the field of image processing. While pixels of single im-
ages do contain a great amount of information, image processing techniques
are essentially restricted to working with and manipulating 2D data [33].
However, images often contain a great deal of information regarding scene
geometry, environment, and motion. Techniques designed to extract this
type of information fall under the field of computer vision [33,34].

While the above description may seem to adequately separate and define
the two fields of image processing and computer vision, the reality is there
is a considerable degree of uncertainty regarding the scope of computer
vision. For instance, Shapiro and Stockman offer the following somewhat
ambiguous definition of computer vision as a field whose goal, “is to make
useful decisions about real physical objects and scenes based on sensed im-
ages” [33]. On the other hand, Forsyth and Ponce define computer vision
as a collection of techniques, not necessarily theoretically grounded, de-
signed to extract, “descriptions of the world from pictures or sequences
of pictures” [34]. The unclear boundaries of study of computer vision are
probably best justified by its relatively young state of development—“an
intellectual frontier” [34]. Despite this difficulty in exactly nailing down a
definition of computer vision, one commonality holds amongst all aspects
of computer vision. Computer vision is concerned with understanding im-
ages rather than simply working with them. This perhaps explains why
Shapiro and Stockman conclude their introduction by equating computer
vision with the term image understanding [33]—a term general enough to
encapsulate any computer vision technique.
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Chapter 2: Computer Vision for Computer-Aided Identification

Figure 2.1: The significant role of illumination. Here, an example illustrates
the significant role illumination plays in microfossil image formation. This
figure depicts the same microfossil specimen (a foraminifera of the genus
Acarinina), illuminated from different directions. Notice how different the
aperture (opening) in the bottom section of the microfossil looks in both
images.

As may be expected, the large scope of computer vision allows a great
deal of overlap with image processing. For instance, texts of image-
processing [29] and texts on computer vision [33, 34] both deal with top-
ics such as edge detection, linear filters, and texture to name a few. But
apart from these areas of overlap, many computer vision techniques can of-
ten be thought of as attempting to solve an inverse projection of some sort;
given one or more images, they attempt to extract the underlying scene ge-
ometry, lighting, motion, or perhaps all three. For the most part, this is a
difficult and ill-conditioned task. As a result, much of computer vision is
composed of diverse techniques meant to solve problems with very specific
tasks and underlying assumptions related to calibration, surface geometry,
camera viewpoint, and camera and reflectance models [34].

2.1 The Role of Computer Vision

Although work in [24] demonstrated that effort can be significantly reduced
using a semi-automated clustering approach, classification accuracy was
still hampered by several limitations. Probably the most serious limita-
tion was that the work in [24] did not control for light direction with re-
spect to a specimen’s principal axis. As shown in Fig. 2.1, microfossils can
look significantly different depending on illumination direction. Fig. 2.2(a)
illustrates the effect that this variability across illumination directions has
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Figure 2.2: The effect of illumination direction on similarity scores (taken
from [24]). In (a), the average correlation scores are graphed between im-
ages of the samemicrofossil at different relative rotations with respect to the
light source. In (b), the correlations scores of pairs of different specimens
at the same absolute rotations are graphed. For both (a) and (b) the same
three specimens were used, each representing one of the foram genera of
Acarinina, Morozovella, and Subbotina. The graph in (b) demonstrates that
depending on the absolute illumination direction, clustering thresholds less
than 0.75 may group specimens from different genera together. However, as
(a) demonstrates, differences in relative illumination direction can produce
similarity scores much less than 0.75 between images of the same specimen.

on similarity scores. As the figure demonstrates, the correlation scores of
the same particle photographed with different illumination directions ex-
hibit extremely low values. But, scores of 0.75 or higher were needed for
accurate classification. Consequently, without controlling for illumination
there is no guarantee that particles of the same genus will be clustered to-
gether at that threshold. As a result, extending the system to control illu-
mination direction is a necessary improvement toward increasing classifi-
cation performance.

Should illumination direction be controlled, one could continue to use
single images, but ensure that all microfossils are photographed having the
same angle to the light source with respect to their principal axes. This
strategy promises to reduce intra-class variability, allowing the system to
cluster a greater number of specimens together. Yet, doing so requires fix-
ing the angle of illumination relative to each specimen’s principal axis to
an arbitrary value. However, as Fig. 2.2(b) demonstrates, correlation values
between images are strongly dependant on the absolute angle of illumina-
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tion. As a result, the choice of which illumination angle to fix will affect
classification performance.

These problems associated with calculating similarity can be avoided by
capturing more than one image of each specimen, with each image illumi-
nated from a different direction. Assuming the dataset consists of N images
per specimen, one could, for instance, calculate similarity between all N
possible illumination directions for each pair and choose the median score.
Thus, similarity is guaranteed to be calculated between images illuminated
with identical conditions, and there is no need to fix absolute illumination
direction to an arbitrary value.

While such a scheme addresses problems with calculating similarity, the
fact remains that experts are still unable to identify template specimens us-
ing image-based representations. In Sec. 1.4.2.2, this inability to identify
templates using image-based representations was denoted Error 3 and was
responsible for a large degree of performance limitations. While these is-
sues can be avoided by using particle-based template identification, such a
scheme is not nearly as practical as using digital representations. For one,
digital representations allow for fast and remote classifications. As well,
there are no equipment needs other than a computer. In addition, another
expert can easily identify the same digital representation without having
to physically inspect the same physical particle. Thus, there is no need to
retrieve physical particles from their repository. For these reasons, identi-
fying specimens using their digital representations is much more desirable
than using particle-based identification.

One problemwith image-based classification is that microfossils are dis-
tinguished by the peculiarities and characteristics of their 3D morphol-
ogy [35]. While an image may adequately represent one or more of these
features, it will not always be able to represent all of them at once. For
instance, the severity of the aperture at the bottom of the microfossil is
apparent in the image of Fig. 2.1(a), while hardly so in Fig. 2.1(b). How-
ever, the image in Fig. 2.1(b) succeeds at better depicting the division of
lobes on the right-hand side of the fossil compared to Fig. 2.1(a). These
inherent limitations in images call for an alternative direction on digital
representation—one moving away from image-based techniques.

The example in Fig. 2.1 illustrates that multiple images, each illumi-
nated by their own respective light direction, provides a better insight into
the actual 3D morphology of a microfossil than just using a single image.
Controlling for illumination direction is key to unlocking this informa-
tion. This insight motivates using a video-based representation for templates
rather than an image-based one. By providing a video of a single spec-
imen successively illuminated at different angles, experts would have an
increased ability to understand the underlying geometry of template fossils.
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This could alleviate the genus-level limitation currently holding back tem-
plate identification. As Sec. 3.1.3 will discuss, capturing video sequences
free of relative misalignments requires the application of computer vision
techniques.

While videos would certainly provide a richer template representation
than images, computer vision techniques can supply an evenmore powerful
option. Similar to what the human visual system unconsciously performs,
one promising avenue is to exploit the image variability across differing
light directions and extract a shape-based representation of the particle in
the form of a visual surface. Allowing experts to control viewing angle and
lighting conditions, 3D models would serve as excellent representations to
use for templates and could provide even greater benefits than their video-
based counterparts.

Representing another motivation for the incorporation of computer vi-
sion into the system, 3D models of microfossils are in of itself a useful
endeavour for micropalaeontologists. Detailed 3D models of macrofossils
of extinct species, such as mollusca [36] and crustaceans [37], have con-
tributed knowledge toward the prevailing understanding of these species.
In the context of microfossil study, 3D modelling would also have the po-
tential to improve current taxonomic understanding. However, the two
cited works employed micro-grinding, which is a destructive and time-
consuming process. An ideal modelling method would use computer-vision
techniques to develop sufficiently detailed models—the direction approach-
ed for this thesis.

Moving away from the previous work’s reliance on image-based repre-
sentations, video and shape-based representations of templates opens up
the possibility of a computer-aided classifier able to effectively reduce work
not only at the genus level, but potentially at the species level too. Con-
trolling illumination direction is key for both video-based and shape-based
representations.

2.2 Image Formation and Surface Reconstruction

The inherent limitations of images in their ability to represent 3D micro-
fossil morphology motivates work using shape-based digital representa-
tions. As mentioned, computer-vision techniques are often designed to
solve ill-posed and very specific problems. Fortunately, the particulars of
microfossil examination satisfy the conditions of a well understood and rel-
atively mature computer vision technique—visual-surface reconstruction
using photometric stereo.

In its simplest formulation, reconstructing a visual surface requires a
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sequence of images with known and controlled illumination all under the
same viewpoint. As a result, the only information produced is based on
what is visible from the viewing angle. For this reason, the extracted shape,
Z(x,y), is often described as 2.5D instead of 3D. The result can also be
treated as an image, where each pixel location has an associated depth
value. In this work, the extracted shape will often be called a depth map.

When viewing an object, the shading of a surface patch is related to its
orientation relative to the light source. Under certain assumptions includ-
ing Lambertian reflectance, orthographic cameras, a principal light source
at infinity, and no inter-reflections or shadows, this relationship is linear in
nature. Fortunately, microfossils possess surfaces with minimal specular-
ity and highlights, acting as good approximations to Lambertian surfaces.
Using these assumptions, the intensity of a noiseless image pixel at coordi-
nates x and y can be expressed in a simple form:

I(x,y) = �T · η(x,y), (2.1)

η(x,y) = ρ(x,y) ·n(x,y), (2.2)

where n(x,y) = (nx,ny,nz)T represents surface normals, ρ(x,y) is the surface
albedo, and � is the light direction expressed as a unit vector. Here, η(x,y)
represents the surface normals multiplied by the albedo, and will be re-
ferred to as weighted normals. Typically, coordinates are expressed using a
coordinate system based on the supporting surface of the object, with the
positive z axis pointing toward the camera. Unless the specification of a par-
ticular point is needed, for convenience the rest of this discussion will drop
the coordinate points in the notation. As well, without loss of generality, it
is assumed that images are of n × n dimensions.

Since surface normals are defined by the underlying object they de-
scribe, one can use the depth map itself as a generator responsible for image
formation. First, denote the gradients of the depth map or surface by the
following notation:

p =
∂Z
∂x

, q =
∂Z
∂y

. (2.3)

Denoted this way, the gradients share the following relationship with sur-
face normals [38]:

n =
1√

p2 + q2 + 1

⎛⎜⎜⎜⎜⎜⎜⎝
−p
−q
1

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.4)

From the above formulation, it is clear that the surface normals, like the
depth map and its two gradient scalar fields, p and q, are functions of x and
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y and not of z. This is a by-product of the 2.5D nature of depth maps and
the orthographic camera assumptions. As a result, for any constant c, Z and
Z + c will produce identical surface normals.

With surface normals formulated in this manner, the noiseless image
formation of (2.1) can be reexpressed as:

I = �T
ρ√

p2 + q2 + 1

⎛⎜⎜⎜⎜⎜⎜⎝
−p
−q
1

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.5)

Assuming one possesses a set of images, each under identical viewpoints
but differing light directions, one can combine (2.5) for every image into
a set of equations. Doing so constructs a nonlinear system of equations to
simultaneously solve for Z and ρ. However, in the discrete setting of im-
ages, incorporating partial derivative terms in the formulation requires the
use of finite differences. Consequently, Z values at specific locations cannot
be calculated in isolation of one another. As the size of the image dimen-
sions increase, the formulation also quickly balloons into a very large scale
problem, requiring the simultaneous solution of n2 parameters. Thus, solv-
ing for Z directly is a difficult nonlinear problem. For this reason, surface
reconstruction is often executed using an intermediate step.

Known as photometric stereo, this intermediate step computes the sur-
face normals and albedo of an object from a set of images. Originally de-
veloped by Woodham [39], photometric stereo requires three or more im-
ages of an object, given Lambertian reflectance assumptions, under iden-
tical viewpoints, but with a known varying principal light source. When
executed under these assumptions, the process of calculating normals has
not changed significantly since its formulation.

If a sequence of m ≥ 3 images of the same object, under identical view-
points, is taken with differing light sources, then each respective image for-
mation equation contributes to the following system of equations:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
I1
...
Im

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
�T1
...
�Tm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠η. (2.6)

When it is over-determined, i.e. m > 3, the least-squares solution to the
weighted-normal vector, η, is obtained. Estimated normal and albedo val-
ues, n and ρ, are computed from the weighted-normal estimate using (2.2).
Because all images are taken from the same viewpoint, surface patches di-
rectly correspond to pixel coordinates x and y. Apart from the linear na-
ture of the photometric stereo step, the appeal of executing this interme-
diate step lies in the fact that surface normal and albedo solutions can be
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computed separately for each pixel location. As a result, solving a large
nonlinear system is not necessary.

Although most of the assumptions for classic photometric stereo hold
for the purposes of microfossil identification, the assumption of no shadows
is a frequently violated condition. Shadows can typically be divided into
cast and attached shadows. A cast shadow occurs when certain geometries
of an object, such as a peak, block illumination from reaching other areas
of the object. On the other hand, an attached shadow occurs when a surface
normal faces away from the illumination direction. Mathematically, this
is expressed as �Tn < 0. The most intuitive way to handle shadows is to
incorporate a vector ω(x,y) = {ω1(x,y)...ωn(x,y)} into (2.6) such that:

ωk(x,y) =
{

0 if Ik(x,y) is shadowed
1 otherwise

. (2.7)

The system of equations to solve for the normal then becomes:
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
I1
...
Im

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ω1�

T
1

...
ωm�

T
m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠η. (2.8)

One simple method to determine values for the ω(x,y) vector is to exclude
pixels below a certain value or to compute a histogram of pixel values at
each pixel location and simply exclude those in the bottom percentage [40].
Unfortunately, choosing a pixel value threshold or percentage for exclusion
is entirely arbitrary. As well, the appropriateness of a choice will not be
valid across all images and noise conditions.

Ideally, methods to determine shadows should not rely on arbitrary pa-
rameter values. One suchmethod to determine attached shadows, not found
in the literature, uses a simple heuristic to determine light directions fac-
ing away from the surface normal. First, a normal estimate, n, is produced
using all available light directions. Using this estimate, cosines of the an-
gles between the normal and each light direction can be computed using
the dot product between them: Ln, where L = {�1...�m}T . Light directions
facing away from the normal estimate correspond to negative cosine values.
These light directions are then excluded. The shadowed photometric stereo
equation of (2.7) is then used to compute a new normal estimate. This pro-
cess is repeated until no light directions are deemed facing away from the
current normal estimate. In the context of this thesis, this method produces
better results than the simple threshold or histogrammethod, making it the
technique of choice.

Together, these albedo and surface normals are sufficient to describe the
object but do not provide a visual surface. To reconstruct a surface, one
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must first convert surface normals to surface gradients:
(
p
q

)
=

(
ηx/ηz
ηy/ηz

)
. (2.9)

While solving for surface normals is a linear problem, computing the gradi-
ents requires the nonlinear relationship in (2.9). Fortunately though, (2.9)
can be solved separately for each pixel location. Once a suitable estimate
of the p and q values at each pixel location is obtained, the two gradient
fields can be integrated to reconstruct the object’s depth map. Although
the integration involves simultaneously solving the depth map at all pixel
locations, the problem is now linear in nature.

Unlike Lambertian photometric stereo, visual-surface reconstruction re-
mains an open problem. In particular, state of the art methods struggle to
account for image noise when constructing depth maps. Addressing this
shortfall, this thesis develops a visual-surface estimation method robust to
image noise. Detailed in Chapter 5, this method employs concepts related
to maximum-likelihood estimation, which are discussed in the following
section.

2.3 Maximum Likelihood Estimation

The image formation equation of (2.1) does not include a noise model. Yet,
noise is an unavoidable aspect of images. In the context of visual-surface
construction, several authors have also recognized the importance of ad-
dressing noise [41–46]. As well, incorporating stochastic noise terms into
surface normal estimation provides key insight into the validity of the es-
timates, including modelling characteristics related to the uncertainty or
confidence of the normal estimate values. These are important in their own
right, but they also can, and arguably should, play a crucial role when es-
timating the 3D surface from the normals—something that has only been
touched upon in the literature. As noise is typically modelled as some ran-
dom process following a known distribution, estimating parameter values
in the presence of said noise is a task falling under the scope of maximum
likelihood (ML) estimation. As a result, ML estimation plays an important
role in this thesis, and it is worthwhile devoting space toward a summary
of its concepts and notation.

The topic of ML estimation comes into play when an estimate of one
or more parameters is desired given a set of observations and an underly-
ing relationship or model. This type of problem also falls under the scope
of regression analysis. Restricting the discussion to the univariate case, a
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relationship can be expressed formally as:

y ≈ f (x), (2.10)

where y is the observed or dependant variable, f is the underlying model,
often some sort of physical process, and x = (x1,x2, . . . ,xk)T is a k×1 vector of
independent variables (also sometimes called explanatory or regressor vari-
ables) whose values in combination with the model explain the behaviour
of y. As is often the case, observations are often susceptible to uncertainty
based on random errors. For this reason, the relationship in (2.10) is ex-
pressed as an approximation. Although not always the case, the uncertainty
can often be expressed as additive errors. The restriction to additive errors
or noise greatly simplifies estimation, and for the rest of this discussion
noise will assumed to be of that form.

When one or more parameters of the model is unknown, (2.10) is ex-
pressed as:

y = f (x,β) + ε, (2.11)

where β = (β1,β2, . . . ,βp)T is a p × 1 vector of unknown variables to be esti-
mated. Note that (2.11) is expressed using the additive error assumption;
thus, unlike (2.10), the relationship is no longer an approximation.

In the midst of the uncertainty provided by ε, parameter estimation can
be based on different criteria. For instance one may estimate parameters
to minimize a modelling metric like the sum of the squared errors, to re-
alize the minimum parameter variance, or to maximize the likelihood of
observations (ML estimation). As will be seen, under certain assumptions,
a parameter estimate satisfying one of these criterions will inherently sat-
isfy in some manner all three. Regardless of the estimation method, the
regression problem can be expressed as determining β̂, the best estimate of
β, which can usually only be done given more than one observation of the
type in (2.11). Mathematically, this can be written as:

y = f(β) + ε, (2.12)

where y = (y1,y2, . . . ,ym)T is a vector of m observations and ε is the set of
associated random errors. The f(β) notation represents the model output
based on the associated independent vector for each observation and a pa-
rameter estimate common to all observations. Formally, let fi(β) = f (xi ,β) be
the prediction based on the parameter vector β and one set of independent
variables. Then define f(β) as (f1(β), f2(β), . . . , fm(β))T .

Focusing on ML estimation, an estimate of this type maximizes the like-
lihood of the given observations, based on an assumption of the underlying
distribution of the error variables. If L denotes the likelihood operator,
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and the probability density function (PDF) of the errors is given as p(ε),
then an ML estimate of β is one that satisfies:

β̂ = argmax
β̃

L
{
y | β̃,p

(
y− f(β̃)

)}
, (2.13)

where β̃ can be any valid parameter estimate. Should the components of the
error vector be identically and independently distributed (IID), (2.13) can
be simplified with a product of m univariate PDFs, p(εi ):

β̂ = argmax
β̃

m∏
i=1

p(yi − fi(β̃)). (2.14)

The PDF of the errors greatly affects the manner in which the ML esti-
mate of β is calculated. The normal distribution is a useful and common as-
sumption [47], andwill be used throughout the rest of this discussion. Here,
a normal distribution with mean μ and an m ×m covariance matrix σ2Γ is
denoted as N (μ,σ2Γ). When the errors are all homogenously distributed
according to N (0,σ2I), ML estimation proves equivalent to minimizing the
sum-squared error [48]. If the sum-squared error (SSE) is expressed as:

SSE(β) = (y− f(β))T (y− f(β)), (2.15)

then the ML estimate of (2.14) is:

β̂ = argmin
β̃

SSE(β̃). (2.16)

Minimizing the expression in (2.16) is equivalent to an ordinary
least-squares (OLS) problem. However, often errors are heterogeneously
distributed according to some covariance matrix σ2Γ � σ2I, and the simpli-
fication of (2.14) no longer applies. Situations of this type are equivalent
to generalized least squares (GLS) problems. Usually though, the covari-
ance matrix can be decomposed, i.e. into σ2Γ = σ2BTB. It may be pos-
sible to determine B directly, or alternatively B can be calculated using
Cholesky factorization. Assuming that Γ is fully ranked, (2.12) can then
be pre-multiplied by B−T , transforming the GLS problem into an OLS for-
mulation [48]:

B−Ty = B−T f(β) +B−T ε, (2.17)

y′ = f′(β) + ε′, (2.18)

ε′ ∼N (0,σ2I). (2.19)

This is equivalent to minimizing the weighted sum-squared error:

SSE(β) = (y− f(β))TΓ−1(y− f(β)). (2.20)
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The method of determining the parameter estimate β̂, which minimizes
SSE(β), depends on whether the model function is linear with respect to the
parameters or not. A discussion of each case follows below.

2.3.1 The Nonlinear Case

In its most general form, ML estimation incorporates a nonlinear model
function, meaning that estimation requires the techniques of nonlinear re-
gression. Due to the inherent difficulties associated with nonlinear regres-
sion, many of the field’s methods and results are restricted to model for-
mulations involving IID and normally distributed errors whose means are
zero. As a result, texts on nonlinear regression either outright restrict their
attention to situations where errors are IID [47], or simply recommend to
transform all GLS problems to OLS ones whenever possible [48,49]. For this
reason, this discussion will also only focus on the IID errors case. For cases
where the model formulation consists of correlated and/or non-identical
error variances, the discussion will assume that a suitable form of B−T is
available, transforming the problem into an OLS one as expressed in (2.17).

Regardless of the form of the model function, when the errors follow the
above assumptions, the ML estimate of the parameters is the estimate min-
imizing the sum-squared error. Unfortunately, for finite sample sizes, it is
often difficult to accurately describe the estimate’s statistical behaviour [48].
However, under certain regularity conditions, the estimator, β̂, follows some
key properties as the sample size, m, increases to infinity. Known as asymp-
totic properties, one of the most important of these properties is consis-
tency, meaning that as the sample size increases, the estimated parameters
converge to the true parameters. In other words, the estimates are asymp-
totically unbiased. Having asymptotically unbiased estimates is a prereq-
uisite for having asymptotic normality, which is another very useful prop-
erty. In general, verifying consistency and asymptotic normality is a diffi-
cult problem. Most texts on nonlinear regression limit their focus to prob-
lem formulations where the estimators are assumed to be asymptotically
unbiased and normal [48–50]. This discussion will also assume asymptotic
unbiasedness and normality. For a good discussion of this topic, including
areas outside that of least-squares estimators please see [51].

Provided that consistency and asymptotic normality hold, the distribu-
tion of β̂ obeys certain properties, with a sufficiently large m. Notably, β̂
approaches a minimum possible variance [48]. Defining F.(β) as the Jaco-
bian matrix of the model function:

F.(β) =
∂f(β)

∂βT
, (2.21)
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where F.(β) is dependant on both the underlying model function and the
values of the parameters, then a minimum bound on the covariance of β̂
is expressed as σ2Γ, where Γ−1 = F.(β)TF.(β) [48]. The distribution of β̂ can
now be described as asymptotically belonging to N (β,σ2Γ). Since β is not
known, F.(β) must be approximated by F.(β̂), which produces an approxima-
tion of the asymptotic covariance, σ2Γ̂. How closely β̂ follows these asymp-
totic properties depends on whether m is sufficiently large. In addition,
the closer models are to linear models, the closer their associated parame-
ters behave according to the asymptotic limits [47]. While an appropriate
value of m cannot be analytically determined, the degree of nonlinearity of
a model can. Based on analysing curvature, these measures can be used to
predict the degree of deviation from the asymptotic limits [48]. Although
certain types of curvature are intrinsic to the model, other types can be mit-
igated through reparameterization [48].

With this in mind, in both of his books Ratkowsky espouses reparame-
terization of a model to a form that is as “close” to linear as possible [47,50].
For this reason, Ratkowsky differentiates between intrinsic models, and
model functions resulting from different parameterizations. If a model is
reparameterized into a “more” linear model using:

fr (g(β)) = f(β), (2.22)

y = fr(φ) + ε,φ = g(β), (2.23)

(2.24)

where the reparameterized vector φ is only dependant on values of β and
not on any elements of the intrinsic model, then the statistical properties of
φ will behave more closely to the asymptotic limits. This is particulary ad-
vantageous when the sample size is low. In addition, it will be easier to nu-
merically determine the ML estimate, φ̂, as the linear approximations typ-
ically used in iterative techniques will have less error [50]. As well, (2.22)
can be reversed to provide a parameterization producing β from φ:

β = h(φ), (2.25)

Unfortunately, there is no universal technique of determining optimal
reparameterizations. In certain situations, suitable reparameterizations to
pursue are obvious. For more difficult model functions, suitable parameter-
izations tends to involve case-by-case analyses by determining the nonlin-
ear contribution each parameter brings to the model function and also by
assessing the improvements, if any, of a candidate reparameterization [50].

Relationships also exist between covariances of two different parameter-
izations. Denoting σ2Γβ̂β̂ and σ2Γφ̂φ̂ as the covariances of the nonlinear and
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more linear parameterizations respectively, the relationship between them
evaluates as [50]:

σ2Γβ̂β̂ = σ2H.(φ)TΓφ̂φ̂H.(φ) , (2.26)

where H.(φ) is the Jacobian of h(φ) with respect to φ evaluated at φ̂. Rely-
ing on an accurate first-order Talyor series approximation, the equation in
(2.26) is also equivalent to the propagation of error equation [52].

Up to this point, the discussion has only centered on the properties of
β̂, and not on methods to determine the actual parameter estimates that
minimize SSE(β). Typically, current methods derive in some manner from
the Gauss-Newton method of computing least-squares estimates [48]. Re-
lying on a first-order Taylor series approximation to the model function,
the Gauss-Newton method essentially searches the solution space using a
succession of these first order approximations. However, convergence of
the Gauss-Newton method is often poor, and more effective methods im-
plement modifications to the base routine. Some of the most effective and
widely used algorithms are based on the Levenberg-Marquart scheme [48].
For a detailed discussion of the methodology behind typical least-squares
estimation schemes please see Chapter 14 of [48].

2.3.2 The Linear Case

When the model function f(β) is linear, (2.12) can be expressed as:

y = Xβ+ ε, (2.27)

where the model function is replaced by an m × p matrix, and β represents
the parameters to be estimated. The linear nature of the model function
allows a direct calculation of β̂, the parameter estimate minimizing SSE(β).
As before, ε is assumed to be distributed according toN (0,σ2Γ). Assuming
that both X and Γ are fully ranked, then the least-squares solution, and thus
the ML solution, of (2.27) is [53]:

β̂ = (XTΓ−1X)−1XTΓ−1y. (2.28)

The equations expressed in (2.28) are also known as the solution to the nor-
mal equations. In addition to being the ML estimate, β̂ is also an estimator
satisfying several other desirable properties. For one, it is an unbiased esti-
mator; moreover, it possesses the minimum variance out of all other unbi-
ased estimators of (2.27). Additionally, β̂ is normally distributed according
to [53]:

β ∼N (0,σ2(XTΓ−1X)−1). (2.29)
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If the covariance matrix of the noise is of the convenient form σ2I, then
the regression problem reduces to an OLS problem, which can be solved
using QR factorization [54]. Compared to the method of normal equations,
QR factorization reduces the potential for information loss and does not
worsen the conditioning of the system beyond its inherent characteristics.
The QR approach to the OLS problem also scales well to large and sparse
systems, as fast and efficient sparse OLS solvers have been developed (for
instance, when appropriate, the MATLAB operation x = A\b uses sparse
calculations based on [55]).

In general, the noise covariance is not in a diagonal and homogenous
form. One option, as shown in (2.17), is converting the GLS problem into
an OLS one. In cases where B is well-conditioned, or if B−T can be readily
calculated (for example if Γ is in block diagonal form), then conversion to
OLS may be a viable choice. In such situations, solving the problem using
the normal equations may also prove convenient.

However, whenB is ill-conditioned, an alternative formulation proposed
by Paige provides a better conditioned and more numerically stable solu-
tion [56]. Although Paige did not coin this term, this alternative method
is now referred to as generalized QR factorization (GQR). The method in-
volves a QR factorization followed by an RQ factorization, the details of
which are described from a programming perspective in [57]. When pre-
serving sparsity is not an issue, GQR is often the desirable choice over con-
version to OLS [54]. Unfortunately, in its typical formulation GQR requires
the storage and use of the orthogonal factor from the QR decomposition,
which in general is very dense. As a result, current GQR methods are not
usually appropriate for large and sparse systems.

Depending on the situation, the assumption of a fully ranked covariance
matrix may not hold. In these cases, a singular covariance matrix applies
certain implicit constraints on the system [53]. Magnus and Neudecker de-
velop a variety of algebraic solutions based on different assumptions re-
garding the range space of X and Γ [53]. However, like (2.28), these alge-
braic forms are not particularly practical. Fortunately, the GQR method
is general enough to accept rank deficient covariance matrices, provided
QR factorizations with pivoting are used [56]. Alternatively one can ex-
tract the implicit constraints, as described in [53], and use them as explicit
constraints. However, doing so requires solving an alternate linear system
related to the original system.

Apart from implicit constraints arising from a singular covariance ma-
trix, often the system under study also supplies a set of explicit constraints
of the form Rβ = b. If there are r constraints, then R is of dimension r × p.
Solving (2.27) is now a constrained problem. While algebraic formulations
of the constrained solution can be derived, as in [53], the GQR approach can
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easily be extended to this case by augmenting the system in (2.27) directly
with the linear constraints:(

y
b

)
=

(
X
R

)
β+

(
ε
0

)
, (2.30)

where the rows corresponding to the linear constraints are free of any stochas-
tic elements. Letting u = (εT ,0T )T , then the covariance matrix of u, denoted
as Λ is:

Λ =
(
σ2Γ 0
0 0

)
, (2.31)

which is a singular matrix. As a result, even if the original system possessed
a non-singular covariance matrix, augmenting the system using (2.30) will
always produce rank-deficient covariances. However, as discussed above,
ML estimates of systems with singular matrices can be determined using
GQR.

Up to now it has been assumed that X is fully ranked. Yet, in general this
will not always be the case. In these situations, an ML estimate of β is only
possible with the addition of explicit linear constraints as in (2.30) [53].
More specifically, an ML estimate requires that the rank of (XT ,RT )T is p.

For all of these cases the statistical properties of the parameter estimates,
such as covariance, can be computed. For an exhaustive review and theoret-
ical development of the algebraic solutions of linear regression, including
the statistical properties of the parameter estimates, the reader is encour-
aged to consult [53].

2.3.3 Weighted Normals

At this point, it is beneficial to revisit the weighted-normal estimation pro-
cedure of Sec. 2.2 as an ML problem. Focusing only on one pixel, under
the assumptions of photometric stereo, noisy image formation may be ex-
pressed as:

I = �T η + ε. (2.32)

Noise is assumed to be additive, which is a valid assumption as noise is typ-
ically uncorrelated with pixel intensity and location [29]. A good model of
image noise is a combination of additive zero-mean Gaussian noise coupled
with salt-and-pepper noise [29]. Salt-and-pepper noise can be effectively
removed using a median filter or one of its variants [29], leaving only the
Gaussian noise. As well, image noise is assumed to be linearly independent
with the noise terms in all other pixel locations and images. For the rest
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of this thesis, image noise will be represented by independent zero-mean
Gaussian-distributed stochastic terms. As well, since salt-and-pepper noise
was not a significant source of noise for the system setup used, median fil-
tering was not performed.

When three or more images are taken at the same viewpoint with dif-
fering principal light sources, then for each pixel (2.32) leads to a linear
system of equations:

i = Lη + ε, (2.33)

where i is a vector of all image pixels, L = (�1,�2, . . . ,�m)T acts as the regres-
sor matrix X of (2.27), and the weighted normals, η, acts as the parameter
vector β. Since image noise is assumed to be zero-mean IID Gaussian terms,
the least-squares solution to (2.32) used in photometric stereo is also an ML
estimate. This is a conclusion not always recognized in the literature. Ad-
ditionally, the estimates are unbiased and exhibit the minimum variance
of all possible unbiased estimators. Moreover, by using ML estimation on
weighted normals, one can use (2.29) to model the behaviour of the esti-
mates. In this case, the weighted-normal estimates, η̂, belong to the follow-
ing distribution: N (η,σ2(LTL)−1). Note that using the shadowed equation
of (2.8) affects the distribution, as appropriate rows of L must be omitted
from the covariance term.

Framing photometric stereo as anML estimate delivers key implications
regarding visual-surface construction. Most notably, by providing a model
of weighted normal stochastic behaviour, one can also determine an ML es-
timate of the object’s visual surface. However, unlike weighted-normal esti-
mation, the literature has yet to produce a practical ML estimation scheme
for visual surfaces. Addressing this topic, Chapter 5 develops techniques to
construct an ML estimate of visual surfaces.

2.4 Conclusion

By examining the limitations of the preliminary implementation of computer-
aided classification, this chapter uncovered the need to control for illumi-
nation. Apart from simply removing a confounding factor in the classi-
fier, controlling for illumination opens up the possibility to free computer-
aided identification from the inherent limitations of image-based template
representations. An implicit factor in the relationship between light di-
rection and pixel intensity, the underlying 3D shape and texture of an ob-
ject governs the image formation process. By presenting an expert with an
image sequence of a microfossil illuminated from successively varying di-
rections, video-based representations offer a powerful improvement over
image-based representations.
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In addition, this chapter motivated using shape-based representations
of microfossils. By controlling for illumination, the underlying shape gov-
erning the image formation process can be explicitly extracted using com-
puter vision techniques . Using Lambertian reflectance assumptions, the
photometric stereo method can extract estimates of the microfossil surface
normals and albedo. These parameter estimates can then be used to extract
a visual surface. However, unlike Lambertian photometric stereo, the visual
surface estimation is an ongoing focus of research. For instance, current vi-
sual surface estimation methods struggle under the presence of image noise.

Addressing image noise within the context of visual surface estimation
requires employing ML concepts and techniques. As a result, this chapter
introduced linear and nonlinear ML theory, both of which will prove crucial
in constructing ML estimates of visual surfaces. As asymptotic limits play
a key role nonlinear ML theory, they constitute an important part of this
chapter’s discussion on ML estimation. The chapter concluded by framing
photometric stereo in the context of ML estimation, presenting a model of
the behaviour of weighted-normal estimates.

Using video and shaped-based representations instead of images could
provide the key to improving classification performance beyond its current
restrictions. Incorporating computer vision techniques into the computer-
aided classification system brings a host of challenges, implications, and
also new exciting directions of inquiry. These issues constitute the focus
of this dissertation. Representing a crucial component of these challenges,
integrating video and shaped-based representations into computer-aided
identification requires key extensions to the existing system. Implement-
ing and investigating these new representations in the context of computer-
aided identification is the focus of the next chapter.
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Video and Shape-Based
Representations

As noted, previous work on computerized microfossil identification relies
on image-based representations to discriminate between specimen classes.
This characterization is equally true for the preliminary computer-aided
system described in [24] and summarized in Sec. 1.4. Sec. 2.1 argued that
freeing computer-aided classification from its current limitations requires
moving beyond image-based representations for template identification.
Controlling for illumination to construct video and shape-based represen-
tations offers a powerful alternative to images.

Since the preliminary system can only capture and handle images, sup-
porting video and shaped-based representations requires important exten-
sions to the system. Even so, the system developed for this thesis shares
much in common with the preliminary system. As shown in Fig. 3.1, the
system can be divided into four main modules.

The Video Capture Module, described in Sec. 3.1, is tasked with captur-
ing sequences of images of each specimen at appropriate illumination di-
rections. After collecting videos of each specimen, the system must clus-
ter them appropriately. The Clustering Module is responsible for clustering
sample sets of specimens and choosing an appropriate template for each
cluster. Sec. 3.2 outlines this module, which uses a novel method for image
alignment described in Chapter 4. The Shape Reconstruction Module com-
putes surface normals of the microfossils from the sequences of images and
extracts visual surfaces using a novel ML formulation. The surface estima-
tion method is explained in Chapter 5. Anaglyph video sequences are used
to disseminate the shape-based representations online. The final stage of
the system, the Expert Input Module, requires an expert to identify the tem-
plates of each cluster either by physical inspection or, preferably, through
the specimen’s digital representation. This module is explained in Sec. 3.4.

With the system extensions in place, an analysis of the efficacy of video
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Figure 3.1: System outline of video and shape-based computer-aided iden-
tification of microfossils. The system shares much in common with the one
outlined in Fig. 1.3; however, in this case it has been reorganized into four
main modules. As well, because the system captures image sequences in-
stead of just single images, the two set-ups differ in key areas. Also note
that, although not shown in the figure, the clustering step requires a simi-
larity threshold.

and shape-based representations can be made even without expert classifi-
cations. This leads to a set of three tasks:

• Collect a sufficiently large dataset of particles and their associated
video sequences;

• Apply computer vision techniques to properly extract shape-based
representations of microfossils;

• Compare the capabilities of video and shape-based representations
of templates.

Sec. 3.5 concludes the chapter with such an analysis, and introduces a dig-
ital representation combining the relative strengths of video and shape-
based representations.
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3.1 Video Capture Module

Developing a computer-aided microfossil identification system using video
and shape-based representations requires extensive datasets consisting of
image sequences of each individual specimen. This necessitates a system
able to automatically localize and capture large batches of specimens. Im-
plementing such a scheme involves several key steps and pieces of equip-
ment.

3.1.1 Equipment

Table 3.1 lists the equipment used for capturing video sequences of mi-
crofossil specimens. A picture of the setup is depicted in Fig. 3.2. The
following is a description of the criteria used in selecting the equipment.

The linchpin of the system is a suitable microscope with a digital camera
attachment. Due to its simplicity and inexpensiveness, optical microscopy
is the modality used for this thesis; however, other groups have published
results based on SEM [13, 14, 18]. An optical microscope also requires an
accompanying light source. Preferable light source features include mini-
mal production of heat (such as the fibre-optic source used in this system)
and aperture and colour temperature control. Many optical microscopes
can be purchased with an optional digital camera mount. Selection of an
appropriate digital camera should at the very least be based on its pixel res-
olution, data transfer rate, and availability of an application programming
interface (API).

Since the light source remains static with respect to the microscope, cap-
turing the specimen under different illumination directions requires actu-
ally rotating the particle. Accomplishing this in an automated fashion re-
quires a motorized x-y-phi stage. Appropriate stage dimensions depend on
the specific microscope base and stand setup used in the system. The mo-
torized stage must possess enough accuracy and repeatability for specimens
on the order of 100μm. Like the camera, the stage controller should pro-
vide an external API. Another important decision to make is whether to use
a stepper or servo motor to drive the stage. A stepper motor was chosen
as they and their controllers are typically less expensive than their servo
counterparts. As well, high quality stepper motors can provide very good
precision without requiring feedback, although occasional calibrations are
still required. An aluminum base was designed to securely mount the stage
onto the microscope stand. This was manufactured in the UA Electrical and
Computer Engineering Machine Shop.

A custom multi-threaded and user-friendly software program designed
using C++ in the Visual Studio .NET environment controls the image cap-
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Microscope

Model Zeiss Stemi 2000-C
Zoom max ×5
Cost $5,704

Camera

Model PixelLink PL-A774 CMOS
Resolution 1600× 1200
Frame Rate (fps) 20
Cost $2,985

Lighting

Equipment Schott KL 1500 LCD
Colour Temperature (K) 3000
Wattage (W) 150
Cost $1,995

Motorized Stage

Company Micos USA
Configuration x-y-phi
Horizontal Range (mm) 150
Vertical Range (mm) 150
Linear Bi-directional Repeatability (um) ±15
Linear Resolution (um) 0.1
Rotational Repeatability (◦) ±0.008
Controller Internal PCI Card with Motor Drivers
Cost $6,855

Table 3.1: Specifications of the equipment used in the video capture mod-
ule. The total cost of the equipment was $17,539.

ture system. Much of the required image processing was implemented
through the use of the OpenCV software library1. The software system
also handles uploading the particle images and accompanying information
to an online wiki and database.

3.1.2 Batch Processing

As microfossils typically fall within a certain size range, specimens are first
sieved to weed out broken or fused particles prior to being photographed.
The remaining specimen particles are then sprinkled onto a slide. To ease

1http://opencv.willowgarage.com/wiki/Welcome
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Figure 3.2: Computer-aided identification system setup. This picture illus-
trates the setup used in the computer-aided classification system of this the-
sis. Included in this setup is a microscope, motorized stage, custom stand,
light source, digital camera, and sieving tools.

the later image segmentation steps, an opaque glass slide was used. After
being sprinkled on the slide, the specimens are localized by scanning the
entire area of the slide using the motorized stage. To accomplish this, the
stage is translated in increments of half the current field of view, ensur-
ing that specimens are not missed while also minimizing overlap. At each
scanning increment, an image is captured (without gamma correction) and
constrained to have pixel values between 0 and 1. As the system has no a
priori knowledge of the numbers of specimens on the slide, it must deter-
mine on its own whether it has found a specimen or not. But, since particles
are sieved beforehand, the particle size range is known. Thus, the presence
of a particle can be determined by first segmenting the current field of view,
using simple thresholding, and filtering out any objects falling outside the
allowed range. If an object in the field of view is found, the location of the
particle is calculated and recorded using the current position of the stage
combined with the distance of the object’s centroid to the center of the im-
age.
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(a) (b)

Figure 3.3: Coordinate system used for microfossil capture. The graph in
(a) illustrates the coordinate system and the azimuth angle (ϕ) as seen from
the camera’s viewpoint, while (b) demonstrates the orientation of the z axis
along with the elevation angle (θ).

3.1.3 Video Capture

Recall that the capture of image sequences serves two purposes. The first
purpose is to provide video-based representations of microfossils. The sec-
ond is to provide an image sequence appropriate for application of pho-
tometric stereo normal estimation and visual-surface reconstruction tech-
niques. Photometric stereo requires images of an object at identical view-
points but illuminated at differing and known light directions.

Fig. 3.3 demonstrates the coordinate system used for microfossil cap-
ture. Parallel to the image plane, the coordinate system’s x and y axes rest
on the supporting surface of the object being viewed. The z axis is aligned
with the optical axis, but points towards the camera. The figure also illus-
trates how the elevation and azimuth angles are defined, θ and ϕ respec-
tively, which are both two crucial angles in the system.

To obtain sequences of images, once all specimens have been localized,
the system captures images of each particle at illuminated from different di-
rections with respect to its principal axis. The principal axis is determined
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using the same method as the invariant transform (please see Sec. 1.4.1.3
and [24] for further details). As the illumination direction is fixed with
respect to the microscope, illumination direction is manipulated by physi-
cally rotating the particles using the motorized stage. Performed this way,
only the azimuth angle of illumination changes, while the elevation angle
remains fixed. Increments of 20◦ are used, producing 18 images per mi-
crofossil. Light direction is easily calculated, as the elevation of the current
setup is fixed to an angle of 30◦, and the azimuth angle of illumination
is known through the calculation of the principal axis orientation, the fixed
20◦ increments, and the system’s reference azimuthal angle of 90◦. Lighting
configurations that incorporate equally spaced azimuth angles and a con-
stant angle of elevation are optimal configurations in reducing the effect of
noise for photometric stereo [58].

As is typical with motorized x-y-phi stages, the rotational element of the
stage is mounted on top of the translation elements. Consequently, when
rotating a particle, its real-world (x,y) location will also change. As a re-
sult, keeping an object within the center of the field of view requires both
rotating the slide by the desired amount and also translating the stage to
take into account the object’s new real-world (x,y) coordinates. Ideally, the
object’s expected new (x,y) coordinates match-up with its actual ones, al-
lowing the object to always remain in the middle of the field of view. How-
ever, unavoidable inaccuracies in the motorized stage and calibration of the
system cause discrepancies between a particle’s actual and expected coordi-
nates. Fig. 3.4 demonstrates an example of this.

Analogous to travelling around the arc of a circle, the degree of change
in (x,y) coordinates is proportional to the Euclidean distance of the object
from the axis of rotation. Thus, particles located at greater radial distances
from the axis of rotation will be more prone to the localization errors illus-
trated in Fig. 3.4.

To gain a perspective on the degree of localization error the system ex-
periences, 32 microfossils, specifically forams, were localized on the slide.
Images of each microfossil were captured after rotating the particles by in-
crements of 20◦. For each image, the distance from the particle’s centroid
to the center of the field of view was calculated. In addition, the radial
distance of the particle to the axis of rotation of the stage was recorded.
Thus, each foram has 18 different localization errors, one for each rotation
in the sequence. Fig. 3.5 graphs the median localization error of each foram
versus its radial distance from the stage’s axis of rotation. As the figure
demonstrates, particles further away from the origin of the stage’s coor-
dinate system are more susceptible to localization errors. Considering that
images are 640×640 pixels, the scale of the localization errors demonstrated
by Fig. 3.5 are quite significant.
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(a) (b)

Figure 3.4: Stage localization errors. Errors in particle localization using
the motorized stage arise due to inaccuracies in pixel-dimension approxi-
mations, stage calibration, and the electro-mechanical system of the appa-
ratus. For instance, in (a) a particle has been localized and centered. In (b)
the same particle has been rotated 60◦, and while the object has also been
translated to its expected (x,y) coordinates, it is no longer centered.

Without these localization errors, each image of the specimen after ro-
tation could have been captured by simply extracting the same region of
interest from the middle of the field of view. However, these localization
errors displace the specimen from the middle of the image after each rota-
tion. Since the amount of localization error is impossible to predict, image
alignment requires determining the center of the object in some manner. As
in the localization step, the center of a specimen is treated as the centroid of
its silhouette. Thus, after each rotation, an image is captured by extracting
a region centered at the specimen’s centroid.

Unfortunately, using the specimen’s centroid to align images is not with-
out its shortfalls. While the specimen’s silhouette is fairly robust against
illumination changes, differing relative light directions at each rotation un-
avoidably cause enough differences in the silhouettes from one image to
another to affect centroid position. Thus, each image in the sequence will
be centered somewhat differently, resulting in alignment errors. Although
smaller than localization errors, they are nonetheless significant. More de-
tails on the scale of this problem, and a technique to address it are explored
in Chapter 4. However, the rest of the discussion will assume images have
been aligned properly.

As it is the speciments that are actually rotated rather than the light
source, the principal axes of captured images are at successively increas-
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Figure 3.5: Plot of localization error vs. distance of particle to the origin.
The median localization errors of 32 forams were computed. Each pixel is
roughly equivalent to one μm (pixel size was 1.066μm). The general trend
of increasing localization error with increasing distance to the origin can be
seen in the plot.

ing angles with respect to the horizontal. As a result, each image must
be rotated back, as in Fig. 3.6, so that each axis is at an angle of 0◦. In
addition, images are padded so that they are all 640 × 640 pixels. These
images are then composed into a video-based representation. Viewing a
video gives the impression that the light source is rotating around the spec-
imen. Once every image is captured, the videos are uploaded to the online
wiki (Sec. 3.4.1), and the actual particles are archived onto indexed slides.
The image sequences are also provided as input to the clustering and shape
extraction modules.

3.1.4 Dataset Collection

Using the video-capture module extension to the system, 500 videos of
foram specimens were captured. Their associated physical particles were
archived as well. As motivated in Sec. 1.4.1.1, forams play a crucial role
in academic research and industrial applications, serving as excellent mi-
crofossils to study. All specimens were collected from the B-core of the
ODP Pacific site 865 at depths ranging from approximately 100m to 140m.
The ODP Pacific site 865 is a location consisting of species important to
paleoclimatological research [25]. The sieving stage prior to video capture
constrained specimens to only those with diameters between 250μm and
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Figure 3.6: Creating a video-based representation. In the first row are im-
ages of the same foram rotated so that its principal axis is at angles of 0◦,
80◦, 180◦, and 260◦, respectively, from the horizontal. In the second row are
the same images, except they have been rotated so that the principal axis is
always at an angle of 0◦, giving the impression that the foram is station-
ary while the light source revolves to azimuth angles of 90◦, 10◦, −90◦, and
−170◦ respectively. These frames are combined together to create a video.

300μm. As mentioned above, videos consist of 18 images illuminated from
a constant elevation angle of 30◦ and from azimuth angles at 20◦ incre-
ments.

3.2 Clustering Module

Once image sequences of each specimen have been captured, the system is
ready to automatically cluster the specimens and choose a template for each
cluster. Generally speaking, for each microfossil, the clustering module ac-
cepts image sequences at a fixed viewpoint and varying light directions as
input. The module outputs a set of clusters, each possessing a correspond-
ing template specimen.

Dealing solely with the analysis of data, the clustering module has no
equipment requirements other than using appropriate computational soft-
ware. Ultimately, to progress the system beyond the prototype stage, the
module should be implemented using a fast software package, such as C++,
that supports a graphical user interface. However, in the clustering mod-
ule’s current prototypical stage, MATLAB, with occasional use ofMEX scripts,
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acts as the computational environment.
The clustering module is comprised of five steps:

1. Align image sequences. Correcting for misalignment required the
development of a novel alignment technique explained in Chap-
ter 4;

2. Calculate a similarity matrix between all pairs of specimens. Sim-
ilarity is discussed in Sec. 3.2.1;

3. Cluster specimens together based on visual similarity. A descrip-
tion of the algorithm used and a reasoning behind the decision is
explained in Sec. 3.2.2;

4. Select an appropriate and representative template for each cluster.
This step is dealt with in Sec. 3.2.3.

3.2.1 Similarity Measure

As explained in Sec. 2.1, the preliminary system’s failure to control for rel-
ative differences in illumination direction with respect to the principal axis
introduced intra-genus variability. In addition, as shown in Fig. 2.2(b), ab-
solute azimuth angles of illumination affect similarity scores between spec-
imens of different genera. However, the provision of video-based repre-
sentations consisting of images under 18 different lighting conditions can
mitigate these confounding illumination effects.

First, since lighting direction is controlled, similarity may be computed
between image pairs with identical illumination conditions. Secondly, each
pair of specimens possesses 18 similarity scores—one for every possible ab-
solute azimuthal angle. As a result, choosing the median score of the 18
possibilities essentially avoids any confounding effects caused by absolute
angles of illumination. This is the approach taken for this dissertation.

Yet, the utility of such a scheme still depends largely on the strength
of the similarity measure used between images. As argued in Sec. 1.4.1.4
and [24], the correlation measure is a powerful and well-understood metric
particularly appropriate for prototypical implementations of classification
schemes. As a result, for two specimens, a and b, their similarity at az-
imuthal angle ϕ can be written as:

sim(a,b,ϕ) = r(Aϕ,Bϕ), (3.1)

where Aϕ and Bϕ are the images at the azimuth angle ϕ of a and b, respec-
tively, and r is calculated using the correlation score of (1.1).

However, this similarity scheme suffers from a key problem related to
the normalization process of Sec. 1.4.1.3. As mentioned, simply aligning
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the principal component of an object’s silhouette with the horizontal axis
leaves a 180◦ ambiguity. Using the invariant transform developed in [24],
which is described in Sec. 1.4.1.3, the video capture module resolves this
180◦ ambiguity using third-central moments. While themethod introduced
in [24] was more stable than related methods in the literature, analysis of
its performance using the 500 specimens of the foram dataset indicates that
it was still susceptible to instability, especially for objects with elliptical
shapes. As a result, the invariant transform cannot always be relied upon
to resolve the ambiguity in a consistent manner. Rather than attempt to
resolve this ambiguity, a better approach is to consider both options of the
180◦ ambiguity and choose the maximum score of the two. However, as will
be shown, this can only be accomplished using images from more than one
illumination direction—data available with the extended system.

Using this scheme, similarity between specimen images is formally ex-
pressed as:

sim(a,b,ϕ) = max(r(Aϕ,Bϕ), r(Aϕ,B
′
ϕ)), (3.2)

where B′ϕ represents the image obtained should the 180◦ ambiguity have
been resolved in the opposite manner. Since pixel values of images are de-
pendant on illumination direction, one cannot simply rotate Bϕ by 180◦ to
produce B′ϕ as the illumination direction will also rotate by 180◦. Fig. 3.7(b)
depicts this problem visually. Fortunately, as part of the video capture pro-
cess, the system captures a sequence of images for multiple illumination
directions at 20◦ increments. Thus, if attempting to compute similarity by
using image Bϕ , the system also has access to Bϕ+180◦. As Fig. 3.7(c) and (d)
demonstrate, rotating Bϕ+180◦ by 180◦ will produce the appropriate repre-
sentation of B′ϕ .

With the ambiguity resolved, the median score over all 18 possibilities
forms the core calculation in constructing a similarity matrix between all
pairs of specimens. It can be written formally as:

sim(a,b) = med
ϕ
{sim(a,b,ϕ)}, (3.3)

where med denotes the median operator.

3.2.2 Clustering Algorithm

Clustering is a very heavily researched area of study that includes a huge
variety of different techniques and approaches. This section uses the termi-
nology and clustering method taxonomy described in [30]. For a very good
review of clustering the reader is encouraged to consult that manuscript.
Many clustering techniques require the computation of a similarity matrix
between all patterns [30], and this work is no exception.
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(a) (b)

(c) (d)

Figure 3.7: Obtaining the image corresponding to the alternate resolution
of the 180◦ ambiguity. For a particular specimen b, it is desirable to obtain
two images B and B′ which represent the two possible resolutions of the
180◦ ambiguity. Representing B, the image of a foram specimen in (a) is
illuminated from an azimuth angle of 90◦. The image in (b) is the same
as in (a) but rotated is by 180◦. As the image in (b) is illuminated from
an azimuth angle of 270◦, it is an incorrect representation of B′. On the
other hand, (c) is an image of the same specimen in (a), but is illuminated
from the opposite direction. Rotating (c) by 180◦ produces the image in (d),
which is the correct image to use for B′ because it is illuminated from an
azimuth angle of 90◦.

The previous implementation of computer-aided classification used a
clustering algorithm based onmaximal cliques of a non-weighted graph [24].
Vertices represented individual patterns, and edges only connected two pat-
terns if their similarity score was above a certain threshold. While the
method is valid, the magnitude of similarity between two specimens is not
taken into account when computing themaximal cliques. For instance, con-
sider a simple example with only three specimens a, b, and c. Assume a and
b possess a similarity score very close to 1. On the other hand, assume a
and c have a similarity score only slightly above the chosen threshold value.
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With all else being equal, the maximal-clique finding algorithm will group
a and c together with equal likelihood as it would a and b, when in fact the
clustering algorithm should favour the latter.

Agglomerative hierarchical clustering (AgH) is a simple but effective al-
ternative to the maximal clique algorithm that directly incorporates simi-
larity scores. In addition, since it does not require an approximate solution
to an NP hard problem (unlike maximal-clique finding), its computation is
significantly faster. By using the threshold parameter as the stopping crite-
ria, this work uses a slightly modified version of AgH than the one outlined
in [30]. The steps are as follows:

1. Compute a similarity matrix between all pairs of specimens. Set
all specimens to be singleton clusters.

2. Find the most similar pair of clusters and merge them into one
single cluster. Update the similarity matrix to reflect this merger.

3. If there are no similarity scores greater than the threshold param-
eter or if all specimens are in one cluster, stop. Otherwise, go to
step 2.

The algorithm is hierarchial as for each threshold parameter there exists
a corresponding grouping of specimens. The agglomerative characteriza-
tion describes the grouping progression, which starts from a set of singleton
clusters and through mergers constructs larger clusters. The hierarchical
nature of the algorithm means that groupings based on a lower threshold
directly follow from the higher threshold groupings. As a result, one can
obtain a collection of groupings by performing the above steps using the
lowest desired threshold as the stopping criterion. If mergers are recorded
properly, groupings based on the higher thresholds can be easily retrieved.
This feature of AgH offers a distinct advantage over maximal-clique cluster-
ing, as the latter requires the use of a computationally expensive maximal-
clique finding algorithm at each threshold.

For the updating portion of Step 2, either single-link or complete-link
options are typically used [30]. For either case, when two clusters merge
the parent cluster inherits the similarity scores obtained from the two child
clusters in some manner. In single-link algorithms, for each pair of simi-
larity scores, the parent cluster chooses the maximum score from the two
children. In contrast, complete-link clusters opt for theminimum similarity
scores. Complete-link clustering tends to produce more compact clusters.
Since homogeneity of clusters is extraordinarily important for microfossil
grouping, this factor favours complete-link over single-link. As well, the
literature indicates that complete-link clustering produces better results for
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Figure 3.8: Comparison of performance of maximal-clique clustering vs.
agglomerative hierarchical clustering. Correct and incorrect genus rates of
the particle-based ITC are shown using the dataset from [24]. With regards
to performance, agglomerative hierarchical clustering edges out maximal-
clique clustering, especially at lower relative efforts.

many practical applications [30] and this is also supported by experiences
in the context of this dissertation.

In the context of microfossil identification, the performance of a cluster-
ing algorithm must be judged without other sources of error confounding
results. As explained in Sec. 2.1, clustering performance can be judged
on its own by examining the CGR and IGR of the particle-based ITC. As
a result, to perform a comparison between the previous and new cluster-
ing algorithms, the classification rates of the particle-based ITC based on
AgH clustering were computed using the same dataset and methodology
of [24]. These classification rates were then compared with the rates of the
particle-based ITC using maximal-clique clustering. Fig. 3.8 graphs the re-
sults. As can be seen, AgH clustering performs better than maximal-clique
clustering at all relative efforts. However, at no point is the difference in
performance significant. However, even if performance between the two
algorithms are equivalent, the significantly faster speed of AgH computa-
tion over maximal-clique clustering is reason enough to opt for the former
algorithm over the latter.

3.2.3 Template Selection

As Sec. 1.4.2.2 demonstrated, template selection was not a major source of
error in the previous version of computer-aided classification. For this rea-
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son, this system selects templates in the samemanner as what was described
in Sec. 1.4.1.6 and [24].

3.3 Shape Extraction Module

With templates chosen for each cluster, the system is ready to extract tem-
plate shapes. First, using the photometric stereo method explained in
Sec. 2.2, surface normal and albedo values are estimated for each template.
Afterwards, using the ML surface estimation method of Chapter 5, the sys-
tem extracts shape-based representations from the normals.

3.4 Expert Input Module

Once the sample set is clustered, the system requires human input to iden-
tify each cluster template. The most convenient manner to present digital
representations are through online tools. In a previous study [31], an on-
line wiki was developed to enable an expert to identify microfossils through
their image-based representations. Yet, while shape-based representations
are the digital representation of choice, the capabilities of the current wiki
do not support depicting 3D models. As a result, at this point identification
is performed by either viewing each template’s video-based representation,
or by actually inspecting each template particle under a microscope. Future
work will enhance the capacity of the online wiki to display shape-based
representations.

3.4.1 Video-Based Identification

Providing a natural language interface for the user, the wiki allows ex-
perts to perform classifications remotely. As of now, forams are the only
type of microfossils available in the wiki; however, in principle the wiki
can support any type of microfossil. For batches of samples open to the
public, any interested person is able to view video-based representations of
forams, their video, and particle-based classifications, and even make clas-
sifications of their own (provided they have registered). This wiki was also
a crucial component of the preliminary computer-aided classifier outlined
in Sec. 1.4 [24].

Programmed in PHP, the wiki uses aMySQL back-end to store data and
control access. For the purposes of this thesis, the capabilities of the wiki
were extended to allow it also to display videos of microfossils. Users can
play, stop, and watch videos frame-by-frame. In addition, any data used for
the wiki is freely available for download in convenient formats such as .csv
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Figure 3.9: Archived physical specimens. Physical particles are glued onto
sample slides. Slides are indexed and archived for later use.

or .mat files. In the case of the latter format, a PHP library to create .mat
files was developed during the course of this thesis.

3.4.2 Particle-Based Identification

While video-based identification of templates is the more desirable option,
accuracy is best when experts identify template specimens through physical
examination under a microscope. To enable particle-based identification,
each specimen was indexed and archived onto slides after image capture
so that a cross-reference exists between the templates chosen by the clus-
tering module and their corresponding physical particles. A typical slide is
depicted in Fig. 3.9.

3.5 Analysis of Representations

Arguments in Chapter 2 supporting the use of computer vision relied in a
large part on the line of reasoning that shape-based representations can suc-
cessfully incorporate the rich collection of information encapsulated and
revealed by sets of images under varying illumination directions. In addi-
tion, by providing experts with the option to examine the object at view-
points other than straight above, shape-based representations can present
information not available with simple videos.

To test the ability of shape-based representations to capture image in-
formation, it is instructive to test whether visual surfaces can accurately
reconstruct images. Using the photometric stereo procedure explained in
Sec. 2.2 and the ML surface estimation method in Chapter 5, experiments
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Figure 3.10: Comparison of video and shape-based representations. In the
first row are frames taken from the video-based representation. The sec-
ond row consists of frames reconstructed using the visual surface and the
Lambertian albedo.

estimated surfaces using the 18 images of each of the 500 specimens in
the foram dataset. Weighted normals and albedo were also calculated as
part of this process. Using the image formation equation of (2.5), each of
the 18 × 500 images were reconstructed from the visual surface. As part
of this process, surface gradients were approximated using centered finite-
differencing.

Unfortunately, as Fig. 3.10 illustrates, reconstructed images suffer from
significant detail loss compared to their video-based counterparts. In addi-
tion, the reconstructions lack cast shadows. However, cast shadows are im-
portant, as they emphasize strong features. By depicting both cast shadows
and fine detail and texture, the video-based frames in Fig. 3.10 are much
better at emphasizing key geometrical features, such as the spire-like struc-
tures rising out of the microfossil. As well, texture loss alone would impact
classification accuracy, as in many cases microfossils are distinguished by
observing fine details such as texture [35]

This detail loss can be quantified by measuring reconstruction errors
of the 500 visual surfaces. However, with regards to the ability of shape-
based representations to encapsulate information across all available light-
ing directions, it is instructive to also measure reconstruction errors of the
weighted normals. Visual surfaces combined with albedo can be thought of
as a way to reduce the dimensionality of the data from 18 images to 2 ba-
sis images. However, weighted normals calculated as an intermediate step
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also provide a basis—in this case 3 basis images, one for each component of
the weighted normals. In fact, assuming that all photometric assumptions
hold, weighted normals are a perfect basis for all possible lighting config-
urations [40, 59]. However, the photometric assumptions can never be sat-
isfied in full, particularly with regards to attached and cast shadows [60].
As a result, in actuality more than 3 basis images are needed to fully ac-
count for image variability due to illumination. Nonetheless, empirical and
theoretical research has demonstrated that 3 basis images can account for
more than 90% of image variability [60]. These results though, are based
on eigenvector analysis of a set of images, and do not necessarily apply to
weighted-normal basis images.

Taking these considerations into account, experiments should calculate
reconstruction errors for both visual surfaces and weighted normals. Test-
ing the reconstruction error of weighted normals serves to measure how
well the Lambertian assumptions hold in the context of foram specimens.
Doing so requires reconstructing images using the original image formation
equation of (2.1) rather than (2.5). On the other hand, differences between
reconstruction errors of the visual surfaces and the weighted normals sheds
light on how much information is lost when estimating surfaces from nor-
mals and albedo. These are both important metrics to consider.

The coefficient of determination or R2 value provides a measure of the
improvement of one hypothesis over another, and can be expressed as:

R2 =
SSE(H0)− SSE(H1)

SSE(H0)
, (3.4)

where H0 andH1 represent the null and test hypotheses respectively. In the
context of quantifying explained image variability, the mean image across
all 18 images serves as H0, while images generated from the visual surface
or weighted-normal estimates correspond to the test hypothesis. R2 per-
formed this way provides a value for explained variance [61]. The weighted-
normal R2 value for a single image sequence is expressed formally as:

R2 =
SSE(Ī )− SSE(η̂)

SSE(Ī )
, (3.5)

where Ī denotes the mean image across the entire sequence and the sum-
squared error incorporates every pixel in every image. Similarly, the R2

values for a visual surface is calculated using:

R2 =
SSE(Ī )− SSE(Ẑ)

SSE(Ī )
. (3.6)

Fig. 3.11 provides a histogram of the 500 R2 values for both visual-
surface and weighted-normal representations, while Table 4.1 summarizes
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Figure 3.11: Histogram of R2 values for visual surfaces and weighted nor-
mals. As this graph demonstrates, most of the weighted-normal estimates
account for close to 90% of image variability. Additionally, most weighted-
normal R2 values are clustered together. On the other hand, visual-surface
R2 values are spread more uniformly between 60% and 90%, meaning they
are not as reliable in accounting for image variability.

the values for the 500 foram dataset. The minimum R2 values depicted
by Table 4.1 for the weighted normals and visual surfaces are worrisome;
however, it should be noted that outlying cases of poor explained variance
corresponded to the presence of confounding factors. These include dust,
other secondary small objects in a subset of the images, or microfossils that
are lying on an unstable side, which often creates an overhang. In the latter
case, using the motorized stage to shake the slide prior to image capture
should minimize the occurrence of such situations.

As is evident, weighted normals successfully accounted on median for
roughly 94% of image variability. As well, the proximity of the first and
third quartile values to themedian, and the limited R2 variability in Fig. 3.11,
indicate that 94% is a representative value.

Note that, because a constant angle of elevation is used across the im-
age sequence, it must be stressed that these R2 values give no indication
whether the computed weighted normals serve as a good basis for all ele-
vation angles of illumination. Even so, the weighted normals serve as an
effective basis for the 18 images captured for each specimen in the foram
dataset.

Nonetheless, when reconstructing images using weighted normals, on
median 6% of image variability is lost. Responsibility for this shortfall
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Weighted Normals Visual Surface
Maximum 97.05% 96.32%

Third Quartile 94.74% 83.62%
Median 93.79% 74.44%

First Quartile 92.50% 61.99%
Minimum 57.91% 0.029%

Table 3.2: Specimen image variability accounted for by the weighted nor-
mals and visual surface. This table presents statistics describing the per-
centage of image variability explained by the weighted-normal basis and
the visual surface basis using shape extracted from the foram video dataset.

lies in non-Lambertian aspects of microfossil surfaces. These results in-
dicate that to better encapsulate information across all lighting directions,
weighted-normal estimation may need to incorporate more sophisticated
reflectance models.

On the other hand, visual surfaces were less able to account for image
variability than weighted normals. With a median R2 value of 74% and a
comparatively high degree of variability in its histogram plot, the results
demonstrate that visual surface representations lack a significant degree of
information compared to weighted normals. The reduction from 94% to
74% of explained image variability and the increase in the spread of R2 val-
ues from weighted normals to visual surfaces indicate that the estimation
process used to create visual surfaces is a significant source of information
loss. As a result, further surface refinement is needed to better capture mi-
crofossil shapes. This refinement, coupled with non-Lambertian reflectance
models, would serve to construct more accurate visual surfaces. Thus, using
Lambertian reflectance assumptions to estimate visual shapes falls short as
an effective template representation. This motivates further work on micro-
fossil shape extraction, one incorporating non-Lambertian reflectance and
fine detail.

However, in the meantime, the inherent strength of video-based repre-
sentations leads to an interim solution, one that allows the system to re-
tain the use of shape-based representations. In contrast to shape-based
representations with Lambertian albedos, videos inherently capture all re-
flectance and texture characteristics, including cast shadows. By restricting
possible light directions to the ones used to create the videos, one can apply
the associated image frames onto a surface. In doing so, the same character-
istics captured in the video are incorporated into the shape-based represen-
tation. When a user wishes to change the light direction, the accompanying
texture is changed as well.
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Figure 3.12: Texture-mapped shape-based representations. This figure de-
picts texture-mapped shape-based representation of the same microfossil
in Fig. 3.10. Texture maps are taken from the image frames in the first row
of Fig. 3.10. In this figure, viewing elevation angles for the first and second
rows are 15◦ and 30◦ respectively.

Unfortunately, this means that users are restricted to the 18 light direc-
tions used in the video-based representation. As well, the effectiveness of
this approach diminishes as the viewing direction deviates from the camera
viewpoint used to capture images. Nonetheless, when viewing the texture-
mapped shape from above, the visual information remains identical to the
video-based representation. As well, as long as the viewpoint does not dras-
tically deviate from an elevation angle of 0◦, the textured shape is able to
provide more insight into the microfossil geometry than a video.

Fig. 3.12 depicts an example of a texture-mapped visual surface at el-
evation angles of 15◦ and 30◦. Being at a less severe elevation angle, the
viewing direction of the first row of Fig. 3.10 presents a useful viewpoint
that retains important details such as the microfossil spires. However, in
the second row of the figure, the elevation angle is at 30◦, making the
viewpoint closer to the ground plane. As a result, the detail lost in the
shape-based representations makes more of an impact, as features evident
on the texture map, such as the spires, are deemphasized at such viewing
angles. This example illustrates the restrictions on viewpoint elevation that
the texture-mapped shape-based representations require. Nonetheless, as
long as elevation angles are not too severe, texture-mapped shape-based
representations can match and exceed the abilities of videos as digital tem-
plate representations.

However, as the wiki and most browsers do not inherently support ren-
dering shapes, texture-mapped shapes are difficult to deploy online. One
powerful and easily deployable representation that incorporates shape in-
formation are anaglyph videos (videos consisting of image frames provid-
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ing stereoscopic 3D effects). By using the shape-based representation and
perspective projection to nonlinearly warp the video-based representations,
anaglyphs can depict both fine detail and texture, and still provide insight
into 3D geometry. Fig. 3.13 illustrates individual frames from an example
anaglyph video sequence. Since anaglyphs can to depict 3D information
without deviating from the original viewpoint, the suffer from none of the
detail loss of texture-mapped shapes. Moreover, they are a striking and
easily disseminated means to convey texture and 3D shape that requires no
3D rendering or other significant upgrades on the part of the online wiki.
The only equipment requirements are inexpensive anaglyph glasses. Thus,
with anaglyph videos, shape-based representations can be used as online
template representations with no additional enhancements to the wiki. Ap-
pendix A provides more details on constructing analgyph videos.

3.6 Conclusion

Since images are limited representations for computer-aided identification,
Chapter 2 argued that further improvement to microfossil classification
performance requires alternative template representations such as video
and shape. This chapter detailed the significant extensions applied to the
existing computer-aided system to provide control of illumination direction
and ultimately the ability to support both video and shape-based represen-
tations of microfossil specimens. Since light direction is fixed for typical
microscopes, major extensions included incorporating an automatic x-y-phi
stage into the system. Moreover, to inject as much autonomy as possible,
an automatic scheme localizing, capturing, and disseminating very large
batches of specimens was developed using a custom multi-threaded and
user-friendly C++ software program.

Additional improvements included updating the clustering algorithm
to a hierarchical scheme. Being both faster, and slightly more accurate than
maximal-clique clustering, AgH clustering represents an important aspect
of system improvements. In addition, as the online wiki serves as the de-
sired channel to provide templates to experts, enhancing the capabilities
of the wiki to display videos instead of single images constitutes another
significant system extension. However, at this point the wiki lacks the abil-
ity to display shape-based representations. This represents an important
aspect of future work.

Despite improvements provided by centroid alignment, image sequences
collected by the system are still susceptible to significant relative misalign-
ments. These misalignments affect both video and shape-based representa-
tions. Solving this problem required developing an image alignment rou-
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Figure 3.13: Example anaglyph images. This figure illustrates individual
frames of an anaglyph video sequence. Red-cyan stereoscopic glasses are
required to view these images. Top-left and top-right images are illumi-
nated from 90◦ and 10◦ azimuthal angles respectively. Bottom-left and
bottom-right images are illuminated from −90◦ and −170◦ azimuthal an-
gles respectively. All images are illuminated from an elevation angle of 30◦.
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tine based on ML estimation and photometric stereo. Constituting a signif-
icant topic in its own right, Chapter 4 describes this alignment routine.

With the system’s capabilities extended, a dataset incorporating multi-
ple images of specimens under varying lighting conditions was collected.
Comprised of 500 foram specimens, the dataset includes 18 images of each
specimen, all illuminated from an elevation angle of 30◦ and from differing
azimuth angles at 20◦ increments. Shape-based representations were ex-
tracted from these image sequences using methods from Chapter 5. Anal-
ysis of the dataset led to several conclusions regarding the capabilities of
shape-based representations. When applied to the foram dataset, the vi-
sual surfaces accounted for 74% of image variability. In contrast, weighted
normals successfully accounted for 94% of image variability, demonstrating
that significant information is lost in the process of estimating surfaces from
weighted normals. In addition, the 6% of image variability unaccounted for
by the weighted normals indicates that Lambertian reflectance assumptions
are another important source of error. However, information loss in the vi-
sual surface estimation step remains the greatest source of error.

Future work must focus on increasing the capabilities of methods used
to extract shape-based representations. However, as an interim solution,
the chapter introduced a texture-mapped visual surface that provides as
much detail as the video-based representations when viewing the shape
from above. In addition, the texture-mapped shapes offer insight into the
3D geometry of the microfossil by allowing viewpoint other than the one
used to capture the videos. Complementary to texture-mapped shapes, the
chapter also introduced the concept of anaglyph representations of micro-
fossils. Sharing the same data structure as videos, anaglyph representations
offer experts the same detail as video-based representations while simulta-
neously depicting the 3D information in the shape-based representations.
Most importantly, employing anaglyph videos may be readily disseminated
online. For this reason, anaglyph videos currently serve as the digital tem-
plate representation of choice for computer-aided identification.
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Chapter 4

Image Alignment Using
Photometric Stereo

Using computer vision techniques, shape-based representations can be ex-
tracted from video-based representations. When applying photometric
stereo to estimate surface normals, the video-based representations are treat-
ed as image sequences of the same object under the same viewpoint, but
with differing and known illumination conditions. One vital assumption
of photometric stereo is that every image in the sequence is aligned prop-
erly. Normally, this poses no problems, as photometric stereo is usually ap-
plied using an image sequence with a fixed camera and object and different
known illumination directions. In contrast, the microfossil video capture
system uses a fixed light source accompanied by an x-y-phi stage. As a re-
sult, when capturing individual frames of microfossil videos, the system
must first rotate the specimen and then rotate the captured images back in
the opposite direction. As Sec. 3.1.3 explained, because the rotational ele-
ment is fixed on top of the translational elements of the stage, a specimen
will have different (x,y) locations at each rotation.

While the expected (x,y) coordinates can be calculated, they are sensi-
tive to errors in stage calibration, stage repeatability, and also the distance
of the specimen to the origin of the stage’s coordinate system. Thus, af-
ter rotation, the system attempts to mitigate these errors by centering the
specimen in the field of view using its silhouette centroid. This is called
centroid alignment. Unfortunately, when an object is illuminated from dif-
ferent directions, the extracted silhouettes will be slightly different for each
image. Fig. 4.1 demonstrates the degree of difference between silhouettes
of a typical centroid-aligned specimen. The variability between silhouettes
at the boundary indicates that silhouettes have a degree of sensitivity to il-
lumination direction. As a result, centered images of the same object will
not always align properly. These errors can be considered as having intro-
duced relative horizontal and vertical shifts in the images, resulting in a
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(a) (b)

Figure 4.1: Silhouette differences in a centroid-aligned video sequence. One
of the 18 image frames of a typical centroid-aligned video sequence of a
microfossil is displayed in (a). In (b) the silhouettes of each image in the
sequence have been added together, and the result has been rescaled so that
areas of complete overlap are represented by pure white. Areas encompass-
ing fewer image silhouettes range from black to grey.

misaligned image sequence. These misalignments affect both the video and
shape-based representations collected by the computer-aided system.

Aligning or registering images is typically approached by either dealing
with the intensity-based information incorporated in an image’s pixels or by
only dealing with their 2D shape or silhouettes. Intensity-based registration
methods usually involve selecting features between a target and source im-
age, determining correspondences between these features, and finally com-
puting a transform aligning the target image with the source [62]. Typical
features can include corners, lines, and image patches. Methods to extract
and align based on these features constitute a heavily researched field rele-
vant to subjects such asmedical imaging, computer vision, andmany indus-
trial and commercial applications. Two very well known examples of image
patch-based registration techniques are cross-correlation [29] and optical
flow [63]. Regardless of the features used for alignment, they are all based
in some way upon the intensity levels of the pixels in the images. Unfortu-
nately, when aligning images of the same object illuminated from different
light directions, pixel intensities will intrinsically change along with illu-
mination angle. As a result, traditional image patch-based methods will
fail under these conditions, and the changing intensity levels across images
make consistent and reliable detection of lower-level features, such as lines
or corners, a much more difficult problem. These reasons motivate the use
of features outside of traditional intensity-based ones.

Apart from intensity-based alignment, the literature also includes much
work on aligning based on silhouettes. Work on this subject often falls un-
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der the category of silhouette-matching, as matching two silhouettes often
requires determining a transformation that best aligns them or determin-
ing similarity measures invariant to translation, rotation, and scale transfor-
mations [64, 65]. Probably, the most well known global silhouette descrip-
tors are moments. In fact, since the misalignments introduced by the video
capture module are limited to only horizontal and vertical displacements,
performing centroid alignment is the appropriate moment-based method
to use. However, global silhouette-based methods, such as moments, are
sensitive to errors or changes in the silhouette boundary [65]. Since the
extracted silhouette boundary of the video sequences is different at every
illumination direction, global-based silhouette matching is not the optimal
choice. Other more robust alternatives use methods that attempt to model
noise and occlusions into the silhouette description. These methods can
be based on representations describing the boundary or the entire silhou-
ette [64]. The number of options is quite large, and involve considerations
such as noise models, data representation, and a variety of other factors that
all considerably affect performance and complexity. Additionally, it is also
not clear how to best evaluate the results of silhouette matching [64]; thus,
there is no agreed upon way to determine when error-prone silhouettes have
been successfully aligned.

Both intensity-based and silhouette-based alignment techniques suffer
drawbacks for applications involving image sequences illuminated from
differing directions. Silhouette-based techniques are hindered by the in-
herent limitations of working with silhouettes, and intensity-based tech-
niques rely on consistent pixel intensities across corresponding regions of
images. However, if every image in the sequence was illuminated from the
same direction, intensity-based alignment would be an attractive choice, as
it performs better than its silhouette-based counterparts [65]. Thus, pixel
intensities are important pieces of information that should be used when
aligning image sequences of microfossil specimens. Incorporating a model
of image formation is one powerful way to include intensity-based infor-
mation in the alignment technique. This chapter describes such an im-
age alignment technique. This novel alignment technique incorporates the
Lambertian model of image formation and is designed to align images of
the same object illuminated from differing directions.

4.1 Photometric Alignment

As the illumination direction changes from image to image in a sequence,
to develop an alignment routine one must incorporate a model of image
formation into the process. Using image formation as part of alignment
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process is called photometric alignment. This dissertation uses the Lamber-
tian model of image formation, described in Sec. 2.2, to estimate surface
normals. As a result, the Lambertian model is an appropriate choice to also
use for photometric alignment.

Given an object with a continuous set of weighted normals η (defined in
(2.2), recall that the weighted normals incorporate the albedo) and a one-to-
one correspondence between horizontal and vertical coordinates of the real-
world and pixel-space, photometric alignment uses the following equation
to model the formation of a misaligned image (Ik):

Ik(x,y) = �Tk · η(x +Δxk,y +Δyk) + εk(x,y). (4.1)

In other words, as defined by (4.1), misaligned images are individual obser-
vations of an object with a continuous set of normals under a set of rel-
ative shifts. An important assumption implicit in (4.1) is that pixels in
background regions of the image are of a constant value. Assuming each
sequence has N images, then an image sequence’s set of shifts can be ex-
pressed as a single shift vector: β = (Δx1,Δy1, . . .ΔxN ,ΔyN ). By way of (4.1),
determining shift values requires simultaneously determining the continu-
ous surface normals. Since image noise follows IID Gaussian distributions,
the ML estimate of β and η is one that minimizes the following sum-squared
error of all observations:

SSE(β,η) =
N∑
k=1

n∑
x=1

m∑
y=1

rk(β,η,x,y)
2, (4.2)

where each individual residual term is defined as:

rk(β,η,x,y) = Ik(x,y)− �Tk · η(x +Δxk,y +Δyk), (4.3)

and images are assumed to consist of m× n pixels.
While (4.2) may provide a theoretically valid condition on maximizing

likelihood, the equation does not offer an avenue in which to easily deter-
mine image shifts. Fortunately, a simple change of variables provides a
more practical formulation. Substituting u = x +Δxk and v = y +Δyk with
Δuk = −Δxk and Δvk = −Δyk , misalignment can be modelled as a set image
shifts rather than a set of object shifts. This redefines β as (Δu1,Δv1, . . .ΔuN ,ΔvN ),
meaning that the image formation equation is reexpressed as:

Ik(u +Δuk,v +Δvk) = �Tk · η(u,v) + εk(u,v). (4.4)

Implied within this change of variables is an important distinction from
(4.1); namely, images and their accompanying noise are treated as contin-
uous entities and surface normal values are only considered at a discrete
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set of locations. Although an image is of course discrete by its nature, it
can also be viewed as a continuous function sampled at pixel locations. In-
terpolating values at locations between pixels approximates the continuous
underlying image; thus, providing a means to treat a discrete image as a
continuous entity.

On the other hand, being for the most part a discrete phenomenon aris-
ing from processes within pixels, there is no continuous analogue for image
noise. As a result, there is no appropriate noise distribution at locations in
between pixels. Thus, interpolating at location (u +Δuk,v +Δvk) results in a
weighted sum of normally distributed error terms. While a sum of normally
distributed and weighted variables is also normally distributed, variances
from one image to another and across pixels will no longer be equal. This
means that the ML estimate requires a GLS formulation. However, as vari-
ance values depend on the current set of shifts, properly accounting for the
changing noise variance introduces a significant degree of complication. As
well, the interpolation couples neighbouring noise terms with each other.
Consequently, for the sake of simplicity, image noise shall be assumed to be
IID normally distributed for all locations, even those residing in between
pixels.

With misalignment modelled as a set of image shifts, the current shift
estimate completely determines the current weighted normal estimate, η̂.
Using the photometric stereo equation, the weighted normal estimate given
a set of shifts is:

η̂(β,u,v) = (LTL)−1LT i(β,u,v), (4.5)

where i(β,u,v) is defined as:

i(β,u,v) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I1(u +Δu1,v +Δv1)
I2(u +Δu2,v +Δv2)

...
IN (u +ΔuN ,v +ΔvN )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.6)

As a result, rather than simultaneously solving for image shifts and surface
normals, only the correct image shift vector β need be estimated. This sim-
plifies the sum-squared error formulation, as the SSE is now only a function
of the shift vector β:

SSE(β) = r(β)T r(β). (4.7)

Here the residuals have been flattened into a single vector as defined by:

r(β) = (r1(β,1,1), . . . r1(β,n,m), r2(β,1,1), . . . , rN (β,n,m))T , (4.8)
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with each individual residual term defined as:

rk(β,u,v) = Ik(u +Δu,v +Δv)− �Tk · η̂(β,u,v). (4.9)

Note that (4.9) differs from (4.3) by incorporating the current weighted nor-
mal estimate, η̂, which must be calculated using (4.5). Despite this differ-
ence, minimizing (4.7) is equivalent to minimizing (4.2) if one disregards
the issues arising from modelling image noise as a continuous phenomena.

Minimizing the SSE determines the ML estimate of the shift vectors.
This forms the basis of the photometric alignment technique. This is in ef-
fect a nonlinear function minimization scheme, where the only indepen-
dent variables are the sets of image shifts β. Note that in using such a
scheme, the shadowed version of the photometric stereo equation (2.8) can-
not be used as that will introduce discontinuities, which many nonlinear
least-squares and function minimizers do not handle. A great benefit of
constructing residuals in this manner is that minimization also produces
the best set of weighted-normal estimates, η̂, under the photometric stereo
assumptions outlined in Sec. 2.2. As a result, in contrast to schemes involv-
ing silhouette alignment, the ultimate goal of performing image alignment
in the first place is incorporated directly into the residual term.

Many nonlinearminimization schemes require gradient or Jacobian eval-
uations. This requires partial derivative computations of the SSE term with
respect to one of the variables in the shift vector β. These variables can rep-
resent shifts in either the u or v directions for one particular image. For in-
stance, one can consider the partial derivative of (4.7) with respect to shifts
in the u direction of I�. The partial derivative of (4.7) with respect to Δu�
evaluates as:

∂SSE(β)
∂Δu�

= 2r(β)T
∂r(β)
∂Δu�

. (4.10)

To compute (4.10), the partial derivative of r(β) at each pixel location and
image with respect to Δul must be evaluated. This can be expressed as the
difference between two terms:

∂rk(β,x,y)
∂Δu�

=
∂Ik(u +Δuk,v +Δvk)

∂Δu�
− �T · ∂η̂(u,v)

∂Δu�
. (4.11)

The first term of (4.11) is simply the partial derivative of the image Ik with
respect to shifts of I� in the u direction. When k = �, the first term of (4.11)
evaluates as the spatial derivative of I� in the u direction, which is denoted
here as U�. For images other than I� the partial derivative will evaluate to
0. This is expressed mathematically as:

∂Ik(u +Δuk,v +Δvk)
∂Δu�

=
{

U�(u +Δu�,v +Δv�), if k = �
0, otherwise

. (4.12)
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For the second term of (4.11), the only variables that change with respect
to image shifts are the current weighted-normal estimates. Similar to the
photometric stereo equation of (2.6), evaluating the partial derivatives of
the normals requires solving an over-determined system; however, in this
case the partial derivatives of the images with respect to shifts of I� in the u
direction are used in the righthand side of the equation:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�T1
...
�TN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
∂η

∂Δu�
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂I1(u +Δu1,v +Δv1)/∂Δu�

...
∂IN (u +ΔuN ,v +ΔvN )/∂Δu�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4.13)

where the values on the righthand side evaluate as in (4.12). Thus, (4.11)
can be evaluated for every location, incorporated into a column vector, and
finally combined with (4.10) to result in the gradient calculation with re-
spect to u�. An identical approach is used for evaluating the gradients with
respect to the v direction.

Minimizing the nonlinear SSE function of (4.7) can be accomplished
using function minimization schemes. Quasi-Newton (QN) methods are
a popular technique often applied to nonlinear functions [48]. Conjugate
gradients (CG) is another good and well-researched approach. See [66] for
a detailed explanation of CG. One issue with nonlinear CG is the incorpora-
tion of a line search requiring significant amounts of function and gradient
evaluations. Depending on the size of the images, both (4.7) and (4.10) may
be very expensive to compute. An alternative is to use scaled conjugate gra-
dients (SCG) [67], which is designed to minimize gradient evaluations.

While function minimization schemes are a viable approach, the prob-
lem of aligning images can also be solved using methods tailored for non-
linear least-squares problems. If there are N images, instead of using one
single error term, N error terms can be formulated. As the error term would
consist of an N × 1 column vector, a Jacobian would have to be calculated
instead of a gradient. Such a scheme would then attempt to determine a set
of shifts that best fit theN error terms to zero. For medium scaled problems
such as this one, the Levenberg-Marquart (LM) [48] algorithm is typically
used. In addition to a medium-scale formulation, the alignment problem
could also be treated as a large-scale least-squares problem, with N ×m × n
error terms. However, the scale of the problem is so large, especially when
computing gradients, that it quickly becomes intractable. As a result, this
option was not considered in testing.

Photometric alignment only corrects for relative misalignments between
images in a sequence. As a result, every image in a sequence can be shifted
by the same amount, and photometric alignment would not be able to dif-
ferentiate between the two cases. Thus, the entire sequence may not be cen-
tered properly. To fix an absolute location for the sequence, one can anchor
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one of the images in the sequence, forcing the other images to align with
the chosen image. However, the choice of which image to use is arbitrary.
Another approach does not require anchoring an image, but simply allows
the routine to first determine the set of optimal relative shifts. Afterwards,
combining the silhouettes of each image produces a silhouette for the entire
sequence. The sequence is then centered using the centroid of this combined
silhouette. This is what was done for this dissertation.

4.2 Evaluating the Method

The usefulness of photometric alignment hinges on two factors: the accu-
racy of the alignment method and the benefits, if any, of using the tech-
nique. As stated in the previous section, photometric alignment can be
performed using methods that include QN, CG, SCG, and LM. Sec. 4.2.1 fo-
cuses on determining whether the performance of photometric alignment
depends on the minimization method used. As well Sec. 4.2.1 tests how ac-
curately photometric alignment can correct misalignments. Sec. 4.2.2 and
Sec. 4.2.3 then explore the benefits of applying photometric alignment to
microfossil videos captured by the computer-aided system.

4.2.1 Testing with Known Misalignments

The accuracy of photometric alignment was tested by shifting a sequence
of images by known amounts. If the algorithm functioned perfectly, the
outputted shifts should be the exact opposite of the shifts applied to the se-
quence. Thus, the disparity between the known and correcting shifts serves
as a good metric in which to judge the algorithm’s accuracy.

Image sequences were obtained from the PMTex database1. Composed
of square 512× 512 images of rock textures illuminated from known direc-
tions, the PMTex database provides excellent image sequences in which to
test the alignment routine. As well, the database supplies a large variety of
illumination options for each rock texture. A good measure of the accuracy
of the algorithm is the shift error (SE), defined as the Euclidean distance of
the error in the u and v directions:

SE =
√
(Δuactual +Δucorrecting )2 + (Δvactual +Δvcorrecting )2, (4.14)

where Δ(.)actual and Δ(.)correcting are the actual and correcting shifts respec-
tively. Ideally, SEs should be as low as possible, since if photometric align-
ment functioned perfectly, the correcting shifts would be the exact oppo-
sites of the applied shifts.

1http://people.pwf.cam.ac.uk/jw566/research/pmtexdb/index.htm
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Figure 4.2: Example images of the four textures for testing photometric
alignment accuracy. Each of these images are illuminated from an elevation
angle of 45◦ and an azimuth angle of 180◦. The depicted images were all
padded with zero-intensity pixels.

Four different textures were chosen. Examples of each texture can be
seen in Fig. 4.2. In the actual system set-up of the video-capture module,
there are two important characteristics. For one, light directions for the
image sequences of the specimens exhibit constant elevations but changing
azimuth angles. As a result, the light directions for the image sequences of
the rock textures were constrained in the same way.

A second important characteristic, which is the cause of misalignments
in the centroid-aligned images in the first place, is a changing silhouette
from image to image in the same specimen sequence. For this reason, in ad-
dition to shifting the images by known amounts, experiments should also
simulate the effects of a changing silhouette between images of the same
sequence. A mask, designed to vary across different light directions, can
approximate the changing silhouette across images. As Fig. 4.3(b) demon-
strates, for a particular image, the masking process begins by generating a
simulated image of a Lambertian perfect hemisphere with a constant albedo
of 1 illuminated from the same direction. As the hemisphere image will
have lower pixel values in regions opposite of the light direction, threshold-
ing the sphere image forms a varying circle-based mask that approximates
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(a) (b)

(c) (d)

Figure 4.3: The masking technique for the texture images. (a) example
texture photograph after padding, illuminated from an azimuthal angle of
180◦ and an elevation angle of 45◦; (b) simulated image of a perfect hemi-
sphere illuminated from the same direction as the example picture in (a);
(c) a mask generated by thresholding the hemisphere image by a value of
0.1; (d) The example image in (a) after applying the mask in (c) to it.

how an image sequence’s silhouette changes with illumination. For the pur-
poses of this experiment, a threshold value of 0.1 was chosen. Fig. 4.3(c)
illustrates the masked version of Fig. 4.3(b). As Fig. 4.3(d) demonstrates, a
set of these masks applied to every corresponding image in the sequence,
results in silhouette dependant upon illumination direction.

Three image sequences of each rock texture were used for testing, each
possessing fixed elevation angles of either 45◦, 60◦, or 75◦, resulting in 12
separate sequences. For every image sequence, the azimuth angle of illu-
mination was set to increase by increments of 30◦ from 0◦ to 330◦, result-
ing in 12 images per every sequence. Prior to experimentation, the images
were first padded with pixel values of 0 and then resized, for computational
speed purposes, to 90 × 90 pixels. The images were then randomly shifted
in the u,v directions with integer values ranging from −5 to 5. As a result,
the maximum absolute shift is over 5% of the image dimensions, and the

73



Chapter 4: Image Alignment Using Photometric Stereo

QN CG SCG LM
Max SE (pixels) 4.73 2.79 3.99 2.6
Max Time (s) 668.1 328.3 473.3 577.1

(c)

Figure 4.4: Performance of photometric alignment on the 24 sequences of
texture images. In both (a) and (b) median values are displayed, with er-
ror bars representing the first and third quartile values. In (c) the max SE
and convergence times of all four methods are displayed. The error values
graphed in (a) indicate that QN, CG, and LM demonstrate comparable ac-
curacy, with LM slightly better than the rest. SCG’s third quartile is value
is significantly worse than the other three methds. In (b), CG and SCG have
the best convergence times.

maximum relative shift between two images is over 10% of the image di-
mensions. This was performed twice for each image sequence, resulting in
24 separate tests. As each image sequence is composed of 12 images, ex-
perimentation results in 288 separate shift error values. Each test recorded
the performance of QN, CG, SCG, and LM. Experiments were performed in
MATLAB. The NETLAB 2 implementation of CG and SCG were used, and
for QN and LM the built-in MATLAB implementation was used. The stop-
ping criteria for each method were termination tolerances of 10−4 for both
the objective function and the shift values.

Fig. 4.4 graphs the median SE and convergence times of photometric
alignment using the four minimization methods. All of the minimization
options performed well. Out of the three methods, QN, CG and LM aligned
the images with the best accuracy. However, QN’s max SE value was the
worse of all four methods. As well, LM edged out all other methods in terms

2http://www.ncrg.aston.ac.uk/netlab/index.php
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of correction accuracy. However, as Fig. 4.4(c) demonstrates, the variability
and max convergence times of CG are much smaller than that of QN or LM.
Since convergence times are difficult to compare across different MATLAB
implementations, these results do not indicate that CG will inherently con-
verge faster than QN or LM methods. Yet, since the accuracy of CG is com-
parable to that of QN or LM, and the available implementation is almost
twice as fast, all future experiments use CG as the minimization routine.

The similarity in results across minimization techniques indicate that
photometric alignment is not dependant on a specific minimizer. It is im-
portant to note that in an effort to test the algorithm’s robustness, condi-
tions used in this experiment were purposely designed to shift images by
values larger than typical real-world situations. As well, silhouettes in the
tested image sequences underwent more change from image to image than
in the real specimen dataset. Consequently, these results indicate that pho-
tometric alignment is very robust, even when applied under extraordinarily
difficult circumstances.

4.2.2 Quantifying Benefits

Having established that photometric alignment can accurately correct for
misalignments, the benefits of including the technique as part of the shape-
based representation extraction process must also be quantified. Doing so
requires recreating the conditions in which a sequence of images becomes
misaligned in the first place. As differences in centroid coordinates across
the silhouettes of image sequences is the cause of shortfalls of using cen-
troid alignment, the source of these misalignments must be reproduced.

Representing a key characteristic of the misalignment process, the sever-
ity of alignment errors is directly related to the angle of elevation across all
images. More specifically, illumination angles closer to the ground plane
will result in greater differences in object masks as image variability across
different angles of azimuth will be greater. As a result, any potential ben-
efits from aligning images will depend in part on the angle of elevation of
the light source.

To test this, perfect hemisphere image sequences with uniform albedo
were created. The hemispheres were illuminated at constant elevation and
changing azimuth. Masks of each image can be produced using simple
thresholding. These masks were then applied to each hemisphere image.
Each image was then centroid-aligned. As the area of the mask that is
thresholded out changes with azimuth angle, each image possesses a unique
set of centering shifts. This results in a sequence of misalignments approxi-
mating the centering errors inherent in image capture with the x-y-phi mo-
torized stage and centroid alignment. Fig. 4.5 illustrates the process behind
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(a) (b)

(c) (d)

Figure 4.5: Producing the error-prone centroid-aligned hemisphere images.
(a) a perfect hemisphere illuminated from an elevation angle of 45◦ and
an azimuth angle of 90◦; (b) mask of (a) at a threshold value of 0.04; (c)
the mask in (b) shifted so that its centroid is centered in the image; (d) the
image in (a) shifted using the same shifts used to center its mask in (c).

generating the error-prone centroid-aligned image sequences.
By applying photometric alignment to the centroid-aligned images, one

can obtain a corrected set of images. The similarity score of (3.3), which
computes median correlation value between pairs of image sequences, can
measure similarity between the photometric-aligned images and the origi-
nal images. The same can be done with the centroid-aligned images.

Experiments consisted of hemispheres with a radius of 40 pixels, illu-
minated from elevation angles ranging from 15◦ to 70◦. All sequences con-
sisted of 18 images, with azimuth angles varying from 0◦ to 340◦ by in-
crements of 20◦. Using the same value as the video capture module of the
system, the image threshold was set to 0.04.

Fig. 4.6 graphs similarity scores across different elevation angles be-
tween the ground truth and the photometric and centroid-aligned image
sequences. As expected, similarity scores of the centroid-aligned images
decrease as the elevation angles and degree of misalignment increases. The
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Figure 4.6: Quantitative benefits of using photometric alignment. Sim-
ilarity scores between photometric and centroid-aligned images and the
ground truth were computed using (3.3). Similarity scores of centroid-
aligned images decreases significantly as the severity of elevation angle in-
creases. In contrast, photometric alignment successfully mitigated similar-
ity score reduction, retaining relatively constant correlation values even at
elevation angles of 70◦.

similarity scores of the photometric-aligned images also decline, but at a
very gradual rate. In addition, they exhibit higher similarity scores at ev-
ery elevation angle. The differences in similarity between the centroid and
photometric-aligned images are very pronounced at angles greater than
35◦. These results indicate that when under conditions involving horizontal
and vertical misalignments, performing photometric alignment is a crucial
step prior to measuring similarity between image sequences.

The qualitative benefits of using photometric alignment on shape ex-
traction can be demonstrated by using the methods of Chapter 5 to esti-
mate visual surfaces from both the centroid and photometric-aligned im-
ages. Depth maps and their cross-sections from an elevation angle of 45◦
are illustrated in Fig. 4.7. As shown by Fig. 4.7(b) and (e), the depth map
of the centroid-aligned image sequence produces a flattened hemisphere.
In contrast, the photometric-aligned depth map of Fig. 4.7(c) and (f) is
much more hemispherical in nature, and is much more consistent with the
ground truth depth map. Consequently, photometric alignment provides
both quantitative benefits, when measuring similarity, and also qualitative
benefits when constructing 3D models.
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Figure 4.7: Qualitative benefits of using photometric alignment. (a) ground
truth depth map of the hemisphere; (b) depth map produced from a
centroid-aligned image sequence illuminated by a light source elevated at
45◦; (c) depthmap of the photometric-aligned sequence; (d-f) Cross sections
of the ground truth, centroid-aligned, and photometric-aligned depth maps
respectively. Depth maps in (b) and (c) were produced using the Modified-
ML Surface Estimation method introduced in Chapter 5.

4.2.3 Experiments with Microfossil Videos

With the accuracy and usefulness of photometric alignment demonstrated,
the remaining question to answer is how well it fares on sets of centroid-
aligned microfossil video-based representations collected by the computer-
aided system. As mentioned in Sec. 3.1.3, individual frames of the video-
based representations were centroid-aligned after image capture in an effort
to correct for misalignments caused by errors in the motorized stages. Pho-
tometric alignment was then applied to the 500 specimen foram dataset.
For reasons of computational speed, prior to photometric alignment, the
640 × 640 pixel images were resized to 160 × 160 pixels. Afterwards, the
computed shifts were applied to the original images, with each shift scaled
by a factor of 4.

As Fig. 4.8 qualitatively illustrates, photometric alignment can success-
fully correct misalignments in the foram image sequences not corrected by
centroid alignment. Although the accuracy of the shift values cannot be
measured, as in Sec. 4.2.1, considering the R2 values of the residuals is one
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(a) (b)

Figure 4.8: Example of two images in a in a microfossil video using centroid
and photometric alignment. The top and bottom images are of a foram
illuminated from an azimuth angle of 70◦ and 260◦ respectively. On the
left are the images after centroid alignment, and on the right are the same
images after photometric alignment. Features on the left-hand images do
not line-up properly. However, after application of photometric alignment,
corresponding features are lined-up much better on the right-hand images.

way to quantitatively evaluate photometric alignment’s performance. In
this case, the weighted normals produced from the centroid-aligned im-
age sequences and the weighted normals produced from the photometric-
aligned image sequences represent the two hypotheses. Denoting the cen-
troid and photometric-aligned weighted normals by η̂centroid and η̂photometric

respectively, the expression for R2 is written as:

R2 =
SSE(η̂centroid )− SSE(η̂photometric)

SSE(η̂centroid )
. (4.15)

The R2 value can be viewed as a description of how much of the differ-
ence between the actual images and their generative model counterparts
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Shift Values

Min 4.04× 10−4 pixels
Median 1.19 pixels
Max 7.68 pixels

R2 Values

Min 1.87%
First Quartile 37.4%

Median 47.3%
Third Quartile 55.7%

Max 88.2%

Table 4.1: Results of applying photometric alignment to microfossil videos.
Applying the algorithm to 500 160 × 160 pixel centroid-aligned microfos-
sil image sequences resulted in median shifts of 1.19 pixels. Despite these
somewhat small shift amounts, median R2 values were 47.3%, indicating
that photometric alignment can successfully mitigate much of the error be-
tween the actual images and their generative model counterparts.

can be attributed to misalignments within the centroid-aligned video-based
representations that were later corrected by photometric alignment. Mea-
surement errors, noise, any remaining uncorrected misalignments, and the
inherent limitations of the chosen generative model are responsible for any
remaining residual values. An R2 value of 1 would indicate that photomet-
ric alignment corrected for all errors. Table 4.1 summarizes the results of
the alignment technique and Fig. 4.9 plots the distribution of R2 values.

As the table indicates, photometric alignment reduced reconstruction
errors by on median 47%. The histogram demonstrates that this median
value is representative of the different R2 values across the microfossil data-
set. The histogram also indicates that R2 values can also correspond to very
high or very low values with reduced frequency. However, for themost part,
misalignments not corrected by centroid alignment accounted for much of
the difference between pixel values of the actual and reconstructed images.
This means that photometric alignment successively decreased a significant
amount of error in the reconstructed images. As a result, applying photo-
metric alignment to microfossil videos is an essential step in increasing the
accuracy of depth map extraction.
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Figure 4.9: Histogram of R2 values. This figure graphs the distribution
of R2 values and illustrates the reduction in reconstruction error provided
by photometric alignment. The majority of R2 values cluster around 50%
reduction in error, with the frequency falling off relatively symmetrically
on either side.

4.3 Asymptotic Complexity

As photometric alignment relies on nonlinear minimization, it is difficult
to provide guarantees on the asymptotic number of arithmetic operations.
However, as weighted normals can be estimated on their own at every im-
age shift value, the scale of the nonlinear problem is not large, as the min-
imization routines need only determine image shifts. An important aspect
that can be determined is the complexity of evaluating the function and its
gradient, which are two steps frequently performed by the nonlinear min-
imization routines. As function evaluations consist of computing residuals
of the weighted-normal estimates, the complexity involved in computing
these estimates is important. Suppose there are N images, each composed
of n × n pixels. At each pixel, weighted-normal estimation involves execut-
ing a least-squares solution involving anN×3 matrix. With these character-
istics, the complexity of each least-squares computation is O(N ) [54]. Since
this occurs for each pixel, the total complexity of weighted-normal estima-
tion is O(Nn2). In addition, the residual error of each estimate must also be
calculated. But as that also consumes O(Nn2) arithmetic operations, it does
not add to complexity. The process of evaluating the gradient is essentially
N separate function evaluations. As a result, gradient evaluations consume
O(N2n2) arithmetic operations.
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In terms of memory use, Newton-based methods such as QN and LM
consume O(N2) memory, where N is the number of parameters [48]. On
the other hand, conjugate gradients consume O(N ) memory [66]. However,
as N is typically not very large (2× 18 for the microfossil dataset), memory
use is not a significant issue.

4.4 Conclusion

This chapter presented a novel alignment routine called photometric align-
ment that is designed specifically to correct for relative misalignments in a
sequence of photometric stereo images. The routine requires that the object
in each image is illuminated by known directions and that misalignments
are restricted to horizontal or vertical shifts. As well, pixels are assumed to
be constant at all background locations. Enabling it to align images of dis-
tinct intensities, photometric alignment incorporates the Lambertian model
of image formation directly into its error term. Consequently, a direct re-
sult of the routine are normal estimates that best correspond with the given
images (under the assumptions described above).

The chapter also described experiments testing the accuracy, robust-
ness, and benefits of photometric alignment. To test accuracy, photometric
alignment was applied to sequences of images shifted by known amounts.
The accuracy of photometric alignment was only off by a median 0.3 pixels
when using CG, QN, or LM minimization. These results demonstrate the
accuracy of photometric alignment. Even so, despite the low median SE
value, the routine did produce high max SE values, indicating that the al-
gorithm is susceptible to local minima. However, such occurrences are out-
liers, as demonstrated by the low third quartile values graphed in Fig. 4.4.
As well, it should be noted that the conditions of this experiment were par-
ticularly strenuous, as the silhouettes from image to image varied by con-
siderably more than what is typical in the microfossil dataset. The median
absolute shift value was 2.5 pixels, or roughly 2.8% of the image dimen-
sions (90 × 90 pixel images). In contrast, when photometric alignment was
applied to the microfossil images dataset, the algorithm corrected the se-
quences with a median absolute shift value of 1.2 pixels, which is roughly
0.8% of the dimensions of the 160 × 160 pixel foram images. Although it
may be confounded by local minima in very difficult conditions, photo-
metric alignment still manages to align image sequences with very good
accuracy.

In addition to presenting results on the photometric alignment’s accu-
racy, this chapter also demonstrated the worth of using such an alignment
scheme through two separate experiments. The first such experiment ex-
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plored the detrimental effect of misalignments not corrected by centroid
alignment, as seen in the microfossil dataset. As well, the experiment ex-
plored the beneficial effects of correcting for these latent misalignments
through the use of photometric alignment. To accomplish this, a perfect
hemisphere was artificially illuminated under similar conditions as that of
the microfossils. The silhouette of each image was artificially truncated at
several different angles of elevation. Centroid alignment was then used to
center each image, recreating the cause of the errors seen in the microfossil
dataset. With higher elevations come greater truncation, and thus greater
degree of error in the centroid-aligned image sequences. As a result, the
correlation score between centroid-aligned images and their original coun-
terparts quickly fell off as the degree of misalignment increased. On the
other hand, photometric-aligned image sequences produced consistent and
high similarity scores. Qualitatively, the centroid-aligned depth maps were
much flatter as misalignment increased, while photometric-aligned depth
maps exhibited a form much closer to the desired hemisphere.

In addition, the benefits of applying photometric alignment to the cen-
troid-aligned microfossil dataset were quantified. When applying photo-
metric alignment to the microfossil videos, the representations are treated
as sequences of individual image frames. Since no ground truth of the
shift values or depth map is known beforehand, the only available met-
ric is measuring R2 values of residual terms before and after photometric
alignment. These residual terms measure the error between the actual and
reconstructed images making up the microfossil video sequences. With a
median R2 value of 47%, photometric alignment successively mitigated sig-
nificant amounts of the error, meaning that misalignments not corrected by
centroid alignment accounted for over 45% of the error in the microfos-
sil dataset. As a result, estimated normals of the specimen surfaces were
significantly more consistent with the given images. These results demon-
strate the great worth in applying photometric alignment to the microfossil
dataset.

Photometric alignment is applicable to any situation involving horizon-
tal and vertical misalignment in a sequence of images. In many situations,
to automatically obtain images of an object illuminated from differing di-
rections, it is more feasible to rotate the object rather than the light source.
In the case of the system setup used for this work, the microscope used has
a fixed light source. This is also the standard for most other microscopes.
As well, since a motorized stage is already required for (x,y) localization of
the microfossil particles, it is much more practical to attach an additional
rotational element, than to design a non-static light source. This would also
be the case for many other objects small enough to require microscopes.
However, the applicability of photometric alignment is not limited to mi-
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croscopic objects, as the alignment algorithm would also prove beneficial to
any situation where pixel correspondence between images can no longer be
guaranteed.
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Chapter 5

Maximum Likelihood Surface
Estimation

Reconstructing shape from weighted normals requires methods to estimate
surface. Research into visual shape extraction is ongoing. Although signif-
icant progress has resulted in several useful shape integration techniques,
most current methods do not incorporate an image noise model into their
formulations. The methods that do so only work under limited condi-
tions [46] or use complicated nonlinearminimization routines [41,42]. How-
ever, incorporating an image noise model into surface reconstruction is im-
portant, as it allows the generation of ML estimates of the surface. This
chapter develops an ML surface estimation technique that avoids imposing
additional constraints and does not suffer from practicality issues.

5.1 Estimating the Gradient Fields

Developing a surface reconstruction routine that handles noise within its
formulation requires a model of noise and its propagation through all steps
of the reconstruction process. Yet, as Noakes and Kozera note, many of the
classic surface extraction techniques that integrate gradients, such as [68–
70], only produce an ML estimate should the gradient fields and not the im-
age observations be corrupted by uniform Gaussian noise [41,42]. Although
Gaussian noise is a reasonable assumption for image observations, the non-
linear transformation producing gradient estimates will not result in sim-
ple IID additive Gaussian noise [41]. Variations of these classic approaches
have often attempted to handle the noise present in the gradients. How-
ever, these more recent techniques either again assume uniform Gaussian
noise in the gradients [43], or base their techniques on heuristic weighting
schemes [45].

On the other hand, more recent work on surface extraction correctly
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models gradient noise as a function of the uniform Gaussian noise in image
observations [46]. Unfortunately, the assumptions made to formulate the
derivations of gradient noise break down if surface normals have an angle
greater than 6% with respect to the optical axis (meaning the surface must
be almost horizontal [46]).

The nonlinear nature of gradient field noise is a potent motivation for
skipping gradient estimation altogether and reconstructing surfaces directly
from image observations. For instance, Noakes and Kozera developed a
technique to solve for Z directly using an iterative technique entitled 2D
Leap Frog [41, 42]. Since their optimization problem works directly from
images to the surface, noise is kept IID, allowing the solution to corre-
spond to an ML estimate. While their technique demonstrates promise,
its practicality is questionable. First, their technique assumes a unit albedo
throughout the object surface, a restriction certainly not reflected in most
real-world objects. Additionally, like all iterative procedures, the 2D Leap
Frog technique relies on the convergence properties of the chosen algorithm
and the initial guess. Initial guesses in published experiments use the true
surface corrupted by adding uniform Gaussian noise. Such experiments
are not very instructive of the technique’s practical capabilities. As cru-
cial as these two issues are, convergence performance remains the biggest
challenge with the 2D Leap Frog technique. This challenge prevents the
algorithm from being applied to realistic dimension sizes [71]. These per-
formance issues have led the authors to investigate implementations using
parallel architectures [71].

While estimating the surface directly from image observations without
any intervening steps is certainly theoretically convenient in terms of ML
estimation, practical issues related to the nonlinear relationship between
image intensities and surface values remain a serious obstacle. Nonlinear
regression theory provides an alternative that retains the desirable two step
process of first estimating gradients, and then linearly estimating the sur-
face from these gradients.

To accomplish this, the nonlinear aspect of gradient and albedo esti-
mation must be considered. Assuming a weighted-normal estimate using
(2.33) has been obtained and allowing β to denote (p,q,ρ)T , then for each
pixel location:

⎛⎜⎜⎜⎜⎜⎜⎝
p̂
q̂
ρ̂

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η̂x/η̂z
η̂y/η̂z√

η̂2
x + η̂2

y + η̂2
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 	
⎛⎜⎜⎜⎜⎜⎜⎝
p
q
ρ

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.1)

β̂ = h(η̂), (5.2)

where h(η) represents the relationship mapping the weighted normals to
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the gradients and albedo. Note that h(η) is valid for all values of η except
for when ηz = 0. In addition, apart from this degenerative case, there is a
one-to-one correspondence between the values of β and η.

Using the nonlinear parameterization of (5.1), one can incorporate the
gradient fields and albedo into a system of image formation equations:

i = L
ρ√

p2 + q2 + 1

⎛⎜⎜⎜⎜⎜⎜⎝
−p
−q
1

⎞⎟⎟⎟⎟⎟⎟⎠+ ε, (5.3)

i = f(β) + ε, (5.4)

i = f(h(η)) + ε, (5.5)

where i is a vector incorporating pixels from each light direction. While
(5.3) provides a parameterization directly incorporating the desired terms,
in practice it is more convenient to use the linear parameterization using the
weighted normals, as the solution can be solved directly using linear least
squares. As well, the linear regression solution and transformation is equiv-
alent to the nonlinear regression solution. After solving for the weighted
normals, computing β̂ = h(η̂) determines the gradient and albedo estimates.

As discussed in Sec. 2.3.1, under certain regularity conditions, nonlinear
ML parameter estimates can follow certain asymptotic properties, most no-
tably asymptotic unbiasedness and normality. Additionally, the discussion
introduced the following expression for the asymptotic limit of the param-
eter estimate covariance matrix:

σ2Γβ̂β̂ = σ2(F.(β)TF.(β))−1, (5.6)

where F.(β) is the Jacobian of the model function with respect to β evaluated
at the true parameter value. In practice, the Jacobian is evaluated at β̂, pro-
ducing an estimate, Γ̂β̂β̂, of the covariance. While (5.6) is perfectly valid and
can also provide a convenient form of the covariance inverse, the inverse in
the expression prevents it from offering an analytical expression for the ac-
tual covariance. Obtaining such an analytical expression requires using an
alternative formulation. Presenting a relationship between the covariance
of the linear parameter estimates, η̂, and that of β̂, the expression in (2.26)
provides such an alternative formulation. As explained in Sec. 2.3.3, as-
suming the photometric assumptions are valid, the covariance matrix of the
weighted normal estimates is σ2(LTL)−1. Should the shadowed photometric
equation of (2.8) be used, the appropriate rows of L must be excluded from
the distribution. As a result, using (2.26), the covariance of the nonlinear
parameters can be written as:

σ2Γβ̂β̂ = σ2H.(η)Γη̂η̂H.T (η), (5.7)

σ2Γβ̂β̂ = σ2H.(η)(LTL)−1H.T (η), (5.8)
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where H.(η) is the Jacobian of h(η) evaluated at the true parameter values.
As with F.(β), the Jacobian is evaluated at η̂, resulting in a covariance esti-
mate Γ̂β̂β̂. In this case, the Jacobian of h offers an easily expressed form:

H.(η) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
ηz

0 ηx
η2z

0 − 1
ηz

ηy
η2z

ηx√
η2x+η2y+η2z

ηy√
η2x+η2y+η2z

ηz√
η2x+η2y+η2z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.9)

Thus, using asymptotic theory, the error distributions of the nonlinear pa-
rameter estimates approximately follow:

εβ̂ ∼N (0,σ2Γ̂β̂β̂). (5.10)

The prevalence of ηz in the denominator of elements of H.(η) indicates
that small values of ηz produce large values in the covariance matrix of the
gradients and albedos. Translated to its physical meaning with regard to ob-
ject normals, this means that gradients corresponding to near vertical areas
of the object surface are more susceptible to image noise. Several authors
have also recognized this fact [43, 46]. This observation also corresponds
with Agrawal et al’s heuristic treatment of noise, where the authors regard
p and q values with large magnitudes as more vulnerable to noise [45]. Yet,
while having ηz in the denominator will often produce gradient terms of
higher value, this correspondence is not guaranteed to be true every time.
As well, since ηz incorporates albedo into its value, the expression in (5.9)
reveals that regions of the object with low albedo are also prone to produc-
ing more severe gradient errors. This agrees with expected behaviour, as
the effect of noise on low intensity pixels is greater than on higher intensity
ones. Agrawal et al’s scheme fails to include this effect of low albedo.

The expression in (5.8) characterizes an additive and normally distributed
model of gradient error. Since the relationship between the gradients and
surface is linear, integrating the gradients into an ML surface estimate re-
mains a linear least squares problem.

5.2 Estimating the Visual Surface

5.2.1 Maximum Likelihood Estimation

Estimating the gradient values and their covariance at every pixel location
comprises the first step in depth map estimation. The gradients are then
related to the surface through a simple relationship. First, since images are
discrete by nature, matrix notation should be used to represent the sampled
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scalar fields of the previous section. Using matrix notation, the gradient
estimates are then related to the actual surface values through the following
expression:

P = Zx +Ep, (5.11)

Q = Zy +Eq, (5.12)

where Zx and Zy represent partial derivatives of the surface in the x and y
directions respectively, and the distributions of the errors Ep and Eq follow
the properties outlined in (5.10) (note that (5.10) includes albedo variance-
covariance terms in its expression, but these are not needed for surface es-
timation).

The matrix notation for the gradient fields also reflects that in the dis-
crete case, finite differences represent partial derivatives, meaning that sur-
face estimation at specific locations are related to their neighbours’ values.
Consequently, the estimation of Z is not characterized by individual sys-
tems at each location, but is a large-scale problem simultaneously incorpo-
rating every location. But, to continue working with matrix algebra requires
reordering the 2D coordinates of both the surface and gradient fields into
vector form (for example using column-major ordering). Written formally,
the following expression frames surface estimation into a linear regression
problem:

(
p
q

)
=

(
Dx
Dy

)
z+ ε, (5.13)

where Dx and Dy are finite difference operators in the x and y directions
respectively. As well, ε represents the vector of all noise terms (εTp ,ε

T
q )

T .
Here, the parameter z, the gradient estimates, and the error terms have
been expressed as vectors. The derivative operators, Dx and Dy , can take
on forms corresponding to the desired order of derivative accuracy. The
distribution of the errors incorporates every individual noise term, which
all behave according to (5.10). The covariance of the noise is large and
sparse, as the noise terms in p and q estimates are only cross-correlated if
they share identical locations in the depth map. Written mathematically,
ε ∼N (0,Γεε), with Γεε denoting the large and sparse covariance matrix.

As noted earlier, the addition of any constant to z will still produce the
same gradient values. As a result, there is an inherent ambiguity in (5.13).
Not mentioned however was a more insidious ambiguity, as different types
of finite differencing schemes will introduce their own respective ambigu-
ities [41]. Algebraically, these ambiguities can be treated as rank deficien-
cies. For this reason, (5.13) cannot be solved on its own. Nonetheless, in-
cluding additional explicit constraints can usually resolve any ambiguities.
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These constraints take on the form:

b = Rz. (5.14)

As the ambiguities arising from integrating the two gradient fields are
essentially related to determining the proper offset, constraints must re-
strict a sufficient number of surface locations to specific values. An easy
to implement scheme simply involves restricting locations considered to be
part of the background to zero. In those cases, the rows of R consist entirely
of zeros except for a single entry corresponding to the background location,
which is set to 1. Background locations can be determined by masking the
original images. Failing that, another approach is to simply set all bound-
ary locations to zero. Regardless of the manner in which the constraints are
formed, they serve to augment (5.13) into a solvable system:

⎛⎜⎜⎜⎜⎜⎜⎝
p
q
b

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝
Dx
Dy

R

⎞⎟⎟⎟⎟⎟⎟⎠z+ ε′, (5.15)

where ε′ = (εT ,0T )T denotes the augmented error terms. The covariance of
the augmented noise, σ2Γε′ε′ , is identical to the original noise covariance
matrix, σ2Γεε, except for the addition of zero terms corresponding to vari-
ance and covariances belonging to the constraints:

Γε′ε′ =
[
Γεε 0
0 0

]
. (5.16)

Constraining background or boundary pixels to zero height implicity
assumes that the border regions of the object shape are also at zero height.
However, the object may be raised from the supporting surface by shape
features not visible from the camera viewpoint. The height of the object
border relative to the supporting surface may not be uniform. As a result,
border regions may posses differing relative depths from one another. As a
result, it is important to note that constraining background pixels to zero
may introduce errors in the estimated depth values of the border regions of
the object.

Since (5.15) is a generalized least-squares problem, for small-scale depth
maps, the dense GQR technique offers an excellent method in which to
solve the overdetermined system. However, as mentioned in Sec. 2.3, there
is no appropriate sparse and large-scale version of GQR. Until such an
scheme is developed, alternative solutions must be used. Using the normal
equations to solve the overdetermined system provides such an alternative.
Returning to the original least-squares system in (5.13), which is not yet
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augmented by the constraints, the normal equations for surface integration
are:

(
DT

x DT
y

)
Γ−1εε

(
p
q

)
=

(
DT

x DT
y

)
Γ−1εε

(
Dx
Dy

)
ẑ. (5.17)

Note that (5.17) formulates a system of equations solving for the ML pa-
rameter estimate, ẑ. As such, it does not describe the generative model;
thus, there are no additive noise terms in the formulation.

As noise cross-correlation is confined to p and q terms sharing the same
pixel locations, the noise covariance matrix is tridiagonal, meaning that the
product of its inverse with another sparse matrix is easily computable [54]
and will remain sparse. While (5.17) offers a convenient formulation of
the normal equations, it can be simplified further. As Appendix B demon-
strates, by assuming periodicity the transposes in (5.17) can be dropped,
simplifying the expression to:

(
Dx Dy

)
Γ−1εε

(
p
q

)
=

(
Dx Dy

)
Γ−1εε

(
Dx
Dy

)
ẑ. (5.18)

In an algebraic sense, Γ−1εε corresponds to a weighting scheme, conform-
ing with Agrawal et al’s treatment of noise reduction based on heuristic
weighting schemes [45]. In their work, Agrawal et al favoured a weighting
scheme stemming from the anisotropic diffusion (AD) approach to image
restoration [45]. This approach lacks theoretical justification. Moreover,
while anisotropic diffusion has demonstrable benefits in image restoration,
it is unclear whether it is an appropriate tactic for use in surface integration
as the nonlinear effects of image noise on gradients are not considered. The
other heuristic approaches developed in [45] suffer from similar issues.

Since the system in (5.18) is not fully-ranked, the constraints in (5.14)
must be incorporated. But, unlike the regression model of (5.13), (5.18)
represents a fully-determined system of equations, each corresponding to
one particular element or location in the parameter estimate ẑ. In addition
to these equations, the constraint matrix R also supplies its own equations,
restricting certain z locations to certain values in b. To incorporate these
constraints, equations in (5.18) corresponding to constrained ẑ locations
should simply be replaced by their respective constraint equations in (5.14),
e.g. at the boundary.

With the constraints incorporated, (5.18) presents an ML scheme for es-
timating the surface. Entitled ML Surface Estimation, the accuracy of the
formulation depends in part on the finite-differencing scheme used. How-
ever, more accurate finite-differencing reduces the system sparsity, thereby
increasing computational complexity and memory requirements. Thus, the
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cost and benefits of increasing accuracy must be considered when decid-
ing on the differencing scheme. For the purposes of this dissertation, the
ML Surface Estimation method employs centered-differencing with second-
order accuracy:

Zx(x,y) =
Z(x +1,y)−Z(x − 1,y)

2
, (5.19)

Zy(x,y) =
Z(x,y +1)−Z(x,y − 1)

2
. (5.20)

Centered-differencing schemes are denoted Dc
x and Dc

y for the x and y di-
rections respectively.

5.2.2 Modified Maximum Likelihood Estimation

While ML Surface Estimation provides a powerful scheme for surface inte-
gration, it is an estimation based on finite-differencing approximations to
partial derivatives. The effects of finite-differencing are sometimes subtle.
For instance, consider the normal equations of (5.18) under the presence of
IID gradient noise, the implicit assumption of earlier works [68–70]. As IID
noise reduces Γ−1εε to an identity matrix, (5.18) simplifies to:

Dc
xp+Dc

yq = (Dc
x
2 +Dc

y
2)ẑ. (5.21)

Since (Dc
x
2 + Dc

y
2) is a discrete approximation to the Laplacian operator,

(5.21) is simply a discrete approximation to the following continuous Pois-
son equation:

div(p,q) = ∇2z, (5.22)

where ∇2 and div(., .) denote the divergence and Laplacian operator respec-
tively:

div(p,q) =
∂p
∂x

+
∂q
∂y

, (5.23)

∇2z = ∂z2

∂2x
+
∂z2

∂2y
. (5.24)

Several other authors have arrived at the same formula as (5.22), but
they approach the problem using variational calculus to minimize a con-
tinuous energy functional analogue of the least-squares cost [44,45,68,70].
In fact, when gradient noise is IID, or when noise is simply not accounted
for, (5.22) corresponds to the Euler-Lagrange equation describing the condi-
tions by which the continuous least-squares functional is minimized (please
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see Agrawal et al for an excellent derivation [45]). As well, Agrawal et al [45]
demonstrated the basic equivalence between the variational approach of
shape integration, and that of approaches using some type of orthogonal
basis, such as [43, 69, 72]. However, the correspondence between direct
least-squares minimization and the variational approach has never been
sufficiently demonstrated.

Unfortunately, by employing (Dc
x
2 +Dc

y
2) to represent the Laplacian, the

normal equations using direct least-squares minimization results in a sec-
ond derivative approximation spanning twice the step size. This produces
the following filter:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0.25 0 0
0 0 0 0 0

0.25 0 −1 0 0.25
0 0 0 0 0
0 0 0.25 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.25)

Consequently, replacing (Dc
x
2 +Dc

y
2) with a superior finite-differencing

scheme will produce a better approximation of the continuous Poisson equa-
tion of (5.22). For example, an alternative is to construct a finite differenc-
ing scheme off of the following popular filter mask:

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0
1 −4 1
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.26)

Written formally, this alternative formulation can be expressed as:

Dc
xp+Dc

yq = (Dc
2x +Dc

2y)ẑ, (5.27)

where (Dc
2x +Dc

2y) represents the sparse Laplacian operator using the finite

differencing scheme in (5.26). Since replacing (Dc
x
2 +Dc

y
2) with (Dc

2x +Dc
2y)

only modifies the right-hand side of the normal equations, (5.27) must be
formulated explicitly, meaning that the system is no longer strictly equiva-
lent to the original linear regression system in (5.13).

Yet, when noise is not IID, the normal equations present a more compli-
cated expression:

(
Dc

x Dc
y

)
Γ−1εε

(
p
q

)
=

(
Dc

x Dc
y

)
Γ−1εε

(
Dc

x
Dc

y

)
ẑ. (5.28)

The inclusion of Γ−1εε prevents trivial substitutions of more accurate sec-
ond derivative finite-differencing schemes into the right-hand side of (5.28).
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One approach abandons centered-differencing completely, and simply uses
forward-differencing in the original linear regression model of (5.13):

(
p
q

)
=

⎛⎜⎜⎜⎜⎝ Df
x

Df
y

⎞⎟⎟⎟⎟⎠z+ ε. (5.29)

where Df
(.) denotes forward finite-differencing. As Appendix B demon-

strates, if ones assumes periodicity in the surface, (Df
(.))

T = −Db
(.), where Db

(.)
denotes backward finite-differencing. This reduces the normal equations
derived from (5.29) to a mixture of forward and backward-differencing
schemes:

(
Db

x Db
y

)
Γ−1εε

(
p
q

)
=

(
Db

x Db
y

)
Γ−1εε

⎛⎜⎜⎜⎜⎝ Df
x

Df
y

⎞⎟⎟⎟⎟⎠ ẑ. (5.30)

Although not justified this way, this result is equivalent to the approach
used by Agrawal et al in their heuristic-based weighting [45]. The appeal of
(5.30) lies in that should gradient noise be IID, the formulation reduces to:

Db
xp+Db

yq = (Dc
2x +Dc

2y)ẑ, (5.31)

which incorporates the desired finite-differencing form of the second deriva-
tive operator. This result follows from the well-known fact that efficient
centered-difference approximations to second derivatives are equal to the
successive application of forward and backward approximations to first
derivatives [73].

Similarly, substituting backward-differencing instead of forward-differ-
encing into (5.29) results in an equally valid set of normal equations:

(
Df

x Df
y

)
Γ−1εε

(
p
q

)
=

(
Df

x Df
y

)
Γ−1εε

(
Db

x

Db
y

)
ẑ. (5.32)

Unfortunately, weighting schemes (5.30) and (5.32) use an undesirable
differencing scheme in their left-hand sides, namely backward-differencing
or forward-differencing, which leads to the discrepancy between (5.27) and
(5.31). To realize centered-differencing on the left-hand side of (5.31) one
cannot simply replace Df

(.) or D
b
(.) by Dc

(.) on the left-hand side of (5.30) or
(5.32) as that will break the symmetry in the manner in which weights are
treated on both sides of the equation. Fortunately, a solution exists to this
problem.

A useful way to view centered-differencing is as an average of forward
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and backward differencing. Written formally, this is expressed as:

Dc
x =

Df
x +Db

x

2
, (5.33)

Dc
y =

Df
y +Db

y

2
. (5.34)

Using this concept, instead of averaging at the outset, one can execute aver-
aging after the two respective normal equations produced by forward and
backward-differencing have been formulated. The benefit of averaging the
two normal equations of (5.30) and (5.32) together is that it constructs a
centered-difference scheme on the left-hand side of the equation. This re-
sults in the following set of equations:

(
Dc

x Dc
y

)
Γ−1εε

(
p
q

)
=
1
2

⎡⎢⎢⎢⎢⎣( Df
x Df

y

)
Γ−1εε

(
Db

x

Db
y

)
+
(
Db

x Db
y

)
Γ−1εε

⎛⎜⎜⎜⎜⎝ Df
x

Df
y

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ ẑ.

(5.35)

When gradient noise is IID, (5.35) reduces to the desirable formulation of
(5.27), which incorporates a Poisson equation using centered-differencing
on the left-hand side of the system.

The system of equations in (5.35) forms the core of an alternative in-
tegration scheme entitled Modified-ML Surface Estimation. As with ML
Surface Estimation, in order to produce a solution, constraints must be in-
corporated into (5.35). The benefits of using Modified-ML Estimation over
the original ML Estimation scheme depend in a large part on the severity
of errors arising from using (Dc

x
2 +Dc

y
2) to approximate the Laplacian op-

erator. As a general rule, smaller-scale depth maps will suffer more from
approximation errors than large-scale depth maps.

5.3 Experiments

Several experiments were performed to observe the performance of the ML-
based methods compared to competing methods from the literature. All
experiments and tests were performed in the MATLAB environment.

5.3.1 Estimating Known Surfaces

Experiments tested the merits of ML Surface Estimation vs. Modified-ML
Surface Estimation, and also against the following leading surface integra-
tion methods:
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1. FC - The Frankot-Chellappa method [69], a classic method based
on using Fourier basis functions, often used as a base of compari-
son for other methods, e.g. in [45, 72]. These experiments use the
implementation provided by Agrawal et al in the code accompany-
ing [45].

2. Poisson - The direct solution to the unweighted Poisson equation
of (5.27), first implemented in [70] using discrete-cosine trans-
forms; however, these experiments use an implementation based
on sparse matrix algebra.

3. AD - The weighted Poisson formulation based on Anisotropic Dif-
fusion, which Agrawal et al showed is superior to FC, Poisson, and
on par if not better than other weighting schemes in reconstructing
test surfaces using images corrupted by noise [45].

Together, these alternative integration schemes are grouped together under
the term literature methods. All methods, except for FC, constrain bound-
ary pixels to the true surface values. As FC uses Fourier basis functions,
there is no clear way to incorporate spatial boundary constraints. However,
FC does require a constraint on the average surface height (the DC term
in Fourier space) [69]. The implementation used in these experiments con-
strains average surface values to 0.

Throughout this discussion three synthetic surfaces will serve to test
depth map extraction routines. Figs 5.1 illustrates the three surfaces along
with noiseless and noisy sample images. The Mozart depth map is a sur-
face commonly used in the literature, and was also used as a test surface
in [45]. The Shark depth map presents a more challenging surface, partic-
ularly at the fin regions whose thin and steep slopes are very susceptible to
image noise. Generating images for these two surfaces requires calculating
surface normals at each pixel value. Surface normal values were calculated
by first computing gradient values using centered-differencing approxima-
tions. The expression in (2.4) can then convert gradient values to surface
normals.

Although theMozart and Shark depthmaps are both interesting test sur-
faces, a problem with relying on finite-differencing to produce “true” sur-
face normal values is that these true values are approximations themselves.
As well, estimation schemes that incorporate the same finite-differencing
schemes in their formulation, such as ML Estimation, will have an unfair
advantage. For this reason, it is important to test depth maps with analy-
tical gradients. To fulfill this need, experiments also tested a third depth
map—a hyperbolic paraboloid (HP). The following simple function con-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.1: Synthetic surfaces and sample images. (a)-(c) the Mozart depth
map; (d)-(f) the Shark depth map; (g)-(i) the Hyperbolic-Paraboloid sur-
face. The first column displays the synthetic surfaces. The second and third
columns display sample images illuminated from an elevation of 30◦ and
from an azimuth angle of 90◦; however, the third column’s images are cor-
rupted by zero-mean Gaussian noise at 5% standard deviation.

structs an HP:

Z(x,y) =
x2

a2
− y2

b2
. (5.36)

Analytical derivatives, and hence normals, are easily computed at each
pixel location. These experiments used a value of 2 for both a and b, with
the origin resting in the middle of the image.

Images were generated directly from the depth maps using the image
formation equation of (2.1) with universal albedos of 0.7. Sequences were
illuminated using the same conditions as the computer-aided identification
system setup, meaning at angles of elevation of 30◦ and varying azimuth
angles ranging from 0◦ to 340◦ at increments of 20◦. As a result, each
sequence consisted of 18 separate images. Pixels corresponding to object
normals facing away from the light source were set to 0.
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To test the capabilities of each integration method under noisy condi-
tions, normally distributed error terms were added to the images. Standard
deviation values of the stochastic noise were either 0 (no noise), 0.1%, 0.3%,
0.5%, 1%, 2.5%, 5%, 7.5%, and 10% of the full scale, which is always 1
for this dataset. The noisy images were then used to estimate the gradient
fields, P and Q, and also their covariance using (5.8). These estimates then
served as input into the five surface integration methods. To gain a clear
picture of the stochastic performance of each method, this process was re-
peated 50 times for each noise level, where each iteration possessed its own
realization of the stochastic noise.

Similarity between the output of each integration method and the true
surface provides a measure of each scheme’s performance. Despite repre-
senting different types of information, the data in depth maps and images
are structured the same way. As a result, measures of image similarity are
equally appropriate to apply to depth maps. Removing the effects of both
scale and offset from influencing the result, correlation, as formulated in
Sec. 1.4.1.4, serves as an excellent similarity measure. Similarity scores
of each method under each noise level for each of the 50 iterations were
recorded.

Fig. 5.2 illustrates the median similarity scores, along with the first and
third quartiles, for each method when applied to the Mozart and Shark
depth maps. As the figure demonstrates, when no noise is present, the
ML method perfectly reconstructs both surfaces. Additionally, the meth-
ods from the literature all reconstruct a surface very close to the original
one. As well, while the Modified-ML reconstructs a surface very similar to
the true surfaces, its performance reconstructing the Mozart surface at low
noise levels is slightly worse than all other methods.

The addition of noise causes the similarity scores of the literature meth-
ods to rapidly fall off. Specifically, the Poisson and FC methods are particu-
larly susceptible to image noise, producing very low similarity scores rela-
tive to the other methods. The ADmethod suffered least of all the literature
methods. As both Poisson and FC integration are unweighted formulations,
the difference in results between the two unweighted formulations and the
AD method support Agrawal et al’s conclusion that using weights mitigates
noise effects [45]. Even so, AD exhibited considerable variability and strug-
gled to handle high noise levels. In contrast, similarity scores of the ML and
Modified-MLmethods are stable across all noise levels andmuch higher, in-
dicating that theML weighting scheme is more effective than Agrawal et al’s
heuristic weights. In fact, although there is variability, the ML-based meth-
ods are so stable that their quartile similarity scores are indistinguishable
from the median values in the graph.
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Figure 5.2: Mozart and Shark depth map similarity scores. (a) similarity
results for the Mozart depth map; (b) similarity results for the Shark depth
map. Both graphs display median scores with error bars representing the
first and third quartiles. For both depth maps, the ML Method provides
perfect reconstructions at 0% noise and almost perfect similarity results at
1% noise. As noise increases, the similarity scores of the ML and Modified-
ML begin to converge and remain high. In contrast, similarity scores of the
other methods fall off rapidly.

The effectiveness of theML andModified-MLmethods in handling noise
is also reflected in the visual quality of the reconstructions. As Figs. 5.3
and 5.4 illustrate, reconstructions using the literature methods are so cor-
rupted as to become essentially unusable at noise levels of 1% or higher.
On the other hand, both ML and Modified-ML are extraordinarily robust
to noise, producing excellent reconstruction results even in the presence of
10% noise. It should be noted that in Agrawal et al’s tests on the Mozart
surface in [45], the authors depicted superior visual results than Fig. 5.3 for
all three literature methods, even under the presence of considerable noise.
However, the experiments of this thesis were unable to replicate Agrawal et
al’s results.

Comparing the two ML-based methods for both the Mozart and Shark
surfaces, ML outperforms the Modified-ML at low noise levels. However,
at higher noise levels the two methods converge, with similarity scores ac-
tually favouring Modified-ML over ML. As well, while perhaps not visu-
ally apparent in the printouts of Figs. 5.3 and 5.4, the large-scale Mozart
and Shark ML surface estimates exhibit visually noticeable roughness at
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Noise σ 1% 5% 10%

FC

AD

ML

Modified-
ML

Figure 5.3: Mozart surface reconstructions. These results present typical
samples reconstructions of the Mozart test surface using images corrupted
by 1%, 5%, and 10% zero-mean Gaussian noise. Results of the FC, AD, ML,
and Modified-ML methods are displayed. Results for the Poisson method
are very similar to those of the FC method.

high noise-levels. This decline in the ML method’s performance can be at-
tributed to its relative weakness in approximating the Laplacian operator
vs. the Modified-ML method.

In fact, for smaller scale depth maps, the severity of these approxima-
tion errors are much greater. For instance, consider Fig. 5.5, which demon-
strates reconstruction results using a smaller-scale version of the Mozart
depth map. As the figure illustrates, at 5% and 10% noise levels, the ML
surface estimates are very rough and choppy, indicating that the lower ac-
curacy approximations inherent in the ML method have a more significant
impact for smaller scales.

100



Section 5.3: Experiments

Noise σ 1% 5% 10%

FC

AD

ML

Modified-
ML

Figure 5.4: Shark surface reconstructions. These results present typical
samples reconstructions of the Shark test surface using images corrupted by
1%, 5%, and 10% zero-mean Gaussian noise. Results of the ML, Modified-
ML, Frankot-Chellappa (FC), and AD methods are displayed. Results for
the Poisson method are very similar to those of the FC method.

While the Modified-ML method clearly outperforms the ML method at
high noise levels, the correlation results suggest that the ML method is
superior to the Modified-ML method at zero to low noise. However, the
true surface normals for both the Mozart and Shark depth maps were esti-
mated using the same centered-differencing scheme incorporated into the
ML method. As a result, when testing performance using the Mozart and
Shark depth maps, the ML method enjoys an unfair advantage over the
Modified-ML method. For this reason, it is instructive to consider the per-
formance of both methods on the HP surface, which permits analytical for-
mulations of its surface normals. Unlike the first two surfaces, the HP depth
map and its accompanying gradients provides appropriate conditions in
which to judge the merits of both ML-based methods with equal footing.
Fig. 5.6 graphs similarity scores of all of the tested integration schemes on
the HP surface.

As the figure demonstrates, at zero noise both the ML and Modified-
ML methods perfectly reconstruct the surface. This differs from the previ-
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Noise σ 1% 5% 10%

ML

Modified-
ML

Figure 5.5: Small-scale Mozart surface reconstructions. These results
present typical small-scale sample reconstructions of the Mozart test sur-
face using images corrupted by 1%, 5%, and 10% zero-mean Gaussian
noise. Results of the ML and Modified-ML methods are displayed.

ous surface results, where Modified-ML reconstruction could not match ML
Surface Estimation’s performance at zero to low noise. As the HP surface is a
second-order surface, and the finite-differencing schemes for both methods
are accurate to the same order, this is not surprising. When greater levels
of noise are introduced, both ML-based methods performed extremely well,
scoring very close to 1 at all noise levels.

Additionally, similar to the previous results, the Poisson and FC meth-
ods perform well at zero to low noise, but suffer greatly under the pres-
ence of higher image noise values. In contrast, the AD method scores well
across all noise levels. These similarity scores suggest that AD, ML, and
Modified-ML surface estimation share very similar performance. Yet as
Fig. 5.7 demonstrates, despite this apparent similarity, the quality of visual
results of these methods are quite different.

The poor visual quality of AD surface reconstruction is perhaps the most
immediate observation pulled from Fig. 5.7. As a result, despite its good
similarity scores and a good underlying idea, AD can be discounted be-
cause of problems with heuristic weighting. Comparing the two remaining
sets of example surfaces, the ML method reconstructs a much rougher sur-
face under the presence of noise. At higher noise levels, the roughness of
the ML surfaces is even more pronounced. Thus, as with the first two test
surfaces, Modified-ML provides superior reconstructions to ML estimation
at high noise levels. But, differing from the previous tests, Modified-ML
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Figure 5.6: Hyperbolic-paraboloid depth map similarity scores. ML and
Modified-ML methods provide perfect reconstructions at 0% noise and al-
most perfect similarity results at 1% noise. As noise increases, similarity
scores of the ML and Modified-ML remain close to 1, with the AD method
also exhibiting good correlation performance. In contrast, similarity scores
of the other methods fall off rapidly.

is as proficient as ML estimation at reconstructing the HP surface at zero
noise. In addition to demonstrating the importance of employing analyti-
cal surfaces in experimentation, these results justify choosing Modified-ML
over ML Surface Estimation.

5.3.2 Estimating Microfossil Surfaces

Although the Modified-ML technique proved very capable of reconstruct-
ing the synthetic surfaces, its abilities in reconstructing microfossil shapes
is also an important consideration. Ultimately, with a powerful enough re-
construction scheme, estimated microfossil surfaces can serve as template
representations and even taxonomic tools. Fig. 5.8 displays typical recon-
structions using Modified-ML Surface Estimation on the foram dataset.

Reconstruction successfully captured the broad and large-scale features
of the microfossils. However, finer details were lost. Additionally, the mor-
phology of the reconstructed shapes do not exhibit the sharp peaks and
other near-discontinuities of actual microfossil shapes. Although, the in-
tegration process is certainly responsible for part of this detail loss, it is
not the only factor preventing better reconstructions. For instance, latent
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Noise σ 1% 5% 10%

AD

ML

Modified-
ML

Figure 5.7: Hyperbolic-paraboloid reconstructions. These results present
typical reconstructions of the HP test surface using images corrupted by
1%, 5%, and 10% zero-mean Gaussian noise. Results of the ML, Modified
ML, and Diffusion methods are displayed.

misalignments not completely corrected by the image alignment routine in
Chapter 4 may explain some of this detail loss. Additionally, blurriness
due to limited depth of field resulting from microscope magnification also
hinder fine detail reconstruction. As well, violations of the photometric
stereo assumptions, including Lambertian reflectance, light source at infin-
ity, orthographic cameras, and no shadows would also be responsible for
reconstruction errors.

Nonetheless, the microfossil surface estimation results are encouraging
as they demonstrate that shape features can be extracted. Additionally
these results highlight areas of focus of future work, such as reconstructing
micro-features and near-discontinuities. With further work, it should be
feasible to provide highly detailed shape-based template representations.
Modified-ML Surface Estimation provides an important contribution to-
ward this goal.

5.4 Asymptotic Complexity

Executing either ML-based method requires constructing an expression for
the inverse of the large and sparse matrix Γεε. Yet, as correlation is con-
fined to only gradient values sharing the same pixel, Γ−1εε can also be viewed
as a weighting scheme for each pixel, where sets of weights are equiva-
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Surface reconstructions of microfossils. Illustrated in the first
two columns are images from typical samples in the foram dataset. Images
in both columns are illuminated from an elevation angle of 30◦, with angles
of azimuth of 90◦ and 270◦ respectively. The third column depicts surfaces
estimated using the Modified-ML method.

lent to elements from the 3 × 3 matrix Γ−1
β̂β̂
, whose values can be easily ob-

tained using (5.6). Such a computation executes in constant time for one
pixel. As a result, assuming images are n × n dimensions, the complexity
of computing weights is O(n2) for all pixels. Computation requirements of
the AD-based weights of Agrawal et al [45] possess equivalent complexity.
Assuming sparse matrix libraries are used, memory requirements are also
O(n2).

Whether weights are used or not, all methods except for FC, estimate z
using a large and sparse system of the form Ax = b, e.g. (5.18) or (5.35).
In addition to the fill factor of A, the memory and complexity bounds of
solving such a system depend on the sparsity pattern of the matrix and the
capabilities of the sparse library used. As both Γ−1εε and finite differencing
operators possess favourable sparsity patterns, A will also possess a useful
sparsity pattern. For instance, A will have 7 and 9 diagonals respectively
for Modified-ML andML Surface Estimation. For Agrawal et al’s AD surface
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estimation method, its sparsity pattern is identical to that of Modified-ML
estimation. On the other hand, solving the unweighted Poisson equation of
(5.27) produces a pentadiagonal system. For all cases, the memory use of A
is proportional to O(n2).

Efficiency of solving these cases depends on the sparse solver’s ability
to handle wide-banded symmetric systems. Assuming the complexity of
each case is asymptotically proportional to the number of nonzeros in the
system, solving each of the systems should take O(n2) time [54]. In reality,
actual complexity will depend on the narrowness of the matrix bandwidths,
the efficiency of the base sparse matrix operations, and the effectiveness
of the fill-reducing ordering used [74]. As many of the ordering methods
are heuristic in nature [74], complexity guarantees are difficult to provide.
However, whether or not the sparse system takes O(n2) time or longer to
solve, computing weights will not add to the asymptotic complexity of the
algorithms. In the case of the FC method, its complexity is equivalent to
that of the 2D Fast-Fourier Transform, which is O(n2log(n2)) [29].

In terms of execution times of the implementations used for experi-
mentation, all five methods scaled linearly with the total number of pix-
els. Unsurprisingly, the three weighted estimation techniques, AD, ML,
and Modified-ML executed slower than the unweighted methods. Out of
the three weighted techniques, AD executed noticeably faster than the ML
methods. However, the ML implementations computed weights by looping
through every pixel, whereas AD weights were computed using MATLAB
vectorization. Thus, the differences in computation times can be attributed
to the way in which the ML methods were programmed in MATLAB. As
this is a characteristic specific to MATLAB, these slower times do not reflect
differences in algorithmic complexity.

Comparing the two unweighted schemes, FC executed considerably
faster than the Poisson method. Limitations in current sparse methods used
to solve wide-banded systems are responsible for this difference. As direct
solvers of sparse symmetric systems continue to improve, execution times
of the Poisson, AD, and ML methods will continue to decrease.

5.5 Conclusion

While there are many existing surface reconstruction methods based on
photometric stereo, current formulations either fail to properly model the
effect of image noise or employ highly demanding nonlinear optimization
techniques. To fill this gap, this chapter describe methods using a combi-
nation of nonlinear and linear regression to provide ML surface estimates.

Likemany visual-surface reconstruction techniques, ML estimation con-
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sists of two main steps. The first step computes gradient estimates for every
pixel location. However, differing from the state-of-the art, the ML tech-
niques of this chapter model disturbances in gradient estimates as result-
ing from noise in image observations. Using nonlinear regression theory
and asymptotic approximation, gradient errors are modelled as following
a zero-mean Gaussian distribution that is correlated only amongst parame-
ters sharing the same pixel location.

With the stochastic nature of gradient estimates modelled, the second
step incorporated the estimates into a linear GLS formulation, producing
an ML estimate of the surface. Together, both steps comprise ML Surface
Estimation. However, due to inherent characteristics of finite-differencing
approximations to derivatives, the ML formulation incoporates an ineffec-
tive a discrete approximation to the Laplacian operator. As a result of these
approximation issues, ML Surface Estimation tends to produce rough and
choppy depth maps under the presence of noise. Mitigating this effect, ad-
justments to the ML formulation result in superior approximations to the
Laplacian. Entitled Modified-ML Surface Estimation, this formulation can
be implemented using normal equations.

When tested against noisy images, Modified-ML Surface Estimation
demonstrated excellent robustness to image noise. In fact, the technique
produced usable surfaces even under the presence of very high levels of
image noise. Contrasting these results, leading methods from the literature
were unable to handle image noise robustly and reconstructed unusable
surfaces under the presence of noise with 1% standard deviation or higher.

The Modified-ML method detailed in this chapter is the first visual-
surface reconstruction technique able to reliably handle image noise and
its propagation through all estimation steps in a readily computable way.
While other techniques, such as [41, 46], do treat image noise in a rigorous
ML manner, practical implementations are lacking or their applicability is
limited.

When executing Modified-ML estimation, modelling noise does not in-
troduce additional asymptomatic complexity. Thus, Modified-ML Surface
Estimation offers both an effective and efficient reconstruction scheme. As
noise is an unavoidable phenomena present in images from real cameras,
Modified-ML estimation represents a significant advancement in the state
of visual-surface reconstruction.

Although applicable in low-noise conditions, the benefits of Modified-
ML become particulary clear in situations involving high noise intensities.
Objects studied under a microscope, such as microfossils, provide a case in
point. Due to the optics of magnification, depth of field is often very limited
in microscopy. Decreasing the aperture is an approach that could be used
to offset this effect. However, this approach also decreases the amount of
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light transmitted to the image sensor, increasing the relative magnitude of
noise. As a result, the Modified-ML technique is particularly relevant to
visual-surface estimation of microfossil and other microscopic objects.

Finally, while the uniform zero-mean Gaussian assumption for image
noise is a well-accepted and frequently-used model, situations exist where
different noise distribution assumptions are more appropriate. In these
cases, ML estimates no longer correspond to least-squares computations.
Even so, although the covariance computations detailed in this chapter
would no longer be valid, the ML framework introduced is equally appli-
cable to alternative noise models. As work progresses on ML estimation
techniques for noise distributions outside that of the Gaussian model, e.g.
the work on least-absolute deviations applicable to Laplacian-distributed
noise [75], the practical scope of the framework provided here will continue
to expand.
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Conclusions

6.1 Summary

The continual advancement of the capabilities of computer engineering
and computer science do not only benefit a single or even small set of
fields. In actuality, computer engineering consistently offers new oppor-
tunities for collaboration with a diverse range of research fields. Automa-
tion represents a common trait of these collaborations and the field of mi-
cropalaeontology provides a perfect case in point. Micropalaeontological
work, in particular biostratigraphy, is crucial to many extraordinarily im-
portant enterprises—notably hydrocarbon exploration [3] and ongoing at-
tempts to further understanding of current and prehistoric climates [2].
Detailed taxonomic requirements characterize much of micropalaeontolog-
ical work, meaning that specimens must be classified and sorted. While
microfossil samples can be readily collected in immensely large volumes,
as evidenced by the work of the IODP, performing detailed identification
and sorting of specimens remains a significant challenge in the field. Tra-
ditionally these tasks are performed manually by trained specialists using
microscopes. The labour required is repetitive, tiring, and can also safely
be described as tedious.

These difficulties hinder effective analysis of large scale microfossil data-
sets. Moreover, the correlation between inconsistency in specialist classi-
fications and fatigue [9] introduces additional problems when identifying
large volumes of samples. Thus, as it stands now, microfossil identification
and sorting acts as a sort of bottleneck for many aspects of micropalaeon-
tological research. As it has done with other fields, computer engineering
has the potential to automate much of this micropalaeontological work. Fo-
cusing on the task of computerized identification of microfossils, this thesis
explored how the field of computer vision can aid in solving this problem.

The approach to computerized identification of microfossils pursued in
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this thesis differs from the state-of-the-art. Coined as computer-aided clas-
sification, the approach clusters specimens together based solely on visual
similarity, and not based on pre-existing taxonomic knowledge or training
sets. By presenting representative samples or templates from each cluster
to an expert for identification, the system effectively reduces the amount of
required classifications specialists need to make. As discrimination is based
only upon visual similarity, the choice of digital representation used in tem-
plate identification and automatic clustering plays an extremely important
role.

To evaluate the feasibility of this approach, the UA Electronic Imaging
Lab developed a preliminary computer-aided classifier, of which the author
was a contributor [24]. Image-based representations were used for both
templates and automatic clustering. Although the study demonstrated the
feasibility of computer-aided identification, higher performance is needed
for a practical classification aid. An important published contribution of
this thesis is the exploration of the effect of uncontrolled illumination on
classification performance. In the context of automatic clustering, these
limitations can be overcome by capturing multiple images of microfossils
under different light directions.

However, as experts are unable to identify microfossils through their
image-based representations, simply controlling for illumination on its own
does not address issues related to template representation. As experts are
unable to identify microfossils at the species level using images and have
trouble doing so at the genus level [31], template representations must
move beyond images. To increase template classification performance, al-
ternative digital representations must incorporate more information and
detail than images. Since the variation of shading and shadows across dif-
ferent light directions provide important indicators to an object’s 3D shape,
representations using and incorporating this information are a viable and
powerful alternative to images. Controlling for and manipulating illumi-
nation direction is key to unlocking this information. Since the light source
is fixed in typical microscope setups, including the one used for the the-
sis, controlling illumination necessitates the incorporation of a motorized
x-y-phi stage.

Amalgamating image sequences of the microfossil under differing light
directions into a video is an effective representation to present to experts.
By allowing experts to observe the effects of changing light direction, these
video-based representations reveal aspects of the microfossil’s 3Dmorphol-
ogy that are hidden using simple images.

While videos offer an improved representation than images, they are not
the only option. Where humans can intuitively gain understanding of 3D
morphology using light and reflectance, computer vision techniques can
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explicitly extract shaped-based representations. Specifically, photometric
stereo can compute values of the surface normals and albedos for every
pixel location. Using these surface normals, estimation techniques can con-
struct a visual surface. Allowing the manipulation of viewpoint and illu-
mination, 3D models offer potential to increase an expert’s confidence and
ability to reliably identify a specimen. Additionally, 3D models have aided
in the understanding of organisms other than microfossils [36,37], indicat-
ing that reliable 3D modelling could bring its own unique benefits to the
field of micropalaeontology.

The unpublished contributions of this thesis revolve around efforts to
employ these alternative template representations to computer-aided clas-
sification of microfossils. Computer vision plays a crucial role towards this
goal. First, incorporating video-based and shape-based representations into
a computer-aided classification scheme required key modifications to the
existing system setup. These advances to the equipment and methodology
of the existing computer-aided system comprise an important area of this
thesis’ contributions. Secondly, due to unavoidable inaccuracies in the mo-
torized stage, image sequences of specimens exhibit significant misalign-
ments. Corrupting both video and shape-based representations, these mis-
alignments were addressed through an ML estimation formulation entitled
photometric alignment. The third and final main contribution of this work
focuses on extracting shape-based representations for templates. Still con-
stituting an open problem, visual surface construction is a very active topic
of research. This thesis addresses the topic of surface construction from
normals under the presence of image noise using ML estimation. A discus-
sion of the results and significance of all three unpublished contributions
follow in the next three subsections.

6.1.1 Video and Shape-Based Representations

The preliminary computer-aided system described in [24] lacked the capa-
bilities to produce and employ video and shape-based template represen-
tations. As such, incorporating these alternative representations requires
significant modifications to the preliminary system. Controlling for illumi-
nation directions represents one of the most important extensions.

Satisfying the equipment requirements of such a goal, an x-y-phi motor-
ized stage was incorporated into the system. Enhancements to the existing
C++ image capture program, developed during the course of the prelimi-
nary system, enabled the control and manipulation of stage position. These
advancements allowed the development of an automatic scheme in which
to localize and image large batches of specimens at once.

Datasets captured with the extended system consist of sequences of im-
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ages captured at successive azimuthal angles of illumination. As the light
source remains fixed with respect to specimens’ principal axes, manipulat-
ing light direction required rotating the physical particle under view and
canonizing the resulting images. As the rotational element of the stage
mounts above the linear elements, rotating the specimen also involves trans-
lation. Unfortunately, as the stage is not 100% accurate, the expected and
actual locations of particles do not coincide. To mitigate these errors, par-
ticles were centered in the field of view using silhouette centroid calcula-
tions. However, despite this additional fine-tuning, discrepancies in the
silhouettes introduced latent misalignments within image sequences. This
problem impacts both video and shaped-based representations. Solving
this problem required developing an image alignment routine based on ML
estimation and photometric stereo. Described in Chapter 4, the alignment
routine performs its corrections prior to any data analysis.

Apart from enhancing the system to support video and shape-based
representations, extensions also included employing a faster and slightly
more accurate clustering algorithm than the preliminary system’s. In addi-
tion, as the online wiki serves as the desired channel to provide templates to
experts, improvements made to the wiki to display videos instead of images
constitutes another significant system extension. Further work is required
to support online dissemination of shape-based representations.

With the system’s capabilities extended, a dataset comprised of 500
foram specimens was collected. The dataset includes 18 images of each
specimen, all illuminated at an angle of elevation of 30◦ and with azimuth
angles increasing by increments of 20◦. Using this dataset, methods from
Chapter 5 extracted shape-based representations. When applied to the
foram dataset, visual surfaces accounted for 74% of image variability. The
26% shortfall indicates that non-Lambertian illumination effects and infor-
mation loss in estimating surfaces from weighted normals significantly af-
fect the capabilities of shape-based representations to represent microfossil
morphology.

To overcome this limitation, the chapter introduced a modification to
the shape-based representations that applies texture maps based on video
frames. Providing an identical representation to that of videos when the vi-
sual surface is viewed from above, the texture-mapped shape-based repre-
sentations nonetheless allow experts to view microfossils at modest de-
viations from the camera viewpoint. A benefit of these texture-mapped
surfaces is that they lead to the promising of producing anaglyph videos.
Representations of this sort are useful, as anaglyph videos represent a shape-
based representation that can provide a similar set of information as texture-
mapped surfaces without any additional rendering requirements on the
part of the online wiki. In addition, by providing insight into 3D geom-
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etry at a viewpoint straight above the microfossil, there is no need to view
anaglyphs from different elevations. Thus, anaglyphs avoid the detail loss
associated with texture-mapped shapes.

Supporting video and shape-based representations constitutes a signifi-
cant departure from the state of the art of microfossil identification. Free-
ing computerized-classification from the inherent limitations of images, the
ramifications of such an approach are potentially far-reaching. Represent-
ing another long-lasting contribution, the system extensions effected dur-
ing the course of this thesis enables the collection of extraordinarily useful
and rich datasets. As work on shape-based microfossil representations ad-
vances, the data collection techniques developed during this dissertation
will continue to provide the requisite datasets.

6.1.2 Image Alignment Using Photometric Stereo

A key assumption of photometric stereo is a perfect correspondence be-
tween all images in the sequence. Normally, this is a trivial condition to
satisfy, as typical image capture scenarios for photometric stereo fix the
camera and object and manipulate the illumination direction. Nonetheless,
situations do arise where perfect correspondence can no longer be guaran-
teed. In certain cases, system setups, like the one used in this thesis, are
characterized by a fixed light direction; as a result, objects must be rotated
to produce changing illumination conditions. These differences are enough
to cause significant misalignments in the microfossil dataset collected dur-
ing the course of this thesis.

Current alignment techniques are generally categorized into intensity
or silhouette-based methods. Unfortunately, neither of these approaches
are appropriate for image sets illuminated by different lighting conditions
between images. Nonetheless, intensity-based alignment methods do pos-
sess key benefits; namely, they can be evaluated against a meaningful error
metric. Additionally, such an error metric can often be considered as some
form of function, providing a surface (albeit nonlinear) in which to search
for image shifts. Taking these considerations in stride, a Lambertian gener-
ative model of image formation enables the use of image intensities when
aligning photometric images. This is called photometric alignment.

By incorporating a model of image formation, photometric alignment
simultaneously estimating the best weighted-normals and corrective shifts
of the object images. However, weighted normals depend on the current
shift estimates, meaning that in practice photometric alignment only need
minimize a nonlinear function based on image shifts. As image noise is
modelled as following a zero-mean IID Gaussian distribution, minimizing
the sum-squared error of the nonlinear function is equivalent to determin-
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ing the ML estimate. Representing a key added benefit, an implicit goal of
photometric alignment is determining the corrective shifts producing the
best set of weighted normals.

Several experiments were performed tomeasure photometric alignment’s
accuracy and reliability. Using artificially generated shifts, experiments de-
termined that the performance of photometric alignment does not depend
on a specific minimization method. Additionally, experiments also demon-
strated that photometric alignment can successfully correct for much of
the latent error within centroid-aligned images. Photometric-aligned im-
age sequences also produce superior visual surface results, qualitatively il-
lustrating the routine’s benefits. These benefits were further demonstrated
by applying photometric alignment to centroid-aligned image sequences
in the microfossil dataset. After aligning all 500 image sequences, photo-
metric alignment significantly improved agreement between the image sets
and their reconstructed counterparts, providing an over 40% reduction in
sum-squared error. These results demonstrate the worth of photometric
alignment as a crucial component of the computer-aided microfossil classi-
fication system.

While image misalignment is an identified problem with the microfossil
image capture system, the scope of the problem is certainly not constrained
to this sole system or even application. During the course of researching
potential motorized stages to purchase, it was found that most motorized
stages place the rotational element on top of the translational elements,
forcing a change to a particle’s horizontal and vertical placement during a
rotation. As a result, the equipment used for the computer-aided system are
typical of most microscope setups. Moreover, photometric image misalign-
ment can crop up in any situation outside of microscopy where a particle
must be rotated instead of the light source.

6.1.3 Maximum Likelihood Surface Estimation

Constructing a surface or depth map from videos has the potential to pro-
vide extraordinarily beneficial visual representations. An accurate 3Dmodel
could provide a powerful digital template representation to present to users.
Additionally, 3Dmodels could also act as useful teaching and analysis tools.
Although many popular visual-surface reconstruction methods date back
from over 20 years ago [68, 69], efforts are ongoing to continue to improve
integration methods. Dealing with image noise is one issue that many inte-
gration methods in recent years have focused on [41–46].

However, the state-of-art either fails to incorporate a correct model of
image noise and its propagation through all steps of the integration pro-
cess [44,45], is only valid in limited circumstances [46], or employs nonlin-
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ear optimization techniques that have great difficulty in converging [41,42].
The work of this thesis differs from previous efforts by both employing ML
estimation in all steps of the process and retaining the linear step of inte-
grating gradients into visual surfaces.

First, the method applies asymptotic nonlinear regression principals to
estimate the behaviour of the gradient fields, obtaining an ML estimate of
the gradients and their errors. With a model of the stochastic behaviour
of gradients in hand, estimating the surface from the gradients is kept to a
generalized linear least-squares regression problem.

Using finite-difference versions of the derivative operators, estimating
the surface from the gradients involves a large and sparse linear system
with constraints. Entitled ML Surface Estimation, the method proved ex-
tremely robust to image noise, reconstructing good results even in the pres-
ence of significant amounts of noise. However, the results suffer from rough-
ness or choppiness under the presence of noise, affecting visual quality. The
source of this problem lies with the discrete version of differentiation used
in the system. If one assumes periodicity in the surface and IID noise in
gradient fields, the normal equations incorporate a Laplacian operator. Un-
fortunately, the finite-differencing approximation of the Laplacian used by
ML Surface Estimation fails to offer sufficient accuracy.

This problem can be solved through a reasoned combination of forward
and backward finite-differencing schemes. Denoted Modified-ML Surface
Estimation, this method uses a more accurate approximation to the Lapla-
cian operator. As a result, surfaces produced by Modified-ML estimation
suffer from none of the roughness issues of ML estimation and exhibit an
equal amount of robustness to image noise.

Serving as a means to incorporate noise modelling into surface inte-
gration, the surface reconstruction techniques developed during this the-
sis demonstrate the power of modelling noise and applying ML estimation
to a problem. As noise is an unavoidable feature of images, ML serves
a very important role for any application using images as observations.
Visual-surface reconstruction is certainly one of these applications, and the
Modified-ML estimation technique developed during this thesis serves as a
powerful and effective means to handle image noise.

6.2 Future Work

To be an effective means of microfossil identification, computer-aided clas-
sification must be freed from the limitations inherent in images. Applying
computer vision to computer-aided classification is a potent means to ac-
complish this goal. The work performed during this thesis explored several

115



Chapter 6: Conclusions

facets regarding how to best employ computer vision as a key aspect in
classification tasks. The incorporation of video and shape-based template
representations, the development of an alignment technique using photo-
metric stereo, and the development of an ML surface estimation technique
all constitute significant advancements to the field of computer-aided clas-
sification.

An important future goal is to measure the impact on classification per-
formance that these enhancements provide. Measuring performance re-
quires a fully classified dataset—a task whose difficulties motivate work on
computerized identification in the first place. Consequently, obtaining re-
sults relating to the accuracy and reliability of the extended computer-aided
system is challenging. For this reason, the UA Electronic Imaging Lab is
currently increasing its capabilities to perform in-house manual classifica-
tions. It is expected that the microfossil dataset described in this thesis will
be fully classified by late summer 2010. Additionally, the work done so far
has garnered interest from the Natural History Museum in London, Eng-
land, currently possessing one of the most impressive repositories of flora
and fauna spanning the globe, including microfossils. As well, an ongoing
project at the UA Electronic Imaging Lab is currently exploring means of
dataset classification that do not completely depend on the full participa-
tion of micropalaeontologists or trained experts.

As a result, the most immediate feature of future work to pursue is
to fully classify the foram dataset collected during this thesis. While it
is expected that the extensions to the computer-aided system will signifi-
cantly increase performance, improvements to the system can easily be en-
visioned, especially for a prototypical implementation such as this one. The
sections below focus on these areas of improvement.

6.2.1 Video and Shape-Based Representations

Since errors in template identification were such a major source of error
in [24], measuring the improvements in template identification is an impor-
tant first task once a fully classified microfossil dataset is obtained. In addi-
tion, the performance benefits of controlling for illumination for automatic
clustering must be evaluated. It is anticipated that the combination of con-
trolled illumination and alternative template representations will increase
classification performance, possibly even at the species level. Analysing
performance will also help uncover priorities for further improvements.

Providing control of elevation angle represents one possible improve-
ment to the system. As the current system is restricted to an illumination
elevation angle of 30◦, observations of object reflectance are limited to one
elevation angle. Should more sophisticated reflectance models be incorpo-
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rated into shape extraction methods, a varied set of elevation angles will
prove crucial in performing visual-surface estimation. Additionally, a set
of elevation angles would also increase the possible light directions avail-
able to the texture-mapped visual surfaces.

In addition to increasing available illumination angles, the online wiki
is another area that would benefit from further work. Although the wiki
can currently support video-based representations, presenting shape-based
representations of microfossils would provide even greater advantages.
When implemented in an open manner and providing data access to all in-
terested parties, tools like the online wiki have the potential to act as useful
means of education, analysis, and collaboration. The incorporation of 3D
models into the wiki, with the option to manipulate viewpoint and lighting,
would only magnify such benefits.

Apart from further work on templates, employing shape-based repre-
sentations for automatic clustering constitute another significant aspect of
future work. Currently, automatic clustering uses similarity matrices based
on median image correlation scores between pairs of specimens. However,
images only depict information from one lighting direction. On the other
hand, shape-based representations can serve in principle as a basis for all
available illumination conditions. In particular, as weighted normals ac-
counted for 89% of image variability, they may provide a superior repre-
sentation in which to measure similarity. However, doing so involves mea-
suring similarity between vector fields, a task requiring further work.

6.2.2 Image Alignment Using Photometric Stereo

The alignment technique developed as part of the system extension proved
successful in correcting for horizontal and vertical discrepancies between
photometric stereo images. However, as the problem involved the mini-
mization of a nonlinear function, performance depends in part on the min-
imization algorithm used. This thesis tested four relatively standard rou-
tines, QN, CG, SCG, and Levenberg-Marquart, with CG prevailing over the
other two options. Alternative minimization schemes besides those three
may produce better results.

Exploring the resolution of misalignments outside of horizontal and ver-
tical shifts is another promising and challenging aspect of future work.
These may include rotational, affine, and even perspective shifts. The latter
two may even be used to approximate any real-world object misalignments,
provided their magnitude does not significantly alter the viewpoints. For
example, they could model minor variations in the real-world positions
of the object and/or camera across all images in the sequence. In these
cases the Jacobians needed for alignment could be very similar to the affine
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and perspective warps derived in [76]. However, unlike translational mis-
alignments, an update to light direction in the image formation equation
must accompany rotational, affine, and perspective warps. As well, sim-
ple change of variables would no longer suffice to alternate between object
and image shifts, making it unclear on how to best retain an ML estimation
formulation.

The alternation between object and image shifts also leads to additional
aspects of future work. In an effort to retain simplicity, when changing
variables to formulate the problem using image shifts, noise was assumed
to be zero-mean IID Gaussian terms at all continuous locations—an assump-
tion not supported by the primarily discrete nature of image noise. Mod-
elling noise more accurately would involve incorporating the interpola-
tion method used to estimate image values at continuous locations. Most
likely, this would mean modelling noise as a weighted sum of IID Gaus-
sian error terms. This would couple noise values at all locations together
through some sparse structure. As a result, ML estimates of weighted nor-
mals would require solving a large and sparse GLS system simultaneously
for all pixel locations.

Yet, this coupling means that solving the GLS problem using current
sparse solver techniques would quickly become intractable for typical com-
puters. This also affects the nonlinear step of image shift estimation, as the
problem would have to be transformed from a nonlinear GLS formulation
to an OLS one using the same covariance matrix. Increasing the capabilities
of sparse linear algebra routines so that they can handle GLS problems with
coupled covariance matrices would alleviate these problems. Developing a
sparse GQR technique may be the best direction to take for this goal. Even
more importantly, a fast and reliable sparse GQR routine would benefit in-
numerable applications outside that of the image misalignment problem.

6.2.3 Maximum Likelihood Surface Estimation

Even though weighted normals accounted for close to 90% of image vari-
ability, there is significant room for improvement. For instance, the model
of image information used in this dissertation can easily break down in the
presence of non-Lambertian reflectance. More advanced methods of nor-
mal estimation should be explored, such as using more sophisticated [77] or
even non-parametric [78] models of reflectance. However, doing so means
abandoning the convenient linear model of image formation and the ac-
companying convenient means to model statistical behaviour of weighted-
normal estimates.

Assuming no shadows in the image represents another key limitation of
classic photometric stereo. Although this thesis used a simple heuristic to
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identify shadows, this approach is certainly not without flaws. For instance,
it does not take into account whether the residual error is reduced. As well,
the probability of a pixel being shadowed should increase if its neighbours
are also shadowed. However, the complexity of considering these issues
drastically increases with the number of different viewpoints. Despite these
practical issues, the application of shadowed pixel identification methods
taking these issues into account, such as [79], should be investigated.

Yet, irrespective of the generative model, using least squares to esti-
mate normals will always produce an ML estimate provided image noise is
comprised of zero-mean IID Gaussian additive terms. While normally dis-
tributed noise is certainly a mathematically convenient and well-accepted
assumption in image processing, arguments exist for alternative paramet-
ric models of noise [43]. Additionally, additive noise terms fail to take into
account other possible distortions, such as camera blur.

While these considerations motivate incorporating different or evenmore
sophisticated noise models into the image formation equation, doing so in-
troduces difficulties in performing ML estimation, as it may no longer be
equivalent to least squares. One possible avenue to explore is applying ro-
bust statistics [80] to surface normal estimation. By assuming an underly-
ing parametric model to the data, but with the tacit acknowledgement that
the model is not an exact abstraction, robust statistics may offer a means to
continue using a Gaussian distribution to model the errors along with all
the accompanying mathematical niceties.

Alternatively, situations where image noise is modelled as following
longer-tailed distributions are better handled through solving least-absolute
deviations [81]. As well, least-absolute deviations produces theML estimate
for Laplacian distributed noise terms [75]. These cases may provide an in-
teresting avenue for future work.

In addition to properly modelling image noise and weighted-normal be-
haviour, the stochastic characteristics of the gradient estimates are another
crucial factor in obtaining an accurate 3D model. Since the p and q gra-
dients are both ratios of surface normal components, their estimation is a
nonlinear formulation. As a result, for small samples sizes, stochastic be-
haviour of the estimates is heavily influenced by the nonlinear characteris-
tics of the model function [48]. To avoid this problem, this thesis modelled
estimated gradients using asymptotic limits.

In general, a sample size of 18 light directions will not be large enough
to allow estimates to reach these asymptotic limits. Consequently, asymp-
totic variance will generally be smaller than the actual variance and the
estimator will also be biased [48, 50]. However, estimates of the curvature
of the model at specific values of β̂ can lead to estimates of the bias and true
variance [48]. Despite the time consuming nature of this task, curvature
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analysis should be considered for future work.
Alternatively, as gradients consist of a ratio of two normally distributed

terms (assuming Gaussian IID image noise), methods explicitly modelling
this ratio may also prove useful. For instance, Kuparinen describes specific
physical conditions where gradient behaviour can be approximated as nor-
mally distributed [46]. As well, general conclusions, such as those of Hayya
et al [82], related to ratios of this type can provide additional insight into
gradient parameter estimation and behaviour.

Although the surface integration routine developed during the course
of this thesis successfully integrates image noise into its formulation, it still
suffers from information loss relative to the weighted normals. While the
least-squares technique used to estimate surfaces in photometric stereo is
globally accurate, many local features are lost during the integration [83].
While potentially affecting any application, this poses a particular prob-
lem in modelling microfossils, as local features and texture often constitute
strong identifying features [35]. This detail loss is evidenced by the 74%
reconstruction rate of visual surfaces vs. the 89% rate of weighted normals
in the context of the foram dataset.

One potential way to solve this problem is to estimate surface values
directly from images intensities, mitigating the detail loss from perform-
ing two separate least-squares estimation steps. As discussed in Chapter 5,
techniques developed by Noakes et al already attempt this [41, 42]. How-
ever, their work has yet to develop a practical implementation. Another
option is to initially estimate a surface using integration methods, such as
the one developed in this thesis, and then later refine the surface to include
finer details. For instance, one can first perform surface estimation from
photometric stereo, and then apply shape-from-shading techniques onto
the depth map [83]. Alternatively, one can perform bundle adjustment, a
method general enough to encompass many topics in computer vision [84].
Regardless of the manner in which the surface is refined, these and other
methods should be a priority in any future work hoping to use depth maps
as visual tools for microfossil identification and learning. As a final note,
the issues addressed here regarding loss of fine detail are applicable to al-
most any textured object. Resolving these issues then are of significant
importance on their own merits, and should be a priority for the field of
visual-surface reconstruction in general.
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Gil, “Do experts make mistakes? a comparison of human and machine

identification of dinoflagellates,” Marine Ecology Progress Series, vol.
247, pp. 17–25, February 2003.

[10] G. Bernard Munsch, Ed., Second Conference on Scientific Ocean Drilling
(COSOD II), Strasbourg, France, 1987. Joint Oceanographic Institu-

tions for Deep Earth Sampling, European Science Foundation.

[11] D.R. Brough and I.F. Alexander, “The fossil expert,” Expert Systems,
vol. 3, no. 2, pp. 76–83, 1986.

[12] W. R. Riedel, “Identify: a prolog program to help identify fossils,”

Comput. Geosci., vol. 15, no. 5, pp. 809–823, 1989.

[13] S. Liu, M. Thonnat, and M. Berthod, “Automatic classification of

planktonic foraminifera by a knowledge-based system,” Artificial In-
telligence for Applications, 1994., Proceedings of the Tenth Conference on,
pp. 358–364, 1-4 Mar 1994.

[14] S. Yu, P. Saint-Marc, M. Thonnat, and M. Berthod, “Feasibility study of

automatic identification of planktic foraminifera by computer vision,”

The Journal of Foraminiferal Research, vol. 26, no. 2, pp. 113–123, 1996.

[15] D. Dollfus and L. Beaufort, “Fat neural network for recognition of

position-normalised objects,” Neural Netw., vol. 12, no. 3, pp. 553–
560, 1999.

[16] L. Beaufort and D. Dollfus, “Automatic recognition of coccoliths by

dynamical neural networks,” Marine Micropaleontology, vol. 51, no.
1-2, pp. 57–73, 2004.

[17] Lionel Tarassenko, Guide to Neural Computing Applications, JohnWiley

and Sons, Inc., New York, NY, USA, 1998.

[18] Jrg Bollmann, Patrick S. Quinn, Miguel Vela, Bernhard Brabec,

Siegfried Brechner, Mara Y. Corts, Heinz Hilbrecht, Daniela N.

Schmidt, Ralf Schiebel, and Hans R. Thierstein, Image Analysis, Sed-

122



BIBLIOGRAPHY

iments and Paleoenvironments, vol. 7 of Developments in Paleoenviron-
mental Research, chapter Automated Particle Analysis: Calcareous Mi-

crofossils, pp. 229–252, Springer Netherlands, 2005.

[19] Martin A. Buzas and Stephen J. Culver, “Species diversity and disper-

sal of benthic foraminifera,” BioScience, vol. 41, no. 7, pp. 483–489,
1991.

[20] Frank Eric Round, R. M. Crawford, and D. G. Mann, Diatoms: biology
and morphology of the genera, Cambridge University Press, 1990.

[21] John W. Murray, “Biodiversity of living benthic foraminifera: How

many species are there?,” Marine Micropaleontology, vol. 64, no. 3-4,
pp. 163–176, 2007.

[22] Eugene F. Stoermer, “Diatom taxonomy for paleolimnologists,” Journal
of Paleolimnology, vol. 25, no. 3, pp. 393–398, 2001.

[23] Walter C. Sweet and Philip C. J. Donoghue, “Conodonts: Past, present,

future,” Journal of Paleontology, vol. 75, no. 6, pp. 1174–1184, 2001.

[24] Kamal Ranaweera, Adam P. Harrison, Santo Bains, and Dileepan

Joseph, “Feasibility of computer-aided identification of foraminiferal

tests,” Marine Micropaleontology, vol. 72, no. 1-2, pp. 66 – 75, 2009.

[25] D.C. Kelly, T.J. Bralower, J.C. Zachos, I.P. Silva, and E. Thomas, “Rapid

diversification of planktonic foraminifera in the tropical pacific (odp

site 865b) during the late paleocene thermal maximum,” Geology, vol.
24, pp. 423–429, 1996.

[26] A.E. Rathburn, J.J. Pichon, M.A. Ayress, and DeDeckker, “Microfos-

sil and stable-isotope evidence for changes in late holocene palaeo-

productivity and palaeoceanographic conditions in the prydz bay re-

gion of antarctica,” Palaeogeography Palaeoclimatology Palaeoecology,
vol. 131, pp. 485–510, 1997.

[27] J.P. Kennett and L.D. Stott, “Abrupt deep-sea warming, palaeoceano-

graphic changes and benthic extinctions at the end of the palaeocene,”

Nature, vol. 353, pp. 225–229, Sep. 1991.

123



BIBLIOGRAPHY

[28] S.Q. Breard, A.D. Callender, and M.J. Nault, “Paleoecologic and bios-

tratigraphic models for pleistocene through miocene foraminiferal as-

semblages of the gulf coast basin,” Gulf Coast Association of Geological
Societies, Transactions, vol. 43, pp. 493–502, 1993.

[29] Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing
(3rd Edition), Prentice Hall, January 2006.

[30] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”

ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, September 1999.

[31] Kamal Ranaweera, Santo Bains, and Dileepan Joseph, “Analysis of

image-based classification of foraminiferal tests,” Marine Micropaleon-
tology, vol. 72, no. 1-2, pp. 60 – 65, 2009.

[32] Alan Agresti and Brent A. Coull, “Approximate is better than exact

for interval estimation of binomial proportions,” The American Statis-
tician, vol. 52, no. 2, pp. 119–126, 1998.

[33] Linda G. Shapiro and George C. Stockman, Computer Vision, Prentice
Hall, January 2001.

[34] David A. Forsyth and Jean Ponce, Computer Vision: A Modern Ap-
proach, Prentice Hall, August 2002.

[35] Howard Armstrong and Martin Brasier, Microfossils, Wiley-Blackwell,

2 edition, 2005.

[36] Mark D. Sutton, Derek E. G. Briggs, David J. Siveter, and Derek J.

Siveter, “An exceptionally preserved vermiform mollusc from the sil-

urian of england,” Nature, vol. 410, no. 6827, pp. 461–463, 2001.

[37] David J. Siveter, Mark D. Sutton, Derek E. G. Briggs, , and Derek J.

Siveter, “An ostracode crustacean with soft parts from the lower sil-

urian,” Science, vol. 302, no. 5651, pp. 1749–1751, 2003.

[38] Berthold K. Horn, Robot Vision, McGraw-Hill Higher Education, 1986.

[39] Robert J. Woodham, “Photometric method for determining surface

orientation from multiple images,” Optical Engineering, vol. 19, no. 1,

124



BIBLIOGRAPHY

pp. 139–144, 1980.

[40] R. Epstein, Alan L. Yuille, and Peter N. Belhumeur, “Learning Object

Representation from Lighting Variations,” in ECCV ’96: Proceedings of
the International Workshop on Object Representation in Computer Vision
II, London, UK, 1996, pp. 179–199, Springer-Verlag.

[41] Lyle Noakes and Ryszard Kozera, “Nonlinearities andNoise Reduction

in 3-Source Photometric Stereo,” Journal of Mathematical Imaging and
Vision, vol. 18, no. 2, pp. 119–127, 2003.

[42] Lyle Noakes and Ryszard Kozera, “Denoising Images: Non-linear

Leap-Frog for Shape and Light-Source Recovery,” in Geometry, Mor-
phology, and Computational Imaging, vol. 2616 of Lecture Notes in Com-
puter Science, pp. 143–162. Springer Berlin / Heidelberg, 2003.
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Appendix A

Creating Anaglyph Images

Anaglyphs are stereoscopic images that simulate the binocular effect of our
eyes by creating artificial disparity. One way to create an anaglyph is to
produce two black and white images, where each image is warped from a
perspective belonging to either the left or right eye. These warped intensity-
based images are then assigned to different colour channels. Thus, by view-
ing the image using filtered glasses, the anaglyph produces an artificial dis-
parity, which human brains interpret as 3D depth. Usually, the red channel
holds one image, and the blue and green channels holds the other image.

In the context of creating microfossil anaglyphs, the perspective warp
employs the shape-based representations to perform two separate nonlin-
ear mappings of the video-based representations. Working directly in pixel
space, the depth values in shape-based representations provide a point in
3D space for every pixel location of the video. By specifying two differ-
ent viewpoints, perspective projection can then map each 3D point into
two separate sets of 2D points. Doing so involves working in projective
space, which requires using homogenous coordinates for both 3D and 2D
points [84]. Denoted x and X respectively, 2D and 3D homogenous points
are expressed as:

x =
(
x, y, z

)T
, (A.1)

X =
(
x, y, z, w

)T
. (A.2)

(A.3)

The Euclidean expressions of x andX are
(
x/z, y/z

)T
and

(
x/w, y/w, z/w

)T
respectively. To convert from Euclidean to projective space requires simply
setting either z or w to 1 for x and X respectively. The following discussion
will assume that the world coordinate frame follows the specifications in
Fig. 3.3

Creating anaglyphs requires creating two different projective warps from
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viewpoints looking directly down to the microfossil video and at equal dis-
tances to the left and right of the x-axis origin. These two viewpoints can
be parameterized by two values:

• D, the height of the two viewpoints from the image plane;

• d, the disparity between the two viewpoints.

In general, a projective warp P mapping X to x is expressed as:

P =KR
[
I −C

]
, (A.4)

where K is the camera calibration matrix, R is a rotation matrix aligning
the world coordinate frame with the camera coordinate frame, and K is
the camera location in world coordinates [84]. Note that since creating
anaglyphs using microfossil video and shape representations only requires
working in pixel space, world coordinate frame is somewhat of a misnomer.

Working in pixel space simplifies the formulation of the camera calibra-
tion matrix to the following expression:

K =

⎛⎜⎜⎜⎜⎜⎜⎝
f 0 0
0 f 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (A.5)

where f is the camera focal length. To ensure that different D values will
not globally enlarge or shrink the resulting image dimensions, f should be
set to D.

As camera coordinates are expressed with the z direction pointing to-
ward the image plane, the z axes of the camera and world coordinate frames
point in opposite directions. As a result, R is written as:

R =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ . (A.6)

Finally, given D and d, the camera location in the world coordinate frame is
expressed as:

C =
(
±d/2 0 D

)T
, (A.7)

where the x location’s sign depends on whether the left or right eye is being
simulated.

Thus, P can be written formally as:

P =

⎡⎢⎢⎢⎢⎢⎢⎣
D 0 0
0 D 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 ∓d/2
0 1 0 0
0 0 1 −D

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.8)
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Appendix A: Creating Anaglyph Images

Using homogenous coordinate representations of the world 3D points cor-
responding to the pixel locations and depth map values of the microfossil
shapes, the anaglyph image coordinates are computed through:

x = PX. (A.9)

However, since anaglyphs need only warp in the x direction to create dis-
parity, the nonlinear mappings in the y direction of (A.9) can be ignored.
The pixel values of the video-based representations corresponding to X are
then mapped to the image location specified by x. Since (A.9) results in a
non-uniform set of image locations, pixel intensities must be interpolated
at gridded locations to create an image.

132



Appendix B

First-Order Finite-Difference
Operators

Recall the system of equations framing surface estimation as a linear re-
gression problem:

(
p
q

)
=

(
Dx
Dy

)
z+ ε, (B.1)

Using the normal equations, solving (B.1) is equivalent to solving the fol-
lowing system of equations:

(
DT

x DT
y

)
Γ−1εε

(
p
q

)
=

(
DT

x DT
y

)
Γ−1εε

(
Dx
Dy

)
ẑ, (B.2)

where Γεε is proportional to the covariance matrix of the errors. However,
under certain conditions and depending on the finite-differencing scheme
used, the normal equations of (B.2) follow some useful properties. For the
rest of this discussion, Df , Db, and Dc will denote forward, backward, and
centered-differencing respectively.

B.1 1D Finite-Difference Operators

Imagine a 1D continuous function f (x) and its derivative f ′(x) with respect
to x. Approximating the function and the derivative operation requires
sampling and restricting the domain x of f . Assuming periodicity is one
way to restrict the domain. More formally, construct a periodic function
f∗(x) where f∗(x) = f (x), 0 ≤ x < L and f∗(x+kL) = f∗(x), k ∈Z, and ∀x. Under
these assumptions, f ′(x) = f ′∗ (x), 0 ≤ x < L.

Now denote the vector f as a sampled version of f∗(x). Let L be an integer
and assume the sampling period is 1. By constructing a finite-differencing
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Appendix B: First-Order Finite-Difference Operators

operator, D, one can calculate f′ = Df, which is a sampled version of f ′∗ (x)
up to some order of accuracy depending on D. The periodic nature of f
affects the structure of D at the borders.

Consider the case of centered-differencing. Should L = 5, then a centered-
differencing version of D would be:

Dc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 −1
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
1 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.3)

Notice that rows of Dc corresponding to the borders of f use the periodicity
of the function in assigning elements values. Also notice, that a key feature
of the structure of Dc is that the operator is antisymmetric, meaning DcT =
−Dc. Assuming periodicity is not the only way to restrict domains to ensure
antisymmetry. For example, assuming values of f (x) outside of [0,L) are 0
also produces an antisymmetric derivative operator.

Forward-differencing, on the other hand, follows a different property.
Again, allowing L to equal 5, a forward-differencing version of D would be:

Df =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1
1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.4)

A key property of Df is that its transpose is equal to the negative of its

backward-differencing counterpart, meaning Df T = −Db. This property
also holds should one assume values of f (x) outside of [0,L) are 0.

B.2 2D Finite-Difference Operators

The properties of first-order 1D derivative operators demonstrated in Sec. B.1
extend to the 2D case. Let f (x,y) be some continuous function over 2D
space. Consider a 2D periodic equivalent f∗(x,y), where f∗(x,y) = f (x,y), 0 ≤
x < L and 0 ≤ y < L. Also, f∗(x+kL,y) = f∗(x,y+mL) = f∗(x,y), k,m ∈Z, and ∀x,y.
Without loss of generality, let L be an integer, and the sampling period in
both directions be 1. Assuming the function periods are equivalent in both
directions in not necessary for this discussion, but it does simplify explana-
tion.

Analogous to the 1D case, formulations for the sampled versions of f (x,y)
and its partial derivatives with respect to x and y, denoted respectively as
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B.2: 2D Finite-Difference Operators

fx(x,y) and fy(x,y), exist. Let the L × L matrix F be the sampled version of
f (x,y) over 0 ≤ x < L and 0 ≤ y < L. Calculating discrete approximations of
its partial derivatives using linear algebra requires a “flattening” of F into
column vector form. Two orderings are possible to flatten matrices: col-
umn or row-major ordering. Keeping in line with MATLAB, column-major
ordering is the preferred ordering for this discussion. Denoting fcol as the
column-major ordering vector of F and frow as the row-major equivalent, the
two orderings are related to each other through a permutation, frow =Πfcol .
Similarly discrete approximations to fx(x,y) and fy(x,y) are denoted respec-

tively as f(.)x and f(.)y , where the superscript indicates the type of ordering
used.

Column-major ordering simplifies producing derivatives in the y direc-
tion. To illustrate this, one may express the y derivative as: fcoly = Dyf

col ,
where

Dy =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D
D

. . .
D

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B.5)

with D being one of the L×L matrices defined as in Sec. B.1. The transpose
of Dy offers a convenient form:

DT
y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DT

DT

. . .
DT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.6)

When employing centered-differencing, (B.6) is expressed as:

Dc
y
T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DcT

DcT

. . .

DcT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Dc

−Dc

. . .
−Dc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −Dc

y . (B.7)

Thus, centered-differencing in the y direction is antisymmetric. However,
should one use forward-differencing, (B.6) is expressed as:

Df
y
T
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Df T

Df T

. . .

Df T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Db

−Db

. . .

−Db

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −Db

y , (B.8)
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demonstrating that in the y direction, the forward and backward difference
operators follow the same properties as the 1D case.

Somewhat non-intuitively, Dy can also compute derivatives for the x di-
rection; yet, ordering must be row-major. This results in a simple expression
of the partial derivative with respect to x: frowx = Dyf

row. Notice that both
the function and its derivative are expressed in row-major ordering. How-
ever, to keep the result consistent with the y derivative, this formulation
should be converted to column-major ordering. The conversion is written
as:

fcolx =ΠT frowx =ΠTDyf
row =ΠTDyΠf

col . (B.9)

As a result,Dx =Π
TDyΠ. Antisymmetry of centered-differencing operators

in the x direction follows from:

Dc
x
T =ΠTDc

y
TΠ = −ΠTDc

yΠ = −Dc
x. (B.10)

Thus, bothDc
x andDc

y are antisymmetric matrices. In the forward-differencing

case, Df
x
T
can be expressed as:

Df
x
T
=ΠTDf

y
T
Π = −ΠTDb

yΠ = −Db
x. (B.11)

All of the preceding results can also be demonstrated using row-major
ordering.

B.3 Surface Estimation Normal Equations

Although least-squares problems are typically solved using QR basedmeth-
ods, the normal equation formulation of the problem can serve as a useful
algebraic illustration of the system being solved. As well, in the case of
visual-surface estimation, limitations in sparse GQR techniques obligate
the use of the normal equations. If one assumes periodicity in the sur-
face, then Dx and Dy take on the forms and the accompanying properties
of the matrices in Sec. B.2. Although surfaces are not typically periodic,
this is a common assumption when dealing with images and depth maps.
For instance, the discrete Fourier transform includes an implicit assump-
tion of periodicity. As a result, methods of surface reconstruction based off
of Fourier bases, such as the well-known Frankot-Chellappa method [69]
assume a periodic surface.

Should the expression for the surface estimation normal equations in
(B.2) employ centered-differencing, the antisymmetric properties of the op-
erator produces the following formulation:

(
Dc

x Dc
y

)
Γ−1εε

(
p∗
q∗

)
=

(
Dc

x Dc
y

)
Γ−1εε

(
Dc

x
Dc

y

)
ẑ∗, (B.12)

136



B.3: Surface Estimation Normal Equations

where ẑ, p, and q are starred to emphasize their assumed periodicity. Alter-
natively, the forward-differencing version of the normal equations reduce
to:

(
Db

x Db
y

)
Γ−1εε

(
p∗
q∗

)
=

(
Db

x Db
y

)
Γ−1εε

⎛⎜⎜⎜⎜⎝ Df
x

Df
y

⎞⎟⎟⎟⎟⎠ ẑ∗, (B.13)

which takes into account the relationshipDf T = −Db. Equivalently, backward-
differencing exhibits the following normal equations:

(
Df

x Df
y

)
Γ−1εε

(
p∗
q∗

)
=

(
Df

x Df
y

)
Γ−1εε

(
Db

x

Db
y

)
ẑ∗. (B.14)
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