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ABSTRACT  

Despite recent advances in automotive research, a fully autonomous system operating in open, 

unconstrained road environments has not yet been realized. Recently, several types of autonomous 

vehicle (AV) failures were reported, such as run-of-the-road collisions and failure to stop for 

occluded road users. Such failures raised concerns about AV compatibility with existing 

infrastructure. As such, offloading expensive and infeasible computational workloads to smart 

infrastructure is an active area of research. Representatives from the infrastructure 

owners/operators (IOOs), the automotive industry, and academia have advocated for new ways to 

prepare roadways for the deployment of AVs. These recommendations aim to assess and enhance 

road infrastructure design for AVs by IOOs. These recommendations are threefold. First, 

improving vehicle-to-infrastructure connectivity (V2I), known as “talking to the road.” Second, 

enhancing the vehicle’s ability to monitor the driving environment, or “seeing the road.” Finally, 

“simplifying the road” through modifying roadway and roadside geometric design to support 

navigation by AVs. Following these recommendations, this thesis explores the gap between 

existing road infrastructure and AV technologies, specifically i) occlusion due to physical 

infrastructure, ii) road geometric design, iii) roadside design, iv) pavement markings, and v) traffic 

signs. In this dissertation, novel simulation-based and quantitative approaches were developed to 

segment light detection and ranging (LiDAR) data and assess road design performance for AVs 

using ultra-dense point clouds. The methods utilize point clouds to digitize existing roads and 

simulate a set of AV systems within this environment. An infrastructure surface model, efficient 

octree/voxel data structures, and semantic segmentation variants of deep learning methods and 

heuristic segmentation approaches are used to map design measures and extract locations with 

substandard conditions for AVs. A framework for improvement solutions is also presented. This 
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work helps infrastructure operators and those in the AV sector make data-driven decisions 

regarding smart physical and digital infrastructure investments. Methods developed in this 

research are the first to systemically and quantitatively assess road design for AVs on a large scale.  
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1 INTRODUCTION 

1.1 BACKGROUND 

The race for transportation automation and the mass deployment of Connected and Autonomous 

Vehicles (CAVs) technology is rising, not least due to their perceived social and economic 

benefits. CAV technologies are expected to create a paradigm shift urged by global socio-

economic and environmental megatrends to enhance traffic safety, mobility, economic 

competitiveness, supply-chain efficiency, and air quality (AASHTO, 2020; European 

Commission, 2019). The United Kingdom, European Union, Australia, China, and the United 

States (U.S.) have adopted national visions and roadmaps to meet the needs of CAVs through 

synchronized research, standards development, and pilot deployments (AASHTO, 2020; 

Australian Transport and Infrastructure Council, 2019; European Commission CORDIS, 2019; 

Gouda et al., 2023; Zenzic, 2019).  

With recent breakthroughs in CAV technologies and available self-driving vehicle 

solutions (Elliott et al., 2019; Gouda, Mirza, et al., 2021; Tesla, 2023; Waymo, 2023), public and 

private agencies and infrastructure owners/operators (IOOs) started contemplating the role of 

infrastructure in automation. They have also asked the question, how do we prepare for 

autonomous vehicles? (3M, 2020; AASHTO, 2020; NACTO, 2019; NCHRP, 2020; Transport 

Canada, 2023; US DOT FHWA, 2020; US DOT National Science and Technology Council, 2020). 

Questions that, without doubt, require a shared vision and collaboration between involved 

stakeholders, including IOOs and the automotive industry (AASHTO, 2020; NCHRP, 2020; 

Transport Canada, 2023; US DOT FHWA, 2020) 

Despite recent advances in the automotive industry and related research (Janai et al., 2020; 

Tesla, 2023; Waymo, 2023), a fully autonomous system in complex and unstructured 

environments has not been realized to date due to limitations of autonomous vehicle (AV) 

technologies (Elliott et al., 2019; Gouda et al., 2023; Janai et al., 2020). The enormous scale of 

computation and power required for AVs to operate safely in real-time and at high levels of 

autonomy is beyond the capabilities of any battery-powered vehicle control system (Janai et al., 

2020; L. Liu et al., 2021). As such, offloading expensive computation workloads to smart 



2 

 

infrastructure is an active area of research (Janai et al., 2020; L. Liu et al., 2021; US DOT National 

Science and Technology Council, 2020). 

Recent approaches to allow high levels of autonomy shifted towards the enhancement of 

road infrastructure readiness for AVs by Infrastructure Owners/Operators (IOOs) (AASHTO, 

2020; Farah et al., 2018; Gopalakrishna et al., 2019; Gouda et al., 2023; Gouda, Mirza, et al., 2021; 

Janai et al., 2020; NCHRP, 2020; TomTom, 2023; US DOT FHWA, 2020, 2021). Readiness is 

defined as taking a proactive approach in implementing the road infrastructure changes required 

for CAVs, as opposed to being reactive to challenges encountered as AVs are deployed (AASHTO, 

2020; FTVG, 2021; US DOT FHWA, 2021). At a conceptual level, enhancing road infrastructure 

readiness by IOOs has three approaches (AASHTO, 2020; NCHRP, 2020). First, improving 

vehicle-to-infrastructure connectivity (V2I), known as “talking to the road.” Second, enhancing 

the vehicle’s ability to monitor the driving environment, or “seeing the road.” Finally, “simplifying 

the road” through modifying roadway and roadside geometric design to support navigation by 

CAVs. The ultimate goal is to control the vehicle’s Operational Design Domain (ODD) to realize 

the full potential of CAV technologies. ODD defines the environment within which an autonomous 

vehicle can operate safely (Colwell et al., 2018; NCHRP, 2020; US DOT FHWA, 2021).  

Digital maps and road design datasets are essential in allowing high levels of autonomous 

driving  (Elghazaly et al., 2023; Farah et al., 2018; Here, 2023; Ilci & Toth, 2020; Janai et al., 

2020; NVIDIA, 2023; TomTom, 2023). If available, such information supports the vehicle system 

with attributes, at the centimeter to millimeter-level accuracy, about lane gradient, lane curvature, 

roadside features inventory (e.g., traffic signs), speed limits, and dynamic traffic and weather 

information (Farah et al., 2018; Here, 2023; Z. Liu et al., 2020; NVIDIA, 2023; TomTom, 2023). 

Light detection and ranging (LiDAR) data is a practical source for such information. LiDAR 

utilizes laser scanning equipment, global positioning systems (GPS), and navigation technologies 

to obtain intensity and positional information of surrounding features. The output of the LiDAR 

scanning process is a rich 3D point cloud of the surveyed objects that supports the digitization of 

the environment from the collected data (S. A. Gargoum & El Basyouny, 2019; Gouda et al., 2023; 

Hinks et al., 2015; Laefer, 2020; Vo et al., 2019; Zhang et al., 2019).  

Collected sensor data by CAVs are processed using a powerful onboard computer system 

and complex algorithms designed to support real-time localization, planning, and decision-making 

(Elliott et al., 2019; Janai et al., 2020; NACTO, 2019; Tesla, 2023; Waymo, 2023). Occlusion is 
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one of AV performance's most challenging safety risks (Baumgartner et al., 2020). Local AV 

collision avoidance systems (CAS) could fail if subjected to unexpected objects/road-users beyond 

their sensor range or vision. This phenomenon is often referred to as “the Line-of-Sight (LOS) 

limitation” or “Occlusion limitation” in automotive engineering research (Baumgartner et al., 

2020; Gábor Orosz et al., 2017; Ge et al., 2018; He et al., 2019). In IOOs current road design 

standards, the corresponding concept is known as “Sight distance,” which is a core element of road 

design guidelines and existing road infrastructure design (AASHTO, 2020; Alberta Infrastructure 

and Transportation, 2022; Khoury et al., 2019; Khoury & Amine, 2019; S. Wang & Yu, 2019).  

Sight distance is defined as the visible length of a roadway in front of a vehicle from a 

vantage point on the travel lane (AASHTO, 2018; Alberta Infrastructure and Transportation, 

2022). Examples of sight distance design requirements include but are not limited to stopping sight 

distance (SSD) and passing sight distance (PSD) (AASHTO, 2018). SSD is the required distance 

for a driver to completely stop before hitting an obstacle, such as crossing animals, pedestrians, 

and vehicles (AASHTO, 2018). Road designers verify that the available sight distances (ASD) are 

always higher than the required SSD at any point on the road. Sight distance requirements mainly 

depend on the speed limit, the driver’s perception-reaction time (PRT), pavement surface 

longitudinal coefficient of friction, deceleration rate, and grade of the road segment (AASHTO, 

2018). Currently, roadway design guidelines are defined with human perception capabilities in 

mind, which differ from how AVs scan and react to the environment.  

Another vital element in roadway design is roadside clear zones, defined as the traversable 

areas on either side of a roadway, including shoulders (US DOT FHWA, 2023). Clear zones 

provide time for deceleration and recovery of an errant vehicle. However, if filled with obstructions 

or rough terrain, they reduce the ASD, threaten fatal collisions (e.g., vehicle run off the road 

collisions, animal collisions, etc.), and provide no alternative avoidance option for drivers in case 

of an on-road obstruction (AASHTO, 2018; Alberta Infrastructure and Transportation, 2007). 

Due to the tremendous cost of building highway infrastructure that meets design guidelines 

and limiting factors, design exceptions are common with approval by IOOs (Alberta Infrastructure 

and Transportation, 2018). For instance, roadside clear zones often do not meet guideline 

recommendations due to right-of-way costs and planned or conflicting utilities. Similarly, sight 

distance requirements are unmet due to roadside obstacles (e.g., vegetation, mountainous terrain, 

other utilities) and the high cost of building a smooth road alignment  (Alberta Infrastructure and 



4 

 

Transportation, 2007, 2018). Furthermore, pavement deterioration and changes during road 

maintenance over the project life may cause deviation from design standards. Limited sight 

distance is a leading cause of collisions on highways, and wildlife-animal collisions account for 

more than 50% of vehicle collisions on Alberta highways, with more than 1,000 accidents per 

month (S. A. Gargoum, El-Basyouny, et al., 2018; Government of Alberta, 2013). 

Reported failures involving AVs during testing raised concerns about their compatibility 

with existing infrastructure (California DMV, 2023; Dadvar & Ahmed, 2021). While there are 

several probabilistic methods developed in CAV research for handling urban short-range occlusion 

in intersections at low speeds (< 30 kph), these approaches do not provide a practical, safe, and 

complete solution to the problem (Shetty et al., 2021). State-of-the-art research recommended 

using offline maps to extract physical infrastructure occlusions before dealing with dynamic 

occlusions (Schorner et al., 2019; M. Y. Yu et al., 2019). Besides, long-range, high-speed 

occlusion is not sufficiently addressed due to several limitations.  

AV sensors’ mapping performance, from the vehicle point of view, degrades significantly 

at long ranges and high speeds, with each sensor type having different limitations (Ilci & Toth, 

2020; Kumar et al., 2020; Mohammed et al., 2020; Patole et al., 2017; Sensible4, 2020; US DOT 

FHWA, 2021). Dynamic occlusions hinder the vehicle's ability to perceive the physical 

environment and static occlusions, both essential for path planning and collision-avoidance 

maneuvers (Ilci & Toth, 2020; Wong et al., 2021). The required 3D reconstruction in real-time to 

perceive the long-range physical environment is computationally infeasible (Ilci & Toth, 2020; 

Janai et al., 2020; L. Liu et al., 2021; Tesla, 2019). In addition, without the knowledge of the 

environment beyond the occlusions, AVs cannot safely modulate their speeds and plan their path. 

Traffic signs information, lane geometry and markings are also identified as key 

requirements for safe navigation by AVs (Gopalakrishna et al., 2019; Gouda et al., 2023; Lawson, 

2018; US DOT FHWA, 2021). These road features' current design, placement and guidelines are 

also based on human driver requirements (AASHTO, 2018; FHWA, 2009). Speed limit 

compliance, lane-keeping, simultaneous localization and mapping (SLAM), and hazard warning 

for AV systems rely on these road signs and markings. Reviewing road signs, markings, and 

geometry by IOOs for AVs is essential for their safety (Lawson, 2018; US DOT FHWA, 2021). 

Addressing the gap between existing road infrastructure design and CAVs is a trending 

topic suggested in recent studies and major initiatives (AASHTO, 2020; Gopalakrishna et al., 
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2019; Gouda et al., 2023; Gouda, Mirza, et al., 2021; NCHRP, 2020; Senate Canada, 2018; 

Transport Canada, 2019; US DOT FHWA, 2021). Such efforts brought together representatives 

from the IOOs, the automotive industry, and academia to define the changes required by IOOs to 

prepare roadways for the safe rollout of CAVs (AASHTO, 2020; NCHRP, 2020; US DOT FHWA, 

2021). The key aspects identified include the network-level physical infrastructure occlusions, 

road geometric design, travel lanes and pavement markings design, roadside design, traffic signs 

placement, and the deployment of countermeasures required to improve design readiness for CAVs 

at substandard locations  (AASHTO, 2020; Farah et al., 2018; Gopalakrishna et al., 2019; Gouda 

et al., 2023; Gouda, Mirza, et al., 2021; Janai et al., 2020; NCHRP, 2020; TomTom, 2023; US 

DOT FHWA, 2021). This thesis aims to address the gap identified in recent initiatives by 

developing quantitative methods to assess existing road design for the deployment of AVs on a 

network-level and to explore the possible practical countermeasures to improve compatibility at 

substandard locations.  

1.2 PROBLEM STATEMENT 

Existing road infrastructure is designed based on human constraints. This includes the design of 

highway alignments, horizontal curves, vertical curves, roadside clear zones, placement of traffic 

signs, etc. With the increasing interest in the mass deployment of AV technologies, IOOs need to 

meet the needs of AVs. Recently, collaboration between public and private agencies, IOOs, and 

AV industry experts provided recommendations for IOOs to assess and improve the AV readiness 

of existing transportation infrastructure. Currently, the required design performance assessment on 

a network-level is a challenge. This work aims to develop methods to assess road design 

performance for the deployment of AVs and to explore the possible practical countermeasures to 

improve readiness. To reach this goal, the following research problems are covered: 

1.2.1 Problem One: Understanding the Relationship Between AVs and Road 

Design Features 

There is an urgent need to understand how AV technologies will impact design guidelines and the 

risk of their deployment on existing roads. Limited number of studies and initiatives explored the 

impact of autonomous vehicles on road design (AASHTO, 2020; Khoury & Amine, 2019; 

Mcdonald, 2018; NCHRP, 2020; Ray, 2017; US DOT FHWA, 2021; S. Wang & Yu, 2019). A 
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comprehensive review of these efforts is needed to inform the development of performance 

assessment analytics on existing roadways.   

1.2.2 Problem Two: Large-Scale Occlusion Assessment of the General Road 

Environment 

Occlusion due to the physical infrastructure is a significant limitation requiring input from IOOs. 

As the deployment of CAV technologies is on a network-level, the development of new methods 

for occlusion mapping must serve the ability to test long road segments automatically within a 

reasonable amount of time. Recent research has recommended the use of offline digital maps to 

detect occlusions and develop methods for identifying unsafe locations for AVs (Gouda et al., 

2023; Schorner et al., 2019; US DOT FHWA, 2021; M. Y. Yu et al., 2019). LiDAR digitization is 

one way to satisfy this requirement. Due to its millimeter-level accuracy, cost-saving in data 

collection, collection speed, and widespread data collection capabilities, research and practice have 

gravitated towards the use of LiDAR to perform large-scale infrastructure asset management, 

condition assessment and maintenance (S. A. Gargoum, El Basyouny, et al., 2018; Gouda, 

Chowdhury, et al., 2021; Gouda, Epp, et al., 2022; Gouda et al., 2020; Kilani et al., 2021; Laefer, 

2020). Novel LiDAR applications in transportation engineering and research include sight distance 

analysis, intersection sight distance analysis, roadside clear zones mapping, asset management, 

conflict-based traffic safety management, traffic surveys and vertical clearance mapping (Agina et 

al., 2021; S. A. Gargoum, El Basyouny, et al., 2018; S. A. Gargoum & El Basyouny, 2019; S. 

Gargoum & El-Basyouny, 2017; Gouda, Mello, et al., 2021; Gouda, Shalkamy, et al., 2022).   

1.2.3 Problem Three: Road and Roadside Design Assessment for AVs 

While a few recent studies discussed the problem, all studies focus on the issue from either a 

qualitative view or a minor assessment of the impact on specific guidelines design equations. 

Regarding the design aspect of existing roads, no studies provide a performance-based and 

quantitative measure of existing roads’ design performance for AVs. Several government entities 

and design standards development groups (e.g., AASHTO) called for research on this problem. 

Suggested changes to road design equations can be combined with the extracted information from 

point cloud data for a performance assessment of existing roadways. For instance, the use of AV 

PRT, deceleration rates, road and roadside grades, available sight distances based on vehicle 
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sensors, and the visibility of roadside zones can be used to assess road design performance and 

detect substandard locations for AVs.  

1.2.4 Problem Four: Traffic Signs Assessment  

Transportation agencies follow the Manual on Uniform Traffic Control Devices for Streets and 

Highways (MUTCD) for the design and placement of traffic signs (FHWA, 2009). MUTCD is 

designed based on human constraints. Moreover, severe weather conditions, changes in the 

surrounding environment, accidents, and maintenance, among other reasons, lead to changes in 

traffic signs placement. Hence, traditional surveying methods are performed by IOOs to build 

traffic sign inventories (TSIs) in order to maintain traffic signs. 

 Lawson (Lawson, 2018) discussed the importance of traffic signs to AVs for avoiding 

collisions. AVs can only properly read a traffic sign when it is correctly placed, oriented, and 

unobstructed. Current studies do not consider the parameters of autonomous vehicles when 

defining the visibility of a traffic sign. Therefore, it is crucial to investigate if the current placement 

of traffic signs is adequate for an autonomous vehicle to process and react to highway sign 

information (Guo et al., 2019). 

1.2.5 Problem Five: Pavement Marking Assessment  

Reliable lane marking detection is a key component in bridging the gap between approximate 

knowledge of an AV’s location using, for example, a GPS, to exact positioning (Laconte et al., 

2022; US DOT FHWA, 2021). Connected and automated vehicle (CAV) systems have been 

designed with the constraints of human-friendly infrastructure. For instance, state-of-the-art 

research and practice in AV motion/speed planning approaches rely on either traffic signs designed 

for human drivers or parsing human GPS speed profiles from naturalistic data and using it for AV 

systems training (Anastassov et al., 2017; Claussmann et al., 2020; Rodrigues et al., 2018; 

TomTom, 2023; Xinli et al., 2016). Furthermore, in a highway setting, enough contextual clues 

and lane markings are provided, given that humans can drive safely in their lane through curves or 

locations of limited pavement markings visibility (AASHTO, 2018; A. S. Huang et al., 2009). The 

same cannot be said for autonomous driving systems, which have been proven to have trouble 

staying within their lane when road markings are ambiguous, eroding, or on combinations of 

horizontal and vertical curves as their lane-keeping systems fail (IIHS, 2018; B. Li et al., 2018; 
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Tak et al., 2022; Tudose, 2019). In such situations, path planning algorithms lack the intuition 

innate in humans, making them unsafe. 

Pavement markings are identified as the most important infrastructure feature for 

autonomous vehicles (AVs) operations (US DOT FHWA, 2021). Current roadway infrastructure 

is plagued by a variety of issues, making the pavement marking detection task significantly 

complex and difficult (e.g., lighting conditions) (Burghardt et al., 2021; Pike et al., 2018; Zheng 

et al., 2019). Obstructed pavement markings within the vehicle sensors’ field of view (FOV) have 

been recently promoted as a potential concern for AVs deployment (US DOT FHWA, 2021). 

Recent research suggests that addressing this problem in order to improve AV sensors’ monitoring 

of road markings is a key responsibility of IOOs (US DOT FHWA, 2021). Ideally, CAVs must be 

able to provide a safe and comfortable experience without user intervention, which correlates 

directly to their ability to plan their trajectory based on the information they collect (Elbanhawi et 

al., 2015; H. Liu et al., 2019).  

1.2.6 Problem Six: Readiness Improvement Countermeasures 

A crucial aspect of this research is to explore suitable countermeasures to solve the identified issues 

at substandard locations for CAVs. Literature and practice reviews are carried out to synthesize 

the potential and relevant countermeasures.  

 

1.3 OBJECTIVES 

For AVs to realize their full potential, challenges facing their deployment in as many situations as 

possible must be addressed. Research has shown that a complete assessment of road environments 

is yet to be achieved. Such an understanding could vastly expand the domain in which AVs could 

safely operate. The ultimate goal of this work is to understand and address the gap between 

infrastructure design and CAV technologies. Using this information, developing methods for 

detecting substandard locations for AVs proactively and quantitatively can be performed. This 

would help stakeholders (e.g., IOOs, automotive industry professionals, etc.) make informed 

decisions about infrastructure upgrades. The objectives of this thesis are aligned with the problems 

identified in the Problem Statement section. These objectives are to 1) Review the road design 

features needed to be reviewed by IOOs for CAVs in recent initiatives and studies, 2) develop 
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automated methods to assess design performance for CAVs on a large scale for the different design 

features, 3) present case studies where substandard locations are identified, and 4) Provide a 

synthesis of design improvement countermeasures. Figure 1 shows a simplified flowchart of the 

general steps carried out in this thesis.  

 

 

Figure 1 General flowchart of readiness assessment 
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This work proposes a simulation-based approach that utilizes LiDAR data to study the 

interaction between AVs and road design elements.  

1.4 THESIS STRUCTURE 

The remainder of this thesis is divided into six different chapters. Details of the topics covered in 

each chapter are described below: 

Chapter 1 presents an introduction to the thesis, background information related to the 

research, the research problem, the main objectives, and the thesis structure.  It shows a 

background of recent trends by IOOs to identify their role in the AV ecosystem. In addition, it 

shows the key identified aspects of the interaction between AVs and existing road infrastructure 

that require input from IOOs. Based on this background, the chapter summarizes the problem 

statements this work covers.  

Chapter 2 provides a detailed literature review of the topics addressed in this thesis. This 

chapter covers background and reviews on autonomous vehicles, the impact of CAVs on road 

design, the impact of CAVs on roadside design, pavement markings and CAVs, and the use of 

LiDAR in road design assessment. 

Chapter 3 examines the simulation-based method for occlusions and geometric design 

information mapping and roadway assessment. The chapter goes over the data structures and the 

creation of the convex hulls/polyhedrons used to search for occlusions to targets on the road and 

roadside environment. Details of the voxel-based raycasting comparison method are presented. 

Finally, three case studies for detecting locations with substandard conditions for AVs are 

presented.    

Chapter 4 covers traffic signs assessment into two sub-sections: 1) semantic segmentation 

and 2) traffic signs assessment. The semantic segmentation section shows a background about 

extracting traffic signs from point cloud data and recent methods in the literature. Then, it covers 

the data collection and description and how the training dataset used in this thesis was developed. 

The proposed method, results and discussion, conclusions and future work are finally presented. 

The remainder of the chapter is dedicated to the traffic signs assessment for Avs, covering the 

method, results, discussion and conclusions.  
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Chapter 5 looks into the pavement marking assessment methodology. The method shows 

the creation of a field of vision on the pavement surface that is used to search for occlusions 

between the modelled vehicle sensors and the lane marking. Once locations with occlusions are 

detected, a Bézier curve-based path is predicted to find the vehicle trajectory. Using the trajectory, 

the radius and centripetal acceleration are mapped along the trajectory and compared to suggested 

values in road design guidelines and research to assess the segment performance. Finally, results 

and conclusions are presented.  

Chapter 6 includes a summary of the research conducted in this thesis, a discussion of the 

contributions of this work, and a discussion of topics for future research. It also includes the 

readiness improvement countermeasures promoted in practice and the literature. It shows the 

different countermeasures that can be applied at detected substandard locations identified through 

the methods presented in this thesis.   
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2 LITERATURE REVIEW  

2.1 AUTONOMOUS VEHICLES 

According to the Society of Automotive Engineers (SAE), there are six levels of vehicle 

automation (SAE International, 2019; Saeed et al., 2021). These levels range from 0 to 5. Level 0 

refers to no automation. Levels 1 and 2 refer to an autonomous vehicle system monitored by a 

human driver who is assisted by advanced driver assistance systems (ADAS) or relinquishes non-

fallback-control (steering, acceleration, and braking) to the ADAS. Levels 3 to 5 refer to 

autonomous vehicle systems that consider less human driver input, including monitoring of the 

driving environment and vehicle operation. In levels 4 and 5, this also includes fallback-control, 

with 5 being completely autonomous.  

Autonomous collision avoidance systems (CAS) rely mainly on the data collected by 

sensors aboard the vehicle to identify hazards and safe areas, such that the proper operational 

commands can be translated into safe vehicle manoeuvres to avoid collisions (Elliott et al., 2019; 

J. Liu et al., 2017). Therefore, the data collection capability and accuracy of such sensors are the 

most significant factor in the effectiveness of CAS (Elliott et al., 2019; Seif & Hu, 2016).  

To enhance the effectiveness of CAS, vehicle-to-everything communications (V2X) can 

be utilized to receive external information on road conditions, obstacles, etc. (3M, 2023; Elliott et 

al., 2019; L. Liu et al., 2021; Mobileye, 2021). V2X includes vehicle-to-vehicle (V2V), vehicle-

to-infrastructure (V2I), vehicle-to-pedestrian (V2P), and vehicle-to-network (V2N) 

communications (Elliott et al., 2019). All components of CAV technologies have advantages and 

limitations. No single component is adequate in completely supporting high levels of autonomous 

driving  (3M, 2023; Elliott et al., 2019; Z. Liu et al., 2020; Seif & Hu, 2016). 

For example, CAS cannot be designed solely to use V2N communication, as network 

outages and delays could completely impair the CAS. Additionally, not all obstructions or road 

features are part of the network, such as pedestrians, animals, non-connected objects, etc. (3M, 

2023; Elliott et al., 2019; NCHRP, 2020). In such a case, the CAS must be able to resort back to 

routine autonomous operation using the vehicle on-board sensors (Elliott et al., 2019). It has also 

been recently recommended that CAVs should be compatible with the use of Artificial Intelligence 

(AI) to analyze and identify pedestrian gestures and behavior, as well as erratic animal behavior, 

to recognize additional hazards each may pose (Elliott et al., 2019).  
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Occlusion remains one of the largest challenges facing AV safety. Recent studies employ 

a variety of strategies to combat occlusion (Baumgartner et al., 2020; Hubmann et al., 2019; 

Orzechowski et al., 2018; Schorner et al., 2019; M. Y. Yu et al., 2019). (Shetty et al., 2021) show 

that state-of-the-art methods are based on estimating the state and behavior of occluded road users 

using AV system observations in limited and controlled ODDs within travel lanes. The study 

concluded that these approaches do not provide a practical, safe, and complete solution to the 

problem and can lead to a significant number of collisions in the general road environment. The 

paper discussed several scenarios presented in previous research. It proved mathematically that 

ensuring safety using probabilistic methods in real-time is impossible even if a crash risk 

comparable to current observed crash rates is accepted. The main cause of this is that the AV would 

not have enough time to take evasive actions. Assuming an AV reaction time of 0.83 s, the 

discussed scenarios included occluded vehicles and pedestrians and the inability to accurately 

predict vehicle actions based on past observations (as in  (Baumgartner et al., 2020)).  

While the paper proposed a crash probability in several scenarios, the authors suggested 

that road geometry and conditions, unexpected behaviours of road users, and AV limitations 

(sensing limitations and perception failures) can increase the probability of collisions. The authors 

concluded that reliance on I2V (infrastructure-to-vehicle) connectivity by installing sensors on the 

roads and V2V communications are a viable solution to resolve the occlusion problem. Research 

has also shown that accounting for all possible occlusions in the field is computationally 

impossible (Orzechowski et al., 2018).  

Recent studies have recommended leveraging prior information about the environment 

using offline maps to minimize the problems caused by occlusion and to develop methods for 

identifying unsafe locations (Schorner et al., 2019; M. Y. Yu et al., 2019). Addressing limitations 

such as the computationally expensive and infeasible reconstruction of the environment in real-

time and sensor technology limitations through leveraging prior maps, assessing the general road 

environment (travel lanes as well as roadside zones), and redesigning focusing on minimizing 

hazardous occlusions are examples of topics future research could explore to safely expand the 

reach of CAVs.  
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2.2 IMPACT OF CAVS ON GEOMETRIC DESIGN 

Although highway design has evolved over many years through research and practice, it has 

generally developed around the characteristics of human drivers and their constraints. Now, with 

the expected increase of AVs deployment, recommendations are adapting to accommodate them. 

Agencies, such as AASHTO, are considering new evidence and data from emerging research to 

inform new geometric highway design standards (AASHTO, 2020).  

The effects of AVs on highway geometric design have been explored by (Khoury et al., 

2019; Khoury & Amine, 2019). By applying conservative estimates for AV reaction time and 

sensor height to current AASHTO geometric design equations, a redesign of a mountainous road 

in Hasbaya, Lebanon, was performed. Alignment redesign was based on the calculated SSD and 

rates of curvature (K) values for AVs. It was found that highway construction costs and 

environmental impacts could be reduced when designed for use by AVs due to fewer amounts of 

cut and fill required to reach the subgrade level. The authors suggested that future research 

considers road grades as AASHTO, and recent studies assume a level terrain. 

Similar work by (Wang & Yu, 2019) studied the impact of AVs with different levels of 

autonomy on geometric design. Appropriate design criteria for each level, 0 to 5, such as reaction 

time and sensor height, were used. Similarly, to (Khoury et al., 2019), it was concluded that as the 

autonomy level increased, so did the design speed of the roadway, while the length of crest and 

sag curves and the SSD decreased. An earlier study by (Mcdonald, 2018) suggested that the SSD 

for AVs decreases due to reduced reaction time (0.3 s and 1.0 s).   

(Gábor Orosz et al., 2017; Ge et al., 2018) tested vehicle reaction to a stopped vehicle 

occluded by road geometry due to a combination of a horizontal and vertical curve. They 

concluded that using V2X communications to notify a CAV about the occluded object avoids 

severe braking that would be unsafe for passengers. 

2.3 IMPACT OF CAVS ON ROADSIDE DESIGN 

Roadside design, especially on highways, is an area of attention for CAVs. Generally, a roadside 

should be constructed as wide and forgiving as reasonably possible while still considering 

physical, economic, and environmental constraints (Alberta Infrastructure and Transportation, 

2007). 
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Clear zones are provided adjacent to roadways in an attempt to provide a traversable area, 

void of obstacles, to accommodate errant vehicles so that they can safely return to the roadway or 

come to a complete stop (Alberta Infrastructure and Transportation, 2007). Often, clear zones 

consist of a shoulder and some form of recoverable, non‐recoverable, and traversable slopes. Clear 

zone width is determined by the road design speed, annual average daily traffic (AADT), and 

steepness of the embankment/slope. Where adequate clear zones are not available, additional 

safety countermeasures (e.g., guard rails) are required (Alberta Infrastructure and Transportation, 

2007). 

 In recent studies, the recoverability of AVs across various levels of autonomy has been 

researched. (Favarò et al., 2019) analyzed data from 2014 to 2017 regarding the disengagement of 

autonomous technology (AUT) in levels 2 and 3 AVs on public roads in California. The data 

recorded the time to takeover (TTO), i.e., the reaction time of the driver to take fallback control of 

AV in off-nominal scenarios. This is an area of concern for lower-level AVs that relinquish 

software control of the vehicle back to the human driver when threats or hazards outside of normal 

operating conditions occur. It was found that the average TTO was between 0.83 s and 1.0 s for 

drivers trained to operate AVs. The authors noted the TTO for the average untrained driver is 

expected to be higher; thus, this is likely a minimum average expected TTO. It was also found that 

over longer time spans, as drivers became more experienced with monitoring the AUT, their TTO 

slightly decreased, contrary to previous estimates that comfortability and trust of the AUT 

increased TTO. 

With the increase of autonomy in AVs, systematic fallback and recovery control methods 

are being researched. Work by (Freeman et al., 2016) simulated two control algorithms, sliding 

control and linear quadratic control, for use in AV run-off-road (ROR) recovery systems. ROR 

crashes are often the result of human error, i.e., poor driving performance, leading up to the 

incident (Freeman et al., 2016). As such, this error can be reduced by allowing a sufficiently 

advanced AV ROR recovery system to perform instead of a human driver. This would apply to 

AVs categorized level 4 and higher as fallback control of the vehicle at these levels is the 

responsibility of the system.  

(Freeman et al., 2016) used a custom dynamic vehicle model to predict and calculate the 

behavior of the vehicle and its system in real-time. This model was run through multiple ROR 

scenarios with each of the sliding controller and linear quadratic controller. The sliding controller 
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implemented successful recoveries for nominal ROR scenarios but lacked in performance with 

varying roadway and vehicle conditions. The linear-quadratic controller performed more 

consistently across the tested ROR scenarios, recovering 25% faster while using 70% less steering 

than the sliding control method. The linear-quadratic method is supported by the authors as a 

recommended ROR recovery controller for autonomous vehicles. It should be noted that the 

development and hardware implementation of the system for further research is required to 

validate the method. 

On the other end, roadside clear zone design has always developed around human drivers 

and is yet to change to accommodate AVs. Though, with lower-level AVs on the road, longer 

reaction times to off-nominal scenarios are to be expected, TTO plus normal human reaction time, 

~2.5 s for stopping (AASHTO, 2018), as human drivers are still responsible for fall-back control 

of the vehicle. It may be beneficial for clear zone design to be modified as AVs become more 

conventional transportation tools. Similarly, as higher-level AVs develop and become more 

conventional as well, their automated ROR and other recovery systems may be advanced enough 

to also require different safety protocols than those that exist today. Whether such safety protocols 

become stricter, more lenient, or both, it is imperative that roadside safety is adequate to 

accommodate the deployment of all levels of AVs on the road.   

Through Vehicle-to-Infrastructure (V2I) connectivity, CAVs can receive external 

information about the road and roadside environment  (J. Chen et al., 2019; Malik et al., 2020; 

Razali et al., 2020; Tak et al., 2020; S. Wang & Li, 2019). In (J. Chen et al., 2019), roadside LiDAR 

sensors are used to track and detect vehicle trajectories. The authors note that current CAV 

applications are constrained by the resolution of data input as CAVs require a network passing 

high-resolution micro traffic data (HRMTD). This means real-time traffic data shared across all 

road users and related infrastructure. It has been shown in the past that LiDAR is capable of 

providing HRMTD (J. Chen et al., 2019). Their method processes LiDAR data by performing a 

region of interest (ROI) selection, ground surface filtering, point clustering, object classification, 

and lastly, vehicle tracking. Though this method was for computing vehicle trajectories to analyze 

traffic patterns, the authors mention other possible applications of HRMTD using roadside LiDAR 

for future research.  

Some of these applications include predicting pedestrian trajectories at intersections and 

urban settings, predicting animal trajectories near rural highway settings, and performing traffic 
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micromanagement in high-traffic areas. Infrastructure like this provides additional warning of 

obstacles and other hazards to CAVs that they would not be able to detect using the CAV local 

system. It may also enable remote control and/or suggestive manoeuvres for CAVs in certain 

hazardous or high-traffic areas. This can be especially useful on highway segments/locations that 

have high animal traffic on and near the roadway. These applications are suggested as future 

research or possibilities and are not included in the study. Therefore, the costs, limitations, and 

validity of such applications are merely speculative and require further analysis to be justified 

before the practicality of their deployment in critical settings can be discussed. 

Although animal fencing is one of the most used safety techniques for mitigating wildlife-

vehicle collisions, they are not 100% effective and are typically installed where wildlife road 

mortality is already high due to the significantly high fencing cost (Ascensão et al., 2021; J.W. 

Gagnon et al., 2020; M.P. Huijser et al., 2015; Spanowicz et al., 2020; WCPP, 2023b). (M.P. 

Huijser et al., 2015) suggested that road conditions, sightlines, visibility distance and grades of the 

road and roadside, traffic speeds, and driver abilities can be used as proactive criteria for good 

practice in deploying collision mitigation measures (e.g., fencing and detection systems). 

Noteworthy is that the yearly cost of wildlife-vehicle collisions in Canada is estimated at $800 

million, with a significant number of high-severity collisions (causing driver injury or death) 

(Desjardins Insurance, 2021; WCPP, 2023a). 

While AVs introduce new safety concerns, innovation and continuous research have shown 

the potential of solutions and should be considered with the evolution of AVs. Collision avoidance 

systems, vehicle recovery systems, improving connectivity at hazardous locations, and 

road/roadside redesign are important topics for AVs as agencies and IOOs continually push for 

their deployment. It is uncertain which measures will be considered essential and which will be 

discretionary. As such, it is an emerging research area proving the advantages of different 

techniques, practices, and technologies. 

2.4 PAVEMENT MARKINGS AND CAVS 

Many industry experts proclaim that modifying, updating and standardizing lane markings to 

facilitate their detection is paramount in the mass deployment of AVs (US DOT FHWA, 2021). In 

bridging the gap between approximate knowledge of a CAV’s location using, for example, a high-

definition (HD) map or GPS, to exact positioning, reliable detection of lane markings is often a 
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key component (US DOT FHWA, 2021). Machine vision is a markedly popular solution for many 

advanced driver assistance systems (ADAS), such as lane-departure warning and lane-keeping 

assistance (Pike et al., 2018). These tasks are further convoluted when considering the different 

types of lane markings to recognize, where varying colours and patterns indicate different and 

relevant information. 

Despite the importance of CAVs detecting lane markings, current roadway infrastructure 

is plagued by various issues, making that task significantly more complex and difficult. Lighting 

conditions can substantially affect the contrast between markings and the road. During the daytime, 

depending on the sun's angle or in the presence of overhead lamps, glare can reduce detectability 

(Zheng et al., 2019). In the nighttime, a lack of contrast between markings and adjacent pavement 

is also an issue that persists under wet conditions (Burghardt et al., 2021; Pike et al., 2018). 

Furthermore, no standard is used to determine the point at which lane markings have faded enough 

to warrant maintenance (Pike et al., 2018; US DOT FHWA, 2021). Lastly, and most relevant to 

IOOs, are the cases where the geometry of the road reduces the sight distance to the point where 

safe and comfortable manoeuvring is impossible within a reasonable reaction time (Pike et al., 

2018; US DOT FHWA, 2021).   

Industry experts have identified a few key areas in which the quality of lane markings and 

their compatibility with ADAS could be developed. Ideas such as creating a uniform design and 

quality for lane markings (i.e., fixed-width) (US DOT FHWA, 2021), ensuring marking design has 

suitable contrast in all adverse conditions (i.e., wetness, night, etc.) (Pike et al., 2018), and 

developing standards for minimum reflectivity where maintenance becomes mandatory have been 

put forth for the sake of simplifying the job of ADAS. Suggestions regarding the road geometry 

and standards specific to lane markings were first promoted by recent FHWA reports (US DOT 

FHWA, 2021). 

Because of their critical importance in localization, several studies have explored various 

methods to detect or extract lane markings (Burghardt et al., 2021; Zheng et al., 2019). Regarding 

sensor types, the most popular option is to use cameras. The generalized procedure many 

approaches follow is to take an input image, convert it to a greyscale for computational efficiency 

purposes, apply various filters to remove noise and use Hough transform to detect edges within 

the processed image. Despite being the most popular method, there are several limitations to taking 
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an image-based approach. Firstly, environmental effects, such as rain or fog, tend to reduce 

accuracy by reducing image quality (Zheng et al., 2019). Additionally, most algorithms are well 

suited to detect straight lines but show poorer results for curved lines (Kaur & Kumar, 2015). 

Other studies have shown LiDAR to be a viable method for lane marking extraction. With 

the advantage of reconstructing the 3D surrounding environment, LiDAR point cloud data can 

leverage geometric features unique to roadways to extract drivable regions. The returning laser 

from a scanner also carries intensity information. Intensity has been shown to successfully 

distinguish lane markings from the rest of the pavement (Jung & Bae, 2018; Y. Wang & Tsai, 

2018). 

2.5 TRAFFIC SIGNS AND CAVS 

Much of the existing research on autonomous vehicle sign detection has been focused on image 

processing algorithms rather than the optimal positioning of the signs themselves. This literature 

review concentrated on existing research on traditional detection methods to better understand 

potential difficulties with these algorithms concerning sign positioning. In addition, state-of-the-

art research on traffic sign occlusion detection is presented.  

(Shladover & Bishop, 2015) presented a paper addressing predicted future issues regarding 

the introduction of autonomous vehicles. One topic mentioned was the importance of traffic signs 

for connected autonomous vehicles (CAV). The authors highlighted how traffic sign recognition 

is necessary for vehicles in areas with a high sign density, like construction zones, or while they 

are disconnected from the CAV network and cannot receive road information digitally, such as 

during times of poor connectivity due to hacking, adverse weather conditions, etc. In these cases, 

sign recognition is essential as a reliable source of real-time information. Sign data from individual 

vehicles can then be uploaded to the network and aggregated to update digital sign inventories in 

real-time. The paper concluded that accurate autonomous vehicle sign recognition is critical for 

CAV deployment as the vehicles, by design or circumstance, may not always be connected to a 

network and, therefore, will rely on on-vehicle sensors for information. 

Research done by (Wahyono et al., 2014) investigated a method of traffic sign recognition 

by autonomous vehicles using cascade support vector machines (SVMs). Signs were identified by 

segmenting images by colour, isolating known sign shapes, and identifying differentiating patterns 
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on the faces of signs. Segmentation was handled primarily using a Histogram of Oriented Gradient 

(HOG). The completed program was run on a database of 300 images, with sign recognition and 

detection rates of 90.82% and 89.12%, respectively. The paper also noted how rotation and 

occlusion of traffic signs complicated the image processing techniques used. 

(Walters et al., 2019) reviewed the difficulties connected autonomous vehicles face in rural 

areas. They noted that CAVs were prone to become disconnected from the V2I network in these 

areas and were reliant entirely on onboard sensor systems and GNSS for navigation. In these cases, 

identification of road signs allowed CAVs to intake road regulatory information and make 

positional adjustments during “blind time” when global navigation satellite system (GNSS) signals 

were temporarily interrupted. The authors pointed out how the development of robust sign 

detection programs is required to ensure safety during extreme weather conditions, which 

generally lower the accuracy of existing sign identification techniques. The authors recommended 

regular inspection and cleaning of rural road signs to improve their visibility and identification by 

CAVs. 

(L. Chen et al., 2012) investigated multi-sensor system design for autonomous vehicle 

environmental perception. The authors noted how sensors with high contrast improve sign 

recognition, as most existing detection algorithms rely heavily on colour matching. This was tested 

by constructing a multi-sensor array of visual and laser scanners on a vehicle and then processing 

the sign data using Speeded Up Robust Features (SURF). The algorithm operated by identifying 

regions of interest in the images (ROI locking) and then segmenting out the individual colours. 

Detection rates for signs were 94.3%, taking 50ms per frame. 

(Geese et al., 2018)  investigated sensor performance in autonomous vehicles and advanced 

driver assistance systems. The study focused on a comparison between human observers and visual 

sensors. They recognized that the human eye has much better contrast detection abilities than 

existing image processing techniques and can better adapt to unideal conditions. The paper found 

that digital sensors and image processing algorithms struggled to locate the parts of an image that 

should be denoised, especially for dark images.  

(Wali et al., 2019) investigated current difficulties with vision-based sign detection 

systems. They identified that the traditional analysis methods of detection, tracking, and 

classification could be improved by merging steps together and allowing, for instance, the 
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classification of a sign to be used to update its detected shape. The study also examined 

environmental effects on sign detection. Inconsistent lighting, sign clustering, and sign rotation, 

among other factors, generally decreased the accuracy of detection algorithms. It was also 

identified that colour and shape remain the most common metrics detection algorithms use, and 

that convolutional neural networks produce the most accurate results. 

(S. Wu et al., 2015) investigated traffic sign visibility using retro-reflectivity and ground 

plane proximity. Signs were ranked based on vertical driver view angle, planarity concerning the 

travel direction, and view distance, among other factors. Rankings were done based on sign 

visibility. Test sign data was collected using a mobile laser scanning (MLS) system that utilizes 

laser scanners, digital cameras, and a wheel-mounted distance measurement indicator. A sample 

of 100 sign images was tested both by the proposed algorithm and a human reviewer. Signs were 

categorized by visibility rankings, with less than a 5% discrepancy between human and computer 

rankings observed. 

(Hirt et al., 2022) investigated the occlusion detection of traffic lights and signs caused by 

vegetation using LiDAR data and 3D City models. The model included the location and orientation 

of streets, traffic lights, and traffic signs. The method used ray-tracing in an occupancy grid 

generated by the voxelization of the LiDAR data to identify occluded traffic signs. The authors 

found that their method is feasible for occlusion detection by vegetation in the urban street 

scenario. (Kilani et al., 2021) and (Gouda, Chowdhury, et al., 2021; Gouda, Mello, et al., 2021) 

used voxel-based raycasting for sight distance analysis and obstruction detection on urban and 

rural roads. (P. Huang et al., 2017) detected occluded traffic signs using 3-D point clouds and 

trajectory data acquired by MLS. Signs extraction was based on both the reflectance and geometric 

features of signs. Using the trajectory and traffic sign data, a hidden point removal algorithm was 

adopted to detect occlusions.  

In conclusion, sign recognition is essential for the safe deployment and operation of 

autonomous vehicles. Additionally, several factors, including obstructions, rotation, color 

condition, shape consistency, lighting, and weather conditions, affect the performance of sign 

detection. The placement of signs influences occlusions and rotation and is relatively independent 

of the detection systems and algorithms used by autonomous vehicles. There is a lack of prior 

research regarding physical sign visibility that considers autonomous vehicle sensor characteristics 
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despite recommendations of previous studies. As such, this thesis aims to develop a simulation-

based method to assess existing traffic sign infrastructure design for AV deployment using LiDAR 

data. In addition, the proposed method is compared to a redesigned state-of-the-art voxel-based 

raycasting approach to account for AV sensors.  

2.6 USING LIDAR IN ROAD DESIGN ASSESSMENT 

As arguably one of the most important elements of highway design, sight distance (SD) assessment 

received significant attention in the literature. 

State-of-the-art SD research relies on using LiDAR for the automated assessment of ASD 

on roadways. (Khattak & Shamayleh, 2005) are one of the earliest studies to use aerial LiDAR 

data to assess compliance to SSD and PSD on highways. The method proved the feasibility of 

using LiDAR data to examine sight distances, which is much less time-consuming and more 

accurate than manual field surveying.  

Utilizing the capabilities that had been proved viable with aerial LiDAR, (Castro et al., 

2014) developed an automated approach to determine ASD. Using the LiDAR data, a digital 

terrain model (DTM) with a grid spacing of 1 m was generated, and sight distances to targets were 

calculated at different observer points, 5 m apart, along the vehicle trajectory. Though this method 

was effective, the authors suggested that the use of digital surface models (DSM), which considers 

elements above the ground surface as well, should be researched to better capture the surroundings 

of the roadway. This was later done by (Castro et al., 2016), who considered elements above the 

ground, where DSMs were compared against a DTM on the same segments. It was found that the 

sight distances calculated on the DSMs were shorter due to trees and vegetation along the 

roadways. 

Another method proposed in 2018 (Jung et al., 2018) assessed the 3D ASD at intersections. 

The method voxelated 3D point cloud data of an intersection collected using LiDAR. By slicing 

this data on an x-y grid plane at different driver heights/perspectives, sightlines could protrude 

from the driver’s perspective at some angular resolution along the x-y plane until intersecting with 

a voxel. The ASD was then calculated using Bresenham’s algorithm. The authors suggested that a 

better modelling method is required as the inaccuracy of the angular resolution increases with sight 

distance; the sightlines diverge. (González-Gómez & Castro, 2020) used DTM and raycasting in 
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ArcGIS to assess ASD on roundabouts. Recent work by (S. A. Gargoum & Karsten, 2021) used a 

raycasting approach to assess available sight distances on highways using LiDAR data.  

Using LiDAR for geometric highway design and sight distance assessment has become 

much more commonplace, supported by over a decade of research. To that end, all of the 

abovementioned studies in this section have only considered human drivers, their requirements, 

and their constraints. Recent studies used  DTMs and DSMs to analyze 3D surfaces. DSMs can 

cause some inaccuracy (mostly false positives) as they are generated using triangulation and 

represented as a triangulated irregular network (TIN). DSMs enabled better ASD analysis 

techniques but do not properly represent overlapping surfaces when projected onto a 2D plane and, 

therefore, are not a true 3D representation of the surface (de Santos-Berbel et al., 2014; Jung et al., 

2018). Finally, state-of-the-art studies use a raycasting voxel-based method, which suffers from 

major limitations (S. A. Gargoum & Karsten, 2021; Gouda, Chowdhury, et al., 2021).  

(Gouda, Chowdhury, et al., 2021; Gouda, Mirza, et al., 2021) proposed the first simulation-

based approaches for the assessment of road design for CAVs deployment using 3D point cloud 

data. AV sensors and computer system capabilities are modelled on existing roads, and then 

obstructions to vehicle sensors in the travel lane are queried. (Gouda, Mirza, et al., 2021) solved 

major limitations in previous studies and reduced the processing times of ASD assessment by 73% 

(35.5 seconds for a 10 km segment with 73,803,254 million points). 

2.7 SUMMARY  

In conclusion, the identified key elements of the infrastructure of importance to AV operation are: 

i) occlusion due to physical infrastructure, ii) road geometric design, iii) roadside and clear zone 

design, iv) pavement markings, and v) traffic signs. It was found that occlusion handling using the 

local AV system from the vehicle point of view is drastically limited and computationally 

infeasible. Recent research recommended using prior/offline maps to extract unsafe occlusions to 

the vehicle sensors in the general road environment. Several countermeasures at such unsafe 

locations are recommended, such as simplifying road design and improving V2I connectivity. 

However, no methods are developed to perform this assessment.  

In terms of the impact on road geometric design, all studies focused on studying the impact 

in terms of changes to design guidelines equations/parameters with no focus on testing existing 

designs. Roadside clear zones are prompted as a need for CAVs as these areas would allow AV 
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run-off-road (ROR) recovery systems to avoid collisions. In addition, studies recommended using 

roadside sensors at substandard roadside locations to warn AVs of road conditions and existing 

wildlife animal traffic. The use of roadside visibility and grades as criteria for roadside fencing on 

rural highways was also suggested.  

The placement of traffic signs and visibility of road surface and pavement markings are 

identified as some of the most important infrastructure elements to be addressed by IOOs (US 

DOT FHWA, 2021). For instance, if lane marking is occluded due to road features, the AV system 

would not be able to follow the road ahead and perform appropriate/comfortable manoeuvres. 

There is currently no method to perform this test in the literature.   

Recent studies in road design assessment focus on using LiDAR to develop automated 

testing methods based on human driver constraints. Due to LiDAR’s millimeter-level accuracy, 

reductions in data collection cost, and widespread data collection capabilities, civil engineering 

research has gravitated towards point cloud data. Before the work presented in this dissertation, no 

methods were developed to assess roads’ design compatibility with AVs, and the applicability of 

existing methods to perform this task was not explored.   



25 

 

3 Occlusion Assessment and Road Design Features 

The following explanation reflects the principles used to develop a testing approach for road design 

performance for AVs. The method was developed, taking into account recommendations of recent 

studies for future research. This methodology serves the purpose of evaluating the visibility of 

phantom targets on the road and roadside from the perspective of an AV travelling along a 

roadway. Figure 2 illustrates the high-level procedural flow of how data is processed in this 

methodology. 

 

Figure 2 High-level procedural overview 
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3.1.1 Point Cloud Data 

The input required for this methodology is reasonably dense point cloud data of roadways. Mobile 

LiDAR data collected from the perspective of a vehicle is effective in accomplishing this as it 

accurately captures relevant roadside features, trees, vertical surfaces, etc. 

3.1.2 Data Structures 

The proposed method uses a combination of an octree and voxels to compute sight distance. 

Though they are separate data structures, their relationship acts similarly to a modified voxel-

octree (Laine, 2010), as they are computed over the same point set. Intuitively, a voxel-octree 

would be an octree organization of voxels, but this method uses the data structures for different 

purposes and thus calculates them separately over the point cloud data. Voxels are used for target 

placement and output representation, whereas the octree is used for obstruction querying, which is 

unrelated to the voxel structure itself. Obstruction querying with an octree is done by defining a 

set of plane equations, called constraints, to create a bounded solid, as shown in Figure 3.  

 

 

Figure 3 4 Half-spaces intersecting to bound a tetrahedron (two angles) 
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The intersection of a set of half-spaces in 3D space forms a convex polyhedron. In this 

case, with four planes making up four sides of the polyhedron, it is a tetrahedron. If the tetrahedron 

is not unbounded, i.e., bounded by these half-spaces, it is considered a closed object and can act 

as a ‘bounded volume’ input into the octree.  

  All points of the original input cloud were represented by three double precision floating 

point values, providing the 𝒙, 𝒚, and 𝒛 coordinates of the point’s location. Given the minimum 

positional coordinates in each dimension of the point set 𝒙𝒎𝒊𝒏, 𝒚𝒎𝒊𝒏, and 𝒛𝒎𝒊𝒏, voxel coordinates 

𝒙𝒗𝒐𝒙, 𝒚𝒗𝒐𝒙, and 𝒛𝒗𝒐𝒙 were given by the following equations. 

 

𝒙𝒗𝒐𝒙 = ⌊
𝒙 − 𝒙𝒎𝒊𝒏

𝒈
⌋ (𝟏) 

𝒚𝒗𝒐𝒙 = ⌊
𝒚 − 𝒚𝒎𝒊𝒏

𝒈
⌋ (𝟐) 

𝒛𝒗𝒐𝒙 = ⌊
𝒛 − 𝒛𝒎𝒊

𝒈
⌋ (𝟑) 

 

The complete set of voxel coordinates, 𝑽, represents a simplified version of the input point 

cloud in voxelated form, where nearby points are aggregated together into cubes with a side length 

of 𝒈. It should be noted that these are floored coordinates, i.e., they are the minimum corner of the 

voxel (in all coordinate directions). In the case of this thesis, the sight distance evaluation is 

computed over a voxelated point cloud at 0.10 m grid size (𝒈 = 𝟎. 𝟏 𝒎), which was an appropriate 

balance between computational speed and results quality (Figure 4). 
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Figure 4 Comparison of 1.0 m (top) to 0.10 m (bottom) voxel grid size 

3.1.3 Grade Percentage Assessment 

Though this method focuses on sight distance assessment, grade percentage is also assessed on the 

input data. First, normal vectors are fitted to the point cloud using a quadric surface approximation 

oriented in the positive z-direction (upwards). These normal vectors can then be converted to the 

dip in radians from the positive z-axis, which provides the angular offset from the normal upward 

direction across the approximated surface. The slope of the approximated surface as a grade 

percentage is then the tangent of these dip values. The grade percentage can be aggregated and 

applied to the voxelated output set to be included in the results and the sight distance evaluation.  

3.1.4 Road Points and Frames of Reference 

To determine the view perspective of a vehicle, a parametric curve �⃗⃗� (𝒕) must be fit to the roadway, 

which reflects the path of a vehicle along the pavement. In this work, since mobile LiDAR data 

was used to develop the input point cloud, it was utilized to create �⃗⃗� (𝒕) in a manner similar to 

(Gouda, Mirza, et al., 2021). From the resulting parametric curve, a set of road points 
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𝑹 =  {𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏}, as shown in Figure 5 and the normalized forwards, leftwards, and upwards 

vectors , 𝒇𝒊
⃗⃗  ⃗, 𝒍𝒊⃗⃗ , 𝒖𝒊⃗⃗  ⃗ , at each road point are defined (Figure 6).  

 

 

Figure 5 Road points 

 

Figure 6 Upward vector calculation 

3.1.5 Observer Points and Observer-planes 

For each road point 𝒓𝒊 spaced 1 m apart along the road, an observer point is given by translating 

upwards by a fixed height 𝒐𝒊 =  𝒓𝒊 +  𝟏. 𝟐 ⋅  𝒖𝒊⃗⃗  ⃗, see Figure 7.  
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Figure 7 Illustration of observer point 

An observer-plane (Figure 8) can be centered around the observer aligned with its respective 

leftward and upward vectors 𝒍𝒊⃗⃗  and 𝒖𝒊⃗⃗  ⃗ and the normal of the plane represented by the observer’s 

forward vector 𝒇𝒊
⃗⃗  ⃗. The width and height of the observer-plane, 𝒘, and 𝒉, are 3.75 m and 0.5 m, 

respectively. This width extension of the observer-plane provides a representation of a vehicle 

sensor across the width of the lane. The corner points of the observer-plane are calculated as 

follows: 

 

𝒄𝟏 =  𝒐𝒊 +  𝒍𝒊⃗⃗  ⃗ ⋅  
𝒘

𝟐
 + 𝒖𝒊⃗⃗⃗⃗  ⋅  

𝒉

𝟐
(𝟒) 

𝒄𝟐 =  𝒐𝒊 +  𝒍𝒊⃗⃗  ⋅  
𝒘

𝟐
 −  𝒖𝒊⃗⃗⃗⃗  ⋅  

𝒉

𝟐
(𝟓) 

𝒄𝟑 =  𝒐𝒊 −  𝒍𝒊⃗⃗  ⋅  
𝒘

𝟐
 −  𝒖𝒊⃗⃗⃗⃗  ⋅  

𝒉

𝟐
(𝟔) 

𝒄𝟒 =  𝒐𝒊 −  𝒍𝒊⃗⃗  ⋅  
𝒘

𝟐
 +  𝒖𝒊⃗⃗⃗⃗  ⋅  

𝒉

𝟐
(𝟕) 
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Figure 8 Illustration of observer-plane 

 Using an observer-plane considers the worst-case scenario out of all possible sensor 

positions at every interval in the lane, as it aggregates all the view perspectives from inside the 

plane into one result.  

3.1.6 Sensor Visibility Assessment 

The first analysis of the voxelated data is the sensor visibility assessment. This assessment 

determines which voxels are in the field of view (FOV) of the vehicle sensors along the trajectory, 

i.e., in the FOV from any one or more observers. If a voxel is not in the FOV of any observers, it 

is deemed ‘not visible’ to autonomous vehicle sensors and is not further analyzed for sight distance. 

Performing this assessment refines the voxelated cloud, increasing the performance of the rest of 

the analysis. 

 The FOV used in this thesis was modelled after real-world autonomous vehicle sensor set 

specifications (Tesla, 2023). Details regarding sensor modelling are derived in (Gouda, Mirza, et 

al., 2021).  

 Figure 9, Figure 10, and Figure 11 illustrate the sensor spherical coordinate system, as well 

as the sensor set FOV.  
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Figure 9 Spherical coordinate system for sensor bounds 

 

Figure 10 Sensor FOV (above) 

 

Figure 11 Sensor FOV (side) 
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3.1.7 Target Planes 

In a voxelated point cloud, obstructing points exist inside voxels. Due to this, when analyzing the 

sight distance of a voxel, any obstruction searches or queries must not look inside the specific 

voxel itself. 

3.1.7.1 Translation Approach 

Each target plane 𝒔𝒊,𝒋 corresponds to a specific observer 𝒐𝒊 and voxel 𝒗𝒋 pair. The relative vector 

from the voxel to the observer 𝒓𝒊,𝒋⃗⃗ ⃗⃗  ⃗ =  𝒐𝒊 –  𝒗𝒋 is used as the normal vector of the target plane, 

which is translated some distance above the top of the voxel. For example, 0.38 m (Alberta 

Infrastructure and Transportation, 2022) was used for testing and development. The plane is then 

oriented with the z-axis [𝟎, 𝟎, 𝟏] such that the horizontal components of 𝒓𝒊,𝒋⃗⃗ ⃗⃗  ⃗ are maintained, and 

the target plane 𝒔𝒊,𝒋 faces the observer. The cross product of the normal vector 𝒓𝒊,𝒋⃗⃗ ⃗⃗  ⃗ and the upward 

vector [𝟎, 𝟎, 𝟏] provides the horizontal vector of the target plane, which allows the corners of the 

target plane to be calculated similarly to the observer-plane. Unlike the observer-plane, which has 

a fixed size, the target plane is calculated at the same width and height of the voxel grid size, as 

illustrated in Figure 12. 

 

Figure 12 Illustration of voxel target plane 

The target plane is translated 0.38 m upward so that the observer is looking above the 

ground, or the surface of the voxel being analyzed. 
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3.1.7.2 Voxel-Side Approach 

An alternative to the translation approach is the voxel-side approach. The voxel-side approach uses 

the sides of the voxel as target planes. By determining the three physically detectable sides of the 

voxel, three target planes can be calculated for each voxel-observer pair. 

Each target plane 𝒔𝒊,𝒋,[𝟏−𝟑] is part of a set of 3 planes 𝑺𝒊,𝒋 corresponding to a specific 

observer 𝒐𝒊 and voxel 𝒗𝒋 pair. Due to a voxel’s cubic geometry, the set of planes 𝑺𝒊,𝒋 is bounded at 

three, as it is only possible to see three sides of a cube from any arbitrary angle. 

 There are a few problems with this approach that cause inaccuracy in sight distance 

assessment due to the density of point cloud data. When creating a convex polyhedron to the 

vertical standing sides of the voxel, this approach works very similarly to the translation approach, 

but when creating the convex polyhedron to the horizontal sides of a voxel, the top or the bottom, 

the convex polyhedron can be quite narrow. In other words, the height or z-difference of the convex 

polyhedron is minimized when the voxel and observer are at similar heights. Therefore, the volume 

of the convex polyhedron is also minimized and acts more like a thin sheet than a view convex 

polyhedron. When this occurs, the convex polyhedron can sometimes slice between points that 

would normally be considered a surface, and thus, an obstruction. Due to this phenomenon, voxels 

that would normally be obstructed are recorded as visible on the top or bottom side due to the 

density of points obstructing the voxel. This is common with vegetation/foliage that is not as dense 

as ground surfaces, causing inaccurate inflation of ASDs. 

3.1.8 View Convex Polyhedron 

In analyzing sight distance, the motivation of this method was to use a three-dimensional 

representation of ‘view’ rather than a ray or line to better capture how sensors interact with their 

environment. Regardless of the observer-target view-perspective shape, the only condition was 

that the volume needed to be bound by planes such that the octree could interpret the constraints. 

Using a convex hull algorithm to create a view shape ensures that any convex polyhedron 

generated will meet such criteria. This allows the view perspective to be represented by any convex 

structure.  
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3.1.8.1 Convex Hulls 

A set of points 𝑷 in 3D space is considered convex if it contains every line segment connecting 

every point-to-point pair in 𝑷: 

{𝑷 ⊆ 𝑹𝟑 | 𝒑𝒒 ⊆  𝑷,  ∀ 𝒑, 𝒒 ∈  𝑷} (𝟖) 

The convex hull (Figure 13) of set 𝑷 in 3D space is defined by the four axioms below and equation 

9 (E. Welzl & B. Gärtner, 2013; F.P. Preparata & M.I. Shamos, 1985): 

1. It is the minimal convex set containing all points in 𝑷. 

2. It is the intersection of all convex supersets of 𝑷. 

3. It is the set of all convex combinations of points in 𝑷. 

4. It is the union of all tetrahedrons with vertices in 𝑷. 

𝑪 ≡  {∑ 𝝀𝒌 𝒑𝒌 :  𝝀𝒌 ≥  𝟎

𝑵

𝒌=𝟏

 ∧  ∑ 𝝀𝒌

𝑵

𝒌=𝟏

 =  𝟏} (𝟗) 

 

 

Figure 13 3D Convex hull of random 100-point cloud (transparent) 

A triangular mesh can be calculated that contains all individual points 𝒑𝒌 in the set, either 

as part of the mesh exterior or inside it, which can represent the convex hull of the set of points. 

Each face of the mesh is a triangle defined by three points 𝑡𝑗  =  [𝒑𝒎, 𝒑𝒏, 𝒑𝒐]. Every triangle also 

defines three edges 𝒑𝒎𝒑𝒏,  𝒑𝒏𝒑𝒐,  𝒑𝒐𝒑𝒎 , which are each shared with one other triangle in the 

mesh. At the end of the calculation, all edges will be ‘closed,’ or in other words, shared between 

two triangles, such that some volume of space is bounded by the mesh. 
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3.1.8.2 Defining the Hull Points 

The view convex polyhedron is created as a convex hull around the corner points of the target 

plane 𝒔𝒊,𝒋 and either around the observer point itself for a total of five points, or the corner points 

of the observer-plane, around 𝒐𝒊, for a total of eight points. 

 Determining the voxel target plane corners follows a similar approach to that of the 

observer plane. First, the middle point of the target plane is calculated by translating from the 

voxel’s coordinates. The location of the target plane will differ based on the approach used. The 

translation approach moves from the centre of the voxel upward, whereas the voxel sides approach 

can be in any of six directions aligned with the coordinate axis.  

 

3.1.8.3 Generating the Convex Hull 

3.1.8.3.1 Initialization 

In generating the convex hull of the set of points 𝑷, a gift-wrap algorithm was developed to 

calculate the mesh. The initialization step of the gift-wrap algorithm involves finding the first 

triangle 𝒕𝟏 in the mesh. This starts by locating a point with the most extreme coordinates in some 

dimension. In the case of this work, the point 𝒑𝒎𝟏 with the minimum 𝒙 value is chosen. The second 

point 𝒑𝒏𝟏 in 𝒕𝟏 is chosen by the smallest angle relative to the 𝑌𝑍 – plane from the newly formed 

edge 𝒑𝒎𝟏𝒑𝒏𝟏. Therefore, the first edge is guaranteed to be on the exterior of the hull. The third 

point 𝒑𝒐𝟏 in 𝒕𝟏 is found by crossing vector 𝒑𝒎𝟏𝒑𝒏𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ with a vector �⃗�  =  𝒑𝒎𝟏𝒑𝒏𝟏 –  [𝟏, 𝟎, 𝟎] such 

that the result is tangent to the hull. By crossing this result again with 𝒑𝒎𝟏𝒑𝒏𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ the result �⃗⃗�  is now 

a vector normal to the hull. Lastly, for every point left in the set, the cross product 

𝒗𝒌⃗⃗ ⃗⃗  =  𝒑𝒎𝟏𝒑𝒌⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ×  𝒑𝒎𝟏𝒑𝒏𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ provides another normal vector facing the opposite direction, that 

adding the point 𝒑𝒌 would create. By taking the largest dot product between �⃗⃗�  and any 𝒗𝒌⃗⃗ ⃗⃗ ,  𝒑𝒌 can 

be distinguished as the point 𝒑𝒐𝟏 in the first triangle 𝒕𝟏. 

3.1.8.3.2 Iteration 

The iteration process involves closing the edges of the mesh by selecting a point 𝒑𝒌 in the set 𝑷 

that forms a new triangle. The new triangle will share at least one of the unclosed edges already 

existing in the mesh. The last iteration should close the final three remaining unclosed edges such 
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that all edges in the mesh are shared by two triangles, resulting in a closed surface, the convex hull 

around 𝑷. 

 The triangle 𝒕𝟏 added in the initialization created three unclosed edges, 𝒑𝒎𝟏𝒑𝒏𝟏, 𝒑𝒏𝟏𝒑𝒐𝟏, 

𝒑𝒐𝟏𝒑𝒎𝟏. To close an edge, the normal vector of the triangle 𝒏𝟏⃗⃗ ⃗⃗  should be found, which is done by 

crossing the edge vectors of the triangle: 𝒏𝟏⃗⃗ ⃗⃗  =  𝒑𝒎𝟏𝒑𝒏𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ × 𝒑𝒏𝟏𝒑𝒐𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Then calculate, for every 

other point that isn’t on 𝒕𝟏, the normal vector that the new point would create, 

𝒗𝒌⃗⃗ ⃗⃗  =  𝒑𝒊𝒑𝒎𝒊⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ×  𝒑𝒎𝟏𝒑𝒏𝟏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ just as done in the initialization step. The largest of the dot products 

between �⃗⃗�  and any 𝒗𝒌⃗⃗ ⃗⃗  will distinguish the point in 𝒕𝟐 that should close the edge 𝒑𝒎𝟏𝒑𝒏𝟏, which 

can subsequently be removed from the list of unclosed edges.  

Therefore, 𝒕𝟐 is added to the mesh as [𝒑𝒎𝟏,  𝒑𝒌,  𝒑𝒏𝟏] and thus, two more unclosed edges 

𝒑𝒎𝟏𝒑𝒌 and 𝒑𝒌𝒑𝒏𝟏 are added to the list. The iteration will continue until all the edges are closed, 

and the mesh should contain a unique set of triangles defining the point connections of the convex 

hull. The following is a pseudocode description of this algorithm. Figure 14 provides a visual for 

an observer mesh in iteration. Figure 15, Figure 16, and Figure 17 display the convex hull 

polyhedron around and observer and voxel target planes from different angles; they display the 

result of this algorithm for a single target plane.  

 

giftwrap3d 

Inputs: 

 𝑷: An indexed set of input points, 𝒑𝒌 ∈ ℝ𝟑 

Returns: 

 𝑪: A convex hull of 𝑷 defining triangular edge surfaces by their corners, indexed from 𝑷 

𝑪 ← ∅ 

unclosed_edges ← ∅ 

find_first_plane( ): 

𝑝𝑚1 min
𝑥(𝑃)

) 

For 𝑝𝑘  in 𝑃 ∖ (𝑝𝑚1) do 



38 

 

 𝑡𝑒𝑚𝑝 ← 𝑎𝑛𝑔𝑙𝑒𝑌𝑍(𝑝𝑚1𝑝𝑘) 

 𝑝𝑛1 ← 𝑚𝑖𝑛(𝑡𝑒𝑚𝑝, 𝑝𝑛1) 

𝑒  ←  𝑝𝑚1𝑝𝑛1 –  [1,0,0] 

�⃗� ← 𝑐𝑟𝑜𝑠𝑠(𝑝𝑚1𝑝𝑛1, 𝑒 ) 

For 𝑝𝑘 in 𝑃 ∖ (𝑝𝑚1 ∪ pn1) do 

𝑣𝑘⃗⃗⃗⃗ ← 𝑐𝑟𝑜𝑠𝑠(𝑝𝑚1𝑝𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,  𝑝𝑚1𝑝𝑛1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

𝑡𝑒𝑚𝑝 ← 𝑑𝑜𝑡(𝑣𝑘⃗⃗⃗⃗ ,  �⃗� ) 

𝑝𝑜1 ← 𝑚𝑎𝑥(𝑡𝑒𝑚𝑝,  𝑝𝑜1) 

𝑪 ← 𝒕𝟏 ← (𝒑𝒎𝟏,  𝒑𝒏𝟏,  𝒑𝒐𝟏) 

unclosed_edges ←  (𝑝𝑚1𝑝𝑛1,  𝑝𝑜1) 

unlcosed_edges ←  (𝑝𝑛1𝑝𝑜1,  𝑝𝑚1) 

unlcosed_edges ←  (𝑝𝑜1𝑝𝑚1,  𝑝𝑛1) 

While unclosed_edges ≠  ∅ do 

(𝑒,  𝑝3) ← 𝑢𝑛𝑐𝑙𝑜𝑠𝑒𝑑_𝑒𝑑𝑔𝑒𝑠(1) 

pop_edge(1) 

�⃗�  ← 𝑐𝑟𝑜𝑠𝑠(𝑒,  𝑒(2)𝑝3) 

𝐅𝐨𝐫 𝑝𝑘 in 𝑃 ∖ (𝑒 ∪ 𝑝3) do 

𝒗𝒌⃗⃗ ⃗⃗  ← 𝒄𝒓𝒐𝒔𝒔( 𝒑𝒌𝒆(𝟏)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ,  �⃗� ) 

𝑡𝑒𝑚𝑝 ← 𝑑𝑜𝑡(�⃗� ,  𝑣𝑘⃗⃗⃗⃗ ) 

𝑝𝑛𝑒𝑤 ← 𝑚𝑎𝑥(𝑡𝑒𝑚𝑝, 𝑝𝑛𝑒𝑤) 

𝑪 ← 𝒕𝒊 ← (𝒆(𝟏),  𝒑𝒏𝒆𝒘, 𝒆(𝟐)) 

If 𝑒(1)𝑝𝑛𝑒𝑤 ∉  unclosed_edges do 

unclosed_edges ← (𝑒(1)𝑝𝑛𝑒𝑤 ,  𝑒(2)) 

else pop_edge(𝑒(1)𝑝𝑛𝑒𝑤) 
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If 𝑝𝑛𝑒𝑤𝑒(2) ∉  unclosed_edges do 

unclosed_edges ←  (𝑝𝑛𝑒𝑤𝑒(2),  𝑒(1)) 

else pop_edge(𝑝𝑛𝑒𝑤𝑒(2)) 

 

 

Figure 14 (Not-to-scale) observer-target mesh in iteration (3 triangles) 

 

Figure 15 (Not-to-scale) convex hull polyhedron around an observer & voxel target plane 

 

Figure 16 Convex hull polyhedron around an observer-plane & voxel target plane – angle 1 
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Figure 17 Convex hull polyhedron around an observer-plane & voxel target plane – angle 2 

3.1.8.4 Generating Constraints 

To evaluate the view convex polyhedron between an observer-voxel pair, the convex polyhedron 

is converted to a set of half-space constraints. The closure of half-spaces makes up the bounding 

volume 𝑪𝒊,𝒋. 

3.1.9 Sight Distance Evaluation 

To evaluate the sight distance to a voxel, two techniques were used: non-continuous sight distance 

and continuous sight distance. The non-continuous technique scores each voxel 𝒗𝒋 by the number 

of observers 𝒐𝒊 where 𝒗𝒋 is in the sensor range and is not obstructed by any point 𝒑𝒌. If no points 

are returned, the area described by the target plane 𝒔𝒊,𝒋, is visible and unobstructed, adding 1 m to 

the sight distance of the voxel, i.e., its ‘score’. The continuous technique operates similarly to the 

non-continuous technique but additionally keeps track of the longest consecutive stretch of 

observers that have an unobstructed view. 
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Figure 18 Continuous versus non-continuous sight distance example (0.1 m voxel size) 

 Figure 18 shows three sections along the path of observers, A, B, and C. In the non-

continuous technique, the highlighted voxel would have a ‘score’ of all the observers in sections 

A and C, but in the continuous technique, it would have a ‘score’ of the observers in either section 

A or C, whichever is longer. 

3.1.10 Verification 

Sight distance evaluation using octree queries is verified manually by checking the coordinates of 

returned obstructions and confirming they do exist inside the convex polyhedron. In doing so, a 

number of layers can be generated and overlayed onto the original point cloud to visually confirm 

accuracy as well. These layers describe a separate object pertaining to the view convex polyhedron 

in question and the subset of points returned as obstructions from the octree query. Aligning these 

files and overlaying them onto the original point cloud provides visual confirmation that the 

returned obstructions do exist inside the view convex polyhedron. Some examples of detected 

obstructions are shown in Figure 19, Figure 20, Figure 21, and Figure 22. 
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Figure 19 Obstructed view convex polyhedron from observer due to roadside reflector 

 

 
Figure 20 Obstructed view convex polyhedron from observer plane due to roadside 
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Figure 21 Set of obstructed view convex polyhedrons from observer points 

 

 
Figure 22 Set of obstructed view convex polyhedrons from observer plane 
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3.1.11 The Raycast Method 

This raycast method is compared to the view convex polyhedron method outlined in this thesis for 

assessing the sight distance of an entire road environment. This raycasting method is developed 

by modifying the state-of-the-art version in (Gouda, Chowdhury, et al., 2021). Details of the 

raycasting methods are not covered to economize on space. In Figure 23, a standard voxel size 

shows how, for each observer, an analysis is done for obstructions on the sightline to a voxel. 

 
Figure 23 Observer sightlines to a voxel 

 

3.1.12 Comparison with the Raycast Method  

This section discusses the advantages of the view convex polyhedron method described in section 

3. For the purpose of a fair comparison, only the observer points were used for evaluating sight 

distance as the observer plane analysis is not possible/infeasible in the raycast method, requiring 

infinite rays. This is because the raycast method does not check for obstructions using a volume-

related process like in the convex-hull method. To analyze sight distance with an observer plane 

using the raycast method would require rays to be cast from every possible location within the 

plane. 
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3.1.12.1 Processing Times 

As shown in Table 1, the processing time per voxel is dependent on different factors for each 

method. It can be noticed that the increase in processing time for the raycast method to Run 4 is 

greater than in the convex hull method (~16.7x vs ~14.6x, respectively). Of all the runs, Run 4 

was performed on a full segment at the proper voxel grid size and observer spacing. Therefore, 

other than specific or extreme cases, the convex hull method usually outperforms the raycast 

method regarding processing time due to its independence from the voxel grid size. The machine 

used for the testing incorporated two Nvidia RTX 2080Tis, an Intel Core i9-9960X, and 128 GB 

ram.  

Table 1 Processing times, convex hull (observer point) versus raycast 
 

3.1.12.2 Results 

The comparison of the convex hull method with raycast was analyzed both qualitatively and 

quantitatively. The qualitative analysis involved side by side comparison of sight distance (and 

grade) heatmaps to identify differences and similarities.  

3.1.12.2.1 YCbCr for Comparisons 

YCbCr is a family of colour spaces that can be used for scoring. It is used in this method to show 

colour scores in three dimensions, i.e., mapping up to three variables to a colouring scale without 

loss of data or redundancy. Figure 24 shows an example of a YCbCr Heatmap Key. Again, to 

economize on space, the mathematical derivations and basics of YCbCr scoring can be found in 

(International Telecommunication Union, 2011). In this work, the voxel grades and scores are 

normalized and mapped non-linearly to the colour space by the following equations: 

Parameter Run 1 Run 2 Run 3 Run 4 Run 5 

Voxels (𝒗) 2,398,673 2,398,673 2,040,635 20,078,505 20,078,505 

Voxels Grid Size (∝  𝒕) 0.1 m 0.1 m 1.0 m 0.1 m 0.1 m 

Observer Spacing (∝  𝒃) 1 m 2 m 1 m 1 m 2 m 

Points in Cloud  4,071,266 4,071,266 34,584,002 34,584,002 34,584,002 

Distance of Road Segment (m) : 467 467 4,004 4,004 4,004 

X-Sectional Avg. Dens. (points/m) : 

[Points in Cloud / Distance of Seg.] 
8.7 e+03 8.7 e+03 8.6 e+03 8.6 e+03 8.6 e+03 

Raycast Processing Time (s) : 4,623.91 2,609.58 334.72 77,307.93 21,852.60 

Convex Hull Processing Time (s) : 2,802.94 2,064.17 2,621.64 40,966.42 24,872.37 
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𝑌 = 𝑌𝑚𝑖𝑛 + (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛) ∗ 𝑖 (𝟏𝟎) 

𝐶𝑅 = 𝐶𝑅𝑚𝑖𝑛 + (𝐶𝑅𝑚𝑎𝑥 − 𝐶𝑅𝑚𝑖𝑛) ∗ (
1

1 + 𝑒
ℎ𝑠−𝑠

𝑝

) (𝟏𝟏) 

𝐶𝐵 = 𝐶𝐵𝑚𝑖𝑛 + (𝐶𝐵𝑚𝑎𝑥 − 𝐶𝐵𝑚𝑖𝑛) ∗ (1 − 𝑒
𝑙𝑜𝑔(0.5)

ℎ𝑔
∗𝑔

) (𝟏𝟐) 

 

 

Figure 24 Heatmap key (154±30m / 20% grade) 

3.1.12.2.2 Qualitative Comparison 

Figure 25, shows some important discrepancies between the two methods but misses some that are 

more apparent in Figure 26. The scaling of these heatmaps hides some of the discrepancies, as 

most of the colour changes occur around a sight distance of 154 m. So, differences in sight distance 

that centre around a sight distance well above or below 154 m are difficult to distinguish as their 

colour difference are minimized. This happens on the trees, especially where the continuous sight 

distance for each method is usually relatively low compared to the scale but may still be quite 

different. 
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Figure 25 Convex hull method (top) versus raycast (bottom) continuous sight distance heatmap (0.1 m 
voxel size) 

3.1.12.2.3 Quantitative Comparison 

For the quantitative analysis, more heatmaps were generated over the voxelated point cloud to 

highlight the differences (in red) and similarities (in white) in sight distance at certain locations. 

 

 

Figure 26 Raycast versus convex hull sight distance difference heatmap (0.1 m voxel size). Scale range 
[white]: <10 m dif. to [red]: >40 m dif. 

As seen in Figure 26, sight distances relating to reasonably flat surfaces on and around the road 

surface are quite similar. However, there are two classes of surfaces that produce quite different 

sight distances in each method that would not as easily be noticed in the side-by-side comparison: 
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surfaces partially shielded from the FOV, such as ditches, and steep grade surfaces, such as trees. 

These are common surfaces near highways, and therefore, the more accurate method should be 

considered. 

3.1.12.2.4 Accuracy 

The convex hull method used in this thesis consistently produces longer sight distances than the 

raycast method. The cause of this discrepancy was investigated to determine which method is 

subjected to fewer inaccuracies.  

3.1.12.2.5 Obstructions 

The first difference between the two methods that must be noted is how they each identify 

obstructions. The raycast method performs a voxel traversal along the vector from the observer to 

the voxel target. The voxel target is just a point identifying the centre of a voxel position that is 

usually translated above the original voxel. 

If the voxel traversal along the observer-target vector intersects a voxel from the voxelated point 

cloud, that voxel will be returned as an obstruction. This means that the accuracy of the raycast 

method is dependent on voxel size, as it is directly proportional to the volume of the traversal 

object. 

 From visual inspection, there are significantly more raycasts obstructed in Figure 27 than 

convex polyhedrons shown in Figure 21. 

 

Figure 27 Set of obstructed raycasts 
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In the convex hull method, obstructions are specific points returned from the octree query of the 

volume bounded by each convex polyhedron. Consequently, only the convex polyhedron volume 

is related to the voxel size regarding the size of the target plane. Obstructions, on the other hand, 

are independent of the voxelated point cloud. Therefore, the more empty space a voxel contains, 

the greater the difference between these methods. Since the empty space inside a voxel also 

increases with voxel size, the discrepancy between them is proportional to voxel size. 

3.1.12.2.6 Raycast Clipping 

Analysis and verification at voxels with large differences in sight distance between the two 

methods, such as the voxel in Figure 21 and Figure 27, provide evidence to show the inaccuracy 

of the raycast method. ‘Clipping’ occurs when a raycast passes through the empty space of a 

nonempty voxel (Figure 28). In contrast, the convex polyhedron does not intersect any point in the 

point cloud and would not be declared obstructed (Figure 29). 

 

 

 

Figure 28 Illustration of raycast clipping 
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Figure 29 View convex polyhedron over clipping point 

3.1.13 Data Collection 

Alberta Transportation collected LiDAR point cloud data from rural highways in Alberta, Canada, 

in 2020. The data was collected using a multifunctional surface profiling vehicle, Tetra Tech PSP-

7000, equipped with a REIGL VMX-450 system. Surveys were performed at speeds of up to 

100 km/h in normal traffic flow. The collected data was segmented into separate 4 km section LAS 

files. At 90 km/h, the point density ranges from 150 to 1000 points/m2, saved in files of 

approximately 500 MB each. 

 Four km, 8 km, and 10 km sections from Alberta Highways 40, 32, and 11, respectively, 

were further split into 4 km segments and considered in this section. 

3.1.14 Case Studies 

The method outlined has numerous applications that help identify locations requiring further safety 

assessment on the road and roadside.  

 

3.1.14.1 Clear Zones & Roadside Safety 

Locations of high grade, low visibility, or combinations of such can be identified using the method 

proposed in this thesis. From this, clear zone and roadside safety assessments can be made. Some 

of these locations would be sharp slopes, fixed objects, etc. 

Side slopes steeper than a 3:1 width-to-height ratio, or 33% grade, are considered a hazard due to 

the increased possibility of vehicle rollover. Safety precautions are therefore required. If the 

hazardous slope is less than 14 m in height, either the side slope grade can be reduced to an 
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adequate level or barrier protection is required. However, if the hazardous slope is greater than 14 

m in height, barrier protection is suggested to be installed regardless of the grade. With these 

requirements, the clear zone must also be free of obstacles, such as trees over 100 mm in diameter, 

utility poles/supports, non-breakaway signs or other pole-like structures, water hazards, boulders 

taller than 100 mm, etc. The method presented in this work can help users identify areas of interest 

that either meet these specifications or require further safety infrastructure, as shown in the 

following figures.  

 

 
Figure 30 Steep, low visibility roadside with reflectors 
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Figure 31 Steep, low-visibility roadside 

 
Figure 32 Heatmap key (154±30m / 30% grade) 

 Figure 30 and Figure 31 depict two roadside sections detected as low visibility and/or high 

grade. Locations of poor visibility within the vehicle sensors on the road and roadside can be 

directly identified. These locations may require a decrease in the speed limit or the implementation 

of other safety protocols or infrastructure elements (e.g., wildlife fencing, animal detection sensors, 

removal of obstructions, etc.). On the other hand, the opposite conclusion may also be drawn, 
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where some sections may be evaluated for higher ASD to increase the maximum and 

recommended speed limits for CAVs.  

 According to AASHTO, human drivers are expected to react in 2.5 s under most road 

conditions, whereas recent works suggest that AVs can reach a reaction time as low as 0.5 s, which 

is considered in this analysis. Therefore, the following AASHTO equation was used to calculate 

stopping sight distance (SSD) or maximum speeds as suggested in recent studies (AASHTO, 

2018): 

 

0.278𝑉𝑡 +
𝑉2

254 [
𝑎

9.81 ± 𝐺]
= 𝑑 (𝟏𝟑) 

 

 𝑽 refers to the speed of the vehicle (km/h). 𝒕 refers to the perception reaction time, i.e., 

2.5 s for a human driver and 0.5 s for an AV. 𝒂 refers to the deceleration rate of the vehicle (m/s2). 

The deceleration rate of 3.4 m/s2 recommended by AASHTO was used to ensure the safety and 

comfort of human passengers. This deceleration rate is considered a physical constraint of the 

vehicle but is still based on characteristics of human driver performance. Lastly, 𝑮 refers to the 

grade of the roadway as a decimal. Equation 13 can turn the heatmaps to maximum safe speeds, 

as shown in Figure 32.  

 Figure 33, Figure 34, and Figure 35 identify a horizontal curve around a mountainside, 

which causes a reduced sight distance to a portion of the road and the roadside, again given by the 

key in Figure 32. 
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Figure 33 Obstructed due to mountain side (heatmaps – top observer point, bottom observer 

plane) 
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Figure 34 Obstruction due to mountain side (convex polyhedrons angle 1 – top observer points, 

bottom observer planes) 

 
Figure 35 Obstruction due to mountain side (convex polyhedrons angle 2 – top observer points, 

bottom observer planes) 
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 As this location is in an area where wildlife animal activity is expected, the purple area, 

with high grade and low visibility, and red areas would require safety countermeasures, such as 

wildlife fencing, animal detection sensors or reducing speed limit (smart warning sign). This is 

based on the ASD to the roadside, not the travel lane.  

 

3.1.14.2 Wildlife Sight Distance & Target Heights 

Following on, this section evaluates sight distance at multiple target heights above the ground to 

identify animal visibility. Sight distance assessments were performed at several target heights, 

starting with a base of 0.38 m and following at heights of 0.53 m, 0.70 m, 1.3 m, and 1.4 m. These 

heights correspond to various animals found commonly in Alberta, Canada (deer, bear, elk, and 

moose). The following figures demonstrate the output along a highway segment at different animal 

heights. 

 

 

Figure 36 Comparison of target height 0.38 m (top) vs 1.40 m (bottom) 



57 

 

 

Figure 37 Heatmap Key (246±100m / 30% Grade) 

The target heights compared in Figure 36 are coloured according to the key shown in Figure 

37. Appropriate countermeasures may be applied depending on the expected species in a region. 

3.1.14.3 Pavement Surface Assessment 

In addition, the proposed method can be used to perform analytics specific to the pavement surface 

to provide data-driven insights for maintenance operations. For example, Figure 38 and Figure 39 

show two sections along the same segment with limited visibility and high grades. A recent 

USDOT FHWA collaborative initiative between IOOs and AV industry professionals concluded 

that removing occlusions to lane markings is a recognized measure to improve highways for CAV 

readiness and compatibility by IOOs. Hence, the ultimate benefit of this pavement surface analysis 

is studying occlusion to lane markings.  

 

 
Figure 38 Pavement assessment on a curve 
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Figure 39 Pavement assessment on a slope 

3.1.15  Conclusions 

This section proposed a holistic simulation-based method for mapping existing road and roadside 

design information based on AV sensor set design and autopilot parameters using ultra-dense point 

clouds. As demonstrated here, the mapped data can then be used to assess road and roadside design 

for AV deployment and identify substandard locations for AVs. The proposed method simulates 

virtual AV sensors’ field of vision, originating from different points in the travel lane and phantom 

targets on the voxelated road and roadside environment. Convex hulls and octrees are then used to 

score voxels based on the visibility of every phantom target in view of a convex polyhedron. 

Following that, a quadratic surface model of the road and the roadside surface was utilized to 

generate normal vectors. Then, a series of arithmetic operations were applied to map road/roadside 

gradients. Next, a semantic segmentation variant of PointNet++ is applied to classify points into 

road and roadside points. Finally, the different dimensions (visibility score, gradient, intensity, and 

classification) were used to generate maps based on a unique YCbCr colour space value. A 

different state-of-the-art raycasting approach used in lane-level sight distance research and also 

suggested in state-of-the-art AV urban occlusion handling research was developed and improved 

to perform a general road/roadside analysis. This approach was compared to the proposed method.  

Three highway segments in Alberta, Canada, with a total length of 22 km, were used for 

testing. In general, It was found that the proposed method outperforms the raycasting method in 
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terms of performance and processing time at small voxel grid sizes and observer spacing. Besides, 

the proposed approach has other advantages, such as 1) the ability to account for different sensor 

origins in the travel lane, 2) avoiding false clipping in voxel-based raycasting methods, 3) the 

possibility to generalize to different shapes of sensor sets and targets required by a user, and 4) 

accurately detects occlusions regardless of the voxel size used.  
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4 TRAFFIC SIGNS 

4.1 SEMANTIC SEGMENTATION 

Following state-of-the-art research and practice, this work uses advanced professional-grade 

mapping scanners to digitize the road infrastructure. The collected scans are 3D points with several 

features related to the returned laser pulse to the scanner. The scans are not ready for direct use or 

assessment. The automated semantic segmentation step is necessary to turn the data into subsets 

for further processing and scene understanding. These subsets locate every point in the point cloud 

into its relevant class (e.g., pavement, lane marking, road signs, roadside, etc.). 

Several methods were utilized in this research to perform semantic segmentation on the collected 

data. Some of these methods are heuristic models, and some are deep-learning-based. The method 

proposed in this section was developed using traffic sign data due to the extensive work needed to 

build rural training datasets manually.  

4.1.1 Background 

Traffic signs provide meaningful information about the conditions and limitations of the road. 

Current practices in road maintenance and asset management involve a tremendous amount of 

manual surveying work by transportation agencies to build traffic sign inventories (TSIs) (CoE, 

2023; S. A. Gargoum & El Basyouny, 2019). For instance, the City of Edmonton (CoE) maintains 

about 130,000 traffic signs, performs regular surveys, and responds to more than 2,000 sign 

maintenance jobs annually (CoE, 2023). TSIs compile and maintain information about traffic sign 

location, placement, dimensions, orientation, visibility, and classification (Karsten, 2019). TSIs 

are essential for a successful, reliable, and cost-effective Transportation Asset Management 

(TAM) plan and to ensure that traffic signs regularly meet standard traffic sign placement 

guidelines and the needs of drivers (Karsten, 2019). Given the size of current global transportation 

networks, traditional manual surveying of signs is time-consuming, labour-intensive, inefficient, 

suffers from low accuracy, causes traffic disruptions, and is economically infeasible (S. A. 

Gargoum & El Basyouny, 2019; Gouda, Epp, et al., 2022; Karsten, 2019). To address this, 

government agencies have started to digitize their infrastructure network while developing 

alternative sign-detection methods (Gudigar et al., 2016).  
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Through their digitization efforts, governments have collected data on road infrastructure 

through images and videos. Machine learning techniques such as support vector machines, random 

forests, neural networks, convolutional neural networks (CNN), and other classification algorithms 

have been applied to image and video data and achieved satisfactory detection rates (A. Adam & 

Ioannidis, 2014; Kuo & Lin, 2007; Lee & Kim, 2018; Pei et al., 2013; Y. Yuan et al., 2019; 

Zaklouta & Stanciulescu, 2012; Zhu et al., 2016). Image and video-based methods, however, suffer 

greatly from variations in environmental conditions, ambient light levels, sign orientation, and 

cleanliness (Howe, 2006). An alternative is LiDAR, a technology that had increased interest in the 

past few years (Habib et al., 2019, 2020; L. Ma et al., 2018; Williams et al., 2013). LiDAR is an 

optical sensor that transmits laser beams toward surrounding targets and records features related 

to the surveyed points. The return strength of a reflected laser pulse at a point is known as 

“intensity,” which depends on the reflectivity of the surveyed object (ArcMap, 2019). LiDAR 

utilizes laser scanning equipment, global positioning systems (GPS), and navigation technologies 

to obtain intensity and positional information of surrounding features. The output of the LiDAR 

scanning process is a rich 3D point cloud of the surveyed objects that can be used in the automated 

extraction of road and roadside features (Agina et al., 2021; S. A. Gargoum, El Basyouny, et al., 

2018; Gouda et al., 2020, 2023; Kilani et al., 2021). 

Several researchers have studied how such data can be used to automate the detection of 

traffic signs  (Ai & Tsai, 2014; X. Chen et al., 2009; Y. Z. Chen et al., 2007; S. Gargoum et al., 

2017; S. A. Gargoum & El Basyouny, 2019; S. Gargoum & El-Basyouny, 2017), and it was found 

to be a potentially cost-effective alternative compared to conventional approaches, with reductions 

in the processing time of up to 76% (Ai & Tsai, 2014). LiDAR data, with millimeter-level accuracy 

and widespread data collection capabilities, represents an alternative to collecting traffic sign 

information required for building TSIs (Karsten, 2019). Emerging technologies like LiDAR have 

recently shifted research trends to applying deep learning on 3D point clouds (Qi, Su, et al., 2017; 

Qi, Yi, et al., 2017). New neural network architectures have been developed to operate on 3D data 

to perform tasks such as shape reconstruction and point cloud segmentation (Qi, Su, et al., 2017; 

Qi, Yi, et al., 2017; Yang et al., 2018; W. Yuan et al., 2018). However, point clouds are an 

unordered set of data points in 3D space, constraining the neural network's architectural design. 

Most existing methods typically transform 3D point cloud data to a regular 3D voxel grid, such as 

SegCloud (Tchapmi et al., 2017) and VoxelNET (Y. Zhou & Tuzel, 2018), or to collections of 
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images (multi-view representations) (Su et al., 2015), and provide these as input to their deep 

neural networks (Briechle et al., 2019; Griffiths & Boehm, 2019). This additional preprocessing 

step yields unnecessarily expanded data and affects existing features associated with the point data 

(Qi, Su, et al., 2017). 

Since 2017, PointNet++ (Qi, Yi, et al., 2017) has been considered the state-of-the-art deep 

hierarchical neural network architecture due to its accuracy when analyzing standard datasets in 

small scenes (Griffiths & Boehm, 2019; Qi, Yi, et al., 2017). PointNet++ (Qi, Yi, et al., 2017) 

operates directly on unordered 3D points without converting the data into other shape 

representations, such as 3D voxels or multi-view data. However, it has been difficult to apply the 

same framework for semantic segmentation on large scenes because of the increased 

computational requirements, which will typically not fit into the memory of an economic 

Graphical Processing Unit (GPU), and the significant reduction in segmentation accuracy if low-

density scans are used (Briechle et al., 2019; Qi, Yi, et al., 2017). As such, (Qi, Yi, et al., 2017) 

recommended further research exploring how to apply PointNet++ to larger metric scenes while 

maintaining its accuracy. In addition, a review by (L. Ma et al., 2018) recommended further 

research on deep learning applications for extracting road features from point cloud data, which 

poses challenging scene sizes for such algorithms. (Griffiths & Boehm, 2019) reviewed deep 

learning techniques for point cloud classification and segmentation, and it was concluded that 

recent advances in the PointNet++ architecture demonstrated a benchmark performance on 

standard datasets. Further, it was found that the direct processing of unordered point clouds, 

established by PointNet and PointNet++, is potentially a very effective solution for point cloud 

segmentation for future research (Griffiths & Boehm, 2019). 

In this thesis, the semantic segmentation variant of PointNet++ (Qi, Yi, et al., 2017) is 

adopted, with several augmentations to its original implementation. This work is an attempt to 

apply recently developed and highly accurate point-based direct processing deep learning on large-

scale scenes for traffic sign extraction from LiDAR data. Further, a practical methodology for 

extracting and preparing training datasets is proposed. Finally, a series of validation tests were run 

to investigate the accuracy of this new approach. Due to the flexibility of deep learning, the 

proposed approach would avoid limitations in previous research, such as point cloud 

transformation to volumetric representations or multi-view data, data filtering, and manual 

thresholding (e.g., intensity thresholding). As such, it would improve the detection accuracy of 
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sign points and processing time. The performance of the proposed method is compared against 

other similar methods on an existing benchmark dataset. The method is also compared against 

SqueezeSegV2 (B. Wu et al., 2019), a state-of-the-art convolutional neural network (CNN) 

capable of accurately segmenting rasterized 3D image-like tensors representing the visible point 

cloud from the perspective of a vehicle. 

4.1.2 Previous work 

Several studies proposed different methods for detecting traffic signs using LiDAR data. (Y. Z. 

Chen et al., 2007) was one of the earliest studies to propose a vehicle-borne system consisting of 

LiDAR, cameras, and a navigation unit. Collected LiDAR data was filtered to remove the 

surroundings (vegetation, buildings, etc.) objects. The remaining points were efficiently clustered 

according to point distance and projected onto the horizontal plane, and then traffic sign candidates 

were obtained based on their strong linear features. Laser points were projected onto images to 

verify the candidate sign points. The study did not discuss success rates. 

(X. Chen et al., 2009) filtered point clouds based on the distance to sensors, sensor angle, 

and intensity. Next, points were clustered and projected in a 3-D grid structure to retain high-

intensity clusters. Finally, RANSAC and other geometric filters were applied to remove outliers. 

Tested on a 7-miles highway segment, the method achieved a 98.0% detection rate. 

(Riveiro et al., 2015) applied an intensity filter to detect potential sign points, followed by 

a density-based algorithm to segment the point clouds. Clusters were further filtered by the number 

of points, dimensional constraints, and Principal Component Analysis (PCA) to identify sign 

points. The algorithm yielded variable success rates based on the type of road and sign.  

(Arcos-García et al., 2017; Soilán et al., 2016) focused on detecting traffic signs in 3D 

point clouds in urban and highway environments. Ground points were removed from the LiDAR 

data, and then an intensity filtering technique was applied to the remaining points. DBSCAN-based 

clustering and PCA were used to isolate each traffic sign. Tested on an urban road and a highway 

in Spain, the method achieved precisions of 86.1% and 92.8%, respectively. 

(Wen et al., 2016) employed a 'terrain filter' (i.e., repeated local horizontal fuzzy plane 

fitting) to locate off-ground points that were then clustered using Euclidean distance clustering. 

Linearly structured objects were separated by geometric filtering, and traffic signs were detected 

by an intensity filter. Tested on three roads in Xiamen, China, the method achieved an F1 score of 
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92.7%, which was attributed to incomplete point clouds and non-reflective side signs. (P. Huang 

et al., 2017) adopted a similar approach and achieved an F1-score of 94.8%. The authors attributed 

false positives to strong reflective billboards and a few oversized traffic poles. 

(Guan et al., 2018), with prior knowledge of pole height and road width, filtered out the 

majority of ground and non-ground points. Then, the traffic sign interest regions were extracted 

from the non-ground points according to intensity information and geometrical structures. Finally, 

a refinement procedure was used to further remove non-traffic-sign clusters and noise. The authors 

reported a detection accuracy of 86.8%. 

More recently, (Javanmardi et al., 2018) proposed a method that detected traffic signs and 

light poles from LiDAR data. A surface reconstruction algorithm was used to extract the 

orientation of the points, and k-means clustering was applied to extract road points. A sliding 

cuboid was designed to search for objects with a high elevation, and RANSAC was employed to 

remove non-planar false candidate points. In the post-processing step, a modified growing region 

was used to remove the outlier points around the candidates. Predefined thresholds based on sign 

and pole dimensions were used to remove false object candidates. The method achieved success 

rates of 94.5% in traffic sign detection. 

(Y. Yu et al., 2016) developed a traffic sign detector using a bag-of-visual-phrases (BoVPs) 

representation of the LiDAR point cloud. They first supervoxelized the MLS data to construct 

feature regions and built a visual phrase dictionary. Semantic objects were segmented, 

supervoxelized, featured, and quantized to form BoVPs representations, detecting signs according 

to the similarity between the BoVPs and the semantic objects. The average recall, precision, and 

F-score were 0.95, 0.94, and 0.95, respectively, but their approach increased computational 

complexity. 

In summary, most methods for sign detection using LiDAR data are based on intensity 

filtering and density-based clustering (Ai & Tsai, 2012; Arcos-García et al., 2017; X. Chen et al., 

2009; S. Gargoum et al., 2017; Ghallabi et al., 2019; Guan et al., 2018; P. Huang et al., 2017; 

Riveiro et al., 2015; Soilán et al., 2016; Vu et al., 2013; Wen et al., 2016). Other studies used plane 

fitting methods based on PCA (Arcos-García et al., 2017; Soilán et al., 2016; Vu et al., 2013) or 

RANSAC (X. Chen et al., 2009; Ghallabi et al., 2019; Javanmardi et al., 2018). Real-time 

supervised learning (L. Zhou & Deng, 2014), eigenvalue analysis, and graph-analysis (Bremer et 

al., 2013) were also used. Some methods involve the voxelization or supervoxelization of the 
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LiDAR data (Guan et al., 2018; P. Huang et al., 2017; Y. Yu et al., 2016). Comparisons are made 

between the proposed method and 13 existing methods, including deep learning methods, via 

evaluation of the Paris-Lille-3D point cloud classification benchmark (Roynard et al., 2018). This 

benchmark is a “large and high-quality ground-truth urban point cloud dataset for automatic 

segmentation and classification.” The LiDAR scanner used to acquire this dataset was a Velodyne 

HDL-32E. Each part of the dataset is stored in a separate PLY-file. Each point has ten attributes, 

including x, y, z, reflectance (intensity), label and class. The road and roadside objects were 

segmented manually. While a rural benchmark would be preferred, Paris-Lille-3D was selected 

due to a lack of existing rural point cloud classification benchmarks. An additional comparison is 

made with SqueezeSegV2, which uses a CNN for semantic segmentation of road objects in 

rasterized 3D image-like tensors. 

4.1.3 Data collection and description 

LiDAR data collection was performed by Alberta Transportation between 2013 and 2015 using 

Tetra Tech PSP-7000, a proprietary multifunction pavement surface profiling vehicle. The vehicle 

is equipped with a REIGL VMX 450 system to collect 360° LiDAR point clouds on rural highways 

in the province of Alberta, Canada. Surveys were conducted in normal traffic flow at posted speed 

limits of up to 100 km/h. Collected data for a given highway were saved in 4 km segments in 

multiple LAS files: each is about 500 MB of data. Surveys performed at 90 km/h generated point 

densities in the range of 150 to 1,000 points/m2. In this thesis, data were collected on ten highway 

segments, with a total length of approximately 40 road-km. Seven of these road segments were 

used to develop the training dataset, and three were used as a validation dataset. Figure 40 shows 

data collected on Highway 1A in Alberta.  
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(a) 

(b) 

 

 

(c) 

Figure 40 Labelled data on a 450 m section of Highway 1A-4 

 

Five segments were collected on Highway 01A, located northwest of the City of Calgary 

(CoC), with a speed limit of 90 km/h. The LAS point files for those segments consisted of 160.2 

million points. Two segments on Highway 28A extended for a length of 8.0 km with a speed limit 

of 100 km/h. The segments belong to a two-lane road located northeast of the CoE. Located north 

of the CoC, a segment on Highway 02A had a right-angle turn. One segment was collected on 

Highway 01, a divided multilane located about 100 km east of the CoC. One segment on Highway 

28 is located about 20 km north of the CoE. 

4.1.4 Training dataset development 

To develop a training dataset, several filters are usually applied to the original point cloud to extract 

sign data using several point features, such as roughness and z-gradient. It is worth noting that 

applying intensity filters for data labelling is not recommended since lower intensity signs and 

points within individual signs are usually lost, which negatively impacts the performance of the 

neural network. In the proposed method, several variables are used in a trial-and-error process until 

all sign points are extracted. The method is designed to minimize false negatives without undue 

regard for the large number of false positives it produces (as these may be easily removed 

manually). Below is a definition of the most used variables in the filtering process (CloudCompare, 

2023):  
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• Roughness: is equal to the distance between a point and the best fitting plane to its 

neighbours. 

• Gradient: gradient is the rate of change in any feature value at a point (e.g., elevation) 

compared to its neighbours. 

• z-gradient: is the gradient of the elevation of a point relative to its neighbours. 

• Number of neighbour density (N): counts the number of neighbour points to each point in 

the point cloud within a sphere of radius R.  

 

Several other variables were explored (e.g., linearity, verticality, surface density, and 

volume density), but details are not mentioned to economize on space; further details can be found 

in (CloudCompare, 2023; Hackel et al., 2016). After points are filtered using the above measures, 

the remaining points are clustered based on a minimum distance and the number of points within 

each cluster using Connected Component Analysis. This process is similar to the method 

commonly applied to image labelling (CloudCompare, 2023). CloudCompare, an open-source 3D 

point cloud editing and processing software, was used to visualize and label the point clouds 

(CloudCompare, 2023). All connected components were visually reviewed to verify their class. 

Finally, manual edits and revisions were performed on the labelled data to correct any 

misclassifications. Google Street View (Google Maps, 2023) was continuously used in all steps to 

validate the labelling output. Figure 40 (a) and (b) show examples of the labelled training data on 

a 450 m stretch on segment four of Highway 01A. All sign points are marked in red, and all road 

points are marked in light blue. Figure 40 (c) shows the road intensity points on the same segment. 

All points on the 40 km segments were labelled into two groups: sign points and non-sign points.  

4.1.5 Methodology 

4.1.5.1 PointNet and PointNet++ 

PointNet (Qi, Su, et al., 2017) is a neural network architecture capable of approximating a function 

𝑓 that operates on an unordered point set. Let {𝑥1, … , 𝑥𝑛} be the point set, so that each 𝑥𝑖 ∈ ℝ𝑁 is 

a point with 𝑁 features. Then PointNet learns to approximate 𝑓 by learning two other functions 

ℎ:ℝ𝑁 → ℝ𝐾 and 𝛾:ℝ𝐾 → ℝ𝐿 according to: 

 

𝑓({𝑥1, … , 𝑥𝑛}) ≅ 𝛾 ( max
𝑖=1,…,𝑛

{ℎ(𝑥𝑖)}) , (14) 



68 

 

 

Where ℎ is a multi-layer perceptron that operates on a per-point scale, converting the 𝑁 input point 

features to 𝐾 point features. 𝛾 is another multi-layer perceptron, this one operating on the global 

scale, converting the 𝐾 world features obtained by the element-wise maximum of the per-point 

features into the 𝐿 outputs of 𝑓. 

PointNet++ is an extension to PointNet that processes a set of points sampled in a metric 

space in a hierarchical fashion. Compared to PointNet, PointNet++ has a better ability to abstract 

local patterns and generalize to unseen cases. PointNet++ also has robust performance on point 

clouds with varying sampling densities. 

 PointNet++ consists of three main parts: 

4.1.5.1.1 Set Abstraction Layers 

A set abstraction layer converts an input point set into a down-sampled point set, each point of 

which represents the centroid of a neighbourhood layer’s input points. Each output point is given 

an output feature, a feature vector learned by a PointNet to summarize the neighbourhood. 

Four set abstraction layers are used in this work’s PointNet++ implementation. The first 

samples 1,024 neighbourhood centroids with a neighbourhood radius of 0.1. The next three use 

sample sizes and radii of 256 and 0.2, 64 and 0.4, and finally 0.8 and 16. The multi-layer perception 

ℎ of the PointNet in the first set abstraction layer has three layers of 32, 32, and 64 units. The 

multi-layer perceptrons corresponding to the PointNets in the next set abstraction layers have 64, 

64, and 128 units; 128, 128, and 256 units; and 256, 256, and 512 units. 𝐾 is 32 for each layer. 

4.1.5.1.2 Feature Propagation Layers 

A feature propagation layer functions somewhat like an inverse set abstraction layer: it takes as 

input a point set of 𝑁𝑙−1 neighbourhood features and converts these features into features 

corresponding to the 𝑁𝑙 centroids of the next-smallest neighbourhoods (note 𝑁𝑙−1 ≤ 𝑁𝑙). The 𝑁𝑙−1 

features are initially assigned by averaging the nearest 𝑘 input features weighted by inverse 

distance. Next, the newly generated feature vectors are concatenated with the output feature 

vectors from the set abstraction layer (from the first part of the network) that corresponds to the 

same neighbourhood scale. Finally, each of the concatenated feature vectors is run through the 

same small multi-layer perceptron (a single multi-layer perceptron is used per feature propagation 

layer). 
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Four feature propagation layers are used in the version of PointNet++ implemented in this 

thesis. The multi-layer perceptrons used in each have 256, 256 units; 256, 256 units; 256, 128 

units; and 128, 128, 128 units. 

4.1.5.1.3 Output Fully Connected Layers 

The output of the feature propagation stack is a 128-element feature vector for each point. Each of 

these is passed through a fully connected layer with 128 units, a dropout layer with a keep 

probability of 0.5, and a final fully connected layer with two units. 

The resulting two-element feature vector corresponding to each point is passed through a 

softmax function. That is, the predicted one-hot classification 𝑦𝑝𝑟𝑒𝑑 for each point is calculated 

from the corresponding output 𝑧 from the final fully connected layer according to: 

𝑦𝑝𝑟𝑒𝑑,𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗2
𝑖=1

 for 𝑖 = 1,2, (15) 

 

The network architecture is visualized in Figure 41.  

 

Figure 41 PointNet++ architecture (Qi, Yi, et al., 2017) 

 

PointNet++ is trained by minimizing the total cross-entropy between the one-hot 

representation of each point`s classification and the softmax output. For a single point, this works 

out to: 

𝐿𝑝𝑜𝑖𝑛𝑡 = −∑𝑦𝑡𝑟𝑢𝑒,𝑖 log(𝑦𝑝𝑟𝑒𝑑,𝑖),

2

𝑐=1

(16) 
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where 𝑦𝑡𝑟𝑢𝑒 is (0, 1)𝑇 if the point is a sign and (1, 0)𝑇 otherwise. 

 

4.1.5.1.4 Changes to the PointNet++ implementation 

In this thesis, a number of changes were made to (Qi, Yi, et al., 2017) method, as described below. 

• Expanded Processing Volume: Qi et al.’s segmentation network operates on small portions 

of a scene individually (1.5m by 1.5m by 3m ‘cubes’). This is increased to 10m x 10m x 

10m cubes, with the justification that the original cube size is too small to capture crucial 

contextual hints obtainable only by examining a larger volume. The choice of 10m was 

based on providing a clear view of traffic signs within the input cube volumes and is 

reinforced by the sensitivity analysis presented in this section.  

• Down-sampling: The larger volume consequentially contains too many points to fit the 

necessary PointNet++ calculations inside the memory of an economic GPU, so the cubes 

are down-sampled before feeding them to the neural network. The down-sampling 

approach used deals with the drastically varying point densities in different parts of the 

same cube (e.g. of the pavement vs. a sign pole). For each 0.2m by 0.2m by 0.2m space, 

the point with the highest intensity is kept, and the rest are discarded. In order to obtain the 

fixed-cardinality input required by PointNet++, 4096 (or 8192) points are then uniformly 

sampled (with replacement) from the remaining points. The cube size was chosen to 

maximize both training speed and detection performance. A sensitivity test on this cube 

size in the sensitivity analysis section demonstrates the effectiveness of this cube size. 

• Extra Features: Unfortunately, in the down-sampling step, details are thrown away to deal 

with computation and memory requirements of the neural network. This becomes 

problematic when, for example, one cannot use down-sampled points to distinguish a 

traffic signal from an adjacent sign. Additional local geometric features, such as intensity, 

z-gradient, and roughness, are therefore calculated before the down-sampling is 

performed. At each point, the features are calculated based on neighbouring points within 

a radius R. While fine shape details about points are lost due to the down-sampling process, 

geometric features retain and feed the network with critical information about neighbouring 

points.  

• Oversampling Sign Examples: Even after down-sampling removes issues of unbalanced 

density, the vast majority of points do not belong to signs. This is resolved by oversampling 
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examples that include signs. Each cube given to the model for training is designated as a 

‘sign’ (contains sign points) or as ‘other’ (e.g., poles, pavement, cars, etc.), and each 

training example given to the model is equally likely to be either one of these cube types. 

• Changes to Training Details: Irrelevant point cloud details are pre-emptively removed by 

discarding all points more than 20 meters away from the trajectory of the vehicle in an 

automated process (this buffering occurs in both the training and validation data). Each 

cube used for training is centred on the origin and scaled so that 𝑥, 𝑦, 𝑧 ∈ [−1m, 1m]. 

Furthermore, data augmentation is used as follows: 

• Jitter: Randomly sampled shift of points in all directions. the 𝑥, 𝑦, 𝑧 coordinates of each 

point are jittered according to a normal distribution with a mean of 0.005 m (on average 

the points will be shifted by 0.005 m) (clipped between [-0.01, 0.01], any shift that would 

result in a change greater than 0.01 meters or less than -0.01 is not allowed). Certain 

random shifts are introduced to improve the robustness and generalization of the model (Qi 

et al., 2016). 

• Rotation: Azimuth rotation refers to a rotation of the object around the z-axis, while 

elevation rotation involves a rotation around the x or y axis. The points are rotated, so the 

model would learn to be invariant to z-axis rotations as well as small tilts. This is done by 

rotating about the z-axis (Azimuth rotation) by a random angle within [0, 2π], then rotating 

about the y-axis (Elevation Rotation) by a random angle within [−
π

8
,
π

8
], and finally by 

rotating again about the z-axis (Azimuth rotation) by a random angle within [0, 2π]. It is 

worth mentioning that the data augmentation, jitter, and rotation are recommended by (Qi 

et al., 2016; Qi, Yi, et al., 2017). The change in the rotation about the y-axis is done to 

improve the detection of tilted traffic signs. The augmentation improves the model’s ability 

to classify 3D shapes as it introduces variability and perspective into the training data.  

The model was trained in 200 epochs, each epoch consisting of 845 batches of 24 cubes 

(sampled as described above). The Adam (Kingma & Ba, 2014) optimizer was used with a learning 

rate that starts at 0.001 and halves every 15 epochs. The loss function minimized during training 

was unweighted cross-entropy. The GPU used is a GeForce RTX 2080 Ti with 11 GB VRAM.  
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SqueezeSegV2 Data Preparation 

SqueezeSegV2 accepts rasterized 3D image-like tensors representing the visible point cloud from 

the perspective of the vehicle as it travels along its trajectory (B. Wu et al., 2018, 2019). Each cell 

of a tensor contains information about the 3D point that it represents. A series of these tensors are 

then passed into the neural network to train a model, which is then evaluated on identically 

formatted input to assess its performance. 

4.1.5.2 Understanding SqueezeSegV2 input 

Before training or evaluation of SqueezeSegV2 models can take place, 3D LiDAR point clouds 

must be converted into a series of tensors of size 𝐻 × 𝑊 × 𝐶, where 𝐻 and 𝑊 are the height and 

width of the tensor, respectively. The last dimension, 𝐶, contains all the necessary information and 

features about the visible point in that cell. To echo the dimensions used in Wu et al., tensors of 

size 64 × 512 × 6 were created. The six fields stored in each pixel are the x, y, and z position of 

the point relative to the observer (point of observation), intensity, distance from the observer, and 

classification value. In this case, a classification value of 1 would indicate a point on a sign, while 

all other points have a classification value of 0. This information is illustrated in Figure 42. 

 

Figure 42 Variable information for SqueezeSegV2 
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Choosing where in the first two dimensions of a tensor to situate the information of a given 

point is intuitively based on the azimuth (side-to-side) and elevation (bottom-to-top) angles of the 

point relative to the observer, illustrated in Figure 42. 

𝜽 = 𝒂𝒓𝒄𝒔𝒊𝒏 (
𝒚

√𝒙𝟐+𝒚𝟐
)      ( 17 ) 

𝝋 = 𝒂𝒓𝒄𝒔𝒊𝒏 (
𝒛

√𝒙𝟐+𝒚𝟐+𝒛𝟐
)     ( 18 ) 

Because the tensor only has a finite number of pixels in which to encode point information, 

each cell has a range of azimuth and zenith angles for which it will store point information. This 

range of angles is dependent on the horizontal and vertical field of view, as well as the width and 

height of the tensors. In this comparison, to be as representative of the original SqueezeSegV2 

performance as possible, the tensor height, tensor width, and horizontal field of view were drawn 

from Wu et al., while the vertical field of view and look-ahead distance were drawn from the 

Velodyne HDL-32E LiDAR sensor specifications. The observer spacing was chosen to replicate 

the size of the dataset used to train SqueezeSegV2. All chosen constants in the rasterization process 

are shown in Table 2. 

Table 2 Constants Used in the SqueezeSegV2 Rasterization Process 

CONSTANT VALUE 

TENSOR HEIGHT (H) 64 

TENSOR WIDTH (W) 512 

TENSOR DEPTH (C) 6 

LEFT VIEWING ANGLE 45° 

RIGHT VIEWING ANGLE 45° 

UP VIEWING ANGLE 2° 

DOWN VIEWING ANGLE 25° 

LOOK-AHEAD DISTANCE (LAD) 100 m 

OBSERVER HEIGHT 1.2 m 

OBSERVER SPACING 2 m 
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4.1.5.2.1 Rasterization preparation 

With an understanding of the input format, a procedure for creating input tensors can now be 

developed. However, a few challenges need to be addressed before rasterization can begin. First, 

because the entirety of the point cloud exists already in the data and is not given incrementally as 

the vehicle moves, a trajectory must be extracted. Second, the coordinate reference frame of a 

point cloud is constant. This clashes with the trajectory-dependent, shifting reference frame needed 

for rasterization. To fix this, a sense of directionality must be established at each point along the 

trajectory. This is done by treating the observer as the origin of the 3D space and calculating a set 

of forward, rightward, and upward vectors as the basis for this 3D space. 

The algorithm needed to solve both these issues is detailed in (Gouda, Mirza, et al., 2021). 

In brief, the algorithm first extracts uniformly spaced points situated directly below the scanner to 

get the trajectory. The upward vectors are calculated as the positive z normal of the best least-

squares fit plane of nearby points. The forward vectors are calculated by subtracting the upward 

component of the trajectory from the derivative of the trajectory. Lastly, the rightward vectors are 

calculated as the cross-product of the forward and rightward vectors. 

4.1.5.2.2 Rasterization Procedure 

With a set of observers along the vehicle’s trajectory extracted along with a sense of directionality 

established at each of those observers, rasterization can begin. The following procedure is applied 

to each observer along a segment’s trajectory. 

For a given observer, its “view frustum” represents all visible points that a LiDAR scanner 

could hypothetically detect. The shape of the view frustum is defined by the sensor specifications 

outlined in Table 2. With those specifications, a lopsided pyramid whose apex is situated on the 

observer can be created. An example of a view frustum can be seen in Figure 43. 
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Figure 43 View frustum as seen from the side (top image), above (middle image), and from a 
distance (bottom image) 
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Using an octree to query points inside a frustum, all potentially visible points from the 

observer are collected. To query the points from the octree, the equations of planes representing 

the view frustum’s faces are needed. As the directionality of the vehicle is known at that point, as 

well as the angular dimensions of the frustum, a set of translations needed to go from the apex of 

the frustum to its four corners can be established. Figure 44 shows a visualization of the frustum 

with translations and vertex points illustrated in the figure.   

 

Figure 44 View frustum with translation direction and vertex points 

 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 =  [

𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑟𝑖𝑔ℎ𝑡𝑤𝑎𝑟𝑑
𝑢𝑝𝑤𝑎𝑟𝑑

] = [

𝑓𝑥 𝑓𝑦 𝑓𝑧
𝑟𝑥 𝑟𝑦 𝑟𝑧
𝑢𝑥 𝑢𝑦 𝑢𝑧

]            (19) 

 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 (𝐹𝑇) = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ∗ 𝐿𝐴𝐷    (20) 

𝑈𝑝𝑤𝑎𝑟𝑑 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 (𝑈𝑇) = 𝑢𝑝𝑤𝑎𝑟𝑑 ∗ (𝐿𝐴𝐷 ∗ tan(𝑢𝑝 𝑎𝑛𝑔𝑙𝑒))   (21) 

𝐷𝑜𝑤𝑛𝑤𝑎𝑟𝑑 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 (𝐷𝑇) =  −𝑢𝑝𝑤𝑎𝑟𝑑 ∗ (𝐿𝐴𝐷 ∗ tan(𝑑𝑜𝑤𝑛 𝑎𝑛𝑔𝑙𝑒))  (22) 

𝐿𝑒𝑓𝑡𝑤𝑎𝑟𝑑 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 (𝐿𝑇) = −𝑟𝑖𝑔ℎ𝑡𝑤𝑎𝑟𝑑 ∗ (𝐿𝐴𝐷 ∗ tan(𝑙𝑒𝑓𝑡 𝑎𝑛𝑔𝑙𝑒))  (23) 

𝑅𝑖𝑔ℎ𝑡𝑤𝑎𝑟𝑑 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 (𝑅𝑇) = 𝑟𝑖𝑔ℎ𝑡𝑤𝑎𝑟𝑑 ∗ (𝐿𝐴𝐷 ∗ 𝑡𝑎𝑛(𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑙𝑒))  (24) 
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𝑝1 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟       (25) 

𝑝2 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 + 𝐹𝑇 + 𝑈𝑇 + 𝐿𝑇     (26) 

𝑝3 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 + 𝐹𝑇 + 𝑈𝑇 + 𝑅𝑇     (27) 

𝑝4 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 + 𝐹𝑇 + 𝐷𝑇 + 𝐿𝑇     (28) 

𝑝5 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 + 𝐹𝑇 +  𝐷𝑇 + 𝑅𝑇     (29) 

With the locations of all five vertices defined, so too are the equations of all five faces of 

the view frustum, as only three points are needed to fully define the equation of a plane. 

All points within the view frustum must then be rasterized. A cell in the tensor requires 

that the relative x, y, and z coordinates to the observer, distance from the observer, intensity, and 

classification value of a point be provided, the last two being directly provided by reading in the 

point cloud. This leaves only the relative coordinates and distance to the point to be found. 

To do this, the directionality matrix must be used once again, as it provides a basis for the 

relative coordinate system whose origin is the observer. To transform the coordinates from their 

global coordinates in the standard basis E, to their relative coordinates in the observer directionality 

basis B, the following equations are used: 

[𝑥, 𝑦, 𝑧]𝐸 = [𝑥, 𝑦, 𝑧]𝑔𝑙𝑜𝑏𝑎𝑙 − [𝑥, 𝑦, 𝑧]𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟    (30) 

[𝑥, 𝑦, 𝑧]𝐵 = [𝑥, 𝑦, 𝑧]𝐸 ∗ [

𝑓𝑥 𝑓𝑦 𝑓𝑧
𝑟𝑥 𝑟𝑦 𝑟𝑧
𝑢𝑥 𝑢𝑦 𝑢𝑧

]

𝑇

    (31) 

From here, the distance of the point is found as 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑛𝑜𝑟𝑚([𝑥, 𝑦, 𝑧]𝐵])     (32) 

One might naively set the cell’s value to the rasterized information and move on to the next 

point. However, this opens the possibility of overwriting another point’s rasterized information. 

To best model a LiDAR sensor’s real-life capabilities, only the point closest to the observer should 

be saved. All other points which fit into the same cell and are further from the observer are behind 

the closest point and can be considered occluded. A visualization of this phenomenon is shown in 

Figure 45, wherein the green point is the closest to the observer and is kept, and the red points 
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behind it are occluded and discarded. All the necessary geometric features associated with the 

chosen point are also kept during this process and placed into the corresponding spot in the input 

tensor described above. 

 

Figure 45 SqueezeSegV2 cell point selection 

 

4.1.5.3 Model performance assessment 

Different combinations of input features and number of input points were investigated. True 

positives (TP), false positives (FP), and false negatives (FN) were calculated per sign (as in most 

previous studies) and per point in an automated process as follows: first, the points the model 

predicts as sign points, and the ground-truth sign points, are extracted. A true positive refers to a 

cluster in the model output of at least 10 points that approximately overlaps a cluster in the ground 

truth file. Clusters are found by separating points into groups that have no neighbouring points 

closer than 1m from another cluster. ‘Approximately overlapping’ in this case means that the 

bounding boxes 𝑎1, 𝑎2 and 𝑏1, 𝑏2 satisfy: 

 

‖𝑎1 − 𝑏1‖ + ‖𝑎2 − 𝑏2‖

‖𝑎2 − 𝑎1‖ + ‖𝑏2 − 𝑏1‖
< 0.5, (33) 

 

where 𝑎1, 𝑎2 are the minimum and maximum bounds of the ground truth cluster, and 𝑏1, 𝑏2 are the 

minimum and maximum bounds of the model output cluster. A false negative is a cluster in the 

ground truth points that does not approximately overlap with any cluster in the model output, and 
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a false positive is a cluster in the model output that corresponds with no approximately overlapping 

cluster in the ground truth points. 

The precision, recall, and F1 scores are calculated for each input and feature configuration 

and for each test file. They are calculated from the counts of true positives, false positives, and 

false negatives found using the automated procedure detailed above: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
, (34) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
, (35) 

 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
, (36) 

Finally, a permutation test was used to assess the statistical significance of the difference 

between the models’ precision, recall, and F1-score according to the methodology proposed by 

(Yeh 2000). A comparison to benchmark results on the Paris-Lille-3D (Roynard et al., 2018) 

dataset is presented in the results section. A comparison to SqueezeSegV2 is also presented. 

4.1.6 Results and discussion 

To establish a baseline with which to compare the proposed method, a model with none of the 

changes made to the original PointNet++ implementation was trained – i.e., Cube processing 

volume of 1.5 m x 1.5 m x 3 m, no geometric features included in the training data, even 

sampling of all processing cube examples, no removal of points beyond the buffer zone, 8192 

points per input volume, and no jitter and rotation of points. Table 3 A and B summarize the results 

of this model on each of the three validation segments, along with the overall performance. The 

results show that using PointNet++ without any modifications is not at all suitable for larger 

scenes. Compared to the total amount of ground truth signs and sign points, the baseline model 

made very few to no predictions. In fact, not a single sign was predicted on a per-sign basis, so no 

precision or F1-score value could be calculated while all recall values were 0. On a per-point 

basis, there was a nearly negligible number of predictions, leading to near-zero values for 

precision, recall and F1-score across all segments. It becomes apparent that the proposed 

implementation changes to PointNet++ are required to yield favourable results.  
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Table 3 Baseline Model Results and Baseline Model Variation Results 

Table 3A Baseline model validation results (sign-based)  

Segment  TP  FN  FP  Precision  Recall  F1  

28  0  39  0  N/A  0.000  N/A  

2A  0  43  0  N/A  0.000  N/A  

1A  0  40  0  N/A  0.000  N/A  

Overall  0  122  0  N/A  0.000  N/A  

Table 3B Baseline model validation results (point-based)  

Segment  TP  FN  FP  Precision  Recall  F1  

28A  0  2059  4  N/A  0  N/A  

2A  0  1874  0  N/A  0  N/A  

1A  2  2130  0  1  0.001  0.002  

Overall  2  6063  4  0.333  0.0003  0.0006  

Table 3C Baseline model variation results (sign-based)  

Cube size  Features  TP  FN  FP  Precision  Recall  F1  

Experimental results (28A)  

1.5x1.5x3  Intensity   38  1  32  0.543  0.974  0.697  

1.5x1.5x3  Intensity,  

Z-gradient  

38  1  180  0.174  0.974  0.296  

5x5x5  None  18  21  3  0.857  0.462  0.600  

10x10x10  None  25  14  9  0.735  0.641  0.685  

15x15x15  None  34  5  5  0.872  0.872  0.872  

Experimental Results (2A)  

1.5x1.5x3  Intensity   39  4  134  0.225  0.907  0.361  

1.5x1.5x3  Intensity, Z-

gradient  

40  3  947  0.041  0.930  0.078  

5x5x5  None  11  32  10  0.524  0.256  0.344  

10x10x10  None  31  12  39  0.443  0.721  0.549  

15x15x15  None  38  5  9  0.809  0.884  0.844  
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Experimental Results (1A)  

1.5x1.5x3  Intensity  39  1  33  0.542  0.975  0.696  

1.5x1.5x3  Intensity, Z-

gradient  

38  2  457  0.077  0.950  0.142  

5x5x5  None  8  32  4  0.667  0.200  0.308  

10x10x10  None  33  7  8  0.805  0.825  0.815  

15x15x15  None  33  7  3  0.917  0.825  0.868  

Experimental Results (Overall)  

1.5x1.5x3  Intensity  116  6  199  0.368  0.951  0.531  

1.5x1.5x3  Intensity, Z-

gradient  

116  6  1584  0.068  0.951  0.127  

5x5x5  None  37  85  17  0.685  0.303  0.420  

10x10x10  None  89  33  56  0.614  0.730  0.667  

15x15x15  None  105  17  17  0.861  0.861  0.861  

Table 3D Baseline model variation results (point-based)  

Cube size  Features  TP  FN  FP  Precision  Recall  F1  

Experimental results (28A)  

1.5x1.5x3  Intensity   1924  135  2797  0.408  0.934  0.568  

1.5x1.5x3  Intensity,  

Z-gradient  

1930  129  7238  0.211  0.937  0.344  

5x5x5  None  589  1470  453  0.565  0.286  0.380  

10x10x10  None  924  1135  542  0.630  0.449  0.524  

15x15x15  None  1466  593  156  0.904  0.712  0.797  

Experimental Results (2A)  

1.5x1.5x3  Intensity   1754  120  5840  0.231  0.936  0.371  

1.5x1.5x3  Intensity, Z-

gradient  

1773  101  29150  0.057  0.946  0.108  

5x5x5  None  268  1606  361  0.426  0.143  0.214  

10x10x10  None  1055  819  1321  0.444  0.563  0.496  

15x15x15  None  1663  211  282  0.855  0.887  0.871  
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Experimental Results (1A)  

1.5x1.5x3  Intensity  2056  76  1692  0.549  0.964  0.699  

1.5x1.5x3  Intensity, Z-

gradient  

2066  66  14421  0.125  0.969  0.222  

5x5x5  None  430  1702  238  0.644  0.202  0.307  

10x10x10  None  1496  636  628  0.704  0.702  0.703  

15x15x15  None  1664  468  123  0.931  0.780  0.849  

Experimental Results (Overall)  

1.5x1.5x3  Intensity  5734  331  10329  0.357  0.945  0.518  

1.5x1.5x3  Intensity, Z-

gradient  

5769  296  50809  0.102  0.951  0.184  

5x5x5  None  1287  4778  1052  0.550  0.212  0.306  

10x10x10  None  3475  2590  2491  0.582  0.573  0.578  

15x15x15  None  4793  1272  561  0.895  0.790  0.839  

 

A sensitivity analysis on the original PointNet++ implementation were performed to show 

the necessity and relative impact of including the proposed changes. The cube size was varied, and 

different combinations of features were tested on the baseline PointNet++ implementation. The 

results of these tests are shown in Table 3 C and D. With respect to cube size, additional models 

were trained with cube sizes of 5m x 5m x 5m, 10m x 10m x 10m, and 15m x 15m x 15m. As cube 

size increased, precision, recall and F1 scores all improved, reaching their highest scores on 

the 15m x 15m x 15m model. For sign-based results, precision increased from a low of 0.614 to a 

high of 0.861. Recall improved from 0.303 to 0.861, and F1 score went from 0.420 to 

0.861. Similarly, point-based results showed precision ranging from 0.550 to 0.895, recall in the 

0.212-to-0.790 range and F1 scores going from 0.306 to 0.839. As with the sign-based results, 

the 15m x 15m x 15m model had the highest scores out of the tested models. This cube size was 

finally tested on the modified PointNet++ models (sensitivity analysis section), which showed that 

a cube size of 10m x 10m x 10m yielded better results once the rest of the proposed changes were 

implemented. 
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Two models with additional features–  trained with a cube size of 1.5m x 1.5m x 

3m – showed improvements in precision (0.368), recall (0.951) and F1 score (0.531). Hence, the 

inclusion of extra features also improved the performance compared to the baseline model.  

To show the effect of the proposed changes, Table 4, sections A and B summarize the 

results for each of the three validation segments and the overall performance of all segments with 

various models. Figure 46 shows the model output on the validation segment on Highway 1A. The 

blue colour marks the extent of the buffer zone, and detected traffic signs are marked in red. The 

three validation segments contain 122 traffic signs on 12 kilometres of rural highways. The 

precision, recall, and F1-score for each model were compared with varying local geometric 

features as inputs during the training and inference phases. The models were also trained with 

different input point cloud densities, with either 4,096 or 8,192 points sampled and passed to the 

model per cube. The overall section of Table 4 shows, in brackets, the p-value of the significance 

of the changes in precision, recall, and F1-score. The test was performed to compare the model 

with the highest precision, recall, and F1-score with all other models.  

 

Table 4 Results of each validation segment and overall performance on all segments 

Table 4A Validation Results (sign-based) 

Features Points TP FN FP Precision Recall F1 

Experimental Results (28A) 

Intensity 8192 35 4 6 0.854 0.897 0.875 

Intensity, 

z-gradient 
8192 36 3 5 0.878 0.923 0.9 

Intensity, 

roughness 
8192 33 6 10 0.767 0.846 0.805 

Intensity, 

z-gradient 
4096 38 1 2 0.95 0.974 0.962 

Intensity, 

roughness 
4096 35 4 5 0.875 0.897 0.886 
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Intensity, 

roughness, 

z-gradient  

4096 37 2 6 0.86 0.949 0.902 

Experimental Results (2A) 

Intensity 8192 41 2 2 0.953 0.953 0.953 

Intensity, 

z-gradient 
8192 42 1 0 1 0.977 0.988 

Intensity, 

roughness 
8192 43 0 1 0.978 1 0.989 

Intensity, 

z-gradient 
4096 43 0 0 1 1 1 

Intensity, 

roughness 
4096 43 0 3 0.93 1 0.963 

Intensity, 

roughness, 

z-gradient 

4096 42 1 1 0.977 0.977 0.977 

Experimental Results (1A) 

Intensity 8192 39 1 8 0.83 0.975 0.897 

Intensity, 

z-gradient 
8192 40 0 1 0.976 1 0.988 

Intensity, 

roughness 
8192 38 2 7 0.844 0.95 0.894 

Intensity, 

z-gradient 
4096 40 0 2 0.953 1 0.976 

Intensity, 

roughness 
4096 40 0 3 0.93 1 0.964 

Intensity, 

roughness, 

z-gradient 

4096 40 0 3 0.93 1 0.964 

Experimental Results (Overall) 
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Intensity 8192 115 7 16 
0.878 

(<0.001) 

0.943 

(0.03) 

0.909 

(<0.001) 

Intensity, 

z-gradient 
8192 118 4 6 

0.952 

(0.30) 

0.967 

(0.25) 

0.959 

(0.16) 

Intensity, 

roughness 
8192 114 8 18 

0.864 

(<0.001) 

0.934 

(0.03) 

0.898 

(<0.001) 

Intensity, 

z-gradient 
4096 121 1 4 0.968  0.992 0.98 

Intensity, 

roughness 
4096 118 4 11 

0.915 

(0.07) 

0.967 

(0.50) 

0.94 

(0.06) 

Intensity, 

roughness, 

z-gradient 

4096 119 3 10 
0.922 

(0.05) 

0.975 

(0.25) 

0.948 

(0.03) 

Table 4B Validation Results (point-based) 

Features Points TP FN FP Precision Recall F1 

Experimental Results (28A) 

Intensity 8192 1094 155 267 0.804 0.876 0.838 

Intensity, 

z-gradient 
8192 1956 103 204 0.906 0.950 0.927 

Intensity, 

roughness 
8192 1922 137 233 0.892 0.933 0.912 

Intensity, 

z-gradient 
4096 1968 91 173 0.919 0.956 0.937 

Intensity, 

roughness 
4096 1917 142 173 0.917 0.931 0.924 

Intensity, 

roughness, 

z-gradient  

4096 1959 100 219 0.899 0.951 0.925 

Experimental Results (2A) 

Intensity 8192 1797 77 221 0.890 0.959 0.923 
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Intensity, 

z-gradient 
8192 1819 55 78 0.959 0.971 0.965 

Intensity, 

roughness 
8192 1774 100 232 0.884 0.947 0.914 

Intensity, 

z-gradient 
4096 1855 19 18 0.990 0.990 0.990 

Intensity, 

roughness 
4096 1786 88 129 0.933 0.953 0.943 

Intensity, 

roughness, 

z-gradient 

4096 1796 78 122 0.936 0.958 0.947 

Experimental Results (1A) 

Intensity 8192 2063 69 175 0.922 0.968 0.944 

Intensity, 

z-gradient 
8192 2099 33 98 0.955 0.985 0.970 

Intensity, 

roughness 
8192 2070 62 64 0.970 0.971 0.970 

Intensity, 

z-gradient 
4096 2116 16 98 0.956 0.992 0.974 

Intensity, 

roughness 
4096 2068 64 63 0.970 0.970 0.970 

Intensity, 

roughness, 

z-gradient 

4096 2104 28 86 0.961 0.987 0.974 

Experimental Results (Overall) 

Intensity 8192 4954 301 663 0.882 0.943 0.911 

Intensity, 

z-gradient 
8192 5874 191 380 0.939 0.969 0.954 

Intensity, 

roughness 
8192 5766 299 529 0.916 0.951 0.933 
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Intensity, 

z-gradient 
4096 5939 126 289 0.954 0.979 0.966 

Intensity, 

roughness 
4096 5771 294 365 0.941 0.952 0.946 

Intensity, 

roughness, 

z-gradient 

4096 5859 206 427 0.932 0.966 0.949 

 

 

Figure 46 Model output on Highway 01A 

 

Across all three validation segments, the models with intensity and z-gradient as additional 

geometric features perform the best in terms of precision (0.97 per sign and 0.954 per point), recall 

(0.992 per sign and 0.979 per point), and F1-score (0.980 per sign and 0.966 per point). This is the 

opposite of the results for the baseline PointNet++ models that were trained with these same 

features. The baseline PointNet++ model trained with only intensity as a feature performed better 

than the model with both intensity and z-gradient (Table 3). This is due to the modifications made 

to PointNet++, which include increasing the cube size to allow the network to better utilize the z-

gradient values during training. A larger cube size results in a wider range of z-gradient values in 

each cube, which can help the model better distinguish between sign and non-sign points. The 

larger cube size also increases the probability of a sign being completely contained within one 
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cube. However, the sensitivity tests presented below show that increasing the cube size beyond a 

certain volume can have an adverse effect on the performance of the model. 

For highway 1A when considering the per sign analysis, the model using intensity and z-

gradient performs better with 8192 points per input volume (precision: 0.976, F1-score: 0.988) 

than a lower point density of 4096 (precision: 0.953, F1-score: 0.976) due to a higher number of 

false positives. For highway segments 28A and 1A, the lower point density performs better when 

adding intensity and z-gradient. In the per-point analysis, the model using intensity and z-gradient 

with 4096 points per input volume outperforms all other models on the three segments.  

 In the overall per-sign analysis, decreases in precision can be observed for the sign 

detection model, which was trained using intensity-only (0.878) versus a combination of intensity 

and roughness (0.864). A similar effect is observed when comparing the models trained using 

intensity and z-gradient (0.968) versus intensity, z-gradient, and roughness (0.922). The lower 

performance from the models trained with roughness appears to be caused by the higher likelihood 

of these models to produce false positives. This can be concluded from the recall value, which 

remains similar to the better-performing models. The improvement in precision and F1-score due 

to the use of intensity and z-gradient, with 4096 points, is statistically significant at the 95% 

confidence level compared to all other models, except for the model trained with the same features 

and higher point density. Similar performance can be observed in the per-point analysis. However, 

the model with intensity only shows the lowest precision (0.882), recall (0.943), and F1-score 

(0.911).  

The model using intensity-only does not perform well in comparison, but the relative 

change in performance can be evaluated by adding roughness as opposed to adding z-gradient in 

the sign detection model. For this comparison, the point density with 8192 points per input volume 

is kept constant, and the per sign results are used. For the addition of roughness, a 2% decrease in 

precision is observed, as well as a 1% decrease in recall and a 2% decrease in the F1-score. The 

addition of z-gradient leads to an 8% increase in precision, a 2% increase in recall, and a 5% 

increase in the F1-score. These results indicate that z-gradient is a more helpful geometric feature 

when compared to roughness for detecting traffic signs.  

When a lower point density (i.e., 4096 points per input volume) is used, the addition of the 

roughness to z-gradient and intensity leads to a 5% decrease in precision, a 2% decrease in recall, 
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and a 4% decrease in the F1-score. This indicates that roughness is not a helpful feature for 

detecting traffic signs.  

In the per-point comparison, the model using intensity-only shows the lowest performance 

compared to all models. For the models using an 8192 point density, the addition of z-gradient 

increases precision by 6.5%, recall by 3%, and F1-score by 5%. For the models using 4096 points 

per input volume, the addition of roughness to z-gradient and intensity decreases precision by 

2.5%, recall by 1.5%, and F1-score by 2%.  

As evident from the above results, the proposed approach demonstrates remarkable 

performance on all validation segments, with per sign precision, recall, and F1-score values in the 

ranges of 0.95-to-1, 0.974-to-1, and 0.962-to-1, respectively. A similar per-point performance is 

observed with precision, recall, and F1-score values in the range of 0.92-to-0.99, 0.956-to-0.992, 

and 0.937-to-0.99, respectively. This also shows a substantial improvement relative to the 

unmodified PointNet++ models. 

Evaluation of the proposed methodology was also done on the Paris-Lille-3D dataset using 

intensity and z-gradient-based models.  A consistent point density of 4096 was used for all models 

due to superior performance compared to 8192-point models on the highway test data. Further 

demonstration of the effectiveness of the 4096-point density is found in the sensitivity analysis 

section. Models were trained and tested under conditions based on the standard scoring system 

used in the Paris-Lille-3D benchmark. The benchmark groups sign recognition with poles and 

traffic lights, not testing signs exclusively. Training and testing of the program were therefore done 

with all three object types classified using the standardized training dataset to provide an accurate 

comparison with existing studies. Three test files were included in the benchmark: one in Dijon, 

France, and two in Ajaccio, France. Runtimes of each test file averaged 5774 seconds, which is 

lower than the average runtime of the submitted methods on the benchmark site. Overall results 

show high recall rates of up to 88.1%. All models do, however, compare favourably to existing 

studies on the benchmark (Roynard et al., 2018), which have recall rates ranging from 37.7% to 

79.7%.  

 

4.1.6.1 Sensitivity Analysis 

As with the baseline model, a series of sensitivity tests were done on the best-performing model 

to study the relative impact of the PointNet++ implementation changes. The impact of 
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changing the processing cube size was investigated by training models that partitioned the data 

into 5 m x 5 m x 5 m and 15 m x 15 m x 15 m cubes and comparing them to the best model, which 

had a cube size of 10 m x 10 m x 10 m. The results of this test are shown in detail in Table 

5. The sign-based results show a 7.64% decrease in precision, a 2.52% decrease in recall and a 

5.20% decrease in F1 score for the 5 m x 5 m x 5m cubes, while the 15 m x 15 m x 15 m results 

show an average 4.15% decrease across precision, recall and F1 score. Meanwhile, the point-based 

results show a similar trend. In comparing models, one can observe a 7.80% decrease in precision, 

a 1.17% decrease in recall, and a 4.61% decrease in F1 score for the 5 m x 5 m x 5 m model, and 

a 4.33% decrease in precision, a 1.10% decrease in recall, and a 2.73% decrease in F1 score for 

the 15 m x 15 m x 15 m model. This suggests that 10 m x 10 m x 10 m is an effective size to divide 

point cloud data when it comes to predicting  traffic signs.  

Table 5 Results of Cube Size Variation Test 

Table 5A Validation Results (sign-based)  

Cube Size  TP  FN  FP  Precision  Recall  F1  

Experimental Results (28A)  

5x5x5  37  2  6  0.860  0.949  0.902  

10x10x10  38  1  2  0.95  0.974  0.962  

15x15x15  37  2  5  0.881  0.949  0.914  

Experimental Results (2A)  

5x5x5  41  2  6  0.872  0.953  0.911  

10x10x10  43  0  0  1  1  1  

15x15x15  40  3  4  0.909  0.930  0.920  

Experimental Results (1A)  

5x5x5  40  0  2  0.952  1  0.976  

10x10x10  40  0  2  0.953  1  0.976  

15x15x15  39  1  0  1  0.975  0.987  

Experimental Results (Overall)  

5x5x5  118  4  14  0.894  0.967  0.929  

10x10x10  121  1  4  0.968  0.992  0.98  

15x15x15  116  6  9  0.928  0.951  0.939  
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Table 5B Validation Results (point-based)  

Cube Size  TP  FN  FP  Precision  Recall  F1  

Experimental Results (28A)  

5x5x5  1948  111  370  0.840  0.946  0.890  

10x10x10  1968  91  173  0.919  0.956  0.937  

15x15x15  1981  78  252  0.887  0.962  0.923  

Experimental Results (2A)  

5x5x5  1810  64  294  0.860  0.966  0.910  

10x10x10  1855  19  18  0.990  0.990  0.990  

15x15x15  1790  84  192  0.903  0.955  0.928  

Experimental Results (1A)  

5x5x5  2110  22  139  0.938  0.990  0.963  

10x10x10  2116  16  98  0.956  0.992  0.974  

15x15x15  2102  30  118  0.947  0.986  0.966  

Experimental Results (Overall)  

5x5x5  5868  197  803  0.880  0.968  0.921  

10x10x10  5939  126  289  0.954  0.979  0.966  

15x15x15  5873  192  562  0.913  0.968  0.940  

 

The impact of changing the point density per processing cube was investigated by training 

models with 2048 and 16384 points in addition to the 8192-point and 4096-point models. The 

results of this sensitivity test are detailed in Table 6. Sign-based results show that, compared to the 

best model, which had a point density of 4096, the model with a point density of 2048 showed an 

average decrease of 2.52% across all metrics. The model with a point density of 8192 decreased 

the least, with a drop of 1.65% in precision, 2.52% in recall and 2.55% in F1 score. Finally, the 

model with a density of 16384 showed a 6.92% drop in precision, a 2.52% decrease in recall and 

a 4.80% decrease in F1 score. Similar to the cube size sensitivity test, the point-based results are 

roughly the same in precision compared to the sign-based results but show a smaller reduction in 

recall relative to the best model. The 2048-point density model showed a 2.17% decrease in 

precision, a 0.06% decrease in recall, and a 1.11% decrease in F1 Score. The 8192-point 
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test showed a 1.57% decrease in precision, a 1.02% decrease in recall, and a 1.24% decrease in F1 

score. Lastly, the 16384-point test showed a 6.171% decrease in precision, a 0.381% decrease 

in recall, and a 3.37% decrease in F1 score.  

Table 6 Results of Density Variation Test 

Table 6A Validation Results (sign-based)  

Density  TP  FN  FP  Precision  Recall  F1  

Experimental Results (28A)  

2048  38  1  7  0.844  0.974  0.905  

4096  38  1  2  0.950  0.974  0.962  

8192  36  3  5  0.878  0.923  0.900  

16384  38  1  5  0.884  0.974  0.927  

Experimental Results (2A)  

2048  40  3  0  1  0.930  0.964  

4096  43  0  0  1  1  1  

8192  42  1  0  1  0.977  0.988  

16384  40  3  5  0.889  0.930  0.909  

Experimental Results (1A)  

2048  40  0  0  1  1  1  

4096  40  0  2  0.953  1  0.976  

8192  40  0  1  0.976  1  0.988  

16384  40  0  3  0.930  1  0.964  

Experimental Results (Overall)  

2048  118  4  7  0.944  0.967  0.955  

4096  121  1  4  0.968  0.992  0.980  

8192  118  4  6  0.952  0.967  0.959  

16384  118  4  13  0.901  0.967  0.933  

Table 6B Validation Results (point-based)  

Density  TP  FN  FP  Precision  Recall  F1  

Experimental Results (28A)  
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2048  2009  50  282  0.877  0.976  0.924  

4096  1968  91  173  0.919  0.956  0.937  

8192  1956  103  204  0.906  0.950  0.927  

16384  1989  70  306  0.867  0.966  0.914  

Experimental Results (2A)  

2048  1812  62  53  0.972  0.967  0.969  

4096  1855  19  18  0.990  0.990  0.990  

8192  1819  55  78  0.959  0.971  0.965  

16384  1813  61  169  0.915  0.967  0.940  

Experimental Results (1A)  

2048  2113  19  89  0.960  0.991  0.975  

4096  2116  16  98  0.956  0.992  0.974  

8192  2099  33  98  0.955  0.985  0.970  

16384  2113  19  218  0.906  0.991  0.947  

Experimental Results (Overall)  

2048  5934  131  424  0.933  0.978  0.955  

4096  5939  126  289  0.954  0.979  0.966  

8192  5874  191  380  0.939  0.969  0.954  

16384  5915  150  693  0.895  0.975  0.933  

 

In the down-sampling process, the cube size used in the best model was 0.2m x 0.2m x 

0.2m. The effects of changing this cube size are shown in   
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Table 7. Both the point-based results in   
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Table 7A and the sign-based results in   
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Table 7B show a small decrease in recall and a large decrease in both precision and F1 

scores for both the 0.1 and 0.4 models relative to the best model, which has a cube size of 0.2.  
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Table 7 Down-sampling Cube Size Sensitivity Results 

Table 7A Validation Results (sign-based)  

Cube Size  TP  FN  FP  Precision  Recall  F1  

Experimental Results (28A)  

0.1x0.1x0.1 37 2 7 0.841 0.949 0.892 

0.2x0.2x0.2 38 1 2 0.950 0.974 0.962 

0.4x0.4x0.4 36 3 8 0.818 0.923 0.868 

Experimental Results (2A)  

0.1x0.1x0.1 40 3 5 0.889 0.930 0.909 

0.2x0.2x0.2 43 0 0 1 1 1 

0.4x0.4x0.4 39 4 5 0.886 0.907 0.897 

Experimental Results (1A)  

0.1x0.1x0.1 36 1 4 0.900 0.973 0.935 

0.2x0.2x0.2 40 0 2 0.953 1 0.976 

0.4x0.4x0.4 36 1 5 0.878 0.973 0.923 

Experimental Results (Overall)  

0.1x0.1x0.1 113 6 16 0.876 0.950 0.911 

0.2x0.2x0.2 121 1 4 0.968 0.992 0.980 

0.4x0.4x0.4 111 8 18 0.860 0.933 0.895 

Table 7B Validation Results (point-based)  

Cube Size  TP  FN  FP  Precision  Recall  F1  

Experimental Results (28A)  

0.1x0.1x0.1 1959 100 391 0.834 0.951 0.889 

0.2x0.2x0.2 1968 91 173 0.919 0.956 0.937 

0.4x0.4x0.4 1966 93 423 0.823 0.955 0.884 

Experimental Results (2A)  

0.1x0.1x0.1 1793 84 220 0.891 0.957 0.923 

0.2x0.2x0.2 1855 19 18 0.990 0.990 0.990 

0.4x0.4x0.4 1792 82 423 0.857 0.956 0.904 
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Experimental Results (1A)  

0.1x0.1x0.1 2047 27 187 0.916 0.987 0.950 

0.2x0.2x0.2 2116 16 98 0.956 0.992 0.974 

0.4x0.4x0.4 2052 22 257 0.889 0.989 0.936 

Experimental Results (Overall)  

0.1x0.1x0.1 5799 211 798 0.880 0.965 0.921 

0.2x0.2x0.2 5939 126 289 0.954 0.979 0.966 

0.4x0.4x0.4 5810 197 978 0.856 0.967 0.908 

 

A series of rotations is done on the data, both on the y-axis and the z-axis. To show the advantage 

of including this rotation, a version of the best-performing model was trained with the rotation 

removed. This model obtained overall sign-based precision, recall and F1 scores of 0.884, 0.951 

and 0.915. Compared to the best model, this one showed an 8.71% decrease in precision, a 4.17% 

decrease in recall, and a 6.61% decrease in F1 score. The point-based results were 0.915, 0.965, 

and 0.921, representing a decrease of 4.04%, 1.42% and 4.62%, respectively.  

 

4.1.6.2 SqueezeSegV2 Results and Discussion 

To determine the best possible comparison between SqueezeSegV2 and the proposed modified 

PointNet++, ten models were trained for different lengths of time, represented by steps. For the 

sake of comparison, all SqueezeSegV2 models are trained using the same segments as the proposed 

modified PointNet++ models used in their training. The segments used in testing were also the 

same across both methods. The first model was trained for 5,000 steps to provide a sufficiently 

large sampling of the dataset. The number of steps was incremented by 5,000 for each subsequent 

model, finishing with a model of 50,000 steps, the default number listed in the SqueezeSegV2 

code. The results in Table 8A show the cell-based precision, recall and F1 scores of the models. 

The table shows that the scores decrease for the later models, likely because of overfitting to the 

training segments. The models with the best overall performance were the models trained for 

10,000 steps. This model took approximately 50 minutes to train and evaluated each segment in 

25 seconds. It had average precision, recall and F1 scores of 0.959, 0.836 and 0.892, respectively. 



99 

 

Compared to the best model of the proposed modified PointNet++, which had scores of 0.968, 

0.992 and 0.980, the performance of SqueezeSegV2 is lower. 

 

Table 8 SqueezeSegV2 Results 

Table 8A SqueezeSegV2 Base Results  

Steps  Segment  Precision  Recall  F1  

  

5000  

1A  0.972  0.854  0.909  

2A  0.978  0.750  0.849  

28A  0.964  0.728  0.830  

  

10000  

1A  0.948  0.906  0.927  

2A  0.966  0.806  0.879  

28A  0.964  0.796  0.872  

  

15000  

1A  0.875  0.948  0.910  

2A  0.849  0.861  0.855  

28A  0.831  0.911  0.869  

  

20000  

1A  0.878  0.945  0.910  

2A  0.864  0.852  0.858  

28A  0.905  0.884  0.894  

  

25000  

1A  0.878  0.889  0.883  

2A  0.854  0.682  0.758  

28A  0.882  0.879  0.880  

  

30000  

1A  0.810  0.887  0.847  

2A  0.778  0.754  0.766  

28A  0.866  0.882  0.874  

  

35000  

1A  0.783  0.829  0.805  

2A  0.717  0.636  0.674  

28A  0.793  0.775  0.784  

  

40000  

1A  0.803  0.911  0.854  

2A  0.753  0.767  0.760  
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28A  0.853  0.855  0.854  

  

45000  

1A  0.786  0.820  0.803  

2A  0.661  0.679  0.670  

28A  0.843  0.798  0.820  

  

50000  

1A  0.750  0.864  0.803  

2A  0.570  0.726  0.639  

28A  0.828  0.871  0.849  

Table 8B SqueezeSegV2 Extra Features Results  

Extra Features  Segment  Precision  Recall  F1  

Roughness  

1A  0.923  0.861  0.891  

2A  0.975  0.744  0.844  

28A  0.963  0.788  0.867  

Z-Gradient  

1A  0.961  0.751  0.843  

2A  0.988  0.574  0.726  

28A  0.963  0.657  0.781  

Roughness,   

Z-gradient  

1A  0.968  0.843  0.901  

2A  0.977  0.748  0.847  

28A  0.960  0.753  0.844  

 

To provide a more accurate comparison between SqueezeSegV2 and the modified 

PointNet++, the SqueezeSeg program was slightly modified to accept tensors of larger dimensions. 

The internal network structure was not modified, only the dimensions of the tensors that are passed 

into the network. As a result, SqueezeSegV2 models could be trained on data with more features 

than were used in (B. Wu et al., 2018). Thus, three more models were trained with additional 

features in the input tensors. In addition to intensity– the first model was trained with roughness 

as an additional feature, the second with z-gradient and the third with roughness and z-gradient. 

This allowed us to compare the modified PointNet++ program with SqueezeSegV2 using the same 

features for both programs. Table 8B summarizes the results from these models. The results show 

that adding additional features can increase the precision of the model when compared to the 

unmodified SqueezeSegV2 (0.959 to 0.971) at the expense of recall (0.836 to 0.661) and, 
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consequently, F1 score (0.892 to 0.783). That is, the models with extra features are more likely to 

underpredict sign points compared to the original SqueezeSegV2 model. Overall, although adding 

features improved part of the performance of SqueezeSegV2, it still cannot replicate the results 

produced by the proposed model, which had respective precision, recall and F1 scores of 0.968, 

0.992 and 0.980. 

Computation Time 

The modified PointNet++ implementation significantly improved the computational requirements 

of the original. The baseline, unmodified PointNet++ model with a cube size of 1.5m x 1.5m x 3m 

and a point density of 8192 required 11.5 minutes per training epoch and 67 minutes to evaluate 

each segment. The improved PointNet++ model with a cube size of 10m x 10m x 10m and a point 

density of 4096 required only 7 minutes per training epoch and 1 to 1.5 minutes to evaluate each 

segment. Both PointNet++ models trained for 200 epochs, for total training times of 38.3 hours 

and 23.3 hours, respectively. The best performing SqueezeSegV2 model trained for approximately 

50 minutes and evaluated each segment in 25 seconds, though not as effective as the best model 

in classification performance. 

4.1.7 Conclusions and future research 

This thesis demonstrated that the PointNet++ neural network architecture, with adjustments, can 

achieve remarkable results on large metric scale scenes, i.e., extraction of traffic signs from LiDAR 

point clouds. The use of local geometric features, calculated before the down-sampling of the point 

cloud, was found to significantly improve the neural network’s performance in terms of precision, 

recall, and F1-score. Several models with different combinations of local geometric features (i.e., 

intensity, roughness, and z-gradient) and different numbers of points were trained using labelled 

data from seven highway segments (28 km total) in Alberta, Canada. The models’ performances 

were tested on three segments (approximately 12 km) based on the precision, recall, and F1-score 

metrics. The statistical significance of the model variations was determined using permutation 

tests. Sensitivity tests were also applied to the PointNet++ model to justify the proposed 

adjustments. Another neural network architecture, SqueezeSegV2, was tested against the 

PointNet++ model to see how they would compare. The best-performing SqueezeSegV2 model 
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showed a decrease in precision, recall, and F1 score relative to the best-modified PointNet++ 

model.  

 Overall, in the per-sign analysis, the intensity and z-gradient models with 4096 points 

significantly outperformed other models in precision, recall, and F1-score on all validation 

segments. The sign detection performance on three segments showed a 99.2% recall and 98% F1-

score. The intensity with roughness combination yielded a lower performance compared to the 

intensity-only and the intensity with z-gradient models. Overall, compared to the intensity model, 

the inclusion of z-gradient significantly increased the precision by 9%, the recall by 4.9%, and the 

F1-score by 7.1%. 

Similar conclusions were observed in the per-point analysis with 98% recall and 97% F1-

score on the three validation segments. However, the intensity-only model yielded the lowest 

performance compared to all other models regarding precision, recall, and F1-score. Overall, 

compared to the intensity model, including z-gradient significantly increased the precision by 

8.2%, the recall by 4.0%, and the F1-score by 6.0%. The proposed model showed high 

performance in accuracy and processing time in comparison to previous studies. A four-km road 

segment could be segmented in approximately 60 to 100 seconds, with 95% to 100% sign detection 

accuracy.  

Due to the flexibility of deep learning approaches and their ability to avoid potentially 

restrictive manual preprocessing, such as thresholding, the model avoids certain limitations in 

previous research. For example, intensity thresholding, as used by most previous studies, is 

inherently unable to detect low-intensity signs correctly. In contrast, the model proposed by this 

work was observed to accurately classify sign points regardless of their intensity level. 

Additionally, any sign type given during training may be classified by this approach, such as 

overhead signs, which was a limitation discussed in (S. Gargoum et al., 2017). Further, due to the 

high accuracy in detecting sign points, this approach can help in the automatic development of 

TSIs with accurate sign locations, placement, dimensions, orientation, visibility, and shape. It is 

worth noting that, owing to the high scanning speed on rural highways, point density decreases as 

the exposure time to the scanner decreases, hindering the ability to classify signs using LiDAR 

data. This is typically not a concern in urban areas as lower speed limits allow the same scan rate 

to collect a higher density of points (Karsten, 2019). As such, if video data is collected, the detected 

sign locations and points can help detect the video frames wherein the contents of the detected 
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signs can be classified using image processing, producing the last requirement for building a TSI. 

Another interesting application would be studying traffic sign occlusions and vision obstructions 

for human drivers and autonomous vehicles, which would help develop performance-based sign 

placement guidelines. 

This work facilitates several opportunities for future research. First, applying a similar 

approach to extracting road features is suggested (e.g., pavement surface, road markings, etc.). In 

addition, testing the possibility of performing semantic segmentation on several features 

simultaneously would be another challenge worthy of investigation.  

4.2 METHODOLOGIES 

Two different methodologies were used in this thesis to analyze the visibility and sight distance of 

the signs along several road segments. They were validated and compared to determine the more 

accurate method. The first method involved a voxelization and ray casting technique, whereas the 

second method utilized an octree organization and convex hull view frustum to determine 

visibility. The following subsections describe the shared and varying processes that each of these 

methods uses. A high-level flowchart of the methodologies is shown in Figure 47. The data 

structures used are similar to section 5.A1.2. 
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Figure 47 Methodology flowchart (comparing both methods) 

 

4.2.1 Pre-processing 

Prior to using this proposed methodology, the input point cloud (𝐿) must have all sign points 

labelled.  The signs were labelled using a PointNet++ neural network (Gouda, Epp, et al., 2022) 

and trained on point clouds with road signs labelled manually in CloudCompare. Further labelling 

and filtering were done based on parameters including roughness, gradient, and point density. This 

filtered data was then run through a modified PointNet++ neural network with increased 
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processing volume and random sign rotations to improve the identification of misaligned signs. 

Network configuration was done to optimize accuracy at the expense of false positives, as these 

were easily removed manually. 

Classification of test data segments was then done following an automated process of 

filtering to format data similarly to the training data. After all the sign points were classified, the 

original point cloud is filtered to contain only sign points, resulting in a new point cloud denoted 

𝑆. Then, 𝑆 was filtered such that only points with intensity greater than 
𝑙𝑎𝑣𝑔

4
 were considered, which 

yields a new point cloud 𝑆𝑛𝑒𝑤. 

The last pre-processing step was to remove any vehicles that were on the road. Other 

vehicles act as obstructions, but since they don’t always exist there, they cause false positives. 

Vehicles were removed by first detecting the pavement from the input point cloud. The pavement 

is characterized by a maximum z-gradient norm (𝐾1), density power (𝐾2), density power per z-

gradient norm deviations (𝐾3),  roughness deviation (𝐾4), and density gradient deviations (𝐾5), 

as a function of the number of lanes selected. The values used are shown in the table below. 

Table 9 Parameters used for pavement filtering 

Number 

of lanes 

𝑲𝟏 𝑲𝟐 𝑲𝟑 𝑲𝟒 𝑲𝟓 

1 0.0675 1.3 -1.175 0.925 - 

2 0.0675 1.1 -1.15 0.875 -0.005 

More 0.065 1.25 -1.225 0.925 - 

 

All values with a z-gradient norm greater or equal to (𝐾1) were filtered out. Point cloud 

volume density was calculated for a radius of 0.45 𝑚, and the roughness was calculated for a radius 

of 1.0 𝑚. 

 After this, the density power per z-gradient norm (𝐷𝑍𝐺) deviations filter was applied, the 𝐷𝑍𝐺 

property was defined for each point 𝑖 as shown in equation (37). These values were then used to 

compute the average (𝐷𝑍𝐺̅̅ ̅̅ ̅̅ ) and the standard deviation (𝜎(𝐷𝑍𝐺)) of 𝐷𝑍𝐺, and all points 𝑖 

satisfying equation (38) were filtered out. 
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𝐷𝑍𝐺𝑖 =
𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖

𝐾2

𝑐𝑜𝑠ℎ‖∇⃗⃗ 𝑧𝑖‖
 (37) 

 

𝐷𝑍𝐺𝑖 < 𝐷𝑍𝐺̅̅ ̅̅ ̅̅ + 𝐾3 ∙ 𝜎(𝐷𝑍𝐺) (38) 

 

 Two more filters were applied using the same notation of standard deviation for the previously 

applied variables. After doing so, all points with roughness greater than or equal to 𝐾4 ∙

𝜎(𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠) were filtered out. When the density gradient (∇⃗⃗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦) deviations were used, the 

last filter removed all points satisfying equation (39), thus leaving the remaining points located on 

the pavement of the road. 

 

‖∇⃗⃗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦‖
𝑖
≥ ‖∇⃗⃗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦‖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐾5 ∙ 𝜎(‖∇⃗⃗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦‖) (39) 

 

After filtering for the pavement was performed, vehicles were found by searching above 

the pavement for point clusters. Those that exist between 1 - 2 m above the pavement were 

classified as vehicles and were removed from the input point cloud 𝐿. In any cases where vehicles 

were not removed, sometimes due to low density, they were removed manually. The equations and 

parameters used in this section were developed through trial and error. 

4.2.2 Defining observers 

In this work, observers were defined as a set of points following a vehicle’s trajectory that 

simulates the visibility positions for an autonomous vehicle. First, the car’s trajectory was 

extracted from LiDAR data by taking points with zero scan angle and sorting them by GPS time. 

All selected points were then smoothed using a window to create a curve that describes the car’s 

trajectory. Along the curve, points were sampled every 1 m and shifted up by 1.2 m, leading to the 

set of observers (𝑂).  
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 To explore the full potential of a point cloud, a second set of observers (𝑂𝑜𝑝𝑝) was defined 

to consider a car driving in the opposite direction of the first set. This was done by simply shifting 

the original observer set, 𝑂, 4 m in their leftward directions and flipping their orientations and 

order. This works on standard, non-separated, two-way, two-lane highways due to the simple 

geometry of the road surface (Figure 48). In other cases, a manual method was used by selecting 

control points in the opposite lane. Observer points were then generated by interpolating 1 m apart 

between the control points and translating them upwards of 1.2 m. 

 

 

Figure 48 Observer points in both directions along a two-way two-lane road 

 

4.2.3 Sign clustering and sorting 

a) Raycast Method – Sign Clustering and Sorting 

In the raycast method, signs were clustered based strictly on proximity to each other. Points 

were clustered such that no two clusters were within 0.5 m of each other. After defining these 

separate clusters as individual signs, their mean centre points were calculated. Using the centre 

points of these sign clusters, the closest observer to the sign was calculated and used to determine 
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the sign’s distance from the road. Signs beyond 20 m from the road were not considered, and such 

clusters were removed from the sign set. The remaining sign centre points formed the set 𝐶𝑎𝑙𝑙. 

A set of signs 𝑆 ⊂ 𝐶𝑎𝑙𝑙 was created by sorting signs according to a given set of observers 

𝑂 or 𝑂𝑜𝑝𝑝 to obtain an ascending sign set according to the closest observer. First, the trajectory 

vector (𝑡 ) for each observer point 𝑜𝑖 was calculated as 𝑡 = 𝑜𝑖+1 − 𝑜𝑖. After, the relative position 

vector (𝑟 ) of a sign 𝑠𝑗 ∈ 𝑆 and 𝑜𝑖 was calculated as 𝑟 = 𝑠𝑗 − 𝑜𝑖.  

 Then, the observer’s index that led to the minimum value of the dot product 𝑡 ∙ 𝑟  for a 

selected sign 𝑠𝑗 was recorded. The procedure described was repeated for all signs, leading to a 

relation of each sign and the index of the observer that is the closest projection of 𝑠𝑗 along the 

vehicle’s trajectory. This relation made it possible to sort 𝑆 according to the ascending observers’ 

index. 

 To consider observers driving in both directions for the same point cloud, 𝐶𝑎𝑙𝑙 was divided 

into two disjoint sets, 𝐶 and 𝐶𝑜𝑝𝑝, containing only the signs that were related to each set of 

observers. First, 𝐶𝑎𝑙𝑙 was sorted according to 𝑂 to have a global index for each sign. After, for the 

projection 𝑝 of each sign 𝑐 ∈ 𝐶𝑎𝑙𝑙 in 𝑂 calculated to sort signs, the coordinates of 𝑐 in the 

coordinate system centred in 𝑝 and oriented following 𝑂 was computed. 

 The orientation angle (𝜃) of the observer 𝑜𝑖 ∈ 𝑂 located in 𝑝 was calculated by taking the 

vector between the next observer 𝑜𝑖+1 and 𝑜𝑖 and calculating its angle with respect to the 𝑥𝑦 plane. 

Therefore, for �⃗⃗� = (𝑥𝑤, 𝑦𝑤, 𝑧𝑤) = 𝑜𝑖+1 − 𝑜𝑖, the angle 𝜃 was described as shown in equation 40. 

 

𝜃 = 𝑎𝑡𝑎𝑛2 (
𝑦𝑤

𝑥𝑤
) (40) 

 

 After, the homogeneous transformation matrix (𝐻𝑊
𝑃 ) from the coordinate system (𝑃) 

centred in 𝑝 to the global coordinate system (𝑊) was calculated. First, using 𝜃 the rotation matrix 

from 𝑃 to 𝑊 along the 𝑧 axis (𝑅𝑊
𝑃 ) was described as shown in equation 41. 
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𝑅𝑊
𝑃 = [

cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

]

𝑇

(41) 

 

 Defining 𝑑𝑃
𝑊 as the vector from the origin of 𝑊 to the origin of 𝑃, follows that 𝑑𝑃

𝑊 = 𝑝. 

Equation 42 shows 𝐻𝑊
𝑃  in function of 𝑅𝑊

𝑃  and 𝑑𝑃
𝑊. 

 

𝐻𝑊
𝑃 = [𝑅𝑊

𝑃 −𝑅𝑊
𝑃 ∙ 𝑑𝑃

𝑊

0 1
] (42) 

 

 The matrix 𝐻𝑊
𝑃  calculated was applied in sign 𝑐 to find the coordinates of 𝑐 from the 

perspective of 𝑝 (𝑐′). If 𝑐′ had negative 𝑦 coordinate, it was placed on the right side of 𝑝 and 

therefore 𝑐 ∈ 𝐶. Otherwise, 𝑐 ∈ 𝐶𝑜𝑝𝑝. At this point, there were signs separated into 𝐶 and 𝐶𝑜𝑝𝑝, 

but the order of signs in each set and their index were relative to the first sort. Thus, 𝐶 was sorted 

according to 𝑂 and 𝐶𝑜𝑝𝑝 according to 𝑂𝑜𝑝𝑝 to adjust the index of signs and their order. 

b) Octree-Frustum Method – Sign Clustering and Sorting 

In the octree-frustum method, signs were obtained by clustering points in 𝑆𝑛𝑒𝑤 using 

DBSCAN such that each point in the cluster (or sign) was located at least 0.5 m away from all 

points in another cluster. Utilizing an orthogonal-least-squares-fit (affine-fit), a plane and four 

corners can be assigned to these arbitrary point clusters such that they represent the sign structure 

and area. The orthogonal fit returns three vectors of importance, the normal vector (𝑛) to the sign 

plane and two tangential vectors (𝑡1,  𝑡2) corresponding to the principal directions of the shape. 

Also returned is the mean point (𝑝𝑚𝑒𝑎𝑛) of all sign points 𝑝 ∈ 𝑃𝑠𝑖𝑔𝑛. With this information, the 

corner points (𝑐1,  𝑐2,  𝑐3,  𝑐4) and the centre of the sign (𝑐𝑚𝑒𝑎𝑛) can be calculated as follows: 

 

𝐴𝑚𝑖𝑛 = min
𝑝∈𝑃𝑠𝑖𝑔𝑛

𝑡1 ∙ (𝑝 − 𝑝𝑚𝑒𝑎𝑛) 

𝐴𝑚𝑎𝑥 = max
𝑝∈𝑃𝑠𝑖𝑔𝑛

𝑡1 ∙ (𝑝 − 𝑝𝑚𝑒𝑎𝑛) 
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𝐵𝑚𝑖𝑛 = min
𝑝∈𝑃𝑠𝑖𝑔𝑛

𝑡2 ∙ (𝑝 − 𝑝𝑚𝑒𝑎𝑛) 

𝐵𝑚𝑎𝑥 = max
𝑝∈𝑃𝑠𝑖𝑔𝑛

𝑡2 ∙ (𝑝 − 𝑝𝑚𝑒𝑎𝑛) 

𝑐1 = 𝑝𝑚𝑒𝑎𝑛 + 𝐴𝑚𝑖𝑛𝑡1 + 𝐵𝑚𝑖𝑛𝑡2 

𝑐2 = 𝑝𝑚𝑒𝑎𝑛 + 𝐴𝑚𝑎𝑥𝑡1 + 𝐵𝑚𝑖𝑛𝑡2 

𝑐3 = 𝑝𝑚𝑒𝑎𝑛 + 𝐴𝑚𝑎𝑥𝑡1 + 𝐵𝑚𝑎𝑥𝑡2 

𝑐4 = 𝑝𝑚𝑒𝑎𝑛 + 𝐴𝑚𝑖𝑛𝑡1 + 𝐵𝑚𝑎𝑥𝑡2 

𝑐𝑚𝑒𝑎𝑛 =
1

4
(𝑐1 + 𝑐2 + 𝑐3 + 𝑐4) (43) 

 

Figure 49 illustrates how this fit is applied to a point cluster.  

 

Figure 49 Sign point cluster fit, displaying corner points, mean point, and corresponding computed 
vectors 
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 Additionally, shifted corner points can be calculated using two scaling factors (𝑠1,  𝑠2) to 

decrease the area of the sign. This may be useful when the details of the sign are perhaps 

constrained to a smaller area than the physical size of the sign, such as when the sign has a large 

border.  The shifted corner points (𝑝1,  𝑝2,  𝑝3,  𝑝4) can be calculated as follows: 

 

𝑝1 = 𝑐1 +
1 − 𝑠1

2
(𝑐2 − 𝑐1) +

1 − 𝑠2

2
(𝑐4 − 𝑐1) 

𝑝2 = 𝑐2 +
1 − 𝑠1

2
(𝑐1 − 𝑐2) +

1 − 𝑠2

2
(𝑐3 − 𝑐2) 

𝑝3 = 𝑐3 +
1 − 𝑠1

2
(𝑐4 − 𝑐3) +

1 − 𝑠2

2
(𝑐2 − 𝑐3) 

𝑝4 = 𝑐4 +
1 − 𝑠1

2
(𝑐3 − 𝑐4) +

1 − 𝑠2

2
(𝑐1 − 𝑐4) (44) 

 

These formulas stretch the border around the sign by a ratio of 𝑠1 in the direction of 𝑡1 

and by a ratio of 𝑠2 in the direction of 𝑡2, both centred around the mean point. 

The clusters were filtered such that only ones with centre points within 20 m of their closest 

observer were considered to filter out distant signs from the road, the filtered centre points forming 

a set 𝐶𝑎𝑙𝑙 similar to the raycast method. 

 

𝑜𝑐𝑙𝑜𝑠𝑒 = arg min
𝑜∈𝑂

‖𝑐𝑚𝑒𝑎𝑛 − 𝑜‖ (45) 

 Additionally, each sign is either on the left or the right side of the road. This is 

determined based on the dot product of the vector from its closest observer to the sign and the 

leftward vector for that observer. 

 

left ⇔ 𝑙𝑐𝑙𝑜𝑠𝑒 ∙ (𝑐𝑚𝑒𝑎𝑛 − 𝑜) > 0 (46) 
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 Identifying which side of the road the sign is on allows the signs to be filtered such that 

one side of the road may be analyzed later by splitting 𝐶𝑎𝑙𝑙 into 𝐶 and 𝐶𝑜𝑝𝑝 corresponding to signs 

on the right-hand side of the respective observer set 𝑂 or 𝑂𝑜𝑝𝑝. Lastly, the angle of the sign to the 

roadway can be determined. If the angle is greater than 90°, the normal is flipped to the other side 

of the sign on the assumption that it would not make sense for a sign to face away from the road. 

 

𝜃 = acos (
𝑛 ∙ (𝑐𝑚𝑒𝑎𝑛 − 𝑜)

‖𝑐𝑚𝑒𝑎𝑛 − 𝑜‖
)  (47) 

 

The created set of signs, 𝑆 ⊂ 𝐶𝑎𝑙𝑙, is sorted according to a given set of observers 𝑂 or 𝑂𝑜𝑝𝑝 

to obtain an ascending sequence of signs according to the closest observer indexes. 

4.2.4 Defining sensor sets 

The analysis of visibility by an autonomous vehicle is strongly dependent on the number of sensors 

and their field of view. This can vary between vehicles, which is why a simulation-based approach 

with configurable sensor characteristics is valuable. The number of sensors, the description of the 

vertical and horizontal limits, and the range for each sensor used forms a sensor set. Figure 50 

shows how the individual sensor boundaries are defined. 
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Figure 50 Sensor angles using the spherical coordinate axis 

 Generally, sensors are defined in spherical coordinates. This suggests that the horizontal 

and vertical limits or boundaries are given as an azimuthal or polar angle, respectively, and the 

forward vector being 0° at any given observer. Therefore, each sensor has a minimum and 

maximum angle in each of these directions, with upwards and clockwise from the forward vector 

considered as the positive directions for these angles. The range of sensors also varies, bounding 

the distance of the individual sensor FOV arcs created by these angles and causing the FOV to 

appear as a section from a sphere with the range as the radius. Figure 51 shows what this looks 

like, provided by the sensors in Table 10. 
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Figure 51 Example sensor set from above, given the sensors referenced in Table 11 

4.2.5 Calculating Visibility 

c) Raycast Method – Calculating Visibility 

After data pre-processing, we can determine all observers of each set that were visible from 

each sign point 𝑐𝑗 ∈ 𝐶  or 𝑐𝑗 ∈ 𝐶𝑜𝑝𝑝. For every observer 𝑜𝑖 ∈ 𝑂 or 𝑜𝑖 ∈ 𝑂𝑜𝑝𝑝, all signs  𝑐𝑗 ∈ 𝐶 or 

𝑐𝑗 ∈ 𝐶𝑜𝑝𝑝 were considered depending on which direction was being analysed. If the sign 𝑐𝑗 was 

not visible from 𝑜𝑖, the next sign 𝑐𝑗+1 was analysed. In this autonomous vehicle scenario, a sign 

not visible from one observer means it was not within any of its sensor ranges or viewing angles 

for the selected sensor set centred at the observer point. 

 For all signs within a sensor range, Bresenham’s line algorithm (Bresenham, 1965) was 

used to cast a ray from 𝑜𝑖 to 𝑐𝑗 and check each ordered voxel 𝑟 on the ray for occlusion from a 

voxel in 𝐿. If there was an obstruction, sign 𝑐𝑗 was not visible from 𝑜𝑖. Otherwise, 𝑜𝑖 was visible 

from 𝑐𝑗. The process was repeated for each sign until the last one was analysed for each set. For 

each possible direction was defined a matrix of visibility (𝑉 or 𝑉𝑜𝑝𝑝) in which the element of the 
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𝑖-th line and 𝑗-th column (𝑣𝑖𝑗) was equals to 1 if the sign 𝑗  was visible from the observer 𝑖. 

Otherwise, 𝑣𝑖𝑗 = 0. 

d) Octree-Frustum Method – Calculating Visibility 

 For every observer 𝑜𝑖 ∈ 𝑂 or 𝑜𝑖 ∈ 𝑂𝑜𝑝𝑝, all signs 𝑐𝑗 ∈ 𝐶𝑎𝑙𝑙 were considered. If the sign 𝑐𝑗 

was not visible from 𝑜𝑖, the next sign 𝑐𝑗+1 was analysed. Exactly as in the raycast method, a sign 

not visible from one observer means that it was not within range of any individual sensors or 

viewing angles for the sensor set selected centred at the observer point. 

For all signs within a sensor range, a volume bounding frustum was created and queried 

against an octree organization of the point cloud 𝐿 to determine if any obstructions existed between 

the observer 𝑜𝑖 and the sign 𝑐𝑗. If there was an obstruction, sign 𝑐𝑗 was not visible from 𝑜𝑖.  This 

view frustum is a rectangular pyramid starting at the observer and ending just before the sign face 

so as not to intersect the points that make up the sign itself, which would cause errors in the 

evaluation of obstructions. 

The apex of the view frustum is an observer, and the base of the view frustum is made up 

of a shifted version of the scaled corner points 𝑝1
′ ,  𝑝2

′ ,  𝑝3
′ ,  𝑝4

′  discussed in the previous section. 

The shift or cut-off of these points is given by the following equation and is repeated for each 

scaled corner point. Figure 52 shows an example of a view frustum with a shift amount of 1 m and 

stretch factors 𝒔𝟏 = 𝒔𝟐 = 𝟏/√𝟐 . 

 

𝑝𝑘
′ = 𝑜𝑖 + (𝑝𝑘 − 𝑜𝑖) (1 −

shift amount

‖𝑐𝑚𝑒𝑎𝑛 − 𝑜𝑖‖
)  (48) 
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Figure 52 View frustum with a shift amount of 1 m and stretch factors 𝒔𝟏 = 𝒔𝟐 = 𝟏/√𝟐 

 To determine the intersection of half-spaces that constrain this frustum, a point inside it 

must be found. In turn, this would be inside all the half-spaces required to define the constraints 

of this volume. A point that is guaranteed to be inside this frustum is the average of the 5 points 

that make up the corners, given by the following equation. 

 

𝑚 =
𝑝1

′ + 𝑝2
′ + 𝑝3

′ + 𝑝4
′ + 𝑜𝑖

5
 (49) 

 

Therefore, the intersection of half-spaces defining the constraints of the view frustum is given by: 

 

𝐻𝑓𝑟𝑢𝑠𝑡𝑢𝑚 = 𝑓(𝑝1
′ , 𝑝2

′ , 𝑝3
′ , 𝑚) ∩ 𝑓(𝑜𝑖, 𝑝1

′ , 𝑝2
′ , 𝑚) ∩ 𝑓(𝑜𝑖, 𝑝2

′ , 𝑝3
′ , 𝑚) ∩ 𝑓(𝑜𝑖, 𝑝3

′ , 𝑝4
′ , 𝑚) ∩ 𝑓(𝑜𝑖, 𝑝4

′ , 𝑝1
′ ,𝑚) (50) 
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 𝐻𝑓𝑟𝑢𝑠𝑡𝑢𝑚 can then be passed to the octree of 𝐿 to query for any points that exist inside this 

volume. Any points that are inside the frustum are obstructing the view of the observer to the sign. 

For each possible direction,  a matrix of visibility (𝑉 or 𝑉𝑜𝑝𝑝) was defined in which the element of 

the 𝑖-th line and 𝑗-th column (𝑣𝑖𝑗) was equal to 1 if the sign 𝑐𝑗 was visible from the observer 𝑜𝑖, 

otherwise, 𝑣𝑖𝑗 = 0. It should be noted that in each direction 𝑉 or 𝑉𝑜𝑝𝑝 could be additionally 

segmented and/or filtered by 𝐶 or 𝐶𝑜𝑝𝑝 to only the signs on the right side of the road. However, 

the computation evaluates the visibility of all signs for the given observer set. 

4.2.6 Calculating Statistics 

The calculated visibility score matrices were used to generate various statistics, such as total visible 

distance and time, for each sign. If the sum of visibility scores for all observers in relation to a sign 

𝑐𝑗 was equal to 0, then the sign was not visible to any observer 𝑜𝑖. In this case, the next sign 𝑐𝑗+1 

was taken to be analysed. Otherwise, the statistics for the sign were calculated.  

 To calculate the statistics for a sign, the first visible observer 𝑜𝑓 and the last visible observer 

𝑜𝑙 were used to define a set of observers, 𝑈 = {𝑜𝑓 , 𝑜𝑓+1, … , 𝑜𝑙−1, 𝑜𝑙}, between the first visible and 

last visible observer, inclusive. Then, all visible observers 𝑈′ = {𝑜𝑢 | 𝑜𝑢 ∈ 𝑈, 𝑣𝑢𝑗 = 1} were 

found.  

 The sets 𝑈 and 𝑈′ were used to calculate statistics related to visibility. The first statistic 

calculated was the total visible distance of the sign, given by |𝑈′| multiplied by the observer 

interval of 1 m. After that, the maximum speed was defined using the total visible distance and 

dividing it by the sensor reaction time (0.5 s). This speed limit represents the maximum speed an 

autonomous vehicle may drive in order to have enough time to process the given signs.  

 Later, the relation between 𝑈 and 𝑈′ was used to generate other information about signs. 

The number of obstructions obscuring a sign along the path from 𝑜𝑓 to 𝑜𝑙 were calculated as 

|𝑈 − 𝑈′|. Finally, the proportion of visible observers was calculated as |𝑈′|/|𝑈|. 

 To compare the results to characteristics of autonomous vehicles, a manual check for the 

speed limit of a segment mapped by the point cloud was made using Google Street View.  The 

design speed for urban areas was adopted as 75 km/h, while a design speed of 135 km/h was used 

for rural areas.  
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 The design speed of the area can be used to calculate the distance needed for the 

autonomous vehicle to react to a sign (reaction distance). The referred calculation was done by 

dividing the sensor reaction time by the design speed (in meters per second). The reaction distance 

was used to compare if the total visible distance for a sign was enough to guarantee safe conditions 

for an autonomous vehicle. This can be considered the minimum decision sight distance (DSD), 

given a reaction time, defined by the American Association of State Highway Transportation 

Officials (AASHTO, 2018). Similarly, a comparison between the total visible time for each sign 

and the sensor reaction time was made. Thus, the total visible time for a sign was defined as the 

total visible distance divided by design speed.  

e) Octree-Frustum Method – Continuous Sight Distance (Alternate Sight Distance) 

In the octree-frustum method, the sight distance was calculated the same way as in the 

raycast method, as the sum of observers that had an unobstructed view frustum of the sign given 

by the visibility matrix 𝑉 or 𝑉𝑜𝑝𝑝. Additionally, the continuous sight distance was calculated, i.e., 

the longest consecutive set of observers with an unobstructed view of the sign. The continuous 

sight distance 𝑆𝐷𝑐 is equivalent to the longest consecutive set of indexes from 𝑈 that intersect 𝑈′. 

This is described by equation 15. 

𝑆𝐷𝑐 = 𝑚𝑎𝑥(∑𝑈𝑖

|𝑈|

𝑖=0

(51) 

𝑜𝑖 ∈ 𝑈′ ∧ 𝑜𝑖−1 ∈ 𝑈′ 

4.3 RESULTS AND DISCUSSION 

4.3.1 Test Segments 

The proposed method was applied to three segments of Highway 01A in Alberta, Canada. First, a 

segment from km 12 to km 16 (segment one) was selected because it has a high number of signs. 

Two other segments were considered: one from km 0 to km 4 (segment two) and one from km 8 

to km 12 (segment three). As each 4 km segment was analyzed for both possible directions, the 

segments generated results for 24 km. All test segments were collected in 2020 by Alberta 

Transportation using a REIGL VMX 450 LiDAR system capable of collecting 360° point cloud 
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data. Point cloud densities ranged between 150 points/m2 to 1,000 points/m2 depending on survey 

speed and distance from the scanner. 

4.3.2 Sensor set used 

For all types of sensors analyzed, an angular resolution of 0.1 degrees was adopted for both vertical 

and horizontal ranges. This work also considered vertical angles ranging from -60° to 30° for all 

sensors. The referential adopted for orientation was the 𝑥 axis pointed in the front of the vehicle 

and the 𝑧 axis pointing up, perpendicular to the ground.  

 The set was a representation of a combination of different sensors (Tesla, 2023). Table 10 

shows a description of the sensor set, and Figure 53 shows a representation of an observer field of 

view using the sensor set. 

Table 10 Description of the horizontal angle limits and range for each component of the 

sensor set 

Sensor name Horizontal angle limits (degrees) Range (m) 

Narrow forward (1) -17.5° to 17.5° 250 

Main forward (2) -25° to 25° 150 

Wide forward (3) -60° to 60° 60 

Side sensor 1 (4) -112.5° to -22.5° 80 

Side sensor 2 (5) 22.5° to 112.5° 80 
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Figure 53 Representation of each sensor field of view in a different colour for the sensor set 

4.3.3 Comparison of Methods 

Each of the raycast and octree methods analyzed the sight distance to signs along a roadway 

segment.  These methods were then compared against each other to determine inaccuracies that 

may have caused discrepancies in the results. The following section displays and discusses several 

figures comparing the different results of each method in one direction on the same 4 km segment 

from Highway 1A (segment one). Figure 54 shows the comparison of sight distance on segment 

one, set 𝐶, between the two methods. 
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Figure 54 Octree vs. Voxel Sight Distance Comparison on Segment One, Set C 

 Three distinct types of dots can be seen in Figure 54, representing the raycast method, the 

octree method with continuous sight distance, and the octree method with total sight distance. Most 

of the discrepancies between the two octree methods are of less importance as they operate 

differently. It is possible that the continuous sight distance to some arbitrary sign equals 1 m, while 

the total sight distance equals half of the maximum sensor range, 125 m, for a difference of 124 m, 

in the case where consecutive observers alternate between obstructed and unobstructed. This could 

occur if a sign was viewed through a fence line. The concerning discrepancies are between the 

total sight distance of the raycast method and of the octree method, as these results are expected 

to be the same.  

 Some of the results with large differences between the two methods were excluded. For 

example, Sign 33 was excluded as it was not a traffic sign and was distanced from the road, and 

sign 41 was excluded as it was for the perpendicularly connecting road.  

 The first sign analyzed from set 𝐶 was sign 21, shown in Figure 55. The octree total sight 

distance was calculated at 195 m, the octree continuous sight distance was calculated at 173 m, 

and the voxel total sight distance was calculated at 190 m. 
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Figure 55 Highway 1A Segment One, Sign 21 

The obstructions for sign 21 are mostly applicable to sign 22 as well, as it is positioned 

approximately 75 m behind. Additionally, sign 21 blocks the view of sign 22, justifying the lower 

sight distance calculated in both methods.  

Sign 21 is blocked by several obstacles, including a guardrail, a pole, and some other points 

along the roadside. Displayed in Figure 56 are these points, and Figure 57 shows a section of the 

raycasts as well as a section of the octree frustums obstructed by them.  

 

Figure 56 Sign 𝒄𝟐𝟏 ∈ 𝑪, obstructing points 
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Figure 57 Sign 𝒄𝟐𝟏 ∈ 𝑪, raycasts and frustums from the forward and reverse-facing perspectives 

 The voxels, represented by the encased yellow points, are those obstructing raycasts 

(bottom row of Figure 57); the red points obstructing the frustums (top row of Figure 57). Though 

they seem to overlap almost identically, five more raycasts are obstructed than frustums, causing 

a small difference in the calculated sight distances. This provides evidence of the difference in 

precision between the two methods.  

The raycast method uses voxels and Bresenham’s line algorithm, an incremental error 

algorithm, to detect obstructions based on the best approximation. This can occur when the points 

aggregated into a voxel group exist near one boundary of the voxel, and the raycast passes through 

or near an opposite boundary of that voxel. Bresenham’s line algorithm may calculate such a voxel 
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as being in the trajectory of the raycast when the points inside the voxel did not actually intersect 

the ray and were, in fact, a small distance away from it. This shall be referred to as ‘clipping,’ as 

in the ray clipped a voxel that contains empty space adjacent to and or near the ray. 

In the octree method, clipping does not occur. The octree method bounds a specific volume 

independent of the point cloud itself, which allows for a precise point query into the octree against 

a set of equalities. By detecting possible obstructions against a set of equalities, the accuracy of 

the results is dependent strictly on the precision of the input point cloud. 

 Sign 44 was also analyzed, as shown in Figure 58. The raycast method did not calculate 

any obstructions and recorded a maximum total sight distance of 252 m. The octree method 

recorded 150 m and 148 m for the total and continuous sight distance, respectively. The difference 

in total sight distance of 102 m was from sign 43, blocking a small portion of sign 44. The 

difference between the two methods is shown in Figure 58. 

 

 

Figure 58 Sign 𝒄𝟒𝟒 ∈ 𝑪 obstruction. 

 The last few signs of the set 𝐶 encountered a similar problem, as shown in Figure 59. The 

raycast method only evaluates the visibility of the sign center point, whereas the octree method 

considers the entire sign area, thus accurately detecting more obstructions.  
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Figure 59 Sign 𝒄𝟕𝟕 ∈ 𝑪 obstructions 

 In many cases, the results of the two methods overlapped with a mean percent difference 

of only 1.2%. Still, it can be seen from the preceding examples that, in some cases, a large 

discrepancy in the results is observed due to the limitations of the voxel-based raycasting method.  

 Most of the sign information needs to be visible for a certain amount of time to allow the 

driver to process the information and possibly take some form of action. Therefore, the octree 

method should be considered a more realistic representation of sign visibility as it encompasses a 

better majority of sign information. As a result of the precision of LiDAR data in depicting a road 

environment in 3D, the proposed octree-based evaluation method surpasses the state-of-the-art 

raycast method used in previous studies in accuracy and provides a more realistic and practical 

result regarding sight distances. 

4.3.4 Case study on segment one 

Figure 60 shows the results of the proportion of in-range observers for Highway 01A using the 

sensor set and analyzing the sets 𝑂 and 𝐶. The values shown by the referred figure indicate the 

existence of some signs that have a significant number of obstruction events compared to visible 

events.  
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Figure 60 Proportion of visible observers for each sign number using the sensor set and considering 𝑶 
and 𝑪 

 Using the number of visible observers, the sight distances were calculated and shown in 

Figure 61. To calculate the reaction distance, the regions from sign 1 to sign 26 and from sign 71 

to sign 79 were rural, while the region from sign 27 to sign 70 was an urban area. 
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Figure 61 Total visible distance for each sign calculated using the sensor set 

 A few signs along the segment were not visible for a long enough distance to be analyzed 

by a road user for certain reaction times at the given speeds. Signs that are low in both Figure 60 

and Figure 61 would be of concern. The total visible time was computed, and the results are shown 

in Figure 62. Using Figure 60, Figure 61, and Figure 62, a manual search was done for signs that 

had poor visibility in comparison to other signs. 
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Figure 62 Total visible time for each sign calculated using the sensor set  

 Figure 63 shows a comparison of signs 77 and 78 along the trajectory of a vehicle. First, 

the point cloud data shows sign 77 (green), covering parts of sign 78 (pink) from the perspective 

of an observer. Figure 63 shows the same location when it was possible to see the same situation 

identified using the point cloud (middle image). Finally, the third image shows the same location 

after sign 77 was removed, and sign 78 was replaced. This example shows the proposed 

methodology automatically extracting the position of a sign replaced by Alberta Transportation. 

Several other cases on the rest of the data are presented in Figure 64, Figure 65, Figure 66, and 

Figure 67. 

 

Figure 63 A comparison for the location of signs 77 and 78. On the left, the point cloud data. In the 
middle, an image of the location before the change. On the right, the same location after sign 77 was 

removed 
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Figure 64 Sign obstructed by a roadside tree 

In the first image of Figure 65, the point cloud data are shown. In this image, sign 10 (pink) 

is occluded by sign 8. The middle and right images show the location before and after sign eight 

was changed to improve its sight distance.  

 

Figure 65 A comparison of the location of signs 10, 9 and 8 

 

Figure 66 A comparison for the location of sign 31, middle and left show the sign after and before the 
change 
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Figure 67 Sign 37 occluded by sign 36 in the point cloud data (left) and a picture of the road (right) 

4.4 CONCLUSIONS AND LIMITATIONS 

The widespread introduction and support for autonomous vehicles is growing as manufacturers 

race to release higher-level AVs to consumers. Despite this, government agencies have been slow 

to assess whether the existing road infrastructure can safely handle these vehicles. Though this is 

the case, research has determined that AVs will rely on signs for road and safety information 

comparably to humans until the infrastructure, environment, and AVs become fully connected to 

each other and the road network. Such a network will enable the information to be passed over 

wireless connections and shared with relevant connected entities. Until then, road users will 

continue to rely on visual recognition of signs for an enormous amount of vital information such 

as speed limit compliance, lane-keeping, and hazardous warnings.  

Though AV sensors and human eyes are different, research has also determined that AVs 

and humans read signs using similar methods, requiring them to be properly placed, oriented, and 

unobstructed, as highly visible signs can be effective in mitigating accidents. Despite this, the 

assessment of sign placement, orientation, and visibility relies on the manual efforts of traffic 

departments, making the task exceedingly tedious, time-consuming, and costly.  

This section proposed a novel automated approach to assess the visibility of signs in the 

road environment based on AV characteristics. Though the methodology was focused on AVs the 

method is still applicable for human drivers. The approach uses mobile LiDAR data of 3 different 

road segments in Alberta, Canada, as input, detecting signs using a PointNet++ neural network. 

Visibility was assessed by sampling perspectives from the scanning vehicle’s trajectory and 

calculating view frustums to signs in the FOV of typical AV sensors. The sensor set FOV was 

configurable since multiple sensor setups were tested and compared. The input cloud was 
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organized into an octree data structure such that the calculated view frustums were spatially 

queried for obstructions. Frustum placement and query configuration accommodated noise in the 

input data to be mitigated in the results, allowing for several statistical analyses, including visible 

distance, visible time, continuous visible distance, maximum speed, and more. 

The proposed method was compared to an adapted raycasting approach, which voxelates 

the input cloud and detects obstructions using Bresenham’s line algorithm. It was determined that 

the octree method is superior as it considers a 3D view perspective and the area of the sign face, 

whereas the raycasting approach only considers the centre point of a sign and thus acts more as a 

point-to-point view perspective. Additionally, though the results were fairly comparable, the octree 

method was determined to be more precise than the raycasting method, especially evident in 

extreme cases of discrepancy. 

The novel methodology introduced in this work automatically identified multiple sign 

locations that had reduced visibility to AV sensors. Furthermore, three of the identified sign 

locations had already been adjusted by Alberta Transportation since the data was collected, 

providing evidence of this method's validity. The limitations of this method are that it does not 

classify signs by type or relevance to the road user, only by proximity to the road. Thus, signs 

irrelevant to the road user or not providing safety information were still included in the results and 

must be ignored or removed by manual inspection. For example, such signs may be calculated as 

having limited visibility to the analyzed vehicle trajectory but were only relevant to other 

directions of travel, which may or may not have adequate visibility of the sign. Therefore, future 

research should include automating signs' classification and relevance to the road user so that only 

relevant signs are considered for the analyzed trajectory.  
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5 PAVEMENT MARKING ASSESSMENT 

The proposed marking occlusion detection methodology simulates AV sensors and then assesses 

the visibility of virtual target planes as the vehicle traverses a travel lane. Octrees are used to query 

occlusions to vehicle sensors within view frustums between sensors' origins and target planes. Any 

point detected within the view frustum is detected as an obstruction. As such, the method does not 

transform point clouds into volumetric voxel representations. The voxels, used in state-of-the-art 

research on sight distance assessment, prevent the assessment of the pavement surface visibility as 

any occupied voxel that intersects with a raycasted line would be detected as an obstruction, even 

if points are located at the lower edge of a voxel. To simplify, Figure 68 shows the difference 

between the two approaches at different target heights on a 10 km highway segment in Alberta, 

Canada. As evident from the graphs, it is impossible to feasibly perform a voxel-based raycasting 

assessment for target heights lower than 0.10m (the lowest voxel size commonly used in voxel-

based research) (Gouda, Chowdhury, et al., 2021). In addition, voxel-based raycasting methods 

suffer from other limitations such as 1) the unnecessarily large processing time; 2) vertical and 

horizontal angular resolution of raycasting; 3) false-negative obstruction detections; 4) false-

positive obstruction detections; 5) inaccurate sight distance estimates, etc. (Gouda, Mirza, et al., 

2021). 

 

 

a) Octree-based (Gouda, Mirza, et al., 2021) 
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The “target planes”, which are essentially checkpoints for how far on the pavement surface 

a sensor can see at a given point, would lie flat to the ground. Axiomatically, this is because the 

interest in this work is the visibility of lane markings. The flowchart of the simulation-based 

method proposed in this section is shown in Figure 69.  

 

 

b) Voxel-based  (Gouda, Chowdhury, et al., 2021) 
Figure 68 Available sight distance at various target heights on a 10 km highway segment in Alberta, 

Canada 
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Figure 69 Flowchart of the lane marking assessment 

 

5.1 METHODOLOGY 

Pavement extraction was performed using the method explained in section 4.2.1. 

5.1.1 Observer Points and Headings 

To begin with, a method that gives 3D points (observer points, 𝑜𝑖 ∈ 𝑂) representing the sensors’ 

point of view must be devised. Additionally, a 3D reference frame consisting of a car's forward, 

leftwards, and upward directions must be calculated for each point along the sensors’ path. With 
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the above information on the AV’s path, directionality is fully established along a vehicle’s 

trajectory. 

 

 

Figure 70 Labelled road points 

  

In brief, the way this method works is by taking points directly beneath the vehicle scanners 

(scanning angle of zero) and fitting a smooth curve to them using regression techniques, which 

gives a set of road points 𝑟𝑖 uniformly spaced at 1 m intervals, as shown in Figure 70. The 

smoothing utilizes the time each point was scanned and a new set of times corresponding to a given 

sample rate. By considering every point recorded within a certain time period, a regression 

smoothing can generally be achieved by forming a system of linear equations and solving by 

Cramer’s rule. An interpolant is calculated for every time in the new set. For a given interpolant, 

the new time is denoted 𝑡0, the number of points in the current window as 𝑛 , the real times 

corresponding to said points with 𝑡0 subtracted as a column vector 𝑡 , and the matrix of points 

themselves as R. Then, 

𝑡2⃗⃗  ⃗ =  𝑡 ∗  𝑡  (𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑤𝑖𝑠𝑒) (52) 

𝑠1 = ∑𝑡𝑖⃗⃗ 

𝑛

𝑖=1

 
(53) 

𝑠2 = ∑𝑡2𝑖
⃗⃗ ⃗⃗ 

𝑛

𝑖=1

 
(54) 

𝑠3 = 𝑡2⃗⃗  ⃗
𝑇
𝑡  (55) 
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𝑠4 =  𝑡2𝑖
⃗⃗ ⃗⃗  𝑇𝑡2⃗⃗  ⃗ (56) 

𝑠𝑟⃗⃗  ⃗ = (∑𝑅𝑖1

𝑖

,∑𝑅𝑖1

𝑖

,∑𝑅𝑖2

𝑖

) 
(57) 

𝑠𝑟𝑡 = 𝑡 𝑇𝑅 (58) 

𝑠𝑟𝑡2 = 𝑡2⃗⃗  ⃗
𝑇
𝑅 (59) 

 

Using these variables, we can explicitly solve for c in a least-squares solution to a quadratic. 

 

𝑑𝑒𝑡𝑑𝑒𝑛𝑜𝑚 = 𝑠4𝑠2𝑛 + 𝑠3𝑠1𝑠2 + 𝑠2𝑠3𝑠1 − 𝑠2𝑠2𝑠2 − 𝑠3𝑠3𝑛 − 𝑠4𝑠1𝑠1 

 

(60) 

𝑑𝑒𝑡𝑛𝑢𝑚 = 𝑠4 ∗ 𝑠2 ∗ 𝑠𝑟⃗⃗  ⃗ + 𝑠3 ∗ 𝑠𝑟𝑡 ∗ 𝑠2 + 𝑠𝑟𝑡2 ∗ 𝑠3 ∗ 𝑠1 − 𝑠𝑟𝑡2 ∗ 𝑠2 ∗ 𝑠2 − 𝑠3 ∗ 𝑠3 ∗ 𝑠𝑟⃗⃗  ⃗

− 𝑠4 ∗ 𝑠𝑟𝑡 ∗ 𝑠1  (∗ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑤𝑖𝑠𝑒) 

 

(61) 

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡 = 𝑑𝑒𝑡𝑛𝑢𝑚/𝑑𝑒𝑡𝑑𝑒𝑛𝑜𝑚(∗ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑤𝑖𝑠𝑒) 

 

(62) 

 

The resulting smooth path is used to obtain the correctly spaced road points through a 

linear interpolation. 

The upwards vectors, 𝑢𝑖⃗⃗  ⃗, were obtained as the positive z normal of a best least-squares 

plane fit to other nearby points in a cube with edges of length 2 m centred on 𝑟𝑖. The forwards 

vectors, 𝑓𝑖⃗⃗ , were obtained by taking the derivative of the parametrization of the road points curve 

and subtracting its upward component. Lastly, leftwards vectors 𝑙𝑖⃗⃗  are computed with the cross-

product 𝑙𝑖⃗⃗ = 𝑢𝑖⃗⃗  ⃗ × 𝑓𝑖⃗⃗ . Each of the directional vectors are normalized to a magnitude of 1 m. 

Observer points are defined as road points plus an observer height multiple of the upward 

vectors, 𝑜𝑖 = 𝑟𝑖 + observer height ∗ 𝑢𝑖⃗⃗  ⃗. Their purpose is to model the point of view of a typical 

AV. In this work, the observer height was set to 1.1 m as a conservative estimate of an AV’s sensor 

height (Tesla, 2023). 
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5.1.2 Left and Right Target Planes 

Targets to detect from said observer points must be defined. Since the goal is to detect how far the 

road surface and its markings are visible, target planes that lie flat to the road serve this purpose. 

A necessary precursor to defining these target planes is constructing three sets of target points for 

left 𝑡𝐿𝑖, right 𝑡𝑅𝑖, and centre 𝑡𝐶𝑖. 

 𝑡𝐶𝑖 = 𝑟𝑖 + 𝑢𝑖 ∗ target height (63) 

 𝑡𝐿𝑖 = 𝑡𝐶𝑖 + 𝑙𝑖 ∗ left lane width (64) 

 𝑡𝑅𝑖 = 𝑡𝐶𝑖 − 𝑙𝑖 ∗ right lane width (65) 

   

This is calculated for each road point. A series of points following the trajectories of the 

left and right lanes are generated from segmented lane marking point data obtained by PointNet++. 

These series of points are then used to determine the left and right lane widths for every road point 

in the point cloud by finding the distance to the closest lane marking point on the left or right side 

accordingly. By doing so, the accuracy of the ground planes is greatly improved and consistently 

covers the entire width of the travel lane. 

The target height constant was set to be as low and as close as possible to the road surface 

before yielding nonsensical results due to pavement surface roughness. The next step is defining 

two target planes for each road point, 𝑇𝐿𝑖
 and 𝑇𝑅𝑖, which represent the surface of the road. A plane, 

in this case, is given by an ordered set of four points, all coplanar, which define the corners of a 

quadrilateral 𝑇 = (𝑝1, 𝑝2, 𝑝3, 𝑝4). 

Each left target plane is roughly defined using two consecutive centre target points and left 

target points. 𝑇𝐿𝑖 ≈ (𝑡𝐿𝑖, 𝑡𝐶𝑖 , 𝑡𝐶(𝑖+1), 𝑡𝐿(𝑖+1)). An issue with this approximation is that, in general, 

these four points may not be coplanar, which can lead to unbounded equations later in the analysis. 

To correct this, the fourth point, 𝑡𝐿(𝑖+1), is projected into the plane defined by the prior three. The 

equations for doing this for four points (𝑝1, 𝑝2, 𝑝3, 𝑝4) are as follows. 

 

 𝑛 = (𝑝1 − 𝑝2) × (𝑝3 − 𝑝2) (66) 

 𝑝4
′ = 𝑝4 − 𝑛 ∗

(𝑝4 − 𝑝2) ∙ 𝑛

‖𝑛‖2
 (67) 
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The same equations are used to define the right target planes except with the left target 

points substituted with the right target points. 

5.1.3 Octrees and Constraints 

Lane marking occlusion evaluation is done using octrees. Octrees search for points in an 

intersection of half-spaces called a constraint 𝐶 = ℎ1 ∩ ℎ2 ∩ …∩ ℎ𝑛. Each half-space ℎ is a set 

of points satisfying: 

 ℎ(𝑎, 𝑏, 𝑐, 𝑑) = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 ≥ 𝑑} (68) 

 

Simply, a half-space is all the points “above” a plane in 3D space, given some orientation. 

Arbitrary (and possibly unbounded) convex polytopes can be formed using an intersection of half-

spaces. One can imagine making a cube by using six such half-spaces with three pairs of parallel 

planes orthogonal to each other. An explicit example of such a cube is the following. 

 

 𝐶 = ℎ(1,0,0,0) ∩ ℎ(−1,0,0, −1) ∩ ℎ(0,1,0,0) ∩ ℎ(0,−1,0, −1) ∩ ℎ(0,0,1,0)

∩ ℎ(0,0,−1,−1) 
(69) 

   

The above corresponds to the points satisfying the following equations. 

 𝑥 ≥ 0 (70) 

 −𝑥 ≥ −1 (71) 

 𝑦 ≥ 0 (72) 

 −𝑦 ≥ −1 (73) 

 𝑧 ≥ 0 (74) 

 −𝑧 ≥ −1 (75) 

   

Note how −𝑥 ≥ −1 ⇔ 𝑥 ≤ 1. This is a 1x1x1 cube with opposing corners at [0,0,0] and [1,1,1]. 

Constraints, as defined above, are equivalent to systems of inequalities, which are typically 

expressed as the matrix multiplication 𝐴𝒙 ≤ 𝒃. 
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Given three arbitrary points in a plane 𝑢1, 𝑢2, 𝑢3 not collinear and a point within the half-

space 𝑢𝑖𝑛, the coefficients (𝑎, 𝑏, 𝑐, 𝑑) for a half-space can be found using the following equations. 

 

 (𝑎′, 𝑏′, 𝑐′) = (𝑢1 − 𝑢2) × (𝑢3 − 𝑢2) (76) 

 𝑑′ = 𝑢2 ∙ (𝑎′, 𝑏′, 𝑐′) (77) 

 𝑘 = 𝑠𝑖𝑔𝑛(𝑎′, 𝑏′, 𝑐′) ∙ 𝑢𝑖𝑛 − 𝑑′ (78) 

 (𝑎, 𝑏, 𝑐, 𝑑) = 𝑘(𝑎′, 𝑏′, 𝑐′, 𝑑′) (79) 

 

Lastly, as (𝑎, 𝑏, 𝑐) ∙ 𝑢𝑖𝑛 ≥ 𝑑 is wanted if it is found that (𝑎′, 𝑏′, 𝑐′) ∙ 𝑢𝑖𝑛 < 𝑑′ , multiplying both 

sides by −1  reverses the inequality. This way, the normal of the plane is guaranteed to be towards 

the centre of the frustum. 

Both cases can be expressed as a multiplication by a factor 𝑘 equal to the sign of the expression 

(𝑎′, 𝑏′, 𝑐′) ∙ 𝑢𝑖𝑛 − 𝑑. 

5.1.4 Left and Right View Frustums 

View frustums (Figure 71) used are conic quadrilateral pyramids with the base as a target plane 

and the tip as an observer point. By taking 𝑓(𝑢1, 𝑢2, 𝑢3, 𝑢𝑖𝑛) to be a function that gives a half-space 

given three points in the plane and a point inside the half-space using the previously defined 

procedure, it follows that the frustum from any observer point 𝑜𝑖 to any target plane 𝑇 =

(𝑝1, 𝑝2, 𝑝3, 𝑝4) is given by the following two equations. 

 

 𝑚 =
𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑜𝑖

5
 (80) 

 
𝐶𝑓𝑟𝑢𝑠𝑡𝑢𝑚 = 𝑓(𝑝1, 𝑝2, 𝑝3, 𝑚) ∩ 𝑓(𝑜𝑖 , 𝑝1, 𝑝2,𝑚) ∩ 𝑓(𝑜𝑖, 𝑝2, 𝑝3, 𝑚)

∩ 𝑓(𝑜𝑖, 𝑝3, 𝑝4, 𝑚) ∩ 𝑓(𝑜𝑖, 𝑝4, 𝑝1, 𝑚) 
(81) 
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Figure 71 Left and right view frustums 9 m away from an observer 

5.1.5 Evaluation 

To evaluate marking sight distance for each of the 𝑛 observer points, the left and right target planes 

are constructed up to 𝑘 meters ahead. For each of these frustums, the octree is used to determine 

if any points are contained within the frustum. If they are, then that view is considered blocked. 

Otherwise, it is considered visible.  

This measure of visibility is used to determine marking sight distance for each road point 

by checking for the nearest target plane whose view is blocked and then finding the distance from 

the road point to the prior plane. This number is analogous to the furthest continuous field of 

visibility of the road surface for an AV’s sensor. Separate sight distances are produced for the left 

and right sides. Since road points are spaced in 1 m intervals, that is the maximum resolution of 

the marking sight distance evaluation. However, this is deemed sufficient for practical purposes. 

5.1.6 Path Prediction 

A path prediction method was devised to investigate the consequences that limited marking sight 

distances might have on AVs. The path depends on how fast the onboard computer can 

theoretically calculate it, how fast the vehicle is going, and how far the vehicle’s sensors can see. 

From the path, measures relevant to rider comfort, such as radius, curvature, and centripetal 

acceleration, were extracted. The methodology was primarily applied to detected locations with a 

slope followed by a turn to model a particularly challenging situation to react to in time.  
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5.1.6.1 Bézier Curves 

Many recent studies on intelligent path-planning algorithms have used Bézier curves to model 

smooth trajectories (Bulut, 2021; Fakhfakh et al., 2020; H. Li et al., 2019; Zheng et al., 2020). This 

state-of-the-art approach is computationally inexpensive relative to other path-planning methods, 

making it desirable for real-time situations. Given 𝑛 + 1 control points 𝐶𝑖 in ℝ2, a Bézier curve of 

degree 𝑛 can be parametrically represented by the function 

 

 𝐵(𝑡) =  ∑(
𝑛

𝑖
) 𝑡𝑖(1 − 𝑡)𝑖𝐶𝑖

𝑛

𝑖=0

 (82) 

where 𝑡 ∈ [0,1]. 

Bézier curves have several properties that make them uniquely suited for path planning and 

smooth trajectories. First, they are guaranteed to touch both the first and last control points, 

𝐶0 & 𝐶𝑛. Second, the curve is tangent to the first edge 𝐶0 → 𝐶1 at the first control point 𝐶0, as well 

as a tangent to the last edge 𝐶𝑛−1 → 𝐶𝑛 at the last control point 𝐶𝑛. Lastly, the curve is guaranteed 

to be contained by the convex hull of all its control points. 

To find the curvature at any point along the curve, the first and second derivatives, 

themselves being Bézier curves of lesser degree, must be found. Once found, the curvature is 

represented by the function 

 

𝑘(𝑡) =  
�̇�(𝑡)�̈�(𝑡) − �̇�(𝑡)�̈�(𝑡)

((�̇�(𝑡))
2
+ (�̇�(𝑡))

2
)
3
2

 

 

(83) 

With the curvature at every point along the Bézier curve found, the radius can be calculated by 

taking the reciprocal of the curvature. 

 𝑅(𝑡) =
1

𝑘(𝑡)
 (84) 

Given the speed at which the vehicle is travelling, 𝑣, the centripetal acceleration can be found at 

any point along the curve as well. 

 ∝ =  tan−1(𝑒) (85) 
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 𝐶𝐴(𝑡) =
𝑣2

𝑅(𝑡)
∗ cos (∝) (86) 

5.1.6.2 Control Points  

Control points were identified based on Sakai et al.’s Bézier Path Planning Python module (Sakai 

et al., 2018). This module automatically generates a 3rd degree Bézier curve (i.e., four control 

points) given the location and direction of the starting and ending points, as well as an ‘offset’ 

parameter that controls how wide the turn will be. The starting point's location was determined by 

finding the point where marking visibility was first detected around a curve labelled “the visibility 

point.” A simulation starting point is located upstream of the visibility point where the vehicle will 

be travelling at a given speed with a given reaction time. The vector between the starting and 

visibility points provides the starting angle. 

The ending point is decided based on a two-step process. The first step is based on the 

marking sight distance evaluation and is the point of furthest visibility on the outside of the turn 

from the visibility point. The second step involves superimposing an AV’s sensor detection range 

from the visibility point onto the point cloud and extracting the fields of vision of the AV sensors. 

If the point of furthest visibility is contained within any of the sensors’ detection ranges, it is chosen 

as the location of the ending point. If it exists beyond the sensor’s range, the vanishing point at the 

intersection of the sensor’s range and the path of the road points was identified as the ending point 

(Andrei et al., 2022; Fakhfakh et al., 2020). The vector between the ending and 3rd road points 

downstream provides the ending angle. Figure 72 shows the visibility point and the point of 

furthest visibility. 
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Figure 72 The detection of the point of furthest visibility from the visibility point 

 

The offset controls the width of the turn by controlling where the middle two control points 

of the Bézier curve will be placed. A higher offset will make the control points stay closer to the 

start and end, and a lower offset will make them go farther. This results in a more shallow curve 

for higher offsets, while lower offsets will be more triangular and pronounced.  

5.2 RESULTS 

5.2.1 Data collection 

The LiDAR point cloud data used in the analysis were collected in 2020 by Alberta Transportation 

throughout rural highways in Alberta, Canada, using Tetra Tech PSP-7000, a multifunction 

pavement surface profiling vehicle. The vehicle was equipped with a REIGL VMX 450 LiDAR 

system, capable of collecting 360° point cloud data. Point cloud densities ranged between 150 

points/m2 to 1,000 points/m2 depending on survey speed and distance from the scanner. All surveys 

were done at normal traffic flow speeds, reaching as high as 100 km/h. Data was divided into 4 

km segment LAS files, which were approximately 500 MB each. 
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5.2.2 Test segments 

Marking sight distance and path planning evaluations described in the method above were done 

on three different curves on three different segments from rural roads located within Alberta: 

1. Highway 563: A curve from a 4 km segment on this rural road was used for analysis (Figure 

73). This segment is on the outskirts of Calgary and has the test segments' sharpest curve. 

The speed limit is 60 km/h, with a posted advisory speed of 35 km/h on the curve. 

2. Highway 1A: A curve from a 2 km segment on this highway was used for analysis (Figure 

74). This segment is in the foothills between Calgary and Canmore and has many turns and 

rolling terrain. The curve of interest is not as sharp as the first segment’s curve but has a 

higher speed limit. The speed limit is 80 km/h, with a posted advisory speed of 65 km/h on 

the curve. 

3. Highway 775: A curve from a 2 km segment on this highway was used for analysis (Figure 

75). This segment is also in the foothills in the far southwest of Alberta. Much like the 

second segment’s curve, this curve is not as sharp and has a higher speed limit. The speed 

limit is 100 km/h, with a posted advisory speed of 75 km/h on the curve. 

  

Figure 73 Curve of interest of Highway 563 
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5.2.3 Sensor values 

To model the sensing capabilities of an AV, the following parameters in Table 11 were chosen for 

five different sensors based on the specifications of (Tesla, 2023). Figure 76 depicts the meaning 

of each of the parameters. Side and bird’s eye view perspectives are given in Figure 77 of what a 

sensor layout with these parameters would look like. 

 

 

 

 

 

 

 

  

Figure 74 Curve of interest on Highway 1A 
 

 

Figure 75 Curve of interest on Highway 775 
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Table 11 Sensor parameters 

Sensor Set         

Sensor 
     

1 -17.5 17.5 -60 30 250 

2 -25 25 -60 30 150 

3 -112.5 -22.5 -60 30 80 

4 22.5 112.5 -60 30 80 

5 -60 60 -60 30 60 

 

 

Figure 76 Sensor parameter visualization 

 

 

(a): Side perspective 

𝜽𝒎𝒊𝒏 𝜽𝒎𝒂𝒙 𝜸𝒎𝒊𝒏 𝜸𝒎𝒂𝒙 d 
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(b) Bird’s eye perspective 

Figure 77 Sensor layout 

5.2.4 Lane marking occlusion evaluation 

To detect locations with limited lane marking visibility, the lane marking occlusion method was 

performed on several highway segments in Alberta, Canada. A colour map was produced for each 

evaluated segment to visualize the changes and spikes in marking sight distance. The height of the 

green along the x-axis represents the sight distance, up to a maximum of 200 m. Segments with 

dips in marking visibility in the 50-70 m range were queried as potential candidates for further 

analysis. Manual verification of the point cloud was performed to narrow down segments for 

further analysis. Segments with a vertical crest curve followed by a tight horizontal curve were 

singled out as situations where an AV would have difficulty reacting to the lane markings in time 

while calculating a trajectory. At tested locations, the AV sensor view of the pavement after the 

crest was continuously hindered along the distance upstream of the crest.  

Figure 78 shows the colour maps for the test segments.  

 

 

(a) Highway 563 
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(b) Highway 1A 

 

(c) Highway 775 

Figure 78 Colour maps of the three segments’ sight distance 

5.2.5 Path Prediction 

The curves of interest on the chosen segments were then analyzed with the path prediction 

algorithm detailed in the methodology. For each curve, seven different speeds at five different 

reaction times were considered for 35 unique paths. The reaction times were the same across all 

the curves, going from 0.2 s to 1.1 s in 0.3 s increments, and are intended to represent the time 

between the first detection of the lane markings and mechanically starting the expected manoeuvre 

(Gouda, Chowdhury, et al., 2021; Gouda, Mirza, et al., 2021; Khoury et al., 2019; Khoury & 

Amine, 2019; Mcdonald, 2018; Saeed, 2019; S. Wang & Yu, 2019). Figure 79 shows a sample of 

the paths from Highway 563. The ranges of speeds analyzed encompassed both the posted 

recommended speed for that curve and the actual speed limit of the road. Table 12 shows the 
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speeds used for each segment. The green highlight denotes the recommended speed, while the 

orange highlight denotes the actual speed limit. 

 

Table 12 Speeds analyzed for each segment (km/h) 

Highway 563 Highway 1A Highway 775 

30 50 60 

35 60 70 

40 65 75 

50 70 80 

60 80 90 

70 90 100 

 

 

Figure 79 Highway 563 sample trajectories 

5.2.6 Radius 

The radius of each path at each point along its trajectory was plotted against T, the same 

dimensionless parameter used in the general form of a Bezier curve, which can considered as a 

stand-in for time. Thresholds for the minimum turning radius under different conditions were 

overlayed on the plots as a measure of the severity of the turn. The minimum required radii were 

determined using the AASHTO equation. 
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𝑅𝑚𝑖𝑛 = 

𝑣2

127(𝑒 + 𝑓𝑠)
 

 

 

(87) 

where 𝑣 is the speed in km/h, 𝑒 is the superelevation, and 𝑓𝑠 is the side friction factor, which varies 

based on the condition of the road (dry, wet, ice, etc.) as outlined in the AASHTO guidelines 

(AASHTO, 2018; Ghandour et al., 2010; NCHRP, 2009). The grades of the road surfaces were 

extracted using a quadratic surface model and a set of arithmetic operations to determine the 

superelevation. Figure 80, Figure 81 and Figure 82 show the radii for all paths and all reaction 

times on the curves of interest for Highway 563, Highway 1A, and Highway 775, respectively.  

5.2.7 Centripetal acceleration 

Centripetal or lateral acceleration is a simple extension of the above results for radius but is more 

relevant in the discussion of driver and passenger comfort. It has been plotted for each curve in the 

same fashion as the radius plots. Different thresholds of the centripetal acceleration of 

1.8 𝑚/𝑠2, 3.6 𝑚/𝑠2, 5.0 𝑚/𝑠2 have been added, representing comfortable, relatively 

uncomfortable, and uncomfortable levels of lateral acceleration, respectively. Values exceeding 

5.0 𝑚/𝑠2 are considered unbearable (Xu et al., 2018). Figure 83, Figure 84, and Figure 85 show 

centripetal acceleration at each point along the curves. 

5.3 DISCUSSION 

5.3.1 Radius 

Examining the results of the trajectory radius, the first two curves show a distinctly U-shaped 

graph, regardless of speed and reaction time. This indicates that the severity of the turn is worst 

around the middle of the turning manoeuvre and softer around the ends when the vehicle is 

straightening out. The higher speed graphs, however, decreased at the end of the predicted 

trajectory and were especially pronounced at slower reaction times. This results from the vehicle 

needing to realign itself with the road by continuing to turn farther than its desired finishing angle 

before turning in the opposite direction and straightening out, as shown in Figure 86. The third 

curve appears to be an outlier, with its shape resembling the second half of the U-shape shown in 

the first two graphs. One possible explanation could be that the point of further visibility only 
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comes into view when the shape of the road is already turning at its sharpest, providing little time 

for the vehicle to ease into the turn. 

 

Figure 80 Radius results for Highway 563 
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Figure 81 Radius results for Highway 1A 
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Figure 82 Radius results for Highway 775 
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Figure 83 Centripetal acceleration results for Highway 563 
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Figure 84 Centripetal acceleration results for Highway 1A 
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Figure 85 Centripetal acceleration results for Highway 775 
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Figure 86 Oversteering correction 

 

The suitability of the turning radius can be determined by comparing it to the plotted 

thresholds. With this comparison, most speed and reaction time combinations fall below the 

minimum recommended turning radius in all conditions. Only trajectories below the recommended 

speed limit show at least one reaction time fringing on the AASHTO conditions threshold at their 

worst point. The radius recommendations in worse conditions (i.e., wet, ice) are largely unmet, 

regardless of speed and reaction time. This suggests that extra considerations for minimum turning 

radius or maximum speed limit need to be made in situations where sight distance is significantly 

reduced. This is especially important in locations where the local climate frequently and 

predictably leads to adverse road conditions.   

5.3.2 Centripetal acceleration 

The centripetal acceleration graphs are simply the reciprocal of the radius graphs multiplied by a 

constant. It follows that when the curve is at its sharpest, the radius is at its lowest while the 

centripetal acceleration is at its highest, hence the inverted U-shape of the centripetal acceleration 

graphs.  

Rider comfort thresholds are another way to judge the suitability of the road geometry. 

Between the first two curves, the matching of speed to curve position relative to thresholds is not 
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as consistent as with radius. For example, at the recommended speed for the first curve, all reaction 

times show centripetal acceleration values that violate the comfort threshold. At the recommended 

speed for the second curve, the centripetal acceleration values are evenly spread between relatively 

comfortable and unbearable levels. This can be explained by the centripetal acceleration graphs 

having constant thresholds, while the radius graph thresholds scale with the speed of the vehicle. 

The uncomfortable and unbearable thresholds are breached at and below the posted speed 

limit for two curves at the slowest reaction times. Meanwhile, the fastest reaction times are 

generally slightly above comfortable levels at the recommended speed limit. This observation 

reinforces the idea that as the computational abilities of AVs evolve through more powerful 

hardware and more efficient algorithms, their reaction time will decrease, allowing for increases 

in speed while maintaining acceptable levels of rider comfort.    

5.4 CONCLUSIONS 

This thesis presented a method to identify road locations where lane marking visibility is 

compromised. Using LiDAR point cloud data, the vehicle’s trajectory was extracted, and with the 

help of octrees, iterative queries on how far down the road segment the lane markings can be seen 

at each point along the road can be made. This method was used to identify segments with inclines 

followed by curves, which pose a particularly challenging situation for AV sensors relying on line-

of-sight sensor-based monitoring.  

Three highway segments in Alberta - a 4 km segment on Highway 563, a 2 km segment on 

Highway 1A, and a 2 km segment on Highway 775 - were identified as having such a problem and 

investigated further for the consequences of having substandard lane marking conditions. Different 

reaction time and speed combinations were used to generate potential paths an AV might take on 

the selected segments. Bézier curves were chosen as the AV path generation algorithm due to their 

computational efficiency for real-time purposes and useful geometric features. Radius and 

centripetal acceleration graphs were then generated at each point along the curves and compared 

against key thresholds to assess the severity of the curves. 

Results show that the analyzed most predicted trajectories on the chosen curves were 

potentially dangerous or uncomfortable for the passengers. Regarding minimum recommended 

radius standards, all trajectories fell below the ideal conditions threshold at their worst point at the 
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recommended curve speeds, regardless of reaction time. In unideal road conditions, the disparity 

between the trajectory’s radius and the recommended radius grows to unsafe levels. Regarding 

centripetal acceleration, threshold comparisons indicate that rider discomfort was generally 

observed at around the recommended curve speeds and is particularly egregious at higher reaction 

times.  

These results indicate a need for an assessment of roadways for their AV deployment 

readiness, particularly to ensure ample room for AVs to view lane markings and safe and 

comfortable trajectories. The marking sight distance calculation methodology can be used as a tool 

for such assessment, as well as motivation for taking a proactive approach in updating the roadway 

design guidelines and implementing countermeasures (e.g., V2I connectivity improvement, 

adjusted advisory speed limits, etc.) to better meet the needs of AVs. The conclusions of this 

chapter agree with the findings of the previous field testing projects and provide a novel method 

to proactively identify substandard locations for AVs (Tak et al., 2022).  

 

  



160 

 

6 CONCLUSIONS 

6.1 RESEARCH SUMMARY 

This thesis presents methods for assessing road design features performance under AV driving 

scenarios based on the recommendations of recent initiatives and studies. A holistic simulation-

based approach has been adopted where AV sensor sets and autopilot parameters are modelled in 

a digital replica of existing infrastructure collected using LiDAR data. The digital scans collected 

are ultra-dense point cloud data collected with high-precision professional-grade scanning 

systems.    

The developed methods perform the following:  

• Semantic segmentation of point cloud data to extract features of interest 

• Assessment of occlusions due to the physical infrastructure on the road and roadside 

environment 

• Extraction of road and roadside grades using a quadratic surface model 

• Combining the occlusion and grade metrics using YCbCr scoring spaces to facilitate 

performance evaluation 

• Assessment Traffic signs placement within the field of vision of AV sensorsPavement 

markings occlusions from the FOV of vehicle sensors 

The developed approach simulates virtual AV sensors’ field of vision, originating from 

different points in the travel lane and phantom or known targets on the voxelated road and roadside 

environment. Unlike the common use of a single data structure, creating a combination of Octrees 

and Voxels is designed in a relationship that acts similarly to what could be best described as a 

modified voxel-octree. Convex hulls and Octrees are then used to score voxels based on the 

visibility of every target in view convex polyhedron. A quadratic surface model of the road and 

the roadside surface is used to generate normal vectors. Then, arithmetic operations were applied 

to map road/roadside gradients. A semantic segmentation variant of PointNet++ was developed to 

classify points into pavement, signs and roadside points. Finally, design metrics are mapped based 

on a unique YCbCr score space value. An improved state-of-the-art raycasting approach was 
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developed and utilized to perform a general road/roadside analysis. A comparison with the 

proposed methods and manual assessment was carried out for validation.   

Several highway segments in Alberta, Canada, were used for testing the developed methods. 

In general, it was found that the proposed methods outperform the raycasting methods in terms of 

performance and processing time at different voxel grid sizes and observer spacing. Besides, the 

proposed approaches have other advantages, such as 1) the ability to account for different sensor 

origins in the travel lane, 2) avoiding false clipping in voxel-based raycasting methods, 3) the 

possibility to generalize to different shapes of sensor sets and targets required by a user, and 4) 

accurately detects occlusions regardless of the voxel size used, which is a significant limitation in 

previous studies. A framework of IOOs design improvement countermeasures is presented to assist 

in making performance-based decisions regarding smart digital and physical infrastructure 

upgrades. Different case studies, where substandard locations for AVs were identified, are 

presented based on the proposed methods. These case studies include:  

• Clear zones and roadside safety assessment 

• Wildlife sight distance assessment  

• Pavement surface assessment 

• Pavement markings assessment 

• Traffic signs assessment 

A framework of IOOs design improvement countermeasures is presented to assist in making 

performance-based decisions regarding smart digital and physical infrastructure upgrades.  

6.2 READINESS IMPROVEMENT COUNTERMEASURES  

A framework of collected readiness improvement solutions is presented in Figure 87. The outputs 

of this research can help stakeholders (e.g., IOOs and automotive industry professionals) apply 

countermeasures to improve readiness for CAV deployment. Countermeasures in the figure are 

categorized with four different types of labels. The first category denotes who the countermeasure 

concerns, whether it be IOOs (“A”), AV professionals (“B”), or both (“C”).  The second category 

denotes if the countermeasure should be enacted in the early stages of deployment (mixed traffic) 

(“1”), after full deployment (“2”), or in all stages (“3”). The third category denotes whether the 
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countermeasure aims to prevent all collisions (“I”) or wildlife-vehicle collisions (“II”). The last 

category denotes whether the countermeasure requires network coverage (“**”), is independent of 

network coverage (no marking), or is enhanced by network coverage (“*”). It is worth noting that 

network coverage is not expected to be fully available in the early stages of AV deployment, 

especially on rural highways (Wsp, 2020).  

Wildlife-vehicle collision mitigation measures should consider animal traffic in a region. 

It is worth mentioning that wildlife animal traffic is significant in Alberta and accounts for 50% 

of the yearly collisions in the province. As such, wildlife-vehicle collision mitigation measures 

would be crucial in Alberta. In addition to solutions available in references previously cited in 

other chapters, several more countermeasures were presented in Figure 87 (3M, 2021; C. Adam et 

al., 2021; Baigas & Gunson, 2021; Druta & Alden, 2020; Gibson, 2017; Government of Canada, 

2022; Pagany, 2020; Weerasinghe et al., 2021). 

Multiple technologies must be fused together to provide information redundancy to CAVs 

from the roadway environment (3M, 2023; Cui et al., 2019; Z. Liu et al., 2020; US DOT FHWA, 

2021). Combining these technologies would create a safer environment where CAVs can operate, 

making CAVs more reliable and mitigating potential failures. A recent major US DOT FHWA 

collaborative initiative between IOOs and AV industry professionals (US DOT FHWA, 2021) 

concluded that the maintenance of high-quality and visible lane marking, including removing 

obstructions to improve lane marking and pavement surface visibility, is one of the most 

acknowledged measures to improve highways CAV readiness and compatibility by IOOs. 

6.3 RESEARCH CONTRIBUTIONS 

For AVs to realize their full potential, challenges facing their deployment in as many situations as 

possible must be addressed. Research has shown that a complete assessment of road and roadside 

environments, especially on highways, has yet to be achieved. Such an understanding could vastly 

expand the domain in which AVs could safely operate. The contributions of this work are as 

follows: 

• Proposes a novel simulation-based method for assessing existing road and roadside 

design based on AV sensor set design and autopilot parameters using ultra-dense point 

cloud data.  
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• Proposes a proactive method for identifying substandard locations for AVs on both the 

road and roadside environment and directly addresses recommendations of recent 

studies.   

• Applies to ultra-dense point clouds collected either by probe mapping vehicles or 

crowdsourced from CAV fleets. 

• Provides a holistic and novel solution to several limitations and gaps presented in state-

of-the-art CAV and smart infrastructure research and practice. 

• Can map long and short-range physical infrastructure occlusions to vehicle sensors in 

the general road and roadside environments. 

• Supports a data-driven deployment of roadside countermeasures to mitigate AV 

collisions. 

• The method can also generate sensor FOVs from different origins on the travel lane.  

• Proposes a method to create performance-based speed profiles for AVs, unlike 

standard methods that rely on either traffic signs designed for human drivers 

(AASHTO, 2018) or parsing human GPS speed profiles from naturalistic data and 

using it for AV systems training to overcome local AV system limitations  (Anastassov 

et al., 2017; Claussmann et al., 2020; Rodrigues et al., 2018; TomTom, 2023; Xinli et 

al., 2016). 

• Help stakeholders (e.g., IOOs, automotive industry professionals, etc.) make informed 

decisions regarding smart infrastructure upgrades and investments.   

6.4 LIMITATIONS AND FUTURE RESEARCH 

While the work presented in this thesis overcomes limitations in previous studies, there is room 

for improvement, including i) assessing the performance of more road design features such as the 

decision sight distance (DSD) and passing sight distance (PSD) based on AV parameters, 

ii)  Improving the processing time of the simulation, iii) Improving the semantic segmentation 

accuracy and classification capabilities and iv) automating the adjustment process of existing 

designs through the use of generative-design.   

For the extraction of road features, the limitation of the method is that it does not classify 

features by type. For future research, applying an explainable artificial intelligence (AI) approach 
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can help understand the relationship between changes to a deep neural network architecture and 

the model output performance; however, current developments for the integration of explainable 

AI in 3-D data remain fairly unexplored (Matrone et al., 2022). For instance, signs irrelevant to 

the road user or not providing safety information were still included in the analysis but will need 

to be ignored by manual inspection. For example, such signs may be calculated as having limited 

visibility to the analyzed vehicle trajectory but were only relevant to other travel directions, which 

may or may not have adequate visibility of the sign. Therefore, future research should involve 

automating the classification of sign types.  

Furthermore, using generative design principles can enhance the process of modifying pre-

existing designs. The endeavour to identify the most optimal solutions that align with specific 

design criteria and constraints necessitates the exploration of diverse design alternatives. As a 

methodology, generative design involves using algorithms and computational techniques to create 

and appraise design proposals. Integrating generative design, leveraging algorithmic and 

computational capabilities, emerges as a promising strategy for tackling the complexities inherent 

in highway design. This approach empowers engineers to scrutinize many scenarios and pinpoint 

efficient, cost-effective solutions. 

Using vehicle intelligence data, a geographic information system (GIS) tool can be used to 

screen/rank locations with safety issues. For instance, locations with AV failures, harsh braking, 

excessive lane changes, or disengagements can be queried for further analysis. Using point cloud 

data, the proposed methods can be used to analyse these screened locations to better understand 

their performance and make necessary decisions to improve their safety. Such data can be obtained 

from government agencies that collect AV failures data, such as the California Department of 

Motor Vehicle Collisions or vehicle intelligence companies that crowdsource data from sensors 

mounted on AVs (California DMV, 2023; Dadvar & Ahmed, 2021). The high frequency of 

recorded events at a location requires a safety audit of such cases by IOOs. This approach connects 

this work with the safety management process adopted by municipalities in their road safety plans. 

 It is worth noting that the different thresholds of the centripetal acceleration representing 

comfortable, relatively uncomfortable, uncomfortable, and unbearable levels of lateral 

acceleration are not based on AV data (Xu et al., 2018). As such, it is recommended for future 
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research to study the relationship between centripetal acceleration and comfort levels while 

accounting for the difference in the location of passengers in an AV. 

Optimizing the locations of roadside sensors to improve coverage is another topic for future 

research. The developed method can be used to assess sensor coverage from different locations on 

the roadside. Furthermore, the maximum coverage possible using more than one sensor can be 

explored to optimize the use of limited resources available for transportation agencies. Roadside 

sensors (e.g., cameras, LiDAR, etc.) can be used for different purposes, such as scanning the 

roadside occluded areas to send information about potential road users to connected vehicles. In 

some cases, these sensors are synchronized and coordinated. Optimizing the relationship between 

their coverage and number is an emerging issue in the literature (Y. Ma et al., 2022).  

The huge size of point cloud data is another limitation that makes the storage, transfer and 

processing of such data a challenge. Collected point cloud data during scanning are usually stored 

on the collection platform with huge sizes in terms of terabytes. Further research is needed to find 

ways to reduce the file sizes and allow a cloud-based solution to transfer the data in real-time or 

near real-time that provides access by different teams. This is important as identifying road safety 

issues and the timely deployment of countermeasures is crucial for public safety.  

Due to the high cost of professional-grade scanning systems, researchers and practitioners 

have started exploring the possibility of using low-cost scanning equipment to collect LiDAR data, 

similar to those used in HD mapping for AVs (NVIDIA, 2023). As such, applying the proposed 

methods on low-cost scans is suggested to investigate the accuracy and performance of the output. 

In addition, the proposed work can help build HD maps for autonomous vehicles by mapping 

design information on the road and roadside environments and supporting the AV system with 

digital semantic information to improve its performance.  

The high performance of the octree-based evaluations shed light on the possibility of 

extracting other road geometric features using this approach. For instance, mapping highways 

vertical clearance and the structure of bridges/tunnels could be done at unprecedented processing 

speeds and accuracy. Querying vegetation encroachment locations is also important in recent 

studies that can benefit from this method.  
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As this work focused on the geometric design aspect of roadways, future research on the 

structural performance of pavements under AV driving scenarios is suggested. In addition, the 

impact of AV deployment on pavement design guidelines is worth further investigation. Finally, 

combining design performance metrics into a readiness index for roadway segments can assist 

stakeholders in making planning and maintenance decisions for existing road infrastructure. This 

way, mapping performance metrics on a GIS with AV failure information can provide a holistic 

view of the existing infrastructure performance and the relationship between readiness indices and 

other road geometric and AV failure parameters.  
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Figure 87 Framework of readiness improvement solution 
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