University of Alberia

VIEWING IMMERSIVE IMAGES UsING Virtvanl CAMERAS

by

Kenneth P. Der @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill
ment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton. Alberta

Fall 1996

Naticnal Lib
Bl e

Acquisitions and

Bibliothegue nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

394 Wellington Strect
Ottawa, Ontano
KI1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontana)

Your file votre rélérence

Qur e Nolre relérence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationile du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18251-7

Canada

University of Alberta

Library 1. ase Form

Name of Author: Keuneth P. Der
Title of Thesis: Viewing Immersive Imases Using Virtual Cameras
Degree: Master of Science

Year this Degree Granted: 1996

Permission is hereby granted to the University of Alberta Libravy to reproduce single
copies of this thesis and to lend or sell such copies for private. scholarly or scientilic
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided. neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

Kenneth P. Der

#206 9258 110A Ave.
Edmonton, Alberta
Canada, THH 1J4

Date: . 06{1 4 /95 .

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Rescarch for acceptance, a thesis entitled Viewing Immersive
Images Using Virtual Cameras submitted by Kenneth P. Der in partial fulfill-
ment of the requirements for the degree of Master of Science.

Dr. H. Zhang

Date: . 1.0./ 1194

Abstract

We have developed a software system that allows users to interactively view itmer
sive images. The immersive images capture large fields of view, typically 360° around
for panoramic and panospheric images, with vertical fields that vary from 70° to
complete spheres. The input images were captured using various imaging sensors
including panoramic cameras. conic mirrors, and fish-eye lenses. These inages are
inherently distorted due to the non-planar projections involved. The software simu-
lates reality by mapping the captured image onto a 3D model. such as evlindrical for
panoramic images and spherical for fish-eye and panospheric images, and then allow
the user to interactively view the scene with the aid of a virtual camera. We lever-
aged technologies such as image compression, computer graphics, and object oriented
technologies such as Active X to realize a software implementation which tarpets the

huge multimedia market.

Acknowledgements

I would like to thank my supervisor, Dr. Anup Basu, for his general guidance and
support. He gave me a lot of latitude to explore many interesting new technologies.
fulfilling my personal cbjective of being knowledgeable in many areas and not so much
just an expert in one thing. His coniections with industry. PVSI in particular. has
provided me with the opportunity to work on this panospheric imaging software.

I would like to thank the thesis committee members for taking the time to read
my thesis and for the helpful suggestions and constructive criticism.

I would like to thank Mr. Jerry Reyda, president of PVSI. for his encouragement
and support. His business savvy and vision has created many opportunities for me at
PVSI. JR manages to make routine meetings interesting and fun. The golf games at
the JR Golf course was a welcome break from the hectic work schedule. The business
lunches were great too, especiaily all that dessert!

Steve Bogner, at Piercorp, provided the fish-eye images of Ottawa and Dave South-
well, at PVSI, provided the panospheric images Their images and helpful discussions
abont panospheric technology are appreciated.

The U of A computing science support stafl were helpful, especially Steve Sutphen.
Their help is appreciated.

I appreciate Kevin, Warren, and Mark’s help with LaTex and unix stufl. Their
crash course on LaTex give me a running start in the preparation of this thesis. War-
ren was also helpful in proofreading part of my thesis and beta testing my software.
All of their cool music CDs kept the vision lab a happening place. (Although most
of Kevin’s collection was from my musical dark age)

I would like to thank Anne Nield for taking the time to proofread my thesis and
for suggesting improvements to make this work more readable.

Sing Kwok Cheng was very helpful in suggesting the organization of part of my

thesis. His ntalk cheng@nyquist.ec.ualberta.ca sessions relieved some of the monotony
of all those late night thesis writing sessions.

Last but not least. I would like to thar . my family and friends for their support
and encouragement, especially my parents, without whom none of this wonld be

possible.

Contents

1 Introduction

L1 Motivation 0
1.2 Applicationso
1.3 Thesis Organization

2 Background

2.1 Image Processing Fundamentals
2.1.1 Sampling and Filtering,
2.1.2 Iimage Compression,

2.2 3D Graphics Fundamentals.
2.2.1 Affine Transforms
2.2.2 Coordinate Systems.
223 Camera Model
224 Texture Mapping
2.25 QuadricSurface o
2.2.6 Line Sphere Intersection
2.2.7 Line Cylinder Intersection
2.2.8 C(ircle and Minimal Sphere from 3 Points
229 Graphics Pipeline L L.

23 PreviousWork L
23.1 Fieldof View
23.2 Mosaicingo
23.3 PanoramicLens
234 Conic Mirrors

2.3.5 Panoramic Imaging Software

[}

2.4 Methodology 2
Requirements 32
3.1 Recommended Minimal Target Platform 32
3.2 Viewing with a Virtual Camera 33
3.2.1 Panoramic Images 33
3.2.2 Fish-eveImages 36
3.2.3 Front and Back Fish-eve Hemispheric Image Pairs 36
3.2.4 Upper and Lower Hemispheric Image pairs BN
3.2.5 Pancspheric Images L. 39
3.3 Image Acquisition 10
34 Userlnterface 11
3.5 Technical and Economic Feasibility 13
Design 45
4.1 Choice of Platforms L. 15
4.1.1 Operating System 15
4.1.2 Programming Language 16
4.2 Design Considerations 17
4.2.1 Software Re-usability and Performance A7
4.2.2 User Interface 18
4.3 Software Architecture. L. 4%
4.3.1 Document/View Model 19
4.3.2 Message Dispatching Hl
4.4 File and Texture Image Format 53
4.5 Object Space to Texture Space Mapping 5%
4.6 Integration with Other Applications 63
4.6.1 Component Object Model - Active X 63
Implementation 65
5.1 Speed Considerations 65
5.2 Memory Considerations 67
5.3 Debugging 67

53.1 Assert theworld o oo

5.3.2 Visual Aids for Debuggingo
54 Mate g lmage Seamso 0oL o oo

6 Results

6.1 Panoramic Images. oo
6.2 Front and Back Fish-eye Image Patrs
6.3 Input Image Resolution.o 0oL
6.4 Panospheric Image Mapped to a Panoramic Image
6.5 Windows 95/NT
6.6 Image Compression oL
6.7 Active X control L Lo

7 Discussion

7.1 Performance Evalue .. 0000000
7.2 Advantages of Pai. Pl UMABINE L. e
73 Future Worko oo
7.3.1 Panospheric Video 0 00
7.3.2 Automation of Preprocessing
7.3.3 Integration with other Applications
7.3.1 Head Mounted Display
7.3.5 Internet Applications L 0oL,

8 Conclusion
Bibliography

A C4+4 Fixed Point Number Class

89

91

List of Figures

o
o

o

o
RN X

I R R R N S I
— — — O o -~} o Ot
W NN = O

o
s —
(W] BN

(RN
[— —
oy

~1

Signal sampling in time and frequency domain

Sampling techniques

Storage requirements for MIP map

Coordinate Svstems

Camera Projection Types

Camera Coordinates

Control points of a Quadratic Surface

Line and Sphere Intersection

Radial Line and Sphere Intersection

Cylinder

Cylinder and Radial Line Intersection

Circlegiven 3 points

Graphics Pipeline

Panospheric Field of View
Fieldof View Map, ...

Panoramic Fieldof View

Panoramic Field of View Map as a function of angles in spherical co-

ordinates

.................................

Panoramic Images.

Panoramic Distortion (a) Top view of cylinder (b) Plot of distance to

the wall

31

3.3 Height of Wall Projected onto a cyvlindrical surface.

3.4 3D Model of Panoramic Images o0,
3.5 Panoramic lmages.o oL
3.6 Fish-eye image of Ottawa0 o000
3.7 Front and Back HemisphericModel .. 0 0 00 000000
3.8 Front and Back Fish-eye Panospheric Image Pair (Ottawa)
3.9 Upper and Lower Hemispheric Image pairs
3.10 PVSE's Pancspheric Optic . 0 0 0 00000000
.11 3D Panospheric Medel and the corresponding image plane
3.12 Sample Panospheric Image . . . 0 0 00 0L
113 Cost of Varions Panoramic Image Acquisition Technologies

1 Multiple Document Iuterface . o 0 0 00 000000000
1.2 Multiple Document Interface Sereen Shot . . . 0o . o ...
1.3 Document View Model . . . 0 000000000
1.4 MFC Message Dispatch Mechanism .. 00 0000000 L.
45 PVSfile format oo
1.6 Image Storage format,
1.7 Zooming using a virtual camera
1.8 Camera Direction o000 00
1.9 Active Window regions for Camera movement
1.10 Property sheet for Camera Parameters
L1 QPatch Control Points in Viewport Coordinates
1.12 QPatch Control Points in Object Model Coordinates
1.13 Panoramic Strip Viewing Model
4.11 General principle in Panospheric Mapping
1.15 Resolution Distribution Model
5.1 Debugging Visual Aid
6.1 Input Panoramic Image.
6.2 Virtual Camera View of Test Panoramic Image

6.3 Input PanoramiclImage.

-1
s

-1

-1
NEN (V]

6.4
6.5
6.6
6.7
6.8
6.9
6.10

Virtual ('amera View of Panoramic lmage

Views of Front and Back Fish-cve images .

Different Resolution Source Images

Panospheric Image Mapped to a Panoramic Image .

Windows 95 User Interface .

Impact of JPEG Compressed Source Images

Screen-shot of Internet Explorer with a panoramic imaging Active N

control

Nt

Chapter 1

Introduction

1.1 Motivation

The Panoramic Viewing System developed here is a computer program to enable the
user to interactively view a scene in any direction with the use of a virtual camera. It
allows the user to pan left or right. tilt up or down. and zoom in or out. This type of
system falls into a category of Virtual Reality (VR) in which the goal is to recreate the
real world as convincingly as possible — as opposed to the category of V'R that tries
to convince the users that they are in another reality of the computer's making. With
this form of immersive imaging, we are using real world scenes that were captured with
various sensors, and applying computer graphics and image processing techniques to
correct the inherent distortions. The basic function provided by the software is to
allow the user to view warped images of a scene while correcting the distortions. The
images are warped because all the information in a 3D scene is packed into a 2D
image: essentially, a non planar projection is being mapped to a planar projection.
The software takes the 2D image and tries to undo the distortions. This unwarping
1s accomplished by supplyving a 3D model that can be used in conjunction with the
2D images in order to reconstruct the scene, such that a virtual camera can be used
to interactively look around as if we were inside the scene.

The motive for this project is to create economic benefits from a technology that
will enable the users to interactively view immersive images of real world scenes on
readily available inexpensive Personal Computers (PCs). The increase in processing
power of the PC has made this technology feasible for the mass market. There is

an explosion of interest generated by the Internet. more specifically the World Wide

Web, in multimedia content. The technology could become a valuable tool in the
toolkits of multimedia content creators. At present, the Internet application of this
technology for the majority of the users will not be very satisfving because of the
long delays brought about by low bandwidth modem connections. As more high
bandwidth technologies such as ATM and ADSI. are deployed to the end users, this
imaging technology will become more attractive for Internet applications. CD-ROM
and Intranet based applications can apply the technology now because the transfer
rates are not as limiting as modem connections.

Panoramic imaging technology can be applied in many areas where conventional
static images may be inadequate, or where synthetic computer models would be difhi-
cult or time consuming to build. A major problem with conventional Virtual Reality
svstems is the labour intensive process of building models. Computer models of a
real world scene would not only be labour intensive to build, but the rendering of
the model would also be computationally intensive. The technology we have devel
oped allows the use of a simple generic 3D model and maps the captured image of
the scene onto that model, thus not only simplifying the model building process, hut
also decreasing the computational complexity of the rendering process. “his method
does not involve extracting 3D models from static images and then manipulating and
rendering the mouel. Feature extraction and classification is a non-trivial problem
and is the subject of much on-going research, but we need not deal with this problem

since we supply a 3D model implicitly.

1.2 Applications

There are many potential applications of panospheric imaging, some of which are

licte 4 below.

¢ Real Estate Visualization - With Panospheric images the home buyer could view
many real estate sites on the computer and have the ability to look around. This
process would save time since it could be used to eliminate properties that they

were not interested in.

e Scene Capture - Panospheric images can be used to capture crime scenes or
traffic accident scenes — if not in detail, then to provide context for the other
photographs. Basically, it could be used to give the spatial relationships of the
various objects in the scene. These panospheric images could also be used for

insurance purposes to catalogue objects of value.

e Video GGames - There is a huge video games market for the home computer. The
increasing processing power of eniry level PCs enables video game de-elopers
to design more and more realistic video games. Panospheric images could be
one of the ways to add realistic backgrounds to certain types of video games.
Panospheric imaces have the advantage of being able to capture details that

may be very difficult or time consuming to simulate.

e Medical Imaging - Panoramic imaging systems can be used to view panoramic
dental x-rays. This may be of questionable value in practice because dentist-

may already be used to looking at the panoramic x-rays with the disiortions.

e Astronomy - Panospheric imaging could be used to capture views of the night
sky. Because of the large field of view, it could capture the entire sky in a single
photograph. as well as the portions of the earth which would give context to

the scene.

o Virtual Guided Tours / Tourism - For instance, panospheric images could be
taken of various locations in a city. Software could be written to show a map
of the city and. as the user selects various locations on the map, a panospheric
view would be presented allowing them to lo.s around. Such an application
would be extremely useful for events that attract a lot of visitors, such as the
Olympics. Using this software tourists could familiarize themselves with the

locations that they are interested in.

¢ Multiple Panospheric Images for triangulation - Triangulation could be used to
determine distances of objects in the scene. This could be used for reconstruc-

tion of a scene (of traffic accidents for instance)

e Warping to Omnimax format - Panospheric images have a larger field of view
than Omnimax, therefore it is possible to warp panospheric images to Omunimax
format. It is therefore conceivable that a single imaging system could be used to

capturc Panospheric data. and to generate (post processing) Omunimax frames.

e Multimedia Education systems - This imaging system could be used in situations
where a large field of view could enhance understanding. and is limited only by

the imagination of the content creator.

1.3 Thesis Organization

We start by reviewing some of the fundamental concepts required for a thorongh
understanding of this work. Some concepts, such as 3D graphics, are essential while
others — such as filtering. sampling, and compression - are not as essential. An
overview of previous related work will be presented. including both hardware and
software panoramic image acquisition and transformation systems. We will then
examine the methodology used in the development of the software, which will be
loosely based on software engineering principles. We next specifv the requirements
for this project, followed by some analysis of the requirements. The design procedures
and decisions will be presented. followed by a discussion of the implementation issues.
The results of the project will be presented and discussed. Finally, a discussion
of future work and unresolved issues will be presented, followed by the conclusion.
Whenever possible, the material is presented in increasing levels of detail with the
general concepts being presented first followed by a more technical treatment of the

topic for the interested reader.

Chapter 2

Background

Here we introduce some basic graphics and image processing concepts that will be
useful for understanding the work in the remainder of this thesis. In this chapter, we
will not concern ourselves with how the concepts and ideas are used in the project;
we will present the concepts by themselves, and refer to them again in the design and

implementation phase.

2.1 Image Processing Fundamentals

In this section we will review some of the fundamental concepts, such as sampling and
filtering, where an essentially continuous signal is sampled and represented by a dis-
crete number of values. An approximation of the original signal is then reconstructed
from the sampled and filtered signal. Since we will be reconstructing and resampling
the images when we map them onto 3D models, an understanding of basic sampling
and filtering concepts will be helpful. A brief overview of image compression will also

be presented. since it is used to reduce the storage requirement of the input images.

2.1.1 Sampling and Filtering

The concept of transforming signals from one domain to another is well known and
has been used extensively in signal processing (and image processing). An important
concept is that a signal can be represented as a linear combination of basis functions.
It can be shown that a signal (in 1D) can be transformed into a frequency represen-
tation where there are a set of basis functions and corresponding weighting factors.

Similarly an image (in 2D) can be transformed into a frequency representation. It

can also be shown that, theoretically, a signal can be reconstructed if the sampling
frequency is at least twice that of the highest frequency component in the original
signal. This is assuming that we have an ideal reconstruction filter, which is almost
never the case in graphics: therefore, the sampling frequency in practice needs to he
higher than twice the highest frequency component. In 1D, sampling can be thought
of as multiplying a signal f(¢) by an impulse train, sometimes called a comb function,
s(t) in the time domain as shown in Figure 2.1. The resultant signal is the sampled

signal f,(t). The multiplication in the time domain corresponds to a convolution op-

Power Spectrum of f(0

fw

Continuous signal

nshn

waTJTTTfHTlJ T T

Impulse Train H f T e |
T

Power Spectrum of s

Sampled Signal 1 £

fs(t) LNl

f
Power Spectrum of Sampled signal 1a(0)

Figure 2.1: Signal sampling in time and frequency domain

eration in the frequency domain. The interesting characteristic of the impulse train
in the time domain is that it is also an impulse train in the frequency domain. If the
spacing between the impulses is 7" in the tine domain then the spacing is 1/7T in the
frequency domain. This makes sense, since T and 1/T are the period and frequency
of the impulse train. Note that if the sampling frequency is less than twice that of
the highest frequency component, the resultant convolved signal will have overlapping
frequency components. When the signal is reconstructed the overlapped frequencies
are no longer separable and masquerade as lower frequency components; this is what
is referred to as aliasing. We could prevent aliasing by first filtering out the high
frequency components before sampling, or we could increase the sampling frequency.

Image filtering can be used to improve image quality. When mapping images

from one space to another, the pixels i1 the destination may not fall exactly on
texel’ (or source) coordinates. The easiest, or computationally least expensive way,
to handle this situation is to find the nearest neighbour and use that value. This
is essentially a resampling of the image based on a zero order hold reconstruction.
Another approach, which is slightly more expensive, is bilinear interpolation. Bilinear
interpolation uses the four surrounding tex :Is and interpolates the desired value based
on the distances involved. Since the resampling is based on a better reconstruction.
because it uses the four surrounding points, the results w’ ' be better. Figure 2.2

illustrates both of these methods. There are more elaborate filtering techniques,

falVa
k .

Fa\ VA
o\ N O Legend
O—D S
N\ NN Nearest Neighbour .
B—D DD ‘ |
o VPN i ’
...... R Bilinear O i
C\ AR N) Inverse P SN i
U 3/ Mapping | ‘\r
e &0 i

Texture (Source) image Destination Image

Figure 2.2: Sampling techniques

such as elliptical weighted average (EWA) "ltering [8], which would be prohibitively
expensive for interactive systems on most PCs. The EWA method projects a circular
pixel onto the object surface which becomes an ellipse. All the texels within the
ellipse are Gaussian weighted to give a iinal value. Adaptive supersampling and MIP
mapping are othe techniques that can be used. The basic idea of MIP mapping
is to precompute successively smaller versions of the texture images such that the
next level is half the height and width of the previous image, or 1/4 of the area.
The memory requirement of a mipmap representation of a texture image is 4/3 that
of the memory required by the original texture image, as illustrated by Figure 2.3.
The successively smaller levels of the mipmap (lower right quadrant) are essentially
prefiltered (low pass filtered) versions of the higher level image. Since mipmaps can

be precalculated. the filtering operation is not too expensive computationally.

Ttexel refers to a pixel in the texture image.

-

Figure 2.3: Storage requirements for MIP map

2.1.2 Image Compression

Image compression [7, 29] is a large field in itself and a thorough treatment is bevond
the scope of this thesis. We will merely review the general concepts behind image
compression. The goal of compression is to represent information in such a way as to
reduce the storage requirements. In data compression there is a distinction between
data and information. Different amounts of data can be used to convey the same
amount of information. This thesis, for instance, can be compressed using various
compression utilities or, on a slightly higher level, compression can he achieved by
reorganizing and rewriting the thesis in a more concise way. In this example, the
information is the ideas presented in this thesis, and not the words used to express
these ideas. The words would be the data. therefore if fewer words are used to convey
the same amount of information, then compression is achieved. The concept of data
compression is nothing new and predates the modern computer The use of shorthand
and contractions are examples of data compression.

Image compression is an attempt to reduce data redundancy|7].

¢ Coding Redundancy occurs when fewer code symbols can be used to repre-
sent the data stream. Techniques such as Huffman coding or arithmetic coding
can reduce coding redundancy by assigning shorter codes to the most probable

symbols.

¢ Interpixel Redundancy occurs when the neighbouring pixels can be predicted

to a reasonable degree. This implies that there is very little new information.

¢ Psycho-Visual Redundancy occurs because of the limitations of the human
visual system. For instance, we are more sensitive to diflerences in light intensity

than color intensity.

Image compression techniques usually incorporate methods to reduce some or all
of the above categories of data redundancy. Image compression is important because
of the massive amounts of data involved. For instance a 1024x1024 24 bit image
would require 3 megabytes of storage, if left uncompressed. This would not only tax
the secondary storage, such as hard drives, but transfers across networks would be
slow. But, Image compression is not free. It comes at the expense of encoding and
decoding the images, which takes CPU (Central Processing Unit) time. This usually
is not a major concern since there are often many idle cycles on most machines.
There are two categories of image compression incorporated in countless graphics file

formats {31]: lossless and lossy.

Lossless Compression

With lossless compression the input image is completely recoverable from the com-
pressed data. Standards such as Graphics Interchange Format (GIF)? and Portable
Networ < Graphics (PNG)? are examples of common lossless formats for storing im-
ages. The advantage of lossless compared to lossy compression is that it does not alter
the image, so what you put in is what you get out. This comes at the expense of not
being able to compress the image as much as lossy compression methods. In lossless
compression, computer generated images can achieve much higher compression ratios
than images of natural scenes, in most cases. Although GIF is considered a lossless
compression method, it can only handle 8 bit images giving a maximum 256 colors.
Therefore. all 24 bit images are mapped to an 8 bit palette first. thereby achieving a

3 to 1 lossy compression before the lossless LZW [31] compression is performed.

®GIF is a standard image file format that was proposed by a group of engineers from various
software companies, and sponsored by Compuserve, back in 1987. In December 1994, Compuserve
announced that the LZW compression routine used in the GIF format infringed a Unisys patent.
As a result, 'nisys now requires a royalty for software supporting the GIF format.

3PNG was developed to address the weaknesses of the GIF format and to be unencumbered
legally.

Lossy Compression

Possibly the most widely used lossy compression format is JPEG]1S, 321, It uses
the Discrete Cosine Transform (DCT) on 8x8 image sub-blocks and quantizes the
DCT coefficients, which takes into account psychovisual effects. The compression is
the result of many zero DCT coefficients after the quantization which can then be
run-length encoded. The resultant data stream is then Huffman encoded to reduce
coding redundancy. JPEG does a reasonably good job of compressing real world or
photographic scenes.

Although other lossy compression algorithms exist, and in many cases give better
results, we will use JPEG because it is widely supported on virtually all computer
platforms. With lossy compression we can usually choose between good quality and
good compression. Often the quality loss cannot be perceived, even at a relatively

high compression ratio such as 20 to 1.

2.2 3D Graphics Fundamentals

In this section we will introduce some of the 3D graphics fundamentals that were used
to implement the software. We will start by presenting the basic affine transforms that
can be used to manipulate the other objects, which include virtual cameras, coordi-
nate systems, and geometric primitives. The general concept of texture mapping will
be presented, followed by a brief explanaticn of quadric surfaces. We will then exam-
ine how some basic line/surface intersections can be calculated. With this knowledge
in hand, we will see how a graphics pipeline ties all this together. An understanding
of 3D graphics is important because we will be modeling and transforming the warped

input images as 3D objects.

2.2.1 Affine Transforms

The characteristic of affine transforms that we are most interested in is the fact that
straight lines remain straight and parallel lines remain parallel after affine transfor-
mations. Loosely speaking, affine transforms make sense geometrically. For instance,
one can transform the endpoints of a line; drawing the line from the transformed

endpoints will be the same as drawing all the points in the line first. then transforim-

10

ing cach of those points. This also means that we can apply these transforms on a
set, of control points for geometric primitives. Affine transforms include translation.
rotation, scaling, and shearing operations, but we will only concern ourselves with

the first three.

Translation

Translation allows us to move a geometric primitive from one location to another.
More precisely, it adds a displacement vector to a point in affine space. The translation

matrix is given by Equation 2.1.

100 d,
010 d

T(dedyd)= | o o ¢ & (2.1)
000 1

Rotation

Rotation allows us to rotate a geometric primitive about a given axis. It can be shown
that rotation about an arbitrary axis can be implemented as a series of rotations about
the primary axes. This transform will be important for transforming the virtual
camera to look at other regions in the virtual scene. The rotation matrices about the

s, 1, and y prima; axes are given by Equations 2.2, 2.3,and 2.4, respectively.

[cos§ —sinf 0 07

R.(6) = sz(r)u9 coosc’) (l) 8 (2.2)
[0 0 0 1]
[1 0 0 07

10 cos —sinf 0 5 9.

It (6) = 0 sinf cosf 0 (2:3)
|0 0 0 1]
cosl 0 sinf 0]

_ 0 1 0 0 ;

k,(6) = —sinf 0 cosf 0 (24)

0 0 0 1]

11

Scale

Scaling allows us to change the size of the geometric primitive with respect to the
origin. The scaling matrix is given by Equation 2.5. where Sp.8y, and s. are the

scaling factors in the z,y, and = directions, respectively.

s; 0 0 O

0 s, 0 0 .
S(8z,8y,8:) = 0 0" . 0 (2.5)

0 0 0 1

Compound transformations can be performed by multiplying all the individual
transformation matrices together. This allows us to perform complex transformations
on many data points without having to do all the matrix multiplications for every
data point. After the net transformation is computed. each of the data points can be

transformed using a single matrix multiplication.

2.2.2 Coordinate Systems

An important notion is that of using multiple coordinate systems. One way to or-
ganize a coordinate system is to have a global coordinate system, which we will call
world coordinates. All other coordinate systems are relative to the world coordinates.
The camera can be manipulated using any of the affine transforms. All geometric ob-
jects have, and are defined in, their own coordinate systems. They are then modified
by afhne transforms in the world coordinate system. Figure 2.4 shows a world coor-
dinate system with one object coordinate systemn and one camera coordinate system
defined relative to it. The object coordinate system could in turn contain sub-ohjeets,
In other words, we can setup a hierarchy of relative coordinate systems. We could
use translation operations to move the camera to different locations within the world
coordinate system, and apply rotations to point the camera in the desired direction.
The objects can be moved, rotated, and resized by applying the translate, rotate,
and scale operations respectively. Although this concept is useful, for our particular
problem we can use a simplification by locating the camera and the geometric object.
at the origin of the world coordinate system. Note that there is no restriction on the
number of cameras that the world coordinate system can contain. thns allowing us

to look at the same scene from different perspectives through the different cameras.

12

r - - == Relative to Camera

<> Relative to World
x

y z
x - .
y M Object Coordinates

\4;_‘ T Y

Camera Coordinates

World Coordinates

Figure 2.4: Coordinate Systems

‘To sce what the camera sees, we first need to find the transform that transforms the
object from object coordinates to world coordinates. Next, we transform the world
coordinates to the camera coordinates. Now all the objects are relative to the camera

coordinates. Clipping and rendering can now take place.

2.2.3 Camera Model

There are two types of camera projections commonly used in computer graphics. as
shown in Figure 2 5 perspective and parallel (sometimes call orthographic) projec-
tion. As can be seen irom the figure, the size of the object in the parallel projection
is unaffected by the distance of the object from the camera. In the perspective pro-
Jection, the distance does affect the size of the object as projected onto the projection
or viewing plane. More specifically, the further the object is from the camera. the
smaller the projection. This is the type of projection that most of us are familiar
with because our visual system uses perspective projection.

Parallel projection is useful when displaying flat images that are coplanar to the
viewing plane. Using perspective projection in that case would result in a slight
distortion, since the pixels in the center of the view plane are closer to the camera
than the pixels in the outer edge of the viewport.! The camera model is given in
Figure 2.6, with the camera defined in its own coordinate system. In this camera

viewing model, the near clip plane is actually the viewport, which in turn is usually

A viewport is the visible, usually rectangular, region on the viewing plane.

13

Projection Plane Projection Plane

Object Object

Carfiera Camera

Perspective Projection Parallel Projection

Figure 2.5: Clamera Projection Types

Y ﬁ
Camera

Up weetor

M

\

\
Far Clip Plane

Camera Locafiv

Near Clip Plane Camera *iew Frustum

X

Figure 2.6: Camera Coordinates

14

mapped to a window. The focal poin ‘s located at the origin. The Y axis is the
camera’s np vector. The viewing fr (sometimes referred to as the clipping
volume) is defined as the pyramid vol etween the near and far clip planes. This

implies that any points outside the clipping volume will not be rencered.

2.2.4 Texture Mapping

‘Texture mapping is a well known computer graphics technique for mapping an imagc
from texture sp- e to object space [6]. The typical use is for simulating surface
details on 3D objects. From the image processing point of view, this is an application
of image warping in that an image is mapped from one coordinate space to another.
Image warping. however, generally deals with the source and destination as 2D objects
only. That is to say. image warping maps from one plane to another plane. Texture
mapping is done using inverse mapping, where the destination pixel coordinate is
used to determine the corresponding object coordinate. The object coordinate is
in turn used to determine the corresponding texture coordinate. Basically. this is
a resampling problem since not all the texture cocrdinates will be discrete integer
va.ues. The texture space is reconstructed and resampled as was discussed in the

sampling and filtering section.

2.2.5 Quadric Surface

An understanding of curved surfaces. such as quadric surfaces, is important because
we will be mapping our input images onto thesc curved surfaces in order to correct
the distortions.

A quadric surface can be generated with the following equation:
Troy.z) = ax® + by + 22 4+ 2dry + 2ey= + 2fzz + 297 + 2hy + 25z + k=0 (2.6)

Note that a unit sphere can be represented if a = b = ¢ = —k = 1 and all the other
coefficients are zero. The quadric surface becomes a plane if the constants a through
[are zero.

We cii use a quadratic patch to approximate a quadric surface if we choose the

nine coirol points to be on the surface of the quadric surface. The quadratic patch

is interpolated in the u and v directions [11] using the following equation:

Poo Foy 02 2u — 3u 41
flu,v) = [202 — 3+ 1 4v(l —v) v(2v—=1)] P Pn Py, du(l ~ u)
Pgo [’2] 1)22 u('.!u e !)
(2.7)

The control points are located in the interpolating (Catmull-Rom) basis [1]. The
interpolating basis is a basis in which the surface corners will be at the corner control

points, and the surface will pass through all control points, as shown in Figure 2.7, \We

Figure 2.7: Control points of a Quadratic Surface

can quickly check this by using the combinations of 1 = 0,0.5,1 and v = 0,0.5,1. The
resulting points are indeed the control points. The quadratic patch can be recursively
subdivided by using Equation 2.7 to find the new control points. T'his can be done
to a specified depth (of recursion). and then a forward differencing algorithm could
be used to compute the points for the smaller patches, using fewer computations per

point.

2.2.6 Line Sphere Intersection

Some of the 3D models that we will be using are spherical; therefore it is important
that we cover basic line/sphere intersection calculations.

une general equation of a sphere is given by:
(2 =)+ (y—ye)? + (2 — 2)* = It? (2.5)

where P(r.,yc, z.) is the center and R is the radius of the sphere.

The parametric equation for a line in 3D space is given by:

X To dr
Yy|=|Y% | +t| dy (2.9)
z zo | dz

The first step is to translate the center of the sphere to the origin and apply the

same transform to the line.

16

The sphere equation 2.8 now becomes
r*+y?+:2=R? (2.10)

The line equation 2.9 now becomes

T Tg —~ T di
y|=|v—y |+t]| dy (2.11)
z Z0 ~ Z¢ dz

Substitute the 3 independent parametric equations for z,y and z from 2.11 into

2.10 we get the following:
(x0 — e + tdr)? + (yo — ye + tdy)? + (20 — zc + 1 dz)* = R? (2.12)

Let (x4, Yo, 20) = (X0 = Tea Yo — Yoo 0 — 2c)

(vo +tda)® + (yo + 1 dy)? + (6 + tdz)* = R? (2.13)

Expanding and collecting the terms we get
(de? + dy? + d=*)t* + 2(x) dae + yhdy + spd=)t + (22 + yf + 32— R =0 (2.14)

which is in the form

At*+ Bt +C =0 (2.15)

where A = (da’+dy*+d=?) , B = 2(af dr+y, dy+z5dz) and C = (22 +yi2 +:2) — R
If A=0, then B = 0. In this case the line degenerates to a point. If C = 0, then
the point is on the sphere; otherwise the point is outside the sphere if C > 0, and
inside if C' < 0.
If we have a valid line (i.e. A # 0), then we could end up with 0, 1, or 2
intersections given by the quadratic formula.

_ —B+vBT—44C

: 24

(2.16)

If t > 0, then the intersection is in the positive direction of the ray. If ¢ < 0, then
the intersection is in the negative direction of the ray. If B2 — 4AC < 0, then the
line does not intersect the sphere. In the cases where there is one intersection. then

B* — AC = 0:if t = 0, then the line originates on the sphere and is perpendicular

17

to the surface ncrmal at that point (see Figure 2.8(a)). Figure 2.8(b) depicts the
case when ¢t > 0. In the cases where there are 2 intersections. B? — 1.4¢" > 0 if both
solutions of ¢ are positive we have the case in Figure 2.8(¢). If one of the solutions of ¢
is positive and the other ¢ is negative, then we have the case depicted in Figure 2.8(d)
where the line originates inside the sphere. If both the solutions of ¢ are negative,
then we have the case '»picted in Figure 2.8(e) where the ray intersects the sphere

along the negative direction.

\ A}

(a) (b) (c (d) (e)
Figure 2.8: Line and Sphere Intersection

Although all these cases are interesting. we will mainly be concerned with the
case depicted in Figure 2.8(d). More specifically, if we are only concerned with the
special case where the ray originates from the center of the sphere, and we were given
the direction of the ray as in Figure 2.9, then we could find the intersection point
very efficiently by simply normalizing the direction vector — assuming the center of
the sphere is at the origin and that it is a unit sphere. Otherwise. the unit direction
vector is multiplied by the radius and then translated by the offset of the center of

the sphere.

AY

s

Figure 2.9: Radial Line and Sphere Intersection

18

2.2.7 Line Cylinder Intersection

Panoramic images are modeled as cylindrical surfaces, therefore we will present line
cylinder intersection calculations.

The general approach to solving for the intersection of a line and a cylinder is
very similar to that of solving for the intersection of a line and sphere. The first step
is to transform the cylinder in question into a standard form, such as in Figure 2.10,
where the cylinder is along the Z axis and with a unit radius. We then apply the
same transform to the line. Now the problem becomes simply a case of line circle
intersection in 2D (i.e., ignoring the z component). Once the intersection points are
found the corresponding z values are computed. If the values are within the range
of the z value for the cylinder. then there is a valid intersection; otherwise there is

no intersection. The equations for the generalized case of line cylinder intersection

Y

Figure 2.10: Cylinder

as described above will not be presented because there is a much more efficient way
of solving for the special case that we are concerned with. The special case is shown
in Figure 2.11, where the line starts at the origin and is in the direction of vector
¢. To solve for the intersection, we first project vector # onto the XZ plane and find
the length of the projected vector. By multiplying #@ by the reciprocal of the length
of the projected vector, we are basically scaling # such that its projection on the XZ
plane will be of unit length. Another way of looking at this is that we are essentially

solving the similar triangle problem in 3D.

19

A ~ X

Figure 2.11: Cylinder and Radial Line Intersection

2.2.8 Circle and Minimal Sphere from 3 Points

In this section we will derive a procedure for finding a circle, given 3 points on the
circle. This is equivalent to finding the smallest sphere that could contain the three
points in 3D. In Figure 2.12 the three point- on the circle are labeled as P, 0%, and
P;. The midpoint between P, and P, is labeled as Py similarly, oy is the midpoint
of P, and Ps. d)3 and d,3 denote vectors originating at Py, and P, respectively, and

pass through the center of the circle.

Figure 2.12: Circle given 3 points

First we note that any three non collinear unique points define a plane, and the
Normal vector N — or the vector perpendicular to the plane —- can he calculated by

taking the vector cross product of non collinear vectors on that plane, such as £, P,

20

and 1’17’3.

PPy x PPy=N

With a normal vector, we can find a vector that is perpendicular to both A" and
the vectors on the plane. Where d,, represents a direction vector that is collinear with
the vector defined by the center and the midpoint, then

N x PPy = diy

N x P27)3 = dps

We can find the midpoints P;; and P,; of the two vectors as follows

Pra= (P + P)/2

Py = (P + P3)/2

Now we can write an equation that states that if we have two points. and have
corresponding vectors that are known to point toward the center, the intersection will
be the center.

P+t (1:2 =Pyu+1, d;:z

We can solve this equation because there are at least two unique equations. one
each for the 1, y, and = components, but only two unknowns (¢, and ;). Once we
solve for ¢, we can simply find the center by using the following equation:

Piz+tidiy = Pronter

Now we have the center of the circle or sphere and at least one point on the circle;

it is simple to calculate the radius R:

R= ”})center - Pl”

2.2.9 Graphics Pipeline

A graphics pipeline is a sequence of operations that is performed to transform geomet-
ric objects into a display buffer to be drawn on the screen. The camera parameters.
such as location, direction, and field of view, determine where the geometric objects
should be on the screen. Figure 2.13 shows an overview of a graphics pipeline. The
application suppiies the camera parameters, such as the location, orientation, clipping
volume, and type of projection. The application also supplies the geometric models
and transforms them in the world coordinate system. The graphics pipeline takes

the geometric objects and transforms them into the camera coordinate system: it can

then apply the clip volume transform. All objects that are outside of the clip vol-
ume are not rendered. The remaining nbjects are scan converted in the rasterization

module. The resulting buffer is displayed to a window.

L | - -
Application | Geometry and Rasterization

| Display
Lighting

Figure 2.13: Graphics Pipeline

2.3 Previous Work
2.3.1 Field of View

Tke field of view for panospheric images is described as the percentage of the sphere
surface for which the captured image represents, as described by Bogner [3]. It was
assumed that the field of view would be circular for all panospheric images. \We
will generalize this and use it to describe the field of view for all camera models

including panoramic and panospheric, as well as conventional and wide angle cameras.
We will simply define the percent field of view as the ratio of the captured arca on
:he surface of the sphere compared to the total surface area of the sphere. That is to
say, we will relax the restriction of circular regions by allowing non circular regions

as well.

Panospheric Field Of View

Panospheric field of view can be calculated by taking the ratio of surface arca in the
field of view on a sphere to the total surface area of the sphere. The percent field of
view, as a function of the angle from the vertical axis, is plotted in Figure 2.14(a)

and is calculated as
0(1 — cosa)
47

In this case, if we assume circular regions or § = 21 then the % Ficld = 50(1 — cosa).

% Field = 100 x (2.17)
Figure 2.14(b) illustrates the region involved; as the angle o increases, the size of
the cap increases and the field of view increases correspondingly. As we cross the

horizontal plane, the rate at which the field of view increases becomes smaller and

corresponds to the inflection point in the function plot. As we can see, a 50% field

22

of view corresponds to the upper hemisphere, or exactly half the sphere. Figure 2.15
is a surface plot of Equation 2.17, where the restriction of circular regions has been
removed so that 8 can vary from 0 to 27. As we can see, the function in Figure 2.14(a)
is represented on this surface plot at the right hand edge where the horizontal angie

or 8 = 360°.

Panospheric Field of View Y
100 —r — v v

—_ 80 |
E
z 60}
-]
2
» x
@
= 20

0

0 20 40 60 80 100 120 140 160 180
Angle from Vertical Axis (degrees)

Figure 2.14: (a)Panospheric Field of View Function (b)Panospheric field of view
corresponding to angle from vertical axis

83.3 ----
66.7 -----
50 -
333 --~
Field of View (%) 6.7 - -
100
50 77/ 7
//,/~1{//7//"/~-////
7 7
0 L7
150

150 o Vertical Angle (degrees)

200
Horizontal Angle (degree?;So 300

aso Y

Figure 2.15: Field of View Map as a function of angles in spherical coordinates

Panoramic Field Of View

The field of view for panoramic images can also fit into this definition if we inscribe the
cylinder in the sphere, such that the top and bottom of the cylinder are on the surface
of the sphere and project the cylindrical surface onto the sphere. In Figure 2.16(h)
the cylindrical surface is projected onto the sphere and is described as a function of
the angle o which, basically, is a function of the ratio of the height and radius of

the cylinder. The percent field of view for panoramic (or cylindrical surfaces) can be

calculated as

Osin(a/2)
2m

where 0° < a < 180° and 0° < 8 < 360°. Again, if we assume a complete 360°, or a

% Field = 100 x (2.18)

complete cylinder, then # = 360° which yields the plot in Figure 2.16(a). The surface
plot for Equation 2.18 is given in Figure 2.17. As with the panospheric field of view
surface plot, we can see the contours where there would be an equivalent field of view,
but with differing o and ¢ angles. For instance, from the surface plot in Fignre 2.17.
a complete cylinder with a vertical field of 40° would require a half cylinder to have

a vertical angle of roughly 100° to give a similar percentage field of view.

Panoramic Field of View
100 —— /

—~ 80 t

P

= 60

2

=

© 40 ¢

e

@

v 20 |

0
0 20 40 60 80 100 120 140 160 180
Angle alpha (degrees)

Figure 2.16: (a)Panoramic Field of View Function (b)Panoramic ficld of view corre-
sponding to angle a

Distortions

When we store or capture panoramic or panospheric projections onto images, we are
essentially mapping these non geometric projections onto a geometric projection such

as the perspective projection. The distortions due to extremely wide fields of view can

24

Field of View (%)

100

50

150
200
Horizonta! Angle (degree?]so 300

350 0

Figure 2.17: Panoramic Field of View Map as a function of angles in spherical coor-
dinates

be thought of in much the same way as approximating a curved surface with a plane.
In Figure 2.18 we can see that the amount of perspective foreshortening is dependent
on the field of view of the perspective or conventional camera. The wider the field of
view the more apparent the distortions. The basis for this project is to correct these
distortions when we use a conventional camera model to view the images. We can
see that the perspective foreshortening is more dramatic at the center of the viewing

plane.

2.3.2 Mosaicing

Mosaicing is a process by which a sequence of smaller images is patched into a bigger
image(25]. Panoramic images can be generated using this technique. It has also been
used as a means of compressing video of a scene[13]. Omnimax images have been

created from multiple perspective views using elliptical weighted filters [8].

View Plane

\

4
Camera Location

Figure 2.18: Field of View Distortion

2.3.3 Panoramic Lens

Panoramic images can be captured using a special lens designed to capture a panoramic
field of view. Many such optical blocks or lenses exist, one of which is based on the
optic block in Figure 2.19. The lens block designed by Powell [19] is capable of pro-
Jecting a full 360° cylindrical field of view into an annular format. The light rays,
represented by the dotted lines, enter the optic and undergo a total of two refractions
and two reflections before exiting. This intermediate image is further transformed
by a relay optic to produce the final annular image onto a two dimensional detector
array. The concepts are interesting, and presented only to demonstrate that other
approaches to the problem of image acquisition do exist. The manufacturing of high
quality optics is relatively expensive when compared to the cust of conic mirrors which

could also be designed to capture a cylindrical field of view, as discussed later.

2.3.4 Conic Mirrors

Conic mirrors have been used in a number of sensing applications where the desired
field of view was larger than could be accominodated by a conventional camera. They
have been used in mobile robots for obstacle detection and distance estimation [33, 34],

and in pipeline inspection applications[23]. The basic principle is to use a reflective

26

Reflective Surface

Reflective Surface \ .

“

Reflective Surface

Figure 2.19: Panoramic Lens Block

surface that is generated by revolving the desired profile about an axis. The profile
of this reflective surface can be changed to give different performance characteristics.
such as increasing or decreasing the field of view, or distributing the resolution to
different portions of the image. Figure 2.20 illustrates how a typical conic mirror

could be used to capture a 360° field of view.

2.3.5 Panoramic Imaging Software
There are several panoramic imaging systems available commercially.

¢ Microsoft Surround Video
The Microsoft Surround Video SDK® was released on July 17th, 1996. The basic
functionality provided is a cylindrical transfo-mation of panoramic images, and
it is implemented as an Active X control. Microsoft’s surround video requires
the use of an expensive special panoramic panning camera. The camera has a

slit that revolves around an imaging axis. exposing the film as the slit revolves.

5 An overview of Surround Video is available at http://www bdiamond.com/surround /overview.htm

[8]
~1

Capture Field of view

Figure 2.20: Conic Mirror Field of View

The photographer has to be careful to avoid being captured in the photograph by
accident. The main disadvantage of this approach is the cost of the panoramic
camera and the limited field of view which, like Apple’s QuickTime VR, is only

a cylindrical and not a spherical model.

Apple QuickTime VR

Apple’s QuickTime VR system incorperates panoramic images into their Quick-
Time movies file format[10, 5}. The development kit includes software to stiteh
multiple conventional images to form a panoramic image. This stitching soft-
ware can operate most of the time without the intervention of the user. However.
for some scenes in which there are few distinguishing features, the software will
not be able to find the corresponding features to do the stitching. In these cases
user intervention is necessary. QuickTime VR offers a cylindrical panoramic

viewing model.

Omniview

Omniview produces a product that will take two aligned fish-eye images and
stitch them together to form a complete spherical view. This incorporates some
automation in the preprocessing stage and involves the use of expensive fish-

eye lenses. Often it requires manual intervention and touch ups usiag a paint

28

program (2]. The process of taking the two aligned photographs requires a
skilled photographer. The major disadvantage of this method is that the fish-

eye lenses are very expensive aud inust be made to order.

This type of immersive imaging technology allows multimedia content developers to
present imagery of 3D scenes that wonld be cither difficult, costly and/or impossible
to do with other types of technologies. The obvious question is — why not use a video
sequence to pan around a scene? A video sequence limits the degree of interactivity
by allowing the user to go only backward or forward, effectively retracing the path
that the camera took when the sequence was captured. Another disadvantage of video
is the massive amounts of data required. Some of the problems can be addressed in
a limited degree with the use of compression, such as MPEG or AVI codecs, or by
using mosaic representation {13]. Another approach would be to capture an image
of every conceivable viewing angle, in discrete increments, for a particular location.
The images are then indexed such that as the user pans or tilts, the appropriate
image is displayed. This is certainly possible, but would require massive amounts
of storage as well as a special camera stand to allow for incremental pan and tilts
between frames. That approach would also be costly to implement and use. The
casiest and most economical method of panoramic image acquisition is to utilize the
conic mirror. since it can be mounted on standard photographic and video cameras

and does not involve stitching multiple images together.

2.4 Methodology

Software engineering is a relatively new discipline that tries to apply engineering prin-
ciples to -nsure a systematic approach to software development. This o« ject incorpo-
rates some of the software engineering practices. There are many software engineering
methodologies to choose from; some are better than others. We will examine a few of
these methodologies and discuss some of their advantages and disadvantages. Based
on these factors and the author’s preference, we will pick a development methodology.
It is not the author’s intent to present the subject of software engineering, and proper
treatment is beyond the scope of this thesis. We will merely give an overview of some

of the key concepts. This will allow the informed reader to better understand the

29

process that was used to develop this software.

Object Oriented Analysis (OOA) and Object Oriented Design (OOD) is a rvela-
tively new way of designing and implementing software systems. The basic approach
is fundamentally different from classical structured programming, which is more data
centric. The object oriented approach solves problems in the problem domain rather
than transforming the data to the solution domain. By this we mean that in lan-
guages such as C or FORTRAN;, the problem is analyzed and broken down into simple
data types, and procedures or functions are designed and implemented to transform
the data. These traditional techniques are based on the flow of data, which are often
represented as data flow diagrams in the design phase. An object oriented approach,
on the other hand, removes the separation between the data and the operations on
the data. This has an important advantage — that of information hiding or encap-
sulation.

The object oriented approach was chosen because of its ability to encapsulate and
modularize the software components. Since this is a rescarch project, not all the
requirements and problems are known in advance. Therefore, the ability to redesign
and replace components in the implementation’wit.hout, impacting other portions is
a desirable characteristic of a methodology. The overall methodology used was a
combination of the spiral model, prototyping model, and object oriented methods.

The spiral model is basically a process that incrementally adds functionality to
a product and/or incrementally modifies the project based on feedback from the
customer. The process starts with the customer’s initial requirements. Planning
and analysis is done based on those requirements. A prototype is then designed
and implemented. At this stage, with a prototype to show to the customer, other
requirements are established, based on the customer’s feedback. It is an evolutionary
process until the customer has a product that meets his or her needs.

Prototyping is a process that is characterized by the emphasis on rapid develop-
ment in order to demonstrate that the ideas can be implemented. In an ideal world,
the prototypes should be thrown away, but this usually does not happen due to time
constraints and limited resources allocated to the project. Prototypes are generally
vehicles for learning and testing new ideas. They are usual.; not very robust and not

intended to be industrial strength. One danger of this approach is that the customer

30

will get the mistaken impression that the prototype is the product, and that very
little remains to be done to make the prototype into a product. The problem is that
quality will be sacrificed if the prototype is retrofitted. It is the author's opinion that
a partial solution to this problem is the use of object oriented techniques during the
prototyping stage, as will be discussed later. Robust object oriented components can
give rise to the re-usability that is desired, while still allowing rapid prototyping nsing
these object oriented components.

The classical waterfall model of software development is, in the author’s opinion.
unrealistic for this particular project. The process of requirement specification. anal-
ysis, design, implementation, testing, and maintenance are more interdependent than
the classical waterfall model would have us believe. In the author’s opinion. design
and implementation can be done concurrently. Often the design phase involves the
use of other fancy notations that must later be translated into code during the im-
plementation phase. The design phase can be done in the chosen Object Oriented
language such as C++, and scenarios can he tested using the specified interfaces or
methods. The interfaces can be reasonably complete and robust before the imple-
mentation begins.

Object oriented computing encompasses far more than just OOA and OOD: it
has become mainstream computing. One example is the use of COM (Component
Object Model) in the popular Windows 95 and Windows NT operating systems.
Microsoft has indicated that COM will be the bedrock of the future versions of their
operating systems(14]. Many subsystems in Windows 95 are in fact COM objects. In
other words. these subsystems are systems level objects. The use of object oriented

techniques is in line with the current trend in software development.

31

Chapter 3

Requirements

T he objective is to produce an affordable package that is also easy to use for both the
end user and the content author. It must be cost effective in terms of content cre-
ation and end user system requirements. We will specify the hardware requirements
necessary to provide adequate performance for the software system, the functionality

to be provided by the software, and the user interface requirements.

3.1 Recommended Minimal Target Platform

The target platform will be PC based!. Due to the open architecture of the PC.
there are many possible configurations, making it difficult to specify a target plat-
form. There have been efforts to define and use a set of standards that will guarantee
a minimum level of performance. One of these standards is MPC (Multimedia PC)
[9], which specifies the minimum requirements to qualily for one of three levels. Our
target platform is MPC3 which includes a 75MHz Pentium (or equivalent) proces-
sor, 8 megabytes of RAM, quadspeed CD-ROM, etc. The MPC standard includes
minimum r2quirements for both hardware and software. We will specify our system
requirements as MPC3 hardware, and a 32bit operating system such as Windows 9%
and Windows NT 3.51 (or later). These requirements are only a rough guideline.
Some 486 based systems with a 3D graphics card may provide adequate performance.
The software should be designed in such a way that it takes advantage of 3D graphics
hardware, if present, but should also function in the absence of it. Since the perfor-

mance of PCs doubles every 18 months. it is not critical if the software falls short

1PC refers to IBM PCs and clones or, more accurately a Microsoft Windows based system.

32

and requires a slightly faster system.

3.2 Viewing with a Virtual Camera

The desired system will have to take input images that are warped and do the appro-
priate transformations to correct the distortions and display the image as if it were
viewed with a more conventional camera. The system must allow the user to look
in any direction in an interactive manner, provided that the input image has that
information. For instance, panoramic images can be viewed by panning the camera

left or right and zooming in or out, but looking up or down would not be possible.

3.2.1 Panoramic Images

The term panoramic is used to describe images or pictures with a large field of view.
Sometimes images with larger than 90° field of view are referred to as panoramic. We
will use the term to mean truly panoramic or 360° field of view. Pancramic images
are modeled as the surface of a cylinder. We can imagine a !label on a can being the
panoramic image. If we peel the label off and flatten it, we would have a panoramic
image. These images will have a characteristic distortion due to perspective fore-
shortening.

Panoramic images can be acquired in many ways. There are panoramic scanning
cameras that have a slit and. as the slit is revolved 360° about an optical axis, the film
1s exposed to the incoming light rays. Panoramic images can also be generated with
computer graphics programs, such as ray tracing programs, that support panoramic
cameras. Povray? is one such program. Other methods of obtaining panoramic images
include taking several conventional images from the same spot, with the combined
field of view that covers the full 360°. In this case, more processing is required to
warp the images and combine it into a panoramic image. Software is used to stitch
several images together to form a complete panoramic image. There are several
problems with this approach, one being that different parts of the same scene can have
different lighting conditions. When the pictures are stitched together, the seams may

be noticeable. It may also be difficult to match up the seams exactly. This problem

*povray can be obtained at http://www.povray.org

33

can be caused at several stages: if the camera is misaligned when the pictures are
taken; when the film is developed and made into prints; or when the film is scanned
into the computer. Assuming a pinhole camera, the focal point must be in the same
place for all the pictures or else there could be parallax3. The problem of image
mosaicing for panoramic applications was addressed by Szeliski [25]. Another way of

generating panoramic images is from the fish-eye or panospheric image formats.

Panoramic Texture Image Format

The texture format for panoramic images is a rectangular image, such as the one in

Figure 3.1, which contains a full 360° field of view. Notice the panoramic distortions

present in the image caused by perspective foreshortening. Due to perspective fore-

Figure 3.1: Panoramic Images

shortening, objects that are further away will project to a smaller arca than ohjects

closer to the camera. In Figure 3.2(a) the camera is loc.ied at the center of the cylin-

Panoramic Distuttion
55
5
Wall 45
4
as /
2 /
Lane of Sight 25 ya
2 P
15 et
Top Vaew of Cylnder wall 1 s U i el e L
0 10 20 30 40 50 60 70 8v
Angle from Honzonta! Axis (degrees)

Figure 3.2: Panoramic Distortion (a) Top view of cylinder (b) Plot of distance to the
wall

der, as seen from a top view. If we were looking at the wall in the diagram. we could

3 Apparent displacement, or difference in the apparent position

34

plot the distance of the wall from the center of the cylinder as we look around in a
clockwise direction (assuming that the cylinder has a unit radius). As we can see from
Figure 3.2(b), the distance does not increase in a linear fashion. This implies that
straight edges in the real world, that are not vertical when projected on the cylinder,
would map to curved lines in the panoramic image. This is illustrated by the plot
of the height of the wall as projected onto the cylindrical surface in Figure 3.3. It is

Panoramic Distortion Projection

09
08
0.7
0.6
0.5
0.4
0.3
02
0.1

Projected Distance on Cylinder

0 10 20 30 40 50 60 70 80
Angle from Horzonta! Axis (degrees)

Figure 3.3: Height of Wall Projected onto a cylindrical surface

for this reason that viewing panoramic images with a smaller field of view, as in Fig-

ure 3.4, is not as simple as clipping the input image; we must correct the distortions.

Y

View Plane

Figure 3.4: 3D Model of Panoramic Images

These distortions are more apparent in the panoramic images in Figure 3.5. The
two images are shifted versions of each other, to demonstrate to the reader that each

image is indeed a complete 360° around. Notice that the door in the lower image is

35

panobtnp VY

Figure 3.5: Panoramic Images

wrapped around in the upper image. Note also that the shadow and the wall have the
characteristic panoramic distortion due to perspective foreshortening. The software

is required to support pan and zoom operations with a virtual camera.

3.2.2 Fish-eye Images

Fish-eye images are taken with a fish-eye lens, which captures a hemisphere of the
scene; usually the resolution is poor at the edges and better towards the middle of the
image. Figure 3.6 is an example of a fish-eye image®. Fish-eye lenses are expensive
and are not mass produced. The software will be required to support pan, tilt and

zoom operations with a virtual camera.

3.2.3 Front and Back Fish-eye Hemispheric Image Pairs

The front and back fish-eye hemispheric image pairs are two calibrated fish-eye images
taken with the camera pointing in opposite directions. Figure 3.7 illustrates the 3D
model. The circular seam for the two halves is located in the XY plane. Figure 3.8 is
a sample uf an image pair taken with a fish-eye lens. These images are only roughly

aligned since no special equipment was used when the photographs were taken. The

4Image courtesy of Steve Bogner at Piercorp

36

Back Hemisphere

Figure 3.6: Fish-eye image of Ottawa

N

Seam

Image Horizon

Front Hemisphere

Texture Image

Figure 3.7: Front and Back Hemispheric Model

37

photographs were scanned into a computer, then cropped (. ;o) 4t resamited.

The software will be required to provide a distortion-free view fr.:. . ‘irtu.. camera

Figure 3.8: Front and Back Fish-eye Panospheric Image Pair (Ottawa)

supporting the pan, tilt, and zoom operations.

3.2.4 Upper and Lower Hemispheric Image pairs

The upper and lower hemispheric image pairs are illustrated in Figure 3.9. As we can
see from the 3D model, the seam for the two halves is at the image horizon. We could
map other formats (such as panospheric) to this format in a preprocessing step. The

greatest advantage of this format is that the distribution of the texels is better.

. Y z
Upper Hemisphere

Image Honizon

. Texture Image
Lower Hemisphere

Figure 3.9: Upper and Lower Hemispheric Image pairs

38

3.2.5 Panospheric Images

The panospheric optic being designed by PVSI is shown in Figure 3.10
will previde larger than 70% field of view.

Field from lens

Lens

X Seam between lens field and conic mirror field

Reflective surface

~-— Field from conic mirror

"
M-

focal point

Figure 3.10: PVSI’s Panospheric Optic

. This optic

The 3D model for panospheric images is shown in Figure 3.11. Notice that the

panoramic field from a to ¢ is captured with the reflective conic sect

ion, and that

the seam between the lens field and the reflect field is not continuous in the captured

image.

Horizon

- ——- -

Panospheric Model Texture Image

Figure 3.11: 3D Panospheric Model and the corresponding image plane

A sample input image is shown in Figure 3.12

39

Figure 3.12: Sample Panospheric Image

Panoramic Images from Panospheric Images

It is both possible and useful to map panospheric images to the panoramic format.
This particular transform is interesting in that it allows the viewer to see a full 360°
in a rectangular area. The resultant image will be of the format that <. be used in

the cylindrical panoramic model discussed previously.

3.3 Image Acquisition

Our proposed system will use the panospheric optic, being developed by PVSI, 1o
capture images in the panospheric format described previously (section 3.2.5). The
major advantage is that preprocessing wil! be reduced dramatically, and the overall

system will be much more economical to produce and easier to use.

40

3.4 User Interface

The user interface (UI) requirements must conform to standard user interfaces as
much as possible, as it takes users far less time to learn a standard interface than
it does a custom interface. These requirements include the look-and-feel and the
functionality. Microsoft has invested considerable resources into usability studies for
the Windows 95 operating system, and has supplied a set of guidelines for the design
of user interfaces for Windows 95/NT operating systems|[16].

The key concepts are summarized below.

e The program should have a user centered design, that is to say that the user
should be in control and should feel in control. One implication of this is that
the user, rather than the program should initiate all the actions. Graphical
User Interfaces (GUIs) satisfy this requirement since they are event driven: the
program simply responds to events generated. Another implication is that the

program should be as interactive and responsive as possible.

e Familiar metaphors provide a direct and intuitive interface to user tasks. By al-
lowing users to transfer their knowledge and experience, metaphors make it eas-
ier to predict and learn the behaviors of software-based representations. When
using metaphors, we need not limit a computer-based implementation to its
ro-1 world counterpart. Metaphors support user recognition rather than recol-
lectic . In this particular application, the natural and obvious cheice is to use

.. camera metaphor.

¢ The user interface should be consistent within the product, with the operating
environment and with the metaphor. In our application, product consistency
would involve features such as being able to pan or tilt the camera in the same
manner no matter what the underlying image transform was. For instance,
clicking on the left region of the view window should pan the camera to the
left, regardless of whether it is a panoramic or panospheric image. Consistency
with the operating environment would mean features such as keeping the look
and feel of the application as similar to the standard applications as possible.

This includes. for instance, using the standard dialog boxes where appropriate

41

instead of building a custom one.

The user interface should be forgiving when the user makes errors. Many users
learn to use new programs by trial and error; therefore. it is prudent to warn
users of situations where damage to data could occur. The interface should
allow the user to recover from errors and always return to a known state if the
last operation could not be completed. For instance. if a user is attempting o
save a file but the disk is full, the program should notify the user of the problem

and abort the operation instead of terminating the whole program.

The program should give appropriate and timely feedback. This could include
changing the cursor to reflect the type of operations that the user can perform, as
it is moved over certain objects on the screen. For lengthy tasks, an appropriate
progress indicator should be used. Since we are using the regions on the screen
to dictate the direction that the camera moves. approprizte cursors should he

shown as the mouse moves in the window.

The user interface should have a balance between functionality and simplicity.
Progressive disclosure property-sheets are a good way of progressively disclosing
the parameters to the user while not overwhelniing them with too many settings
at any one time. Property-sheets provide a way of categorizing settings in the
form of tabbed pages. Each tabbed page is the equivalent of a dialog box.
Using this method, many of the parameters can be exposed to the user, but

only relevant settings are shown for a particular task the user wishes to initiate.

Users can be categorized into two groups: beginner and advanced, who tradi-
tionally show different patterns of usage. The Ul should accommodate both
groups. Advanced users want efficiency, and there are many things that can be
done to give them this efficiency without introducing complexity to the inter-
face. For instance, accelerator keys can be «efined so that advanced users can
utilize keyboard shortcuts to perfo w: coriaty: operations. Many advanced users
find this more convenient because their “an never has to leave the keyhoard

to reach for the mouse.

42

e The use of pop-up menus can emphasize the object oriented nature of the sofi-
ware; they provide a context sensitive way to access the functionality and prop-
crties of the selected object. Context sensitive pop-up menus are used exten-
sively in Windows 95 and fit into the object oriented metaphor. The menu

options correspond to the methods exposed by the objects.

e Statushars and toolbars are common in most windows applications. Status-
bars can be used to give users feedback, while toolbars can be used to provide

shortcuts to commands.

The software should be designed to incorporate as many of these general guidelines
as possible. In addition. the Ul must facilitate the creation of multiple views of the

sane scene,

3.5 Technical and Economic Feasibility

A comprehensive feasibility analysis is beyond the scope of this thesis. However there
are a few factors that would seem to suggest that this project is both economically
and technically feasible.

Since this is an emerging market, it is hard to accurately predict the demand for
such a technology. Informally, it is estimated that the vertical market will be large
enough to justify the commercialization of a panospheric imaging system([1. 2. 21. 22]
with all the potential applications mentioned elsewhere in this thesis.

The systems that do exist are either difficult to use and/or require expensive
equipment or a skilled operator in the authoring process [2]. The authoring systems
that require a skilled operator will ultimately cost more because the content creators’
time is valuable. This proposed system will require far less manual intervention and
does not require a skilled operator to create the content. Figure 3.13 shows roughly.

the cost of various panoramic image acquisition technologies.

43

Eystem

l

Cost (US)

| Availability

Panospheric (Conic Mirror) Optic <$1.000 {| Can be mass produced
Revolving Panoramic Camera $2,500
Fish-eye Lens $25,000 || Very limited quantity

Figure 3.13: Cost of Various Panoramic Image Acquisition Technologies

44

—- must be custom ordered

Chapter 4

Design

4.1 Choice of Plattorms

Design and implementation decisions are often dictated by the system requirements
and objectives, and this project is no different. Our predominant objective is the
cventual commercialization of the immersive imaging technology. As I vill discuss

later, this has influenced many of the design and implementation decisions.

4.1.1 Operating System

Giiven the time constraints, it was decided early on that supporting multiple operating
systems would not be feasible. The need to reach mass markets forces us to target
the most widely used operating system. The clear winner by that metric is, without
a doubt, Microsoft Windows 95. Windows 95 was originally intended as a transition
Operating System (OS) to the much more robust Windows NT. Windows 95 is not
a subset of Windows NT: on the contrary, Windows 95 actually has much better
multimedia subsystems and supports far more devices. There are features that are
exclusive to each of the two operating systems. With some careful planning, the
software can be implemented in such a way as to be compatible with both Windows
NT and Windows 95. At the heart of both Windows NT and Windows 95 is the 32
bit Windows Application Programming Interface (Win32 API) [15]. It is necessary
to restrict ourselves to the set of common API calls if we are to target both operating
systems. Most of these concerns need not be addressed by the programmer explicitly

if the proper tools are chosen.

4.1.2 Programming Language

Using an object oriented approach do-s not restrict us to object oriented languages
such as C++, Java, or Smalltalk. It is possible to implement object oriented software
in non object oriented languages, such as C or Pascal, but it is not as convenient.
The adage that it is possible to write good programs in any language and it is also
possible to write bad programs in any language certainly applies.

The choice of programming language was clear, given that the target OS was
Winc ws 95/NT. At this point in time, C++ has the mest robust support tools
other than perhaps Microsoft Visual Basic (VB). While Visual Basic is good for rapid
prototyping and building GUls (Graphical User Interfaces), the calculation intensive
parts would probably be © low. In the author’s opinion, the major advantage
of C++ over Visual Basi . ' s particular project, is the object oriented features
of C++, and not so much the speed considerations. With the VB approach, ('PU
intensive operations can be delegated and programmed in other languages such as
C/C++. if necessary. Object oriented programs are easier to develop and maintain
in C++.

Another object oriented language to consider is Java, Sun Microsystems™ object
oriented programming language. Java is essentially a cleaned up version of ('++
where the arguably bad features were eliminated. Multiple inheritance, the ability to
forge pointers, operator overloading, and implementation dependent features are not
present in Java, as they are in C++. Instead, Java offers garbage collection, which
eliminates the need for pointers; and Interfaces which provide the functionality of
multiple inheritance[24]. While Java offers many other benefits over C4+4, it was still
in beta state at the start of this project and there were very few development tools
available; therefore, it was not seriously considered at that time. As will be discussed
in Section 7.3.5, Java opens up many possibilities for Internet Applications using this
imaging technology.

There are several popular C++ compilers available for Windows development.
Because of the market dominance of Microsoft Visual C++, and the reasonable gual-
ity of the compiler in terms of conformance with the latest C++ language standards,

it is a reasonable choice. At first glance, it may seem thai the discussion of which

46

programming language or compiler to use is a waste of time, but nothing could be
further from the truth. The statement “If all you have is a hammer, you treat every-
thing like a nail.” rings true. The choice of development tools has a major impact
on the design and imj.lenientation of software. We will be designing our software
architecture around the application framework provided in the form of the Microsoft

Foundation Classes (MFC) with the Visual C++ development tool.

4.2 Design Considerations

In object oriented design it is often necessary to take into consideration the features.
strengths, and weaknesses of a specific language. The design process that was used
focuses on identifying objects and defining interfaces or methods!. Sometimes this is
done on cards, each one representing an object with its interface listed on the cards.
In the author’s opinion, this is not necessary; it can be done using an actual Object
Oriented language such as ("++. The interface can then be designed that will suit the
implementation language. After these interfaces are defined, and are robust enough to
pass the criterion of being reusable, scenarios of communication between the objects
can be examined and tested to ensure the interfaces for the objects are adequate.
After scenarios are exercised successfully, the implementations of the methods can
begin. All object orientcd languages support inheritance. It is a common way to
promote code reuse in object oriented designs and will be used where appropriate.
Dynamic binding, on the other hand, has a runtime cost; therefore, its use was limited
as much as possible to infrequent.]y.used classes. A much more efficient mechanism is

to use the (4 template feature to define interfaces, following the principles in the
Standard Template Library (STL).

4.2.1 Software Re-usability and Performance

One of the major challenges facing software engineers is software re-usability. In
the author’s experience, an object oriented approach is a step in the right direction.

Recent additions to the C++ language, such as the Standard Template Library (STL),

"1 the object oriented paradigm, interfaces and methods both refer to the operations that can
be performed on the object, and will be used interchangeably

47

is an important contribution toward the goal of re-usability. Some image processing
filters can be implemented using templates. This would essentially factor out all the
supporting code such as the iterators — something that is not possible to do in a type-
safe manner in some languages. In C, if we factored down to such a fine granularity,
we would incur the cost of a function call on every operation. In ('++, however, we
can instantiate an object with an inlined function operator. This basically gives us the
fine granularity in a type-safe manner, while removing the cost of the function call,
because the inlined functions have compile time complexity. With some knowledge of
the features in the implementation language, we can design in a manner that promotes

software reuse while not sacrificing performance.

4.2.2 User Interface

To design and implement a user interface that conforms to the requirements is a ma

jor undertak:: ;. However, our task is made much easier by application frameworks
that are commercially available. Application frameworks are, basically, a collection of
C++ classes that encapsulate many of the common objects required in the develop-
ment of most applications. Simply put, they are ready made generic components that
can be used and modified to do application specific tasks. Application frameworks
provide the infrastructure for most types of programs; they are like empty new houses,
ready to be furnished and decorated. The major advantage of using an application
framework such as Microsoft Foundation Classes (MFC), is precisely for the built-in
level of conformity to user interface guidelines. We are not saying that design of the

user interface is not required, but that the design will be easier to implement with

the help of MFC.

4.3 Software Architecture

The software architecture will follow standard practicss in use today by Microsoft
Windows software developers. It implements a Multiple Document Interface (MDI),
where the main window of the application can contain more than one document
and each decument can contain more than one view window. Figure 4.1 illustrates

the general (simplified) relationship between the application, documents. and the

48

Figure 4.1: Multiple Document Interface

views. Figure 4.2 is an actual screen shot of the final software product that roughly
corresponds to Figure 4.1. The application object is involved with the management
and creation of the documents, and the main MDI frame window. The MDI Frame
window manages all the MDI child windows, such as all the views associated with the
documents. There are two hierarchies involved here. One is for the non visual objects
such as the application object, the document template object(s), and the document
object(s). The other hierarchy is the visual objects hierarchy, which includes all the
windows that are seen on the screen. The visual objects are actually Windows objects
wrapped by a parallel C4++ object hierarchy. Strictly speaking, the windows hierarchy
does not require the existence of the paralle] C++ hierarchy. Once the MDI frame is
created, the application can now receive messages or process events generated by the
user. These events could include selecting menu options, moving the mouse, clicking
on the mouse buttons, etc. At this point, the user is in control and can initiate
events. How these events are handled will be covered later when we discuss message

dispatching. But first we will take a closer look at the Document/View model.

4.3.1 Document/View Model

The software is designed around the document/view model, which is used to encap-

sulate the data in the document and provide one or more views into the document.

49

phere Gpheir:

Figure 4.2: Multiple Document Interface Screen Shot

50

This is a generic object oriented approach that is commonly used to decouple the
data from the way that it is presented to the user. For this particular project, the
document contains the warped images and the parameters that describe how that
image was warped. One of the view types will be our virtual camera. In this way,
we can have multiple cameras looking at a single scene, providing the user with the
ability to manipulate the virtual cameras independently. We can use the notion of dif-
ferent view types to view the same image in different ways, using different transforms.
Essentially, the document/view model allows the same data to be presented to the
user in different ways, and will be used extensively in the softw: re design. Figure 4.3
shows the basic relationships involved in maintaining a docv .: ent/view model. The
document template object is used to manage the creatior: of the cocumen: and “he
views; it keeps track of the document class and the associated view classes. Whern a
new document is created, the document template object knows whizh document .ype
to create and it instantiates a document. At this point the document contains default
data, but is still not visible to the user because there is no view associated with it.
The document template object now creates an appropriate view for the document
object and informs the document object. The document object attaches the view
to itself and, in this process, the view object also sets a back link to the document
object. The document object maintains a list of view objects. This list allows the
document to attach more than one view of the same or different type. The views
are the main method through which the user manipulates the document or the data.
If the user changes the document data through a view object, the document object

informs all the other views to update their representations accordingly.

4.3.2 Message Dispatching

In graphical user interfaces, users interact with the programs by generating events.
Events are generated for every action that the user takes, including moving the mouse,
typing on the keyboard, clicking on a mouse button, etc. Message dispatching is a
mechanism that is commonly used in graphical user interfaces to handle events. It
is central to graphical user interfaces, and usually entails decoding the messages or
events and calling the appropriate handler method. In simple applications this is

not a major issue; one needs only associate the appropriate handler for the event of

51

Message Queu>

Document
Template

[Documen |-

View]

View2

Figure 4.3: Document View Model

Application

MDI Frame

I

-

MDI Child

~

- 4

View

S

\

MDI Child

~

MDI Child

C o

Figure 4.4: MFC Message Dispatch Mechanism

4

&
Vle W
]

Legend

Object
Instance

Visual objects

Object Non Visual Objects
Instance

Document

Document Templmc]

& ettt o e
Document Templale]
~~—

2

52

3

interest. In the context of the MFC application framework, messages are dispatched
in the manner depicted in Figure 4.4. Under 32 bit Windows, each application has its
own message queue. Events are generated when the user interacts with the application
using the various input devices, such as the mouse or keyboard. When the application
receives its time slice and is executing, it checks its message queue. The message is
first passed to the MDI Frame which then passes it to the active Child MDI window.
(Recall that the MDI Frame can contain many MDI Child windews.) The active MDI
Child window then passes the message to its view window. The view gets the first
chance to handle the message. If the view doesn’t handle that message, it is passed
to the view’s document object. If the document object doesn’t handle the message,
it is passed to the document template object. If it is still not handled, the message
propagates back up the hierarchy to the MDI Child window. If the MDI Child window
doesn’t handle the message, it is passed back to the MDI Frame window. If at this
point the message is still not handled, it is passed to the application object for a
last resort attempt to handle it. All the standard messages have a default handler
somewhere along this search path. Similarly, all our custom commands and messages
should have a handler installed somewhere along this search path — ideally at the
place where it makes the most logical sense.

The important idea here is that the message handling can be overridden at any
point in the search process. The implication for design is that the messages should be
handled at appropriate places, and not intercepted; they should be classified such that
the handler can be placed in the appropriate location. Tor instance, a view object
should not implement a message handler for messages intended for the document

object,

4.4 File and Texture Image Format

There are two stages at which the texture image format should be considered: first,
when * s stored in persistent storage such as a hard-drive or CD-ROM; second, when
it 3 stored in main memory for transformation. When the images are stored on disk
or transferred across a network we want them to take up as little space as possible. To

this end, we will use a standard image format such as JPEG or GIF to compress and

33

store the images. Our file format will include links to these texture files, as shown

in Figure 4.5. The advantage of using links is that the texture file can be viewed

Supported Image formats

— BVS File Formay Texture image 1
| 3D Model parameters | L (UPEG) |

link to texture image F.

N w} Texture image 2
AN (GIF)

-

N Texture Image 3
(BMP)

Figure 4.5: PVS file format

and processed by any program that supports those standard image formats. The
disadvantage is that if the user moves those image files, the links will be broken. The
texture images mus* ' nreprocessed or resampled to dimensions that are a power of
2. This restrictio: ~acilitate much faster texture coordinate calculations. since
bitwise -nift operativis can be used instead of multiplications. In practice this is
not a severe restriction, because the input images can be scanned in at much higher
resolutions than can be handled as texture maps. Since resampling is a preprocessing
step, we can apply more expensive filtering techniques.

The format of the content of these texture images also needs to be considered.
The circular texture images are kept in that format because the arca of the resultant
texture image is less than that of a transformed image. If we were to preprocess the
circular texture images and transform them into rectangular representations, there
would be redundant data in the rectangular representation that is not present in the
circular representation. In this transform, the pixels closer to the center would be
stretched more, and the texture mapping process becomes slightly more complicated
to calculate. When the images are loaded from files, they are decompressed to a buffer
in main memory for texture map; ing, as shown in Figure 4.6. The texture images in
main memory cannot be compressed since we need ‘ast random access to the texels

during texture mapping.

'
Secondary Storage H Main Memory

'
'
'
JPEG Jmage , Texture Image
: Uncompressed

24 tm

GIF lmage

BMP Image
{Uncompressed)

Texture Mapping Look up

Figure 4.6: Image Storage format
4.5 Object Space to Texture Space Mapping

Texture mapping is central to this project. It is the method by which the flat 2D
input images are mapped to 3D objects. The 3D objects are in turn transformed into
a perspective correct view as seen by a virtual camera.

Generally, all the transforms are computed in the following manner:
1. determine the virtual camera parameters.

2. determine the appropriate 3D surface onto which to map the images (based on

the selected 3D model).
3. determine the texture coordinates corresponding to the 3D surface points.
4. render the surface.

Virtual Camera Parameters

The virtual camera parameters include the vertical and horizontal field of view, spec-
ified in degrees or radians. These paraineters are affected by the zoom operation, but
not by the pan and tilt operations. Zocnin s in can be modeled as decreasing the field
of view. Conversely, zooming out is odeled as increasing the field of view. In order
to preserve the aspect ratio for the virtual camera, the vertical and horizonta) fields

of view are both multiplied by a scaling factor. Figure 4.7 shows the virtual camera

Ut
(&3]

located at the origin. We can see that by increasing the field of view, a larger surface
area is visible to the camera. Because the camera’s view is then mapped to a viewing
window, which is of a constant size during the zoom operation. it is equivalent to
zooming out. In other words, more of the scene will be visible, therefore the objects
in the scene will be smaller. Each virtual camera view alse contain parameters for the

Vigw Planes

- Belore

Alter

Camera ~ Camera

Zoom Out Zoom In

3D surface

Figure 4.7: Zooming using a virtual camera

ground plane angle and elevation angle. The camera direction vector can be specified

in terms of two angles, as illustrated in Figure 4.8. The ground plane angle is the

by

Camera Diredtion

Camera Location

Elevation Angle

S~

Figure 4.8: Camera Direction

Ground Plane Angle

rotation angle about the Y axis, and the elevation angle is the smallest angle hetween

56

UIC CalltIa UHELLIVH VELLUL allU WIS AL PIALS, Ul LIS gIUuLU PIaic. Losuiuany wuis
is similar to the spherical coordinate used in mathematics. where 8 is the ground
plane angle and ¢ is the elevation angle. The difference is that the elevation angle is
defined to be zero when the camera direction vector is on the XZ or ground plane,
and ranges from +90° to —90°, (whereas ¢ ranges from 0° to 180°), when the camera
vector is straight up and straight down, respectively. The camera direction vector
actually represents the direction of the center of the camera. By changing the ground
plane angle one would be eflectively panning the camera. Similarly, by changing the
clevation angle one could achieve tilting, or in effect make the camera look up or
down. The observant reader can conclude that if we change the elevation angle to a
value outside the range of +90° to —90°, we could look at the world upside down.
It wa: decided that the ability to look at the world upside down would cause the
casual user confusion, while offering very little benefit; therefore, the ranges defined
above serve as the floor and ceiling values for these angles. That is to say, when the
user points the camera straight up. that is as far as it will go: they cannot bend over
backwards to look at the world upside down.

The user can access these camera parameters by using the mouse to move to the
appropriate region in the window, as indicated in Figure 4.9. The cursor will update
accordingly to indicate the direction that the camera would pan or tiit. The user can
press and hold the left mouse button to perform the actual pan or tilt in the desired
direction. If the mouse button is held down, the camera will continue to pan or tilt.
The zoom operations are performed by the users moving to the 4+ and - regions and
clicking on the left mouse button. More advanced users can use the right mouse
button to bring up a context sensitive menu for the view. and select the property
option which will bring up a property sheet with the properties of the camera in one
of the tabbed sheets, as shown in Figure 4.10. As we can see, the horizontal and
vertical field of view angles can be adjusted independently from here. We can also
perform pan and tilt operations at this point by adjusting the Ground Plane Angle

and the Elevation Angle, respectively.

37

l:l Window Dj

+ Zoom In

\ / - Zoom Out

+

AR BN

Figure 4.9: Active Window regions for Camera movement.

Figure 4.10: Property sheet for Camera Parameters

Determining the 3D surface

The surfaces involved can be modeled as quadratic patches. In order to specify the
quadratic patches, we need the nine control points on the patch. This can be done
very simply since we know the 3D object we are approximating with the quadratic
patch, and the virtual camera’s viewing parameters. To determine the control point
for a spherical model wc would transform the nine control points, as depicted in

Figure 4.11. from viewport coordinates which are normalized to a range between

View Plane (Viewport)

Ca o Q)
X
) O O
Camera }
/ D e O

7

Z

Figure 4.11: QPatch Control Points in Viewport Coordinates

and 1. The viewport coordinates are then transformed into camera coordinates.
The camera coordinates are transformed to world coordinates. From there, the world
coordinates are transformed into object coordinates. Because of our simplification. by
locating the camera and object coordinates at the origin of the world coordinates, we
need not perform some of the t ansforms as outlined above. The nine control points
can be treated as vectors originating from the origin. As we can see in Figure 4.12. we
can simply use these vectors to calculate the intersections with the object model, be
it cylindrical or spherical. Once we have the intersection points, we have the control
points for a quadratic patch? that approximates the 3D model.
Quadratic patches can be used only when we are modeling a conventional camera

or planar geometric projections. If we want to produce views such as the panoramic

*fast rendering of quadratic patches is supported by most 3D graphics hardware.

39

Quad Patch

Panoramic Viewing Model

View Plane

/ \iewpornt

amera

" .. Object Model

@ Quad Patch Control Points

....................... . .
....................... ” ' .
....................... 6 &

Unrolled Panoramic Texture Image

Figure 4.12: QPatch Control Points in Object Model Coordinates

6C

strips, we must use a different approach since these are non planar projections. Fig-

ure 4.13 illustrates the general approach to the problem of viewing non planar pro-

jections. The 3D or conceptual model for a panoramic strip is that of a cylinder. In

3D Object Model

Planar Projection Model

Texture Space Model

Figure 4.13: Panoramic Strip Viewing Model

order to view a complete 360° field of view, we unroll the cylinder much like peeling
the label off a can. Now that we have a planar surface we can map it to a viewport
which can then be seen in a window. The only probles:. .i:at reraains is to find the cor-
responding texture coordinates. If we are dealing with panosoheric type projections

then the corresponding texture space model is as illustrated in Figure 4.13.

Determining the Texture (Source Image) coordinates

Once we have the control points in object space, we need to determine the corre-
sponding control points in texture coordinates.

For panoramic images the x direction corresponds to 360° about the Y axis in the
3D model. The y direction in the panoramic image corresponds to the vertical field
of view of the camera. From this information we can map a point on the 3D model
to a corresponding point in the texture image.

For the spherical models. the general idea is to map the 3D point by projecting it
onto the texture plane. The panospheric mode!, however, invol.cs the use of spherical
coordinates. The radius of the 3D sphere is assumed to be 1. Any point on that
sphere can be converted from Cartesian (z,y,z) to spherical (p,8,®) coordinates.
The spherical coordinates can then be used as polar coordinates in the texture image,
where & is used as the r in the polar coordinates (r,8). The general idea is illustrated
in Figure 4.14. In reality, ¢ must be recalculated to reflect the fact that the field from

the conic mirror causes a discontinuity in the texture image. as described previously.

61

The Polar coordinates can then be converted to Cartesian coordinates to correspond

Y

Texture Image Plane

Figure 4.14: General principle in Panospheric Mapping

to the texture space coordinate system.

Distributing available resolution in spherical models

When mapping the image to a 3D surface there is the problem of determining how
to distribute the available pixels. If we model the texture image as a projection of
a perfect hemisphere, then there will be far fewer pixels at the edge of the active
image region. One way to compensate for this is to model the texture as a projection
of a smaller section of a sphere, as shown in Figure 4.15. The other way is to scale

the sphere in one dimension so that it becomes an ellipsoid. In effect this allows us

0

Textuwe mage
Plane

Figure 4.15: Resolution Distribution Model

62

to adjust the model such that it approximates the model of the imaging sensor that
was used to capture the texture image. This is useful for images for which the model

parameters are not known or difficult to determine.

Rendering

Now that we have two sets of control points (one set for the 3D surface and the other
set for the texture space), we can iterate over the u,v parametric space to find the
texel that corresponds to a given location on the surface. In effect, we are mapping
the texels onto the surface. To explain this in terms of sampling, we are reconstructing
the original scene with our 3D surface model. We are not finished yet, because we
must now resample the scene as viewed with a perspective virtual camera. It is the
perspective transform of the virtual camera model when applied to the 3D model of
the scene that actually corrects the distortions.

Every time the view changes because the user interacts with the program. the

object space to texture space mapping is performed and the view is updated.

4.6 Integration with Other Applications

The key to the success of most software applications in the Windows environment
in the future will be the ability to integrate and interoperate with other applications
as seamlessly as possible[14]. The key tech' . -: v that will enable easier integration
of software components is systems level object ariented technologies such as Compo-
nent Object Model (COM), and derivative technologies such as OLE? and Active X.
Microsoft has recently announced that they will turn over the control of the future
direction of Active X to a third party standards committee, and will develop reference
implementations for other platforms. With Microsoft’s market dominance, it would

be foolish to ignore Active X as a vehicle to package our imaging system software.

4.6.1 Component Object Model - Active X

The biggest advantage of using system level objects is the ability to reuse software

in a much more standard way. It encapsulates both the data and operations into an

SOLE stands for Object Linking and Embedding, but OLE has evolved to be far more encom-
passing than just Object Linking and Embedding.

63

object. One could argue that this is nothing special, since programmers have tradi-
tionally been able to reuse software in the form of software libraries. This is certainly
true — however, these methods of code reuse are language and platform dependent.
The standardization of the interface to the objects is the key to these software com-
ponents. It allows containers to be built that will work with any object (present
and future) that conform to the standard. Basically this transforms the interface of
software components from a many-to-many mapping to a one-to-one mapping. All
the programmer has to worry about is that the container conforms to the standard
interface for containers, and that the component conforms to the interface for com-
ponents. It does not matter what programming language was used to implement the
objects because COM is a binary standard.

There has been a lot of interest in Active X for use with Internet Explorer, Mi-
crosoft’s web browser. Note that Active X is not only for Internct Explorer, it can
be used in many other products that support the standard such as Visual Basic,
Visual C++4, Excel, Word, Access, etc. We will implement a limited version of the
panoramic transform in order to demonstrate the potential benefits of leveraging other

technologies such as Active X.

64

Chapter 5

Implementation

5.1 Speed Consideratiors

The decision to use Dynamic Linked Libraries (DLLs) is usually determined by the
intended purpose or functionality to be provided by the DLL. There is very little
execution speed penalty associated with the use of DLLs. However, there could be
major memory savings if more than one application uses the same set of DLLs, since
only one copy of the code will be loaded into computer memory (each application that
uses the DLL will have its own data segment). The JPEG and GIF image reading
objects were implemented in a DLL.

Another consideration is transparent hardware support. In other words, we want
to take advantage of dedicated graphics hardware if it is present, but we will emulate
the functionality in software if the hardware is not present. This raises an important
issue when it comes to implementation. The issue is whether to optimize specifically
for a software solution, or to sacrifice some speed and space optimization in order to
develop a solution that can take advantage of the presence of 3D graphics hardware.
We choose not to optimize specifically for software, because it is expected that 3D
graphics hardware will be common on most PCs in the near future.

One of the techniques for increasing execution speed in computation intensive
tasks is to use look up tables (LUTs). Depending on the particular situation, this
could trade off computation cycles at the expense of extra memory use. The use of
LUTs reduces the computation to constant time. However, not all problems can take
advantage of this technique. For this particular project. the cylindrical panoramic

transform could use this technique, but the spherical transform could not. The warp-

65

ing of cylindrical panoramic images is invariant as the virtual camera pans. The
spherical transform allows the virtual camera to both pan and tilt, resulting in a
spatially variant LUT. This project does not use LUTs to transform the images for
several reasons. The primary one is that the LUT method involves the ('PU and
cannot take zdvantage of 3D graphics hardware for texture mapping. If 31) graphics
hardware was present on a system, then most of the image transformation operations
could be done i the graphics hardware, freeing the CPU for other tasks. If LU'Ts
were used, this wounld not be the case; the 3D hardware would be doing very little,
while the CPU w.'uld be required to do all the re-mapping operations involving the
LUT.

Integer operaticus are usually faster than floating point operations. On most ma-
chines, integer operationn: take far fewer clock cycles to complete than the equivalent
floating point operation. Fixed point numbers can be implemented that use only
integer operations, or the ALU (Arithmetic Logic Unit). Fixed point numbers con-
sist of an integer and a fractional part. For instance. a fixed point number could he
represented using 2 bytes for the whole number portion, and 2 bytes for the fractional
portion. The primary reason for considering fixed point operations over floating point
is the speed improvement. The tradeoff is the smaller range of values that can be
represented, and less precision. Neither of these limitations is of major significance in
computer graphics. The details of the C++ fixed point number class implementation
is in the appendix. When the fixed point C+4 class was benchmarked informally, it
was found that on a 486DX33 PC most operations were roughly twice as fast as the
floating point counterpart. However, there were no significant speed improvements
when the same benchmarks were performed on a 100MHz Pentium PC.. One possible
explanation for this is because of load balancing on the CPU. The design of modern
CPUs enables most subsystems to execute in parallel if there are no data dependen-
cies. This strategy tries to keep as many ,ubsystems on the CPU busy as possible. It
is possible that by using fixed point operations, we are keeping the ALU busy hut not
the floating point unit (FPU). Thus o'. a CPU such as the Pentium, the performance
gains due to faster fixed point operations are reduced because of less efficient use of
the CPU, or less parallelism. It is the author’s opinion that the question of whether

to use fixed point arithmetic or floating point is dependent on the CPU in question.

66

Ideally there would be two versions of the implementation and, based on benchmarks
during the installation phase, the faster routines would be installed. We leave it up

to the graphics engine to make such optimizations.

5.2 Memory Considerations

There are a few issues that influence the runtime memory requirements. One issue
is whether to use static libraries or dynamic link libraries (DLLs). With DLLs, the
executable (binary) is smaller, but will need to locate and link with the DLLs at
runtime. This could cause problems if the user relocates the DLLs to a place that is
not in the search path, or deletes the DLLs altogether. Since many applications are
built using MFC, it is very likely that using DLLs would save memory at runtime,
not to mention saving disk space.

The document/view model, in theory, would save a great deal of memory since
there is only one copy of the data (located in the document), and multiple views.
In this particular case, due to the fact that the graphics engine does not support
multiple cameras, every view must instantiate a graphics engine, thereby creating
multiple copies of the input texture images. This limitation should be eliminated
when the Intel 3DR graphics engine supports multiple cameras. In practice, it is not
a major problem since the operating system manages virtual memory and will swap
if necessary. Things are 7+ st slowed down a little if there are too many views on the
screen, and limited main ; x:emory.

The use of quadratic »atch gives us a major memory savings compared to the
other method of supplyin, a 3D mesh model. Only nine control points are necessary

compared to many vertices . d edges required for a mesh.

5.3 Debugging

Debugging is challenging under even the best of circumstances. Many programmers
consider this part of software development an art form. Debugging is the process of
uncovering and correcting errors that manifest themselves as symptoms in the testing
phase. Debugging is not testing, rather it occurs as a consequence of testing [20].

Thielen[26] comments on where bugs come from:

67

How do bugs get into a program? Very simply. you [the programmer] put
them there You are the one who sits down and types some buggy code
into your program... Every time you code, you insert bugs. This is one
of the dirty little secrets of programming. Programmers write code and

create bugs every day.

5.3.1 Assert the world

It is helpful to use diagnostic functions and macros to ensure that the code itself
detects and reports abnormal program states. This functionality is implemented in a
large part by the MFC application framework, and the concepts are used elsewhere
in the program. One of the more useful practices is to use ASSERT macios. The
following code excerpt illustrates the use of the ASSERT macro, in which the Graphics

Contezt object is ASSERTed to be valid before any further initialization occurs.
void CSphereView::InitializeGC()
{

ASSERT(m_GC.IsValid());
if('m_GC.IsValid())

return;
//setup camera
m_camera.Location(0.0f, 0.0f, 0.0f);
m_camera.Direction(0.0f, 0.0f, 1.0f); // -z axis
m_camera.Up(0.0f, 1.0f, 0.0f); // +y axis

};

In programs that use ASSERTSs, many errors can be caught and localized very quickly
and easily. In order for this scheme to work, the ASSERTs must be used liberally
with pre and post conditions being ASSERTed. This in effect is building self diag-
nostic code. From the software engineering point of view, this can be seen as doing
both black box and white box testing on the methods (in the case of objects) and
procedures. By using self diagnostic validity checks on the objects themselves, the

program can check to ensure that the object is in a valid state.

5.3.2 Visual Aids for Debugging

One of the major problems with using debuggers is the fact that the programmer has

to interpret the values of variables. In certain instances it is not possible to specify

63

conditicnal breakpoints; this leads to a problem of trying to check and analyze too
much information in the hopes of finding the cause of the bug. To further complicate
matters, there is the phenomenon called the probe effect which stated simply, is that
the act of observing changes the onservation. This can make certain problems difficult,
if not impossible, to debug using the traditional methed of setting breakpoints — since
the very act of transferring control to the debugger can disturb the effect that you
were trying to observe. An example of this would be when trying to debug code that
need to be drawn to the screen; when the debugger gains control again at a breakpoint
the painting of the client area will not occur correctly. One way to minimize the probe
effect would be to refrain from setting breakpoints and just use the time-honoured
tradition of printing text based information to the stderr or stdout streams. This
approach has two problems. First, it involves potentially massive amounts of data
in textual format that the programmer must sieve through in trying to reconstruct
the internal state of the program, followed by analysis of the states to determine
the potential causes of the problem. Second, in the Windows 95/NT environments.,
printing textual information to a stream is not trivial since there are no stdout or
stderr streams. A way is needed to condense the state information and to graphically
represent the program state of interest such that, when debugging, the probe effect
is minimal and many program states are displayed in graphical format so that the

program can execute at near normal speed.

Debugging Bubbles

Debugging bubbles is one such visual debugging aid that was incorporated in the
software. This is a novel way of interactively viewing the internal state of the warping
algorithm. The bubbles in Figure 5.1 are of varying sizes so that the programmer
can distinguish which of the nine control points they are. These points are the quad
patch control points in the texture space overlayed in the viewport. In this way,
the programmer can view the output of the viewport «nd the corresponding texture
patch. This little bit of extra coding allowed the programmer to visualize the internal
states of the program while avoiding the probe effect. For instance, it was helpful
in tracking down the discontinuity at the seam of the panospheric image. As the

camera crossed the seam, the control point was mapped to a different region which.

69

in texture space, corresponded to a large jump. Without the visual aid, some of these
problems would have been much more difficult and time consuming to diagnose. In
Figure 5.1 the right image shows the quad patch control points in texture space
projected on to the viewport window. The bubble in the left view in the upper left
corner indicates that the program recognizes that the quadpatch crosses a scam. The
interesting thing to note here is the control point that is circled free hand. It shows
that the distortion that is seen is caused by one of the control points being out of
place. Seeing where the control point was actually mapped to. and still being able
to interact with the program at full speed, made it relatively simple to diagnose the
problem. The reader may have noticed that having the implementation based on
the document/view model, may make it possible to create a view that would map
the texture points in texture space, that is to say, overlay these control points in
the texture image. This would complicate the implementation too much and may

introduce errors which would ultimately be self defeating as a debugging aid.

sphe-rt; [%pherf-l]

Figure 5.1: Visual Aid for Debugging

70

5.4 Matching Image Seams

When dealing with multiple images that must be texture mapped to a single 3D
model, the major problem that we will encounter is trying to match up the seams.
The calculations must be performed with a high degree of precision in order to ensure
that the seams are not noticeable if the image is to be stitched together at runtime.
as was attempted. The solution is. of course, not to have the seams in the first place.
The panospheric image is easicr to map because even though there is a scam, the two

regions are on the same image so we need not worry about skew or relative rotation

of the two regions.

Chapter 6

Results

The interactive aspects of the software cannot be demonstrated on paper, but we can
show some screen-shots that display the unwarped images. One of the objectives was
to target both Windows 95 and Windows NT 3.51 (or later). Most of the screen-
shots were taken when running under Windows NT 3.51 because it was also the

development platform.

6.1 Panoramic Images

The image in Figure 6.1 was used to illustrate the distortion correction that the
software performs. Notice that th~ straight vertical lines are still straight in the virtual
camera views (Figure 6.2), but the horizontal lines are now curved due to perspective
foreshorten'ng. The amount of curvature required to correct for the distortion is
dependent n the field of view. As expected, the smaller the field of view the less
correction is required and the straighter the horizontal lines become. Figure 6.3 1s
a sample panoramic image and Figure 6.4 is a view produced by a virtual camera

correcting the panoramic distortion.

Figure 6.1: Input Panoramic Image

72

AR

Top View: 40 degree Horizontal field of View
Bottom View:60 degree Horizontal field of View

Figure 6.2: Virtual Camera View of Test Panoramic Image

6.2 Front and Back Fish-eye Image Pairs

Figure 6.5 shows four inde_endent views of the same scene composed of the two fish-
eye images. Each of the views can be manipulated by panning. tilting, and zoorming

the virtual camera.

6.3 Input Image Resolution

The input image reso.ution dictates, to a large extent. the quality that can be ex-

pected when scenes are viewed with the virtual camera. Since the views are usually

3

Figure 6.3: Input Panoramic Image

Figure 6.4: Virtual Camera View of Panoramic Irige

74

sphere |Spherel]

File Edit View Window Test He

Top Row: Fish-eye image pair
Bottom: Four independent views of the same scene

Figure 6.5: Views of Front and Back Fish-eye images
75

of relatively small portions of the input iniage, pixelation can be very apparent. Fig-
ure 6.6 shows two views of the same scene, but the source images are of different
resolution. The input image with higher resolution will produce better results. Al-
though this may be obvious, the problem is more apparent because cach texel is
mapped to many pixels on the screen, thus reducing the natural low-pass filtering

that occurs on monitors.

6.4 Panospheric Image Mapped to a Panoramic
Image

Figure 6.7 is a view of a panospheric image transformed to a panoramic image. The
virtual camera supports panning to the left or right. The source panospheric image

is given in Figure 3.12.

.0 Windows 95/NT

Figure 6.8 is a screen-shot of the program running under the Windows 9% environment .
Most of the other screen-shots where taken under Windows NT 3.51. This is included
to show that the goal of designing a progr...~ .. !oth operating systems is satisfied.

It also illustrates a view of the panospheric - usform (left window).

6.6 Image Compression

The images in Figure 6.9 demonstrate the impact of using high com -ression ratio on
the size and quality of the final unwarped images. The original image is displaved
in the upper left cooner; the other three images are screen-shots of the unwarped
conventional camera view. All the source images were 24 bit 1024x16G24 images. each
compressed to at least the compression -atio shown. Note that the ~hecker patterns
are not present in tho screen display of the images; they were introduced in the
conversion process to get it on paper. It may not be as apparent in the figure on
paper, but on the screen we can notice very little difference between the results of
the virtual camera viewing the 40:1 compressed image or the 55:1 compressed image.

The quality degraded, however, when viewing the 80:1 compressed image. including

76

sphere [Spheret]

Elle d iew Window Test _

Images viewed using a virtual camera
Top: 512x512 fish-eye source image Bottwin: 256x256 fish-eye source image

Figure 6.6: Different Resolution Source Images

7

| Figure 6.7: Panospheric Image Mapped to a Panoramic Image

Figure 6.8: Windows 95 User Interface

78

loss of color information for the edges of the roof. Uneven color loss resulted because
JPEG quantized some of the 8x8 sub-blocks color information out of existence. This
only occurs when high compression ratios are involved. This illustrates that we can
compress the source images to a fairly small size and still get reasonable quality, even
after the virtual camera viewing transform. For instance, the original uncompressed
image was 1024x1024x24 bits or 3 megabytes; the largest of the three compressed
source images was less than 80 kilobytes. However, these compression ratios are

dependent on the content of the images.

6.7 Active X control

The screen-shot in Figure 6.10 is of an Active X control that was quickly ported from
the existing application code. The Active X control is embedded in an HTML (Hy-
perText Markup Language) page. Since the control was developed to demonstrate
the potential of using Active X with this imsging technology, only the basic function-
ality of a panoramic transform was impleme:: ed. The web page is composed of other
technologies such as JavaScript, which is used to connect the objects on that page.
All the buttons were programmed with JavaScript to send messages to the Active
X object. For instance, when the Load File button is pressed, it retrieves the file
name from the textedit box above, and sends it to the panoramic Active X object.
The important thing to note here is that we can leverage technologies such as Active

X to open up many possibilities for this immersive imaging technology.

Top left: Original fish-eye image Top right: virtual camera view of compressed
40:1 source image

Bottom left:virtual camera view of compressed 55:1 source image

Bottom right:virtual camera view of compressed 80:1 source image

Figure 6.9: Impact of JPEG Compressed Source Images

80

[Mew Pade Mictosolt Intemnet | xplorer

Figure 6.10: Screen-shot of Internet Explorer with a panoramic imaging Active X
control

81

Chapter 7

Discussion

7.1 Performance Evaluation

There will be very little performance analysis given in this thesis. The reason is that
there are too many variables that affect the performance of the software system as a
whole. The configurations of PCs are highly variable. Performance could be affected
by the CPU model and speed. the bus speed. tl. - bus architecture, the BIOS settings.
the amount of main memory, the type of mer ory. the amount of memory on the
graphics card, the type of graphics card, the operating system used, the version of
the device drivers being used, the window size, vhe number of windows open, the
background services running — even the way the user moves the mouse. to name just
a few of the factors. Measurements and timings would not he very meaningful.

The bottleneck, or performance limiting factor, varies from system to systen sud
configuration to configuration (on the same system). The major factor in the absence
of 3D graphics hardware is the speed of the CPU. The other major factor is the
performance of the graphics card. Some graphics cards allow fast block transfers

which facilitate smooth animation and increased frame rates.

7.2 Advantages of Panospheric Imaging
There are many advantages to using the panospheric imaging system over others.

¢ Less expensive to use due to the fact that the panospheric optic can be monnted
on regular video and photographic cameras. The panoramic camera and fish-cye

lens systems are not mass produced thus the prices are relatively high.

82

Easier image capture — Omniview’s solution require calibrated fish-eye image
pairs, while the panospheric optic needs only a single photograph. However, the
panospheric optic does have a blind-spot in the cone where the camera itself
occludes the view. But, this blind-spot is relatively small, and greater than 85%

field is achievable.

Less preprocessing required to take the raw photographs and convert it to a
form usable by the viewing program. Omniview and Apple’s QuickTime VR

both use stitching to compose the input images.

Preprocessing panospheric images is less computationally intensive due to the
fact that the field of view is captured on a single imaging plane. Even though
there is a discontinuity between the reflected field and the lens field, there is no
relative rotation between the two regions. With this constraint, the stitching

process is simplified computationally.

The panospheric sensor can be used to capture live video making interactive
panospheric movies a possibility for the future. The revolving panoramic camera
can't be used to capture moving objects because at any instant in time. it can't

see a full 360° field of view.

A variant stereo panospheric optic can be used to extract depth information of

objects in a scene. This possibility is not present in the other systems.
Features Unique Our System

— Based on the document/view model which facilitates the use of multiple

independently controlled virtual cameras viewing a single scene.

— Multiple viewing models for the various formats, such as virtual conven-

tional camera which is planar and panoramic strips which is non-planar.

— supports cylindrical, spherical, and panospheric images. No other system
supports all three models — They either support the cylindrical model
or the spherical model. This is the only system that also supports the

panospheric format.

— used object oriented technology such as Active X to allow tighter integra-

tion with other applications.

7.3 Future Work

7.3.1 Panospheric Video

Panospheric video would allow the user not only to look around from a stationary
position, but also to move to different locations. There are several scenarios to con-
sider. One scenario is to capture 1 sequence of static images and make this into a
video stream. Conceivably, this could be used for applications such as viewing of real
estate, in which panospheric images are taken in each room and the user is then able
to navigate to diflerent rooms. In this case, the video stream is just a convenient
way of holding a collection of panospheric images; each frame could be viewed in any
sequence. Another scenario is where the panospheric video is captured continuously
as the camera moves in a scene. The user would be restricted to the path that the
camera took. but at any point in time they would be able to look arour ™ from that
given spot.

There are many formats that will encode ana compress video streams. MPEG
is a commonly used standard for compressing video. Windows AVI is another stan-

dard — which allows the user to specify the compression codec!. The panospheric

transformation w o but. instead of using a single image as the texture
map., we would a frame of video. There are a few factors that must
be conside to be used, unless there is hardware support for
decomp~ 5. the processor may not be able to keep up with
decompi d rendering the distortion corrected view. If we
use unco. « the processing burden, the storage requirements
will increa. ..v. These problems exist only in the short term. It is only

a matter of time before video decompression and 3D graphics hardware become af
fordable for PCs, enabling the potential of panospheric video to be realized for the
mass market. A third scenario is the use of live panospheric video. In this case. the

panospheric images would be continuously captured using a framegrabber. Again.

'Codec is short for coder/decoder

84

each frame would be used as the texture image in the transforms. One could con
ceivably locate different virtual camera on different computers over a relatively fast
network, allowing each user to look in the direction they want. Panosphieric movies

would be a good application of this technology.

7.3.2 Automation of Preprocessing

In the current implementation some of the preprocessing steps are done manually,
When photographs are scanned into the computer the image must be nannaliy
cropped. Panospheric images are circular. thus we must crop the image to the mini

mum rectangular region that encloses the active region. This step can conceivably he
done automatically by using image processing techniques to detect the houndaries of
the active circular region. and cropping accordingly. We could take advantage of our

knowledge of the content of the image and do edge detection on select rows.

7.3.3 Integration with other Applications

In order for this technology to be widely used and accepted by consumers. it must he
able to integrate with other technologies and applications that are currently in use
such as the Netscape web browser and Microsoft Office appiications. There are many
ways to integrate this product with other applications. One is to develop applications
that explicitly support other specific applications; another way is to use a technology
such as COM (Component Object Model). COM is a binary standard for system
level objects. It allows developers to package their software components and have
other applications use it. The other applications do not need any specific information
about the components. Objects themselves will expose the operations that can he
performed on them. As has been discussed earlier, Active X is built on top of COM
and can be used to facilitate integration with other applications. Although a sample
Active X control was implemented to demonstrate the potential, a lot of work still
need to be done to make the control robust and network-capable.

Navigational and data links can be embedded in the panospheric images to enable
the user to navigate to other scenes. These links could include Uniformn Resource
Locators {URLs) and connect to other data resources such as the World Wide Wel,

(WWW). Imagine looking around in a panospheric scene of a museumn: you sce an

85

interesting ohject and want a closer look. so you click on the object and the web

browser retrieves more inforination, be it static pictures, videos or sounds.

7.3.4 Head Mounted Display

Head Monnted Displays (HMD) with head tracking, can be used so that as the user
moves their head, the panospheric scene is updated to reflect the direction in which
they are looking. HMDs in conjunction with the panospheric video streams would
provide a better simulation, since this method offers the user more freedom than just
using a single panospheric image. With the use of HMDs, the prospects of stereo

panospheric imaging can also be explored.

7.3.5 Internet Applications

To fully exploit the Internet we can use technologies such as Active X. which is
gaining a large following and has the backing of Microsoft, or we can consider using
Java to write applets which are secure and platform independent. Active X at the
present time is system dependent, although this may change in the future. As network
bandwidth increases for the typical user, this imaging techiiology may beconie very

popular.

Chapter 8

Conclusion

Immersive imaging technology is a rapidly growing field with many potential appli-
cations. The ability to capture panospheric images with the use of Inexpensive conic
mirrors. coupled with the ability to simulate interactive viewing with a virtual camera
in software. will enable multimedia content creators to present virtual reality in a way
not possible with computer generated graphics or static photographs alone. A soft
ware program was developed that enables the user to view immersive images of real
world scenes. The software is based on the document/view model, which facilitioes
the viewing of the same scene with multiple virtual cameras. The software supports
common image file formats, such as JPEG and GIF, which provide varying levels
of compression. The compressed source images save disk space, and if transferred
over networks would require far less bandwidth. Many immersive image formats were
supported. including panoramic images which are modeled as cylinders. panospheric
images which are modeled as spheres, and fish-eye image pairs which are also mod-
eled as spheres. Due to the non-planar projections involved in the capturing process,
the input images are warped. Our software maps these warped images onto the ap-
propriate 3D models, in effect reconstructing the scene, and then it resamples the
scene by viewing the model with a virtual camera. When the images (mapped onto
3D models) are viewed with the virtual cameras, the distortions are climinated. The
virtual cameras can be manipulated using pan, tilt, and zoom operations, thereby
allowing the users to interactively look around as if they were immersed in the scene,

The major advantage of using the PVSI’s conic mirror panospheric system is the

ease with which images are captured. It is far more economical than fish-eye lenses.

87

Foven though the panospheric images have a discontinuity or a seam. it is relatively
casy to stitch the two regions together, since there is no relative rotation between
the two regions. With the use of PVSI's relatively inexpensive panospheric image
capture systemn and this software designed to be run on home computers. the potential
mass market applicaticns have yet to be explored. Immersive imaging is an enabling

technology that will be the cornerstone of many future multimedia applications.

(v.d]

Bibliography

1]
[2]
3]

(4]

[10]
[11]
[12]
[13]

[14]

[15]

(16]

A. Basu. Personal Commuanication.
S. Bogner. Personal Communication.

S. L. Bogner. An Introduction to Panospheric Imaging. Procecdings of e 19495
IEEE International Conference on Systems, Man and Cybernetics, 1995,

E. Catmull and R. Rom. A Class of local interpolating splines. In Conmiputcr
Aided Geometric Design.

S. E. Chen. QuickTime VR - An Image-Based Approach to Virtual Environment
Navigation. In Computer Graphics Proceedings, Annual Conference Serics. Apple
Computer. Inc.. 1995.

J.D. Foley. A. van Dam, S.K. Feiner, and J.F. Hughes. Compulcr Graphics:
Principles and Practice. Addison-Weslev, 2nd edition, 1990.

R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley,
1992.

N. Green and P. Heckbert. Creating raster Omnimax images from multiple per-
spective views using elliptical weighted average filter. IEEE Computcr Clraphics
and Applications. pages 21-27, 6 1986.

MPC Working Group. Multimedia PC Standard. Software Publishers Associa-
tion.

URL: http://www.spa.org/mpc

T.R. Halfhill. See You Around. Byte, pages 85-90, May 1995.

Intel Corporatici:. Intel 3DR Graphics Pipeline Programming Manual, 1995.
Intel Corparetion. Intel 3DR Rasterizing Engine Programming Manual, 1995.
M. Irani. 5. I'su. and P. Anandan. Video compression using mosaic representa-
tions. Signal i*ro: < :~ing: Image Communication, v 7(n 4-6):p 529-552, November

1995.

Microsoft. For 7:- « apers Only.
URL: http://wwe . 'crosoft.com/devonly

Microsoft Corporatics:. Win32 SDK’, 1985-1995.

Microsoft Corporation. Windows Interface Design Guidelines for Software 1e-
sign 1995.

89

(17]

[18]
[19]
[20]

[21]
[22]
[23]

(24]

D. O’Donovan and P. O’Connor. Multiple Image Reconstitution with Lens Cor-
rection. In Proceedings of SPIE - The International Society for Optical Lngi-
neering. ages 131-141, 1995.

W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression
Standard. Van Nostrand Reinhold, 1993.

I. Powell. Panoramic Lens. Applied Optics, Vol. 33(No. 31):p 7356-7361. Novem-
her 1994.

R.S. Pressman. Sofiware Engineering A Practitioner’s Approach. McGraw-Hill.
3rd edition, 1992.

J. Reyda. Personal Communication.
D. Southwell. Personal Communication.

D. Southwell, B. Vandegriend, and A. Basu. A Conical Mirror Pipeline Inspection
System. In Proceedings of the 1896 IEEE, International Conference on Robotics
and Automation. April 1996.

sun Microsystems Inc. Java(TM) Developers Corner.
URL: http://java.sun.com/devcorner.html

R. Szeliski. Image Mosaicing for Tele-Reality Applications. In Proceedings of the
2nd IEEE Workshop on Applications of Computer Vision, pages 44-53. 1994.

D. Thielen. No Bugs! Delivering Error-Free Code in C and C++. Addison-
Wesley, 1992,

N. Trevett. Simulation of the Real World. Computer Systems Europe. 10(11):25-
27, November 1990.

Usenet. C++ FAQ.
URL: http://www.cis.ohio-state.edu/hypertext/faq/usenet /FAQ-List.htm]

Usenet. Compression FAQ.
URL: http://www.cis.ohio-state.edu/hypertext/faq/usenet /FAQ-List.htm!

Usenet. FAQ: 3-D Information for the Programmer.
URL: http://www.cis.ohio-state.edu/hypertext/faq/usenet /FAQ-List.html

Usenet. Graphics File Format FAQ.
URL: http://+ ww.cis.ohio-state.edu/hypertext/faq/usenet/FAQ-List.html

Usenet JPEG Image Compression: Frequently Asked Questions.
URL: http://www.cis.ohio-state.edu/hypertext/faq/usenet/FAQ-List.html

Y. Yagi, Y. Nishizawa, and Y. Masahiko. Estimation of Free Space for the Mobile
Robot using Omnidirectional Image Sensor COPIS. In Proceedings of the 1991

International Conference on Industrial Electronics, Control and Instrumentation
- IECON’91, 1991.

K. Yamazawa, Y. Yagi, and M. Yachida. Obstacle detection with omnidirec.ional

image sensor HyperOmni vision. In Proceedings of the 1995 IEEE International
Conference on Rcbotics end Automation, 1995.

90

Appendix A
C++4 Fixed Point Number Class

#ifndef FIXEDPT_H
#define FIXEDPT_H

#include <iostream.h>

//

// (€)1995 Kenneth P. Der (der@cs.ualberta.ca)

1/

// Contents:

// This file implements a template class for fixedpoint numbers. Fixed

// point numbers should be slightly faster than floating point numbers

// but have a much more limited range and accuracy.

J o e e e e e e
// class specific method naming convention:

// {1Imis}{lImls}{MultiDiv} [Assign] (const FixedPt<T,UT,nFPt> &rc2)

// sxMrltAssign() -~ small ¢= unknown range

// 11DivAssign() -- large /= large

1/

// [#1{x1{x][x) ~-- large

// (0] [+](xj[x] -- medium

/! [0] [0} [*][x] -- small

// Caution:

// -since we’re using 2’s complement according to the above classification
// the more negative numbers (e.g. -5000.0) are classified as "small"

// and the less negative numbers (e.g. -0.897) are classified as "large"
// -don’t use methods involving 's’ classification if you can avoid it --
// unless you know EXACTLY what going on -- or else you’ll get incorrect
// results.

// ie, avoid 1s,ms,ss,sl,sm methods.

// -of all the Mult methods, xx is the most accurate but also the slowest.
1/

// Note:

// use multiples of 2 for nFPt
// The suggested value for nFPt is sizeof(T)#4

// i.e. if T is 32 bits then nFPt is 16

// Known Bugs/problems: search for [kpd]

// = msvc++2.0 doesn’t 1ike friend functions in template classes.

// = thus stream insertion/extraction (“<<" and ">>") operators are not

// supported at this time.

// - a workaround is to use the cast operataors to convert to the intrinsic
// types first.

// - or urite stream operators for each template class (i.e. each instance
// of the class template) yourself

//

// T - is the integer type used for the internal representation

// UT - is the unsigned T type used to make sure the signs are correct of the
// bitshifts

// 2o
template <class T, class UT,int nFPt>

class FixedPt

91

public:

//11Div

// ctor dtor

FixedPt(float velue) { m_fixsdPoint = T(value ¢ (1<<nFPt));:}
FixedPt(double value){ m_fixedPoint = T(value s (1<<nFPt));}

FixedPt(int value®0) { m_fixedPoint = value << nFPt;}

FixedPr(const FixedPt<T,UT,nFPt trc){ m_fixedPoint = rc.m_fixedPoint:}

// virtual “FixedPt(){}; //hmmm... vill this cause a vtable to be created?

// mutative operators

FixedPt<T,UT ,nFPt> & operator += (const FixedPt<T,UT,nFPt> krc2)
{ m_fixedPoint += rc2.m_fixedPoint; return sthis;}

FixedPt<T,UT,nFPt> & operator -= (const FixedPt<T,UT,nFPt> &rc2)
{ m_fixedPoint -= rc2.m_fixedPoint; return *this;}

FixedPt<T UT,nFPt> & 11MuliAssign (const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = (m_fixedPoint>>(nFPt>>1))®(rc2.m_fixedPoint >>(nFPt>>1));
return sthis;

FixedPt<T,UT,nFPt> & ImMultAssign (const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = (m_fixedPoint>>(nFPt>>1))#(rc2.m_fixedPoint >>(nFPt>>1));
return ¢this;

FixedPt<T UT,nFPt> & isMultAssign (const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = (m_fixedPoint>>nFPt)*rc2.m_fixedPoint;
return sthis;

FixedFt<T,UT,nFPt> & mlMultAssign (const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = (m_fixedPoint>>(nFPt>>1))*(rc2.m_fixedPoint >>(nFPt>>1));
return *this;

FixedPt<T,UT,nFPt> & mmMultAssign (const FixedPt<T,UT,nFPt> krc2)

{
}

m_fixedPoint = (m_fixedPoint>>(nFPt>>1))*(rc2.m_fixedPoint >>(nFPt>>1));
return *this;

FixedPt<T,UT ,nFPt> & msHultAssign (const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = ((m_fixedPoint>>(nFPt>>1))#rc2.m_fixedPoint)>> (nFPt>>1);
return ethis;

FixedPt<T,UT,nFPt> & 8lMultAssign (const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = (m_fixedPoint)#(rc2.m_fixedPoint >> nFPt);
return *this;

FixedPt<T,UT,nFPt> ¢ smMultAssign (const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = (m_fixedPoint>>(nFPt>>1))*(rc2.m_fixedPoint >>(nFPt>>1));
return sthis;

FixedPt<T ,UT,nFPt> & ssMultAssign (const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = (UT)(m_fixedPoint*rc2.m_fixedPoint)>> nFPt;
return *this;

FixedPt<T,UT ,nFPt> ¢ xxMultAssign (const FixedPt<T,UT,nFPt> &rc2)
{// (a.b) » (c.d) ~=> (a>>nFPt)s(c.d)+ (.b)*(c>>nFPt) + (CC.bY*(.d))>>uFPt)

}

m_fixedPoint = wholeLowWord()#rc2.m_fixedPoint+ // a*(c.d) +
fractionLowWord()#rc2.vholeLowWord() + // (.b)ec
(((UT)(fractionLowHord()trc2.fractionLowHord()))>>nFPt); // (.b)=(.d)

return sthis;

FixedPt<T,UT,nFPt> & operator s= (const FixedPt<T,UT,nFPt> g&rc2)

{

return mmMultAssign(rc2);}

FixedPt<T,UT,nFPt> & 11DivAssign(const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = m_fixedPoint/(rc2.m_fixedPoint>>nFPt) ;
return *this;

FixedPt<T,UT,nFPt> & lmDivAssign(const FixedPt<T,UT,nFPt> krc2)

{
}

m_fixedPoint = (m_fixedPoint/rc2.m_fixedPoint) <<nFPt;
return *this;

FixedPt<T,UT ,nFPt> & 1sDivAssign(const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = (m_fixedPoint/rc2.m_fixedPoint) <<nFPt;
return sthis;

FixedPt<T,UT,nFPt> & 1xDivAssign(const FixedPt<T,UT,nFPt> &rc2)

{
}

m_fixedPoint = (m_fixedPoint/rc2.m_fixedPoint) <<nFPt;
return *this;

FixedPt<T,UT,nFPt> & mxDivAssign(const FixedPt<T,UT,nFPt, &rc2)

{
}

m_fixedPoint = ((m_fixedPoint<< (nFPt>>1))/rc2.m_fixedPoint) <<(nFPt>>1);
return *this;

FixedPt<T,UT,nFPt> & sxDivAssign(const FixedPt<T,UT,nFPt> Rrc2)

{
}

m_fixedPoint = (m_fixedPoint<<nFPt)/rc2.m_fixedPoint;
return #this;

FixedPt<T,UT,nFPt> & xxDivAssign(const FixedPt<T,UT,nFPt> &rc2)
{ 7/ (a.b) / (c.d) --> ((a/(c.d))<<nFPt)+ (.b<<nFPt)/(c.d)

}

m_fixedPoint = {(wholeHighWord()/rc2.m_fixedPoint) <<nFPt)+
fractionHighWord()/rc2.m_fixedPoint;
return *this;

FixedPt<T,UT,nFPt> & operator /= (const FixedPt<T,UT ,nFPt> &rc2)

{

return mxDivAssign(rc2);}

// non-mutative operators
FixedPt<T,UT,nFPt> operator + (const FixedPt<T ,UT,nFPt> &rc2)

{ return FixedPt<T,UT,nFPt>(»this) +=rc2;}
FixedPt<T,UT nFPt> operator - (const FixedPt<T,UT ,nFPt> &rc2)

{ return FixedPt<T,UT,nFPt>(*this) -=rc2;}
FixedPt<T,UT,nFPt> operator # (const FixedPt<T,UT,nFPt> &rc2)

{ return FixedPt<T,UT,nFPt>(sthis) *=rc2;}
FixedPt<T,UT,nFPt> operator / (const FixedPt<T,UT,nFPt> &rc2)

{ return FixedPt<T,UT,nFPt>(#this) /=rc2;}
FixedPt<T,UT,nFPt> & 11Mult (const FixedPt<T,UT,nFPt> krc2)const

{

return FixedPt<T,UT,nFPt>(*this).11Mult(rc2);}

FixedPt<T,UT,nFPt> & 1lmMult (const FixedPt<T,UT,nFPt> &rc2)const

{

return FixedPt<T,UT,nFPt>(#this).lmMult(rc2);}

FixedPt<T,UT,nFPt> & 1sMult (const FixedPt<T,UT,nFPt> &krc’)const

{

return FixedPt<T,UT,nFPt>(sthis).1lsMult(rc2);)}

FixedPt<T,UT,nFPt> & mlMult (const FixadPt<T,UT,nFPt> &rc2)const

{

return FixedPt<T, UT,nFPt>(sthis) .mlMult(rc2);}

FixedPt<T,UT,nFPt> & mmMult (const FixedPt<T,UT,nFPt> &rc2)const

{

return FixedPt<T,UT,nFPt>(sthis).mmMult(rc2);)}

FixedPt<T,UT,nFPt> & msMult (const FixedPt<T,UT,nFPt> &rc2)const

{

return FixedPt<T,UT,nFPt>(sthis) .msMult(rc2);}

FixedPt<T,UT,nFPt> & slMult (const FixedPt<T,UT,nF2t> krc2)const

{

return FixedPt<T,UT,nFPt>(¢this).s1Mult(rc2);}

FixedPt<T,UT,nFPt> & smMult (const FixedPt<T,UT,nFPt> &rc2)const

{

return FixedPt<T,UT,nFPt>(sthis).smMult(rc2);}

FixedPt<T,UT,nFPt> & ssMult (const FixedPt<T,UT,nFPt> &rc2)const

{

return FixedPt<T,UT,nFPt>(sthis).ssMult(rc2);}

FixedPt<T,UT,nFPt> & xxMult (const FixedPt<T,UT,nFPt> &rc2)const

{

return FixedPt<T,UT,nFPt>(sthis).xxMult(rc2);}

FixedPt<T,UT ,nFPt> & 1xDiv (const FixedPt<T,UT,nFPt> &rc2)const

{

return FixedPt<T,UT,nFPt>(sthis).1xDivAssign(rc2);}

FixedPt<T,UT,nFPt> & mxDiv (const FixedPt<T,UT,nFPt> &rc2)const

{

return FixedPt<T,UT,nFPt>(#sthis) .mxDivAasign(rc2);)}

FixedPt<T,UT,nFPt> & sxDiv (const FixedPt<T,LT,nFPt> &rc2)const

{

return FixedPt<T,UT,nFPt>(#this) .sxDivAssign(rc2);}

FixedPt<T,UT,nFPt> & xxDiv (const FixedPt<T,UT,nFPt> &rc2)const

{

return FixedPt<T,UT,nFPt>(sthis).xxDivAssign(rc2);}

93

// comparison operators
//[kpd] - use STL for the other operators defined in terms of *w=" and "“<"
int operator m= (conat FixedPt<T ,UT,nFPt> Rrc) const
{ ret: * m_fixedPoint == rc.m_fixedPoint;}
int operator (conat FixedPt<T,UT ,nFPt> &rc) const
{ return m_fixedPoint < rc.m_fixedPoint;}
// cast operators
operator float() conat{ return float(m_fixedPoint) / (1<<rFPt);}
operator double()const{ return double(m_fixedPoint) / (1<<nFPt);}
operator int()const{ return (m_fixedPoint »> nFPt); }
// non-mutative methods
T round()const { return (m_fixedPoint + (1<<(nFPt-1))) >> nFPt:}
T ceiling()const { return (m_fixedPoint -1 + (1<<nFPt)) >> nFPt;}
// mutative methods
FixedPt<T,UT,nFPt>k dropWhole(){ m_fixedPoint &= fractionMask(); return sthis;}
FixedPt<T,UT ,nFPt>2 drcpFraction(){ m_fixedPoint &= wholeMask(); returr *this:}

// implementation methods
protected:
T wholeLowWord()const { return (m_fixedPoint>>nFPt);}
T wholeHighWord()const { return (m_f.xedPoint® wholeMask());)}
T fractionLowWord()const { raturn (m_fixedPoint 2 fractionMask());}
T fractionHighWord()const { return (m_fixedPoint<<nFPt);}
T wholeMask()const { return (~({T)0)<<nFPt):;}
T fractionMask()const { return ~“wholeMask();}
int negativeResult(T a, T b){ return (a~b)&(1<¢<(sizeof(T)*8-1)) 71:0;}
// data members

protected:
T m_fixedPoint;
private:
+ //[kpd) mBvc++2.0 doesn’t like this. 288 it’s not too friendly :)
public:

friend ostream & operator << (ostream %os,const FixedPt<T,UT,nFPt> &rc)
{ return os<<float(rc);}
./
}

1/
// common typedefs

/7 - we’l]l assume int is 4 bytes

//=-==-= --- e s —e——— e e DLt bt S T
typedef FixedPt<int,unsigned int,sizeof(int)#4> fixed3?2;

ostream & operator << (ostream &os, const fixed32 &rc)

{

return os << float(rc);

}

#ondif

