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Abstract

High-throughput single nucleotide polymorphism (SNP) genotyping technologies conveniently pro-

duce large SNP genotype datasets for genome-wide linkage and association studies. Various factors,

from array design and hybridization, can give rise to a certain percentage of missing calls, and the

problem becomes severe when the target organisms such as cattle do not have a high resolution ge-

nomic sequence available. Missing calls in SNP genotype datasets would undermine downstream

data analysis. Therefore, effective methodologies for dealing with missing genotypes are in urgent

need. In this dissertation, we start with a brief introduction to the concepts in genetics, then present a

collection of imputation methods, with focus on machine learning algorithms, to tackle the missing

SNP genotype problem. We demonstrate that these imputationapproaches can achieve satisfactory

accuracies, tested on the real population SNP genotype datasets, and highlight the places where our

new methods find useful. We conclude with some possible future directions for the genome-wide

SNP genotype imputation problem.
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Chapter 1

Introduction

1.1 High-throughput Genotyping Technology

A single nucleotide polymorphism (SNP) represents the mostcommon form of genetic variations

in the genome between individuals of the same species. Such agenetic variation involves alter-

ations of one nucleotide at a physical location, and is considered to be a SNP only if it occurs in at

least1% of the population. Because of their abundance, heredity stability, and availability of high-

throughput genotyping technologies [34], SNPs have been used as genetic markers to facilitate the

new-generation genetic tool for constructing the high density genetic map [10] and carrying out the

genome-wide association studies(GWAS), which aim at identifying genetic associations withtraits

from these common genetic variations. Thus far, SNPs have been recognized to be the etiology of

many complex diseases such as prostate cancer, bipolar disorder, and obesity [5, 11, 24].

In general, GWAS, either case-control, categorical or quantitative, are based on the“common

disease/trait-common variant”(CDCV) hypothesis [1], and require many samples along with large

and dense SNP markers. The tools for scanning millions of SNPs for each sample to detect the poly-

morphisms are DNA microarrays. For diploid species such as human and cattle, the high throughput

genotyping technologies utilize DNA microarrays togetherwith the information on the distribution

of SNPs along the genomes to generate unphased genotype for each SNP marker. With the comple-

tion of the International HapMap Project (Phase I) [10], a haplotype map for understanding genetic

variants and the haplotype structures of humans has become available; as a result, a set of tag SNPs

has been identified and can be used as the reference to the distribution of SNPs throughout human

genomes.

Currently, two competing high-throughput genotyping platforms from the Affymetrix GeneChip

and the Illumina BeadChip respectively are the two popular choices for whole-genome genotyping.

Both platforms are single-channel microarray systems and contain a selection of variant probes along

the genome [33, 24]. The major difference between the two platforms lies in their SNP-selection

strategies in term of genome coverage [24]. Microscopic SNPprobes on the Illumina array are

selected almost entirely from the tag SNPs with optimal minor allele frequency derived from the
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international HapMap project; on the other hand, Affymetrix array includes about half of those tag

SNPs and the rest are mainly from an unbiased selection of SNPs [33, 24].

1.2 SNP Genotype Missing Value Problem

High-density SNP microarray chips can produce unphased genotype values for each SNP marker.

However, due to the current design of high-throughput genotyping technology, certain amount of

bias, known as genotyping errors, could be introduced to theprocess of selection and amplifica-

tion [24]. In addition, the genotyping assays are prone to contain missing calls. Missing calls can

be attributed to the poor quality of DNA samples and the ambiguity of fluorescence signals [17].

Poor quality of DNA samples can result in the failure of amplification and reduction of intensity

of subsequent fluorescence signals on the background. The ambiguity in the reads of fluorescence

signals can lead to “no-call” procedure that any of the clusters of genotype cannot be assigned to

those signals [17]. For humans, the current general-purpose high-density SNP chips are estimated

to contain a portion of missing genotypes and genotyping errors in the range[0.05%, 1%], due to

the completion of the human genome project [9]; for other species such as cattle, a high-resolution

genetic map of their whole genomes has not yet been available, and consequently their slightly lower

density SNP chips could contain more missing data and errors, which is similar to the earlier human

DNA microarrays whose missing calls could range from5% up to20% [13, 31].

The unphased genotype data obtained from the high-throughput genotyping approaches are con-

sidered to be the major issue that complicates GWAS, since most existing tools for GWAS could not

handle data with missing values. The missing genotypes present in the dataset, particularly when the

percentage is high, also challenge the current associationstudy methods. In practice, when mark-

ers with missing genotypes are recognized to be extremely suspected, one can choose to repeat the

genotyping or modify the GWAS tools to accommodate the missing data. However, both approaches

are expensive in terms of labor and cost. Another common strategy to tackle the missing values in

the SNP data is to discard those SNP markers and/or samples that contain missing genotypes above

some threshold [11, 14]. However, this may significantly reduce the mapping resolution in sacrifice

of good data — see also the Results chapter on our dataset preprocessing, detection power of GWAS

tools, and undermine the inference of gene-trait association [11]. Lastly, one can try to computa-

tionally infer and substitute the missing genotypes with predicted values, also known asimputation.

Although imputation tends to be a low-cost approach, we should be cautious that a poor imputation

may introduce biases or errors to the SNP datasets [25].

The so-called “unphased genotypes” also challenge the missing genotype imputation. For diploid

organisms such as human, chromosomes come in pairs. The Mendelian law of inheritance states

that, for each individual, one of a pair of homologous autosomes is inherited from her father and

the other from her mother. However, SNP genotype data do not specify which chromosome comes

from the paternal or the maternal, and are usually referred to as unphased data. As a result, missing

2



genotype imputation is usually coupled with the haplotype inference. Some approaches to genotype

imputation involve haplotype inference at a preprocessingstage in order to recover the inheritance

information. Robertset al.[25] mentioned that haplotype inference with missing data is known to be

computationally intractable. Therefore, either near optimal approximation algorithms are designed

to facilitate haplotype inference with missing data, or machine learning techniques are adopted to

find the best choice for the reconstruction of haplotypes based on domain knowledge.

1.3 Motivation of Missing SNP Genotype Imputation

With the help of missing genotype imputation, current GWAS tools that usually do not tolerate miss-

ing values can continue to be used without modification. Moreover, missing genotype imputation

can greatly improve the detection power of GWAS without reducing the resolutions of SNP data in

that success of GWAS is governed by statistical power. By notreducing SNPs or samples into the

study, the statistical power becomes stronger. Although identifying strong gene-trait associations

may require relatively few samples, large numbers of samples can get rid of lower-penetrance ef-

fects. In genetics, the proportion of individuals carryinga particular variation of a gene that would

only sometimes express an associated trait is known as lower-penetrance effects.

The gene-trait association study can extend our knowledge of diseases and help design cus-

tomized drugs. SNPs are known to affect drug metabolism and clearance of drugs. For instance,

GWAS on SNPs can help predict the likelihood that someone will develop a particular illness and

answer questions such as why individuals differ in their side effects when absorbing the same thera-

peutic. In the future, physicians and pharmacists can resort to individual SNP sequencing and design

customized drug therapy for any particular patient.

1.4 Our Contributions to Missing SNP Genotype Imputation

Our main contribution in this work is to develop a framework that uses efficient, effective, and

biologically meaningful machine learning approaches thatwork with a genetic map to infer the

missing genotypes within a SNP dataset. The genetic distance shown in the genetic map serves as

a parameter threshold for finding out the haplotype blocks ofSNPs that tend to stay together during

inheritance and is simple enough to model the recombinationevents and cluster the closely linked

SNPs within a short region. We design a novel nearest neighbor algorithm and a weighted version

to facilitate the fast imputation of missing genotypes.

1.5 Thesis Outline

The rest of the dissertation is organized as follows: In Chapter 2, we briefly provide an introduction

to the concepts of genetics in Section 2.1. In Section 2.2 we formally define the missing SNP geno-

type imputation problem, followed by the evaluation measures of the imputation problem in Section

3



2.3. In Chapter 3, the important missing SNP genotype value and haplotype allele imputation meth-

ods proposed in recent years are reviewed in detail, including fastPHASE and NPUTE. In Chapter 4,

the machine learning algorithms we employed are introduced, including the nearest neighbor algo-

rithm, its weighted variants, neural network, support vector machines, and first-order Markov chain.

Chapter 5 presents the experimental results, and discussesa number of factors that are important to

the imputation. We conclude the dissertation in Chapter 6 topoint out some possible future work

directions.
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Chapter 2

Background

2.1 Concepts in Genetics

Chromosomes are organized structures of the double-stranded DNA sequences, which carry genetic

information of an organism. Geneticists identify those positions where SNPs reside on a chromo-

some, called SNPloci. In this dissertation, we consider onlybiallelic SNPs of diploid organisms.

That is, at a SNP locus, there are only two possible distinct alleles, denoted by0 and1 respectively.

For humans, SNPs made up most of the genetic variations [8, 6]and there are millions of them.

SNPs occur once in every300 basepairs on average, and there are estimated about10 million SNPs

in the human genome. In a high density SNP genotype dataset, SNP loci are physically close to each

other, and alleles at these loci tend to stay together over a small distance, and thus called genetically

tightly-linked. For this reason, sometimes SNPs are referred to as tightly-linked markers.

Diploid organisms such as human are species that have pairedchromosomes. For each individ-

ual, agenotypeat a SNP locus of a pair of homologous chromosomes consists oftwo alleles. Since

genotype does not provide information of which one of the twochromosomes each allele comes

from, genotype at a locus can be denoted as an unordered pair of alleles, and the genotype of a ho-

mologous chromosome is a sequence of unordered alleles of SNPs. On the other hand, a haplotype

at a SNP locus consists of two alleles and specifies which chromosome each allele comes from; a

haplotype of a chromosome consists of all the alleles, one for each SNP locus, on the chromosome.

Figure 2.1 illustrates concepts mentioned above.

Although, according to the Mendelian law of inheritance mentioned previously, a child inherits

parental genetic information for each locus, in general, she does not inherit the exact copies from

the paternal and maternal chromosomes respectively due to the existence of mutations and recombi-

nation events. That is, during the meiosis process, the two parental chromosomes get duplicated and

shuffled and four chromatids are generated; one chromatid ispassed on to the child. Nevertheless,

it is observed that the recombination event is rare [18]. Between two consecutive SNP loci along

the chromosome, the recombination rate is described by the genetic distance between them. Such

information can be obtained from a genetic map.
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Figure 2.1: An illustration of a structure of chromosomes, genotypes, and haplotypes.

Due to the Mendelian law of inheritance and the fact that mutations and recombination events

are rare, for each haplotype allele at a small block of chromosome, it is likely that many individ-

uals share the same haplotype allele due to identical-by-descent (IBD). In other words, unrelated

individuals in population data tend to have common alleles from a common ancestor in a short chro-

mosomal region. This is also known as the coalescent theory in genetics. Such regions are usually

referred to as highlinkage disequilibrium(LD) regions. In fact, the coalescent theory underlies

most of thehaplotyping-basedimputation methods using a variety of techniques. The extent of the

haplotype block shared among individuals can be different from locus to locus and is limited by the

existence of mutations and recombination events. Therefore, any well designed genotype imputa-

tion methods should be able to make a balance between the coalescent theory and recombination

events. A common way is to consider the similarities among haplotype alleles within a viably sized

window [25] or a high LD region [26].

All the imputation methods discussed in this dissertation are claimed to be able to work on high-

density SNP population data. By population SNP data, we meanthat the samples are unrelated.

Moreover, the SNPs in the population data are tightly linkedand correlated because the millions

of SNPs are collected and the average distance between two consecutive SNP markers is small.

The missing SNP genotype imputation on large-scale population data can be formulated as follows.

Given SNP genotype population data with missing calls, our goal is to efficiently and effectively, in

terms of speed and accuracy respectively, impute missing SNP data based on the coalescent theory

and recombination. We would like the possible bias and potential errors to be as small as possible.
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2.2 Missing SNP Genotype Problem Formalism

To date, all genotype imputation approaches fall into the following four categories: (1) direct geno-

type imputation with the use of a haplotype reference panel [22]; (2) an integration of haplotype

inference and imputation; (3) post-haplotyping imputation method that deals with missing haplo-

type alleles; (4) direct genotype imputation without the use of a haplotype reference panel and

without haplotype inference. Most missing genotyping imputation approaches try to infer missing

genotypes from a commercial SNP array by utilizing a reference panel composed of haplotypes from

Phase II of the International HapMap Project [10]. NPUTE [25] by Robertset al. is a fast nearest

neighbor algorithm, which is a post-haplotyping imputation method. In this dissertation, we focus

on addressing missing SNP value imputation in the latter twoscenarios.

For post-haplotyping imputation scenario, we assume that the SNP data either have identical al-

leles at each locus for each genotype or have been preprocessed so that haplotypes are obtained for

each individual at each SNP locus. Therefore, post-haplotyping imputation can be considered as a

binary classification problem. That is, we are given a SNP haplotype datasetH = {h1, h2, . . . , hn}

with n haplotypes atM SNP loci drawn from a population, wherehi = {hi1, hi2, . . . , hiM} and

him ∈ {0, 1, ?}. The task is to infer those missing alleles denoted by “?” within the dataset. The

possible values for each missing allele are{0, 1}. For our implemented approaches, an additional

genetic map is provided, which specifies genetic distance between every two SNP loci. For organ-

isms whose genetic map is not available, we approximate the genetic distance to be the difference

between two physical positions divided by one million, since one centi-Morgan (cM) corresponds

to about one million basepairs on average along human chromosomes.

For direct genotype imputation without the reference haplotype and without haplotype inference,

the problem can be formalized as follows. Suppose that we have a biallelic SNP genotype dataset

comprised ofn diploid individuals overM SNP loci drawn from a population and we use0 and1 to

denote the two distinct alleles at each SNP locus. The possible genotypes are{00, 01, 11}. LetG =

{g1, g2, . . . , gn} denote the genotypes forn individuals, eachgi comprised of genotype data atM

markers. The data set can be represented as ann×M matrix, in which each unphased genotypegij

can be represented as an unordered pair of alleles with one ofthe four values:{00, 01, 11, ??}, where

00 and11 are calledhomozygous, 01 is calledheterozygous, and?? denotes a missing genotype.

Similarly, aside from the input matrixG, a genetic map is provided to keep track the genetic distance

for each locus. Thus, we define the genotype imputation as amulti-classificationproblem: given a

genotype data setG, we try to assign one of the three classes{00, 01, 11} to each of the missing

SNP genotypes.
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2.3 Performance Evaluation

For the missing SNP value imputation problem, the classification accuracy (or imputation accuracy)

is a standard measurement for evaluating the performance ofany approach, which is defined as the

proportion of correctly imputed values. Note that we only take into account those missing SNP val-

ues that have at least four neighboring SNP loci within a chosen genetic distance threshold, because

we need information from neighboring loci to construct features for SVM and neural networks. We

note that in the literature of genotype imputation, imputation has also been regarded as a regression

problem [19], for which the imputation accuracy is defined tobe the percentage of correctly imputed

minor allelesover total number of minor alleles in the target missing SNP values. Given that each

genotype consists of two alleles, we think that such a definition overestimates the performance of

any approach. For example, if the correct genotype was00 at a SNP locus for a particular individual

and a heterozygous genotype01 was imputed, they viewed this scenario as having produced one of

two correct alleles; however, we consider this to be an incorrectly imputed genotype.
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Chapter 3

Related Work

This chapter briefly surveys previous work that employed machine learning algorithms to tackle

the missing SNP value imputation problem. The machine learning approaches can be categorized

into four fields as mentioned in Chapter 2. We also survey the related machine learning algorithms

applied for haplotyping inference, which are closely linked to the missing value imputation. All

computational and statistical approaches for missing value imputation and haplotype inference are

based on the observation of nonrandom patterns of alleles over short regions of tightly linked loci.

Niu et al.[23] in 2002 introduced the idea of “partition ligation” to divide SNP loci along the genome

into segments containing a small number (about8) of order-preserved consecutive loci [23], and

applied Gibbs sampler for haplotype inference. Qinet al. [15], Stephens and Donnelly [28] and

Lin et al. [20] employed this idea in subsequent haplotype inference and missing value imputation

studies. We refer to the imputation after the haplotype inference as apost-haplotyping imputation

and the direct genotype imputation asgenotype-based imputation.

The most common machine learning imputation approach is to predict missing genotype from

haplotype frequencies of population samples using either Bayesian methods [30, 21, 23] or expec-

tation maximization (EM) [15]. Haplotype frequencies are obtained after performing the haplotype

inference at an early stage of the imputation. More recent approaches incorporate models of re-

combination by partitioning markers into haplotype blocksbased on entropy measures [31] or by

inferring a mosaic of haplotype clusters [26]. Tree-based imputation methods have also been devel-

oped, which infer missing genotype on the basis of perfect phylogeny rather than haplotype struc-

ture [12, 11]. Essentially, all these methods impute missing genotypes to satisfy the haplotyping

needs, and thus their accuracies highly depend on haplotypeinferences.

Haplotype inferences are highly associated with the problem of SNP genotype imputation, and

is considered to be the first step to genotype imputation for most existing genotype imputation. To

get started, we will first present two machine learning approaches to the haplotype inference.
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3.1 Bayesian Approaches for Haplotype Inference

Niu et al. [23], in 2002, proposed a Bayesian approach to haplotype inference. Stephenset al. [30]

adopted the Bayesian idea with consideration of linkage disequilibrium (LD) regions and imple-

mented a software called PHASE (V2.0) to handle haplotype inference.

In the Bayesian approach, parameters are random variables and the goal is to estimate posterior

distribution given observed data. In the context of haplotype inference, we compute the posterior

distribution of haplotype frequencies given observed genotypesG using Bayes’ rule:

P (fH |G) =
P (G|fH)P (fH)

P (G)
,

whereP (fH) is the prior distribution of haplotype frequencies andfH is the haplotype frequencies.

P (fH) is assumed to be known. Markov chain - Monte Carlo (MCMC) algorithm is used to calculate

P (G|fH) andP (G), mainly because the state spaces for evaluatingP (G|fH) is exponentially too

huge to enumerate.

The two Bayesian approaches proposed by Niuet al. [23] and Stephenset al. [29] respectively

both adopt the Gibbs sampling algorithm [4] to estimate the posterior distribution of haplotype

frequencies. However, they differ in the prior distributions they assume. Based on the Dirichlet

prior, Niu’s approach starts with an assignment of haplotype frequencies. At each iteration, for

each individual, a pair of haplotypes is sampled and the haplotype frequencies are updated based

on the pair of haplotypes. On the other hand, based on a prior approximating the coalescent model,

Stephenset al.’s [29] approach starts with an arbitrary haplotype sampling of the given genotypes

and at iteration updates a randomly selected individual.

3.2 Maximum Likelihood Haplotype Inference

The maximum likelihood approach [16] tries to estimate haplotype frequencies that maximize the

probability of the observed genotype data, where haplotypefrequencies are unknown parameters

that need to be inferred. The likelihood of the population dataset is the product of the probability

of each individual because all individuals are independentof each other. Moreover, the probability

of an individual with an observed genotype is just the summation of the product of two haplotype

frequencies for all haplotype pairs that are consistent with the genotype.

The Expectation-Maximization (EM) algorithm is a widely used algorithm for maximum like-

lihood estimates (MLEs). Initially, the EM assigns arbitrary haplotype frequencies. At thei-th

iteration, the expected occurrences of a haplotype allele is calculated using haplotype frequencies

(corresponding to the Expectation-step). Next, the haplotype frequencies are updated based on the

expected occurrences of a haplotype (corresponding to the Maximization-step). The EM terminates

with the haplotype frequencies returned when it converges.It should be noted that the EM algorithm

may converge to local maxima, which one can detect by starting from different initial conditions to
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examine whether they converge to the same solution [16].

3.3 Quantity Measurement for Haplotype Allele Imputation

In 2005, Suet al. [31] proposed a new approach for the missing SNP imputation problem based

on the information quantity measure “entropy” since LD measurements according to their paper are

usually too noisy for haplotype block constructions. Low diversity is a notable feature for haplotype

blocks and low entropy indicates low diversity. Missing SNPhaplotype alleles can be inferred by

considering haplotype frequencies within haplotype blocks. SNP haplotype alleles within haplotype

blocks tend to stay together and keep unchanged during the recombination events. The haplotype

block structure is measured by entropy satisfying the following conditions:

• the total entropy within a block should be minimized,

• the total entropy between every adjacent blocks should be maximized, and

• the total mutual information of adjacent blocks should be minimized,

where the mutual information of adjacent blocks is defined asthe difference of the sum of block

entropies and the block entropy’s of all combinations of haplotypes across any two blocks. Dynamic

programming (DP) is applied to partition the large-scale SNP haplotypes into blocks that satisfy the

above three conditions. Next, if there arem missing SNPs within a haplotype block, the goal is to

minimize the block entropyE(·):

X = argmin
X

E(X),

whereX = (x1, x2, . . . , xm) is the random variable of thesem missing SNPs. An EM-like iterative

process is developed to find a value for eachxi. To impute thei-th missing SNP at thei-th run,

in the first step of the iterative process, estimate the frequency of haplotype containingxi denoted

by h(xi) for xi = 0, given non-missing SNPs in the block (denoted byD) and set of haplotypes

excludingh(xi) (denoted byH):

f0 = P (h(xi = 0)|H,D),

and the conditional probability of frequency of haplotypeh for xi = 1,

f1 = P (h(xi = 1)|H,D).

Herexi = 0 if f0
f0+f1

≥ 0.5; otherwise,xi = 1. In this manner, all the missing SNPs are imputed

for each block.

3.4 NPUTE

Robertset al. in 2007 proposed a new post-haplotyping imputation approach called NPUTE using

fastK-nearest neighbor (KNN) searches with the following three key elements [25]:
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• data structures support fastK-NN searches over arbitrary window sizes in constant time,

• the advantage of fast speed enables exhaustive searches over all reasonable window sizes, and

• the method does not rely on sampling, and hence enables estimation of imputation accuracy

by inferring every missing SNP.

The main idea behind this method is that a sliding window centering at the missing entry is set

up to find the closest samples to the target sample and the alleles from these closest neighbors are

used to fill the missing entry. Letn be the number of samples andM be the number of SNPs

in the population dataset. Their approach is illustrated and explained in haplotype-based scheme,

meaning that NPUTE bases their imputation on biallelic haplotype alleles denoted by “0” and “1”

respectively, not genotypes.

vij =







0.5, if either samplesi or sj is missing;
0, if sj = si;
1, if si 6= sj .

As each SNP pairwise mismatch vector is computed, a new data structure called amismatch accu-

mulator array(MAA) is built:

• Initialize MAA of width n(n− 1)/2 and heightM + 1. The first row is set to zero;

• Loop through SNPs in their sequence order, each row vectorMAAi+1 is updated by adding

the mismatch vector to the previous row vector.

The cost of constructing such an array (MAA) is linear in the number of SNPs. Hence, the mismatch

value within a window sizeL extending a SNPi above and below can be obtained later by subtract-

ing the MAA vector with indexmax(i− L, 0) from the vector with indexmin(i+ L+ 1,M). The

sample with the minimum mismatch value is then selected and the value at the SNP locus is used to

fill the missing data in the target sample. If multiple haplotypes are tied for the minimum mismatch

value, then they allow a vote for the call. A tie in the vote is broken by taking the next minimum

mismatch values into account and so on.

Due to their fast speed, given a population SNP dataset, their approach first tries to find the

optimal sliding window size by scanning over a large range ofwindow sizes and estimating the

imputation accuracy for each non-missing allele. In this manner, a good estimate of the performance

is also obtained. That is, values of non-missing SNP allelesare used to validate the inferred values

generated by NPUTE. The accuracy for non-missing unknown alleles is obtained for each sliding

window size. The optimal window size is defined as the one thatyields the highest imputation

accuracy for those non-missing SNPs. After the optimal sizehas been determined in such atraining

phase, the real imputation starts up, for which the procedure is exactly the same except that this time

the program imputes the missing SNPs.
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3.5 fastPHASE

A robust and improved missing SNP genotype imputation basedon local clustering and hidden

Markov model (HMM) was introduced by Scheet and Stephens [26] in 2006. The implementation

of their method is called fastPHASE. They adopted a local clustering idea to capture the observation

that over a small number of loci haplotype alleles tend to be clustered into similar patterns. The

nearby alleles within small regions tend to arise from the same cluster due to the coalescent theory.

Therefore, their assumption is that given a SNP genotype dataset, each haplotype allele at a given

SNP originates from one of theK clusters; moreover, the cluster membership can be altered along

the genome. The cluster membership of any observed genotypeat a SNP locus is modeled as

the latent variable in HMM. The other improvement, comparedto its predecessor PHASE, is its

speed [26]. fastPHASE can be outlined in two steps.

Parameter EstimationThe parametersν = (θ, α, r) represent the haplotype frequencies within

each cluster, relative frequencies of clusters, and the recombination rate, respectively. They are

estimated by applying the EM algorithmT times fromT different starting points since EM would

typically result in different set of estimateŝνt. They combined the obtainedT estimates to make

predictions. The number of clusters, denoted byK, is an input. It is suggested in the paper that it

would be more fruitful to try out differentK values and to combine the results, than just selecting a

singleK value.

Missing Genotype Imputation Suppose that the genotype of individuali at the SNP locusm,

denoted bygim, is missing. Sincêνt is obtained in the previous step by applying the EM algorithm,

the probability thatgim = x wherex ∈ {00, 01, 11}, given all observed genotypesg and estimated

parameter valueŝνt, is computed by the EM algorithm with respect togim. To infer the value of

gim, they used the estimate that yields the best probability value for the missing genotype:

ĝim = argmaxx∈{00,01,11}

1

T

T
∑

t=1

p(gim = x|g, ν̂t).

13



Chapter 4

Methods

Recall that the genotype imputation scenario we are interested in is formalized as a multi-classification

problem: given a missing SNP genotype datasetG, we want to assign one of the three classes (val-

ues){00, 01, 11} to each missing SNP genotype. Additionally, a genetic map for the corresponding

dataset is provided, in which the genetic distance between every two SNP loci can be looked up.

To address both the IBD and the recombination events, we set up a genetic distance threshold as

a parameter to generate a block of SNP loci extending the target missing value above and below. We

refer to the upper bound and lower bound of the block (the number of SNP loci below and above

the target missing SNP locus) as upper window sizeL and lower window sizeR respectively. The

underlying assumption is that haplotype alleles within this block tend to be IBD. To impute thei-th

SNP marker of individualj, denoted bygij , we construct the training dataset to include sequences

with known genotypes (gim 6=??) at SNP locusi, denoted byT = {xi, yi}
k
i=1, wherexi is the input

feature vector that is constructed based on the neighboringSNPs below and above andyi denotes

the target variable that is derived fromgim 6=??. It should be noted that when the missing rate is

high, it would be unavoidable for a training dataset to contain missing calls at SNP loci other than

locusi. Moreover, we assume that the genotypes are missing at uniformly random (MAR). That is,

the occurrences of missing SNP genotypes do not depend on anydata.

4.1 Baseline Approach

A naı̈ve method for genotype imputation is to impute missingSNP values with the non-missing

genotype that occur most often in the population at the SNP locus, which is also applicable to the

post-haplotyping imputation. The naı̈ve approach does notuse information from neighboring loci to

impute and usually gives poor accuracy. The expected imputation accuracy is equal top, wherep is

the frequency of genotype (haplotype) with the most frequent occurrences, but in the worst case it

could be as low as0 for both directly genotype-based imputation and the haplotype-based imputation

if we assume genotypes are missing at random. For this reason, in practice, imputation based on the

majority allele frequency is often out of interests. We included it as the BaseLine approach in our
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experiment.

4.2 Nearest Neighbor (NN) and Its Variants

We first extend the NPUTE method [25] to address both the direct missing SNP genotype imputation

problem without using reference haplotype panels and the post-haplotyping imputation. The basic

idea behind NPUTE is that it uses instances of observations in the training datasetT in the feature

space to infer missing genotypes for testing sequences. As NPUTE does not generalize a learning

model for classification tasks but rather bases its learningdirectly on thestoredtraining instances,

it is also sometimes referred to as a memory-based learning method. One key factor in allk-nearest

neighbor methods is to define a distance function that implies “closeness” between samples with a

voting scheme.

4.2.1 Distance Function

Given a genotype datasetG, the scoring schemeδ for two genotypes at a SNP locus is shown in

Table (4.1). This scoring scheme assumes the hamming-like code for genotypes00, 01, 11, and??

represented as three-dimensional vectors(1, 0, 0), (0, 1, 0), (0, 0, 1), and(0, 0, 0) respectively. For

instance,δ(00, 11) = |1− 0|+ |0− 0|+ |0− 1| = 2, δ(??, 00) = |0− 1|+ |0− 0|+ |0− 0| = 1,

δ(??, ??) = 0 and so on.

Table 4.1: The scoring schemeδ(·, ·) between two genotype alleles.

δ(·, ·) 00 01 11 ??
00 0 2 2 1
01 0 2 1
11 0 1
?? 0

For post-haplotyping imputation, we split each genotype sequence into two haplotype sequences.

The task becomes to impute missing alleles? from {0, 1}. Therefore, the score function is the same

as the one used in NPUTE, shown in Eq. 4.1:

δ(a, b) =







0, if a = b 6=?
1, else ifa =? or b =?
2, otherwise,

(4.1)

wherea andb are two haplotype alleles.

Subsequently, the distance between each samplek and the target samplej at the target SNP

locusi is defined as

disti(j, k) =
∑

i−L≤m≤i+R,m 6=i

δ(gmj , gmk). (4.2)

We also introduce twoweightedk-nearest distance functions based on the fact that linkage disequi-

librium (LD) decreases as we moves away. The first approach, denoted by “WeightedNN” in our
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experiment, is to base weights on the window sizeL andR as shown in Eq. (4.3). That is, we put

more weights to SNPs that are closer to the missing SNP at locus i.

disti(j, k) =
∑

i−L≤m<i

(L− i+m+ 1)δ(Gmj , Gmk) +
∑

i<m≤i+R

(R−m+ i+ 1)δ(Gmj , Gmk).

(4.3)

Next, we usepointwise mutual information(PMI) between the SNP locus with the missing value

to be imputed and every other SNP locus within the block as weights. The PMI between locii and

j can be calculated as follows:

SI(i, j) =
∑

x,y∈{00,01,11}

P (x, y) log
P (x, y)

P (x)P (y)
, (4.4)

whereP (x, y) is the joint probability of genotypex at SNP locusi and genotypey at SNP locusj,

andP (x) is the probability of genotypex at the given SNP locus. In details, we calculateP (x, y)

andP (x) in the first order Markov chain. Therefore, the modified distance function is

disti(j, k) =
∑

i−L≤x≤i+R,x 6=i

SI(i, x)× δ(gxj , gxk). (4.5)

We refer to the above weighted NN approach based on PMI as “MIKNN” in our experiment.

4.2.2 Voting Scheme

Using the scoring scheme defined in Table 4.1 for direct genotype imputation and Eq. (4.1), the

distance between the target samplej and every sample of the training dataset can be calculated,

from which the genotype value at locusi of the nearest neighbor(s) can be used for filling the

missing genotypegij . In practice, there can be multiple tied nearest neighbors,and they might

have distinct genotypes at locusi. In this dissertation, the value ofk in k nearest neighbors refers

to k distances rather thank nearest samples. For instance, withk = 1, 1NN tries to include all

samples of the training dataset that have the equal minimum distance to the target sample. The

most straightforward scheme for letting these nearest neighbors to vote on the presence of a testing

sequence is the majority vote scheme, which basically treats each neighbor as one vote, and we

choose the genotypes with the highest vote to impute the missing valuegij at locusi. If votes

for all distinct genotypes at locusi tie, then the majority voting scheme can choose to randomly

select a sample from the tied genotypes and use its genotype for imputation. Our preliminary testing

exhibited that such a majority voting did not yield satisfactory imputation accuracy. Besides, for

classick nearest neighbor, one needs to test multiple choices ofk on the training data to findk that

works best on the dataset.

Consequently, we turned to the voting scheme that is employed in NPUTE [25]. In this new

voting scheme, we start with the nearest neighbors for voting and choose the genotype of highest

votes for imputation. In case of tied votes among the nearestneighbors, it adds more training
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instances that are the next closest to the testing sample till the tied votes are broken. We adopted this

scheme for our implemented nearest neighbor method, denoted as NN.

Alternatively, we took the neighborhood information of nearest neighbor(s) into account to re-

duce ambiguity. That is, we also included samples in the training dataset whose distances to one

of the nearest neighbors are within the nearest distance. Then, we followed the same procedure

mentioned above to impute missing genotypegij . Our method Neighbor1NN is implemented based

on this idea, where we selected the nearest neighbors for voting, and in case of tied votes, we used

the nearest distance to the testing sequence as adistance thresholdand for each nearest neighbor to

add training instances that are less than or equal to the distance threshold for voting. The genotype

which receives the majority vote will be chosen as the imputed value. In case of tied votes, we

randomly select one from candidate genotypes of tied highest votes.

4.3 Artificial Neural Network (NeuralNet)

We employed a standard three-layer feed-forward neural network with a gradient descent training

algorithm for genotype imputation.

4.3.1 Sequence Encoding and Output Interpretation

For each missing SNP genotype we define a block with upper window sizeL and lower window

sizeR, and setW = L + R. We adopt the orthogonal encoding, where genotypes{00, 01, 11} are

encoded by orthogonal binary vectors(1, 0, 0), (0, 1, 0), and(0, 0, 1) respectively. The advantage of

this orthogonal encoding is that we do not need to introduce algebraic correlations between geno-

types. Besides, compared to other complex encodings of SNP genotypes, whether orthogonal or not,

our encoding scheme needs not worry about filtering extra information. For example, if one includes

too much extra information that might not be strongly correlated to the output, the imputation task

can even become harder [3]. In NeuralNet, the missing genotype “??” is predicted by a binary vector

(a00, a01, a11), where
∑

i∈{00,01,11} ai = 1 andak denotes the frequency of genotypek at the SNP

locus in the training dataset. It should be noted that the encoding scheme has the disadvantage of

being wasteful of memory space, because it requires an inputlayer of size3 × W . Let x denote

the input vector of3 ×W dimension. Assume there areM neurons in the hidden layer andK = 3

neurons in the output layer. In our experiment, we setM to max(W, 3) for genotype imputation

and tomax(W, 2) for post-haplotyping imputation respectively. The outputof the neural network is

a vectory = (y1, y2, y3), whereyi ∈ (0, 1) and
∑3

i=1 yi = 1, which is calculated by thesoftmax

function

y =
expT

∑3
k=1 exp(Tk)

,

where

T = (T1, T2, T3),
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Tk = β0k + β⊤
k z, k = 1, 2, 3,

zm = σ(α0m + αm
⊤x), m = 1, 2, . . . ,M,

and

σ(α0m + αm
⊤x) =

1

1 + exp(−(α0m + αm
⊤x))

.

4.3.2 Network Model and Training

Let w = {α0m, αm;β0k, βk} denote the weights to be trained, wherem = 1, 2, . . . ,M andk =

1, 2, 3. In total, the neural network we constructed has3M(W + 1) + 3(M + 1) parameters to be

trained. Further, for each sequencexi in the training datasetT = {xi}
n

i=1, there is an associated

observed genotype valueti, whereti ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. In the training phase, we try

to minimize the error function

E(w) =

n
∑

i=1

3
∑

k=1

(−tik log(yik)). (4.6)

A batch version of the gradient descent training approach isapplied for all SNP loci with missing

calls. That is, we initialize the weightsw with some random guess. Then, we iteratively update the

weights at time step(t+ 1) as follows:

w(t+1) = w(t) + (1− µ)η∇E(w(t)) + µ(w(t) −w(t−1)), (4.7)

whereη is the learning rate andµ is the momentum in the range[0, 1]. Adding the momentum could

smooth out oscillations since−∇E(w) in practice may not always point to the global minimum of

the error function. We stop our training process after a fixednumber of iterations, which has the

advantage of saving us out of tuning the regularization ratio, since a large regularization could cause

over-fitting.

4.4 Support Vector Machine

SVMs (Support Vector Machines) are a useful algorithm for classification tasks. We use the SVM

software LIBSVM [7] for genotype imputation.

4.4.1 Sequence Encoding and Output Interpretation

Similar to neural networks’ encoding, we adopt the orthogonal encoding for SNP genotype values,

where genotypes{00, 01, 11} are represented by orthogonal binary vectors(1, 0, 0), (0, 1, 0), and

(0, 0, 1) respectively. Again, the missing genotype “??” is handled by the expected value vector

(a00, a01, a11), whereai represents the frequency of genotypei at the given SNP locus. Therefore,

for each input vector, its components lie in the range of[0, 1]. For the output, the known genotypes

“00”, “01” and “11” are represented as0, 1, and2 respectively. For post-haplotyping imputation,

18



because it has no heterozygous genotypes01 in the dataset, we use(0, 1) and(0, 1) to denote the

homozygous alleles00 and11 respectively, and missing genotypes “??” are encoded as(a00, a11),

where
∑

i∈{00,11} ai = 1, and eachai is the frequency of the homozygous genotypei within the

training dataset at the SNP locus.

4.4.2 Model Selection

Given the training datasetT = {xi}
n
i=1 and the corresponding genotype value (target)yi, wherexi

follows the input encoding scheme. For posting haployping imputationyi ∈ {−1, 1} to represent00

and11 respectively. For post-haplotyping imputation, the support vector machine is a minimization

problem [32]

minimize
w,b,ξ

1

2
w⊤w + C

n
∑

i=1

ξi

subject to yi(w
⊤φ(xi) + b) ≥ 1− ξi,

ξi ≥ 0,

(4.8)

whereC > 0 is the penalty term of the errors. Usually the problem is solved in its dual form:

minimize
α

1

2
α⊤Qα− e⊤α

subject to y⊤α = 0,

0 ≤ αi ≤ C, i = 1, 2, . . . , n.

(4.9)

wheree = [1, 1, . . . , 1]⊤, Qij = yiyjK(xi,xj), andK(xi,xj) = φ(xi)
⊤φ(xj) is the kernel

function. For each inputxi, the functionφ maps it into a higher dimensional space. SVM can be

viewed as a minimization problem that tries to find a hyperplane with maximal margin in the higher

dimensional space.

For direct genotype imputation, LIBSVM constructsk(k−1)
2 = 3×2

2 = 3 classifiers between

every two different classes. The result from each binary classification for each training sample ofT

is viewed as a vote. Similar to nearest neighbor’s majority vote scheme, when a testing sequencex

comes in, its class is assigned to be a class (genotype) with maximum number of votes. In case of

tied votes, LIBSVM simply select the one with the smallest index according to its implementation.

We adopt the radial basis function (RBF) for genotype imputation, where the RBF kernel is

given byK(xi,xj) = exp(−γ||xi − xj ||
2) andγ > 0. The advantage of RBF kernel is that it can

handle the case where the relation between class labels and attributes is nonlinear.

4.4.3 Cross-Validation and Grid-Search

There are two parameters for an RBF kernel:C andγ. It is not known beforehand whichC andγ

are best for a given problem; consequently some kind of modelselection (parameter search) must

be done. The goal is to identify good(C, γ) so that the classifier can accurately predict missing

genotypes. The purpose of training is not trying to achieve high training accuracy for the training
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dataset but rather find a model that is general enough and can work well for those missing genotype

sequences. A common strategy is to use cross-validation. Inℓ-fold cross-validation, we first divide

the training set intoℓ subsets of equal size. Sequentially one subset is tested using the classifier

trained on the remaining(ℓ − 1) subsets. Thus, each sample of the whole training set is predicted

once so the cross-validation accuracy is the percentage of data which are correctly classified. The

cross-validation procedure can prevent the over-fitting problem.

LIBSVM implements a so-called “grid search” for choosing anoptimal pair(C∗, γ∗) using

cross-validation. In practice, LIBSVM tries different pairs of (C, γ) values drawn from a table

consisting of two finite exponentially growing sequences ofC = {2−5, 2−3, · · · , 215} andγ =

{2−15, 2−13, · · · , 23}. The pair(C∗, γ∗) that yields the best cross-validation accuracy is selected

as an optimal pair. After finding optimal parameters(C∗, γ∗), LIBSVM trains the entire training

dataset again to construct the final classifier for testing samples.

4.5 First-order Markov Chain with Add-One Smoothing

Inspired by its success on biological sequence applications such as DNA sequence analysis [2],

we apply the Markov chain (MC) model to the the missing genotype imputation problem on SNP

datasets. A first-order Markov chain{Xn, n = 0, 1, 2, . . .}, sometimes also called the observed

Markov model, is a stochastic process that takes on a finite set of possible values and is defined by an

initial probability distributionP (X0) and transition probabilities between two statesP (Xn|Xn−1).

In a first-order Markov chain, the probability of a current state depends only on the previous state,

and is independent of other past states:

P (Xn|X0, X1, . . . , Xn−1) = P (Xn|Xn−1).

Given an observation sequence, we are interested in computing the joint probability

P (X0, X1, . . . , Xn) = P (X0)
n
∏

n=1

P (Xn|Xn−1).

To impute a missing SNP valuegij , we construct two first order local Markov chain (MC) using

theL up-stream SNPs andR downstream SNPs within the genetic distance threshold respectively.

Each genotype at a SNP marker represents a state and takes on genotype values from00, 01, 11. We

explain in detail how to calculate the initial probability and the subsequent transition probabilities.

4.5.1 State Probabilities in MC

The upstream MC consists of SNP markers in the order〈g(i−L)j , g(i−L+1)j, . . . , g(i+1)j , gij〉, where

gij is the target missing SNP genotype denoted by??. Similarly, the downstream MC consists of

SNP markers in the order〈g(i+R)j , g(i+R−1)j , . . . , g(i−1)j, gij〉. We illustrate how to compute the

initial probability for the upper-stream MC and in the similar manner, the initial probability for
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the downstream MC can be computed as well. In the first step, wecount at SNP locus(i − L)

the frequency of each known genotype values00, 01 and11, respectively, occurring in the training

datasetT , which yields the probability distributionP (X0). Let c00, c01, andc11 be the frequencies

of genotypes00, 01, and11 respectively. In case of any zero frequency, we apply add-one smoothing

to the counts of each genotype. Therefore,P (X0 = i) = ci+1
ci+V

, wherei ∈ {00, 01, 11} andV refers

to the number of distinct types of genotypes at the locus (V = 3 for direct genotype based imputation

andV = 2 for post-haplotyping imputation). If the observed genotype g(i−L)j ∈ {00, 01, 11} is

known, we useP (X0 = g(i−L)j) for calculation; in case of another missing value observed in the

initial state, we use expected value ofP (X0) instead. That is,

P (X0 =??) = E[P (X0)] =
∑

a∈{00,01,11}

P (X0 = a)× P (X0 = a).

4.5.2 Transition Probabilities in MC

To compute the transition probability from stateXn−1 to stateXn at two adjacent SNP loci, we

count the frequencies of all combinations of genotypes in the training dataset. Again, add-one

smoothing is applied to each count when any frequency is0. If genotypes at bothXn−1 andXn

are known, then we simply useP (Xn|Xn−1) derived from the frequencies. We provide formula for

how to calculate the transition probability from stateX(n−1) to stateXn in case of occurrences of

missing values:

P (Xn = a|P (X(n−1)) =??) =
∑

b∈{00,01,11}

P (Xn = a|X(n−1) = b)P (X(n−1) = b),

wherea ∈ {00, 01, 11};

P (Xn =??|P (X(n−1)) = b) =
∑

a∈{00,01,11}

P (Xn = a|X(n−1) = b)P (Xn = a),

whereb ∈ {00, 01, 11};

P (Xn =??|P (X(n−1)) =??) =
∑

a,b∈{00,01,11}

P (Xn = a|X(n−1) = b)P (Xn = a)P (X(n−1) = b).
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Chapter 5

Results and Discussion

To assess the performance of the imputation algorithms, we used two real SNP datasets for sim-

ulation studies. We examine both missing SNP genotype imputation and missing SNP haplotype

imputation.

The first dataset was obtained from the International HapMapproject (Phase I) [10], the non-

redundant SNP genotype dataset. Population in this genotype dataset have been grouped according

to their ancestry, and we chose the sub-population SNP genotype dataset on chromosome 17 of

African ancestry in Southwest USA (ASW) for study. We refer to this dataset as thehumandataset,

without specifying more detailed information in the sequel. The dataset consists of83 individuals

genotyped at 40,775 SNP loci along the chromosome, and it contains0.268% missing calls. The

human dataset is used for performance evaluation on missingSNP genotype imputation, and, for

that purpose, those SNP loci containing a missing value wereremoved, with 34,071 (or83.60%)

SNP loci left.

The second dataset was extracted from the NIEHS/Perlegen resequencing project, which pro-

vides a high-resolution map of16 common mouse strains with11.1% missing calls. We used again

the chromosome 17 SNP whole genome dataset, which is made up of 15 inbred mouse strains geno-

typed at 288,229 SNP loci along the chromosome. Our examination confirmed that all the genotype

values are homozygous (i.e., only 00 and11); This dataset is referred to as the mouse dataset, and

it is used for performance evaluation on missing SNP haplotype imputation. Again, those SNP loci

containing a missing value were removed, with 144,820 (or50.24%) SNP loci left for simulation

studies.

5.1 Simulated Missing SNP Datasets

For both the human and mouse datasets, we first generated three datasets at three different density

levels, to mimic the real high, medium, and low density genotyping arrays. They are density-1,

the original dataset, density-0.1 and density-0.01. The density-0.1 datasets were obtained from the

original dataset by picking every 10-th SNP, and thus contains 3,408 and 14,482 SNPs, respectively.
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Likewise, the density-0.01 datasets were obtained from the original dataset by pickingevery 100-th

SNP, containing 341 and 1,449 SNPs, respectively. So now we have six datasets, three human and

three mouse.

Next, taking one of the six datasets, we uniformly randomly mask a portion of genotypes to

create a simulated missing SNP dataset. Such portion is called themissing rate, and it is one of

0.5%, 1%, 2%, 5%, 10%, and20%. At each missing rate, a total of10 simulated datasets were

identically and independently generated, to be used in the experiments.

We remark that our simulated missing SNP values are missing completely at random, that is,

the missing values are independent of both observable variables and unobservable parameters of

interest.

5.2 Experimental Setup

Except fastPHASE and NPUTE, which were run under their instruction, the imputation methods we

implemented were run using five different genetic distance thresholds on each simulation dataset

to constrain the locality. Table 5.1 summarizes these thresholds for the human and mouse datasets,

adjusted by the density level (but not the missing rate). They were set so to guarantee a certain

number of, yet not too many, SNP loci inside the covering window for the target missing SNP locus.

The genetic distance of the entire human chromosome 17 is129.4752161384 centi-Morgans (cMs);

for mouse chromosome 17, we did not have the precise genetic distance and approximated it by1cM

per million basepairs.

We set up the genetic distance thresholds to respect the Mendelian laws of inheritance, as well

as the fact that recombination events are rare so that alleles of nearby SNP loci tend to be inherited

together due to IBD. As a side effect, it is possible that somemasked SNP loci do not have any

neighbor SNP loci within the covering window set by the threshold. We excluded these masked SNP

loci from imputation or the subsequent performance evaluation. In fact, we imposed a constraint

on the target masked SNP loci to have at least4 neighbor SNP loci inside the covering window,

otherwise not to be imputed by any method.

Table 5.1: Genetic distance thresholds (in centi-Morgan) set for the human and mouse datasets at
three density levels.

Dataset Density Genetic Threshold (cM)

human
0.01 1 2 3 4 5
0.1 0.1 0.2 0.3 0.4 0.5
1 0.01 0.02 0.03 0.04 0.05

mouse
0.01 0.2 0.4 0.6 0.8 1.0
0.1 0.02 0.04 0.06 0.08 0.1
1 0.002 0.004 0.006 0.008 0.01
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We preprocess the datasets according to our classification formulation, by randomly assigning0

for one allele and1 for the other allele, to convert them into matrices with entries of00, 01, 11, and

??. Note that those mouse datasets do not contain01 entries as no heterozygosities exist, neither

would an entry?? be imputed as01. We collected the imputation accuracies for neural network

(NeuralNet), nearest neighbor (NN), weighted nearest neighbor (WeightedNN), support vector ma-

chine (SVM), Markov chain (MC), neighborhood1-nearest neighbor (Neighbor1NN), mutual infor-

mation based weighted nearest neighbor (MIKNN), as well as those of previously the best imputa-

tion methods, fastPHASE and NPUTE. Confirmed by the authors of NPUTE, NPUTE was designed

to take the advantage of the homozygosities and its code doesnot work for missing SNP genotype

imputation. Therefore, NPUTE was not run on the human datasets. We ran fastPHASE by setting

the recommended number of haplotype clusters to20. To run NPUTE on the mouse datasets, we

followed its instruction to first examine a range of window sizes (the number of SNP loci upstream)

from 1 up to50 during the training phase to search for an optimal window size for each dataset; then

we chose the window size that yielded the best training imputation accuracy for real missing value

imputation.

All our implemented imputation methods were run in thebatch testingmode, not sequential

mode, meaning that no imputed values would be used for imputing other missing values. Though

sequential imputation has been reported advantageous [27], our consideration is not to propagate

erroneous imputation to the entire dataset.

5.3 Imputation Accuracy Comparison

Recall that each SNP dataset is defined by a combination (species, density, missing rate), and there

are2 × 3 × 6 = 36 such combinations. For each combination there are10 simulated datasets. We

ran all imputation methods on the ten simulated datasets using all five associated different genetic

distance thresholds. For fastPHASE, NPUTE, and BaseLine (the majority vote), genetic distance

threshold does not have any effects and they were run once only. In the following (and the Ap-

pendix), the average imputation accuracies are reported, where the average was taken over various

subsets of simulated datasets.

5.3.1 Average Imputation Accuracies

Firstly, for each of the36 combinations (species, density, missing rate), we calculated the average

imputation accuracy for a method by taking the average over all five runs using different genetic

distance thresholds on the10 simulated datasets. That is, it is the average of50 accuracies (again,

for fastPHASE, NPUTE, and BaseLine, it can also be regarded as the average of10 accuracies,

which however might vary slightly due to the changing numberof target missing values). Table 5.2

lists these average imputation accuracies for the six combinations of density-0.01 human dataset,

where each column corresponds for a missing rate. They are also plotted in Figure 5.1 for easier
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view of performance difference. As one can see, in these low density datasets, our methods NN

and WeightedNN seemingly performed better than previouslythe best method fastPHASE, which

in turn performed better than the other machine learning algorithms.

Table 5.2: Average imputation accuracies at the6 missing rates on human dataset of density0.01.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%

fastPHASE 0.69 0.6782 0.6785 0.6787 0.6756 0.6735
NN 0.7552 0.7521 0.749 0.7471 0.7393 0.7349
WeightedNN 0.7302 0.7161 0.7102 0.7065 0.6936 0.6877
SVM 0.6541 0.6544 0.6488 0.6587 0.6488 0.6516
NeuralNet 0.6478 0.6431 0.6465 0.6528 0.6432 0.6463
Neighbor1NN 0.6579 0.653 0.6497 0.6585 0.6507 0.6541
MC 0.6553 0.6505 0.654 0.6606 0.6513 0.6528
BaseLine 0.6589 0.6535 0.6497 0.6588 0.6511 0.6542
MIKNN 0.606 0.5945 0.6032 0.598 0.5919 0.5902
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Figure 5.1: Average imputation accuracies at the6 missing rates on human dataset of density0.01.

The next five sets of tables and figures list and plot the average imputation accuracies for

density-0.1 human dataset (Table 5.3, Figure 5.2), density-1 human dataset (Table 5.4, Figure 5.3),

density-0.01mouse dataset (Table 5.5, Figure 5.4), density-0.1mouse dataset (Table 5.6, Figure 5.5),

density-1 mouse dataset (Table 5.7, Figure 5.6), respectively.

For each of the36 combinations, among the50 imputation accuracies, the best one for each

imputation method was also recorded, and presented in detail in the Appendix (Section A.2). Con-

tinuing the trend, as seen in Figure 5.2 for the medium density human datasets, our method NN

still performed better than fastPHASE, which caught up withour WeightedNN. On high density hu-

man datasets Figure 5.3, fastPHASE became the winner, beating our NN, WeightedNN, SVM and

MIKNN about3%. This last observation confirms well the claim by fastPHASE that it is designed
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Table 5.3: Average imputation accuracies at the6 missing rates on human dataset of density0.1.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%

fastPHASE 0.7782 0.7797 0.7838 0.78 0.7716 0.7566
NN 0.8089 0.8079 0.8056 0.8041 0.7969 0.7848
WeightedNN 0.7875 0.7859 0.7817 0.774 0.7624 0.7454
SVM 0.741 0.7395 0.7385 0.7351 0.7261 0.7104
NeuralNet 0.6301 0.6342 0.6274 0.6732 0.6706 0.6651
Neighbor1NN 0.6532 0.6532 0.6493 0.6553 0.6554 0.6536
MC 0.7046 0.7053 0.7053 0.7065 0.7026 0.6946
BaseLine 0.6554 0.6552 0.6508 0.6567 0.6566 0.6549
MIKNN 0.7198 0.7232 0.7213 0.7156 0.7077 0.6908
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Figure 5.2: Average imputation accuracies at the6 missing rates on human dataset of density0.1.

for high density SNP datasets. Yet we may draw the conclusiona bit further that on low to medium

density SNP datasets, one should better use our nearest neighbor (NN) imputation method.

Note that on the mouse datasets, NPUTE was run to collect its imputation accuracies. Because

of no heterozygosities, imputation on the mouse datasets can also be regarded as missing SNP hap-

lotype imputation, or posting-haplotyping imputation. Different from missing SNP genotype impu-

tation, here one can see from Figures 5.4, 5.5, and 5.6 that regardless of the density, our methods

NN, WeightedNN, MIKNN, and fastPHASE performed better thanthe others including NPUTE.

Indeed, these four imputation methods seemingly cluster together, performed better than the ma-

chine learning algorithms. Among these four, one can see further from Tables 5.5–5.7 that NN and

WeightedNN performed slightly better.

5.3.2 Statistical Significance Testing

To evaluate the imputation accuracy difference between twomethods, we performed six statistical

right-tailed pairedt-tests on the imputation accuracies between the pair at six missing rates0.5%,
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Table 5.4: Average imputation accuracies at the6 missing rates on human dataset of density1.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%

fastPHASE 0.9617 0.9616 0.9611 0.9597 0.9502 0.9378
NN 0.9224 0.9214 0.9189 0.9158 0.91 0.8984
WeightedNN 0.9163 0.9135 0.9091 0.901 0.891 0.8734
SVM 0.9027 0.9021 0.8918 0.8693 0.8715 0.8217
NeuralNet 0.7839 0.7834 0.7804 0.7769 0.769 0.7534
Neighbor1NN 0.6415 0.6419 0.6427 0.6452 0.6455 0.6456
MC 0.7725 0.7718 0.7705 0.768 0.7614 0.7483
BaseLine 0.6504 0.6496 0.6493 0.6502 0.6492 0.6488
MIKNN 0.9123 0.9112 0.9104 0.9062 0.898 0.882
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Figure 5.3: Average imputation accuracies at the6 missing rates on human dataset of density1.

1%, 2%, 5%, 10%, and20%, respectively, separated for the human and mouse datasets with different

densities. For example, on the density-0.01 human datasets with missing rate0.5%, there are50

imputation accuracies collected for every method from10 simulated datasets each run using five

different genetic distance thresholds. The performance ofthe method is thus represented as a50-

dimensional vector, and thet-test is to evaluate whether one vector is statistically significantly better

than another. In more details, in our right-tailedt-test, the hypothesis is

H : µ1 > µ2 (The mean of the first vector is greater than the mean of the second.)

A p-value less than0.05 indicates that the mean of the first vector is statistically significantly greater

than the mean of the second, greater than0.95 indicates that the mean of the first vector is statisti-

cally significantly less than the mean of the second, and close to0.50 indicates that the two means

are statistically no different from each other. Table 5.8 presents thep-values from these pairwise

comparisons on the human datasets at3 density levels, with missing rate0.5%. Thesep values

were calculated by Octave, a GNU scientific software, and were rounded to have three significant
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Table 5.5: Average imputation accuracies at the6 missing rates on mouse dataset of density0.01.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%

fastPHASE 0.9107 0.9072 0.8968 0.8997 0.8917 0.8803
NPUTE 0.8371 0.856 0.8458 0.8445 0.839 0.8281
NN 0.9223 0.9184 0.9101 0.9081 0.899 0.8808
WeightedNN 0.924 0.9197 0.9088 0.9014 0.8887 0.8678
SVM 0.8657 0.854 0.8507 0.8581 0.8495 0.8398
NeuralNet 0.832 0.8271 0.8217 0.8277 0.8164 0.809
Neighbor1NN 0.7846 0.7844 0.7816 0.8068 0.8059 0.8103
MC 0.8388 0.8319 0.8276 0.8384 0.8289 0.8267
BaseLine 0.8213 0.8133 0.8034 0.8179 0.8117 0.8143
MIKNN 0.8995 0.9035 0.8887 0.8902 0.883 0.8666
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Figure 5.4: Average imputation accuracies at the6 missing rates on mouse dataset of density0.01.

digits. Therefore,p-values such as0.000 or 1.000 should be interpreted as< 0.0001 and> 0.9999,

respectively.

From Table 5.8, we can see that our NN and WeightedNN methods performed statistically sig-

nificantly better than fastPHASE on the human datasets at twodensity levels0.01 and0.1, while at

density level1 fastPHASE performed significantly better than all the othermethods. Furthermore,

NN outperformed significantly all the other methods at all three density levels, except fastPHASE

at density level1. These strongly suggest that our NN method is useful in practice, given that the

imputation time for fastPHASE grows exponentially in the number of SNPs (or equivalently the

density) — see Section 5.7 — and it took weeks to months for us to collect the fastPHASE results.

In summary, through thep-value tables (Table 5.8 and five other on the human datasets,six

other on the mouse datasets in the Appendix, Section A.1) we are able to draw conclusions on

the imputation performances of all the methods. Specifically, on human datasets with missing rate

0.5%, at density0.01 we have NN> WeightedNN> fastPHASE> {SVM, MC, BaseLine, Neu-
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Table 5.6: Average imputation accuracies at the6 missing rates on mouse dataset of density0.1.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%

fastPHASE 0.9334 0.9314 0.9278 0.9271 0.9244 0.9125
NPUTE 0.873 0.8684 0.8661 0.8659 0.8617 0.8531
NN 0.9411 0.9398 0.9355 0.9324 0.927 0.9112
WeightedNN 0.9432 0.9407 0.9343 0.9267 0.9177 0.9009
SVM 0.8861 0.8842 0.8808 0.878 0.875 0.8597
NeuralNet 0.8647 0.8629 0.8579 0.8549 0.8254 0.8114
Neighbor1NN 0.7616 0.768 0.7795 0.798 0.8072 0.808
MC 0.8666 0.8635 0.8568 0.8561 0.8538 0.8429
BaseLine 0.8252 0.8189 0.8155 0.8145 0.8159 0.8134
MIKNN 0.9271 0.9271 0.923 0.9199 0.9152 0.9023
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Figure 5.5: Average imputation accuracies at the6 missing rates on mouse dataset of density0.1.

ralNet, Neighbor1NN} > MIKNN; at density0.1 we have NN> WeightedNN> fastPHASE>

SVM > MIKNN > MC > {Neighbor1NN, BaseLine} > NeuralNet; and at density1 we have

fastPHASE> NN > WeightedNN> MIKNN > SVM > NeuralNet> MC > BaseLine> Neigh-

bor1NN. Correspondingly on the mouse datasets with missingrate0.5%, at density0.01 we have

{NN, WeightedNN} > fastPHASE> MIKNN > {NPUTE, SVM} > MC > NeuralNet> Base-

Line > Neighbor1NN; at density0.1 we have{NN, WeightedNN} > fastPHASE> MIKNN >

SVM > NPUTE> {MC, NeuralNet} > BaseLine> Neighbor1NN; at density1 we have NN>

WeightedNN> fastPHASE> MIKNN > SVM > NPUTE> MC > NeuralNet> BaseLine>

Neighbor1NN.
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Table 5.7: Average imputation accuracies at the6 missing rates on mouse dataset of density1.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%

fastPHASE 0.944 0.9452 0.9439 0.9417 0.9383 0.9305
NPUTE 0.8819 0.8821 0.8816 0.8789 0.8758 0.8695
NN 0.9504 0.9511 0.9498 0.9466 0.9408 0.9294
WeightedNN 0.9514 0.9508 0.9468 0.9391 0.9321 0.9213
SVM 0.9035 0.9042 0.8969 0.6902 0.8837 0.7648
NeuralNet 0.8544 0.8524 0.8478 0.8371 0.8245 0.806
Neighbor1NN 0.7503 0.7697 0.7887 0.8044 0.8103 0.8105
MC 0.8733 0.8753 0.8737 0.8705 0.8655 0.8553
BaseLine 0.8179 0.8182 0.8178 0.8168 0.8167 0.8149
MIKNN 0.9414 0.9425 0.9412 0.9386 0.9343 0.9252
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Figure 5.6: Average imputation accuracies at the6 missing rates on mouse dataset of density1.

5.4 Effects of Missing Rate

As we see from Figures 5.1–5.6, the missing rate had impact onthe imputation accuracy. For exam-

ple, for NN, WeightedNN, fastPHASE, MIKNN, and NeuralNet, their average imputation accuracies

decrease when the missing rate increases, on both human and mouse datasets. The Neighbor1NN,

however, performed slightly strangely on the mouse datasets, that its average imputation accuracies

increase slightly when the missing rate increases. The SVM showed a sharp drop on the density-1

with missing rate5%, which is likely dataset specific, since it came back as normal at missing rate

10%.

Except the abnormal behavior of Neighbor1NN and SVM, the general tendency is reasonable.

As the missing rate increases, to impute the missing value ata SNP locus, we lost some useful

values that were supposed to be used, but chose to use slightly fuzzy information. Moreover, as

this information is taken as the expected value over all possible SNP values, it becomes more bias
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Table 5.8: The right-tailedt-testp-values for pairwise comparisons on the human datasets at three
density levels, with missing rate0.5%, where the hypothesis is the average imputation accuracy of
a row method is greater than the average imputation accuracyof a column method.

fast
PHASE

NN Weighted
NN

SVM Neural
Net

Neighbor
1NN

MC BaseLine MIKNN

Density-0.01 human datasets

fastPHASE 0.500 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

NN 0.000 0.500 0.001 0.000 0.000 0.000 0.000 0.000 0.000

WeightedNN 0.000 0.999 0.500 0.000 0.000 0.000 0.000 0.000 0.000

SVM 1.000 1.000 1.000 0.500 0.214 0.679 0.557 0.718 0.000

NeuralNet 1.000 1.000 1.000 0.786 0.500 0.903 0.835 0.921 0.000

Neighbor1NN 1.000 1.000 1.000 0.321 0.097 0.500 0.369 0.548 0.000

MC 1.000 1.000 1.000 0.443 0.165 0.631 0.500 0.674 0.000

BaseLine 1.000 1.000 1.000 0.282 0.079 0.452 0.326 0.500 0.000

MIKNN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500

Density-0.1 human datasets

fastPHASE 0.500 1.000 0.996 0.000 0.000 0.000 0.000 0.000 0.000

NN 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

WeightedNN 0.004 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000

SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000

NeuralNet 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.000

Neighbor1NN 1.000 1.000 1.000 1.000 0.000 0.500 1.000 0.773 1.000

MC 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000

BaseLine 1.000 1.000 1.000 1.000 0.000 0.227 1.000 0.500 1.000

MIKNN 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.500

Density-1 human datasets

fastPHASE 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

NN 1.000 0.500 0.014 0.000 0.000 0.000 0.000 0.000 0.000

WeightedNN 1.000 0.986 0.500 0.000 0.000 0.000 0.000 0.000 0.046

SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

NeuralNet 1.000 1.000 1.000 1.000 0.500 0.000 0.000 0.000 1.000

Neighbor1NN 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

MC 1.000 1.000 1.000 1.000 1.000 0.000 0.500 0.000 1.000

BaseLine 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

MIKNN 1.000 1.000 0.954 0.000 0.000 0.000 0.000 0.000 0.500

toward the known values. Even further, for NN and its variants including WeightedNN, MIKNN,

and NPUTE, this fuzzy information could lead to more ties, which reduce further their imputation

accuracies. On the other hand, for Neighbor1NN, because itsvoting scheme is different from NN

and its variants, it showed a different tendency and became closer to the BaseLine, as expected.

5.5 Effects of Density Level

Putting the second columns of Tables 5.2, 5.3, and 5.4 together as Table 5.9, which are the average

imputation accuracies on the human datasets at three density levels all with missing rate0.5%. The

counterparts on the mouse datasets are collected as Table 5.10, as well as with the other five missing

rates presented in the Appendix, Section A.3.

From Tables 5.9 and 5.10, one can see that from low to medium tohigh densities, the imputation
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Table 5.9: Average imputation accuracies on the human datasets at three density levels with missing
rate0.5%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing rate0.5%
0.01 0.1 1

fastPHASE 0.69 0.7782 0.9617
NN 0.7552 0.8089 0.9224

WeightedNN 0.7302 0.7875 0.9163
SVM 0.6541 0.741 0.9027

NeuralNet 0.6478 0.6301 0.7839
Neighbor1NN 0.6579 0.6532 0.6415

MC 0.6553 0.7046 0.7725
BaseLine 0.6589 0.6554 0.6504
MIKNN 0.606 0.7198 0.9123

Table 5.10: Average imputation accuracies on the mouse datasets at three density levels with missing
rate0.5%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rate0.5%
0.01 0.1 1

fastPHASE 0.9107 0.9334 0.944
NPUTE 0.8371 0.873 0.8819

NN 0.9223 0.9411 0.9504
WeightedNN 0.924 0.9432 0.9514

SVM 0.8657 0.8861 0.9035
NeuralNet 0.832 0.8647 0.8544

Neighbor1NN 0.7846 0.7616 0.7503
MC 0.8388 0.8666 0.8733

BaseLine 0.8213 0.8252 0.8179
MIKNN 0.8995 0.9271 0.9414

accuracies of each imputation method increase, except those of NeuralNet decrease from0.6478 at

low density to0.6301 at medium density on human datasets. Nevertheless, its average imputation

accuracy comes back at0.7839 at high density, and thus we might suspect that the decrementis

caused by the simulated datasets. Surprisingly, similar phenomena happen to NeuralNet, Neigh-

bor1NN, and BaseLine on the mouse datasets, for which we are not able to explain confidently.

Prior to our work, NPUTE was one of the best missing SNP haplotype allele imputation program.

From Table 5.10 (and Tables 5.5–5.7), we see that fastPHASE and our methods NN, WeightedNN,

MIKNN, and SVM all performed statistically significantly better than NPUTE. One possible reason

is that the dependencies among the neighboring SNP markers.The number of neighboring SNP loci

employed by NPUTE for the imputation, that is the window sizeof a missing SNP locus, is fixed

but it is mostly region dependent. Our employment of geneticdistance threshold more accurately

reflects such a dependency to match well with the concept of genetic distance, which describes the

likelihood of recombination events. More specifically, compared to NPUTE, our local imputation

approaches, including NN, WeightedNN, and MIKNN, allow thecovering window size to vary from

a locus to another and neighboring SNPs are included as features for local imputation only if they
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are within the genetic distance threshold from the target missing SNP locus.

5.6 Effects of Genetic Distance Threshold

We also investigated the effects of the chosen genetic distance threshold to the imputation methods.

We show in this section the results on datasets with missing rate0.5%, while the readers might refer

to the Appendix, Section A.4, for results associated with the other five missing rates. Table 5.11

summarizes the average imputation accuracies, each over the associated10 simulated datasets, of the

imputation methods on the human datasets at three density levels with missing rate0.5%. Figure 5.7

plots these average imputation accuracies.

Table 5.11: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate0.5%, where the imputation methods were run with five corresponding genetic distance
thresholds.

Density-0.01 human datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.7085 0.6852 0.6854 0.6854 0.6854
NN 0.7454 0.75 0.7674 0.759 0.7542

WeightedNN 0.7501 0.7521 0.7278 0.7132 0.7076
SVM 0.6744 0.6572 0.6486 0.6444 0.6458

NeuralNet 0.6493 0.6493 0.6507 0.6438 0.6458
Neighbor1NN 0.6763 0.6517 0.6556 0.6514 0.6549

MC 0.6762 0.6495 0.6507 0.6493 0.6507
Baseline 0.6763 0.6544 0.6535 0.6556 0.6549
MIKNN 0.6539 0.5888 0.6076 0.584 0.5958

Density-0.1 human datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.7943 0.7782 0.7737 0.7725 0.7725
NN 0.8193 0.8121 0.8066 0.8045 0.8021

WeightedNN 0.8141 0.7986 0.7851 0.7736 0.7662
SVM 0.7543 0.7451 0.7387 0.7329 0.7338

NeuralNet 0.6323 0.6323 0.6314 0.6285 0.6261
Neighbor1NN 0.6527 0.654 0.6533 0.6529 0.6534

MC 0.7127 0.7049 0.7028 0.7011 0.7016
Baseline 0.6578 0.6563 0.6543 0.6544 0.654
MIKNN 0.7462 0.7216 0.7108 0.707 0.7136

Density-1 human datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.9682 0.9632 0.9602 0.9588 0.9579
NN 0.9391 0.9302 0.9214 0.9147 0.9064

WeightedNN 0.9372 0.9276 0.9158 0.9053 0.8955
SVM 0.9097 0.9095 0.9046 0.8982 0.8914

NeuralNet 0.7688 0.7835 0.7869 0.79 0.7905
Neighbor1NN 0.6303 0.6401 0.6441 0.6459 0.6469

MC 0.7757 0.7735 0.7719 0.7711 0.7703
Baseline 0.6504 0.6504 0.6504 0.6506 0.6505
MIKNN 0.922 0.9165 0.9107 0.9072 0.9051

From Table 5.11 and Figure 5.7, one can see that the genetic distance threshold does play a role

in the imputation on the human datasets, causing the averageimputation accuracy to vary a signifi-
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Figure 5.7: Average imputation accuracies on the human datasets at three density levels,0.01, 0.1,
and1, respectively, with missing rate0.5%, where the imputation methods were run with five corre-
sponding genetic distance thresholds.

cant percentage up to5. Another interesting pattern, also holds at the other five missing rates, can be

seen from the table and plots is that there is no unique threshold that works the best for all methods.

Indeed, perhaps a better way is to learn a suitable thresholdfor each imputation beforehand. Note

that fastPHASE (as well as NPUTE and BaseLine) does not do imputation based on any genetic

distance threshold. Yet one might have seen its average imputation accuracies changing throughout

as listed in Table 5.11. Here the reason is that different genetic distance thresholds change the num-

bers of target missing SNP genotype values, since some masked values would not have sufficiently

many neighboring SNP loci and thus excluded for performanceevaluation. Recall that we imposed

an additional constraint on the minimum of4 neighboring SNP loci.

Table 5.12 summarizes the average imputation accuracies, each over the associated10 simu-
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Table 5.12: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate0.5%, where the imputation methods were run with five corresponding genetic distance
thresholds.

Density-0.01 mouse datasets 0.2cM 0.4cM 0.6cM 0.8cM 1.0cM

fastPHASE 0.9099 0.9097 0.9118 0.9111 0.9111

NPUTE 0.8344 0.836 0.8393 0.838 0.838

NN 0.9119 0.9192 0.9285 0.9278 0.9241

WeightedNN 0.913 0.923 0.9294 0.9315 0.9231

SVM 0.8445 0.8642 0.8718 0.875 0.8731

NeuralNet 0.8297 0.8304 0.8324 0.8361 0.8315

Neighbor1NN 0.7338 0.776 0.7975 0.8065 0.8093

MC 0.8393 0.8358 0.8393 0.8417 0.838

Baseline 0.82 0.8196 0.8235 0.8213 0.8222

MIKNN 0.8927 0.9002 0.9072 0.8991 0.8981

Density-0.1 mouse datasets 0.02cM 0.04cM 0.06cM 0.08cM 0.1cM

fastPHASE 0.9354 0.9339 0.9326 0.9326 0.9327

NPUTE 0.8743 0.8733 0.8724 0.8724 0.8725

NN 0.9351 0.9417 0.9428 0.943 0.9431

WeightedNN 0.9386 0.9435 0.9447 0.9447 0.9444

SVM 0.8692 0.883 0.8885 0.8936 0.8962

NeuralNet 0.8429 0.854 0.8675 0.8774 0.8819

Neighbor1NN 0.7186 0.7489 0.7659 0.7828 0.7919

MC 0.8695 0.8672 0.8658 0.8625 0.8679

Baseline 0.8289 0.8255 0.8239 0.824 0.8238

MIKNN 0.9249 0.9265 0.9288 0.928 0.9274

Density-1 mouse datasets 0.002cM 0.004cM 0.006cM 0.008cM 0.01cM

fastPHASE 0.9441 0.9441 0.944 0.9439 0.9438

NPUTE 0.8818 0.882 0.882 0.8819 0.8817

NN 0.9459 0.95 0.9515 0.9522 0.9522

WeightedNN 0.9474 0.9515 0.9525 0.9528 0.9527

SVM 0.8896 0.903 0.9065 0.909 0.9095

NeuralNet 0.8497 0.857 0.8559 0.8558 0.8537

Neighbor1NN 0.705 0.7411 0.7588 0.7695 0.777

MC 0.8743 0.8735 0.8731 0.8729 0.8726

Baseline 0.8175 0.8179 0.8178 0.8182 0.8181

MIKNN 0.9383 0.9416 0.9421 0.9425 0.9425

lated datasets, of the imputation methods on the mouse datasets at three density levels with missing

rate0.5%. Figure 5.8 plots these average imputation accuracies. From them, we are able to draw

the analogous conclusions that the genetic distance threshold does play a role in the missing SNP

haplotype allele imputation, and that there is no unique threshold that works the best for all methods.

5.7 Imputation Speed Comparison

For imputation time comparison, we reported here the performance of all methods on the human and

mouse datasets at all three density levels with missing rate0.5%. These running time were collected

on our “Heldar” CPU cluster, which has the following specifications: (1) Dual AMD Opteron 2350

quad core 64-bit CPU’s, (2) The CPU’s run at 2.0 GHz, have an 800 MHz HyperTransport bus,

with a primary cache of 64KB I + 64KB D per core, a secondary cache of 512 KB I+D per core,
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Figure 5.8: Average imputation accuracies on the mouse datasets at three density levels,0.01, 0.1,
and1, respectively, with missing rate0.5%, where the imputation methods were run with five corre-
sponding genetic distance thresholds.

and a 2MB L3 cache per chip. Table 5.13 lists the average running time for each approach over

the10 simulated instances, where the genetic distance thresholds are5cM, 0.5cM, and0.05cM for

the density-0.01, -0.1, and -1 human datasets, respectively, and1cM, 0.1cM, and0.01cM for the

density-0.01, -0.1, and -1 mouse datasets, respectively.

As plotted in Figure 5.9, fastPHASE was the most time-consuming approach among all ten

methods on both the human and mouse datasets, because of its internal EM algorithm. On a sim-

ulated high density human dataset, fastPHASE took around one day to finish. SVM also needed

a relatively longer time during the training process to find the optimal parametersC andγ. The

imputation of NPUTE is divided into two phases, training to identify the best window size and the

real imputation. We reported the training time and the real imputation time separately on the mouse

datasets, which are shown in Table 5.13 as before and after the+ sign. Recall that NPUTE does not
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Figure 5.9: Running time comparison for the imputation methods on the human and mouse datasets
at all three density levels with missing rate0.5%. Herey-axis is the time at the logarithmic scale of
base10. fastPHASE and SVM were the most and the second most time-consuming methods.

work on the human datasets.
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Table 5.13: Running time comparison for the imputation methods on the human and mouse datasets
at all three density levels with missing rate0.5%.

Density-0.01 human Density-0.01 mouse

fastPHASE 14m2.792s 9m9.141s
NPUTE – 0m12.455s+ 0m0.153s

NN 0m0.113s 0m0.071s
WeightedNN 0m0.113s 0m0.071s

SVM 4m13.124s 1m5.563s
NeuralNet 0m54.895s 0m16.150s

Neighbor1NN 0m0.157s 0m0.075s
MC 0m0.053s 0m0.041s

BaseLine 0m0.038s 0m0.044s
MIKNN 0m0.975s 0m0.124s

Density-0.1 human Density-0.1 mouse

fastPHASE 92m36.385s 42m36.845s
NPUTE – 2m7.661s+ 0m0.683s

NN 0m0.227s 0m0.149s
WeightedNN 0m0.222s 0m0.1494s

SVM 28m44.012s 9m15.495s
NeuralNet 0m0.364s 0m0.101s

Neighbor1NN 0m0.2346s 0m0.126s
MC 0m0.1014s 0m0.0929s

BaseLine 0m0.075s 0m0.151s
MIKNN 0m6.137s 0m0.259s

Density-1 human Density-1 mouse

fastPHASE 2667m12.436s 389m22.608s
NPUTE – 21m1.529s+ 0m4.763s

NN 0m1.532s 0m0.412s
WeightedNN 0m1.504s 0m0.4126s

SVM 329m2.821s 106m7.214s
NeuralNet 3m45.352s 1m20.809s

Neighbor1NN 0m1.348s 0m0.369s
MC 0m0.6458s 0m0.2994s

BaseLine 0m0.179s 0m0.141s
MIKNN 2m30.568s 0m2.4266s
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Chapter 6

Conclusions

We have investigated the use of different machine learning approaches to tackle the missing SNP

value imputation problem for SNP datasets generated by the current high-throughput genotyping

technologies. Those missing values in the datasets can severely confound the downstream GWAS.

We implemented nearest neighbor (NN) and its variants (WeightedNN and MIKNN), neural network

(NeuralNet), SVM, and first order Markov chains (MC) to impute the missing values locally. In

this dissertation, we focused on the direct SNP missing genotype imputation and the missing SNP

haplotype allele imputation, the latter is also regarded asthe post-haplotyping imputation, both

without using reference haplotype panels.

For the local imputation, we introduced the use of genetic distance threshold to define the cov-

ering window for the target missing value, and use the known SNP values inside the window as

features for inferring the missing values. We firstly non-trivially extended NPUTE [25] based on

a fastk-nearest neighbor algorithm for both direct missing SNP genotype imputation and missing

SNP haplotype allele imputation. We observed that from the genetic map [10] that the distribution

of SNP loci is not uniform along the genome, and thus SNPs at different loci contribute differently

to the target missing value imputation since their genetic distance to the target locus varies. NPUTE

does not address this issue, but uses a fixed window size obtained from its training phase. We instead

presented alocal nearest neighbor NN in which the covering window size is determined by the ge-

netic distance threshold, and two weighted variants WeightedNN and MIKNN, twolocal first order

Markov chains, alocal SVM with the RBF kernel, and alocal neural networks that are constructed

using the genotypes inside the window. Apparently, this is an improvement on using windows over

NPUTE, that the covering window size is derived from a genetic distance threshold to the target

missing SNP locus —locality.

Throughout our studies, we found out that, on low to medium density SNP datasets, our proposed

methods NN and its weighted variant WeightedNN outperformed the currently best imputation pro-

grams fastPHASE [26] and NPUTE, in terms of missing SNP genotype and missing SNP haplotype

allele imputation accuracy. Moreover, our methods are way faster than fastPHASE. On high-density

SNP datasets, fastPHASE maintains to be the winner, achieving the highest missing SNP genotype
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imputation accuracy, which confirmed their claim of addressing haplotyping and imputation for

high-density population SNP data. But when it comes to missing SNP haplotype allele imputation,

our NN and WeightedNN again win out.

NPUTE is deigned for missing SNP haplotype allele imputation only, and does not work for

missing SNP genotype imputation. Surprisingly, we found out its performance in our experiments

does not catch up with what it is claim in its paper [25].

To conclude, for missing SNP haplotype allele imputation problem, our methods NN and Weight-

edNN are recommended, as they always won out in our extensivesimulation studies. For missing

SNP genotype imputation problem, when the density of a SNP dataset is high enough, fastPHASE

should be used; in the other cases, use our NN and WeightedNN.For the currently hot topic of

genome-wide SNP imputation, where some reference haplotype panels might exist, some sampling

individuals have been high-density genotyped, and the other individuals are low (to medium) density

genotyped due to cost consideration, and the goal is to impute these low density genotyped individ-

uals, it seems that none of existing imputation methods can be convincingly employed. Our next

step is to develop a novel framework for this genome-wide SNPimputation, based on fastPHASE

and experience and lessons we learned from this dissertation work.
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Appendix A

More Experimental Results

A.1 Additional p-values

Table A.1: The right-tailedt-testp-values for pairwise comparisons on the human datasets at three
density levels, with missing rate1, where the hypothesis is the average imputation accuracy ofa row
method is greater than the average imputation accuracy of a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Density-0.01 human datasets

(1) fastPHASE 0.500 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NN 0.000 0.500 0.001 0.000 0.000 0.000 0.000 0.000 0.000

(3) WeightedNN 0.000 0.999 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(4) SVM 1.000 1.000 1.000 0.500 0.214 0.679 0.557 0.718 0.000

(5) NeuralNet 1.000 1.000 1.000 0.786 0.500 0.903 0.835 0.921 0.000

(6) Neighbor1NN 1.000 1.000 1.000 0.321 0.097 0.500 0.369 0.548 0.000

(7) MC 1.000 1.000 1.000 0.443 0.165 0.631 0.500 0.674 0.000

(8) BaseLine 1.000 1.000 1.000 0.282 0.079 0.452 0.326 0.500 0.000

(9) MIKNN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500

Density-0.1 human datasets

(1) fastPHASE 0.500 1.000 0.996 0.000 0.000 0.000 0.000 0.000 0.000

(2) NN 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(3) WeightedNN 0.004 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(4) SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000

(5) NeuralNet 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.000

(6) Neighbor1NN 1.000 1.000 1.000 1.000 0.000 0.500 1.000 0.773 1.000

(7) MC 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000

(8) BaseLine 1.000 1.000 1.000 1.000 0.000 0.227 1.000 0.500 1.000

(9) MIKNN 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.500

Density-1 human datasets

(1) fastPHASE 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NN 1.000 0.500 0.003 0.000 0.000 0.000 0.000 0.000 0.000

(3) WeightedNN 1.000 0.997 0.500 0.000 0.000 0.000 0.000 0.000 0.178

(4) SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(5) NeuralNet 1.000 1.000 1.000 1.000 0.500 0.000 0.000 0.000 1.000

(6) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(7) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.500 0.000 1.000

(8) BaseLine 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(9) MIKNN 1.000 1.000 0.822 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.2: The right-tailedt-testp-values for pairwise comparisons on the human datasets at three
density levels, with missing rate2%, where the hypothesis is the average imputation accuracy ofa
row method is greater than the average imputation accuracy of a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Density-0.01 human datasets

(1) fastPHASE 0.500 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NN 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(3) WeightedNN 0.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(4) SVM 1.000 1.000 1.000 0.500 0.317 0.574 0.871 0.571 0.000

(5) NeuralNet 1.000 1.000 1.000 0.683 0.500 0.752 0.956 0.747 0.000

(6) Neighbor1NN 1.000 1.000 1.000 0.426 0.248 0.500 0.829 0.498 0.000

(7) MC 1.000 1.000 1.000 0.129 0.044 0.171 0.500 0.173 0.000

(8) BaseLine 1.000 1.000 1.000 0.429 0.253 0.502 0.827 0.500 0.000

(9) MIKNN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500

Density-0.1 human datasets

(1) fastPHASE 0.500 1.000 0.268 0.000 0.000 0.000 0.000 0.000 0.000

(2) NN 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(3) WeightedNN 0.732 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(4) SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000

(5) NeuralNet 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.000

(6) Neighbor1NN 1.000 1.000 1.000 1.000 0.000 0.500 1.000 0.831 1.000

(7) MC 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000

(8) BaseLine 1.000 1.000 1.000 1.000 0.000 0.169 1.000 0.500 1.000

(9) MIKNN 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.500

Density-1 human datasets

(1) fastPHASE 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NN 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(3) WeightedNN 1.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.715

(4) SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(5) NeuralNet 1.000 1.000 1.000 1.000 0.500 0.000 0.000 0.000 1.000

(6) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(7) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.500 0.000 1.000

(8) BaseLine 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(9) MIKNN 1.000 1.000 0.285 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.3: The right-tailedt-testp-values for pairwise comparisons on the human datasets at three
density levels, with missing rate5%, where the hypothesis is the average imputation accuracy ofa
row method is greater than the average imputation accuracy of a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Density-0.01 human datasets

(1) fastPHASE 0.500 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 0.001 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN 0.000 0.999 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 1.000 0.500 0.214 0.679 0.557 0.718 0.000
(5) NeuralNet 1.000 1.000 1.000 0.786 0.500 0.903 0.835 0.921 0.000
(6) Neighbor1NN 1.000 1.000 1.000 0.321 0.097 0.500 0.369 0.548 0.000
(7) MC 1.000 1.000 1.000 0.443 0.165 0.631 0.500 0.674 0.000
(8) BaseLine 1.000 1.000 1.000 0.282 0.079 0.452 0.326 0.500 0.000
(9) MIKNN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500

Density-0.1 human datasets

(1) fastPHASE 0.500 1.000 0.996 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN 0.004 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000
(5) NeuralNet 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.000
(6) Neighbor1NN 1.000 1.000 1.000 1.000 0.000 0.500 1.000 0.773 1.000
(7) MC 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 1.000 1.000 0.000 0.227 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.500

Density-1 human datasets

(1) fastPHASE 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN 1.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.985
(4) SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000
(5) NeuralNet 1.000 1.000 1.000 1.000 0.500 0.000 0.000 0.000 1.000
(6) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000
(7) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 0.015 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.4: The right-tailedt-testp-values for pairwise comparisons on the human datasets at three
density levels, with missing rate10%, where the hypothesis is the average imputation accuracy ofa
row method is greater than the average imputation accuracy of a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Density-0.01 human datasets

(1) fastPHASE 0.500 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 0.001 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN 0.000 0.999 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 1.000 0.500 0.214 0.679 0.557 0.718 0.000
(5) NeuralNet 1.000 1.000 1.000 0.786 0.500 0.903 0.835 0.921 0.000
(6) Neighbor1NN 1.000 1.000 1.000 0.321 0.097 0.500 0.369 0.548 0.000
(7) MC 1.000 1.000 1.000 0.443 0.165 0.631 0.500 0.674 0.000
(8) BaseLine 1.000 1.000 1.000 0.282 0.079 0.452 0.326 0.500 0.000
(9) MIKNN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500

Density-0.01 human datasets

(1) fastPHASE 0.500 1.000 0.996 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN 0.004 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000
(5) NeuralNet 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.000
(6) Neighbor1NN 1.000 1.000 1.000 1.000 0.000 0.500 1.000 0.773 1.000
(7) MC 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 1.000 1.000 0.000 0.227 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.500

Density-0.01 human datasets

(1) fastPHASE 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN 1.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.999
(4) SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000
(5) NeuralNet 1.000 1.000 1.000 1.000 0.500 0.000 0.000 0.000 1.000
(6) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000
(7) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 0.001 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.5: The right-tailedt-testp-values for pairwise comparisons on the human datasets at three
density levels, with missing rate20%, where the hypothesis is the average imputation accuracy ofa
row method is greater than the average imputation accuracy of a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Density-0.01 human datasets

(1) fastPHASE 0.500 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 0.001 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN 0.000 0.999 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 1.000 0.500 0.214 0.679 0.557 0.718 0.000
(5) NeuralNet 1.000 1.000 1.000 0.786 0.500 0.903 0.835 0.921 0.000
(6) Neighbor1NN 1.000 1.000 1.000 0.321 0.097 0.500 0.369 0.548 0.000
(7) MC 1.000 1.000 1.000 0.443 0.165 0.631 0.500 0.674 0.000
(8) BaseLine 1.000 1.000 1.000 0.282 0.079 0.452 0.326 0.500 0.000
(9) MIKNN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.500

Density-0.1 human datasets

(1) fastPHASE 0.500 1.000 0.996 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN 0.004 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000
(5) NeuralNet 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.000
(6) Neighbor1NN 1.000 1.000 1.000 1.000 0.000 0.500 1.000 0.773 1.000
(7) MC 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 1.000 1.000 0.000 0.227 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.500

Density-1 human datasets

(1) fastPHASE 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN 1.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 1.000
(4) SVM 1.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000
(5) NeuralNet 1.000 1.000 1.000 1.000 0.500 0.000 0.000 0.000 1.000
(6) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000
(7) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.6: The right-tailedt-testp-values for pairwise comparisons on the mouse datasets at three
density levels, with missing rate0.5%, where the hypothesis is the average imputation accuracy of
a row method is greater than the average imputation accuracyof a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Density-0.01 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.002

(2) NPUTE 1.000 0.500 1.000 1.000 0.898 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.307 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.693 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.102 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 0.969 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.031 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 0.998 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-0.1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.001 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.109 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.891 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 0.999 1.000 1.000 1.000 0.500 0.000 0.342 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.658 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 1.000 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.7: The right-tailedt-testp-values for pairwise comparisons on the mouse datasets at three
density levels, with missing rate1%, where the hypothesis is the average imputation accuracy ofa
row method is greater than the average imputation accuracy of a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Density-0.01 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.002

(2) NPUTE 1.000 0.500 1.000 1.000 0.898 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.307 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.693 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.102 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 0.969 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.031 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 0.998 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-0.1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.001 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.109 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.891 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 0.999 1.000 1.000 1.000 0.500 0.000 0.342 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.658 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 1.000 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.8: The right-tailedt-testp-values for pairwise comparisons on the mouse datasets at three
density levels, with missing rate2%, where the hypothesis is the average imputation accuracy ofa
row method is greater than the average imputation accuracy of a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Density-0.01 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.002

(2) NPUTE 1.000 0.500 1.000 1.000 0.898 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.307 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.693 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.102 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 0.969 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.031 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 0.998 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-0.1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.001 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.109 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.891 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 0.999 1.000 1.000 1.000 0.500 0.000 0.342 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.658 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 1.000 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.9: The right-tailedt-testp-values for pairwise comparisons on the mouse datasets at three
density levels, with missing rate5%, where the hypothesis is the average imputation accuracy ofa
row method is greater than the average imputation accuracy of a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Density-0.01 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.002

(2) NPUTE 1.000 0.500 1.000 1.000 0.898 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.307 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.693 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.102 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 0.969 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.031 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 0.998 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-0.1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.001 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.109 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.891 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 0.999 1.000 1.000 1.000 0.500 0.000 0.342 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.658 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 1.000 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.10: The right-tailedt-testp-values for pairwise comparisons on the mouse datasets at three
density levels, with missing rate10%, where the hypothesis is the average imputation accuracy ofa
row method is greater than the average imputation accuracy of a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Density-0.01 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.002

(2) NPUTE 1.000 0.500 1.000 1.000 0.898 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.307 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.693 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.102 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 0.969 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.031 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 0.998 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-0.1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.001 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.109 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.891 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 0.999 1.000 1.000 1.000 0.500 0.000 0.342 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.658 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 1.000 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.11: The right-tailedt-testp-values for pairwise comparisons on the mouse datasets at three
density levels, with missing rate20%, where the hypothesis is the average imputation accuracy ofa
row method is greater than the average imputation accuracy of a column method.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Density-0.01 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.002

(2) NPUTE 1.000 0.500 1.000 1.000 0.898 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.307 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.693 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.102 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 0.969 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.031 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 0.998 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-0.1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.001 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.109 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 0.891 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 0.999 1.000 1.000 1.000 0.500 0.000 0.342 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.658 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500

Density-1 mouse datasets

(1) fastPHASE 0.500 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NPUTE 1.000 0.500 1.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000

(3) NN 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(4) WeightedNN 0.000 0.000 1.000 0.500 0.000 0.000 0.000 0.000 0.000 0.000

(5) SVM 1.000 0.000 1.000 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(6) NeuralNet 1.000 1.000 1.000 1.000 1.000 0.500 0.000 1.000 0.000 1.000

(7) Neighbor1NN 1.000 1.000 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(8) MC 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.500 0.000 1.000

(9) BaseLine 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 0.500 1.000

(10) MIKNN 1.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.500
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A.2 Best Imputation Accuracy versus Missing Rate

For each of the36 combinations of (species, density, missing rate), there are10 associated simulated

datasets; on each simulated datasets,5 genetic distance thresholds are set to run the imputation

methods. Among the50 imputation accuracies for each imputation method, the bestone is reported

in the following tables.

Table A.12: Best imputation accuracies at the6 missing rates across the associated10 density-0.01
human datasets.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%

fastPHASE 0.7407 0.7547 0.7483 0.6946 0.6938 0.6922
NN 0.8264 0.8056 0.8024 0.7715 0.7507 0.7465
WeightedNN 0.81 0.7703 0.7865 0.7553 0.7299 0.7247
SVM 0.76 0.7204 0.7098 0.6922 0.6732 0.6755
NeuralNet 0.7153 0.6944 0.7158 0.6724 0.6627 0.6575
Neighbor1NN 0.75 0.7188 0.7211 0.6864 0.6722 0.6734
MC 0.7545 0.7204 0.7098 0.6804 0.6788 0.6791
BaseLine 0.76 0.724 0.7188 0.6855 0.6731 0.6737
MIKNN 0.72 0.6462 0.6538 0.6247 0.623 0.6138

Table A.13: Best imputation accuracies at the6 missing rates across the associated10 density-0.1
human datasets.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%
fastPHASE 0.8081 0.8161 0.8097 0.8029 0.7911 0.7752
NN 0.8392 0.8403 0.8307 0.8257 0.8155 0.8017
WeightedNN 0.8295 0.8394 0.8205 0.8125 0.7994 0.7801
SVM 0.7696 0.7714 0.7635 0.7605 0.7432 0.7297
NeuralNet 0.6646 0.6868 0.6391 0.6869 0.6737 0.671
Neighbor1NN 0.6764 0.6789 0.6619 0.6638 0.66 0.6589
MC 0.7339 0.7338 0.7271 0.7226 0.7142 0.7084
BaseLine 0.6762 0.6791 0.6636 0.6674 0.6621 0.6616
MIKNN 0.7625 0.7732 0.7608 0.7497 0.7376 0.7175
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Table A.14: Best imputation accuracies at the6 missing rates across the associated10 density-1
human datasets.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%
fastPHASE 0.97 0.9708 0.9682 0.9672 0.9634 0.9473
NN 0.941 0.941 0.9376 0.9348 0.9276 0.9156
WeightedNN 0.9398 0.9384 0.9339 0.9259 0.914 0.8952
SVM 0.912 0.9131 0.9107 0.906 0.896 0.8752
NeuralNet 0.7965 0.7934 0.7889 0.7839 0.7741 0.758
Neighbor1NN 0.652 0.6495 0.6493 0.6507 0.6486 0.6482
MC 0.7808 0.7791 0.7775 0.7738 0.7669 0.7528
BaseLine 0.6571 0.6535 0.6534 0.6543 0.6508 0.6505
MIKNN 0.924 0.9224 0.9205 0.9153 0.9054 0.8888

Table A.15: Best imputation accuracies at the6 missing rates across the associated10 density-0.01
mouse datasets.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%
fastPHASE 0.9537 0.9401 0.9164 0.9117 0.9079 0.8888
NPUTE 0.913 0.9032 0.8776 0.8656 0.8501 0.8332
NN 0.9722 0.9585 0.9332 0.9224 0.9139 0.8905
WeightedNN 0.963 0.9631 0.9393 0.9169 0.9061 0.8795
SVM 0.9259 0.9217 0.8779 0.8738 0.8725 0.8508
NeuralNet 0.9065 0.8802 0.8525 0.8425 0.8385 0.8218
Neighbor1NN 0.8704 0.8618 0.8203 0.8278 0.8242 0.8199
MC 0.8981 0.8726 0.8685 0.8593 0.8443 0.8379
BaseLine 0.9149 0.8618 0.8289 0.8332 0.8251 0.8215
MIKNN 0.963 0.9539 0.9122 0.9052 0.8997 0.8788

Table A.16: Best imputation accuracies at the6 missing rates across the associated10 density-0.01
mouse datasets.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%
fastPHASE 0.9514 0.9381 0.9357 0.9315 0.9277 0.9151
NPUTE 0.8978 0.8783 0.8749 0.8727 0.8661 0.857
NN 0.9585 0.9492 0.9441 0.9379 0.9314 0.9153
WeightedNN 0.9575 0.9497 0.9423 0.9315 0.9216 0.9079
SVM 0.9095 0.9036 0.9005 0.8923 0.8862 0.8678
NeuralNet 0.895 0.8943 0.8871 0.8827 0.8316 0.8212
Neighbor1NN 0.8065 0.8183 0.8116 0.8159 0.8149 0.8125
MC 0.8849 0.8778 0.8689 0.8626 0.8584 0.8472
BaseLine 0.8527 0.8386 0.825 0.8203 0.8192 0.8161
MIKNN 0.9398 0.9359 0.9308 0.9269 0.9218 0.9099
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Table A.17: Best imputation accuracies at the6 missing rates across the associated10 density-0.01
mouse datasets.

Methods
Missing Rate

0.5% 1% 2% 5% 10% 20%
fastPHASE 0.948 0.9501 0.9461 0.9436 0.9391 0.932
NPUTE 0.8915 0.8885 0.885 0.881 0.8773 0.8706
NN 0.957 0.9557 0.9523 0.9485 0.942 0.9311
WeightedNN 0.9577 0.9546 0.9504 0.9418 0.9331 0.9245
SVM 0.9139 0.9131 0.9102 0.8986 0.8983 0.8827
NeuralNet 0.8648 0.8617 0.8524 0.8424 0.8339 0.8216
Neighbor1NN 0.7853 0.7967 0.8061 0.8124 0.8147 0.8127
MC 0.8829 0.8814 0.8765 0.8723 0.8673 0.8568
BaseLine 0.8247 0.8234 0.8195 0.8182 0.8187 0.8158
MIKNN 0.9503 0.9488 0.9443 0.9408 0.9366 0.9286
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A.3 Imputation Accuracy versus Density Level

Table 5.9 and the following Tables A.18–A.22 are rearrangements of Tables 5.2, 5.3, and 5.4; Like-

wise, Table 5.10 and the following Tables A.23–A.27 are rearrangements of Tables 5.5, 5.6, and 5.7.

These tables are assembled to see the effects on SNP density level on the imputation accuracy.

Table A.18: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate1%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing rate1%
0.01 0.1 1

fastPHASE 0.6782 0.7797 0.9616
NN 0.7521 0.8079 0.9214

WeightedNN 0.7161 0.7859 0.9135
SVM 0.6544 0.7395 0.9021

NeuralNet 0.6431 0.6342 0.7834
Neighbor1NN 0.653 0.6532 0.6419

MC 0.6505 0.7053 0.7718
BaseLine 0.6535 0.6552 0.6496
MIKNN 0.5945 0.7232 0.9112

Table A.19: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate2%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing rate2%
0.01 0.1 1

fastPHASE 0.6785 0.7838 0.9611
NN 0.749 0.8056 0.9189

WeightedNN 0.7102 0.7817 0.9091
SVM 0.6488 0.7385 0.8918

NeuralNet 0.6465 0.6274 0.7804
Neighbor1NN 0.6497 0.6493 0.6427

MC 0.654 0.7053 0.7705
BaseLine 0.6497 0.6508 0.6493
MIKNN 0.6032 0.7213 0.9104
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Table A.20: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate5%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing rate5%
0.01 0.1 1

fastPHASE 0.6787 0.78 0.9597
NN 0.7471 0.8041 0.9158

WeightedNN 0.7065 0.774 0.901
SVM 0.6587 0.7351 0.8693

NeuralNet 0.6528 0.6732 0.7769
Neighbor1NN 0.6585 0.6553 0.6452

MC 0.6606 0.7065 0.768
BaseLine 0.6588 0.6567 0.6502
MIKNN 0.598 0.7156 0.9062

Table A.21: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate10%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing rate10%
0.01 0.1 1

fastPHASE 0.6756 0.7716 0.9502
NN 0.7393 0.7969 0.91

WeightedNN 0.6936 0.7624 0.891
SVM 0.6488 0.7261 0.8715

NeuralNet 0.6432 0.6706 0.769
Neighbor1NN 0.6507 0.6554 0.6455

MC 0.6513 0.7026 0.7614
BaseLine 0.6511 0.6566 0.6492
MIKNN 0.5919 0.7077 0.898

Table A.22: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate20%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing rate20%
0.01 0.1 1

fastPHASE 0.6735 0.7566 0.9378
NN 0.7349 0.7848 0.8984

WeightedNN 0.6877 0.7454 0.8734
SVM 0.6516 0.7104 0.8217

NeuralNet 0.6463 0.6651 0.7534
Neighbor1NN 0.6541 0.6536 0.6456

MC 0.6528 0.6946 0.7483
BaseLine 0.6542 0.6549 0.6488
MIKNN 0.5902 0.6908 0.882
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Table A.23: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate1%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rate1%
0.01 0.1 1

fastPHASE 0.9072 0.9314 0.9452
NPUTE 0.856 0.8684 0.8821

NN 0.9184 0.9398 0.9511
WeightedNN 0.9197 0.9407 0.9508

SVM 0.854 0.8842 0.9042
NeuralNet 0.8271 0.8629 0.8524

Neighbor1NN 0.7844 0.768 0.7697
MC 0.8319 0.8635 0.8753

BaseLine 0.8133 0.8189 0.8182
MIKNN 0.9035 0.9271 0.9425

Table A.24: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate2%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rate2%
0.01 0.1 1

fastPHASE 0.8968 0.9278 0.9439
NPUTE 0.8458 0.8661 0.8816

NN 0.9101 0.9355 0.9498
WeightedNN 0.9088 0.9343 0.9468

SVM 0.8507 0.8808 0.8969
NeuralNet 0.8217 0.8579 0.8478

Neighbor1NN 0.7816 0.7795 0.7887
MC 0.8276 0.8568 0.8737

BaseLine 0.8034 0.8155 0.8178
MIKNN 0.8887 0.923 0.9412

Table A.25: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate5%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rate5%
0.01 0.1 1

fastPHASE 0.8997 0.9271 0.9417
NPUTE 0.8445 0.8659 0.8789

NN 0.9081 0.9324 0.9466
WeightedNN 0.9014 0.9267 0.9391

SVM 0.8581 0.878 0.6477
NeuralNet 0.8277 0.8549 0.8371

Neighbor1NN 0.8068 0.798 0.8044
MC 0.8384 0.8561 0.8705

BaseLine 0.8179 0.8145 0.8168
MIKNN 0.8902 0.9199 0.9386
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Table A.26: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate10%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rate10%
0.01 0.1 1

fastPHASE 0.8917 0.9244 0.9383
NPUTE 0.839 0.8617 0.8758

NN 0.899 0.927 0.9408
WeightedNN 0.8887 0.9177 0.9321

SVM 0.8495 0.875 0.8837
NeuralNet 0.8164 0.8254 0.8245

Neighbor1NN 0.8059 0.8072 0.8103
MC 0.8289 0.8538 0.8655

BaseLine 0.8117 0.8159 0.8167
MIKNN 0.883 0.9152 0.9343

Table A.27: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate20%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rate20%
0.01 0.1 1

fastPHASE 0.8803 0.9125 0.9305
NPUTE 0.8281 0.8531 0.8695

NN 0.8808 0.9112 0.9294
WeightedNN 0.8678 0.9009 0.9213

SVM 0.8398 0.8597 0.7648
NeuralNet 0.809 0.8114 0.806

Neighbor1NN 0.8103 0.808 0.8105
MC 0.8267 0.8429 0.8553

BaseLine 0.8143 0.8134 0.8149
MIKNN 0.8666 0.9023 0.9252
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A.4 Imputation Accuracy versus Genetic Distance Threshold

Table 5.11 summarizes the average imputation accuracies, each over the associated10 simulated

datasets, of the imputation methods on the human datasets atthree density levels with missing rate

0.5%. The following five more tables on human datasets at five othermissing rates, and six more

tables on mouse datasets at six missing rates, show further the effects of genetic distance threshold

on the imputation accuracy.

Table A.28: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate1%, where the imputation methods were run with five corresponding genetic distance thresh-
olds.

Density-0.01 human datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.6915 0.6746 0.675 0.675 0.675
NN 0.7375 0.7406 0.7552 0.7615 0.766

WeightedNN 0.7159 0.7346 0.7125 0.7139 0.7035
SVM 0.6623 0.6536 0.6538 0.6528 0.6493

NeuralNet 0.6479 0.6438 0.6382 0.6444 0.6413
Neighbor1NN 0.6628 0.6504 0.6503 0.6497 0.6517

MC 0.6643 0.6466 0.6469 0.6479 0.6469
BaseLine 0.6647 0.6511 0.651 0.65 0.6507
MIKNN 0.6122 0.5912 0.5941 0.591 0.584

Density-0.1 human datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.7968 0.7793 0.7747 0.7739 0.7738
NN 0.8223 0.8109 0.8058 0.8022 0.7981

WeightedNN 0.8201 0.7978 0.7835 0.7677 0.7605
SVM 0.7527 0.7399 0.738 0.7353 0.7315

NeuralNet 0.626 0.6255 0.6247 0.6227 0.6718
Neighbor1NN 0.6502 0.6532 0.6539 0.6542 0.6545

MC 0.7142 0.7058 0.7027 0.702 0.7018
BaseLine 0.6558 0.6559 0.6552 0.6547 0.6543
MIKNN 0.7503 0.7243 0.7139 0.7135 0.7137

Density-1 human datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.9681 0.963 0.9603 0.9588 0.9578
NN 0.9389 0.9297 0.9205 0.9127 0.9053

WeightedNN 0.9363 0.9248 0.9126 0.9015 0.8922
SVM 0.9104 0.9086 0.9036 0.8974 0.8903

NeuralNet 0.7684 0.7824 0.7876 0.789 0.7897
Neighbor1NN 0.6325 0.6412 0.644 0.6455 0.6464

MC 0.7755 0.7728 0.771 0.7702 0.7696
BaseLine 0.6501 0.6497 0.6493 0.6496 0.6494
MIKNN 0.9205 0.9146 0.9099 0.907 0.9042
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Table A.29: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate2%, where the imputation methods were run with five corresponding genetic distance thresh-
olds.

Density-0.01 human datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.6942 0.6743 0.6747 0.6747 0.6747
NN 0.7411 0.7467 0.7516 0.7492 0.7562

WeightedNN 0.7357 0.7291 0.7095 0.6938 0.683
SVM 0.6625 0.647 0.6447 0.6444 0.6454

NeuralNet 0.6525 0.6458 0.647 0.6452 0.6421
Neighbor1NN 0.6621 0.6463 0.6461 0.6475 0.6466

MC 0.6645 0.6506 0.6516 0.6513 0.6516
BaseLine 0.6614 0.6459 0.647 0.6471 0.647
MIKNN 0.6281 0.604 0.5983 0.5948 0.5908

Density-0.1 human datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.8014 0.7828 0.7789 0.778 0.778
NN 0.8228 0.8063 0.8028 0.8007 0.7956

WeightedNN 0.8143 0.7943 0.7775 0.766 0.7566
SVM 0.7546 0.7391 0.7354 0.7334 0.7302

NeuralNet 0.629 0.6285 0.6291 0.6266 0.6237
Neighbor1NN 0.6483 0.6496 0.6498 0.6495 0.6492

MC 0.7161 0.7053 0.7024 0.7013 0.7012
BaseLine 0.6535 0.6503 0.6501 0.6499 0.65
MIKNN 0.7494 0.7215 0.7136 0.7112 0.711

Density-1 human datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.9677 0.9624 0.9598 0.9584 0.9575
NN 0.9363 0.9269 0.9183 0.9099 0.9029

WeightedNN 0.9325 0.9194 0.9082 0.8972 0.888
SVM 0.9089 0.9067 0.9019 0.8956 0.846

NeuralNet 0.7659 0.7794 0.7841 0.7861 0.7864
Neighbor1NN 0.6348 0.6421 0.6444 0.646 0.6463

MC 0.7742 0.7712 0.7697 0.7689 0.7683
BaseLine 0.6499 0.6494 0.6491 0.6491 0.6489
MIKNN 0.919 0.9134 0.9095 0.9063 0.9039
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Table A.30: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate5%, where the imputation methods were run with five corresponding genetic distance thresh-
olds.

Density-0.01 human datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.6884 0.676 0.6764 0.6764 0.6764
NN 0.7379 0.7452 0.7461 0.7533 0.753

WeightedNN 0.7339 0.7216 0.7033 0.6911 0.6826
SVM 0.6701 0.6555 0.6543 0.6582 0.6555

NeuralNet 0.656 0.6571 0.6541 0.6506 0.6461
Neighbor1NN 0.6672 0.6555 0.6567 0.6566 0.6566

MC 0.6699 0.6578 0.6584 0.6584 0.6583
BaseLine 0.6675 0.6561 0.657 0.6572 0.656
MIKNN 0.6149 0.5906 0.5903 0.5938 0.6002

Density-0.1 human datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.7969 0.7795 0.7753 0.7741 0.774
NN 0.8199 0.8063 0.8015 0.7979 0.795

WeightedNN 0.8081 0.7869 0.7707 0.7571 0.7471
SVM 0.7509 0.7369 0.7324 0.7287 0.7266

NeuralNet 0.6703 0.6738 0.6746 0.6747 0.6728
Neighbor1NN 0.6548 0.6551 0.6561 0.6553 0.6554

MC 0.7161 0.7065 0.7042 0.7029 0.7027
BaseLine 0.6589 0.6567 0.6567 0.6555 0.6557
MIKNN 0.7409 0.7167 0.7076 0.7062 0.7066

Density-1 human datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.9663 0.9611 0.9584 0.9569 0.9559
NN 0.9334 0.9241 0.9149 0.9067 0.8997

WeightedNN 0.9243 0.9113 0.8997 0.8892 0.8802
SVM 0.905 0.9024 0.8962 0.8891 0.7537

NeuralNet 0.7633 0.7765 0.7805 0.7821 0.7821
Neighbor1NN 0.6392 0.6449 0.6465 0.6474 0.6479

MC 0.7718 0.7688 0.7672 0.7664 0.7658
BaseLine 0.6507 0.6503 0.6501 0.65 0.6498
MIKNN 0.9142 0.9091 0.9052 0.9023 0.9
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Table A.31: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate10%, where the imputation methods were run with five corresponding genetic distance
thresholds.

Density-0.01 human datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.6861 0.6725 0.6732 0.6732 0.6732
NN 0.7331 0.7377 0.7412 0.7442 0.7402

WeightedNN 0.7172 0.7059 0.6939 0.681 0.67
SVM 0.6585 0.6459 0.6465 0.6473 0.646

NeuralNet 0.6465 0.6462 0.6445 0.6412 0.6378
Neighbor1NN 0.6584 0.648 0.649 0.6492 0.6489

MC 0.661 0.6485 0.6491 0.6489 0.6492
BaseLine 0.6596 0.6488 0.6486 0.649 0.6492
MIKNN 0.6092 0.5832 0.5862 0.5903 0.5905

Density-0.1 human datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.7877 0.7712 0.7671 0.7661 0.766
NN 0.8121 0.7997 0.7941 0.7903 0.7884

WeightedNN 0.797 0.7752 0.7592 0.745 0.7357
SVM 0.7411 0.7286 0.7239 0.72 0.7171

NeuralNet 0.6695 0.6711 0.6718 0.6712 0.6695
Neighbor1NN 0.6555 0.6559 0.6552 0.6551 0.6554

MC 0.7113 0.7029 0.7002 0.6993 0.6993
BaseLine 0.6585 0.6569 0.6562 0.6558 0.6556
MIKNN 0.732 0.7078 0.7003 0.6988 0.6995

Density-1 human datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.9573 0.9516 0.9487 0.9471 0.946
NN 0.9269 0.9179 0.9093 0.9014 0.8945

WeightedNN 0.9131 0.9006 0.8896 0.88 0.8718
SVM 0.8952 0.8912 0.8841 0.8763 0.8106

NeuralNet 0.7571 0.769 0.7725 0.7736 0.773
Neighbor1NN 0.6417 0.6453 0.6464 0.6469 0.6472

MC 0.765 0.7622 0.7607 0.76 0.7594
BaseLine 0.6496 0.6494 0.6492 0.6491 0.6489
MIKNN 0.9048 0.9007 0.8972 0.8947 0.8925
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Table A.32: Average imputation accuracies on the human datasets at three density levels with miss-
ing rate20%, where the imputation methods were run with five corresponding genetic distance
thresholds.

Density-0.01 human datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.6849 0.6703 0.6707 0.6707 0.6707
NN 0.7314 0.7317 0.7364 0.7374 0.7373

WeightedNN 0.7159 0.6979 0.686 0.6749 0.6639
SVM 0.6644 0.6486 0.6487 0.6472 0.6489

NeuralNet 0.6516 0.649 0.6455 0.6436 0.6417
Neighbor1NN 0.6648 0.6508 0.6514 0.6518 0.6515

MC 0.6639 0.6496 0.6501 0.6502 0.6501
BaseLine 0.665 0.6512 0.6515 0.6516 0.6518
MIKNN 0.6073 0.5821 0.5856 0.5878 0.5883

Density-0.1 human datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.7715 0.7562 0.7524 0.7514 0.7514
NN 0.7986 0.7874 0.7829 0.7782 0.7769

WeightedNN 0.7773 0.7568 0.7425 0.7295 0.7209
SVM 0.7248 0.7125 0.708 0.7044 0.7022

NeuralNet 0.6648 0.6663 0.6666 0.6649 0.6631
Neighbor1NN 0.6537 0.6539 0.6537 0.6535 0.6535

MC 0.7028 0.6948 0.6924 0.6916 0.6914
BaseLine 0.6567 0.6551 0.6545 0.6541 0.654
MIKNN 0.7129 0.6912 0.6841 0.6824 0.6836

Density-1 human datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.9458 0.9393 0.9362 0.9345 0.9334
NN 0.9145 0.9058 0.8976 0.8903 0.8837

WeightedNN 0.8944 0.8821 0.872 0.8632 0.8554
SVM 0.8738 0.8676 0.8588 0.8479 0.6602

NeuralNet 0.7442 0.7542 0.7566 0.7565 0.7555
Neighbor1NN 0.6431 0.6454 0.6462 0.6467 0.6468

MC 0.7516 0.749 0.7476 0.7469 0.7464
BaseLine 0.6492 0.649 0.6488 0.6486 0.6485
MIKNN 0.8881 0.8844 0.8813 0.8792 0.8771
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Table A.33: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate1%, where the imputation methods were run with five corresponding genetic distance thresh-
olds.

Density-0.01 mouse datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.9062 0.9076 0.9076 0.9074 0.9074
NPUTE 0.8557 0.8556 0.8562 0.8562 0.8562

NN 0.9017 0.917 0.9242 0.923 0.9263
WeightedNN 0.9081 0.9203 0.9214 0.9258 0.923

SVM 0.8301 0.8519 0.8595 0.8631 0.8654
NeuralNet 0.8231 0.8329 0.8295 0.8267 0.8235

Neighbor1NN 0.7387 0.7792 0.7916 0.8023 0.8101
MC 0.825 0.8373 0.8374 0.829 0.8309

BaseLine 0.8093 0.8111 0.8142 0.8152 0.8166
MIKNN 0.8963 0.9011 0.9025 0.9097 0.9078

Density-0.1 mouse datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.9322 0.9317 0.9311 0.931 0.931
NPUTE 0.8692 0.8684 0.8681 0.8682 0.8681

NN 0.9329 0.9403 0.9418 0.9418 0.9422
WeightedNN 0.9346 0.9405 0.9429 0.9425 0.9432

SVM 0.8653 0.8801 0.8883 0.8925 0.8945
NeuralNet 0.8367 0.8512 0.8656 0.8752 0.8859

Neighbor1NN 0.722 0.7546 0.7767 0.7895 0.7974
MC 0.8653 0.8643 0.8611 0.864 0.863

BaseLine 0.8199 0.8184 0.8185 0.8191 0.8186
MIKNN 0.9232 0.9273 0.9278 0.9279 0.9291

Density-1 mouse datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.9456 0.9452 0.9452 0.945 0.945
NPUTE 0.8821 0.8821 0.8821 0.882 0.882

NN 0.9478 0.9511 0.9519 0.9525 0.9524
WeightedNN 0.9489 0.9516 0.9519 0.9513 0.9504

SVM 0.8914 0.9036 0.9073 0.9093 0.9096
NeuralNet 0.8487 0.8543 0.8546 0.8537 0.8505

Neighbor1NN 0.7284 0.7623 0.7776 0.787 0.7929
MC 0.8761 0.8752 0.8751 0.8749 0.8753

BaseLine 0.8181 0.8182 0.8183 0.8181 0.8182
MIKNN 0.9396 0.9428 0.9433 0.9434 0.9436
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Table A.34: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate2%, where the imputation methods were run with five corresponding genetic distance thresh-
olds.

Density-0.01 mouse datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.9008 0.896 0.8962 0.8956 0.8956
NPUTE 0.8501 0.8442 0.8451 0.8447 0.8447

NN 0.9051 0.911 0.9151 0.9111 0.9083
WeightedNN 0.9038 0.9109 0.9147 0.9104 0.9041

SVM 0.833 0.8519 0.8546 0.8565 0.8574
NeuralNet 0.8208 0.8206 0.8247 0.8217 0.821

Neighbor1NN 0.7403 0.7788 0.7947 0.7949 0.7995
MC 0.8293 0.8285 0.8254 0.8306 0.824

BaseLine 0.8014 0.8013 0.8044 0.806 0.8041
MIKNN 0.8892 0.8894 0.8904 0.8866 0.888

Density-0.1 mouse datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.9282 0.9279 0.9275 0.9276 0.9276
NPUTE 0.8669 0.8659 0.8659 0.866 0.866

NN 0.9287 0.9349 0.9378 0.9383 0.9376
WeightedNN 0.93 0.936 0.9367 0.9352 0.9338

SVM 0.86 0.8775 0.8851 0.8897 0.8915
NeuralNet 0.831 0.8459 0.8598 0.8714 0.8813

Neighbor1NN 0.7396 0.7709 0.7879 0.7974 0.8017
MC 0.8587 0.8561 0.8563 0.856 0.8566

BaseLine 0.815 0.8157 0.8151 0.8154 0.816
MIKNN 0.9185 0.9226 0.9237 0.9249 0.9251

Density-1 mouse datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.9442 0.9439 0.9438 0.9438 0.9437
NPUTE 0.8818 0.8817 0.8816 0.8816 0.8815

NN 0.9471 0.9502 0.951 0.9507 0.9501
WeightedNN 0.9471 0.9487 0.9475 0.9459 0.9447

SVM 0.888 0.897 0.8961 0.8998 0.9034
NeuralNet 0.8459 0.8503 0.85 0.8474 0.8453

Neighbor1NN 0.757 0.7851 0.7959 0.801 0.8042
MC 0.8745 0.8741 0.8733 0.8732 0.8733

BaseLine 0.8178 0.8177 0.8177 0.8181 0.8178
MIKNN 0.9387 0.9414 0.942 0.942 0.9421
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Table A.35: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate5%, where the imputation methods were run with five corresponding genetic distance thresh-
olds.

Density-0.01 mouse datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.9009 0.8991 0.8995 0.8994 0.8994
NPUTE 0.8456 0.8433 0.8444 0.8446 0.8446

NN 0.8999 0.9078 0.9134 0.9111 0.9081
WeightedNN 0.8981 0.9022 0.9058 0.9008 0.8999

SVM 0.8413 0.8556 0.8608 0.8657 0.8669
NeuralNet 0.8265 0.8279 0.8296 0.8292 0.8254

Neighbor1NN 0.7874 0.8072 0.8112 0.8124 0.8157
MC 0.8396 0.8358 0.8391 0.8394 0.8379

BaseLine 0.8188 0.8181 0.8173 0.8172 0.818
MIKNN 0.8818 0.8887 0.8908 0.8945 0.895

Density-0.1 mouse datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.9275 0.9273 0.927 0.9269 0.9268
NPUTE 0.8675 0.8656 0.8656 0.8655 0.8655

NN 0.927 0.9324 0.9342 0.934 0.9345
WeightedNN 0.9261 0.9282 0.9277 0.9263 0.9251

SVM 0.8584 0.8744 0.8825 0.8863 0.8882
NeuralNet 0.828 0.8432 0.8567 0.8687 0.8776

Neighbor1NN 0.7746 0.7952 0.8037 0.8071 0.8094
MC 0.8566 0.8561 0.8557 0.8561 0.8561

BaseLine 0.8137 0.8144 0.8149 0.8149 0.8147
MIKNN 0.9144 0.9191 0.9214 0.9221 0.9227

Density-1 mouse datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.942 0.9418 0.9416 0.9416 0.9415
NPUTE 0.8791 0.879 0.8789 0.8788 0.8788

NN 0.945 0.9472 0.9472 0.947 0.9465
WeightedNN 0.9408 0.94 0.9388 0.9381 0.9376

SVM 0.7003 0.6921 0.7051 0.6804 0.6729
NeuralNet 0.8394 0.841 0.8388 0.8349 0.8311

Neighbor1NN 0.7903 0.8033 0.8076 0.8099 0.811
MC 0.8712 0.8707 0.8704 0.87 0.87

BaseLine 0.8168 0.8167 0.8167 0.8168 0.8168
MIKNN 0.9356 0.9386 0.9394 0.9398 0.9397
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Table A.36: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate10%, where the imputation methods were run with five corresponding genetic distance
thresholds.

Density-0.01 mouse datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.8938 0.891 0.8913 0.8913 0.8913
NPUTE 0.8409 0.8376 0.8388 0.8388 0.8388

NN 0.8937 0.899 0.9026 0.9002 0.8995
WeightedNN 0.8862 0.8879 0.8899 0.8895 0.8899

SVM 0.8364 0.8472 0.8533 0.855 0.8556
NeuralNet 0.8185 0.8195 0.8189 0.8142 0.8111

Neighbor1NN 0.7963 0.8053 0.8082 0.8097 0.8102
MC 0.8301 0.8294 0.828 0.8287 0.8283

BaseLine 0.8116 0.8103 0.8117 0.8127 0.8124
MIKNN 0.8771 0.8821 0.8842 0.8847 0.8867

Density-0.1 mouse datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.9248 0.9244 0.9243 0.9242 0.9241
NPUTE 0.8629 0.8615 0.8614 0.8614 0.8614

NN 0.923 0.927 0.9284 0.9284 0.9281
WeightedNN 0.9168 0.9172 0.9179 0.9181 0.9187

SVM 0.8581 0.8717 0.8793 0.8824 0.8835
NeuralNet 0.8271 0.8287 0.8267 0.8242 0.8203

Neighbor1NN 0.7964 0.8058 0.8099 0.8116 0.8125
MC 0.8548 0.8536 0.8536 0.8537 0.8534

BaseLine 0.8158 0.8156 0.8159 0.816 0.816
MIKNN 0.9093 0.9137 0.9168 0.918 0.9182

Density-1 mouse datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.9386 0.9383 0.9382 0.9381 0.9381
NPUTE 0.876 0.8758 0.8757 0.8757 0.8757

NN 0.9395 0.9416 0.9415 0.941 0.9405
WeightedNN 0.9311 0.9321 0.9324 0.9325 0.9325

SVM 0.8814 0.8912 0.8739 0.8924 0.8798
NeuralNet 0.8326 0.8302 0.8253 0.8199 0.8147

Neighbor1NN 0.8043 0.8098 0.8116 0.8126 0.813
MC 0.8665 0.8659 0.8652 0.8651 0.865

BaseLine 0.8167 0.8166 0.8166 0.8168 0.8168
MIKNN 0.9303 0.9342 0.9353 0.9357 0.936
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Table A.37: Average imputation accuracies on the mouse datasets at three density levels with miss-
ing rate20%, where the imputation methods were run with five corresponding genetic distance
thresholds.

Density-0.01 mouse datasets 1cM 2cM 3cM 4cM 5cM

fastPHASE 0.8806 0.8799 0.8803 0.8804 0.8804
NPUTE 0.8284 0.8272 0.8282 0.8284 0.8284

NN 0.8742 0.8812 0.8846 0.8835 0.8806
WeightedNN 0.8612 0.8643 0.8696 0.8714 0.8723

SVM 0.8292 0.8377 0.8441 0.8448 0.8435
NeuralNet 0.817 0.8141 0.8099 0.8046 0.7992

Neighbor1NN 0.805 0.8096 0.8118 0.8122 0.8128
MC 0.8258 0.8267 0.8278 0.827 0.8264

BaseLine 0.8129 0.814 0.8146 0.8144 0.8157
MIKNN 0.8551 0.863 0.8702 0.8727 0.872

Density-0.1 mouse datasets 0.1cM 0.2cM 0.3cM 0.4cM 0.5cM

fastPHASE 0.9132 0.9126 0.9123 0.9123 0.9122
NPUTE 0.8544 0.8529 0.8528 0.8528 0.8528

NN 0.9061 0.9109 0.9126 0.913 0.9134
WeightedNN 0.8943 0.8987 0.9015 0.9042 0.9056

SVM 0.8479 0.8576 0.8627 0.8648 0.8657
NeuralNet 0.8193 0.8168 0.8125 0.8068 0.8016

Neighbor1NN 0.8029 0.807 0.8091 0.8101 0.811
MC 0.844 0.8426 0.8424 0.8426 0.8429

BaseLine 0.813 0.8131 0.8135 0.8136 0.8136
MIKNN 0.8937 0.9005 0.9043 0.9059 0.9073

Density-1 mouse datasets 0.01cM 0.02cM 0.03cM 0.04cM 0.05cM

fastPHASE 0.9308 0.9305 0.9305 0.9304 0.9303
NPUTE 0.8698 0.8695 0.8695 0.8695 0.8694

NN 0.9271 0.9298 0.9303 0.93 0.9298
WeightedNN 0.9165 0.9208 0.9225 0.9232 0.9237

SVM 0.7311 0.8119 0.7415 0.7587 0.7807
NeuralNet 0.8207 0.8134 0.8057 0.7986 0.7916

Neighbor1NN 0.8073 0.81 0.8111 0.8118 0.8121
MC 0.8561 0.8557 0.8552 0.8549 0.8548

BaseLine 0.8148 0.8149 0.8149 0.815 0.815
MIKNN 0.9195 0.9248 0.9266 0.9274 0.9279
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