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Abstract

High-throughput single nucleotide polymorphism (SNP)@gping technologies conveniently pro-
duce large SNP genotype datasets for genome-wide linkabassociation studies. Various factors,
from array design and hybridization, can give rise to a @efarcentage of missing calls, and the
problem becomes severe when the target organisms sucttladeatot have a high resolution ge-
nomic sequence available. Missing calls in SNP genotypasetd would undermine downstream
data analysis. Therefore, effective methodologies folinigavith missing genotypes are in urgent
need. In this dissertation, we start with a brief introdoictio the concepts in genetics, then presenta
collection of imputation methods, with focus on machineéag algorithms, to tackle the missing
SNP genotype problem. We demonstrate that these imput@piproaches can achieve satisfactory
accuracies, tested on the real population SNP genotypsalstand highlight the places where our
new methods find useful. We conclude with some possible éutinections for the genome-wide

SNP genotype imputation problem.
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Chapter 1

Introduction

1.1 High-throughput Genotyping Technology

A single nucleotide polymorphism (SNP) represents the rnostmon form of genetic variations
in the genome between individuals of the same species. Sgemetic variation involves alter-
ations of one nucleotide at a physical location, and is a®reid to be a SNP only if it occurs in at
least1% of the population. Because of their abundance, heredibjlsgaand availability of high-
throughput genotyping technologies [34], SNPs have beed as genetic markers to facilitate the
new-generation genetic tool for constructing the high dgmenetic map [10] and carrying out the
genome-wide association stud{&@WAS), which aim at identifying genetic associations wiithits
from these common genetic variations. Thus far, SNPs hage texognized to be the etiology of
many complex diseases such as prostate cancer, bipoladeisand obesity [5, 11, 24].

In general, GWAS, either case-control, categorical or tjtative, are based on tHeommon
disease/trait-common varian{CDCV) hypothesis [1], and require many samples along veithée
and dense SNP markers. The tools for scanning millions ofsSbiReach sample to detect the poly-
morphisms are DNA microarrays. For diploid species suchuasam and cattle, the high throughput
genotyping technologies utilize DNA microarrays togetith the information on the distribution
of SNPs along the genomes to generate unphased genotyefoSlP marker. With the comple-
tion of the International HapMap Project (Phase 1) [10], plotype map for understanding genetic
variants and the haplotype structures of humans has becail@tde; as a result, a set of tag SNPs
has been identified and can be used as the reference to thieutish of SNPs throughout human
genomes.

Currently, two competing high-throughput genotyping fademns from the Affymetrix GeneChip
and the Illlumina BeadChip respectively are the two populaiaes for whole-genome genotyping.
Both platforms are single-channel microarray systems anthin a selection of variant probes along
the genome [33, 24]. The major difference between the twtigslas lies in their SNP-selection
strategies in term of genome coverage [24]. Microscopic Pkibes on the lllumina array are

selected almost entirely from the tag SNPs with optimal mitele frequency derived from the



international HapMap project; on the other hand, Affymetiiray includes about half of those tag

SNPs and the rest are mainly from an unbiased selection o $38? 24].

1.2 SNP Genotype Missing Value Problem

High-density SNP microarray chips can produce unphasedtgea values for each SNP marker.
However, due to the current design of high-throughput ggring technology, certain amount of
bias, known as genotyping errors, could be introduced tgtbeess of selection and amplifica-
tion [24]. In addition, the genotyping assays are prone taio missing calls. Missing calls can
be attributed to the poor quality of DNA samples and the amibjgpf fluorescence signals [17].
Poor quality of DNA samples can result in the failure of arfigdition and reduction of intensity
of subsequent fluorescence signals on the background. Thiguaity in the reads of fluorescence
signals can lead to “no-call” procedure that any of the essbf genotype cannot be assigned to
those signals [17]. For humans, the current general-perpoh-density SNP chips are estimated
to contain a portion of missing genotypes and genotypingrerin the rangé0.05%, 1%, due to
the completion of the human genome project [9]; for othecEsesuch as cattle, a high-resolution
genetic map of their whole genomes has not yet been avaikatdeconsequently their slightly lower
density SNP chips could contain more missing data and ekudnish is similar to the earlier human
DNA microarrays whose missing calls could range fréfffiup t0o20% [13, 31].

The unphased genotype data obtained from the high-thraugepotyping approaches are con-
sidered to be the major issue that complicates GWAS, sinat existing tools for GWAS could not
handle data with missing values. The missing genotypegptésthe dataset, particularly when the
percentage is high, also challenge the current associstiimly methods. In practice, when mark-
ers with missing genotypes are recognized to be extremslyesied, one can choose to repeat the
genotyping or modify the GWAS tools to accommodate the mgsdata. However, both approaches
are expensive in terms of labor and cost. Another commoteglydo tackle the missing values in
the SNP data is to discard those SNP markers and/or samptesotitain missing genotypes above
some threshold [11, 14]. However, this may significantlyueglthe mapping resolution in sacrifice
of good data — see also the Results chapter on our datasebpesping, detection power of GWAS
tools, and undermine the inference of gene-trait associgfil]. Lastly, one can try to computa-
tionally infer and substitute the missing genotypes witkdicted values, also known asputation
Although imputation tends to be a low-cost approach, we khioel cautious that a poor imputation
may introduce biases or errors to the SNP datasets [25].

The so-called “unphased genotypes” also challenge théngigenotype imputation. For diploid
organisms such as human, chromosomes come in pairs. Theelenthw of inheritance states
that, for each individual, one of a pair of homologous autess is inherited from her father and
the other from her mother. However, SNP genotype data dopsaiify which chromosome comes

from the paternal or the maternal, and are usually refeoed tunphased data. As a result, missing



genotype imputation is usually coupled with the haplotygerence. Some approaches to genotype
imputation involve haplotype inference at a preprocesstage in order to recover the inheritance
information. Robertet al.[25] mentioned that haplotype inference with missing dsitaniown to be
computationally intractable. Therefore, either nearmptiapproximation algorithms are designed
to facilitate haplotype inference with missing data, or hiae learning techniques are adopted to

find the best choice for the reconstruction of haplotypesthasm domain knowledge.

1.3 Motivation of Missing SNP Genotype Imputation

With the help of missing genotype imputation, current GWAS8$ that usually do not tolerate miss-
ing values can continue to be used without modification. Meee, missing genotype imputation
can greatly improve the detection power of GWAS without i@dg the resolutions of SNP data in
that success of GWAS is governed by statistical power. Byredticing SNPs or samples into the
study, the statistical power becomes stronger. Althoughtitliing strong gene-trait associations
may require relatively few samples, large numbers of sasngde get rid of lower-penetrance ef-
fects. In genetics, the proportion of individuals carryaparticular variation of a gene that would
only sometimes express an associated trait is known as-peregtrance effects.

The gene-trait association study can extend our knowledgiseases and help design cus-
tomized drugs. SNPs are known to affect drug metabolism &atance of drugs. For instance,
GWAS on SNPs can help predict the likelihood that someonkdsilelop a particular illness and
answer questions such as why individuals differ in theie gffects when absorbing the same thera-
peutic. In the future, physicians and pharmacists cantésordividual SNP sequencing and design

customized drug therapy for any particular patient.

1.4 Our Contributions to Missing SNP Genotype Imputation

Our main contribution in this work is to develop a framewohiatt uses efficient, effective, and
biologically meaningful machine learning approaches thatk with a genetic map to infer the
missing genotypes within a SNP dataset. The genetic distsimawn in the genetic map serves as
a parameter threshold for finding out the haplotype block3N®s that tend to stay together during
inheritance and is simple enough to model the recombinatients and cluster the closely linked
SNPs within a short region. We design a novel nearest nerglgorithm and a weighted version

to facilitate the fast imputation of missing genotypes.

1.5 Thesis Outline

The rest of the dissertation is organized as follows: In @&ad, we briefly provide an introduction
to the concepts of genetics in Section 2.1. In Section 2.2onedlly define the missing SNP geno-

type imputation problem, followed by the evaluation measwf the imputation problem in Section



2.3. In Chapter 3, the important missing SNP genotype vaidehaplotype allele imputation meth-
ods proposed in recent years are reviewed in detail, inotpidistPHASE and NPUTE. In Chapter 4,
the machine learning algorithms we employed are introducetiiding the nearest neighbor algo-
rithm, its weighted variants, neural network, supportgeatachines, and first-order Markov chain.
Chapter 5 presents the experimental results, and discassasaber of factors that are important to
the imputation. We conclude the dissertation in Chapter fgoiat out some possible future work

directions.



Chapter 2

Background

2.1 Concepts in Genetics

Chromosomes are organized structures of the double-gdDNA sequences, which carry genetic
information of an organism. Geneticists identify thoseifimss where SNPs reside on a chromo-
some, called SNBoci. In this dissertation, we consider ortyallelic SNPs of diploid organisms.
That is, at a SNP locus, there are only two possible distitheles, denoted by and1 respectively.
For humans, SNPs made up most of the genetic variations [8xdjthere are millions of them.
SNPs occur once in eveBy)0 basepairs on average, and there are estimated abouitlion SNPs

in the human genome. In a high density SNP genotype datd$Btldgi are physically close to each
other, and alleles at these loci tend to stay together ovaiadl distance, and thus called genetically
tightly-linked For this reason, sometimes SNPs are referred to as titjinkigel markers.

Diploid organisms such as human are species that have gdirechosomes. For each individ-
ual, agenotypeat a SNP locus of a pair of homologous chromosomes consisigddlleles. Since
genotype does not provide information of which one of the thoomosomes each allele comes
from, genotype at a locus can be denoted as an unordered @dligles, and the genotype of a ho-
mologous chromosome is a sequence of unordered allelesidg.SDh the other hand, a haplotype
at a SNP locus consists of two alleles and specifies whichnobsome each allele comes from; a
haplotype of a chromosome consists of all the alleles, onedoh SNP locus, on the chromosome.
Figure 2.1 illustrates concepts mentioned above.

Although, according to the Mendelian law of inheritance trared previously, a child inherits
parental genetic information for each locus, in genera, cbes not inherit the exact copies from
the paternal and maternal chromosomes respectively dhe existence of mutations and recombi-
nation events. That is, during the meiosis process, the aserppal chromosomes get duplicated and
shuffled and four chromatids are generated; one chromapidssed on to the child. Nevertheless,
it is observed that the recombination event is rare [18].wRenh two consecutive SNP loci along
the chromosome, the recombination rate is described byehetig distance between them. Such

information can be obtained from a genetic map.
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Figure 2.1: An illustration of a structure of chromosomes)atypes, and haplotypes.

Due to the Mendelian law of inheritance and the fact that tieria and recombination events
are rare, for each haplotype allele at a small block of chisonwe, it is likely that many individ-
uals share the same haplotype allele due to identical-bgese (IBD). In other words, unrelated
individuals in population data tend to have common allelesifa common ancestor in a short chro-
mosomal region. This is also known as the coalescent theaggmetics. Such regions are usually
referred to as highinkage disequilibrium(LD) regions. In fact, the coalescent theory underlies
most of thehaplotyping-base@nputation methods using a variety of techniques. The éxiEthe
haplotype block shared among individuals can be diffenemhflocus to locus and is limited by the
existence of mutations and recombination events. Thexgfory well designed genotype imputa-
tion methods should be able to make a balance between thesceat theory and recombination
events. A common way is to consider the similarities amorgidigpe alleles within a viably sized
window [25] or a high LD region [26].

All the imputation methods discussed in this dissertatiecéaimed to be able to work on high-
density SNP population data. By population SNP data, we nileginthe samples are unrelated.
Moreover, the SNPs in the population data are tightly linked correlated because the millions
of SNPs are collected and the average distance between twge@ative SNP markers is small.
The missing SNP genotype imputation on large-scale pdpuldata can be formulated as follows.
Given SNP genotype population data with missing calls, @al ¢ to efficiently and effectively, in
terms of speed and accuracy respectively, impute missirg &ita based on the coalescent theory

and recombination. We would like the possible bias and giaegrrors to be as small as possible.



2.2 Missing SNP Genotype Problem Formalism

To date, all genotype imputation approaches fall into thiefiong four categories: (1) direct geno-
type imputation with the use of a haplotype reference pa2id; [(2) an integration of haplotype
inference and imputation; (3) post-haplotyping imputatinethod that deals with missing haplo-
type alleles; (4) direct genotype imputation without the ug a haplotype reference panel and
without haplotype inference. Most missing genotyping itagion approaches try to infer missing
genotypes from a commercial SNP array by utilizing a refeegranel composed of haplotypes from
Phase Il of the International HapMap Project [10]. NPUTE][B% Robertset al. is a fast nearest
neighbor algorithm, which is a post-haplotyping imputatinethod. In this dissertation, we focus
on addressing missing SNP value imputation in the latterswemarios.

For post-haplotyping imputation scenario, we assume kieaBNP data either have identical al-
leles at each locus for each genotype or have been prepedcesshat haplotypes are obtained for
each individual at each SNP locus. Therefore, post-hapilotyimputation can be considered as a
binary classification problem. That is, we are given a SNRdtgpe datasetl = {h, ha,...,hy,}
with n haplotypes af\/ SNP loci drawn from a population, whebe = {h;1, hi2, ..., hins} and
him € {0,1,7}. The task is to infer those missing alleles denoted by “?'hinithe dataset. The
possible values for each missing allele &6e1}. For our implemented approaches, an additional
genetic map is provided, which specifies genetic distantedsn every two SNP loci. For organ-
isms whose genetic map is not available, we approximateeheti distance to be the difference
between two physical positions divided by one million, simme centi-Morgan (cM) corresponds
to about one million basepairs on average along human clvomes.

For direct genotype imputation without the reference higple and without haplotype inference,
the problem can be formalized as follows. Suppose that we haiallelic SNP genotype dataset
comprised of: diploid individuals overM SNP loci drawn from a population and we wsand1 to
denote the two distinct alleles at each SNP locus. The pessémotypes aré00,01, 11}. LetG =
{g91,92, ..., 9n} denote the genotypes farindividuals, eacly; comprised of genotype data &f
markers. The data set can be represented as-ai/ matrix, in which each unphased genotypge
can be represented as an unordered pair of alleles with dhe fifur values{00, 01, 11, 77}, where
00 and11 are calledhomozygoud)1 is calledheterozygousand?? denotes a missing genotype.
Similarly, aside from the input matri&, a genetic map is provided to keep track the genetic distance
for each locus. Thus, we define the genotype imputationraslt-classificatiorproblem: given a
genotype data sef, we try to assign one of the three clas$68, 01, 11} to each of the missing

SNP genotypes.



2.3 Performance Evaluation

For the missing SNP value imputation problem, the classifinaccuracy (or imputation accuracy)
is a standard measurement for evaluating the performaremeycdipproach, which is defined as the
proportion of correctly imputed values. Note that we onketinto account those missing SNP val-
ues that have at least four neighboring SNP loci within a eh@genetic distance threshold, because
we need information from neighboring loci to construct teas for SVM and neural networks. We
note that in the literature of genotype imputation, impotahas also been regarded as a regression
problem [19], for which the imputation accuracy is definetédhe percentage of correctly imputed
minor allelesover total number of minor alleles in the target missing SidRi®s. Given that each
genotype consists of two alleles, we think that such a definibverestimates the performance of
any approach. For example, if the correct genotypeias a SNP locus for a particular individual
and a heterozygous genotypewas imputed, they viewed this scenario as having produceabn

two correct alleles; however, we consider this to be an iexily imputed genotype.



Chapter 3

Related Work

This chapter briefly surveys previous work that employed hivee learning algorithms to tackle
the missing SNP value imputation problem. The machine Iegrapproaches can be categorized
into four fields as mentioned in Chapter 2. We also surveydlatad machine learning algorithms
applied for haplotyping inference, which are closely lidke the missing value imputation. All
computational and statistical approaches for missingevathputation and haplotype inference are
based on the observation of nonrandom patterns of allelesshort regions of tightly linked loci.
Niu et al.[23] in 2002 introduced the idea of “partition ligation” tévitle SNP loci along the genome
into segments containing a small number (ak®)udf order-preserved consecutive loci [23], and
applied Gibbs sampler for haplotype inference. @iral. [15], Stephens and Donnelly [28] and
Lin et al.[20] employed this idea in subsequent haplotype inferendenaissing value imputation
studies. We refer to the imputation after the haplotyperariee as gost-haplotyping imputation
and the direct genotype imputationganotype-based imputation

The most common machine learning imputation approach isddigt missing genotype from
haplotype frequencies of population samples using eitlageBian methods [30, 21, 23] or expec-
tation maximization (EM) [15]. Haplotype frequencies ab#ained after performing the haplotype
inference at an early stage of the imputation. More receptagches incorporate models of re-
combination by partitioning markers into haplotype blotlesed on entropy measures [31] or by
inferring a mosaic of haplotype clusters [26]. Tree-baseplitation methods have also been devel-
oped, which infer missing genotype on the basis of perfegtqgeny rather than haplotype struc-
ture [12, 11]. Essentially, all these methods impute mgsgjanotypes to satisfy the haplotyping
needs, and thus their accuracies highly depend on haplotigrences.

Haplotype inferences are highly associated with the prold&€SNP genotype imputation, and
is considered to be the first step to genotype imputation fostraxisting genotype imputation. To

get started, we will first present two machine learning apphes to the haplotype inference.



3.1 Bayesian Approaches for Haplotype Inference

Niu et al.[23], in 2002, proposed a Bayesian approach to haplotygeénte. Stepheret al.[30]
adopted the Bayesian idea with consideration of linkagediigibrium (LD) regions and imple-
mented a software called PHASEZ) to handle haplotype inference.

In the Bayesian approach, parameters are random variaiidabea goal is to estimate posterior
distribution given observed data. In the context of hagletinference, we compute the posterior

distribution of haplotype frequencies given observed tgresG using Bayes'’ rule:

P(falc) = ZEEI).

whereP(fr) is the prior distribution of haplotype frequencies ghdis the haplotype frequencies.
P(fr)isassumed to be known. Markov chain - Monte Carlo (MCMC) athm is used to calculate
P(G|fr) andP(G), mainly because the state spaces for evaluafit@| fx) is exponentially too
huge to enumerate.

The two Bayesian approaches proposed by &lial. [23] and Stephenet al. [29] respectively
both adopt the Gibbs sampling algorithm [4] to estimate thstgrior distribution of haplotype
frequencies. However, they differ in the prior distribuitsothey assume. Based on the Dirichlet
prior, Niu's approach starts with an assignment of hapletinequencies. At each iteration, for
each individual, a pair of haplotypes is sampled and thedtgpé frequencies are updated based
on the pair of haplotypes. On the other hand, based on a ppyo&imating the coalescent model,
Stephengt al's [29] approach starts with an arbitrary haplotype sangpbfthe given genotypes

and at iteration updates a randomly selected individual.

3.2 Maximum Likelihood Haplotype Inference

The maximum likelihood approach [16] tries to estimate bggle frequencies that maximize the
probability of the observed genotype data, where haplofsgmuencies are unknown parameters
that need to be inferred. The likelihood of the populatiotadat is the product of the probability
of each individual because all individuals are independéptich other. Moreover, the probability
of an individual with an observed genotype is just the sunionatf the product of two haplotype
frequencies for all haplotype pairs that are consisterit thieé genotype.

The Expectation-Maximization (EM) algorithm is a widelyaasalgorithm for maximum like-
lihood estimates (MLESs). Initially, the EM assigns arhijyrédnaplotype frequencies. At thieth
iteration, the expected occurrences of a haplotype aketmliculated using haplotype frequencies
(corresponding to the Expectation-step). Next, the hgpkfrequencies are updated based on the
expected occurrences of a haplotype (corresponding to thenMization-step). The EM terminates
with the haplotype frequencies returned when it convergsbould be noted that the EM algorithm

may converge to local maxima, which one can detect by stpftom different initial conditions to
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examine whether they converge to the same solution [16].

3.3 Quantity Measurement for Haplotype Allele Imputation

In 2005, Suet al. [31] proposed a new approach for the missing SNP imputatioblpm based

on the information quantity measure “entropy” since LD meaments according to their paper are
usually too noisy for haplotype block constructions. Loweatsity is a notable feature for haplotype
blocks and low entropy indicates low diversity. Missing Shdplotype alleles can be inferred by
considering haplotype frequencies within haplotype bdo&INP haplotype alleles within haplotype
blocks tend to stay together and keep unchanged during tloentgination events. The haplotype

block structure is measured by entropy satisfying the falhg conditions:
¢ the total entropy within a block should be minimized,
¢ the total entropy between every adjacent blocks should bémized, and
¢ the total mutual information of adjacent blocks should baimized,

where the mutual information of adjacent blocks is definethasdifference of the sum of block
entropies and the block entropy’s of all combinations oflagypes across any two blocks. Dynamic
programming (DP) is applied to partition the large-scalé>3tdplotypes into blocks that satisfy the
above three conditions. Next, if there aremissing SNPs within a haplotype block, the goal is to
minimize the block entropy(+):

X = argn;}nE(X),

whereX = (z1,x9,...,x,,) is the random variable of these missing SNPs. An EM-like iterative
process is developed to find a value for eagh To impute thei-th missing SNP at thé-th run,
in the first step of the iterative process, estimate the feaqy of haplotype containing; denoted
by h(z;) for z; = 0, given non-missing SNPs in the block (denotedByand set of haplotypes
excludingh(z;) (denoted byH):

fo= P(h(z; =0)|H, D),
and the conditional probability of frequency of haplotyp#or x; = 1,
fr=P(h(z; =1)|H, D).

Herez; = 0 if

fofffl > 0.5; otherwisex; = 1. In this manner, all the missing SNPs are imputed

for each block.

3.4 NPUTE

Robertset al. in 2007 proposed a new post-haplotyping imputation apgreatied NPUTE using
fast K -nearest neighbor (KNN) searches with the following threg élements [25]:

11



e data structures support faktNN searches over arbitrary window sizes in constant time,
¢ the advantage of fast speed enables exhaustive searched ogasonable window sizes, and

¢ the method does not rely on sampling, and hence enablesagistimof imputation accuracy

by inferring every missing SNP.

The main idea behind this method is that a sliding window eeng at the missing entry is set
up to find the closest samples to the target sample and tHesaffem these closest neighbors are
used to fill the missing entry. Let be the number of samples add be the number of SNPs
in the population dataset. Their approach is illustratedi explained in haplotype-based scheme,
meaning that NPUTE bases their imputation on biallelic bgyple alleles denoted by “0” and “1”
respectively, not genotypes.

0.5, if either samples; or s; is missing

vij =< 0, if s;=s;;

1, if s; # ;.

As each SNP pairwise mismatch vector is computed, a new ttatge called anismatch accu-

mulator array(MAA) is built:
e Initialize MAA of width n(n — 1)/2 and heightM + 1. The first row is set to zero;

e Loop through SNPs in their sequence order, each row védtdrd; . ; is updated by adding

the mismatch vector to the previous row vector.

The cost of constructing such an array (MAA) is linear in thienber of SNPs. Hence, the mismatch
value within a window siz&. extending a SNP above and below can be obtained later by subtract-
ing the MAA vector with indexnax(i — L, 0) from the vector with indexnin(i + L + 1, M). The
sample with the minimum mismatch value is then selected laddlue at the SNP locus is used to
fill the missing data in the target sample. If multiple happats are tied for the minimum mismatch
value, then they allow a vote for the call. A tie in the vote isken by taking the next minimum
mismatch values into account and so on.

Due to their fast speed, given a population SNP dataset, dippiroach first tries to find the
optimal sliding window size by scanning over a large rangevimidow sizes and estimating the
imputation accuracy for each non-missing allele. In thisima, a good estimate of the performance
is also obtained. That is, values of non-missing SNP all@tesised to validate the inferred values
generated by NPUTE. The accuracy for non-missing unknovetealis obtained for each sliding
window size. The optimal window size is defined as the one yiets the highest imputation
accuracy for those non-missing SNPs. After the optimallsézebeen determined in suckraining
phasethe real imputation starts up, for which the procedure &ty the same except that this time

the program imputes the missing SNPs.
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3.5 fastPHASE

A robust and improved missing SNP genotype imputation basetbcal clustering and hidden
Markov model (HMM) was introduced by Scheet and Stephenkif2B006. The implementation
of their method is called fastPHASE. They adopted a localteling idea to capture the observation
that over a small number of loci haplotype alleles tend to lostered into similar patterns. The
nearby alleles within small regions tend to arise from theesaluster due to the coalescent theory.
Therefore, their assumption is that given a SNP genotypesdgteach haplotype allele at a given
SNP originates from one of th& clusters; moreover, the cluster membership can be altéoed a
the genome. The cluster membership of any observed genatypeSNP locus is modeled as
the latent variable in HMM. The other improvement, compaiedis predecessor PHASE, is its
speed [26]. fastPHASE can be outlined in two steps.

Parameter Estimation The parametens = (6, a, r) represent the haplotype frequencies within
each cluster, relative frequencies of clusters, and themmémation rate, respectively. They are
estimated by applying the EM algorithitimes fromT" different starting points since EM would
typically result in different set of estimates. They combined the obtained estimates to make
predictions. The number of clusters, denotedibyis an input. It is suggested in the paper that it
would be more fruitful to try out differenk’ values and to combine the results, than just selecting a
single K value.

Missing Genotype Imputation Suppose that the genotype of individualt the SNP locusn,
denoted byy;,., is missing. Sincé@, is obtained in the previous step by applying the EM algorithm
the probability thay;,, = = wherez € {00,01, 11}, given all observed genotypesind estimated
parameter values;, is computed by the EM algorithm with respectd¢g,. To infer the value of
gim, they used the estimate that yields the best probabilitye/fdr the missing genotype:

T

. 1 .
Gim = aIg maXmE{OO,Ol,ll}T Zp(gim = z|g, 1n).
t=1
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Chapter 4

Methods

Recall that the genotype imputation scenario we are inees is formalized as a multi-classification
problem: given a missing SNP genotype datd@seive want to assign one of the three classes (val-
ues){00, 01, 11} to each missing SNP genotype. Additionally, a genetic maph® corresponding
dataset is provided, in which the genetic distance betweeryéwo SNP loci can be looked up.

To address both the IBD and the recombination events, wepseenetic distance threshold as
a parameter to generate a block of SNP loci extending thettenrtgsing value above and below. We
refer to the upper bound and lower bound of the block (the rerrob SNP loci below and above
the target missing SNP locus) as upper window gizznd lower window siz&R respectively. The
underlying assumption is that haplotype alleles withis tiibck tend to be IBD. To impute thieth
SNP marker of individuaj, denoted byy;;, we construct the training dataset to include sequences
with known genotypesy,, #??) at SNP locug, denoted byl = {x;, y; }¥_,, wherez; is the input
feature vector that is constructed based on the neighb&fes below and above angd denotes
the target variable that is derived frogy,, #77. It should be noted that when the missing rate is
high, it would be unavoidable for a training dataset to contaissing calls at SNP loci other than
locusi. Moreover, we assume that the genotypes are missing atromyfoandom (MAR). That is,

the occurrences of missing SNP genotypes do not depend aiteteny

4.1 Baseline Approach

A naive method for genotype imputation is to impute missgidP values with the non-missing
genotype that occur most often in the population at the SKBslowhich is also applicable to the
post-haplotyping imputation. The naive approach doesis®information from neighboring loci to
impute and usually gives poor accuracy. The expected intipataccuracy is equal to, wherep is
the frequency of genotype (haplotype) with the most frejoenurrences, but in the worst case it
could be as low a8 for both directly genotype-based imputation and the hgpkthased imputation
if we assume genotypes are missing at random. For this reimsractice, imputation based on the

majority allele frequency is often out of interests. We ut#d it as the BaselLine approach in our

14



experiment.

4.2 Nearest Neighbor (NN) and Its Variants

We first extend the NPUTE method [25] to address both the tinessing SNP genotype imputation
problem without using reference haplotype panels and tisé paplotyping imputation. The basic
idea behind NPUTE is that it uses instances of observatiotitei training dataséf in the feature
space to infer missing genotypes for testing sequences.PA$TE does not generalize a learning
model for classification tasks but rather bases its leardirggtly on thestoredtraining instances,

it is also sometimes referred to as a memory-based learnatigad. One key factor in all-nearest
neighbor methods is to define a distance function that imptseness” between samples with a

voting scheme.

4.2.1 Distance Function

Given a genotype datasét, the scoring schemé for two genotypes at a SNP locus is shown in
Table (4.1). This scoring scheme assumes the hammingditke for genotype8o, 01, 11, and??
represented as three-dimensional vecfars, 0), (0,1, 0), (0,0, 1), and(0, 0,0) respectively. For
instanced(00,11) = |1 — 0]+ [0 — 0 4+ [0 — 1| = 2, 8(??,00) = [0 — 1|+ [0 — 0| + [0 — 0| = 1,

§(??,7?) = 0and so on.

Table 4.1: The scoring schemég, -) between two genotype alleles.

5(~) foo ot 1L 72
00 o221
01 021
11 01
7 0

For post-haplotyping imputation, we split each genotymgisace into two haplotype sequences.
The task becomes to impute missing alléléeom {0, 1}. Therefore, the score function is the same

as the one used in NPUTE, shown in Eq. 4.1:

0, ifa=b#?
d(a,b) =< 1, elseifa=70rb=" (4.1
2, otherwise,

wherea andb are two haplotype alleles.
Subsequently, the distance between each saimpled the target samplgat the target SNP

locuss is defined as
dist;(j, k) = > 8(Gumg» Gmte)- (4.2)

i—L<m<i+R,m#i
We also introduce twaveightedk-nearest distance functions based on the fact that linkesge di-

librium (LD) decreases as we moves away. The first approaaimted by “WeightedNN” in our
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experiment, is to base weights on the window dizend R as shown in Eq. (4.3). That is, we put

more weights to SNPs that are closer to the missing SNP asfocu

disti(j.k) = Y (L—it+m+1)d(Gmj,Gmr)+ Y. (R—m+i+1)5(Gmj,CGmp)-
i—L<m<i i<m<i+R
(4.3)

Next, we usgointwise mutual informatio(PMI) between the SNP locus with the missing value
to be imputed and every other SNP locus within the block aglei The PMI between lo¢iand

j can be calculated as follows:

o P(z,y)
SI(i,j) = P(z,y)log —————, (4.4)
= 2 Plenlspeymyg
z,y€{00,01,11}
whereP(z, y) is the joint probability of genotype at SNP locusg and genotypg at SNP locug,
and P(z) is the probability of genotype at the given SNP locus. In details, we calcul&ter, y)

andP(z) in the first order Markov chain. Therefore, the modified disefunction is

dist;(j, k) = > SI(i,2) X 6(gaj, Guk)- (4.5)
i— L<z<i+R,z#i

We refer to the above weighted NN approach based on PMI as NIKin our experiment.

4.2.2 \oting Scheme

Using the scoring scheme defined in Table 4.1 for direct ggreoimputation and Eq. (4.1), the
distance between the target sampland every sample of the training dataset can be calculated,
from which the genotype value at locusf the nearest neighbor(s) can be used for filling the
missing genotype;;. In practice, there can be multiple tied nearest neightand, they might
have distinct genotypes at locuslin this dissertation, the value &fin k£ nearest neighbors refers
to k distances rather thah nearest samples. For instance, with= 1, 1NN tries to include all
samples of the training dataset that have the equal minimstarde to the target sample. The
most straightforward scheme for letting these nearestibeig to vote on the presence of a testing
sequence is the majority vote scheme, which basicallysreath neighbor as one vote, and we
choose the genotypes with the highest vote to impute theingisslueg;; at locusi. If votes
for all distinct genotypes at locustie, then the majority voting scheme can choose to randomly
select a sample from the tied genotypes and use its genatymagutation. Our preliminary testing
exhibited that such a majority voting did not yield satisfag imputation accuracy. Besides, for
classick nearest neighbor, one needs to test multiple choicésoofthe training data to finél that
works best on the dataset.

Consequently, we turned to the voting scheme that is emgloy®&PUTE [25]. In this new
voting scheme, we start with the nearest neighbors for gaimd choose the genotype of highest

votes for imputation. In case of tied votes among the neareigthbors, it adds more training
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instances that are the next closest to the testing samiplecttied votes are broken. We adopted this
scheme for our implemented nearest neighbor method, diaetsIN.

Alternatively, we took the neighborhood information of nest neighbor(s) into account to re-
duce ambiguity. That is, we also included samples in thaitrgidataset whose distances to one
of the nearest neighbors are within the nearest distancen,Wwe followed the same procedure
mentioned above to impute missing genotype Our method Neighbor1NN is implemented based
on this idea, where we selected the nearest neighbors fimgyaind in case of tied votes, we used
the nearest distance to the testing sequencalégance thresholdnd for each nearest neighbor to
add training instances that are less than or equal to thendistthreshold for voting. The genotype
which receives the majority vote will be chosen as the impwalue. In case of tied votes, we

randomly select one from candidate genotypes of tied higldss.

4.3 Artificial Neural Network (NeuralNet)

We employed a standard three-layer feed-forward neuralarktwith a gradient descent training

algorithm for genotype imputation.

4.3.1 Sequence Encoding and Output Interpretation

For each missing SNP genotype we define a block with upperamiraize . and lower window
sizeR, and sefV = L + R. We adopt the orthogonal encoding, where genotypés01, 11} are
encoded by orthogonal binary vectgiso, 0), (0, 1,0), and(0, 0, 1) respectively. The advantage of
this orthogonal encoding is that we do not need to introdigebaaic correlations between geno-
types. Besides, compared to other complex encodings of @Nétgpes, whether orthogonal or not,
our encoding scheme needs not worry about filtering extaindtion. For example, if one includes
too much extra information that might not be strongly catedl to the output, the imputation task
can even become harder [3]. In NeuralNet, the missing g@edB?” is predicted by a binary vector
(aoo, aot, a11), wherey -, . v 0 113 @i = 1 anday, denotes the frequency of genotypat the SNP
locus in the training dataset. It should be noted that theding scheme has the disadvantage of
being wasteful of memory space, because it requires an lapet of size3 x W. Letx denote
the input vector o8 x W dimension. Assume there aké neurons in the hidden layer ad = 3
neurons in the output layer. In our experiment, we seto max (W, 3) for genotype imputation
and tomax (¥, 2) for post-haplotyping imputation respectively. The outplithe neural network is

a vectory = (y1,y2,ys), wherey; € (0,1) andz;?’:1 y; = 1, which is calculated by theoftmax

function
exp T
y= —3
Zkzl eXP(Tk)
where
T = (TlaTQa T3)7
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Tk:ﬁ0k+51;rza k:172137
Zm = 0(Qom + ' X), m=1,2,..., M,

and
1

1+ exp(—(aom + m Tx)) "

o(aom + ame) =

4.3.2 Network Model and Training

Letw = {@om, am; Bok, Bk} denote the weights to be trained, where= 1,2,..., M andk =
1,2,3. In total, the neural network we constructed Ba$(W + 1) + 3(M + 1) parameters to be
trained. Further, for each sequencein the training datasel’ = {x;}. , there is an associated
observed genotype valde, wheret; € {(1,0,0), (0,1,0), (0,0,1)}. In the training phase, we try
to minimize the error function

n

3
E(w) =Y (~tirlog(yir))- (4.6)

i=1 k=1
A batch version of the gradient descent training approaepied for all SNP loci with missing
calls. That is, we initialize the weightg with some random guess. Then, we iteratively update the

weights at time steft + 1) as follows:
wl ) = w4 (1= VEw®) 4 p(w® — wl=D), (4.7)

wheren is the learning rate andis the momentum in the rand@ 1]. Adding the momentum could
smooth out oscillations sinceV E(w) in practice may not always point to the global minimum of
the error function. We stop our training process after a fixachber of iterations, which has the
advantage of saving us out of tuning the regularizatiooratnce a large regularization could cause

over-fitting.

4.4 Support Vector Machine

SVMs (Support Vector Machines) are a useful algorithm fassification tasks. We use the SVM

software LIBSVM [7] for genotype imputation.

4.4.1 Sequence Encoding and Output Interpretation

Similar to neural networks’ encoding, we adopt the orth@a@mcoding for SNP genotype values,
where genotype$00, 01, 11} are represented by orthogonal binary vectdr®, 0), (0,1,0), and

(0,0, 1) respectively. Again, the missing genotype “??” is handlgdhe expected value vector
(a0, ao1, a11), wherea; represents the frequency of genoty the given SNP locus. Therefore,
for each input vector, its components lie in the rang@of]. For the output, the known genotypes

“00”, “01” and “11” are represented ds 1, and2 respectively. For post-haplotyping imputation,
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because it has no heterozygous genotyiein the dataset, we ug®, 1) and (0, 1) to denote the
homozygous allele80 and11 respectively, and missing genotypes “??” are encodéd@sai1),
Wherezz'e{oo,u} a; = 1, and eachu; is the frequency of the homozygous genotypeithin the

training dataset at the SNP locus.

4.4.2 Model Selection

Given the training datasét = {x;}?~; and the corresponding genotype value (targgtjvherez;
follows the input encoding scheme. For posting haploypimguitationy; € {—1, 1} to representi0
and11 respectively. For post-haplotyping imputation, the suppector machine is a minimization

problem [32]
o 1 - "
minimize §w w+C§ &

w,b,& .
subjectto y;(w ' ¢(x;) :11)) >1-¢, (4.8)
& >0,
whereC' > 0 is the penalty term of the errors. Usually the problem isadlw its dual form:
miniamize %aTQa —e'w
subjectto y'a =0, (4.9)

0<a; <C,i=1,2,...,n.

wheree = [1,1,...,1]T, Qij = yiy,; K(xi,x;), and K (x;,x;) = ¢(z;) " ¢(z;) is the kernel
function. For each input;, the functionp maps it into a higher dimensional space. SVM can be
viewed as a minimization problem that tries to find a hyperplaith maximal margin in the higher
dimensional space.
For direct genotype imputation, LIBSVM construcft%'“;—l) = ?’Qﬁ = 3 classifiers between
every two different classes. The result from each binargsifization for each training sample pf
is viewed as a vote. Similar to nearest neighbor’s majorty\scheme, when a testing sequerce
comes in, its class is assigned to be a class (genotype) veitinmum number of votes. In case of
tied votes, LIBSVM simply select the one with the smallestdr according to its implementation.
We adopt the radial basis function (RBF) for genotype imfioiia where the RBF kernel is
given by K (x;,x;) = exp(—||x; — x;||?) andy > 0. The advantage of RBF kernel is that it can

handle the case where the relation between class labeldtabdtas is nonlinear.

4.4.3 Cross-Validation and Grid-Search

There are two parameters for an RBF kern@land~. It is not known beforehand whioff and-y
are best for a given problem; consequently some kind of meglektion (parameter search) must
be done. The goal is to identify godd’,v) so that the classifier can accurately predict missing

genotypes. The purpose of training is not trying to achidgé fraining accuracy for the training
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dataset but rather find a model that is general enough and @dnwell for those missing genotype
sequences. A common strategy is to use cross-validatiofafdla cross-validation, we first divide
the training set intd subsets of equal size. Sequentially one subset is testad the classifier
trained on the remainin¢f — 1) subsets. Thus, each sample of the whole training set isqteedi
once so the cross-validation accuracy is the percentagatafwhich are correctly classified. The
cross-validation procedure can prevent the over-fittirgpfam.

LIBSVM implements a so-called “grid search” for choosing @stimal pair (C*,~*) using
cross-validation. In practice, LIBSVM tries different pgiof (C,~) values drawn from a table
consisting of two finite exponentially growing sequencegof= {275 273 ... 215} andy =
{2715 2713 ... '23} The pair(C*,~*) that yields the best cross-validation accuracy is selected
as an optimal pair. After finding optimal parameté€s', ~*), LIBSVM trains the entire training

dataset again to construct the final classifier for testingpdes.

4.5 First-order Markov Chain with Add-One Smoothing

Inspired by its success on biological sequence applicatiarth as DNA sequence analysis [2],
we apply the Markov chain (MC) model to the the missing gepetynputation problem on SNP
datasets. A first-order Markov cha{nX,,,n = 0,1,2,...}, sometimes also called the observed
Markov model, is a stochastic process that takes on a firtitef pessible values and is defined by an
initial probability distributionP (X)) and transition probabilities between two staf¥sX,,| X,,—1).

In a first-order Markov chain, the probability of a curreratstdepends only on the previous state,

and is independent of other past states:
P(X,| X0, X1,..., Xn-1) = P(Xp|Xn-1).

Given an observation sequence, we are interested in comggtht joint probability

P(Xo,X1,...,X,) = P(Xo) [[ P(Xn|Xn-1).

n=1
To impute a missing SNP valug;, we construct two first order local Markov chain (MC) using
the L up-stream SNPs anll downstream SNPs within the genetic distance thresholcotisply.
Each genotype at a SNP marker represents a state and takesaiype values fror0, 01, 11. We

explain in detail how to calculate the initial probabilitgchthe subsequent transition probabilities.

45.1 State Probabilities in MC

The upstream MC consists of SNP markers inthe ofger 1.y;, gi—r+1);» - - - » 9(i+1)5, 945), Where
gij is the target missing SNP genotype denotedhy Similarly, the downstream MC consists of
SNP markers in the ordét i1 r);, 9(i+r—1)5> - - - » 9(i—1);> 9ij)- We illustrate how to compute the

initial probability for the upper-stream MC and in the siatiimanner, the initial probability for
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the downstream MC can be computed as well. In the first step;ouat at SNP locugi — L)
the frequency of each known genotype val0@s01 and11, respectively, occurring in the training
datasef, which yields the probability distributiof?(X,). Let cgo, co1, @andey; be the frequencies

of genotype$0, 01, and11 respectively. In case of any zero frequency, we apply addsamothing

to the counts of each genotype. Therefd?éX, = i) = ji‘lf wherei € {00,01, 11} andV refers
to the number of distinct types of genotypes at the lo¢ls<3 for direct genotype based imputation
andV = 2 for post-haplotyping imputation). If the observed genetyg_.); € {00,01,11} is
known, we useP(Xy = g(;—r,);) for calculation; in case of another missing value obsernetie

initial state, we use expected value®fX,) instead. That is,

P(Xo=??)=E[P(Xo)]= >  P(Xo=a)xP(X,=a).
a€{00,01,11}

4.5.2 Transition Probabilities in MC

To compute the transition probability from stakg, | to stateX,, at two adjacent SNP loci, we
count the frequencies of all combinations of genotypes @ntthining dataset. Again, add-one
smoothing is applied to each count when any frequen€y i§ genotypes at bottX,,_; and X,,
are known, then we simply ude(X,,|X,,_1) derived from the frequencies. We provide formula for
how to calculate the transition probability from stafe, ;) to stateX,, in case of occurrences of

missing values:

P(X = alP(X(n) =) = 3, P(X = alXon) = )P (X1 = b),
b€{00,01,11}
wherea € {00,01,11};
P(X, =??|P(X(n_1)) = b) = Z P(X, = a|X(,-1) = b)P(X, = a),
a€{00,01,11}
whereb € {00,01,11};

P(Xp =?P(X(n-1) =?7)= Y P(Xp=a|X(n1)=b)P(Xp = a)P(X(_1) = b).
a,b€{00,01,11}
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Chapter 5

Results and Discussion

To assess the performance of the imputation algorithms, see two real SNP datasets for sim-
ulation studies. We examine both missing SNP genotype iatjout and missing SNP haplotype
imputation.

The first dataset was obtained from the International Happtaject (Phase 1) [10], the non-
redundant SNP genotype dataset. Population in this geealgtaset have been grouped according
to their ancestry, and we chose the sub-population SNP geaatataset on chromosome 17 of
African ancestry in Southwest USA (ASW) for study. We refetitis dataset as tHeumandataset,
without specifying more detailed information in the sequite dataset consists 88 individuals
genotyped at 40,775 SNP loci along the chromosome, and tarm®).268% missing calls. The
human dataset is used for performance evaluation on mi&itiy genotype imputation, and, for
that purpose, those SNP loci containing a missing value wer®ved, with 34,071 (083.60%)
SNP loci left.

The second dataset was extracted from the NIEHS/Perlegenquencing project, which pro-
vides a high-resolution map @6 common mouse strains withi .1% missing calls. We used again
the chromosome 17 SNP whole genome dataset, which is madelapntored mouse strains geno-
typed at 288,229 SNP loci along the chromosome. Our exaimimednfirmed that all the genotype
values are homozygousd., only 00 and11); This dataset is referred to as the mouse dataset, and
it is used for performance evaluation on missing SNP hapbtynputation. Again, those SNP loci
containing a missing value were removed, with 144,820%(024%) SNP loci left for simulation

studies.

5.1 Simulated Missing SNP Datasets

For both the human and mouse datasets, we first generatedddwasets at three different density
levels, to mimic the real high, medium, and low density ggpintg arrays. They are density-
the original dataset, densityd and densityd.01. The densityd.1 datasets were obtained from the

original dataset by picking every 10-th SNP, and thus costaj408 and 14,482 SNPs, respectively.
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Likewise, the density.01 datasets were obtained from the original dataset by pickwegy 100-th
SNP, containing 341 and 1,449 SNPs, respectively. So nowawe $ix datasets, three human and
three mouse.

Next, taking one of the six datasets, we uniformly randombskna portion of genotypes to
create a simulated missing SNP dataset. Such portion isdctiilemissing rate and it is one of
0.5%, 1%, 2%, 5%, 10%, and20%. At each missing rate, a total af) simulated datasets were
identically and independently generated, to be used inxtperaments.

We remark that our simulated missing SNP values are missintptetely at random, that is,
the missing values are independent of both observableblasiaand unobservable parameters of

interest.

5.2 Experimental Setup

Except fastPHASE and NPUTE, which were run under theirurcsion, the imputation methods we
implemented were run using five different genetic distafcesholds on each simulation dataset
to constrain the locality. Table 5.1 summarizes these timlds for the human and mouse datasets,
adjusted by the density level (but not the missing rate). yTere set so to guarantee a certain
number of, yet not too many, SNP loci inside the covering wimdor the target missing SNP locus.
The genetic distance of the entire human chromosome 1204752161384 centi-Morgans (cMs);
for mouse chromosome 17, we did not have the precise gengtamde and approximated it hgM

per million basepairs.

We set up the genetic distance thresholds to respect the@landaws of inheritance, as well
as the fact that recombination events are rare so thatatéleearby SNP loci tend to be inherited
together due to IBD. As a side effect, it is possible that somasked SNP loci do not have any
neighbor SNP loci within the covering window set by the thid. We excluded these masked SNP
loci from imputation or the subsequent performance evalnatin fact, we imposed a constraint
on the target masked SNP loci to have at leaaeighbor SNP loci inside the covering window,

otherwise not to be imputed by any method.

Table 5.1: Genetic distance thresholds (in centi-Morgahfar the human and mouse datasets at
three density levels.

| Dataset|| Density | Genetic Threshold (cM) |
0.01 1 2 3 4 5
human 0.1 0.1 0.2 0.3 0.4 0.5
1 0.01 0.02 0.03 0.04 | 0.05

0.01 0.2 0.4 0.6 0.8 1.0
mouse 0.1 0.02 0.04 0.06 0.08 0.1
1 0.002 | 0.004 | 0.006 | 0.008 | 0.01
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We preprocess the datasets according to our classificatiarufation, by randomly assignirty
for one allele and for the other allele, to convert them into matrices with Erstof00, 01, 11, and
7?7. Note that those mouse datasets do not corttdiantries as no heterozygosities exist, neither
would an entry?? be imputed a®1. We collected the imputation accuracies for neural network
(NeuralNet), nearest neighbor (NN), weighted nearesthimig (WeightedNN), support vector ma-
chine (SVM), Markov chain (MC), neighborhodehearest neighbor (NeighborlNN), mutual infor-
mation based weighted nearest neighbor (MIKNN), as welhasé of previously the best imputa-
tion methods, fastPHASE and NPUTE. Confirmed by the autHidd&TE, NPUTE was designed
to take the advantage of the homozygosities and its coderanaegork for missing SNP genotype
imputation. Therefore, NPUTE was not run on the human dtgas¥e ran fastPHASE by setting
the recommended number of haplotype clusterg0toTo run NPUTE on the mouse datasets, we
followed its instruction to first examine a range of windowes (the number of SNP loci upstream)
from 1 up to50 during the training phase to search for an optimal window 8z each dataset; then
we chose the window size that yielded the best training it accuracy for real missing value
imputation.

All our implemented imputation methods were run in thetch testingnode, not sequential
mode, meaning that no imputed values would be used for imgutiher missing values. Though
sequential imputation has been reported advantageousd@i7fonsideration is not to propagate

erroneous imputation to the entire dataset.

5.3 Imputation Accuracy Comparison

Recall that each SNP dataset is defined by a combinationiéspeensity, missing rate), and there
are2 x 3 x 6 = 36 such combinations. For each combination therel@rgimulated datasets. We
ran all imputation methods on the ten simulated datasets) i five associated different genetic
distance thresholds. For fastPHASE, NPUTE, and BaseLier{tajority vote), genetic distance
threshold does not have any effects and they were run onge tmithe following (and the Ap-
pendix), the average imputation accuracies are reporteererthe average was taken over various

subsets of simulated datasets.

5.3.1 Average Imputation Accuracies

Firstly, for each of the6 combinations (species, density, missing rate), we cdledlthe average
imputation accuracy for a method by taking the average oWéiva runs using different genetic
distance thresholds on thé® simulated datasets. That is, it is the averag&(oéccuracies (again,
for fastPHASE, NPUTE, and BaseLine, it can also be regardetthe average of( accuracies,
which however might vary slightly due to the changing numifa@arget missing values). Table 5.2
lists these average imputation accuracies for the six coatioins of density.01 human dataset,

where each column corresponds for a missing rate. They soepébtted in Figure 5.1 for easier
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view of performance difference. As one can see, in these lemsitly datasets, our methods NN
and WeightedNN seemingly performed better than previothsybest method fastPHASE, which

in turn performed better than the other machine learningratyms.

Table 5.2: Average imputation accuracies at@hmissing rates on human dataset of dengi6j.

Missing Rate
05% | 1% | 2% [ 5% [ 10% [ 20%

fastPHASE 0.69 | 0.6782 | 0.6785 | 0.6787 | 0.6756 | 0.6735

Methods

NN 0.7552 | 0.7521 | 0.749 | 0.7471 | 0.7393 | 0.7349
WeightedNN || 0.7302 | 0.7161 | 0.7102 | 0.7065 | 0.6936 | 0.6877
SVM 0.6541 | 0.6544 | 0.6488 | 0.6587 | 0.6488 | 0.6516

NeuralNet 0.6478 | 0.6431 | 0.6465 | 0.6528 | 0.6432 | 0.6463
NeighborINN|| 0.6579 | 0.653 | 0.6497 | 0.6585 | 0.6507 | 0.6541

MC 0.6553 | 0.6505 | 0.654 | 0.6606 | 0.6513 | 0.6528
BaseLine 0.6589 | 0.6535 | 0.6497 | 0.6588 | 0.6511 | 0.6542
MIKNN 0.606 | 0.5945 | 0.6032 | 0.598 | 0.5919 | 0.5902
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Figure 5.1: Average imputation accuracies at@hmissing rates on human dataset of den@ity .

The next five sets of tables and figures list and plot the aeemagutation accuracies for
density9.1 human dataset (Table 5.3, Figure 5.2), densitysman dataset (Table 5.4, Figure 5.3),
density.01 mouse dataset (Table 5.5, Figure 5.4), dengitynouse dataset (Table 5.6, Figure 5.5),
densityd mouse dataset (Table 5.7, Figure 5.6), respectively.

For each of the36 combinations, among th&) imputation accuracies, the best one for each
imputation method was also recorded, and presented in dethe Appendix (Section A.2). Con-
tinuing the trend, as seen in Figure 5.2 for the medium dgimiman datasets, our method NN
still performed better than fastPHASE, which caught up with WeightedNN. On high density hu-
man datasets Figure 5.3, fastPHASE became the winnerngeair NN, WeightedNN, SVM and
MIKNN about3%. This last observation confirms well the claim by fastPHAB&t it is designed
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Table 5.3: Average imputation accuracies at@hmeissing rates on human dataset of dengity

Missing Rate
05% | 1% [ 2% | 5% | 10% [ 20%
fastPHASE 0.7782 | 0.7797 | 0.7838 | 0.78 | 0.7716 | 0.7566

Methods

NN 0.8089 | 0.8079 | 0.8056 | 0.8041 | 0.7969 | 0.7848
WeightedNN || 0.7875 | 0.7859 | 0.7817 | 0.774 | 0.7624 | 0.7454
SVM 0.741 | 0.7395 | 0.7385 | 0.7351 | 0.7261 | 0.7104

NeuralNet 0.6301 | 0.6342 | 0.6274 | 0.6732 | 0.6706 | 0.6651
NeighborINN|| 0.6532 | 0.6532 | 0.6493 | 0.6553 | 0.6554 | 0.6536

MC 0.7046 | 0.7053 | 0.7053 | 0.7065 | 0.7026 | 0.6946
BaseLine 0.6554 | 0.6552 | 0.6508 | 0.6567 | 0.6566 | 0.6549
MIKNN 0.7198 | 0.7232 | 0.7213 | 0.7156 | 0.7077 | 0.6908
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Figure 5.2: Average imputation accuracies at@hmissing rates on human dataset of den@ity

for high density SNP datasets. Yet we may draw the conclustainfurther that on low to medium
density SNP datasets, one should better use our neareBboeigNN) imputation method.

Note that on the mouse datasets, NPUTE was run to collechfisitation accuracies. Because
of no heterozygosities, imputation on the mouse datasatalsa be regarded as missing SNP hap-
lotype imputation, or posting-haplotyping imputation ffBient from missing SNP genotype impu-
tation, here one can see from Figures 5.4, 5.5, and 5.6 thatdiess of the density, our methods
NN, WeightedNN, MIKNN, and fastPHASE performed better thia others including NPUTE.
Indeed, these four imputation methods seemingly clustgetter, performed better than the ma-
chine learning algorithms. Among these four, one can sdbdufrom Tables 5.5-5.7 that NN and

WeightedNN performed slightly better.

5.3.2 Statistical Significance Testing

To evaluate the imputation accuracy difference betweenmwthods, we performed six statistical

right-tailed paired-tests on the imputation accuracies between the pair at isigimg rate<).5%,

26



Table 5.4: Average imputation accuracies at@hmissing rates on human dataset of density

Missing Rate
05% | 1% [ 2% | 5% | 10% [ 20%
fastPHASE 0.9617 | 0.9616 | 0.9611 | 0.9597 | 0.9502 | 0.9378

Methods

NN 0.9224 | 0.9214 | 0.9189 | 0.9158 | 0.91 0.8984
WeightedNN || 0.9163 | 0.9135 | 0.9091 | 0.901 0.891 | 0.8734
SVM 0.9027 | 0.9021 | 0.8918 | 0.8693 | 0.8715 | 0.8217

NeuralNet 0.7839 | 0.7834 | 0.7804 | 0.7769 | 0.769 | 0.7534
NeighborINN|| 0.6415 | 0.6419 | 0.6427 | 0.6452 | 0.6455 | 0.6456

MC 0.7725 | 0.7718 | 0.7705 | 0.768 | 0.7614 | 0.7483
BaseLine 0.6504 | 0.6496 | 0.6493 | 0.6502 | 0.6492 | 0.6488
MIKNN 0.9123 | 0.9112 | 0.9104 | 0.9062 | 0.898 0.882
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Figure 5.3: Average imputation accuracies at@hmissing rates on human dataset of density

1%, 2%, 5%, 10%, and20%, respectively, separated for the human and mouse datagietiifferent
densities. For example, on the denditpd human datasets with missing rat&%, there ares0
imputation accuracies collected for every method froimsimulated datasets each run using five
different genetic distance thresholds. The performanda®inethod is thus represented as0a
dimensional vector, and thietest is to evaluate whether one vector is statisticallpificantly better

than another. In more details, in our right-tailetest, the hypothesis is
H : uy > po (The mean of the first vector is greater than the mean of thenselr

A p-value less thaf.05 indicates that the mean of the first vector is statisticaipigicantly greater
than the mean of the second, greater tha&3 indicates that the mean of the first vector is statisti-
cally significantly less than the mean of the second, andedi®8.50 indicates that the two means
are statistically no different from each other. Table 5.8sgnts the-values from these pairwise
comparisons on the human dataset$ aensity levels, with missing raté5%. Thesep values

were calculated by Octave, a GNU scientific software, anceweunded to have three significant
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Table 5.5: Average imputation accuracies at@hmeissing rates on mouse dataset of denity .

Missing Rate
Methods 05% [ 1% [ 2% [ 5% [ 10% [ 20%
fastPHASE 0.9107 | 0.9072 | 0.8968 | 0.8997 | 0.8917 | 0.8803
NPUTE 0.8371 | 0.856 | 0.8458 | 0.8445 | 0.839 | 0.8281
NN 0.9223 | 0.9184 | 0.9101 | 0.9081 | 0.899 | 0.8808
WeightedNN 0.924 | 0.9197 | 0.9088 | 0.9014 | 0.8887 | 0.8678
SVM 0.8657 | 0.854 | 0.8507 | 0.8581 | 0.8495 | 0.8398
NeuralNet 0.832 | 0.8271 | 0.8217 | 0.8277 | 0.8164 | 0.809
NeighborINN|| 0.7846 | 0.7844 | 0.7816 | 0.8068 | 0.8059 | 0.8103
MC 0.8388 | 0.8319 | 0.8276 | 0.8384 | 0.8289 | 0.8267
BaseLine 0.8213 | 0.8133 | 0.8034 | 0.8179 | 0.8117 | 0.8143
MIKNN 0.8995 | 0.9035 | 0.8887 | 0.8902 | 0.883 | 0.8666
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Figure 5.4: Average imputation accuracies at@hmissing rates on mouse dataset of denity .

digits. Thereforep-values such a8.000 or 1.000 should be interpreted as 0.0001 and> 0.9999,
respectively.

From Table 5.8, we can see that our NN and WeightedNN methexddsrmed statistically sig-
nificantly better than fastPHASE on the human datasets atlemsity level9).01 and0.1, while at
density levell fastPHASE performed significantly better than all the othethods. Furthermore,
NN outperformed significantly all the other methods at alethdensity levels, except fastPHASE
at density levell. These strongly suggest that our NN method is useful in g&aogiven that the
imputation time for fastPHASE grows exponentially in thewher of SNPs (or equivalently the
density) — see Section 5.7 — and it took weeks to months foo esliect the fastPHASE results.

In summary, through the-value tables (Table 5.8 and five other on the human datasigts,
other on the mouse datasets in the Appendix, Section A.1)reva@ldle to draw conclusions on
the imputation performances of all the methods. Specificali human datasets with missing rate
0.5%, at density0.01 we have NN> WeightedNN> fastPHASE> {SVM, MC, BaseLine, Neu-
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Table 5.6: Average imputation accuracies at@heissing rates on mouse dataset of dengity

Missing Rate
05% | 1% [ 2% | 5% | 10% [ 20%
fastPHASE 0.9334 | 0.9314 | 0.9278 | 0.9271 | 0.9244 | 0.9125

Methods

NPUTE 0.873 | 0.8684 | 0.8661 | 0.8659 | 0.8617 | 0.8531
NN 0.9411 | 0.9398 | 0.9355 | 0.9324 | 0.927 | 0.9112
WeightedNN || 0.9432 | 0.9407 | 0.9343 | 0.9267 | 0.9177 | 0.9009
SVM 0.8861 | 0.8842 | 0.8808 | 0.878 | 0.875 | 0.8597

NeuralNet 0.8647 | 0.8629 | 0.8579 | 0.8549 | 0.8254 | 0.8114
NeighborINN|| 0.7616 | 0.768 | 0.7795 | 0.798 | 0.8072 | 0.808

MC 0.8666 | 0.8635 | 0.8568 | 0.8561 | 0.8538 | 0.8429
BaselLine 0.8252 | 0.8189 | 0.8155 | 0.8145 | 0.8159 | 0.8134
MIKNN 0.9271 | 0.9271 0.923 0.9199 | 0.9152 | 0.9023
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Figure 5.5: Average imputation accuracies at@hmissing rates on mouse dataset of den&ity

ralNet, NeighborINN > MIKNN; at density0.1 we have NN> WeightedNN> fastPHASE>
SVM > MIKNN > MC > {NeighborlNN, BaseLing > NeuralNet; and at density we have
fastPHASE> NN > WeightedNN> MIKNN > SVM > NeuralNet> MC > BaseLine> Neigh-
bor1INN. Correspondingly on the mouse datasets with missitey).5%, at density0.01 we have
{NN, WeightedNN > fastPHASE> MIKNN > {NPUTE, SVM} > MC > NeuralNet> Base-
Line > NeighborlNN; at density).1 we have{NN, WeightedNN > fastPHASE> MIKNN >
SVM > NPUTE > {MC, NeuralNe} > BaseLine> Neighbor1NN; at density we have NN>
WeightedNN> fastPHASE> MIKNN > SVM > NPUTE > MC > NeuralNet> BaseLine>
Neighbor1NN.
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Table 5.7: Average imputation accuracies at@hrissing rates on mouse dataset of density

Missing Rate
05% | 1% [ 2% | 5% | 10% [ 20%
fastPHASE 0.944 | 0.9452 | 0.9439 | 0.9417 | 0.9383 | 0.9305

Methods

NPUTE 0.8819 | 0.8821 | 0.8816 | 0.8789 | 0.8758 | 0.8695
NN 0.9504 | 0.9511 | 0.9498 | 0.9466 | 0.9408 | 0.9294
WeightedNN || 0.9514 | 0.9508 | 0.9468 | 0.9391 | 0.9321 | 0.9213
SVM 0.9035 | 0.9042 | 0.8969 | 0.6902 | 0.8837 | 0.7648

NeuralNet 0.8544 | 0.8524 | 0.8478 | 0.8371 | 0.8245 | 0.806
NeighborINN|| 0.7503 | 0.7697 | 0.7887 | 0.8044 | 0.8103 | 0.8105

MC 0.8733 | 0.8753 | 0.8737 | 0.8705 | 0.8655 | 0.8553
BaselLine 0.8179 | 0.8182 | 0.8178 | 0.8168 | 0.8167 | 0.8149
MIKNN 0.9414 | 0.9425 | 0.9412 | 0.9386 | 0.9343 | 0.9252
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Figure 5.6: Average imputation accuracies at@hmissing rates on mouse dataset of denkity

5.4 Effects of Missing Rate

As we see from Figures 5.1-5.6, the missing rate had impattteoimputation accuracy. For exam-
ple, for NN, WeightedNN, fastPHASE, MIKNN, and NeuralNéteir average imputation accuracies
decrease when the missing rate increases, on both humanarse matasets. The NeighborlNN,
however, performed slightly strangely on the mouse detatist its average imputation accuracies
increase slightly when the missing rate increases. The SMded a sharp drop on the density-
with missing rate5%, which is likely dataset specific, since it came back as nbahmissing rate
10%.

Except the abnormal behavior of Neighbor1INN and SVM, theega&itendency is reasonable.
As the missing rate increases, to impute the missing valuwe NP locus, we lost some useful
values that were supposed to be used, but chose to use\sfigizly information. Moreover, as

this information is taken as the expected value over allipssSNP values, it becomes more bias
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Table 5.8: The right-tailed-testp-values for pairwise comparisons on the human datasetsest th
density levels, with missing rate5%, where the hypothesis is the average imputation accuracy of
a row method is greater than the average imputation accofacgolumn method.

fast NN Weighted SVM Neural | Neighbof MC BaseLing MIKNN
PHASE NN T Net INN
Density9.01 human datasets
fastPHASE 0.500 1.000 | 1.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.500 | 0.001 0.000 0.000 0.000 0.000 0.000 0.000
WeightedNN | 0.000 0.999 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
SVM 1.000 1.000 | 1.000 0.500 0.214 0.679 0.557 0.718 0.000
NeuralNet 1.000 1.000 | 1.000 0.786 0.500 0.903 0.835 0.921 0.000
NeighborINN | 1.000 1.000 | 1.000 0.321 0.097 0.500 0.369 0.548 0.000
MC 1.000 1.000 | 1.000 0.443 0.165 0.631 0.500 0.674 0.000
BaseLine 1.000 1.000 | 1.000 0.282 0.079 0.452 0.326 0.500 0.000
MIKNN 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 0.500
| | Density9.1 human datasets |
fastPHASE 0.500 1.000 | 0.996 0.000 0.000 0.000 0.000 0.000 0.000
NN 0.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
WeightedNN | 0.004 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 0.000
NeuralNet 1.000 1.000 | 1.000 1.000 0.500 1.000 1.000 1.000 1.000
NeighborINN | 1.000 1.000 | 1.000 1.000 0.000 0.500 1.000 0.773 1.000
MC 1.000 1.000 | 1.000 1.000 0.000 0.000 0.500 0.000 1.000
BaseLine 1.000 1.000 | 1.000 1.000 0.000 0.227 1.000 0.500 1.000
MIKNN 1.000 1.000 | 1.000 1.000 0.000 0.000 0.000 0.000 0.500
| | Density-l human datasets |

fastPHASE 0.500 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NN 1.000 0.500 | 0.014 0.000 0.000 0.000 0.000 0.000 0.000
WeightedNN | 1.000 0.986 | 0.500 0.000 0.000 0.000 0.000 0.000 0.046
SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 1.000
NeuralNet 1.000 1.000 | 1.000 1.000 0.500 0.000 0.000 0.000 1.000
NeighborINN | 1.000 1.000 | 1.000 1.000 1.000 0.500 1.000 1.000 1.000
MC 1.000 1.000 | 1.000 1.000 1.000 0.000 0.500 0.000 1.000
BaseLine 1.000 1.000 | 1.000 1.000 1.000 0.000 1.000 0.500 1.000
MIKNN 1.000 1.000 | 0.954 0.000 0.000 0.000 0.000 0.000 0.500

toward the known values. Even further, for NN and its vasantluding WeightedNN, MIKNN,
and NPUTE, this fuzzy information could lead to more tiesjclitreduce further their imputation
accuracies. On the other hand, for Neighbor1NN, becaus®titsg scheme is different from NN

and its variants, it showed a different tendency and becdosercto the BaseLine, as expected.

5.5 Effects of Density Level

Putting the second columns of Tables 5.2, 5.3, and 5.4 tegathTable 5.9, which are the average
imputation accuracies on the human datasets at three génats all with missing rat6.5%. The
counterparts on the mouse datasets are collected as TableS.well as with the other five missing
rates presented in the Appendix, Section A.3.

From Tables 5.9 and 5.10, one can see that from low to meditmgkodensities, the imputation
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Table 5.9: Average imputation accuracies on the humanetatasthree density levels with missing
rate0.5%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing rdté %
001 | 01 ] 1

fastPHASE 0.69 0.7782 0.9617
NN 0.7552 | 0.8089 0.9224
WeightedNN | 0.7302 | 0.7875 0.9163
SVM 0.6541 | 0.741 0.9027
NeuralNet 0.6478 | 0.6301 0.7839
NeighborINN| 0.6579 | 0.6532 0.6415
MC 0.6553 | 0.7046 0.7725
BaseLine 0.6589 | 0.6554 0.6504
MIKNN 0.606 | 0.7198 0.9123

Table 5.10: Average imputation accuracies on the moussetstat three density levels with missing
rate0.5%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rdté&%
001 | 01 | 1

fastPHASE | 0.9107 | 0.9334 0.944
NPUTE 0.8371 | 0.873 0.8819
NN 0.9223 | 0.9411 0.9504
WeightedNN | 0.924 | 0.9432 0.9514
SVM 0.8657 | 0.8861 0.9035
NeuralNet 0.832 | 0.8647 0.8544
NeighborINN| 0.7846 | 0.7616 0.7503
MC 0.8388 | 0.8666 0.8733
BaseLine 0.8213 | 0.8252 0.8179
MIKNN 0.8995 | 0.9271 0.9414

accuracies of each imputation method increase, excep tifdseuralNet decrease frofn6478 at
low density t00.6301 at medium density on human datasets. Nevertheless, itagevénputation
accuracy comes back at7839 at high density, and thus we might suspect that the decreiment
caused by the simulated datasets. Surprisingly, similanpmena happen to NeuralNet, Neigh-
borlNN, and BaseLine on the mouse datasets, for which wecaiate to explain confidently.

Prior to our work, NPUTE was one of the best missing SNP hgpboallele imputation program.
From Table 5.10 (and Tables 5.5-5.7), we see that fastPHA8B@ar methods NN, WeightedNN,
MIKNN, and SVM all performed statistically significantly tier than NPUTE. One possible reason
is that the dependencies among the neighboring SNP maikeesiumber of neighboring SNP loci
employed by NPUTE for the imputation, that is the window gf& missing SNP locus, is fixed
but it is mostly region dependent. Our employment of gergitance threshold more accurately
reflects such a dependency to match well with the conceptradtgedistance, which describes the
likelihood of recombination events. More specifically, quaned to NPUTE, our local imputation
approaches, including NN, WeightedNN, and MIKNN, allow torering window size to vary from

a locus to another and neighboring SNPs are included asésafor local imputation only if they
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are within the genetic distance threshold from the targesmg SNP locus.

5.6 Effects of Genetic Distance Threshold

We also investigated the effects of the chosen genetiodistdnreshold to the imputation methods.
We show in this section the results on datasets with missiteg)r5%, while the readers might refer
to the Appendix, Section A.4, for results associated with dkher five missing rates. Table 5.11
summarizes the average imputation accuracies, each evassociatetl) simulated datasets, of the
imputation methods on the human datasets at three densitg l@ith missing rat€.5%. Figure 5.7

plots these average imputation accuracies.

Table 5.11: Average imputation accuracies on the humarseistat three density levels with miss-
ing rate0.5%, where the imputation methods were run with five correspupdienetic distance

thresholds.
| Density0.01 humandatasets 1cM | 2cM | 3cM | 4cM | 5cM |

fastPHASE 0.7085 0.6852 0.6854 0.6854 0.6854
NN 0.7454 0.75 0.7674 0.759 0.7542
WeightedNN 0.7501 0.7521 0.7278 | 0.7132 | 0.7076
SVM 0.6744 0.6572 0.6486 0.6444 0.6458
NeuralNet 0.6493 | 0.6493 | 0.6507 | 0.6438 | 0.6458
Neighbor1NN 0.6763 0.6517 0.6556 0.6514 0.6549
MC 0.6762 | 0.6495 | 0.6507 | 0.6493 | 0.6507
Baseline 0.6763 0.6544 0.6535 0.6556 0.6549
MIKNN 0.6539 | 0.5888 | 0.6076 0.584 0.5958
| Density0.1 human datasetd 0.1cM | 0.2cM | 0.3cM | 0.4cM | 0.5cM |
fastPHASE 0.7943 | 0.7782 | 0.7737 | 0.7725 | 0.7725
NN 0.8193 0.8121 0.8066 0.8045 0.8021
WeightedNN 0.8141 0.7986 | 0.7851 0.7736 | 0.7662
SVM 0.7543 0.7451 0.7387 | 0.7329 0.7338
NeuralNet 0.6323 | 0.6323 | 0.6314 | 0.6285 | 0.6261
Neighbor1NN 0.6527 0.654 0.6533 0.6529 0.6534
MC 0.7127 | 0.7049 | 0.7028 | 0.7011 0.7016
Baseline 0.6578 0.6563 0.6543 0.6544 0.654
MIKNN 0.7462 0.7216 0.7108 0.707 0.7136
| Density1 human datasets| 0.01cM | 0.02cM | 0.03cM | 0.04cM | 0.05cM |

fastPHASE 0.9682 0.9632 0.9602 0.9588 0.9579
NN 0.9391 0.9302 | 0.9214 | 0.9147 | 0.9064
WeightedNN 0.9372 0.9276 0.9158 0.9053 0.8955
SVM 0.9097 | 0.9095 | 0.9046 | 0.8982 | 0.8914
NeuralNet 0.7688 0.7835 0.7869 0.79 0.7905
Neighbor1NN 0.6303 | 0.6401 0.6441 0.6459 | 0.6469
MC 0.7757 | 0.7735 0.7719 0.7711 0.7703
Baseline 0.6504 | 0.6504 | 0.6504 | 0.6506 | 0.6505
MIKNN 0.922 0.9165 0.9107 | 0.9072 0.9051

From Table 5.11 and Figure 5.7, one can see that the genstémde threshold does play a role

in the imputation on the human datasets, causing the avergmgation accuracy to vary a signifi-
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Figure 5.7: Average imputation accuracies on the humarsdttat three density levels1, 0.1,
and1, respectively, with missing rate5%, where the imputation methods were run with five corre-
sponding genetic distance thresholds.

cant percentage up @ Another interesting pattern, also holds at the other five&sing rates, can be
seen from the table and plots is that there is no unique tbteéshat works the best for all methods.
Indeed, perhaps a better way is to learn a suitable thre$twokhch imputation beforehand. Note
that fastPHASE (as well as NPUTE and BaseLine) does not dotatipn based on any genetic
distance threshold. Yet one might have seen its averagetatiquu accuracies changing throughout
as listed in Table 5.11. Here the reason is that differen¢tiedistance thresholds change the num-
bers of target missing SNP genotype values, since some ohaakees would not have sufficiently
many neighboring SNP loci and thus excluded for performaweduation. Recall that we imposed
an additional constraint on the minimum#heighboring SNP loci.

Table 5.12 summarizes the average imputation accuraadel, @ver the associatdd simu-
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Table 5.12: Average imputation accuracies on the mouseelstat three density levels with miss-
ing rate0.5%, where the imputation methods were run with five correspupdienetic distance

thresholds.
| Density0.01 mouse datasets 0.2cM | 0.4cM | 0.6cM [ 0.8cM | 1.0cM |

fastPHASE 0.9099 | 0.9097 | 0.9118 | 0.9111 [ 0.9111
NPUTE 0.8344 0.836 0.8393 0.838 0.838
NN 0.9119 | 0.9192 | 0.9285 | 0.9278 | 0.9241
WeightedNN 0.913 0.923 0.9294 | 0.9315 [ 0.9231
SVM 0.8445 | 0.8642 | 0.8718 0.875 | 0.8731
NeuralNet 0.8297 | 0.8304 | 0.8324 | 0.8361 | 0.8315
NeighborINN 0.7338 0.776 0.7975 | 0.8065 | 0.8093
MC 0.8393 | 0.8358 [ 0.8393 | 0.8417 | 0.838
Baseline 0.82 0.8196 | 0.8235 | 0.8213 | 0.8222
MIKNN 0.8927 | 0.9002 [ 0.9072 | 0.8991 | 0.8981
Density0.1 mouse datasetq 0.02cM 0.04cM 0.06cM 0.08cM 0.1cM
fastPHASE 0.9354 | 0.9339 | 0.9326 | 0.9326 | 0.9327
NPUTE 0.8743 | 0.8733 | 0.8724 | 0.8724 | 0.8725
NN 0.9351 | 0.9417 | 0.9428 0.943 | 0.9431
WeightedNN 0.9386 | 0.9435 | 0.9447 | 0.9447 | 0.9444
SVM 0.8692 0.883 0.8885 | 0.8936 | 0.8962
NeuralNet 0.8429 0.854 0.8675 | 0.8774 [ 0.8819
NeighborINN 0.7186 | 0.7489 | 0.7659 | 0.7828 | 0.7919
MC 0.8695 | 0.8672 | 0.8658 | 0.8625 | 0.8679
Baseline 0.8289 | 0.8255 | 0.8239 0.824 | 0.8238
MIKNN 0.9249 | 0.9265 | 0.9288 0.928 | 0.9274

| Density1 mouse datasets | 0.002cM | 0.004cM | 0.006cM [ 0.008cM | 0.01cM |
fastPHASE 0.9441 | 0.9441 0.944 0.9439 | 0.9438
NPUTE 0.8818 0.882 0.882 0.8819 | 0.8817
NN 0.9459 0.95 0.9515 | 0.9522 | 0.9522
WeightedNN 0.9474 | 0.9515 | 0.9525 | 0.9528 | 0.9527
SVM 0.8896 0.903 0.9065 0.909 | 0.9095
NeuralNet 0.8497 0.857 0.8559 | 0.8558 | 0.8537
NeighborINN 0.705 0.7411 | 0.7588 | 0.7695 | 0.777
MC 0.8743 | 0.8735 | 0.8731 | 0.8729 | 0.8726
Baseline 0.8175 | 0.8179 | 0.8178 | 0.8182 | 0.8181
MIKNN 0.9383 | 0.9416 | 0.9421 | 0.9425 | 0.9425

lated datasets, of the imputation methods on the mouseatsi@sthree density levels with missing
rate0.5%. Figure 5.8 plots these average imputation accuraciesn fnem, we are able to draw
the analogous conclusions that the genetic distance tcedbes play a role in the missing SNP

haplotype allele imputation, and that there is no uniquesthold that works the best for all methods.

5.7 Imputation Speed Comparison

For imputation time comparison, we reported here the perdmice of all methods on the human and
mouse datasets at all three density levels with missingrafe. These running time were collected
on our “Heldar” CPU cluster, which has the following spedifions: (1) Dual AMD Opteron 2350
quad core 64-bit CPU’s, (2) The CPU's run at 2.0 GHz, have & M6iz HyperTransport bus,
with a primary cache of 64KB | + 64KB D per core, a secondaryheaaf 512 KB |+D per core,
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Figure 5.8: Average imputation accuracies on the mousesetstat three density levels01, 0.1,
andl, respectively, with missing rate5%, where the imputation methods were run with five corre-
sponding genetic distance thresholds.

and a 2MB L3 cache per chip. Table 5.13 lists the average mgntiine for each approach over
the 10 simulated instances, where the genetic distance threshoédcM, 0.5¢cM, and0.05¢M for
the densityd.01, -0.1, and 14 human datasets, respectively, arav, 0.1cM, and0.01cM for the
density9.01, -0.1, and 4 mouse datasets, respectively.

As plotted in Figure 5.9, fastPHASE was the most time-corisgrapproach among all ten
methods on both the human and mouse datasets, becausentdiiteal EM algorithm. On a sim-
ulated high density human dataset, fastPHASE took arouedday to finish. SVM also needed
a relatively longer time during the training process to fihd bptimal parameter§ and~. The
imputation of NPUTE is divided into two phases, trainingdertify the best window size and the
real imputation. We reported the training time and the neglutation time separately on the mouse
datasets, which are shown in Table 5.13 as before and aéter ¢ign. Recall that NPUTE does not
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work on the human datasets.
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Table 5.13: Running time comparison for the imputation radfhon the human and mouse datasets
at all three density levels with missing rdt&%.

| Density0.01 human |

Density0.01 mouse |
fastPHASE 14m2.792s 9m9.141s
NPUTE - 0m12.455s+ 0m0.153s
NN 0m0.113s 0m0.071s
WeightedNN 0m0.113s 0mo0.071s
SVM 4m13.124s 1m5.563s
NeuralNet 0m54.895s 0m16.150s
Neighbor1INN 0m0.157s 0mO0.075s
MC 0m0.053s 0m0.041s
BaseLine 0m0.038s 0m0.044s
MIKNN 0m0.975s 0m0.124s
| | Densityd.1 human |  Density0.1 mouse |
fastPHASE 92m36.385s 42m36.845s
NPUTE - 2m7.661s+ O0m0.683s
NN 0m0.227s 0m0.149s
WeightedNN 0m0.222s 0m0.1494s
SVM 28m44.012s 9m15.495s
NeuralNet 0m0.364s 0m0.101s
Neighbor1NN 0m0.2346s 0mO0.126s
MC 0m0.1014s 0m0.0929s
BaseLine 0m0.075s 0mo0.151s
MIKNN 0m6.137s 0m0.259s
| | Density1 human Density1 mouse |
fastPHASE 2667m12.436s 389m22.608s
NPUTE - 21m1.529s+ 0m4.763s
NN 0m1.532s 0m0.412s
WeightedNN 0m1.504s 0m0.4126s
SVM 329m2.821s 106m7.214s
NeuralNet 3m45.352s 1m20.809s
Neighbor1NN 0m1.348s 0mO0.369s
MC 0m0.6458s 0m0.2994s
BaseLine 0m0.179s 0m0.141s
MIKNN 2m30.568s 0m2.4266s
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Chapter 6

Conclusions

We have investigated the use of different machine learnppyaaches to tackle the missing SNP
value imputation problem for SNP datasets generated byuhemt high-throughput genotyping
technologies. Those missing values in the datasets caregeeenfound the downstream GWAS.
We implemented nearest neighbor (NN) and its variants (iée@NN and MIKNN), neural network
(NeuralNet), SVM, and first order Markov chains (MC) to im@uhe missing values locally. In
this dissertation, we focused on the direct SNP missing typedmputation and the missing SNP
haplotype allele imputation, the latter is also regardedhaspost-haplotyping imputation, both
without using reference haplotype panels.

For the local imputation, we introduced the use of genestadice threshold to define the cov-
ering window for the target missing value, and use the knoNR Salues inside the window as
features for inferring the missing values. We firstly nomigdly extended NPUTE [25] based on
a fastk-nearest neighbor algorithm for both direct missing SNPogygre imputation and missing
SNP haplotype allele imputation. We observed that from #rgetic map [10] that the distribution
of SNP loci is not uniform along the genome, and thus SNPsffarednt loci contribute differently
to the target missing value imputation since their genésitadce to the target locus varies. NPUTE
does not address this issue, but uses a fixed window sizenedtiiom its training phase. We instead
presented éocal nearest neighbor NN in which the covering window size is aeteed by the ge-
netic distance threshold, and two weighted variants WeidfiiN and MIKNN, twolocal first order
Markov chains, docal SVM with the RBF kernel, and cal neural networks that are constructed
using the genotypes inside the window. Apparently, thisiigngprovement on using windows over
NPUTE, that the covering window size is derived from a gendistance threshold to the target
missing SNP locus —ecality.

Throughoutour studies, we found out that, on low to mediunsitg SNP datasets, our proposed
methods NN and its weighted variant WeightedNN outperfarthe currently best imputation pro-
grams fastPHASE [26] and NPUTE, in terms of missing SNP ggreand missing SNP haplotype
allele imputation accuracy. Moreover, our methods are \aaief than fastPHASE. On high-density

SNP datasets, fastPHASE maintains to be the winner, acigi¢le highest missing SNP genotype
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imputation accuracy, which confirmed their claim of addirgdaplotyping and imputation for
high-density population SNP data. But when it comes to mgsSINP haplotype allele imputation,
our NN and WeightedNN again win out.

NPUTE is deigned for missing SNP haplotype allele imputatialy, and does not work for
missing SNP genotype imputation. Surprisingly, we fountdisuperformance in our experiments
does not catch up with what it is claim in its paper [25].

To conclude, for missing SNP haplotype allele imputatiaiybem, our methods NN and Weight-
edNN are recommended, as they always won out in our extessiudation studies. For missing
SNP genotype imputation problem, when the density of a SN&sdais high enough, fastPHASE
should be used; in the other cases, use our NN and WeighteBbdiNthe currently hot topic of
genome-wide SNP imputation, where some reference haggspels might exist, some sampling
individuals have been high-density genotyped, and the aid&iduals are low (to medium) density
genotyped due to cost consideration, and the goal is to ienpese low density genotyped individ-
uals, it seems that none of existing imputation methods eaconvincingly employed. Our next
step is to develop a novel framework for this genome-wide $hputation, based on fastPHASE

and experience and lessons we learned from this dissertatck.
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Appendix A

More Experimental Results

A.1 Additional p-values

Table A.1: The right-tailed-testp-values for pairwise comparisons on the human datasetsest th

density levels, with missing ratie where the hypothesis is the average imputation accurazyaf

method is greater than the average imputation accuracyafianon method.

@ | @ 10 | (@) | 5 | 6) | (D) | 8) HC)
Density0.01 human datasets

(1) fastPHASE 0.500 1.000 | 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NN 0.000 0.500 | 0.001 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 0.000 0.999 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.214 0.679 0.557 0.718 0.000

(5) NeuralNet 1.000 1.000 | 1.000 0.786 0.500 0.903 0.835 0.921 0.000
(6) NeighborINN | 1.000 1.000 | 1.000 0.321 0.097 0.500 0.369 0.548 0.000

(7yMC 1.000 1.000 | 1.000 0.443 0.165 0.631 0.500 0.674 0.000
(8) BaseLine 1.000 1.000 | 1.000 0.282 0.079 0.452 0.326 0.500 0.000
(9) MIKNN 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 0.500

| | Density9.1 human datasets |
(1) fastPHASE 0.500 1.000 | 0.996 0.000 0.000 0.000 0.000 0.000 0.000

(2) NN 0.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 0.004 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 0.000

(5) NeuralNet 1.000 1.000 | 1.000 1.000 0.500 1.000 1.000 1.000 1.000
(6) NeighborINN | 1.000 1.000 | 1.000 1.000 0.000 0.500 1.000 0.773 1.000

(7yMC 1.000 1.000 | 1.000 1.000 0.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 | 1.000 1.000 0.000 0.227 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 | 1.000 1.000 0.000 0.000 0.000 0.000 0.500

| | Density-l human datasets |
(1) fastPHASE 0.500 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(2) NN 1.000 0.500 | 0.003 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 1.000 0.997 | 0.500 0.000 0.000 0.000 0.000 0.000 0.178
(4) SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 1.000

(5) NeuralNet 1.000 1.000 | 1.000 1.000 0.500 0.000 0.000 0.000 1.000
(6) NeighborINN | 1.000 1.000 | 1.000 1.000 1.000 0.500 1.000 1.000 1.000

(7) MC 1.000 1.000 | 1.000 1.000 1.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 | 1.000 1.000 1.000 0.000 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 | 0.822 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.2: The right-tailed-testp-values for pairwise comparisons on the human datasetsest th
density levels, with missing rat®%, where the hypothesis is the average imputation accuraay of
row method is greater than the average imputation accufaeg@umn method.

(1) | @ 1B | 4 | (5 | (6) | (D) | (8 | 9
Density0.01 human datasets
(1) fastPHASE 0.500 1.000 | 1.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 0.000 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.317 0.574 0.871 0.571 0.000
(5) NeuralNet 1.000 1.000 | 1.000 0.683 0.500 0.752 0.956 0.747 0.000
(6) NeighborINN | 1.000 1.000 | 1.000 0.426 0.248 0.500 0.829 0.498 0.000
(7) MC 1.000 1.000 | 1.000 0.129 0.044 0.171 0.500 0.173 0.000
(8) BaseLine 1.000 1.000 | 1.000 0.429 0.253 0.502 0.827 0.500 0.000
(9) MIKNN 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 0.500
| Density90.1 human datasets
(1) fastPHASE 0.500 1.000 | 0.268 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 0.732 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 0.000
(5) NeuralNet 1.000 1.000 | 1.000 1.000 0.500 1.000 1.000 1.000 1.000
(6) NeighborINN | 1.000 1.000 | 1.000 1.000 0.000 0.500 1.000 0.831 1.000
(7) MC 1.000 1.000 | 1.000 1.000 0.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 | 1.000 1.000 0.000 0.169 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 | 1.000 1.000 0.000 0.000 0.000 0.000 0.500
| Density-l human datasets
(1) fastPHASE 0.500 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 1.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 1.000 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 0.715
(4) SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 1.000
(5) NeuralNet 1.000 1.000 | 1.000 1.000 0.500 0.000 0.000 0.000 1.000
(6) NeighborINN | 1.000 1.000 | 1.000 1.000 1.000 0.500 1.000 1.000 1.000
(7) MC 1.000 1.000 | 1.000 1.000 1.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 | 1.000 1.000 1.000 0.000 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 | 0.285 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.3: The right-tailed-testp-values for pairwise comparisons on the human datasetsest th
density levels, with missing raf&%, where the hypothesis is the average imputation accuraay of
row method is greater than the average imputation accufaag@umn method.

(2) | @ [ | (4) | (5) | (6) | () | (8) | (9
Density9.01 human datasets
(1) fastPHASE 0.500 1.000 | 1.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 | 0.001 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 0.000 0.999 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.214 0.679 0.557 0.718 0.000
(5) NeuralNet 1.000 1.000 | 1.000 0.786 0.500 0.903 0.835 0.921 0.000
(6) NeighborINN| 1.000 1.000 | 1.000 0.321 0.097 0.500 0.369 0.548 0.000
(7)yMC 1.000 1.000 | 1.000 0.443 0.165 0.631 0.500 0.674 0.000
(8) BaseLine 1.000 1.000 | 1.000 0.282 0.079 0.452 0.326 0.500 0.000
(9) MIKNN 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 0.500
| | Density0.1 human datasets
(1) fastPHASE 0.500 1.000 | 0.996 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 0.004 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 0.000
(5) NeuralNet 1.000 1.000 | 1.000 1.000 0.500 1.000 1.000 1.000 1.000
(6) NeighborINN| 1.000 1.000 | 1.000 1.000 0.000 0.500 1.000 0.773 1.000
(7)yMC 1.000 1.000 | 1.000 1.000 0.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 | 1.000 1.000 0.000 0.227 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 | 1.000 1.000 0.000 0.000 0.000 0.000 0.500
| | Densityd1 human datasets
(1) fastPHASE 0.500 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 1.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 1.000 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 0.985
(4) SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 1.000
(5) NeuralNet 1.000 1.000 | 1.000 1.000 0.500 0.000 0.000 0.000 1.000
(6) NeighborINN| 1.000 1.000 | 1.000 1.000 1.000 0.500 1.000 1.000 1.000
(7)yMC 1.000 1.000 | 1.000 1.000 1.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 | 1.000 1.000 1.000 0.000 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 | 0.015 0.000 0.000 0.000 0.000 0.000 0.500

45




Table A.4: The right-tailed-testp-values for pairwise comparisons on the human datasetsest th
density levels, with missing raté)%, where the hypothesis is the average imputation accuraay of
row method is greater than the average imputation accufaag@umn method.

(2) | @ [ | (4) | (5) | (6) | () | (8) | (9

Density9.01 human datasets
(1) fastPHASE 0.500 1.000 | 1.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 | 0.001 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 0.000 0.999 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.214 0.679 0.557 0.718 0.000
(5) NeuralNet 1.000 1.000 | 1.000 0.786 0.500 0.903 0.835 0.921 0.000
(6) NeighborINN| 1.000 1.000 | 1.000 0.321 0.097 0.500 0.369 0.548 0.000
(7)yMC 1.000 1.000 | 1.000 0.443 0.165 0.631 0.500 0.674 0.000
(8) BaseLine 1.000 1.000 | 1.000 0.282 0.079 0.452 0.326 0.500 0.000
(9) MIKNN 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 0.500

| | Density0.01 human datasets
(1) fastPHASE 0.500 1.000 | 0.996 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 0.004 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 0.000
(5) NeuralNet 1.000 1.000 | 1.000 1.000 0.500 1.000 1.000 1.000 1.000
(6) NeighborINN| 1.000 1.000 | 1.000 1.000 0.000 0.500 1.000 0.773 1.000
(7)yMC 1.000 1.000 | 1.000 1.000 0.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 | 1.000 1.000 0.000 0.227 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 | 1.000 1.000 0.000 0.000 0.000 0.000 0.500

| | Density9.01 human datasets
(1) fastPHASE 0.500 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 1.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 1.000 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 0.999
(4) SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 1.000
(5) NeuralNet 1.000 1.000 | 1.000 1.000 0.500 0.000 0.000 0.000 1.000
(6) NeighborINN| 1.000 1.000 | 1.000 1.000 1.000 0.500 1.000 1.000 1.000
(7)yMC 1.000 1.000 | 1.000 1.000 1.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 | 1.000 1.000 1.000 0.000 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 | 0.001 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.5: The right-tailed-testp-values for pairwise comparisons on the human datasetsest th
density levels, with missing ra®%, where the hypothesis is the average imputation accuraay of
row method is greater than the average imputation accufaag@umn method.

(2) | @ [ | (4) | (5) | (6) | () | (8) | (9
Density9.01 human datasets
(1) fastPHASE 0.500 1.000 | 1.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 | 0.001 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 0.000 0.999 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.214 0.679 0.557 0.718 0.000
(5) NeuralNet 1.000 1.000 | 1.000 0.786 0.500 0.903 0.835 0.921 0.000
(6) NeighborINN| 1.000 1.000 | 1.000 0.321 0.097 0.500 0.369 0.548 0.000
(7)yMC 1.000 1.000 | 1.000 0.443 0.165 0.631 0.500 0.674 0.000
(8) BaseLine 1.000 1.000 | 1.000 0.282 0.079 0.452 0.326 0.500 0.000
(9) MIKNN 1.000 1.000 | 1.000 1.000 1.000 1.000 1.000 1.000 0.500
| | Density0.1 human datasets
(1) fastPHASE 0.500 1.000 | 0.996 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 0.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 0.004 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 0.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 0.000
(5) NeuralNet 1.000 1.000 | 1.000 1.000 0.500 1.000 1.000 1.000 1.000
(6) NeighborINN| 1.000 1.000 | 1.000 1.000 0.000 0.500 1.000 0.773 1.000
(7)yMC 1.000 1.000 | 1.000 1.000 0.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 | 1.000 1.000 0.000 0.227 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 | 1.000 1.000 0.000 0.000 0.000 0.000 0.500
| | Densityd1 human datasets
(1) fastPHASE 0.500 0.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(2) NN 1.000 0.500 | 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(3) WeightedNN | 1.000 1.000 | 0.500 0.000 0.000 0.000 0.000 0.000 1.000
(4) SVM 1.000 1.000 | 1.000 0.500 0.000 0.000 0.000 0.000 1.000
(5) NeuralNet 1.000 1.000 | 1.000 1.000 0.500 0.000 0.000 0.000 1.000
(6) NeighborINN| 1.000 1.000 | 1.000 1.000 1.000 0.500 1.000 1.000 1.000
(7)yMC 1.000 1.000 | 1.000 1.000 1.000 0.000 0.500 0.000 1.000
(8) BaseLine 1.000 1.000 | 1.000 1.000 1.000 0.000 1.000 0.500 1.000
(9) MIKNN 1.000 1.000 | 0.000 0.000 0.000 0.000 0.000 0.000 0.500
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Table A.6: The right-tailed-testp-values for pairwise comparisons on the mouse datasetseat th

density levels, with missing rate5%, where the hypothesis is the average imputation accuracy of

a row method is greater than the average imputation accofacgolumn method.

Q1T @I [® [ 6 6 [ O] 6 [ O | a0y
Density9.01 mouse datasets

(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 0.898 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.307 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.693 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.102 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.969 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.031 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 0.998 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density9.1 mouse datasets |
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.001 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.109 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.891 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.342 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.658 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density1 mouse datasets
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 1.000 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500
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Table A.7: The right-tailed-testp-values for pairwise comparisons on the mouse datasetseat th

density levels, with missing rat€%, where the hypothesis is the average imputation accuraay of

row method is greater than the average imputation accufaeg@umn method.

Q1T @I [® [ 6 6 [ O] 6 [ O | a0y
Density9.01 mouse datasets

(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 0.898 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.307 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.693 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.102 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.969 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.031 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 0.998 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density9.1 mouse datasets |
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.001 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.109 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.891 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.342 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.658 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density1 mouse datasets
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 1.000 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500
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Table A.8: The right-tailed-testp-values for pairwise comparisons on the mouse datasetseat th

density levels, with missing rat®%, where the hypothesis is the average imputation accuraay of

row method is greater than the average imputation accufaeg@umn method.

Q1T @I [® [ 6 6 [ O] 6 [ O | a0y
Density9.01 mouse datasets

(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 0.898 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.307 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.693 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.102 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.969 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.031 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 0.998 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density9.1 mouse datasets |
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.001 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.109 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.891 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.342 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.658 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density1 mouse datasets
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 1.000 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500
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Table A.9: The right-tailed-testp-values for pairwise comparisons on the mouse datasetseat th

density levels, with missing rat&%, where the hypothesis is the average imputation accuraay of

row method is greater than the average imputation accufaeg@umn method.

Q1T @I [® [ 6 6 [ O] 6 [ O | a0y
Density9.01 mouse datasets

(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 0.898 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.307 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.693 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.102 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.969 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.031 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 0.998 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density9.1 mouse datasets |
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.001 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.109 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.891 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.342 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.658 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density1 mouse datasets
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 1.000 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500
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Table A.10: The right-tailed-testp-values for pairwise comparisons on the mouse datasetseat th

density levels, with missing raté%, where the hypothesis is the average imputation accuraay of

row method is greater than the average imputation accufaag@umn method.

Q1T @I [® [ 6 6 [ O] 6 [ O | a0y
Density9.01 mouse datasets

(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 0.898 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.307 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.693 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.102 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.969 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.031 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 0.998 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density9.1 mouse datasets |
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.001 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.109 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.891 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.342 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.658 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density1 mouse datasets
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 1.000 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500
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Table A.11: The right-tailed-testp-values for pairwise comparisons on the mouse datasetseat th

density levels, with missing ra®%, where the hypothesis is the average imputation accuraay of

row method is greater than the average imputation accufaag@umn method.

Q1T @I [® [ 6 6 [ O] 6 [ O | a0y
Density9.01 mouse datasets

(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 0.898 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.307 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.693 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.102 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.969 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.031 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 0.998 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density9.1 mouse datasets |
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.001 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.109 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 0.891 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.342 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.658 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500

| | Density1 mouse datasets
(1) fastPHASE 0.500 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

(2) NPUTE 1.000 | 0.500 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000
(3) NN 0.000 | 0.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(4) WeightedNN | 0.000 | 0.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
(5) SVM 1.000 | 0.000 | 1.000 | 1.000 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

(6) NeuralNet 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 0.000 | 1.000 | 0.000 | 1.000
(7) NeighborINN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.500 | 1.000 | 1.000 | 1.000

(8) MC 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.500 | 0.000 | 1.000
(9) BaseLine 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.500 | 1.000
(10) MIKNN 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500
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A.2 Best Imputation Accuracy versus Missing Rate

For each of th&6 combinations of (species, density, missing rate), thexé@associated simulated
datasets; on each simulated datasgtgenetic distance thresholds are set to run the imputation
methods. Among th&0 imputation accuracies for each imputation method, the tresis reported

in the following tables.

Table A.12: Best imputation accuracies at thenissing rates across the associatediensity9.01
human datasets.

Missing Rate
Methods 05% [ 1% [ 2% [ 5% [ 10% [ 20%
fastPHASE 0.7407 | 0.7547 | 0.7483 | 0.6946 | 0.6938 | 0.6922
NN 0.8264 | 0.8056 | 0.8024 | 0.7715 | 0.7507 | 0.7465
WeightedNN 0.81 0.7703 | 0.7865 | 0.7553 | 0.7299 | 0.7247
SVM 0.76 | 0.7204 | 0.7098 | 0.6922 | 0.6732 | 0.6755

NeuralNet 0.7153 | 0.6944 | 0.7158 | 0.6724 | 0.6627 | 0.6575
NeighborINN|| 0.75 | 0.7188 | 0.7211 | 0.6864 | 0.6722 | 0.6734

MC 0.7545 | 0.7204 | 0.7098 | 0.6804 | 0.6788 | 0.6791
BaselLine 0.76 0.724 | 0.7188 | 0.6855 | 0.6731 | 0.6737
MIKNN 0.72 | 0.6462 | 0.6538 | 0.6247 | 0.623 | 0.6138

Table A.13: Best imputation accuracies at thmissing rates across the associatédlensity6.1
human datasets.

Missing Rate

Methods 05% | 1% | 2% | 5% | 10% | 20%

fastPHASE 0.8081 | 0.8161 | 0.8097 | 0.8029 | 0.7911 | 0.7752
NN 0.8392 | 0.8403 | 0.8307 | 0.8257 | 0.8155 | 0.8017
WeightedNN 0.8295 | 0.8394 | 0.8205 | 0.8125 | 0.7994 | 0.7801
SVM 0.7696 | 0.7714 | 0.7635 | 0.7605 | 0.7432 | 0.7297
NeuralNet 0.6646 | 0.6868 | 0.6391 | 0.6869 | 0.6737 | 0.671

NeighborINN|| 0.6764 | 0.6789 | 0.6619 | 0.6638 | 0.66 | 0.6589
MC 0.7339 | 0.7338 | 0.7271 | 0.7226 | 0.7142 | 0.7084
BaselLine 0.6762 | 0.6791 | 0.6636 | 0.6674 | 0.6621 | 0.6616
MIKNN 0.7625 | 0.7732 | 0.7608 | 0.7497 | 0.7376 | 0.7175
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Table A.14: Best imputation accuracies at thenissing rates across the associatéddensityd
human datasets.

Missing Rate

Methods 05% | 1% 2% | 5% | 10% | 20%

fastPHASE 0.97 0.9708 | 0.9682 | 0.9672 | 0.9634 | 0.9473
NN 0.941 0.941 | 0.9376 | 0.9348 | 0.9276 | 0.9156
WeightedNN 0.9398 | 0.9384 | 0.9339 | 0.9259 | 0.914 | 0.8952
SVM 0.912 | 0.9131 | 0.9107 | 0.906 0.896 | 0.8752
NeuralNet 0.7965 | 0.7934 | 0.7889 | 0.7839 | 0.7741 | 0.758
NeighborINN|| 0.652 | 0.6495 | 0.6493 | 0.6507 | 0.6486 | 0.6482
MC 0.7808 | 0.7791 | 0.7775 | 0.7738 | 0.7669 | 0.7528
BaselLine 0.6571 | 0.6535 | 0.6534 | 0.6543 | 0.6508 | 0.6505
MIKNN 0.924 | 0.9224 | 0.9205 | 0.9153 | 0.9054 | 0.8888

Table A.15: Best imputation accuracies at thenissing rates across the associatediensity9.01
mouse datasets.

Missing Rate

Methods 05% | 1% | 2% | 5% | 10% | 20%

fastPHASE 0.9537 | 0.9401 | 0.9164 | 0.9117 | 0.9079 | 0.8888
NPUTE 0.913 | 0.9032 | 0.8776 | 0.8656 | 0.8501 | 0.8332
NN 0.9722 | 0.9585 | 0.9332 | 0.9224 | 0.9139 | 0.8905
WeightedNN 0.963 | 0.9631 | 0.9393 | 0.9169 | 0.9061 | 0.8795
SVM 0.9259 | 0.9217 | 0.8779 | 0.8738 | 0.8725 | 0.8508
NeuralNet 0.9065 | 0.8802 | 0.8525 | 0.8425 | 0.8385 | 0.8218
NeighborINN|| 0.8704 | 0.8618 | 0.8203 | 0.8278 | 0.8242 | 0.8199
MC 0.8981 | 0.8726 | 0.8685 | 0.8593 | 0.8443 | 0.8379
BaselLine 0.9149 | 0.8618 | 0.8289 | 0.8332 | 0.8251 | 0.8215
MIKNN 0.963 | 0.9539 | 0.9122 | 0.9052 | 0.8997 | 0.8788

Table A.16: Best imputation accuracies at éhmissing rates across the associatédiensity6.01
mouse datasets.

Missing Rate

Methods 05% | 1% 2% | 5% | 10% | 20%

fastPHASE 0.9514 | 0.9381 | 0.9357 | 0.9315 | 0.9277 | 0.9151
NPUTE 0.8978 | 0.8783 | 0.8749 | 0.8727 | 0.8661 | 0.857
NN 0.9585 | 0.9492 | 0.9441 | 0.9379 | 0.9314 | 0.9153
WeightedNN || 0.9575 | 0.9497 | 0.9423 | 0.9315 | 0.9216 | 0.9079
SVM 0.9095 | 0.9036 | 0.9005 | 0.8923 | 0.8862 | 0.8678
NeuralNet 0.895 | 0.8943 | 0.8871 | 0.8827 | 0.8316 | 0.8212
NeighborINN|| 0.8065 | 0.8183 | 0.8116 | 0.8159 | 0.8149 | 0.8125
MC 0.8849 | 0.8778 | 0.8689 | 0.8626 | 0.8584 | 0.8472
BaselLine 0.8527 | 0.8386 | 0.825 | 0.8203 | 0.8192 | 0.8161
MIKNN 0.9398 | 0.9359 | 0.9308 | 0.9269 | 0.9218 | 0.9099
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Table A.17: Best imputation accuracies at thenissing rates across the associatediensity9.01
mouse datasets.

Missing Rate
Methods 05% | 1% 2% 5% 1 10% | 20%
fastPHASE 0.948 | 0.9501 | 0.9461 | 0.9436 | 0.9391 | 0.932

NPUTE 0.8915 | 0.8885 | 0.885 | 0.881 | 0.8773 | 0.8706
NN 0.957 | 0.9557 | 0.9523 | 0.9485 | 0.942 | 0.9311
WeightedNN || 0.9577 | 0.9546 | 0.9504 | 0.9418 | 0.9331 | 0.9245
SVM 0.9139 | 0.9131 | 0.9102 | 0.8986 | 0.8983 | 0.8827

NeuralNet 0.8648 | 0.8617 | 0.8524 | 0.8424 | 0.8339 | 0.8216
NeighborINN|| 0.7853 | 0.7967 | 0.8061 | 0.8124 | 0.8147 | 0.8127

MC 0.8829 | 0.8814 | 0.8765 | 0.8723 | 0.8673 | 0.8568
BaseLine 0.8247 | 0.8234 | 0.8195 | 0.8182 | 0.8187 | 0.8158
MIKNN 0.9503 | 0.9488 | 0.9443 | 0.9408 | 0.9366 | 0.9286
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A.3 Imputation Accuracy versus Density Level

Table 5.9 and the following Tables A.18—A.22 are rearrarg@sof Tables 5.2, 5.3, and 5.4; Like-
wise, Table 5.10 and the following Tables A.23—A.27 arenaagements of Tables 5.5, 5.6, and 5.7.

These tables are assembled to see the effects on SNP dewsitgt the imputation accuracy.

Table A.18: Average imputation accuracies on the humarsdtgat three density levels with miss-
ing rate1%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing ratg
001 [ 0.1 | 1

fastPHASE | 0.6782 | 0.7797 0.9616
NN 0.7521 | 0.8079 0.9214
WeightedNN | 0.7161 | 0.7859 0.9135
SVM 0.6544 | 0.7395 0.9021
NeuralNet 0.6431 | 0.6342 0.7834
NeighborINN| 0.653 | 0.6532 0.6419
MC 0.6505 | 0.7053 0.7718
Baseline 0.6535 | 0.6552 0.6496
MIKNN 0.5945 | 0.7232 0.9112

Table A.19: Average imputation accuracies on the humarsdttat three density levels with miss-
ing rate2%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing r&#
001 | 01 ] 1

fastPHASE | 0.6785 | 0.7838 0.9611
NN 0.749 | 0.8056 0.9189
WeightedNN | 0.7102 | 0.7817 0.9091
SVM 0.6488 | 0.7385 0.8918
NeuralNet | 0.6465 | 0.6274 0.7804
NeighborINN| 0.6497 | 0.6493 0.6427
MC 0.654 | 0.7053 0.7705
BaseLine | 0.6497 | 0.6508 0.6493
MIKNN 0.6032 | 0.7213 0.9104
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Table A.20: Average imputation accuracies on the humarsdttat three density levels with miss-
ing rate5%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing rat#
001 [ 01 ] 1

fastPHASE | 0.6787 | 0.78 0.9597
NN 0.7471 | 0.8041 0.9158
WeightedNN | 0.7065 | 0.774 0.901
SVM 0.6587 | 0.7351 0.8693
NeuralNet | 0.6528 | 0.6732 0.7769
NeighborINN| 0.6585 | 0.6553 0.6452
MC 0.6606 | 0.7065 0.768
BaseLine | 0.6588 | 0.6567 0.6502
MIKNN 0.598 | 0.7156 0.9062

Table A.21: Average imputation accuracies on the humarsdttat three density levels with miss-
ing rate10%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing rait@%
001 | 01 ] 1
fastPHASE | 0.6756 | 0.7716 0.9502
NN 0.7393 | 0.7969 0.91
WeightedNN | 0.6936 | 0.7624 0.891
SVM 0.6488 | 0.7261 0.8715
NeuralNet | 0.6432 | 0.6706 0.769
NeighborINN| 0.6507 | 0.6554 0.6455
MC 0.6513 | 0.7026 0.7614
BaseLine | 0.6511 | 0.6566 0.6492
MIKNN 0.5919 | 0.7077 0.898

Table A.22: Average imputation accuracies on the humarsdttat three density levels with miss-
ing rate20%. Data reproduced from Tables 5.2, 5.3, and 5.4.

Human datasets with missing rate%
00l [ 01 | I

fastPHASE | 0.6735 | 0.7566 0.9378
NN 0.7349 | 0.7848 0.8984
WeightedNN | 0.6877 | 0.7454 0.8734
SVM 0.6516 | 0.7104 0.8217
NeuralNet | 0.6463 | 0.6651 0.7534
NeighborINN| 0.6541 | 0.6536 0.6456
MC 0.6528 | 0.6946 0.7483
BaseLine | 0.6542 | 0.6549 0.6488
MIKNN 0.5902 | 0.6908 0.882
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Table A.23: Average imputation accuracies on the mousesdtttat three density levels with miss-
ing rate1%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rat#
001 | 01 ] 1

fastPHASE | 0.9072 | 0.9314 0.9452
NPUTE 0.856 | 0.8684 0.8821
NN 0.9184 | 0.9398 0.9511
WeightedNN | 0.9197 | 0.9407 0.9508
SVM 0.854 | 0.8842 0.9042
NeuralNet | 0.8271 | 0.8629 0.8524
NeighbordNN| 0.7844 | 0.768 0.7697
MC 0.8319 | 0.8635 0.8753
BaseLine 0.8133 | 0.8189 0.8182
MIKNN 0.9035 | 0.9271 0.9425

Table A.24: Average imputation accuracies on the mousesdtttat three density levels with miss-
ing rate2%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing r&#
001 | 01 ] 1

fastPHASE | 0.8968 | 0.9278 0.9439
NPUTE 0.8458 | 0.8661 0.8816
NN 0.9101 | 0.9355 0.9498
WeightedNN | 0.9088 | 0.9343 0.9468
SVM 0.8507 | 0.8808 0.8969
NeuralNet | 0.8217 | 0.8579 0.8478
NeighborINN| 0.7816 | 0.7795 0.7887
MC 0.8276 | 0.8568 0.8737
BaseLine 0.8034 | 0.8155 0.8178
MIKNN 0.8887 | 0.923 0.9412

Table A.25: Average imputation accuracies on the mousesdtttat three density levels with miss-
ing rate5%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rai#
001 | 01 ] 1

fastPHASE | 0.8997 | 0.9271 0.9417
NPUTE 0.8445 | 0.8659 0.8789
NN 0.9081 | 0.9324 0.9466
WeightedNN | 0.9014 | 0.9267 0.9391
SVM 0.8581 | 0.878 0.6477
NeuralNet | 0.8277 | 0.8549 0.8371
NeighborINN| 0.8068 | 0.798 0.8044
MC 0.8384 | 0.8561 0.8705
BaseLine 0.8179 | 0.8145 0.8168
MIKNN 0.8902 | 0.9199 0.9386
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Table A.26: Average imputation accuracies on the mousesdtttat three density levels with miss-
ing rate10%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rat@’%
001 [ 0I ] 1

fastPHASE | 0.8917 | 0.9244 0.9383
NPUTE 0.839 | 0.8617 0.8758
NN 0.899 | 0.927 0.9408
WeightedNN | 0.8887 | 0.9177 0.9321
SVM 0.8495 | 0.875 0.8837
NeuralNet | 0.8164 | 0.8254 0.8245
NeighborINN| 0.8059 | 0.8072 0.8103
MC 0.8289 | 0.8538 0.8655
BaseLine 0.8117 | 0.8159 0.8167
MIKNN 0.883 | 0.9152 0.9343

Table A.27: Average imputation accuracies on the mousesdegtat three density levels with miss-
ing rate20%. Data reproduced from Tables 5.5, 5.6, and 5.7.

Mouse datasets with missing rax@%
001 [ 01 ] I

fastPHASE | 0.8803 | 0.9125 0.9305
NPUTE 0.8281 | 0.8531 0.8695
NN 0.8808 | 0.9112 0.9294
WeightedNN | 0.8678 | 0.9009 0.9213
SVM 0.8398 | 0.8597 0.7648
NeuralNet 0.809 | 0.8114 0.806
NeighborINN| 0.8103 | 0.808 0.8105
MC 0.8267 | 0.8429 0.8553
BaseLine 0.8143 | 0.8134 0.8149
MIKNN 0.8666 | 0.9023 0.9252

60



A4

Imputation Accuracy versus Genetic Distance Threshold

Table 5.11 summarizes the average imputation accura@eh, @/er the associatdd simulated

datasets, of the imputation methods on the human datasi®atdensity levels with missing rate

0.5%. The following five more tables on human datasets at five atiissing rates, and six more

tables on mouse datasets at six missing rates, show fuhtheffects of genetic distance threshold

on the imputation accuracy.

Table A.28: Average imputation accuracies on the humarsdttat three density levels with miss-
ing ratel %, where the imputation methods were run with five correspuagdenetic distance thresh-

olds.

| Density0.01 humandatasets 1cM | 2cM | 3cM | 4cM | 5cM |
fastPHASE 0.6915 0.6746 0.675 0.675 0.675
NN 0.7375 | 0.7406 | 0.7552 | 0.7615 0.766
WeightedNN 0.7159 0.7346 0.7125 0.7139 0.7035
SVM 0.6623 | 0.6536 | 0.6538 | 0.6528 | 0.6493
NeuralNet 0.6479 0.6438 0.6382 0.6444 0.6413
Neighbor1NN 0.6628 | 0.6504 | 0.6503 | 0.6497 | 0.6517
MC 0.6643 0.6466 0.6469 0.6479 0.6469
BaseLine 0.6647 | 0.6511 0.651 0.65 0.6507
MIKNN 0.6122 0.5912 0.5941 0.591 0.584

| Density9.1 human dataset§ 0.1cM | 0.2cM | 0.3cM | 0.4cM | 0.5cM |
fastPHASE 0.7968 | 0.7793 | 0.7747 | 0.7739 | 0.7738
NN 0.8223 0.8109 0.8058 0.8022 0.7981
WeightedNN 0.8201 0.7978 | 0.7835 | 0.7677 | 0.7605
SVM 0.7527 | 0.7399 0.738 0.7353 0.7315
NeuralNet 0.626 0.6255 | 0.6247 | 0.6227 | 0.6718
Neighbor1NN 0.6502 0.6532 0.6539 0.6542 0.6545
MC 0.7142 | 0.7058 | 0.7027 0.702 0.7018
BaseLine 0.6558 0.6559 0.6552 0.6547 0.6543
MIKNN 0.7503 | 0.7243 | 0.7139 | 0.7135 | 0.7137

| Densityd human datasets| 0.01cM | 0.02cM | 0.03cM | 0.04cM | 0.05¢cM |
fastPHASE 0.9681 0.963 0.9603 | 0.9588 | 0.9578
NN 0.9389 0.9297 0.9205 0.9127 0.9053
WeightedNN 0.9363 | 0.9248 | 0.9126 | 0.9015 | 0.8922
SVM 0.9104 0.9086 0.9036 0.8974 0.8903
NeuralNet 0.7684 | 0.7824 | 0.7876 0.789 0.7897
Neighbor1NN 0.6325 | 0.6412 0.644 0.6455 | 0.6464
MC 0.7755 0.7728 0.771 0.7702 0.7696
BaseLine 0.6501 0.6497 | 0.6493 | 0.6496 | 0.6494
MIKNN 0.9205 0.9146 0.9099 0.907 0.9042
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Table A.29: Average imputation accuracies on the humarsdtgat three density levels with miss-
ing rate2%, where the imputation methods were run with five correspuagdenetic distance thresh-

olds.

| Density0.01 humandatasets 1cM | 2cM | 3cM | 4cM | 5cM |
fastPHASE 0.6942 | 0.6743 | 0.6747 | 0.6747 | 0.6747
NN 0.7411 0.7467 0.7516 0.7492 0.7562
WeightedNN 0.7357 | 0.7291 0.7095 | 0.6938 0.683
SVM 0.6625 0.647 0.6447 | 0.6444 0.6454
NeuralNet 0.6525 0.6458 0.647 0.6452 0.6421
Neighbor1NN 0.6621 0.6463 0.6461 0.6475 0.6466
MC 0.6645 | 0.6506 | 0.6516 | 0.6513 | 0.6516
BaseLine 0.6614 0.6459 0.647 0.6471 0.647
MIKNN 0.6281 0.604 0.5983 | 0.5948 | 0.5908

| Density0.1 human datasetd 0.1cM | 0.2cM | 0.3cM | 0.4cM | 0.5cM |
fastPHASE 0.8014 | 0.7828 | 0.7789 0.778 0.778
NN 0.8228 0.8063 0.8028 0.8007 0.7956
WeightedNN 0.8143 | 0.7943 | 0.7775 0.766 0.7566
SVM 0.7546 | 0.7391 0.7354 | 0.7334 | 0.7302
NeuralNet 0.629 0.6285 0.6291 0.6266 0.6237
Neighbor1NN 0.6483 | 0.6496 | 0.6498 | 0.6495 | 0.6492
MC 0.7161 0.7053 0.7024 0.7013 0.7012
BaseLine 0.6535 | 0.6503 | 0.6501 0.6499 0.65
MIKNN 0.7494 0.7215 0.7136 0.7112 0.711

| Density1 human datasets| 0.01cM | 0.02cM | 0.03cM | 0.04cM | 0.05¢cM |
fastPHASE 0.9677 | 0.9624 0.9598 0.9584 0.9575
NN 0.9363 | 0.9269 | 0.9183 | 0.9099 | 0.9029
WeightedNN 0.9325 0.9194 0.9082 0.8972 0.888
SVM 0.9089 | 0.9067 | 0.9019 | 0.8956 0.846
NeuralNet 0.7659 0.7794 0.7841 0.7861 0.7864
Neighbor1NN 0.6348 | 0.6421 0.6444 0.646 0.6463
MC 0.7742 0.7712 0.7697 | 0.7689 0.7683
BaseLine 0.6499 | 0.6494 | 0.6491 0.6491 0.6489
MIKNN 0.919 0.9134 0.9095 0.9063 0.9039
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Table A.30: Average imputation accuracies on the humarsdtgat three density levels with miss-
ing rate5%, where the imputation methods were run with five correspaagdenetic distance thresh-

olds.

| Density0.01 humandatasets 1cM | 2cM | 3cM | 4cM | 5cM |
fastPHASE 0.6884 0.676 0.6764 | 0.6764 | 0.6764
NN 0.7379 0.7452 0.7461 0.7533 0.753
WeightedNN 0.7339 | 0.7216 | 0.7033 | 0.6911 | 0.6826
SVM 0.6701 0.6555 0.6543 0.6582 0.6555
NeuralNet 0.656 0.6571 | 0.6541 | 0.6506 | 0.6461
Neighbor1NN 0.6672 0.6555 0.6567 | 0.6566 0.6566
MC 0.6699 | 0.6578 | 0.6584 | 0.6584 | 0.6583
BaseLine 0.6675 0.6561 0.657 0.6572 0.656
MIKNN 0.6149 | 0.5906 | 0.5903 | 0.5938 | 0.6002

| Density0.1 human datasetd 0.1cM | 0.2cM | 0.3cM | 0.4cM | 0.5cM |
fastPHASE 0.7969 | 0.7795 | 0.7753 | 0.7741 0.774
NN 0.8199 0.8063 0.8015 0.7979 0.795
WeightedNN 0.8081 | 0.7869 | 0.7707 | 0.7571 | 0.7471
SVM 0.7509 | 0.7369 | 0.7324 | 0.7287 | 0.7266
NeuralNet 0.6703 0.6738 0.6746 0.6747 | 0.6728
Neighbor1NN 0.6548 | 0.6551 | 0.6561 | 0.6553 | 0.6554
MC 0.7161 0.7065 0.7042 0.7029 0.7027
BaselLine 0.6589 | 0.6567 | 0.6567 | 0.6555 | 0.6557
MIKNN 0.7409 0.7167 | 0.7076 0.7062 0.7066

| Density1 human datasets| 0.01cM | 0.02cM | 0.03cM | 0.04cM | 0.05¢cM |
fastPHASE 0.9663 0.9611 0.9584 | 0.9569 0.9559
NN 0.9334 | 0.9241 | 0.9149 | 0.9067 | 0.8997
WeightedNN 0.9243 0.9113 0.8997 | 0.8892 0.8802
SVM 0.905 0.9024 | 0.8962 | 0.8891 | 0.7537
NeuralNet 0.7633 0.7765 0.7805 0.7821 0.7821
Neighbor1NN 0.6392 | 0.6449 | 0.6465 | 0.6474 | 0.6479
MC 0.7718 0.7688 0.7672 0.7664 0.7658
BaselLine 0.6507 | 0.6503 | 0.6501 0.65 0.6498
MIKNN 0.9142 0.9091 0.9052 0.9023 0.9
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Table A.31: Average imputation accuracies on the humarsdtgat three density levels with miss-
ing rate 10%, where the imputation methods were run with five correspapdjenetic distance
thresholds.

| Density0.01 humandatasets 1cM | 2cM | 3cM | 4cM | 5cM |
fastPHASE 0.6861 0.6725 | 0.6732 | 0.6732 | 0.6732
NN 0.7331 0.7377 0.7412 0.7442 0.7402
WeightedNN 0.7172 | 0.7059 | 0.6939 0.681 0.67
SVM 0.6585 0.6459 0.6465 0.6473 0.646
NeuralNet 0.6465 | 0.6462 | 0.6445 | 0.6412 | 0.6378
Neighbor1NN 0.6584 0.648 0.649 0.6492 0.6489
MC 0.661 0.6485 | 0.6491 0.6489 | 0.6492
BaseLine 0.6596 0.6488 0.6486 0.649 0.6492
MIKNN 0.6092 | 0.5832 | 0.5862 | 0.5903 | 0.5905

| Density0.1 human datasetd 0.1cM | 0.2cM | 0.3cM | 0.4cM | 0.5cM |
fastPHASE 0.7877 | 0.7712 | 0.7671 0.7661 0.766
NN 0.8121 0.7997 0.7941 0.7903 0.7884
WeightedNN 0.797 0.7752 | 0.7592 0.745 0.7357
SVM 0.7411 0.7286 | 0.7239 0.72 0.7171
NeuralNet 0.6695 0.6711 0.6718 0.6712 0.6695
Neighbor1NN 0.6555 | 0.6559 | 0.6552 | 0.6551 0.6554
MC 0.7113 0.7029 0.7002 0.6993 0.6993
BaseLine 0.6585 | 0.6569 | 0.6562 | 0.6558 | 0.6556
MIKNN 0.732 0.7078 0.7003 0.6988 0.6995

| Density1 human datasets| 0.01cM | 0.02cM | 0.03cM | 0.04cM | 0.05¢cM |
fastPHASE 0.9573 0.9516 0.9487 | 0.9471 0.946
NN 0.9269 | 0.9179 | 0.9093 | 0.9014 | 0.8945
WeightedNN 0.9131 0.9006 0.8896 0.88 0.8718
SVM 0.8952 | 0.8912 | 0.8841 0.8763 | 0.8106
NeuralNet 0.7571 0.769 0.7725 0.7736 0.773
Neighbor1NN 0.6417 | 0.6453 | 0.6464 | 0.6469 | 0.6472
MC 0.765 0.7622 0.7607 0.76 0.7594
BaseLine 0.6496 | 0.6494 | 0.6492 | 0.6491 0.6489
MIKNN 0.9048 0.9007 0.8972 0.8947 0.8925
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Table A.32: Average imputation accuracies on the humarsdtgat three density levels with miss-
ing rate20%, where the imputation methods were run with five correspapdjenetic distance
thresholds.

| Density0.01 humandatasets 1cM | 2cM | 3cM | 4cM | 5cM |
fastPHASE 0.6849 | 0.6703 | 0.6707 | 0.6707 | 0.6707
NN 0.7314 0.7317 0.7364 0.7374 0.7373
WeightedNN 0.7159 | 0.6979 0.686 0.6749 | 0.6639
SVM 0.6644 0.6486 0.6487 | 0.6472 0.6489
NeuralNet 0.6516 0.649 0.6455 | 0.6436 | 0.6417
Neighbor1NN 0.6648 0.6508 0.6514 0.6518 0.6515
MC 0.6639 | 0.6496 | 0.6501 0.6502 | 0.6501
BaseLine 0.665 0.6512 0.6515 0.6516 0.6518
MIKNN 0.6073 | 0.5821 0.5856 | 0.5878 | 0.5883

| Density0.1 human datasetd 0.1cM | 0.2cM | 0.3cM | 0.4cM | 0.5cM |
fastPHASE 0.7715 | 0.7562 | 0.7524 | 0.7514 | 0.7514
NN 0.7986 0.7874 0.7829 0.7782 0.7769
WeightedNN 0.7773 | 0.7568 | 0.7425 | 0.7295 | 0.7209
SVM 0.7248 | 0.7125 0.708 0.7044 | 0.7022
NeuralNet 0.6648 0.6663 0.6666 0.6649 0.6631
Neighbor1NN 0.6537 | 0.6539 | 0.6537 | 0.6535 | 0.6535
MC 0.7028 0.6948 0.6924 0.6916 0.6914
BaseLine 0.6567 | 0.6551 0.6545 | 0.6541 0.654
MIKNN 0.7129 0.6912 0.6841 0.6824 0.6836

| Density1 human datasets| 0.01cM | 0.02cM | 0.03cM | 0.04cM | 0.05¢cM |
fastPHASE 0.9458 0.9393 0.9362 0.9345 0.9334
NN 0.9145 | 0.9058 | 0.8976 | 0.8903 | 0.8837
WeightedNN 0.8944 0.8821 0.872 0.8632 0.8554
SVM 0.8738 | 0.8676 | 0.8588 | 0.8479 | 0.6602
NeuralNet 0.7442 0.7542 0.7566 0.7565 0.7555
Neighbor1NN 0.6431 0.6454 | 0.6462 | 0.6467 | 0.6468
MC 0.7516 0.749 0.7476 0.7469 0.7464
BaseLine 0.6492 0.649 0.6488 | 0.6486 | 0.6485
MIKNN 0.8881 0.8844 0.8813 0.8792 0.8771
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Table A.33: Average imputation accuracies on the mousesdtttat three density levels with miss-
ing ratel %, where the imputation methods were run with five correspugndenetic distance thresh-

olds.

| Density0.01 mouse datasets 1cM | 2cM | 3cM | 4cM | 5cM |
fastPHASE 0.9062 | 0.9076 | 0.9076 | 0.9074 | 0.9074
NPUTE 0.8557 | 0.8556 | 0.8562 | 0.8562 | 0.8562
NN 0.9017 0.917 0.9242 0.923 0.9263
WeightedNN 0.9081 0.9203 | 0.9214 | 0.9258 0.923
SVM 0.8301 | 0.8519 | 0.8595 | 0.8631 | 0.8654
NeuralNet 0.8231 0.8329 | 0.8295 | 0.8267 | 0.8235
Neighbor1NN 0.7387 | 0.7792 | 0.7916 | 0.8023 | 0.8101
MC 0.825 0.8373 | 0.8374 0.829 0.8309
BaselLine 0.8093 | 0.8111 | 0.8142 | 0.8152 | 0.8166
MIKNN 0.8963 | 0.9011 | 0.9025 | 0.9097 | 0.9078

| Density0.1 mouse datasety 0.1cM [ 0.2cM | 0.3cM [ 0.4cM | 0.5cM |
fastPHASE 0.9322 | 0.9317 | 0.9311 0.931 0.931
NPUTE 0.8692 | 0.8684 | 0.8681 0.8682 | 0.8681
NN 0.9329 | 0.9403 | 0.9418 | 0.9418 | 0.9422
WeightedNN 0.9346 | 0.9405 | 0.9429 | 0.9425 | 0.9432
SVM 0.8653 | 0.8801 | 0.8883 | 0.8925 | 0.8945
NeuralNet 0.8367 | 0.8512 | 0.8656 | 0.8752 | 0.8859
Neighbor1NN 0.722 0.7546 | 0.7767 | 0.7895 | 0.7974
MC 0.8653 | 0.8643 | 0.8611 0.864 0.863
BaselLine 0.8199 | 0.8184 | 0.8185 | 0.8191 | 0.8186
MIKNN 0.9232 | 0.9273 | 0.9278 | 0.9279 | 0.9291

| Density1 mouse datasets| 0.01cM [ 0.02cM | 0.03cM [ 0.04cM | 0.05cM |
fastPHASE 0.9456 | 0.9452 | 0.9452 0.945 0.945
NPUTE 0.8821 0.8821 | 0.8821 0.882 0.882
NN 0.9478 | 0.9511 | 0.9519 | 0.9525 | 0.9524
WeightedNN 0.9489 | 0.9516 | 0.9519 | 0.9513 | 0.9504
SVM 0.8914 | 0.9036 | 0.9073 | 0.9093 | 0.9096
NeuralNet 0.8487 | 0.8543 | 0.8546 | 0.8537 | 0.8505
Neighbor1NN 0.7284 | 0.7623 | 0.7776 0.787 0.7929
MC 0.8761 0.8752 | 0.8751 0.8749 | 0.8753
BaselLine 0.8181 0.8182 | 0.8183 | 0.8181 0.8182
MIKNN 0.9396 | 0.9428 | 0.9433 | 0.9434 | 0.9436
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Table A.34: Average imputation accuracies on the mousesdtttat three density levels with miss-
ing rate2%, where the imputation methods were run with five correspugndenetic distance thresh-

olds.

| Density0.01 mouse datasets 1cM | 2cM | 3cM | 4cM | 5cM |
fastPHASE 0.9008 0.896 0.8962 | 0.8956 | 0.8956
NPUTE 0.8501 0.8442 | 0.8451 0.8447 | 0.8447
NN 0.9051 0.911 0.9151 | 0.9111 | 0.9083
WeightedNN 0.9038 | 0.9109 | 0.9147 | 0.9104 | 0.9041
SVM 0.833 0.8519 | 0.8546 | 0.8565 | 0.8574
NeuralNet 0.8208 | 0.8206 | 0.8247 | 0.8217 0.821
Neighbor1NN 0.7403 | 0.7788 | 0.7947 | 0.7949 | 0.7995
MC 0.8293 | 0.8285 | 0.8254 | 0.8306 0.824
BaselLine 0.8014 | 0.8013 | 0.8044 0.806 0.8041
MIKNN 0.8892 | 0.8894 | 0.8904 | 0.8866 0.888

| Density0.1 mouse datasety 0.1cM [ 0.2cM | 0.3cM [ 0.4cM | 0.5cM |
fastPHASE 0.9282 | 0.9279 | 0.9275 | 0.9276 | 0.9276
NPUTE 0.8669 | 0.8659 | 0.8659 0.866 0.866
NN 0.9287 | 0.9349 | 0.9378 | 0.9383 | 0.9376
WeightedNN 0.93 0.936 0.9367 | 0.9352 | 0.9338
SVM 0.86 0.8775 | 0.8851 | 0.8897 | 0.8915
NeuralNet 0.831 0.8459 | 0.8598 | 0.8714 | 0.8813
Neighbor1NN 0.7396 | 0.7709 | 0.7879 | 0.7974 | 0.8017
MC 0.8587 | 0.8561 | 0.8563 0.856 0.8566
BaselLine 0.815 0.8157 | 0.8151 | 0.8154 0.816
MIKNN 0.9185 | 0.9226 | 0.9237 | 0.9249 | 0.9251

| Density1 mouse datasets| 0.01cM [ 0.02cM | 0.03cM [ 0.04cM | 0.05cM |
fastPHASE 0.9442 | 0.9439 | 0.9438 | 0.9438 | 0.9437
NPUTE 0.8818 | 0.8817 | 0.8816 | 0.8816 | 0.8815
NN 0.9471 | 0.9502 0.951 0.9507 | 0.9501
WeightedNN 0.9471 0.9487 | 0.9475 | 0.9459 | 0.9447
SVM 0.888 0.897 0.8961 | 0.8998 | 0.9034
NeuralNet 0.8459 | 0.8503 0.85 0.8474 | 0.8453
Neighbor1NN 0.757 0.7851 | 0.7959 0.801 0.8042
MC 0.8745 | 0.8741 | 0.8733 | 0.8732 | 0.8733
BaselLine 0.8178 | 0.8177 | 0.8177 | 0.8181 | 0.8178
MIKNN 0.9387 | 0.9414 0.942 0.942 0.9421
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Table A.35: Average imputation accuracies on the mousesdtttat three density levels with miss-
ing rate5%, where the imputation methods were run with five correspugndenetic distance thresh-

olds.

| Density0.01 mouse datasets 1cM | 2cM | 3cM | 4cM | 5cM |
fastPHASE 0.9009 | 0.8991 | 0.8995 | 0.8994 | 0.8994
NPUTE 0.8456 | 0.8433 | 0.8444 | 0.8446 | 0.8446
NN 0.8999 | 0.9078 | 0.9134 | 0.9111 | 0.9081
WeightedNN 0.8981 0.9022 | 0.9058 | 0.9008 | 0.8999
SVM 0.8413 | 0.8556 | 0.8608 | 0.8657 | 0.8669
NeuralNet 0.8265 | 0.8279 | 0.8296 | 0.8292 | 0.8254
Neighbor1NN 0.7874 | 0.8072 | 0.8112 | 0.8124 | 0.8157
MC 0.8396 | 0.8358 | 0.8391 0.8394 | 0.8379
BaselLine 0.8188 | 0.8181 | 0.8173 | 0.8172 0.818
MIKNN 0.8818 | 0.8887 | 0.8908 | 0.8945 0.895

| Density0.1 mouse datasety 0.1cM [ 0.2cM | 0.3cM [ 0.4cM | 0.5cM |
fastPHASE 0.9275 | 0.9273 0.927 0.9269 | 0.9268
NPUTE 0.8675 | 0.8656 | 0.8656 | 0.8655 | 0.8655
NN 0.927 0.9324 | 0.9342 0.934 0.9345
WeightedNN 0.9261 0.9282 | 0.9277 | 0.9263 | 0.9251
SVM 0.8584 | 0.8744 | 0.8825 | 0.8863 | 0.8882
NeuralNet 0.828 0.8432 | 0.8567 | 0.8687 | 0.8776
Neighbor1NN 0.7746 | 0.7952 | 0.8037 | 0.8071 | 0.8094
MC 0.8566 | 0.8561 | 0.8557 | 0.8561 0.8561
BaselLine 0.8137 | 0.8144 | 0.8149 | 0.8149 | 0.8147
MIKNN 0.9144 | 0.9191 | 0.9214 | 0.9221 0.9227

| Density1 mouse datasets| 0.01cM [ 0.02cM | 0.03cM [ 0.04cM | 0.05cM |
fastPHASE 0.942 0.9418 | 0.9416 | 0.9416 | 0.9415
NPUTE 0.8791 0.879 0.8789 | 0.8788 | 0.8788
NN 0.945 0.9472 | 0.9472 0.947 0.9465
WeightedNN 0.9408 0.94 0.9388 | 0.9381 0.9376
SVM 0.7003 | 0.6921 | 0.7051 | 0.6804 | 0.6729
NeuralNet 0.8394 0.841 0.8388 | 0.8349 | 0.8311
Neighbor1NN 0.7903 | 0.8033 | 0.8076 | 0.8099 0.811
MC 0.8712 | 0.8707 | 0.8704 0.87 0.87
BaselLine 0.8168 | 0.8167 | 0.8167 | 0.8168 | 0.8168
MIKNN 0.9356 | 0.9386 | 0.9394 | 0.9398 | 0.9397
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Table A.36: Average imputation accuracies on the mousesdtttat three density levels with miss-
ing rate 10%, where the imputation methods were run with five correspapdjenetic distance
thresholds.

| Density0.01 mouse datasets 1cM | 2cM | 3cM | 4cM | 5cM |
fastPHASE 0.8938 0.891 0.8913 | 0.8913 | 0.8913
NPUTE 0.8409 | 0.8376 | 0.8388 | 0.8388 | 0.8388
NN 0.8937 0.899 0.9026 | 0.9002 | 0.8995
WeightedNN 0.8862 | 0.8879 | 0.8899 | 0.8895 | 0.8899
SVM 0.8364 | 0.8472 | 0.8533 0.855 0.8556
NeuralNet 0.8185 | 0.8195 | 0.8189 | 0.8142 | 0.8111
Neighbor1NN 0.7963 | 0.8053 | 0.8082 | 0.8097 | 0.8102
MC 0.8301 0.8294 0.828 0.8287 | 0.8283
BaselLine 0.8116 | 0.8103 | 0.8117 | 0.8127 | 0.8124
MIKNN 0.8771 | 0.8821 | 0.8842 | 0.8847 | 0.8867

| Density0.1 mouse datasety 0.1cM [ 0.2cM | 0.3cM [ 0.4cM | 0.5cM |
fastPHASE 0.9248 | 0.9244 | 0.9243 | 0.9242 | 0.9241
NPUTE 0.8629 | 0.8615 | 0.8614 | 0.8614 | 0.8614
NN 0.923 0.927 0.9284 | 0.9284 | 0.9281
WeightedNN 0.9168 | 0.9172 | 09179 | 0.9181 0.9187
SVM 0.8581 | 0.8717 | 0.8793 | 0.8824 | 0.8835
NeuralNet 0.8271 0.8287 | 0.8267 | 0.8242 | 0.8203
Neighbor1NN 0.7964 | 0.8058 | 0.8099 | 0.8116 | 0.8125
MC 0.8548 | 0.8536 | 0.8536 | 0.8537 | 0.8534
BaselLine 0.8158 | 0.8156 | 0.8159 0.816 0.816
MIKNN 0.9093 | 0.9137 | 0.9168 0.918 0.9182

| Density1 mouse datasets| 0.01cM [ 0.02cM | 0.03cM [ 0.04cM | 0.05cM |
fastPHASE 0.9386 | 0.9383 | 0.9382 | 0.9381 | 0.9381
NPUTE 0.876 0.8758 | 0.8757 | 0.8757 | 0.8757
NN 0.9395 | 0.9416 | 0.9415 0.941 0.9405
WeightedNN 0.9311 0.9321 | 0.9324 | 0.9325 | 0.9325
SVM 0.8814 | 0.8912 | 0.8739 | 0.8924 | 0.8798
NeuralNet 0.8326 | 0.8302 | 0.8253 | 0.8199 | 0.8147
Neighbor1NN 0.8043 | 0.8098 | 0.8116 | 0.8126 0.813
MC 0.8665 | 0.8659 | 0.8652 | 0.8651 0.865
BaselLine 0.8167 | 0.8166 | 0.8166 | 0.8168 | 0.8168
MIKNN 0.9303 | 0.9342 | 0.9353 | 0.9357 0.936
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Table A.37: Average imputation accuracies on the mousesdtttat three density levels with miss-
ing rate20%, where the imputation methods were run with five correspapdjenetic distance
thresholds.

| Density0.01 mouse datasets 1cM | 2cM | 3cM | 4cM | 5cM |
fastPHASE 0.8806 | 0.8799 | 0.8803 | 0.8804 | 0.8804
NPUTE 0.8284 0.8272 0.8282 0.8284 0.8284
NN 0.8742 | 0.8812 | 0.8846 | 0.8835 | 0.8806
WeightedNN 0.8612 0.8643 0.8696 0.8714 0.8723
SVM 0.8292 | 0.8377 | 0.8441 0.8448 | 0.8435
NeuralNet 0.817 0.8141 0.8099 0.8046 0.7992
Neighbor1NN 0.805 0.8096 | 0.8118 | 0.8122 | 0.8128
MC 0.8258 0.8267 | 0.8278 0.827 0.8264
BaseLine 0.8129 0.814 0.8146 0.8144 0.8157
MIKNN 0.8551 0.863 0.8702 | 0.8727 0.872

| Density0.1 mouse datasety 0.1cM [ 0.2cM | 0.3cM [ 0.4cM | 0.5cM |
fastPHASE 0.9132 0.9126 0.9123 0.9123 0.9122
NPUTE 0.8544 0.8529 0.8528 0.8528 0.8528
NN 0.9061 0.9109 | 0.9126 0.913 0.9134
WeightedNN 0.8943 0.8987 | 0.9015 0.9042 0.9056
SVM 0.8479 | 0.8576 | 0.8627 | 0.8648 | 0.8657
NeuralNet 0.8193 0.8168 0.8125 0.8068 0.8016
Neighbor1NN 0.8029 0.807 0.8091 0.8101 0.811
MC 0.844 0.8426 0.8424 0.8426 0.8429
BaseLine 0.813 0.8131 0.8135 | 0.8136 | 0.8136
MIKNN 0.8937 0.9005 0.9043 0.9059 0.9073

| Density1 mouse datasets| 0.01cM [ 0.02cM | 0.03cM [ 0.04cM | 0.05cM |
fastPHASE 0.9308 | 0.9305 | 0.9305 | 0.9304 | 0.9303
NPUTE 0.8698 0.8695 0.8695 0.8695 0.8694
NN 0.9271 0.9298 | 0.9303 0.93 0.9298
WeightedNN 0.9165 0.9208 0.9225 0.9232 0.9237
SVM 0.7311 0.8119 | 0.7415 | 0.7587 | 0.7807
NeuralNet 0.8207 0.8134 0.8057 0.7986 0.7916
Neighbor1NN 0.8073 0.81 0.8111 0.8118 0.8121
MC 0.8561 0.8557 | 0.8552 0.8549 0.8548
BaseLine 0.8148 | 0.8149 | 0.8149 0.815 0.815
MIKNN 0.9195 0.9248 0.9266 0.9274 0.9279
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