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Abstract

Although cancer classification is usually accurate, it remains imperfect and
errors do occur. The new technologies, called microarray technology, promise to
monitor the whole genome on a single chip so that we can have a better picture of the
interactions among thousands of genes simultaneously. Recent studies in cancer
research are using this technology to conduct genome-scale characterizations of gene
expression in human tumors. Most published papers on tumor classification have
applied a single technique to a single expression data set. It is difficult however to
assess the merits of each technique in the absence of comparative study.

In this thesis, we compared the performance of Reference Point Logistic
regression, with the two classifiers that are found to perform well in Dudoit et al.
(2000): linear discriminant analysis and the k-nearest neighbor classifier. Quadratic
discriminant analysis was also included in our comparison to see its performance

compared with linear discriminant analysis.
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Notation

The notation used in this paper is listed below. A lower case letter in bold face

denotes a vector.

Hy=(y), Hip)

Xy =Xy Xyp)

z

¥

B

p Number of features (genes)

J Number of classes (cancer type)

n Total number of cases (tissue sample)

ny Number of cases in the yth class, y=1,---,J
p(y) Prior probability of class y

X;; Gene expression of the jth gene for the ith case
x; =(x; ,---,x,.,,) Gene expression profile vector for the ith case
viell,---,J} Class label for the ith case

f(xly) Class conditional density of x given y

p(ylx) Conditional density of y given x.

Mean vector for class v, y=1,---,J
Sample mean vector forclass y, y=1,---,J
Covariance matrix forclass y, y=1,---,J

Number of times we rerun the classifiers



CHAPTER 1

INTRODUCTION

Despite the variety of clinical, morphological and molecular parameters used
to classify human malignancies today, patients receiving the same diagnosis can have
markedly different clinical courses and treatment responses. Current clinical practice
involves an experienced hematopathologist's interpretation of the tumor's
morphology, histochemistry, immunophenotyping, and cytogenetic analysis, each
performed in a separate, highly specialized laboratory. Although cancer classification
is usually accurate, it remains imperfect and errors do occur.

The new technologies, called complementary DNA (cDNA) microarray and
high-density oligonucleotide chips, promise to monitor the whole genome on a single
chip so that we can have a better picture of the interactions among tens of thousands
of genes simultaneously. Recent studies in cancer research are using this technology
to conduct genome-scale characterizations of gene expression in human tumors, with
the goal of developing improved and higher resolution methods for classifying
tumors, which in turn should lead to more specific and effective treatment strategies.

Some of the statistical problems associated with cancer diagnosis are:
defining previously unrecognized tumor subtypes — unsuperpervised learning, the
assignment of particular tumor samples to already-defined classes - supervised

learning, and the identification of “marker” genes that characterize the different



tumor classes — variable selection. This thesis focuses on the second problem, the
classification of cancer using gene expression data.

Both the supervised and unsupervised leamning metheds have been employed
in some of the recent cancer studies using gene expression data. Golub, Slonim,
Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield
and Lander (1999) looked into both cluster analysis and discriminant analysis of
tumors using gene expression data. For cluster analysis, Self Organizing Maps (SOM)
was applied to the gene expression data and the cancer types revealed by this method
were compared to known classes. For discriminant analysis, Golub et al. (1999)
proposed a weighted gene-voting scheme.

Alizadeh, Eisen, Davis, Ma, Lossos, Rosenwald, Boldrick, Sabat, Tran, Yu,
Powell, Yang, Marti, Moore, Hudson, Lu, Lewis, Tibshrani, Sherlock, Chan, Greiner,
Weisenburger, Armitage, Warnke, Levy, Wilson, Grevel, Byrd, Botstein, Brown and
Staudt (2000) applied a hierarchical clustering algorithm, to group both the genes and
tumors, on gene expression data for the three most prevalent adult lymphoid
malignancies: diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL),
and chronic lymphocytic leukemia (CLL). Two types of B cell malignancies that are
not recognized by the current classification were identified.

Ross, Scherf, Eisen, Perou, Rees, Spellman, Iyer, Jeffrey, Van de Rijn,
Waltham, Pergamenschikov, Lee, Lashkari, Shalon, Myers, Weinstein, Botstein, and
Brown (2000) used cDNA microarrays to explore variation among gene expression
profiles in 60 human cancer cell lines (NCI60) derived from tumors from a variety of

tissue and organs. The authors used a hierarchical clustering algorithm to group cell
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lines with similar gene expression and the result of analysis revealed a
correspondence with the ostensible origins of the tumors from which the cell lines
were derived. The same clustering algorithm was employed to group genes whose
expression level varied among the 60 cell lines.

Most published papers on tumor classification have applied a single technique
to a single expression data set. It is difficult however to assess the merits of each
technique in the absence of comparative study. Dudoit, Fridlyand and Speed (2000)
compared the performance of different discriminant methods for classification of
tumors based on gene expression data. Simple classifiers such as linear discriminant
analysis and nearest neighbors performed well compared to the more sophisticated
methods such as aggregated classification trees.

In this thesis, the gene expression datasets used in Dudoit et al. (2000) are
used to compare the performance of Reference Point Logistic (RPL) regression,
which was introduced by Hooper (1999, 2001), with the two classifiers that
performed well in Dudoit et al. (2000): linear discriminant analysis (based on the
normal distribution) and the k-nearest neighbor classifier (a nonparametric classifier).
Quadratic discriminant analysis is also included in our comparison to compare its
performance with linear discriminant analysis.

RPL had been applied to ten StatLog data sets (Michie, Spiegelhalter, and
Taylor, 1994) and it performed well in comparison with 22 other classification
methods. Detailed results are given in Hopper (2001).

RPL regression models p(ylx) according to proximity between x and reference

points for each class. The numbers of reference points assigned to each class control



the complexity of the model. These numbers can be selected empirically using cross-
validated risk estimates. When a single reference point is assigned to each class, RPL
regression is equivalent to multinomial logistic regression. When applying RPL to the
microarray data sets, we found that choosing a single reference point per class gave
the best result. Thus our evaluation of RPL can be viewed as an evaluation of logistic
regression.

Sometimes, the choice of more than one reference point per class provides a
good result. For example, in the problem of identifying functional sites at the
boundaries of protein coding regions in genomic DNA (Hooper et al., 2001) a more
complex model gave a better result.

An unusual feature of gene expression data is the very large number of
variables (genes) as compared to the number of cases (tumor samples). The publicly
available datasets currently contain gene expression data for 5,000 — 20,000 genes on
fewer than 100 tumor samples.

To reduce the dimensionality of the data, Ross et al. (2000) used two different
subsets of genes: 1,161 and 6,831 genes out of a total of 9,703 genes. The 1,161
cDNAs were those with transcript levels that varied by at least sevenfold
(log, (ratio)>2.8) relative to the reference pool in at least 4 of 60 cell lines. This
effectively selects genes with greatest variation in expression level across the 60 cell
lines, and therefore highlights those gene expression patterns that best distinguished
the cell lines from one another.

The 6,831 cDNAs were those with a minimum fluorescence signal intensity of

approximately 0.4% of the dynamic range above background in the reference channel
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in each of the six hybridizations used to establish reproducibility. This effectively
selected those genes that provided the most reliable ratio measurements and therefore
identified a subset of genes useful for exploring patterns comprised of moderately
large variation in expression across the 60 cell line was of moderate magnitude.

To reduce the dimensionality of the data, Dudoit et al. (2000) performed a
preliminary selection of genes on the basis of the ratio of their between groups to
within groups sum of squares.

To reduce the dimensionality of the data set used in this thesis, we used a k-
means clustering criterion to group together genes with “similar” patterns of
expression. The gene centroid vectors of each cluster are then used as potential
features to develop the classifiers.

This thesis is organized as follows. We begin in Chapter 2 by briefly
discussing the biological background and technology of cDNA microarrays. Chapter
3 discusses some of the statistical methods recently used in the study of human cancer
using gene expression data. Chapter 4 describes the data set used in this paper, along
with preliminary data processing steps and dimensionality reduction. The
classification methods considered in the paper are discussed in Chapter 5. Finally,

Chapter 6 summarizes our findings and outlines open questions.



CHAPTER 2

BIOLOGICAL BACKGROUND ON cDNA
MICROARRAYS

A gene is a discrete sequence of DNA encoding a particular protein, the
ultimate expression of the genetic information. DNA consists of two associated
polynucleotide strands that wind together in a helical fashion, often described as a
double helix. Each of the nucleotides is composed of deoxyribose sugar, a phosphate
group, and one of the four nitrogen bases: adenine (A), thymine (T), guanine (G) and
cytosine(C). Phosphate and sugars of adjacent nucleotides link to form a long
polymer (a large molecule containing repeating units) and the two strands of DNA are
linked by complementary pairs of nitrogen bases- A always paired with T, and G
always paired with C. The right panel of Figure 1 on page 7 shows the basic structure
of DNA.

The entire process that takes the information contained in genes on DNA and
turns that information into proteins, which in turn determine the properties of cells, is
called gene expression. In eukaryotic species (multi-cellular organisms), the DNA
sequences coding for proteins called exons are interrupted by stretches of non-coding
DNA called introns.

We can summarize the three steps in gene expression as follows. First, the
DNA that includes all the exons and introns of the gene is transcribed to produce
nRNA (nuclear RNA); a single stranded complementary copy of the gene, with the

base uracil (U) replacing thymine (T). See the left panel of Figurel for basic structure
6



of RNA. In the second step, introns are spliced out from nRNA to produce mRNA

(messenger RNA). Figure 2 displays the transcription of DNA to mRNA.

Figure 1: Structure of RNA and DNA.

gene
B o B o B o T
t L4
DNA intron | intron 2

Transcription

v

nRNA RNA splicing

v

Ijonl I exon2 J exon 3 |
mRNA

Figure 2: The transcription of DNA to mRNA in Eukaryotic species.



Both figures 1 and 2 are obtained from Access Excellence, National health Museum

(1999): http://www.accessexcellence.org

Finally, the mRNA is transported to the cytoplasm for translation into protein.
For an introduction to basic genetics, see Hartl (1991).

It is widely believed that some genetic diseases are caused by genes that are
inappropriately transcribed (either too much or too little) or that are missing
completely. Such defects are especially common in cancers.

Because mRNA is an exact copy of the DNA coding regions, mRNA analysis
can sensitively reflect the type and state of the cell. Microarray technology is one of
several developing approaches to comparatively analyze genome-wide patterns of
mRNA expression. To prepare mRNA for use in a microarray assay, it must be
purified from total cellular contents. Captured mRNAs are still difficult to work with
because they are prone to being destroyed. The environment is full of RNA-digesting
enzymes (there are some on your fingers, your keyboard, your mouse, and every other
exposed surface around you right now), so free RNA is quickly degraded. To prevent
the experimental samples from being lost, the RNA is reverse-transcribed back into
more stable single stranded DNA form. The products of this reaction are called
complementary DNA (cDNA) because their sequences are the complements of the
original mMRNA sequences.

DNA microarrays or DNA chips consist of large numbers of specific
oligonucleotide or cDNA sequences called probes, each corresponding to a different
gene, affixed to a solid surface at very precise locations. When an array chip is

hybridized to labeled cDNA derived from a particular tissue of interest, it yields



simultaneous measurements of the mRNA levels in the sample for each gene
represented on the chip.

The data often contain technical noises that can be introduced at a number of
different stages, such as production of the DNA array, preparation of samples,
hybridization between cDNA and array, signal analysis and extraction of the
hybridization results. Schena et al, (1995) reduced some of this noise by
simultaneously hybridizing both a test and reference sample to an array, each labeled
with a different color fluorescent dye. An overview to DNA microarray technology

with its application can be found in Schena (1999).



CHAPTER 3

SELECTIVE REVIEW OF LITERATURE

This chapter will review some of the statistical methods that have been used to

study human cancer using gene expression data.

3.1 Supervised Harvesting of Expression Trees

Hastie, Tibshirani, Botstein and Brown (2000) proposed a new method,
named tree harvesting, for supervised learning from gene expression data. The
technique starts with a hierarchical clustering of genes and then considers the average
expression profiles and their products (to capture interaction effects) from all of the
clusters in the resulting dendrogram as potential inputs into the prediction model.

Suppose we have gene expression data x;; for genes j=1,2,..., p and tissue
(cases)i=1,2,---,n, and a response measure y; for each case. The response can be
quantitative, for example survival time, or categorical, in which case v, is assumed to

take values in{1,2,--,J }.

Let C, =(1,2,---,p} denote a cluster of n, genes. The corresponding

average expression profile is given by:

s
8= .
n, jeCy

where x € R" is gene expression profile vector for gene j.

10



Starting with p genes, a given hierarchical clustering algorithm produces

2p—1 such clusters, including the individual genes themselves. To facilitate
construction of the interaction model, each X is translated to have a minimum value

0 over the cases:

x;=x; —min{ x,; :k=1,2,--,n}
Let f;, denote the average expression profile for cluster g using these translated
values.
For a categorical response, the most commonly used model, multiple logistic

regression has the form:

p(r=yix)

l LA L A
% r=J1x)

= B_w + ZB."-A"?A' + ZZBH;. f::'?p.-’ + o
¢

L8
The user can put an explicit limit on the order of the interaction allowed in the model.
In fact in the examples considered in the study, the products are allowed to be pair-
wise products.

The model is then developed in a forward stepwise manner as follows:

Initially the only term in the model M is the constant function 1. The candidate terms
C consists of all the 2p—1 average expression profiles E;. At each stage, all

products consisting of a term in M and a term in C will be considered and the term
that most improves the fit of the model in terms of a score statistic S will be included

in the model M . This will be continued until some maximum number of terms m has

been added to the model.

11



At stage 2 of the procedure, selection is biased towards larger clusters, as most

of the clusters considered in the harvest procedure are subsets of other clusters. Hence
. _* . - . . 13
if an average X, is found to most improve the fit of the model, it is likely that the

average expression profile of some larger cluster, perhaps containing the chosen

cluster, does nearly as well as f& If the score for cluster g is S, , the algorithm will

g’

choose the largest cluster g’ whose score S g’ is within a factor (1-a) of the best;
that is, satisfyingS,- >(1-a@)S, . The parameter o is set by the user. In the study,

they set o = 0.10.
As to the model size selection, 10-fold cross-validation was used in the

following manner:
e Having built a harvest model with some large number of terms m, carry out
backward deletion, at each stage dropping the term that causes the smallest
increase in the sum of squares. This is continued until the model contains only the

constant term. This gives a sequence of models with terms /,2,---,m.

e And then 10-fold cross validation is used to choose the best model size.

The tree harvesting procedure was illustrated in two real examples: survival
time of lymphoma patients and NCI60 human tumor data. A simulation study was

also carried out to assess how well the tree harvesting discovers “true” structure.

12



5.1 Comparison of Discriminant Methods for the

Classification of Tumors using Gene Expression Data

Dudoit et al. (2000) compared the performance of different discrimination
methods for classification of tumors based on gene expression data. These methods
include: Fisher linear discriminant analysis, maximum likelihood discriminant rules,
nearest neighbor classifier, and classification trees. The methods were applied to three
datasets: NCI60, lymphoma and leukemia datasets.

To reduce the dimensionality of the data, the authors performed a preliminary
selection of genes on the basis of the ratio of their between groups to within groups

sum of squares. For gene j , this ratio is:

2

BSS(j) _ L2 yi=yi(xy=x;)

WSS(j)  ZEZHy,=y)(x;=X; )

where X ; denotes the average expression level of gene j across all cases and X,
denotes the average expression level of gene j across cases belonging to class y.

The authors selected the d genes with the largest BSS/WSS : d =50 for the
lymphoma dataset, d =40 for the leukemia dataset, and d =30 for the NCI60 dataset.
The effect of increasing d to 200 or decreasing it to 10 was examined.

When the class conditional densities are known, the maximum likelihood
discriminant rule assigns an observation vector x to the class y maximizing f(xly) .
For a multivariate normal class conditional density, the rule assigns a new

observation vector x to aclass y minimizing

13



(x-p, ) ;' (x-p, ) +logIZ,| (3.1
where IZ lis the determinan t of z,
Two special cases of (3.1) were considered in the study. When each of the

class densities has diagonal covariance matrix X, = diag(c%l,- ,o%,,,) rule (3.1)

assigns x to class y minimizing

J=i G ’

¥

(3.2)
Moreover, when the class densities have a common diagonal covariance
matrix X=diag( cf.---,cf, ) . rule (3.1) assigns x to class y minimizing
2
p l(x;—pn.)°
j=1 O’;

The authors referred the rules (3.2) and (3.3) as a diagonal quadratic and linear

discriminant rules respectively.
For the corresponding sample ML discriminant rules, ., and X are estimated

from the learning set by f).= (It'yl,---.f).,,) andﬁy=diag(S_‘2.|,- ,S.‘z.p) respectively
as follows:

_ | n
Ty = v,
I(y,-=y)( xij_?\j)
2 _ =l
Sy = n. -1

For the constant covariance matrix case, the pooled estimate of the covariance
matrix was used.

14



The k-nearest neighborhood classifier was based on correlation between two
mRNA samples. That is, with gene expression data x;=(x;, -, X;p) and
xi» =(x;71,-+, X;7p) for two cases, the similarity measure was taken to be:

L. - -
' l(xij =X N x5 —X;)
}:

2(x;—X;) Z(xi'j_xi')
j:l j=l

To classify an observation x in the test set, the rule first finds the k-nearest
observations to x in the learning set, and then assigns x to the most frequent class.
The number k was chosen by cross validation.

Fisher linear discriminant analysis and classification trees were also included
in the comparison.

In the main comparison, for each learning set/test set run, the d genes with the
largest BSS/WSS were selected using the learning set. Then, the rules are developed
on the learning set using the selected d genes, and the error rate was estimated on the
test set. This entire procedure was repeated 150 times.

Dudoit et al. (2000) also considered recent machine learning approaches such
as bagging and boosting in the comparison. In the simplest form of bagging,
perturbed learning sets of the same size as the original learning set are formed by
sampling at random with replacement from the learning set. Predictors are then built
for each perturbed dataset and aggregated by plurality voting; that is, the estimated

class of x is the class having the plurality vote.

15



In boosting, the data are re-sampled adaptively using a weighted sampling
scheme. The weights are determined adaptively with more weights allocated to the
cases that are more often misclassified. The aggregation of predictors is performed by
weighted voting, with earlier samples given less weight.

Note that bagging is a special case of boosting, where the re-sampling
probabilities are uniform at each step and the perturbed predictors are given equal

weight in the voting.

3.3 Molecular Classification of Cancer

Golub et al. (1999) describes an approach to cancer classification based on
gene expression monitoring by DNA microarray, with application to data on human
acute leukemia.

Gene selection steps to reduce the dimensionality of the data are employed
prior to classification. Genes are chosen that display the best separation between

means for the two classes, as measured by the “correlation” p( j,c)

Wi Jj)—Ua(Jj) (3.4)

(Jj.c) =
Pt G\(j)+6.(])

where u,(j),0,(j) and u,(j).a,(j) are the mean and standard deviation for values
of gene j among the training samples of class I and 2 respectively.

Genes with largest value of ]p(g.c)| are selected. Given a set of d
informative genes and a test sample vector x= (x,---,x4), the vote of gene j is

given by:

16



v, = plj.c ) X _bj)
where

b = Wi Jj)+1a(J) ,and p( j,c) is given by (3.4).

! 2

A positive value of v; indicates a vote for class 1, while a negative value of

v; indicates a vote for class 2. Then the total vote V| for class | and the total vote

J
V, for class 2 are obtained as follows:

V| = Z max(O,vj) and V, =Z max(0, ‘Vj)
J J
The votes are summed to determine the winning class. The vote for the winning class
is V

win

=max(V,,V, ).
For each prediction made by the classifier, Golub et al. (1999) also defined a

prediction strength PS:

= Vwin —th
14

win + loss

PS ,where V, =min(V.V,)

This reflects the relative margin of victory of the votes. The sample was assigned to
the winning class if PS exceeded a predetermined threshold of .3 and was otherwise
considered uncertain.

This methodology, which is only applicable to datasets with two classes, was
shown to be a variant of diagonal linear discriminant analysis (Dudoit et al., 2000).
Note also that ¢,(j)+6,(j) is an unusual way of calculating the standard error of a
difference.

In addition to class prediction, the authors used self-organizing maps (SOM)

for class discovery, and the cancer groups revealed by this method were compared to
17



already known cancer types. This procedure automatically discovered the distinction
between acute lymphoblastic leukemia and acute myeloid leukemia without prior

knowledge of these classes.
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CHAPTER 4

DATA SETS AND PREPROCESSING

4.1 Data Sets

Generally, our datasets have gene expression data x; for genes (features)
j=1,2,---, p and cases (tissue sample) i=1,2,---,n. The cancer type for case i is
denoted by y;. The expression data x; might be from a cDNA microarray, in which

case it represents the log red-to-green ratios of a target sample (red) relative to a

reference sample (green). Alternatively x; might be the expression level from an

oligonucleotide array. Table 1 gives a summary of the data sets used in this paper.

4.1.1 NCI60 Data

We obtained this from http://genome-www stanford.edu/nci60 (Ross et al.,
2000). The data set comprises a set of 9,703 gene expression profiles among the 60
cell lines that are used by the Development Therapeutic program (DTP) of the
National Cancer Institute (NCI) to screen potential anticancer drugs. The NICI60 set
includes cell lines that are derived from cancers of colon, renal, ovarian, breast,
prostate, non-small-cell-lung-carcinoma (NSCLC), central nervous system (CNS),
leukemia and melanoma origins, as well as one unknown.

The expression level considered here is relative to the expression levels of a

suitably defined common reference sample. That is, each of the hybridizations
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compares Cy5-labeled cDNA reverse transcribed from mRNA of one of the test cells
with Cy3-labelled cDNA reverse transcribed from mRNA of the reference sample.
The reference sample was prepared by combining an equal mixture of mRNA from

12 of the cell lines.

Table 1: Data set summary

Dataset # of genes | Classes # of cases Type
NCI60 7661 Colon 7 Log red-to-green ratio
Renal 9
Ovarian 6
Breast 9
NSCLC 9
CNS 5
Leukemia 8
Melanoma 8
Total = 61
Lymphoma | 6475 DLBCL 59 Log red-to-green ratio
FLL 9
CLL 12
Total = 80
Leukemia 7129 ALL: B-cell | 38 Oligonucleotide
T-cell |9
AML 25
Total =72
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To assess the contribution of artefact sources of variation in the measured
expression patterns, breast and leukemia cell lines were each grown in three
independent cultures, and the entire process was carried out independently on mRNA
extracted from each culture.

Because of their small class sizes, we have excluded the two prostate cell lines
from the study, as well as the unknown cell line observation. Also genes with more

than two missing data points are excluded from the study.

4.1.2 Lymphoma Data

The data used in this study were obtained from Alizadeh et al., (2000):
http:/llmpp.nih.gov/lymphoma. To characterize gene expression patterns in the three
most prevalent adult lymphoid malignancies, Diffuse Large B-cell lymphoma
(DLBCL), follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL),
Alizadeh et al. (2000) designed a specialized microarray called the 'Lymphochip’
selecting genes that are preferentially expressed in lymphoid cells and genes with
known or suspected roles in processes important in immunology or cancer.

Fluorescent cDNA probes labeled with the Cy5 dye were prepared from each
experimental mRNA sample. A reference cDNA probe, labeled with Cy3 dye. was
prepared from a pool of mRNAs isolated from nine different lymphoma cell lines.
Each CyS5 labeled cDNA probe was combined with the Cy3 labeled reference probe
and the mixture was hybridized to the microarray.

Of the total measurements 6.81% had missing values due to insufficient

resolution or image corruption. After screening out genes with more than two missing
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data points and mRNA samples that are unreliable, the data were summarized into an

80 x 6475 matrix.

4.1.3 Leukemia Data

This data set was obtained from http://www-genome.wi.mit.edu/MPR/ (Golub

et al.,, 1999). It contains gene expression measurements corresponding to 47 acute
leukemia lymphoblastic leukemia (ALL; 38 B-cell and 9 T-cell) and 25 acute myeloid
leukemia (AML) samples from bone marrow and peripheral blood.

In the article they used a learning set of 38 mRNA (27 ALL and 11 AML)
bone marrow samples obtained from acute leukemia patients at the time of diagnosis
and a test set of 34 (20 ALL and 14 AML) mRNA samples obtained from bone
marrow and peripheral blood cells. The observations in the two data sets came from
different labs and were collected at different times.

In each chip, the mRNA prepared from the cells was hybridized to the high-
density oligonucleotide microarrays and then a quantitative expression level was
measured for each gene. Intensity values have been rescaled so that overall intensities
for each chip are equivalent. This rescaling was done by fitting a linear regression
model using the intensities of all genes in the first case (baseline) and each of the
other cases. The inverse of the "slope” of the linear regression line becomes the
(multiplicative) re-scaling factor for the current sample. This is done for every chip

(case) in the dataset except the baseline, which received a rescaling factor of one.
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4.2 Preprocessing

It is common practice to use the correlation between the gene expression
profiles of two mRNA samples to measure their similarity. Consequently, we
standardized observations to have mean zero and variance one across variables
(genes). Le., the observations in each of the n rows in the data matrix have mean zero
and variance one, so the correlation between two rows is proportional to the inner

product.

4.2.1 Missing Data Imputation

Some of the arrays in the NCI60 and lymphoma dataset contain a number of
genes with unreliable or missing data. Unfortunately, all of the statistical methods
considered here require a complete dataset.

All the genes with more than two missing data points are excluded from the
study. However we used the k-nearest neighbor imputation method, introduced by
Troyanskaya, Cantor, Sherlock, Brown, Hastie, Tibshirani, Botstein and Altman
(2001), to estimate the missing data points of genes with one or two missing data
points. This method selects k genes with expression profiles similar to the gene with
the missing data point based on some metric for gene similarity e.g., Pearson
correlation coefficient or Euclidian distance. If the genes are standardized to have a
zero mean and unit variance it can easily be shown that the Euclidian distance and

correlation are equivalent.
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For each gene with missing data points, the algorithm would first find the k-
nearest genes that have an expression profile for each of the missing entries. The
algorithm then uses the average of the corresponding entries of the k nearest genes to
estimate the missing value. The method is relatively insensitive to the choice of k

within the range of 10 to 20 neighbors. We used k = 10.

4.2.1 Dimension Reduction

The high dimensionality of the expression data presents a serious challenge to
statistical pattern recognition methods. The number of genes varies from 5,000 to
20,000, while the number of cases in each class varies from 5 to 60.

Given a large set of potential features (genes). dimension reduction can be
achieved in several ways. One approach is to identify variables that can be eliminated
from the classification problem. Thus, the task is to select d features out of the

available p measurements. Examples are forward and backward selection. With

large number of potential features however, such methods are likely to be ineffective.

A second approach is to find a transformation from the p dimensional space

to some lower-dimensional space. Thus, the aim is to replace the original variables by
a smaller set of derived variables. The transformation can be a linear or nonlinear
combination of the original variables, and may be supervised or unsupervised. In the
supervised case, the transformation makes use of the class label information.

Both of these approaches require the optimization of some criterion
function D . An example is the probability of misclassification. Obtaining a minimum

probability of misclassification is often the aim in classification problem.
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For feature selection, the optimization is over the set y, of all possible
subsets of size d of the p possible measurements x,,x,,:--.x,. Thus, we look for a
subset ¥ for which D(¥)= minD(y )

1S Xd

In feature extraction, the optimization is performed over a family of
transformations of the variables. The family is usually specified (for example a linear
transformation of the variables) and we seek the transformation A for which

A=argmin{ D(A):Ac A},
where A is the set of allowable transformations. The feature vector is then x* = Z( x)
To reduce the dimensionality of the datasets considered in this paper, we

applied the k-means clustering criterion to the genes. Let x; € R" represent the

expression profile vector for gene j, for j=1,2,---, p. The aim is to find the set of

centroids (cluster centers) §, .8, Cg (g < p) that minimizes

Agminl{"xj—g,"z,l=l,2."'.g} (4.1)
j=1

Then, §,,{,.--.§, will be used as features to develop the classifier.

This can be viewed as feature extraction. Define the transformation A as
follows:
Ag(x) :{xl9".9x’) }_){Cp'”’gg }
where the subscript in A is used to indicate that the transformation is defined for

fixed g and X represent the data matrix.
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Then our aim is to find the value of g that optimizes the criterion D. The
possible values of g are from 1 to p . Optimizing D over these values however is
highly computational. In this paper, we tried to select g over some arbitrarily
specified values.

T

Each x has been standardized in such a way that x j =0

n
and x,T- xj=1. Thus, minimizing (4.1) is equivalent to clustering of genes based on
their correlation; that is maximizing

§ max {x]TL, , 1=I,2,---,g}

j=l 1

assuming [¢,[* =1.

The optimization can be carried out by applying vector quantization (Gersho

and Gray 1992), a stochastic gradient algorithm that repeatedly samples x; and then

updates the nearest §; tox ;.

Hooper (1999, 2001) employed vector quantization to initialize reference
points for his reference point logistic (RPL) classification methods. We modified his

vector quantization subroutine to calculate cluster centroids for the genes.
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CHAPTER §

DISCUSSION OF STATISTICAL METHODS USED

The framework for the pattern recognition problem in its simplest form is as
follows: We know an item belongs to a set f1,2,---,4 } of the possible classes. We do
not know the particular class; however, we do have a measurement vector (features)
associated with the item. Let Y denote the unknown class and let X represent a

vector of p features measured. We assume we have a set of features for a number of

similar items with known class {(x,- .Y, ),i=l,2,---,n} (the training set) that we use

to design the classifier. We may distinguish three kinds of analysis:

e Discriminant Analysis: Estimate the conditional distribution of X given ¥ and
uses the result to describe the nature and extent of differences among classes.

e Regression: Estimate the conditional distribution of ¥ given X .

e Classification: Predict Y given X .
The three analyses are related, with regression often following from
discriminate analysis, and classification from regression. Given prior probabilities

p(y) and conditional densities f(x1y), one can find p(v!x) using Bayes’s

Theorem:
p(y)flxly)
(ylx) = ———
p(ylx) F(x)
where

J
f(x) = ;lp(y')f(xl.v’)
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Let loss function L(y’, y) be the loss incurred when class y’ is predicted and

y is in fact the true class. The optimal classification rule predicts the class y’

J
minimizing the conditional expected loss: Y L( v’y )p( y1x).

y=i

1 wheny'#y
Under simple misclassification loss: L( ¥’y )= another way
0 wheny'=y

to write the optimal rule is to assign x to class y’ that maximizes p(y’lx) or
equivalently that maximizes p( y’)f( x| v’ ). This follows from Bayes’ Theorem, and

since f( x ) is independent of the class.

5.1 Reference Point Logistic (RPL) Regression

Reference point logistic (RPL) regression, introduced by Hooper (2001), is a
generalization of logistic regression model that retains its simplicity when appropriate
but allows greater flexibility when needed. It is closely related to a method developed
by Hooper (1999) for constructing classification rules. Both are based on the same
parametric family of functions and the same optimization technique but differ in
choice of loss function and interpretation of the inferential methods. Le., RPL
regression produces an estimate of p(ylx), which can be used to define a
classification rule. RPL classification (Hooper 1999) produces only a classification

rule.

An RPL regression model expresses p(ylx) in terms of proximity between

xand the reference points for each class. Given the total number of reference points
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K and the number K, of reference points assigned to class y, the vectors§, e R,
scalars ¥, e R, and a positive scale parametert , for k=1,2,---, K, parameterize the

model.

Define the class assignment function as: cls(k)=y if ¥ K, <k< ¥ K,

m<y msy

and call§, a reference point for cls(k).
First define the RPL basis function w, ( x )as a normalized exponential function

of squared distance between the observed feature vector X and the reference points in

the feature space:

9

exp( 7, — 7 [|x-&, || (5.1)
Texp( 7, =t lx=8§, ||

w,(x) =

Then, the RPL model assumes
K
piyix)=Yl{cls(tk)=y}w(x).
k=l

Some algebraic manipulation of (5.1) gives

exp (a, +ﬂ[x)
YSexp (a, + ,B,,T,x)

w,(x) =

?)

&m

where o = Y -t " & "2 = (Y -1~

B, = 2t (&, —Ex )

Note that &, =0 and B, = 0. This parameterization shows that w, (.) are functions

used in multiple logistic models. Moreover, the RPL regression model is equivalent to

a logistic regression model if one reference point is assigned to each class.
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In the parameterization (5.1), the scale parameter T and one pair (¥,.&,) are
redundant; for example setting t=1, &, =0 and y, =0, one can obtain arbitrary
values of a, and B, for allk # K . When fitting the RPL model, redundant

parameters are not removed because an over-parameterized model facilitates selection
of initial parameters when maximizing the likelihood. The goal is to obtain a good

estimator for p(vlx). To achieve this goal, it is not necessary that parameter be
identifiable or interpretable.

Given K and{K,y=l,--.J}, the goal is to find parameter estimates that
minimize the risk EP[— logp(Y | X)), where Pis the joint distribution of (X,Y). To

this end we attempt to minimize a training risk E,-,[— log p(Y | X)}, where E; is the

expected value when sampling from an estimate P of the joint distribution of (X,Y) .
An estimate P is based on a training set{(x,-,y,. ),i=1,2,---,n}. In the simplest

case, P assigns probability 1/n to each case in the training set. In Hooper (1999,

2001) a more general class of estimators P, that allows flexible choice of prior

probabilities and the option of smoothing to obtain a density estimate of f(x!y), are
used. The author defined P in terms of how the pairs (X,Y) can be sampled
from P . Let p(y) be an estimate of the prior probability of class y. If the training set
is a simple random sample, then p(v) is usually the sample proportion,n, /n in

class y . In some applications, p(y) may be estimated using additional information or

may be specified arbitrarily.
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Let U be a random variable taking values in (l,2,---,n}such that
(i) Pr{y, =j}=p(j) and (ii) the conditional distribution of U given y,=j is
uniform on{i:y; = j}. Let Zbe a p-dimensional vector of independent standard
normal random variables, with Z and U independent. The estimate Pis defined as
the distribution of (x; +AZ,y,), where A 2 0. In our work, we set A = 0. This
“smoothing” or “jittering” on the x - vectors is usually not helpful when the
conditional log likelihood criterion is employed.

The training algorithm is as follows. Minimization begins by specifying initial
parameter values. The algorithm uses the k-means clustering criterion to choose
initial reference points&); that is, for class j, it finds a set of K j points E) to
minimize

S min{ “ X; —é(‘) ”2 cels(e)=j).

(i:¥i=j]

is the average distance between

nn

Sety, =0. Sett=c,s,,, where ¢ = 1.00 and s

T%nn*

nearest neighbors among the K initial reference points 3
After specifying the initial parameter values, the training risk is minimized by

stochastic approximation where minimization is carried out over {y,.§,} with
Tfixed. In each of the iterations, the algorithm samples an observation

(x, ¥)=(x, + AZ, v, ) from P and updates the parameter estimates.
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Differentiation of log p(y | x) with respect to ¥, and &, gives the following
updating formulae at the mth iteration:

Ve € Vi *‘alhk(x-)’)

& < & +a,§ h(x,y)(x=§,)
where

I{cls(tk)=vy)}

-1|w,
p(ylx) ]w‘(x)

h(xy )=[

The number of reference points per class K, and the smoothing parameter

Acan be selected empirically using cross-validated risk estimates. When applying
RPL to the microarray data, we found that choosing a single reference point per class
and setting A =0 gave a better performance.

The RPL regression model possesses two invariance properties. First, RPL
regression is invariant under affine transformation, provided the non-smoothed

training risk; that isA =0, is used and one is able to minimize this training risk. The

usefulness of this result is limited in the following sense. The effectiveness of
stochastic approximation in minimizing the training risk depends to some extent on
the initial reference points. However their selection is not equivariant under affine
transformation of the feature vector. Consequently, a judicious transformation of the
feature can improve estimation of the RPL model.

The second invariance property concerns specification of prior probabilities.

Given a conditional density model f(xly), let p*(ylx) and p“(y!x)denote the
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conditional probability models determined by priors p (v) and p°(v) respectively.

Assuming all priors are positive, the two conditional models are related as follows:

P (vix)p(y)/p'(y)

J . », . .« .

Zp'(jlx)p (i) p'(i)
J=

pylx)= (5.2)

If p'(_le) is an RPL model with y,:, then p“(vlx) is also an RPL model with

vt =y: +log{p”(v)/p (3} fory=cls(k). The other parameters &, and Tare the

same in both models. This invariance property suggests a re-weighting strategy when

estimating an RPL model. Suppose p“(y) represent realistic prior probabilities. One
can assign arbitrary prior probabilities p(y)= p (y), apply the RPL training

algorithm to estimate p (v |x) and then apply (5.2) to estimate p”(y 1 x) .

The re-weighting strategy is helpful when priors are highly unbalanced. Small
priors can create instability during training, with parameter estimates diverging and
conditional probability associated with these small priors being underestimated. In
this situation it is useful to use more balanced priors when fitting the RPL model, and
then adjust the estimates obtained using (5.2). This strategy is used in lymphoma data
set. Equal prior probabilities are assigned when fitting the RPL model and we applied

the reweighing strategy using the empirical priors.
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5.4 Classifiers Based on the Normal Distribution

This section will discuss the two most widely used classifiers based on the
normal distribution: Linear Discriminant Analysis and Quadratic Discriminant

Analysis.

5.2.1 Linear Discriminant Analysis (LDA)

LDA assumes f(x | y) is a multivariate normal, with the mean vector u,

depending on the class yand the covariance matrix being the same for all classes;

that is

lid 1
>

f(xly)=(21) 2121 2 expf -%( x-p, ) = (x—p,))
The Bayes rule assigns x to class y that maximizes f(x|y)p(y), or
equivalently log{ f(x1v) p(¥)} o 2log p(y) - (x—u_‘,)r x| (x—p,). Note that
(x—n _\.)T z“(x—u_‘.) is the square of Mahalanobis distance from x to the mean of
class j . Since the quadratic term x"Z'x is common to all the classes the rule can be

written as: assign x to class y that maximizes 2logp(y)+ 2u7\tz"' x- u(z"u v

If we further assume the classes have equal priors then xis classified as
coming from the nearest class, in the sense of having the smallest Mahalanobis

distance to its mean. If in addition X is proportional to the identity matrix then

distance is Euclidean distance.
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The parameters p, and X are estimated from the training set by the sample

mean vectors and pooled covariance matrix, respectively as follows:

h, =—3XIl{y=y/x
n). i=I

. In, .

$ =328
y=t n .

where

’ 1 » . "
£, = — Xl yi=yNx~fi, ) (x,~, )

ll‘, =1
Often the bias corrected estimator of £, with divisor n —11is preferred. This makes

no difference to the linear rule unless the prior probabilities differ, in which case the
effect is to change the constant terms to reduce slightly the influence of the data term
relative to the prior (Ripley, 1996 p. 36). If the training set is a simple random
sample, then p(y) is usually estimated by the sample proportion n, /n inclass y. In
some applications, p(y) may be estimated using additional information or may be

specified arbitrarily.
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5.4 Quadratic Discriminant Analysis

If we assume f(x | v) to have a multivariate normal distribution with both the
mean vector and covariance matrix depending on the class y, the optimal rule assigns

x tothe class y maximizing:

2og p(y) ~ loglZ, 1 = (x—-p, )" 5 (x-n ) (5.3)

This is referred as the quadratic discriminant rule.

The number of estimated parameters has increased from JP+ for

p(p+1)
2

JP(p+1)

LDA toJP + for QDA.

LDA is quite robust to departures from the equal covariance assumptions
(O’Neil, 1992), and may give better performance than the quadratic rule for normally
distributed classes when X is unknown and the sample sizes are small. However, it is
better to use the quadratic rule if the sample size is sufficient. Lachenbruch et al.
(1973) investigated the robustness of the linear and quadratic rules to certain types of
non-normality. LDA can be greatly affected by non-normality and, if possible,

variables should be transformed to approximate normality before applying the rule.
Problems will occur in the quadratic rule classifier if any of 2_\. is singular.
There are several alternatives commonly employed. One is simply to use a diagonal

covariance matrices; that isf‘.v = diag(éf.,,of.z,---,cf.,,). Under this assumption the

quadratic rule (5.3) assigns x to class y that maximizes
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(x'_‘\v')z ]
2logp(y) - f {—_IT,:J— +log0';y}.

J=l ¥
The corresponding linear rule under the assumption 3= diag(c,z,---.of,) is to assign
X toclass y that maximizes

2logp(y) - ﬁ(_i'ii
- 3

! J

Another approach is to project the data to a space in which z jis non-singular,

for example using a principal components analysis, and then to use the Gaussian

classifier in the reduced dimension space.

5.3 K-Nearest Neighbors

Here the class conditional density f(x|y) is estimated by a k-nearest
neighbor method as follows. Suppose we have a training sample of size nof which
n, observations are from class y and the hypersphere around x containing k nearest
observations has volume V(x) and contains k ,k,,---,k; observations of class

12,---,J respectively. Then the k-nearest neighbor estimate of f(xy) is

fixty)= (5.4)

n,V(x)

One thing to note about this density estimate is that it is not in fact a density. The

integral under the curve is not one.
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In k-nearest neighbor rules prior probabilities are estimated by sample

proportionsn, /n. Then using this estimated prior and the density estimate in (5.4)

leads immediately to the k-nearest neighbor rule: assign x to class y that maximizes

- k n. ’
f(x1y)p(y) = —2— —L  orequivalently assign x toclass yif k, 2k . forall y".
n, V(x) n ’ :

The k-nearest neighbor of a given observation vector x from among the
training sets involves choice of a suitable metric. In some data sets, where the
measurements are measured on different scales, some standardization is required.

The above rule assumes p(y) is estimated byn, /n ; however it could be the

case that our sample did not estimate priors correctly. The number of neighbor k is

often chosen by cross validation.

5.4 Error Rate Estimation

The performance of a classifier is most often evaluated by its probability of
misclassification (pmc). This probability can be estimated by the apparent error rate:
the proportion of errors made when classifying training or a test data. If the training
set is used the pmc will usually be biased downward because the data have been used
twice, both to develop the rule and to evaluate its performance.

One way of avoiding this bias is to use a test set independent of the training
set. A proportion of the data set is selected at random (usually about 10-30%) and
used as test data. We train the classifier on the remaining data and then the error rate

is estimated on the test data. The error rates are unbiased but can be highly variable.

38



One way of decreasing this variability is to repeatedly divide the data into test and
training sets a large number of times and average of the error rates. Having to use a
test set is often regarded as waste of data, which could otherwise have been used for
training, but with large data sets this is not a major problem.

A method that is most suitable for intermediate sample sizes is cross-
validation. We first divide the data randomly into v groups so that their sizes are as
nearly equal as possible. Each time, one of the v subsets is used as the test set and the
other v-—1 subsets are put together to form a training set. Then the average error
across all v trials is computed. Every data point gets to be in a test set exactly once,
and gets to be in a training set v—1 times.

In our investigation we used repeated 3-fold cross-validation, a combination
of 3-fold cross validation and the repeated learning-testing method; that is, we
repeated the method of 3-fold cross validation B times. On the bth repetition we
randomly split the data in 3 groups and get its cross-validated error rate pric, as
described above. Finally we calculated the mean and median of these B estimates.
We also obtained the standard deviation and range of these estimates.

We can also estimate the error rate conditioning for each class, just by

counting within each class. These conditional error estimates pritc, can be combined

with prior probabilities p(j) to obtain an alternative estimate:

J
priic=Y p(y)pmc(y)

y=1
This estimator is also unbiased, assuming the prior probabilities are known or

estimated in the usual unbiased way, but it is undefined if n =0 for any class.
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5.4 Study Design

We first arbitrarily select a set of g =10,20,30,40,50,100,150,and 200 gene
centroid vectors using the vector quantization algorithm discussed in Section 4.2.2.

Let pmc(g)denote the v-fold cross-validated error rate obtained by using g
centroid vectors as a feature to develop the classifier. Then, for each classifier, we
select g that minimizes pric(g), i.e.

g  =arg min pric(g)

Then, for this selected g the following procedure was repeated 150 times: at the bth
iteration the data was randomly divided into three groups. We train the models (RPL,
LDA, QDA and k-nn) three times, each time leaving out one of the subsets from the
training, but using the omitted subset to compute the error rate. Denote the average of
these three estimates by pmic,. For a more effective comparison, the same
partitioning of data was used for all classification methods.

This procedure was carried out for all three of the data sets described in
Section 4.1.

In RPL regression, we used one reference point for class, and we set A to be

zero.
The number of neighbor k in k-nn is chosen by 3-fold cross-validation. This is
done for a number of ks and the k for which the error rate is smallest is retained for

later use.
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Note that k-nn rule uses an empirical prior probability in an implicit way.
Thus, to make our comparison more effective, we adopted the empirical prior

probabilities for the other classifiers.
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CHAPTER 6

DISCUSSION OF RESULTS

The number of centroid vectors g to be used in the final classifier is selected
by cross validation. Figures 3, 4, 6 and 7 displays the plot of cross-validated risk

versus g for each of the classifiers considered here. In the k-nearest neighbor
classifier, to choose the g, we used k=1.

RPL Regression: Setting g =50 for lymphoma data, g=40 for leukemia
two classes problem, and g = 20 for leukemia three classes problem seems to give a
better performance. See Figure 3. For the NCI60 data set g =100 seems to give a
slightly lower error rate. The summary error rates for these values of g are listed in

Table 2.

Table 2: Cross-validated error rate summary for RPL regression, B=150. We used

one reference point per class andA=0.

Data Set 8 Mean Median Standard Range
Deviation
Lymphoma 50 | 0.0855 | 0.0822 0.0305 0.1448
Leukemia: Two class 40 | 0.0460 | 0.0417 0.0224 0.1111
Three class 20 | 0.1187 | O.1111 0.0342 0.1944
NCI60 100 | 0.3082 | 0.3090 0.0515 0.2693
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Figure 3: RPL regression. Plot of cross-validated error rate for different values of g.
The top left is for NCI60 data set, and the top right is for lymphoma data set. The
bottom left displays leukemia data with three classes, and the bottom right is for

leukemia data with two classes.

K-nearest Neighbor: Table 3 lists the selected g for each data set together
with its summary error rate for B=150 runs. For all the data sets, g=30 seems to
give a lower error rates (see Figure 4). The parameter k of the nearest neighbor
classifier is selected by cross validation and is usually one. This suggests very good
predictors can be obtained from the class of the case most highly correlated to the
case to be predicted. Figure 5 displays the average error rate (over 20 runs) of each

data set for different values of k.
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Figure 4: k-nearest neighbor rule. Plot of cross-validated error rate for different

values of g. The top left is for NCI60 data set, and the top right is for lymphoma data

set. The bottom left displays leukemia data with three classes, and the bottom right is

for leukemia data with two classes.

Table 3: Cross-validated error rate summary for k-nn rule, B=150. We used k = | for

all the data sets.

Data Set 8 Mean Median Standard Range
Deviation

Lymphoma 30 0.1476 0.1493 0.0303 0.1501

Leukemia: Two class | 39 0.1195 0.1111 0.0244 0.1111

Three class | 39 0.1897 0.1944 0.0308 0.1389

NCI60 30 0.4090 0.4087 0.0409 0.2151
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Figure 5: Cross-validated error rate of k-nearest neighbor for different values of k
using g=30 for all data sets. The top left is for NCI60 data set, and the top right is
for lymphoma data set. The bottom left displays leukemia data with three classes, and

the bottom right is for leukemia data with two classes.

Quadratic Discriminant Analysis: The performance of DQDA seems
insensitive to the choice of g. Setting g = 10 for the NCI60 data set and g = 30 for the
other data sets gives a slightly smaller error rate as compared to other values. See
Figure 6. The mean and median misclassification rates together with its standard
deviation for these selected values of g are reported in Table 4. The performance of
DQDA is worst in the NCI60 data set. This is probably due to the small number of

observations in each class.
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left is for NCI60 data set, and the top right is for lymphoma data set. The bottom left
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with two classes.

60

80

cross validated nsk
00 0.1 02 03 04 05

cross vahidated rsk

00 o0

.
—e———e—

20

100

03 0.4

0.2

20

Table 4: Cross-validated error rate summary for DQDA, B = 150.

100

Data Set 8 Mean Median Standard Range
Deviation

Lymphoma 30 | 0.2249 0.2246 0.0234 0.2094

Leukemia: Two class 30 | 0.1306 0.1250 0.0249 0.1111

Three class 30 | 0.2235 0.2222 0.0322 0.1806

NCI60 10 | 0.6140 0.6095 0.0508 0.3103
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Linear Discriminant Analysis: DLDA, which assumes a common diagonal
covariance matrix, gives a better performance when g = 50 for the NCI60 data set,
and when g = 30 for leukemia (both three classes and two classes problem) and
lymphoma data set. See Figure 7. The summary misclassification rates together with
its standard deviation for these selected values of g are listed in Table 5. With the
exception of lymphoma data set, DLDA give lower misclassification rate than
DQDA, which allow different diagonal covariance matrices. The performance of
DLDA is specially striking for the NCI60 data set, where it performed better with

pmc of approximately 36.25% (next to RPL regression with pmc = 30.82%) than

KNN (with pmc = 40.90%) and DQDA (with pmc = 61.40%).

*—o

: T

cross validaled error rale
02 03 04 0s
.\
-\
8
02 03 04 0s
[J
L)
L]

cross validated er1or rate

[]
0

20 40 60 80 1C0 20 40 60 80 100

030

03
i\l

020

010

cross vahdaled error rate
01 a2
+

ctoss vahdated errof rale

oo
o0

20 40 80 80 100 20 4 80 80 100

Figure 7: DLDA. Plot of cross-validated error rate for different values of g. The top
left is for NCI60 data set, and the top right is for lymphoma data set. The bottom left
displays leukemia data with three classes, and the bottom right is for leukemia data

with two classes.
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Table 5: Cross-validated error rate summary for DLDA, B = 150.

Data Set g Mean Median Standard Range
Deviation

Lymphoma 30 0.3287 0.3240 0.0429 0.2118

Leukemia: Two class 30 0.1155 0.1111 0.0283 0.1389

Three class 30 0.1839 0.1806 0.0306 0.1806

NCI60 50 0.3625 0.3611 0.0513 0.2786

To compare classifiers, we displayed the box plots of misclassification rates
for each data set in Figures 8, 9, 10, and 11. RPL has a remarkably significant lower
misclassification rate, for all the data sets, as compared to other classifiers. With the
exception of lymphoma data set, the performance of k-nearest neighbor rule and
DLDA, which assumes a common diagonal covariance matrix, has almost the same
misclassification rates. DQDA, which allows different diagonal covariance matrices,
have the highest misclassification rate for the leukemia and NCI60 data set.

However, for the lymphoma data set, its performance is better than DLDA.
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Figure 8: Box plots of 3-fold cross-validated misclassification rates for lymphoma

data. We set g = 30 in DLDA, DQDA and k-nn. For RPL regression we set g = 50,

B=150.
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Figure 9: Box plots of 3-fold cross-validated misclassification rates for NCI60 data,

B=150.
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Figure 10: Box plots of 3-fold cross-validated misclassification rate for leukemia

data, two classes, B = 150.
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For the lymphoma and leukemia data set, linear discriminant analysis with the
unrestricted common covariance matrix has been included in the comparison. We
could not run the “Ida” procedure on the NCI60 data set. This is probably due small
sample size. We must have n — J 2> P for the pooled covariance matrix to be
nonsingular.

For the lymphoma data set, it has impressively lower error rate as compared
to the diagonal LDA, which ignores the correlations between genes. However, using
the correlation between genes does not help that much to improve the performance in
the leukemia two classes data set. The performance of LDA is slightly worse than
DLDA in the leukemia data with three classes. Figure 12 displays the box plot
misclassification rates of LDA and DLDA.

Dudoit et al. (2000) included DLDA, DQDA and k-nn in their comparison.
The ranking of these classifiers in their paper is the almost the same as in ours.
However, their reported error rates are lower than ours. This is probably due to the
dimension reduction method employed. The authors selected p genes with the largest
BSS/WSS ratios. This appears to select genes that provide better discrimination

between classes.
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Figure 12: Box plot of misclassification error rates of LDA and DLDA. The top left
is for lymphoma data set and the top right is for leukemia two classes data set. The

bottom is for leukemia three classes problem.
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CHAPTER7

CONCLUSION

We have compared the performance of four different classifiers. With the
exception of NCI60 data, the error rates seemed fairly low given the limited amount
of data. The performance of classifiers on the NCI60 data set was much worse than
on the other two data sets. This is probably due to the small class sizes. The ranking
of classifiers, except in the lymphoma data where DQDA had a better performance
than DLDA, were the same across data sets. RPL is the best, followed by k-nn and
DLDA.

In Dudoit et al. (2000), DLDA was the best classifier for NCI60 data (with
median error rate of = 37%) and for leukemia data with two classes (with median
error rate of = 0%). For the lymphoma data and leukemia data with three classes, k-
nearest neighbor rule performed better with median error rate of = 0% for lymphoma
data and = 5%.

The approximate median error rates of RPL for the lymphoma, leukemia two
classes, leukemia three classes, and NCI60 data sets are 8.22%, 4.17%, 11.11%, and
30.90% respectively. These error rates are higher than that of Dudoit et al. (2000).
This is probably due to the dimension reduction technique we employed. RPL had out
performed both DLDA and k-nearest neighbor rule that are developed using our

dimension reduction technique.
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Dudoit et al. (2000) estimated misclassification rates for the different
classifiers based on repeated random divisions of each data set into a learning set and
a test set comprising respectively two third and one third of the data (2:1 sampling
scheme). The reason for using a 2:1 sampling scheme, rather than the standard 9:1
scheme, is the later scheme would result in a very small test sets and more difficult
comparison among classifiers.

In this thesis, misclassification rates were estimated based on repeated 3-fold
cross validation. Repeated 3-fold cross validation estimates are preferable than the
repeated 2:1 learning testing estimates because the former has a smaller variance
(Burman, 1989).

A very important issue that remains to be addressed is the choice of the
number of centroids in the dimension reduction. We selected the g (from 10, 20, 30,
40, 50, 100 and 200) that minimized the misclassification rate, i.e. g was selected to
match the classifier. Different starting values of g’s may produce a different choice

-

of g
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Appendix: Splus Code

library (section = MASS) # for function max.col()

library(section = class) # for function k-nn
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# Diagonal LDA: assumes the class densities all have common

# diagonal covariance matrix. The off-diagonal

# elements of the covariance matrix are set to

# zero.

# Pre

# ====

# Pi: prior probabilities provided by the user.

# train.data: training data. The first column of the matrix

# contains the class labels.

# test.data: test data.

# J: number of classes in training data.

# p: number of features.

# Post

# Z====

# Computes the mean vector and the diagonal covariance matrix
# from the training data and returns the predicted class for
# each case in the test data to the caller.

P USSP P SRR
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DLDA <- function(pi, train.data, test.data, J, p)

{

mu <- matrix(0, nrow = J, ncol = p) # for the mean vectors
sigma <- matrix(0, nrow = p, ncol=p) # for the cov matrix

sigma.inv <- matrix(0, nrow = p, ncol=p)

n <- dim(train.data)[1l]}
nt <- dim(test.data)[1l]
class <- train.datal,1l]

xxX <- train.datal(,-1]

# Finds mean vectors for each class if the class is

# represented in the training data.

for (y in 1:3J)(
ind <- which(class == y)
# Class y is not represented in the training data
if (length(ind) == 0){
muly,] <- rep("NA", p)
}
else(
muly.,] <- apply(xx(ind,], 2, mean)
}

} # END of for

# finds the diag covariance matrix
tmp <-var (xx)
diag(sigma) <- diag(tmp)

sigma.inv <- solve(sigma)
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# Finds the linear discriminant function for
# each case in test.data. This will later be
# used for predicting the class label of

# cases in the test set. If the class are not
# represented in the training set, it will be

# excluded from the prediction.

dlda.fun <- matrix(0, nrow = nt, ncol = J)
for (i in 1l:nt){
x <- test.datali,]
for (y in 1:J)(
if ( muly,1] == "NA")({
dlda.fun(i, y] <- -99999999999
}
else(
dlda.fun[i,y] <- 2*log(pily].exp(l))-
((x-muly,])%*%sigma.invs*% (t(x-mu(y,])))
}
} # END of y

} # End of i

# Predict the class
pred.class <- max.col(dlda.fun)

pred.class

}# END of DLDA



# Diagonal QDA: assumes the class densities all have different

# diagonal covariance matrix. The off-diagonal
# are set to zero.

# Pre:

# ====

# Pi: prior probabilities provided by the user

# train.data: training data

# test.data: test data

# J: number of classes in training data

# p: number of features

# Post

# =====

# Computes the mean vector and the diag covariance

# matrix from the train data and predict the class for
# each case in the test set.

B oo m e e e e

DQDA <- function(pi, train.data, test.data, J, Pp)
{

mu <- matrix{(0, nrow = J, ncol = p)

sigma <- array(0, dim=c(J, p., p))

sigma.inv <- array(0, dim=c(J, p, p))

n <- dim(train.data) [1}]
nt <- dim(test.data) [1]
class <- train.datal,1]

xx <- train.datal(,-1]
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# Compute the mean vectors and covarianfor each class

# if the class is represented in the training data.

for (y in 1:J3){
ind <- which(class == y)
if (length(ind) == 0){

mu({y,] <- rep("NA",p)

}

else(
muly,)] <- apply(xx(ind,], 2, mean)
temp <- var(xx[ind,])
diag(sigmaly..]) <- diag(temp)
sigma.inv(y,,] <- solve(sigma(y.,.])

}

# Finds the discriminant function for each x

# in test.data

DQDA. fun <- matrix(0, nrow = nt, ncol = J)
for (icase in 1l:nt){
X <- test.datalicase,]
for (y in 1:J){
if ( mu{y,1] == "NA")({

DODA. funl[icase,y] <- -999999999999
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}

else{
DODA. fun{icase,y] <- (2*log(pil(yl].exp(l)}) -
((x-mu(y,])%*%¥sigma.inv(y,, ]$*%t(x-muly,]))
}
} # END of y

} # END of icase

pred.class <- max.col (DQDA. fun)

pred.class

# END OF DQDA

reptd.cv <- function(J, ncv, datafile, B, pi, cvindex, proc)

#

#

#

reptd.cv : repeatedly trains “proc" B times on the data
" datafile". Estimates the misclassification
rates for each run using ncv-fold cross
validation.
cvindex: an B by n matrix. It holds indexes to randomly
partition the data.
J: Number of classes.

pi: Vector of prior probabilities.

pmc <- rep(0,B) # holds pmc for DLDA

n <- dim(datafile) [1] # number of cases

p <- {(dim(datafile)(2])) -1 # number of features

k <- round(n/ncv) # size of cv Partitioning
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for (b in 1:B)(

indx <- cvindex([b, ]

pmcv <- rep(0,ncv) # holds pmc for each cv

for (icv in l:ncv){

if ( iev !'= ncv) (
testindx <- indx(({icv-1)*k+l):(icv*k)]
trnindx <- indx([-(({icv-1)*k+1l):(icv*k))]

}

else ({
testindx <- indx([((icv-1)*k+1l) : n]
trnindx <- indx(-(((icv-1)*k+l): n)]

}

Ytest <- datafile(testindx, 1]

ny.test <- tabulate(Ytest,J) Number of cases/class

in the test set

testset <- datafile[testindx, -1] exclude the class label

* R I*

from the testset

trainset <- datafile(trnindx, ]
Ytrain <- datafile(trnindx, 1]
ny.train <- tabulate(Ytrain, J)

pi <- ny.train/sum(ny.train)

pred.class <- proc(pi,trainset,testset,J,p)

# confusion matrix: row = true, col = predicted
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confus <- matrix(0, ncol=J, nrow=J)
temp<- table(Ytest, pred.class )
ny.pred <- tabulate(pred.class, J)
indl <- which{(ny.test != 0)

ind2 <- which(ny.pred != Q)
confus([indl, ind2] <- temp

# Estimation of pmc

pcc <- sum(diag(confus))/sum(ny.test)

pmcv([icv]} <- 1 - pcc

} # cv loop

# Average pmcv

pmc[b] <- mean(pmcv)

} # END OF B
pmc

} # END OF reptd.cv

Then, for example run DLDA 150 times on lymphoma data set, we can
run:
cvindex <- t{samp.permute(80,150})

pmc.DLDA <- reptd.cv(3, 3, lymphoma, 150, cvindex, DLDA)
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