Canadian Privacy Legislation
some supporting forms
may have been removed from
this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
y loss of content from the d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

issertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alb

Using Interaction Traces

By

Mohammad El-Ramly

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

Department of Computing Science

Edmonton, Alberta

Fall 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

National Library Bibliotheque nationale
* of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

| Lol]

Canada

Your file Votre référence
ISBN: 0-612-87965-8
Our file Notre référence
ISBN: 0-612-87965-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Library Release Form

Name of Author: Mohammad Mahmoud Fawzi El-Ramly

Title of Thesis: Reverse Engineering Legacy User Interfaces Using Interaction Traces
Degree: Doctor of Philosophy

Year This Degree Granted: 2003

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form

whatever without the author’s prior written permission.

VPSR 5
Date: .. 0. o ol G445

.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Reverse Engineering
Legacy User Interfaces Using Interaction Traces submitted by Mohammad

Fl-Ramly in partial fulfillment of the requirements for the degree of Doctor of

Philosophy.

R

S

Eleni Stroulia, Associate Professor
Supefvisor)

(Supegiisor)

5&‘ ? T e
Paul Sorenson, Prof€ssor
(Co-supervisor)

S

Witold Pedrycz, Professor

Osmar R. Zaiane, Assistant Professor

Gail Murphy, Associate P%ofésgor
(External Examiner)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To the most precious ones
who gave me life and their
unconditionzl, unlimited love

and support,
Parents,

To my sunshine, my only
sunshine, who makes me
happy, To my precious
sweetheard,

My Wife Aisha,

To the little one who can
make me smile even during
the hardest times,

My Son Mahmoud,

To my brother, friend
and supporter,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Legacy system user-interface reengineering is an increasingly popular area in
research and practice. Many legacy user-interfaces get reengineered to reproduce them in
modern graphical user-interfaces, integrate them with other systems’ front-ends, or most
important, open them for Web-access. Often, it is desired to reengineer the user-interface
without changing the legacy system code because the system performance is satisfactory
and/or due to the prohibitive cost or risk. In such cases, lightweight non-invasive

reengineering methods are needed.

This thesis presents a novel method for reverse engineering legacy character-based
user-interfaces using traces of interaction between the legacy system and its users, as the
only input. This "interaction reverse engineering” method produces a behavioral model of
the legacy user-interface and discovers important usage scenarios of the legacy system
services, represented by the frequent patterns of interaction with its user-interface. Then,
a complementary forward engineering method uses the model and patterns to build a new
task-centered front-end.

Our method consists of three steps and is implemented in a prototype tool called the
Legacy Naifigation Domain Identifier (LeNDI). First, the system-user dialog is recorded
in the form of interaction traces using a specially instrumented emulator. These traces
capture the screen snapshots forwarded to the user terminal and the user keyboard actions
in return. Second, LeNDI builds a behavioral state-transition mode! for the legacy user-
interface, whose states represent the legacy user-interface screens and whose transitions
represent the permissible user actions on each screen. To build the model, LeNDI extracts

a vector of features for every snapshot, clusters similar snapshots together, and finally

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

induces a classifier that can classify new snapshots to one of the existing clusters. Third, |
LeNDI uses one of its two novel interaction pattern mining algorithms, IPM and IPM2Z, to
ﬁliﬂe the interaction traces for patterns of user activity. Associated with these steps, is a
process of user feedback and revision to verify the results.

Our interaction reverse engineering method is code-independent and utilizes a novel
easy-to-collect input, the interaction traces. Currently, it can reverse engineer block-mode
data transfer protocols, e.g., IBM 3270. It is lightweight in terms of the time, cost and
skills required. It supersedes the current manual labor-intensive time-consuming
industrial practices. Several case studies were conducting to reverse engineer the user

interaction with a number of real legacy systems, with very encouraging results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thanks are due to many people who, over the course of this study, provided me with
enormous help and encouragement. This acknowledgment is but a small appreciation for

their priceless support.

The guidance and vision of Professor Eleni Stroulia, my main supervisor, were
instrumental in achieving the goals of this work. I thank her for her enthusiastic support,
the unique mentoring environment she provided and the invaluable discussions we had. I
also thank Professor Paul Sorenson, my co-supervisor, for his help and advice. His ideas,

comments and advice are greatiy appreciated.

The CelLEST project team at University of Alberta provided an exceptionally
cooperative and friendly environment. In particular, thanks are due to Roland Penner for
his great help in implementing the prototype tool, LeNDI, and Paul Iglinski for his work
on top-down clustering and decision tree classifier induction algorithms. Thanks are due
to Bruce Matichuk from Celcorp for the many fruitful discussions we had in the course of
CelLEST project. I like to thank the summer students Brice Riemenschneider and Warren

Blanchet for their help in implementing LeNDIL.

I would like to acknowledge the generous support of NSERC and Celcorp to this
research via an NSERC Industrial Postgraduate Scholarship 216077-98. I would like to
thank Celcorp for giving me the opportunity to work on their site for a few months at the
early stages of CelLEST project, for the resources they have allocated to me and for the
wonderful support of their staff. That period of time was vital in familiarizing me with
the state of the art user interface reengineering technology and for the progress of this

research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter One: Introduction...............cocoooiiiiininnnici e 1

13 Backgrommdooooviiiiiiiiii e e eae e s i
o2 MIGEEVAIONE ..ottt ce e escese e e e e e s e e s s ce s seeaaseeon s nensnsaennenans 3
1.3 The CelLIEST Profect... ..o oottt et eene e testcenaessasennesroecscsanis 5
1.3.1 Two CelLEST Reengineering SCENarios ..c.ciiveeioennienieiniiiieenieicessecsreensescsaeens 6
1.3.1.1 Migrating a Students Information System (SIS} to the WWW ... 6
1.3.1.2 Integrating the Front-ends of Two Insurance Systems..........ocoocveviiiiieeiinnnen. 7
1.3.2 The CelLEST PrOCESS c..ueieiiccrieieiireeceeeeettreecatoteeesssetesaeneeresesnrssseteesssenaseesssensesnsesss 7
1.3.2.1 CelLEST Character-based User Interface Reverse Engineering......coccccoeeens 8
1.3.2.2 CelLEST Character-based User Interface Forward Engineering and
VISUAHIZATION ottt creceecireeneeecccnr e s s te o ne e sescessare s et renn e saneeesaeanesanene 9
1.3.3 Advantages of the CelLEST Processcocuuvmiiviiriiniinicniiicirccensteneeie e 10
1.4 Thesis SEAtEMIEIIL.....c.oeiiieieeie e e cteer e ccrreereeereet e e e aaeassnenesbeconesaneaaneeanes 11
1.5 Thesis ContribDutIonNSscocooieieiiiicieereriecenee oot erenceneecnesisecstasssaennsenencs 11
1.6 Thesis Organmization ...t 12
Chapter Two: Related Work............cococimiininninnn 14
2.1 User Interface Reengineering and Reverse Engineering............ccc.ococevvvnnennnns 15
2.2 Web-enabling L.egacy SYSIemSot 18-
2.2.1 Web-enabling via Data ACCESS c.co.eiviineeiciiiiiiiiccciicireet et 19
2.2.2 Web-enabling via LOZIC ACCESS «uiveericeiiiciiitiitieciccnie et 20
2.2.3 Web-enabling via Presentation ACCESScocviviicriuinirinieniiiiiccnnec e 22
2.2.3.1 Web Emulation (Webulation).........coeveeeiernirnieereineeieneeeeccecesnsnesrenenaes 23
2.2.3.2 Screen Scraping (Refacing) ..o 24
2.2.3.3 Screen Mapping (Remodeling).....c...cccceeviiieiioiiniiiiiiiciniieiesieerseneeenaens 26
2.3.4 Pros and Cons of Web-enabling via Presentation ACCESS...cc...ceivercernvcvivnireiininns 28
2.3.5 Objectifying Legacy Systems via Presentation ACCESS ...coovieieiiieiciiscenneriennienne 30
2.3 Software Requirements and Process Model Recovery ... 31
2.4 Sequential Data MININE ..o 33
Chapter Three: CelLEST User Interface Reengineering....................... 36
3.1 Interaction Traces ColleCtioncovvvviiveiinniiiinicciiiiiiiiec e e ens 39
3.2 T1: Legacy Interface Behavior Modeling.cccocooviiiiiiiiininee 39
3.2.1 T1.1: Feature EXITAciON ..cooiirvoiiiiiiicicenecimniieeccciecenitiissiicceecenessana e s sre e e e e 40
3.2.2 T1.2: Snapshot CIUSIEIINE ..cccoviveriviniiiiiiiieciecce s e 41
3.2.3 T1.3: Classifier INAUCTION ..eeoveiereeeecieeeeceiecee ettt nne e anes 42
324 T1.4: Transition Modeling ... 42
3.3 T2 and T3: Frequent User Task Discovery and Modeling.................cooeins 43
3.3.0 T2 TaSK DIBCOVETY .uriieeeieeeeeiticeerare s eeeenteeesaae e te s creeeceerasateeseeeeestaaaeananaresansans 43
3.3.2 T3: Task MOodeling...oovieeeeecei ettt e ae e st 44
3.4 T4: Generating Abstract GUI Specifications.................ci 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 T5 Buntime GUIL GemeTallom oo oo et eeeeetieseaeraraesesesasaneneasessanas 46

3.5.1 T5.1: The XHTML INErPreter. ..o oottt cene e s aese s 46
3.5.27T5.2: The WML INEIPIELEr oottt 47
Chapter Four: Feature Extraction For Legacy Screen Snapshots......... 48
4.1 Types of Legacy SEreemscoooiieiiiiiiiiiiiite e 50
4.2 Presentation Space Featiires.........c.ivoviiiiiiiii ettt 52
4.2.1 Analysis of Presentation Space Periphery ..., 53
4.2.2 Five Presentation SPace FEatlres.....cocociriiiiiirreeiiieiiieiecreciie et ceereesenae s e e eees 58
4.2.2.1 Feature 1-1: Eight Areas Encoging.......cccocccevviiniiiniiiiiioniioncnicencnieccneene 58
4.2.2.2 Feature 1-2: The Start Columns of Titles and Codescccevvivcceiiivncenccenn. 58
4.72.2.3 Features 1-3 and 1-4: Titles, Codes and/or Selected Text Areas.......coeveeee. 59
4,2.2.4 Feature 5-1: Cursor Label ..ot 59
4.2.3 Presentation Space Features Bxamples ... 59
4.3 IBM 3270 Data Stream Featlilesccoc.covvieniiiicecrceececccecr e e scesrneseeeens 64
4.3.1 Feature 2-1: Hashing of the Number and Locations of IBM 3270 Fields 64
4.3.2 Feature 2-2: The Number of IBM 3270 Unprotected Fieldscccoeeiviciiinnen. 64
4.4 Presentation Space Layout Featurescocoviviiiiicnnnicinccnicceninennens 65
4.4.7 Projection Profiles.......ociiiiiiiiiniecireiee e 65
4.4.1.1 All Characters Binary Vertical Profile ..c.coooiviiiiiiiieeceecee 66
4.4.1.2 All Characters Binary Horizontal Profilecccoooiiviiiiiiniiiiiiicciiniine 67
4.4.1.3 Numbers Binary Vertical Profile ... 68
4.4.1.4 Words Horizontal Profile........cooiiiiiioiiiiiicie e 68
4.4.1.5 Special Characters Binary Profile..........cccoovmiiiiceee 68
4.4.1.6 Features 6-1 and 6-2: All Characters Binary Vertical and Horizontal
| 10 £} (= OO O PR USUU O OPOOIUSURT VORI URRRRR 70
4.4.1.7 Features 6-3: Numbers Binary Vertical Profile.......cccocvvvniiiniinniicninnnn 71
4.4.1.8 Features 6-4: Words Horizontal Profile...........cc. oo 72
4.4.1.9 Features 6-5: Special Characters Binary Profile......ccccoiiiiiiiniiiiniininnnnn. 72
4.4.1.10 Projection Profiles Example ... 72
4.4.2 Layout ClassifiCationcooviccrenrinoinieiiinerens e cescsss s evsemss e s enaens s s 76
4.4.2.1 Table Detection: An OVETVIEW .c.oieeiirivriiiieiercetecceereeesnceeserenonesrecosesnsans 77
4.4.2.2 Table Detection: Process and Algorithmsc.ccoiivevninniinniivvininnniicienn 80
4.4.2.3 1St DEIECHOM tierveeeirrcereeraeatieesereenierrseesaeeacreee e see e st eeeseeeneesiaesenaeessnresssass 89
4.4.2.4 Feature 7-1 and Feature 7-2: Layout Classification and Specifications.......... 92
4.4.2.5 Table and List Detection EXamples......ccoviiniiinicnniiiiiiicccreene
4.5 Summary of LeNDI’s Discrete Feature Sef..........coccviiiininivinininnccicnncciinnnna,
4.6 LeNDI’s Binary Feattire Sel ...ttt ceesiesecsensne s
4.7 LeNDI’s Feature Extractor and Feature VIeWercccceveinivnvcncecencnnnnnn
4.8 Discussion and ConcliSIons. ...t

Chapter Five: Legacy User Interface Behavior M

B T ar Ol 0T oo e ees e oo ees e esaaaaaaseetn e eeee st s ean o e n et e eaastanrn e anssanaeerernnnans
5.1 T BRAMIPIS 1ot e
5.1.2 Problem Formulation ang Delinilions oo eeee e eee e eeeeneeeseneanaressanns

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.3 LeNDI’s Approach to Legacy CUI Modeling.....ccoovvvvivvieniee 109

5.2 Clustering Legacy Screen Snapshetsin LeNDI. ... 112
5.2.1 Clustering Method 1: Single-path Incremental Clustering of Legacy
SNAPSNOLS oot et e eae 112
5.2.2 Clustering Method 2: Top-down Clustering of Legacy Snapshots.................... 116
5.2.3 Clustering Result Visualization and User FeedbacK..........ccoovvniiiiinnnnn, 121
5.2.4 A Metric for Measuring Clustering Quality.....ooccoviiiiiiianoniinincereccinnns i22
5.2.4.1 MOJO PIus MEITIC. oo oiiieeeteeicrereie et cctenire et censneeneee s rasmece s seteseemmnsons 123
5.2.4.2 A MO0J0 PIus BXAMPIE ..cvovereireieeeeeecreieeeenceceaeneiennse e eeneessosansenanssasssncaes 124
5.3 Screen Classifier INAUCtion ..ot cea e e 124
5.3.1 Classifier Induction Method 1: Screen Predicate (Cluster Signature)
LOF:1 [11 F:15 14 11 U S SO SRS U SRRSO SDU ORISR 125
5.3.2 Classifier Induction Method 2: Decision Tree Extension via Supervised
LRAIMNE 1eceineenriene ettt sce et sae et cos e sme s s e sae s mtecan o bonesene bt ancasenssans 128
5.4 Transition Modeling...........cooviiiiiiinniiiciiiieccrcirc e ens s 132
5.4.1 A General Model for TTansitionsccceeeivereciiriroonierecrctiireesiescsemecosssessasenesns 134
5.4.2 Transition Modeling EXamples.......cccvivviiiciiiiiiiiiiinincccecinccncsnenns 135
LSRR DA 11T:17 11 + OO OO OO 138
5.5.1 Experiment 5.1 - LOCIS SyStem ..cvieeiirinmiinnieiiinciciiceenc vt 138
5.5.1.1 Modeling Using Single-Path Incremental Clustering and Signature-based
CIasSIICAION .ottt et cne s sre e r e ena s e e s en e s sanen 138
5.5.1.2 Modeling Using Top-Down Clustering and Decision Tree Classification... 140
5.5.1.3 Comparative Evaluationcccvimiiiiiiniinniiieieiie e 142
5.5.1.4 Transition MOdEnEcoveeiiiciiiiiencecece ittt caennreseane 142
5.5.2 Experiment 5.2 - HOLLIS SyStem.....ccocoiviiiiinmineiicini e 142
5.5.3 Comments on Experiments 5.1 and 5.2 ... 143
5.5.4 Experiment 5.3 - MIRLYN SYStem ...ccooovviiimiiiiiieiicccccsenaene 145
5.5.4.1 Snapshot CIISIETINE ...c.cooviciiviiiiieiecccr it 145
5.5.4.2 Classifier IndUCHiON.ccotivciveiiiiitertciciiiiict et csveeras e e 148
5.5.4.3 Transition MOAEHNEovcerieeiiiieiicicicii ettt sevossceas e e e 152
5.6 DESCUSSIOTEcceeeientieeerieeicecetarcecteenteesatssneesates e cesassne s nesaresstsense s s ssanesasssaesnsnnsaennes 155
5.6.1 SIENZINS. eereiereeereeiertente ettt recers st eta e eness e a st sanes s cr s b e s s saea s s e s nans 155
5.6.1.1 A Coherent Automated CUI Behavior Modeling Process......cc.ccceveenvienncns 155
5.6. 1.2 L0W SKIIS..oiiiiriieeieeieceere ettt et st e eas s s s 157
5.6.1.3 Comprehensibility of the Results ... 157
5.6.1.4 Flexibility and Extensibilitycoccvviiiviniiiinimiiiniiicciccccnccieneen e 157
5.6.2 LAIMTALIONIS te.teeeeieeeiiceceiieetreneeucesttecenertacessesc e st cosssssaneasessessanssontosassnsonsesnssannsens 158
5.6.2.1 Model Completeness and Classifier ACCUTaCy....cccocevcviiiniinicceennncrinnninns 158
5.6.2.2 User Feedback Is NECESSAIY ..cooueeiveieveiiiciieicereetcrtcceee s eetssaceseasessaennasnes 159
5.6.3 Future EnhanCementS ..o iviienieciieciieireeie s seearcsnncssssssensonsassesssanes 159
5.6.3.1 Feature Selection for CIUSIETING . oovcereeiieiiciiiec et cerecenreceescecsne e 159
5.6.3.2 Enhancing Clustering and Classifier Induction............... et 160
5.6.3.3 Enhancing Action Modeling.........oocoviriiiiiiiniiiniiiicnncree e 161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Six: Mining Interaction Traces for Patterns of Frequent

User Tasks ..ottt 162

6.1 An Example Interaction Pattern..................ie. 165
6.2 Problem Formulationttt 169
6.3 Preprocessing Interaction Traces ... i71
6.4 IPM: Breadth-first Discovery of Approximate Interaction Patterns................ 172
6.4.1 IPM Phase 1: Producing The Initial Candidate Pattern Setccocooeeviciinnnn. 173
6.4.2 TPM Phase 2: Generating Longer Candidate Patterns from Shorter Ones.......... 174
6.4.3 An IPM Application EXample ...t 176
6.5 IPM2: Depth-first Discovery of Approximate Interaction Patterns................... 178
6.5.1 IPM2 Phase 1: Producing the Initial Candidate Pattern Set.......coovevvvvnriennccenne 179
6.5.2 IPM?2 Phase 2: Generating Longer Candidate Patterns from Shorter Ones........ 180
6.5.3 An IPM2 Application EXample ... e 182
6.6 Understanding The Extracted Patternsccocoeevrvvoininenennnniinieccenene 184
6.7 EEVAIUALIOM ..c..ooveeeeeeeeeiceeniee ettt e ste b c st e soe e saeetost st e tae e eeeanec e 184
6.7.1 A Case Study of Interaction Pattern Mining in the Traces of LOCIS 185
6.7.1.1 The FIrst RUN ..o.oooieeieeiiee ettt scee e e st e mcee et saneeeneacns 185
6.7.1.2 The Second RUNooiiiiiiiic ettt e eeecennes 187
6.7.1.3 The Third and Fourth RUNScooiiiiiceeeciee et 188
6.7.1.4 The Final ResUIS ...ooiiiiiieiierirccecre et e ene e e emasnaeeseceene e 189

6.7.2 A Comparison between IPM and IPMZ.........ccccoooviiiviiniiciinicicicciienas 190
6.7.2.1 Legacy System Trace Generator (LSTG)....oociiiiiiiiciniiiiccne, 190
6.7.2.2 Bxperiment Details ... 191

6.8 IDASCUSSIOM........eeiieeiieeteiietre ettt s e s st e e e et cne s s e st ant e ben et somsncnaesensennne 197
Chapter Seven: Summary, Conclusions And Future Work 200
T SBIMIIIALY ..eoviiieiiecereteceecre et aesteceeeat et eeseseeenssre e sceenie e asnesaesseeeneninesasssecanssarsins 200
7.1.1 Trace RECOTAIME ccveeeririeierieeicie ettt ettt e s se e sa e seneon 201
7.1.2 Behavior MOAEHNG ...ccuvieeeieeececeiricireieiiiiee et seasosa e aesessaeenn 202
7.1.3 Usage Pattern Miming......coovoiviiiiiiiniiiiinicie e 204
7.2 ContriDULIOMSoeveeeeiieieeic e st e e st e se sttt anecessonenses 204
7.2.1 Engineering a Feature Suite for Characterizing CUI screen Snapshots.............. 205
7.2.2 An Intelligent Method for Modeling the Behavior of Legacy CUIs................... 205
7.2.3 Two Novel Sequential Pattern Mining Algorithms ... 206
7.2.4 A Prototype Tool, LENDI ..o 206
7.2.5 The Strengths of Interaction Reverse Engineeringcocovviviivncnvinniniiciicnneens 206
TIFUIUEE WOTK ..ot ceren s e ras s sae e ne e 208
7.3.1 Other Applications of CelLEST Legacy CUI Reverse Engineering Method208
7.3.2 Reverse Reengineering Different Types of Interactionc.occevvvicinciinneea, 209
REFEICIICES .oiovveeieeeeiiieitiecteeetesceeesaeeste s e e eneessmeeeeeesereennessnsanessnssaesnnnes 212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1
4.2
4.3
4.4
5.1
5.2

5.3
5.4
5.5
5.6
5.7

5.8
5.9

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

ist of es
The Default Keyword and Pattern Lists of LeNDL

LeNDI’s Default Special Characters Set.

A Summary of the Discrete Feature Suite of LeNDIL

A Summary of the Binary Feature Suite of LeNDI.

The Reference Partition Cardinality of the Data Set of Experiment 5.1.

The Features Used for Setting up The Single-path Incremental Clustering
Algorithm for LOCIS Experiment 5.1.

The Results of Experiment 5.1.

The Results of Top-down Clustering of The LOCIS Trace of Experiment 5.1.
The Authoritative Partition of the Data Set Used in Experiment 5.2.

The Results of Experiment 5.2.

The Features Used for Setting up The Single-path Incremental Clustering
Algorithm for MIRLYN Experiment 5.3.

Screen Descriptions and Cardinality for MIRLYN Experiment 5.3.

Some of The Transition Models Built by LeNDI for The MIRLYN Trace of
Experiment 5.3.

The Matrix ptList after IPM Phase 1 (Algorithm 6.1a) for The Example of
Subsection 6.5.3.

The Matrix ptList after Iteration 1 of IPM Phase 2 (Algorithm 6.1b) for IPM
Application Example of Subsection 6.5.3

The Matrix ptList after Iteration 2 of IPM Phase 2 (Algorithm 6.1b) for IPM
Application Example of Subsection 6.5.3.

All The Maximal Qualified Patterns in S for IPM Application Example of
Subsection 6.4.3

ptListVec after IPM2 Initial Phase (Algorithm 6.2a) for [IPM2 Application
Example of Subsection 6.5.3.

All The Maximal Qualified Patterns in § for IPM2 Application Example of
Subsection 6.5.3.

LOCIS Screen Descriptions and Frequencies for The Interaction Pattern Mining
Case Study of Subsection 6.7.1.

The Qualified Maximal Patterns Discovered Using ¢ (6,9,0,7) for The Interaction
Pattern mining Case Study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.9 The Qualified Maximal Patterns Discovered Using ¢ (6,8,0,7) That Are Not in
Table 6.8 for The Interaction Pattern mining Case Study.

6.18 The Qualified Maximal Patterns Discovered Using ¢ (7,10,1,7) for The
Interaction Pattern mining Case Study.

6.11 The Qualified Maximal Patterns Discovered Using ¢ (7,12,2,7) for The
Interaction Pattern mining Case Study. :

6.12 The Accumulative Transition Matrix of LOCIS Traces of The Case Study of
Subsection 6.7.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1

3.1
4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

4.11
4.12
4.13
4.14
4.15
4.16

4.17
4.18

Ast ¢

An Example Legacy Screen (upper), Refaced On-the-fly (middle) and Refaced
Using Screen Customization (lower).

CelLLEST User Interface Reengineering Process.

Different Types of Legacy Screens Ordered from The Most Static (upper) to The
Most Dynamic (lower).

An Example Legacy Screen Snapshot (1) with Features 1-1, 1-2, 1-3, 1-4 and 5-1
Extracted.

An Example Legacy Screen Snapshot (2) with Features 1-1, 1-2, 1-3, 1-4 and 5-1
Extracted.

An Example Legacy Screen Snapshot (3) with Features 1-1, 1-2, 1-3, 14 and 5-1
Extracted.

An Example Legacy Screen Snapshot (4) with Features 1-1, 1-2, 1-3, 1-4 and 5-1
Extracted.

An Example Legacy Screen Snapshot (5) with Features 1-1, 1-2, 1-3, 1-4 and 5-1
Extracted.

An Example Legacy Screen Snapshot (6) with Features 1-1, 1-2, 1-3, 1-4 and 5-1
Extracted.

An Example Legacy Screen Snapshot (7) (upper). The Patterns Imposed on The
Snapshot by 7’ and °.’ Characters (lower).

An Example Legacy Screen Snapshot (8) (upper). The Patterns Imposed on The
Snapshot by 7’ and *.” Characters {lower).

‘An Example Legacy Screen Snapshot (9) with Features 6-1, 6-2, 6-3, 6-4 and 6-5

Extracted.

The Identified Words on a Part of a Legacy Screen Snapshot.
Portions of The Identified Blocks on a Legacy Screen Snapshot.
A Single- Row Record Table.

A Multiple-Row Record Table.

Embedded Thin Blocks

Two Cases where Step 4.g in Algorithm 4.6¢ Is Skipped (Left) and Applied
{(Right). Gray Words Have 1 or No Adjacent Words from below and above.

An Example Application of Algorithms 4.6b and 4.6c¢.
An Example Application of Algorithm 4.6d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.19

-4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
51

5.2

53
54
5.5

5.6
5.7
5.8
5.9

5.10
5.11
5.12
6.1

6.2

6.3
6.4

6.5

An Example Legacy Screen Snapshot (10), Its Vertical Projection and Profile of
Its Numerical Content and The Detected List Information Strip {(Gray).

An Example Legacy Screen Snapshot (11) with Features 7-1 and 7-2 Extracted.
An Example Legacy Screen Snapshot (12) with Features 7-1 and 7-2 Extracted.
An Example Legacy Screen Snapshot (13) with Features 7-1 and 7-2 Extracted.
An Example Legacy Screen Snapshot (14) with Features 7-1 and 7-2 Extracted.
An Example Legacy Screen Snapshot (15) with Features 7-1 and 7-2 Extracted.
An Example Legacy Screen Snapshot (16) with Features 7-1 and 7-2 Extracted.
LeNDT’s Feature Extractor User Interface.

LeNDI’s Feature Viewer User Interface:

An Example Trace of User Interaction with the Library of Congress Information
System (LOCIS) and the Corresponding State-Transition Model.

An Example Decision Tree Produced by the Top-down Unsupervised Clustering
Algorithm 5.2.

QandA Cluster Review User Interface.
QandA Snapshots View User Interface.

A Mojo Plus Example with a Derived Partition (left), a Reference Partition
(middle) and The MoJo Plus Steps to Transform The First to The Second.

A Grammar for Describing Transitions in Legacy Systems CUIs.
An Example (1) of Transition Modeling in a Command-driven System.
An Example (2) of Transition Modeling in a Command-driven System.

The MoJoPlus Operations Needed to Fix the Clustering of The LOCIS Trace
Using Top-down Clustering, in Experiment 5.1.

The Signature and Some Snapshots of Cluster 4 of Experiment 5.3.
The Signature and Some Snapshots of Cluster 5 of Experiment 5.3.
The Signature and Some Snapshots of Cluster 6 of Experiment 5.3.

An Example Trace of User Interaction with the Library of Congress Information
System (LOCIS) with Multiple Executions of the Same Task.

Similar Navigation Subsequences of The LLOCIS Trace of Figure 6.1(a) and The
Corresponding Interaction Pattern Augmented with Action Locations.

Preprocessing Interaction Traces.

The Application of IPM?2 Phase 2 (Algorithm 6.2b) for IPM2 Application
Example of Subsection 6.5.3.

A Diagrammatic Representation of The Pattern 47-5-6"-7"-8"-[9%]-10,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6
6.7
6.8

6.9

Corresponding to The Information Retrieval Task of Figure 1.a.

A Comparison of Memory and Time Requirements of IPM and IPM2 in The
Experiment of Subsection 6.7.2 with ¢; = (6, 0.5%, 0, 0).

A Comparison of Memory and Time Requirements of IPM and IPM2 in The
Experiment of Subsection 6.7.2 with ¢; = (7, 0.5%, 1, 0).

A Comparison of Memory and Time Requirements of IPM and IPM2 in The
Experiment of Subsection 6.7.2 with c3 = (7, 0.5%, 2, 0).

A Use Case Model Representing The Interaction Pattern of Figure 6.2(b).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“By the time you will finish your thesis, the systems, tools and/or prototypes that you have
developed will be legacy systemms and you will need to reverse engineer them in order to
understand, migrate and/or reengineer them.”

Anonymous

1.1 Background

Over years of development and investment, business software systems, such as bank
finance systems, customer relationship management (CRM) systems and airline
reservation systems, grew in size and value. They contain the specifications for diverse
business policies and corporate decisions and constitute some of the most important
industrial assets for many companies [LBS94]. Corporations have invested substantially »
in developing these mainframe-based systems. They have almost spent as much to
develop integrated reliable database systems. In the recent past, they invested even more
money in making their systems Y2K and Euro compliant. [Sne00]

Many such systems were developed using the technology of the 1970s to mid-1980s.
They have been modified many times by different programmers. As a result, they have
become very complex and difficult to understand, maintain, renovate and/or reengineer
[LBS94]. Such systems are referred to in the literature as “legacy systems”. The Free
Online Dictionary of Computing [FOLD96] defines a legacy system as:

Definition 1.1

“A computer system or application program which continues to be used because of the
prohibitive cost of replacing or redesigning it and despite its poor competitiveness and
compatibility with modern equivalents. The iniplication is that the system is large,

monolithic and difficult to modify.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This definition includes hardware and software systems and is neither restricted to
mainframe-based systems nor to a specific programming language or platform. Gold
[Gold98] expands the definition of a legacy system to include not just the hardware and
software but also the environment, the people, the procedures, etc., surrounding the
system. He states:

Definition 1.2

“A legacy system is a socio-technical system containing legacy software”

This is because when a critical software system ages, not only understanding and
modifying the system becomes hard, but also changing and modifying the surrounding
environment, especially the people, becomes hard too. Bergey et al. [BSTWW99]
consider resistance to change and the growth of a cuiture dependent on maintaining the
status quo plus inadequate training programs as the third reason for failure of
reengineering projects. This thesis adopts the first definition, but it is only concerned with
software systems not hardware.

In return for the effort and investment spent, mainframe-based legacy systems have
demonstrated robustness, reliability and scalability in providing business-critical
processing needs. This is especially true where the application concerned involves huge
numbers of transactions and many simultaneous users, as is the case with banking or
airline reservation systems. Most important, however, is that many of the business
processes of companies are encapsulated in the logic of legacy applications; they are, in
effect, the repositories of hard-won corporate experience and knowledge, that may not be
available in other formats [Att00]. Considering this, legacy systems will remain the
Information Technology (IT) backbone for many corporations, for many years to come.

However, due to their age, many legacy systems suffer from some or all of the
following aging disadvantages [Par94]:

1. Performance and functionality degradation.

2. Lack of coding standards, proper documentation and version control.

3. Incremental and patch updates to the code and design that often violate the original
software design concepts. These “ignorant surgeries”, as Pamas [Par94] calis them,

result in degradation of the maintainability and comprehensibility of the software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Pollution [Vis01], which is the accumulation of duplicate and dead code (that is either
never compiled or never executed), useless components {e.g., reports that no user

needs anymore), and dead data.

i

A general lack of understanding of the internal workings of the system and how its

functions relate to its modules and data.

6. Significant resistance to modification and evolution, not only due to technical
difficulties but also due to socio-political factors.

7. Character-based user interfaces (CUIs), which are not competitive with the superior
alternatives offered by today’s technology.

8. Great difficulty in integrating with other systems and the World-Wide-Web (WWW).

Because of these symptoms, many organizations are migrating, renovating or
reengineering their legacy systems to achieve one or more of the following objectives:

1. Migrating the whole application to a newer, faster, and non-proprietary platform.

2. Enhancing system comprehensibility and maintainability, i.e., putting it under control.

3. Adding new substantial or minor functionality.

4. Integrating the legacy application with other applications, on legacy or new.
platforms.

5. Migrating the application user interface (UI) to a new platform.

6. Enabling access to the system through the WWW.

Depending on the goal of the reengineering effort and the current status of the legacy
system, reengineering activities can vary widely. They range from rebuilding the system
and using the legacy system as an input for the analysis and design phase, to wrapping
the legacy system to fit it in a new computing environment, e.g., graphical user interfaces

(GUIs), CORBA, client/server architectures, or the WWW,

1.2 Motivation

When the objective of a legacy system reengineering effort is migrating its Ul to a
new platform, enabling access to the system through the Web (Web-enabling) or
lightweight front-end integration with other systems, then the reengineering effort can
focus on enhancing the UI of the legacy system or developing a new UL This is
especially applicable, when the prime aging symptoms of the legacy systems are the last

two of the eight mentioned above, or in other words, the legacy system is under control

('8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and exhibits satisfactory performance but its main weakness is its poor Ul and its

inability to be integrated with other systems. This occurs due to the legacy Ul falling

short in three areas: user access, usability and navigation at different levels [BBO1]:

1. User Access. Most legacy systems are proprietary monolithic systems that were not
designed with integration with the WWW or other technologies in mind. Usually they
do not have clear separation between their presentation, logic and data layers, which
makes opening a legacy system for access via a new platform or for front-end
integration with other systems a hard task. The presentation layer refers to the source
code that controls the Ul The logic layer refers to the application code that provides
the main functionality. The data layer refers to the container of the application data
and the code used to access it.

2. Usability. The old-looking “dumb” terminals, e.g., IBM 3270 and VT series, were
quite adequate for their time in spite of being quite limited in their display
capabilities. Legacy character-based Uls are non-intuitive and hard to learn. Their Uls
dissatisfy today’s users, who are used to graphical user interfaces and Web interfaces.
Additionally, the learning curve of new users is slow and the training costs are high.

3. Navigation. Due to their limited presentation capabilities, legacy character-based Uls
offer tedious navigation patterns to accomplish user tasks. For example, flipping a
multi-page report may require using function keys or issuing some commands (o
move forward and backward between the many screens containing the report. Instead,
in a GUI environment, a scroll bar enables instant access to any page of the report
with a mouse click.

So, in many cases it is unnecessary, hard, expensive, risky andfor impossible to
change the code of a legacy system and design, yet, it is desired to reengineer its UL The
goal of this reengineering is to open the system to the Web, Wireless Access Protocol
(WAP) or other platforms, to integrate its front-end with those of other systems and/or to
slightly extend its functionality. For these cases, there is a need for lightweight non-
invasive Ul reengineering methods. These methods need to be lightweight in the sense
that they are cost-effective, semi-automated and relatively easy to deploy because they

require moderate skills and low technology. And they are non-invasive in the sense that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

they almost do not need alteration of the legacy system. Indusiry has offered some |
primitive labor-intensive solutions to this problem.

The CelLEST project for Ul reengineering [SES02Z, SEIS03] is a collaborative project
between the Software Engineering Research Lab. at University of Alberta and an
industrial pﬁrmer; Celcorp [Cel]. The goal of CelLEST was to develop an intelligent
semi-automated lightweight non-invasive method and prototype tools for legacy system
CUI reengineering, Web-enabling and front-end integration. The method developed in
this project takes as input recorded traces of interaction between the legacy system and its
users through the legacy CUI (interaction traces) and does not require modifications to
the legacy code. We call this approach to Ul reengineering “interaction reengineering” as
opposed to “code reengineering’. The CelLEST interaction-reengineering method
consists of two phases: a reverse engineering phase and a forward engineering phase. The
focus of this thesis is the reverse engineering phase. It describes the novel legacy CUI
reverse engineering method developed, during and after the CelLEST project. Since this
method takes interaction traces as its omly input, in effect, it adopts an “interaction

reverse engineering” approach as opposed to “code reverse engineering”.
1.3 The CelLEST Project

To achieve its goal of developing an intelligent semi-automated lightweight non-
invasive method for CUI reengineering, CelLEST employs a mixture of document
analysis, clustering, example-based modeling of user actions, visualization, data mining,
task model inference, XML wrapping and automated GUI layout. The outcome is a novel
CUI reengineering method that utilizes interaction traces and does not change the legacy
system code or structure. The CelLEST method, resulting from the project, supersedes
the current manual, labor intensive practices of legacy character-based UI modeling and
reengineering, which need intensive human input, intuition and experience.

When invasive solutions are unnecessary, undesirable, too hard, impossible, risky
and/or cost-ineffective and code and architecture modification is not mandatory for front-
end reengineering of a legacy system, the CelLEST method is a very suitable solution.
Since it is important to understand CelLLEST method to understand the context of this
thesis, the method is introduced briefly in this section and is described in more detail in

chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3.1 Two CelLEST
To fully understand and appreciate the motivation behind the CellLEST Ul

engineering Scenarios

reengineering project, this subsection describes two typical legacy system CUI
reengineering scenarios that are most suitable for the application of CelLEST method.
These scenarios faithfully represent real cases encountered by practitioners

1.3.1.1 Migrating a Students Information System (SIS) to the WWW

In this scenario, an educational institute developed its student information system
(S1S) in the mid-1980s. SIS was written in COBOL and NATURAL (a 4GL) running on
the institute’s IBM Mainframe platform. SIS included modules like course catalog,
schedule of classes, admissions, student biographic data, registration, and academic
history. SIS interacts with the Account Receivable Information System, which handles
student payments. It also interfaces with a phone registration system. The primary users
of SIS are the employees of the Registrar’s Office and the students who can only access
the registration module using the phone registration system. Additionally, SIS provides
system-wide managerial and student information on student enrollment and activity to the
administrators to assist them in planning and decision-making on an institution-wide
basis. The status quo of the sysiem was quite satisfactory for the management. Its
performance, reliability and scalability to high workload at peak times of the year were
very good. Additionally, the employees were well trained on the existing character-based
UL System maintainers were familiar with its design and code.

In the late 1990s, the institute wanted to use the Internet to allow students access to
student services directly rather than having to go through administrators. Therefore,
students could have self-service access to information on enrollment, timetables, grades,
and various financial accounts via the WWW. This would free the institute’s
administrative staff from repetitive and routine tasks and significantly reduce
administrative costs.

A Ul reengineering solution was needed to open the system to Intemet access and to
provide an easier alternative to the current character-based Ul, which is not easy to use
for the general student population. Only tasks relevant to students would be opened to the
students. Management ruled out any invasive solution that would involve modifying the

existing system due to the cost and risks involved. They also ruled out any solution that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

would involve duplicating the existing system application logic or data, to avoid possiblé
inconsistencies and exira maintenance overhead. For such a scenario, the CellLEST
method is an excellent solution. It can leverage the existing CUI to a2 Web Ul without
modifying the existing system. Semi-automatically, CellLEST can generate Web-based
wrappers of the desired tasks. CelLEST is an incremental solution that can be
implemented and tested gradually by wrapping a small selected number of student tasks
and trying them, then wrapping and Web-enabling more functionality, etc.
1.3.1.2 Integrating the Front-ends of Two Insurance Systems

In this scenario, an insurance company acquired another insurance company. Both
companies had similar information systems for claims. The performance of each system
was satisfactory when they were under different ownership. After the merger, the new
owner did not want its employees to use two independent systems, which incurs
additional training costs and productivity reduction due to effort duplication and the time
consumed in switching between systems. Merging both systems via reengineering or
transferring the data of one system to the other was infeasible due to the technical
difficulties, prohibitive cost and risk involved. A suitable solution for integration in this -
case would be CelLEST method. It can provide lightweight front-end integration under a
unified task-centered GUI that abstracts both systems’ Uls. Additionally, it was required
to offer easy access of both systems via an extranet to lawyers who handle cases
involving insurance claims. A limited tailored version of the new GUI can be offered to
lawyers, which offers specific lawyer-oriented tasks. Since these lawyer-oriented tasks
were not required at the time of system development, they were not directly achievable
through the existing Uls but the bits and pieces needed for each task were scattered in the
character-based Uls. The tailored GUI accomplishes these tasks by taking the necessary
inputs from the lawyer in a format that is most natural for him/her and driving the
necessary navigation in the two legacy Uls to reach the right screens to gather the needed
outputs. Then, it reformats these outputs in the format most natural for lawyers and

presents them via the target GUI platform.
1.3.2 The CelLEST Process

Building on the two example scenarios given above, let us now discuss the

methodological assumptions of the CelLEST method:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The current performance of the legacy system subject to reengineering is satisfactory |
and it will continue to be used on its current platform.

2. 1t is required to open the system for access through a new platform, e.g., the WWW
or WAP devices or window-based systems, or to integrate the front-end of the legacy
system with other apphcatians on the same or other platforms.

3. 1t is required to take advantage of the presentation and navigation capabilities of the
target platform. So, each user task will be encapsulated, with all the input, output and
navigation steps required to accomplish it, in a suitable task-oriented representation
on the target platform, e.g., a number of Web-forms. In other words, the new Ul
should be “task-centered”.

4. No major functionality change is required. However, minor functionality may be
added if it is achievable based on the data presented on the original interface.

5. It is undesirable or impossible to change the legacy system code and architecture. The
main input to the Ul reengineering process will be recorded traces of interaction
between the legacy system Ul and its users, while they are doing their regular tasks.
The CelLLEST process is a two-phase process. The first is a reverse engineering phase, -

which is the focus of this thesis [SEKSM99, EISSMO1, SEIS03, SES02, ESS02b

ESS02c]. The algorithms and methods developed to support the reverse engineering

phase and their evaluation are presented in details in this thesis. They are implemented in

a prototype tool called the Legacy Navigation Domain Identifier (LeNDI). The second is

a forward engineering phase, which was conducted by other members of CellLEST

research team [KSM99, KapOl, SK02]. The algorithms and methods developed to

support the forward engineering phase are implemented in a prototype tool called

Mathaino.

1.3.2.1 CelLEST Character-base User Interface Reverse Engineering
First, LeNDI is used to record the dialogs that take place between the legacy system

and its users while they are doing their tasks in the form of interaction traces. An

interaction trace is a sequence of legacy screen snapshots interleaved with the user
actions done to cause the transitions between these snapshots. A user action s a sequence
of keystrokes. Throughout this thesis, the term “screen” is used to refer to a CUI

behavioral state manifested by a matrix of characters displayed to the user on her/his

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

terminal, which allows her/him to do one of a limited set of actions. The term “snapshoi” ‘
is used to refer to an instance of a screen. One can think of screens and snapshots és
classes and objects in object-oriented terms.

Second, for every snapshot recorded in the interaction traces, LeNDI extracts a set of
features and employs interactive clustering, classifier induction and user action modeling
methods to build a behavioral model of the legacy CUI, called the state-transition graph.
The nodes of this model correspond to the CUI behavioral states, i.e., screens and the
edges correspond to the user actions causing transitions among the nodes. LeNDI utilizes
two clustering. methods to group similar snapshots together as one legacy CUI screen
modeled by one node on the graph. Then, LeNDI infers a predicate that identifies the
snapshots of the screen. LeNDI uses the user actions recorded in the interaction traces to
model the behavior of the legacy screens as the arcs of the directed graph. The state-
transition graph is a main input to the forward engineering phase of CelLEST. It is used
to classify each individual snapshot forwarded by the legacy system to the user while s/he
is interacting with it online.

Third, LeNDI uses data-mining methods to discover patterns of frequent segments of .
interaction between the legacy system and its users which correspond to popular usage
scenarios of the system, or in other words the most used services of the system. We call
such patterns “interaction patterns”. The instances of an interaction pattern may have
some noise due to spurious navigation of the legacy CUIL LeNDI interaction pattern
mining algorithms can tolerate a preset level of noise and still discover patterns with this
level of noise. An interactive review and revision process is associated with the behavior
modeling and pattern mining processes. This is to give the user control over these
processes on one hand, and to get his feedback to verify the correctness of the models and
the usefulness of the patterns produced, on the other hand.

1.3.2.2 CelLEST Character-base User Interface Forward Engineering and
Visualization

In the forward engineering phase of CelLEST, Mathaino is used to augment each
interaction pattern discovered with the semantic information needed to build a model of
the task. Then, Mathaino is used to construct a declarative user-interface specification for

the modeled task. This specification is also executable by a suite of special-purpose

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

platform-specific components. Thus, the new user-interface becomes a front-end for the
original legacy user-interface, available in multiple new platforms, e.g., XHTML-enabled
browsers or WAP devices. The new interface executes a task in the underlying legacy
application using the state-transition model of the application’s CUI, a model of the task,
and an API to the data-transfer protocol used by the legacy system.

In addition to LeNDI and Mathaino, the CelLEST environment includes the QandA
{Questions AND Answers) tool [Vij02], which supports the visualization, verification
and possibly revision of all the intermediate products of the CelLEST method by the
analyst.

1.3.3 Advantages of the CelLEST Process

The CelLEST method is a significant contribution to the field of CUI reengineering.

This is because it has a number of advantages:

1. It is a code-independent non-invasive CUI reengineering method. It utilizes easy to
collect input, i.e., interaction traces. So, it is very suitable when code modification is
undesirable, expensive, risky or impossible. The limitation of this method is that it
can support only minor functionality extensions.

2. CellEST is lightweight in terms of the skills it assumes. It needs moderate analysis
skills and an understanding of the system under analysis as opposed to the high
software development skills and expert understanding of the legacy system that
current practices demand. It is lightweight in terms of the cost and time. Therefore, it
can potentially bring substantial time and cost reduction and quality improvement to
current state-of-the-art industry practices.

3. CelLEST is an incremental approach. It can be applied gradually to the exiting legacy
CUL Thus, a phased reengineering can take place with some services of legacy
system CUI reengincered in every phase, according to the time and budget available.

4. CelLEST follows a task-centered approach to reengineering the way the legacy
system users interact with it. It encapsulates interesting behavioral segments within
new UI front-ends on different platforms. It does not replicate the legacy system-user
interaction with different widgets in new platforms.

5. CelLEST supports simultaneous migration to multiple platforms. It does CUI reverse

and forward engineering once and generates abstract specifications of the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reengineered task-centered UL A new UI can be generated multiple times on
different platforms using the abstract Ul specifications. "
6. CelLEST emerged from collaboration with industry on one hand and on the other
hand, it was developed and evaluated in an academic setup, with very encouraging
results. This mixture of research and industry gives CelLEST the potential to impact

current CUI reengineering practices on solid scientific bases.
1.4 Thesis Statement

This thesis makes a case for automated CUI interaction reverse engineering. It takes
the position that recorded traces of interaction between the users of a legacy system with
its character-based user interface can be sufficient input for lightweight non-invasive
reengineering of the user interface. It demonstrates that reverse engineering these
interaction traces can provide the CUI behavioral model required for the reengineering
process and shows how the elements of this model can be inferred from these traces.
Additionally, it demonstrates that patterns of user activities with the legacy CUI can be
discovered from the interaction traces, and used as a basis for identifying and modeling
the system services that are candidate for reengineering. Finally, this thesis demonstrates, -
via case studies, the practicality, efficiency and usefulness of the automated CUI
interaction reverse engineering process, and hence, proves its potential impact on
advancing the current manual practices for lightweight CUI reengineering and Web-

enabling.
1.5 Thesis Contributions

This thesis establishes a novel method for CUI reverse engineering that adopts
interaction reverse engineering as the means to build a behavioral model for the legacy
CUI and to capture the interesting user interaction patterns with the system. The
behavioral mode! and the interaction patterns are used for CUI reengineering. The
specific contributions of this thesis are:

1. Engineering a suite of features for characterizing CUI screen snapshots

[SEKSM99, SEIS03]. These features are extracted from analysis of the snapshots

with a set of tailored heuristics and document analysis methods. This analysis extracts

features from any special information discovered at the periphery of the snapshot,

il

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the hidden snapshot information coming with the outbound data streams
received from the host, and from the snapshot layout and content distribution. Some
of these features are specific to IBM 3270 data streams, but most of them are
applicable to other block-mode data transfer protocols, which push one screen at a
time to the user (as opposed to scroll-mode data transfer protocols, which interact
with the user line by line).

2. An intelligent semi-automated method for medeling the behavior of legacy CUIs
[EISSM01, SEIS03]. This method is a significant advance to the research and
practice of CUI reengineering. It consists of the following steps:
¢ Recording traces of interaction between the legacy system CUI and its users.

e Extracting a feature vector for every recorded snapshot.

e Clustering similar snapshots together, based on their feature vectors similarity.

e Inferring predicates for each cluster (i.e., each distinct CUI state) via classifier
induction.

e Example-based learning of the user actions that cause transitions from one state to
another.

e Mining the interaction traces for patterns of user interaction with the legacy CUL

3. Two novel sequential pattern mining algorithms [ESS02b, ESS02¢]. IPM is a
breadth-first algorithm and IPM2 is a depth-first algorithm. Although, both
algorithms are designed specifically to mine interaction traces for interaction patterns,
they can mine sequential data in general for sequential patterns with noise.

4. A prototype tool for interaction-based CUI reverse engineering, called LeNDI
[SES02, SEIS03]. LeNDI implements all the methods and algorithms described in
this thesis. LeNDI was used to evaluate the CUI reverse-engineering method with

case studies from real legacy systems, with very promising results.
1.6 Thesis O

The rest of this thesis is organized as follows:

ganization

e Chapter 2, Related Work, introduces the related research areas. It covers four areas of
rescarch that represent the broader areas of this thesis and the state-of-the-art in

research and industry of Ul reengineering and Web-enabling.

1z

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Chapter 3, CelLEST User Interface Reengineering, is a detailed description of the
CelLEST method for CUI reengineering at large. It helps the reader understand the
context, in which, the research described in this dissertation was conducted.

e Chapter 4, Feature Extraction For Legacy Screen Snapshots, describes the feature
suite engineered in LeNDI for characterizing the snapshots of CUI screens. It details
the process of extracting a feature vector for every recorded snapshot and the
algorithms used in it.

e Chapter 5, Legacy User Interface Behavior Modeling, describes the process and
algorithms used to identify the nodes and arcs of the state-transition model of a legacy
CUI, and consequently build it. Additionally, it discusses the experiments and case
studies conducted to evaluate this process and the associated algorithms.

e Chapter 6, Mining Interaction Traces for Patterns of Frequent User Tasks, describes
the process and the two novel algorithms (IPM and IPM2) used to mine the
interaction traces for interaction patterns. It provides evaluation for this process and
comparison of the performance of IPM and IPM2.

e Chapter 7, Summary, Conclusions and Future Work, presents a summary of this

dissertation, draws some conclusion and points to future work directions.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This chapter describes four areas of research related to the research described in this
thesis. The diversity of these areas reflects the diversity of the methods and algorithms
used in this research. The first area is Ul reengineering and reverse engineering. The
second area is driven by practice and industry more than by academia, which is Web-
enabling legacy systems. The third area is software requirements recovery from available
legacy resources. The forth area is data mining of sequential data to discover sequential
patterns in long sequences of data. Each of the four sections of this chapter is dedicated to
one of these areas. Each section starts by a definition of the research area, followed by the
motivation behind studying this area and by a description of representative, state-of-the-
art work. Finally, it concludes with comments on how this work is similar to or different
from the work in this thesis.

Section 2.1 is a review of the work in the area of Ul reengineering and reverse “
engineering. The CelLEST project is about Ul reengineering, but is different than other
work in this area in that it adopts a lightweight “don't touch code” approach for Ul
reengineering. LeNDI adopts a novel Ul reverse reengineering method using interaction
traces, designed to suit the interaction reengineering approach of CelLEST

Section 2.2 describes the state-of-the-art industrial practices of Web-enabling legacy
systems, by uncovering and accessing the logic, data or presentation layers of the legacy
system. In particular it focuses on the current manual practices of reverse engineering
legacy CUIs using presentation layer access [Ake00, Att00, Cri01] and describes how
LeNDI supersedes and advances these manual practices by providing a coherent
automated process that is more efficient and less susceptible to error. The area of Web-
enabling legacy systems is described in more detail since it is the most related area to this
work. In addition, since a lot of Web-enabling work is coming from industry not
academia, detailed discussion of the evolution of this area, that relates different practices

to each other, was needed.

i4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.3 describes the related work in the area of software-requirements recovery. -
It describes the different methods used or proposed in literature for recovering the
functional requirements or specifications of software systems, using different inputs.
LeNDI employs a novel automated method for recapturing models of the current uses of
a legacy system as its de facto functional requirements. LeNDI’s method is easy, practical
and does not assume the availability of system code or documentation. While the
recovered models are needed for the CelLLEST forward engineering phase, they can be
translated to use case models and utilized in different contexts.

Section 2.4 describes the related problems and significant work in the area of
sequential pattern mining, inspired by data mining and bioinformatics applications. It
explains the problem of interaction pattern mining in LeNDI, which is mining the traces
of interaction with a legacy system for interaction patterns. It describes how this problem
is different from other problems and hence, why LeNDI needs a new algorithm to solve
it. This led to developing two novel algorithms for interaction pattern mining, Interaction
Pattern Miner (IPM) and Interaction Pattern Miner 2 (IPM2), which are described in

details in chapter 6.
2.1 User Interface Reengineering and Reverse Engineering

Ul Reengineering is the process of recreating an existing U], either on the same or a
different platform. In some cases, UI reengineering is done as part of legacy system
migration to a new platform. In other cases, Ul reengineering is done for itself to reface
an existing legacy application with or without minimal changes to the system.

UI Reengineering is a two-step process. The first is a reverse engineering phase,
during which an abstract representation of the legacy UI is created. The second is a
forward engineering phase, during which, a new or modified implementation of the
legacy Ul is developed, usually on a new platform. Reverse engineering an existing Ul
can be desired in order to better understand an existing system. In such cases, the
objective is to produce an abstract representation of the legacy Ul to enhance the
understandability and maintainability of the legacy system, especially its presentation
layer. LeNDI is a CUI reverse engineering tool that uses, as input, recorded traces of
interaction with the legacy system. Mathaino is a CUI forward engineering tool that uses

the models developed by LeNDI to develop new GUIs, Web-interfaces or WAP-

is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interfaces for legacy systems. In developing LeNDL the significant work on Ul
reengineering and reverse engineering was reviewed as follows shortly. None of the WOﬂ(
described adopts the novel approach of interaction reverse engineering employed in
LeNDI. LeNDI avoids code analysis and takes advantage of the relatively easy to collect
interaction traces to deduce the legacy Ul behavior models and interaction patterns
needed in CelLEST.

Reengineering Uls of legacy systems can have different variants:

e UI full or partial redesign and re-implementation on the same platform [PRSV97].
e GUI to GUI migration due to platform change [MRS94].

e Character-based Ul (CUI) to GUI migration [AFMT95].

e GUI grafting onto a batch or command-line system [PA97, TS99, WiDO01, SCTO02].
e Wrapping a legacy Ul with a Web or WAP wrapper [Hor98, TLRH98, BFMO02].

An example of the first category is the work of Plaisant et al. {PRSV97]. They
employed different techniques to evaluate existing Uls for six different systems. These
techniques include documentation study, observing users, expert review of the current Ul,
questionnaires and discussions with users and managers. For éach system, they identified -
the main problems in its Ul, if any, and the opportunities of improvement in user
documentation, system access, data display, data entry procedures, consistency and
error/system messages. These findings were used to partially re-implement the examined
Uls on the same platform to improve user performance and satisfaction.

An example of the second category is the work of Moore et al. [MRS94]. Their
approach relies on a knowledge-based model that maps the functionality of the widgets in
the source platform UI toolkit to those of the target platform Ul toolkit. Given a particular
migration problem, the software engineer identifies the pieces of code in the system
implementing the UL Then, based on the knowledge-based model, a “wizard” guides the
software engineer in selecting appropriate widgets in the target platform toolkit that can
together deliver the interactive behavior of the original code.

A similar approach was used to address the third category [AFMT95]. The interesting
difference is that since there is no source widget toolkit, the reverse engineering process
hypothesizes widgets from the code.

Grafting a GUI on top of a relatively non-interactive set of batch or command-line

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programs {(CLPs), whose functicnality is accessible only through command-line inputs, is
simpler and does not involve a complex reverse engineering problem. The GUI can be
developed independently, with the aid of a GUI-building tool that uses an abstract
representation of the underlying applications. Then, the user-initiated events on the GUI
are programmed to invoke procedures in the underlying application programs [PA97]. To
enable a degree of freedom in utilizing the underlying programs and formattihg their
outputs, some source code reverse engineering might be required in the beginning to
identify internal variables and data structures of interest in order to expose some of them
in the new UI [TS99]. Moreover, to allow flexibility in output formatting or to integrate
with distributed object middleware, e.g., CORBA, a wrapper can be placed around the
command-line application to programmatically invoke its commands. Then, the wrapper
parses the generated output and returns a semantically useful result (an integer, an object,
etc.) that can be easily consumed by a calling program or a GUI object [WIDO1].

Sorzano et al. [SCTO02] present a model for CLP packages. The model includes a
command-line syntax specification, which is integrated into a higher-order OO model
that can be directly translated into a graphical user interface. The object types (classes) in)
this model are: package, group, program, command line, menu and argument, where a
package is a CLP application, a group is a subset of related programs in the package and
a menu here is a list of arguments. The authors described a language, Colimate (the
COmmand LIne MATE) that implements this model. Using Colimate, a GUI description
can be written for legacy CLPs and then compiled and run with the help of an interface
generator that raises the needed windows, attends to user selections and finally launches
the desired processes.

Finally, work in the fifth category, i.e., wrapping with a web-enabled wrapper, is one
of few possible solutions to the broader problem of Web-enabling legacy systems, which
is discussed in the next section. ‘

Dannelly [D95] presents a case where Ul reverse engineering is an objective for
itself. He introduced methods for automatic analysis of the source code of X Window
System application programs and transforming it into an intermediary representation.
This representation is used for automatic production of two types of graphs. The first is

widget-instance trees, which are inferred from initialization code and represent the

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hierarchy of widgets created by this code. The second is dialog-state diagrams, which are
graphical representations of the behavior of X Window System based GUIs and represent
‘the action routines associated with the different widgets created in the initialization code.
These graphs improve the system maintainers understanding of the legacy system Ul and
ease their job.

Except from few examples, the majority of Ul reengineering and reverse engineering
approaches adopt code analysis and understanding as the means for system modeling and
reverse engineering. However, the Ul-related code is only part of the system code that
has to be examined. Additionally, due to ageing symptoms mentioned earlier, it is hard
and expensive to analyze the legacy code. Even worse, in some cases the code is not even
available. '

In such cases, system-user interaction can be an alternative source of information for
understanding the legacy system. It is a rich source of knowledge and a faithful
representation of how the system is currently being used. Hence, it is a good candidate
input for the Ul reengineering process. Interaction reverse engineering in LeNDI is novel
and different than the work summarized above in that it uses this input instead of source -
code for producing the necessary abstractions and models for the consequent forward
engineering phase. This reengineering method does not alter or change the existing
legacy system code or structure. It relies on the almost-automated process of LeNDI to
infer most of the CUI behavior and task models it needs. As described in chapters 5 and
six. These models are useful beyond CelLEST and can be deployed in other contexts as

described in section 7.3.
2.2 Web-enabling Legacy Systems

Web-enabling legacy systems is the process of opening an existing legacy software
for access through the Internet, an extranet and/or an intranet to the public and/or to a
selected user-base of employees, customers and/or business partners. The work in this
area is mostly industry driven. It is motivated by the emergence of the Internet as a
medium for doing business, with new opportunities of business growth and cost
reduction. Using the Internet, especially the WWW, a company can reach out to more
customers worldwide via a simple, easy to use, inexpensive and very popular Ul, namely

the web browser [BFMO02]. Additionally, via their web sites, businesses can reduce the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cost of transactions and customer service by automating their transactions and moving the
effort of customer service to the customers themselves via online orders, quotations, etc.

Since somewhere between 60% and 80% of all corporate information reside on
mainframe-based legacy systems [Att00], opening many of these systems for Web-access
may be essential for corporate Web-enabling strategies. A number of solutions to this
problem were developed mostly by industry, which may require reproducing legacy
business data and business processes in new formats and new presentations for old and
new audiences {Lan00]. These solutions complete one another in some situations, and
compete with one another in other situations. But, in practice a variety of Web-enabling
technologies may be used, even within the same corporation. This is due to the wide
variety of legacy and Web technologies available and the unique requirements of every
Web-enabling project. This section briefly describes these solutions and their advantages,
disadvantages and limitations. A legacy software application in general, consists of three
layers: the presentation layer, the program-logic layer and the data layer. A Web
application can access a legacy system via one or more of these layers, depending on the
available legacy and Web technologies and the status of the legacy system.

Increasingly, Web-enabling is becoming one of the main activities in the area of Ul
reengineering. Web-enabling is also one of the main uses of the CelLEST method for
legacy CUI reengineering. Interaction reverse engineering in LeNDI is a significant
advance to the practice of modeling existing legacy CUIs for Web-enabling via
presentation access. It provides a coherent almost-automated process for modeling legacy
CUIs in preparation for Web-enabling that replaces the current manual error-prone time-

consuming practices.
2.2.1 Web-enabling via Data Access

In data access Web-enabling, a new Web application is developed to directly access
the legacy database and then perform the necessary processing on the retrieved data
before presenting it to the user via a web browser. The primary assumption is that, the
legacy application logic is trivial and can be easily duplicated in the Web application if
required or that new logic will be developed to process data different from the legacy
logic. The legacy data must be wrapped in order to be accessed using a different interface

or protocol than that for which the data was designed initially. This requires using data

i9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

access-middleware in the form of database gateways and bridges. A database gateway iAS’
a software application that translates between two or more data-access protocols. There
are a number of de facto industry standard database gateways. Opeﬁ Database
Connectivity (ODBC) is Microsoft’s interface for accessing data in a heterogeneous
environment of relational and non-relational database management systems. The ODBC
API can be invoked inside Active Server Pages (ASP) or programs in C/C++, Perl, VB,
etc. Java Database Connectivity (JDBC) is an industry standard defined by Sun for
database-independent connectivity between Java applets or applications and 2 broad
range of SQL databases. The JDBC API can be invoked inside a Java program, applet or
servlet or a Java Server Page (JSP). ODMG is the standard of the Object Data
Management Group for persistent objéct storage. A bridge is a special gateway that
translates one standard protocol into another, e.g., JDBC-ODBC bridge. [CWSR00]
Web-enabling via data access is a simple, straightforward solution [Amb00]. It can
provide multi-source legacy data integration to new applications [RMBO0O]. It has some
considerable drawbacks. First, any important logic, e.g., business rules and data
validation, is bypassed and not utilized. This means that it has to be re-implemented in -
the web application. This may cause duplication in program logic and high cost in both
development and maintenance. Second, it increases the data coupling between the legacy
and web applications [Amb00, RMBOO]. This solution is most suitable for Web-enabling
legacy services with trivial logic, e.g., Web-enabling the catalog browsing services of a
legacy library system. It is also suitable, when new logic needs to be implemented to
process the data for Web-access, so, this logic can be implemented in the web application.
Data replication is another data access based Web-enabling method. In this case, part
of the central legacy database is duplicated on a web server for Web-access through a
client application. The legacy and server data repositories are coordinated with periodic
batch jobs. The major weakness of this approach is that it cannot handle real-time data,

making it inapplicable for applications such as customer service or sales activity.
2.2.2 Web-enabling via Logic Access

Web-enabling via application logic access relies on the availability of a mechanism to
access the business logic independent from the user interface related code. This can be

accomplished in different ways:

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Code Access. If the legacy business logic is implemented separately from the-
presentation logic, which is rarely the case, then theoretically, it is possible to insert a thin
control layer that accepts the data extracted from the HTML page and invokes the
appropriate subroutine from the legacy system. The business-logic subroutine processes
the request and gives back the results, which are then forwarded to the client [Sne00].

API Access. Packages like SAP, PeopleSoft, eic., offer APIs that can be accessed via
Java Native Interface (JNI) or Common Gateway Interface (CGI) code. But, software
developed in-house rarely has a defined API, or at most it has a very limited function-
oriented (not O0) APL [Amb00]

Distributed Object Technology (DOT) extends object technology to the net-centric
information systems of modern enterprises by using object middleware, e.g., OMG?’s
CORBA and Microsoft COM+. The idea is to objectify (or objectize) the legacy system
by creating an OO interface to individual applications, common services and business
data that makes the legacy software look like objects. Then it can be accessed by other
applications across a network through the OO interface. [CWSRO00, RMB00, ZK99]

This is quite an invasive reengineering solution. The prime challenge is objectifying
the legacy system, i.e., analyzing, decomposition, and then translating the monolithic and
plain semantics of the usually procedural legacy system to the richly hierarchic and
structured semantics of an object-oriented system [CWSRO0]. Several methods were
suggested to decompose legacy systems into objects, including cluster analysis, concept
analysis and hybrid methods [CCDDO01, PZKM99]. The amount of effort needed to
accomplish this task depends on the language, style and architecture used in developing
the legacy application.

Component wrapping is a natural extension to DOT. In contrast with objects,
components must conform to a component model. This constraint enables the component
framework to provide the component with gquality services [CWSRO0]. Enterprise
JavaBeans (EJB), from Sun Microsystems, is an example of server-side component
architecture for writing reusable business logic and portable enterprise applications. EJB
is the basis of Sun’s Java 2 Platform, Enterprise Edition (J2EE). EJB components are
written entirely in Java and run on any EJB compliant server. Each bean encapsulates a

piece of business logic. EJB servers provide system-level services such as transactions,

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

security, threading, state management, resource pooling, disiributed naming, remote
invocation and persistence. [CWSRO0, FOLD%6] a

EJBs can wrap exiting legacy system functions and offer them as operating system
and platform independent components. But like DOT, component wrapping faces the
challenge of componentifying the legacy application, which is separating the interface of
the legacy system into modules consisting of logical units or functions. [CWSR00]

Zou and Kontogiannis [ZK99] describe a combination of DOT and component
wrapping technology. First, they identify and generate a decomposition of the legacy
system into modules, and then analyze the interfaces of the selected legacy components
and store their signatures in a component repository using XML format. Second, they
generate the CORBA/IDL and CORBA wrappers from the component repository. Third,
they use EJBs to develop the application server, in order to integrate the CORBA
wrappers and to provide the services to the Web-based application. Finally, they define a
scripting language using XML, to enable the invocation of the legacy components.

2.2.3 Web-enabling via Presentation Access

Web-enabling via presentation access is non-invasive and almost risk-free. It covers a -
wide spectrum of solutions. At one end, there is Web-enabled emulation of legacy
systems. At the other end, there is screen mapping, which allows complex manipulations
of the legacy data streams used for communication between the legacy host and the
legacy terminals. Thus, it supports crafting reengineered front-ends for legacy CUIs that
take advantage of the potential of Web Uls. The common attribute of all these approaches
is that the legacy application is accessed via its presentation layer. This can be done
mostly by accessing its Ul, represented by the legacy outbound and inbound data streams,
or in other cases by accessing its presentation description if one exists, e.g., IBM
Customer Information Control System (CICS) maps. In both cases, the access is limited
to the data and operations offered via the application presentation.

Web-enabling via presentation access started in its simple form of web emulation
(webulation [BBO1]), shortly after the emergence of the Internet [TLRH98]. Gradually,
webulation evolved into the more advanced screen scraping technology that takes
advantage of the GUI capabilities of web browsers. The next generation was manual

screen mapping that allows remodeling the legacy Ul or parts of it into a task-oriented

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Web-based GUIL The future trend, which was the subject of our research in CellLEST-
project, is to automate screen mapping as much as possible, using intelligent tools that
can learn about the legacy system on its own. Then, the knowledge learned is used to
build the models needed for screen mapping with minimal effort. Consequently, these
models are used to build a working Web-based GUI or abstract Ul specifications that
would allow simultaneous migration to multiple platforms, e.g., the WWW and WAP
devices. Additionally, screen mapping is extended to allow the integration of multiple
legacy systems Uls together or with other Web applications under a unified Web front-
end. In the following we discuss the evolution and available solutions for Web-enabling
via presentation access.

2.2.3.1 Web Emulation (Webulation)

Web emulation, or webulation [BB01, BFMO02, TLRHO98], is a natural extension of
the long-practiced legacy host emulation to the Web. The new thing is that the emulator
runs in a web browser or a web server. Browser displays have the native look and feel of
the host legacy screens. Transactions work exactly the same as on a legacy host “green
screen” terminal, e.g., IBM 3270, by returning one screen display for one input request.
Full support for legacy function keys as well as user customization of colors and fonts are
usually available. Additionally, icons for function keys, copy/paste, macro recording, file
transfer and other basic operations are provided. [Ake00, BFMO02]

Webulation is a quick and cheap solution that does not need any Web application
development. It offers instant access to the legacy application to intranet and extranet
users who are already familiar with the legacy system. But, for the wide Web population
or new users, it does not make the legacy system any easier to use [BFMO2].
Additionally, it does not allow tailored Web-access that targets different groups of users
with different limited sets of Ul functionality. It addresses the accessibility issue, but it
does not improve the usability or navigability of the legacy system (see section 1.2). A
typical implementation of webulation is done using Java applets, downloaded into the
client web browser. The applet runs in the web browser Java runtime environment and
establishes a connection with a Telnet server that manages access to the host application.

[BFMO2Z, TLRHOO0]

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o oo e o

e i

COUNTER SERVICE

DANTFL WESTEALL

Auto Mole Association

M o RO 0

=City
* Province
* Home Phone 780 -

Buss.Phone | 780- | Bd |]
U E—

* Rate Type © Peguiar ($50) O Pus{$7)

Refaced Using Screen Customization (lower)
2.2.3.2 Screen Scraping (Refacing)

Screen scraping (or refacing [Ake00, AttO0]) takes webulation a step further by
offering an enhanced one-for-one browser presentation of the legacy Ul It reads the data
stream intended for the mainframe terminal, either via a client based terminal emulator
(Java applet) or a server based program, and turns it into a Web-based GUI presentation.
The transliation of each legacy screen to a2 Web-based GUI can be done in two ways,
either on the fly or using a user defined customization for this screen. Figure 2.1 shows
both cases.

In the first case, a middleware is interleaved between the Web front-end and the
legacy software to act as a presentation translator by intercepting outbound legacy

displays and converting them “on-the-fly” into a Web front-end using whatever available

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information. In case of IBM 3270 for example, this is done by converting the unprotected
(input) fields into edit control objects while turning the other fields into labels. Some
advanced tools convert a set of predefined strings like F1,... F24 into buttons. Slight
improvement is achieved over webulation.

In the second case, an individual customization is created for every screen that

| radically changes its appearance and takes advantage of the presentation potential of the
target platform, the Web in this case. Thus legacy screens appear “dressed up” in a Web-
based GUI, with widgets, lists, radio and push buttons, images, web links, check and
choice boxes, colors, fonts, etc. Additionally, one can reorder fields, change tab
sequence, and hide unnecessary data [Ake00, BBO1, BFMO02]. Figure 2.1 shows a legacy
screen that is refaced on-the-fly (middle) with unprotected {input) fields turned into text
boxes and “confirm new member 7 (Y/N)” message replaced by “Yes” and “No” buttons.
The same screen is refaced with individual customization that turned the original screen
fields into text boxes, lists, radio buttons, etc., wherever suitable. Also, a logo and a big
font title were added. A few buttons with additional functions were added.

Some screen scraping tools, e.g., IBM Screen Customizer [IBM99, BFMO02], offer the
ability to create context-sensitive field help for host applications, to create a list of valid
values for a data field and/or to skip unnecessary screens during navigation. Also, they
allow customization templates to be applied, in order to speedup refacing a number of
legacy screens. Such a template would contain common elements to all Web-based
screens replacing the legacy screens, e.g., a logo, a web link, a customized tool bar, etc.
The operation of the applications is still “one-for-one”. That is, one browser request
equals one legacy screen display [Ake00].

To know which customization to apply to a screen snapshot, the screen scraping
application should recognize the identity of the instance. This is done using a predicate or
signature for every screen. Typically, this signature is based on some unique keyword(s)
that appear on the screen at some location(s). Some tools offer rich pattern definition
languages for the application builder to define a signature [BFMO02, Cel99]. Such
languages would allow specifying that a specific text must exist or not exist at a certain
location or within an area on the screen and/or that it must be of a certain case or color, or

compares in a certain way to a hard-coded value (<, <=, =, >=, >). They may also allow

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multiple recognition criteria to be defined and combined with logical operators, for the A
same screen. 7

In many cases, this technique would be sufficient to recognize the identity of the
screen. However, in some cases, ¢.g., unstructured and multi-mode screens, it is quite
challenging to find such a signature. For example, some host applications can have more
than one mode for the same screen, e.g., Create, Review, or Update modes, with the same
structure and appearance but with slight differences in the status of some fields. Each
mode needs separate signature and customization. In the state-of-the-art practices, a
screen signature must be manually defined and hard coded for every screen by an expert
analyst, who is very familiar with the legacy system under analysis and with the pattern
language available and its supporting tool.

Screen scraping takes relative advantage of the presentation capabilities of the web
browser. However, it does not benefit from its enhanced navigability. So it enhances the
accessibility and, to some extent, the usability but not the navigability of the legacy
system.

Another screen scraping approach is to access the legacy presentation at a level lower .
than the Ul, or the data streams used to construct it. This is the level of screens maps or
description files, if such concept exists in the system under study, e.g., CICS maps for
S/390 systems and Data Description Specifications (DDS) source files for AS/400
systems. In case of CICS, the data necessary to build an HTML or XML Ul is extracted
from CICS maps instead of IBM 3270 data streams.
2.2.3.3 Screen Mapping (Remodeling)

Screen mapping [Cri01], also called remodeling [Ake00], is a natural extension to
screen scraping. While it still uses presentation access to Web-enable legacy systems, it
allows reengineering the legacy Ul or chosen parts of it into a task-oriented Web-based
GUL It enables fairly extensive modifications to the sequence of information presented to
the user by combining several screens into a single graphical presentation, i.e., it offers
many-for-one browser presentation of the legacy user interface [Att00]. Thus, the
multiple host screens, related to a certain user task are combined in one (or more) Web
forms that is a more natural representation of the task in the Web world. This can greatly

enhance the usability and navigability of the system, while still maintaining the back-end

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

host navigational flow. It is possible to partially apply screen mapping to a legacy system.
by reengineering the frequent or cumbersome user tasks of choice, while using
webulation and/or screen scraping for the rest of the system.

To build a screen mapping solution, one needs to do the following:

1. Build a model of the portion of the legacy system CUI to be reengineered,

2. Describe the steps needed in terms of user actions, inputs and outputs, and screens
accessed to perform each user task that will be reengineered,

3. Build/buy the middleware needed to mediate between the legacy back-end and the

‘Web front-end, and
4. Build a Web-based GUI for each user task, which will be responsible of executing the

task plan via the host-access middleware.

The partial model built for the legacy CUI is a set of predicates or signatures that
should uniquely identify each legacy screen, along with a list of the possible behaviors of
each screen in terms of the user actions permissible on it and their outcomes or
destination screens. This model is like a road map for the legacy CUL

A task description gives the detailed steps of how to open sessions, gather data,
complete transactions, and close sessions with the host legacy to accomplish a user task.
Typically, this includes what user actions are needed to navigate the legacy CUI in
service of the user task, what inputs need to be passed to the legacy application on which
screens on which locations and what outputs will be retrieved from which locations on
which legacy screens. -

A host-access middleware executes the task description by driving the necessary
navigation via the legacy host, passing the user inputs received from the Web-based GUI
to the legacy application, and collecting the required outputs to feed the Web-based front-
end. This middleware uses terminal access protocols such as VT100, IBM 3270 or IBM
5250 to communicate with the legacy system via a “virtual terminal”, emulating the
standard “green screen” terminal. Data are moved in and out of the legacy host via the
legacy system CUI as if data entry personnel were flawlessly entering it [Cri01]. Such
middleware can be built with EJB beans, Java servlets, or similar approaches.

The Web-based GUI, e.g., HTML or XHTML, presents the reengineered Ul to the

user, takes his inputs, executes the task plan and reproduces the collected results through

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the web browser. Common Gateway Interface (CGl) scripts, Java Server Pages, or
similar technologies are used to collect the user input via the client web browser

In current practices, these steps are all implemented manually. An analyst goes
through each screen of the legacy system, trying to find a unique signature for it and to
model its behavior in order to build the legacy CUI model. Then s/he talks to the users
about every task to be migrated to the Web to understand all its possible paths and
exceptions. Then, sfhe manually builds a plan of this task, by describing all the user
actions needed to perform it, all the inputs to be entered and where they occur and all the
outputs to be collected and from where they are obtained. After that, a developer builds
the new Web front-end that executes the user tasks. For each task, s/he does the necessary
GUI design, layout and coding. If it is required to migrate to a different platform too, e.g.,
WAP devices, then the legacy CUI model and task descriptions can be reused but the new
Ul implementation should be carried out from scratch for the new platform.
2.3.4 Pros and Cons of Web-enabling via Presentation Access

A market survey [Att00] showed that 60% of the IT personnel administrating,
maintaining or accessing information from legacy systems use some form of screen”
scraping or screen mapping technology to integrate legacy systems with other systems.
45% of them batch data to a server for access through a client application, and a similar
number modify the host application to suit client access. The study showed that out of
those who use presentation access technology, 60% use it to avoid changing the host
application, 30% could not change the host application and 44% use it for its lower cost.

Despite the possible bias in market studies, these results summarize the advantages of
Web-enabling via presentation access. It is a minimal-risk, non-invasive, less expensive
solution. It requires no change to the legacy application. This makes it almost the only
choice when changing the legacy application is not an option, e.g., due to lack of
ownership or unavailability of the source code. It can be applied gradually and/or using a
mixture of methods. For example, webulation can give instant Web-access of the legacy
application to the users familiar with it, while a screen mapping solution is deployed to
reengineer the Ul of the most frequent/difficult user tasks. This provides an easy to use
HTML front-end to the external users with no familiarity with the legacy system, e.g.,

customers placing orders and college students registering for classes. Finally,

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

presentation access can be used for lightweight integration with other legacy systems and-
Web applications or for limited functionality extension and repurposing of the legacy
system.

On the other hand, screen scraping and screen mapping are labor intensive non-
automated processes. The currently available tools for supporting them are mostly limited
to aiding the manual practices. They do not automate any of the subtasks involved, which
may require a lot of effort and intuition. Additionally, these technologies are better suited
to mature stable applications, which are unlikely to go through frequent changes or
updates. For dynamic applications that go through frequent changes, keeping the Web
application layer up to date with the latest changes incurs high maintenance overhead.

Presentation access of legacy systems is criticized for being slow, since it adds a
remote extra layer on top of the existing legacy application. This depends on the
implementation model used. Modern server side and host side implementations can
overcome this deficiency to a good extent. In a host side implementation, the host-access
and the screen mapping middleware reside on the legacy host, e.g., S/390. A user task is
executed completely on the host and HTML pages are generated as needed and submitted
to the user with the required results or to collect inputs. However, fair comparison with
the other Web-enabling approaches presented earlier is unavailable to judge their relative
speed and scaling up with workload.

Another disadvantage of presentation access solutions is their vulnerability to
unexpected events related to the host connection behavior, like keyboard lockups, session
disconnections, broadcast messages from hosts and error messages coming from the
legacy application [YamO00]. Careful analysis and modeling of the legacy CUI and the
tasks to be reengineered can reduce this risk by anticipating as many of such events as
possible and including a recovery mechanism in the Web front-end application, but
would reguire more investment and effort.

Finally, Web-enabling via presentation access has some limitation: it cannot extend
the legacy system functionality beyond what is already achievable, directly or indirectly,
through the legacy presentation. It only gives access to the data exposed through the

legacy presentation.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The CelLEST project adopts presentation access for legacy CUI reengineering and .
Web-enabling. LeNDI overcomes some of the disadvantages of presentation acceés
solutions by providing a coherent almost-automated process and tool support for
interaction reverse engineering and legacy CUI modeling. LeNDI uses traces of
interaction with the legacy CUI as input. LeNDI provides a data mining method that
discovers the frequent user tasks of interest in the form of interaction patterns, as they are
evident in the interaction traces. These patterns are used to build the task models that will
be encapsulated in the reengineered UL LeNDI reduces drastically the level of skills,
time and cost needed for the modeling process, since its subtasks are almost automated.
Additionally, the automated process is less sensitive to changes in the underlying CUI as
changes can be captured by recording and analyzing new or extra traces instead of
implementing them manually. LeNDI advances the current screen mapping practices and
lays the foundation for the future generation of these solutions.

2.3.5 Objectifying Legacy Systems via Presentation Access

Little work has been done along this somewhat different line, which mixes
presentation access of legacy systems with distributed object technology. There is very -
little research in this area, and it suggests screen scraping of legacy CUIs, or similar
techniques for legacy GUIs, as a means for wrapping a legacy system service (or a user
task) as a method in an object for consumption by a new application or in a distributed
object environment.

Chadha [Cha98] describes a prototypical effort, during which, the services of several
back-end legacy systems belonging to various health insurance providers were integrated
in one distributed object environment to provide access to these systems to healthcare
providers. This was done via a distributed object, called the “Payer” object. Each Payer
object wraps a legacy data source, e.g., an IBM mainframe application, an ODBC-
enabled database or others. The Payer object interface allows healthcare providers to
check the eligibility of patients for insurance coverage, submit insurance claims, and
check the status of submitted claims. The object interface is described using CORBA
IDL. For IBM mainframe-based legacy back-ends, the Payer object uses screen scraping
to invoke the procedures that perform the required services on the legacy application and

collect the required results.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A similar approach was followed tc objectify legacy GUI-driven applications (GDAs}-
and integrate them with other GDAs, including Web applications, to form mega-
applications [GBP02]. This requires the use of agent processes to be injected into the
GDAs. These agents collect information on all GUI elements that are used by a GDA,
monitor events that are generated, and trigger GUI input events. An agent presents an
object (representing an objectified GDA GUI) to a controlling program. This program
can then invoke methods on specific GDA GUI elements and replay GUI inputs with the
support of the agent. This controlling program can integrate a number of GDA GUIs
together, including Web-based GUIs.

2.3 Software Requirements and Process Model Recovery

Requirements recovery is the process of retrieving software functional and user
requirements and/or software specifications from an existing software, its documentation,
its stakeholders and its operation environment. Requirements recovery research is fairly
scarce. Previous work in this area had explored a variety of methods that assume different
input information and recover various different types of requirements. In LeNDI, we
developed interest in requirements recovery research because part of LeNDIs role in
CelLEST process is to discover the system services that may be candidates for
reengineering and wrapping with a new front-end. Generating hypotheses about the
system services, as they are used today by current system users, in the form of interaction
patterns, is essentially a requirements-recovery activity. So, it was important to review
the related literature. Despite the variety of interesting approaches that were used for
requirements recovery, none of them used interaction traces as input. Hence, LeNDI
needed a novel method for interaction pattern discovery from interaction traces as
described in chapter 6.

In the REVERE project [REGSO00] probabilistic natural language processing (NLP)
methods were employed to recover software requirements from the available
documentation, such as requirements specifications, operating manuals, user interview
transcripts and data models. The method suffers from the well-known shortcomings of
NLP and needs to be adapted (trained) to the various documentation styles, structures and

notations, but provides rapid analysis for voluminous documentation.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cohen [Con94] used Inductive Logic Programming (ILP) to discover speciﬁcatiané
from C code. The constructed specifications are in Datalog (Prolog with no function
symbols). The software discovered two thirds of the specifications with about 60%
accuracy, in a program containing over one million lines of source code. The system
recovered declarative view specifications from relational database examples. Positive
examples were obtained from program execution views, with background knowledge,
consisting of the table relation. The technique uses inductive reasoning about the
behavior of the code, rather than deductive reasoning of static code. Sufficient training
data is required, otherwise results will contain numerous inconsistent specifications.

The AMBOLS project [LAQ99] aimed to recover requirements by employing
semiotic methods and intensive interviews with the stakeholders to analyze and model the
system behavior from various viewpoints. The intent is to document current uses for the
purpose of redeveloping the application.

In [SP99], data reverse engineering was proposed as a means for business rules
recovery from legacy information systems. Particularly, an approach for extracting
constraint-type business rules from database applications was outlined, but without an -
implementation or experimental evaluation.

Di Lucca et al [DFD00] presented a method for recovering a use case model from
threads of execution of object-oriented (OO) code. A thread is a sequence of method
executions linked by the messages exchanged between objects. Threads are triggered by
input events and terminated by output events. In this approach, developers identify
statements that form input events and output events. A tool then automatically identifies
the code corresponding to the potential uses cases. The tool produces a structured use
case model including diagrams at various levels of abstraction, comprising actors, use
cases, associations between actors and use cases, and relationships among use cases. The
mapping between a given use case to its corresponding code supports developers in
program understanding and maintenance impact analysis. The method targets OO
systems, which makes it inapplicable to most legacy systems that were developed before
the wide spread of the OO paradigm.

Similar to this research area, is the work on process model discovery, e.g. [AGLI8].

The idea is to model existing known or unknown processes by mining workflow and

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other logs of these processes and retrieving or discovering the models. The aim is to gain.
better understanding of the existing process models and/or develop future omes. An

example of this work is reverse engineering work processes in collaborative virtual

environments [BS02]. The goal was to recover design models of virtual workspaces at

micro {individual tasks), macro (processes) and collaboration (task sequences) levels, by

mining the environment’s data Eegs; e.g. threads of email messages posted on the bulletin

board and actions performed by the collaborating team members.

The work presented above represents diverse directions in exploring and tackling the
requirements recovery problem. Researchers explored different available inputs, e.g.,
existing documentation, human knowledge, code, data, threads of OO program runs and
workflow logs. In this thesis, we introduce a new method for recovering the de facto
functional requirements of legacy systems to support the CelLEST method for legacy
CUI reengineering and Web-enabling. To do so, we employ another yet unexplored easy-
to-collect input, which is records of the system-user dialog via the legacy CUIL in the form
of interaction traces. LeNDI applies data mining algorithms to these traces to recover the
needed requirements in the form of interaction patterns. There are a number of potential
uses of this promising approach beyond the forward engineering phase of CelLEST, as

suggested in section 7.3.
2.4 Sequential Data Mining

Mining sequences of data for recurring patterns is a generic problem with instances in
a range of domains. It was first introduced in [AS95] under the name "sequential pattern
mining", inspired by applications in the retail industry. Given a set of customers and their
sequences of transactions, the goal is to discover sequences of items (patterns) occurring
in the transactions of the same customer.

In CelLEST, it is necessary to discover the frequent legacy CUI navigation sequences
that represent multiple uses of the same legacy system service, from a system viewpoint,
or repetitive ex_ecutions of the same user task, from a user viewpoint. LeNDI mines the
recorded traces of interaction with a legacy system for these interaction patterns. This
problem, called interaction pattern mining problem, is different from “mining sequential
patterns”, but similar to the problem of “discovery of frequent episodes in event

sequences” [MTV97]. In [MTV97], the discovered frequent episodes or patterns can have

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different types of ordering: full (serial episodes), none {parallel episodes) or partial and
have to appear within a user-defined time window. The support of a pattern is measured
as the percentage of windows containing it. Some algorithms were developed to tackle
this problem, e.g. WINEPI and MINEPI [MTV97] and Seq-Ready&Go [BCB00], based
on the famous data mining Apriori algorithm [AIS93, AS94]. Apriori was originally
proposed to solve the problem of mining association rules between sets of items in large
databases and then numerously extended to solve other data mining problems including
mining of sequential patterns. The problem of mining interaction patterns differs than the
formulation of [MTV97] in that it does not restrict the pattern length with a2 window
length and permits a user-defined number of insertion errors to exist in the instances of
the discovered patterns.

The CelLEST interaction pattern discovery problem is also similar to the problem of
discovering patterns in DNA and protein sequences. There, the objective is to discover
either probabilistic patterns or deterministic patterns with noise, e.g. flexible gaps, wild-
cards (don’t care characters) and/or ambiguous characters (which can be replaced by any
character of a subset of the alphabet set, A) [BDVHHP(0O]. Because bio-sequential data is -
usually very large, an efficient search strategy is to discover short or less ambiguous
patterns using exhaustive search, possibly with pruning. Then the patterns that have
enough support are extended to form longer or more ambiguous patterns. This process
continues until no more patterns can be discovered. Two elegant examples of this
category are PRATT [Jon96] and TEIRESIAS [Fl1099] algorithms. PRATT can discover
patterns of the quite general PROSITE format [BB9%4], e.g. C-x(5)-G-x(2,4)-H-[BD],
where B,C, D, G and H € A, x(5) is a flexible gap of length 0 to 5, x(2,4) is a flexible gap
of length 2 to 4, and [BD] is an ambiguous character that can be replaced by B or D. The
original TEIRESIAS algorithm discovers (L,W) patterns with wild-cards only, where L <
W. An {L,W) pattern has a constraint on its density, that is any of its sub-patterns
containing exactly L non-wildcards items has length of at most W items. For example,
CD..CH.E is a (3,5) pattern, where “.” can be replaced by one item € A. None of these
two bio-pattern discovery algorithms mentioned above suits the task of mining

interaction traces for interaction patterns.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

None of the problem formulations described above matched the needs of LeNDI,
especially in terms of the type of ambiguity or errors that they allow in the patterns
discovered. LeNDI discovers patterns of user activity in the traces of interaction with a
legacy CUI with insertion errors, i.e., whose instances may contain up fo a user-defined
number of spurious activities. A spurious activity happens when the user accesses or
receives a screen that is not part of the task s/he is performing, e.g., an error or help
screen. LeNDI treats such activities as insertion errors and allows up to a pre-set number
of them to exist anywhere in a pattern instance. Two novel pattern mining algorithms
were developed, specifically to solve the interaction pattern mining problem in LeNDI:
Interaction Pattern Miner (IPM) and Interaction Pattern Miner 2 (IPM2). The first is a
breadth first algorithm and the second is a depth first algorithm. Both algorithms require
defining a criterion for pattern selection and use the idea of building longer patterns from
shorter ones. Although designed for use in LeNDI, they can be applied to similar
problems. In fact we used them to mine user web site navigation logs for interesting
navigation patterns [ES03]. Both algorithms are described, compared and evaluated in

chapter 6.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

> Reengin

In chapter 2, various legacy CUI reengineering, reverse engineering and Web-
enabling methods were introduced. It was shown that almost all CUI reengineering and
reverse engineering methods rely on code analysis and understanding, except some
methods that deal with command-line programs. This makes such methods inapplicable
when the code is unavailable or unchangeable. It also makes them costly and risky when
code is hard to comprehend and difficult to change. Nevertheless, in some cases, it is
unavoidable to do Ul reengineering via code analysis and change since the code will be
migrated or for other reasons. This raises the need for new CUI reverse and forward
engineering methods that do not use code in order to serve cases when code change is
impossible or undesirable. This thesis proposes a novel lightweight CUI reverse
engineering process that utilizes, as input, traces of interaction with legacy CUIs. Itis a
valuable method when code and platform migration is not necessary and lightweight CUIL d
reengineering will be used.

Additionally, chapter 2 presented the different strategies of Web-enabling legacy
systems. It showed the reasons of popularity and advantages of Web-enabling via
presentation access. These reasons are non-invasiveness, low risk, lightweight and low
cost. It also discussed the shortcomings of this method, which are labor intensiveness,
manual processes, inadequacy of tool support, vulnerability to unexpected events and to
changes in the legacy CUI and inability to extend the system functionality significantly.
The interaction reverse engineering method proposed in this work and implemented in
LeNDI overcomes some of these shortcomings by proposing a coherent lightweight
reverse engineering method for legacy CUIs in service of Web-enabling via presentation
access. Unlike current manual industrial practices, this method is almost-automated, less
error-prone, more productive and less sensitive to changes.

Since, a significant part of this thesis was done within CelLEST project for legacy
CUI reengineering, it is important to describe this project first before describing the

specifics of our interaction reverse engineering method. CelLEST project [SEKSM99,

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SESQ2, SESPO0] is a joint research project between the Software Engineering Lab. at
University of Alberta, Canada and an industrial sponsor, Celcorp [Cel]. The aim of the
CelLEST project is to develop the next generation of legacy CUI reengineering and Web-
enabling via presentation access, using artificial intelligence (AI) and other methods.
CelLEST adopts interaction reengineering as a means to automate the process of
“learning” and reengineering an existing legacy CUIL CelLEST uses a combination of
document analysis, feature extraction, clustering, user action modeling, visualization,
data mining, task model inference, XML wrapping and automated GUI layout to develop
an intelligent semi-automated lightweight method and prototypes for legacy system CUI
reengineering, Web-enabling and front-end integration. The CelLEST CUI reengineering
is a two-phase process; the first is a reverse engineering phase and the second is a
forward engineering phase. The overall CelLEST process is shown in Figure 3.1.

In the reverse engineering phase, the users' interaction with the legacy system CUI is
recorded using a specially instrumented emulator. The recorded traces consist of the
screen snapshots accessed by the users while navigating the legacy CUI, the actions they
performed on these screen snapshots and the sequences they followed during their
navigation to accomplish their work. Then, these traces are used to build a behavioral
state-transition model for the legacy CUI (Task T1). This model is a road map for the
legacy CUL It is used by the new reengineered Ul to verify the identity of legacy screen
snapshots while they are accessed to perform a user task, and hence input the appropriate
inputs and deduce the required outputs. Additionally, data mining algorithms are applied
to the interaction traces to discover frequent patterns of interaction with the legacy
system (Task T2). Each pattern is enriched with additional semantic information to build
a model of the corresponding system service or user task, in terms of the interface
navigation and the information exchange it implies (Task T3).

In the forward engineering phase of CelLEST, the user task models are translated in
to abstract GUI specifications in XML (Task T4). These specifications are then translated
to XHTML for Web access or WML (Wireless Markup Language) for WAP (Wireless
Application Protocol) access, using the appropriate CelLEST interpreter (Task T5). The

strength of this approach is in that it can accomplish simultaneous reengineering of the

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same legacy CUI to suit different platforms, using the abstract GUI speciﬁcaﬁons, which
are platform independent.
The CelLEST method for semi-automated “learning”, modeling, reengineering and

S

Web-enabling of legacy CUIs and the user tasks of interest makes it much easier to deal

Task Patterns
and Examples

T2)

Task o
Discovery

Task
Modeling

F———P

i CUI State- —-—L 'Task Models
Fj S E N o W) Transition model ¢
/| Transition | } S
;| Modeli e
g g | RN ? et]
TL3) Generating
Classifier | | Abstract GUI
Induction) Interface Specifications
o Modeling
Ti.2 .
Snapshot | A
Clustering | 5
Ti.1 _‘——{ tInteraction Traces Runtime GUI | ™,
Feature | ; . &

Y T80 (152)
i XHTML WML |}
Interpreter) (Interpreter)/

3 Host Access’

i Middleware -

v Web—ll)asedr gﬁf

Figure 3.1. CelLEST User Interface Reengineering Process.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with frequently changing legacy systems, since manual re-modeling and GUI re-
development may be quite costly. The following sections brief the CelLEST process and
show its advantages over the current practices. In Figure 3.1, Tasks T1, T2 and T3 are the
reverse engineering phase of the process. T1 and T2 were the subject of this work and are
described in full details in this thesis. T4 and T5 are the forward engineering phase, and
specifically T5 is a runtime task. T3, T4 and T5 were developed by other CelLEST

project members and their different versions are described in detail in [Kap01, Kon00].
3.1 Interaction Traces Collection

While the users of the legacy system are performing their regular tasks, their
interaction (dialog) with the legacy Ul is recorded in the form of traces or sequences,
using a specially instrumented emulator. For block-mode data transfer protocols like IBM
3270, a trace is a collection of screen snapshots forwarded by the legacy application to
the user’s terminal, interleaved with user actions in the form of sequences of keystrokes
performed in response to receiving a screen snapshot. Additionally captured information,
in case of IBM 3270 data streams, include the total number of fields, the number of _
unprotected fields and the initial cursor position. We call these recorded traces
“interaction traces”. Formally, an interaction trace is defined as follows:

Definition 3.1

Traceiyn = snapiay (key iq,j snapiq j)* j =2...n, where

id is the trace 1d,

n is the length of the trace,

jis the jth screen snapshot received at the user’s terminal, and

key; is the sequence of key-presses issued by the user at snapshot snap;.; that caused
the application to send the next snapshot snap; to the user’s terminal.

® & @ ©

3.2 T1: Legacy Interface Behavior Modeling.

The purpose of this task is to build a behavioral model for the legacy CUI, in the form
of a state-transition model [EISSMO01, SEIS03, SEKSM99]. Each node (state) of the
model corresponds to a screen of the legacy system CUI, identified by a unique predicate.
Using automatically extracted features for every screen snapshot recorded in the traces, a
clustering algorithm groups similar snapshot together, as instances of the same screen.

Then a classifier induction algorithm is applied to the snapshots of the identified clusters

to automatically infer a unique predicate for their screen, i.e., for the corresponding node

3%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or state on the state-transition graph. Using a patiern-inference algorithm, the arcs of the
state-transition model are inferred automatically. Each arc models a permissible usér
‘action. The details of the algorithms used in this task are given in chapters 4 and 5. The
produced state-transition model is road map for the legacy CUL It allows a new
reengineered Ul to check the identity of incoming snapshots while accessing them online
against the nodes or states of the model, and hence input the appropriate inputs and
extract the required outputs relevant to the executed user task. Additionally, the state-
transition model can be queried about navigation paths from a state to another, thus
helping planning new tasks that are achievable through the CUI although not originally
intended by system developers. The LeNDI (Legacy Navigation Domain Identifier)
prototype was developed to test the methods and algorithms used in this task. LeNDI
deals with data transfer protocols that are native block-mode protocols or can be
emulated in block-mode, e.g., IBM 3270 and VT100. In the sequel, we brief the subtasks
of task T1 in Figure 3.1.

3.2.1 T1.1: Feature Extraction

In order to automatically build a legacy screen classifier that is able to distinguish the -
snapshots of each screen using unique screen signatures or predicates, one needs a rich
set of features. LeNDI employs a variety of document analysis techniques to extract
visual and other features for every snapshot. The output of this subtask is a feature vector
for every snapshot. These features include:

e The existence of special system keywords, sentences or information at the top or
“bottom of the snapshot, e.g., title, code, date, time or page number.

e The information received with the outbound legacy data streams, e.g., the location
and type (protected or unprotected) of IBM 3270 data fields and the cursor position.

e Snapshot layout features like the classification of the snapshot to “general”, “table” or

“list” with some attributes for the last two classifications, e.g., the number of columns,

rows, etc. Another layout feature is vertical and horizontal histograms built for the

entire snapshot content or only for some special characters of interest, €.g., numbers.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LeNDI employs 14 single-part and multi-part features. Additionally, it has a binary'
feature suite of 39 features, constructed by decomposing and abstracting these 14
features. This binary feature suite is needed for one of LeNDIs clustering algorithms.
Chapter 4 describes in detail LeNDI’s feature suite and all the algorithms used to extract

them, along with the similarity measuring metric used for each feature.
3.2.2 T1.2: Snapshot Clustering

Snapshot clustering is the process of grouping similar snapshots together to infer their
common identity, represented by a signature or a predicate that uniquely distinguishes
them from other snapshots. LeNDI employs two clustering techniques. The first is a
single-path incremental clustering algorithm [SEKSM99]. The second is a top-down
clustering algorithm [EISSMO1]. The incremental algorithm goes over the snapshot set
only once, accessing it one by one. Using a user-defined similarity function, the
algorithm assigns a new snapshot to the most similar cluster of the clusters available so
far, or assigns it in a new cluster if it is not similar enough to any existing cluster. The
algorithm requires the user to set up a similarity function and the similarity threshold that
decides if a new snapshot is to be placed in a new cluster or to join an existing one. In
addition, it requires sufficient familiarity with the system in hand. In return, it does not
need an estimate of the number of clusters sought. The top-down algorithm uses LeNDI’s
binary feature set. It requires as input an estimate of the number of clusters and does not
assume familiarity with the legacy system under analysis. Initially, it assigns all the
snapshots in a single cluster and then keeps splitting clusters iteratively until reaching the
desired number. In each iteration, the algorithm employs an internal cluster incoherence
measure to split the most incoherent cluster using the feature value that minimizes the
maximum incoherence of the clusters resulting from the split. This algorithm produces a
decision tree that reflects the hierarchy of the splitting decisions used to produce the
resulting clusters.

The user can choose which algorithm to use depending on the system under analysis.
LeNDTI’s clustering process is interactive. The LeNDI analyst performs few rounds of
clustering with different setups to enhance the obtained results. When reaching a

satisfactory clustering of the data set, s/he can review and correct the results by moving

! Binary here means a feature whose comparison yields only either one or zero.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

misclustered snapshots to their right clusters and joining redundant clusters with their
originals.
3.2.3 T1.3: Classifier Induction

Given the snapshot clusters resulting from subtask T1.2, a classifier can be induced
that can correctly classify individual snapshots into their corresponding clusters. This
classifier can then be used at runtime to recognize new, previously unseen snapshots as
instances of the CUI screens, and hence, to infer what actions are possible on each
snapshot and to which screens they lead. In addition, verifying the snapshot identity
allows the new reengineered GUI to apply whatever relevant input or output steps of a
task plan to the snapshot, via the host-access middleware.

LeNDI employs two classifier induction algorithms. The first is a signature-based
classifier that is induced by superimposing the snapshots of each cluster and capturing
what is common in their feature vectors and presentation spaces. The second is a decision
tree classifier, which is associated with the top-down clustering algorithm. It is induced
by applying the user feedback for fixing the results of the top-down clustering algorithm
to the decision tree produced by the algorithm. The fixed decision tree classifier is then -
used at runtime to infer the identity of new snapshots. The classifier produced should be

used to classify new data to test its ability to generalize its knowledge and its accuracy.
3.2.4 T1.4: Transition Modeling

Transition modeling is the process of inferring a model for the transition needed to
transfer the legacy system CUI from a screen to another, i.e., from a state on the state-
transition model to another. Such a model includes the origin screen Id, the destination
screen Id and a model of the user action needed to do the transition. Different styles of
user-interaction with legacy systems exist, e.g., function keys, menu-driven, command-
driven, and form-filling. Also, an action can have several formats; e.g., a command
keyword may have multiple synonyms or it may have an equivalent function key.
Currently, LeNDI can model command-driven and function keys styles. LeNDI infers
each action model by comparing the instances of this action recorded in the interaction
traces and applying a set of rules for command language design. For each action, LeNDI
infers its syntax in terms of the function or control key(s) used and the command

keyword(s), its options and its arguments. For the arguments, it infers their number, their

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

syntax if any and whether they are optional or mandatory. The more instances are.
available, the more general and accurate the action model is. The LeNDI analyst can

override and rewrite or fix an inferred action model.
3.3 T2 and T3: Frequent User Task |

The purpose of these two tasks is to automate the process of modeling the frequent

iscovery ane ling

user tasks of interest as much as possible. Hence, T2 and T3 save the labor-intensive
work needed to define all the possible navigation paths of every task that needs to be
reenginecred and every piece of data exchange that takes place during the task. This is
done by automatic learning from the interaction traces about the frequent user tasks in
terms of what navigational path is traversed and what type of input is entered on which
location on which screen for every task. To know what output is of interest to the user
during a task, i.e., what information on which screen is retrieved, the analyst and/or an
expert user need to manually identify this information on the snapshots of some instances
of this task. This is because these outputs are visually retrieved by the legacy system user,
i.e.; s/he just reads them on the screen or prints them. However, s/he does not take any
action that can be recorded in the traces as evidences of which areas on the screen display

these outputs.
3.3.1 T2: Task Discovery

LeNDI automates the discovery of users’ frequent interaction patterns with the legacy
system, which represent frequent uses of the legacy system services or frequent
executions of the important user tasks. Two algorithms for sequential pattern mining
were developed in LeNDI for this purpose, called Interaction Pattern Miner (IPM)
[ESS0O2b] and Interaction Pattern Miner 2 (IPM2) [ESS0Zc]. Both algorithms can
discover similar segments of interaction with the legacy system, in the recorded traces,
even with some noise in the form of spurious irrelevant screens. Accommodating noise
gives LeNDI flexibility in discovering tasks that include user mistakes, unnecessary
navigation like invoking help screens and/or alternative paths for some subtasks. IPM is a
depth-first algorithm, while IPM2 is a breadth-first algorithm. They require defining a
criterion for interesting patterns in order to use it for deciding if a pattern is worthy of

reporting or not. The criterion includes the pattern’s minimum length, minimum number

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of occurrences, minimum score and the maximum number of insertion errors allowed in
any instance of this pattern. The scoring function used is explained in chapter 6.

After reviewing the discovered patterns, the analyst needs to decide whether each
one of them corresponds fully or partially to a real frequent user task, or is just a spurious
repetition of a navigational path. The instances of each user task can then be used to build

the corresponding task model.

3.3.2 T3: Task Modeling

Mathaino [Kap01, KS01, SKO02] is another prototype tool of CelLEST. It
accomplishes a reverse engineering task, T3, and two forward engineering tasks, T4 and
T5. Mathaino replaced an earlier CelLEST tool URGenT (User interface ReGENeration
Tool) [KSM99, SEKSM99, Kon00]. Mathaino generalized some of the concepts
developed in URGenT by allowing more flexibility in defining task models and by
supporting simultaneous legacy CUI migration to multiple platforms using intermediate
platform-independent GUI representations, as opposed to the migration only to Java
platform supported by URGenT. In T3, Mathaino analyzes the instances of each user task
comparatively to construct an abstract model of:

e The navigational sequence through the legacy system UI to perform the user task;

e The types of information input by the user to the legacy UI and displayed to him/her
through his/her navigation, and the locations where they occur on the legacy screens;

e The domain of values of the inputs; and

e The interdependencies among these values.

Note that to analyze the instances of each user task, evidences of the user inputs and
outputs is necessary. All user inputs are already recorded in the interaction traces. The
CelLEST process needs a user or an analyst to highlight on the snapshots of the task
instances the areas that contain the outputs extracted to successfully complete the task.

Given the annotated task instances, Mathaino analyzes the flow of information to and
from the legacy system to identify the user inputs required to accomplish the task, by
studying all the recorded instances of this task. It compares the values used for each input
field across all the task instances, and the values of all input and output fields in the same

task instance. Each data input field is labeled with one of the following:

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e constant, whose value is the same in all task instances,

e derived, whose value is obtained earlier in the task from an output field,
e redundant, whose value is input multipie times in the same fask,

e enumerated, whose value is always one of a limited set of values, and
e unpredictable, whose value is independently supplied by the user.

Categorizing input fields leads to a significant reduction in the user input required by
the reengineered Ul of the task, e.g., the user will not need to input a derived input as it
will be supplied automatically. Categorization helps choosing the proper abstract widget
type for each input field in task T4, e.g., an input labeled with “range” can be
implemented using a combo box or a set of radio buttons. CelLEST engineer may inspect
the identified pieces of information and name them with meaningful names

Additionally, by comparative analysis of all instances of the same data field,
Mathaino infers the coordinates of this field on the legacy screen it belongs to, in case
these coordinates are static, i.e., the data filed always appears in the same location of the
screen. In dynamic screens, such as free forms, attempts are made to discover starting
and/or terminating landmarks to use for locating the data field.

Finally, if alternative paths exist for a user task or subtask, the branching screens need
to be manually identified. Then, each alternative path is analyzed as described above. At
runtime, the signature (predicate) of the snapshot received after performing an action on
an instance of the branching screen decides which path to follow.

The task model produced in T3 specifies the path on the interface state-transition
model through which the user navigates, the flow of information between the legacy
application and the user, and the syntax of the interactions through which the information
is exchanged. Effectively, it constitutes a declarative and executable specification of the
modeled task of the legacy application. Given values for all the “unpredictable” pieces of
information identified, the model can be used to drive the legacy application and execute

the modeled task.
3.4 T4: Generating Abstract GUI Specifications

Mathaino uses model-based UI design heuristics to produce automatically abstract
specifications for the new reengineered Ul of each task, using its model. Thus, it

eliminates the need for the current manual practice of piece-by-piece mapping of the task

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model to a GUI design. The specifications are described in terms of a set of abstract
forms, each corresponding to a set of screens of the legacy system. Mathaino ensures that
all the output fields identified in the task model are displayed on one of the forms. For
each abstract form, a corresponding plan for navigating through the legacy screens at
runtime is produced.

Using various heuristics, an abstract widget is proposed for each input or output field.
For example, a field with an enumerated range of values is represented by a combo box
or a set of radio buttons depending on the number of values and an “unpredictable”
variable is represented by a text box. Then, the widgets are laid out on the form in a
tabular manner. The user can override the default choices of widgets and layout settings.
For example, s/he can change the widget type issued for a field or the number of layout
columns. After applying user feedback, an XML representation of the abstract

specifications is produced.
3.5 T5: Runtime GUI Generation

CelLEST runtime environment consists of two components. The front-end one is the
runtime interpreter. It is responsible for interpreting the XML abstract GUI forms on a
specific platform. It supplies widgets in the target platform that most closely match the
abstract input widgets. Currently, an XHTML interpreter (for Web-enabling) and a WML
interpreter (for WAP-enabling) are available [KSO1].

The back-end component is the host navigator. It is built over an open source host-
access middleware [JMOO]. The host navigator executes the navigation plans of the
abstract forms and passes the inputs to the legacy system and collects back the outputs.
But first, the XHTML or WML interpreter passes the plan details to the host navigator in

a platform-independent format.
3.5.1'T5.1: The XHTN
For Web-enabling, the XHTML interpreter dynamically parses the XML abstract

. Interpreter

GUI forms at runtime and translates them to XHTML CGI forms. It maps the abstract
GUI widgets to the appropriate CGI widgets. It uses XHTML tables to layout the
produced web page in the closest format to that chosen by the user for the abstract GUL

Also, it parses the CGI response produced by the client Web browser into the platform-

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

independent form needed by the back-end host navigator. It is a server-side component

that runs as a Java servlet on the web server.

3.5.2T5.2: The W
WML was developed by the WAP forum [WAP] for rendering web pages on WAP-

L Interpreter

enabled mobile Internet devices like Cellular phones and Personal Digital Assistants. A
web page in WML (also called WML deck) is limited to a maximum of 1200 bytes. To
overcome the device display limitation, a deck can be divided into a number of cards.
The device can display only one card at a time. The only input widgets supported by
WMP are simple text boxes. WML does not support CGI but provides some features that
can simulate CGL

The WML interpreter is adjusted to deal with these constraints. For example, it
implements an abstract GUI form using several WML decks if 1200 bytes are not enough
to implement the form. It uses a numerical menu to represent “enumerated” input fields.
It internally caches the user responses to the multiple decks corresponding to a single

abstract GUI form, before submitting it to the host navigator.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Building the state-transition model of the user interface of a legacy system requires

identifying the states, i.e. the nodes, of this model. Each node represents a group of

similar snapshots, instances of a distinct legacy interface screen, which corresponds to a

behavioral state of the legacy system. For each legacy screen, it is necessary to identify a

predicate that uniquely distinguishes the instances of this screen. To do so, using the

current manual labor-intensive practices described earlier in chapter 2, one needs to do

the following steps:

1.

Study many snapshots of the screen of interest and sample snapshots of the other
screens to discover how the former ones are similar to each other and different from
the later, and

Find a predicate that uniquely distinguishes the snapshots of the screen of interest;
this predicate can be a simple keyword or a complex textual pattern as described in
subsection 2.2.3.

Task T1 of Figure 3.1 represents the process of building the state-transition model of

a legacy CUIL LeNDI performs this task semi-automatically. Task T1 can be broken

down to the following steps:

1.

Extracting a rich set of features for every snapshot in the recorded traces,
automatically,

Defining a similarity metric for each feature,

Defining a similarity and/or distance function to use for clustering similar snapshots
together,

Clustering similar snapshots together, separate from the rest,

Verifying and correcting the clustering results via user feedback,

Automatically extracting unique predicates that distinguish the snapshots belonging

to different clusters, i.e., to different legacy screens, and

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Modeling the permissible user behavior {(actions) on every legacy screen.

This chapter describes how the first two steps are implemented in this thesis. Steps 3
to 7 are explained in the chapter 5. This chapter presents the feature suite used in LeNDI,
which resulted from detailed discussions with experts in the field of legacy CUI
reengineering, analysis of many sample screen snapshots and experimentation. A
combination of heuristics and document analysis methods is used to extract these
features. We have tailored these methods to IBM 3270 data sireams, a very popular
block-mode data transfer protocol. In addition, we applied them to VT 100 emulated in
block-mode. These features were developed to suit the automated state-transition
building process, since the simple pattern-based features used in current practices, even
those supported by the rich pattern languages used by some tools [BFMO02, Cel99], are
too simple for LeNDI’s automated process. LeNDI has a base feature set used by its
incremental clustering algorithm [SEKSM99]. Derived from the base set with some
extensions, is a binary feature set used by LeNDI’s top-down clustering algorithm.
LeNDI's base feature set is divided into three subsets that cover different aspects of a
snapshot. A snapshot consists of a presentation space, which is the matrix of characters
displayed to the user on his/her terminal, when receiving the snapshot, and additional
hidden information. The first feature subset includes features that are extracted from
analyzing the periphery of the snapshot presentation space where important pieces of data
are usually displayed, e.g., screen title, date, etc. The second subset includes features that
are extracted from the IBM 3270 data stream hidden data that accompany the snapshot
presentation space but are not visually displayed on the user terminal. The third subset
includes features derived from analyzing the presentation space layout and content
organization. The first and third subsets are generic features that can apply to any
snapshots in block-mode data transfer protocol. The second subset is specific to IBM
3270.

Section 4.1 starts with a general discussion of the different types and styles of legacy
screens that may be found in legacy systems. It gives a better understanding of the
potential difficulties that may arise during snapshot clustering and the variety of features
that would be needed to overcome them. Sections 4.2, 4.3 and 4.4 present LeNDI's three

feature subsets. Each section starts by describing the intuition behind the feature subset it

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

describes and follows by the detailed algorithms used to extract it. Then, it concludes byv
a description of the features of this subset and the similarity metric used with each feature
along with example snapshots with the features extracted for them. Section 4.5
summarizes LeNDIs discrete feature set in an easy to reference tabular format. Section
4.6 presents the binary feature set, which is derived from the first set. Section 4.7 gives a
description of LeNDIs feature extraction and viewing tool. Finally, section 4.8 is
discussion and conclusions.

Before feature extraction starts for a snapshot, LeNDI evaluates whether or not its
presentation space has the right dimensions for the legacy system under analysis which
can be the same as the default of the data transfer protocol used or different. For example,
IBM 3270 default presentation space dimensions are 24 rows X 80 columns. If the
presentation space recorded by the recorder emulator of LeNDI is truncated, i.e.,
incomplete due to emulator or network error or whatever other reasons, LeNDI augments
it to the matrix dimensions set in it so that feature extraction algorithms do not break. In
the rest of this chapter, the topmost row of a snapshot is considered its first row (row

number 1) and the leftmost column is considered its first column (column number 1).
4.1 Types of Legacy Screens

After studying samples of legacy screen snapshots, one can notice that different types
of screens exist in terms of their content dynamics. Content dynamics is the variability of
visual data fields that appear on the screen (not IBM 3270 data fields) in their number,
contents, and locations. This directly influences the ease of clustering the instances of this
screen together. Roughly speaking, one can recognize the following types of legacy
screens, ordered from the most static to the most dynamic (See Figure 4.1).

1. Screens with a constant number of fields® displayed at fixed locations on the screen
and containing static content. These are essentially “Static Screens”. Examples of
these screens are menus and system information and help screens. Such screens may

have trivial variable items, e.g., the current date.

% The term field here refers to visual data fields as they appear on the screen. It does not refer to database
fields or to IBM 3270 data fields.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Screens with a constant number of fields at fixed locations on the screen. Some of
them have constant data content and the others have variable data content. Examples

include input forms.

Type 1 —
Type 2
Type 3

(rr——___\\

o

Type 4 ®

@

(<) .
Type S N b

S

Figure 4.1. Different Types of Legacy Screens Ordered from The Most Static
(upper) to The Most Dynamic (lower).

3. Screens with a constant part and a variable part in terms of the number of fields and
their locations and contents. The constant part consists of a constant number of fields
with constant contents and displayed at constant locations. The variable part consists
of a variable number of fields with variable contents and displayed in a certain order,
usually starting from a certain location. Examples include lists of information, e.g.,
lists of claims, employees, etc.

4. Screens with a constant part and a variable part, whose constant part consists of a
constant number of fields with constant content but maybe displayed at difff;rem
locations each time an instance of this screen appears. The variable part consists of a
variable number of fields with variable content and displayed in a certain order,

usually starting from certain location. Examples include screens of results of queries,

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which may have a command line at the bottom prompting the user to enter anothe;f

query. Note that if the constant part always appear at a certain location, e.g. the

bottom of the screen, regardless of how filled the screen is, then, that screen will be of

the type 3.

5. Screens with variable content. One can call them “Dynamic Screens”. You can
consider them as screens of the previous type without or with a trivial constant part
that can be, e.g., a notice that a PF key returns the user to the previous screen.
Examples of such screens are query result screens that retrieves textual data about a
certain case, e.g., details of an insurance claim or a medical report about a patient.
Usually the information starts from a certain location on the screen.

Generally speaking, clustering the snapshots of a screen together becomes harder as
we go from the top to the bottom of the list of screen types above. But there are other
factors that influence this process. In some cases, the existence of screen codes given by
programmers, or clear titles, etc., makes it easier to group the snapshots together
regardless of the nature of the rest of the content. In other cases, one screen may have
different modes, e.g., Review and Update modes, which look almost alike, with few -
differences, mostly in the status of some of the data fields (protected, i.e., read only or
input). The feature suite developed in LeNDI is broad enough to cover a variety of screen
types. Therefore, it includes features based on special information in the periphery of the
screen snapshot, e.g., code, title or date. It includes features based on the snapshot content
and organization layout. It includes features that are not related to the snapshot visual
appearance, but are rather based on the information received from the IBM 3270 data

streams, e.g., IBM 3270 field information and the initial cursor position on the snapshot.
4.2 Presentation Space Features

Usually, some important information exists at the periphery of legacy CUI screens,
e.g., title, screen code, date, etc. Discovering these pieces of information, their
classifications and their locations on the snapshot presentation space is the base for this
feature subset. The content and organization of this information can be very valuable in
deciding the snapshot identity, and hence, in clustering it with similar snapshots. Of
particular interest are screen titles or codes, which are often given to screens to make

them easily recognizable by the legacy system users and developers.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 Analysis of Presentation Space Periphery

LeNDI analyzes the first non-blank row, the row next to it and the last non-blank row
of each screen snapshot to look for such information. LeNDI tries to discover the
important pieces of information in these rows, if any. It assumes that reasonably big
blank gaps in these rows are dividers or separators between such pieces of information.
This assﬁmpﬁon was examined and found to be true most of the time during our
experiments with LeNDI. After extracting whatever pieces of information can be found
in these rows, LeNDI classifies each of them to be screen code, title, date, time, page
number, message. Moreover, LeNDI extracts the actual text of screen codes and titles, if
any. Additionally, LeNDI extracts the cursor label or prompt message that prompts the
user to input some data or command on the snapshot.

If the absolute first or last row of the snapshot is blank, the algorithm keeps
descending (in case of top) or ascending (in case of bottom) until the first non-blank row
is reached. In case of the first non-blank row, LeNDI considers the second one next to it
even if it is blank. From now on, these two lines are called “the first two rows”. Also, the
terms “white space” and “blank™ are used interchangeably. Algorithm 4.1 searches for
such rows and if they are found, then, they are analyzed to discover any significant
information that they may contain.

In Algorithm 4.1, step 3 loops through the rows of the given presentation space until
finding a non-blank row or till the bottom of the presentation space is reached. Pres
Space [Count] is the Count™ row in Pres Space. Step 4 returns the message “Blank
Screen” and terminates the algorithm if the snapshot is all blank. Otherwise, step 5
reports the first non-blank row and if it is not the last row, then it also reports the second
row, regardless of its content, i.e., if it is blank or non-blank. Steps 6 to 8 find and report

the last non-blank row.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.1: Searching for The First Two and The Last Rows of a Presentation
Space
Input: A presentation space, Pres Space, of a snapshot
‘Qutput: The first two and the last non-blank rows.
~ Steps:
1. 7Zotal Rows = The number of rows in Pres Space
2. Count=1
3. While (Count < Total Rows) && (Pres Space [Count] is blank) do Count ++
4. If (Count = Total Rows) then Return message “Blank Screen”
5. Else
e Report Pres Space [Count] as the first non-blank row
e If (Count < Total Rows)
then Report Pres Space [Count+1] as the second row’
e Else Return message “The Screen Has Only One Non-blank Row “

6. Count = Total Rows
7. While (Count > 0) && (Pres Space [Count] is blank) do Count --
8. Report Pres Space [Count] as the last non-blank row

Algorithm 4.1. Searching for The First Two and The Last Rows of a Presentation
Space.

Next, each of the first two rows is divided into three areas, using the longest blank
sequences in the row as dividers between these areas. For the first row, the left, middle
and right areas are numbered 1 to 3, respectively. The second row is similarly divided to
areas 4, 5 and 6. Since the last non-blank row usually contains less information than the
first two rows, it is divided into left and right areas only, which are numbered 7 and 8.
The division algorithm used for the first two rows is Algorithm 4.2.

The idea of Algorithm 4.2 is to divide the given row into three areas using the biggest
blank gaps in the row, which are thought to be the logical dividers used by developers.
Therefore, the algorithm looks for the biggest two White spaces in the row to divide it.
Steps 1 and 2 get the number of leading and trailing (left and right) spaces in the row, if
any. Steps 3 to 4 get the length and location of the largest white space inside the non-
blank content of the given row, if any. Steps 5 and 6 do the same but for the second
largest white space. Steps 7 and 8 check whether the left and/or right spaces are longer
than the largest space inside the row. If both are longer, then step 9 considers the left and
right areas of the row to be empty and all the content found is classified to be in the

middle, unless the middle is empty too. Also, this step reports the middle area content if

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

found and then terminates the algorithm with a returning message of which areas are
empty. In step 10, if the left space is the biggest, then the left area is considered empty
and the row content is divided into middle and right areas. The function Substring (string,
start, end) returns a string that is a sequence of characters taken from the parameter string
starting from location start to location end inclusive. Stepll is similar to step 10 but
applies when the right space is the biggest. Finally, step 12 deals with the case when the
three areas of a row are considered non-empty, and the largest and second largest spaces
are used to divide the Row into left, middle and right areas, depending on which of them
comes first, i.e., starts at a smaller column number.

Algorithm 4.2 is used to divide the first two rows to three areas. A simpler algorithm
is used to divide the last non-blank row into left and right areas. Its idea is to start from
the left boundary of the snapshot and move forward in case of the left area and to start
from the right boundary and move backward in case the right area. As long as there is
some non-blank content, it is considered part of the corresponding area until 2 consecutive
blanks are encountered. If no content is found until the middle column of the snapshot,

the algorithm declares the corresponding area empty.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.2: Dividing a Row to Right, Middle and Left Areas

Input: A row, aRow, taken from the presentation space of the snapshot under analysis.
QOutput: Three strings, representing the left, middle and right areas of aRow

Steps:

1. Left Space = The number of leading spaces in aRow

2. Right Space = The number of trailing spaces in aRow

3. L3pStart = The starting position of the largest space inside aRow

4. LSp = The length of the largest space inside aRow

5. 2™ LSpStart = The starting position of the 2™ largest space inside aRow
6. 2" LSp = The length of the 2" largest space inside aRow

7. If (Left Space > LSp) then Left Area Empty = TRUE

8. If (Right Space > LSp) then Right Area Empty = TRUE

9. If (Left Area Empty) && (Right Area Empty) then

Middle Area = Trim leading and trailing spaces (aRow)
If (Middle Area is Blank) then Return message “All three areas are Empty”
Klse Report Middle Area and Return message “Left and Right Areas are Empty”

10. Else If (Left Area Empty) then
Middle Area = Substring (aRow, Left Space + 1, LSpStart - 1)
Right Area = Substring (aRow, LSpStart + LSp, |aRow| - Right Space)
Report Middle Area and Right Area
Return message “Left Area is Empty”

11. Else If (Right Area Empty) then
Left Area = Substring (aRow, Left Space + 1, LSpStart - 1)
Middle Area = Substring (aRow, LSpStart + LSp, |aRow| - Right Space)
Report Left Area and Middle Area
Return message “Right Area is Empty”

12. Else
If (2™ LSpStart > LSpStart) then
Left Area = Substring (aRow, Left Space + 1, LSpStart - 1)
Middle Area = Substring (aRow, LSpStart + LSp, 2" LSpStart - 1)
Right Area = Substring (aRow, 2™ LSpStart + 2™ LSp, jaRow| - Right Space)
Else
Left Area = Substring (aRow, Left Space + 1, 2™ LSpStart-1)
Middle Area = Substring (aRow, 2"* LSpStart + 2™ LSpStart, LSpStart - 1)
Right Area = Substring (aRow, LSpStart + LSp, |aRow| - Right Space)
Report Left Area, Middle Area and Right Area

Algorithm 4.2. Dividing a Row to Right, Middle and Left Areas.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Classification | Keywords Patterns
Date Sunday, Monday, Tuesday, Wednesday, Thursday, [B7AR7AN
Friday, Saturday, i
January, February, March, April, May, June, July, 1/
August, September, October, November, December, ANt
Jan, Feb, Mar, Apr, Jun, Jul, Aug, Sep, Oct, Nov, Dec,
Time AM., PM., AM, PM, SRR
1111
Page Page 1011
Message Message, Error, Command, Ready, Return to, Enter, | PF!
Type, PFKey, Found PF |
Fi
F1

Table 4.1. The Default Keyword and Pattern Lists of LeNDI (*“!” means any digit).
After extracting the areas 1 to 8, each area is classified into one of the following
seven categories, which are represented by codes 0 to 6:
e (0 — the areais empty
e 1 — the area contains a screen code
e 2 — the area contains a screen title
¢ 3 — the area contains date information

4 — the area contains time information

®

e 5 — the area contains page number information

e 6 — the area contains a message

An empty area is a blank one, which was reported to be blank by Algorithm 4.2 or its
simpler version, or belongs to a row that was reported to be all blank by Algorithm 4.1. A
non-empty area is checked for the existence of any of the keywords and/or patterns that
may help classifying it to date, time, page information or message. Table 4.1 shows the
default keyword and pattern lists used for this classification. Using LeNDI, one can tailor
these lists for individual legacy systems by adding new items or removing unwanted ones
based on his/her judgment and analysis of the screen style of the system in hand. If a non-
empty area does not contain date, time, page number or message information, then it is
classified to contain code or title. It is assumed to be a code if it contains one word. If it
contains more than one word, then it is assumed to be title. Algorithm 4.3 categorizes the

content of a given area into one of the seven categories.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.3: Area Classification

AInput: A string, area, representing one of the key areas of a snapshot.

Output: A classification of this area.

Steps:

Break area into words, using white spaces as dividers. Store the words in Word List
If Word List is empty then Return message “Empty”

If Word List contains a date keyword or pattern then Return message “Date”

If Word List contains a time keyword or pattern then Return message “Time”

If Word List contains a page keyword or pattern then Return message “Page”

If Word List contains a message keyword or pattern then Return message “Message”
If |Word List| = 1 then Return message “Code”

Else Return message “Title”

PO N W

Algorithm 4.3. Area Classification.

4.2.2 Five Presentation Space Features

Four features are derived out of the analysis of the snapshot important areas. A fifth
feature is extracted from the cursor label. The sequel discusses them.
4.2.2.1 Feature 1-1: Eight Areas Encoding

This feature is an encoding of the classification of the eight extracted areas, 1 to 8. W
For each snapshot, the value of this feature is an eight characters string, e.g., “03520106”.
The similarity measure of two values of this feature is the number of matching characters
divided by 8. A 0 (empty area) and a 6 (message area) are considered a match since it is
common that a legacy CUI allocates an area for system messages, if any message is to be
presented to the user, which is empty otherwise.
4.2.2.2 Feature 1-2: The Start Columns of Titles and Codes

This feature is a string that is formed by concatenating the starting column of all title
and code areas discovered, ordered from area 1 to 8. For example, assume that area 2 is a
title that starts at column 23 and area 8 is a code that starts at column 65. The other areas
are classified as empty, date, time, page information or message. Then, Feature 1-2 for
this snapshot is “2365”. This feature is useful in identifying screens whose peripheries are
static in terms of the contents and their starting column locations. Two values of this
feature are compared using binary comparison whose outcome is either one if the two

values are identical, or zero otherwise.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.2.3 Features 1-3 and 1-4: Titles, Codes and/or Selected Text Areas
These two features are two of the eight areas extracted that are chosen for exact string
comparison. This means that whatever in these areas will be recorded as such as a

&{v”

feature. However, numerical values are replaced by “!’s and spaces are removed to allow
flexibility in comparison. For example, if the content of an area chosen for exact string
comparison is “Items 1-3 of 137, the actual string value stored for this feature will be
“Item!-lof!”. The LeNDI analyst can open the feature extraction setup dialog box to
choose two of the eight areas extracted for these two features. Alternatively, sfhe can ask
LeNDI to do so. LeNDI picks the two areas that are classified as codes or titles, over the
entire snapshot set, more times than any other areas. Binary comparison is used to
measure the similarity of two values of each of these features.
4.2.2.4 Feature 5-1: Cursor Label

LeNDI records the initial cursor position when a screen snapshot is received. The
cursor’s label is the last sentence or word up to 12 characters to the left of the cursor.
This cursor label is Feature 5-1. Analysis of many snapshots of different legacy systems
showed that the benefit of this feature depends on the style used to design the legacy -
CUL Some systems have a standard command line or a few cursor labels shared among
most legacy screens, making this feature less useful. In other cases, the variety of cursor

labels and prompts increases the utility of this feature. Binary comparison is used to
compare cursor label values.
4.2.3 Presentation Space Features Examples

This subsection includes a few snapshots, taken from a legacy system whose behavior
was modeled using LeNDI. On each snapshot, each of the eight areas is marked with gray
if it contains some text and is left blank if it is empty. Following each snapshot, is a table
with LeNDTI's classification of its eight key areas and the values of Features 1-1, 1-2, 1-3,
1-4 and 5-1. The examples are shéwn in Figures 4.2 to 4.7. The areas chosen for Features
1-3 and 1-4 are areas 1 and 2. If some area is classified as a code or title, then its start and
end columns are included between brackets, e.g., (10-59). Note that the LeNDI starts
columns' and rows' indices from 0, but in the figures below the indices start at 1 for ease
of comprehension. Also, note that in Figure 4.6, the bottommost non-blank line left and

right areas are the same, i.e., the same content 1s classified as the left and right areas. This

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is because the algorithm starts from the left and keeps moving right while rno doaﬁﬂ_e“
space is encountered. It stops at the end of the message displayed. It does the same thing |
‘but starting from the right and moving backwards to get the right content, but ends up
with the same message content. The keyword and patterns lists used for area

classification are the default ones shown in Table 4.1.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12345676901

To make a choice:

i Copyright Information -
2 Braille and aAudio -

3 Federal Legislation --

* #* *

8 Searching Hours and Basic Search Commpands
9 Library of Congress General Information
10 Library of Congress Fast Facts

12 Comments and Logoff

)12345678501234567890

type a number, then press ENTER
files available and up-to-date
files frozen mid-August 1299
files frozen December 1598

* * * * * E3 ¥ * % * * %*

The LC Catalog Files ave available at:
http://lcweb.loc.gov/catalog/

* * ¥ * * * * * * * * *

Choice:
Area | Classification | Cede Feature 1-1 02000001
1 Empty 0 Feature 1-2 1067
2 Title (10-59) 2 Feature 1-3 BEANK
3 Empty 0 Feature 1-4 LOCIS:LIBRARYOFCONGRESSINFORMATIONSYS
4 Empty 0 TEM
35 Empty 0 Feature 5-1 Choice:
6 Empt 0 N R
7 Eﬁ‘;&' 0 Figure 4.2. An Example Legacy Screen Snapshet (1) with
8 Code (67-75) {1 Features 1-1, 1-2, 1-3, 1-4 and 5-1 Extracted.
123456789012345678901234567! 78 g%g34367890123456789012345678901234567890
These files track and describe legislation {bills and resolutions) introduced
in the US Congress, from 1973 (93rd Congress) through 1998 (105th Congress).
Each file covers a separate Congress.
CHOICE FILE
1 Congress, 1981-82 {97¢ch) CGS7
2 Congress, 1983-84 {98th) CG98
3 Congress, 1985-86 (99th) CG99
4 Congress, 1987-88 {100th) C100
5 Congress, 1989%-90 {101st) €101
6 Congress, 1991-92 (102nd) Cc102
7 Congress, 1993-94 (103xd) C103
8 Congress, 1995-96 {104th) C104
9 Congress, 1%97-98 {105th) C1l05
The 106th Congress, 1999-2000, can be found at: hitp//thomas.loc.gov/
11 Search all Congresses on LOCIS 1973-1998
Barlier Congresses: press ENTER
12 Return to LOCIS MENU screen
Choice:
Area | Classification | Code Feature 1-1 02000001
1 Empty 0 Feature 1-2 2867
2 Title (26-44) 12 Feature 1-3 BLANK
3 Empty 0 Feature 1-4 FEDERALLEGISLATION
4 Empty Y Feature 5-1 Choice:
5 Empty 0 . .
6 Empty 0 Figure 4.3. An Example Legacy Screen Snapshot (2) with
7 Empty Y Features 1-1, 1-2, 1-3, 1-4 and 5-1 Extracted.
3 Code (67-78) 1

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://leweb.loc.gov/catalog/
http://thomas.l

1234567890123456789%%23456789012345678901234567890123456789012345678901234567890

e

Arez | Classification | Code Feature 1-1 34021060
1 Date 3 Feature 1-2 064
2 Time 4 Feature 1-3 TUESDAY., i/t
3 Empty v Feature 1-4 BIP.M.
4 Title (0-62) 2 Feature 5-1 NEW COMMAND:
5 Code (64-68) i
6 Erpty) Figure 4.4. An Example Legacy Screen Snapshot (3) with
7 Message 6 Features 1-1, 1-2, 1-3, 1-4 and 5-1 Extracted.
8 Empty 0

333%%890123456789012345678901234567890123456789012345678901234567890
A

Broader terms:

T01 FISCAL POLICY

Related terms:

T2 BALANCED BUDGETS

T03 BUDGET DEFICITS

TO4 BUDGET RECONCILIATION

IT05 DEFICIT FINANCING

T06 GOVERNMENT SPENDING REDUCTIONS
RESCISSION OF éPPROPRIATED FUNDS

RS Pt et et

Area | Classification | Code Feature 1-1 11000060
1 Code (0,6) i Feature 1-2 08
2 Code (8,16) i Feature 1-3 DEFICIT
3 Empty Y Feature 1-4 REDUCTION
4 Empty 0 Feature 5-1 NEW COMMAND:
5 Empty 0 . .
6 Empty 0 Figure 4.5. An Example Legacy Screen Snapshot (4) with
7 Message 6 Features 1-1, 1-2, 1-3, 1-4 and 5-1 Extracted.
8 Empty Q

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

:

THE TERM, “BUDGET SURPLUSESY, IS
THE TERM, “BUDGET SURPLUSES”, IS
THE TERM, “BUDGET SURPLUSES”, IS
THE TERM, “BUDGET SURPLUSES”, IS
ITHE TERM, “BUDGET SURPLUSES”, IS NOT USED IN Cl10C.
THE TERM, “BUDGET SURPLUSES”, IS NOT USED IN CG99.
'THE TERM, “BUDGET SURPLUSES”, IS NOT USED IN CG98.
THE TERM, “BUDGET SURPLUSES”, IS NOT USED IN CG97.
THE TERM, “BUDGET SURPLUSES”, IS NOT USED IN CG96.
ITHE TERM, “BUDGET SURPLUSES”, IS NOT USED IN CG95.
ITHE TERM, *“BUDGET SURPLUSES”, IS NOT USED IN CGS94.
'THE TERM, “BUDGET SURPLUSES*, IS5 NOT USED IN CG%4.

BUDGET SURPLUSES

Broader terms:
BUDGETS

TOL

Area | Classification | Code Feature 1-1 21022055
1 Title (0,30} 2 Feature 1-2 032015
2 Code (32,39) 1 Feature 1-3 LIVTISTHESOURCEFORTHEEXPN
3 Empty 0 Feature 1-4 COMMAND:
4 Tide (0-5) 2 Feature 5-1 XT PG, XMIT):
5 Title (15-45) |2
6 Empty 0 Figure 4.6. An Example Legacy Screen Snapshot (5) with
; iage g Features 1-1, 1-2, 1-3, 1-4 and 5-1 Extracted.

age

1

4 L g ¥k uios

1. H.CON.RES.216: SPON=Rep Shaw, {(Cosp=5); OFFICIAL TITLE: A concurrent
resolution expressing the sense of Congress regarding the use of
future budget surpluses.

2. H.CON.RES.284: SPON=Rep Kasich; OFFICIAL TITLE: A concurrent resolution
revising the congressional budget for the United States Government for
fiscal year 1998, establishing the congressional budget for the United
States Government for fiscal year 1999, and setting forth appropriate
Budgetary levels for fiscal years 2000, 2001, 2002, and 2003. FLOOR
ACTION HAS OCCURRED.

3. H.RES.340: SPON=Rep Pascrell, ({(Cosp=16); OFFICIAL TITLE: A resolution
expressing the sense of the House of Representatives that any
budgetary surplus achieved by the end of fiscal year 2002 be saved for
investment in the Social Security Program.

234567890123%56789012345678901234567893%%}4562?9&%23456789012345678%912345§1890

INEXT PAGE: press transmit or enter key
SKIP AHEAD/BACK: type any item# in set Example--> 25

?ULLWRISPLAY: type DISPLAY ITEM plus an item# Example--> display item 2

‘ﬁﬂ%;

Area | Classification | Code Feature 1-1 52202010
i Page Info 5 Feature 1-2 3187320
2 Title (31-50) 2 Feature 1-3 ITEMSH-IOF!
3 Tite (67-76) 2 Feature 1-4 SETI:BRIEFDISPLAY
4 Empty 0 Feature 5-1 READY:
5 Title (32-48) 2
6 Empty 0 Figure 4.7. An Example Legacy Screen Snapshot (6) with
7 Code (0-5) t Features 1-1, 1-2, 1-3, 1-4 and 5-1 Extracted.
8 Empty Y

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

431 3270 Data Stream Features

When receiving a snapshot via the IBM 3270 outbound data stream, LeNDI gets the

presentation space of the snapshot along with some non-visual information. From this
extra information, LeNDI records the initial cursor location on the screen and IBM 3270
field locations, lengths, attributes and protection status (protected or unprotected, i.e.,
read only or read/write). In some systems, this information can be very useful in
clustering similar snapshots together. In particular, these features can help distinguish the
snapshots of visually similar CUI states, e.g., those belonging to different modes of a
multi-mode screen, if each mode is to be treated as a separate screen.

This non-visual extra information varies between data transfer protocols. The
discussion below and the features in this subset apply to IBM 3270 data transfer protocol.
For IBM 3270, LeNDI extracts two features that encode important information about the
IBM 3270 fields received with the outbound data stream.

4.3.1 Feature 2-1: Hashing of the Number and Locations of IBM 3270
Fields

The first feature is a hash function of the information of the IBM 3270 data fields
retrieved with a screen snapshot. It encodes two pieces of information, the number of

fields and their locations. LeNDI uses the following hashing function:

Feature 2-1 =) (x; X y;) + 10000 X n I is the set of IBM 3270 data fields
iel

where x and y are the horizontal and vertical locations of the field’s first character on the

snapshot as received from the IBM 3270 outbound data stream and recorded by LeNDI

and n is the number of 3270 fields on the current screen snapshot. This feature is

numerical and its values are compared with one another using binary comparison.
4.3.2 Feature 2-2: The Number of IBM 3270 Unprotected Fields

This feature is the number of unprotected (input) data fields received from the
outbound data stream carrying the screen snapshot. So, after LeNDI records all the 3270
data fields received, it counts the number of unprotected ones. This feature is more useful
in clustering snapshots in systems with intense data entry operations, than other systems.

Binary comparison is used to compare different values of this feature.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Presentation Space Layout Features

Looking at a screen snapshot as document, one can see that many screens have some
layout structure that serves presenting the data on the screen in a meaningful
comprehensible format. For example, some screens present their content as an itemized
list, table, form, etc. Even when no clear structure is imposed on the screen, often its
content is organized using a particular layout. For example, some columns or rows may
be always denser in content than others on the snapshots of the same screen. Or, some
numerical contents always exist at certain parts of the screen. In some other cases, some
characters like 7, - or *’ are used to impose some patterns on the screen, e.g., vertical or
horizontal dividers or frames. The features of this subset capture such layout
characteristics. They are extracted using a number of image processing and document
analysis methods. They are grouped in two groups: projection profiles features and layout
classification features. The first group includes features that reflect the distribution of the
entire content or special types of contents (e.g., numbers) on the rows and columns of the

screen snapshot. The second group includes features that classify the layout to “table”,
“list” or “general” and the specifications of this classification, if it is one of the first two.
4.4.1 Projection Profiles

The features included in this subset are derived from different projection profiles built
for every recorded snapshot. Projection profiles analysis is used for document
understanding and mainly for separating different document components [SLGSH92,
LHHP96]. Projection refers to the mapping of a two-dimensional region of an image into
a waveform whose values are the sums of the values of the image points along some
specified direction. A projection profile is obtained by determining the number of black
pixels that fall into a projection axis. If the vertical and horizontal axes are chosen, then
the corresponding vertical and horizontal projection profiles are histograms representing
the number of black pixels in the columns and rows of pixels of a document image,
respectively. Projection profiles represent a global feature of a document and play an
important role in document component extraction. A deep ;»failey in the profile with a
certain predefined width is called a cut. Analysis of these cuts helps in separating the
components of a document. Further details can be found in [SLGSH92, LHHP96].

LeNDI treats a screen snapshot as a document and considers every character as a “black

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pixel”. Then, it applies projection profiles analysis to infer some features that describe the
density and distribution of the snapshot content.
LeNDI builds five types of profiles for every snapshot; each is the base for one
feature. The first two profiles are the vertical and horizontal binary histograms of the
~ entire snapshot content. A binary histogram is the one that has one bit for every column
or row represented. So, instead of recording the exact number of pixels per row or
column, a “1” or “0” is recorded depending on whether the number of pixels is above a
given threshold or not. The third is a vertical binary histogram of the numerical content of
the snapshot. In building this histogram, non-numerical characters are treated as blanks.
The forth is a histogram of the number of words in the two top and two bottom lines. The
fifth is a binary histogram of a single character of a group of characters of interest that are

66 93 66 3

thought to be used to impose some patterns on the screen snapshot, €.g., “-” or “_
LeNDI chooses the most frequent character on the given snapshot from the group of
interesting characters for this fifth histogram.

Several measures for histogram distances are suggested in [SLGSH92]. To compare
legacy snapshots projection profiles, LeNDI uses different versions of the normalized .
Euclidean similarity measure, which is the number of matching bits divided by the total
number of bits. The rest of this section describes in detail the five types of projection
profiles used in LeNDI and then presents the features associated with them and the
similarity measures used for each feature.
4.4.1.1 All Characters Binary Vertical Profile

This is a binary encoding of the histogram produced by projecting all the snapshot
content along the vertical axis. First, two setup parameters are retrieved from the
database. These are the “Upper Vertical Cut” and the “Lower Vertical Cut”. They define
how many rows to cut off the presentation space from the top and the bottom,
respectively, before building this profile. The default value for each of these parameters
is 3, but The LeNDI analyst can override the defaults. The reason for these cuts is that
legacy screens usually have date, time, title, list of available commands and other
information at their tops and/or bottoms. This information may have a common layout

among many screens but does not reflect any special layout characteristics of the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

individual screens, especially if projected vertically. This information at the periphery of
the screen is used for extracting the presentations space features of section 4.2.

Second, the number of non-blank characters is counted per column. Then, for a
certain column, if this number is above a certain threshold’, it is represented by “1” in the
binary encoding of the vertical profile; otherwise it is represented by “0”. Otherwise,
LeNDI uses the default value of 3. Setting this threshold gives The LeNDI analyst
freedom to eliminate the noise produced by scattered characters and focuses the
histogram representation on the body of the snapshot. The resulting histogram is 80 bits
fong for default IBM 3270 screen snapshots. It is stored as a string in hexadecimal
format. Algorithm 4.4 is used for building this profile.
4.4.1.2 All Characters Binary Horizontal Profile

This is a binary encoding of the histogram produced by projecting the snapshot
content along the horizontal axis. It is similar to all characters binary vertical profile,
except that non-blank characters are counted per row not per column. No cuts are made to

the snapshots before building the profile. A user-defined or a default horizontal threshold

Algorithm 4.4: Constructing All Characters Binary Vertical Profile

Input: A presentation space, Pres Space, of a snapshot

QOutput: The “all characters binary vertical profile” of Pres Space

Steps:

1. Retrieve the Upper Vertical Cut and Lower Vertical Cut from the database.
2. Retrieve the Vertical Threshold from the database.

3. Cut the top Upper Vertical Cut rows from Pres Space
4. Cut the bottom Lower Vertical Cut rows from Pres Space

5. Create String all char vertical profile

6. For every column in Pres Space

e Count = the number of non-blank characters in this column

e If (Count > Vertical Threshold) then Concatenate 'l' to all char vertical profile
e FElse Concatenate ‘0 to all char vertical profile

Convert all char vertical profile to hexadecimal representation

Report all char vertical profile

Go ~

Algorithm 4.4. All Characters Binary Vertical Profile Construction Algorithm

3 LeNDI provides a default threshold which can be overridden by the analyst.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.5: Constructing Numbers Binary Vertical Profile
Input: A presentation space, Pres Space, of a snapshot

Output: The “numbers binary vertical profile” of Pres Space
Steps:

1. Retrieve the Numbers Vertical Threshold from the database.
2. Create String numbers vertical profile

3. For every column in Pres Space
e Count = the number of digits in column
e If (Count > Numbers Vertical Threshold)
then Concatenate '’ to numbers vertical profile
« Else Concatenate '0' to numbers vertical profile

Convert numbers vertical profile to hexadecimal representation
Repert numbers vertical profile

&

Algorithm 4.5. Numbers Binary Vertical Profile Construction Algorithm

is used to decide whether the count of non-blank characters in a row should be
represented by “1” or “0”.
4.4.1.3 Numbers Binary Vertical Profile

This profile is similar to the “all characters binary vertical profile” except that only "
the number of digits per columns is counted and all other characters are treated as blanks.
No upper or lower cuts are made to the snapshot. The count of digits per column is
compared to a user-defined or a default value of the “Numbers Vertical Threshold” setup
parameter, to decide whether to represent it by “1” or “0” in the profile. Algorithm 4.5 is
used to build this profile.
4.4.1.4 Words Horizontal Profile

This profile is a histogram of the number of words in the absolute top two rows and
the absolute bottom two rows of a snapshot. A word is a horizontal sequence of
characters that is preceded and succeeded by at least one space or by the left or right
boundary of the screen snapshot. This definition includes line segments, numbers, etc.
This is the only non-binary profile, meaning that the actual count of words is stored in
hexadecimal format not just a binary encoding of it.
4.4.1.5 Special Characters Binary Profile

331 $L

Some characters like [” or “*” are often used to create patterns, e.g., dividers,

— 3

56,99 <& 37

etc. on legacy screens. Some other characters like or “” may be used in some

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“consistent” way on the snapshots of one screen, forcing some patiern on the instances of
this screen. Consistency can be relative to the snapshot rows or columns, e.g., if a table
column appears starting at the same column on a screen and it contains real numbers,
then a pattern of dots (") will be formed on this snapshot. See an example of two
snapshots of the same screen in Figures 4.8 and 4.9. One can notice that the patterns
imposed by /' and "' on these two snapshots are more consistent in the vertical direction
than the horizontal one, i.e., the same columns in both snapshots contain instances of
these characters, but only some rows do. A binary profile that is created by capturing the
consistent presence (i.e. pattern) of the most frequent of these characters on a snapshot
can serve as a feature for comparing snapshot similarity.

To implement this idea, first, LeNDI offers a default set of special characters and for
each character, it offers a suggested direction (horizontal or vertical) along which, the
corresponding character is thought to exist consistently more that the other direction.

Table 4.2 shows this set. For example,

“P” is usually used to create vertical lines or
dividers on snapshots. So, it is suggested to build a vertical binary profile for it, if it is
chosen as the character of interest. The LeNDI analyst can change or replace the default -
special characters set. LeNDI can accept up to 10 special characters. Additionally, s/he
can change the type of profile suggested for a special character. Third, during feature
extraction for a snapshot, LeNDI counts the number of occurrences for each of the
special characters in the snapshot presentation space. For the most frequent character, it
builds the corresponding type of profile associated with this character and encodes it in
binary format. The upper and lower cuts used in building the “all characters binary

vertical profile” are used in building the special characters profile too if it is a vertical

one. If it is a horizontal one, no cuts are made.

Special Character | # {: [* |/ |- |_
Profile Type VIVIVIV HIH

Table 4.2. LeND

’s Default Special Characters Set.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123456789012345678901234567890123456789012345678901234567890123456789012345678590

1] DANILS, STEVEN SHAWS WC 101-794547 REG 5
2| PAGE 01 ***MORE

3} INJURY DATE 03/10/91 IND EST 148143

4 INJ DESC HAND CONTUSION s/
5{ LN PAYER IND FROM THRU DYs WKLY CHARGE INEL PAID RVL
6{ NC CODE DATE DATE RATE CODE 57
7

8l 1 CLT 25 07/15/95 (07/28/9% 14 76.34 152.68 152.68 10
9 2 CLT 20 07/22/95 07/28/95 7 444.85 404.99 404.99 10
0] 3 CLT 20 07/15/95 07/21/95 7 444.65 404.99 404.99 10
1 .

2] 4 CLT 20 07/08/95 07/14/395 7 444 .65 355.15 359.15 10
3 5 CLT 20 07/01/95 07/07/95 7 444.65 358.15 359.15 10
4i 6 CLT 25 07/01/95 07/14/95 ADJ 77.60 155.20 155.20 190
5

61 7 CLT 20 07/08/95 07/14/85 7 444.65 52.50 52.50 10
7] 8 cLT 20 07/01/95 07/07/95 7 444 .65 52.50 52.50 10
3 9 CLT 25 06/17/95 06/30/95 ADJ 78.23 156.46 156.46 10
9

0

1

2| SELECT LINE RETURN TO INQ) CLM DSP SKIP TO DATE

3

4 INQ IND SVC LST

123456789012345678%0123456789012345678901234567890123456785012345678901234567890

1

2

3 /7

4 /
5

6

7

8 /7 /7
9 /o /7
0 /7 /o
1

2 /7 i
3 7/ /o f
4 /7 ro7
5

6 /7 /]
7 /7 /ot
8 /7 /o .
9

]

1

2

3

4

Figure 4.8. An Example Legacy Screen Snapshot (7) (upper). The Patterns Imposed
on The Snapshot by °/° and °.” Characters (lower).

4.4.1.6 Features 6-1 and 6-2: All Characters Binary Vertical and Horizontal Profiles

Five features are derived for each snapshot from the projections profiles described
above. The first is Feature 6-1. It is the “all characters binary vertical profile” of the
snapsh@t.'lt is stored as a string of 20 characters; each represents a hexadecimal digit that
encodes 4 bits, i.e., 4 columns of the profile. Feature 6-2 is similar to Feature 6-1. It is a
6-characters string encoding the “all characters binary horizontal profile”. LeNDI does

discrete comparison for 2 values of any of the Features 6-1 and 6-2, using the normalized

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12345678901234567890123456789012345678901234567890123456789012345678901234567890

1} DANILS, STEVEN SHAWS WC 101-794547 REG 5
21 PAGE 22

31 INJURY DATE 03/10/91 IND EST 148143

4] INJ DESC HAND CONTUSION is/
5] LN PAYER IND FROM THRU DYSs WKLY CHARGE INEL PAID RVL
51 NO CODE DATE DATE RATE CODE 5T
7

81 1 CLT 190 05/06/91 05/19/91 14 444.65 883.30 889.30 10
91 2 CLT i0 04/22/91 05/05/91 14 444.65 88%.30 889.30 10
0f 3 CLT 10 04/08/91 04/21/%1 14 444.65 889.30 889.30 10
1

2i 4 CLT 10 03/25/91 04/07/91 14 444 .65 889.30 889.30 10
31 5 cLT 10 03/11/91 03/24/91 14 444.65 889.30 889.30 10
4

5

6

7

3

9

0

1

2} SELECT LINE RETURN TO INQ CLM DSP SKIP TO DATE

3

4

INQ IND SVC LST

12345678901234567890123456789012345678901234567850123456789012345678901234567890

1

2

3 /7

4 /
5

6

7

8 /ot /7
9 /o /o
0 i /7
1

2 ro/ I
3 /7 /7
4

5

6

7

3

9

0

1

2

3

4

Figure 4.9. An Example Legacy Screen Snapshot (8) (upper). The Patterns Imposed
on The Snapshot by */° and °. Characters (lower).

Euclidean similarity measure, which is the number of matching bits divided by the total
number of bits. The resulting value represents how similar two snapshots are, based on
this feature. In other words, this value shows how similar the contents of both snapshots
are distributed across snapshot columns (Feature 6.1) or rows (FPeature 6.2).
4.4.1.7 Features 6-3: Numbers Binary Vertical Profile

Feature 6-3 is a 20-character siring that encodes the “numbers binary vertical profile”

in a hexadecimal format. A weighted Euclidean similarity measure is used to compare

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

values of this feature. This means that the weight of matching “1”s can be different thaﬁ
that of matching “0”s. The LeNDI analyst may define (or use the default) weighis to
decide how important the coexistence of a “1” in the same bit on both values compared to
the coexistence of a “0”. The formal case indicates that the corresponding columns on
both snapshots include some numerical content, while the later indicates that the columns
do not have any numerical content. The weight of a mismatch is 0.
4.4.1.8 Features 6-4: Words Horizontal Profile

Feature 6-4 is the “words horizontal profile”. It is a string formed by concatenating
the 4 numbers representing the word counts for the absolute two top and absolute two
bottom lines of the snapshot. The counts are in hexadecimal format. The similarity of two
values is the number of matching counts (out of 4) divided by 4.
4.4.1.9 Features 6-5: Special Characters Binary Profile

Finally, Feature 6-5 is an encoding of the “special characters binary profile”. Itis a 7-
characters or 21-chracters string depending on whether the profile is horizontal or
vertical, respectively. In both cases, the first character of the string is an encoding of
which special character is used. For example, if the special characters set contains 6 -
characters, then the first of them is given the code “0”. The second is “1”, etc. When
comparing two values of this profile, LeNDI starts by comparing the first character, to
see if the same special character was considered for both snapshots or not. In case of a
mismatch, LeNDI stops and the comparison result is 0. In case of a match, LeNDI
proceeds to compare the entire profile using the weighted Euclidean similarity measure
used with Feature 6-3.
4.4.1.10 Projection Profiles Example

This subsection provides an example legacy screen snapshot and the five projection
profiles produced for it and the associated features. Figure 4.10(a) shows the setup
parameters used in this example. Figure 4.10(b) shows the snapshot used in the example
and the upper and lower vertical cuts. Figure 4.10(c) to (g) show the five projection
profiles produced for this snapshot and the values of the corresponding features. Note that
the least significant digit in Features 6-1, 6-2, 6-3 and 6-5 represent the 4 left most
columns or the 4 topmost rows, depending on the direction of the profile. So the profile

“1110111110111111.....7 will be represented by the string “...... fdf7”. Additionally,

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

note that Feature 6-5 in Figure 4.10(h) starts with the character 'S’ which indicates that the
sixth special character was chosen for building the special character profile of the given

snapshot. According 1o Figure 4.10(2), this character 1s " and the associated projection

direction is vertical.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Upper Vertical Cut 3 | Numbers Threshold 3

Lower Vertical Cut 3 | Special Character Set | - (H) _(H) #V) (V) *(V) (V)
Vertical Threshold 3 {1-1 Match Weight 1.5

Horizontal Threshold | 10 | 0-0 Match Weight 0.3

(a) The setup parameters used in this example. #(1) means if the special character
’#’ is chosen, build a horizontal prefile for it.

12345678901234567890123456789012345678901234567890123456789012345678901234567890

THE TERM, “BUDGET SURPLUSES”, IS NOT USED IN C102.
THE TERM, “BUDGET SURPLUSES”, IS NOT USED IN C101.
THE TERM, “BUDGET SURPLUSES”, IS NOT USED IN C100.
ITHE TERM, “BUDGET SURPLUSES”, IS NOT USED IN CG99.
THE TERM, "BUDGET SURPLUSES®, IS NOT USED IN (CG98.
THE TERM, "BUDGET SURPLUSES”, IS NOT USED IN CG97.
ITHE TERM, “BUDGET SURPLUSES"”, IS NOT USED IN CGS6.
THE TERM, “BUDGET SURPLUSES”, IS NOT USED IN CG95.
THE TERM, “BUDGET SURPLUSES", IS NOT USED IN CGY%4.
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN CG9%4.

[BUDGET SURPLUSES
Broader terms:

o1 BUDGETS
PAGE 1 OF 2. READY FOR NEW COMMAND OR PAGE #(FOR NXT PG, XMIT):

W N ROV b WK OW®-JA U & WN -

(b) An example legacy screen snapshot (9). Upper and lower cuts are in gray.

123456783501234567890123456789012345678901234567890123456789012345678901234567890

Vertical Threshold

HRNWERE DO 0WO R NWSUO

1310311230321333101131312333303103110333101101111100C0000000000006000D6000000500
7 £ d £ d £ £ d e e d e 3 0 0 0 0 0 0 0

(c) A vertical projection of the content of the example snapshot in (b) and the
corresponding “all characters binary vertical profile” at the bottom.

Figure 4.10(a-c). An Example Legacy Screen Snapshet (9) with Features 6-1, 6-2, 6-3,
6-4 and 6-5 Exiracted.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123456789012345678901234567890123456789012345678301234557890

| i £

2 1

3 kS

41 i

5 i £

61 1z

7 i

8 i

9 1 £

0 i

11 3

21 i

3 I b

41 I

5 4]

! z

7 0 a

3 i

9 9]

0 i

1 0 o

2 Horizontal 0

3 Threshold 0

4 0

(d) A horizontal projection of the content of the example snapshot in (b) and the
corresponding *‘all characters binary horizontal profile” to the right.

123456789012345678901234567890123456789012345676890123456789012345678901234567890

Numbers Threshold

R W E T 00O N WD

0000000000000C060000000600000000600000000000000112000000000000G600000000C00000000C
0 0 0 0 0 0 0 0 0 0 0 c 1 0 0 0 0 0 0 0

(e) A vertical projection of the numerical content of the example snapshet in (b) and
the corresponding “numbers binary vertical profile” at the bottom

(f) The words horizontal profile of the snapshot in (b). The words of the top 2 and
bottom 2 rows are numbered and the word count per column is fo the right.

Figure 4.10(d-f). An Example Legacy Screen Snapshet (9) with Features 6-1, 6-2, 6-3,
6-4 and 6-5 Extracted.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1234567890123456789012345678590123456789061234567890123456785012345678901234567890

R WaEs O] 00O R NW

000CQC00E0000GC0000040000000100C00C00GE0000000G000000002000040080000006800000000
0 0 1 0 0 0 C 1 0 0 0 0 Q 8 0 0 0 0 0 Q

(g) The vertical projection of the special character ’,” for the snapshot in (b) and the
corresponding “special characters binary projection profile”.

Feature 6-1 00000003edeedffdfdf7
Feature 6-2 Oabfif

Feature 6-3 00000001c00000000000
Feature 6-4 8600

Feature 6-5 500000080000010000100

(h) Features 6-1 to 6-5 for the snapshot of (b).

Figure 4.10(g,h). An Example Legacy Screen Snapshot (9) with Features 6-1, 6-2, 6-3,
6-4 and 6-5 Extracted. .

4.4.2 Layout Classification

It is very common for legacy screen snapshots to have some format, e.g., table, list, or
other format. It would be very useful in grouping similar snapshots together to discover
their formats and specifications, e.g., the number of column and rows of a table or the
number of items in a list. Based on this, the second feature subset derived from snapshot
layout is derived by analyzing the positions of the different components of the snapshot
content relative to each other and deciding whether or not these positions impose a
certain structure on the snapshot appearance. Currently, LeNDI can classify a snapshot
to table, list or, general screen. Additionally, it discovers the specifications of the
discovered format. To do this, a number of document analysis algorithms are applied to
the snapshot, which is treated as a document. First, LeNDI tries to discover any tabular
structure on the document. If it fails, then it tries to discover if a list exists on the
snapshot. If it fails, then it labels the snapshot as “general”, which means that no structure

layout could be discovered. This classification is used as Feature 7-1. Feature 7-2 is a

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

summary of the specifications of the table or list discovered, if any. The following details
the algorithms used, and follows by feature description and examples.
4.4.2.1 Table Detection: An Overview

A number of algorithms for table detection in document images and textual
documents emerged from document analysis research. LeNDI’s table detection process is
based on the bottom-up table detection process described in [KD99, Kie98]. It starts by
identifying single words. Then, it groups words in blocks. Finally, it tries to discover the
relation between these blocks and see if they are organized in a tabular structure or not.
The following describes the algorithms developed and implemented in LeNDI to realize
this process.

In the bottom-up view of the snapshot, the lowest level is the word, delimited by
white space or snapshot boundaries on either side, and constrained to a single row. Figure

4.11 shows the words identified on a portion of the legacy screen snapshot of Figure 4.3.

3

i51atiod {{billd [nd

res

[1932d [congress)] [Ehrougt [199

Figure 4.11. The Identified Words on Part of a Legacy Screen Snapshot.

The next level is comprised of blocks, which are constructed from words. Any two
words that are vertically adjacent are members of the same block. In order to be vertically
adjacent, there must exist at least one column, which both words occupy, and the words
must be in consecutive rows. Figure 4.12 shows portions of the two blocks that contain
the words shown in Figure 4.11. The relation between all the blocks in the document

(snapshot in our case) is then studied to see if they form a table.

v,b“ressz bﬁlx
gt A’l‘),tl

Figure 4.12. Portions of The Identified Blocks on a Legacy Screen Snapshot.

= =3 &
s

A table is characterized by having several columns of information. Note that a
column is generally defined by spanning more than one row, to distinguish it from a text
segment that occupies one row. By studying many legacy screen snapshots, one can

recognize two major types of tables. There is the single-row record table, whose record of

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data occupies only one physical row on the snapshot. So, each of its soEumﬁs cantaiqé
similar pieces of information, each on a different row (See Figure 4.13). There is also the |
_multiple-row record table, where related information in a record is spread across multiple
rows {See Figure 4.14). Thus, a column in this case may contain different types of
information. These two types of tables consist of different types of blocks and have

unique properties that necessitate separate consideration.

DANILS, STEVEN SHAWS WC 101~-7%aaaa REG 5
PAGE Q1 ***MORE
INJURY DATE: 03/10/91 MED EST: 200000
INJURY DESC: HAND CONTUSION 1s/
LINE DOC NO SVCE FROM THRU PROC PROV CHARGE INEL PAID RVL
NO CODE DATE DATE CODE

]
4 95198-0000 103 04/05/95 04/13/95 097110 TOTAL
5 95192-7777 600 06/02/95 06/30/95 REHAB
6 95192-7777 600 06/02/95 06/30/585 REHAB
7 95164-0384 103 05/15/95 05/15/95 178013 TOTAL 90.00 D 40.00 10
8 95173-0000 103 05/01/94 12/29/94 178012 TOTAL 320.00 DD 120.00 10
9 95170-7777 199 02/01/95 05/31/95 MEMBERTSH 126.40 126.46 10
SELECT LINE NO RETURN TO INQ CLM DSP SKIP TO DATE

INQ MED SVC LST

Figure 4.13. A Single- Row Record Table.

ACCOUNT INQUIRY
MORE~PF1
NAME GENERAL MILLS, INC. PAGE 01

MENU X NEXT INQUIRY POLICY INQ ARCHIVES DIV 4

Figure 4.14. A Multiple-Row Record Table.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Many single-row record tables have one word per row. To find such tables, LeNDI
needs to look for blocks of text where each word is connected to at most one word in
each vertical direction. These blocks are dubbed “thin blocks” to indicate their special
nature, which is that they contain one word per row. If these “thin” blocks are found in
reasonable amounts across consecutive rows on the screen, the area should be declared a
table. The area would be limited horizontally by the leftmost and rightmost thin blocks
and vertically by the spén of the rows throughout which thin blocks can be found. For
example, the boxed area in Figure 4.13 could be labeled as a table, because there are 9
thin blocks that span at least 3 shared rows. Between the leftmost and rightmost thin
blocks, this area may also contain non-thin blocks. Note that the detected table does not
extend past the first and last thin blocks, even if the actual table does. The next subsection
introduces the necessary default or user-defined parameters for defining the criterion of
accepting or rejecting a group of thin blocks as a table.

To detect muitiple-row record tables, LeNDI compares the starting column of the top
row (top-left) of the blocks that start on the same row with those that start on other rows.
These blocks do not have to have the same dimensions; however, the two rows should
have enough number of blocks that begin there. There should also exist a certain number
of blocks that have identical borders on the left side. If this condition is met then the area
that contains the table (the smallest rectangle that contains all the blocks) is identified as
such. For example, the boxed area in Figure 4.14 would be labeled as a table, despite the
large block in the middle that would confuse other table identification attempts. Note that
in Figure 4.14, the blocks with light gray background are those that were detected as part
of a table. They meet the conditions described above. The ones with dark gray
background do not contribute to table detection, as they do not fulfill the necessary
conditions. Only the parts of these blocks that fall inside the table borders are considered
part of the table. The first record of the actual table on the snapshot is not detected as part
of the table. _

One of the problems identified in [KD99, Kie98] is the effect of common headers (or
footers) on blocks. This effect is shown in Figure 4.15. Essentially, it causes multiple thin
blocks to be tied together by a header or footer that spans multiple columns. This can

cause problems to LeNDI's table detection strategy. One solution to this problem is to

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consider instances of thin sub-blocks within larger blocks and use these as if they were
separate. To identify the sub-blocks, one considers groups of words inside a block that
are vertically connected with one another and disconnected from the surrounding text. If
they span sufficient rows, then they are considered thin sub-blocks. Then, one can apply
Algorithm 4.6b for single-row record table detection to both the original thin blocks and
the new thin sub-blocks, to see if there 1s a table.
4.4.2.2 Table Detection: Process and Algorithms

The sequel gives an overview of the application of the above methods in LeNDI,
followed by the algorithms used. LeNDI needs to prioritize the above ideas before
applying them. First, LeNDI divides a given presentation space into words and then
groups these words into blocks (Algorithm 4.6a). Second, as tables composed of thin
blocks are the most prevalent and the least computationally intensive, LeNDI tries to
identify this type first (Algorithm 4.6b). Since LeNDI is designed to deal with a wide
range of legacy Ul styles, it offers the user some control over this process. Specifically,
the user is allowed to override the default values of LeNDI for these two parameters:
1. The minimum number of blocks (columns) that must exist in a table. The defaultis 3. .

2. The minimum number of rows that these blocks must all span. The default is 3.

FEDERAL LEGISLATION

These files track and describe legislation (bills and resolutions) introduced
in the US Congress, from 1973 (93rd Congress) through 1998 (105th Congress).
Each file covers a separate Congress.

R

11 Search all Congresses on LOCIS 1973-1998
Earlier Congresses: press ENTER
12 Return to LOCIS MENU screen

Choice:
LEGISLATIONL

Figure 4.15. Embedded Thin Blocks

Third, if the second step fails to find a table, LeNDI gathers thin sub-blocks from the
set of blocks discovered (Algorithm 4.6c). Then, it reapplies Algorithm 4.6b used in the

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

second step above. Beside the above parameters, the user can control a parameter that
defines when to consider a thin sub-block separate from its parent block:
3. The minimum number of rows a thin sub-block must span to be considered separate

from its parent. The default 1s 3.

Fourth, if the third step fails too, LeNDI applies the top-left matching algorithm
(Algorithm 4.6d) to the collection of blocks. This algorithm would reuse the parameters:
the minimum number of blocks {columns) and the minimum number of rows. The first
defines the minimum number of matching blocks a table must have between two rows.
The second is used to indicate the minimum number of rows that must have matching
blocks. In the following, Algorithms 4.a to 4.d, which are used by LeNDI to implement
this process, are presented.

Algorithm 4.6a starts by creating empty lists to store the words and the blocks
identified on the given presentation space (steps 1 and 2). Note that blocks are graphs
whose nodes are words. Suitable classes or data structures need to be created. But these
details are not shown in the abstract algorithms given here. Step 3 extracts the individual
words from the presentation space and stores them in Word List. What are actually stored
are the words’ dimensions, i.e., row, starting column and length. For every word
extracted, step 4 tries to find all the blocks that it belongs to, i.e., blocks that the word is
adjacent to at least one word in each of them (step 4.b) and merges them together (4.c).
But if the word does not belong to any block, then it is put in a new block, which is added
to the Block List (step 4.e).

Algorithm 4.6b aims to find the first table it encounters that meets the default or user-
set criterion for tables. This algorithm does not aim to find all the tabular structures on
the snapshot or discover their relation to one another, e.g., if they are parts of the same
table but are fragmented from each other.

| Step 1 in Algorithm 4.6b creates a list to store thin blocks, Thin Blocks. Step 2 marks
the non-thin blocks. It identifies them as the ones having at least one word that is adjacent
to at least two words from above or two words from below. Then step 2.c adds blocks
that passed the thinness test without getting marked to Thin Blocks. Steps 3 and 4 retrieve
the parameters that define how many thin blocks (min # of columns) are needed and how

many mutual rows (min # of rows) they need to span in order to be considered a table.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 5 goes over every set of rows of height min # of rows to see how many thin blocks
span this set of rows, i.e., start above or at the first row and end below or at the last row. '
Step 5.c performs this check, counts such thin blocks and calculates the dimensions of the
minimum rectangle that covers these thin blocks, which is considered as the dimension of
the table formed of these blocks if any. Step 5.d checks if enough thin blocks (greater
than or equal min # of columns) span the given set of rows. If yes, then it reports the
current table dimensions and terminates the algorithm. If the current set of rows does not
have enough thin blocks to form a table, step 5 moves one row down, takes the next min
of rows rows and repeats the check of which thin blocks span this set of rows. If the test
fails for all sets of min # of rows consecutive rows, then step 6 reports that no table was

found using thin-block analysis.

Algorithm 4.6a: Breaking a Presentation Space into Blocks of Words
Input: A presentation space, Pres Space.

Output: A list of all word blocks in Pres Space.

Steps:

1. Create a new list, Word List

2. Create anew list, Block List

3. For every row in the Pres Space
e Break row into words
o Store the words’ coordinates and lengths in Word List

4. For every word in Word List
a. Success = FALSE
b. Fer every block in Block List
e If word is adjacent to block then
o Add word to block
o Mark block
o Success = TRUE

c. Merge all marked blocks together
d. Unmark all marked blocks
e. If Success == FALSE then
e Create a new block, New Block
o Add word to New Block
o Add New Block to Block List

Algorithm 4.6a. Breaking a Presentation Space into Blocks of Words

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.6b: Table Detection Using Thin Blocks

Imput: A list of blocks, Biock List and the presentation space’s number of rows, lengrh.
Output: The dimensions of the table formed of the input blocks if any.
Steps:
1. Create a new list, Thin Blocks
2. For all the blocks in Block List

a. Get current block

b. For every word in current block

e If connected with two words from above or two words from below then
o mark current block as non-thin block
c. If current block is thin then add it to Thin Blocks

Retrieve the parameter min # of rows from database
Retrieve the parameter min # of columns from database
For i = 1 to length - min # of rows +1
a. column count =0
b. Create new Dimensions table dimensions
c. For every block in Thin Blocks
o If (first row in block < i) && (last row in block 2 i + min # of rows -1) then
o column count ++
a Update table dimensions to include block
d. If (column count Z min # of columns) then
e Report table dimensions
¢ Return message “Table found”

6. Return message “Table NOT found”

ok W

Algorithm 4.6b. Table Detection Using Thin Blocks

Algorithm 4.6¢ discovers thin sub-blocks in a given block, block. Step I creates a list
to store the discovered thin sub-blocks, Thin Sub-block List. Step 2 retrieves the
parameter that defines how many rows thin sub-blocks should span in order to be
considered and analyzed independent from its parent block. Step 3 marks all the words
with only one adjacent word from the row above and one from the row below, which are
candidates for being in one of the thin sub-blocks. Step 4 loops while there are still
marked words in block. Steps 4.a to 4.c get the next marked word and create a new sub-
block for it, sub-block. Steps 4.d and 4.e get the upper and lower adjacent words of the
current marked word. Step 4.f grows sub-block from above by looping as long as there
are more upper adjacent marked words, fetching these words and adding them to sub-
block. Step 4.g deals with the case when the top word of a sub-block has to adjacent
words from above, and hence, is not marked. Step 4.g still adds such word to sub-block.

Figure 4.16 shows two cases, one when step 4.g would not apply (left) and another when

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it applies (right). In the left case, all the words of both thin sub-blocks are marked as they
all have at most one adjacent word from each direction. In the right case, the top word of
‘the right block is unmarked as it has two adjacent words from above. Step 4.g would still
add this word to the thin sub-block. Steps 4.h and 4.1 are similar to 4. and 4.g but grow
sub-block from below. Step 4. adds sub-block to Thin Sub-block List if it spans at least
the minimum number of rows parameter. Step 4.k unmarks all the words in sub-block.

Finally, step 5 reports the discovered thin sub-blocks.

Algorithm 4.6¢: Discovering Thin Sub-blocks inside a Block

Input: A block, block.

Output: A list of all the thin sub-blocks in block.

Steps:

1. Create a new list, Thin Sub-block List

2. Retrieve the parameter min # of rows of a thin sub-block

3. For every word in block

e ¥f word is adjacent with at most one word from below and one word from above

G then mark word

4. While there are still some marked words in block do
(et next marked word

. Create new Block sub-block

Add marked word to sub-block

. Get upper adjacent word to marked word
Get lower adjacent word to marked word

-0 0o

While upper adjacent word is marked

o Add upper adjacent word to sub-block

o et next adjacent word to upper adjacent word

e upper adjacent word = next adjacent word
g. If upper adjacent word has one adjacent word from below then
e Add upper adjacent word to sub-block

h. While lower adjacent word is marked
e Add lower adjacent word to sub-block
o (Get next adjacent word to lower adjacent word
e [ower adjacent word = next adjacent word
i. If lower adjacent word has one adjacent word from above then
e Add lower adjacent word to sub-block

j. If (height (sub-block) = min # of rows of a thin sub-block) then add sub-block to
Thin Sub-block List
k. Unmark all words in sub-block

5. Repert Thin Sub-block List

Algorithm 4.6c¢. Discovering Thin Sub-blocks inside a Block

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHOZIL
z

;/

Figure 4.16. Two Cases where Step 4.g in Algorithm 4.6¢c Is Skipped (Left) and
Applied (Right). Gray Words Have 1 or No Adjacent Words from below and above.

CHOICE Of CONGRESS

A

ooty

To demonstrate the application of Algorithms 4.7b and 4.7¢c, an example is given in
Figure 4.17. In Figure 4.17a, Algorithm 4.6b was applied to discover thin blocks, which
are shown in gray. Then the algorithm proceeded to detect the relation between these
blocks. The default value of 3 was used for all the parameters, which are the minimum
number of rows for a table, the minimum number of thin blocks (columns) and the
minimum number of rows for a thin sub-block to be considered independent form its
parent. The sliding window with dashed frame and height 3 kept sliding down from the
top of the snapshot with no success in detecting a table. Figure 4.16a shows when the
algorithm was analyzing rows 17 to 19. The thin blocks with dark background meet the
condition of vertically spanning at least the three rows under analysis, but there are only
two of them. So they do not form a table. The blocks with light gray background do not -
meet the condition. Figure 4.17b shows the same analysis after applying Algorithm 4.6¢
to discover thin sub-blocks and include them in the reapplication of Algorithm 4.6b. This
time, there are four thin blocks and sub-blocks that vertically span the lines currently
under study in the dashed frame. The conclusion is that the area in the solid line frame,
which is the minimum rectangle that covers the thin blocks of the table, contains a table,

according to the criterion defined by the parameters used.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'12345678901234Qo7890123450780012345678901234567890123”567800123456”890123456”890

2 3 SET 1: BRIEF

{ASCENDING

31} H.CON.RES.216: SPON=Rep Shaw, (Cosp=5);
regsolution expressing the sense of
future budget surpluses.

H.CON.RES.284: SPON=Rep Kasich; OFFICIAL TITLE: A concurrent resolution
revising the congressional budget for the United States Government for
fiscal year 1998, establishing the congressional budget for the United
States Government for fiscal year 1999, and setting forth appropriate
Budgetary levels for fiscal years 2000, 2001, 2002, and 2003. FLOOR
ACTION HAS OCCURRED. .

H.RES.340: SPON=Rep Pascrell, {Cosp=16); OFFICIAL TITLE: A resolution
expressing the sense of the House of Representatives that any
budgetary surplus achieved by the end of fiscal year 2002 be |
investment in the Social Security Program.

. TITLE: A concurrent
i regarding the use of

transmit or
any item# in
DISPLAY ITEM

NEXT PAGE:
SKIP AHEAD/BACK:
FULL DISPLAY:

READY : .

RWNRROWO AU R WD OW®X DU &

(a) The application of thin block analysis (Algerithm 4.6b) does not detect any table.

12345678901234567890123456789012345678901234567890123456789012345678901234567890
bE 4 SET 1: BRIEF gy
{ASCENDING
H.CON.RES.216: SPON=Rep Shaw, {(Cosp=5);
resolution expressing the sense of
future budget surpluses.
H.CON.RES.284: SPON=Rep Kasich; OFFICIAL TITLE: A concurrent resclution
revising the congressional budget for the United States Government for
fiscal year 1998, establishing the congressional budget for the United
States Government for fiscal year 1999, and setting forth appropriate
Budgetary levels for fiscal years 2000, 2001, 2002, and 2003. FLOOR
ACTION HAS OCCURRED.
#. H.RES.340: SPON=Rep Pascrell, (Cosp=16); OFFICIAL TITLE: A resolution
expressing the sense of the House of Representatives that any
budgetary surplus achieved by the end of fiscal year 2002 be |
investment in the Social Security Program.

=

i TITLE: A concurrent
t regarding the use of

=

BWNRFOWO IR WNEOWOO-J0 U N

(b) Reapplying thin block and sub-block analysis (Algorithm 4.6b), after identifying
thin sub-blocks using Algorithm (4.6¢), detects the table in solid border.

Figure 4.17. An Example Application of Algorithms 4.6b and 4.6¢

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If table discovery by analysis of thin-blocks and sub-blocks fails, LeNDI tries to
detect any existing multiple-row record table using its block top-left matching algorithm
(Algorithm 4.6d). The idea of the algorithm is to iterate over the rows of the presentation
space. For every current row, it tries to discover if there is a table that starts there. This is
done by storing the blocks that start on this row. Then, for every subsequent row, the
algorithm collects the blocks that start on this next row and checks if they qualify to be
part of a potential table that starts on the current row. This is done be comparing if
enough blocks on both rows have the same left column border. If enough subsequent
rows qualify, then the algorithm declares that a table is found, reports the table
dimensions and terminates.

Algorithm 4.6d takes as input a list of blocks resulting from Algorithm 4.6a and the
number of rows in the presentation space analyzed. It outputs the dimensions of the first
table formed of the input blocks that meets the user criterion, defined by the minimum
number of rows and columns parameters. Step 1 creates a new object, Table Dimensions,
to store the dimensions of any table discovered. Steps 2 and 3 retrieve the parameters min
of rows and min # of columns. Step 4 iterates over every row i and stops when a table is
found. Steps 3.2 and 3.3 store, in a new block list Table BL, all blocks that start on the
current row. If the number of blocks starting on the current row is less than min # of
columns, step 3.4 ends the current iteration and moves to the next row. Step 3.5 iterates
over every row j subsequent to the current row and checks if it qualifies for being part of
a table that starts at i. Steps 3.5.1 and 3.5.2 store all the blocks that start on j in a new
block list Candidate BL. Step 3.5.3 checks if j has enough columns (blocks) compared to
min # of columns. If yes, then it checks how many of these columns has left boundaries
that match some block of Table BL. If the number of matching blocks is > min # of
columns, then this row is considered part of a potential table and Num Qualifying Rows is
incremented and Table Dimensions is updated to include all the matching blocks. After
iterating over all the subsequent rows of i, step 3.6 checks if the number of qualified rows
is = min # of rows. If yes, it reports Table Dimensions, returns a success message and
terminates the algorithm. If no, step 3.7 resets Table Dimensions, and another iteration
starts to try to discover a table starting at row i+1. If no table was discovered that starts at

any row, step 5 terminates the algorithm with a failure message.

g7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.6d: Block Top-left Matching Algorithm

Input: List of blocks, Block List, and the number of presentation space rows, length.
Output: The dimensions of the table formed of (some of) the input blocks, if any.
Steps:
1. Create new Dimension Table Dimensions
2. Retrieve the parameters min # of rows and min # of columns from database
3. Fori=1tolength

3.1. Num Qualifying Rows =1

3.2. Create a new block list, Tabie BL

3.3. For every block in Block List

e If (top row of block = i) then
o Add block to Table BL

3.4. If (sizeof (Table BL) < min # of columns) then Continue
3.5. For j = i+1 to length
3.5.1 Create a new block list, Candidate BL
3.5.2 For every block in Block List
u If (top row of block =) then
% Add block to Candidate BL

3.5.3 If (sizeof (Candidate BL) < min # of columns) then
a matching Columns = the # of blocks in Candidate BL whose leftmost
column matches that of a block in Table BL
o If (matching Columns = min # of columns) then
% Num Qualifying Rows ++
= Update Table Dimensions to include all blocks in Table BL and
Candidate BL whose leftmost columns match

3.6. If (Num Qualifying Rows = min # of rows) then
e Report Table Dimensions
e Return message “Table found”

3.7. Else Reset Table Dimensions
4. Return message “Table NOT found”

Algorithm 4.6d. Block Top-left Matching Algorithm

Figure 4.18 illustrates the application of Algorithm 4.6d. The minimum number of
rows and columns sought was three. The algorithm failed to discover a table until row 7.
Three blocks start at row 7. Their dimensions (top row, left column, bottom row, right
column) are shown in the table of Figure 6.18(b). Then, the algorithm analyzed the
consecutive rows and discovered that each of rows 12 and 17 has three blocks with the
same left boundary as the three blocks of row 7 (shown in bold font). The algorithm
concluded that rows 7, 12 and 17 form a table whose dimensions are (7,4,19,49), ie., it

includes all the blocks with matching left columns.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8901234567890123456789012345678901234567890]

2L

34567890123 78901234567

N

B) N O 00 -1 Oy U LB O 00 D O U LR
T
ey i

(a) An example snapshot with a multiple-row record table detected.

Row # The Dimensions Of The Blocks Starting On This Row
7 (7,4,8,19) [(7,25,1,28) (7,31,9,49)
8 (8,51,8,56)
9 (9,67,9,68) 1(9,70,9,74)
10
11
12 (12,4,13,19) 1(12,25,12,28) 1(12,31,14,46)(12,48,12,55) {(12,67,12,68) 1(12,70,12,72)
13
14 {14,67,14,68) {(14,70,14,78)
15
16
17 (17,4,18,19) [(17.25,17,28) [(17,31,19.47){(17,48,17,55) [(17,67,17.68) |(17,70,17,72)

(b) The dimensions of the blocks starting or rows 7 to 17.

Figure 4.18. An Example Application of Algorithm 4.6d

4.4.2.3 List Detection
If LeNDI fails to recognize any tabular structure on a snapshot, it tries to discover if
the snapshot contains a list. A list is characterized by the following:
1. There exists a column of numbers in the left half of the snapshot. This can be decided
from the “numbers binary vertical profile”.
2. The column contains “enough” numbers, which are neither real numbers nor dates or
times. The user need to define how many numbers are enough by setting up the

parameter “minimum list length”, or LeNDI will use the default value of 3.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LeNDI employs the heuristic Algorithm 4.7 below to discover the existence of a lisié 7
if any, on a given snapshot. Steps 1 and 2 build the “numbers binary vertical profile” of
‘the given snapshot presentation space and store it in a variable, Nums Profile. Step 3
terminates the algorithm if no numerical content is found in the left half of Nums Profile.
Otherwise, step 4 gets the location of the left most sequence of “1”s in Nums Profile,
which is assumed to be corresponding to the list indices, if any. Steps 5 to 8 extract the
snapshot columné corresponding to this sequence of ones, cut the top and bottom of these
columns using the setup parameters upper and lower vertical cuts and finally store them
in Strip. Step 9 extracts all the numbers in Strip and stores them in Numbers List. It
excludes numbers that are part of a date or a time or part of a real number. Steps 10 and
11 terminate the process if the length of Numbers List is less than the setup parameter:
minimum list length. Reaching step 12 means that a list was found. Step 12 collects its
attributes, the list order, first element, size, increment, first element's row and left
boundary and right boundary of Strip. Steps 13 and 14 report these attributes and return a
message that a list was found.

To better understand Algorithm 4.7, an example is given in Figure 4.19. The upper of -
Figure 4.19 shows a legacy screen snapshot. The bottom shows a projection of the
numerical content of the snapshot on the horizontal axis after cutting the top “Upper
Vertical Cut” lines and the bottom “Lower Vertical Cut” liners off the snapshot and the
Numbers Vertical Profile of the snapshot in binary format. The gray strip on the upper
figure is the strip of interest that Algorithm 4.7 extracted and analyzed for this snapshot
after examining the profile at the bottom. The list indices retrieved from this strip are 2,

3,4,5,6,7,8and 9.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.7: List Detection

Input: The presentation space, Pres Space, of a given snapshot.
QOutput: A message indicating if a list was detected or not and list specifications, if any.

Steps:

1

2
3
4

W

D00 =IO

10
11
12

13

Call the Numbers Binary Vertical Profile Algorithm (4.5), with Pres Space as input.
Store the profile in binary format in Nums Profile

If the first half of Nums Profile is 2ll zeros then Return message “No List”

Else get the start location, start loc, and length, /en, of the leftmost non-zero sequence
in Nums Profile

Extract from Pres Space the column start loc and len-1 consecutive columns and
store them in Strip

Retrieve the Upper Vertical Cut and Lower Vertical Cut from the database

Cut the Upper Vertical Cut lines from the top of Strip

Cut the Lower Vertical Cut lines from the bottom of Strip

For every line in Strip

a.
b.
c.

d.

Extract the first sequence of digits and store it in number
If number is empty then discard number
Else If number is part of a date, time or real number, i.e., if it is
e Succeeded or preceded by a slash “/”
e Succeeded or preceded by a slash “:”
e Succeeded by a dot and a digit, e.g., “.6” or preceded by a dot
then discard number
Else store number in Numbers List

66 I3

Retrieve the setup parameter Min List Length
If length(Number List) < Min List Length then Return message “No List”
Else

a.
b.

I S

Ascending = Descending = Equal = Increment =

For i =1 to length (Number List) - 1

o If Numbers List [i] < Numbers List [i+1] then Ascendmg++

e If Numbers List [i} > Numbers List [i+1] then Descending++

o Else Equal++

List Order = The 1% letter of the biggest of Ascending, Descending and Equal, i.e.
A DorE.

First Element = Number List [1]}

Size = length (Number List)

Increment = (Number List [Size]- Number List [11}/ (Size - 1)

I Element’s Row = The row on which the first number in the list.
Left Boundary = start loc

Right Boundary = start loc + len - 1

Report List Order, First Element, Size, Increment, 1 S Element’s Row, Left Boundary
and Right Boundary
14 Return message “A List Was Detected”

Algerithm 4.7. List Detection Algorithm

&1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12345678901234567890123456789012345678501234567890123456789012345678901234567890
L.C CATALGG

CHOICE FILE
1 BOOKS cataloged from 1898 to 1949 LOC1
- {most older records are in PREM, option 4 below)

Z BOOKS cataloged from 13530 to 1974 1.0C2
3 BOOKS cataloged since 13875 LOC3
4 0lder, incomplete, unedited BOOKS and SERIAL records for items PREM
Q cataloged from 1898 to 1980. These records are NOT repeated in

LOC1, LOC2, LOC3 or LOCS. This file also contains older records
For maps, music, sound recordings and audiovisual materials.

SERIALS cataloged at LC & some other libraries LOCS
MAPS and other cartographic items LOCM
SUBJECT TERMS and cross-references from LC Subject Headings LCXR

Multiple file search options {except Sun-Fri, 9:30pm-6:30am US Eastern)
Mulciple file search options {(Sun-Fri, 9:30pm-6:30am US Eastern)

8o search LC's Music, AV, Manuscript, Computer Files & other catalog files,
%ign on to any LOC file {choices 1-3, 5-6) and see HELP screens.

12 Return to LOCIS MENU screen
Choice: LC CATALOG

BWNR OOWOTAU D W GOWOW IO U R W

12345678901234567890123456789012345678901234567890123456789012345678901234567890

0

9 -

8

73

6 &

5| 8

4__@7 Numbers Threshold
3 7 50

2| B 1 9975 1 7 9 30 2
1] 8 1 2 3898 111980 1934 5 6 9430 6 30 6 30 3

001000

Figure 4.19. An Example Legacy Screen Snapshot (10), Its Vertical Projection and
Profile of Its Numerical Content and The Detected List Information Strip (Gray).

4.4.2.4 Feature 7-1 and Feature 7-2: Layout Classification and Specifications

Two features are derived from the layout classification analysis described above. The
first is Feature 7-1, which is a single character that describes the layout structure, if any.
It takes the vale T if a table was discovered, L' if a list was discovered and “” (Blank) if
neither a table nor a list was discovered. Feature 7-2 is a multi-part description for the
structure discovered if any. For a table, it describes the following:

e Table Start Column

e Table Start Row

e Table Width

e 'Table Height

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e - Number of blocks used to detect the table. Note that there may be exira blocks
inside the table area that did not contribute to table detection as in Figure 4.25.

For a list, it describes the following:

e List Order

e First Element

e Number of Elements

e Increment

e First Element’s Row

e [Left Boundary

e Right Boundary

LeNDI uses binary comparison for Feature 7-1. For Feature 7-2, LeNDI does discrete
comparison by comparing the two values part by part. Then, it reports the ratio of the
number of matching parts to the total number of parts (5 for a table and 7 for a list).
4.4.2.5 Table and List Detection Examples

This subsection provides some examples to show what layout description can be
discovered by Algorithms 4.6 and 4.7 and what the extracted Features 7-1 and 7-2 are for ~
each case. These examples use the sample snapshots used as examples in subsection
4.2.3. The examples are shown in Figures 4.20 to 4.25. The default value of 3 is used for
the three setup parameters of table detection and for the only setup parameter used in list
detection. On each snapshot, the layout structure discovered by LeNDI, if any, is marked
with light and/or dark gray. A description of the discovered structure and the
corresponding values of Features 7-1 and 7-2 are given. Note that LeNDI starts the
indices of the presentation space columns and rows with zero, while they start with one in
the given example for ease of understanding. So, when the “table start column” attribute
of a table is 3 in the examples below as discovered by LeNDI, this means on the
corresponding presentation space shown the table starts at column 4. Hence, the last part
of Feature 7-2 records “4” as the number of columns or blocks of the table. In Figure
4.20, the 3 bottom rows of the snapshot are cut while building the “numbers vertical
profile” for list detection. Hence, the menu choice “12” corresponding to “Comments and
Logoff” was not discovered as an item on the list. In Figure 4.25, the table detected was

detected based on the discovery and the relation between the four thin blocks shown. The

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fifth non-thin block that is part of the table did not contribute to the detection process.
One can argue against that the structure detected on Figure 4.25 as a table. But since the

_user criterion required only 3 columns and 3 rows to recognize a table, it was detected.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123456785012345678901234567895012345678901234567890123456785012345678901234567890
L O0C I s: LIBRARY OF CONGRESS INFORMATION SYSTEM

To make a choice: type a number, then press ENTER

Copyright Information -~ files available and up-to-date
Braille and Audio ~- files frozen mid-August 1999
Federal Legislation ~-- files frozen December 1998

* ® * 5 * * * * * * % * * % *

The LC Catalog Files are available at:

Hup:/ficweb.loc.gov/catalog/

* * * % * * * * * £ * * * * *

Searching Hours and Basic Search Commands
Library of Congress General Informaticn
Library of Congress Fast Facts

12 Comments and Logoff

WP OOV EWNRFROWOD-TN O WRN =

Choice:
L.OCISMENU

List Order A Feature 7-1 L
First Element i Feature 7-2 A1 61412
Number of Elements |6
Increment 1

st s,
i f]fl;menés Row ‘1‘ Figure 4.20. An Example Legacy Screen Snapshet (11)

eit boundary with Features 7-1 and 7-2 Extracted.
Right Boundary 2

123456789012345678901.23456789012345678901234567890123456789012345678901234567890

FEDERAL LEGISLATION

These files track and describe legislation (bills and resolutions) introduced
in the US Congress, from 1973 (93rd Congress) through 1998 (105th Congress).
Bach file covers a separate Congress.

B i o e
The 106th Congress, 1999-2000, can be found at: http://thomas.loc.gov/
11 Search all Congresses on LOCIS 19732-1998
Farlier Congresses: press ENTER
i2 Return to LOCIS MENU screen

B WNRFRFOWOTAWNERE WNR OWOW®m-J0 U & W

Choice:
LEGISLATIONL
Table Start Column |3 Feature 7-1 T
Table Start Row 7 Feature 7-2 3.7.71.95
Table Width 71
Table Height 9 Figure 4.21. An Example Legacy Screen Snapshot (12)
Number of Columns |5 with Features 7-1 and 7-2 Extracted.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12345678901234567890123456789012345678901234567890123456789012345678901234567890
TUESDAY, 02/27/02 03:52 P.M.
***You are now signed on to €105, €104, C103, €102, €101, €100, CGY3,
CG98, CGS7, CGY6, CGY5, CG94 and CGS3.
READY FOR NEW COMMAND:

BWNPFPOWVWOTIOANU R WNMHOWOU®OTIOU D WN

Feature 7-1 Blank
Feature 7-2 Blank

Figure 4.22. An Example Legacy Screen Snapshet (13)
with Features 7-1 and 7-2 Extracted.

12345678901234567890123456789012345678901234567890123456789012345678901234567890
DEFICIT REDUCTION

Broader terms:

T01 FISCAL POLICY

Related texms:

T02 BALANCED BUDGETS

o3 BUDGET DEFICITS

T04 BUDGET RECONCILIATION

T05 DEFICIT FINANCING

T06 GOVERNMENT SPENDING REDUCTIONS
07 RESCISSION OF APPROPRIATED FUNDS
READY FOR NEW COMMAND:

W N OWOTOURWNR OOV~ U B NP

Feature 7-1 Blank
Feature 7-2 Blank

Figure 4.23. An Example Legacy Screen Snapshot (14)
with Features 7-1 and 7-2 Extracted.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12345678901234567890123456789012345678901234567890123456789012345678901234567830
LIVT IS THE SOURCE FOR THE EXPN COMMAND:

SET 1 45: SLCT C1l05/INDX/BUDGET SURPLUSES

104.

BUDGET SURPLUSES

Broader terms:
TO1 BUDGETS
PAGE 1 OF 2. READY FOR NEW COMMAND OR PAGE #(FOR NXT PG, XMIT):

B WN R OWVWOSNTOAURWNE SWR IO WU WN

Table Start Column {0 Feature 7-1 T

Table Start Row 3 Feature 7-2 0.3 50 11.9_

Table Width 50

Table Height 11 Figure 4.24. An Example Legacy Screen Snapshot (15)
Number of Columns {9 with Features 7-1 and 7-2 Extracted.

12345678301234567890123456789012345678901234567890123456789012345678901234567890

ITEMS 1-3 OF 45 SET 1: BRIEF DISPLAY FILE: C105
{ASCENDING ORDER)

1. H.CON.RES.216: SPON=Rep Shaw, (Cosp=5); OFFICIAL TITLE: A concurrent
resolution expressing the sense of Congress regarding the use of
future budget surpluses.

2. H.CON.RES.284: SPON=Rep Kasich; OFFICIAL TITLE: A concurrent resoclution
revising the congressional budget for the United States Government for
fiscal year 1998, establishing the congressional budget for the United
States Government for fiscal year 1999, and setting forth appropriate
budgetary levels for fiscal years 2000, 2001, 2002, and 2003. FLOOR
ACTION HAS OCCURRED.

3. H.RES.340: SPON=Rep Pascrell, (Cosp=16); OFFICIAL TITLE: A resclution
expressing the sense of the House of Representatives that any
budgetary surplus achieved by the end of fiscal year 2002 be saved for
investment in the Social Security Program.

transmit or
any item# in
DISPLAY ITEM B

| Example--> 25
s an itemd Example--> display item 2

S WNHF OV WNRROWUOTO U &WN R

Table Start Column {0 Feature 7-1 T
Table Start Row 16 Feature 7-2 0. 16.42 3 4
Table Width 42
Table Height 3 Figure 4.25. An Example Legacy Screen Snapshot (16)
Number of Columns {4 with Features 7-1 and 7-2 Extracted.
97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Su

Jiscrete Feature Set

Table 4.3 surmnmarizes LeNDI's feature suite, described in sections 4.2 to 4.4, The

‘column “comparison” describes what similarity measure is used to compare two values of

the same feature. B means binary comparison, whose output is 1 or 0, i.e., either the two

feature values are identical or not. D means discrete comparison, which means that two

values of a multi-part feature are compared part by part. Euclidean similarity measure is

used which is the number of similar parts divided by the total number of parts. D2 means

that discrete comparison is done and weighted Euclidean similarity is used, i.e., there is a

different weight for different types of matches and/or a penalty for mismatches. For

example, for features composed of sequences of bits, a matching “1” may be more

~ important than a matching “0”.

Feature Description | Comparison

1-1 | Itis an encoding of the classification of the content of 8 important D
areas at the periphery of the snapshot to empty, code, title, date, time,
page number or message area.

1-2 | A concatenation of the start columns of all title and code areas | B
discovered, ordered from area 1 to 8.

1-3 The text on one of the key 8 areas selected by the user or automatically | B
by LeNDI. Numbers are replaced by “!”’s

1-4 Similar to 1-3, but with another area chosen. B

5-1 | The label to the left of the initial cursor location. Numbers are replaced | B
by “I”’s.

2-1 A hash function of the number of IBM 3270 fields and their locations B

2-2 | The number of IBM 3270 unprotected fields received with the snapshot | B

6-1 | All characters binary vertical profile D

6-2 | All characters binary horizontal profile D

6-3 | Numbers binary vertical profile D2

6-4 | Words horizontal profile D

6-5 Special characters binary profile D2

7-1 An encoding of the snapshot layout classification to “Table”, “List” or | B
“General”

7-2 | Multi-part specifications of the layout classification encoded in Feature | D
7-1,if it is a “Table” or “Label”

Table 4.3. A Summary of the Discrete Feature Suite of LeNDIL.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 Le

The three feature subsets described in subsections 4.2 to 4.4 are the primary source

nary Feature Set

for extracting a binary feature set that is used by LeNDI'’s top-down clustening algorithm
[EISSMO1], which is described in chapter 5. The top-down clustering algorithm needs
binary feature because it produces a binary decision tree. Each leaf of this tree represents
a cluster of similar snapshots and each branching node represents a decision to split a
group of snapshots to two groups based on a feature-value combination, as explained in
details in chapter 5. This means that the snapshots that share this value for this feature are
grouped together and those who do not are grouped together. Thus, the comparison of the
feature values should be binary, i.e., it should give either a one or a zero.

To extract the binary features, multi-part discrete features are either broken down to a
number of binary features or abstracted by a number of binary features. Table 4.4
summarizes LeNDT's binary feature suite. Feature 600 abstracts the “all characters binary
vertical profile” by dividing it into four equal sequences of bits. Each sequence is
represented by half or more of its bits are 1s and is represented by 0 otherwise. The
resulting 4 bits are stored as a hexadecimal number. The same is done to extract Feature
601 from Feature 6-2. Feature 602 is an abstraction of Feature 6-3, derived in a similar
way with the exception that if any 1 exists in the bit sequence then the sequence is

represented by 1. Similarly, Feature 608 is extracted from Feature 6-5.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Feature

Description

100 to 107

Each of these features is a number from O to 6 encoding the classification
of one of the eight important areas of a snapshot that were described in
section 4.2. So, it is a breakdown of Feature 1-1 of subsection 4.2.2.1.
Feature 100 corresponds to area 1. Feature 107 corresponds to area 8

108 to 115

These are the starting column numbers for the eight important areas.

116 to 123

These are the actual text content of areas 1 to 8, with numbers replaced by
129 g”so

124

Page number extracted from any of the eight areas that is classified as
page number information, if one exists

200

The hash function of the number of IBM 3270 fields and their locations
described in section 4.3.1 as Feature 2-1.

201

The number of IBM 3270 unprotected fields received with the snapshot,
which is Feature 2-2 of subsection 4.3.2.

560

This is the cursor label described in subsection 4.2.2.4 as Feature 5-1.

600

An Abstraction of Feature 6-1 (All characters Binary Vertical Profile)

601

An Abstraction of Feature 6-2 (All characters Binary Horizontal Profile)

602

An Abstraction of Feature 6-3 (Numbers Binary Vertical Profile)

603 to 606

These four features from 603 to 606 represent the hexadecimal
representation of the word count of the top row, the second top row, the
second last row and the last row, respectively.

607

An encoding of which special character is used in extracting Feature 6-5.

608

An Abstraction of Feature 6-4 (Special Character Binary Profile)

700

This is the layout classification of the snapshot, same as Feature 7-1.

701

This is a hash encoding of rows, columns and other List or Table features

Table 4.4. A Summary of the Binary Feature Suite of LeNDIL.

4.7 LeNDDI’s Feature Extractor and Feature Viewer

Figure 4.26 shows the Ul of LeNDI’s Feature Extractor module. Figure 4.26(a) shows

the menu of LeNDI’s Feature Extractor. It allows the analyst to open the feature

extracting setup window, to start extracting feature vectors for the snapshots of a trace,

and to view the feature vectors extracted for a recorded trace. Since, the Feature Extractor

needs some user setup before starting feature extraction, the analyst can choose to keep

the default setup values or change them. But first, the analyst needs to choose the

recorded traces to work on from the Ul shown in Figure 4.26(b). For each recorded trace,

Figure 4.26(b) shows the date of recording, the IP of the host, the type of connection used

and the number of screen snapshots recorded. After selecting a trace, the tabbed pane of

Figure 4.26(c) appears. It allows the analyst to set or change the default keywords and

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

patterns that are used to identify the pieces of data found at the periphery of a snapshot as
date, time, page or message. It also, allows the analyst to change the default parameters
for projection profile construction and layout classification. Finally, it allows her/him to
pick which areas to choose for exact matching, i.e. to take their textual content as
Features 1-3 and 1-4, or to tick a check box to let LeNDI pick two areas automatically.
LeNDI has a Feature Viewer, whose Ul is shown in Figure 4.27. It can be opened by
choosing "View.. " from the menu of Figure 4.26(a). In Figure 4.27, the left column
shows the trace number, the second left column contains the serial number of the
snapshots of the chosen trace. The middle area shows the presentation space of the

selected snapshot. The right column shows the feature vector of the select snapshot.

2001-12-27 00-... locis loc.gov BM3270
2002-02-08 00.... {locis.loc.gov 1Bm3270
2002-02-27 00-...|locis loc.gov BM3270

.
2007-03-13 00-... |infoMcGill McGill.CA |IBM3270
2002-03-13 00-__ [InfoMcGTLMGGIl CA IBM3270

(b) Selecting a Recorded Session (Interaction Trace) for Feature Extraction

Figure 4.26. LeNDI’s Feature Extractor User Interface.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T
s

¢) Feature Extraction Setup Tabbed Pane
Figure 4.26 (¢) LeNDI’s Feature Extractor User Interface.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ret-2: 0190249
re1-3 HCON.RES.I (Cly

93724494

§791-1226011355
84526454

84726794 rel-4: continued:
84726424 rez—1?224?9
84526434 re2-2.1 :
84726798 red-1:XT PG, XMIT):
84726754 ref-1: 400000780000001 7
84725794 ref-2: 161
re6-3; 00000064800006000000
a3/e4/84 reb-4: 2300
85484792 r26-4: 50000001 2000080080000
85704494 ningperceniage: 100
95764794

83764594
95526454
23726494
83726594
45726534
B5526/%94
83726434

- Classification of the screen :

Figure 4.27. LeNDI’s Feature Viewer User Interface.

4.8 Discussion and Conclusions

In LeNDI, we implemented and experimented with a new advanced set of snapshot
features mainly to serve the automated clustering of similar snapshots together and to
minimize the human effort needed to guide the clustering process. Hence, the inference
of a unique predicate for each cluster based on this feature set is automated. Such a
predicate captures the commonality between the snapshots of one cluster and
distinguishes them from those belonging to other clusters. It is to be used at runtime for
identifying incoming new snapshots by classifying them to one of the clusters or CUI
states already identified. In the current manual practices, an analyst keeps going through
many snapshots of the same screen online, and possibly offline, trying to infer their
commonality. The analyst formulates this community in the form of a predicate or
signature. As described in subsection 2.2.3, some tools offer rich text pattern languages to
empower the analyst in his search for such predicate. But these languages mainly rely on
finding some keywords existing (or missing) at fixed locations or within some ranges on
the snapshots of the screen under analysis. Thus, these languages mainly utilize the
snapshot text to find such predicates. Mostly, they do not lock into the snapshot content,
layout and organization, the semantics of the content or the other invisible information

received with IBM 3270 data streams.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to be equipped to reverse engineer a wide variety of legacy CUI s‘ﬂ:yﬁes; '
LeNDI utilizes a broad set of features. It has a subset of features extracted from the
_special information that may exist at the screen snapshot periphery. It has a second subset
of features extracted from the non-visual information received with the outbound data
stream. Its third subset is extracted by analyzing the snapshot layout and organization.
The division of LeNDT’s features suite to three logical subsets, led to thinking of a screen
as formed of different layers. A legacy screen can be comprehended at different levels
corresponding to these layers. The following main levels of understanding or layers can
be identified for a legacy screen snapshot, although the boundaries between them are not
well defined:

1. Lexical/Syntactic layer. This layer describes the types of different elements of the
screen and the order and location of the visual elements. The important element types
that can be used as features are screen title, code, date, time, command line, messages
and IBM 3270 data fields and character and field attributes.

2. Layout layer. This layer is a description of the density and distribution of the screen
content on its presentation space, the different components of this content and their .
spatial relation to one another.

3. Semantics layer. This layer includes the meanings of the different components of the
screen content. Combined together, these meanings define the function of the screen.

4. Navigation layer. This layer encompasses the navigation sequence {screens and user
actions) followed to reach the current screen and the user actions permissible on it.
Depending on the data transfer protocol and the CUI style used to design the screens,

legacy CUI screens can vary a lot in terms of the information available in each layer. The

interaction reverse engineering process of LeNDI went beyond the comparisons of simple
texts on a screen snapshot, to advanced syntax and layout analysis of the snapshot using
heuristics and document analysis methods to infer some of the snapshot characteristics.

Also, it utilizes the hidden information received with the IBM 3270 data stream to deduce

a few features.

However, there is room for improvement. Our future research to enhancement the
interaction reverse engineering process will include analysis of the semantic and

navigation layers of screen snapshots to empower LeNDI with additional feature subsets.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, by treating the set of available screens snapshot as a set of documents and
applying information retrieval methods to analyze their content, one can automatically
retrieve a set of index terms for the snapshot set. Then, clustering similar snapshots
becomes like grouping similar documents together based on their content represented by
index terms. Another example is adding a navigation history segment of chosen length as
a feature for every snapshot. This can be the immediate predecessor snapshot and the

action done to move to the current snapshot.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y

In chapter 4, the necessary steps for automating the process of building the state-
transition model of a legacy sysfem CUI were introduced:
1. Extracting a rich set of features for every snapshot in the recorded ftraces,
automatically,
2. Defining a similarity measure for each feature,
3. Defining a similarity and/or distance function to use for clustering similar snapshots
together,
4. Clustering similar snapshots together separate from the rest,
5. Verifying and correcting the clustering results via user feedback
6. Automatically extracting unique predicates that distinguish the snapshots belonging
to different clusters, i.e., to different legacy screens, and
7. Modeling the permissible user behavior (actions) on every legacy screen
Chapter 4 covered steps 1 and 2 above. It presented the set of features that are
extracted to every recorded screen snapshot, the possible user setup to control feature
extraction and the similarity measures used to compare two values of each feature. Then,
at the end of feature extraction, every recorded snapshot is represented by a feature
vector. These vectors along with feature similarity metrics are the input to the actual
process of legacy CUI behavior modeling. This process covers steps 3 to 7 above and is
implemented by tasks T1.2 to T1.4 in Figure 3.1. This chapter gives the full details of
legacy CUI behavior modeling in LeNDI. The output of this process is a state-transition
model of the legacy CUIL

5.1 Introduction

Like mapping the streets of an area, legacy CUI behavior modeling captures the roads
(actions) and intersections (screens) of a legacy CUIL The produced state-transition

model is the “map” of the corresponding CUL The model serves the following purposes:

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. First, the state-transition model is a documentation of the legacy CUI behavior and-
can be used for understanding the application behavior and capabilities.

&

2. Second, the main function of the model is to serve as a “guide” for the new re-
engineered Ul in navigating the legacy CUL So, when the new Ul front-end executes

a task in the legacy host and navigates through its screens, it checks the identity of

every newly received snapshot at runtime against the states of the model to identify to

which screen the new snapshot belongs. Then, the data input and output mandated by
the task plan on this legacy Ul screen take place followed by the execution of the
necessary action to proceed to the next state.

A state-transition model of a legacy CUI does not need to cover the entire CUL It
may only cover the parts that will be subject to reengineering. The rest of this
introduction includes three subsections. Subsection 5.1.1 gives an example state-
transition model. Subsection 5.1.2 presents the state-transition modeling problem.

Subsection 5.1.3 outlines the solution implemented in LeNDI to solve this problem,

which is detailed in the rest of this chapter.
5.1.1 Example

Traditionally, state-transition models have been used to specify the dialog between
the user and the application through the user interface, for the purposes of model-based
interface development and evaluation [Sch99]. Figure 5.1 shows a schematic diagram of
a segment of an interaction trace with the Library of Congress Information System
(LOCIS) [LOCIS], through its public IBM 3270 connection, and the corresponding
portion of the state-transition model of LOCIS CUL LOCIS is a command-driven legacy
library information system that allows performing information retrieval tasks on Braille
and Audio and Federal Legislation catalogs of the Library of Congress. The interaction
trace segment of Figure 5.1(a) started by accessing LOCIS main menu and then the
Federal Legislation menu. Then the user selected the catalog he wanted to open and got a
welcome screen snapshot. By issuing the right commands, he browsed the catalog,
retrieved a subset of its entries, displayed it briefly and finally, displayed the details of

the entry he was looking for.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@E Enter Key *] Optional Argument
* Mandatory Argument X_Y¥_Z X, yand z are alternatives of the same keyword
: A
; [133eE | : } @t]
v " Bri e H s} 10
E.:OCHS ?ﬂef o n?f !‘fFe_m ‘Dstads 1 » filtem Deta“il itern Dotail
Miain Meny Display isplay irst Page E E._OCBS Intrmd.Pg. % Last Page
$3@E T@E ld ftern 133@E? summ@Ek Main Men @t =TT 2 %
g ngler?i " Briet item Display| |item Detail {3@E *@Ev @t
SQISELON | pisplay Options || First Page 8 @t
Meny ftem Detail
J11@E Tee]aleE T otie First Page Jj ¢———
Welcome Brief item Details| {item Display 2 8L
Display First Page Options 11@E “@E
b repiwiﬂiams@E T @E J @ T @E EWelcome I 7
. - p - ' em Displa @E
Catalog Brief item Detalis| | item Details ¥ b*[{"l@E Options |,
Browse Display intrmd.Pg. | | Last Page 4 —é‘;“"—ta—l——;;‘] ,_______ g
Iroosee Tee [@E T et | Browse [ee | ﬁdisp_dispiay item *@E
Retrieve Brief ltem Details| | ltem Details E r et 8 Briar |
Results Display Intrmd.Pg. | | intrmd. 5 Retriove | ——»“ Displax
l d1@E I l @E I “ Resuilts

| ek | Td*@E

(a) A segment of an interaction trace (b) The part of the state-transition graph
with LOCIS. corresponding to the segment in (a).

Figure 5.1. An Example Trace of User Interaction with the Library of Congress
Information System (LOCIS) and the Corresponding State-Transition Model.

5.1.2 Problem Formulation and Definitions

As a directed graph, a state-transition model of a legacy CUI, inferred from a
recorded trace of interaction with the legacy Ul can be defined as follows:
Definition 5.1
Ulnode = (Statesy;, Transitionsy;)
1. Statesy;= {St;, i=1.. #states},
snap 3 Trace;,, A Tracej, 3 TraceSet = 3 St 3 Statesy; A instance-of (snap, St),

2. Transitionsy;=1{ (Stsource, Staestination) }>
(811, 8ty) 3 Transitionsy;=> 2 (snap;.y, key;, snap;) 3 Trace;, A Trace;, > TraceSet
A instance-of (snapj.1, Stsource) A instance-of{snap;, Stiesination)

3. TraceSet - Tracey n, (Tmcej,nj}* j=2..m

o where Trace;,, is a trace of length is n;, as defined in Definition 3.1.

According to Definition 5.1, each snapshot in the recorded trace is an instance of a
state in the legacy CUI state-transition model. Furthermore, for each transition in the

model there must exist at least one keystroke sequence in the recorded trace that leads

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from a snapshot, which is an instance of the source state, 1o another snapshot, which is an
instance of the destination state. In this work, the terms “legacy screen” or simply

33 &6 EE R 1Y

“screen , “state”, “node”, and “cluster” refer to the same thing from different views, and
hence will be used interchangeably depending on the context. A legacy screen refers to a
legacy CUI unit, represented by a matrix of characters and other associated information
which exhibits certain behavior in terms of the user actions it permits and the outcome
(destination screen) of each action. This screen reflects a state of the legacy application
CUIL, represented by a node on the state transition graph. Such a state is represented by a
predicate that is inferred by clustering the tecorded instances or snapshots of the
corresponding screen in one cluster. '

Building the state-transition model of a legacy CUI can be divided to three sub-
problems. The first problem is identifying the distinct behavioral states of the legacy
CU]I, represented by nodes on the model. To do so, using interaction traces as the only
input, one needs to identify in these traces the snapshots that are similar to each other,
according to some suitable similarity measure, and exhibit identical behavior. These
similar snapshots should be instances of the same state. Identifying them is the first step
in modeling this state.

Then, the second problem is: given the similar snapshots of every state, how to infer
the common identity of these snapshots represented by some unique predicate? This
predicate is needed to recognize new snapshots as instances of existing states. In other
words, the problem here is how to induce a classifier that is able to classify new
snapshots received at runtime as instances of an existing state?

The third problem is building models of the transitions permitted at each state, i.e.,
the user behavior associated with each node. These transitions are the arcs of the state-
transition model. A transition model captures the commonality of all action instances
recorded that caused the corresponding transition, e.g., command keywords, actions
locations, etc. The next subsection outlines LeNDI's solution to these three problems,

before providing full details in the next sections.

5.1.3 LeNDI’s Approach to Legacy CUI Modeling

LeNDI adopts clustering as the solution to the first problem of identifying the

distinguished behavioral states of a legacy CUL In this solution, “similar” snapshots are

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clustered together in one cluster. A similarity function s used to decide which snapshots
are similar. This function utilizes the features described in chapter 4. These features afe
extracted from the visual syntax and semantic characteristics of the screen snapshot and
from the other information provided by the data transfer protocol with each snapshot.

Clustering is a generic problem with instances in a variety of application domains.
Clustering algorithms are so many to the extent that you find popular sayings like “There
are more clustering techniques suggested than the number of real-world problems solved
with them" or “Clustering algorithms are worth a dime a dozen" [Mir96]. In general,
clustering algorithms are either batch, assuming that the complete set of input instances is
available at the same time, or incremental, allowing for additional instances to be
provided after initial clustering. Incremental algorithms, given a new instance, decide the
cluster to which it belongs by evaluating how similar the new instance is to the existing
clusters. Batch clustering algorithms are either top-down or bottom-up or hybrid. Top-
down algorithms start with a single cluster and continuously decompose it until a
stopping criterion is met. Bottom-up algorithms start with each instémce belonging to a
cluster by itself and join clusters until a stopping criterion is met. Irrespective of their .
control flow, all clustering algorithms require a distance (or similarity) metric, on the
basis of which, it is decided whether to split a cluster (in top-down algorithms), or
whether to join two clusters (in bottom-up algorithms), or whether a new instance is
similar enough to any of the existing clusters (in incremental algorithms). Any such
metric depends on a set of features that describe the input instances. In our case, these are
the feature vectors extracted for every snapshot as described in chapter 4.

Two clustering algorithms have been implemented in LeNDI: an incremental
algorithm [SEKSM99] and a top-down algorithm that stops when the number of expected
clusters is reached [EISSMO1]. These two algorithms have different knowledge
requirements and each one is preferable under different usage scenarios. The incremental
clustering algorithm uses the discrete (original) feature set of LeNDI described in
sections 4.2 to 4.5 and summarized in Table 4.3. It requires reasonable knowledge of the
legacy system under analysis and making decisions such as which features would be
more likely to be effective and what weights to assign to them. On the other hand, the

top-down algorithm uses LeNDI’s binary feature set (section 4.6 and Table 4.4) and

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requires almost no input from the user other than an initial estimate of the number of
expected clusters. Thus, each algorithm might be more suitable for certain application
problems. Also, we have found that, in practice, it is useful in some cases to explore the
traces of a legacy system thoroughly with the single-path incremental algorithm until
getting an accurate estimate of the number of clusters, and then using the more automated
top-down algorithm to generate an almost correct partition of the trace snapshots. A
partition is a set of non-overlapping clusters such that each recorded snapshot belongs to
only one cluster. For example, {{1,2}, {3}}, {{1}. {2}, {3}} and {{1}, {2,3}} are three
different partitions of the trace {1,2,3}. A number of bottom-up clustering algorithms
were explored while developing LeND], but none of them gave satisfactory results.

The result of clustering is a partition of the entire snapshot set. Due to the diverse and
unpredictable nature of legacy snapshot data, it is likely that a number of clustering
rounds would be needed for a given data set. So, the LeNDI analyst would review the
results of each round of clustering, readjust whatever clustering parameters needed by the
clustering algorithm s/he is using, and then re-cluster the data. Additionally, both
algorithms allow user feedback to fix clustering errors by merging or dividing clusters or
moving snapshots from a cluster to another.

LeNDI employs classifier induction to solve the second problem of capturing a
common identity predicate for each CUI state, represented by a cluster of snapshots. So,
once a correct partition has been produced, the LeNDI analyst can induce a classifier that
can correctly classify the individual snapshots into their corresponding clusters. LeNDI
implements two different classifiers. The first is a simple signature-based classifier that
captures the commonality of the snapshots of every cluster in a predicate. The second is a
decision tree classifier, which extends the decision tree produced by the top-down
clustering algorithm according to the user feedback on the partition produced by
clustering. After building a classifier, it can then be used at runtime to recognize new,
previously unseen snapshots as instances of the legacy CUI states.

To solve the third problem of identifying the arcs of the state-transition model of a
legacy CUIL LeNDI develops a model of each possible transition that had some
instance(s) recorded in the interaction traces. The only input to this process is samples of

the user actions done to perform such a transition along with the locations on the

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

snapshots where they occurred. These samples need to be grouped and analyzed to infer
their commonality and variability and formulate this information in a model |
Furthermore, location information of action instances can be analyzed to infer the fixed
location or range of locations within which the action takes place on its origin screen. The
generality of the mode! produced for every action depends on the number of instances of
this action available in the recorded interaction traces.

The rest of this chapter is organized as follows: Section 5.2 describes snapshot
clustering process in LeNDI and its two clustering algorithms, the single-path
incremental algorithm and the top-down algorithm. Section 5.3 describes LeNDI’s two
classifier induction methods, the signature-based classifier and the decision tree classifier.
Section 5.4 presents transition modeling in LeNDI. Section 5.5 is an evaluation of the
legacy CUI behavior modeling process. Section 5.6 concludes with a discussion of the

overall process, its strengths and limitations and possible extensions.
5.2 Clustering Legacy Screen Snapshots in LeNDI

This section presents the process of clustering similar snapshots in LeNDI as
instances of the same CUI state. It starts with a detailed description of the two clustering
algorithm implemented in LeNDI, the single-path incremental algorithm and the top-
down algorithm. Then, it follows by a description of the clustering quality metric
employed in LeNDI, MoJo Plus. Finally, it concludes by the describing QandA, CelLEST

visualization tool that allows reviewing and revising clustering results.

5.2.1 Clustering Method 1: Single-path Incremental Clustering of
Legacy Snapshots

The single-path incremental clustering algorithm deployed in LeNDI is derived from
a generic version described in chapter 3 of "Information Retrieval” by van Rijsbergen
{Rij79]. The algorithm views clusters as centered at a representative point, the centroid.
Cluster representatives or centroids can be calculated in different ways. The specifics of
cluster representative calculation in LeNDI follow shortly. The algorithm needs the
LeNDI analyst to provide a similarity function, i.e., a function that defines how the
similarity of two snapshots (or a snapshot and a centroid) can be calculated in terms of
their feature vector similarity. Snapshots are accessed sequentially, one after another.

Each new snapshot is clustered using the information available so far about the data set,

1i2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i.e., the feature vectors of the snapshots processed so far. A new snapshot is introduced fo

the algorithm in the form of a feature vector and is compared to the centroid of each

existing cluster. Then it is assigned to the most similar cluster centroid, if its similarity to

this centroid is above a user-defined threshold; otherwise it is the first member of a new

cluster. This process can be summarized in the following steps:

1. Legacy screen snapshots are processed sequentially;

2. The first snapshot becomes the cluster representative of the first cluster;

3. Each subsequent snapshot is matched against all cluster representatives {centroids)
existing at the time using some similarity measure ;

4. A given snapshot is assigned to the cluster whose representative is most similar to it if
similarity exceeds or equals a certain threshold;

5. When a snapshot is assigned to a cluster, the centroid of that cluster is recomputed;

6. If the highest similarity of the snapshot with a cluster representative is below the
threshold, then the snapshot becomes the cluster representative of a new cluster.

This algorithm is “incremental” because it accesses and clusters the snapshots, of the
input data set, one at time using the clusters available so far. It is called “single-path”
because it goes over the data set one time only.

In order to measure similarity, LeNDI employs a set of recognizers. Each of them is
configured to use one or more of the features described in chapter 4. Each feature is
assigned a weight. A recognizer compares two snapshots (or a snapshot and a cluster
centroid) in terms of its features. It measures the similarity of the two snapshots using
each of its features separately. Then, the recognizer's vote is the weighted-sum of the
similarity of individual features. The final vote of the entire set is the weighted-sum of
the individual votes of its recognizers.

A configuration step is required to set up the recognizers and to define the similarity
threshold. The LeNDI analyst needs to reviéw the available traces to judge what features
might be more effective in clustering the snapshots of a given system properly. Then s/he
needs to decide the number of recognizers to use, the relative weights of their decisions,
the features employed by each recognizer and the relative weights of these features. This
effort comes with the reward of not having to decide beforechand the number of clusters

needed, as is the case with the top-down clustering algorithm explained in subsection

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2. If a feature is missing on a particular screen snapshot, any recognizer that utilizes
this feature may be configured to either ignore it, or to consider its absence as evidence
‘that there exists a distinct screen that lacks the feature in guestion.

Formally, similarity is measured using a set of recognizers R as defined in Definition
5.2. Definition 5.2 shows that the vote of R on the similarity of two feature vectors is in
fact a linear combination of the votes of all the individual features employed in all its
recognizers. Thus, Vote R can be simplified to a linear weighted-sum of the all the
features used in all recognizers. But, using recognizers allows using non-linear similarity
functions in some recognizers. An example of such non-linearity is feature dependency;
i.e., if the values of feature F;; for snap; and snap- are not similar, then ignore comparing
feature Fjj1. For example, features F;; and Fj,1 can be Feature 7-1, the snapshot layout
classification and Feature 7-2, the layout specifications. If two snapshots have different

layouts, then comparing their specifications is meaningless.

Definition 5.2

A set of recognizers R = (r;, i = 1.. #recognizers) is defined such that
1. ri={F, W;, wi}
e F; is vector of the features utilized in r;. The jth feature is referred to as F; {j], or
31mp1y F ij
e W; is weight vector of features used in r;, where W; [j] (or simply W;;) is the
weight of feature F;
e w;is the weight of the vote of r;

2. Vote ri(snap;, snapy) = oy it { Similarity (snapy, snap o, Fi) * W;,; }

e Similarity (snap1, snap,, Fj ;) is a function that returns the similarity of two given
snapshots (or a snapshot and a centroid), snap; and snap,, based on comparing
their values of feature F; ;

3. VoteR (snapy, snap;) = Dzt # recogaizers L VOte ;% w;}

Algorithm 5.1 is the pseudocode of the single-path incremental algorithm. It takes as
inputs a set of recognizers, a similarity threshold and a set of recorded traces of
interaction with a legacy system. It outputs a partition P of the input snapshots. Step 1
initializes P to an empty set. Steps 2 and 3 iterate over every snapshot in every recorded
trace. For each snapshot snapj, steps 4 and 5 initialize two variables to zero, which will

store the maximum similarity voie for the snapshot, max Vote, and the Id if the most

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

similar cluster, most Similar. Step 6 iterates over every existing cluster. Step 7 measures’
the similarity of snap; with the current cluster centroid. If the current cluster is more
similar to snap; than any previously examined cluster, then the similarity value and
cluster Id are recorded in steps 8 to 10. After measuring similarity with all clusters, step
11 checks if the maximum similarity is below the threshold Thresh. If yes, steps 12 to 15
create a new cluster with only one item for the time being, which is snap;, and adds it to
the partition P. snap; is the centroid of this cluster since it is its only item. If the
maximum similarity is above or equal to Thresh, then steps 16 to 18 assign snap; to the
most similar cluster and update the centroid of this cluster.

The user can make one of two choices while configuring LeNDI’s clustering process.
The first is to use the first item in a cluster as its representative and never change it during
the whole process. In this case, no update takes place. Or s/he can choose to build a
centroid and re-calculate every time a new snapshot is added to the cluster. In this case,

LeNDI follows a simple procedure to calculate the centroid, which is choosing the mode

Algorithm 5.1: Single-path Incremental Clustering
Input: A set of recognizers R, a threshold Thresh and a set of traces of snapshots 7.
QOutput: A partition P of the snapshots of T’
Steps:
1. Imitialize P = ¢, where @ is an empty set
2. Foreverytracer,e T,1<i< [T}
3. For every snapshot snap;e 1, 1 <j <t
4. max Vote =0
5. most Similar=20
6. For every cluster c,€ P
7. current Vote = Vote R (snap;, centroid (cy))
8. ¥ (max Vote < current Vote) then
9. max Vote = current Vote
10. most Similar =k
11. If (max Vote < Thresh) then
12. Create anew cluster ¢,
13. Add a snap; 1o Cuew
14. Set snap;to be centroid (Cnew)
15. Add cpewto P
16. Else
17. Add SnAap; L0 Cimosr Similar
18. Update centroid {Cmos: simitar)

Algorithm 5.1. Single-path Incremental Clustering.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{(most frequent value) for single-part features (Features 1-2 to 1-4, 2-1, 2-2, 5-1 and 7-2) N
and the mode of every part for multi-part features (Features 1-1, 6-1 to 6-5 and 7-1). PO%
example if a cluster has three snapshots, with the following values for the multi-part
Featurel-1: “025131027, 02503602 and “02502102”, the centroid will have the value:
“02503102”, where bold font shows parts that differ among the snapshots and their
modes.

After all the snapshots in the recorded traces are clustered, the results can be reviewed
using LeNDI's cluster viewer, a built-in review and revision module in LeNDI, or using
QandA (Questions and Answers) [Vij02], the visualization tool of CelLEST. Based on
his/her review, the LeNDI analyst can readjust the similarity measure and re-cluster the
snapshot set to achieve the best possible results in his/her judgement.

5.2.2 Clustering Method 2: Top-down Clustering of Legacy Snapshots

This aigori;thm4 [EISSMO1] was developed to further automate the screen-snapshot
clustering process and to relieve the user from having to decide a similarity threshold and
feature-weighting schemes, whenever possible. However, this comes with the cost of
having to estimate the number of clusters expected in the trace as an input to the -
algorithm. Subsection 5.5.3 comments on the strengths and weaknesses of both clustering
algorithms. The top-down clustering algorithm is the first phase of a two-phase process
for legacy CUI state identification. The second phase of this process is a supervised
learning phase for classifier induction that modifies the decision tree produced by top-
down clustering, according to user feedback. The clustering phase is described here,
while the classifier induction phase is described in subsection 5.3.2. This algorithm is a
top-down clustering algorithm that starts by putting all the snapshots in one cluster and
keeps dividing them into more clusters in a way that minimizes the maximum internal
cluster incoherence. It stops, when a user defined criterion is met, which can be the
expected number of clusters or a threshold of the maximum incoherence allowed. Using
the snapshot binary features of Table 4.4, this algorithm produces a decision tree that can
be used to classify the snapshots into screen clusters.

Algorithm 5.2 shows the pseudocode of the top-down clustering algorithm. It takes as

input a set of interaction traces 7 whose snapshots will be clustered, and an estimate of

* This algorithm was developed primarily by Paul Iglinski, with help from other CelLEST team members.

1i6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the number of screen clusters required and/or the maximum internal cluster incoherence
accepted. It outputs a partition of the input snapshots and a decision tree DT that defines
how this partition was constructed and which feature and value were used for splitting at
each tree node. Initially, all the snapshots are placed in a single cluster. The algorithm
continues to split one cluster at a time until reaching the desired number of clusters. After
many experiments with different data sets and different splitting criteria, we found that
the best criterion for splitting a cluster is minimizing the maximal intemal cluster
incoherence using linear distance averaging. We call this splitting criterion the “best-split
test”. So, as long as the number of clusters is less than the expected number of clusters,
the algorithm identifies the most “incoherent” cluster and splits it into two new clusters,
in a way that mimimizes the incoherence of the resulting clusters. Incoherence is
measured as the average distance of every instance in a cluster from every other instance
in the same cluster. Currently, all the features are treated as having discrete non-ordinal
values. Each snapshot has 39 features, by default equally weighted at 1. If two instances
have different values for a feature, this feature contributes its weight to the distance
measure. The distance between two instances is then simply the sum of the weights of
their differing features. Currently, LeNDI assigns equal weights to all features.

As an alternative to providing the number of clusters as the determining factor for
terminating splitting, the user can specify an incoherence threshold or use a default
threshold. Thus, when all clusters are below the specified threshold, the splitting stops.

The default threshold value varies in proportion to the sum of all the feature weights.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5.2: Top-down Clustering

Input: The number of desired clusters #clusters and/or the maximum cluster incoherence
threshold incoherence Thresh and a set of interaction traces T

QOutput: A partition P of the snapshots of T, and a decision tree DT

Create anew cluster ¢

Add all the snapshots in T to ¢

Imitialize P with only one cluster, ¢

Create an decision tree DT with one root node representing ¢g

While (num Clusters < #clusters OR P.max Incoherence () > incoherence Thresh)

hairalb ol

6. Let ¢ = Most Incoherent Cluster in P
7. Create new Split bestSplit = NULL
8. For each feature fe LeNDI’s Binary Feature Set

9. Create a set V of all the values of fin Cpps
10. For each valueve V

11. Create new Split newSplit = new Split (f,v)
12. Create clusters Cyig, , Cwithour
13. For each snapshot snap in Cpos
14. If snap featureValue(f) = v then
15. Copy snap 10 cyin
16. Else
17. Copy snap 10 Cyithour
18. If (cimose. maxIncoherence(newSplit) < cpos.maxIncoherence(bestSplit))
then
19. bestSplit = newSplit;

20. Divide Cposr 1O Cyign a0 Cyignonr according to bestSplit

21. Remove Cypps form P

22. Add c,unand Cimouw 10 P

23. Replace the leaf node of ¢ in DT with a decision node that implements
bestSplit

Algorithm 5.2. Top-down Clustering.

Algorithm 5.2 starts by steps 1 to 3 which create a partition P with one cluster ¢y that
contains all the input snapshots. Step 4 creates a decision tree DT with one node that
corresponds to ¢p. Step 5 iterates over P while the termination criterion is not met. This
criterion can include one or both of the following: the required number of clusters or a
threshold for the maximum internal cluster incoherence permitted. Step 6 picks the most
incoherent cluster in P, which is cues. Step 7 creates an empty Split bestSplit, which is a

data structure for storing a feature and a value for this feature as a criterion for splitting a

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cluster. Steps 8 to 10 iterate over every possible value v that exists in any of the snapshots:
of Cmese for each feature f of the 39 features used. Step 11 creates a new Split newSplit to
store the current iterator, i.e., feature and value combination. Steps 12 to 17 create two
clusters Cpim and Cyimon and stores in ¢, copies of the snapshots that have value v for
feature f and stores In Cyimow cOpies of the snapshot that lack value v for feature f. Steps 18
and 19 store the current split in bestSplit if it produces less maximum internal cluster
incoherence than bestSplit, if used to split ¢;ee. After trying all the possible splits of ¢
and finding the best-split, steps 20 to 22 divide ¢pes according to bestSplit and replaces it
in P by cypimn and Cpimowr. Step 23 adds a new node for the best-split in the decision tree DT.

This algorithm has two modes: an automated mode and an interactive mode. In the
automated mode, if the LeNDI analyst can estimate the number of unique CUI screens
expected for the system under analysis, the algorithm can proceed unsupervised to
decompose the original set of snapshots into the expected number of clusters. When it is
not possible to give an estimate, or when the analyst prefers to have more control on the
algorithm, we have developed an interactive version of the algorithm that can be
monitored and guided by the user. The user may step through the algorithm’s split
decisions. If, at some point, a cluster looks close to its desired state, i.e., it contains no or
very few snapshots that do not belong there, the analyst can finalize it, ensuring that the
algorithm does not consider it as a candidate for further splitting. Moreover, the analyst
can force the algorithm to split a certain cluster in the next step.

An example decision tree produced by Algorithm 5.2 is shown in Figure 5.2. The
feature numbers shown, i.e., 103, 114, 102, etc. are the numbers given to the binary
features of LeNDI in Table 4.4. C0, C1, etc. are the clusters created by Algorithm 5.2. In
this tree, the top node, which corresponds to the first best-split, is based on if feature 103
is 0 or no. If yes, then next node splits the data according to if feature 114 equals 0 or no,

and so on and so forth.

i19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if feature 103 == §

A if feature 114 == 0
| o if feature 104 == 0
! | do C3
l i else
| ! o c4
| else
] o —— if feature 106 == 0
| Fo C5
! else
I o C6
else
o if feature 102 == 1
e if feature 607 ==
| o co
! else
] et Cc1
else
e if feature 124 ==
o if feature 100 ==
| fmmm Cc9
| else
| R C10
else
Fom if feature 100 == 2
R if feature 102 == 0
! o if feature 116 == “SET 1”
] | to— e C15
! | else
| | e C16
| else
] fom——— c7
else
Fo if feature 100 == 0§
o C2
else
e if feature 607 == 7
Fm———— if feature 200 == 21958
| Fom 8
i else
] o if feature 102 ==
| o C13
i else
| e Cci4
else
o e if feature 100 ==
o — Cii
else
T Ci2
Figure 5.2. An Example Decision Tree Produced by the Top-down Clustering
Algorithm 5.2.
120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.3 Clustering Result Visualization and User Feedback

Associated with clustering, is a process of result visualization and user feedback. For
both algorithms, this process is necessary to verify the correciness of the results obtained
and to fix any clustering mistakes before inducing a classifier. It is also important to
review the results obtained between different iterations if multiple clustering iterations
were done, particularity for the incremental clustering algorithm, which is iterative in
nature.

LeNDI offers a simplified result visualization module that allows reviewing and
revising clustering results. But the primary visualization tool of CelLEST is QandA
{Questions AND Answers) system5 [Vij02] which supports the visualization needs of
both LeNDI and Mathaino systems through a user-friendly GUI Using QandA, the
LeNDI analyst can inspect the results of clustering a set of input traces, and hence, decide
to reconfigure the clustering process and repeat it, in the case of signal-path incremental
clustering. In the case of top-down clustering, sthe can change the desired number of
clusters or the maximum internal cluster incoherence accepted or switch to the interactive
mode where s/he has more control over the clustering process. After these revisions, and
when satisfactory results are obtained, the analyst can move any outlier snapshots to their
proper clusters or join any redundant clusters to their originals. Then, s/he can ask LeNDI
to generate a signature-based or a decision tree classifier for the final partition as
described in section 5.3. Figures 5.3 and 5.4 show some snapshots of QandA user
interface. Figure 5.3 shows the cluster view of QandA with clusters represented as
thumbnails. If a cluster thumbnail is clicked, the thumbnails of its centroid and snapshots
are shown in the upper panel. If a cluster thumbnail is double clicked, iis centroid is
enlarged in a separate window. If a centroid or a snapshot thumbnail is clicked, it is
enlarged in a new window.

Figure 5.4 shows the snapshot view of QandA. This view shows the centroid and
snapshots of every cluster, connected by lines that represent their similarity. The
snapshots closer to the centroid are more similar to it than the farther ones. Through this
view, the analyst can easily detect outliers and perform cluster revision. S/he can move

snapshots from one cluster to another, merge a set of clusters, and/or split a cluster.

> QandA system was developed primarily by Vijayan Menon, with help from other CelLEST team members

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figurz 5.3. QandA -Cl»uster Reviéw User Interface. The Lower Panel Shows Clusters
as Thumbnails. The Upper Panel Shows The Centroid and Snapshots of The
Selected Cluster (C-8).
5.2.4 A Metric for Measuring Clustering Quality

LeNDI needed a metric for assessing the quality of the outcome of its clustering
process, whether it is done using the incremental clustering algorithm or the top-down
clustering algorithm. The metric should be able to measure the distance of a produced
partition from a reference or authoritative partition, i.e., a partition that has been
construcied and/or verified by the LeNDI analyst and is considered to be the truth. In
other words, after producing a partition of a set of snapshot traces, the LeNDI analyst
would fix any mistakes in clustering by moving misclustered snapshots to where they
should belong, thus producing a correct or authoritative partition. Then, such a metric
should gauge a meaningful distance between the derived and the authoritative partitions.
For both clustering algorithms, this metric is important to measure how well the

algorithms work for a given set of data. For the top-down algorithm, user feedback is used

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A
to its cluster centroid shows the distance between them, and hence, their similarity).

for classifier induction by producing an enhanced decision tree as described in subsection
5.3.2. To obtain such a similarity measure, MoJo metric [TH99] was adopted and
extended to MoJo Plus. MoJo uses a heuristic to approximately count the minimum
number of operations that are required to transform one partition to another. MoJo allows
only two operations, MOVEs and JOINs. A MOVE consists of moving a single instance
from one cluster to another, while a JOIN merges one cluster into another.
5.2.4.1 MoJo Plus Metric

During our experiments, it was noted that MoJo metric does not adequately reveal the
similarity of partitions that contain clear groupings of misclustered instances. In the
context of snapshot clustering, it is frequently the case that a number of potentially pre-
grouped snapshots have been included in one cluster and need to be moved together to
another cluster. Selecting this easily identifiable group and determining where it should
go is not much more effort than relocating a single misclustered instance. To include this

fact in the metric, a “Multi-Move” or MM operation was added that considers moving a

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

group of instances from one cluster to another as a single operation whose cost is equal to
that of a JOIN or a simple single instance MOVE. This extension is named MoJo PEQS
[EISSMO1]. The following example clarifies how the MoJo Plus metric is used.
5.2.4.2 A MoJo Plus Example

Consider a trace ¢ with 10 snapshots, where ¢ = {1,2,3,4,5,6,7,8,9,10}. Consider the
two partitions shown for this trace in Figure 5.5. The left partition is derived while the
one in the middle is an authoritative partition. In the far right, there are the MoJo Plus
steps needed to transfer the derived partition to the reference one by changing the
locations of the items in bold circles. If each step is given a weight, the distance between
the two partitions can be calculated. If they all have a weight of one, then the distance
between the two partitions is 3. The three MoJo Plus steps needed to fix the derived

partition are a MOVE, a JOIN and a MM, respectively.
5.3 Screen Classifier Induction

Given a set of interaction traces, the LeNDI analyst usually would do multiple
clustering iterations with different parameters until producing a near perfect partition, i.e.,
the best partition, in her/his judgement, that can be obtained using automated clustering. -
Next, the LeNDI analyst revises the produced partition to produce an authoritative
reference partition for the given trace set. Revisions include joining redundant clusters
with their originals and moving any misclustered snapshots to the right clusters. Using
the revised reference partition, LeNDI induces a classifier that is able to classify new

incoming snapshots at runtime to one of the available clusters in the revised partition.

MOVE C1 (9) C3
JOIN cCicC2
MM C3(610) C4

Figure 5.5. A Mojo Plus Example with a Derived Partition (left), a Reference
Partition (middle) and The MoJo Plus Steps to Transform The First to The Second.

i24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LeNDI implements two classifier induction methods. The first is a signature-based
classifier. Its underlying idea is to infer a predicate for each legacy screen that is able to
uniquely distinguish its snapshots. This is done by building a signature for every cluster
that captures the commonality of its member snapshots. The second is an extended
decision tree classifier that results from extending the decision tree produced by the top-
down clustering algorithm to accommodate the feedback done by the user to fix the
partition produced by clustering. The following is a detailed description of both
classifiers. Section 5.5 provides and evaluation of both methods and a comparison with

the benchmark decision tree algorithm, C4.5 [Qui93].

5.3.1 Classifier Induction Method 1: Screen Predicate (Cluster
Signature) Calculation

This first classifier is a simple signature-based classifier. LeNDI infers a signature for
every cluster, i.e., a logical combination of feature values that uniquely distinguishes the
members of this cluster. A signature consists of an artificial feature vector and an
artificial snapshot presentation space. The artificial feature vector captures all the feature
values common in all the screen snapshots it represents and has an indifferent symbol ?”
wherever a common value is lacking. The artificial presentation space captures the
commonality of all the screen snapshots it represents and has one of a number of
indifferent symbols wherever the snapshots differ.

To build the artificial feature vector, for every single-part feature and for every part of
every multi-part feature, LeNDI checks if the same value exists in all snapshots. If yes, it
adds this value for this feature or feature-part to the artificial feature vector. Otherwise, it
adds ’?’. For example, assume a cluster with three snapshots and with three features for
each snapshot: one string feature, one discrete multi-part feature and one binary multi-
part feature. Assume the following feature vectors for the three snapshots: (“Code 1017,
10-8-9, 101010), (“Code 1027, 14-8-1, 101011), (“Code 1{)}”; 10-8-1, 101011). The

signature of this cluster would be (7, 7-8-7, 10101?).

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5.3: Building a Signature Presentation Space for a Cluster

Input: A cluster ¢ of snapshots
QOutput: An artificial signature presentation space SigPres for the snapshots of ¢

Steps:
1. digits=0
2. spaces=0

3. sameChar =TRUE
4. For i=1to # snapshot rows
5. For j = 1 to # snapshot columns
6. For every snapshot snapie ¢, 1 <k <
7. I snap [il[j] is SPACE then spaces++
8. M snap; [i}{j] 1s DIGIT then digits++
9. Ifk>1then
10. If (snapy [1}{j] = snapwq [I1[j]) then sameChar = FALSE

11. If (sameChar ==TRUE) then SigPres [il[j] = snap; [i]lj]
12. Else

13. If (digits == |c]) then SigPres [{}j]=""

14. If spaces > 0 then SigPres [i][jl ="~

15. Else then SigPres [i]j1="7

Algorithm 5.3, Building a Signature Presentation Space for a Cluster.
To build the artificial presentation space, LeNDI follows Algorithm 5.3. The -
algorithm takes as input a cluster ¢ of snapshots. It outputs an artificial presentation space
that is formed by superimposing the snapshots of ¢ and analyzing the content of each
superimposed location. For every position in the artificial presentation space matrix
SigPres [i][j], the algorithm checks the corresponding positions in all the snapshots of the
given cluster and counts the number of spaces and digits and checks whether all these
positions have the same character (steps 4 to 10). Then, it sets SigPres [i][j] according to
the findings. If the same character (any character) exists in all the snapshots, SigPres [i][j]
is set to this character (step 11). If there is always some digit in this position, but not the
same digit, then SigPres {i]{j] is set to 1’ (step 13). Otherwise SigPres [i1{j] is set to one
of two indifferent characters, ~’ or 7" (steps 14 and 15). The first is more general as it
means there is sometimes a character in this position, while in other times there is a
space. The second means that some character (non-space) always exists.
The signatures produced by Algorithm 5.3 are the identity predicates of the nodes of
the state-transition model that distinguish the members of the corresponding clusters. At

runtime when 2 new snapshot is received, its feature vecior can be computed and

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matched against all the cluster signatures available. If the new feature vector matches a
single artificial feature vector, then LeNDI recognizes the snapshot as an instance of the
corresponding cluster. A match here means that wherever there is a value in the signature
feature vector, the same value exists in the snapshot’s feature vector. While, wherever
there is an indifferent character (7"} in the signature feature vector, no comparison takes
place. If the snapshot’s feature vector matches no signature feature vector, LeNDI would
get lost in the CUI This may mean that the new snapshot is an instance of a never seen
before screen that does not have a corresponding cluster or node on the state-transition
model. The reengineered Ul needs to be equipped with a method to deal with such
situations. An example for such a method may be issuing one or a series of reset actions
that returns the CUI and the reengineered Ul to the starting point before starting
executing the task in hand. If the snapshot’s feature vector matches more than one
signature, LeNDI matches the presentation space of the given snapshot against the
artificial presentation spaces of all the matching signatures. If only one signature
presentation space matches the given snapshot, LeNDI recognizes the snapshot as an
instance of the corresponding cluster. In case of multiple-presentation space matches,
LeNDI would not be able to decide on its own the proper classification of the new
snapshot from among the matching signatures. Thus, the reengineered Ul developed in
the forward engineering phase of CelLEST need to be equipped with a method to resolve
such ambiguity. For example, if one of the two or more possible states is expected
according to a task plan, then it would be possible to disambiguate accordingly.

Signature matching is done using Algorithm 5.4. Steps 1 and 2 iterate over every
location or cell on the given snapshot snapPres [i]lj]. Steps 3 to 7 compare snapPres {i]{j]
with the corresponding cell in the given signature’s presentation space signPres [i][j]. If
all the comparisons fail for all locations, then the algorithm returns TRUE. If any of the
tests succeeds even for one location on the snapshot, then matching failure or FALSE is
reported. Step 3 tests if snapPres [i]{j] and signPres [i]{j] contain the exact same letter. If
they do not, step 4 checks if signPres [i][j] contains the very generic indifference letter,
‘~’_If it does not, step 5 checks if signPres [i]{j] contains the indifferent digit character
‘I” while snapPres {il{j] is not a digit and step 6 checks if signPres [{]{j] contains the

?

indifferent non-whitespace character ‘7" while snapPres [i}{j] is a whitespace.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5.4: Matching a Snapshot against a Signature Presentation Space

Input: A snapshot presentation space snapPres and a signature presentation space
signPres
QOutput: TRUE if the snapshot matches the signature and FALSE otherwise
Steps:
1. Fori=1 to# rows of snapPres
2. For j =1 to # columns of snapPres
3. If (snapPres [i]{j] = signPres [i}{j]) then
4, ¥f (signPres = "~") then
5. If (signPres =="1") && (snapPres is NOT a digit) then return FLASE
6. If (signPres =="7") && (snapPres is a whitespace) then return FLASE
7. Return TRUE

Algorithm 5.4. Matching a Snapshot against a Signature Presentation Space.

5.3.2 Classifier Induction Method 2: Decision Tree Extension via
Supervised Learning

Once a preliminary clustering of the given snapshots is derived through the top-down
clustering algorithm, the LeNDI analyst can examine the partition through QandA and
move misclustered snapshots to their correct clusters and join redundant clusters with
their originals. Then, s/he can request an extended decision tree using the decision tree
extension algorithm6 [EISSMO1]. This algorithm leverages the decision tree produced by
clustering, using the set of JOINs, MOVEs and MMs discovered by MoJo Plus.
Algorithm 5.5 shows the pseudocode of this algorithm.

A MoJo Plus JOIN of cluster ¢, to cluster ¢, means changing the leaf node ¢, to ¢, or
vise versa, or if ¢, and ¢, share the same decision node, replacing the decision node by
the leaf node ¢, or ¢ A MoJo Plus MOVE or MM of instances from cpom t0 ¢, requires
discovering which features distinguish the moved instances from the other instances in
Cfrom and/or which features are shared by the moved instances and all the instances in cy.
The heuristic involved in this decision is to use the strongest and most generalizable
distinguishing characteristics detected. If instances are being moved from a larger cluster
to a smaller cluster, the tree extension algorithm first locks for features shared by the
instances in the larger set, and not the instances being moved or in the destination set. If

the instances are going from a smaller cluster to a larger one, the tree-revision algorithm

® This algorithm was developed primarily by Paul Iglinski, with help from other CelLEST team members.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first looks for features shared by the moved instances and the destination set, but not by
the ones in the origin set. If the first of these feature quests fails, the alternative is tried
next. If that second quest fails, the algorithm recursively tries again, this time ignoring
the features in the destination set. If this still fails, the moved instances are split into
groups according to the best-split test for minimizing the maximum internal cluster
incoherence, and then each resulting group is checked recursively for distinguishing
features. If the algorithm recurses down to a single instance, and no distinguishing feature
can be found, the algorithm simply reports the failure and proceeds. This situation is, in
fact, seldom encountered in all the legacy system traces that we have tested. The
successful identification of distinguishing features guarantees the correct classification of
the training set instances, i.e., the snapshots of the input set of traces. However, the
problem of "getting lost” in the legacy CUI due to failure in classifying a new snapshot,
as mentioned in subsection 5.3.1, can still occur and would need to prepare the
reengineered Ul to deal with it. Once a set of distinguishing features has been found, the
algorithm currently selects one at random and uses it to create a new decision node to
distinguish the instances from their initial classification. We experimented with various
heuristics for selecting among a set of distinguishing features, and we evaluated their
effectiveness with 10-fold cross validation. None proved more reliable than random
selection.

Algorithm 5.5 takes as input a decision tree created by Algorithm 5.2 and a set of
MoJo Plus moves that reflect the feedback of the LeNDI analyst to fix the derived
partition, and its corresponding decision tree. Algorithm 5.5 starts by creating two Nodes,
nodeA and nodeB. “Node” is a data structure that represents a decision node or a leaf
node in the decision tree produced by Algorithm 5.2. If a leaf node is created, then a
cluster will be associated with it. Step 2 creates 3 empty clusters to use during the
algorithm. Step 3 iterates over every move in the given set of MoJo Plus moves. Step 4
checks if a given move is a JOIN, and if so, steps 5 to 9 are executed. If the move is
MOVE or MM, then steps 11 to 15 are executed. Steps 5 and 6 retrieve the leaf nodes of
the clusters to be joined and store them in nodeA and nodeB. If both nodes share the same
parent, then they are both removed and their joint parent is set as leaf node whose cluster

is that of nodeA. If nodeA and nodeB do not share the same parent, then the cluster of

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodeB is set to that of nodeA. In other words, both branches are made to result in the
same decision. In case of a MOVE or MM, step 11 retrieves the leaf node of the source
cluster that will have some of its snapshots moved to a different cluster. Steps 12 to 14
retrieve the source and destination clusters, Cpom and ¢y, and the snapshots to be moved
Cmoved- Step 15 calls SplitNodesOnFeatures function and passes the data retrieved in steps
11 to 14 as parameters.

The SplitNodesOnFeatures function takes as parameters three clusters, cpom, ¢ and
Cmovea and the leaf node nodeA of the source cluster. It splits the given node such that the
snapshots of Cmoveqs are separated from the rest of the snapshots in ¢pom, Which are not in
Cmoved- This means that nodeA changes to a decision node and two leaf nodes are created.
The function tries to discover which features distinguish ¢yugy.q instances from the other
instances in Cpom and/or which features are shared by ¢poveq instances and all the instances

in Cp.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5.5: Classifier Induction via Decision Tree Extension

Inpuf: A decision tree Tree produced by the top-down clustering Algorithm 5.2 and a list
of MolJo Plus moves Moves to fix Tree

Output: The decision tree Tree after applying Moves 1o it

1. Create new Nodes nodeA, nodeB

2. Create new clusters Crom, Cior Cmoved

3. For each move € Moves

4. ¥ move =JOIN
5. nodeA = Leaf Node of Tree Corresponding to move.getFirstCluster()
6. nodeB = Leaf Node of Tree Corresponding to move.getSecondCluster()
7. If (nodeA.getParentNode() == nodeB.getParentNode())
8. Set Parent of NodeA as a Leaf Node whose cluster = nodeA.getCluster()

9. Else Set cluster of nodeB = nodeA.getCluster()

10. Else
11. nodeA = Leaf Node of Tree Corresponding to move.getFromCluster()
12. ¢pom = move.getFromCluster()
13. ¢, = move.getToCluster()
14. Crmoves = move.movedInstances()
15. SplitNedesOnFeatures (Crom, Cro, Cmoved, ROdeA)

SplitNodesOnFeatures (CIUSter Cpom, Cro, Cmovea, NOde nodeA)

1. If (Icfrom| > |co}) then
2. Split cspp, on shared features of Cpom - Crovea N0t shared by Cro+Croved
3. If splitis successful then return
4. Split cjpom on shared features of ciptCmoves DOt shared by Crom - Cmoved
5. If split is successful then return

6. Else
7. Split csom on shared features of Cip+Crmoveq N0t shared by Cpom - Cmoved
8. If split is successful then return
9. Split csom on shared features of Coom - Crovea 1Ot shared by cio+Cmoved
10. If split is successful then return

11. If (¢;p = NULL) then
12. SplitNodesOnFeatures (Cpom, NULL, Crpoved, nodeA)
13. Return

14. I ([Cmoveap>1) then
15. Split ¢,ppeq according to its best split (Algorithm 5.2) and store the result in ¢; and
155)
16. SplitNodesOnFeatures (Cfom, Cio, €1, ¢1.getleafNode())
17. SplitNodesOnFeatures (Cpom, Cro, €2, ¢3.getleatNode())

18. Else Return Message “Split Failure”

Algorithm 5.5. Classifier Induction via Decision Tree Extension

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 1 checks if the size of cpon 15 bigger than that of ¢,. If so, then step 2 tries Eé
split Cprom into two clusters. The first cluster is Cmpyeq and the second iS Cprom - Crmoves- The
split decision is based on a feature whose value is shared by all the instances of cpom -
Cmovea @and by none of the instances of ¢y, OF Cmoveq. If such a feature is found, then step 3
returns to the main algorithm. If the split fails, then step 4 tries a new split based on any
feature whose value is shared by all the instances of ¢, and ¢ymeq and by none of the
instances Of Cfrom ~ Cmovea- If such a feature is found, then step 5 returns to the main
algorithm. If the split fails, then the algorithm moves to try an easier split at step 11.
Steps 7 to 10 are executed if the size cpon is less than or equal that of ¢,. They perform
the same tests as steps 2 to 5 but reversed, i.e., moving from the stronger test to the
weaker one’. The test of step 11 is performed only if no split was successful in steps 1 to
10. I tests if the parameter ¢, is not an empty cluster. If it is not, it calls the function
SplitNodesOnFeatures with NULL passed to the parameter ¢;,. This means that the tests
and trials to split of steps 1 to 10 will be repeated but with ignoring the instances of ¢, as
if every reference to ¢, in steps 1 to 10 is blank, making splitting efforts easier. This is
because a smaller number of snapshots will be involved in trying to split cpom. If in the -
second call of SplitNodesOnFeatures, where NULL was passed to ¢y, steps 1 to 10 fail to
split cpom or if the function was called the first time with NULL passed to ¢, steps 14 to
18 are executed. Step 14 checks if there is more than one instance in Cpom. Steps 15 to 17
split cpom using the best-split test of Algorithm 5.2 into ¢; and ¢;. Then, they call the
function SplitNodesOnFeatures twice, one time for each of ¢; and ¢,. This process repeats
recursively. If the algorithm recurses down until SplitNodesOnFeatures is called with
only one instance in Cpom and it was impossible to split it apart from the rest of cpom, step

18 reports failure and proceeds.
5.4 Transition Modeling

Transition modeling aims to infer accurate behavioral models that describe the
permissible user behaviors on every state of the state-transition model, i.e., the actions

available to the legacy system user for navigating from one CUI screen to another. These

models are the edges connecting the nodes of the state-transition model, as shown in

7 By stronger, we mean that involves a bigger number of instances.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1. Modeling these edges does not only complete the state-transition model, but
also has other benefits. They can be used as features for screen snapshot identification.
They are necessary for planning a navigation sequence to accomplish some task. Also,
they provide some of the information necessary for user task modeling, and thus save
some effort in the modeling process. A formal definition of a transition was given in
Definition 5.1.

Most legacy interfaces adopt a mix of function key, menu driven, command-driven,
and form-filling interaction styles. In the function key interaction style, the interface
implements a well-structured dialog with the user. At each point of this dialog, the user
presses one of a small set of function keys to select one of the corresponding alternative
options. A similar kind of interaction can be implemented in a menu driven interface.
Such an interface presents the user with a list of items, each of which can be selected by
moving the cursor to its location and pressing a control key. In the command-driven
interaction style the user issues textual commands to the system. A command language is
specified in terms of the vocabulary of possible command names and the syntax of these
commands in terms of the arguments they require and the options they allow. The
command-driven interaction style enables more dynamic system user interaction, since
the transitions of the system from one state to another are caused by possibly complex,
multi-parametric commands instead of simple function key presses. Finally, in the form-
filling interaction style, the interface presents the user with forms that require the entry of
specific types of information at particular locations on the screen. The completion of the
form is signaled to the system with the press of a control key or the typing of a command
at a particular command line. The current version LeNDI has focused on systems
adopting a combination of function key and command-driven interaction styles, which is

a frequently occurring combination.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transition := <Start Screen><Action><End Screen>

Action := <Action Item>"

Action Item := <Location><Data Item>|
<Location><Data Item><Control Key>

Location := <x-y coord> | <Range> | @

x~-y coord := {1,801, 11,24}

Range 1= x-y cooxrd, X-y coord

Data Item := <Keyword>*<Argument>*<Option>*

Keyword := String € Set of possible keywords

Argument = String

Option := String € Set of possible options

Control Key PF1 | PF2 | ... | Enter |
Start Screen: <Screen Id>

End Screen := <Screen Id>

Screen Id := Integer

Figure 5.6. A Grammar for Describing Transitions in Legacy Systems CUIs (A **~
is zero or more occurrences, a *+’ is one or more and ¢ is Nuil).

5.4.1 A General Model for Transitions

LeNDI possesses a general transition model, described by the BNF (Backus Naur
Form) grammar shown in Figure 5.6. It was developed to describe the various styles of
interaction mentioned earlier. According to this model, each tramsition from a start
screen 10 an end screen is caused by an action, which may consist of one or more action
items. An action item may involve a data-entry activity by entering a data item on a
particular location of the screen, which may be static or dynamic, i.e., varying within a
range. A range is a rectangular area defined by the x-y coordinates of its upper left and
bottom right corners inside which the data item starts, i.e., its first character exists. An
action item may conclude with the press of a control key. A data item can have keywords,
arguments and/or options.

To perform transition modeling for function key and command-driven interaction
styles, LeNDI groups the snapshots of each cluster according to the destination of the
user action performed on them. LeNDI assumes that there is a single action leading from
a start screen to an end screen, although the action may have different forms. Therefore
all the transitions in one group have instances of the same action. Next, LeNDI tries to
infer the command form(s) and/or the function key(s) that defines this action, assuming

that it conforms to the general model described by the transition-model grammar.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LeNDI starts analyzing each group of action instances, one word at time, starting with
the first word in all instances. LeNDI uses a set of rules for command language design
[Sch99] to discover any relations between the most frequent 4 words that appeared as an
action’s first word and whether any of them is an optional or mandatory command
keyword or argument. According to these rules, LeNDI assumes that if there are different
versions of the same command name they will most likely be pmﬁxes of a “canonical”
command name or sub-strings of this name with the vowels removed. In order for a
particular string to be identified as the “canonical” command keyword, its different
variants have to appear frequently enough, i.e., at least 33% of the times that the action
occurred. This analysis of command keywords applies to command arguments too. If a
number appears at least 33% of the time, LeNDI concludes that one form of the
command keyword or argument is a numerical. If no keyword appears sufficiently often,
LeNDI assumes that the command name is implicit, and that the user has to only enter its
arguments. It assumes that an argument is optional if it does not appear in some of the
action instances, otherwise it assumes that it is mandatory. The same analysis is applied
to the second word, and so on. LeNDI assumes that the command keyword, if any, can be
at any position, and is not necessarily the first word. LeNDI collapses the collected
hypotheses in a compact form. LeNDI analyzes the recorded locations of all the instances
of an action to infer any information about where it takes place on the legacy screen.
Using simple comparison of the x and y coordinates of these instances, LeNDI defines
the location or range within which the action takes places.

5.4.2 Transition Modeling Examples

Two transition-modeling examples are shown in Figures 5.7 and 5.8. The example of
Figure 5.7 represents modeling the transition from the results of browse command screen
to the same screen in a command-driven library system (LOCIS) [LOCIS], i.e., self-
transition. 30 instances of the action that causes this transition are shown in Figure 5.7(a).
LeDNI starts the analysis by analyzing the first word in all instances. It discovers that b,
brws and browse are all derived from the same canonical form, which is browse, either
by suffix removal (b) or by removal of vowels (brws), respectively. The different forms
of browse command are repeated 22 times in the 30 instances. The conclusion is that

there is a form of this command that requires one of these three command variants to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exist as the first word of the action needed for the transition. Since the remaining 8
instances do not have any data items, just a control key (Enter), LeNDI concludes that a
.second form of the action consists only of Enfer key. Similar analysis for the second and
third words in the 22 instances with a keyword, concludes that no word or a group of
related words appears in any of these positions in at least 33% of the instances. Also,
some instances lack words in the second and third or third locations. Thus, according to
the given instances, the command can have up to two optional arguments. By analyzing
the locations of these instances, LeNDI concludes that the action instances with a2
keyword and arguments occur within rows 21 to 23 and always on column 11, while
those with Enter key occur always at row 23 and column 11. The inferred model is
shown in Figure 5.7(b). * is a mandatory argument and [*] is an optional argument

Figure 5.8 shows the second example. It is modeling the transition from a browse
command results screen to a refrieve command results screen in LOCIS, by issuing a
retrieve command. Seven instances of this transition were recorded. LeNDI examines the
first word, which is R for all the examples and concludes that it is a compulsory keyword
for this action. Then it examines the second word. By applying the rules mentioned -
above, no relation can be discovered between the words in the second position and none
of them appears more than 33% of the time. Thus, the second word is considered a
mandatory argument for the command because all the instances have a second word.
Doing the same analysis for the third word concludes that it is an optional argument.
Finally, by comparing the locations of all action instances, LeNDI infers that it always
takes place at a fixed location. The inferred model is shown in Figure 5.8(b).

LeNDI has a transition viewer tool, which allows reviewing all thev action available on
each screen (node) of the state-tramsition model, their different forms and their
destination screens. For each from of an action, one can review the instances that were

used to infer this form.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Row | Col. | First Werd Second Word Third Word | Conirol Key

1 23 11ib All Enter
2 23 1ilb bo\ Enter

- 3 23 1iB b6 Enter
4 23 11 Enter
5 23 i Enter
6 23 11 Enter
7 23 11 Enter
8 23 il Enter
9 23 1iib Elections Enter
10 22 11ibrws ep smith Enter
11 23 11 Enter
12 23 11 Enter
13 23 11 Enter
14 21 1ib Linda Smith Enter
15 23 11ib elections-- Enter
16 23 11ib astronomy—-bibliography Enter
17 23 1ib term/iran Enter
i8 23 11ibrws text/bo Enter
i9 22 11{Browse c97/egypt Enter
20 23 11{b subj=b6 Enter
21 23 1iib b6 Enter
22 23 iiib subj=b11 Enter
23 23 11{Browse Enter
24 23 11|Browse egg Research Enter
25 22 1ijb 16 Enter
26 22 11}b 9 Enter
27 22 111b Enter
28 22 11b Enter
29 22 11lb R 2 Enter
30 23 11ib 15 Enter

(a) The action instances

b_brws_browse [*][*] @Enter @ [21,23],11
{1 @Enter @ 23,1

(b) The inferred command model

Figure 5.7. An Example (1) of Transition Modeling in a Command-driven System.

Row | Col. | First Word | Second Word | Third Word | Control Key
i 24 11{R Farm Loans Enter
2 24 IR XXX Enter
3 24 11/R ferm={ax Deductions Enter
4 24 11IR Tax Deductions Enter
5 24 11IR b6 Enter
6 24 i1iR si Enter
7 24 11|R elections Enter

{a) The action instances

R * [*] @Enter @24,11

{b) The inferred command model

Figure 5.8. An Example (2) of Transition Modeling in a Command-driven System.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Evaluation

This section reports some of the experiments done to evaluate the behavior modeling
process presented in this chapter and to explore its strengths, limitations and potential
future enhancements. It reports experiments done with publicly accessible systems, since
some other LeNDI evaluation experiments were done using private data obtained from
Celcorp, the industrial sponsor of CelLEST project. Three different experiments are
presented in this section to serve different evaluation purposes. The first and second
experiments are done for the purpose of comparing and evaluating the single-path
incremental and the top-down clustering algorithms and the associated classifiers against
one another and against C4.5 [Qui93]. The results of both experiments are used to
explore the strengths and weaknesses of both algorithms. The third is a complete case
study of behavior modeling, performed on a long trace recorded during interaction with
an information system for a university library research network. In this experiment, the
CUI of a big selected part of the system was modeled. This experiment demonstrates the

applicability and efficiency of the method.
5.5.1 Experiment 5.1 - LOCIS System

In this section, we report the results of an experiment with an IBM 3270 trace of
interaction with LOCIS through its public 3270 connection. It was recorded while a user
was browsing the library catalog, retrieving sets of catalog entries, displaying them, and
running into some system errors. This trace is 406 snapshots long. Manually, an analyst
built an authoritative partition for this trace, which had 17 distinct clusters. The number
of instances of each cluster of the authoritative partition is shown in the “Cardinality”
row in Table 5.1. Note that the data set is unbalanced: some screens had only 1 or 2
snapshots in the trace, while others had up to 157. Figure 5.1 depicts a segment of the
LOCIS trace and a part of the derived model.

5.5.1.1 Modeling Using Single-Path Incremental Clustering and Signature-based
Classification

Typically, the single-path incremental clustering algorithm requires several rounds of
configuration, clustering and result review until reaching satisfactory results. The
efficiency and accuracy of the resulting partition depends on the intuition and experience

of the analyst. This experiment was performed by a user who had no particular familiarity

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with LOCIS but was familiar with the overall CelLEST process and was given a tutorial’
on using LeNDIL Out of the discrete feature suite of LeNDI (Table 4.3) the user created

only one recognizer with the feature set of Table 5.2.

ClusterId | 1]2 13 14} 516,789 110]11112]13[14]15]1617
Cardinality| 1114|157 161105} 6 |15 7 {3 | 2 (13| ¥ | 1 13455 |11
Table 5.1. The Reference Partition Cardinality of The Data Set of Experiment 5.1,

Feature Description Weight | Ignore if Empty
i-3 The text in the middle of the first non-blank row 30 N
5-1 The cursor’s label 10 N
6-2 All characters binary horizontal profile 20 N
6-5 Special characters binary profile 10 Y
7-1 Layout classification 5 Y
7-2 Layout specifications 25 N

Table 5.2. The Features Used for Setting up The Single-path Incremental Clustering
Algorithm for LOCIS Experiment 5.1.

A threshold of 40% was used and the cluster centroid was defined to be its
representative. It took eight recognition/review/reconfiguration rounds to reach the setup
shown in Table 5.2, which the user thought was satisfactory. The column “weight” gives
the relative weight of each feature compared to other features. The column “Ignore if
empty” indicates whether to ignore a feature if missing on some snapshot, or not.

The partition produced by the final configuration consisted of 23 different clusters. It
included 17 misclustered snapshots or outliers (4.2%) and 6 redundant clusters. An
outlier is a false positive error that assigns snapshots with potentially different behavior
to the same screen cluster, causing false connections between the state-transition graph
nodes. Redundant clusters are considered false negative errors which are duplications in
the state-transition graph, resulting from the snapshots of the same screen being split into
two or more clusters. This partition was reviewed by the user and 12 corrective
operations, i.c., JOINs, MOVEs and MMs operations, were necessary to fix the errors
identified. After, moving the misclustered instances to their clusters, a signature was
calculated for every cluster using the signature calculation algorithm. When the generated
signature was used to recognize the trace snapshots one snapshot was misclustered
{0.25%); it matched more than one signature and was assigned to one of them randomly.

Such problems of signatures with overlapping applicability result from the diversity of

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the instances in some clusters, which results in little commonality among their snapsh@té
and hence, "weak signatures”. Ideas to overcome this are given in Section 5.6.

A better measure of the algorithm’s performance on unseen data was obtained with
repeated 10-fold cross validation. This means that the data was divided to 10 equal parts
and the experiment was repeated 10 times, with one part used as a test set in each round
and the remaining 90% is the training set. 10-fold cross validation using single-path
incremental clustering yielded an error rate of (8%) (see Table 5.3) on LOCIS data set.
The second and third columns in Table 5.3 show the distance between the partition
produced by the clustering algorithm and the authoritative partition built manually in
MoJo and Molo Plus moves, respectively. The fourth column is the percentage of

~ snapshots used to induce the signature classifier that were misclassified. The fifth column
is the average test error of the repeated 10-fold cross validation.
5.5.1.2 Modeling Using Top-Down Clustering and Decision Tree Classification

For the same LOCIS trace, the 39 binary features of LeNDI were extracted for every
snapshot of the trace. Then, the top-down clustering algorithm was applied to the data
with an input parameter of 17 clusters — the expected number of clusters was already -
known from the authoritative partition built by the user in the previous experiment. The
cardinalities of the produced clusters are shown in Table 5.4 and the corresponding
cluster Ids in the authoritative partition. Three from the authoritative partition were
missing in the derived partition. 14 (3.4%) snapshots were clustered into 3 redundant
clusters. On the other hand, 44 (10.8%) snapshots were misclustered. Ignoring the 3
unnecessary splits, we can say that 89.2% of the instances were “correctly” clustered. The
partition was again reviewed and revised by the user. Using QandA, the user corrected
the preliminary clustering of the LOCIS trace. Then, MoJo Plus module inferred the
operations necessary to obtain the desired authoritative partition, which are shown in
Figure 5.9. The decision tree extension algorithm was applied, and a new tree containing
46 nodes and having a maximum depth of 12 was produced. When this decision tree was
tested on the 406 snapshots, all were correctly classified. 10-fold cross validation on

LOCIS yielded an ervor rate of 3.4% on the data in the test sets (see Table 5.3).

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clustering Method MojJo | # MoJo Plus | Training | Test R
Moves Moves Error | Error
Single-path Incremental Clustering with 23 12 0.25% | 8.0%
Signature-based Classifier
Top-down Clustering with Decision Tree 47 20 0.00% | 34%
Classifier
C4.5 (Supervised Learning) NA NA 1.20% 2.4%

Table 5.3. The Results of Experiment 5.1.

Cluster Id O|112] 3 1415{6,7:8]9/10/11{12/1314/15| 16 [Clusters missing after

top-down clustering

Corresponding| 8 | 114} 3 {911} - 11614 110{6{17/712|-|-| 5 i2 13 15
Authoritative
Cluster Id

Cardinality 7111|34{157|3 |13] 1|5 |16{ 2|6 [11{15/14| 5|1 {105

Table 5.4 The Results of Top-dewn Clustering of The LOCIS Trace of Experiment
5.1. Bold Clusters Are Redundant and Need to Join Others.

JOIN C8Cé6 /I Merge cluster C6 into C8

JOIN Cl16Cl14 /I Empty clusters are available as “new” clusters
JOIN C2C15 /1 C15 is now empty. It is reused in the next step
MOVE C0 (122) C15 {{ Take snapshot 122 from CO to C15

MM CO (306 304) Cl11 /I A Multi-move from C0O to C11

MOVE C1 (309 308 307 305 303 302 301 300 299) C11
MM Cl (405 404) C9

MOVE C2 (318) Ci13

MM C2 (134 133) Ci6

MM C2 (317316315 278) Cl14

MM C3 (401291 195186 132 47) C12
MOVE C3 (400) C2

MOVE C3 (338) Cl4

MOVE C8 (101) C5

MOVE C9 (118) C2

MM CI10 (379375371279 5) C13
MM CI10 (388218 110102) C7
MOVE Ci1 (399) C2

MM Cl16 (38257) CI3

MOVE Cl16 (406) C6

Figure 5.9. The MoJoPlus Operations Needed to Fix the Clustering of The LOCIS
Trace Using Top-down Clustering, in Experiment 5.1.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.1.3 Comparative Evaluation 4

To evaluate the results obtained from the experiments above, we used C4.5 [Qui93}, a
standard decision-tree learning algorithm. C4.5 is a classifier-induction algorithm that
takes labeled examples as input. Hence, we used it to evaluate the final outcome of the
experiment in the form of a signature-based or decision tree classifier. Several versions of
C4.5 were tried, using the 39 binary features of LeNDI. We tried pruned decision tree,
unpruned decision tree and rule-based versions of C4.5. The best results were obtained
using the pruned version of C4.5 and are reported in Table 5.3.
5.5.1.4 Transition Modeling

LOCIS is a command-driven system. Some of the command models inferred are
shown in Figure 5.1(b). They are inferred from analyzing the entire trace not only the part
shown in Figure 5.1(a). An example action model inferred is “d_disp_display item *”.
The command “display item” causes the transition from screen 6 to 7. In the inferred
model, LeNDI discovered three variants for the first keyword and that the second
keyword is item. Also, there is also a mandatory argument that has to be passed to the
command.

5.5.2 Experiment 5.2 - HOLLIS System

This experiment is similar to Experiment 5.1, but it is performed on three interaction
traces recorded while using Harvard Online Library Information System (HOLLIS)
[HOLLIS] through its 3270 public connection. HOLLIS is a command-driven catalog of
the millions of items at Harvard University Libraries, e.g., books, journals, manuscripts,
government documents, visual materials, etc. Together, the three traces had 542
snapshots, which were instances of 29 distinct legacy system screens. They captured
snapshots of the main user interfaces of the three subsystems of HOLLIS: Harvard Union
Catalogue (HU), Reserved Material (RV) and Library Guide (LG). An authoritative
partition was built for the input traces. Table 5.5 shows the cardinality of all the clusters
in this partition. The results of this experiment are shown in Table 5.6. First, the single-
path incremental clustering was used with signature-based classification. The final setup
used this algorithm included one recognizer that utilizes only Featurel-3 with weight
100%. A threshold of 70% was used. In this experiment 491 (90.6%) snapshots were

correctly clustered. 48 (8.9%) were correctly clustered, but in redundant clusters. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of redundant clusters was 21. Only 3 (0.6%) snapshots were misclustered, i.e.,
put in clusters of snapshots of other screens. Training error was 0.6% and testing error
using 10-fold cross validation was 1.7%. Second, the top-down clustering was applied
with an input parameter of 29 clusters, followed by decision tree classifier induction.

Training error was 1.0% and testing error was 4.3%.

Cluster Id (1121314 |5,617 | 8]9[10111{12]13/14)15/16{17{18]19|20j21{22|23|24|25]26|27]28|29

Cardinality{16] 7 |56|57] 8 |12/107/10{11|82) 1 {4} 2 416128/216(101914/1|6]3|1|14/60/3|2

Table 5.5. The Authoritative Partition of the Data Set Used in Experiment 5.2.

Clustering Method MeoJo | # MeJo Plus | Training | Test
Moves Moves Error | Error
Single-path Incremental Clustering with 147 92 0.6% 1.7%
Signature-based Classifier
Top-down Clustering with Decision Tree 162 50 0.0% 54%
Classifier
C4.5 (Supervised Learning) NA NA 1.0% 4.3%

Table 5.6. The Results of Experiment 5.2.

5.5.3 Comments on Experiments 5.1 and 5.2
This subsection comments on the results of Experiments 5.1 and 5.2 and draws some
observations on the efficiency of the clustering and classifier induction methods used in

LeNDI.

1. As can be seen from Tables 5.3 and 5.6, in both experiments, the training error of the
decision tree classifier was 0, while that of the signature-based classifier and of C4.5
was not. For the signature based-classifier, this is due to imprecise signatures. A
suggestion to overcome this problem is given in section 5.6. As for C4.5, having
training error higher than both of LeNDI's two classifiers can be attributed to the
unbalanced data set, i.e., the lack of sufficient examples in some clusters, as shown in
Table 5.1. It shows that 2 clusters in LOCIS experiment have only one snapshot each,
6 clusters have 5 or less snapshots and 8 clusters have 10 or less snapshots. For the
HOLLIS experiment, shown in Table 5.5, 3 clusters had only 1 instance, 10 clusters
had 5 or less instances and 18 clusters had 10 or less instances.

2. The fact that all classifiers have larger test error than training error is not surprising;

they tend to overfit the training data and do not generalize well enough. Again,

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sufficient examples that cover the range of variability of the snapshots of each screeﬁ
are necessary for producing high-quality classifiers. And as can be seen from Tables
5.1 and 5.4, clusters 12, 13 and 15 in the LOCIS experiment, which did not have
equivalent clusters in the partition produced by the top-down algorithm, all had few
instances of them in the input trace. They had 1, 1 and 5 instances respectively. This
suggests that a sufficiently large number of snapshots need to be recorded from
interactive online sessions with the legacy application. What qualifies as “sufficient”
number depends on the number of CUI screens to be modeled, the types and dynamics
of these screens (see section 4.1) and the productiveness of the extracted features for
the system in hand. Similarly, the generality of the action models produced depends on
the availability of sufficient instances and on action complexity.

3. Redundant nodes on the state-transition graph occur when the snapshots belonging to
one state are split into more than one cluster. This is not a severe problem since it
would not cause the runtime process to get lost, i.e., to misinterpret a snapshot as
belonging to a wrong state. But false positive errors, resulting from misclustering
snapshots, and possibly missing nodes for some of the interface screens, is a more -
serious error. It results in wrong assumptions about the screens (states) behavior.
When a new Ul or an external application uses the state transition model to execute a
navigation sequence in the legacy CUI, such errors can cause incorrect predictions of
the result of actions and result in the Ul or external application “getting lost” in the
legacy CUL

4. The top-down clustering method with a decision tree classifier performed considerably
better than the single-path incremental clustering method with a signature-based
classifier in LOCIS experiment, but considerably worse in HOLLIS. This implies that
the two methods can be complementary and therefore LeNDI’s performance is
improved by employing both of them. Top-down clustering is suitable when a
reasonable estimate of the number of screen-states sought can be obtained. While, the
incremental clustering is iterative and requires several cycles of user setup, clustering
and result review. This requires good grasp of the system in hand and is useful if the

analyst will invest time in exploring and learning the legacy CUI as s/he is modeling it.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.4 Experiment 5.3 - MIRLYN System

This section reports the results of a case study to reverse engineer the legacy CUI of
an IBM 3270 legacy system and build its state-transition model. The purpose of this
modeling case study is to validate the practicality and efficiency of the legacy CUI
behavior modeling process described in this chapter, rather than evaluating or comparing
individual aigorithms. Four traces were used in this experiment with 1924 snapshots in
total. 64.3% of this data was used for training and 35.7% for testing

In this experiment, the author modeled part of the legacy CUI of Mlchigan Research
Librar¥Y Newtork (MIRLYN) [MIRLYN]. This information system is a catalog for the
different resources available in the libraries of University of Michigan and the remote
libraries of other institutes that are connected together under MIRLYN. The number of
states of the entire system is huge due to the many local and remote subsystems and
indices connected. Therefore, this experiment focused on building a behavior model for
part of the MIRLYN CUIL. This part covers the main catalog and the basic functions of a
few subsystems and remote catalogs. The system was accessed through its publicly
accessible IBM 3270 connection.

A user interacted with the system via LeNDI for a full day querying the different
available local and remote catalogs about library items, searching for course reserve
materials and doing other related information retrieval tasks with the system. The user
was directed to which subsystems and catalogs to use and was asked to cover them
thoroughly several times to ensure having enough examples of each screen. The user
activity was recorded in one long trace of 1237 snapshots. The author modeled the
behavior of the legacy system CUI by performing clustering, classifier induction and then
transition modeling as described in details in the next subsections.
5.5.4.1 Snapshet Clustering

Since the author was not familiar with the legacy system, he decided tc use the single-
path incremental clustering algorithm to explore the legacy CUI and learn it while he s
modeling it, gradually and iteratively. A review of the screen snapshots of MIRLYN
revealed that its CUI style maintains useful information in the top rows of almost all
screen snapshots. This suggests that the presentation space feature set of section 4.2

would be useful in clustering the snapshots of the input trace. On the other hand, different

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

catalogs and indexes have very similar screen layouts for functionally similar screens. |
For example, the "Author Index" screens of different catalogs look very close to each
other, and in some cases, the only difference is the catalog name. This suggests that the
presentation space layout features of section 4.4 would not be very useful in clustering
the snapshots. All the feature subsets of LeNDI and combinations of them were tried in
clustering the snapshot set.

After about 10 rounds of setup, clustering and result review, the analyst reached a
satisfactory partition that is near perfect in his judgement. The final setup used included
one recognizer that was configured as in Table 5.7. A threshold of 100% was used. 88
clusters were discovered. The results were reviewed and it was discovered that:

e One cluster is redundant, i.e., it has few snapshots that should be in another cluster,

e The instances of two clusters are mixed together, and

e The instances of four other clusters are mixed together.

These errors were fixed manually. This required 5 MoJo Plus moves: 4 MM steps and
one JOIN step. The result was 91 distinguished clusters, which are shown with their
description and cardinality in Table 5.8. These clusters were the input to the classifier -

induction phase.

Feature Description Weight | Ignore if Empty
i-1 Encoding of the information at the snapshot periphery | 20 N
1-2 Encoding of the start columns of all tities and codes 10 N
1-3 The text in the middle of the second non-blank row 30 Y
1-4 The text in the right of the second non-blank row 40 Y

Table 5.7. The Features Used for Setting up The Single-path Incremental Clustering
Algorithm for MIRLYN Experiment 5.3.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1d |Screen Description Cr | id|Screen Description Cr|
1 1U of Michigan Libraries Main Menu 81 | j47Renaissance Lit No Holdings Found 3
2 {UMiich Catalog Introduction 29 | 148|Renaissance Lit No Keyword Entry Found| 10
3 |[UMich Catalog Author Guide 27 | 1491 Africana Introduction 5
4 |UMich Catalog Author Index 22 1150] Africana Subject Guide 26
5 |UMich Catalog Review Search List 12 | 151 Africana Subject Index 19
6 |UMich Catalog Brief View 32 | {52} Africana Brief View 3
7 {UMich Catalog Holdings Detail 5 153]Africana Long View 53
8 {UMich Catalog Long View 120} 154 Africana No Holdings Found 6
9 |UMich Catalog No Title Entries Found 3 1 |55!Africana Review Search List 7
10 {UMich Catalog Other Options 8 | {56|Africana No Subject Eniries Fou 4
11 {UMich Catalog Title Guide 10 | 157| Africana Other options 1
12 {UMich Catalog Title Index 12 | {58 Africana Title Index 22
13 |UMich Catalog Explanation of MIRLYN | 7 | |59|Africana Title Guide 10
14 {UMich Catalog Explain Options 4 1 {60{Africana No Title Entries Found 1
15 {UMich Catalog Long View Help 1 | {61]Africana Holdings Detail 4
16 |UMich Catalog Title Index Help 1 62 |Electronic Resources Introduction 4
17 {UMich Catalog No Author Entries Found | 4 | |63 |Electronic Resources Subject Guide 4
18 {UMich Catalog Call Number Browse 17 | |64 |Electronic Resources Subject Index 6
19 |UMich Catalog Explain Call Number 4 | |65|Electronic Resources Long View 50
20 jUMich Catalog Explain Catalog 8 | 166 Electronic Resources Holdings Detail 6
21 {Course Reserve Search Menu 59 | 167 |Electronic Resources Other Options 4
22 [Course Reserve Index by Course 40 | 68|Electronic Resources Author Index 22
23 |Course Reserve Index by Instructor 16 | |69|Electronic Resources Long View Help 3
24 |Course Reserve Index by Title 10 | |70|Electronic Resources Author Guide 10
25 |Course Reserve View Detail 46 | |71|Electronic Resources Explain Options 3
26 |Course Reserve View Detail Help 3 { {72|Electronic Resources Explain Display 4
27 |UMich Catalog Explain Author 3 | 173 |Electronic Resources Review Search List | 7
28 {UMich Catalog Subject Index 12 | {74 |Electronic Resources No Author Entry Fo | 2
29 |UMich Catalog No Subject Entvies Found| 1 | |75{Electronic Resources Title Index 4
30 {UMich Catalog Subject Guide 13 | |76|Ohio St. Univ. Introduction 6
31 {UMich Catalog Call Number Browse 2 | {77|Chio St. Univ. News 3
32 |Map Library Introduction 5 | {78|Chio St. Univ. Other Options 4
33 {Map Library Author Guide 24 | {79|0Ohio St. Univ. Author Index 11
34 [Map Library Author Index 20 | |80{Ohio St. Univ. Brief View 4
35 {Map Library Brief View 20 | |81|{0hio St. Univ. Long View 43
36 {Map Library Long View 20 | {82{0hio St. Univ. Title Index 20
37 |Map Library No Author Entries Found 3 | 183}0hio St. Univ. Holdings Detail i2
38 {Map Library No Review Search List 8 | {84|Ohio St. Univ. Review Search List 4
39 \Map Library Heading Information 1 | {85]Chio St. Univ. Holdings Detail Help 3
40 {Map Library Title Guide 8 1 186]0hio St. Univ. Explain Author 4
41 {Map Library Title Index 19 | |87 UMich Catalog Subject Index Help 1
42 |Renaissance Lit Introduction 11 | {88|{Map Library No Title Entries Found i
43 Renaissance Lit Keyword Index 17 | 189|Electronic Resources Title Guide 2
44 |Renaissance Lit Brief View 5 | {90]Ohio St. Univ. Long View Help 2
45 |{Renaissance Lit Long View 33 | 191 1UMich Catalog Holdings Detail Help 1
46 |Renaigsance Lit Other Options 2

Table 5.8. Screen Descriptions and Cardinality for MIRLYN Experiment 5.3.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.4.2 Classifier Induction

After fixing clustering results, the author asked LeNDI to generate a cluster signature
for every cluster. Such a signature captures the commonality of the feature vectors and
presentation spaces of the snapshots of a cluster in an artificial feature vector and an
artificial presentation space. Each of Figures 5.10 to 5.12 shows 9 sample snapshots and
the artificial presentations spaces of one of screens 4, 5 and 6 of Table 5.8, respectively.
The artificial presentation space is at the right bottom of each figure. One can see that
they nicely capture the common structure and content of their clusters.

To test these signatures, a test data set was recorded while the user performed more
interaction with MIRLYN system. The set included 687 snapshots, in three traces of
lengths 150, 256 and 281 snapshots. Next, LeNDI s signature-based classifier was used
to classify the snapshots of these traces. Successfully, LeNDI’s signature-based classifier

was able to correctly classify all the 687 snapshots.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMich Online Cataiog
Authox Index

Search Raquest

Search Results:

MONTAG HORET 1938

61 GEODESY AND PHYSICS OF THZ EARTH GEODETIC CONTRIBUTIONS TO
GEODYNAMICS 7TH INTERNATI <1993> (UL)

5000 Entries Found

MONTAC IGNAZ BERNHARD
62 W A V SCHLIEBENS VOLLSTANDIGES HAND UND LEHRBUCH DER GESAMMTEN

NIEDEREN FPELDMESSKUNS <1879> ~{UL)
HMONTAG MILDRED LOUISE 1903

63 COMMUNITY COLLEGE EDUCATION POR NURSING AN EXPERIMENT IN TECHMICAL
EDUCATION FOR NUR <1953> {tiL)

84 EDUCATION OF NURSING TECHNICIANS <1951> (UL)

&5 EOUCATION OF NURSING TECHNWICIANS <1951> microfiche {UL)

&5 EVALUATION OF GRADUATES OF ASSOCIATE DEGREE NURSING PROGRAMS <1972>
i

- CONTIMUED on mext page -

Type

STArt over number te display record <Fg> FPORward page
HELp GUIde <F7> BACK page
OTHer options CHOose

WEXT COMMAND:

Search Request: A=MONT UMich Online Catalog
Search Results: 5000 Entries Found Aurhoy Index

MONTAG MILDRED LOUISE 1908

67 FUMDAMENTALS IM NURSING CRRE <1953> (UL}

68 HANDBOOK OF FUNDAMENTAL MURSING TECHNIQUES <1976> (UL}

&9 WURSIWG ARTS <1948> (UL}

70 WURSING ARTS <1853> (UL)

TL MURSING CONCEPTS AND NURSING CARE <19876> {[UL)

72 TEXTBOOK OF MATERIA MEDLCA <1942> {UL)

73 TEKTBOCOK OF PHARMACOLOGY AJD THERAPHUTICS <1948> (UL}

T4 TEXTBOOR OF PHARMACOLOGY AND THERAPEUTICS INCLUDING DRUGS AND
SOLUTICNS <1959> {UL)

K TRANSITION TN NURSING EDUCATION GUIDELINES RESULTING FROM THE PHASING
OUT OF A DIPLO <1%67> (UL)

MONTAG TOM
78 UHRBAN ECOSYSTEM A HOLISTIC APPROACH <i974> (UL)

~ CONTIMUED on next page
<F8> FORward page
<¥7> BACk page

BTArt over Type number to display record
HELD GUlde
OTHer options CHOose

HEXT COMMAND:

Gitich Online Catelog
Author Tndex

Search Request: A=MONT
Search Results: S000 Entries Found

Search Request: A=MONT
Ssarch Results: 5000 BEntries Pound

UMich Online Cataloy
Author Index

MONTAG TOM 1947

77 MARGINS <WIIWAUKEE> serial (UL)
MONTAG ULRICH

78 PRACHTEINBANDE 870 1685 SCHATZE RAUS DEM BESTAND DER BAVERISCHEN
STAATSBIBLIOTEER MUW <----> {UL)

79 PRACHTEINBANDE 870 1685 SCHATZE AUS DEM BESTAND DER BAYERISCHEN
STAATSBIBLIOTHBK MUN <2001> (UL)

B8O WERK DER BEILIGEN BIRGITTA VON SCHWEDEN IN OBERDEUTSCHER
UBERLIEFRRUNG TEXTE UND UNT <i963> (UL)

81 WILL THE CHAIN BREAK DIFFERENTIAL PRICING RS PART OF B NEW PRICING
STRUCTURE FOR RES <1992> (UL)

82 WILLEHALM. WILLEHALM DIE BRUCHSTUCKE DER GROSSEN BILDEREANDSCHRIFT
BAYERISCHE STAATSBIBLIOTHER <19853> {UL)

CONTINUED on next page = ---
<P8> FORward page

<F7> BaACk page

STArt over Type number to display recoxd
HELp GUide
OTHer options CHOose

NEXT COMMAND:

MONTAG ULRICH
283 WILLEHALM DIE BRUCHSTUCKE DER GROUSSEN BILDERMANDSCHRIFT BAYERISCHE

STAATSBIBLIOTHER <1995> (UL)
MONTAG WARREN

84 BODIES MASSES POWER SPINOZA AND HIS CONTEMPORARIES <1599> {UL)

85 IN A MATERIALIST WAY SELECTED ESSAVS <1938» {UL)

86 MASSES CLASSES AND THE PUBLIC SPHERE <2000> (UL)

87 WEW SPINOZA «1997> (UL}

88 SELECTIONS ENGLISH 1998. IN A MATERIALTST WAY SELECTED ESSAYS <1398>
{UL,)

39 UNTHINKABLE SWIFT JONATHAN SWIFT AMD THE IDEOLOGICAL CRISIS OF CHURCH

AND STATE 1888 <19%4> {UL)

—--- CONTINUED on next page ----
<F8> FORward page

<F7> BACk page

STArt Type number to display record
HELp SUIde
OTHer options CHOose

over

NEXT COMMAND:

UMick Online Catalog
Author Index

Search Request: A=MONT
Search Results: 5000 Entries Found

Search Request: A=MONT
Search Results: 5000 Entriss Found

UMich Online Caralog
Author Index

MONTAGE ORGANIZATION STANFORD UNIVERSITY
1

20 MONTAGE MONTAZH <STANFORD Ci> seria ULy
MONTAGNA BARBARA JEAN
91 1973 74 STAGE INTERPRETATIONS OF PERICLES <1974> {UL)

MONTAGNA BENEDETTO FL 16TH CENT
22 HABES I HOC VOLUMINE LECTOR OPTIME DIUINA LACTATII FIRMIANI OPERA

PERQS ACCURATE CAS < -> {UL)
MONTAGNA CLARE
393 ENVIRCNMENTAL PSYCHOLOGY A PSYCHO SOCIAL INTRODUCTION <1995> {UL)
54 PSICOLOGIA AMBIENTALE ENGLISH. ENVIRONMENTAL PSYCROLOGY A PSYCHO

SGCTAL INTRODUCTION <1935> (UL}

o e CONTINUED on next page

MONTAGNA FRANK C 1949

35 RESPONDING TO ROUTINE EMERGENCIES <199%> (UL}
MONTAGNA PASQUINUCCI MARINELLA
96 *Search Under; PASQUINUCCI MARINELLA
MONTAGNA PAUL D
87 QCCUPATIONS AND SOCIETY TOWARD A SOCIOLOGY OF THE LABOR MARKET <1977>
{uL)
MONTAGNA RENZO
98 MUSSOLINI E IL PROCESSO DI VERCNA <13949> (UL}

MONTAGNA W WILLIAM
99 “Search Undex: MORTAGNA WILLIAM

CONTINUED on next page

STArt over Type nusber to display vecord <F8> FORward page STATt over <F8> FORward page
HELp GUIde <F7> BACk page HELp UTde <F7> BACk page
OTHer options CHOose CTHer options CHOose
NEXT COMMARD: NEXT COMMAND:
Search Request: A=MONIG UMich Online Catalog | Search Request: A=AL-Q TMich Online Catalog
Search Results: 1040 Entries Found Buthor Index { Search Results: 60 Entries Found Buthor Index
MONTGOMERY ALA AIR FORCE LOGISTICS MANAGEMENT CENTER AL QARADAWI YUSUF
112 *Seaxrch Uader: AIR FORCE LOGISPICS MANAGEMENT CENTER 15 HALAL WA AL BARAM FI AL ISLAM <1963> (UL)
MONTGOMERY ALA AUBURN UNIVERSTTY AT MONTGOMERY AL CARDAWI YUSUF
113 *Search Under: AUBURN UNIVERSITY AT MONTGOMERY 16 KEDUDUKAN NON MOSLIM DALAM WEGARA ISLAM <1985> (UL}
MONTGOMERY ALA CHAMBER OF COMMERCE AL QARI AL HARAWI ALI IBN SULTAN MUHAMMAD D 1605 OR 6
114 *Search Under: MONIGOMERY AREA CHAMBER OF COMMERCE 27 DAW AL MAALI. HASHIVAR LI BAD AL MURAQDIQIN TUSAMMA TUHFAT AL AALT
AL SHARH ALI IBN SULTAN AL QAR <1891> microfilm (UL)
MONTGOMERY ALA EASTERN ENVIRONMENTAL RADIATION LABORATORY
115 *Seazch Under: HASTERN ENVIRGNMENTAL RADTATION LABORATORY U S AL QASIDAH AL YATIMAH
18 CASIDAH AL YATIMAH BT RIWAYAT AL QADI ALI IBN MUHSIN AL TANUKHI
MONTGOMERY ALA JUNIOR CHAMBER OF COMMERCE <1370> (UL}
116 CUTSTANDING YOUNG WOMEN OF AMERICA <----> (UL}

- CONTINUED on next page

- CONTINUED on next page -
STAre over

STArt over Type number to display record <F8> FORward page Type aumber to display record <F8> FORward page
HELp Giide <F7> BACk page HELD GUIde <F7> BACk paga

OTHor options = CHOose OTHer options CHOose

NEXT COMMAND: NEXT COMMAND:

Search Request: A=HONTG UMich Online Catalog | Search Request UMich Online Catalog

Search Resultz: 1040 REutries Found 2uthoy Index

Search Results RAuthor Index

MONTGOMERY ALR MONTGOMERY ARED CHAMBER OF COMMERCE

117 *“Search Under: MONTGOMERY ARFA CHAMBER OF COMMERCE
MONPGCMERY ALA MUSEUM OF FINE ARTS
1is «Search Under: MONTGOMERY MUSEUM OF FINE ARTS
MONTGOMERY ALA SOUTHERN POVERTY LAW CENTER
iig *Search Under: SOUTHERN POVERTY IAW CENTER
MONTGOMERY ALAN CHARLES
ize *Search Under: MONTGOMERY A C ALAN CEARLES
MONTGOMERY ALBERT A
121 WASHINGTON MUNICIPAL EXPENDITURES 1941 1957 AN ECONCOMIC ANALYSIS

<1863> {UL})

-- CONTIMUED on next pagae

STArt ovex Type number to display record <F3> FORward page
HELp GUlde <F7> BACK page
UTHar options CHCose

WEXT COMMAND:

CONTTNUED on next page -
<Fg> FORward page

STAYE over
HELp
OTHer opticns

number to display record

NEXT COMMAND:

Figure 5.10. The Signature and Some Snapshots of Cluster 4 of Experiment 5.3.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REVIEW Prior Searches

UMich Online Catalog
Review Search List

Urich Online Cazalog
Review Search List

REVIEW Prior S=arches

LINE SERRCH KITS { LINE SEARCH HITS
51 A =MONT 5000 § S1 A =AL-BA 105
$2 T =ALDANNA o
§3 A =AL-Q 88
sS4 T =ISLal 3363
S5 A =MONTG 1040
§6 A =MOWTO 260
S7 B =MONT 5600
STart over Type line number to re-executs 2 ssarch STArt over Type line number to re-execute a search
HELp Type BEDIT line number to recall a seaxch HELP Type EDIT line number to recall a smarch
OTHer options INDex GUIde CHOcse OTHer optioms CHOosa
NEXT COMMAND: NEXT COMMAND:
UMich Online Catalog TWich Opline Catalog
Review Search List Review Search List
REVIEW Prior Searches REVIEW Prior Searches
LINE SERRCH HITS | LINE SEARCH HITS
§1 A =MoNT 5000 51 A =HAT 3103
52 C =AS 14
S3 A =JUSTTRY [
S4B =HOWAYMAN o
S5 T =AFRICA 3898

STArt over
HELp

Type line number to re-execute a search
Type EDIT line nusber to recall a search

STArS over
HELp

Type line mumber to xe-sxecite a search
Type EDIT line number to recall a search

OTHer options INDex GUXde CHoose OTHer options INDex SUIde CHOoze
HEXT COMMAND: A =MONT NEXT COMMAND:
Rfich Online Catalog UMich Online Catalog
Review Search List Review Search List
REVIEW Prior Searches REVIEW Prior Searches

LINE SEARCH HITS | LINE SEARCH HITS
$1 A =MONTO 260G S1 A =SALEM 311
52 A =MONT 5000 | S2 T =CR 5000
53 ¢ =8s 14
€4 A =HAT 3103
S5 ¢ =AS 14
§6 A =JUSTIRY [
87 A =NOWAYMAN o
58 T =AFRICA 1898

STAXt over
HELp

Type line number to re-execute a search
Type EDIT line pumber to recall a search
GUIde CHY

STArT over
HELp

Type line mumber te re-execute a search
Type EDIT line mumber to recall a search

NEXT COMMAID: A =MONT

NEXT COMMAND:

OTHer options INDex Cose OTHer options INDex GUIde CHOose
NEXT COMMAND: NEXT COMMAND:
UMich Online Catalog UMich Online Catalog
Review Search List Review Search List
REVIEW Prior Searches REVIEW Prior Searches
LINE SEARCH KITS | LINE SEARCH HITS
51 A =MONTO 260 S1 A =MO 5000
52 A sMONT 5000
STArt over Type line number to re-executes a search STArt over Type line number to re-execute a search
HELp Type EDIT line number to recall a search HELp Type EDIT line number to recall a search
OTHer options INDex GUTds CHOose OfHer options CHOose

UMich Online Catalog
Raview Search List

UMich Online Catalog
Review Search List

REVIEW Prior Seaxches

REVIEW Prior Ssarches

NEXT COMMAND:

LINE HITS LINE BEARCE EITE
81 a 80 Bl 7 of?nrecmeocmcc oo -t
s2 T 33€3 - ———
3 A 104C - - —
84 A 260 - Rtataded
$5 A 5000 - m———

STATt over Type line number to re-execute a search STzt over Type line mmber to rs-eiecute a search

EELp Type EDIT line mumber to recall a search HELp Type SDIT lime mumber to recall & search

OTHer options HOose OTHer cptlons 127927~ . ———

Figure 5.11. The Signature and Some Snapshots of Cluster 5 of Experiment 5.3.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GMich Online Catalog
Brief View

Search Requast: A=HONIG
BOOK - Record 125 of 2040 Entries Found

Author: Western Australia. Dept. of Mines.
Title: Report on the Northaspton mineral field.
Published: Perch, Morning herald job printing dept., 1908.

SUBJECT HEADINGS (Library of Congress; use s=):
¥ines and mineral resources--Western Australiz.

UMich Online Cataing
Brief View

Search Request: A=MONTG
BOOK - Record 121 of 1040 Entries Found

Montgomery. Albert A.

Title: Washington municipal expenditures. 1941-1957; an econcmic
analysis.
Published: Pullman, Washington State University, Bureau of Economic and

Business Research, College of Boonomics and Business, 1963.

SUBJECT BEADINGS (Library of Congress; use s=):

LOCATION: CALL NUMBER: STATUS: Municipal finance--Washington {State)
BUHK - Agk at sny TN 122 .65 A3 Yot checked out - - -
library LOCATION CALL NUMBER: STATUS:
BUER - Ask at any HT 8332 .M79 Not checked out
library
S Pag@® 1 OF 1 oo oo § e e e Page 1 of 1 —wm—ammeemmm—an
STAxt over LOWg view. CHOose <F6> WEXt record STAYt over LONg view CHOose <F6> NEXt record
HELp INDex <F5> PREvious record HELP INDex <FS5> PREvious record
OfHar wptions - GUIde OTHer options GUIde

NEXT COMMAND:

WEXT COMMAND:

DMich Online Catalog
Brief View

Search Reguest: A=MONTG
BOOK - Record 127 of 1040 Entries Found

Search Request: A=MONIG
BOOK - Record 122 of 1040 Entries Found

Jiich Online Cataleg
Brief View

Author: Detroit Regional Transportation and Land Use Study. Author: Montgomery, Alberta Vierowia.
Title: Base mapping manual; a report of TALUS Title: The rose and the fire.
Published: Detroit 1367, Published: Cranleigh, Printed & published by the Samurai press 1908
SUBJECT HEADINGS (Library of Congress; use s=): LOCATION: CALL NUMBER: STATUS:

Begional planning--Michigan--Detroit Metropolitan Area. SPECIAL COLLECTIONS Z 232 .S185 1308f Check Shelf

Tetroit Metzopolitan Area {Mich.)--Maps. tIs. (711 GL)

{Non-Circulating)
LOCATION: CALL MUMBER: STATUS: {Closed Stacks)
MEDIA UNION LIBRARY - HT 354 .D6 D482 Not checked out
Lower Lavel
Page 1 of 1 mm Page 1 Of 1 —mmemmemmmaceee

STATt ovexr LCNg view CHoose <F6> NEXt record STATt over LONy view CHCosa <F6> NEXt record

INDex PREvious record

GUide

HELp <F5>

OHer options

NEXT COMMAND:

HELp INDex <F5> PREvious record

OTHer options GUIde

NEXT COMMAND:

UMich Oniine Catalog
Brief View

Seaxch Request: A=MONTG
BOOK - Record 128 of 1040 Entries Found

Search Request: A=MONTG
BOCK ~ Record 123 of 1040 Entries Found

UMich Oniime Catalog
Brief View

Authors: Petroir Regional Transportaticn and Land Use Study.
Title: Grid coordinate coding manual; a report of TALUS.
Published: Detroir 1967.

SUBJECT BEADINGS {Library of Congress: use s=):
Regional planning--Michigan--Detreit Metropolitao Area.
Grids {Cartography)

Author: Western Rustralia. Depr. of Mines.
Title: Report on the Kanowna mines
Published: Perth, F. W. Simpson, government printer, 1308.

SUBJECT HEADINGS {Library of Congress; use s=):
Gold mines and mining--Westemm Australia.

LOCATION: CALL NUMBER: STATUS:
LOCATION:: CALL NUMBER: STATUS: BUMR -~ Ask at any TN 428 .W5 A3 Mot checked out

MEDIA UNION LIBRARY - RT 394 .D6 D4248 Not checked ocut library

Lower Level
BUHR - Ask at any HT 391 .D6 D4B4S Not checked out

library

Page 1 of 1 Page 1 of 1

STArc over LCNg view CHCose <F6> NEXt recozd STArt over LONg view CHOope <F6> NEXt record
HELp INDex <F5> PREvious record HELp INDex <¥5> PREvious record
OTHer options GUlda OTHer options GUide

NEXT COMMAND:

NEXT COMMAND:

UMich Online Catalog
Brief View

Search Request: A=MONIG
ARCHIVE - Record 130 of 1040 Entries Found

Uldich Online Catalag
Brief View

Search Request: A-MONTG
BOOX - Record 124 of 1040 Batries Found

Western Australia. Dept. of Mines.

Author: Institute of Labor and Industyial Relations {University of Buthor:

Michigan-Wayne State University}. Unionism in the Automobile

Industry Project. Title: Report on the mines of the Yilgarn goldfield.
Title: Unionism in the Automobile Industry Project interviews, 1959- Published: Perth, F. W. Simpson, govermment printer, 1308.

1863,

SUBJECT HEADINGS (Library of Congress: use s=}:
Dascription: 130 v. in & boxes. Gold mines and mining--Western Australia.
Biographical Nets: LOCATION: CALL NUMBER: STATUS:
Transcripts of interviews conducted with Michigan labor BUHR -~ Ask at any TH 428 .W5 A3} Wot checked out

leaders by staff of University of Michigan and Wayne State library

University Institute of Labor and Industrial Relations.
——— + Paga 1 of 2 ~---mw ———— - Page 1 0f 1 —em—co—mmmooans
STArt over HOLdings cUIde <F8> FORward page STArt over LONg view Choose <F6> NEXt record
HELp LONg view CHOose <F6> NEXt record HELp INDex <¥5> PREvious record
OfHer options INDex <F3> PREvious record | OTHer options GUide
NEXT COMMAND: NEXT COMMAND:
Search Reguest: Ad UMich Online Catalog | Seaxch Req T 2m27 TMica Oniine Catalog

Brief View

MCTG
ARCHIVE - Record 130 of 1040 Entries Found

Brief View

Unionism in the Automobile Industry Project interviews
LOGATION: CALL WUMBER: STATUS: -
BENTLEY HISTORICAL 851743 Bigu C542 2 Enter HOL 1 for holdings
LIBRARY

{Non~Circulating)
{Closed Stacks)

+ Page 2 of 2

STArc ovar HCLdirgs GULda <F7> BACk page
HELp LoWy view CHOose <F&> NEXL record
OTHer options IHDex <F5> PREvious record

NEXT COMMAND:

2077-722~

over
HELp
OTHer options

NEXT COMMAND:

Figure 5.12. The Signature and Some Snapshots of Cluster 6 of Experiment 5.3.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.4.3 Transition Medeling

Next, transition modeling was performed on the input interaction trace. 369
transitions were discovered. Some of these transitions are shown in Table 5.9. The
transition <i><action><j> is represented by the action model acfion at row i and column
j- A * means a mandatory keyword, argument or option, i.e., something has to be input
in this location. A T*]’ means an optional input. @e is Enter key and @n is the control
key PFn. A 't means a numerical input is mandatory. Some action models are too general
due to lack of examples, i.e., LeNDI could not discover the specific keywords or options
of the action, although some exist, due to lack of enough examples. In this case, LeNDI
takes a safe route by assuming a too general model. Such action models are shown with
gray backgrounds. Some action models are too narrow, which means that the model
would not generalize probably and it overfits the examples available in the trace. This
happens when the examples of this action were too similar to each other. Such models are
shown with white font and black background. The locations (x,y coordinates or range) of
action models are omitted to spare space in Table 5.9.

The entry point to MIRLYN is screen 1 (U of Michigan Libraries Main Menu). This -
menu is 14 screens long, with each of them presenting new options to the user. In other
words, screen 1 has 14 versions. The user may access more instances of this screen by
moving forward by pressing Enter or PF8, typing "remote” followed by Enter or typing
an undefined string followed by Enter. The user can move to screen 2 (UMich Catalog
Introduction) and open University of Michigan catalog by just pressing Enter (cell 1,2).
From screen 2, the user can open screen 3 (UMich Author Guide) or screen 11 (UMich
Title Guide) by issuing the command "a = *@¢" or "t = *@¢", respectively, as in row 2.
These two commands are the catalog commands for searching for a specific author or
title. Simularly, the user can move to other screens as her/his task needs.

One can see that some columns have similar action models, suggesting that the
corresponding screen can be reached using the same action from only some specific
screens. For example, screen 7 (UMich Catalog Holdings Detail) can be accessed only by
typing "hold" or "hol" and pressing Enter from screens 6 (UMich Catalog Brief View) or
8 (UMich Catalog Long View). Another example is screen 10 (UMich Catalog Other

Options). It can be accessed only by typing "ofh” and pressing Enter. However, many

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

action models in column 10 have gray background due to lack of examples, and hence,
they are too general and do not show the specific keyword ("ofh"). Too general models
occur due to lack of examples and are not a problem. This is because lack of examples
means that the action occurred a rare navigation sequence. Such sequences would not be
discovered as an interaction pattern. If needed, a too general action model can be made
more specific manually.

An example of an overfitting model is the transition from screen 5 to screen 5, via the
action model "edit s1@¢". The edit command allows the system user to edit one of the
previous searches in the open library catalog performed previously. Since many of the
examples had the user revising the first line in his search history (line s1), LeNDI
mistakenly assumed that “s1" is a possible argument of the command. This problem can
be fixed either by collecting more examples of the same action or by changing the model

manually.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= =
8] o e
£ s | B 8 2 - lE |7 £ |, |© | E1l¢g
5 g | = 5 ERE R S OlE g 2l
& = 5 () =g o) o = = =l
= 8| < < 2 | A s | Z |0 |E | E &
= o an on o on | o 80 o9 o0 o8 6o | &
a g1 8 L 2 218 < L32ie R L 1.2
o1 E " = .| 8 |E = s 5|8 s | E |8z
] = & @ =] = =] <
mm 3|O J S5/ 3|8 | O SEiS |8 8|85
S S 5|52 |23 |2 |288|8 (255385 |32
DS W mG A= & a Hibo B
Id 1 2 3 4 3 6 7 8 9 10 11 12 i3
1 remote@¢ @g
*}@¢
2 fev@el = *@g¢
3 in@e¢ rev@e
ind@e¢|
1@¢ .
4 @¢ r1ev@e 1@¢ 1@e]"
5 ed &
edit *@¢ .
6 a=**]@¢ @6 hol@¢ 1@¢
lon@c¢
\N m
8| cho@s ind@¢ bri@e| hol@e 1 ind@e
sta@e) hold@¢g;
9
10 =*@g¢
i1
12 1@¢ 1@¢)
i3 [*l@q
@8
14 ex mirlyn@e
exp mirlyn@¢
15 @¢;
16 @e¢
18
19
20

Table 5.9. Some of The Transition Models Built by LeNDI for The MIRLYN Trace
of Experiment 5.3.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Discussion

This chapter presented the interaction-based legacy Ul reverse engineering process
developed in CelLEST project. The process builds a behavioral model for a character-
based legacy user interface using traces of interaction with the legacy system, recorded
while its users are performing their regular activities using the legacy system. The model
is in the form of a state-transition model. Its nodes represent the behavioral states or
screens of the legacy system. Its edges represent the user actions necessary to cause a
transition from the source screen where the action took place to a destination screen. The
two substasks in building this model are identifying its nodes and its edges. The first is
accomplished by clustering similar screen snapshots together automatically or semi-
automatically, verifying clustering results, and then inducing a classifier that is able to
generalize clustering results by classifying new snapshots to one of the existing clusters.
The second process involves analyzing the available instances of every transaction
between two screens, assuming that all the user keystrokes done to initiate such a
transition are instances of the same user action. This analysis leads to identifying what is
common in these instances and what is variable in terms of their textual contents and
locations on the source screen. The following discussion elaborates on the strengths,

limitations and possible enhancements of this work.

5.6.1 Strengths

This subsection presents the strengths of the CUI behavioral modeling process
presented in this chapter. It discusses how this process advances current modeling
practices, while requiring lower skills and less time, effort and cost.
5.6.1.1 A Coherent Automated CUI Behavior Modeling Process

The novel coherent CUI behavior modeling process of LeNDI supersedes the manual
practices used currently in industry, which are described in fair detail in section 2.2.
These practices focus on manual modeling of either some interesting parts of a given
legacy CUI or the user tasks that will be reengineered, from scratch.

In these practices, using a simple or rich pattern language, an analyst manually
defines classifiers that are able to classify some of the snapshots of the system in hand to

one of a set of classes, each represents a legacy system screen. Since the analyst is

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

usually unfamiliar with the system in hand, s/he needs the aid of some expert users of the
system. Also s/he needs to familiarize her/himself with the system via reading the system
documents, if any, talking with and observing the system users, trial and error, reading
help screens, etc. Then s/he needs to figure out how many distinct screens or states are
there in order to infer classifiers for them. Classifiers are logical combinations of patterns
described in the given pattern language. For example, patterns can represent the existence
or absence of a certain text at a certain location or within a range on the screen. To do the
modeling task, the analyst goes through many sample snapshots of each screen under
analysis trying to discover what is common on them and what differentiates them from
other instances of other screens. This is done by visually inspecting the snapshots and
finding one pattern or a combination of patterns that distinguishes the snapshots. This is
quite a labor-intensive and time-consuming job. Moreover, due to the limited set of
features offered by pattern languages, some times it is very hard to construct a logical
expression of patterns to distinguish the instances of a screen and may require forming
quite complex patterns.

To model the possible transitions among the screens of a legacy system, the analyst .
needs to see different instances of each transition, try them and familiarize him/herself
with the interaction style adopted in the legacy CUIL. By analyzing these instances, s/he
has to infer a model of each transition that describes what keywords, arguments and
options are needed/possible for this transition and what are the possible variants for each
of them. Also, her/his manual analysis should discover how many pieces of data are
needed for the transition and whether they are optional or mandatory. Finally, s/he needs
to figure out where on the screens all these pieces take place.

LeNDI provides an alternative coherent semi-automated behavior modeling process
that eliminates the need for tedious error-prone manual model building. It pushes
interaction-based legacy Ul reengineering forward and significantly advances its current
practices making it a favorable solution when code reengineering is not essential. By
relieving the analyst from manual piece by piece model building, LeNDI saves time,

effort and cost.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While this process relies on inferring most of the elements of the required behavioral
model almost automatically, it leaves room for user feedback to revise the generated
model and overrule LeNDI’s decisions.
5.6.1.2 Low Skills

LeNDI requires lower skills than current manual practices. To use LeNDI, moderate
analysis skills and fair understanding of the system under analysis is needed. Current
practices require solid software development and programming skills and the aid of
expert users of the legacy system. This is because LeNDI infers many pieces of
information automatically and asks the analyst just for verification and feedback. While
in current practices, all information is extracted manually.
5.6.1.3 Comprehensibility of the Results

The state-transition model produced by LeNDI is intuitively understandable, with
little legacy system user experience. Hence, verifying the model and giving feedback is
easy. This is especially true due to the coherent modeling approach used in LeNDI as
opposed to the segmented approach followed in current practices and because of the tool
support for visualization, offered by QandA [Vij02].
5.6.1.4 Flexibility and Extensibility

LeNDI’s behavior modeling process is flexible to possible changes in the legacy
system CUIL Minor changes can be done manually to the generated state-transition model
and major ones can be done by recording new traces of interaction and partially redoing
the modeling process.

LeNDI employs two different clustering algorithms that require different levels of
familiarity with the legacy CUI and different inputs. It also employs two different
classifier induction methods. Thus, it offers flexibility in choosing the right methods
based on the legacy CUI in hand and the judgement of the analyst.

Additionally, the CUI modeling process is open to improvements by adding new
features, clustering algorithms and/or classifier induction algorithms. Since the generated
state-transition model is stored in an MS Access database, it would be possible to query it
using SQL about possible navigation paths from a screen to another in order to build a

navigation plan for a novel task model, or other reasons.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.2 Limitations

Interaction-based legacy CUI behavior modeling in 1.eNDI has some limitations in
terms of the accuracy and completeness of the model built and the necessity of some
human setup and feedback. These limitations are detailed below.
5.6.2.1 Model Completeness and Classifier Accuracy

Two important questions should arise after presenting the experiments and evaluation
of section 5.5. These questions are 1) how complete is the state-transition model
produced? and 2) how accurate is the classifier induced to classify new snapshots as
instances of exiting nodes or states? There is no straightforward answer to both questions
as both measures rely heavily on the amount and quality of input data. Therefore, instead
of giving a precise answer to these questions, the following elaborates on what factors
affect these two measures.

First, model completeness depends on the coverage of the data collected. It is obvious
that LeNDI would not be able to model states (screens) that were never accessed while
recording the interaction traces, and hence no sample snapshots of them were available
for clustering. The same applies to edges (transitions). However, a complete model of the -
entire legacy Ul is not really of interest. Instead, “enough” modeling is what is needed.
This means producing a model that covers the services of the legacy CUI that would be
subject to reengineering, and the necessary related screens, €.g., help screens, messages
screens, etc.

Second, the accuracy of the classifier, and consequently the ability of the new
interface front-end to monitor and control the state of the underlying legacy application,
depends on two factors. First, it is important that enough examples of all screens of the
legacy interface have been recorded. Since the trace-recording emulator is not intrusive, a
large number of emulators, installed on the terminals of a variety of legacy users for
sufficiently long time should result in long and sufficiently representative traces.
However for a given screen, “sufficient” is a function of its feature vector, content
dynamics and its similarity to other screens.

Another factor affecting the classifier accuracy is the quality of the partition produced
by the clustering process. This is why the clustering process is interactive and can be

guided by the LeNDI analyst. Then, the clusters can be reviewed and incorrectly

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clustered snapshots can be identified. This process continues until all errors are
eliminated. By analogy, the accuracy of transition modeling depends on having enough
representing examples of each modeled transition. Lack of enough examples or having
very similar examples may lead to too general or too specific models, respectively.
Therefore, transition modeling is open to user revisions to fix the overfitting models and
to specify the too general ones, if needed.
5.6.2.2 User Feedback Is Necessary

Albeit mostly automatic, some user input is still required in the current legacy CUI
behavior modeling process of LeNDI. Complete automation of the reverse engineering
process is not possible due to the variety of practices used in designing legacy CUIs.
There will always be a need for some user feedback to complete the Ul model. Smarter
feature sets and better clustering and classifier induction methods can reduce the user
feedback. The single-path incremental clustering algorithm relies on a good human setup
of its parameters, while the top-down algorithm has minimized the needed input to only
one number, the estimated number of clusters (or the maximum internal cluster
incoherence threshold). But in both cases, clustering is done iteratively and a few rounds
of clustering/resuits review are usually needed. And ultimately after clustering, user
feedback is needed in the form of result review/revision before generating a classifier.
This is to verify model correctness since there is some judgement needed for the
modeling process. For example, on some screens, one may issue the wrong command or
pass the wrong piece of data and as a result s/he receives what seems to be an instance of
the same screen with an error message. Should the snapshot with the error message be
considered an instance of the original one or an instance of a separate state? Does it
exhibit a different behavior than the original one? These are questions whose answers
need the judgement of the analyst.
5.6.3 Future Enhancements

In the following I include some of the areas where legacy CUI behavior modeling can
be improved and enhanced.
5.6.3.1 Feature Selection for Clustering

Currently the LeNDI analyst has to decide which features to use for clustering

snapshots using the single-path incremental clustering algorithm. On the other hand, s/he

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has no choice on which binary features to include in decision tree building using the iep;
down algorithm. This is because one of the motives behind developing this algorithm is
relive the user from having to decide which features to use for clustering and leaving it to
the algorithm to decide which feature to use for splitting at each decision tree node. There
is a body of work on feature selection in machine learning [BL97, KS96] and a number
of other areas. The main idea is that discovery and removal of irrelevant and redundant
features with respect to a given data set can lead to more accurate results in clustering and
classifier induction. In the problem in hand, this means less human input as well.

5.6.3.2 Enhancing Clustering and Classifier Induction

Currently, the LeNDI analyst chooses which clustering and classification methods to
use for a given system. S/he can alternate between methods by using one of them and
then switching to the other. However, currently, LeNDI does not allow hybrid clustering
or classification by combining results from both clustering algorithms or both
classification algorithms. This idea is worthy of investigation for potential performance
improvement. During clustering phase and before user correction of clustering mistakes,
it would be possible to apply both algorithms simultaneously and assign more confidence -
to the results that they both generated, i.e., the area where both produced partitions
overlap. The same idea can be used for classifiers’ decisions. One can generate both
available classifiers and use them to classify a new snapshot simultaneously. In this case,
more confidence should be given to the decision shared by both classifiers.

Another future improvement is adding a measure of matching strength for the
signature-based classifier to use in case of more than one match due to loose signatures. It
is possible also to add a signature analysis heuristic to discover loose signatures and
report them to the analyst at design time and suggest switching to the decision tree
classifier to identify new snapshots of the clusters with loose signatures.

Another future possible improvement is integrating more clustering algorithms and
classifier induction algorithms to LeNDI to allow more choice for the analyst, depending
on the system in hand. Also, it is possible to add simple pattern definition capabilities to
LeDNI so that the user can create his own signature pattern if he wishes so for some

SCrecns.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.3.3 Enhancing Action Modeling

The current version LeNDI has focused on systems adopting a combination of
function key and command-driven interaction style, which is a frequently occurring
combination. The future version of LeNDI will cover other forms of interaction,
particularly, form-filling and menu selection.

Additional enhancements can include transition generalization. In many systems there
are user actions that are available on many or most of the legacy Ul screens, e.g.,
invoking a help screen, returning to a main menu or quitting the system. LeNDI would
model such an action only as part of the transitions that has instances in the recorded
traces that include this action. In other words, if it is possible to invoke a help screen
from, say, 50 possible screens but there are only instances for invoking it from 5 screens,
then LeNDI will model only these five transitions. It would be possible to use some
document layout and content analysis methods, possibly with some user input, to
compare areas on different screens that describe available standard user actions and use
the results to generalize a transition. This means declaring the action of that transition a
global action that is permissible on any screen with certain characteristics despite that

there is no record of that action performed on an instance of the screen.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5 detailed the process of building behavior models for legacy system CUIs in
the form of state-transition models. The next step in the CUI reverse engineering process
is to discover what services of the legacy CUI are being used, or from a user’s
perspective, what frequent tasks the users execute through the legacy CUIL This is
represented by task T2 in Figure 3.1. LeNDI discovers these frequent tasks in the form of
frequent segments of interaction with the legacy CUI, or as we call them “interaction
patterns”. Each pattern is a hypothesis of a user task interesting enough to appear
frequently in the traces. LeNDI analyst needs to verify these hypotheses. Semi-
automatically in task T3, the forward engineering tool of CelLEST, Mathaino [Kap01],
augments each verified interaction pattern with the information exchange that occurs
during its execution. Thus, each interaction pattern provides the basis for a task model
that is used in generating abstract GUI specifications in task T4. At runtime, these task
models are used by the XHTML or WML front-ends generated in task T5 to execute the
corresponding user task, feed the legacy application with user inputs, collect the required
outputs and present them to the user through the new front-end.

Current industrial practices, as described in section 2.2.3, do not support automatic
discovery of frequent user tasks. Instead, they adopt a manual modeling process during
which, an analyst and an expert user sit together and manually define the navigation
sequence to take place for every user task. So, given the state-transition model of the
legacy system, they need to identify the main navigation path and any alternative paths
for the task in terms of the starting screen and the sequence of screens to be accessed to
perform the task. LeNDI automates this process by mining the recorded interaction traces
for interaction patterns. The LeNDI analyst has the freedom to accept, reject or modify
the discovered interaction patferns after reviewing them. This is done to verify that each

pattern represents an actual user task of interest and faithfully represents the navigational

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path traversed to execute this task and any alternative paths that may exist for the same
task.

~ In addition to climinating the need to define the navigation path(s) for every task,
LeNDI supplies the necessary input to the task modeling process (T3) of Figure 3.1, done
by Mathaino. In the earlier versions of LeNDI and before developing the interaction-
pattern discovery process, it was required to collect task specific traces to use as input for
T3. Each set of such traces are multiple executions of the same task with different
parameters that cover all the navigational and input and output possibilities of the same
task, without any mistakes or spurious navigation. Then automatically, Mathaino
analyzes the user inputs on the snapshots of the instances of each task to classify them to
constants, derived variables, redundant values, range variables or unpredictable variables.
Additionally, the Mathaino engineer manually highlights on the snapshots of each task
instance the areas that contain the displayed information required to successfully
complete the task. These highlighted locations are analyzed to infer the fixed or relative
locations of the outputs of interest.

By introducing the process and algorithms of interaction pattern mining, LeNDI
eliminated the need to collect multiple task specific traces. The regular interaction traces
collected to build the state-transition model of legacy CUI are also used to discover
interaction patterns, retrieve the instance of these patterns and feed them to Mathaino as
multiple executions of the same task.

Interaction pattern discovery is a three-step process. It starts by some necessary
preprocessing that transforms the data to the format needed by the mining algorithm and
also reduces its size. Then, the mining algorithm is applied to discover the patterns that
meet a user-defined interestingness criterion. The user usually reviews the discovered
patterns and changes the interestingness criterion to narrow or widen the results set as
needed or to see the effect of changing some parameters in the criterion on the results.
Finally, s/he analyzes and comprehends the discovered patterns to distinguish the useful
patterns from spurious navigational segments.

It is often the case that there are alternative paths to accomplish the same user task,
e.g., the user can enter some value directly or open a list of choices to choose from.

Additionally, it is possible to invoke some screens irrelevant to the user task intentionally

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or unintentionally, e.g., help screens or error messages. Due to these factors, it is
important that the algorithm used for interaction pattern mining accommodates a usef—
defined level of noise in the instances of the patterns retrieved. This is done by defining
the maximum number of “insertion errors” allowed in any instance of a pattern in order
for it to be counted or considered. In this context, insertion errors are extra snapshots that
may exist in the instances of a pattern, due o user mistakes or due 10 the existence of
alternative paths for the same task. The type of patterns retrieved are called approximate
patterns with insertion errors.

In [ESS02a], we introduced a more restricted version of this problem, in which exact
interaction patterns with no insertion errors are discovered using an Apriori-based
algorithm. But, since this limits the number and type of patterns retrieved, LeNDI needed
to accommodate insertion errors. Since the existing sequential pattern mining algorithms
did not address exactly the problem we have in hand, there was a need to develop a
tailored algorithm to handle this problem. Thus we developed two algorithms for
approximate interaction pattern mining with insertion errors, which are Interaction
Pattern Miner (IPM), a breadth first algorithm, and Interaction Pattern Miner 2 (IPM2), a .
depth first algorithm. IPM requires more memory than IPM2 but is faster. This gives
LeNDI analyst a choice between speed and memory usage depending on the trace set
analyzed.

This chapter introduces the concept of interaction patterns and their use within
CelLEST project and their other potential uses. Then, it introduces the problem of
interaction pattern mining in traces of interaction with legacy CUIs and two novel
algorithms for solving it, IPM and IPM2. The rest of this chapter is organized as follows.
First, section 6.1 provides an example interaction pattern to illustrate how such patterns
look like and how they can be represented. Section 6.2 formulates the interaction patiermn
mining problem. Section 6.3 describes the necessary simple preprocessing that is
performed on the interaction traces before pattern discovery. Sections 6.4 and 6.5
describe the two algorithms developed for interaction pattern mining, IPM and IPM2.
Section 6.6 is a brief on the post-discovery analysis of interaction patterns. Section 6.7

presents a case study and an evaluation and comparison of IPM and IPM2. Section 6.8

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

includes some final comments and discussion of other possible representations and uses:

of interaction patterns.
6.1 An Exan

This section describes what an interaction pattern is and how it looks like and how it

le Interaction Pattern

is represented. To do so, a user interacted with the Library of Congress Information
System (LOCIS) [LOCIS] through its IBM 3270 public connection and performed a
number of information retrieval tasks repeatedly, while LeNDI recorded this interaction.
Figure 6.1(a) below shows a segment of the recorded interaction trace. Boxes represent
screen snapshots and arrows represent transitions from one snapshot to another. The
labels on the arrows are the user actions performed on the corresponding snapshots. The
Ids in the circles at the upper left corners of the snapshots are the cluster Ids given to
them by LeNDI after behavior modeling. Figure 6.1(b) shows the corresponding part of
the state-transition model inferred by LeNDI from this trace. The boxes represent legacy
screens or the nodes of the model. The numbers in the corners of the screens are the Ids
given to them by LeNDIL Associated with each Id is the predicate or signature of the
corresponding screen. The arrows are the model edges and the labels on them are the user
action models.

The portion of the trace shown in Figure 6.1(a) starts by the user making the menu
selections needed to open the relevant library catalog. Then, the trace shows two very
similar segments of navigating LOCIS in solid line boxes that occurred apart from each
other in the trace. They represent two different executions of the same user task. In this
task, the user issued a browse (b) command with some keyword(s) to browse the relevant
part of the library catalog file. Then he issued a refrieve (r) command to retrieve a subset
of the catalog items. Then, he displayed brief information about the items in this set using
display (d) command. Finally, he selected an item using the display item (d item)
command to display its full or partial information, e.g., the full legislation, its abstract, its
list of sponsors, its official title, etc.

If a sufficient number of instances of this user task appear in the recorded traces and
meet some user-defined criterion for pattern interestingness, LeNDI can discover that
these instances represent a candidate interaction pattern, even if some of them include

some insertion errors. Figure 6.2(a) shows the two similar navigation segments of Figure

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1(a). One can see that the user accessed the same screens, in both segments, but he
accessed a different number of snapshots of screens 6 and 9. The pattern corresponding to
these navigation segments or task instances is {47,5,67,7°,8",9}, where *+” means one or
more instances of the preceding screen Id. A "+’ is added after screen Ids 4 and 7 in this
pattern because other instances of the pattern had multiple consecutive occurrences of
these Ids. Sections 6.4 and 6.5 describe how this pattern and other ones are discovered.
Figure 6.2(b) shows a diagrammatic representation of the discovered pattern, augmented
with extra semantic information. Note that a mixture of constant and unpredictable values
needs to be provided as input to perform this task. Some of the unpredictable variables
are mandatory, represented by *’, and others are optional, represented by [*]. Other
semantic information, like the outputs of interest to the user on each screen, needs to be

added to the pattern before turning it into a complete task model.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y —— i — L A S D
i 16CiE ! & Briet O Briet !iﬁe-m Detail ;%ésplay ite ?E%em Display:
; Main Menu, Display Display j FirstPage, , Options { ¢ Options !
E____?_@_F: T eE @ L ditem 133@E | summ@E bisenate@ 10— K-
o=y 7 o e e o e

; . Fe.dger?l g @ Brief fiem Dispia gitgm Detaits{ @Cataﬁgg fiem Detail

! e%z:um” Display Options { First Page, Browse Last Page
1 Menu | - -z

i1@E @E all@E otl@E

__y1eE ol 3 __JoweE_ J,r.b5@E ©__LeE

| Welcome | Brief tern Detail Display lterm Retrieve Ttem Detail

g i Display First Page | Options j Resuits Intrmd. Pg.
breplwii!iams@E * er ~ § @E ~TeE 'dﬁ@E - @E
@Cataiog @ Brief tem Detail ftem Detatl @ Brief ftem Detail

Browse Display intrmd. Pg. Last Page Display First Page
JrooseE fee JeE ~ | @E JOE o TkwiceE
@Retrieve @ Brief tem Detail tem Detail @ Brief Ttem Displa
Results Display intrmd. Pg. Intrmd. Pg. Display Options
) £
d 1@E @E d item 12@E

(a) A segment of an interaction trace with LOCIS.

: o @E v

: 10
1 el 5> [litem Details Item Details
E: LOCIS intrmd. Pg. || Ll__ast Page

Main Menu @k

iS@E
2 S——

Federal
Legisiation
Menu

3“ Welcome l

vvvvvvvvvvvvv D - [*E@E

* Mandatory Argument
[*1 Optional Argument
@E Enter Key

%WW"% ,,,,,,,, .é [j@E | ?5*@5

(b) The state-transition graph part corresponding to the segment in (a).

Figure 6.1. An Example Trace of User Interaction with the Library of Congress
Information System (LOCIS) with Multiple Executions of the Same Task.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ltem Display
! Options

L4 @E

9 ltem Details
Intrmd. Pg.
@E

10 item Details
Last Page

Iditem 133 @E

7 ftem Display
Options

8 Ttem Details
First Page
@E

9 ltem Details
lg nirmd. Pg.
+ @E

101 m Details
Last Page

(a) Similar Navigation Segments of LOCIS That Represent The Same User Task.

} . e 5 :
b *[*] @E_4 Catalog I r*[] @E geetg‘i\t/: I___
* Mandatory Argument Browse @ 23, 11
[*] Optional Argument 4 @E
@E Enter Key
@ 7,n The user action @ 18,8

occurs at an unspecified
row and column #.

First Page
@t

@ 7,67

7 Ttem Details

ftem Details |
| Intrmd. Pg.

ditem ™ @ Brief

T | Display

g ftem Details

Last Page

(b)The corresponding interaction pattern.

Figure 6.2. Similar Navigation Subsequences of The LOCIS Trace of Figure 6.1(a)
and The Corresponding Interaction Pattern Augmented with Action Locations.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Problem

Formulation

This section provides the terminology and formulation of the problem of interaction

pattern mining in the recorded traces of interaction with a legacy user interface.

1.

6.

Let A be the alphabet of legacy screen Ids, i.e., the set of Ids given by LeNDI to the

screens of the legacy system under analysis.

let § = {51,82....5.} be a set of sequences. Each sequence s; is an ordered set of

screen Ids from A that represents a recorded trace of interaction between the user

interface of the legacy system and one of its users, similar to the partial trace shown

in Figure 6.1(a).

An episode e, is an ordered set of screen Ids occurring together in a given sequence.

A pattern p is an ordered set of screen Ids that exists in every episode ¢ € E, where E

is a set of episodes of interest according to some user-defined criterion ¢. E and ¢ are

said to “support” p. The individual Ids in an episode ¢ or a pattern p are referred to

using square brackets, e.g., e[1] is the first Id of e. Also, |¢] and |p| are the number of

items in ¢ and p respectively.

If a set of episodes E supports a pattern p, then the first and last Ids in p must be the

first and last Ids of any episode ¢ € E, respectively, and all Ids in p should exist in the

same order in e, but e may contain extra Ids, i.e., [p| < |¢] V e € E. Formally,

e p[l]=e[l] VeeE,

e plipll = ellel] Vee E, and

e V pair of positive integers (7, j), where i < |p|, j < |p| and i< j, 3 e[k] = p[i] and e[I] =
plj] such that k< L

The above predicate defines the class of patterns that we are interested in, namely,
approximate interaction patterns with at most a predefined number of insertions. For
example, the episodes {2,4,3,4}, {2,4,3,2,4} and {2,3,4} support the pattern {2,3,4}
with at most 2 insertions per episode, which are shown in bold italic font.

An exact interaction paftern g is a pattern supported by a set of episodes E such that

none of its instances has insertion errors

o gli] = eli] Vee Eand1<i<|g]

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. The location list of a pattern p, written as loclist (p), is a list of triplets {seqnum;
startLoc, endLoc), each is the location of an episode ¢ € E, where Sggnum 18 the Id of
the sequence containing e. startLoc and endLoc are the locations of ¢[1] and e[jel] in
Sseqnums TESPECtively.

8. The support of a pattern p, written as support (p), is the number of episodes in § that
support p. Note that support (p) equals the length of loclist (p), i.e., loclist (p).Jength.

9. The density of a pattern p, supported by a set of episodes E, is written as density (p)

and is defined as the ratio of |p| to the average episode length of episodes € E:

density (p) = |p| * support (p)

2 |

ecE

10. A qualification criterion c, or simply criterion, is a user defined quadruplet (minLen,
minSupp, maxError, minScore). Given a pattern p, the minimum length minLen is a
threshold for |pl. The minimum support minSupp is a threshold for support (p). The
maximum error maxError is the maximum number of insertion errors allowed in any
episode ¢ € E. This implies that le|] < |p| + maxError ¥V e € E. The minimum score
minScore is a threshold for the scoring function used to rank the discovered patterns. .‘

This function is:
score (p) = log, |p| * log, suppori(p) * density(p)

Experiments showed that this function is suitable and sufficient for the application in
hand as it considers and balances between the pattern length, its support and its
density. The default values for minLen, minSupp, maxError and minScore are 2, 2, 0
and O respectively. Other scoring functions can be used depending on the application.

11. A maximal pattern is a pattern that is not a sub-pattern of any other pattern with the
same support.

12. A qualified pattern is a pattern that meets the user-defined criterion, c.

13. A candidate pattern is a pattern under analysis that meets the minSupp and maxError

conditions.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Given the above definitions, the problem of interaction pattern discovery can be
formulated as follows:
 Given:

(a) an alphabet 4,

(b) a set of sequences S, and

(c) a user criterion ¢

Find all the qualified maximal patterns in S.
6.3 Preprocessing Interaction Traces

An interaction trace is initially represented as a sequence s of integer screen Ids. We
denote this representation as RO. RO often contains repetitions, resulting from accessing
many instances of the same screen consecutively, e.g., browsing many pagés of a library
catalog. Repetitions may result in missing some important patterns. For example, the two
instances of the interaction pattern of Figure 6.2(b), shown in Figure 6.2(a), are
{4,5,6,6,6,6,6,6,7,8,9,99,10} and {4,5,6,6,7,8,9,10}. The user may keep flipping the
pages of the result set that resulted from querying the library catalog until reaching the
needed items. Hence, a variable number of snapshots of screen 6 may exist in a task
instance. The same applies to screen 9. Unless LeNDI can tolerate this type of variability
during its pattern mining process, it would miss some of the instances of such pattern and
possibly not discover this pattern altogether. To avoid this problem, LeNDI encode s
using the run-length encoding algorithm [Way99] that replaces immediate repetitions
with a count followed by the repeated Id. Repetition counts are stored separate from the
sequence. This representation is called RI. Figure 6.3 shows RO and RI representations of

the trace segment of one of the pattern instances of Figure 6.2(a).

R0:{4,5,6,6,6,6,6,6,7,8,9,9,9,10,}
RI:{4,5,(6)6,7, 8, (3)9, 10}

Figure 6.3. Preprocessing Interaction Traces.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 IPM h-first Di 7 roximate Interaction
tterns

Interaction Pattern Miner (IPM) [ESS02b] is one of two algorithms developed and
implemented in LeNDI to discover interaction patterns. IPM utilizes a common idea in
the field of data mining (DM). The 1dea is to construct shorter candidate patterns that
meet the user required minimum support (number of occurrences) and maximum number
of insertion errors and then glue them together to construct longer candidate pattems.
Every pattern constructed is examined to ensure that it still meets these two conditions,
before it is used to construct longer patterns. If a constructed pattern does not have
enough support, then it is discarded and not used for constructing longer patterns. IPM is
a breadth-first algorithm because it generates all candidate patterns of length [before
generating any candidate pattern of length [+1, and so on and so forth. This requires
saving the location lists of all candidate patterns of length [, to use them to generate the
location lists of the patterns of length [+1.

The input to IPM is a set of sequences S and a criterion ¢. IPM outputs all the
qualified patterns in S. IPM consists of two distinct phases. First, it exhaustively searches
the input sequences to identify all the candidate patterns of length 2 during an
initialization phase (Algorithm 6.1a). For every such pattern, a location list is constructed.
The candidate patterns are stored in a matrix JA| X |A] of pattern lists, prList, whose rows
and columns are labeled after the Ids € A. Each cell ptList[i,j] of the matrix contains
every pattern p, such that p[2]= i and p[|pll= j. For example, the pattern {1,3,4,2} is
stored in ptList{3,2].

In the second phase, Algorithm 6.1b recursively extends the candidate pattern set. For
every pair of patterns pl and p2 of length [, if prefix (pI) = suffix (p2), a new patiern p3
of length [+1 is generated, such that p3 = pZ + pl[l], and is then stored in prList. pl can
only extend patterns in ptList [pI[1], p1[I-1]]. For example, if pI = {1,3,4,2}, then it will
be used to extend the patterns of length 4 in ptList [1, 4], which have the format {7,1,7,4},
where ? refers to any Id € A. The extension will succeed only with patterns with
matching suffixes, i.e., of the format {7,1,3,4}. The location list of the extended pattern
p3 is constructed from the location lists of pl and p2 (Algorithm 6.1c). Locations of the

episodes that support p3 but have more than maxError insertion errors are excluded. If

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

support (p3) = minSupp, then p3 and Joclist (p3) are stored in ptList, otherwise p3 is
discarded. If support (p3) = support {(pi) and/or support (p3) = suppori (p2), then pl
and/or p2 is marked as non-maximal. When no more candidates can be generated, the
algorithm reports the qualified maximal patterns in prList. The following is a step by step

description of Algorithms 6.1a, 6.1b and 6.1c.
6.4.1 IPM Phase 1: Producing The Initial Candidate Pattern Set

Algorithm 6.1a implements the initialization phase of IPM. Step 1 creates the pattern
list matrix, ptList. Step 2 is repeated for every input sequence s, € S. Step 2.a iterates
over the Ids of s, from s¢ [1] to s¢ [|si] - maxError-1]. For each 1d, it iterates in the inner
loop over its consecutive Ids up to maxError+1. Step 2.a.I uses each of these consecutive
Ids to build a new pattern with original Id. For example if s = {1,3,2,3,4} and
maxError=2, then s [1] will be glued to each of s[2], si[3] and s:{4] separately, resulting
in the generation of the new patterns {1,3}, {1,2} and {1,3}. Step 2.aIl adds the new
pattern in ptList, if it is not already there. The location of the episode supporting the
pattern is added to its location list in step 2.a.IIL. Step 2.b performs the same function as .
steps 2.a, but it handles the last maxError Ids of s;. Note that the only cells of prList, used
by Algorithm 6.1a, are the diagonal cells. This is because for a pattern of length 2, p[2] is
plipll, i-e., it is stored in prLisI [p[2], pllp{l], which is ptLisI [p[2], p[2]]. Step 3 removes

from ptList any pattern whose support is less than minSupp.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6.1a: IPM Initial Phase

Input: An alphabet A, a criterion ¢ and a set of sequences S.

Output: All candidate patterns of length 2.

Steps:

1. Create a matrix |A] x |A| of pattern lists, ptList

2. Foreverytrace s;€ S, 1<k < |§]

a. Fori=1tolsy-maxError-1
e Forj=1i+1tei+ maxError+1

I. Construct new paitern p = {s [Z], st [j1}
II. If p NOT in ptList [s¢ {1, sx [/1] then Add p to ptList [si [, se [711
00 Add (k,i)) to ptList [s¢1j], st {j]].getlocationList (p)

b. Fer i =[s| - maxError te |s{ -1
e Forj=i+11to |s]
I. Construct new pattern p = {s¢ {1, st [/1}
II. Ifp NOT in prList [s¢ [j1, s« 1] then Add p to ptList [si [}, se [j1]
L. Add (k,ij) to ptList [si [j], sk [j1].getlocationList (p)

3. Foreveryide A
a. For every pattern p in piList {id, id]
o If support (ptList [id, id]) < minSupp then Remove p from piList {id, id]

Algorithm 6.1a. IPM Initial Phase.

6.4.2 IPM Phase 2: Generating Longer Candidate Patterns from
Shorter Ones

Algorithm 6.1b implements the second phase of IPM. Step 2 iterates as long as more
candidate patterns can be generated as indicated by the morePatterns flag, which is set to
false in step 2.a, at the beginning of every new iteration. Step 2.b loops over every cell in
ptList matrix. For every cell it access every pattern pl of length [and checks if pI can be
used to extend any pattern p2 from its end. Only the patterns in ptList [pI[1], p1{i-11] are
inspected because these are the ones whose second Id, p2{2] and last Id, p2[I] match
pl1] and pI{I-1], respectively. If extension is possible, i.e., suffix (p2) equals prefix (p1),
then step 2.a.1 generates the new pattern p3 and step 2.a.II constructs its location list. Step
2.a.1II checks if p3 satisfies the minimum support condition. If yes, it adds p3 to ptList,
marks pI and/or p2 as non-maximal if they have the same support as p3 and sets the flag
morePatferns to irue to execute a new iteration. Step 2.c increments the pattern length
counter [for the next iteration. When no more candidates can be generated, step 3 iterates
over every cell in prList and step 3.a access every candidate pattern in the cell. Step 3.a.1

reports the pattern only if it is qualified and maximal.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6.1b: IPM Phase 2: Generating Long Candidate Patterns from Short Ones.

Input: A matrix of pattern lists, ptList, initialized with all candidate patterns of length 2
and their location lists and a criterion c.
QOutput: All the qualified maximal patterns according to c.

Steps:
I.I=2
2. Repeat

a. morePatterns = false
b. Foreveryac AForeverybe A
e For every pattern pl in ptList [a, b] with [p]| ==
o For every pattern p2 in ptList [pI{1], p1{i-1]} with |p2] ==

o If suffix (p2) == prefix (pI) then

L Construct new pattern p3 = p2 + pl {1}

IL Construct loclist (p3) (Algorithm 6.1¢)

. Y support (p3) = minSupp then
Add p3 to ptList [pI{1], p1{i1}
If support (p3) == support (pI) then mark p/ as non-maximal
If support (p3) == support (p2) then mark p2 as non-maximal
morePatterns = true

L

e @ o

C. I++
While morePatterns == true
3. Foreveryaec AForeverybe A
a. For every pattern p in ptList [a, b]
L If |p| = minLen AND score (p) = minScore AND p is maximal then report p

Algorithm 6.1b. IPM Phase 2: Generating Long Candidate Patterns from Short Ones.
Algorithm 6.1c creates the location list of a new candidate pattern. It takes as input

the location lists of two patterns pI and p2 of length [, sorted by seqnum and startLoc. It

outputs the location list of p3, where p3 = p2Z + p1 [I]. Step 2 iterates over the locations of

the episodes supporting p2. Steps 2.a to 2.c retrieve startLoc and endLoc of such an

episode e2. Step 2.d retrieves the locations of the episodes that support pl and satisfy

some conditions. For such an episode ¢/:

e ¢l and e2 should be in the same sequence

e ¢l should not be a sub-episode of eZ and vise versa.

o The overlap of el and 2 should be at least I-1 long.

e The distance from startLoc of e2 to endLoc of ¢], inclusive, should be no more than [

+ 1 + maxError.

£75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6.1¢: Generating The Location List of a Candidate Pattern for IPM

Input: The location lists of patterns pZ and p2 of length [and maxError.
Output: The location list of p3, where p3 =p2 + pI [I].
Steps:
1. Create aempty location list Loc3
2. Fori =1 to loclist (p2).Jength
a. locZ =loclist (p2).getLocation(i)
b. st =locZ.startLoc
c. end =loc2.endLoc
d. Find aset Locl = (any locl € loclist (p1) such that locl.seqnum = loc2.seqnum
AND st <locl.startLoc < end —~ 1 +1
AND end < locl.endLoc < st + maxError +1)
e. Foreverylocl € Locl
e Add a triplet (locl.segnum, st, locl.endLoc) te Loc3
3. Remove any duplicates from Loc3
4. Return Loc3

Algorithm 6.1c. Generating The Location List of a Candidate Pattern for IPM.
Step 2.e constructs the location list of p3. Step 3 removes duplicates from the list. Finally,

step 4 reports the results back.
6.4.3 An IPM Application Example

This subsection illustrates the operation of IPM algorithm with a simple example.
Assume:

(a) A=1{1,2,34},

(b) $={{1,3,2,3,4,3},{2,3,2,4,1,3}}, and

(©) ¢ = (minLen, minSupp, maxError, minScore) = (2,2,1,0)

Discover all the qualified maximal patterns in S.

Tables 6.1 to 6.3 show the steps of applying IPM. Patterns are enclosed between
curved brackets, e.g., {2,1}, and their locations in the input sequences are between
parentheses, e.g., (2,3,5). Candidate patterns are shown in bold. Patterns with insufficient
support are shown in normal font for clarification, although they are not stored in ptList
according to Algorithms 6.1a and 6.1b. Candidate patterns of the previous iteration that
turned out to be non-maximal in the current iteration are shown in normal font and

followed by —max.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Last Id i 2 3 4
2" 1d
1 12,1} (23,5
(4,1} (2,4,5)
2 (1,2} (1,1.3)
3,2} (1,2,3)(2,2,3)
{2,2} (2,1,3)
3 {1,3} (1,1,2) (2,5,6)
{3,3} (1,2,4) (1,4,6)
{2,3} (1,34 2,1,2)
14,3} (1,5,6) (2,4,6)
4 {2,4} (1L,3,5(2,34)
{34} (1450224
Table 6.1. The Matrix p¢List after IPM Phase 1 (Algorithm 6.1a) for The Example of
Subsection 6.4.3.
Lastld| 1 2 3 4
2" 1d
1
2 (3,2) —max 3,23} (1,2.4) (3,24} (1,2,52.2,4)
3 {1,3,2}(1,1,3) {1,3} (1,1,2)(2,5,6) 1({1,3,4}
{3,3,2} {3,3} (1,24)(14,6) [{3,3.4}(1,2,5)
{2,3,2}(2,1,3) {2,3} —max {2,3,4} (1,3,5)(2,1,4)
{43332} {4,3} —max {4’3’4}
{1,3,3} (1,1,4)
{2,3,3} (1,3,6)
{3,3,3}
{4,3,3}
4 {343} (1,4,6) {2,4} —max
{2,4,3} (1,3,6)(2,3,6) |{3,4} —max

Table 6.2. The Matrix ptList after Iteration 1 of IPM Phase 2 (Algorithm 6.1b) for
IPM Application Example of Subsection 6.4.3

Table 6.1 shows the pattern list matrix, ptList, containing the initial candidate patterns
of length 2 generated by Algorithm 6.1a. Table 6.2 shows ptList after the first iteration of
Algorithm 6.1b, during which all candidate patterns of length 3 were generated and non-
maximal patterns of length 2 were marked. Table 6.3 shows prList after the second
iteration of Algorithm 6.1b. Table 6.4 shows the discovered qualified patterns, their

support, density and score.

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lastld] 1! 2 3 4
2" 1d
1
2 {3529493}(17296)(29296) {3,2,4—}—-&1@&}(
3 {1,3} (1,1,2)(2,5,6) [{2,3,4} (1,3,5)(2,1,4)
{3,3} (1,2.4)(1.,4,6)
4 {2,4,3}—max

Table 6.3. The Matrix ptList after lteration 2 of IPM Phase 2 (Algorithm 6.1b) for
IPM Application Example of Subsection 6.4.3.

Pattern p | Ipl |Support (p)| Density(p) |Score (p)
{3,243} | 4 2 0.80 1.60
{2,3,4} 3 2 0.86 1.36
{1,3} 2 2 1.00 1.00
{3,3} 2 2 0.67 0.67
Table 6.4. All The Maximal Qualified Patterns in S for IPM Application Example of

Subsection 6.4.3

6.5 IPM2: Depth-first Discovery of Approximate Interaction
Patterns

Interaction Pattern Miner 2 (IPM2) [ESS02¢] is LeNDI’s second interaction pattern
mining algorithm. Like IPM, IPM2 develops longer candidate patterns from shorter ones.
Unlike the breadth-first strategy of IPM, IPM2 uses a depth-first strategy. It requires less
memory than IPM but is slower. Hence, it can handle bigger data sets than IPM. IPM2
was developed to offer the LeNDI analyst a choice. If s/he is analyzing a small trace set,
then IPM is faster. If the data set is too big for IPM, then IPM2 can analyze it.

IPM2 extends a pattern of length 2 with another pattern of length 2 to form a pattern
of length 3. If the latter has enough support, then it is extended again with another pattern
of length 2 and so on and so forth until no further extension is possible. Then, IPM2
backtracks, reports any maximal qualified pattern found and continues depth-first
extensions. This eliminates the need to store all the patterns of length [at the same time in
a matrix |A] x |A] of patterns and their location lists, which can be memory exhaustive if
the size of the data and alphabet A is big. So, IPM2 is more suitable for big systems with
numerous screens. This advantage comes at the cost of generating more candidate
patterns than IPM, and hence, more computational time. An evaluation and comparison

of both algorithms is provided in section 6.7.

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IPM2 consists of two distinct phases. Phase 1 exhaustively searches the input
sequences to find all the candidate patterns of length 2 that meet the “minimum support”
and “maximum error” conditions (Algorithm 6.2a). For every such pattern, a location list
is constructed. The patterns are stored in a vector of length |A| of pattern lists, ptListVec,
whose cells are labeled after the Ids of A. Each cell ptListVec[i] contains all patterns p,
such that p{1]= i. For example, the pattern {1,3} is stored in ptLisVect[1].

Phase 2 {(Algorithm 6.2b) recursively extends each candidate pattern in ptListVec
using a depth-first approach. If an extension of a candidate pattern pl using another
pattern p2 produces a new candidate pattern p3 = pI+p2[2], then p3 is extended further.
pl can be extended only with patterns in ptListVec [pI{lpI|]], i.e. patterns of length 2
whose first 1d is the same as the last Id of pl. The location lists of pl and p2 are used to
construct that of p3 (Algorithm 6.2¢). The locations of the episodes that support p3, but
have more insertion errors than maxError are excluded. If support (p3) =2 minSupp then
p3 is extended further using the patterns in prListVec [p3[jp3|1], otherwise p3 is ignored
and the algorithm records pl if it is qualified and then backtracks. During backtracking
and after reporting a pattern pl, the algorithm examines the parent pattern p0 of p1. Since
pU is a sub-pattern of pl, it is a candidate pattern also. If p0 is qualified and support (p0)
> support (pl), i.e., it is not non-maximal relative to pl, then it is recorded too. After
trying to extend all patterns in ptListVec, non-maximal patterns are removed and only
qualified maximal patterns are reported.

6.5.1 IPM2 Phase 1: Producing the Initial Candidate Pattern Set

Algorithm 6.2a describes the first phase of IPM2. Step 1 creates a vector ptListVec of
pattern lists. PatternList is a hash-table-like data structure that can hold a list of hashed
patterns. Step 2 is repeated for every input sequence s; € S. Step 2.a iterates over the Ids
of sy, from s [1] to s {|si| - maxError -1]. In step 2.a.1, each Id is used to build a pattern
with each of its consecutive Ids up to maxError +1. For example if s, = {1,3,2,3,4,3} and
maxError = 2, the first Id will be tried with each of its next three resulting in the
generation of these patterns {1,3}, {1,2} and {1,3}. A new pattern is stored in ptListVec, if
it is not there already and the location of the episode supporting it is added to its location
list. Steps 2.b does the same as step 2.a, but it handles the last maxError Ids of s;. Step 3

removes any non-candidate pattern p, i.e. patterns with support (p) < minSupp.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6.2a: IPM2 Initial Phase

Input: An alphabet A, a criterion ¢ and a set of sequences 3.
Output: All candidate patterns of length 2.
Steps:
1. PatternList ptListVec [|A]]
2. For every trace sz € S, 1<k < [§]
a. Fori=1to sy - maxError -1
1. Forj=i+11toi+maxError +1
o Construct new pattern p = sy [{] + s« [J]
o If p NOT in ptListVec {5y [{]] then Add p to ptListVec Is; [i]]
o Add (ki) to loclist (p)

b. For i = |s¢} - maxError to |s;] -1
I. Forj=i+1to|s
o Construct new pattern p = s [i] + s, [f]
o If p NOT in ptListVec [s; [i]] then then Add p to ptListVec [s [il]
a Add (k,ij) to loclist (p)

3. Foreveryide A
a. For every pattern p in ptListVec [id]
e If loclist (p).length < minSupp then Remove p from prListVec [id]

Algorithm 6.2a. IPM2 Initial Phase.

6.5.2 IPM2 Phase 2: Generating Longer Candidate Patterns from
Shorter Ones

Algorithm 6.2b generates longer patterns from shorter ones. Step 1 creates a pattern
list, called resultsIPM?2 to store the discovered patterns. Step 2 iterates over every cell in
ptListVec using the iterator id and for each cell ptListVec [id], it iterates over each pattern
in it. For every such pattemn p, step 2.a calls the procedure “Extend (pi)”, which returns
all the qualified extension patterns of p that are maximal relative to each other, i.e., none
of them is a sub-pattern of another with the same support. Step 2.b adds the discovered
extensions of p to resultsIPM2. Step 3 removes any non-maximal pattern from the final
results. Step 4 reports the final results in resultsIPM2.

The “Extend (pl)” procedure works as follows. Step 1 creates a pattern list
extensionResults to hold the patterns resulting from successful extensions of the
parameter pattern pf. Step 2 iterates over every pattern p2 that can extend pl, i.e., every
pattern whose first Id is the same as the last Id of pl. Steps 2.a and 2.b construct the
extended pattern p3 and its location list. Step 2.c tests if the support of p3 > minSupp.

Steps 2.c.1to 2.c.Ill are executed in case of True and step 2.d.1 is executed in case of False.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6.2b: IPM2 Phase 2: Generating Long Candidate Patterns from Short
« Ones.
Input: A vector of pattern lists, ptListVec, initialized with all candidate patterns of length
2 and their location lists and a criterion c.
Output: All the maximal qualified patterns according to c.
Steps:
1. Create new PatternList resultsIPM2
2. For every id € A For every pattern p in pitListVec [id]
a. Create new PatternList fempResults = Extend (p)
b. Merge fempResults with resultsIPM2
3. Remove non-maximal patterns from resultsIPM2
4. Report resultsIPM2

PatternList Extend (p1)
1. PatternList extensionResults
2. For every pattern p2 in ptListVec [p1{jp1]|]]
a. Construct new pattern p3 = pl + p2 [|p2]]
b. Construct the location list of p3 (Algorithm 6.2¢c)
c. If support (p3) 2 minSupp then
I. Create new PatternList tempResults = Extend (p3)
II. Merge tempResults with extensionResults
UL If support (pl) > support (p3) then
o If|pIl|=minLen AND score (pI) = minScore then
o Ifplis NOT in extensionResults then add p! to extensionResults
d. Else
1. If|pl| = minLen AND score (pl) = minScore then
e If piis NOT in extensionResults then add p! to extensionResult
3. Return extensionResults

Algorithm 6.2b. IPM2 Phase 2: Generating Long Candidate Patterns from Short
Ones

In case of a successful extension, step 2.c.I extends the new candidate p3 more by calling
Extend (pi) with p3 as a parameter. Step 2.c.Il adds the qualified patterns resulting from
extending p3 to extensionResults. Step 2.c.Ill adds p! to extensionResults if it has more
support than its successful extension p3, it is qualified and it is not already in
extensionResults. In case of failing to extend pl using p2, then the extension pattern p3 is
ignored and steps 2.d.I adds p/ to the results list extensionResults if it is qualified and it is
not already in extensionResults. Step 3 reports all the qualified maximal (relative to one

another) extension patterns of pl.

Algorithm 6.2¢ describes the process of creating the location list of a new candidate

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pattern. It combines the locations lists of two patterns pJ and p2, where [p2] =2, to pmvidé

Algorithm 6.1c: Generating The Location List of a Candidate Pattern for IPM2

Input: The location lists of patterns p! and p2 and maxError.
QOutput: The location list of p3, where p3 =pl + p2 [2].
Steps:
1. Create an empty location list listLoc3
2. Fori=1toloclist (pl).length
a. loci =location i in loclist (pI)
b. Find a set Locl = (any loc2 € loclist (p2) such that
loc2.seqnum == locl.seqnum AND
loc2.startLoc == locl.endLoc AND
loc2.endLoc < locl.startLoc + maxError + [pI})
c. For every locl € Locl
e Add (loc2.seqnum, start, loc2.endLoc) to listLoc3
3. Remove any duplicates from listLoc3
4. Return listLoc3

Algorithm 6.1c. Generating The Location List of a Candidate Pattern for IPM2
the location list of p3, where p3 = pI + p2 [2]. The input locations lists are sorted by
seqnum and startLoc. Step 2 iterates over the locations of the episodes supporting pl.
Steps 2.a retrieves the location of such an episode el. Step 2.b retrieves the locations of "

the episodes that support p2 and satisfy these conditions, assuming such an episode e2:

el and e2 should be in the same sequence
e ¢] should not be a sub-episode of €2 and vise versa.
e ¢l and e2 should overlap in exactly one location which is el[lel]].
| e The distance from startLoc of el to endLoc of €2, inclusive, should be no more than
lp1] + 1 + maxError.
Step 2.c constructs the location list of p3 and step 3 removes any duplicates. Finally, step

4 reports the results back.

6.5.3 An IPM2 Application Example

This simple example illustrates the operation of IPMZ2. Assume:
(d) Let A= {1234},

) $={{1,3,2,343},{2,3,2,4,1,3}}, and

(D) ¢ = (minLen, minSupp, maxError, minScore) = (3,2,1,0).

Discover all the qualified maximal patterns in § according to .

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First Id 1 2 3 4
Candidate{{1,2} (1,1,3) {2,1}(2,3,5) {3,2} (1,2,3) (2,2,3)|{4,3} (1,5,6)(2,4,6)
Patterns [{1,3}(1,1,2)(2,5,6)1{2,2} (2,1,3) 3,3} (1,2,4) (1,4,6)|{4,1}1 (24,5
(bold) {2,3} (1,3.4) (2,1,2){3,4} (14,5) 2,24)

{2,4}(1,3,5) 2,3.4)

Table 6.5. ptListVec after IPM2 Initial Phase (Algorithm 6.2a) for IPM2 Application
Fxample of Subsection 6.5.3.

{13}

{327 (33} 43
(132 [(1.3.3)] [(134]]

|(1,1,3)l (1,1.4) EZA,:%}]

{1,3.6)

236)

{3’ {%33} ?4}

(2,6) 2.2.6)
% (J’N

[(3.2.4,3,2}1(3,2.4,3,3}1}(3,2,4 3.4}

{43}
{2,3.4.3}
(136

Figure 6.4. The Application of IPM2 Phase 2 (Algorithm 6.2b) for IPM2 Application
Example of Subsection 6.5.3.

Table 6.5 shows the result of applying the initial phase of IPM2 to S. The second row
corresponds to the cells of ptListVec. Patterns are enclosed between curved brackets, e.g.,
{1,2}, and their locations in the sequences are shown next to them between parentheses,
e.g., (1,1,3). Candidate patterns are shown in bold. Patterns with insufficient support are
shown in normal font. They are removed from ptListVec at the end of Algorithm 6.2a, but
are kept in Table 6.5 for clarification. Figure 6.4 shows partial application of Algorithm
6.2b to extend 4 of the 8 candidate patterns in Table 6.5. The patterns in boxes are the
ones being extended or resulting from extension. The patterns on the arcs are the ones
used for extension. The location list of every generated patiern is shown under its box.
Qualified patterns that are reported by the sub-procedure “Extend (p7)” are shown in bold
font. Maximal qualified patterns, returned by IPM2, are in double-line boxes. Note that
the pattern {3,2,4} is qualified but not reported by “Extend (pI)” because ifs extension
{3,2,4,3} which has the same support, is reported first, while {2,4,3} is reported by
“Extend {pI)” but is removed at the end of phase 2 for being non-maximal. Table 6.6

shows the discovered maximal qualified pattemns, their support, density and score.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pattern p||p| support (p)|Density(p)| Score (p)
{2,34} | 3 2 0.86 1.36
{3,243} 4 2 0.80 1.60

Table 6.6. All The Maximal Qualified Patterns in S for IPM2 Application Example
of Subsection 6.5.3.

6.6 Understanding The Extracted]

tterns

After reviewing the discovered patterns, the criterion ¢ can be modified to narrow or
widen the results set, if too few or too many patterns were retrieved. Also, any group of
patterns, whose score and/or support are within specific range(s), can be compacted by
removing any pattern that is a sub-pattern of another pattern, even if it is maximal.

This interactive step of scoping out and “cleaning” the extracted interaction patterns
is crucial in identifying the usage scenarios corresponding to the functional requirements
of the legacy application. Methodologically, the longer the recorded traces and the
“stricter” the criterion ¢, the more likely it becomes to discover true usage scenarios,
since all “noise patterns” should not gain enough support when evaluated in the context
of long-term use. However, the LeNDI analyst has to decide which of the discovered"
patterns correspond indeed to real usage scenarios. To do so, the analyst retrieves and
reviews instances of the interaction patterns discovered. Then, s’he can exclude trivial

patterns, accept complete real patterns and/or complete partial patterns.
6.7 Evaluation

To evaluate our interaction pattern mining process and algorithms, we applied them
to traces of interaction with a number of legacy systems [ESS02c, SES02]. Additionally,
we tested the scalability of the algorithms using very long traces generated artificially
using a simulator. Finally, we applied our interaction pattern mining algorithms, IPM and
IPM2, to a different domain. We used them to discover frequent user navigation patterns
from server logs of a focused web site, i.e., one that is usually navigated in a systematic
task-driven way in support of an ongoing process [ES03, NSE02]. The web site we used
was a university course site, where new material and assignment are posted weekly, and
students access them in a task-oriented way. The goal in that application was to

recommend web pages to the users based on their navigation history if it matches the

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prefix(es) of some of the discovered pattern(s). In such case, the suffix(es) of the:
pattem(s) are recommended to the user.

 This section reports two different evaluation experiments. The first is a case study,
during which, traces of interaction between a library information system and a user were
recorded and then mined to discover what frequent tasks the user was performing. This
case study demonstrates the applicability and usefulness of the interaction pattern mining
process and shows how much human input is required to recover accurate representations
of the frequent user tasks. Second, a comparison between the memory requirements and
speed of IPM and IPM2 is performed using long artificial traces that were generated
using LeNDI’s Legacy System Trace Generator (LSTG), as described in details shortly.

6.7.1 A Case Study of Interaction Pattern Mining in the Traces of
LOCIS

This section presents a demonstrative case study of recovering the usage scenarios or
interaction patterns from recorded traces of interaction with the Library of Congress
Information System (LOCIS) [LOCIS], via its public 3270 connection. A user conducted
five interaction sessions with LOCIS, during which, he repeatedly performed various
information retrieval tasks about federal legislation. Each session was captured in an
interaction trace. Thus, S ={s1,52,53,54,55}, where |si|, |s2), |53}, |sa] and |ss| are 454, 185,
369, 410 and 239, respectively. In total, 1657 snapshots were captured in these traces.
Part of s is shown in Figure 6.1(a). LeNDI was used to build the state-transition model
corresponding to S. Part of this model is shown in Figure 6.1(b). The model has 27 nodes.
Each node corresponds to a LOCIS system screen. Thus, A = {1,2,3,....,27}. The screen
descriptions are provided in Table 6.7. The frequency (Fr.) of each screen is the number
of times it was recorded in S.

After preprocessing S, IPM2 was applied to S several times to discover the user’s
interaction patterns with LOCIS, and model them. Several runs were done with different
parameters for the criterion ¢ (minLen, minSupp, maxError, minScore) to see the effect of
changes in ¢. The results of the most interesting runs are recorded in Tables 6.8 t0 6.11.
6.7.1.1 The First Run

The first run used ¢ = (6, 9, 0, 7). Its results are shown in Table 6.8 ordered by their

score. Six patterns were discovered and the results were further compacted by removing

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the patterns that are subsets of other patterns. The removed patterns are shown in gray; |
Then, sample instances of each interaction pattern were reviewed to see how well it
corresponds to a real user task, i.e., to a usage scenario of the system. This inspection
revealed that the patterns in bold, 2, 3 and 4, closely correspond partially or fully to three
repetitive user tasks. The actual interaction patterns of the three tasks discovered are:

1. 47-5-6"-7"-8"-9"-10

2. 4"-14-15%-6"-7"-8"

3. 22-23-22-6"-7"-8"-9%-10
Note that S is in RI format. By checking the instances of each pattern in the original
traces in RO format, we saw which screens are consecutively repeated and added to them

+’signs. A Complete description of the tasks of these interaction patterns follows shortly.

Id |Screen Description Fr. Id {Sereen Description Fr.
1 _|Main LOCIS Menu 18 | | 15 |Combine Result’ 37
2 [Federal Leg. Menu 13 16 |Release Result’ 9
3 |Welcome 13 17 |Comments & Logoff 3
4 Browse Result 132 18 |Goodbye 6
5 |Retrieve Result 55 1 | 19 [Ready for a Command 3
6 |Brief Display 268 20 |System Message 43
7 |Display Item Options 201| |21 |Livt Results (1/1) page’’ | 44
8 |Display item 1/1 or 1* 161| | 22 |[Expand Results (1/n)"" 63
9 [Display item (2/n or more/n) page| 178 23 [Expand/Livt Results 47
10 |Display item (n/n) page 81 (n/n, i.e. last) page
11 [Error 91 24 [Expand/Livt Results 5
(2/n or more/n) page
12 |Search History 62 25 |Livt Results (1/n) page 19
13 [Display List 5 26 |[Expand Results (1/1) 23
14 |Select Result™” 33 27 |Help 44

Table 6.7. LOCIS Screen Descriptions and Frequencies for The Interaction Pattern
Mining Case Study of Subsection 6.7.1.

8 Combine command creates a new set of records by logically combining previously created sets.
? Release command releases search result sets not needed anymore.

19 Live views Legislative Indexing Vocabulary Thesaurus online.

1 Expand command combines Livt and Select cormmands.

12 Select command creates 1 or more record sets fora specified search term.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pattern Support | Score | Density
I 16-7-8-9-10-7 19 1098 1.0
2 14-14-15-6-7-8 14 9.84 1.0
3 122-23-22-6-7-8-9-10 9 9.51 10
4 14-5-6-7-8-9-10 10 9.33 1.0
5 122-23-22-6-7-8 12 9.27 1.0
5 {4-5-6-7-8-9 i1 8.94 1.0

Table 6.8. The Qualified Maximal Patterns Discovered Using ¢ (6,9,0,7) for The
Interaction Pattern mining Case Study.

Pattern Support | Score | Density
1 121-22-23-22-6-7-8 8 8.42 1.0
2 [15-6-7-8-9-10 8 7.75 1.0
3 17-8-9-10-7-4 8 7.5 1.0

Table 6.9. The Qualified Maximal Patterns Discovered Using ¢ (6,8,0,7) That Are
Not in Table 6.8 for The Interaction Pattern mining Case Study.

6.7.1.2 The Second Run

The second run was done with ¢ = (6,8,0,7) to see what extra patterns would be
discovered if less support was required. The run gave the three extra patterns shown in
Table 6.9 besides those shown in Table 6.8. These extra patterns do not represent any
new tasks, as they widely overlap with the three significant patterns of Table 6.8. Close
examination of instances of the extra patterns revealed that the two patterns in bold
enhance the current understanding of the user tasks. The first bold pattern (pattern 1) is a
sub-pattern of pattern 3 in Table 6.8 but with Id 21 extra, which suggests that some
instances of the corresponding task may optionally start with Id 21. The second bold
pattern overlaps with pattern 2 in Table 6.8, suggesting that the corresponding task is
actually the union of both patterns. These findings suggest modifying the three
interaction patterns or task representations given earlier to be:

1. 4°-5-6"-7°-8"-9"-10

2. 4%-14-15"-6"-77-8"-9"-10

3. [21]-22-23-22-6"-7"-8%-9"-10
where {n] means that an instance of Id n may or may not exist. Modifications are shown

in bold font.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pattern Support | Score | Density
1 121-22-23-22-6-7-8 13 9.85 1 0.95
2 122-23-22-6-7-8-9-10 10 9.84 | 0.99
3]4-5-6-7-8-9-10 10 9.33 1.0
4 122-23-22-6-7-8-10 12 899 | 0.89
5 [4-5-6-7-8-10-7 11 8.8 | 091
6 |22-23-6-7-8-9-10 10 8.16 1 0.88

Table 6.10. The Qualified Maximal Patterns Discovered Using ¢ (7,10,1,7) for The
Interaction Pattern mining Case Study.

Pattern Support | Score | Density

1 122-23-22-6-7-8-9-10 13 104 0.94
2 |21-22-23-22-6-7-8 17 10341 0.9

3 |7-4-14-15-6-7-8 16 9.75 | 0.87
4 [4-5-6-7-8-9-10 12 9.61 | 0.96
5 122-23-22-6-7-8-10 13 9.18 | 0.88
6 |6-7-8-9-10-7-4 12 9.09 0.9

7 16-7-8-9-10-21-22 13 892 | 0.86
8 [7-87-4-14-15-6 12 8.63 | 0.86
9 122-23-6-7-8-9-10 12 8.63 | 0.86

Table 6.11. The Qualified Maximal Patterns Discovered Using ¢ (7,12,2,7) for The-
Interaction Pattern mining Case Study.

6.7.1.3 The Third and Fourth Runs

The third run was done with ¢ = (7,10,1,7) to see the effect of allowing some errors in
the episodes that support the pattern on the results retrieved. The minimum support was
increased to limit the results set since allowing insertion errors usually increases the
number of retrieved patterns significantly. The retrieved patterns are shown in Table
6.10. The three patterns in normal font were also retrieved in the previous runs. The bold
patterns add significant information to the task models discovered so far. Patterns 4 and 5
have more support than patterns 2 and 3 respectively, but lack Id 9. This suggests that 1d
9 is optional in these tasks. Reviewing few instances that support patterns 4 and 5 proves
this, especially that Id 9 represents “Display Item (2/n or more/n) Page” as in Table 6.7.
Since some items in the library catalog have only two pages of details, i.e., a first and a
last item details pages (Screen Ids 8 and 10), then the related interaction patterns do not
include instances of Id 9. Similarly, pattern 6 is identical to pattern 2 with Id 22 missing.

Since they have the same support, one can be deceived and think that pattern 6 is a false

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pattern, i.e., it is the same as 2 with Id 22 considered the one spurious Id (error) permitted
in this run. However, pattern 2 is supported by nine exact episodes (as shown in Table
6.8) and one approximate episode. Hence, 9 supporting episodes of pattern 6 actually
have Id 22 and they do in fact support paitern 2 as well, but one episode that supports
pattern 6 lacks Id 22, suggesting it is optional for the corresponding task. These findings
are also emphasized by the results of the fourth and last run with ¢ : (7,12,2,71), which are
shown in Table 6.11. The patterns in normal font were previously discussed in Tables 6.8
and 6.9. The patterns in bold font lead to the same conclusion as those in bold font in
Table 6.10. The gray ones are spurious patterns.
6.7.1.4 The Final Results

The result of the above findings is modifying the task models discovered as shown
below in bold:

1. 4*-5-6"-7"-8"-[9"]-10

2. 4%-14-157-6"-7"-8"-[9"]-10

3. [211-22-23-[22}-6"-7*-87-[97]-10

The task corresponding to the first pattern of the three interaction pattern discovered
{4%,5,6%,7", 8%, [97], 10} was discussed in subsection 6.1. It is shown in Figure 6.5, with
an extra arc to reflect that Id 9 is optional. In the second task {4*, 14, 157, 67, 7%, 87, [9"],
10}, the user starts by browsing part of the currently open library catalog. Then s/he
issues a select command to retrieve some records from the catalog. The select command
constructs separate subsets of results for the specified search term, each for a different
search field, e.g., one for the records that have the search term in the title, one for the
records that have it in the abstract, etc. Then, the user issues a combine command to
merge some of these subsets together into one set using some logical operators. Next,
s/he displays brief information about the items in this set and selects some items to
display their full or partial information, using the same navigation sequence used in the

first task.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b ek

_4" Catalog
| Browse

‘[eE, I Retrieve] ; ditem *@E
: @ 23 11 Resulis @18 8 | :

@E
@ 7,67
A

10%em Details|| @€ @ ltem Details @E | 8 ltem Details *@E
-ty < 25
EE Last Page @ 7,7 intrmd. Pg. @7 67 First Page

Figure 6.5. A Diagrammatic Representation of The Pattern 4*-5-6°.7°-8%.[9%]-10,
Corresponding to The Information Retrieval Task of Figure 6.1(a).

In the third task {[21}, 22, 23, [22], 6%, 77, 8%, [97], 10}, the user starts by issuing a
fivt command. This command takes as a parameter a term that is classified by LOCIS as a
subject index term, and it displays all the related, broader and narrower terms available in
the Legislative Indexing Vocabulary Thesaurus of LOCIS. For example, if the user
wishes to search for legislation related to drugs, but thinks it is a broad term, s/he can
type livt drugs. The results screen will display terms like Anesthetics, Antibiotics,
Antihistamines, Aspirin, Generic Drugs, Narcotics, etc. Next, the user can expand some
of the displayed terms using expand command, creating a results set of catalog entries. -
Finally s/he displays the needed information as in the two other tasks.

In all three tasks the legacy system may follow alternative paths to present the results
to the user, depending on how many pages of details are retrieved for the legislation of

interest. In the last task, other optional steps exist as well.
6.7.2 A Comparison between IPM and IPM2

In this subsection a comparison between IPM and IPM2 in terms of their memory and
time requirements is presented. In order to perform this comparison with long traces, a
component, called Legacy System Trace Generator (LSTG), was added to LeNDI. The
next is a description of LSTG, followed by the experiment details.
6.7.2.1 Legacy System Trace Generator (LSTG)

LSTG simulates an existing legacy system and generates traces as sequences of Ids for
the purpose of testing the interaction patiern mining capabilities of LeNDIL LSTG models
the navigational behavior of a legacy system user as captured in the interaction traces
recorded while the user was working with the legacy system of interest. The model

produced is in the form of a transition matrix whose rows and column correspond to the

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ids of the legacy system screens as given by LeNDI’s clustering module. A cell, cellis

[i, jl, in this matrix contains the probability of having a transition from Id 7 to Id j. The

probability is calculated by dividing the number of times the transition from i to j was

recorded in the traces by the total number of occurrences of Id i in the traces. Practically,

the transition matrix is converted to and stored as an accumulative transition matrix. A

cell in this matrix is calculated as follows: |

cellyccam [J1 = 2. Cellans [i.4]

k<j

Additionally, all possible starting screens (Ids) of the system that were recorded in the

traces are stored in an array. In all the real systems we dealt with so far, there was only

one start Id. Then using this model, artificial traces of arbitrary length can be generated
that simulate the navigational behavior of the user whose navigation was captured in the
original traces. Given the desired length, this is done as follows:

1. LSTG randomly picks, from the list of possible starting Ids, an Id, id;,

2. LSTG generates a random number that is in the interval [0,1). Then it searches the
row corresponding to id; in the accumulative transition matrix for the first cell that is
larger than the generated number and takes the corresponding column’s Id as the next
Id in the trace, ids, and

3. Then, idsis generated as in step 2 and so on and so forth until a trace of the required
length is generated.

Note that only the transitions that occurred in the real recorded interaction traces can
occur in the artificial traces. Also, the probability of such a transition in the artificial
traces equals its probability in the original traces. Different transition probabilities
matrices may exist for the same system, depending on the tasks being captured and
modeled at the time, and hence the navigational sequences of interest that accomplish
these tasks. Note that LSTG does not generate sample snapshots for the Ids generated.
6.7.2.2 Experiment Details

After describing how LSTG works, the specifics of the experiment follow. First, the
traces of the case study of subsection 6.7.1 were fed to LSTG and the corresponding
accumulative transition matrix was produced. It is shown in Table 6.12, with

accumulative probabilities replaced by percentages. Due to space limitation, if 2 number

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a consecutive cells of Table 6.12 on the same row have the same percentage, they are
all merged together. For example, all cells from [20, 12] to {20,19] have the value 16.3%.
Second, three criteria were selected for the experiment. The first criterion ¢; (minLen,
minSupp, maxError, minScore) is (6, 0.5%, 0, 0), where minSupp is chosen to be a
percentage of the trace length so that it scales up with the length of the trace generated. It
is set to 0.5% since in the case study of subsection 6.7.1, the initial support used was 9,
which is 0.54% of 1657, the total length of all the traces used. So, a minimum support of
0.5% would result in a comprehendible set of patierns. The second criterion, ¢, is (7,
0.5%, 1, 0). The third criterion, ¢3 is {7, 0.5%, 2, 0). For each criterion, interaction
pattern mining was done using IPM and IPM2 on artificial traces of length starting from
3000 till 60000, with a step 3000, that were generated randomly using LSTG. For every
run, the time needed and the maximum heap used were recorded. The results of these

runs are shown in Figures 6.6 t0 6.8.

1]23lalsle 71819 l10l11]12]1311al150e[17 [18 [19]20121122[23124] 25126127
1l63 87.5 100
21 o | 100
3] 154 692 76.9 769 | 92.3 [100
41 15 [|33s6s 576 712 939 947 971 fi00
51 18 [1aspis] 655 673 1764891 90.9 o2.7]06.4] 100
61 o l|o4lo7ls63s06] 91 |oseos.1 98.9 100
71 1 |as| 17 |26] 81 ls7slsss 91 94 985 995|100
gl o |i9]37] s [28l3s]s07 969 | 975 losi| 988 | 994 100
9] o 06 340697 100
10l 12 123|667 69.1 753 [778 s 93.8 975|100
111 o laiboslaislsie] 527 [r2s| 791 [si3 82.4 {83.5l85.7189.0l00.1] 967 l97.8l98.9}100
12 o lsile7 29 323 742 |s23] o1 08.4 100 '
13 0] 60 80| 100
14 0 12.1 182] 212 D42 93.9 { 93.9 loo
15 0 73.0] 75.7 865 | 89.2 100
16/ _© 111 66.7 | 100
17 0 1333] 100
18 100
19 o 333 | 66.7 | 100
sel o a7l 7 93 163 51.2 837 077 100
21 0 | = 9.1 14227l 75 b3l 100
22 0 38.1 46 47.6l96.8] 984 | 100
23 0 21 319 80.4 [91.5]97.9] 100
24 0 60 100
25 0 36.8068.4] 842 | 100
2% 0 435 | 418 56.5 lsos 783 957100
27 o liaizefis) 20.5 25] 213 | 205 li0g

Table 6.12. The Accumulative Transition Matrix of LOCIS Traces of The Case
Study of Subsection 6.7.1 (Probabilities are replaced by %s).

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Heap usage is taken as a measure of the memory used by an algorithm while
processing the given data. It is calculated using an idea similar to that explained in
{RouOZ] for calculating the size of a Java object. The heap usage calculated by our code
is approximate and is consistent within the same experiment. But when the whole
experiment was repeated three times, numbers varied significantly between the three
runs, although they were still consistent within each run. Thus, the curves produced
represent the relative heap requirements of IPM and IPM2 but cannot be taken as
absolute measures of memory usage. The time and memory requirements of IPM and
IPM2 shown in Figures 6.6 to 6.8 can be reduced if the implementation is done in C or
C++ with optimization in mind. However, since LeNDI is implemented in Java, and
interaction pattern mining is an offline one-time process, i.e., it needs to be performed
once or a few times at most on a given data set, we focused on the correctness of the
implementation rather than optimizing it.

As expected and as was intended in designing both IPM and IPM2, Figures 6.6 to 6.8
show that IPM2 needs less memory than IPM, while IPM is faster than TPM2. 1t is
important to note that IPM and IPM2 were designed for a pragmatic reason, which is
solving the interaction pattern mining problem in legacy system interaction traces. So,
this experiment was done to verify the performance assumptions on which IPM and
IPM2 were designed, which determine their applicability to certain problems. It is not
meant to be a complete and comprehensive study of the performance of both algorithms.
For such a study, different data sets with different characteristics, e.g., data size and

alphabet size, need to be used plus theoretical analysis of both algorithms.

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.0
254
204

15 4

10

Max. Heap Usage in MBs

—e— Phase 2 of PM

0.5 ~ -2~ Phase 1 of IPM
—e— PM2

0.0

4 L] L] i 1 ¥ ¥ 1 H H i ¥ 1 7 T T

C 3 6 9 1215 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Trace Length in 1000s

ey
N

pery
o

(4]

Running Time in Minutes
(=]

T T T T 1 7 T T T H] T T T T T

0 3 6 9 12 1518 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Trace Length in 1000s

Figure 6.6. A Comparison of Memory and Time Requirements of IPM and IPM2 in
The Experiment of Subsection 6.7.2 with ¢1 = (6, 0.5%, 0, 0).

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Max. Heap Usage in MBs
[4v]
|

Phase 2 of IPM

] 7 ——i— Phase 1 of IPM
—e— PM2

1 T k| ¥ [] { [L ¥ L] ¥ T] T ¥

0 3 6 9 121518 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Trace Length in 1000s

50

30

20

Running Time in Minuies

10

T T T i T T T T 7 T 7 7 T T T T

0 3 6 9 12 15 18 2t 24 27 30 33 36 39 42 45 48 51 54 57 60
Trace Length in 1000s

Figure 6.7. A Comparison of Memory and Time Requirements of IPM and IPM2 in
The Experiment of Subsection 6.7.2 with ¢, = (7, 0.5%, 1, 0).

i85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

0 A

Heap Usage in MBs
[#)]

—u— Phase 2 of IPM F

- -4-- Phase 1 of PM

1 i ¥ L] L] i ¥ H ¥] L) L H § El]

0 3 68 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Trace Length in 1000s

160

140 /
120 /
100 /
80
) / "’
g
40 =
,4"
20 / =" - PM

T T T T T li T T T T T T 7 T ¥

0 3 6 9 1215 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Running Tfme in Minutes

Trace Length in 1000s

Figure 6.8. A Comparison of Memory and Time Requirements of IPM and IPM2 in
The Experiment of Subsection 6.7.2 with ¢; = (7, 0.5%, 2, 0).

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.8 Discussion

The interaction pattern mining process can be considered from two viewpoints. On
one hand, it is a requirement recovery process, during which, LeNDI tries to recapture the
functional requirements of a legacy system as they are currently manifested and exercised
not as they were originally proposed. It does this by generating hypotheses of the user
tasks supported by the legacy application, which are anticipated to correspond to the
system services or functionality required to be migrated. These hypotheses are verified,
accepted, rejected or modified by the LeNDI analyst. In many cases, the functional
requirements of a legacy system are no longer properly documented due to bug fixing,
behavioral adaptations and enhancements and functionality upgrades of the system that
did not back propagate to the original requirements document, assuming that such
document exists in the first place. Recapturing these requirements can be useful for many
reengineering, migration and program comprehension activities, other than CUI reverse
engineering. Hence, the interaction patterns produced by LeNDI can be deployed in
different contexts.

On the other hand this process is an instance of sequential pattern mining process:
user tasks are patterns of frequently occurring episodes in the legacy CUI run-time
behavior traces. In this variant of the problem, the episodes supporting the discovered
patterns match only approximately. Because the users may face exceptional conditions
while executing their tasks, spurious intermediate states may exist in a variety of
locations in some of the episodes. Additionally, multiple paths may exist to execute one
or more subtasks of a user task, resulting in slightly different navigation paths for the
same task. To that end, IPM and IPM2 algorithms were developed to tackle the
interaction pattern mining problem, but are general and applicable to other similar
problems, e.g., discovering frequent user navigation patierns in web server logs [NSEG2,
ES03].

In this discussion, the focus is on interaction pattern mining from a requirements
recovery viewpoint, as this is the broad application area that motivated tackling this
problem. From this viewpoint, one can identify some potential uses of the interaction
patterns, and/or consequently, the task models based on them. These uses include use

case recovery, building user interfaces for new applications that are consistent with the

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

existing user conceptual models, documenting interactive systems and building help or
user support systems. Two examples of such potential uses are described below.

The first example is use case recovery for a legacy application. Use case models are
part of the UML toolkit for object oriented system analysis and design [OMG99]. It is a
widely accepted representation of the user-oriented requirements of a software system. A
use case describes a sequence of interactions (activities) between a system and an
external “actor” that results in the actor accomplishing a task that provides benefit to
someone. An actor is a person, another software application, a piece of hardware or some
other entity that interacts with the system to achieve some goal [Wie99].

For a legacy system it is not important to document the requirements that led to the
original application development, but rather to capture the current uses of the application
as they have evolved through continuous evolution of the application after its original
deployment. These uses are the de facto functional requirements, as perceived by the
application’s current users, which are of great importance to migration activities. An
interaction pattern can be looked at as a use case, which can be represented textually or
by an activity diagram as shown in Figure 6.9 for the interaction pattern of Figure 6.2. -
Thus, the process of interaction pattern or task pattern discovery can be seen as a process
of use case discovery from one type of dynamic data collected during program runs. This
data is the external program behavior, represented by recorded traces of the users' dialog
with the legacy user interface or simply interaction traces. However, instead of manually
translating interaction patterns to use case models, it would be very beneficial to develop
an automated tool support to this task.

The second example is the recovery of the task model representation of the legacy
user interface in order to redesign the user interface on the same or a different platform or
to build new related applications with user interfaces that are consistent with the user’s
conceptual model. A task model in human-computer interaction (HCI) context is a logical
description of the user activities to be performed to reach a goal. In some cases
alternative tasks may support achieving the same goal. A goal is either a desired
modification of the staie of an application or an attempt to retrieve some information
from an application. This definition is not any different from what is described in this

work as a task model, which is an interaction pattern enriched with semantic information.

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In HCI, task models are used in designing, analyzing and evaluating interactive software:
applications [Pat0Z]. Some notations were developed to describe task models in HCI
context, e.g., the ConcurTaskTrees notation [LP98, Con]. Once again, it would very
interesting to develop automated tool support to translate the enriched interaction patterns

discovered by mining interaction traces to ConcurTaskTrees or other HCI notation.

Use Case name: Retrieving Information on a Federal Legislation
Participating actor: LOCIS User
Entry condition: The user issues a browse command to LOCIS
Flow of events:
1- Flip the catalog pages until the relevant page.
2- Issue a retrieve command to construct a results set for the chosen catalog entry.
3- Display the results set using display command and turn its pages until the required
item is found.
4- Issue a display item command.
5- Specify a display option.
6- Display the item details.
Exit condition: The user retrieves the required information about the legislation he wants.

(a) A textual description of the use case.

[the required]
Browse catalog page Retrieve Display Resuits [item found]
Catalog found] Results Set Subset

{ item | not found |
{ not found]

[Muiti page details]

Display First
Page of Detalls

Display the
Last Page

/ Display the Inter-
mediate Pages

Specify a Display
Option f

' { not muiti

page
details |

(b) An activity diagram representation of the use case.

Figure 6.9. A Use Case Model Representing The Interaction Pattern of Figure 6.2(b).

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This chapter provides a summary of the work accomplished in this thesis, draws some

conclusions and discusses the future directions of this work.

7.1 Summary

This thesis presents a novel method for reverse engineering the character-based user
interfaces of legacy systems using recorded traces of interaction with these interfaces, as
its only input. The method is implemented in a prototype tool called LeNDI. This method
was developed as part of the CelLEST project for legacy system Ul reengineering at the
Software Engineering Research Lab., University of Alberta. The goal of the project was
to develop a lightweight method for legacy user-interface reengineering, integration and
Web-enabling that does not alter the legacy system’s code or structure. The CelLEST Ul
reengineering method is two-phase, and semi-automatic. In the reverse engineering .
phase, a behavioral model of the legacy system character-based user interface is derived
from the interaction traces. Additionally, models of the user tasks of interest are extracted
from these traces. In the forward engineering phase, a reengineered Ul is built. The
reengineered Ul interacts with the legacy system through its CUI using a host-access
middleware to execute the desired task plans. The reengineered Ul is task-oriented in the
sense that it does not mimic the legacy user-system interaction. Instead, it encapsulates
coherent user tasks or packages of functionality in suitable modem GUIs or web-
interfaces, that are generated automatically using the forward engineering tool of
CelLEST, Mathaino. The reverse engineering phase of CelLEST method consists of three
distinct steps. The first is recording traces of interaction with the legacy system through
its user interface while the users are doing their regular jobs. The second is building a
behavioral state-transition model of the legacy system CUL This model is the road map
used by the new front-end to verify the identity of the legacy screen snapshots accessed
to perform a user task, and hence input the appropriate inputs and extract the required

outputs. The third step is mining the interaction traces for frequent segments of

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interaction with the legacy system, which represent hypotheses of the user tasks
supported by the legacy CUL These automatically discovered patterns are reviewed and
éugmented with semantic information and then used as task models to be wrapped in a
new reengineered UL

7.1.1 Trace Recording

In effect, the traces of interaction are records of the user dialog with the legacy CUL
This dialog reflects the currently active user services of the legacy system. Here, the term
“active” is used to refer to the services that are still in use frequently by the system users
as opposed to “inactive” or “dead” services, which are functions that are almost never
used or expired due to aging. The recorded traces contain multiple usage scenarios of
each service, most likely with different input data. These scenarios usually cover the
active parts of the legacy CUI, specifically the screens that are frequently accessed and
the user actions that are frequently entered.

The traces are recorded using a specially instrumented terminal emulator. Each trace
is a sequence of screen snapshots interleaved with user actions. A snapshot consists of a
presentation space (a matrix of characters received on the user's terminal) and some
additional information that depends on the data transfer protocol used. For example, for
the IBM 3270 data transfer protocol, LeNDI records the initial cursor location on the
screen and some of the IBM 3270 field information, e.g., field location, length, and
protection status (read only or read/write). A user action is a sequence of keystrokes that
occurs on a snapshot as the user's response to the screen snapshot s/he sees. The current
version of LeNDI can record, analyze, model and mine traces of interaction with systems
that use a block-mode data transfer protocol, e.g., IBM 3270, as opposed to scroll-model
protocols, e.g., IBM 5250.

By equipping enough users’ desktops with LeNDI's recorder, it is relatively easy to
collect a sufficient and representative number of interaction traces unobtrusively.
Assuming that the recording emulators run long enough, the collected traces will cover
the subsystems subject to reengineering with enough examples of screens and actions. If

not, it would be easy to collect more traces that focus on covering the missing parts.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.2 Behavior Modeling

Behavior modeling (chapter 5) builds a state-transition model of the legacy CUI,
whose nodes represent the screens of the CUI and whose edges represent the transitions
between these screens. A screen or a node reflects a behavioral state of the legacy CUI
that allows a small number of user actions. Building such a model requires identifving the
states and transitions of the model. Identifying the states is done in three steps: feature
extraction, snapshot clustering and classifier induction. Identifying the transitions is a one
step process.

Feature extraction (chapter 4) is the process of computing a feature vector for every
recorded screen snapshot from its presentation space and the associated information.
LeNDI employs a variety of heuristics and document analysis methods to extract a rich
set of visual and other features for every snapshot. Currently, LeNDI extracts 14 single-
part and multi-part features. Associated with each feature is a metric for measuring the
similarity of two values of this feature. Discritization and abstraction is applied to this
feature set to generate 39 single-part binary features. This binary feature set is used by
LeNDI's top-down clustering algorithm that requires all binary features, i.e., whose -
comparison yields either 1 or 0.

After feature extraction, LeNDI clusters similar snapshots together using one of its
two clustering algorithms, in order to infer what uniquely distinguishes their identity. The
first algorithm is a single-path incremental clustering algorithm (subsection 5.2.1) that
processes the snapshots one at a time and places each new snapshot in the most similar
cluster, among the clusters available so far. If the snapshot is not similar enough to any
existing cluster, then it becomes the first member of a new cluster. This algorithm is
iterative and requires familiarity with the system in hand and some effort and judgement
in configuring its parameters, but does not need an estimate of the number of clusters
sought. The second algorithm is a top-down algorithm (subsection 5.2.2) that places all
the snapshots in one cluster initially. Then it keeps decomposing the existing clusters one
at time using the best-split test that minimizes the maximum internal cluster incoherence,
until reaching a user-desired number of clusters or until internal cluster incoherence is
below a given threshold. This algorithm is fully automated, but needs as input either an

estimated number of the clusters sought or a threshold for the maximum internal cluster

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

incoherence tolerated. This algorithm produces a decision tree that represents the best-
split decision hierarchy followed to construct the output partition. The user may
iteratively try different runs using different input numbers. The LeNDI analyst may
choose which clustering algorithm to use depending on his familiarity with the CUI of the
system under analysis. S/he can also switch from one algorithm to the other.Sthe can also
switch from one algorithm to the other.

After clustering, the LeNDI analyst inspects the produced partition and provides
feedback regarding potential clustering mistakes by moving misclustered snapshots to
their correct clusters and joining redundant clusters together. LeNDI uses this feedback to
generate a classifier that is able to classify a new snapshot to one of the existing clusters
using its feature vector. This classifier can then be used at runtime to recognize the
identity of new snapshots as instances of the existing CUI states, and hence, to infer what
actions are possible on each snapshot and to which screens they lead. Additionally, at
runtime after identifying a snapshot, the new reengineered Ul can apply whatever
relevant input or output actions of a task plan that is being executed for the snapshot, via
the host-access middleware. LeNDI has a signature-based classifier and a decision tree
classifier. The later is associated with the top-down algorithm. The accuracy of the
classifier induced depends mostly on the quality of the input traces, i.e., how well it
covers the legacy CUI screens and behaviors.

To model the edges of the state-transition model (section 5.4), i.e., the transitions
initiated from each state, LeNDI uses a model of command-language design. Currently
LeNDI can model command-driven and control and function key-driven transitions but
not form-filling or menu selection ones. LeNDI employs an algorithm that groups
together the actions performed on the same source screen, leading to the same destination
screen and analyzes them as instances of the same action. Then, it infers the different
forms of this transition, if there is more than one, by analyzing these instances. LeNDI
analyzes the first word in all instances first, then the second, etc. For each word, it tries to
infer if it is a keyword, an option or an argument, and whether it is optional or mandatory.
Additionally, LeNDI tries to infer the location of that action on the screen or the range

within which it may take place.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.3 Usage Pattern Mining

The purpose of this step (chapter 6) is to automate modeling of the legacy system
-services that would be subject to reengineering. To do so, LeNDI tries to discover
patterns of frequent usage of these services in the form of frequent patterns of interaction
with the legacy system that occurred in the recorded traces. Each interaction patiern is a
candidate model of a system service or user task to be reengineered in terms of the
interface navigation and the information exchange it implies. The patterns are enriched
with additional semantic information to be ready for wrapping in a2 new Web-based
interface or GUI. To discover these interaction patterns, data mining is applied to
interaction traces through three steps. First, the traces are preprocessed to reduce their
size and transform them vto the format needed for the mining algorithm. Second, one of
two novel interaction pattern mining algorithms of LeNDI, IPM (section 6.4) and IPM2
(section 6.5), is applied to discover the patterns. These algorithms are especially designed
to suit the problem of interaction-pattern mining in recorded traces of interaction with
legacy systems. IPM is a breadth first algorithm and IPM2 is a depth first algorithm. Both
rely on constructing longer patterns from shorter qualified ones. Finally, the algorithm -
reports the patterns that meet some user criteria. This criteria define the minimum pattern
length, the minimum number of occurrences, the maximum number of insertion errors
allowed in the pattern instances and the pattern minimum score, according to LeNDI’s
scoring function. Allowing insertion errors gives the user the flexibility to accommodate
user errors and unnecessary navigations like invoking help screens and/or the presence of
alternative paths for some subtasks. Without allowing insertion errors, experiments
showed that many useful patterns would not be recovered. Finally, the resulting pattemns
are reviewed by the user who may like to see sample supporting instances of each pattern
to judge if it is a real pattern or just spurious repetitive navigation. Then, s/he may alter or
complete the patterns chosen and then provide them as input to Mathaino to transform

them to task models.
7.2 Contributions

The interaction reverse engineering method developed in this work is a novel

contribution to the research in the field of reverse engineering legacy systems and to the

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

practice of CUI reengineering and Web-enabling. The following sections describe the.

specific scientific and engineering contributions of this thesis.

7.2.1 Engineering a Feature Suite for Characterizing CUI screen
Snapshots

The research in this thesis resulted in a suite of features for characterizing the
snapshots of character-based user interface screens, and a set of corresponding document-
analysis methods to extract these features from the presentation space and the hidden
information of a snapshot. This suite includes three distinct feature subsets. The first is
extracted from special information discovered at the periphery of the snapshot. The
second is extracted from the non-visual information of the snapshot, received with IBM
3270 data streams. The third is extracted from the snapshot layout and content
distribution. While the second subset is specific to IBM 3270 data streams, the first and
third are general and applicable to any block-mode data transfer protocol. The
effectiveness of this set in characterizing snapshots and clustering similar ones together

was tested using L.eNDI on real case studies with very encouraging results.
7.2.2 An Intelligent Method for Modeling the Behavior of Legacy CUlIs

The second contribution is the invention of a novel semi-automated method for
modeling the behavior of a legacy CUI in the form of a state-transition model, by reverse
engineering the legacy system-user interaction. The steps of this method are:

1. Recording the user dialog with the legacy system in the form of interaction traces.

2. Extracting a feature vector for every recorded snapshot to use in the next step.

3. Clustering similar snapshots together to identify the distinct states of the legacy CUL

4. Classifier induction to infer predicates for all distinct CUI states in order to recognize
instances of these states at runtime.

5. Example-based learning of the syntax of the user actions causing transitions from one
state to another.

6. Data mining of the interaction traces to discover frequent executions of the user tasks
of interest for reengineering.

The invention of this method is a significant contribution to the research fieid of
legacy system Ul reverse engineering and to the state-of-the-art practice. It builds the

necessary infrastructure and foundation for carrying out semi-automated CUI

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reengineering and Web-enabling. More on the sirengths of this method comes in |
subsection 7.2.5.
7.2.3 Two Novel Sequential Pattern Mining Algorithms

In this thesis, two novel sequential pattern mining algorithms, IPM (section 6.4) and
IPM2 (section 6.5), were developed to solve the interaction-pattern mining problem.
However, they are general enough to mine other types of sequential data for frequent
segments of navigation that may include a preset level of noise, which may occur
anywhere within the segment. The algorithms were implemented in Java and they were
applied in two different contexts. IPM is a breadth-first algorithm, while IPM2 is a depth-
first algorithm. Consequently, the IPM2 is more space efficient than IPM, while IPM is
more time efficient than IPM2. These complementary properties make them appropriate
for different application scenarios. An experimental comparison (subsection 6.7.2)
between IPM and IPM2 was conducted on long sequences of artificial data generated

with a legacy system simulator designed for that purpose.
7.2.4 A Prototype Tool, LeNDI

The interaction reverse engineering method engineered in this work and its different
components are implemented and evaluated in a prototype tool, called LeNDI (Legacy
Navigation Domain Identifier). LeNDI is implemented in Java. It serves as a test-bed for
the overall process and for the individual algorithms developed in this work. . It was used
in reverse engineering a number of legacy CUIs with promising results.

7.2.5 The Strengths of Interaction Reverse Engineering

The legacy CUI reverse engineering method developed in this work is novel and
distinct in several ways. First, this method employs an easy to collect, yet underutilized,
input, which is interaction traces. Therefore, our interaction reverse engineering method
is code-independent and does not require any modifications of the legacy system code or
even the availability of the code, its documentation or the right to modify it. It is
independent of the programming language used and implementation details. Hence, it is
suitable for reengineering legacy systems when it is desired to keep the system running
on its platform and only migrate its front-end or integrate it with other systems’ front-
ends, while changes to the code are undesirable. In cases when it is impossible to change

the existing system, this becomes the only way to reengineer it. This approach has the

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

limitation that only limited functionality extension and re-purposing can be done, and
only according to what is offered by the legacy CUL In cases when the source code and
documentation are unavailable, interaction reverse engineering becomes a valuable
method for comprehending the system for maintenance or other purposes, other than
reengineering.

Second, interaction reverse engineering employs a mixture of document analysis,
feature extraction, clustering, classifier induction, data mining and modeling methods, in
the reverse engineering phase of CelLEST, to leverage and advance the current practices
of legacy CUI reengineering. It supersedes the manual practices of screen scraping and
mapping by introducing a coherent automated process that is less time and cost
demanding and less error-prone. Consequently, the overall CelLEST process does not
replicate the legacy system-user interaction with different widgets in new platforms, but
adopts a task-centered approach that encapsulates interesting behavioral segments in new
UI front-ends on different platforms.

Third, the method is lightweight in terms of the skills it assumes. It needs moderate
analysis skills and fair understanding of the system under analysis as opposed to the solid
software development and programming skills and expert understanding of the legacy
system that current practices need. Although we did not conduct a formal usability
experiment, we can report that after 2 or 3 hours of training a junior member of CelLEST
project team, who is a summer student, could actually use LeNDI to record traces of
interaction with an IBM 3270 legacy system and reverse engineer and model its CUL

Fourth, interaction reverse engineering constructs a high-level, intermediate
abstraction of the legacy system behavior in the form of state-transition and task models.
These models are used in the subsequent CelLEST forward engineering process to
support abstract interaction reengineering and hence, simultaneous migration to multiple
platforms.

Fifth, it is possible to reverse engineer only some portion(s) of the legacy CUL if these
are the only parts that need be reengineered, comprehended and/or modeled. Also, it is
possible to do staged legacy CUI reengineering using CellLEST, starting by the services
that are most desired to be reengineered, etc. In other words part of being a lightweight

engineering method, CelLEST and consequently, its reverse engineering phase, are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

incremental methods as opposed o big bang reengineering methods, which are risky and
expensive.

Sixth, experiments for testing and evaluating LeNDI and the underlying methods
have given very promising and encouraging results. They have provided ample evidence
of the usefulness and applicability of the methods proposed in this work, although there is
still room for future improvements and enhancements.

Finally, because exactly this work has been motivated by a partnership with an
industrial sponsor and its methodology is inspired by industrial practices in the area, we
believe that our interaction reverse engineering method can potentially have an impact to

the legacy migration and CUI reengineering practice.
7.3 Future Work

Subsections 4.8, 5.6 and 6.8 discussed in details the future work for improving and
enhancing LeNDI and the underlying methods, and for extending the use of individual
methods to other areas. This section discusses possible extensions of the entire
interaction-based CUI reverse engineering process in two orthogonal directions. The first
is using interaction-based legacy CUI reverse engineering for purposes other than UI
reengineering. The second is extending it to different types of interaction, other than
interaction with legacy systems, and hence broadening the application spectrum of this

method.

7.3.1 Other Applications of CelLEST Legacy CUI Reverse Engineering
Method

The research and ideas presented in this thesis can be utilized beyond their use in
CelLEST project. In the future, some of these other uses will be explored, especially the
ones presented below.

First, the analysis done to reverse engineer a legacy CUI is a form of dynamic
analysis [SS02], which aims to model and understand the external dynamic or run-time
behaviour of the legacy system. Mostly, dynamic analysis focuses on the internal
behavior of the software during run-time, e.g., flow of control, memory utilization,
function entry and exit data, count of executed instructions, etc. [RRO1], etc. There is a
growing interest in combining static and dynamic analysis of legacy and large software

systems for better program understanding, visualization and other purposes [IWPC01]

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[LLS01]. It would be interesting to see how external behaviour analysis, in the form of
interaction reverse engineering, can be combined with static or code analysis of legacy
systems or with dynamic analysis of the internal program behavior for better and more
complete program understanding.

Second, the state-transition model and interaction patterns generated for a legacy
system can aid the process of re-documenting an existing system or developing a help
system (documented or electronic). This can be done with a pragmatic approach that
focuses on documenting the currently "active” or "usable" functions of the system, from a
user perspective. Interaction patterns can be translated, after some editing by an expert on
the system, to "how to" subsections in the new user document.

Third, interaction pattern discovery, as explained in chapter 6, can be seen as a form
of requirements recovery. It can be used to infer use cases for systems that were
developed before the advent of UML. Or, it can be used to recapture the current uses of
the system as its de facto functional requirements for the purpose of aiding system
migration, building a new system or extending the system with new subsystems that
respect the users’ conceptual models of the tasks they perform.

Fourth, it is possible to use interaction reverse engineering as a means for
“objectifying” or “APling” a legacy system by creating a new API for it via screen
mapping as briefly introduced in subsection 2.3.5. In such a case, a task model can be
encapsulated in a function or a procedure that implements the corresponding task plan
and executes it whenever it is invoked. Then, the outputs of this plan are not presented to
the user directly via a new GUI or Web-UI, but are consumed by the calling program. In
an object-orientated context, a group of related legacy system services can be
encapsulated in a class, with the corresponding task models encapsulated in methods.
This way, it is possible that some or all of the legacy system services are integrated with

other programs in creating bigger applications, with minimal effort.

7.3.2 Reverse Reengineering Different Types of Interaction

Interaction reengineering is a broad approach for legacy system reengineering that is
not necessarily related to legacy CUIs. It simply means reengineering the way the users
of a system interact with the system, without necessarily reengineering the code of the

system, although code reengineering may be needed depending on the goals to be

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

achieved. In the case of a legacy CUl, as shown in this thesis, this is done be
understanding and modeling the current CUI and the user tasks of interest and then
forward engineering these tasks. To reengineer other kinds of interaction, one would still
need similar reverse engineering and forward engineering steps, which may differ in their
details from the case of legacy CUIs depending on the context.

A potentially interesting use of interaction reengineering is to extend it to legacy
applications that use scroll-mode data transfer protocols, like VT 100 and IBM 5250. The
challenge in this case is defining the elements of the state-transition model of the legacy
CUI and then identifying them from the recorded traces. Defining the elements of the
state-transition model means characterizing what constitutes a behavioral state of the
system that corresponds to a legacy screen in the case of IBM 3270 and also what an
edge would be in this case.

We have applied interaction reengineering for lightweight web site run-time
reengineering by introducing on-the-fly URL recommendations [ES03]. The target of that
work is focused web sites, which are web sites that support an ongoing process and offer
information essential to that process, e.g., web sites of university courses. Users navigate -
such sites in a consistent task-driven (as opposed to data-driven) way that reflects the
tasks of the underlying process. In the reverse engineering step, we applied interaction
pattern mining using IPM2 to discover frequent user navigation patterns from server logs
of the first three working days of the week. In the forward engineering step, these
patterns are used to generate URL recommendations for students navigating the web site
in the last two working days of the week. The choice of the length of the logs to use for
pattern generation and of the period during which these patterns would be recommended
is optional. Recommendation is done by instrumenting the server to use dynamic page re-
writing with hidden fields for two tasks. First, it is used to keep track of the client identity
using embedded session-specific Ids. Second, it is used to recommend some URLs to the
user based on her/his navigation history. This is done by matching the user’s recent
navigation history with the prefixes of the collected patterns and offering the suffixes of
the relevant patterns, or some of them based on a selection criterion, as URL
recommendations for subsequent navigation. During dynamic re-writing, these URLs are

embedded in the HTML page before forwarding it to the client.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While the application described in [ES03] seems to be quite different from the work
of this thesis, in essence we applied the same process in both cases. A legacy system here
corresponds to a web site there. A recorded trace of interaction with the legacy system
corresponds to a web log. Frequent user tasks performed in interaction with a legacy CUI
correspond to frequent web site navigation segments. The purpose of forward engineering
phase was different. In [ESO3] it was simply to save some navigation steps by predicating
where the user may like to go based on hei/his navigation history. In this work, no code is
touched, while in [ES03] minimal run-time HTML page re-writing is required in order to
identify the clients and to insert recommendations in the web pages received.

Interaction reengineering can also be applied to window-based applications or GUI
driven applications (GDAs) in general. In principle, it would be possible to monitor the
sequences of events occurring in the service of user tasks and then inferring some model
or plan of this task. Then it would be possible to encapsulate this plan in a class method
in order to replay it by invoking the method from other programs. Thus the user
interaction with the GDA can be reengineered and/or the services of the GDA can be

integrated with other applications or used to build bigger applications.

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[AFMTO5]

[AGL98]

[AIS93]

[Ake00]

[Amb00]

[AS94]

[AS95]

[Att00]

[BBO1]
[BB9%4]

{BCBQO]

eferences

G. Antoniol, R. Fiutem, E. Merlo and P. Tonella, Application and User
Interface Migration From Basic to Visual C++. In Proc. of the Int.
Conf. on Software Maintenance (ICSM), pg. 76-85, 1995.

R. Agrawal, D. Gunopulos and F. Leymann, Mining Process Models
from Workflow Logs. In Proc. of the 6th Int. Conf. on Extending
Database Technology (EDBT), pg. 469-483, 1998.

R. Agrawal, T. Imielinski and A. Swami, Mining Association Rules
between Sets of Items in Large Databases. In Proc. of the 1993 Int.
Conf. on Management of Data (SIGMOD 93), pg. 207-216, 1993.

L. Akers, Web-enabling Legacy Applications — An Overview for VSE
Users. VSE/ESA Software Newsletter, IBM, Third/Fourth Quarter,
2000.

S. Ambler, Legacy Integration Techniques for Java Applications: How
to Reuse Your Legacy Investments within Java Applications. IBM
developerWorks Journal, IBM, Nov. 2000.

R. Agrawal and R. Srikant, Fast Algorithms for Mining Association
Rules. In Proc. of the 20th Int. Conf. on Very Large Data Bases
(VLDB), pg. 487-499, 1994 ’

R. Agrawal and R. Srikant, Mining Sequential Patterns. In Proc. of the
11th Int. Conf. on Data Engineering (ICDE), pg. 3-14, 1995.

Attachmate, Repurposing Legacy Applications for the Web: Screen-
Based Access in Perspective. A White Paper, Attachmate Corporation,
2000.

D. Berman and K. Bregar, Don't Replace -- Extend: Why Leveraging
Your Legacy Systems Is the Way to Go. Enterprise Systems, June 2001.

A. Bairoch and P. Bucher, PROSITE: Recent Developments. Nucleic
Acids Research, vol. 22, pg. 3583-3589, 1994.

J. Baixeries, G. Casas and J. Balcazar, Frequent Sets, Sequences, and
Taxonomies: New, Efficient Algorithmic Proposals. Report Number
1L.S1-00-78-R, El departament de Llenguatges i Sistemes Informatics,
Universitat Polit€cnica de Catalunya, Spain, Dec. 2000.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IBDVHHP00] Brejova, B., DiMarco, C., Vinar, T., Hidalgo, S. R., Holguin, G. and
Patten, C. Finding Patterns in Biological Sequences. Unpublished
project report for CS798G, University of Waterloo, Fall 2000.

BFMO2] B., Braswell, G. Forshay and J. Martinez, IBM Web-to-Host Integration
Solutions. Redbooks Series, IBM, Jan. 2002.

[BL97] A. Blum and P. Langely, Selection of Relevant Features and Examples
in Machine Learning. Artificial Intelligence, vol. 97, no.1-2, pg. 245-
271,1997.

[BS02] R. Biuk-Aghai and S. Simoff, Assisting the Design of Virtual Work

Processes via On-line Reverse Engineering. In Proc. of the 35th Hawaii
Int. Conf. on System Sciences, pp. 58-67, 2002.

[BSTWW99] J. Bergey, D. Smith, S. Tilley, N. Weiderman and S. Woods, Why
Reengineering Projects Fail. Technical Report CMU/SEI-99-TR-010,
Software Engineering Institute, April 1999.

[CCDDO01} G. Canfora, A. Cimitile, A. De Lucia and G. Di Lucca, Decomposing
Legacy Systems into Objects: An Eclectic Approach. Information and
Software Technology, vol. 43, no. 6, pg. 401-412, 2001.

[Cel] Celcorp, www.celcorp.com.

[Cel99] Celcorp. CelEngineer User’s Guide — Evaluation Version 2.0. Celcorp,
1999.

[Cha98] R. Chadha, Integration of Web with Legacy Systems Through Java

Applets and Distributed Objects. In Workshop on Compositional
Software Architectures, 1998.

[Coh94] W. Cohen, Recovering Sofiware Specifications with Inductive Logic
Programming. In Proc. of the 12th National Conf. on Artificial
Intelligence, vol. 1, pg. 142-148, 1994.

{Con] The ConcurTaskTrees Environment Version 1.5.6. Available at
http://giove.cnuce.cnr.it/ctte.html.

{Cri01] R. Crngler, Use Screen Mapping For Wireless Access to Legacy
Enterprise Data. Enterprise Application Integration (EAI) Journal,
Aug., 2001.
213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.celcorp.com
http://giove.cnuce.cnr.it/ctte.html

[{CWSRO00]

[D95]

{DEFD00]

[EISSMO1]

[ES03]

[ESS02a]

[ESS02b]

[ESS02c]

[Flo99]

[FOLDY6]

S. Comella-Dorda, K. Wallnau, R. Seacord and J. Robert, A Survey of
Legacy System Modernization Approaches. Technical Note: CMU/SEI-
2000-TN-003, Software Engineering Institute, 2000.

R. Dannelly, Reverse Engineering X Window System based Graphical
User Interface Source Code. Ph.D. Dissertation, Auburn University,
Dec. 1995.

G. Di Lucca, A. Fasolino, and U. De Carlini, Recovering Use Case
Models from Object-oriented Code: a Thread-based Approach. In Proc.
of the 7th Working Conf. on Reverse Engineering (WCRE), pg.108-
117, 2000.

M. El-Ramly, P. Iglinski, E. Stroulia, P. Sorenson and B. Matichuk,
Modeling the System-User Dialog Using Interaction Traces. In Proc. of
the 8th Working Conf. on Reverse Engineering (WCRE), pg. 208-217,
2001.

M. El-Ramly and E. Stroulia, Web-usage Mining and Run-time URL
Recommendation for Focused Web Sites: A Case Study. Journal of
Software Maintenance and Evolution: Research and Practices, 2003.
(accepted)

M. El-Ramly, E. Stroulia, and P. Sorenson, Mining System-User
Interaction Traces for Use Case Models. In Proc. of the 10th Int.
Workshop on Program Comprehension (IWPC), 2002.

M. El-Ramly, E. Stroulia and P. Sorenson, Recovering Software
Requirements from System-user Interaction Traces, In Proc. of the 14th
Int. Conf. on Software Engineering and Knowledge Engineering
(SEKE’02), 2002.

M. El-Ramly, E. Stroulia and P. Sorenson, Interaction-Pattern Mining:
Extracting Usage Scenarios from Run-time Behavior Traces. In Proc.
of the 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD 2002), 2002.

A. Floratos, Pattern Discovery in Biology: Theory and Applications.
Ph.D. Thesis, Department of Computer Science, New York University,
Jan. 1999.

D. Howe (Editor), The Free On-line Dictionary of Computing.
Available at www foldoc.org.

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.foldoc.org

{GBP02]

{Gold98]

[HOLLIS]

[Hor98]

[IBM99]

[TWPCO01]

[TMO00]

{Jon96]

[Kap01]

[KD99]

[Kie98]

{Kon00]

[KS96]

M. Grechanik, D. Batory and D. Perry, Integrating and Reusing GUI-
Driven Applications. In Proc. of the Int. Conf. on Software Reuse
(ICSR), pg.1-16, 2002.

N. Gold, The Meaning of Legacy Systems. Technical Report 7/98, Dept.
of Computer Science, Durham University, UK, 1998.

Harvard OnLine Library Information System (HOLLIS). The IP
address of its public IBM 3270 connection is hollis.harvard.edu.

E. Horowitz, Migrating sofiware to the World Wide Web. IEEE
Software, vol. 15, no. 3, pg. 18-21, 1998.

IBM, Screen Customizer Version 2.0.60: Getting Started. IBM, 1999,

E. Stroulia and T. Systa (Chairs), Structure-Behavior-Function
Program Understanding. A Working Session at the 9th Int. Workshop
on Program Comprehension, 2001.

M. Jugel and M. Meiliner, The Javatm Telnet Application/Applet,
version 2.0. http:/fjavassh.org/download/2.0/index.html, 2000

1. Jonassen, Methods for Finding Motifs in Sets of Related '
Biosequences. Dr. Scient Thesis, Dept. of Informatics, Univ. of Bergen,
1996.

R. Kapoor, Device-Retargetable User Interface Reengineering Using
XML. Technical Report TR01-11, Department of Computing Science,
University of Alberta, Aug. 2001.

T. Kieninger and A. Dengel, The T-Recs Table Recognition and
Analysis System. Lecture Notes in Computer Science 1655, Springer,
pg. 255-269, 1999.

T. Kieninger, Table Structure Recognition Based on Robust Block
Segmentation. Document Recognition V, pp. 22-32, 1998.

L. Kong, Legacy Interface Migration: From Generic ASCII Uls to
Task-Centered GUIs. M.Sc. Thesis, Department of Computing Science,
University of Alberta, Canada, 2000.

D. Koller and M. Sahami, Toward Optimal Feature Selection. In Proc.
of the 13th Int. Conf. on Machine Learning (ICML), pg. 284-292, 1996.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://javassh.org/download/2-0/index.html

[KSO1]

(KSM99]

[Lan00]

[LAQ99]

[LBS9%4]

[LHHP96]

[LLSO1]

[LOCIS]

[LP98]

[Mir96]

[MIRLYN]

[MRS94]

R. Kapoor and E. Stroulia, Simuitaneous Legacy Interface Migration to
Multiple Platforms. In Proc. 9th Int. Conf. on Human-Computer
Interaction, vol. 1, pg. 51-55, 2001.

L. Kong, E. Stroulia, and B. Matichuk, Legacy Interface Migration: A
Task-Centered Approach. In Proc. 8th Int. Conf. on Human-Computer
Interaction, pg. 1167-1171, 1999.

G. Langan, From Legacy to the Web. Enterprise Application Integration
{EAI) Journal, Jan. 2000.

K. Liu, A. Alderson, and Z. Qureshi, Requirements Recovery from
Legacy Systems by Analysing and Modelling Behaviour. In Proc. Int.
Conf. on Software Maintenance (ICSM), pg. 3-12, 1999.

Z. Liu, M. Ballantyne and L. Seward, An Assistant for Re-Engineering
Legacy systems. In Proc. of the 6th Innovative Applications of Artificial
Intelligence Conf., pg. 95-102, 199%4.

J. Liang, J. Ha, R. Haralick and L Phillips, Document Layout Structure
Extraction Using Bounding Boxes of Different Entities. In Proc. of the
3rd IEEE Workshop on Applications of Computer Vision, pg. 278-283, .
1996.

W. Lowe, A. Ludwig and A. Schwind, Understanding Large Software
Systems — Static and Dynamic Aspects. In Proc. of the 17th Int. Conf.
on Advanced Science and Technology, (ICASTU1), 2001.

The Library of Congress Information System (LOCIS). The IP address
of its public IBM 3270 connection is 140.147.254.3 or locis.loc.gov.

A. Lecerof and F. Paternd, Automatic Support for Usability Evaluation.
IEEE Transaction on Software Engineering, vol. 24, no. 10, pg. 863-
888, 1998.

B. Mirkin, Mathematical Classification and Clustering. Kluwer
Academic Publishers, 1996.

Michigan Research Library Network (MIRLYN). The IP address of its
public IBM 3270 connection is mirlyn.Jib.umich.edu.

M. Moore, S. Rugaber and P. Seaver, Knowledge-based User Interface
Migration. In Proc. of the Int. Conf. on Software Maintenance (ICSM),
pg. 72-79, 1994.

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IMTVY7]

INSEO02]

[OMGY99]

[PA9T]

[Par94]

[Pat02]

[PRSV97]

[PZKM99]

[Qui93]

[REGS00]

[Rij79]

H. Mannila, H. Toivonen and A. Verkamo, Discovery of Frequent
Episodes in Event Sequences. Data Mining and Knowledge Discovery,
vol.1, no. 3, pg. 259-289, 1997.

N. Niu, E. Stroulia and M. El-Ramly, Understanding Web Usage for
Effective Dynamic Web-Site Adaptation. In the Proc. of the 4th Int.
Workshop on Web Site Evolution (WSE 2002), 2002.

OMG, The OMG Unified Modeling Language Specification, version
1.3. Object Management Group, 1999.

C. Phanouriou and M. Abrams, Transforming Command-Line Driven
Systems to Web Applications. Computer Networks and ISDN Systems,
vol. 29, no. &, pg. 1497-1505, 1997.

D. Parnas, Software Aging. In Proc. of the 16th Int. Conf. on Software
Engineering, pg. 279-287, 1994.

F. Patemno, Task Models in Interactive Software Systems. In Handbook
of Software Engineering and Knowledge, vol. I, World Scientific
Publishing Co., pg. 817-836, 2002.

C. Plaisant, A. Rose, B. Shneiderman and A. Vanniamparampil, Low
Effort High Payoff User Interface Reengineering. IEEE Software, vol.
14, no. 4, pg. 66-72, 1997.

P. Patil, Y. Zou, K. Kontogiannis and J. Mylopoulos, Migration of
Procedural Systems to Network-Centric Environments. In Proc. of
Center of Advanced Studies Conference (CASCON'99), pg. 68-82,
1999.

J. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

P. Rayson, L. Emmet, R. Garside and P. Sawyer, The REVERFE Project:
Experiments with the Application of Probabilistic NLP to Systems
Engineering. In Proc. of the 5th Int. Conf. on Applications of Natural
Language to Information Systems, pg. 288-300, 2000.

C. van Rijsbergen, Information Retrieval. Butterworths, London, UK,
1979.

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{RMBO00]

[Roul2Z]

{RRO1]

{Sch99]

[SCT02]

[SEIS03]

[SEKSM99]

[SES02]

{SESP00]

{SK02]

W. Ruh, F. Maginnis and W. Brown, Types of Integration. In
“Enterprise Application Integration: A Wiley Tech Brief”, John Wiley
& Sons, Oct. 2000.

V. Roubtsov, Java Tip 130: Do you know your daia size? In JavaWorld
(www javaworld.com/iavaworld/javatips/jw-javatip130.html), August,
2002

S. Reiss and M. Renieris, Encoding Program Executions. In Proc. of
the 23rd Int. Conf. on Software Engineering (ICSE01), pg. 221-230,
2001.

B. Schneiderman, Designing the User Interface. Addison-Wesley,
1999.

C..Sorzano, J. Carazo and O. Trelles. Command Line Interfaces can Be
Efficiently Brought to Graphics: COLIMATE (The COmmand Line
MATE). Software: Practice & Experience, vol. 32, no 9, pg. 873-887,
2002.

E. Stroulia, M. El-Ramly, P. Iglinski and P. Sorenson, User Interface
Reverse Engineering in Support of Interface Migration to the Web. .
Automated Software Engineering, vol.10, no. 3, 2003.

E. Stroulia, M. El-Ramly, L. Kong, P. Sorenson, and B. Matichuk,
Reverse Engineering Legacy Interfaces: An Interaction-Driven
Approach. In Proc. of the 6th Working Conf. on Reverse Engineering,
pg. 292-302, 1999.

E. Stroulia, M. El-Ramly and P. Sorenson, From Legacy to Web
through Interaction Modeling. In Proc. of the Int. Conf. on Software
Maintenance (ICSM 2002), pg. 320-329, 2002.

S. Stroulia, M. El-Ramly, P. Sorenson, R. Penner, Legacy Systems
Migration in CelLEST. Short Research Demonstration, In the Proc. of
the 22nd Int. Conf. on Software Engineering, pg. 790, 2000.

E. Stroulia and R. Kapoor, Reverse Engineering Interaction Plans for
Legacy Interface Migration. In Computer Aided User-Interface Design,
2002.

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.javaworld.com/javaworid/javatips/jw-javatipl30.html

[SLGSH9Z]

{Sne00]

[SP99]

{SS02]

[TH99]

[TLRH98]

[TS99]

[Vij02]

[VisO1]

[WAP]

[Way99]

{Wie99]

S. Srihari, S. Lam, V. Govindaraju, R. Srihari and J. Hull, Documenz
Understanding: Research Directions. Technical Report CEDAR-TR-
92-1, Center of Excellence for Document Analysis and Recognition
State University of New York, 1992.

H. Sneed, Accessing Legacy Mainframe Applications via the Internet.
In Proc. of the 2nd Int. Workshop on Web Site Evolution (WSE’2000),
2000.

J. Shao and J. Pound, Extracting Business Rules from Information
Systems. BT Technical Journal, vol. 17, no. 4, 1999,

E. Stroulia and T. Systd, Dynamic Analysis for Reverse Engineering
and Program Understanding. Applied Computing Review, vol. 10, no.
1, pg. 8-17, 2002.

V. Tzerpos and R. Holt , MoJo: A Distance Metric for Software
Clusterings. In Proc. of the 6th Working Conf. on Reverse Engineering,
pg. 187-195, 1999.

Y. Tan, D. Lindquist, T. Rowe and J. Hind, IBM eNetwork Host On-
Demand: The Beginning of a New Era for Accessing Host information
in a Web Environment. IBM System Journal, vol. 37, no. 1, pg. 133-
152, 1998.

K. Tucker and R. Stirewalt, Model Based User-interface
Reengineering. In Proc. of the 6th Working Conf. on Reverse
Engineering (WCRE), 1999.

V. Menon, Visualization of Legacy Interface Behavior. A Research
Report, Department of Computing Science, University of Alberta,
2002.

G., Visaggio, Ageing of a Data Intensive Legacy System: Symptoms and
Remedies. Journal of Software Maintenance and Evolution, vol. 15, no.
3, pg. 281-308, 2001.

The WAP Forum, www.wapforum.org.

P. Wayner, Compression Algorithms for Real Programmers. Morgan
Kaufmann Publishers, 1996.

K. Wiegers, Hearing the Voice of the Customers. Chapter 8 in Software
Requirements, Microsoft Press, 1999.

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.wapforum.org

[WID01] E. Wohistadter, S. Jackson and P. Devanbu, Generating Wrappers for
Command Line Programs: The Cal-Aggie Wrap-O-Matic Project. In
Proc. of the Int. Conf. on Software Engineering, pg. 243-252, 2001.

{Yam00] T. Yample, Web-based Technologies for User Interface Rejuvenation.
In Web-to-Host Connectivity, A. Guruge and L. Lindgren (Ed.), CRC
Press, pg. 185-197, 2000.

[ZK99] Y. Zou, K. Kontogiannis, Enabling Technologies for Web-Based
Legacy System Integration. In Proc. of the 1st Int. Workshop on Web
Site Evolution (WSE99), 1999.

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

