
In compliance with the
Canadian Privacy Legislation

some supporting forms
may have been removed from

this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Reverse Engineering Legacy User Interfaces

Using Interaction Traces

By

Mohammad El-Ramly

A thesis submitted to the Faculty of Graduate Studies and

Research in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

Department of Computing Science

Edmonton, Alberta

Fall 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-87965-8
Our file Notre reference
ISBN: 0-612-87965-8

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Library Release Form

Name of Author: Mohammad Mahmoud Fawzi El-Ramly

Title of Thesis: Reverse Engineering Legacy User Interfaces Using Interaction Traces

Degree: Doctor of Philosophy

Year This Degree Granted: 2003

Permission is hereby granted to the University of Alberta Library to reproduce single

copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the

copyright in the thesis, and except as herein before provided, neither the thesis nor any

substantial portion thereof may be printed or otherwise reproduced in any material form

whatever without the author’s prior written permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies and Research for acceptance, a thesis entitled Reverse Engineering

Legacy User Interfaces Using Interaction Traces submitted by Mohammad

El-Ramly in partial fulfillment of the requirements for the degree of Doctor of

Philosophy.

Eleni Stroulia, Associate Professor

Paul Sorenson, Profissor
(Co-supervisor)

Witold Pedrycz, Professor

Osmar R. Zaiane, Assistant Professor

Gail Murphy, Associate Profesjor
(External Examiner)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To the most precious ones
who gave me life and their
unconditional unlimited love
and support

My Parents,

To mf sunshine, mf onlf
sunshine, who makes me
happf. To m f precious
sweetheart.

My Wife Aisha,

To the little one who can
make me smile even during
the hardest times.

My Son Mahmoudi,

To mf brother, friend
and supporter,

Has$an,

With all mf love,
t dedicate this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Legacy system user-interface reengineering is an increasingly popular area in

research and practice. Many legacy user-interfaces get reengineered to reproduce them in

modem graphical user-interfaces, integrate them with other systems’ front-ends, or most

important, open them for Web-access. Often, it is desired to reengineer the user-interface

without changing the legacy system code because the system performance is satisfactory

and/or due to the prohibitive cost or risk. In such cases, lightweight non-invasive

reengineering methods are needed.

This thesis presents a novel method for reverse engineering legacy character-based

user-interfaces using traces of interaction between the legacy system and its users, as the

only input. This "interaction reverse engineering" method produces a behavioral model of

the legacy user-interface and discovers important usage scenarios of the legacy system

services, represented by the frequent patterns of interaction with its user-interface. Then,

a complementary forward engineering method uses the model and patterns to build a new

task-centered front-end.

Our method consists of three steps and is implemented in a prototype tool called the

Legacy Navigation Domain Identifier (LeNDI). First, the system-user dialog is recorded

in the form of interaction traces using a specially instrumented emulator. These traces

capture the screen snapshots forwarded to the user terminal and the user keyboard actions

in return. Second, LeNDI builds a behavioral state-transition model for the legacy user-

interface, whose states represent the legacy user-interface screens and whose transitions

represent the permissible user actions on each screen. To build the model, LeNDI extracts

a vector of features for every snapshot, clusters similar snapshots together, and finally

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

induces a classifier that can classify new snapshots to one of the existing clusters. Third,

LeNDI uses one of its two novel interaction pattern mining algorithms, EPM and JPM2, to

mine the interaction traces for patterns of user activity. Associated with these steps, is a

process of user feedback and revision to verify the results.

Our interaction reverse engineering method is code-independent and utilizes a novel

easy-to-collect input, the interaction traces. Currently, it can reverse engineer block-mode

data transfer protocols, e.g., IBM 3270. It is lightweight in terms of the time, cost and

skills required. It supersedes the current manual labor-intensive time-consuming

industrial practices. Several case studies were conducting to reverse engineer the user

interaction with a number of real legacy systems, with very encouraging results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENT

Thanks are due to many people who, over the course of this study, provided me with

enormous help and encouragement. This acknowledgment is but a small appreciation for

their priceless support.

The guidance and vision of Professor Elemi Stroulia, my main supervisor, were

instrumental in achieving the goals of this work. I thank her for her enthusiastic support,

the unique mentoring environment she provided and the invaluable discussions we had. I

also thank Professor Paul Sorenson, my co-supervisor, for his help and advice. His ideas,

comments and advice are greatly appreciated.

The CelLEST project team at University of Alberta provided an exceptionally

cooperative and friendly environment. In particular, thanks are due to Roland Penner for

his great help in implementing the prototype tool, LeNDI, and Paul Iglinski for his work

on top-down clustering and decision tree classifier induction algorithms. Thanks are due

to Bruce Matichuk from Celcorp for the many fruitful discussions we had in the course of

CelLEST project. I like to thank the summer students Brice Riemenschneider and Warren

Blanchet for their help in implementing LeNDI.

I would like to acknowledge the generous support of NSERC and Celcorp to this

research via an NSERC Industrial Postgraduate Scholarship 216077-98. I would like to

thank Celcorp for giving me the opportunity to work on their site for a few months at the

early stages of CelLEST project, for the resources they have allocated to me and for the

wonderful support of their staff. That period of time was vital in familiarizing me with

the state of the art user interface reengineering technology and for the progress of this

research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents
Chapter One: Introduction.. 1
1.1 Background1
1.2 Motivation. 3
1.3 The CelLEST Project.......................... 5

1.3.1 Two CelLEST Reengineering Scenarios 6
1.3.1.1 Migrating a Students Information System (SIS) to the WWW 6
1.3.1.2 Integrating the Front-ends of Two Insurance Systems...................... 7

1.3.2 The CelLEST Process 7
1.3.2.1 CelLEST Character-based User Interface Reverse Engineering 8
1.3.2.2 CelLEST Character-based User Interface Forward Engineering and

Visualization........................ 9
1.3.3 Advantages of the CelLEST Process 10

1.4 Thesis Statement......................... 11
1.5 Thesis Contributions 11
1.6 Thesis Organization 12

Chapter Two: Related Work..14
2.1 User Interface Reengineering and Reverse Engineering.................... 15
2.2 Web-enabling Legacy Systems................... 18 "

2.2.1 Web-enabling via Data Access 19
2.2.2 Web-enabling via Logic Access 20
2.2.3 Web-enabling via Presentation Access.. 22

2.2.3.1 Web Emulation (Webulation)... 23
2.23.2 Screen Scraping (Refacing)........................ 24
2.2.3.3 Screen Mapping (Remodeling) 26

2.3.4 Pros and Cons of Web-enabling via Presentation Access 28
2.3.5 Objectifying Legacy Systems via Presentation Access 30

2.3 Software Requirements and Process Mode! Recovery 31
2.4 Sequential Data M ining 33

Chapter Three: CelLEST User Interface Reengineering....................... 36
3d Interaction Traces Collection.......... 39
3.2 T l: Legacy Interface Behavior Modeling. 39

3.2.1 T l.l: Feature Extraction 40
3.2.2 T1.2: Snapshot Clustering...................... 41
3.2.3 T1.3: Classifier Induction 42
3.2.4 T1.4: Transition Modeling.................... 42

3.3 T2 and T3: Frequent User Task Discovery and Modeling............. 43
3.3.1 T2: Task Discovery...................... 43
3.3.2 T3: Task Modeling.............. 44

3.4 T4: Generating Abstract GUI Specifications.................... 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 T5: Runtime GUI Generation 46 ■
3.5.1 T5.1: The XHTML Interpreter................... 46
3.5.2 T5.2: The WML Interpreter 47

Chapter Four: Feature Extraction For Legacy Screen Snapshots.........48
4.1 Types of Legacy Screens......................... 50
4.2 Presentation Space Features 52

4.2.1 Analysis of Presentation Space Periphery 53
4.2.2 Five Presentation Space Features................. 58

4.2.2.1 Feature 1-1: Eight Areas Encoding.......................... 58
4.2.2.2 Feature 1-2: The Start Columns of Titles and Codes 58
4.2.2.3 Features 1-3 and 1-4: Titles, Codes and/or Selected Text Areas................ ...59
4.2.2.4 Feature 5-1: Cursor Label 59

4.2.3 Presentation Space Features Examples59
43 IBM 3270 Data Stream Features.............. .64

4.3.1 Feature 2-1: Hashing of the Number and Locations of IBM 3270 Fields64
4.3.2 Feature 2-2: The Number of IBM 3270 Unprotected Fields 64

4.4 Presentation Space Layout Features 65
4.4.1 Projection Profiles 65

4.4.1.1 All Characters Binary Vertical Profile 66
4.4.1.2 All Characters Binary Horizontal Profile 67
4.4.1.3 Numbers Binary Vertical Profile 68
4.4.1.4 Words Horizontal Profile.................... 68
4.4.1.5 Special Characters Binary Profile................... 68
4.4.1.6 Features 6-1 and 6-2: All Characters Binary Vertical and Horizontal

Profiles70
4.4.1.7 Features 6-3: Numbers Binary Vertical Profile 71
4.4.1.8 Features 6-4: Words Horizontal Profile................ 72
4.4.1.9 Features 6-5: Special Characters Binary Profile.72
4.4.1.10 Projection Profiles Example 72

4.4.2 Layout Classification76
4.4.2.1 Table Detection: An Overview 77
4.4.2.2 Table Detection: Process and Algorithms 80
4.4.23 List Detection 89
4.4.2.4 Feature 7-1 and Feature 7-2: Layout Classification and Specifications .92
4.4.2.5 Table and List Detection Examples 93

4.5 Summary of LeNDPs Discrete Feature Set................ 98
4.6 LeNDPs Binary Feature Set.............. 99
4.7 LeNDPs Feature Extractor and Feature Viewer100
4.8 Discussion and Conclusions 103

Chapter Five: Legacy User Interface Behavior Modeling................... 106
5.1 Introduction 106

5.1.1 Example 107
5.1.2 Problem Formulation and Definitions 108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.3 LeNDFs Approach to Legacy GUI Modeling..................... 109
5.2 Clustering Legacy Screen Snapshots in LeNDI 112

5.2.1 Clustering Method 1: Single-path Incremental Clustering of Legacy
Snapshots 112

5.2.2 Clustering Method 2: Top-down Clustering of Legacy Snapshots 116
5.2.3 Clustering Result Visualization and User Feedback............... 121
5.2.4 A Metric for Measuring Clustering Quality 122

5.2.4.1 MoJo Plus Metric 123
5.2.4.2 A Mo Jo Plus Example 124

5 3 Screen Classifier Induction 124
5.3.1 Classifier Induction Method 1: Screen Predicate (Cluster Signature)

Calculation 125
5.3.2 Classifier Induction Method 2: Decision Tree Extension via Supervised

Learning.................... 128
5.4 Transition Modeling 132

5.4.1 A General Model for Transitions 134
5.4.2 Transition Modeling Examples 135

5.5 Evaluation138
5.5.1 Experiment 5.1 - LOCIS System 138

5.5.1.1 Modeling Using Single-Path Incremental Clustering and Signature-based
Classification... 138

5.5.1.2 Modeling Using Top-Down Clustering and Decision Tree Classification... 140
5.5.1.3 Comparative Evaluation 142
5.5.1.4 Transition Modeling 142

5.5.2 Experiment 5.2 - HOLLIS System 142
5.5.3 Comments on Experiments 5.1 and 5.2 143
5.5.4 Experiment 5.3 - MERLYN System 145

5.5.4.1 Snapshot Clustering.................. 145
5.5.4.2 Classifier Induction 148
5.5.4.3 Transition Modeling 152

5.6 Discussion155
5.6.1 Strengths............. 155

5.6.1.1 A Coherent Automated GUI Behavior Modeling Process 155
5.6.1.2 Low Skills 157
5.6.1.3 Comprehensibility of the Results 157
5.6.1.4 Flexibility and Extensibility 157

5.6.2 Limitations 158
5.6.2.1 Model Completeness and Classifier Accuracy 158
5.6.2.2 User Feedback Is Necessary.............. 159

5.6.3 Future Enhancements 159
5.6.3.1 Feature Selection for Clustering..................... 159
5.6.3.2 Enhancing Clustering and Classifier Induction............... 160
5.6.3.3 Enhancing Action Modeling 161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Six: Mining Interaction Traces for Patterns of Frequent
User Tasks 162

6.1 An Example Interaction Pattern...................... 165
6.2 Problem Formulation 169
6.3 Preprocessing Interaction Traces 171
6.4 IPM: Breadth-first Discovery of Approximate Interaction Patterns 172

6.4.1 JPM Phase 1: Producing The Initial Candidate Pattern Set.................... 173
6.4.2 EPM Phase 2: Generating Longer Candidate Patterns from Shorter Ones... 174
6.4.3 An JPM Application Example............. 176

6.5 IPM2: Depth-first Discovery of Approximate Interaction Patterns.. 178
6.5.1 IPM2 Phase 1: Producing the Initial Candidate Pattern Set.................. 179
6.5.2 IPM2 Phase 2: Generating Longer Candidate Patterns from Shorter Ones 180
6.5.3 An DPM2 Application Example 182

6.6 Understanding The Extracted Patterns................... 184
6.7 Evaluation 184

6.7.1 A Case Study of Interaction Pattern Mining in the Traces of LOCIS 185
6.7.1.1 The First Run........................ 185
6.7.1.2 The Second Run 187
6.7.1.3 The Third and Fourth Runs.............. 188
6.7.1.4 The Final Results......................... 189

6.7.2 A Comparison between IPM and IPM2 190
6.7.2.1 Legacy System Trace Generator (LSTG)............. 190
6.12.2 Experiment Details 191

6.8 Discussion 197

Chapter Seven: Summary, Conclusions And Future Work................ 200
7.1 Summary 200

7.1.1 Trace Recording............... 201
7.1.2 Behavior Modeling 202
7.1.3 Usage Pattern Mining... 204

7.2 Contributions. 204
7.2.1 Engineering a Feature Suite for Characterizing GUI screen Snapshots.. 205
7.2.2 An Intelligent Method for Modeling the Behavior of Legacy GUIs 205
7.2.3 Two Novel Sequential Pattern Mining Algorithms 206
7.2.4 A Prototype Tool, LeNDI 206
7.2.5 The Strengths of Interaction Reverse Engineering....................... 206

7.3 Future W ork 208
7.3.1 Other Applications of CelLEST Legacy CUI Reverse Engineering Method 208
7.3.2 Reverse Reengineering Different Types of Interaction209

References ... 212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 The Default Keyword and Pattern Lists of LeNDI.

4.2 LeNDFs Default Special Characters Set.
4.3 A Summary of the Discrete Feature Suite of LeNDI.

4.4 A Summary of the Binary Feature Suite of LeNDI.
5.1 The Reference Partition Cardinality of the Data Set of Experiment 5.1.

5.2 The Features Used for Setting up The Single-path Incremental Clustering
Algorithm for LOCIS Experiment 5.1.

5.3 The Results of Experiment 5.1.
5.4 The Results of Top-down Clustering of The LOCIS Trace of Experiment 5.1.
5.5 The Authoritative Partition of the Data Set Used in Experiment 5.2.

5.6 The Results of Experiment 5.2.
5.7 The Features Used for Setting up The Single-path Incremental Clustering

Algorithm for MIRLYN Experiment 5.3.

5.8 Screen Descriptions and Cardinality for MIRLYN Experiment 5.3.
5.9 Some of The Transition Models Built by LeNDI for The MIRLYN Trace of

Experiment 5.3.
6.1 The Matrix ptList after IPM Phase 1 (Algorithm 6.1a) for The Example of

Subsection 6.5.3.
6.2 The Matrix ptList after Iteration 1 of IPM Phase 2 (Algorithm 6.1b) for IPM

Application Example of Subsection 6.5.3

6.3 The Matrix ptList after Iteration 2 of IPM Phase 2 (Algorithm 6.1b) for IPM
Application Example of Subsection 6.5.3.

6.4 All The Maximal Qualified Patterns in S for IPM Application Example of
Subsection 6.4.3

6.5 ptListVec after BPM2 Initial Phase (Algorithm 6.2a) for DPM2 Application
Example of Subsection 6.5.3.

6.6 All The Maximal Qualified Patterns in S for DPM2 Application Example of
Subsection 6.5.3.

6.7 LOCIS Screen Descriptions and Frequencies for The Interaction Pattern Mining
Case Study of Subsection 6.7.1.

6.8 The Qualified Maximal Patterns Discovered Using c (6,9,0,7) for The Interaction
Pattern mining Case Study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.9 The Qualified Maximal Patterns Discovered Using c (6,8,0,7) That Are Not i
Table 6.8 for The Interaction Pattern mining Case Study.

6.10 The Qualified Maximal Patterns Discovered Using c (7,10,1,7) for The
Interaction Pattern mining Case Study.

6.11 The Qualified Maximal Patterns Discovered Using c (7,12,2,7) for The
Interaction Pattern mining Case Study.

6.12 The Accumulative Transition Matrix of LOCIS Traces of The Case Study of
Subsection 6.7.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 An Example Legacy Screen (upper), Refaced On-the-fly (middle) and Refaced
Using Screen Customization (lower).

3.1 CelLEST User Interface Reengineering Process.
4.1 Different Types of Legacy Screens Ordered from The Most Static (upper) to The

Most Dynamic (lower).
4.2 An Example Legacy Screen Snapshot (1) with Features 1-1, 1-2,1-3, 1-4 and 5-1

Extracted.
4.3 An Example Legacy Screen Snapshot (2) with Features 1-1,1-2,1-3,1-4 and 5-1

Extracted.
4.4 An Example Legacy Screen Snapshot (3) with Features 1-1,1-2,1-3, 1-4 and 5-1

Extracted.
4.5 An Example Legacy Screen Snapshot (4) with Features 1-1,1-2,1-3,1-4 and 5-1

Extracted.
4.6 An Example Legacy Screen Snapshot (5) with Features 1-1, 1-2,1-3,1-4 and 5-1

Extracted.
4.7 An Example Legacy Screen Snapshot (6) with Features 1-1, 1-2,1-3,1-4 and 5-1

Extracted.
4.8 An Example Legacy Screen Snapshot (7) (upper). The Patterns Imposed on The

Snapshot by T and ’.’Characters (lower).
4.9 An Example Legacy Screen Snapshot (8) (upper). The Patterns Imposed on The

Snapshot by T and ’.’ Characters (lower).
4.10 An Example Legacy Screen Snapshot (9) with Features 6-1, 6-2, 6-3, 6-4 and 6-5

Extracted.
4.11 The Identified Words on a Part of a Legacy Screen Snapshot.
4.12 Portions of The Identified Blocks on a Legacy Screen Snapshot.

4.13 A Single- Row Record Table.
4.14 A Multiple-Row Record Table.

4.15 Embedded Thin Blocks
4.16 Two Cases where Step 4.g in Algorithm 4.6c Is Skipped (Left) and Applied

(Right). Gray Words Have 1 or No Adjacent Words from below and above.

4.17 An Example Application of Algorithms 4.6b and 4.6c.

4.18 An Example Application of Algorithm 4.6d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.19 An Example Legacy Screen Snapshot (10), Its Vertical Projection and Profile of
Its Numerical Content and The Detected List Information Strip (Gray).

4.20 An Example Legacy Screen Snapshot (11) with Features 7-1 and 7-2 Extracted.

4.21 An Example Legacy Screen Snapshot (12) with Features 7-1 and 7-2 Extracted.

4.22 An Example Legacy Screen Snapshot (13) with Features 7-1 and 7-2 Extracted.

4.23 An Example Legacy Screen Snapshot (14) with Features 7-1 and 7-2 Extracted.

4.24 An Example Legacy Screen Snapshot (15) with Features 7-1 and 7-2 Extracted.

4.25 An Example Legacy Screen Snapshot (16) with Features 7-1 and 7-2 Extracted.
4.26 LeNDFs Feature Extractor User Interface.

4.27 LeNDFs Feature Viewer User Interface.-

5.1 An Example Trace of User Interaction with the Library of Congress Information
System (LOCIS) and the Corresponding State-Transition Model.

5.2 An Example Decision Tree Produced by the Top-down Unsupervised Clustering
Algorithm 5.2.

5.3 QandA Cluster Review User Interface.
5.4 QandA Snapshots View User Interface.

5.5 A Mojo Plus Example with a Derived Partition (left), a Reference Partition
(middle) and The MoJo Plus Steps to Transform The First to The Second.

5.6 A Grammar for Describing Transitions in Legacy Systems GUIs.

5.7 An Example (1) of Transition Modeling in a Command-driven System.
5.8 An Example (2) of Transition Modeling in a Command-driven System.

5.9 The MoJoPlus Operations Needed to Fix the Clustering of The LOCIS Trace
Using Top-down Clustering, in Experiment 5.1.

5.10 The Signature and Some Snapshots of Cluster 4 of Experiment 5.3.

5.11 The Signature and Some Snapshots of Cluster 5 of Experiment 5.3.

5.12 The Signature and Some Snapshots of Cluster 6 of Experiment 5.3.

6.1 An Example Trace of User Interaction with the Library of Congress Information
System (LOCIS) with Multiple Executions of the Same Task.

6.2 Similar Navigation Subsequences of The LOCIS Trace of Figure 6.1(a) and The
Corresponding Interaction Pattern Augmented with Action Locations.

6.3 Preprocessing Interaction Traces.

6.4 The Application of IPM2 Phase 2 (Algorithm 6.2b) for IPM2 Application
Example of Subsection 6.5.3.

6.5 A Diagrammatic Representation of The Pattern 4+-5-6+-7+-8+-[9+]-10,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Corresponding to The Information Retrieval Task of Figure l.a.

6.6 A Comparison of Memory and Time Requirements of IPM and BPM2 in The
Experiment of Subsection 6.7.2 with c\ - (6,0.5%, 0,0).

6.7 A Comparison of Memory and Time Requirements of IPM and EPM2 in The
Experiment of Subsection 6.7.2 with cj - (7, 0.5%, 1, 0).

6.8 A Comparison of Memory and Time Requirements of IPM and BPM2 in The
Experiment of Subsection 6.7.2 with C3 = (7, 0.5%, 2, 0).

6.9 A Use Case Model Representing The Interaction Pattern of Figure 6.2(b).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter One

Introduction

“By the time you will finish your thesis, the systems, tools and/or prototypes that you have

developed will be legacy systems and you will need to reverse engineer them in order to

understand, migrate and/or reengineer them. ”

Anonymous

1.1 Background
Over years of development and investment, business software systems, such as bank

finance systems, customer relationship management (CRM) systems and airline

reservation systems, grew in size and value. They contain the specifications for diverse

business policies and corporate decisions and constitute some of the most important

industrial assets for many companies [LBS94]. Corporations have invested substantially

in developing these mainframe-based systems. They have almost spent as much to

develop integrated reliable database systems. In the recent past, they invested even more

money in making their systems Y2K and Euro compliant. [SneOO]

Many such systems were developed using the technology of the 1970s to mid-1980s.

They have been modified many times by different programmers. As a result, they have

become very complex and difficult to understand, maintain, renovate and/or reengineer

[LBS94]. Such systems are referred to in the literature as “legacy systems”. The Free

Online Dictionary of Computing [FOLD96J defines a legacy system as:

Definition 1.1__

“A computer system or application program which continues to be used because of the

prohibitive cost of replacing or redesigning it and despite its poor competitiveness and

compatibility with modem equivalents. The implication is that the system is large,

monolithic and difficult to modify. ”

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This definition includes hardware and software systems and is neither restricted to

mainframe-based systems nor to a specific programming language or platform. Gold

[Go!d98] expands the definition of a legacy system to include not just the hardware and

software but also the environment, the people, the procedures, etc., surrounding the

system. He states:

Definition 1.2

| “A legacy system is a socio-technical system containing legacy software”____________

This is because when a critical software system ages, not only understanding and

modifying the system becomes hard, but also changing and modifying the surrounding

environment, especially the people, becomes hard too. Bergey et al. [BSTWW99]

consider resistance to change and the growth of a culture dependent on maintaining the

status quo plus inadequate training programs as the third reason for failure of

reengineering projects. This thesis adopts the first definition, but it is only concerned with

software systems not hardware.

In return for the effort and investment spent, mainframe-based legacy systems have

demonstrated robustness, reliability and scalability in providing business-critical

processing needs. This is especially true where the application concerned involves huge

numbers of transactions and many simultaneous users, as is the case with banking or

airline reservation systems. Most important, however, is that many of the business

processes of companies are encapsulated in the logic of legacy applications; they are, in

effect, the repositories of hard-won corporate experience and knowledge, that may not be

available in other formats [AttOO]. Considering this, legacy systems will remain the

Information Technology (IT) backbone for many corporations, for many years to come.

However, due to their age, many legacy systems suffer from some or all of the

following aging disadvantages [Par94]:

1. Performance and functionality degradation.

2. Lack of coding standards, proper documentation and version control.

3. Incremental and patch updates to the code and design that often violate the original

software design concepts. These “ignorant surgeries”, as Pamas [Par94] calls them,

result in degradation of the maintainability and comprehensibility of the software.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Pollution [VisOl], which is the accumulation of duplicate and dead code (that is either

never compiled or never executed), useless components (e.g., reports that no user

needs anymore), and dead data.

5. A general lack of understanding of the internal workings of the system and how its

functions relate to its modules and data.

6. Significant resistance to modification and evolution, not only due to technical

difficulties but also due to socio-political factors.

7. Character-based user interfaces (GUIs), which are not competitive with the superior

alternatives offered by today’s technology.

8. Great difficulty in integrating with other systems and the World-Wide-Web (WWW).

Because of these symptoms, many organizations are migrating, renovating or

reengineering their legacy systems to achieve one or more of the following objectives:

1. Migrating the whole application to a newer, faster, and non-proprietary platform.

2. Enhancing system comprehensibility and maintainability, i.e., putting it under control.

3. Adding new substantial or minor functionality.

4. Integrating the legacy application with other applications, on legacy or new..

platforms.

5. Migrating the application user interface (UI) to a new platform.

6. Enabling access to the system through the WWW.

Depending on the goal of the reengineering effort and the current status of the legacy

system, reengineering activities can vary widely. They range from rebuilding the system

and using the legacy system as an input for the analysis and design phase, to wrapping

the legacy system to fit it in a new computing environment, e.g., graphical user interfaces

(GUIs), CORBA, client/server architectures, or the WWW.

1.2 Motivation
When the objective of a legacy system reengineering effort is migrating its UI to a

new platform, enabling access to the system through the Web (Web-enabling) or

lightweight front-end integration with other systems, then the reengineering effort can

focus on enhancing the UI of the legacy system or developing a new UI. This is

especially applicable, when the prime aging symptoms of the legacy systems are the last

two of the eight mentioned above, or in other words, the legacy system is under control

3

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and exhibits satisfactory performance but its main weakness is its poor UI and its

inability to be integrated with other systems. This occurs due to the legacy UI falling

short in three areas: user access, usability and navigation at different levels [BB01]:

1. User Access. Most legacy systems are proprietary monolithic systems that were not

designed with integration with the WWW or other technologies in mind. Usually they

do not have clear separation between their presentation, logic and data layers, which

makes opening a legacy system for access via a new platform or for front-end

integration with other systems a hard task. The presentation layer refers to the source

code that controls the UI. The logic layer refers to the application code that provides

the main functionality. The data layer refers to the container of the application data

and the code used to access it.

2. Usability. The old-looking “dumb” terminals, e.g., IBM 3270 and VT series, were

quite adequate for their time in spite of being quite limited in their display

capabilities. Legacy character-based UIs are non-intuitive and hard to learn. Their UIs

dissatisfy today’s users, who are used to graphical user interfaces and Web interfaces.

Additionally, the learning curve of new users is slow and the training costs are high.

3. Navigation. Due to their limited presentation capabilities, legacy character-based UIs

offer tedious navigation patterns to accomplish user tasks. For example, flipping a

multi-page report may require using function keys or issuing some commands to

move forward and backward between the many screens containing the report. Instead,

in a GUI environment, a scroll bar enables instant access to any page of the report

with a mouse click.

So, in many cases it is unnecessary, hard, expensive, risky and/or impossible to

change the code of a legacy system and design, yet, it is desired to reengineer its UI. The

goal of this reengineering is to open the system to the Web, Wireless Access Protocol

(WAP) or other platforms, to integrate its front-end with those of other systems and/or to

slightly extend its functionality. For these cases, there is a need for lightweight non-

invasive UI reengineering methods. These methods need to be lightweight in the sense

that they are cost-effective, semi-automated and relatively easy to deploy because they

require moderate skills and low technology. And they are non-invasive in the sense that

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

they almost do not need alteration of the legacy system. Industry has offered some

primitive labor-intensive solutions to this problem.

The CelLEST project for UI reengineering [SES02, SEIS03] is a collaborative project

between the Software Engineering Research Lab. at University of Alberta and an

industrial partner; Celcorp [Cel]. The goal of CelLEST was to develop an intelligent

semi-automated lightweight non-invasive method and prototype tools for legacy system

GUI reengineering, Web-enabling and front-end integration. The method developed in

this project takes as input recorded traces of interaction between the legacy system and its

users through the legacy GUI (interaction traces) and does not require modifications to

the legacy code. We call this approach to UI reengineering “interaction reengineering” as

opposed to “code reengineering”. The CelLEST interaction-reengineering method

consists of two phases: a reverse engineering phase and a forward engineering phase. The

focus of this thesis is the reverse engineering phase. It describes the novel legacy CUI

reverse engineering method developed, during and after the CelLEST project. Since this

method takes interaction traces as its only input, in effect, it adopts an “interaction

reverse engineering” approach as opposed to “code reverse engineering”.

1.3 The CelLEST Project
To achieve its goal of developing an intelligent semi-automated lightweight non-

invasive method for CUI reengineering, CelLEST employs a mixture of document

analysis, clustering, example-based modeling of user actions, visualization, data mining,

task model inference, XML wrapping and automated GUI layout. The outcome is a novel

CUI reengineering method that utilizes interaction traces and does not change the legacy

system code or structure. The CelLEST method, resulting from the project, supersedes

the current manual, labor intensive practices of legacy character-based UI modeling and

reengineering, which need intensive human input, intuition and experience.

When invasive solutions are unnecessary, undesirable, too hard, impossible, risky

and/or cost-ineffective and code and architecture modification is not mandatory for front-

end reengineering of a legacy system, the CelLEST method is a very suitable solution.

Since it is important to understand CelLEST method to understand the context of this

thesis, the method is Introduced briefly in this section and is described in more detail in

chapters.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3.1 Two CelLEST Reengineering Scenarios
To fully understand and appreciate the motivation behind the CelLEST UI

reengineering project, this subsection describes two typical legacy system CUI

reengineering scenarios that are most suitable for the application of CelLEST method.

These scenarios faithfully represent real cases encountered by practitioners

1.3.1.1 Migrating a Students Information System (SIS) to the WWW

In this scenario, an educational institute developed its student information system

(SIS) in the mid-1980s. SIS was written in COBOL and NATURAL (a 4GL) running on

the institute’s IBM Mainframe platform. SIS included modules like course catalog,

schedule of classes, admissions, student biographic data, registration, and academic

history. SIS interacts with the Account Receivable Information System, which handles

student payments. It also interfaces with a phone registration system. The primary users

of SIS are the employees of the Registrar’s Office and the students who can only access

the registration module using the phone registration system. Additionally, SIS provides

system-wide managerial and student information on student enrollment and activity to the

administrators to assist them in planning and decision-making on an institution-wide

basis. The status quo of the system was quite satisfactory for the management. Its

performance, reliability and scalability to high workload at peak times of the year were

very good. Additionally, the employees were well trained on the existing character-based

UI. System maintainers were familiar with its design and code.

In the late 1990s, the institute wanted to use the Internet to allow students access to

student services directly rather than having to go through administrators. Therefore,

students could have self-service access to information on enrollment, timetables, grades,

and various financial accounts via the WWW. This would free the institute’s

administrative staff from repetitive and routine tasks and significantly reduce

administrative costs.

A UI reengineering solution was needed to open the system to Internet access and to

provide an easier alternative to the current character-based UI, which is not easy to use

for the general student population. Only tasks relevant to students would be opened to the

students. Management ruled out any invasive solution that would involve modifying the

existing system due to the cost and risks involved. They also ruled out any solution that

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

would involve duplicating the existing system application logic or data, to avoid possible

inconsistencies and extra maintenance overhead. For such a scenario, the CelLEST

method is an excellent solution. It can leverage the existing GUI to a Web UI without

modifying the existing system. Semi-automatically, CelLEST can generate Web-based

wrappers of the desired tasks. CelLEST is an incremental solution that can be

implemented and tested gradually by wrapping a small selected number of student tasks

and trying them, then wrapping and Web-enabling more functionality, etc.

13.1.2 Integrating the Front-enis of Two Insurance Systems

In this scenario, an insurance company acquired another insurance company. Both

companies had similar information systems for claims. The performance of each system

was satisfactory when they were under different ownership. After the merger, the new

owner did not want its employees to use two independent systems, which incurs

additional training costs and productivity reduction due to effort duplication and the time

consumed in switching between systems. Merging both systems via reengineering or

transferring the data of one system to the other was infeasible due to the technical

difficulties, prohibitive cost and risk involved. A suitable solution for integration in this -

case would be CelLEST method. It can provide lightweight front-end integration under a

unified task-centered GUI that abstracts both systems’ UIs. Additionally, it was required

to offer easy access of both systems via an extranet to lawyers who handle cases

involving insurance claims. A limited tailored version of the new GUI can be offered to

lawyers, which offers specific lawyer-oriented tasks. Since these lawyer-oriented tasks

were not required at the time of system development, they were not directly achievable

through the existing UIs but the bits and pieces needed for each task were scattered in the

character-based UIs. The tailored GUI accomplishes these tasks by taking the necessary

inputs from the lawyer in a format that Is most natural for him/her and driving the

necessary navigation in the two legacy UIs to reach the right screens to gather the needed

outputs. Then, it reformats these outputs in the format most natural for lawyers and

presents them via the target GUI platform.

13.2 The CelLEST Process
Building on the two example scenarios given above, let us now discuss the

methodological assumptions of the CelLEST method:

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The current performance of the legacy system subject to reengineering is satisfactory

and it will continue to be used on its current platform.

2. It is required to open the system for access through a new platform, e.g., the WWW

or WAP devices or window-based systems, or to integrate the front-end of the legacy

system with other applications on the same or other platforms.

3. It is required to take advantage of the presentation and navigation capabilities of the

target platform. So, each user task will be encapsulated, with all the input, output and

navigation steps required to accomplish it, in a suitable task-oriented representation

on the target platform, e.g., a number of Web-forms. In other words, the new UI

should be “task-centered”.

4. No major functionality change is required. However, minor functionality may be

added if it is achievable based on the data presented on the original interface.

5. It is undesirable or impossible to change the legacy system code and architecture. The

main input to the UI reengineering process will be recorded traces of interaction

between the legacy system UI and its users, while they are doing their regular tasks.

The CelLEST process is a two-phase process. The first is a reverse engineering phase, -

which is the focus of this thesis [SEKSM99, EISSM01, SEIS03, SES02, ESS02b

ESS02c]. The algorithms and methods developed to support the reverse engineering

phase and their evaluation are presented in details in this thesis. They are implemented in

a prototype tool called the Legacy Navigation Domain Identifier (LeNDI). The second is

a forward engineering phase, which was conducted by other members of CelLEST

research team [KSM99, KapOl, SK02], The algorithms and methods developed to

support the forward engineering phase are implemented in a prototype tool called

Mathaino.

1.3.2.1 CelLEST Character-base User Interface Reverse Engineering

First, LeNDI is used to record the dialogs that take place between the legacy system

and its users while they are doing their tasks in the form of interaction traces. An

interaction trace is a sequence of legacy screen snapshots interleaved with the user

actions done to cause the transitions between these snapshots. A user action -is a sequence

of keystrokes. Throughout this thesis, the term “screen” is used to refer to a GUI

behavioral state manifested by a matrix of characters displayed to the user on her/his

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

terminal, which allows her/him to do one of a limited set of actions. The term “snapshot”

is used to refer to an instance of a screen. One can think of screens and snapshots as

classes and objects in object-oriented terms.

Second, for every snapshot recorded in the interaction traces, LeNDI extracts a set of

features and employs interactive clustering, classifier induction and user action modeling

methods to build a behavioral model of the legacy GUI, called the state-transition graph.

The nodes of this model correspond to the GUI behavioral states, i.e., screens and the

edges correspond to the user actions causing transitions among the nodes. LeNDI utilizes

two clustering methods to group similar snapshots together as one legacy GUI screen

modeled by one node on the graph. Then, LeNDI infers a predicate that identifies the

snapshots of the screen. LeNDI uses the user actions recorded in the interaction traces to

model the behavior of the legacy screens as the arcs of the directed graph. The state-

transition graph is a main input to the forward engineering phase of CelLEST. It is used

to classify each individual snapshot forwarded by the legacy system to the user while s/he

is interacting with it online.

Third, LeNDI uses data-mining methods to discover patterns of frequent segments o f..

interaction between the legacy system and its users which correspond to popular usage

scenarios of the system, or in other words the most used services of the system. We call

such patterns “interaction patterns”. The instances of an interaction pattern may have

some noise due to spurious navigation of the legacy GUI. LeNDI interaction pattern

mining algorithms can tolerate a preset level of noise and still discover patterns with this

level of noise. An interactive review and revision process is associated with the behavior

modeling and pattern mining processes. This is to give the user control over these

processes on one hand, and to get his feedback to verify the correctness of the models and

the usefulness of the patterns produced, on the other hand.

13.2.2 CelLEST Character-base User Interface Forward Engineering and
Visualization

In the forward engineering phase of CelLEST, Mathaino is used to augment each

interaction pattern discovered with the semantic information needed to build a model of

the task. Then, Mathaino is used to construct a declarative user-interface specification for

the modeled task. This specification is also executable by a suite of special-purpose

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

platform-specific components. Thus, the new user-interface becomes a front-end for the

original legacy user-interface, available in multiple new platforms, e.g., XHTML-enabled

browsers or WAP devices. The new interface executes a task in the underlying legacy

application using the state-transition model of the application’s CUI, a model of the task,

and an API to the data-transfer protocol used by the legacy system.

In addition to LeNDI and Mathaino, the CelLEST environment includes the QandA

(Questions AND Answers) tool [Vij02], which supports the visualization, verification

and possibly revision of all the intermediate products of the CelLEST method by the

analyst.

13.3 Advantages of the CelLEST Process
The CelLEST method is a significant contribution to the field of CUI reengineering.

This is because it has a number of advantages:

1. It is a code-independent non-invasive CUI reengineering method. It utilizes easy to

collect input, i.e., interaction traces. So, it is very suitable when code modification is

undesirable, expensive, risky or impossible. The limitation of this method is that it

can support only minor functionality extensions.

2. CelLEST is lightweight in terms of the skills it assumes. It needs moderate analysis

skills and an understanding of the system under analysis as opposed to the high

software development skills and expert understanding of the legacy system that

current practices demand. It is lightweight in terms of the cost and time. Therefore, it

can potentially bring substantial time and cost reduction and quality improvement to

current state-of-the-art industry practices.

3. CelLEST is an incremental approach. It can be applied gradually to the exiting legacy

CUI. Thus, a phased reengineering can take place with some services of legacy

system CUI reengineered in every phase, according to the time and budget available.

4. CelLEST follows a task-centered approach to reengineering the way the legacy

system users interact with it. It encapsulates interesting behavioral segments within

new UI front-ends on different platforms. It does not replicate the legacy system-user

interaction with different widgets in new platforms.

5. CelLEST supports simultaneous migration to multiple platforms. It does CUI reverse

and forward engineering once and generates abstract specifications of the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reengineered task-centered UI. A new UI can be generated multiple times on

different platforms using the abstract UI specifications.

6. CelLEST emerged from collaboration with industry on one hand and on the other

hand, it was developed and evaluated in an academic setup, with very encouraging

results. This mixture of research and industry gives CelLEST the potential to impact

current CUI reengineering practices on solid scientific bases.

1.4 Thesis Statement
This thesis makes a case for automated CUI interaction reverse engineering. It takes

the position that recorded traces of interaction between the users of a legacy system with

its character-based user interface can be sufficient input for lightweight non-invasive

reengineering of the user interface. It demonstrates that reverse engineering these

interaction traces can provide the CUI behavioral model required for the reengineering

process and shows how the elements of this model can be inferred from these traces.

Additionally, it demonstrates that patterns of user activities with the legacy CUI can be

discovered from the interaction traces, and used as a basis for identifying and modeling

the system services that are candidate for reengineering. Finally, this thesis demonstrates,

via case studies, the practicality, efficiency and usefulness of the automated CUI

interaction reverse engineering process, and hence, proves its potential impact on

advancing the current manual practices for lightweight CUI reengineering and Web-

enabling.

1.5 Thesis Contributions
This thesis establishes a novel method for CUI reverse engineering that adopts

interaction reverse engineering as the means to build a behavioral model for the legacy

CUI and to capture the interesting user interaction patterns with the system. The

behavioral model and the interaction patterns are used for CUI reengineering. The

specific contributions of this thesis are:

1. Engineering a suite of features for characterizing CUI screen snapshots

[SEKSM99, SEIS03]. These features are extracted from analysis of the snapshots

with a set of tailored heuristics and document analysis methods. This analysis extracts

features from any special information discovered at the periphery of the snapshot,

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from the hidden snapshot information coming with the outbound data streams

received from the host, and from the snapshot layout and content distribution. Some

of these features are specific to IBM 3270 data streams, but most of them are

applicable to other block-mode data transfer protocols, which push one screen at a

time to the user (as opposed to scroll-mode data transfer protocols, which interact

with the user line by line).

2. An intelligent semi-automated method for modeling the behavior of legacy GUIs

[EISSM01, SEIS03]. This method is a significant advance to the research and

practice of CUI reengineering. It consists of the following steps:

• Recording traces of interaction between the legacy system CUI and its users.

• Extracting a feature vector for every recorded snapshot.

• Clustering similar snapshots together, based on their feature vectors similarity.

• Inferring predicates for each cluster (i.e., each distinct CUI state) via classifier

induction.

• Example-based learning of the user actions that cause transitions from one state to

another.

• Mining the interaction traces for patterns of user interaction with the legacy CUI.

3. Two novel sequential pattern mining algorithms [ESS02b, ESS02c]. BPM is a

breadth-first algorithm and IPM2 is a depth-first algorithm. Although, both

algorithms are designed specifically to mine interaction traces for interaction patterns,

they can mine sequential data in general for sequential patterns with noise.

4. A prototype tool for interaction-based CUI reverse engineering, called LeNDI

[SES02, SEIS03]. LeNDI implements all the methods and algorithms described in

this thesis. LeNDI was used to evaluate the CUI reverse-engineering method with

case studies from real legacy systems, with very promising results.

1.6 Thesis Organization
The rest of this thesis is organized as follows:

• Chapter 2, Related Work, introduces the related research areas. It covers four areas of

research that represent the broader areas of this thesis and the state-of-the-art in

research and industry of UI reengineering and Web-enabling.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Chapter 3, CelLEST User Interface Reengineering, is a detailed description of the

CelLEST method for CUI reengineering at large. It helps the reader understand the

context, in which, the research described in this dissertation was conducted.

• Chapter 4, Feature Extraction For Legacy Screen Snapshots, describes the feature

suite engineered in LeNDI for characterizing the snapshots of CUI screens. It details

the process of extracting a feature vector for every recorded snapshot and the

algorithms used in it.

• Chapter 5, Legacy User Interface Behavior Modeling, describes the process and

algorithms used to identify the nodes and arcs of the state-transition model of a legacy

CUI, and consequently build it. Additionally, it discusses the experiments and case

studies conducted to evaluate this process and the associated algorithms.

® Chapter 6, Mining Interaction Traces for Patterns o f Frequent User Tasks, describes

the process and the two novel algorithms (DPM and IPM2) used to mine the

interaction traces for interaction patterns. It provides evaluation for this process and

comparison of the performance of IPM and DPM2.

• Chapter 7, Summary, Conclusions and Future Work, presents a summary of this

dissertation, draws some conclusion and points to future work directions.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Two

Related Work

This chapter describes four areas of research related to the research described in this

thesis. The diversity of these areas reflects the diversity of the methods and algorithms

used in this research. The first area is UI reengineering and reverse engineering. The

second area is driven by practice and industry more than by academia, which is Web-

enabling legacy systems. The third area is software requirements recovery from available

legacy resources. The forth area is data mining o f sequential data to discover sequential

patterns in long sequences of data. Each of the four sections of this chapter is dedicated to

one of these areas. Each section starts by a definition of the research area, followed by the

motivation behind studying this area and by a description of representative, state-of-the-

art work. Finally, it concludes with comments on how this work is similar to or different

from the work in this thesis.

Section 2.1 is a review of the work in the area of UI reengineering and reverse

engineering. The CelLEST project is about UI reengineering, but is different than other

work in this area in that it adopts a lightweight “don't touch code” approach for UI

reengineering. LeNDI adopts a novel UI reverse reengineering method using interaction

traces, designed to suit the interaction reengineering approach of CelLEST

Section 2.2 describes the state-of-the-art industrial practices of Web-enabling legacy

systems, by uncovering and accessing the logic, data or presentation layers of the legacy

system. In particular it focuses on the current manual practices of reverse engineering

legacy GUIs using presentation layer access [AkeOO, AttOO, CriOl] and describes how

LeNDI supersedes and advances these manual practices by providing a coherent

automated process that is more efficient and less susceptible to error. The area of Web-

enabling legacy systems is described in more detail since it is the most related area to this

work. In addition, since a lot of Web-enabling work is coming from industry not

academia, detailed discussion of the evolution of this area, that relates different practices

to each other, was needed.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 2.3 describes the related work in the area of software-requirements recovery. -

It describes the different methods used or proposed in literature for recovering the

functional requirements or specifications of software -systems, using different inputs.

LeNDI employs a novel automated method for recapturing models of the current uses of

a legacy system as its de facto functional requirements. LeNDI’s method is easy, practical

and does not assume the availability of system code or documentation. While the

recovered models are needed for the CelLEST forward engineering phase, they can be

translated to use case models and utilized in different contexts.

Section 2.4 describes the related problems and significant work in the area of

sequential pattern mining, inspired by data mining and bioinformatics applications. It

explains the problem of interaction pattern mining in LeNDI, which is mining the traces

of interaction with a legacy system for interaction patterns. It describes how this problem

is different from other problems and hence, why LeNDI needs a new algorithm to solve

it. This led to developing two novel algorithms for interaction pattern mining, Interaction

Pattern Miner (IPM) and Interaction Pattern Miner 2 (IPM2), which are described in

details in chapter 6.

2.1 User Interface Reengineering and Reverse Engineering
UI Reengineering is the process of recreating an existing UI, either on the same or a

different platform. In some cases, UI reengineering is done as part of legacy system

migration to a new platform. In other cases, UI reengineering is done for itself to reface

an existing legacy application with or without minimal changes to the system.

UI Reengineering is a two-step process. The first is a reverse engineering phase,

during which an abstract representation of the legacy UI is created. The second is a

forward engineering phase, during which, a new or modified implementation of the

legacy UI is developed, usually on a new platform. Reverse engineering an existing UI

can be desired in order to better understand an existing system. In such cases, the

objective is to produce an abstract representation of the legacy UI to enhance the

understandability and maintainability of the legacy system, especially its presentation

layer. LeNDI is a CUI reverse engineering tool that uses, as input, recorded traces of

interaction with the legacy system. Mathaino is a CUI forward engineering tool that uses

the models developed by LeNDI to develop new GUIs, Web-interfaces or WAP-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interfaces for legacy systems. In developing LeNDI, the significant work on UI

reengineering and reverse engineering was reviewed as follows shortly. None of the work

described adopts the novel approach of Interaction reverse engineering employed in

LeNDI. LeNDI avoids code analysis and takes advantage of the relatively easy to collect

interaction traces to deduce the legacy UI behavior models and interaction patterns

needed in CelLEST.

Reengineering UIs of legacy systems can have different variants:

® UI full or partial redesign and re-implementation on the same platform [PRSV97J.

• GUI to GUI migration due to platform change [MRS94].

• Character-based UI (CUI) to GUI migration [AFMT95].

• GUI grafting onto a batch or command-line system [PA97, TS99, WJD01, SCT02].

• Wrapping a legacy UI with a Web or WAP wrapper [Hor98, TLRH98, BFM02].

An example of the first category is the work of Plaisant et al. [PRSV97]. They

employed different techniques to evaluate existing UIs for six different systems. These

techniques include documentation study, observing users, expert review of the current UI,

questionnaires and discussions with users and managers. For each system, they identified

the main problems in its UI, if any, and the opportunities of improvement in user

documentation, system access, data display, data entry procedures, consistency and

error/system messages. These findings were used to partially re-implement the examined

UIs on the same platform to improve user performance and satisfaction.

An example of the second category is the work of Moore et al. [MRS94]. Their

approach relies on a knowledge-based model that maps the functionality of the widgets in

the source platform UI toolkit to those of the target platform UI toolkit. Given a particular

migration problem, the software engineer identifies the pieces of code in the system

implementing the UI. Then, based on the knowledge-based model, a “wizard” guides the

software engineer in selecting appropriate widgets in the target platform toolkit that can

together deliver the interactive behavior of the original code.

A similar approach was used to address the third category [AFMT95]. The interesting

difference is that since there is no source widget toolkit, the reverse engineering process

hypothesizes widgets from the code.

Grafting a GUI on top of a relatively non-interactive set of batch or command-line

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programs (CLPs), whose functionality is accessible only through command-line inputs, is

simpler and does not involve a complex reverse engineering problem. The GUI can be

developed independently, with the aid of a GUI-building tool that uses an abstract

representation of the underlying applications. Then, the user-initiated events on the GUI

are programmed to invoke procedures in the underlying application programs [PA97], To

enable a degree of freedom in utilizing the underlying programs and formatting their

outputs, some source code reverse engineering might be required in the beginning to

identify internal variables and data structures of interest in order to expose some of them

in the new UI [TS99]. Moreover, to allow flexibility in output formatting or to integrate

with distributed object middleware, e.g., CORBA, a wrapper can be placed around the

command-line application to programmatically invoke its commands. Then, the wrapper

parses the generated output and returns a semantically useful result (an integer, an object,

etc.) that can be easily consumed by a calling program or a GUI object [WJDOlj.

Sorzano et al. [SCT02] present a model for CLP packages. The model includes a

command-line syntax specification, which is integrated into a higher-order 0 0 model

that can be directly translated into a graphical user interface. The object types (classes) in

this model are: package, group, program, command line, menu and argument, where a

package is a CLP application, a group is a subset of related programs in the package and

a menu here is a list of arguments. The authors described a language, Colimate (the

COmmand Line MATE) that implements this model. Using Colimate, a GUI description

can be written for legacy CLPs and then compiled and run with the help of an interface

generator that raises the needed windows, attends to user selections and finally launches

the desired processes.

Finally, work in the fifth category, i.e., wrapping with a web-enabled wrapper, is one

of few possible solutions to the broader problem of Web-enabling legacy systems, which

is discussed in the next section.

Dannelly [D95] presents a case where UI reverse engineering is an objective for

itself. He introduced methods for automatic analysis of the source code of X Window

System application programs and transforming it into an intermediary representation.

This representation is used for automatic production of two types of graphs. The first is

widget-instance trees, which are inferred from initialization code and represent the

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hierarchy of widgets created by this code. The second is dialog-state diagrams, which are

graphical representations of the behavior of X Window System based GUIs and represent

.the action routines associated with the different widgets created in the initialization code.

These graphs improve the system maintainers understanding of the legacy system UI and

ease their job.

Except from few examples, the majority of UI reengineering and reverse engineering

approaches adopt code analysis and understanding as the means for system modeling and

reverse engineering. However, the Ul-related code is only part of the system code that

has to be examined. Additionally, due to ageing symptoms mentioned earlier, it is hard

and expensive to analyze the legacy code. Even worse, in some cases the code is not even

available.

In such cases, system-user interaction can be an alternative source of information for

understanding the legacy system. It is a rich source of knowledge and a faithful

representation of how the system is currently being used. Hence, it is a good candidate

input for the UI reengineering process. Interaction reverse engineering in LeNDI is novel

and different than the work summarized above in that it uses this input instead of source -

code for producing the necessary abstractions and models for the consequent forward

engineering phase. This reengineering method does not alter or change the existing

legacy system code or structure. It relies on the almost-automated process of LeNDI to

infer most of the CUI behavior and task models it needs. As described in chapters 5 and

six. These models are useful beyond CelLEST and can be deployed in other contexts as

described in section 7.3.

2 2 Web-enabling Legacy Systems
Web-enabling legacy systems is the process of opening an existing legacy software

for access through the Internet, an extranet and/or an intranet to the public and/or to a

selected user-base of employees, customers and/or business partners. The work in this

area is mostly industry driven. It is motivated by the emergence of the Internet as a

medium for doing business, with new opportunities of business growth and cost

reduction. Using the Internet, especially the WWW, a company can reach out to more

customers worldwide via a simple, easy to use, inexpensive and very popular UI, namely

the web browser [BFM02]. Additionally, via their web sites, businesses can reduce the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cost of transactions and customer service by automating their transactions and moving the

effort of customer service to the customers themselves via online orders, quotations, etc.

Since somewhere between 60% and 80% of all corporate information reside on

mainframe-based legacy systems [AttOO], opening many of these systems for Web-access

may be essential for corporate Web-enabling strategies. A number of solutions to this

problem were developed mostly by industry, which may require reproducing legacy

business data and business processes in new formats and new presentations for old and

new audiences [LanOO]. These solutions complete one another in some situations, and

compete with one another in other situations. But, in practice a variety of Web-enabling

technologies may be used, even within the same corporation. This is due to the wide

variety of legacy and Web technologies available and the unique requirements of every

Web-enabling project. This section briefly describes these solutions and their advantages,

disadvantages and limitations. A legacy software application in general, consists of three

layers: the presentation layer, the program-logic layer and the data layer. A Web

application can access a legacy system via one or more of these layers, depending on the

available legacy and Web technologies and the status of the legacy system.

Increasingly, Web-enabling is becoming one of the main activities in the area of UI

reengineering. Web-enabling is also one of the main uses of the CelLEST method for

legacy CUI reengineering. Interaction reverse engineering in LeNDI is a significant

advance to the practice of modeling existing legacy GUIs for Web-enabling via

presentation access. It provides a coherent almost-automated process for modeling legacy

GUIs in preparation for Web-enabling that replaces the current manual error-prone time-

consuming practices.

2.2.1 Web-enabling via Data Access
In data access Web-enabling, a new Web application is developed to directly access

the legacy database and then perform the necessary processing on the retrieved data

before presenting it to the user via a web browser. The primary assumption is that, the

legacy application logic is trivial and can be easily duplicated in the Web application if

required or that new logic will be developed to process data different from the legacy

logic. The legacy data must be wrapped in order to be accessed using a different interface

or protocol than that for which the data was designed initially. This requires using data

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

access-middieware in the form of database gateways and bridges. A database gateway is

a software application that translates between two or more data-access protocols. There

.are a number of de facto industry standard database gateways. Open Database

Connectivity (ODBC) is Microsoft’s interface for accessing data in a heterogeneous

environment of relational and non-relational database management systems. The ODBC

API can be invoked inside Active Server Pages (ASP) or programs in C/C++, Perl, VB,

etc. Java Database Connectivity (JDBC) is an industry standard defined by Sun for

database-independent connectivity between Java applets or applications and a broad

range of SQL databases. The JDBC API can be invoked inside a Java program, applet or

servlet or a Java Server Page (JSP). ODMG is the standard of the Object Data

Management Group for persistent object storage. A bridge is a special gateway that

translates one standard protocol into another, e.g., JDBC-ODBC bridge. [CWSROO]

Web-enabling via data access is a simple, straightforward solution [AmbOO]. It can

provide multi-source legacy data integration to new applications [RMBOO]. It has some

considerable drawbacks. First, any important logic, e.g., business rules and data

validation, is bypassed and not utilized. This means that it has to be re-implemented in ~

the web application. This may cause duplication in program logic and high cost in both

development and maintenance. Second, it increases the data coupling between the legacy

and web applications [AmbOO, RMBOO]. This solution is most suitable for Web-enabling

legacy services with trivial logic, e.g., Web-enabling the catalog browsing services of a

legacy library system. It is also suitable, when new logic needs to be implemented to

process the data for Web-access, so, this logic can be implemented in the web application.

Data replication is another data access based Web-enabling method. In this case, part

of the central legacy database is duplicated on a web server for Web-access through a

client application. The legacy and server data repositories are coordinated with periodic

batch jobs. The major weakness of this approach is that it cannot handle real-time data,

making it inapplicable for applications such as customer service or sales activity.

2.2.2 Web-enabling via Logic Access
Web-enabling via application logic access relies on the availability of a mechanism to

access the business logic independent from the user interface related code. This can be

accomplished in different ways:

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Code Access. If the legacy business logic is implemented separately from the-

presentation logic, which is rarely the case, then theoretically, it is possible to insert a thin

control layer that accepts the data extracted from the HTML page and invokes the

appropriate subroutine from the legacy system. The business-logic subroutine processes

the request and gives back the results, which are then forwarded to the client [SneOO].

API Access. Packages like SAP, PeopleSoft, etc., offer APIs that can be accessed via

Java Native Interface (INI) or Common Gateway Interface (CGI) code. But, software

developed in-house rarely has a defined API, or at most it has a very limited function-

oriented (not 0 0) API. [AmbOO]

Distributed Object Technology (DOT) extends object technology to the net-centric

information systems of modem enterprises by using object middleware, e.g., OMG’s

CORBA and Microsoft COM+. The idea is to objectify (or objectize) the legacy system

by creating an OO interface to individual applications, common services and business

data that makes the legacy software look like objects. Then it can be accessed by other

applications across a network through the OO interface. [CWSROO, RMBOO, ZK99]

This is quite an invasive reengineering solution. The prime challenge is objectifying

the legacy system, i.e., analyzing, decomposition, and then translating the monolithic and

plain semantics of the usually procedural legacy system to the richly hierarchic and

structured semantics of an object-oriented system [CWSROO]. Several methods were

suggested to decompose legacy systems into objects, including cluster analysis, concept

analysis and hybrid methods [CCDD01, PZKM99], The amount of effort needed to

accomplish this task depends on the language, style and architecture used in developing

the legacy application.

Component wrapping is a natural extension to DOT. In contrast with objects,

components must conform to a component model. This constraint enables the component

framework to provide the component with quality services [CWSROO]. Enterprise

JavaBeans (EJB), from Sun Microsystems, is an example of server-side component

architecture for writing reusable business logic and portable enterprise applications. EJB

is the basis of Sun’s Java 2 Platform, Enterprise Edition (J2EE). EJB components are

written entirely in Java and run on any EJB compliant server. Each bean encapsulates a

piece of business logic. EJB servers provide system-level services such as transactions,

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

security, threading, state management, resource pooling, distributed naming, remote

invocation and persistence. [CWSROO, FOLD96]

EIBs can wrap exiting legacy system functions and offer them as operating system

and platform independent components. But like DOT, component wrapping faces the

challenge of componentifying the legacy application, which is separating the interface of

the legacy system into modules consisting of logical units or functions. [CWSROO]

Zou and Kontogiannis [ZK99] describe a combination of DOT and component

wrapping technology. First, they identify and generate a decomposition of the legacy

system into modules, and then analyze the interfaces of the selected legacy components

and store their signatures in a component repository using XML format. Second, they

generate the CORBA/IDL and CORBA wrappers from the component repository. Third,

they use EJBs to develop the application server, in order to integrate the CORBA

wrappers and to provide the services to the Web-based application. Finally, they define a

scripting language using XML, to enable the invocation of the legacy components.

2.2.3 Web-enabling via Presentation Access
Web-enabling via presentation access is non-invasive and almost risk-free. It covers a ~~

wide spectrum of solutions. At one end, there is Web-enabled emulation of legacy

systems. At the other end, there is screen mapping, which allows complex manipulations

of the legacy data streams used for communication between the legacy host and the

legacy terminals. Thus, it supports crafting reengineered front-ends for legacy CUIs that

take advantage of the potential of Web UIs. The common attribute of all these approaches

is that the legacy application is accessed via its presentation layer. This can be done

mostly by accessing its UI, represented by the legacy outbound and inbound data streams,

or in other cases by accessing its presentation description if one exists, e.g., IBM

Customer Information Control System (CICS) maps. In both cases, the access is limited

to the data and operations offered via the application presentation.

Web-enabling via presentation access started in its simple form of web emulation

(webulation [BB01]), shortly after the emergence of the Internet [TLRH98]. Gradually,

webulation evolved into the more advanced screen scraping technology that takes

advantage of the GUI capabilities of web browsers. The next generation was manual

screen mapping that allows remodeling the legacy UI or parts of it into a task-oriented

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Web-based GUI. The future trend, which was the subject of our research In CelLEST

project, is to automate screen mapping as much as possible, using Intelligent tools that

can learn about the legacy system on its own. Then, the knowledge learned is used to

build the models needed for screen mapping with minimal effort. Consequently, these

models are used to build a working Web-based GUI or abstract UI specifications that

would allow simultaneous migration to multiple platforms, e.g., the WWW and WAP

devices. Additionally, screen mapping is extended to allow the integration of multiple

legacy systems UIs together or with other Web applications under a unified Web front-

end. In the following we discuss the evolution and available solutions for Web-enabling

via presentation access.

2.2.3.1 Web Emulation (Webulation)

Web emulation, or webulation [BB01, BFM02, TLRH98], is a natural extension of

the long-practiced legacy host emulation to the Web. The new thing is that the emulator

runs in a web browser or a web server. Browser displays have the native look and feel of

the host legacy screens. Transactions work exactly the same as on a legacy host “green

screen” terminal, e.g., IBM 3270, by returning one screen display for one input request.

Full support for legacy function keys as well as user customization of colors and fonts are

usually available. Additionally, icons for function keys, copy/paste, macro recording, file

transfer and other basic operations are provided. [AkeOO, BFM02]

Webulation is a quick and cheap solution that does not need any Web application

development. It offers instant access to the legacy application to intranet and extranet

users who are already familiar with the legacy system. But, for the wide Web population

or new users, it does not make the legacy system any easier to use [BFM02].

Additionally, it does not allow tailored Web-access that targets different groups of users

with different limited sets of UI functionality. It addresses the accessibility issue, but it

does not improve the usability or navigability of the legacy system (see section 1.2). A

typical implementation of webulation is done using Java applets, downloaded into the

client web browser. The applet runs in the web browser Java runtime environment and

establishes a connection with a Telnet server that manages access to the host application.

[BFM02, TLRH00]

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B § j | i l | l f f
[S M A {

— — — .

oAssociation

| C le^^nnj

Figure 2.1. An Example Legacy Screen (upper), Refaced On-the-fly (middle) and
Refaced Using Screen Customization (lower)

2.23.2 Screen Scraping (Refacing)

Screen scraping (or refacing [AkeOO, AttOO]) takes webulation a step further by

offering an enhanced one-for-one browser presentation of the legacy UI. It reads the data

stream intended for the mainframe terminal, either via a client based terminal emulator

(Java applet) or a server based program, and turns it into a Web-based GUI presentation.

The translation of each legacy screen to a Web-based GUI can be done in two ways,

either on the fly or using a user defined customization for this screen. Figure 2.1 shows

both cases.

In the first case, a middleware is interleaved between the Web front-end and the

legacy software to act as a presentation translator by intercepting outbound legacy

displays and converting them “on-the-fly” into a Web front-end using whatever available

24

1 M- & .U ■ ■ ■ ;
: " ’ ’ Counter Services:
« ! ; :h ;; NewQientForm

U r > = ---------
.- = -----

' ‘ FtatNaro ;-------- -------

’ Province I AB H i

* Horns Phone | 780- 1

Buss.Phone 1 780- 1 Ext I I
’ Driver Lie.# | |

’ RaieType @ Regulardeo) Q Pius ($75)

* Required Hdds

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Information. In case of IBM 3270 for example, this is done by converting the unprotected

(input) fields Into edit control objects while turning the other fields Into labels. Some

advanced tools convert a set of predefined strings like FI,... F24 into buttons. Slight

improvement is achieved over webulation.

In the second case, an individual customization is created for every screen that

radically changes its appearance and takes advantage of the presentation potential of the

target platform, the Web in this case. Thus legacy screens appear “dressed up” in a Web-

based GUI, with widgets, lists, radio and push buttons, images, web links, check and

choice boxes, colors, fonts, etc. Additionally, one can reorder fields, change tab

sequence, and hide unnecessary data [AkeOO, BB01, BFM02]. Figure 2.1 shows a legacy

screen that is refaced on-the-fly (middle) with unprotected (input) fields turned into text

boxes and “confirm new member ? (Y/N)” message replaced by “Yes” and “No” buttons.

The same screen is refaced with individual customization that turned the original screen

fields into text boxes, lists, radio buttons, etc., wherever suitable. Also, a logo and a big

font title were added. A few buttons with additional functions were added.

Some screen scraping tools, e.g., IBM Screen Customizer [1BM99, BFM02], offer the

ability to create context-sensitive field help for host applications, to create a list of valid

values for a data field and/or to skip unnecessary screens during navigation. Also, they

allow customization templates to be applied, in order to speedup refacing a number of

legacy screens. Such a template would contain common elements to all Web-based

screens replacing the legacy screens, e.g., a logo, a web link, a customized tool bar, etc.

The operation of the applications is still “one-for-one”. That is, one browser request

equals one legacy screen display [AkeOO].

To know which customization to apply to a screen snapshot, the screen scraping

application should recognize the identity of the instance. This is done using a predicate or

signature for every screen. Typically, this signature is based on some unique keyword(s)

that appear on the screen at some location(s). Some tools offer rich pattern definition

languages for the application builder to define a signature [BFM02, Cel99]. Such

languages would allow specifying that a specific text must exist or not exist at a certain

location or within an area on the screen and/or that it must be of a certain case or color, or

compares in a certain way to a hard-coded value (<, <=, =, >=, >). They may also allow

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multiple recognition criteria to be defined and combined with logical operators, for the

same screen.

In many cases, this technique would be sufficient to recognize the identity of the

screen. However, in some cases, e.g., unstructured and multi-mode screens, it is quite

challenging to find such a signature. For example, some host applications can have more

than one mode for the same screen, e.g., Create, Review, or Update modes, with the same

structure and appearance but with slight differences in the status of some fields. Each

mode needs separate signature and customization. In the state-of-the-art practices, a

screen signature must be manually defined and hard coded for every screen by an expert

analyst, who is very familiar with the legacy system under analysis and with the pattern

language available and its supporting tool.

Screen scraping takes relative advantage of the presentation capabilities of the web

browser. However, it does not benefit from its enhanced navigability. So it enhances the

accessibility and, to some extent, the usability but not the navigability of the legacy

system.

Another screen scraping approach is to access the legacy presentation at a level lower ..

than the UI, or the data streams used to construct it. This is the level of screens maps or

description files, if such concept exists in the system under study, e.g., CICS maps for

S/390 systems and Data Description Specifications (DDS) source files for AS/400

systems. In case of CICS, the data necessary to build an HTML or XML UI is extracted

from CICS maps instead of IBM 3270 data streams.

2.23.3 Screen Mapping (Remodeling)

Screen mapping [CriOl], also called remodeling [AkeOO], is a natural extension to

screen scraping. While it still uses presentation access to Web-enable legacy systems, it

allows reengineering the legacy UI or chosen parts of it into a task-oriented Web-based

GUI. It enables fairly extensive modifications to the sequence of information presented to

the user by combining several screens into a single graphical presentation, i.e., it offers

many-for-one browser presentation of the legacy user interface [AttOO]. Thus, the

multiple host screens, related to a certain user task are combined in one (or more) Web

forms that is a more natural representation of the task in the Web world. This can greatly

enhance the usability and navigability of the system, while still maintaining the back-end

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

host navigational flow. It is possible to partially apply screen mapping to a legacy system

by reengineering the frequent or cumbersome user tasks of choice, while using

webulation and/or screen scraping for the rest of the system.

To build a screen mapping solution, one needs to do the following:

1. Build a model of the portion of the legacy system CUI to be reengineered,

2. Describe the steps needed in terms of user actions, inputs and outputs, and screens

accessed to perform each user task that will be reengineered,

3. Build/buy the middleware needed to mediate between the legacy back-end and the

Web front-end, and

4. Build a Web-based GUI for each user task, which will be responsible of executing the

task plan via the host-access middleware.

The partial model built for the legacy CUI is a set of predicates or signatures that

should uniquely identify each legacy screen, along with a list of the possible behaviors of

each screen in terms of the user actions permissible on it and their outcomes or

destination screens. This model is like a road map for the legacy CUI.

A task description gives the detailed steps of how to open sessions, gather data,

complete transactions, and close sessions with the host legacy to accomplish a user task.

Typically, this includes what user actions are needed to navigate the legacy CUI in

service of the user task, what inputs need to be passed to the legacy application on which

screens on which locations and what outputs will be retrieved from which locations on

which legacy screens.

A host-access middleware executes the task description by driving the necessary

navigation via the legacy host, passing the user inputs received from the Web-based GUI

to the legacy application, and collecting the required outputs to feed the Web-based front-

end. This middleware uses terminal access protocols such as VT100, IBM 3270 or IBM

5250 to communicate with the legacy system via a “virtual terminal”, emulating the

standard “green screen” terminal. Data are moved in and out of the legacy host via the

legacy system CUI as if data entry personnel were flawlessly entering it [CriOl]. Such

middleware can be built with EJB beans, Java servlets, or similar approaches.

The Web-based GUI, e.g., HTML or XHTML, presents the reengineered UI to the

user, takes his inputs, executes the task plan and reproduces the collected results through

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the web browser. Common Gateway Interface (CGI) scripts, Java Server Pages, or

similar technologies are used to collect the user Input via the client web browser

In current practices, these steps are all Implemented manually. An analyst goes

through each screen of the legacy system, trying to find a unique signature for it and to

model its behavior in order to build the legacy CUI model. Then s/he talks to the users

about every task to be migrated to the Web to understand all its possible paths and

exceptions. Then, s/he manually builds a plan of this task, by describing all the user

actions needed to perform it, all the inputs to be entered and where they occur and all the

outputs to be collected and from where they are obtained. After that, a developer builds

the new Web front-end that executes the user tasks. For each task, s/he does the necessary

GUI design, layout and coding. If it is required to migrate to a different platform too, e.g.,

WAP devices, then the legacy CUI model and task descriptions can be reused but the new

UI implementation should be carried out from scratch for the new platform.

23.4 Pros and Cons of Web-enabling via Presentation Access
A market survey [AttOO] showed that 60% of the IT personnel administrating,

maintaining or accessing information from legacy systems use some form of screen

scraping or screen mapping technology to integrate legacy systems with other systems.

45% of them batch data to a server for access through a client application, and a similar

number modify the host application to suit client access. The study showed that out of

those who use presentation access technology, 60% use it to avoid changing the host

application, 30% could not change the host application and 44% use it for its lower cost.

Despite the possible bias in market studies, these results summarize the advantages of

Web-enabling via presentation access. It is a minimal-risk, non-invasive, less expensive

solution. It requires no change to the legacy application. This makes it almost the only

choice when changing the legacy application is not an option, e.g., due to lack of

ownership or unavailability of the source code. It can be applied gradually and/or using a

mixture of methods. For example, webulation can give instant Web-access of the legacy

application to the users familiar with it, while a screen mapping solution is deployed to

reengineer the UI of the most frequent/difficult user tasks. This provides an easy to use

HTML front-end to the external users with no familiarity with the legacy system, e.g.,

customers placing orders and college students registering for classes. Finally,

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

presentation access can be used for lightweight integration with other legacy systems and

Web applications or for limited functionality extension and repurposing of the legacy

system.

On the other hand, screen scraping and screen mapping are labor intensive non­

automated processes. The currently available tools for supporting them are mostly limited

to aiding the manual practices. They do not automate any of the subtasks involved, which

may require a lot of effort and intuition. Additionally, these technologies are better suited

to mature stable applications, which are unlikely to go through frequent changes or

updates. For dynamic applications that go through frequent changes, keeping the Web

application layer up to date with the latest changes incurs high maintenance overhead.

Presentation access of legacy systems is criticized for being slow, since it adds a

remote extra layer on top of the existing legacy application. This depends on the

implementation model used. Modem server side and host side implementations can

overcome this deficiency to a good extent. In a host side implementation, the host-access

and the screen mapping middleware reside on the legacy host, e.g., S/390. A user task is

executed completely on the host and HTML pages are generated as needed and submitted

to the user with the required results or to collect inputs. However, fair comparison with

the other Web-enabling approaches presented earlier is unavailable to judge their relative

speed and scaling up with workload.

Another disadvantage of presentation access solutions is their vulnerability to

unexpected events related to the host connection behavior, like keyboard lockups, session

disconnections, broadcast messages from hosts and error messages coming from the

legacy application [YamQO]. Careful analysis and modeling of the legacy CUI and the

tasks to be reengineered can reduce this risk by anticipating as many of such events as

possible and including a recovery mechanism in the Web front-end application, but

would require more investment and effort.

Finally, Web-enabling via presentation access has some limitation: it cannot extend

the legacy system functionality beyond what is already achievable, directly or indirectly,

through the legacy presentation. It only gives access to the data exposed through the

legacy presentation.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The CelLEST project adopts presentation access for legacy CUI reengineering and

Web-enabling. LeNDI overcomes some of the disadvantages of presentation access

solutions by providing a coherent almost-automated process and tool support for

interaction reverse engineering and legacy CUI modeling. LeNDI uses traces of

interaction with the legacy CUI as input. LeNDI provides a data mining method that

discovers the frequent user tasks of interest in the form of interaction patterns, as they are

evident in the interaction traces. These patterns are used to build the task models that will

be encapsulated in the reengineered UI. LeNDI reduces drastically the level of skills,

time and cost needed for the modeling process, since its subtasks are almost automated.

Additionally, the automated process is less sensitive to changes in the underlying CUI as

changes can be captured by recording and analyzing new or extra traces instead of

implementing them manually. LeNDI advances the current screen mapping practices and

lays the foundation for the future generation of these solutions.

2.3.5 Objectifying Legacy Systems via Presentation Access
Little work has been done along this somewhat different line, which mixes

presentation access of legacy systems with distributed object technology. There is very -

little research in this area, and it suggests screen scraping of legacy GUIs, or similar

techniques for legacy GUIs, as a means for wrapping a legacy system service (or a user

task) as a method in an object for consumption by a new application or in a distributed

object environment.

Chadha [Cha98] describes a prototypical effort, during which, the services of several

back-end legacy systems belonging to various health Insurance providers were integrated

in one distributed object environment to provide access to these systems to healthcare

providers. This was done via a distributed object, called the “Payer” object. Each Payer

object wraps a legacy data source, e.g., an IBM mainframe application, an ODBC-

enabled database or others. The Payer object interface allows healthcare providers to

check the eligibility of patients for insurance coverage, submit insurance claims, and

check the status of submitted claims. The object interface is described using CORBA

DDL. For IBM mainframe-based legacy back-ends, the Payer object uses screen scraping

to invoke the procedures that perform the required services on the legacy application and

collect the required results.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A similar approach was followed to objectify legacy GUI-driven applications (GDAs)-

and integrate them with other GDAs, including Web applications, to form mega­

applications [GBP02]. This requires the use of agent processes to be injected into the

GDAs. These agents collect information on all GUI elements that are used by a GDA,

monitor events that are generated, and trigger GUI input events. An agent presents an

object (representing an objectified GDA GUI) to a controlling program. This program

can then invoke methods on specific GDA GUI elements and replay GUI inputs with the

support of the agent. This controlling program can integrate a number of GDA GUIs

together, including Web-based GUIs.

2 3 Software Requirements and Process Model Recovery
Requirements recovery is the process of retrieving software functional and user

requirements and/or software specifications from an existing software, its documentation,

its stakeholders and its operation environment. Requirements recovery research is fairly

scarce. Previous work in this area had explored a variety of methods that assume different

input information and recover various different types of requirements. In LeNDI, we

developed interest in requirements recovery research because part of LeNDI’s role in

CelLEST process is to discover the system services that may be candidates for

reengineering and wrapping with a new front-end. Generating hypotheses about the

system services, as they are used today by current system users, in the form of interaction

patterns, is essentially a requirements-recovery activity. So, it was important to review

the related literature. Despite the variety of interesting approaches that were used for

requirements recovery, none of them used interaction traces as input. Hence, LeNDI

needed a novel method for interaction pattern discovery from interaction traces as

described in chapter 6.

In the REVERE, project [REGSOO] probabilistic natural language processing (NLP)

methods were employed to recover software requirements from the available

documentation, such as requirements specifications, operating manuals, user interview

transcripts and data models. The method suffers from the well-known shortcomings of

NLP and needs to be adapted (trained) to the various documentation styles, structures and

notations, but provides rapid analysis for voluminous documentation.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cohen [Coh94] used Inductive Logic Programming (ILP) to discover specifications

from C code. The constructed specifications are in Datalog (Prolog with no function

symbols). The software discovered two thirds of the specifications with about 60%

accuracy, in a program containing over one million lines of source code. The system

recovered declarative view specifications from relational database examples. Positive

examples were obtained from program execution views, with background knowledge,

consisting of the table relation. The technique uses inductive reasoning about the

behavior of the code, rather than deductive reasoning of static code. Sufficient training

data is required, otherwise results will contain numerous inconsistent specifications.

The AMBOLS project [LAQ99] aimed to recover requirements by employing

semiotic methods and intensive interviews with the stakeholders to analyze and model the

system behavior from various viewpoints. The intent is to document current uses for the

purpose of redeveloping the application.

In [SP99], data reverse engineering was proposed as a means for business rules

recovery from legacy information systems. Particularly, an approach for extracting

constraint-type business rules from database applications was outlined, but without an -

implementation or experimental evaluation.

Di Lucca et al [DFD00] presented a method for recovering a use case model from

threads of execution of object-oriented (OO) code. A thread is a sequence of method

executions linked by the messages exchanged between objects. Threads are triggered by

input events and terminated by output events. In this approach, developers identify

statements that form input events and output events. A tool then automatically identifies

the code corresponding to the potential uses cases. The tool produces a structured use

case model including diagrams at various levels of abstraction, comprising actors, use

cases, associations between actors and use cases, and relationships among use cases. The

mapping between a given use case to its corresponding code supports developers in

program understanding and maintenance impact analysis. The method targets OO

systems, which makes it inapplicable to most legacy systems that were developed before

the wide spread of the OO paradigm.

Similar to this research area, is the work on process model discovery, e.g. [AGL98].

The idea is to model existing known or unknown processes by mining workflow and

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other logs of these processes and retrieving or discovering the models. The aim is to gain

better understanding of the existing process models and/or develop future ones. An

example of this work is reverse engineering work processes in collaborative virtual

environments [BS02], The goal was to recover design models of virtual workspaces at

micro (individual tasks), macro (processes) and collaboration (task sequences) levels, by

mining the environment’s data logs, e.g. threads of email messages posted on the bulletin

board and actions performed by the collaborating team members.

The work presented above represents diverse directions in exploring and tackling the

requirements recovery problem. Researchers explored different available inputs, e.g.,

existing documentation, human knowledge, code, data, threads of OO program runs and

workflow logs. In this thesis, we introduce a new method for recovering the de facto

functional requirements of legacy systems to support the CelLEST method for legacy

GUI reengineering and Web-enabling. To do so, we employ another yet unexplored easy-

to-collect input, which is records of the system-user dialog via the legacy GUI in the form

of interaction traces. LeNDI applies data mining algorithms to these traces to recover the

needed requirements in the form of interaction patterns. There are a number of potential

uses of this promising approach beyond the forward engineering phase of CelLEST, as

suggested in section 7.3.

2.4 Sequential Data Mining
Mining sequences of data for recurring patterns is a generic problem with instances in

a range of domains. It was first introduced in [AS95] under the name "sequential pattern

mining", inspired by applications in the retail industry. Given a set of customers and their

sequences of transactions, the goal is to discover sequences of items (patterns) occurring

in the transactions of the same customer.

In CelLEST, it is necessary to discover the frequent legacy GUI navigation sequences

that represent multiple uses of the same legacy system service, from a system viewpoint,

or repetitive executions of the same user task, from a user viewpoint. LeNDI mines the

recorded traces of interaction with a legacy system for these interaction patterns. This

problem, called interaction pattern mining problem, is different from “mining sequential

patterns”, but similar to the problem of “discovery of frequent episodes in event

sequences” [MTV97]. In [MTV97], the discovered frequent episodes or patterns can have

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different types of ordering: full (serial episodes), none (parallel episodes) or partial and

have to appear within a user-defined time window. The support of a pattern is measured

as the percentage of windows containing it. Some algorithms were developed to tackle

this problem, e.g. WINEPI and MINEPI [MTV97] and Seq-Ready&Go [BCBOO], based

on the famous data mining Apriori algorithm [AIS93, AS94], Apriori was originally

proposed to solve the problem of mining association rules between sets of items in large

databases and then numerously extended to solve other data mining problems including

mining of sequential patterns. The problem of mining interaction patterns differs than the

formulation of [MTV97] in that it does not restrict the pattern length with a window

length and permits a user-defined number of insertion errors to exist in the instances of

the discovered patterns.

The CelLEST interaction pattern discovery problem is also similar to the problem of

discovering patterns in DNA and protein sequences. There, the objective is to discover

either probabilistic patterns or deterministic patterns with noise, e.g. flexible gaps, wild­

cards (don’t care characters) and/or ambiguous characters (which can be replaced by any

character of a subset of the alphabet set, A) [BDVHHPOO]. Because bio-sequential data is -

usually very large, an efficient search strategy is to discover short or less ambiguous

patterns using exhaustive search, possibly with pruning. Then the patterns that have

enough support are extended to form longer or more ambiguous patterns. This process

continues until no more patterns can be discovered. Two elegant examples of this

category are PRATT [Jon.96] and TEIRESIAS [Flo99] algorithms. PRATT can discover

patterns of the quite general PROSITE format [BB94J, e.g. C-x(5)-G-x(2,4)-H-[BD],

where B,C, D, G and H e A, x(5) is a flexible gap of length 0 to 5, x(2,4) is a flexible gap

of length 2 to 4, and [BD] is an ambiguous character that can be replaced by B or D. The

original TEIRESIAS algorithm discovers {L,W) patterns with wild-cards only, where L <

W. An (L,W) pattern has a constraint on its density, that is any of its sub-patterns

containing exactly L non-wildcards items has length of at most W items. For example,

CD..CH..E is a (3,5) pattern, where V can be replaced by one item e A. None of these

two bio-pattem discovery algorithms mentioned above suits the task of mining

interaction traces for interaction patterns.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

None of the problem formulations described above matched the needs of LeNDI,

especially in terms of the type of ambiguity or errors that they allow in the patterns

discovered. LeNDI discovers patterns of user activity in the traces of interaction with a

legacy GUI with insertion errors, i.e., whose instances may contain up to a user-defined

number of spurious activities. A spurious activity happens when the user accesses or

receives a screen that is not part of the task s/he is performing, e.g., an error or help

screen. LeNDI treats such activities as insertion errors and allows up to a pre-set number

of them to exist anywhere in a pattern instance. Two novel pattern mining algorithms

were developed, specifically to solve the interaction pattern mining problem in LeNDI:

Interaction Pattern Miner (TPM) and Interaction Pattern Miner 2 (IPM2). The first Is a

breadth first algorithm and the second is a depth first algorithm. Both algorithms require

defining a criterion for pattern selection and use the idea of building longer patterns from

shorter ones. Although designed for use in LeNDI, they can be applied to similar

problems. In fact we used them to mine user web site navigation logs for interesting

navigation patterns [ES03], Both algorithms are described, compared and evaluated in

chapter 6.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Three

CelLEST User Interface Reengineering

In chapter 2, various legacy CUI reengineering, reverse engineering and Web-

enabling methods were introduced. It was shown that almost all CUI reengineering and

reverse engineering methods rely on code analysis and understanding, except some

methods that deal with command-line programs. This makes such methods inapplicable

when the code is unavailable or unchangeable. It also makes them costly and risky when

code is hard to comprehend and difficult to change. Nevertheless, in some cases, it is

unavoidable to do UI reengineering via code analysis and change since the code will be

migrated or for other reasons. This raises the need for new CUI reverse and forward

engineering methods that do not use code in order to serve cases when code change is

impossible or undesirable. This thesis proposes a novel lightweight CUI reverse

engineering process that utilizes, as input, traces of interaction with legacy CUIs. It is a

valuable method when code and platform migration is not necessary and lightweight CUI

reengineering will be used.

Additionally, chapter 2 presented the different strategies of Web-enabling legacy

systems. It showed the reasons of popularity and advantages of Web-enabling via

presentation access. These reasons are non-invasiveness, low risk, lightweight and low

cost. It also discussed the shortcomings of this method, which are labor intensiveness,

manual processes, inadequacy of tool support, vulnerability to unexpected events and to

changes in the legacy CUI and inability to extend the system functionality significantly.

The interaction reverse engineering method proposed in this work and implemented in

LeNDI overcomes some of these shortcomings by proposing a coherent lightweight

reverse engineering method for legacy CUIs in service of Web-enabling via presentation

access. Unlike current manual industrial practices, this method is almost-automated, less

error-prone, more productive and less sensitive to changes.

Since, a significant part of this thesis was done within CelLEST project for legacy

CUI reengineering, it is important to describe this project first before describing the

specifics of our interaction reverse engineering method. CelLEST project [SEKSM99,

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SES02, SESPOO] is a joint research project between the Software Engineering Lab. at

University of Aiberta, Canada and an industrial sponsor, Celcorp [Cel], The aim of the

CelLEST project is to develop the next generation of legacy CUI reengineering and Web-

enabling via presentation access, using artificial intelligence (AI) and other methods.

CelLEST adopts interaction reengineering as a means to automate the process of

“learning” and reengineering an existing legacy CUI. CelLEST uses a combination of

document analysis, feature extraction, clustering, user action modeling, visualization,

data mining, task model inference, XML wrapping and automated GUI layout to develop

an intelligent semi-automated lightweight method and prototypes for legacy system CUI

reengineering, Web-enabling and front-end integration. The CelLEST CUI reengineering

is a two-phase process; the first is a reverse engineering phase and the second is a

forward engineering phase. The overall CelLEST process is shown in Figure 3.1.

In the reverse engineering phase, the users’ interaction with the legacy system CUI is

recorded using a specially instrumented emulator. The recorded traces consist of the

screen snapshots accessed by the users while navigating the legacy CUI, the actions they

performed on these screen snapshots and the sequences they followed during their

navigation to accomplish their work. Then, these traces are used to build a behavioral

state-transition model for the legacy CUI (Task Tl). This model is a road map for the

legacy CUI. It is used by the new reengineered UI to verify the identity of legacy screen

snapshots while they are accessed to perform a user task, and hence input the appropriate

inputs and deduce the required outputs. Additionally, data mining algorithms are applied

to the interaction traces to discover frequent patterns of interaction with the legacy

system (Task T2). Each pattern is enriched with additional semantic information to build

a model of the corresponding system service or user task, in terms of the interface

navigation and the information exchange it implies (Task T3).

In the forward engineering phase of CelLEST, the user task models are translated in

to abstract GUI specifications in XML (Task T4). These specifications are then translated

to XHTML for Web access or WML (Wireless Markup Language) for WAP (Wireless

Application Protocol) access, using the appropriate CelLEST interpreter (Task T5). The

strength of this approach is in that it can accomplish simultaneous reengineering of the

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

same legacy CUI to suit different platforms, using the abstract GUI specifications, which

are platform independent.

The CelLEST method for semi-automated “learning”, modeling, reengineering and

Web-enabling of legacy CUIs and the user tasks of interest makes it much easier to deal

A

JL
T1.4

Transition
Modeling

JE
T1.3

Classifier
Induction

±
T1.2

Snapshot
Clustering,

T l.l
Feature

ffT/

Task Patterns
and Examples

T2_
Task

Discovery

t-
CUI State-
Transition model

T1
Interface
Modeling

Interaction Traces

T3
Task

Modeling

Task Models

T4
Generating

Abstract GUI
Specifications

T5
Runtime GUI
Generation

: Emulator >>>i Host Access
Middleware

Legacy application
Web-based GUI

WAP-\
based Uf

r T s.i b (T5.2 b
XHTML WML

Interpreter Interpreter

Figure 3.1. CelLEST User Interface Reengineering Process.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with frequently changing legacy systems, since manual re-modeling and GUI re­

development may be quite costly. The following sections brief the CelLEST process and

show its advantages over the current practices. In Figure 3.1, Tasks T l, T2 and T3 are the

reverse engineering phase of the process. T l and T2 were the subject of this work and are

described in full details in this thesis. T4 and T5 are the forward engineering phase, and

specifically T5 is a runtime task. T3, T4 and T5 were developed by other CelLEST

project members and their different versions are described in detail in [KapOl, KonOO].

3.1 Interaction Traces Collection
While the users of the legacy system are performing their regular tasks, their

interaction (dialog) with the legacy UI is recorded in the form of traces or sequences,

using a specially instrumented emulator. For block-mode data transfer protocols like IBM

3270, a trace is a collection of screen snapshots forwarded by the legacy application to

the user’s terminal, interleaved with user actions in the form of sequences of keystrokes

performed in response to receiving a screen snapshot. Additionally captured information,

in case of IBM 3270 data streams, include the total number of fields, the number of

unprotected fields and the initial cursor position. We call these recorded traces

“interaction traces”. Formally, an interaction trace is defined as follows:

Definition 3.1___
Trace id,n = snapid, i (key snap id, j)* j =2 ...n, where
• id is the trace Id,
• n is the length of the trace,
• j is the j* screen snapshot received at the user’s terminal, and
• keyj is the sequence of key-presses issued by the user at snapshot snapj.\ that caused

the application to send the next snapshot snapj to the user’s terminal.

3.2 Tl: Legacy Interface Behavior Modeling.
The purpose of this task is to build a behavioral model for the legacy CUI, in the form

of a state-transition model [EISSM01, SEIS03, SEKSM99], Each node (state) of the

model corresponds to a screen of the legacy system CUI, identified by a unique predicate.

Using automatically extracted features for every screen snapshot recorded in the traces, a

clustering algorithm groups similar snapshot together, as instances of the same screen.

Then a classifier induction algorithm is applied to the snapshots of the identified clusters

to automatically infer a unique predicate for their screen, i.e., for the corresponding node

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or state on the state-transition graph. Using a pattem-inference algorithm, the arcs of the

state-transition model are inferred automatically. Each arc models a permissible user

action. The details of the algorithms used in this task are given in chapters 4 and 5. The

produced state-transition model is road map for the legacy CUI. It allows a new

reengineered UI to check the identity of incoming snapshots while accessing them online

against the nodes or states of the model, and hence input the appropriate inputs and

extract the required outputs relevant to the executed user task. Additionally, the state-

transition model can be queried about navigation paths from a state to another, thus

helping planning new tasks that are achievable through the CUI although not originally

intended by system developers. The LeNDI (Legacy Navigation Domain Identifier)

prototype was developed to test the methods and algorithms used in this task. LeNDI

deals with data transfer protocols that are native biock-mode protocols or can be

emulated in block-mode, e.g., IBM 3270 and VT100. In the sequel, we brief the subtasks

of task T l in Figure 3.1.

3.2.1 T l.l: Feature Extraction
In order to automatically build a legacy screen classifier that is able to distinguish the -

snapshots of each screen using unique screen signatures or predicates, one needs a rich

set of features. LeNDI employs a variety of document analysis techniques to extract

visual and other features for every snapshot. The output of this subtask is a feature vector

for every snapshot. These features include:

• The existence of special system keywords, sentences or information at the top or

. bottom of the snapshot, e.g., title, code, date, time or page number.

• The information received with the outbound legacy data streams, e.g., the location

and type (protected or unprotected) of IBM 3270 data fields and the cursor position.

® Snapshot layout features like the classification of the snapshot to “general”, “table” or

“list” with some attributes for the last two classifications, e.g., the number of columns,

rows, etc. Another layout feature is vertical and horizontal histograms built for the

entire snapshot content or only for some special characters of interest, e.g., numbers.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LeNDI employs 14 single-part and multi-part features. Additionally, it has a binary1,

feature suite of 39 features, constructed by decomposing and abstracting these 14

features. This binary feature suite is needed for one of LeNDI’s clustering algorithms.

Chapter 4 describes in detail LeNDFs feature suite and all the algorithms used to extract

them, along with the similarity measuring metric used for each feature.

3.2.2 T1.2: Snapshot Clustering
Snapshot clustering is the process of grouping similar snapshots together to infer their

common identity, represented by a signature or a predicate that uniquely distinguishes

them from other snapshots. LeNDI employs two clustering techniques. The first is a

single-path incremental clustering algorithm [SEKSM99]. The second is a top-down

clustering algorithm [EISSM01]. The incremental algorithm goes over the snapshot set

only once, accessing it one by one. Using a user-defined similarity function, the

algorithm assigns a new snapshot to the most similar cluster of the clusters available so

far, or assigns it in a new cluster if it is not similar enough to any existing cluster. The

algorithm requires the user to set up a similarity function and the similarity threshold that

decides if a new snapshot is to be placed in a new cluster or to join an existing one. In

addition, it requires sufficient familiarity with the system in hand. In return, it does not

need an estimate of the number of clusters sought. The top-down algorithm uses LeNDI’s

binary feature set. It requires as input an estimate of the number of clusters and does not

assume familiarity with the legacy system under analysis. Initially, it assigns all the

snapshots in a single cluster and then keeps splitting clusters iteratively until reaching the

desired number. In each iteration, the algorithm employs an internal cluster incoherence

measure to split the most incoherent cluster using the feature value that minimizes the

maximum incoherence of the clusters resulting from the split. This algorithm produces a

decision tree that reflects the hierarchy of the splitting decisions used to produce the

resulting clusters.

The user can choose which algorithm to use depending on the system under analysis.

LeNDFs clustering process is interactive. The LeNDI analyst performs few rounds of

clustering with different setups to enhance the obtained results. When reaching a

satisfactory clustering of the data set, s/he can review and correct the results by moving

1 Binary here means a feature whose comparison yields only either one or zero.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

misclustered snapshots to their right clusters and joining redundant clusters with their

originals.

3.2.3 T1.3: Classifier Induction
Given the snapshot clusters resulting from subtask T1.2, a classifier can be induced

that can correctly classify individual snapshots into their corresponding clusters. This

classifier can then be used at runtime to recognize new, previously unseen snapshots as

instances of the CUI screens, and hence, to infer what actions are possible on each

snapshot and to which screens they lead. In addition, verifying the snapshot identity

allows the new reengineered GUI to apply whatever relevant input or output steps of a

task plan to the snapshot, via the host-access middleware.

LeNDI employs two classifier induction algorithms. The first is a signature-based

classifier that is induced by superimposing the snapshots of each cluster and capturing

what is common in their feature vectors and presentation spaces. The second is a decision

tree classifier, which is associated with the top-down clustering algorithm. It is induced

by applying the user feedback for fixing the results of the top-down clustering algorithm

to the decision tree produced by the algorithm. The fixed decision tree classifier is then ~

used at runtime to infer the identity of new snapshots. The classifier produced should be

used to classify new data to test its ability to generalize its knowledge and its accuracy.

3.2.4 T1.4: Transition Modeling
Transition modeling is the process of inferring a model for the transition needed to

transfer the legacy system CUI from a screen to another, i.e., from a state on the state-

transition model to another. Such a model includes the origin screen Id, the destination

screen Id and a model of the user action needed to do the transition. Different styles of

user-interaction with legacy systems exist, e.g., function keys, menu-driven, command-

driven, and form-filling. Also, an action can have several formats; e.g., a command

keyword may have multiple synonyms or it may have an equivalent function key.

Currently, LeNDI can model command-driven and function keys styles. LeNDI infers

each action model by comparing the instances of this action recorded in the interaction

traces and applying a set of rules for command language design. For each action, LeNDI

infers its syntax in terms of the function or control key(s) used and the command

keyword(s), its options and its arguments. For the arguments, it infers their number, their

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

syntax if any and whether they are optional or mandatory. The more instances are.

available, the more general and accurate the action model is. The LeNDI analyst can

override and rewrite or fix an inferred action model.

3.3 T2 and T3: Frequent User Task Discovery and Modeling
The purpose of these two tasks is to automate the process of modeling the frequent

user tasks of interest as much as possible. Hence, T2 and T3 save the labor-intensive

work needed to define all the possible navigation paths of every task that needs to be

reengineered and every piece of data exchange that takes place during the task. This is

done by automatic learning from the interaction traces about the frequent user tasks in

terms of what navigational path is traversed and what type of input is entered on which

location on which screen for every task. To know what output is of interest to the user

during a task, i.e., what information on which screen is retrieved, the analyst and/or an

expert user need to manually identify this information on the snapshots of some instances

of this task. This is because these outputs are visually retrieved by the legacy system user,

i.e.; s/he just reads them on the screen or prints them. However, s/he does not take any

action that can be recorded in the traces as evidences of which areas on the screen display

these outputs.

3.3.1 T2: Task Discovery
LeNDI automates the discovery of users’ frequent interaction patterns with the legacy

system, which represent frequent uses of the legacy system services or frequent

executions of the important user tasks. Two algorithms for sequential pattern mining

were developed in LeNDI for this purpose, called Interaction Pattern Miner (IPM)

[ESS02b] and Interaction Pattern Miner 2 (IPM2) [ESS02c]. Both algorithms can

discover similar segments of interaction with the legacy system, in the recorded traces,

even with some noise in the form of spurious irrelevant screens. Accommodating noise

gives LeNDI flexibility in discovering tasks that include user mistakes, unnecessary

navigation like invoking help screens and/or alternative paths for some subtasks. IPM is a

depth-first algorithm, while IPM2 is a breadth-first algorithm. They require defining a

criterion for interesting patterns in order to use It for deciding if a pattern is worthy of

reporting or not. The criterion includes the pattern’s minimum length, minimum number

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of occurrences, minimum score and the maximum number of insertion errors allowed in

any instance of this pattern. The scoring function used is explained in chapter 6.

After reviewing the discovered patterns, the analyst needs to decide whether each

one of them corresponds fully or partially to a real frequent user task, or is just a spurious

repetition of a navigational path. The instances of each user task can then be used to build

the corresponding task model.

3.3.2 T3: Task Modeling
Mathaino [KapOl, KS01, SK02] is another prototype tool of CelLEST. It

accomplishes a reverse engineering task, T3, and two forward engineering tasks, T4 and

T5. Mathaino replaced an earlier CelLEST tool URGenT (User interface ReGENeration

Tool) [KSM99, SEKSM99, KonOO]. Mathaino generalized some of the concepts

developed in URGenT by allowing more flexibility in defining task models and by

supporting simultaneous legacy CUI migration to multiple platforms using intermediate

platform-independent GUI representations, as opposed to the migration only to Java

platform supported by URGenT. In T3, Mathaino analyzes the instances of each user task

comparatively to construct an abstract model of:

• The navigational sequence through the legacy system UI to perform the user task;

• The types of information input by the user to the legacy UI and displayed to him/her

through his/her navigation, and the locations where they occur on the legacy screens;

• The domain of values of the inputs; and

• The interdependencies among these values.

Note that to analyze the instances of each user task, evidences of the user inputs and

outputs is necessary. All user inputs are already recorded in the interaction traces. The

CelLEST process needs a user or an analyst to highlight on the snapshots of the task

instances the areas that contain the outputs extracted to successfully complete the task.

Given the annotated task instances, Mathaino analyzes the flow of information to and

from the legacy system to identify the user inputs required to accomplish the task, by

studying all the recorded instances of this task. It compares the values used for each input

field across all the task instances, and the values of all input and output fields in the same

task instance. Each data input field is labeled with one of the following:

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• constant, whose value is the same in all task instances,

• derived, whose value is obtained earlier in the task from an output field,

• redundant, whose value is input multiple times in the same task,

• enumerated, whose value is always one of a limited set of values, and

• unpredictable, whose value is independently supplied by the user.

Categorizing input fields leads to a significant reduction in the user input required by

the reengineered UI of the task, e.g., the user will not need to input a derived input as it

will be supplied automatically. Categorization helps choosing the proper abstract widget

type for each input field in task T4, e.g., an input labeled with “range” can be

implemented using a combo box or a set of radio buttons. CelLEST engineer may inspect

the identified pieces of information and name them with meaningful names

Additionally, by comparative analysis of all instances of the same data field,

Mathaino infers the coordinates of this field on the legacy screen it belongs to, in case

these coordinates are static, i.e., the data filed always appears in the same location of the

screen. In dynamic screens, such as free forms, attempts are made to discover starting

and/or terminating landmarks to use for locating the data field.

Finally, if alternative paths exist for a user task or subtask, the branching screens need

to be manually identified. Then, each alternative path is analyzed as described above. At

runtime, the signature (predicate) of the snapshot received after performing an action on

an instance of the branching screen decides which path to follow.

The task model produced in T3 specifies the path on the interface state-transition

model through which the user navigates, the flow of information between the legacy

application and the user, and the syntax of the interactions through which the information

is exchanged. Effectively, it constitutes a declarative and executable specification of the

modeled task of the legacy application. Given values for all the “unpredictable” pieces of

information identified, the model can be used to drive the legacy application and execute

the modeled task.

3.4 T4: Generating Abstract GUI Specifications
Mathaino uses model-based UI design heuristics to produce automatically abstract

specifications for the new reengineered UI of each task, using its model. Thus, it

eliminates the need for the current manual practice of piece-by-piece mapping of the task

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model to a GUI design. The specifications are described in terms of a set of abstract

forms, each corresponding to a set of screens of the legacy system. Mathaino ensures that

all the output fields identified in the task model are displayed on one of the forms. For

each abstract form, a corresponding plan for navigating through the legacy screens at

runtime is produced.

Using various heuristics, an abstract widget is proposed for each input or output field.

For example, a field with an enumerated range of values is represented by a combo box

or a set of radio buttons depending on the number of values and an “unpredictable”

variable is represented by a text box. Then, the widgets are laid out on the form in a

tabular manner. The user can override the default choices of widgets and layout settings.

For example, s/he can change the widget type issued for a field or the number of layout

columns. After applying user feedback, an XML representation of the abstract

specifications is produced.

3.5 T5: Runtime GUI Generation
CelLEST runtime environment consists of two components. The front-end one is the

runtime interpreter. It is responsible for interpreting the XML abstract GUI forms on a

specific platform. It supplies widgets in the target platform that most closely match the

abstract input widgets. Currently, an XHTML interpreter (for Web-enabling) and a WML

interpreter (for WAP-enabling) are available [KS01],

The back-end component is the host navigator. It is built over an open source host-

access middleware [JMOO]. The host navigator executes the navigation plans of the

abstract forms and passes the inputs to the legacy system and collects back the outputs.

But first, the XHTML or WML interpreter passes the plan details to the host navigator in

a platform-independent format.

3.5.1 T 5 .l t The XHTML Interpreter
For Web-enabling, the XHTML interpreter dynamically parses the XML abstract

GUI forms at runtime and translates them to XHTML CGI forms. It maps the abstract

GUI widgets to the appropriate CGI widgets. It uses XHTML tables to layout the

produced web page in the closest format to that chosen by the user for the abstract GUI.

Also, it parses the CGI response produced by the client Web browser into the platform-

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Independent form needed by the back-end host navigator. It Is a server-side component

that runs as a Java servlet on the web server.

352 T5.2: The WML Interpreter
WML was developed by the WAP forum [WAP] for rendering web pages on WAP-

enabled mobile Internet devices like Cellular phones and Personal Digital Assistants. A

web page in WML (also called WML deck) is limited to a maximum of 1200 bytes. To

overcome the device display limitation, a deck can be divided into a number of cards.

The device can display only one card at a time. The only input widgets supported by

WMP are simple text boxes. WML does not support CGI but provides some features that

can simulate CGI.

The WML interpreter is adjusted to deal with these constraints. For example, it

implements an abstract GUI form using several WML decks if 1200 bytes are not enough

to implement the form. It uses a numerical menu to represent “enumerated” input fields.

It internally caches the user responses to the multiple decks corresponding to a single

abstract GUI form, before submitting it to the host navigator.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Four

Feature Extraction For Legacy Screen
Snapshots

Building the state-transition model of the user interface of a legacy system requires

identifying the states, i.e. the nodes, of this model. Each node represents a group of

similar snapshots, instances of a distinct legacy interface screen, which corresponds to a

behavioral state of the legacy system. For each legacy screen, it is necessary to identify a

predicate that uniquely distinguishes the instances of this screen. To do so, using the

current manual labor-intensive practices described earlier in chapter 2, one needs to do

the following steps:

1. Study many snapshots of the screen of interest and sample snapshots of the other

screens to discover how the former ones are similar to each other and different from

the later, and

2. Find a predicate that uniquely distinguishes the snapshots of the screen of interest;

this predicate can be a simple keyword or a complex textual pattern as described in

subsection 2.2.3.

Task Tl of Figure 3.1 represents the process of building the state-transition model of

a legacy CUI. LeNDI performs this task semi-automatically. Task Tl can be broken

down to the following steps:

1. Extracting a rich set of features for every snapshot in the recorded traces,

automatically,

2. Defining a similarity metric for each feature,

3. Defining a similarity and/or distance function to use for clustering similar snapshots

together,

4. Clustering similar snapshots together, separate from the rest,

5. Verifying and correcting the clustering results via user feedback,

6. Automatically extracting unique predicates that distinguish the snapshots belonging

to different clusters, i.e., to different legacy screens, and

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. Modeling the permissible user behavior (actions) on every legacy screen.

This chapter describes how the first two steps are implemented in this thesis. Steps 3

to 7 are explained in the chapter 5. This chapter presents the feature suite used in LeNDI,

which resulted from detailed discussions with experts in the field of legacy CUI

reengineering, analysis of many sample screen snapshots and experimentation. A

combination of heuristics and document analysis methods is used to extract these

features. We have tailored these methods to IBM 3270 data streams, a very popular

block-mode data transfer protocol. In addition, we applied them to VT 100 emulated in

block-mode. These features were developed to suit the automated state-transition

building process, since the simple pattern-based features used in current practices, even

those supported by the rich pattern languages used by some tools [BFMQ2, Cel99], are

too simple for LeNDFs automated process. LeNDI has a base feature set used by its

incremental clustering algorithm [SEKSM99]. Derived from the base set with some

extensions, is a binary feature set used by LeNDI’s top-down clustering algorithm.

LeNDFs base feature set is divided into three subsets that cover different aspects of a

snapshot. A snapshot consists of a presentation space, which is the matrix of characters

displayed to the user on his/her terminal, when receiving the snapshot, and additional

hidden information. The first feature subset includes features that are extracted from

analyzing the periphery of the snapshot presentation space where important pieces of data

are usually displayed, e.g., screen title, date, etc. The second subset includes features that

are extracted from the IBM 3270 data stream hidden data that accompany the snapshot

presentation space but are not visually displayed on the user terminal. The third subset

includes features derived from analyzing the presentation space layout and content

organization. The first and third subsets are generic features that can apply to any

snapshots in block-mode data transfer protocol. The second subset is specific to IBM

3270.

Section 4.1 starts with a general discussion of the different types and styles of legacy

screens that may be found in legacy systems. It gives a better understanding of the

potential difficulties that may arise during snapshot clustering and the variety of features

that would be needed to overcome them. Sections 4.2, 4.3 and 4.4 present LeNDFs three

feature subsets. Each section starts by describing the intuition behind the feature subset it

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

describes and foilows by the detailed algorithms used to extract it. Then, it concludes by

a description of the features of this subset and the similarity metric used with each feature

along with example snapshots with the features extracted for them. Section 4.5

summarizes LeNDFs discrete feature set in an easy to reference tabular format. Section

4.6 presents the binary feature set, which is derived from the first set. Section 4.7 gives a

description of LeNDFs feature extraction and viewing tool. Finally, section 4.8 is

discussion and conclusions.

Before feature extraction starts for a snapshot, LeNDI evaluates whether or not its

presentation space has the right dimensions for the legacy system under analysis which

can be the same as the default of the data transfer protocol used or different. For example,

IBM 3270 default presentation space dimensions are 24 rows x 80 columns. If the

presentation space recorded by the recorder emulator of LeNDI is truncated, i.e.,

incomplete due to emulator or network error or whatever other reasons, LeNDI augments

it to the matrix dimensions set in it so that feature extraction algorithms do not break. In

the rest of this chapter, the topmost row of a snapshot is considered its first row (row

number 1) and the leftmost column is considered its first column (column number 1).

4.1 Types of Legacy Screens
After studying samples of legacy screen snapshots, one can notice that different types

of screens exist in terms of their content dynamics. Content dynamics is the variability of

visual data fields that appear on the screen (not IBM 3270 data fields) in their number,

contents, and locations. This directly influences the ease of clustering the instances of this

screen together. Roughly speaking, one can recognize the following types of legacy

screens, ordered from the most static to the most dynamic (See Figure 4.1).

1. Screens with a constant number of fields2 displayed at fixed locations on the screen

and containing static content. These are essentially “Static Screens”. Examples of

these screens are menus and system information and help screens. Such screens may

have trivial variable items, e.g., the current date.

2 The term field here refers to visual data fields as they appear on the screen. It does not refer to database
fields or to IBM 3270 data fields.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Screens with a constant number of fields at fixed locations on the screen. Some of

them have constant data content and the others have variable data content. Examples

include input forms.

Type 1

Type 2 P I
m̂rnrnrnmmm

Type 3

Type 4

11(11111

1

1

(f--- V
m
pmA w . '4
M f /S . '■iLJL u l LA

v — J

Type 5

Figure 4.1. Different Types of Legacy Screens Ordered from The Most Static
(upper) to The Most Dynamic (lower).

3. Screens with a constant part and a variable part in terms of the number of fields and

their locations and contents. The constant part consists of a constant number of fields

with constant contents and displayed at constant locations. The variable part consists

of a variable number of fields with variable contents and displayed in a certain order,

usually starting from a certain location. Examples include lists of information, e.g.,

lists of claims, employees, etc.

4. Screens with a constant part and a variable part, whose constant part consists of a

constant number of fields with constant content but maybe displayed at different

locations each time an instance of this screen appears. The variable part consists of a

variable number of fields with variable content and displayed in a certain order,

usually starting from certain location. Examples include screens of results of queries,

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which may have a command line at the bottom prompting the user to enter another

query. Note that if the constant part always appear at a certain location, e.g. the

bottom of the screen, regardless of how filled the screen is, then, that screen will be of

the type 3.

5. Screens with variable content. One can call them “Dynamic Screens”. You can

consider them as screens of the previous type without or with a trivial constant part

that can be, e.g., a notice that a PF key returns the user to the previous screen.

Examples of such screens are query result screens that retrieves textual data about a

certain case, e.g., details of an insurance claim or a medical report about a patient.

Usually the information starts from a certain location on the screen.

Generally speaking, clustering the snapshots of a screen together becomes harder as

we go from the top to the bottom of the list of screen types above. But there are other

factors that influence this process. In some cases, the existence of screen codes given by

programmers, or clear titles, etc., makes it easier to group the snapshots together

regardless of the nature of the rest of the content. In other cases, one screen may have

different modes, e.g., Review and Update modes, which look almost alike, with few

differences, mostly in the status of some of the data fields (protected, i.e., read only or

input). The feature suite developed in LeNDI is broad enough to cover a variety of screen

types. Therefore, it includes features based on special information in the periphery of the

screen snapshot, e.g., code, title or date. It includes features based on the snapshot content

and organization layout. It includes features that are not related to the snapshot visual

appearance, but are rather based on the information received from the IBM 3270 data

streams, e.g., IBM 3270 field information and the initial cursor position on the snapshot.

42 Presentation Space Features
Usually, some important information exists at the periphery of legacy CUI screens,

e.g., title, screen code, date, etc. Discovering these pieces of information, their

classifications and their locations on the snapshot presentation space is the base for this

feature subset. The content and organization of this information can be very valuable in

deciding the snapshot identity, and hence, in clustering it with similar snapshots. Of

particular interest are screen titles or codes, which are often given to screens to make

them easily recognizable by the legacy system users and developers.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 Analysis of Presentation Space Periphery
LeNDI analyzes the first non-blank row, the row next to it and the last non-blank row

of each screen snapshot to look for such information. LeNDI tries to discover the

important pieces of information in these rows, if any. It assumes that reasonably big

blank gaps in these rows are dividers or separators between such pieces of information.

This assumption was examined and found to be true most of the time during our

experiments with LeNDI. After extracting whatever pieces of information can be found

in these rows, LeNDI classifies each of them to be screen code, title, date, time, page

number, message. Moreover, LeNDI extracts the actual text of screen codes and titles, if

any. Additionally, LeNDI extracts the cursor label or prompt message that prompts the

user to input some data or command on the snapshot.

If the absolute first or last row of the snapshot is blank, the algorithm keeps

descending (in case of top) or ascending (in case of bottom) until the first non-blank row

is reached. In case of the first non-blank row, LeNDI considers the second one next to it

even if it is blank. From now on, these two lines are called “the first two rows”. Also, the

terms “white space” and “blank” are used interchangeably. Algorithm 4.1 searches for

such rows and if they are found, then, they are analyzed to discover any significant

information that they may contain.

In Algorithm 4.1, step 3 loops through the rows of the given presentation space until

finding a non-blank row or till the bottom of the presentation space is reached. Pres

Space [Count] is the Counf1 row in Pres Space. Step 4 returns the message “Blank

Screen” and terminates the algorithm if the snapshot is all blank. Otherwise, step 5

reports the first non-blank row and if it is not the last row, then it also reports the second

row, regardless of its content, i.e., if it is blank or non-blank. Steps 6 to 8 find and report

the last non-blank row.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.1: Searching for The First Two and The Last Rows of a Presentation -
Space

Input: A presentation space, Pres Space, of a snapshot
Output: The first two and the last non-blank rows.
Steps:
1. Total Rows - The number of rows in Pres Space
2. Count = 1
3. While {Count < Total Rows) && {Pres Space [Count] is blank) do Count ++
4. If {Count > Total Rows) then Return message “Blank Screen”
5. Else

• Report Pres Space [Count] as the first non-blank row
• If {Count < Total Rows)

then Report Pres Space [Count+1] as the second row
• Else Return message ‘The Screen Has Only One Non-blank Row “

6. Count = Total Rows
7. While {Count > 0) && {Pres Space [Count] is blank) do Count —
8. Report Pres Space [Count] as the last non-blank row

Algorithm 4.1. Searching for The First Two and The Last Rows of a Presentation
Space.

Next, each of the first two rows is divided into three areas, using the longest blank

sequences in the row as dividers between these areas. For the first row, the left, middle

and right areas are numbered 1 to 3, respectively. The second row is similarly divided to

areas 4, 5 and 6. Since the last non-blank row usually contains less information than the

first two rows, it is divided into left and right areas only, which are numbered 7 and 8.

The division algorithm used for the first two rows is Algorithm 4.2.

The idea of Algorithm 4.2 is to divide the given row into three areas using the biggest

blank gaps in the row, which are thought to be the logical dividers used by developers.

Therefore, the algorithm looks for the biggest two white spaces in the row to divide it.

Steps 1 and 2 get the number of leading and trailing (left and right) spaces in the row, if

any. Steps 3 to 4 get the length and location of the largest white space inside the non­

blank content of the given row, if any. Steps 5 and 6 do the same but for the second

largest white space. Steps 7 and 8 check whether the left and/or right spaces are longer

than the largest space inside the row. If both are longer, then step 9 considers the left and

right areas of the row to be empty and all the content found is classified to be in the

middle, unless the middle is empty too. Also, this step reports the middle area content if

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

found and then terminates the algorithm with a returning message of which areas are

empty. In step 10, if the left space is the biggest, then the left area is considered empty

and the row content is divided into middle and right areas. The function Substring {string,

start, end) returns a string that is a sequence of characters taken from the parameter string

starting from location start to location end inclusive. Stepl 1 is similar to step 10 but

applies when the right space is the biggest. Finally, step 12 deals with the case when the

three areas of a row are considered non-empty, and the largest and second largest spaces

are used to divide the Row into left, middle and right areas, depending on which of them

comes first, i.e., starts at a smaller column number.

Algorithm 4.2 is used to divide the first two rows to three areas. A simpler algorithm

is used to divide the last non-blank row into left and right areas. Its idea is to start from

the left boundary of the snapshot and move forward in case of the left area and to start

from the right boundary and move backward in case the right area. As long as there is

some non-blank content, it is considered part of the corresponding area until 2 consecutive

blanks are encountered. If no content is found until the middle column of the snapshot,

the algorithm declares the corresponding area empty.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.2: Dividing a Row to Right, Middle and Left Areas
Input: A row, aRow, taken from the presentation space of the snapshot under analysis.
Output: Three strings, representing the left, middle and right areas of aRow
Steps:
1. Left Space = The number of leading spaces in aRow
2. Right Space = The number of trailing spaces in aRow
3. LSpStart = The starting position of the largest space inside aRow
4. LSp = The length of the largest space inside aRow
5. 2nd LSpStart = The starting position of the 2nd largest space inside aRow
6. 2nd LSp = The length of the 2nd largest space inside aRow
7. If (Left Space > LSp) then Left Area Empty = TRUE
8. If (Right Space > LSp) then Right Area Empty = TRUE
9. If (Left Area Empty) && (Right Area Empty) then

Middle Area = Trim leading and trailing spaces (aRow)
If (Middle Area is Blank) then Return message “All three areas are Empty”
Else Report Middle Area and Return message “Left and Right Areas are Empty”

10. Else If (Left Area Empty) then
Middle Area = Substring (aRow, Left Space + 1, LSpStart - 1)
Right Area - Substring (aRow, LSpStart + LSp, \aRcrw\ - Right Space)
Report Middle Area and Right Area
Return message “Left Area is Empty”

11. Else If (Right Area Empty) then
Left Area = Substring (aRow, Left Space + I, LSpStart - 1)
Middle Area = Substring (aRow, LSpStart + LSp, \aRow\ - Right Space)
Report Left Area and Middle Area
Return message “Right Area is Empty”

12. Else
If (2nd LSpStart > LSpStart) then

Left Area = Substring (aRow, Left Space + 1, LSpStart - 1)
Middle Area = Substring (aRow, LSpStart + LSp, 2nd LSpStart - 1)
Right Area = Substring (aRow, 2n LSpStart + 2nd LSp, \aRow\ - Right Space)

Else
Left Area - Substring (aRow, Left Space + 1,2 nd LSpStart-1)
Middle Area - Substring (aRow, 2nd LSpStart + 2nd LSpStart, LSpStart - 1)
Right Area = Substring (aRow, LSpStart + LSp, \aRow\ - Right Space)

Report Left Area, Middle Area and Right Area

Algorithm 4.2. Dividing a Row to Right, Middle and Left Areas.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Classification Keywords Patterns
Date Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday,
January, February, March, April, May, June, July,
August, September, October, November, December,
Jan, Feb, Mar, Apr, Jun, Jul, Aug, Sep, Oct, Nov, Dec,

!!/!!/!!
!/!!/!!
II/!/!f
!/!/!!

Time A.M., P.M., AM, PM, HI M!
!!;!!

Page Page ! Of !
Message Message, Error, Command, Ready, Return to, Enter,

Type, PFKey, Found
PF!
PF !
F!
F !

Table 4.1. The Default Keyword and Pattern Lists of LeNDI (“!” means any digit).

After extracting the areas 1 to 8, each area is classified into one of the following

seven categories, which are represented by codes 0 to 6:

0 -» the area is empty

1 the area contains a screen code

2 -» the area contains a screen title

3 -> the area contains date information

4 —» the area contains time information

5 —̂ the area contains page number information

6 —̂ the area contains a message

An empty area is a blank one, which was reported to be blank by Algorithm 4.2 or its

simpler version, or belongs to a row that was reported to be all blank by Algorithm 4.1. A

non-empty area is checked for the existence of any of the keywords and/or patterns that

may help classifying it to date, time, page information or message. Table 4.1 shows the

default keyword and pattern lists used for this classification. Using LeNDI, one can tailor

these lists for individual legacy systems by adding new items or removing unwanted ones

based on his/her judgment and analysis of the screen style of the system in hand. If a non­

empty area does not contain date, time, page number or message information, then it is

classified to contain code or title. It is assumed to be a code if it contains one word. If it

contains more than one word, then it is assumed to be title. Algorithm 4.3 categorizes the

content of a given area into one of the seven categories.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.3: Area Classification
Input: A string, area, representing one of the key areas of a snapshot.
Output: A classification of this area.
Steps:
1. Break area into words, using white spaces as dividers. Store the words in Word List
2. If Word List is empty then Return message “Empty”
3. If Word List contains a date keyword or pattern then Return message “Date”
4. If Word List contains a time keyword or pattern then Return message ‘T ime”
5. If Word List contains a page keyword or pattern then Return message “Page”
6. If Word List contains a message keyword or pattern then Return message “Message”
7. If [Word List\ = 1 then Return message “Code”
8. Else Return message “Title”

Algorithm 4.3. Area Classification.

4.2.2 Five Presentation Space Features
Four features are derived out of the analysis of the snapshot important areas. A fifth

feature is extracted from the cursor label. The sequel discusses them.

4.2.2.1 Feature 1-1: Eight Areas Encoding

This feature is an encoding of the classification of the eight extracted areas, 1 to 8.

For each snapshot, the value of this feature is an eight characters string, e.g., “03520106”.

The similarity measure of two values of this feature is the number of matching characters

divided by 8. A 0 (empty area) and a 6 (message area) are considered a match since it is

common that a legacy CUI allocates an area for system messages, if any message is to be

presented to the user, which is empty otherwise.

4.2.2.2 Feature 1-2: The Start Columns of Titles and Codes

This feature is a string that is formed by concatenating the starting column of all title

and code areas discovered, ordered from area 1 to 8. For example, assume that area 2 is a

title that starts at column 23 and area 8 is a code that starts at column 65. The other areas

are classified as empty, date, time, page information or message. Then, Feature 1-2 for

this snapshot is “2365”. This feature is useful in identifying screens whose peripheries are

static in terms of the contents and their starting column locations. Two values of this

feature are compared using binary comparison whose outcome is either one if the two

values are identical, or zero otherwise.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.23 Features 1-3 and 1-4: Titles, Codes and/or Selected Text Areas

These two features are two of the eight areas extracted that are chosen for exact string

comparison. This means that whatever in these areas will be recorded as such as a

feature. However, numerical values are replaced by “!”s and spaces are removed to allow

flexibility in comparison. For example, if the content of an area chosen for exact string

comparison is “Items 1-3 of 13”, the actual string value stored for this feature will be

“Item!-!of!”. The LeNDI analyst can open the feature extraction setup dialog box to

choose two of the eight areas extracted for these two features. Alternatively, s/he can ask

LeNDI to do so. LeNDI picks the two areas that are classified as codes or titles, over the

entire snapshot set, more times than any other areas. Binary comparison is used to

measure the similarity of two values of each of these features.

4.2.2.4 Feature 5-1: Cursor Label

LeNDI records the initial cursor position when a screen snapshot is received. The

cursor’s label is the last sentence or word up to 12 characters to the left of the cursor.

This cursor label is Feature 5-1. Analysis of many snapshots of different legacy systems

showed that the benefit of this feature depends on the style used to design the legacy

GUI. Some systems have a standard command line or a few cursor labels shared among

most legacy screens, making this feature less useful. In other cases, the variety of cursor

labels and prompts increases the utility of this feature. Binary comparison is used to

compare cursor label values.

4.2.3 Presentation Space Features Examples
This subsection includes a few snapshots, taken from a legacy system whose behavior

was modeled using LeNDI. On each snapshot, each of the eight areas is marked with gray

if it contains some text and is left blank if it is empty. Following each snapshot, is a table

with LeNDI's classification of its eight key areas and the values of Features 1-1, 1-2, 1-3,

1-4 and 5-1. The examples are shown in Figures 4.2 to 4.7. The areas chosen for Features

1-3 and 1-4 are areas 1 and 2. If some area is classified as a code or title, then its start and

end columns are included between brackets, e.g., (10-59). Note that the LeNDI starts

columns' and rows' indices from 0, but in the figures below the indices start at 1 for ease

of comprehension. Also, note that in Figure 4.6, the bottommost non-blank line left and

right areas are the same, i.e., the same content is classified as the left and right areas. This

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is because the algorithm starts from the left and keeps moving right while no double

space is encountered. It stops at the end of the message displayed. It does the same thing

but starting from the right and moving backwards to get the right content, but ends up

with the same message content. The keyword and patterns lists used for area

classification are the default ones shown in Table 4.1.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
h o.c s a; { i 'ura v

To m ake a c h o ic e : t y p e a n u m b e r, t h e n p r e s s ENTER

1 C o p y r ig h t I n f o r m a t io n - - f i l e s a v a i l a b l e a n d u p - t o - d a t e

2 B r a i l l e a n d A u d io - - f i l e s f r o z e n m id -A u g u s t 1999

3 F e d e r a l L e g i s l a t i o n - - f i l e s f r o z e n D ecem b er 1998

T he LC C a ta lo g F i l e s a r e a v a i l a b l e a t :
h t t p : / / l e w e b . l o c . g o v / c a t a l o g /

8 S e a r c h in g H o u rs a n d B a s i c S e a r c h Commands
9 L i b r a r y o f C o n g re s s G e n e r a l I n f o r m a t i o n

10 L i b r a r y o f C o n g re s s F a s t F a c t s

12 Com m ents a n d L o g o f f
C h o ic e :

Area Classification Code
1 Empty 0
2 Title (10-59) 2
3 Empty 0
4 Empty 0
5 Empty 0
6 Empty 0
1 Empty 0
8 Code (67-75) 1

Feature 1-1 02000001
Feature 1-2 1067
Feature 1-3 BLANK
Feature 1-4 LOCIS:LIBRARYOFCONGRESS!NFORMATIONSYS

TEM
Feature 5-1 Choice:

Figure 4.2. An Example Legacy Screen Snapshot (1) with
Features 1-1,1-2,1-3,1-4 and 5-1 Extracted.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
F im R A b , .H e ld ; / ; : i< i;

T h e se f i l e s t r a c k a n d d e s c r i b e l e g i s l a t i o n { b i l l s a n d r e s o l u t i o n s) i n t r o d u c e d
i n t h e US C o n g r e s s , f ro m 1973 (9 3 r d C o n g r e s s) t h r o u g h 1998 (1 0 5 th C o n g r e s s) .
E ac h f i l e c o v e r s a s e p a r a t e C o n g r e s s .

CHOICE FILE
1 C o n g r e s s , 1 9 8 1 -8 2 (9 7 th) CG97
2 C o n g r e s s , 1 9 8 3 -8 4 (9 8 th) CG98
3 C o n g r e s s , 1 9 8 5 -8 6 (9 9 th) CG99
4 C o n g r e s s , 1 9 8 7 -8 8 (1 0 0 th) C100
5 C o n g r e s s , 1 9 8 9 -9 0 (1 0 1 s t) C101
6 C o n g r e s s , 1 9 9 1 -9 2 (1 0 2 n d) C102
7 C o n g r e s s , 1 9 9 3 -9 4 (1 0 3 rd) C103
8 C o n g r e s s , 1 9 9 5 -9 6 (1 0 4 th) C104
9 C o n g r e s s , 1 9 9 7 -9 8 (1 0 5 th) C105
The 1 0 6 th C o n g r e s s , 1 9 9 9 -2 0 0 0 , c a n b e fo u n d a t : http://thomas.l

11 S e a r c h a l l C o n g r e s s e s on LOCIS 1 9 7 3 -1 9 9 8
E a r l i e r C o n g r e s s e s : p r e s s ENTER

12 R e tu r n t o LOCIS MENU s c r e e n

C h o i c e :
T . F i 8 b t T J ') i ; l

Area Classification 1 Code
! Empty jo
2 Title (26-44) 2
3 Empty 0
4 Empty (0
7 Empty p
6 Empty p
7 Empty p
8 Code (67-78) jl

Feature 1-1 02000001
Feature 1-2 2667
Feature 1-3 BLANK
Feature 1-4 FEDERALLEGISLATiON
Feature 5-1 Choice:

Figure 4.3. An Example Legacy Screen Snapshot (2) with
Features 1-1,1-2,1-3,1-4 and 5-1 Extracted.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://leweb.loc.gov/catalog/
http://thomas.l

f i ' l - i j 7'-’l io i 'y 1;4i'j^'“S 9 lT 2 3 4 i '5 '7 £ 3 0 I2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

fiiiiiii
tG 'JS CG97, CG9G. CG-75 . CC-94 a n d CG93.

Area Classification Code Feature 1-1 34021060
1 Date 3 Feature 1-2 064
2 Time 4 Feature 1-3 TUESDAY,!/!/!
3 Empty 0 Feature 1-4 !:!P.M.
4 Title (0-62) 2 Feature 5-1 NEW COMMAND:
5 Code (64-68) 1
6 Empty 0 Figure 4.4. An Example Legacy Screen Snapshot (3) with
7 Message 6 Features 1-1,1-2,1-3,1-4 and 5-1 Extracted.
8 Empty 0

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
H M H H I

B r o a d e r t e r m s :
T01 FISCAL POLICY

R e l a t e d t e r m s :
T02 BALANCED BUDGETS
T03 BUDGET DEFICITS
T04 BUDGET RECONCILIATION
TO5 DEFICIT FINANCING
TO 6 GOVERNMENT SPENDING REDUCTIONS
T07 RESCISSION OF APPROPRIATED FUNDS

Area Classification Code Feature 1-1 11000060
1 Code (0,6) 1 Feature 1-2 08
2 Code (8,16) 1 Feature 1-3 DEFICIT
3 Empty 0 Feature 1-4 REDUCTION
4 Empty 0 Feature 5-1 NEW COMMAND:
5 Empty 0
6 Empty 0 Figure 4.5. An Example Legacy Screen Snapshot (4) with
7 Message 6 Features 1-1,1-2,1-3,1-4 and 5-1 Extracted.
8 Empty 0

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

THE TERM, "BUDGET SURPLUSES", IS NOT USED IN C104 .
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN C103 .
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN C102 .
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN C 1 0 1 .
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN C 100.
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN CG99 .
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN CG98.
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN CG97.
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN CG96.
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN CG95 .
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN CG94 .
THE TERM, "BUDGET SURPLUSES", IS NOT USED IN CG94 .

BUDGET SURPLUSES

B r o a d e r t e r m s :
TO L 3UDGETS
i?AGF 1 Or' J , ><i'A 'V }’0}< «/P PAGI l-.iO R hST PG XMl.:};

Area Classification Code Feature 1-1 21022055
1 Title (0,30) 2 Feature 1-2 032015
2 Code (32,39) 1 Feature 1-3 L1VTISTHESOURCEFORTHEEXPN
3 Empty 0 Feature 1-4 COMMAND:
4 Title (0-5) 2 Feature 5-1 XT PG, XMIT):
5 Title (15-49) 2
6 Empty 0 Figure 4.6. An Example Legacy Screen Snapshot (5) wit!
7 Page 5 Features 1-1,1-2,1-3,1-4 and 5-1 Extracted.
8 Page 5

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
r TFMfc 3 i Of 4 '. s£7 l 't BRIEF D.1 S P IA 1 F iL ts- Ct 0t>

1 . H .C O N .R ES.2 1 6 : SPON=Rep Shaw , (C o s p = 5) ; OFFICIAL TITLE: A c o n c u r r e n t
r e s o l u t i o n e x p r e s s i n g t h e s e n s e o f C o n g r e s s r e g a r d i n g t h e u s e o f
f u t u r e b u d g e t s u r p l u s e s .

2 . H .C O N .R ES.2 8 4 : SPON=Rep K a s i c h ; OFFICIAL TITL E: A c o n c u r r e n t r e s o l u t i o n
r e v i s i n g t h e c o n g r e s s i o n a l b u d g e t f o r t h e U n i t e d S t a t e s G o v e rn m en t f o r
f i s c a l y e a r 1 9 9 8 , e s t a b l i s h i n g t h e c o n g r e s s i o n a l b u d g e t f o r t h e U n i te d
S t a t e s G o v e rn m en t f o r f i s c a l y e a r 1 9 9 9 , a n d s e t t i n g f o r t h a p p r o p r i a t e
B u d g e ta r y l e v e l s f o r f i s c a l y e a r s 2 0 0 0 , 2 0 0 1 , 2 0 0 2 , a n d 2 0 0 3 . FLOOR
ACTION HAS OCCURRED.

3 . H .R E S .3 4 0 : SPON=Rep P a s c r e l l , (C o s p = 1 6) ; OFFICIAL TITL E: A r e s o l u t i o n
e x p r e s s i n g t h e s e n s e o f t h e H o u se o f R e p r e s e n t a t i v e s t h a t a n y
b u d g e ta r y s u r p l u s a c h i e v e d b y t h e e n d o f f i s c a l y e a r 2002 b e s a v e d f o r
i n v e s tm e n t i n t h e S o c i a l S e c u r i t y P ro g ra m .

NEXT PAGE: p r e s s t r a n s m i t o r e n t e r k e y
SKIP AHEAD/BACK: t y p e a n y i te m # i n s e t E x a m p le --> 25
FULL DISPLAY: ty p e DISPLAY ITEM p l u s a n i te m # E x a m p le --> d i s p l a y i te m 2
l U i l !

Feature 1-1 I 52202010 ~~
Feature 1-2 3167320
Feature 1-3 1TEMSHQF!
Feature 1-4 SETkBRlEFDISPLAY
Feature 5-1 j READY:

Figure 4.7. An Example Legacy Screen Snapshot (6) with
Features 1-1,1-2,1-3,1-4 and 5-1 Extracted.

63

Area Classification Code
1 Page Info 5
2 Title (31-50) 2
3 Title (67-76) 2
4 Empty 0
5 Title (32-48) 2
6 Empty 0
7 Code (0-5) 1
8 Empty 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 IBM 327© Data Stream Features
When receiving a snapshot via the IBM 3270 outbound data stream, LeNDI gets the

presentation space of the snapshot along with some non-visual information. From this

extra information, LeNDI records the initial cursor location on the screen and IBM 3270

field locations, lengths, attributes and protection status (protected or unprotected, i.e.,

read only or read/write). In some systems, this information can be very useful in

clustering similar snapshots together. In particular, these features can help distinguish the

snapshots of visually similar GUI states, e.g., those belonging to different modes of a

multi-mode screen, if each mode is to be treated as a separate screen.

This non-visual extra information varies between data transfer protocols. The

discussion below and the features in this subset apply to IBM 3270 data transfer protocol.

For IBM 3270, LeNDI extracts two features that encode important information about the

IBM 3270 fields received with the outbound data stream.

4.3.1 Feature 2-1: Hashing of the Number and Locations of IBM 3270
Fields

The first feature is a hash function of the information of the IBM 3270 data fields

retrieved with a screen snapshot. It encodes two pieces of information, the number of

fields and their locations. LeNDI uses the following hashing function:

Feature 2-1 = £ (x8- X yi) + 10000 x n / is the set of IBM 3270 data fields
iel

where x and y are the horizontal and vertical locations of the field’s first character on the

snapshot as received from the IBM 3270 outbound data stream and recorded by LeNDI

and n is the number of 3270 fields on the current screen snapshot. This feature is

numerical and its values are compared with one another using binary comparison.

4.3.2 Feature 2-2 : The Number of IBM 3270 Unprotected Fields
This feature is the number of unprotected (input) data fields received from the

outbound data stream carrying the screen snapshot. So, after LeNDI records all the 3270

data fields received, it counts the number of unprotected ones. This feature is more useful

in clustering snapshots in systems with intense data entry operations, than other systems.

Binary comparison is used to compare different values of this feature.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Presentation Space Layout Features
Looking at a screen snapshot as document, one can see that many screens have some

layout structure that serves presenting the data on the screen in a meaningful

comprehensible format. For example, some screens present their content as an itemized

list, table, form, etc. Even when no clear structure is imposed on the screen, often its

content is organized using a particular layout. For example, some columns or rows may

be always denser in content than others on the snapshots of the same screen. Or, some

numerical contents always exist at certain parts of the screen. In some other cases, some

characters like or are used to impose some patterns on the screen, e.g., vertical or

horizontal dividers or frames. The features of this subset capture such layout

characteristics. They are extracted using a number of image processing and document

analysis methods. They are grouped in two groups: projection profiles features and layout

classification features. The first group includes features that reflect the distribution of the

entire content or special types of contents (e.g., numbers) on the rows and columns of the

screen snapshot. The second group includes features that classify the layout to “table”,

“list” or “general” and the specifications of this classification, if it is one of the first two.

4.4.1 Projection Profiles
The features included in this subset are derived from different projection profiles built

for every recorded snapshot. Projection profiles analysis is used for document

understanding and mainly for separating different document components [SLGSH92,

LHHP96]. Projection refers to the mapping of a two-dimensional region of an image into

a waveform whose values are the sums of the values of the image points along some

specified direction. A projection profile is obtained by determining the number of black

pixels that fall into a projection axis. If the vertical and horizontal axes are chosen, then

the corresponding vertical and horizontal projection profiles are histograms representing

the number of black pixels in the columns and rows of pixels of a document image,

respectively. Projection profiles represent a global feature of a document and play an

important role in document component extraction. A deep valley in the profile with a

certain predefined width is called a cut. Analysis of these cuts helps in separating the

components of a document. Further details can be found in [SLGSH92, LHHP96].

LeNDI treats a screen snapshot as a document and considers every character as a “black

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pixel”. Then, it applies projection profiles analysis to infer some features that describe the

density and distribution of the snapshot content.

LeNDI builds five types of profiles for every snapshot; each is the base for one

feature. The first two profiles are the vertical and horizontal binary histograms of the

entire snapshot content. A binary histogram is the one that has one bit for every column

or row represented. So, instead of recording the exact number of pixels per row or

column, a “1” or “0” is recorded depending on whether the number of pixels is above a

given threshold or not. The third is a vertical binary histogram of the numerical content of

the snapshot. In building this histogram, non-numerical characters are treated as blanks.

The forth is a histogram of the number of words in the two top and two bottom lines. The

fifth is a binary histogram of a single character of a group of characters of interest that are

thought to be used to impose some patterns on the screen snapshot, e.g., or

LeNDI chooses the most frequent character on the given snapshot from the group of

interesting characters for this fifth histogram.

Several measures for histogram distances are suggested in [SLGSH92], To compare

legacy snapshots projection profiles, LeNDI uses different versions of the normalized~

Euclidean similarity measure, which is the number of matching bits divided by the total

number of bits. The rest of this section describes in detail the five types of projection

profiles used in LeNDI and then presents the features associated with them and the

similarity measures used for each feature.

44.1 J All Characters Binary Vertical Profile

This is a binary encoding of the histogram produced by projecting all the snapshot

content along the vertical axis. First, two setup parameters are retrieved from the

database. These are the “Upper Vertical Cut” and the “Lower Vertical Cut”. They define

how many rows to cut off the presentation space from the top and the bottom,

respectively, before building this profile. The default value for each of these parameters

is 3, but The LeNDI analyst can override the defaults. The reason for these cuts is that

legacy screens usually have date, time, title, list of available commands and other

information at their tops and/or bottoms. This information may have a common layout

among many screens but does not reflect any special layout characteristics of the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

individual screens, especially if projected vertically. This information at the periphery of

the screen is used for extracting the presentations space features of section 4.2.

Second, the number of non-blank characters is counted per column. Then, for a

certain column, if this number is above a certain threshold3, it is represented by “1” in the

binary encoding of the vertical profile; otherwise it is represented by “0”. Otherwise,

LeNDI uses the default value of 3. Setting this threshold gives The LeNDI analyst

freedom to eliminate the noise produced by scattered characters and focuses the

histogram representation on the body of the snapshot. The resulting histogram is 80 bits

long for default IBM 3270 screen snapshots. It is stored as a string in hexadecimal

format. Algorithm 4.4 is used for building this profile.

4.4.1.2 All Characters Binary Horizontal Profile

This is a binary encoding of the histogram produced by projecting the snapshot

content along the horizontal axis. It is similar to all characters binary vertical profile,

except that non-blank characters are counted per row not per column. No cuts are made to

the snapshots before building the profile. A user-defined or a default horizontal threshold

Algorithm 4,4: Constructing All Characters Binary Vertical Profile
Input: A presentation space, Pres Space, of a snapshot
Output: The “all characters binary vertical profile” of Pres Space
Steps:
1. Retrieve the Upper Vertical Cut and Lower Vertical Cut from the database.
2. Retrieve the Vertical Threshold from the database.

3. Cut the top Upper Vertical Cut rows from Pres Space
4. Cut the bottom Lower Vertical Cut rows from Pres Space

5. Create String all char vertical profile

6. For every column in Pres Space
• Count = the number of non-blank characters in this column
• If {Count > Vertical Threshold) then Concatenate T to all char vertical profile
• Else Concatenate 'O' to all char vertical profile

7. Convert all char vertical profile to hexadecimal representation
8. Report all char vertical profile

Algorithm 4.4. All Characters Binary Vertical Profile Construction Algorithm

3 LeNDI provides a default threshold which can be overridden by the analyst.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.5: Constructing Numbers Binary Vertical Profile
Input: A presentation space, Pres Space, of a snapshot
Output: The “numbers binary vertical profile” of Pres Space
Steps:
1. Retrieve the Numbers Vertical Threshold from the database.
2. Create String numbers vertical profile

3. For every column in Pres Space
• Count - the number of digits in column
• If {Count > Numbers Vertical Threshold)

then Concatenate '!’ to numbers vertical profile
• Else Concatenate 'O' to numbers vertical profile

4. Convert numbers vertical profile to hexadecimal representation
5. Report numbers vertical profile

Algorithm 4.5. Numbers Binary Vertical Profile Construction Algorithm

is used to decide whether the count of non-blank characters in a row should be

represented by “1” or “0”.

4.4.1.3 Numbers Binary Vertical Profile

This profile is similar to the “all characters binary vertical profile” except that only

the number of digits per columns is counted and all other characters are treated as blanks.

No upper or lower cuts are made to the snapshot. The count of digits per column is

compared to a user-defined or a default value of the “Numbers Vertical Threshold” setup

parameter, to decide whether to represent it by “1” or “0” in the profile. Algorithm 4.5 is

used to build this profile.

4.4.1.4 Words Horizontal Profile

This profile is a histogram of the number of words in the absolute top two rows and

the absolute bottom two rows of a snapshot. A word is a horizontal sequence of

characters that is preceded and succeeded by at least one space or by the left or right

boundary of the screen snapshot. This definition includes line segments, numbers, etc.

This is the only non-binary profile, meaning that the actual count of words is stored in

hexadecimal format not just a binary encoding of it.

4.4.1.5 Special Characters Binary Profile

Some characters like “j” or are often used to create patterns, e.g., dividers,

etc. on legacy screens. Some other characters like or “.” may be used in some

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

“consistent” way on the snapshots of one screen, forcing some pattern on the instances of

this screen. Consistency can be relative to the snapshot rows or columns, e.g., if a table

column appears starting at the same column on a screen and it contains real numbers,

then a pattern of dots (V) will be formed on this snapshot. See an example of two

snapshots of the same screen in Figures 4.8 and 4.9. One can notice that the patterns

imposed by '/' and on these two snapshots are more consistent in the vertical direction

than the horizontal one, i.e., the same columns in both snapshots contain instances of

these characters, but only some rows do. A binary profile that is created by capturing the

consistent presence (i.e. pattern) of the most frequent of these characters on a snapshot

can serve as a feature for comparing snapshot similarity.

To implement this idea, first, LeNDI offers a default set of special characters and for

each character, it offers a suggested direction (horizontal or vertical) along which, the

corresponding character is thought to exist consistently more that the other direction.

Table 4.2 shows this set. For example, “|” is usually used to create vertical lines or

dividers on snapshots. So, it is suggested to build a vertical binary profile for it, if it is

chosen as the character of interest. The LeNDI analyst can change or replace the default

special characters set. LeNDI can accept up to 10 special characters. Additionally, s/he

can change the type of profile suggested for a special character. Third, during feature

extraction for a snapshot, LeNDI counts the number of occurrences for each of the

special characters in the snapshot presentation space. For the most frequent character, it

builds the corresponding type of profile associated with this character and encodes it in

binary format. The upper and lower cuts used in building the “all characters binary

vertical profile” are used in building the special characters profile too if it is a vertical

one. If it is a horizontal one, no cuts are made.

Special Character j # : * / - —

Profile Type j V V V V H H

Table 4,2. LeNDI’s Default Special Characters Set

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
DANILS, STEVEN
PAGE 01 * * *MORE
INJURY DATE 0 3 /1 0 /9 1
IN J DESC HAND CONTUSION
LN
NO

1
2
3

PAYEE

CLT
CUT
CLT

CLT
CLT
CLT

CLT
CLT
CLT

IND
CODE

25
20
20

20
20
25

20
20
25

FROM
DATE

SHAWS

THRU
DATE

WC 1 0 1 -7 9 4 5 4 7 REG 5

IND EST

0 7 /1 5 /9 5 0 7 /2 8 /9 5
0 7 /2 2 /9 5 0 7 /2 8 /9 5
0 7 /1 5 /9 5 0 7 /2 1 /9 5

DYS

14
7
7

0 7 /0 8 /9 5 0 7 /1 4 /9 5 7
0 7 /0 1 /9 5 0 7 /0 7 /9 5 7
0 7 /0 1 /9 5 0 7 /1 4 /9 5 ADJ

0 7 /0 8 /9 5 0 7 /1 4 /9 5 7
0 7 /0 1 /9 5 0 7 /0 7 /9 5 7
0 6 /1 7 /9 5 0 6 /3 0 /9 5 ADJ

WKLY
RATE

7 6 .3 4
4 4 4 .6 5
4 4 4 .6 5

4 4 4 .6 5
4 4 4 .6 5

7 7 .6 0

4 4 4 .6 5
4 4 4 .6 5

7 8 .2 3

CHARGE INEL
CODE

1 5 2 .6 8
4 0 4 .9 9
4 0 4 .9 9

3 5 9 .1 5
3 5 9 .1 5
1 5 5 .2 0

5 2 .5 0
5 2 .5 0

1 5 6 .4 6

148143
IS/

PAID RVL
ST

1 5 2 .6 8 10
4 0 4 .9 9 10
4 0 4 .9 9 10

3 5 9 .1 5 10
3 5 9 .1 5 10
1 5 5 .2 0 10

5 2 .5 0 10
5 2 .5 0 10

1 5 6 .4 6 10

SELECT LINE RETURN TO INQ CLM DSP SKIP TO DATE

_________ INQ IND SVC LST

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1
2
3 / /
4 /
5
6
7
8 / / / / . .
9 / / / / . .

0 / / / / - .
1
2 / / / / - .
3 / / / / . .

4 / / / / - .
5
6 / / / / . .
7 / / / / . .

8 / / / / -
9
0
1
2
3
4

Figure 4.8. An Example Legacy Screen Snapshot (7) (upper). The Patterns Imposed
on The Snapshot by T and V Characters (lower).

4.4.1.6 Features 6-1 and 6-2: All Characters Binary Vertical and Horizontal Profiles

Five features are derived for each snapshot from the projections profiles described

above. The first is Feature 6-1. It is the “all characters binary vertical profile” of the

snapshot. It is stored as a string of 20 characters; each represents a hexadecimal digit that

encodes 4 bits, i.e., 4 columns of the profile. Feature 6-2 is similar to Feature 6-1. It is a

6-characters string encoding the “all characters binary horizontal profile”. LeNDI does

discrete comparison for 2 values of any of the Features 6-1 and 6-2, using the normalized

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
DANILS, STEVEN
PAGE 22
INJURY DATE 0 3 /1 0 /9 1
IN J DESC HAND CONTUSION

SHAWS WC 1 0 1 -7 9 4 5 4 7 REG 5

IND EST 148143
I S /

LN PAYEE IND FROM THRU DYS WKLY CHARGE INEL PAID RVL
NO CODE DATE DATE RATE CODE ST

1 CLT 10 0 5 /0 6 /9 1 0 5 /1 9 /9 1 14 4 4 4 .6 5 8 8 9 .3 0 8 8 9 .3 0 10
2 CLT 10 0 4 /2 2 /9 1 0 5 /0 5 /9 1 14 4 4 4 .6 5 8 8 9 .3 0 8 8 9 .3 0 10
3 CLT 10 0 4 /0 8 /9 1 0 4 /2 1 /9 1 14 4 4 4 .6 5 8 8 9 .3 0 8 8 9 .3 0 10

A CLT 10 0 3 /2 5 /9 1 0 4 /0 7 /9 1 14 4 4 4 .6 5 8 8 9 .3 0 8 8 9 .3 0 10
5 CLT 10 0 3 /1 1 /9 1 0 3 /2 4 /9 1 14 4 4 4 .6 5 8 8 9 .3 0 8 8 9 .3 0 10

SELECT LINE RETURN TO INQ CLM DSP SKIP TO DATE

_________ INQ IND SVC LST

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1
2
3 / /
4 /
5
6
7
8 / I I I .
9 / I l l .
0 / I l l . .
1
2 / I l l . .
3 / I l l -
4
5
6
7
8
9
0
1
2
3
4

Figure 43 . An Example Legacy Screen Snapshot (8) (upper). The Patterns Imposed
on The Snapshot by 7’ and V Characters (lower).

Euclidean similarity measure, which is the number of matching bits divided by the total

number of bits. The resulting value represents how similar two snapshots are, based on

this feature. In other words, this value shows how similar the contents of both snapshots

are distributed across snapshot columns (Feature 6.1) or rows (Feature 6.2).

4.4X7 Features 6-3: Numbers Binary Vertical Profile

Feature 6-3 is a 20-character string that encodes the “numbers binary vertical profile”

in a hexadecimal format. A weighted Euclidean similarity measure is used to compare

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

values of this feature. This means that the weight of matching “F’s can be different than

that of matching “0”s. The LeNDI analyst may define (or use the default) weights to

decide how important the coexistence of a “1” in the same bit on both values compared to

the coexistence of a “0”. The formal case indicates that the corresponding columns on

both snapshots include some numerical content, while the later indicates that the columns

do not have any numerical content. The weight of a mismatch is 0.

4.4X8 Features 6-4: Words Horizontal Profile

Feature 6-4 is the “words horizontal profile”. It is a string formed by concatenating

the 4 numbers representing the word counts for the absolute two top and absolute two

bottom lines of the snapshot. The counts are in hexadecimal format. The similarity of two

values is the number of matching counts (out of 4) divided by 4.

4.4X9 Features 6-5: Special Characters Binary Profile

Finally, Feature 6-5 is an encoding of the “special characters binary profile”. It is a 7-

characters or 21-chracters string depending on whether the profile is horizontal or

vertical, respectively. In both cases, the first character of the string is an encoding of

which special character is used. For example, if the special characters set contains 6

characters, then the first of them is given the code “0”. The second is “1”, etc. When

comparing two values of this profile, LeNDI starts by comparing the first character, to

see if the same special character was considered for both snapshots or not. In case of a

mismatch, LeNDI stops and the comparison result is 0. In case of a match, LeNDI

proceeds to compare the entire profile using the weighted Euclidean similarity measure

used with Feature 6-3.

4.4.1.10 Projection Profiles Example

This subsection provides an example legacy screen snapshot and the five projection

profiles produced for it and the associated features. Figure 4.10(a) shows the setup

parameters used in this example. Figure 4.10(b) shows the snapshot used in the example

and the upper and lower vertical cuts. Figure 4.10(c) to (g) show the five projection

profiles produced for this snapshot and the values of the corresponding features. Note that

the least significant digit in Features 6-1, 6-2, 6-3 and 6-5 represent the 4 left most

columns or the 4 topmost rows, depending on the direction of the profile. So the profile

“1110111110111111.....” will be represented by the string “......fdf7”. Additionally,

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

note that Feature 6-5 in Figure 4.10(h) starts with the character ’5’ which indicates that the

sixth special character was chosen for building the special character profile of the given

snapshot. According to Figure 4.10(a), this character is 7 and the associated projection

direction is vertical.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Upper Vertical Cut 3 Numbers Threshold 3
Lower Vertical Cut 3 Special Character Set -(H) _(H) #{V) :{V) *(V) ,(V)
Vertical Threshold 3 1-1 Match Weight 1.5
Horizontal Threshold 10 0-0 Match Weight 0.3
(a) The setup parameters used in this example. #{H) means if the special character

’#’ Is chosen, build a horizontal profile for i t
12'34 rj 57890123 4 S 6 7 8 9 0 1 ?-3 4 5 5 7 8 9 0 1 2 3 4 5 6 7 3 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 ^6 7 8 9 0 1 2 '3 45fa78S0

THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

TERM,
TERM,
TERM,
TERM,
TERM,
TERM,
TERM,
TERM,
TERM,
TERM,
TERM,

"BUDGET
"BUDGET
"BUDGET
"BUDGET
"BUDGET
"BUDGET
"BUDGET
"BUDGET
"BUDGET
"BUDGET
"BUDGET

SURPLUSES'
SURPLUSES"
SURPLUSES"
SURPLUSES"
SURPLUSES"
SURPLUSES'
SURPLUSES"
SURPLUSES"
SURPLUSES"
SURPLUSES"
SURPLUSES"

IS NOT
IS NOT
I S NOT
IS NOT
IS NOT
IS NOT
I S NOT
I S NOT
IS NOT
IS NOT
I S NOT

USED
USED
USED
USED
USED
USED
USED
USED
USED
USED
USED

IN C 1 0 3 .
IN C 1 0 2 .
IN C 1 0 1 .
IN C 100.
IN CG99.
IN CG98.
IN CG97.
IN C G96.
IN CG95.
IN CG94.
IN CG94.

BUDGET SURPLUSES

B r o a d e r t e r m s :
T01 BUDGETS
PAGE 1 OF 2 . READY FOR NEW COMMAND OR PAGE # (FOR NXT PG, XMIT)

(b) An example legacy screen snapshot (9). Upper and lower cuts are in gray.
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

l i l O l l l l l O l l l l l l l O l l l l l l l l l l l O l l O l l l O l lL l O l l O l l l i lO O OOOOOOOOOOOOOOOOOOOOOOOOOOOO
7 f d f d f f d e e d e 3 0 0 0 0 0 0 0

(c) A vertical projection of the content of the example snapshot in (b) and the
corresponding “all characters binary vertical profile” at the bottom.

Figure 4.10(a-c). An Example Legacy Screen Snapshot (9) with Features 6-1,6-2,6-3,
6-4 and 6-5 Extracted.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 3 4 5 6 7 8 9 0 1 2 3 4 5 S7890

H o r i z o n ta l
T h r e s h o ld

0 0
0
0
0

(d) A horizontal projection of the content of the example snapshot in (b) and the
corresponding “all characters binary horizontal profile” to the right.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

_N um bers T h r e s h o ld _

0 00 1 1 1 0000
) 0 0 0 0 0 0 0 0 0 0 c l 0 0 0 0 0 0 0

(e) A vertical projection of the numerical content of the example snapshot in (b) and
the corresponding “numbers binary vertical profile” at the bottom

(f) The words horizontal profile of the snapshot in (b). The words of the top 2 and
bottom 2 rows are numbered and the word count per column is to the right.

Figure 4.10(d-f). An Example Legacy Screen Snapshot (9) with Features 6-1,6-2,6-3,
6-4 and 6-5 Extracted.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

00000000100000000000000000001000000000000000000000000001000000000000000000000000
) 0 1 0 0 0 0 1 0 0 0 0 0 8 0 0 0 0 0 0

(g) The vertical projection of the special character y for the snapshot in (b) and the
corresponding “special characters binary projection profile”.

Feature 6-1 00000003edeedffdfdf7
Feature 6-2 Oabfff
Feature 6-3 00000001cOOOOOOOOOOO
Feature 6-4 8600
Feature 6-5 500000080000010000100

(h) Features 6-1 to 6-5 for the snapshot of (b).

Figure 4.10(g,h). An Example Legacy Screen Snapshot (9) with Features 6-1,6-2,6-3,
6-4 and 6-5 Extracted.

4.4.2 Layout Classification
It is very common for legacy screen snapshots to have some format, e.g., table, list, or

other format. It would be very useful in grouping similar snapshots together to discover

their formats and specifications, e.g., the number of column and rows of a table or the

number of items in a list. Based on this, the second feature subset derived from snapshot

layout is derived by analyzing the positions of the different components of the snapshot

content relative to each other and deciding whether or not these positions impose a

certain structure on the snapshot appearance. Currently, LeNDI can classify a snapshot

to table, list or, general screen. Additionally, it discovers the specifications of the

discovered format. To do this, a number of document analysis algorithms are applied to

the snapshot, which is treated as a document. First, LeNDI tries to discover any tabular

structure on the document. If it fails, then it tries to discover if a list exists on the

snapshot. If it fails, then it labels the snapshot as “general”, which means that no structure

layout could be discovered. This classification is used as Feature 7-1. Feature 7-2 is a

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

summary of the specifications of the table or list discovered, if any. The following details

the algorithms used, and follows by feature description and examples.

4.4.2.1 Table Detection: An Overview

A number of algorithms for table detection in document images and textual

documents emerged from document analysis research. LeNDI’s table detection process is

based on the bottom-up table detection process described in [KD99, Kie98]. It starts by

identifying single words. Then, it groups words in blocks. Finally, it tries to discover the

relation between these blocks and see if they are organized in a tabular structure or not.

The following describes the algorithms developed and implemented in LeNDI to realize

this process.

In the bottom-up view of the snapshot, the lowest level is the word, delimited by

white space or snapshot boundaries on either side, and constrained to a single row. Figure

4.11 shows the words identified on a portion of the legacy screen snapshot of Figure 4.3.

be fX eg is la r.io rj [(bi.ll.sj jancj {Fas
t-93brij .[C o n g r a s s I] ffc tifoug ij [199

C o n g r e s s .j r t •

Figure 4.11, The Identified Words on Part of a Legacy Screen Snapshot.

The next level is comprised of blocks, which are constructed from words. Any two

words that are vertically adjacent are members of the same block. In order to be vertically

adjacent, there must exist at least one column, which both words occupy, and the words

must be in consecutive rows. Figure 4.12 shows portions of the two blocks that contain

the words shown in Figure 4.11. The relation between all the blocks in the document

(snapshot in our case) is then studied to see if they form a table.

M jthr^nglj fl
ss.»

Figure 4.12, Portions of The Identified Blocks on a Legacy Screen Snapshot

A table is characterized by having several columns of information. Note that a

column is generally defined by spanning more than one row, to distinguish it from a text

segment that occupies one row. By studying many legacy screen snapshots, one can

recognize two major types of tables. There is the single-row record table, whose record of

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

data occupies only one physical row on the snapshot. So, each of its columns contains

similar pieces of information, each on a different row (See Figure 4.13). There is also the

multiple-row record table, where related information in a record is spread across multiple

rows (See Figure 4.14). Thus, a column in this case may contain different types of

information. These two types of tables consist of different types of blocks and have

unique properties that necessitate separate consideration.

DANILS, STEVEN
PAGE 01 ***MORE
INJURY DATE: 0 3 /1 0 /9 1
INJURY DESC: HAND CONTUSION

SHAWS WC 1 0 1 - 7 9 a a a a REG 5

MED EST: 200000
I S /

LINE DOC NO SVCE FROM THRU PROC PROV CHARGE INEL PAID RVL
NO

ll 1BBBBBI
CODE DATE DATE

-

CODE
--------------- -

ST

m W m m| 1 951 -* -0 0 9 ®
0 7 / 0 7 / 9'*

vmmrnmm M l

4 9 5 1 9 8 -0 0 0 0 103 0 4 /0 5 /9 5 0 4 /1 3 /9 5 097110 TOTAL 1 1 0 .0 0 DD 4 4 .8 8 10
5 9 5 1 9 2 -7 7 7 7 600 0 6 /0 2 /9 5 0 6 /3 0 /9 5 REHAB 3 5 7 .0 0 3 5 7 .0 0 15
6 9 5 1 9 2 -7 7 7 7 600 0 6 /0 2 /9 5 0 6 /3 0 /9 5 REHAB 1 7 .4 0 1 7 .4 0 15

7 9 5 1 6 4 -0 3 8 4 103 0 5 /1 5 /9 5 0 5 /1 5 /9 5 178013 TOTAL 9 0 .0 0 D 4 0 .0 0 10
8 9 5 1 7 3 -0 0 0 0 103 0 9 /0 1 /9 4 1 2 /2 9 /9 4 178012 TOTAL 3 2 0 .0 0 DD 1 2 0 .0 0 10
9 9 5 1 7 0 -7 7 7 7 199 0 2 /0 1 /9 5 0 5 /3 1 /9 5 MEMBERTSH 1 2 6 .4 0 1 2 6 .4 0 10

SELECT LINE NO RETURN TO INQ CLM DSP SKIP TO DATE

INQ MED SVC LST

Figure 4.13. A Single- Row Record Table.

ACCOUNT INQUIRY

r NAME GENERAL MILLS, INC.

T T

"I n
I *

r
T

MENU X NEXT INQUIRY

M0RE-PF1
PAGE 01

f

POLICY INQ ARCHIVES DIV 4

Figure 4.14. A Multiple-Row Record Table.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Many single-row record tables have one word per row. To find such tables, LeNDI

needs to look for blocks of text where each word is connected to at most one word in

each vertical direction. These blocks are dubbed “thin blocks” to indicate their special

nature, which is that they contain one word per row. If these “thin” blocks are found in

reasonable amounts across consecutive rows on the screen, the area should be declared a

table. The area would be limited horizontally by the leftmost and rightmost thin blocks

and vertically by the span of the rows throughout which thin blocks can be found. For

example, the boxed area in Figure 4.13 could be labeled as a table, because there are 9

thin blocks that span at least 3 shared rows. Between the leftmost and rightmost thin

blocks, this area may also contain non-thin blocks. Note that the detected table does not

extend past the first and last thin blocks, even if the actual table does. The next subsection

introduces the necessary default or user-defined parameters for defining the criterion of

accepting or rejecting a group of thin blocks as a table.

To detect multiple-row record tables, LeNDI compares the starting column of the top

row (top-left) of the blocks that start on the same row with those that start on other rows.

These blocks do not have to have the same dimensions; however, the two rows should

have enough number of blocks that begin there. There should also exist a certain number

of blocks that have identical borders on the left side. If this condition is met then the area

that contains the table (the smallest rectangle that contains all the blocks) is identified as

such. For example, the boxed area in Figure 4.14 would be labeled as a table, despite the

large block in the middle that would confuse other table identification attempts. Note that

in Figure 4.14, the blocks with light gray background are those that were detected as part

of a table. They meet the conditions described above. The ones with dark gray

background do not contribute to table detection, as they do not fulfill the necessary

conditions. Only the parts of these blocks that fall inside the table borders are considered

part of the table. The first record of the actual table on the snapshot is not detected as part

of the table.

One of the problems identified in [KD99, Kie98] is the effect of common headers (or

footers) on blocks. This effect is shown in Figure 4.15. Essentially, it causes multiple thin

blocks to be tied together by a header or footer that spans multiple columns. This can

cause problems to LeNDI's table detection strategy. One solution to this problem is to

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consider instances of thin sub-blocks within larger blocks and use these as if they were

separate. To identify the sub-blocks, one considers groups of words inside a block that

are vertically connected with one another and disconnected from the surrounding text. If

they span sufficient rows, then they are considered thin sub-blocks. Then, one can apply

Algorithm 4.6b for single-row record table detection to both the original thin blocks and

the new thin sub-blocks, to see if there is a table.

4.4.2.2 Table Detection: Process and Algorithms

The sequel gives an overview of the application of the above methods in LeNDI,

followed by the algorithms used. LeNDI needs to prioritize the above ideas before

applying them. First, LeNDI divides a given presentation space into words and then

groups these words into blocks (Algorithm 4.6a). Second, as tables composed of thin

blocks are the most prevalent and the least computationally intensive, LeNDI tries to

identify this type first (Algorithm 4.6b). Since LeNDI is designed to deal with a wide

range of legacy UI styles, it offers the user some control over this process. Specifically,

the user is allowed to override the default values of LeNDI for these two parameters:

1. The minimum number of blocks (columns) that must exist in a table. The default is 3.

2. The minimum number of rows that these blocks must all span. The default is 3.

FEDERAL LEGISLATION

T h e se f i l e s t r a c k a n d d e s c r i b e l e g i s l a t i o n (b i l l s a n d r e s o l u t i o n s) i n t r o d u c e d
i n t h e US C o n g r e s s , f ro m 1973 (9 3 r d C o n g r e s s) t h r o u g h 1998 (1 0 5 th C o n g r e s s) .
E ac h f i l e c o v e r s a s e p a r a t e C o n g r e s s .

11 S e a r c h a l l C o n g r e s s e s o n LOCIS 1 9 7 3 -1 9 9 8
E a r l i e r C o n g r e s s e s : p r e s s ENTER

12 R e tu r n t o LOCIS MENU s c r e e n

C h o i c e :
___________ L E G IS L A T IO N !

Figure 4.15. Embedded Thin Blocks

Third, if the second step fails to find a table, LeNDI gathers thin sub-blocks from the

set of blocks discovered (Algorithm 4.6c). Then, it reapplies Algorithm 4.6b used in the

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

second step above. Beside the above parameters, the user can control a parameter that

defines when to consider a thin sub-block separate from its parent block:

3. The minimum number of rows a thin sub-block must span to be considered separate

from its parent. The default is 3.

Fourth, if the third step fails too, LeNDI applies the top-left matching algorithm

(Algorithm 4.6d) to the collection of blocks. This algorithm would reuse the parameters:

the minimum number of blocks (columns) and the minimum number of rows. The first

defines the minimum number of matching blocks a table must have between two rows.

The second is used to indicate the minimum number of rows that must have matching

blocks. In the following, Algorithms 4.a to 4.d, which are used by LeNDI to implement

this process, are presented.

Algorithm 4.6a starts by creating empty lists to store the words and the blocks

identified on the given presentation space (steps 1 and 2). Note that blocks are graphs

whose nodes are words. Suitable classes or data structures need to be created. But these

details are not shown in the abstract algorithms given here. Step 3 extracts the individual

words from the presentation space and stores them in Word List. What are actually stored

are the words’ dimensions, i.e., row, starting column and length. For every word

extracted, step 4 tries to find all the blocks that it belongs to, i.e., blocks that the word is

adjacent to at least one word in each of them (step 4.b) and merges them together (4.c).

But if the word does not belong to any block, then it is put in a new block, which is added

to the Block List (step 4.e).

Algorithm 4.6b aims to find the first table it encounters that meets the default or user-

set criterion for tables. This algorithm does not aim to find all the tabular structures on

the snapshot or discover their relation to one another, e.g., if they are parts of the same

table but are fragmented from each other.

Step 1 in Algorithm 4.6b creates a list to store thin blocks, Thin Blocks. Step 2 marks

the non-thin blocks. It identifies them as the ones having at least one word that is adjacent

to at least two words from above or two words from below. Then step 2.c adds blocks

that passed the thinness test without getting marked to Thin Blocks. Steps 3 and 4 retrieve

the parameters that define how many thin blocks (min # of columns) are needed and how

many mutual rows (min # of rows) they need to span in order to be considered a table.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 5 goes over every set of rows of height min # of rows to see how many thin blocks

span this set of rows, i.e., start above or at the first row and end below or at the last row.

Step 5.c performs this check, counts such thin blocks and calculates the dimensions of the

minimum rectangle that covers these thin blocks, which is considered as the dimension of

the table formed of these blocks if any. Step 5.d checks if enough thin blocks (greater

than or equal min # of columns) span the given set of rows. If yes, then it reports the

current table dimensions and terminates the algorithm. If the current set of rows does not

have enough thin blocks to form a table, step 5 moves one row down, takes the next min

o f rows rows and repeats the check of which thin blocks span this set of rows. If the test

fails for all sets of min # o f rows consecutive rows, then step 6 reports that no table was

found using thin-block analysis.

Algorithm 4.6a: Breaking a Presentation Space Into Blocks of Words
Input: A presentation space, Pres Space.
Output: A list of all word blocks in Pres Space.
Steps:
1. Create a new list, Word List
2. Create a new list, Block List

3. For every row in the Pres Space
• Break row into words
• Store the words’ coordinates and lengths in Word List

4. For every word in Word List
a. Success = FALSE
b. For every block in Block List

• If word is adjacent to block then
□ Add word to block
□ Mark block
□ Success = TRUE

c. Merge all marked blocks together
d. Uninark all marked blocks
e. If Success — FALSE then

• Create a new block, New Block
• Add word to New Block
• Add New Block to Block List

Algorithm 4.6a. Breaking a Presentation Space into Blocks of Words

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.6b: Table Detection Using Thin Blocks
Input: A list of blocks, Block List and the presentation space’s number of rows, length.
Output: The dimensions of the table formed of the input blocks if any.
Steps:
1. Create a new list, Thin Blocks
2. For all the blocks in Block List

a. Get current block
b. For every word in current block

• If connected with two words from above or two words from below then
□ mark current block as non-thin block

c. If current block is thin then add it to Thin Blocks
3. Retrieve the parameter min # o f rows from database
4. Retrieve the parameter min # of columns from database
5. For i = 1 to length - min # of rows +1

a. column count ~ 0
b. Create new Dimensions table dimensions
c. For every block in Thin Blocks

® If (first row in block < i) && (last row in block > i + min # of rows -1) then
□ column count ++
□ Update table dimensions to include block

d. If {column count > min # of columns) then
• Report table dimensions
• Return message “Table found”

6. Return message ‘Table NOT found”

Algorithm 4.6b. Table Detection Using Thin Blocks

Algorithm 4.6c discovers thin sub-blocks in a given block, block. Step 1 creates a list

to store the discovered thin sub-blocks, Thin Sub-block List. Step 2 retrieves the

parameter that defines how many rows thin sub-blocks should span in order to be

considered and analyzed independent from its parent block. Step 3 marks all the words

with only one adjacent word from the row above and one from the row below, which are

candidates for being in one of the thin sub-blocks. Step 4 loops while there are still

marked words in block. Steps 4.a to 4.c get the next marked word and create a new sub­

block for it, sub-block. Steps 4.d and 4.e get the upper and lower adjacent words of the

current marked word. Step 4,f grows sub-block from above by looping as long as there

are more upper adjacent marked words, fetching these words and adding them to sub­

block. Step 4.g deals with the case when the top word of a sub-block has to adjacent

words from above, and hence, is not marked. Step 4.g still adds such word to sub-block.

Figure 4.16 shows two cases, one when step 4.g would not apply (left) and another when

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it applies (right). In the left case, all the words of both thin sub-blocks are marked as they

all have at most one adjacent word from each direction. In the right case, the top word of

the right block is unmarked as it has two adjacent words from above. Step 4.g would still

add this word to the thin sub-block. Steps 4.h and 4.i are similar to 4.f and 4.g but grow

sub-block from below. Step 4.j adds sub-block to Thin Sub-block List if it spans at least

the minimum number of rows parameter. Step 4.k unmarks all the words in sub-block.

Finally, step 5 reports the discovered thin sub-blocks.

Algorithm 4.6c: Discovering Thin Sub-blocks inside a Block
Input: A block, block.
Output: A list of all the thin sub-blocks in block.
Steps:
1. Create a new list, Thin Sub-block List
2. Retrieve the parameter min # o f rows o f a thin sub-block
3. For every word in block

• If word is adjacent with at most one word from below and one word from above
□ then mark word

4. While there are still some marked words in block do
a. Get next marked word
b. Create new Block sub-block
c. Add marked word to sub-block
d. Get upper adjacent word to marked word
e. Get lower adjacent word to marked word
f. While upper adjacent word is marked

• Add upper adjacent word to sub-block
• Get next adjacent word to upper adjacent word
• upper adjacent word = next adjacent word

g. If upper adjacent word has one adjacent word from below then
® Add upper adjacent word to sub-block

h. While lower adjacent word is marked
• Add lower adjacent word to sub-block
• Get next adjacent word to lower adjacent word
• lower adjacent word = next adjacent word

i. If lower adjacent word has one adjacent word from above then
• Add lower adjacent word to sub-block

j. If (height (sub-block) > min # of rows o f a thin sub-block) then add sub-block to
Thin Sub-block List

k. Unmark all words in sub-block
5. Report Thin Sub-block List

Algorithm 4.6c. Discovering Thin Sub-blocks inside a Block

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHOICE CHOICE Of CONGRESS

_

Figure 4.16. Two Cases where Step 4.g in Algorithm 4.6c Is Skipped (Left) and
Applied (Right). Gray Words Have 1 or No Adjacent Words from below and above.

To demonstrate the application of Algorithms 4.7b and 4.7c, an example is given in

Figure 4.17. In Figure 4.17a, Algorithm 4.6b was applied to discover thin blocks, which

are shown in gray. Then the algorithm proceeded to detect the relation between these

blocks. The default value of 3 was used for all the parameters, which are the minimum

number of rows for a table, the minimum number of thin blocks (columns) and the

minimum number of rows for a thin sub-block to be considered independent form its

parent. The sliding window with dashed frame and height 3 kept sliding down from the

top of the snapshot with no success in detecting a table. Figure 4.16a shows when the

algorithm was analyzing rows 17 to 19. The thin blocks with dark background meet the

condition of vertically spanning at least the three rows under analysis, but there are only

two of them. So they do not form a table. The blocks with light gray background do not

meet the condition. Figure 4.17b shows the same analysis after applying Algorithm 4.6c

to discover thin sub-blocks and include them in the reapplication of Algorithm 4.6b. This

time, there are four thin blocks and sub-blocks that vertically span the lines currently

under study in the dashed frame. The conclusion is that the area in the solid line frame,

which is the minimum rectangle that covers the thin blocks of the table, contains a table,

according to the criterion defined by the parameters used.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 :* ------------- 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
SET 1 : B lIF .r i.'i BP'I A ? *’J)r.

{ASCENI
H.CO N .RES.2 1 6 : SPON=Rep Shaw, (C osp= ' ' lUAh T IT L E : A c o n c u r r e n t

r e s o l u t i o n e x p r e s s i n g t h e s e n s e o f ‘'n tg E t^ S r e g a r d i n g t h e u s e o f
f u t u r e b u d g e t s u r p l u s e s .

4 ;, H .C O N .R ES.2 8 4 : SPON=Rep K a s ic h ; OFFICIAL T ITL E: A c o n c u r r e n t r e s o l u t i o n
r e v i s i n g t h e c o n g r e s s i o n a l b u d g e t f o r t h e U n i t e d S t a t e s G o v ern m en t f o r
f i s c a l y e a r 1 9 9 8 , e s t a b l i s h i n g t h e c o n g r e s s i o n a l b u d g e t f o r t h e U n i t e d
S t a t e s G o v e rn m en t f o r f i s c a l y e a r 1 9 9 9 , a n d s e t t i n g f o r t h a p p r o p r i a t e
B u d g e ta r y l e v e l s f o r f i s c a l y e a r s 2 0 0 0 , 2 0 0 1 , 2 0 0 2 , a n d 2 0 0 3 . FLOOR
ACTION HAS OCCURRED.

H .R E S .3 4 0 : SPON=Rep P a s c r e l l , (C o s p = 1 6) ; OFFICIAL TITL E: A r e s o l u t i o n
e x p r e s s i n g t h e s e n s e o f t h e H o u se o f R e p r e s e n t a t i v e s t h a t an y
b u d g e ta r y s u r p l u s a c h i e v e d b y t h e e n d o f f i s c a l y e a r 2002 b e ’
i n v e s tm e n t i n t h e S o c i a l S e c u r i t y P ro g ra m .

NEXT PAGE:
SKIP AHEAD/BACK:
FULL DISPLAY:
ready! ’.

t r a n s m i t o r
_y i te m # i n ,

i. SPLAY I ' " J .I ..

(a) The application of thin block analysis (Algorithm 4.6b) does not detect any table.
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

SET 1 : BRIFi- ,. • ■ " iV tR ; cA "?
(ASCENDING

H .C O N .R ES.2 1 6 : SPON=Rep Shaw, (C o s p = 5) ; T IT L E : A c o n c u r r e n t
r e s o l u t i o n e x p r e s s i n g t h e s e n s e o f Congrefats r e g a r d i n g t h e u s e o f
f u t u r e b u d g e t s u r p l u s e s .

H .C O N .R ES.2 8 4 : SPON=Rep K a s ic h ; OFFICIAL T IT L E : A c o n c u r r e n t r e s o l u t i o n
r e v i s i n g t h e c o n g r e s s i o n a l b u d g e t f o r t h e U n i t e d S t a t e s G o v e rn m en t f o r
f i s c a l y e a r 1 9 9 8 , e s t a b l i s h i n g t h e c o n g r e s s i o n a l b u d g e t f o r t h e U n i t e d
S t a t e s G o v e rn m en t f o r f i s c a l y e a r 1 9 9 9 , a n d s e t t i n g f o r t h a p p r o p r i a t e
B u d g e ta r y l e v e l s f o r f i s c a l y e a r s 2 0 0 0 , 2 0 0 1 , 2 0 0 2 , a n d 2 0 0 3 . FLOOR
ACTION HAS OCCURRED.

H .R E S .3 4 0 : SPON=Rep P a s c r e l l , (C o s p = 1 6) ; OFFICIAL TITL E: A r e s o l u t i o n
e x p r e s s i n g t h e s e n s e o f t h e H o u se o f R e p r e s e n t a t i v e s t h a t a n y
b u d g e ta r y s u r p l u s a c h i e v e d b y t h e e n d o f f i s c a l y e a r 2002 b e aavfed fo i '
i n v e s tm e n t i n t h e S o c i a l S e c u r i t y P ro g ra m .

t r a n s m i t o r
a n y i te m # i n
DISPLAY ITE

ij|a|jgjll
itliilli B i

READY: .

(b) Reapplying thin block and sub-block analysis (Algorithm 4.6b), after identifying
thin sub-blocks using Algorithm (4.6c), detects the table in solid border.

Figure 4.17. An Example Application of Algorithms 4.6b and 4.6c

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If table discovery by analysis of thin-biocks and sub-blocks fails, LeNDI tries to

detect any existing multiple-row record table using its block top-left matching algorithm

'(Algorithm 4.6d). The idea of the algorithm is to iterate over the rows of the presentation

space. For every current row, it tries to discover if there is a table that starts there. This is

done by storing the blocks that start on this row. Then, for every subsequent row, the

algorithm collects the blocks that start on this next row and checks if they qualify to be

part of a potential table that starts on the current row. This is done be comparing if

enough blocks on both rows have the same left column border. If enough subsequent

rows qualify, then the algorithm declares that a table is found, reports the table

dimensions and terminates.

Algorithm 4.6d takes as input a list of blocks resulting from Algorithm 4.6a and the

number of rows in the presentation space analyzed. It outputs the dimensions of the first

table formed of the input blocks that meets the user criterion, defined by the minimum

number of rows and columns parameters. Step 1 creates a new object, Table Dimensions,

to store the dimensions of any table discovered. Steps 2 and 3 retrieve the parameters min

of rows and min # o f columns. Step 4 iterates over every row i and stops when a table is

found. Steps 3.2 and 3.3 store, in a new block list Table BL, all blocks that start on the

current row. If the number of blocks starting on the current row is less than min # of

columns, step 3.4 ends the current iteration and moves to the next row. Step 3.5 iterates

over every row j subsequent to the current row and checks if it qualifies for being part of

a table that starts at i. Steps 3.5.1 and 3.5.2 store all the blocks that start on j in a new

block list Candidate BL. Step 3.5.3 checks if j has enough columns (blocks) compared to

min # o f columns. If yes, then it checks how many of these columns has left boundaries

that match some block of Table BL. If the number of matching blocks is > min # of

columns, then this row is considered part of a potential table and Num Qualifying Rows is

incremented and Table Dimensions is updated to include all the matching blocks. After

iterating over all the subsequent rows of i, step 3.6 checks if the number of qualified rows

is > min # of rows. If yes, it reports Table Dimensions, returns a success message and

terminates the algorithm. If no, step 3.7 resets Table Dimensions, and another iteration

starts to try to discover a table starting at row i+1. If no table was discovered that starts at

any row, step 5 terminates the algorithm with a failure message.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.6d: Block Top-left Matching Algorithm
Input: List of blocks, Block List, and the number of presentation space rows, length.
Output: The dimensions of the table formed of (some of) the input blocks, if any.
Steps:
1. Create new Dimension Table Dimensions
2. Retrieve the parameters min # of rows and min # of columns from database
3. For i = 1 to length

3.1. Num. Qualifying Rows = 1
3.2. Create a new block list, Table BL
3.3. For every block in Block List

• If (top row of block = i) then
□ Add block to Table BL

3.4. If (sizeof {Table BL) < min # of columns) then Continue
3.5. For j = i+1 to length

3.5.1 Create a new block list, Candidate BL
3.5.2 For every block in Block List

□ If (top row of block = f) then
* Add block to Candidate BL

3.5.3 If (sizeof {Candidate BL) < min # o f columns) then
□ matching Columns = the # of blocks in Candidate BL whose leftmost

column matches that of a block in Table BL
□ If {matching Columns > min # o f columns) then

■ Num Qualifying Rows ++
■ Update Table Dimensions to include all blocks in Table BL and

Candidate BL whose leftmost columns match
3.6. If {Num Qualifying Rows > min # o f rows) then

• Report Table Dimensions
• Return message “Table found”

3.7. Else Reset Table Dimensions
4. Return message “Table NOT found”

Algorithm 4.6d. Block Top-left Matching Algorithm

Figure 4.18 illustrates the application of Algorithm 4.6d. The minimum number of

rows and columns sought was three. The algorithm failed to discover a table until row 7.

Three blocks start at row 7. Their dimensions (top row, left column, bottom row, right

column) are shown in the table of Figure 6.18(b). Then, the algorithm analyzed the

consecutive rows and discovered that each of rows 12 and 17 has three blocks with the

same left boundary as the three blocks of row 7 (shown in bold font). The algorithm

concluded that rows 7, 12 and 17 form a table whose dimensions are (7,4,19,49), i.e., it

includes all the blocks with matching left columns.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

323456 '7 BSC _l23 4567 8 3 0 1 2 3 4 5 5 7 3 9 0 1 2 3 4 SST'8 9 0 1 2 3 4 5 6 7 69 012 8 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
I Ah: h a sy-kRCn m M 3

i , .4 v j u 7 /w«u i S B I i l B i M l f l l l B i j ISBBSS I I 8 I I
3
4 Sl l l l l J fc i-i-% •) j ! 3
5

7 JSSE SA h KOOIP I t f ^ p -

8 2 0 3 t o -
.9 «

0
1
2 oH-tcE'iAAii Vi./’ ^Asj i \ / „mv'
3 * I

4 m s j* Mf tils
5
6
7
8 ■B E?!! m
9 1 X'JHX 1

0
1
2
3 1111111 111(11111
4

(a) An example snapshot with a multiple-row record table detected.

Row # The Dimensions Of The Blocks Starting On This Row
7 (7,4,8,19) (7,25,7,28) (7,31,9,49)
8 (8,51,8,56)
9 (9,67,9,68) (9,70,9,74)
10
11
12 (12,4,13,19) (12,25,12,28) (12,31,14,46) (12,48,12,55) (12,67,12,68) (12,70,12,72)
13
14 (14,67,14,68) (14,70,14,78)
15
16
17 (17,4,18,19) (17,25,17,28) (17,31,19,47) (17,48,17,55) (17,67,17,68) (17,70,17,72)

(b) The dimensions of the blocks starting or rows 7 to 17.

Figure 4.18. An Example Application of Algorithm 4.6d

4.4.2.3 List Detection

If LeNDI fails to recognize any tabular structure on a snapshot, it tries to discover if

the snapshot contains a list. A list is characterized by the following:

1. There exists a column of numbers in the left half of the snapshot. This can be decided

from the “numbers binary vertical profile”.

2. The column contains “enough” numbers, which are neither real numbers nor dates or

times. The user need to define how many numbers are enough by setting up the

parameter “minimum list length”, or LeNDI will use the default value of 3.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LeNDI employs the heuristic Algorithm 4.7 below to discover the existence of a list,

if any, on a given snapshot. Steps 1 and 2 build the “numbers binary vertical profile” of

the given snapshot presentation space and store it in a variable, Nums Profile. Step 3

terminates the algorithm if no numerical content is found in the left half of Nums Profile.

Otherwise, step 4 gets the location of the left most sequence of “l ”s in Nums Profile,

which is assumed to be corresponding to the list indices, if any. Steps 5 to 8 extract the

snapshot columns corresponding to this sequence of ones, cut the top and bottom of these

columns using the setup parameters upper and lower vertical cuts and finally store them

in Strip. Step 9 extracts all the numbers in Strip and stores them in Numbers List. It

excludes numbers that are part of a date or a time or part of a real number. Steps 10 and

11 terminate the process if the length of Numbers List is less than the setup parameter:

minimum list length. Reaching step 12 means that a list was found. Step 12 collects its

attributes, the list order, first element, size, increment, first element’s row and left

boundary and right boundary of Strip. Steps 13 and 14 report these attributes and return a

message that a list was found.

To better understand Algorithm 4.7, an example is given in Figure 4.19. The upper of -

Figure 4.19 shows a legacy screen snapshot. The bottom shows a projection of the

numerical content of the snapshot on the horizontal axis after cutting the top “Upper

Vertical Cut” lines and the bottom “Lower Vertical Cut” liners off the snapshot and the

Numbers Vertical Profile of the snapshot in binary format. The gray strip on the upper

figure is the strip of interest that Algorithm 4.7 extracted and analyzed for this snapshot

after examining the profile at the bottom. The list indices retrieved from this strip are 2,

3,4, 5, 6, 7, 8 and 9.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.7: List Detection
Input: The presentation space, Pres Space, of a given snapshot.
Output: A message indicating if a list was detected or not and list specifications, if any.
Steps:
1 Call the Numbers Binary Vertical Profile Algorithm (4.5), with Pres Space as input.
2 Store the profile in binary format in Nums Profile
3 If the first half of Nums Profile is all zeros then Return message “No List”
4 Else get the start location, start loc, and length, len, of the leftmost non-zero sequence

in Nums Profile
5 Extract from Pres Space the column start loc and len-l consecutive columns and

store them in Strip
6 Retrieve the Upper Vertical Cut and Lower Vertical Cut from the database
7 Cut the Upper Vertical Cut lines from the top of Strip
8 Cut the Lower Vertical Cut lines from the bottom of Strip
9 For every line in Strip

a. Extract the first sequence of digits and store it in number
b. If number is empty then discard number
c. Else If number is part of a date, time or real number, i.e., if it is

• Succeeded or preceded by a slash “/”
• Succeeded or preceded by a slash
• Succeeded by a dot and a digit, e.g., “.6” or preceded by a dot
then discard number

d. Else store number in Numbers List
10 Retrieve the setup parameter Min List Length
11 If \ength(Number List) < Min List Length then Return message “No List”
12 Else

a. Ascending = Descending = Equal = Increment = 0
b. For i =1 to length {Number List) - 1

• If Numbers List [i] < Numbers List [i+1] then Ascending++
• If Numbers List [i] > Numbers List [i+1] then Descending++
• Else Equal++

c. List Order = The 1st letter of the biggest of Ascending, Descending and Equal, i.e.
A, D or E.

d. First Element = Number List [1]
e. Size = length {Number List)
f. Increment = {Number List [Size]- Number List [1]) / {Size - 1)
g. I st Element’s Row = The row on which the first number in the list.
h. Left Boundary = start loc
i. Right Boundary = start loc + len - 1

13 Report List Order, First Element, Size, Increment, 1st Element’s Row, Left Boundary
and Right Boundary

14 Return message “A List Was Detected”

Algorithm 4.7. List Detection Algorithm

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1 LC CATALOG
2 CHOICE FILE
3 1 BOOKS c a t a l o g e d fro m 1898 t o 1949 LOCI
4 (m o st o l d e r r e c o r d s a r e i n PREM, o p t i o n 4 b e lo w)
5 2 BOOKS c a t a l o g e d fro m 19 5 0 t o 1974 LOC 2
6
n

? BOOKS c a t a l o g e d s i n c e 1975 LOC 3
/
8 4 O ld e r , in c o m p le t e , u n e d i t e d BOOKS a n d SERIAL r e c o r d s f o r i t e m s PREM
9 c a t a l o g e d fro m 1898 t o 1 9 8 0 . T h e s e r e c o r d s a r e NOT r e p e a t e d i n
0 LOCI, LOC2, LOC3 o r LOCS. T h is f i l e a l s o c o n t a i n s o l d e r r e c o r d s
1 F o r m ap s, m u s ic , so u n d r e c o r d i n g s a n d a u d i o v i s u a l m a t e r i a l s .
£
3 H SERIALS c a t a l o g e d a t LC & som e o t h e r l i b r a r i e s LOCS
4 1 MAPS a n d o t h e r c a r t o g r a p h i c i te m s LOCM
5
C

1 SUBJECT TERMS a n d c r o s s - r e f e r e n c e s f ro m LC S u b j e c t H e a d in g s LCXR
D
7 I M u l t i p l e f i l e s e a r c h o p t i o n s (e x c e p t S u n - F r i , 9 : 3 0 p m -6 : 30am US E a s t e r n)
8
q

M u l t i p l e f i l e s e a r c h o p t i o n s (S u n - F r i , 9 :3 0 p m -6 : 30am US E a s t e r n)

0 | o s e a r c h L C 's M u s ic , AV, M a n u s c r i p t , C o m p u te r F i l e s & o t h e r c a t a l o g f i l e s ,
i
o

jg ig n o n t o a n y LOC f i l e (c h o i c e s 1 - 3 , 5 - 6) a n d s e e HELP s c r e e n s .
£.

3 12 R e tu r n t o LOCIS MENU s c r e e n
4 C h o ic e : LC CATALOG

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
0
9
8
7 14
6 &
5 *
4 if__ N um bers T h r e s h o ld
3 7 50
2 $ 1 9 9 7 5 1 7 9 30 2
1 1 2 3898 1 1 1 9 8 0 193 4 5 6 9430 6 30 6_30______________ 3

0 0 1 0

Figure 4.19. An Example Legacy Screen Snapshot (10), Its Vertical Projection and
Profile of Its Numerical Content and The Detected List Information Strip (Gray).

4A2.4 Feature 7-1 and Feature 7-2: Layout Classification and Specifications

Two features are derived from the layout classification analysis described above. The

first is Feature 7-1, which is a single character that describes the layout structure, if any.

It takes the vale T if a table was discovered, U if a list was discovered and (Blank) if

neither a table nor a list was discovered. Feature 7-2 is a multi-part description for the

structure discovered if any. For a table, it describes the following:

• Table Start Column

• Table Start Row

• Table Width

• Table Height

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• ' Number of blocks used to detect the table. Note that there may be extra blocks

inside the table area that did not contribute to table detection as in Figure 4.25.

For a list, it describes the following:

• List Order

• First Element

• Number of Elements

• Increment

• First Element’s Row

• Left Boundary

• Right Boundary

LeNDI uses binary comparison for Feature 7-1. For Feature 7-2, LeNDI does discrete

comparison by comparing the two values part by part. Then, it reports the ratio of the

number of matching parts to the total number of parts (5 for a table and 7 for a list).

4.4.2.5 Table and List Detection Examples

This subsection provides some examples to show what layout description can be

discovered by Algorithms 4.6 and 4.7 and what the extracted Features 7-1 and 7-2 are for

each case. These examples use the sample snapshots used as examples in subsection

4.2.3. The examples are shown in Figures 4.20 to 4.25. The default value of 3 is used for

the three setup parameters of table detection and for the only setup parameter used in list

detection. On each snapshot, the layout structure discovered by LeNDI, if any, is marked

with light and/or dark gray. A description of the discovered structure and the

corresponding values of Features 7-1 and 7-2 are given. Note that LeNDI starts the

indices of the presentation space columns and rows with zero, while they start with one in

the given example for ease of understanding. So, when the “table start column” attribute

of a table is 3 in the examples below as discovered by LeNDI, this means on the

corresponding presentation space shown the table starts at column 4. Hence, the last part

of Feature 7-2 records “4” as the number of columns or blocks of the table. In Figure

4.20, the 3 bottom rows of the snapshot are cut while building the “numbers vertical

profile” for list detection. Hence, the menu choice “12” corresponding to “Comments and

Logoff’ was not discovered as an item on the list. In Figure 4.25, the table detected was

detected based on the discovery and the relation between the four thin blocks shown. The

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fifth non-tfain biock that is part of the table did not contribute to the detection process.

One can argue against that the structure detected on Figure 4.25 as a table. But since the

. user criterion required only 3 columns and 3 rows to recognize a table, it was detected.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
L O C I S : LIBRARY OF CONGRESS INFORM ATION SYSTEM

To m ake a c h o ic e : ty p e a n u m b e r, t h e n p r e s s ENTER

C o p y r ig h t I n f o r m a t io n - - f i l e s a v a i l a b l e a n d u p - t o - d a t e

B r a i l l e a n d A u d io - - f i l e s f r o z e n m id -A u g u s t 1999

F e d e r a l L e g i s l a t i o n - - f i l e s f r o z e n D ecem b er 1998

T he LC C a ta lo g F i l e s a r e a v a i l a b l e a t :
Http:// 1c web. ioc.gov/catalog/

S e a r c h i n g H o u rs a n d B a s i c S e a r c h Commands
: L i b r a r y o f C o n g re s s G e n e r a l I n f o r m a t i o n

L i b r a r y o f C o n g re s s F a s t F a c t s

12 Com m ents a n d L o g o ff
C h o ic e :

LOCISMENU

List Order A
First Element 1
Number o f Elements 6
Increment 1
Is* Element’s Row 4
Left Boundary 1
Right Boundary 2

Feature 7-1 L
Feature 7-2 A 1 6 1 4 1 2

Figure 4.20. An Example Legacy Screen Snapshot (11)
with Features 7-1 and 7-2 Extracted.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
FEDERAL LEGISLATION

T h e s e f i l e s t r a c k a n d d e s c r i b e l e g i s l a t i o n (b i l l s a n d r e s o l u t i o n s) i n t r o d u c e d
i n t h e US C o n g r e s s , f ro m 1973 (9 3 r d C o n g r e s s) t h r o u g h 199 8 (1 0 5 th C o n g r e s s) .
E ac h f i l e c o v e r s a s e p a r a t e C o n g r e s s .

1981-8; "1mmmmmmsmi

mmmM lijMli lii ll

T he 1 0 6 th C o n g r e s s , 1999- 2 0 0 0 , c a n b e f o u n d a t :

FILE
llllllM IIM i
jflHpM Hpl
IBMBBMBiiB

filoi
iiiilMMiiiipM
m am m m m

vim
It

http ://thomas.loc .go v/

11 S e a r c h a l l C o n g r e s s e s on LOCIS 1 9 7 3 -1 9 9 8
E a r l i e r C o n g r e s s e s : p r e s s ENTER

12 R e tu r n t o LOCIS MENU s c r e e n

C h o i c e :
L E G IS L A T IO N !

Table Start Column 3
Table Start Row 7
Table Width 71
Table Height 9
Number of Columns 5

Feature 7-1 T
Feature 7-2 3 _7_71_9_5_

Figure 4.21. An Example Legacy Screen Snapshot (12)
with Features 7-1 and 7-2 Extracted.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1 TUESDAY, 0 2 /2 7 /0 2 0 3 :5 2 P.M .
2 ***You a r e now s i g n e d o n t o C 105, C 104 , C 1 0 3 , C 102 , C 1 0 1 , C 1 0 0 , CG99,
3 CG98, CG97, CG96, CG95, CG94 a n d C G 93.
4 READY FOR NEW COMMAND:
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4

Feature 7-1 Blank
Feature 7-2 Blank

Figure 4.22. An Example Legacy Screen Snapshot (13)
with Features 7-1 and 7-2 Extracted.

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
1
o

DEFICIT REDUCTION
z
3 B r o a d e r t e r m s :
4 r o i FISCAL POLICY
5 R e l a t e d t e r m s :
6 T02 BALANCED BUDGETS
7 T03 BUDGET DEFICITS
8 TQ4 BUDGET RECONCILIATION
9 T05 D EFICIT FINANCING
0 T06 GOVERNMENT SPENDING REDUCTIONS
1 T07 RESCISSION OF APPROPRIATED FUNDS
2 READY FOR NEW COMMAND:
3
4
5
6
7
8
9
0
1
2
3
4

F eatu re 7-1 Blank
Feature 7-2 Blank

Figure 4.23. An Example Legacy Screen Snapshot (14)
with Features 7-1 and 7-2 Extracted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

■ H i*

THE SOURCE FOR THE EXPN COMMAND:
4 5 : SLCT C105/IMDX/BUDGET SURPLUSES

. 1 SURPLUSES", IS NOT USED IN C l 0 4 .

Igps

Bt DO1-! fy*Kc£4.-
law p r
iiiiilifcii
B ert IE s'
llilllill,=
’'BUDGE!' S'

BUDGET SURPLUSES

B r o a d e r t e r m s :
T01 BUDGETS
PAGE 1 OF 2 . READY FOR NEW COMMAND OR PAGE # (FOR NXT PG, XMIT) :

H iUSED
BIS

mmUSED
mmm

USBT UU9Sj,
mmMrn1IIM3
ff l lmmm
i i i i l
«':<s94

Table Start Column 0
Table Start Row 3
Table Width 50
Table Height 11
Number o f Columns 9

Feature 7-1 T
Feature 7-2 0 3 50 11 9

Figure 4.24. An Example Legacy Screen Snapshot (15)
with Features 7-1 and 7-2 Extracted,

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
ITEMS 1 -3 OF 45 FIL E : C105SET 1 : BRIEF DISPLAY

(ASCENDING ORDER)
1 . H .C O N .R ES.216 : SPON=Rep Shaw , (C o s p = 5) ; OFFICIAL T IT L E : A c o n c u r r e n t

r e s o l u t i o n e x p r e s s i n g t h e s e n s e o f C o n g r e s s r e g a r d i n g t h e u s e o f
f u t u r e b u d g e t s u r p l u s e s .

2 . H .C O N .R ES.2 8 4 : SPON=Rep K a s ic h ; OFFICIAL TITLE: A c o n c u r r e n t r e s o l u t i o n
r e v i s i n g t h e c o n g r e s s i o n a l b u d g e t f o r t h e U n i t e d S t a t e s G o v e rn m en t f o r
f i s c a l y e a r 1 9 9 8 , e s t a b l i s h i n g t h e c o n g r e s s i o n a l b u d g e t f o r t h e U n i te d
S t a t e s G o v e rn m en t f o r f i s c a l y e a r 1 9 9 9 , a n d s e t t i n g f o r t h a p p r o p r i a t e
b u d g e ta r y l e v e l s f o r f i s c a l y e a r s 2 0 0 0 , 2 0 0 1 , 2 0 0 2 , a n d 2 0 0 3 . FLOOR
ACTION HAS OCCURRED.

3 . H .R E S .3 4 0 : SPON=Rep P a s c r e l l , (C o s p = 1 6) ; OFFICIAL TITLE: A r e s o l u t i o n
e x p r e s s i n g t h e s e n s e o f t h e H o u se o f R e p r e s e n t a t i v e s t h a t a n y
b u d g e ta r y s u r p l u s a c h i e v e d b y t h e e n d o f f i s c a l y e a r 200 2 b e s a v e d f o r
i n v e s tm e n t i n t h e S o c i a l S e c u r i t y P ro g ra m .

l i i S i i i i i i i i i i

DTSPLAY:
1READY:

1 Lm t r a n s m i t o r
:y i te m # i n

'I SPLAY ITEM

k e y
E x a m p le - -> 25

Ian. i te m # E x a m p le - -> d i s p l a y i t e m 2

Table Start Column 0
Table Start Row 16
Table Width 42
Table Height 3
Number of Columns 4

Feature 7-1 I
Feature 7-2 0_16_42_3_4_

Figure 4.25. An Example Legacy Screen Snapshot (16)
with Features 7-1 and 7-2 Extracted.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Summary of LeNDI’s Discrete Feature Set
Table 4.3 summarizes LeNDI’s feature suite, described in sections 4.2 to 4.4. The

column “comparison” describes what similarity measure is used to compare two values of

the same feature. B means binary comparison, whose output is 1 or 0, i.e., either the two

feature values are identical or not. D means discrete comparison, which means that two

values of a multi-part feature are compared part by part. Euclidean similarity measure is

used which is the number of similar parts divided by the total number of parts. D2 means

that discrete comparison is done and weighted Euclidean similarity is used, i.e., there is a

different weight for different types of matches and/or a penalty for mismatches. For

example, for features composed of sequences of bits, a matching “1” may be more

important than a matching “0”.

Feature Description Comparison
1-1 It is an encoding of the classification of the content of 8 important

areas at the periphery of the snapshot to empty, code, title, date, time,
page number or message area.

D

1-2 A concatenation of the start columns of all title and code areas
discovered, ordered from area 1 to 8.

B

1-3 The text on one of the key 8 areas selected by the user or automatically
by LeNDI. Numbers are replaced by “!”s

B

1-4 Similar to 1-3, but with another area chosen. B
5-1 The label to the left of the initial cursor location. Numbers are replaced

by “!”s.
B

2-1 A hash function of the number of IBM 3270 fields and their locations B
2-2 The number of IBM 3270 unprotected fields received with the snapshot B
6-1 All characters binary vertical profile D
6-2 All characters binary horizontal profile D
6-3 Numbers binary vertical profile D2
6-4 Words horizontal profile D
6-5 Special characters binary profile D2
7-1 An encoding of the snapshot layout classification to “Table”, “List” or

“General”
B

7-2 Multi-part specifications of the layout classification encoded in Feature
7-1, if it is a “Table” or “Label”

D

Table 4.3. A Summary of the Discrete Feature Suite of LeNDI.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.6 LeNDI’s Binary Feature Set
The three feature subsets described in subsections 4.2 to 4.4 are the primary source

for extracting a binary feature set that is used by LeNDFs top-down clustering algorithm

[EISSM01J, which is described in chapter 5. The top-down clustering algorithm needs

binary feature because it produces a binary decision tree. Each leaf o f this tree represents

a cluster of similar snapshots and each branching node represents a decision to split a

group of snapshots to two groups based on a feature-value combination, as explained in

details in chapter 5. This means that the snapshots that share this value for this feature are

grouped together and those who do not are grouped together. Thus, the comparison of the

feature values should be binary, i.e., it should give either a one or a zero.

To extract the binary features, multi-part discrete features are either broken down to a

number of binary features or abstracted by a number of binary features. Table 4.4

summarizes LeNDI's binary feature suite. Feature 600 abstracts the “all characters binary

vertical profile” by dividing it into four equal sequences of bits. Each sequence is

represented by half or more of its bits are Is and is represented by 0 otherwise. The

resulting 4 bits are stored as a hexadecimal number. The same is done to extract Feature

601 from Feature 6-2. Feature 602 is an abstraction of Feature 6-3, derived in a similar

way with the exception that if any 1 exists in the bit sequence then the sequence is

represented by 1. Similarly, Feature 608 is extracted from Feature 6-5.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Feature Description
100 to 107 Each of these features is a number from 0 to 6 encoding the classification

of one of the eight important areas of a snapshot that were described in
section 4.2. So, it is a breakdown of Feature 1-1 of subsection 4.2.2.1.
Feature 100 corresponds to area 1. Feature 107 corresponds to area 8

108 to 115 These are the starting column numbers for the eight important areas.
116 to 123 These are the actual text content of areas 1 to 8, with numbers replaced by

“!”s.
124 Page number extracted from any of the eight areas that is classified as

page number information, if one exists
200 The hash function of the number of IBM 3270 fields and their locations

described in section 4.3.1 as Feature 2-1.
201 The number of IBM 3270 unprotected fields received with the snapshot,

which is Feature 2-2 of subsection 4.3.2.
500 This is the cursor label described in subsection 4.2.2.4 as Feature 5-1.
600 An Abstraction of Feature 6-1 (All characters Binary Vertical Profile)
601 An Abstraction of Feature 6-2 (All characters Binary Horizontal Profile)
602 An Abstraction of Feature 6-3 (Numbers Binary Vertical Profile)
603 to 606 These four features from 603 to 606 represent the hexadecimal

representation of the word count of the top row, the second top row, the
second last row and the last row, respectively.

607 An encoding of which special character is used in extracting Feature 6-5.
608 An Abstraction of Feature 6-4 (Special Character Binary Profile)
700 This is the layout classification of the snapshot, same as Feature 7-1.
701 This is a hash encoding of rows, columns and other List or Table features

Table 4.4. A Summary of the Binary Feature Suite of LeNDI.

4.7 LeNDI’s Feature Extractor and Feature Viewer
Figure 4.26 shows the UI of LeNDFs Feature Extractor module. Figure 4.26(a) shows

the menu of LeNDFs Feature Extractor. It allows the analyst to open the feature

extracting setup window, to start extracting feature vectors for the snapshots of a trace,

and to view the feature vectors extracted for a recorded trace. Since, the Feature Extractor

needs some user setup before starting feature extraction, the analyst can choose to keep

the default setup values or change them. But first, the analyst needs to choose the

recorded traces to work on from the UI shown in Figure 4.26(b). For each recorded trace,

Figure 4.26(b) shows the date of recording, the IP of the host, the type of connection used

and the number of screen snapshots recorded. After selecting a trace, the tabbed pane of

Figure 4.26(c) appears. It allows the analyst to set or change the default keywords and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

patterns that are used to identify the pieces of data found at the periphery of a snapshot as

date, time, page or message. It also, allows the analyst to change the default parameters

for projection profile construction and layout classification. Finally, it allows her/him to

pick which areas to choose for exact matching, i.e. to take their textual content as

Features 1-3 and 1-4, or to tick a check box to let LeNDI pick two areas automatically.

LeNDI has a Feature Viewer, whose UI is shown in Figure 4.27. It can be opened by

choosing "View.. ” from the menu of Figure 4.26(a). In Figure 4.27, the left column

shows the trace number, the second left column contains the serial number of the

snapshots of the chosen trace. The middle area shows the presentation space of the

selected snapshot. The right column shows the feature vector of the select snapshot.

' ! .

(a) Feature Extraction Menu

- Sckbt Session to Setup Feature Extraction

S e s s io n 1C s V . ' >■- V S y s te m N a m e S y s te m Type

.3

14

L . _ . . i t
17

2 0 0 1 -1 2 -2 7 0 0

2 0 0 2 -0 2 -0 8 0 0

2 0 0 2 -0 2 -2 7 0 0

/..• j .. L r

2 0 0 2 -0 3 -T 3 0 0

| |

lo c is .lo c .g o v

lo c is .lo c .g o v

lo c is .lo c .g o v

i.:- v x - 1 - ■■

infoMcGili McGill CA

IBM 3270

IBM 3270

IBM 3270

I9M 3270
18 2 0 0 2 -0 3 -1 3 00 ... jinfoM cG iii.M cG iii.CAiiBM 3270

MO Of

1 |

(b) Selecting a Recorded Session (Interaction Trace) for Feature Extraction

Figure 4.26. LeNDI’s Feature Extractor User Interface.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[o o lu ie Extioctinn S e tu p

I& i g a Setup j S e ss iijie Ssfeip [Pay* S « u |> ; M k» Swtssp 1

:•>»" iV:»,v i I-
C llii
I f " "'

wmmmmmmm
IBIii r f l I B “ i (i

Monday
T u esd a y ®Wi

W ed n esd a y

Friday
Saturday

-ilt- ■
February

In /!! /! !
j!/l!i!i
: i;i/;,
]!/!/!!

i: Si

L

j OH j J" C ancel j j Load fill Det-wits j

F ea tu re E xtinction S etup 1
j M e S e tu p I Se»rw ew ati«H Sefrtp (P r o file s V5fti|» ;

j At e<i Setup f M essage S«fa§> [Pa@s Setup f ffe ie Sefw p.

;■ . . . ■ -it - •■-. '■: \rV .■;

'■ .V;.-.. - ■.: ■/ ■ ; ;-.- O: . : . ■. ;■ :,:= i H

| OK j [Cancel j j U s sd M O e ia n ts j

f iMiiif j* f’x!i ii in n 'iohj|» m
’-i;'- s =• >j, ; s .1 V*- i f . '.M ’

II Hotfztmtafc*afc[2_

yariictsHiiplft ?U
& m $w m

im

tta risam al f t# to 7):

Mvhu. -2

v:-.:fr..i;-NisnsfK'i i:--.U5: j3

| OR j] C ancel j [l e a d i l l Defaults

' - i s i . • , -s.-i--- ;r . : [■>. .,-;,es :-*t. ■■

•,' -.. 5 '-.-s.. ; l v , e '■«■:■ •« > =*M-

S’- -.ff A!e.;5.
S « |p : i g i i |p

:*■! ft'ih'i'nujit Aie.r;

y i r cancel j J Lead AB Defaults j

t C'»iui»- Fxhof hfiri 'n.dup f r d u i e L x tM ih n r i S r i up fc .i lu if* LxtMi.lmr* S c lu p

■ 1. e„ "a*.-■ T l ',S * L I '. i'.-.
fseinssaafWfjsauiiPretBi

Ad<fr

n*v*rrtj> 0MI0M t.‘ jn n t ! •

• V?... ; ■••■.... *, -re~ If :- :■-•■ ',<r. ‘ t>...
,- e.. ■x; i- 1 ■■'•....-■u;e .• -' v ! » >-.M.

jMesssgs
Pi t
Ifinmi'sianrĈommand
l.Reacy
IReiuro ta
jEnter

f ̂
;<ey

:ounc.____ffS!

AUd:: i f •■fllllPllll.-:...11||| ■‘'W:

JpfT~ Page “1 ! Of! 1 : A.M.
p ! m CO*V01 ‘ P .Hr.
;fi

.......
AM

;Fi
i

Willis
t e
!|B li

PM

k.\-

i i wtc1 1 1 ■ - :

c) Feature Extraction Setup Tabbed Pane
' igure 4.26 (c) LeNDI’s Feature Extractor User Interface.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B B S

imu

|SESSION ID: Select one to begin and move progressively to your right.

11111111 1 I jp.C01I.lSES.234 {€103) ccntiaweil: ire1-1:26011355
\ 14 2 i I Slew Poster 0 3 /2 4 /9 4 irei-2:0190249 I
115 3 - Sckeraian 0 4 /2 6 /9 4 ire!-3: H.CON.RES.! (C!) ;
X16
if 17
I 18

1

fi

4
5
6
7
8
9
10
11
12
13
14

jjseg Demtscii
:|Reg Fraak
p e g Hii&g&eg
'jpeg BfcDeranstfc

;:|fte|s Hnsoeld
Jpsg Edsiar&s, D.
meg F ro st
‘jpeg JKbgietski
-jpegs laisom
Jpeg Ifcolsey

0 4 /2 6 /9 4
0 4 /2 6 /9 4
8 4 /2 6 /9 4
@ 4/26 /94
@ 4/26/94
8 4 /2 6 /9 4
0 5 /8 4 /9 4
0 5 /6 4 /9 4
8 5 /8 4 /9 4
05/04/94
0 5 /0 4 /9 4

ire!-4: confirmed: '>
ire2-1:22179
ira2-2:1 j
ire5-1: XT PG, XMIT): j
ire6-1:0000007180000001 ffi7 i
sreS-2: Ifffff
ire6-3:0000008d80000000GOQO j
tre6-4:3300 ;
ire8-5: 5000000120Q0Q0Q0G0GGG;
Ungpercentage: 100 i
^Number 3 j
re1-5:14

i 16 | 9 5 /2 6 /9 4
I 17 I p e g H il l ia rd 8 5 /2 6 /9 4 reT-2:0_3_55„16„4_
j 518 Ipeja R s ^ a l-A lla rd 8 5 /2 6 /9 4
l i 19 Jpeg Siatsg&ier 9 5 /2 6 /9 4
f: ' 20 ;|Rep Sasnse 8 5 /2 6 /9 4 j
j: 21 :§8eg m ilia rn s 8 5 /2 6 /9 4

i
22
23

fn L L , PAGE 3 OF 5 . BEADY FOR CmMMi, OPTIGH OS P& ft {FOR HXT PG, M O T):

1
I

24
25 | |

Ii 26 p i

Classification of the screen

Figure 4.27. LeNDI’s Feature Viewer User Interface.

4.8 Discussion and Conclusions
In LeNDI, we implemented and experimented with a new advanced set of snapshot

features mainly to serve the automated clustering of similar snapshots together and to

minimize the human effort needed to guide the clustering process. Hence, the inference

of a unique predicate for each cluster based on this feature set is automated. Such a

predicate captures the commonality between the snapshots of one cluster and

distinguishes them from those belonging to other clusters. It is to be used at runtime for

identifying incoming new snapshots by classifying them to one of the clusters or GUI

states already identified. In the current manual practices, an analyst keeps going through

many snapshots of the same screen online, and possibly offline, trying to infer their

commonality. The analyst formulates this community in the form of a predicate or

signature. As described in subsection 2.2.3, some tools offer rich text pattern languages to

empower the analyst in his search for such predicate. But these languages mainly rely on

finding some keywords existing (or missing) at fixed locations or within some ranges on

the snapshots of the screen under analysis. Thus, these languages mainly utilize the

snapshot text to find such predicates. Mostly, they do not look into the snapshot content,

layout and organization, the semantics of the content or the other invisible information

received with IBM 3270 data streams.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to be equipped to reverse engineer a wide variety of legacy CUI styles,

LeNDI utilizes a broad set of features. It has a subset of features extracted from the

special information that may exist at the screen snapshot periphery. It has a second subset

of features extracted from the non-visual information received with the outbound data

stream. Its third subset is extracted by analyzing the snapshot layout and organization.

The division of LeNDFs features suite to three logical subsets, led to thinking of a screen

as formed of different layers. A legacy screen can be comprehended at different levels

corresponding to these layers. The following main levels of understanding or layers can

be identified for a legacy screen snapshot, although the boundaries between them are not

well defined:

1. Lexical/Syntactic layer. This layer describes the types of different elements of the

screen and the order and location of the visual elements. The important element types

that can be used as features are screen title, code, date, time, command line, messages

and IBM 3270 data fields and character and field attributes.

2. Layout layer. This layer is a description of the density and distribution of the screen

content on its presentation space, the different components of this content and their ..

spatial relation to one another.

3. Semantics layer. This layer includes the meanings of the different components of the

screen content. Combined together, these meanings define the function of the screen.

4. Navigation layer. This layer encompasses the navigation sequence (screens and user

actions) followed to reach the current screen and the user actions permissible on it.

Depending on the data transfer protocol and the CUI style used to design the screens,

legacy CUI screens can vary a lot in terms of the information available in each layer. The

interaction reverse engineering process of LeNDI went beyond the comparisons of simple

texts on a screen snapshot, to advanced syntax and layout analysis of the snapshot using

heuristics and document analysis methods to infer some of the snapshot characteristics.

Also, it utilizes the hidden information received with the IBM 3270 data stream to deduce

a few features.

However, there is room for improvement. Our future research to enhancement the

interaction reverse engineering process will include analysis of the semantic and

navigation layers of screen snapshots to empower LeNDI with additional feature subsets.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, by treating the set of available screens snapshot as a set of documents and

applying information retrieval methods to analyze their content, one can automatically

retrieve a set of index terms for the snapshot set. Then, clustering similar snapshots

becomes like grouping similar documents together based on their content represented by

index terms. Another example is adding a navigation history segment of chosen length as

a feature for every snapshot. This can be the immediate predecessor snapshot and the

action done to move to the current snapshot.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Five

Legacy User Interface Behavior Modeling

In chapter 4, the necessary steps for automating the process of building the state-

transition model of a legacy system CUI were introduced:

1. Extracting a rich set of features for every snapshot in the recorded traces,

automatically,

2. Defining a similarity measure for each feature,

3. Defining a similarity and/or distance function to use for clustering similar snapshots

together,

4. Clustering similar snapshots together separate from the rest,

5. Verifying and correcting the clustering results via user feedback

6. Automatically extracting unique predicates that distinguish the snapshots belonging

to different clusters, i.e., to different legacy screens, and

7. Modeling the permissible user behavior (actions) on every legacy screen

Chapter 4 covered steps 1 and 2 above. It presented the set of features that are

extracted to every recorded screen snapshot, the possible user setup to control feature

extraction and the similarity measures used to compare two values of each feature. Then,

at the end of feature extraction, every recorded snapshot is represented by a feature

vector. These vectors along with feature similarity metrics are the input to the actual

process of legacy CUI behavior modeling. This process covers steps 3 to 7 above and is

implemented by tasks T1.2 to T1.4 in Figure 3.1. This chapter gives the full details of

legacy CUI behavior modeling in LeNDI. The output of this process is a state-transition

model of the legacy CUI.

5.1 Introduction
Like mapping the streets of an area, legacy CUI behavior modeling captures the roads

(actions) and intersections (screens) of a legacy CUI. The produced state-transition

model is the “map” of the corresponding CUI. The model serves the following purposes:

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. First, the state-transition model is a documentation of the legacy GUI behavior and'

can be used for understanding the application behavior and capabilities.

2. Second, the main function of the model is to serve as a “guide” for the new re­

engineered UI in navigating the legacy CUI. So, when the new UI front-end executes

a task in the legacy host and navigates through its screens, it checks the identity of

every newly received snapshot at runtime against the states of the model to identify to

which screen the new snapshot belongs. Then, the data input and output mandated by

the task plan on this legacy UI screen take place followed by the execution of the

necessary action to proceed to the next state.

A state-transition model of a legacy CUI does not need to cover the entire CUI. It

may only cover the parts that will be subject to reengineering. The rest of this

introduction includes three subsections. Subsection 5.1.1 gives an example state-

transition model. Subsection 5.1.2 presents the state-transition modeling problem.

Subsection 5.1.3 outlines the solution implemented in LeNDI to solve this problem,

which is detailed in the rest of this chapter.

5.1.1 Example
Traditionally, state-transition models have been used to specify the dialog between

the user and the application through the user interface, for the purposes of model-based

interface development and evaluation [Sch99]. Figure 5.1 shows a schematic diagram of

a segment of an interaction trace with the Library of Congress Information System

(LOCIS) [LOCIS], through its public IBM 3270 connection, and the corresponding

portion of the state-transition model of LOCIS CUI. LOCIS is a command-driven legacy

library information system that allows performing information retrieval tasks on Braille

and Audio and Federal Legislation catalogs of the Library of Congress. The interaction

trace segment of Figure 5.1(a) started by accessing LOCIS main menu and then the

Federal Legislation menu. Then the user selected the catalog he wanted to open and got a

welcome screen snapshot. By issuing the right commands, he browsed the catalog,

retrieved a subset of its entries, displayed it briefly and finally, displayed the details of

the entry he was looking for.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Enter Key
Mandatory Argument x_y_z

Optional Argument
x, y and z are alternatives of the same keyword

LOCIS
Main Menu

T3q¥
Federal

Legislation
Menu
|f1 @ E

' Brief
Display

Welcome
f@ E

Brief
Display

b ref) williams @E

Catalog
Browse

@E
Brief

Display

rt>06@E
Retrieve
Results

@E

d 1 @E

Brief
Display

I r ~

133@E |

Brief Brief
Display Display

Item Details
First Page

f @E 1(ditem 133@EJ1 summ@£
Item Display

Options
Item Details
First Page

|a il@ E | ottl®
Item Details
First Page

Item Display
Options

| @E 1 @e
Item Details
Intrmd. Pg.

Item Details
Last Page

m J
‘ ©E

Item Details
Intrmd. Pg.

Item Details
Intrmd.

@E “

i = LOCIS
| Main Menu

,3@E
I Federal
I Legislation

Menu

T iT®£
Welcome

4 Catalog
Browset

l r * n @ E

Retrieve
Results

b * n @ E

@E

®E

litem Details
|lntrmd.Pg.

*@E
8 =

10 :
Item Details
Last Page

®E

|ltem Details
First Page

@E

*@E

7,/tem Displaj
*|_Ogtions_J

*@E

@E

@E d 'disp_display item *@E

° Brief
~*|i Display

]@E d@E

(a) A segment of an interaction trace (b) The part of the state-transition graph
with LOCIS. corresponding to the segment in (a).

Figure 5.1. An Example Trace of User Interaction with the Library of Congress..
Information System (LOCIS) and the Corresponding State-Transition Model.

5.1.2 Problem Formulation and Definitions
As a directed graph, a state-transition model of a legacy CUI, inferred from a

recorded trace of interaction with the legacy UI, can be defined as follows:

Definition 5.1__
Ulmodei = (Statesui, Transitionsui)
1. States ui = {Sti, i= I . . . #states},

snap 3 Trace^n a Trace]fl 3 TraceSet => 3 St 3 Statesui a instance-of {snap, Si),
2 . Transitions ui = { {Stsource, S tdestination) })

(Sti, Stm) 3 Transitions ui 3 (snapj.keyj, snapj) 3 Trace^ a Tracey 3 TraceSet
a instance-of {snapyu StSOUrce) a mstmce-of(snapj, Stdestination)

3. TraceSet = Tracej , (Tracej,„)* j =2...m

• where T r a c e j is a trace of length is nj, as defined in Definition 3.1.

According to Definition 5.1, each snapshot in the recorded trace is an instance of a

state in the legacy CUI state-transition model. Furthermore, for each transition in the

model there must exist at least one keystroke sequence in the recorded trace that leads

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from a snapshot, which is an instance of the source state, to another snapshot, which is an

instance of the destination state. In this work, the terms “legacy screen” or simply

“screen”, “state”, “node”, and “cluster” refer to the same thing from different views, and

hence will be used interchangeably depending on the context. A legacy screen refers to a

legacy CUI unit, represented by a matrix of characters and other associated information

which exhibits certain behavior in terms of the user actions it permits and the outcome

(destination screen) of each action. This screen reflects a state of the legacy application

CUI, represented by a node on the state transition graph. Such a state is represented by a

predicate that is inferred by clustering the recorded instances or snapshots of the

corresponding screen in one cluster.

Building the state-transition model of a legacy CUI can be divided to three sub­

problems. The first problem is identifying the distinct behavioral states of the legacy

CUI, represented by nodes on the model. To do so, using interaction traces as the only

input, one needs to identify in these traces the snapshots that are similar to each other,

according to some suitable similarity measure, and exhibit identical behavior. These

similar snapshots should be instances of the same state. Identifying them is the first step

in modeling this state.

Then, the second problem is: given the similar snapshots of every state, how to infer

the common identity of these snapshots represented by some unique predicate? This

predicate is needed to recognize new snapshots as instances of existing states. In other

words, the problem here is how to induce a classifier that is able to classify new

snapshots received at runtime as instances of an existing state?

The third problem is building models of the transitions permitted at each state, i.e.,

the user behavior associated with each node. These transitions are the arcs of the state-

transition model. A transition model captures the commonality of all action instances

recorded that caused the corresponding transition, e.g., command keywords, actions

locations, etc. The next subsection outlines LeNDI's solution to these three problems,

before providing full details in the next sections.

5.13 LeNDI’s Approach to Legacy CUI Modeling
LeNDI adopts clustering as the solution to the first problem of identifying the

distinguished behavioral states of a legacy CUI. In this solution, “similar” snapshots are

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clustered together in one cluster. A similarity function is used to decide which snapshots

are similar. This function utilizes the features described in chapter 4. These features are

extracted from the visual syntax and semantic characteristics of the screen snapshot and

from the other information provided by the data transfer protocol with each snapshot.

Clustering is a generic problem with instances in a variety of application domains.

Clustering algorithms are so many to the extent that you find popular sayings like “There

are more clustering techniques suggested than the number of real-world problems solved

with them” or “Clustering algorithms are worth a dime a dozen" [Mir96]. In general,

clustering algorithms are either batch, assuming that the complete set of input instances is

available at the same time, or incremental, allowing for additional instances to be

provided after initial clustering. Incremental algorithms, given a new instance, decide the

cluster to which it belongs by evaluating how similar the new instance is to the existing

clusters. Batch clustering algorithms are either top-down or bottom-up or hybrid. Top-

down algorithms start with a single cluster and continuously decompose it until a

stopping criterion is met. Bottom-up algorithms start with each instance belonging to a

cluster by itself and join clusters until a stopping criterion is met. Irrespective of their..

control flow, all clustering algorithms require a distance (or similarity) metric, on the

basis of which, it is decided whether to split a cluster (in top-down algorithms), or

whether to join two clusters (in bottom-up algorithms), or whether a new instance is

similar enough to any of the existing clusters (in incremental algorithms). Any such

metric depends on a set of features that describe the input instances. In our case, these are

the feature vectors extracted for every snapshot as described in chapter 4.

Two clustering algorithms have been implemented in LeNDI: an incremental

algorithm [SEKSM99] and a top-down algorithm that stops when the number of expected

clusters is reached [EISSM01], These two algorithms have different knowledge

requirements and each one is preferable under different usage scenarios. The incremental

clustering algorithm uses the discrete (original) feature set of LeNDI described in

sections 4.2 to 4.5 and summarized in Table 4.3. It requires reasonable knowledge of the

legacy system under analysis and making decisions such as which features would be

more likely to be effective and what weights to assign to them. On the other hand, the

top-down algorithm uses LeNDFs binary feature set (section 4.6 and Table 4.4) and

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requires almost no input from the user other than an initial estimate of the number of

expected clusters. Thus, each algorithm might be more suitable for certain application

problems. Also, we have found that, in practice, it is useful in some cases to explore the

traces of a legacy system thoroughly with the single-path incremental algorithm until

getting an accurate estimate of the number of clusters, and then using the more automated

top-down algorithm to generate an almost correct partition of the trace snapshots. A

partition is a set of non-overlapping clusters such that each recorded snapshot belongs to

only one cluster. For example, {{1,2}, {3}}, {{1}, {2}, {3}} and {{1}, {2,3}} are three

different partitions of the trace {1,2,3}. A number of bottom-up clustering algorithms

were explored while developing LeNDI, but none of them gave satisfactory results.

The result of clustering is a partition of the entire snapshot set. Due to the diverse and

unpredictable nature of legacy snapshot data, it is likely that a number of clustering

rounds would be needed for a given data set. So, the LeNDI analyst would review the

results of each round of clustering, readjust whatever clustering parameters needed by the

clustering algorithm s/he is using, and then re-cluster the data. Additionally, both

algorithms allow user feedback to fix clustering errors by merging or dividing clusters or

moving snapshots from a cluster to another.

LeNDI employs classifier induction to solve the second problem of capturing a

common identity predicate for each CUI state, represented by a cluster of snapshots. So,

once a correct partition has been produced, the LeNDI analyst can induce a classifier that

can correctly classify the individual snapshots into their corresponding clusters. LeNDI

implements two different classifiers. The first is a simple signature-based classifier that

captures the commonality of the snapshots of every cluster in a predicate. The second is a

decision tree classifier, which extends the decision tree produced by the top-down

clustering algorithm according to the user feedback on the partition produced by

clustering. After building a classifier, it can then be used at runtime to recognize new,

previously unseen snapshots as instances of the legacy CUI states.

To solve the third problem of identifying the arcs of the state-transition model of a

legacy CUI, LeNDI develops a model of each possible transition that had some

instance(s) recorded in the interaction traces. The only input to this process is samples of

the user actions done to perform such a transition along with the locations on the

i l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

snapshots where they occurred. These samples need to be grouped and analyzed to infer

their commonality and variability and formulate this information in a model.

Furthermore, location information of action instances can be analyzed to infer the fixed

location or range of locations within which the action takes place on its origin screen. The

generality of the model produced for every action depends on the number of instances of

this action available in the recorded interaction traces.

The rest of this chapter is organized as follows: Section 5.2 describes snapshot

clustering process in LeNDI and its two clustering algorithms, the single-path

incremental algorithm and the top-down algorithm. Section 5.3 describes LeNDFs two

classifier induction methods, the signature-based classifier and the decision tree classifier.

Section 5.4 presents transition modeling in LeNDI. Section 5.5 is an evaluation of the

legacy CUI behavior modeling process. Section 5.6 concludes with a discussion of the

overall process, its strengths and limitations and possible extensions.

5.2 Clustering Legacy Screen Snapshots in LeNDI
This section presents the process of clustering similar snapshots in LeNDI as

instances of the same CUI state. It starts with a detailed description of the two clustering

algorithm implemented in LeNDI, the single-path incremental algorithm and the top-

down algorithm. Then, it follows by a description of the clustering quality metric

employed in LeNDI, MoJo Plus. Finally, it concludes by the describing QandA, CelLEST

visualization tool that allows reviewing and revising clustering results.

5.2.1 Clustering Method It Single-path Incremental Clustering of
Legacy Snapshots

The single-path incremental clustering algorithm deployed in LeNDI is derived from

a generic version described in chapter 3 of "Information Retrieval" by van Rijsbergen

[Rij79]. The algorithm views clusters as centered at a representative point, the centroid.

Cluster representatives or centroids can be calculated in different ways. The specifics of

cluster representative calculation in LeNDI follow shortly. The algorithm needs the

LeNDI analyst to provide a similarity function, i.e., a function that defines how the

similarity of two snapshots (or a snapshot and a centroid) can be calculated in terms of

their feature vector similarity. Snapshots are accessed sequentially, one after another.

Each new snapshot is clustered using the information available so far about the data set,

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i.e., the feature vectors of the snapshots processed so far. A new snapshot is introduced to

the algorithm in the form of a feature vector and is compared to the centroid of each

existing cluster. Then it is assigned to the most similar cluster centroid, if its similarity to

this centroid is above a user-defined threshold; otherwise it is the first member of a new

cluster. This process can be summarized in the following steps:

1. Legacy screen snapshots are processed sequentially;

2. The first snapshot becomes the cluster representative of the first cluster;

3. Each subsequent snapshot is matched against all cluster representatives (centroids)

existing at the time using some similarity measure ;

4. A given snapshot is assigned to the cluster whose representative is most similar to it if

similarity exceeds or equals a certain threshold;

5. When a snapshot is assigned to a cluster, the centroid of that cluster is recomputed;

6. If the highest similarity of the snapshot with a cluster representative is below the

threshold, then the snapshot becomes the cluster representative of a new cluster.

This algorithm is “incremental” because it accesses and clusters the snapshots, of the

input data set, one at time using the clusters available so far. It is called “single-path”

because it goes over the data set one time only.

In order to measure similarity, LeNDI employs a set of recognizers. Each of them is

configured to use one or more of the features described in chapter 4. Each feature is

assigned a weight. A recognizer compares two snapshots (or a snapshot and a cluster

centroid) in terms of its features. It measures the similarity of the two snapshots using

each of its features separately. Then, the recognizer's vote is the weighted-sum of the

similarity of individual features. The final vote of the entire set is the weighted-sum of

the individual votes of its recognizers.

A configuration step is required to set up the recognizers and to define the similarity

threshold. The LeNDI analyst needs to review the available traces to judge what features

might be more effective in clustering the snapshots of a given system properly. Then s/he

needs to decide the number of recognizers to use, the relative weights of their decisions,

the features employed by each recognizer and the relative weights of these features. This

effort comes with the reward of not having to decide beforehand the number of clusters

needed, as is the case with the top-down clustering algorithm explained in subsection

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2. If a feature is missing on a particular screen snapshot, any recognizer that utilizes

this feature may be configured to either ignore it, or to consider its absence as evidence

that there exists a distinct screen that lacks the feature in question.

Formally, similarity is measured using a set of recognizers R as defined in Definition

5.2. Definition 5.2 shows that the vote of R on the similarity of two feature vectors is in

fact a linear combination of the votes of all the individual features employed in all its

recognizers. Thus, Vote R can be simplified to a linear weighted-sum of the all the

features used in all recognizers. But, using recognizers allows using non-linear similarity

functions in some recognizers. An example of such non-linearity is feature dependency;

i.e., if the values of feature FiJ for snapi and snap2 are not similar, then ignore comparing

feature Fy+j. For example, features Fij and Fij+i can be Feature 7-1, the snapshot layout

classification and Feature 7-2, the layout specifications. If two snapshots have different

layouts, then comparing their specifications is meaningless.

Definition 5.2___
A set of recognizers R = (r,-, 1=1.. .#recognizers) is defined such that
1. r, = {Fi, Wi, Wj}

• F, is vector of the features utilized in r,-. The j* feature is referred to as F,- [/], or
simply Fij

• Wi is weight vector of features used in n, where Wi [/] (or simply Wy) is the
weight of feature Fij

• Wi is the weight of the vote of r*

2. Vote n(snapj, snap2) = X/=i.. .|r | { Similarity (snapu snap 2, F,j) * Whj }

• Similarity (snap\, snap2, Fij) is a function that returns the similarity of two given
snapshots (or a snapshot and a centroid), snap\ and snap2, based on comparing
their values of feature Fij

3. Vote R (snap], snapi) = X;=i.. .#recognizers {Vote rt * w,}

Algorithm 5.1 is the pseudocode of the single-path incremental algorithm. It takes as

inputs a set of recognizers, a similarity threshold and a set of recorded traces of

interaction with a legacy system. It outputs a partition P of the input snapshots. Step 1

initializes P to an empty set. Steps 2 and 3 iterate over every snapshot in every recorded

trace. For each snapshot snapj, steps 4 and 5 initialize two variables to zero, which will

store the maximum similarity vote for the snapshot, max Vote, and the Id if the most

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

similar cluster, most Similar. Step 6 iterates over every existing cluster. Step 7 measures'

the similarity of snapj with the current cluster centroid. If the current cluster is more

similar to snapj than any previously examined cluster, then the similarity value and

cluster Id are recorded in steps 8 to 10. After measuring similarity with all clusters, step

11 checks if the maximum similarity is below the threshold Thresh. If yes, steps 12 to 15

create a new cluster with only one item for the time being, which is snapj, and adds it to

the partition P. snapj is the centroid of this cluster since it is its only item. If the

maximum similarity is above or equal to Thresh, then steps 16 to 18 assign snapj to the

most similar cluster and update the centroid of this cluster.

The user can make one of two choices while configuring LeNDFs clustering process.

The first is to use the first item in a cluster as its representative and never change it during

the whole process. In this case, no update takes place. Or s/he can choose to build a

centroid and re-calculate every time a new snapshot is added to the cluster. In this case,

LeNDI follows a simple procedure to calculate the centroid, which is choosing the mode

Algorithm 5.1: Single-path Incremental Clustering
Input: A set of recognizers R, a threshold Thresh and a set of traces of snapshots T.
Output: A partition P of the snapshots of T
Steps:
1. Initialize P = <p, where cp is an empty set
2. For every trace U e T, 1 < i < \T]

3. For every snapshot snapj e
4. max Vote = 0
5. most Similar — 0

6. For every cluster q g P
7. current Vote = Vote R (snapj, centroid (c*))
8. If {max Vote < current Vote) then

9. max Vote - current Vote
10. most Similar = k

11. If {max Vote < Thresh) then
12. Create a new cluster cnew
13. Add a snapj to cnew
14. Set snapj to be centroid (cnew)
15. Add cnewto P

16. Else
17. Add snapj to CmoS(Similar

18. Update centroid {cmost sim ilar)

Algorithm 5.1. Single-path Incremental Clustering.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(most frequent value) for single-part features (Features 1-2 to 1-4, 2-1, 2-2, 5-1 and 7-2)

and the mode of every part for multi-part features (Features 1-1, 6-1 to 6-5 and 7-1). For

example if a cluster has three snapshots, with the following values for the multi-part

Featurel-1: “02513102”, “02503002” and “02502102”, the centroid will have the value:

“02503102”, where bold font shows parts that differ among the snapshots and their

modes.

After all the snapshots in the recorded traces are clustered, the results can be reviewed

using LeNDI's cluster viewer, a built-in review and revision module in LeNDI, or using

QandA (Questions and Answers) [Vij02], the visualization tool of CelLEST. Based on

his/her review, the LeNDI analyst can readjust the similarity measure and re-cluster the

snapshot set to achieve the best possible results in his/her judgement.

5.2.2 Clustering Method 2: Top-down Clustering of Legacy Snapshots
This algorithm4 [EISSM01] was developed to further automate the screen-snapshot

clustering process and to relieve the user from having to decide a similarity threshold and

feature-weighting schemes, whenever possible. However, this comes with the cost of

having to estimate the number of clusters expected in the trace as an input to the

algorithm. Subsection 5.5.3 comments on the strengths and weaknesses of both clustering

algorithms. The top-down clustering algorithm is the first phase of a two-phase process

for legacy CUI state identification. The second phase of this process is a supervised

learning phase for classifier induction that modifies the decision tree produced by top-

down clustering, according to user feedback. The clustering phase is described here,

while the classifier induction phase is described in subsection 5.3.2. This algorithm is a

top-down clustering algorithm that starts by putting all the snapshots in one cluster and

keeps dividing them into more clusters in a way that minimizes the maximum internal

cluster incoherence. It stops, when a user defined criterion is met, which can be the

expected number of clusters or a threshold of the maximum incoherence allowed. Using

the snapshot binary features of Table 4.4, this algorithm produces a decision tree that can

be used to classify the snapshots into screen clusters.

Algorithm 5.2 shows the pseudocode of the top-down clustering algorithm. It takes as

input a set of interaction traces T whose snapshots will be clustered, and an estimate of

4 This algorithm was developed primarily by Paul Iglinski, with help from other CelLEST team members.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the number of screen clusters required and/or the maximum interna! cluster incoherence

accepted. It outputs a partition of the input snapshots and a decision tree DT that defines

how this partition was constructed and which feature and value were used for splitting at

each tree node. Initially, all the snapshots are placed in a single cluster. The algorithm

continues to split one cluster at a time until reaching the desired number of clusters. After

many experiments with different data sets and different splitting criteria, we found that

the best criterion for splitting a cluster is minimizing the maximal internal cluster

incoherence using linear distance averaging. We call this splitting criterion the “best-split

test”. So, as long as the number of clusters is less than the expected number of clusters,

the algorithm identifies the most “incoherent” cluster and splits it into two new clusters,

in a way that minimizes the incoherence of the resulting clusters. Incoherence is

measured as the average distance of every instance in a cluster from every other instance

in the same cluster. Currently, all the features are treated as having discrete non-ordinal

values. Each snapshot has 39 features, by default equally weighted at 1. If two instances

have different values for a feature, this feature contributes its weight to the distance

measure. The distance between two instances is then simply the sum of the weights of

their differing features. Currently, LeNDI assigns equal weights to all features.

As an alternative to providing the number of clusters as the determining factor for

terminating splitting, the user can specify an incoherence threshold or use a default

threshold. Thus, when all clusters are below the specified threshold, the splitting stops.

The default threshold value varies in proportion to the sum of all the feature weights.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5.2: Top-down Clustering
Input: The number of desired clusters #clusters and/or the maximum cluster incoherence

threshold incoherence Thresh and a set of interaction traces T
Output: A partition P of the snapshots of T, and a decision tree DT

1. Create a new cluster co
2. Add all the snapshots in T to Co
3. Initialize P with only one cluster, co
4. Create an decision tree DT with one root node representing cq
5. While (num Clusters < ̂ clusters OR P.max Incoherence () > incoherence Thresh)

6. Let Cmost - Most Incoherent Cluster in P
7. Create new Split bestSplit - NULL

8. For each feature/e LeNDI’s Binary Feature Set

9. Create a set V of all the values o f/in cmost
10. For each value v e V

11. Create new Split newSplit = new Split (f,v)
12. Create clusters cwuh , cwith0ut
13. For each snapshot snap in cmrar

14. If snap.featureValue(/) = v then
15. Copy snap to cwnh

16. Else
17. Copy snap to cwithout

18. If (cmost.maxbicoherenceinewSplit) < cmoir.maxlncoherence(l?erf5'p/i0)
then

19. bestSplit = newSplit;

20. Divide cmost to cW!-* and cwuhout according to bestSplit
21. Remove cmas,form P
22. Add cwuh and Cwithoutto P
23. Replace the leaf node of cmost in DT with a decision node that implements

bestSplit

Algorithm 5.2. Top-down Clustering.

Algorithm 5.2 starts by steps 1 to 3 which create a partition P with one cluster cq that

contains all the input snapshots. Step 4 creates a decision tree DT with one node that

corresponds to c q . Step 5 iterates over P while the termination criterion is not met. This

criterion can include one or both of the following: the required number of clusters or a

threshold for the maximum internal cluster incoherence permitted. Step 6 picks the most

incoherent cluster in P, which is cITWSt. Step 7 creates an empty Split bestSplit, which is a

data structure for storing a feature and a value for this feature as a criterion for splitting a

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cluster. Steps 8 to 10 iterate over every possible value v that exists in any of the snapshots

of Cmost for each feature / o f the 39 features used. Step 11 creates a new Split newSplit to

store the current iterator, i.e., feature and value combination. Steps 12 to 17 create two

clusters cwm and cwith0ut and stores in cwith copies of the snapshots that have value v for

feature/and stores in cwithout copies of the snapshot that lack value v for feature/ Steps 18

and 19 store the current split in bestSplit if it produces less maximum internal cluster

incoherence than bestSplit, if used to split cmost. After trying all the possible splits of Cmost

and finding the best-split, steps 20 to 22 divide cmost according to bestSplit and replaces it

in P by cwuh and cWithout- Step 23 adds a new node for the best-split in the decision tree DT.

This algorithm has two modes: an automated mode and an interactive mode. In the

automated mode, if the LeNDI analyst can estimate the number of unique CUI screens

expected for the system under analysis, the algorithm can proceed unsupervised to

decompose the original set of snapshots into the expected number of clusters. When it is

not possible to give an estimate, or when the analyst prefers to have more control on the

algorithm, we have developed an interactive version of the algorithm that can be

monitored and guided by the user. The user may step through the algorithm’s split

decisions. If, at some point, a cluster looks close to its desired state, i.e., it contains no or

very few snapshots that do not belong there, the analyst can finalize it, ensuring that the

algorithm does not consider it as a candidate for further splitting. Moreover, the analyst

can force the algorithm to split a certain cluster in the next step.

An example decision tree produced by Algorithm 5.2 is shown in Figure 5.2. The

feature numbers shown, i.e., 103, 114, 102, etc. are the numbers given to the binary

features of LeNDI in Table 4.4. CO, Cl, etc. are the clusters created by Algorithm 5.2. In

this tree, the top node, which corresponds to the first best-split, is based on if feature 103

is 0 or no. If yes, then next node splits the data according to if feature 114 equals 0 or no,

and so on and so forth.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if feature 103 == 0
+---- if feature 114 == 0

+----- if feature 104 == 0
| +---- C3
| else
j + ----------C4
else
+----- if feature 106 == 0

+ ---------C5
j else
| + ----------C6
else
+----- if feature 102 == 1

+----- if feature 607 == 7
| +----- CO
j else
j +----- Cl
else
+----- if feature 124 == 2

+---- if feature 100 == 2
j +---- C9
| else
j + ---------CIO
else
+---- if feature 100 == 2

+----- if feature 102 == 0
| +----- if feature 116 == "SET 1 "

j | + ---------- C15
| else

| | + ---------- C16
| else
j + ---------- C7
else
+ if feature 100 == 0

+-------- C2
else
+ if feature 607 == 7

+ if feature 200 == 21958
| + ---------- C8
| else
j +------ if feature 102 == 3
j + ------------C13
| else
| +------ C14
else
+-----if feature 100 == 3

+------ Cll
else
+-----C12

Figure 5.2. An Example Decision Tree Produced by the Top-down Clustering
Algorithm 5.2.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.3 Clustering Result Visualization and User Feedback
Associated with clustering, is a process of result visualization and user feedback. For

both algorithms, this process is necessary to verify the correctness of the results obtained

and to fix any clustering mistakes before inducing a classifier. It is also important to

review the results obtained between different iterations if multiple clustering iterations

were done, particularity for the incremental clustering algorithm, which is iterative in

nature.

LeNDI offers a simplified result visualization module that allows reviewing and

revising clustering results. But the primary visualization tool of CelLEST is QandA

(Questions AND Answers) system5 [V1J02] which supports the visualization needs of

both LeNDI and Mathaino systems through a user-friendly GUI. Using QandA, the

LeNDI analyst can inspect the results of clustering a set of input traces, and hence, decide

to reconfigure the clustering process and repeat it, in the case of signal-path incremental

clustering. In the case of top-down clustering, s/he can change the desired number of

clusters or the maximum internal cluster incoherence accepted or switch to the interactive

mode where s/he has more control over the clustering process. After these revisions, and

when satisfactory results are obtained, the analyst can move any outlier snapshots to their

proper clusters or join any redundant clusters to their originals. Then, s/he can ask LeNDI

to generate a signature-based or a decision tree classifier for the final partition as

described in section 5.3. Figures 5.3 and 5.4 show some snapshots of QandA user

interface. Figure 5.3 shows the cluster view of QandA with clusters represented as

thumbnails. If a cluster thumbnail is clicked, the thumbnails of its centroid and snapshots

are shown in the upper panel. If a cluster thumbnail is double clicked, its centroid is

enlarged in a separate window. If a centroid or a snapshot thumbnail is clicked, it is

enlarged in a new window.

Figure 5.4 shows the snapshot view of QandA. This view shows the centroid and

snapshots of every cluster, connected by lines that represent their similarity. The

snapshots closer to the centroid are more similar to it than the farther ones. Through this

view, the analyst can easily detect outliers and perform cluster revision. S/he can move

snapshots from one cluster to another, merge a set of clusters, and/or split a cluster.

3 QandA system was developed primarily by Vijayan Menon, with help from other CelLEST team members

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C-1

€-13

C-2

C-17

C-12C-4

C-5
C-9 C-10

C-11

C-7

Figure 5.3. QandA Cluster Review User Interface. The Lower Panel Shows Clusters
as Thumbnails. The Upper Panel Shows The Centroid and Snapshots of The
Selected Cluster (C-8).

5.2.4 A Metric for Measuring Clustering Quality
LeNDI needed a metric for assessing the quality of the outcome of its clustering

process, whether it is done using the incremental clustering algorithm or the top-down

clustering algorithm. The metric should be able to measure the distance of a produced

partition from a reference or authoritative partition, i.e., a partition that has been

constructed and/or verified by the LeNDI analyst and is considered to be the truth. In

other words, after producing a partition of a set of snapshot traces, the LeNDI analyst

would fix any mistakes in clustering by moving misclustered snapshots to where they

should belong, thus producing a correct or authoritative partition. Then, such a metric

should gauge a meaningful distance between the derived and the authoritative partitions.

For both clustering algorithms, this metric is important to measure how well the

algorithms work for a given set of data. For the top-down algorithm, user feedback is used

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MgMMmm&mtm 'Mill

h

0̂5tt4-*?/BU*ee e£& v Jitt5 sn 2 xa

Figure 5.4. QandA Snapshots View User Interface. (The line connecting a snapshot
to its cluster centroid shows the distance between them, and hence, their similarity).

for classifier induction by producing an enhanced decision tree as described in subsection

5.3.2. To obtain such a similarity measure, MoJo metric [TH99] was adopted and

extended to MoJo Plus. MoJo uses a heuristic to approximately count the minimum

number of operations that are required to transform one partition to another. MoJo allows

only two operations, MOVEs and JOINs. A MOVE consists of moving a single instance

from one cluster to another, while a JOIN merges one cluster into another.

5.2.4.1 Mojo Plus Metric

During our experiments, it was noted that MoJo metric does not adequately reveal the

similarity of partitions that contain clear groupings of misclustered instances. In the

context of snapshot clustering, it is frequently the case that a number of potentially pre­

grouped snapshots have been included in one cluster and need to be moved together to

another cluster. Selecting this easily identifiable group and determining where it should

go is not much more effort than relocating a single misclustered instance. To include this

fact in the metric, a “Multi-Move” or MM operation was added that considers moving a

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

group of instances from one cluster to another as a single operation whose cost is equal to

that of a JOIN or a simple single instance MOVE. This extension is named MoJo Plus

[EISSM01], The following example clarifies how the MoJo Plus metric is used.

5.2A.2 A Mojo Plus Example

Consider a trace t with 10 snapshots, where t = {1,2,3,4,5,6,7,8,9,10}. Consider the

two partitions shown for this trace in Figure 5.5. The left partition is derived while the

one in the middle is an authoritative partition. In the far right, there are the MoJo Plus

steps needed to transfer the derived partition to the reference one by changing the

locations of the items in bold circles. If each step is given a weight, the distance between

the two partitions can be calculated. If they all have a weight of one, then the distance

between the two partitions is 3. The three MoJo Plus steps needed to fix the derived

partition are a MOVE, a JOIN and a MM, respectively.

5.3 Screen Classifier Induction
Given a set of interaction traces, the LeNDI analyst usually would do multiple

clustering iterations with different parameters until producing a near perfect partition, i.e.,

the best partition, in her/his judgement, that can be obtained using automated clustering.

Next, the LeNDI analyst revises the produced partition to produce an authoritative

reference partition for the given trace set. Revisions include joining redundant clusters

with their originals and moving any misclustered snapshots to the right clusters. Using

the revised reference partition, LeNDI induces a classifier that is able to classify new

incoming snapshots at runtime to one of the available clusters in the revised partition.

Figure 5.5. A Mojo Plus Example with a Derived Partition (left), a Reference
Partition (middle) and The Mojo Plus Steps to Transform The First to The Second.

MOVE Cl (9) C3
JOIN Cl C2
MM C3 (6 10) C4

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LeNDI implements two classifier induction methods. The first is a signature-based

classifier. Its underlying idea is to infer a predicate for each legacy screen that is able to

uniquely distinguish its snapshots. This is done by building a signature for every cluster

that captures the commonality of its member snapshots. The second is an extended

decision tree classifier that results from extending the decision tree produced by the top-

down clustering algorithm to accommodate the feedback done by the user to fix the

partition produced by clustering. The following is a detailed description of both

classifiers. Section 5.5 provides and evaluation of both methods and a comparison with

the benchmark decision tree algorithm, C4.5 [Qui93].

5.3.1 Classifier Induction Method 1: Screen Predicate (Cluster
Signature) Calculation

This first classifier is a simple signature-based classifier. LeNDI infers a signature for

every cluster, i.e., a logical combination of feature values that uniquely distinguishes the

members of this cluster. A signature consists of an artificial feature vector and an

artificial snapshot presentation space. The artificial feature vector captures all the feature

values common in all the screen snapshots it represents and has an indifferent symbol T

wherever a common value is lacking. The artificial presentation space captures the

commonality of all the screen snapshots it represents and has one of a number of

indifferent symbols wherever the snapshots differ.

To build the artificial feature vector, for every single-part feature and for every part of

every multi-part feature, LeNDI checks if the same value exists in all snapshots. If yes, it

adds this value for this feature or feature-part to the artificial feature vector. Otherwise, it

adds *?’. For example, assume a cluster with three snapshots and with three features for

each snapshot: one string feature, one discrete multi-part feature and one binary multi­

part feature. Assume the following feature vectors for the three snapshots: (“Code 101”,

10-8-9, 101010), (“Code 102”, 14-8-1, 101011), (“Code 101”, 10-8-1, 101011). The

signature of this cluster would be (? , ?-8-?, 10101?).

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5.3: Building a Signature Presentation Space for a Cluster
Input: A cluster c of snapshots
Output: An artificial signature presentation space SigPres for the snapshots of c
Steps:
1. digits = 0
2. spaces = 0
3. same Char = TRUE
4. For i = 1 to # snapshot rows

5. For j = 1 to # snapshot columns
6. For every snapshot snap* e c , l<k<\c \

7. If snapk [/][/] is SPACE then spaces++
8. If snapt [i][/] is DIGIT then digits++
9. If k > 1 then

10. If (snapk [i][/] != snapk-i [i][/]) then sameChar = FALSE
11. If (sameChar == TRUE) then SigPres [/][/] = snapi [/][/]
12. Else

13. If (digits = |c|) then SigPres [/][/] = ’!’
14. If spaces > 0 then SigPres [/][/] =
15. Else then SigPres [/][/] = T

Algorithm 5.3. Building a Signature Presentation Space for a Cluster.

To build the artificial presentation space, LeNDI follows Algorithm 5.3. The

algorithm takes as input a cluster c of snapshots. It outputs an artificial presentation space

that is formed by superimposing the snapshots of c and analyzing the content of each

superimposed location. For every position in the artificial presentation space matrix

SigPres [/][/], the algorithm checks the corresponding positions in all the snapshots of the

given cluster and counts the number of spaces and digits and checks whether all these

positions have the same character (steps 4 to 10). Then, it sets SigPres [i][/] according to

the findings. If the same character (any character) exists in all the snapshots, SigPres [?][/]

is set to this character (step 11). If there is always some digit in this position, but not the

same digit, then SigPres [i][/] is set to Y (step 13). Otherwise SigPres [/][/] is set to one

of two indifferent characters, or T (steps 14 and 15). The first is more general as it

means there is sometimes a character in this position, while in other times there is a

space. The second means that some character (non-space) always exists.

The signatures produced by Algorithm 5.3 are the identity predicates of the nodes of

the state-transition model that distinguish the members of the corresponding clusters. At

runtime when a new snapshot is received, its feature vector can be computed and

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matched against all the cluster signatures available. If the new feature vector matches a-

single artificial feature vector, then LeNDI recognizes the snapshot as an instance of the

corresponding cluster. A match here means that wherever there is a value in the signature

feature vector, the same value exists in the snapshot’s feature vector. While, wherever

there is an indifferent character (?) in the signature feature vector, no comparison takes

place. If the snapshot’s feature vector matches no signature feature vector, LeNDI would

get lost in the CUI. This may mean that the new snapshot is an instance of a never seen

before screen that does not have a corresponding cluster or node on the state-transition

model. The reengineered UI needs to be equipped with a method to deal with such

situations. An example for such a method may be issuing one or a series of reset actions

that returns the CUI and the reengineered UI to the starting point before starting

executing the task in hand. If the snapshot’s feature vector matches more than one

signature, LeNDI matches the presentation space of the given snapshot against the

artificial presentation spaces of all the matching signatures. If only one signature

presentation space matches the given snapshot, LeNDI recognizes the snapshot as an

instance of the corresponding cluster. In case of multiple-presentation space matches,

LeNDI would not be able to decide on its own the proper classification of the new

snapshot from among the matching signatures. Thus, the reengineered UI developed in

the forward engineering phase of CelLEST need to be equipped with a method to resolve

such ambiguity. For example, if one of the two or more possible states is expected

according to a task plan, then it would be possible to disambiguate accordingly.

Signature matching is done using Algorithm 5.4. Steps 1 and 2 iterate over every

location or cell on the given snapshot snap Pres [/][/]. Steps 3 to 7 compare snapPres [i][/]

with the corresponding cell in the given signature’s presentation space signPres [i][/]. If

all the comparisons fail for all locations, then the algorithm returns TRUE. If any of the

tests succeeds even for one location on the snapshot, then matching failure or FALSE is

reported. Step 3 tests if snapPres [i]\j] and signPres [/][/] contain the exact same letter. If

they do not, step 4 checks if signPres [/][/] contains the very generic indifference letter,

If it does not, step 5 checks if signPres [i]fj] contains the indifferent digit character

T while snapPres [?][/] is not a digit and step 6 checks if signPres [!][/] contains the

indifferent non-whitespace character ‘?’ while snapPres [i][j] is a whitespace.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5.4: Matching a Snapshot against a Signature Presentation Space
Input: A snapshot presentation space snapPres and a signature presentation space

signPres
Output: TRUE if the snapshot matches the signature and FALSE otherwise
Steps:
1. For i = 1 to # rows of snapPres

2. For y = l to # columns of snapPres
3. If (snapPres [/][/] != signPres [i\\J]) then

4. If (signPres != - ’) then
5. If (signPres == ’!) && (snapPres is NOT a digit) then return FLASE
6. If (signPres == *P) && (snapPres is a whitespace) then return FLASE

7. Return TRUE

Algorithm 5.4. Matching a Snapshot against a Signature Presentation Space.

5.3.2 Classifier Induction Method 2: Decision Tree Extension via
Supervised Learning

Once a preliminary clustering of the given snapshots is derived through the top-down

clustering algorithm, the LeNDI analyst can examine the partition through QandA and

move misclustered snapshots to their correct clusters and join redundant clusters with

their originals. Then, s/he can request an extended decision tree using the decision tree

extension algorithm6 [EISSM01]. This algorithm leverages the decision tree produced by

clustering, using the set of JOINs, MOVEs and MMs discovered by MoJo Plus.

Algorithm 5.5 shows the pseudocode of this algorithm.

A MoJo Plus JOIN of cluster ca to cluster q» means changing the leaf node ca to q, or

vise versa, or if ca and q» share the same decision node, replacing the decision node by

the leaf node ca or c&. A MoJo Plus MOVE or MM of instances from c/rom to ct0 requires

discovering which features distinguish the moved instances from the other instances in

cjrom and/or which features are shared by the moved instances and all the instances in cto.

The heuristic involved in this decision is to use the strongest and most generalizable

distinguishing characteristics detected. If instances are being moved from a larger cluster

to a smaller cluster, the tree extension algorithm first looks for features shared by the

instances in the larger set, and not the instances being moved or in the destination set. If

the instances are going from a smaller cluster to a larger one, the tree-revision algorithm

6 This algorithm was developed primarily by Paul Iglinski, with help from other CelLEST team members.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

first looks for features shared by the moved instances and the destination set, but not by

the ones in the origin set. If the first of these feature quests fails, the alternative is tried

next. If that second quest fails, the algorithm recursively tries again, this time ignoring

the features in the destination set. If this still fails, the moved instances are split into

groups according to the best-split test for minimizing the maximum internal cluster

incoherence, and then each resulting group is checked recursively for distinguishing

features. If the algorithm recurses down to a single instance, and no distinguishing feature

can be found, the algorithm simply reports the failure and proceeds. This situation is, in

fact, seldom encountered in all the legacy system traces that we have tested. The

successful identification of distinguishing features guarantees the correct classification of

the training set instances, i.e., the snapshots of the input set of traces. However, the

problem of "getting lost" in the legacy CUI due to failure in classifying a new snapshot,

as mentioned in subsection 5.3.1, can still occur and would need to prepare the

reengineered UI to deal with it. Once a set of distinguishing features has been found, the

algorithm currently selects one at random and uses it to create a new decision node to

distinguish the instances from their initial classification. We experimented with various

heuristics for selecting among a set of distinguishing features, and we evaluated their

effectiveness with 10-fold cross validation. None proved more reliable than random

selection.

Algorithm 5.5 takes as input a decision tree created by Algorithm 5.2 and a set of

MoJo Plus moves that reflect the feedback of the LeNDI analyst to fix the derived

partition, and its corresponding decision tree. Algorithm 5.5 starts by creating two Nodes,

nodeA and nodeB. “Node” is a data structure that represents a decision node or a leaf

node in the decision tree produced by Algorithm 5.2. If a leaf node is created, then a

cluster will be associated with it. Step 2 creates 3 empty clusters to use during the

algorithm. Step 3 iterates over every move in the given set of MoJo Plus moves. Step 4

checks if a given move is a JOIN, and if so, steps 5 to 9 are executed. If the move is

MOVE or MM, then steps 11 to 15 are executed. Steps 5 and 6 retrieve the leaf nodes of

the clusters to be joined and store them in nodeA and nodeB. If both nodes share the same

parent, then they are both removed and their joint parent is set as leaf node whose cluster

is that of nodeA. If nodeA and nodeB do not share the same parent, then the cluster of

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodeB is set to that of nodeA. In other words, both branches are made to result in the

same decision. In case of a MOVE or MM, step 11 retrieves the leaf node of the source

cluster that will have some of its snapshots moved to a different cluster. Steps 12 to 14

retrieve the source and destination clusters, Cfrom and cto, and the snapshots to be moved

cmoved- Step 15 calls SplitNodesOnFeatures function and passes the data retrieved in steps

11 to 14 as parameters.

The SplitNodesOnFeatures function takes as parameters three clusters, Cfrom, c to and

Cmoved and the leaf node nodeA of the source cluster. It splits the given node such that the

snapshots of cmoved are separated from the rest of the snapshots in c/rom, which are not in

Cmoved- This means that nodeA changes to a decision node and two leaf nodes are created.

The function tries to discover which features distinguish cmoved instances from the other

instances in cjfam and/or which features are shared by instances and all the instances

in cto.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 5.5: Classifier Induction via Decision Tree Extension
Input: A decision tree Tree produced by the top-down clustering Algorithm 5.2 and a list

of MoJo Plus moves Moves to fix Tree
Output: The decision tree Tree after applying Moves to it

1. Create new Nodes nodeA, nodeB
2. Create new clusters Cfrom, c t0,
3. For each move e Moves

4. If move = JOIN
5. nodeA = Leaf Node of Tree Corresponding to move.getFirstClusterQ
6. nodeB = Leaf Node of Tree Corresponding to move.getSecondCIuster()
7. If (nodeA.getParentNodeO == node5.getParentNode())

8. Set Parent of NodeA as a Leaf Node whose cluster = «odeA.getCluster()
9. Else Set cluster of nodeB - nodeA.getClusterQ

10. Else
11. nodeA = Leaf Node of Tree Corresponding to move.getFromCluster()
12. Cfrom = move.getFromCluster()
13. cto - move.getToCluster()
14. c m o v e d = move.movedInstances()
15. SplitNodesOnFeatures (cfrom, cto, cmoved, nodeA)

SplitNodesOnFeatures (Cluster Cfrom, cto, cmoved, Node nodeA)
I. If (|cyrom| > jcf0j) then

2. Split Cfrom on shared features of Cfrom - Cmoved not shared by c m + c m o v e d

3. If split is successful then return
4. Split Cfrom on shared features of cto+cmoved not shared by cjr0m - c m o v e d

5. If split is successful then return

6. Else
7. Split Cfrom on shared features of cto+CmoVed not shared by Cfrom - CmoVed
8. If split is successful then return
9. Split Cfrom on shared features of Cfrom - cmoved not shared by cto+cmoved
10. If split is successful then return

II. If (ct0 != NULL) then
12. SplitNodesOnFeatures (Cfwm, NULL, cm0Ved, nodeA)
13. Return

14. If {\cmoved\>l) then
15. Split Cmoved according to its best split (Algorithm 5.2) and store the result in c\ and

C2
16. SplitNodesOnFeatures (cfrom, cto, cj, c\,getLeafNode())
17. SplitNodesOnFeatures (c f r o m , c t o , C 2 , c2.getLeafNode())

18. Else Return Message “Split Failure”

Algorithm 5.5. Classifier Induction via Decision Tree Extension

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 1 checks if the size of Cfrom is bigger than that of ct0. If so, then step 2 tries to

split Cfr0m into two clusters. The first cluster is cmoved and the second is c/rom - cmoved- The

split decision is based on a feature whose value is shared by all the instances of Cfrom -

Cmoved and by none of the instances of cto or cmoved. If such a feature is found, then step 3

returns to the main algorithm. If the split fails, then step 4 tries a new split based on any

feature whose value is shared by all the instances of cto and Cmoved and by none of the

instances of Cfrom - cmoved. If such a feature is found, then step 5 returns to the main

algorithm. If the split fails, then the algorithm moves to try an easier split at step 11.

Steps 7 to 10 are executed if the size cj-rom is less than or equal that of cto. They perform

the same tests as steps 2 to 5 but reversed, i.e., moving from the stronger test to the

weaker one7. The test of step 11 is performed only if no split was successful in steps 1 to

10. It tests if the parameter cl0 is not an empty cluster. If it is not, it calls the function

SplitNodesOnFeatures with NULL passed to the parameter cto. This means that the tests

and trials to split of steps 1 to 10 will be repeated but with ignoring the instances of cto as

if every reference to cto in steps 1 to 10 is blank, making splitting efforts easier. This is

because a smaller number of snapshots will be involved in trying to split Cfrom. If in the -

second call of SplitNodesOnFeatures, where NULL was passed to cto, steps 1 to 10 fail to

split Cfrom or if the function was called the first time with NULL passed to cto, steps 14 to

18 are executed. Step 14 checks if there is more than one instance in c/rom. Steps 15 to 17

split c/rom using the best-split test of Algorithm 5.2 into c\ and c2. Then, they call the

function SplitNodesOnFeatures twice, one time for each of ci and c2. This process repeats

recursively. If the algorithm recurses down until SplitNodesOnFeatures is called with

only one instance in Cfrom and it was impossible to split it apart from the rest of C fro m , step

18 reports failure and proceeds.

5.4 Transition Modeling
Transition modeling aims to infer accurate behavioral models that describe the

permissible user behaviors on every state of the state-transition model, i.e., the actions

available to the legacy system user for navigating from one GUI screen to another. These

models are the edges connecting the nodes of the state-transition model, as shown in

7 By stronger, we mean that involves a bigger number of instances.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.1. Modeling these edges does not only complete the state-transition mode!, but

also has other benefits. They can be used as features for screen snapshot identification.

They are necessary for planning a navigation sequence to accomplish some task. Also,

they provide some of the information necessary for user task modeling, and thus save

some effort in the modeling process. A formal definition of a transition was given in

Definition 5.1.

Most legacy interfaces adopt a mix of function key, menu driven, command-driven,

and form-filling interaction styles. In the function key interaction style, the interface

implements a well-structured dialog with the user. At each point of this dialog, the user

presses one of a small set of function keys to select one of the corresponding alternative

options. A similar kind of interaction can be implemented in a menu driven interface.

Such an interface presents the user with a list of items, each of which can be selected by

moving the cursor to its location and pressing a control key. In the command-driven

interaction style the user issues textual commands to the system. A command language is

specified in terms of the vocabulary of possible command names and the syntax of these

commands in terms of the arguments they require and the options they allow. The

command-driven interaction style enables more dynamic system user interaction, since

the transitions of the system from one state to another are caused by possibly complex,

multi-parametric commands instead of simple function key presses. Finally, in the form-

filling interaction style, the interface presents the user with forms that require the entry of

specific types of information at particular locations on the screen. The completion of the

form is signaled to the system with the press of a control key or the typing of a command

at a particular command line. The current version LeNDI has focused on systems

adopting a combination of function key and command-driven interaction styles, which is

a frequently occurring combination.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Transition = <Start ScreenxActionxEnd Screen>
Action = <Action Item>+
Action Item = <LocationxData Item>|

<LocationxData ItemxControl Key>
Location = <x-y coord> j <Range> j q>

x-y coord = [1,80],[1,24]
Range = x-y coord, x-y coord
Data Item = <Keyword>*<Argument>*<Option>*
Keyword = String e Set of possible keywords
Argument = String
Option = String e Set of possible options
Control Key = PF1 | PF2 j | Enter j
Start Screen = <Screen Id>
End Screen = <Screen Id>
Screen Id = Integer
Figure 5.6. A Grammar for Describing Transitions in Legacy Systems CUIs (A ’* '
is zero or more occurrences, a ’+ • is one or more and cp is Null).

5.4.1 A General Model for Transitions
LeNDI possesses a general transition model, described by the BNF (Backus Naur

Form) grammar shown in Figure 5.6. It was developed to describe the various styles of

interaction mentioned earlier. According to this model, each transition from a start

screen to an end screen is caused by an action, which may consist of one or more action

items. An action item may involve a data-entry activity by entering a data item on a

particular location of the screen, which may be static or dynamic, i.e., varying within a

range. A range is a rectangular area defined by the x-y coordinates of its upper left and

bottom right comers inside which the data item starts, i.e., its first character exists. An

action item may conclude with the press of a control key. A data item can have keywords,

arguments and/or options.

To perform transition modeling for function key and command-driven interaction

styles, LeNDI groups the snapshots of each cluster according to the destination of the

user action performed on them. LeNDI assumes that there is a single action leading from

a start screen to an end screen, although the action may have different forms. Therefore

all the transitions in one group have instances of the same action. Next, LeNDI tries to

infer the command form(s) and/or the function key(s) that defines this action, assuming

that it conforms to the general model described by the transition-model grammar.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LeNDI starts analyzing each group of action instances, one word at time, starting with

the first word in all instances. LeNDI uses a set of rules for command language design

[Sch99] to discover any relations between the most frequent 4 words that appeared as an

action’s first word and whether any of them is an optional or mandatory command

keyword or argument. According to these rules, LeNDI assumes that if there are different

versions of the same command name they will most likely be prefixes of a “canonical”

command name or sub-strings of this name with the vowels removed. In order for a

particular string to be identified as the “canonical” command keyword, its different

variants have to appear frequently enough, i.e., at least 33% of the times that the action

occurred. This analysis of command keywords applies to command arguments too. If a

number appears at least 33% of the time, LeNDI concludes that one form of the

command keyword or argument is a numerical. If no keyword appears sufficiently often,

LeNDI assumes that the command name is implicit, and that the user has to only enter its

arguments. It assumes that an argument is optional if it does not appear in some of the

action instances, otherwise it assumes that it is mandatory. The same analysis is applied

to the second word, and so on. LeNDI assumes that the command keyword, if any, can be

at any position, and is not necessarily the first word. LeNDI collapses the collected

hypotheses in a compact form. LeNDI analyzes the recorded locations of all the instances

of an action to infer any information about where it takes place on the legacy screen.

Using simple comparison of the x and y coordinates of these instances, LeNDI defines

the location or range within which the action takes places.

5.4.2 Transition Modeling Examples
Two transition-modeling examples are shown in Figures 5.7 and 5.8. The example of

Figure 5.7 represents modeling the transition from the results of browse command screen

to the same screen in a command-driven library system (LOCIS) [LOCIS], i.e., self­

transition. 30 instances of the action that causes this transition are shown in Figure 5.7(a).

LeDNI starts the analysis by analyzing the first word in all instances. It discovers that b,

brws and browse are all derived from the same canonical form, which is browse, either

by suffix removal (b) or by removal of vowels (brws), respectively. The different forms

of browse command are repeated 22 times in the 30 instances. The conclusion is that

there is a form of this command that requires one of these three command variants to

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

exist as the first word of the action needed for the transition. Since the remaining 8

instances do not have any data items, just a control key (Enter), LeNDI concludes that a

.second form of the action consists only of Enter key. Similar analysis for the second and

third words in the 22 instances with a keyword, concludes that no word or a group of

related words appears in any of these positions in at least 33% of the instances. Also,

some instances lack words in the second and third or third locations. Thus, according to

the given instances, the command can have up to two optional arguments. By analyzing

the locations of these instances, LeNDI concludes that the action instances with a

keyword and arguments occur within rows 21 to 23 and always on column 11, while

those with Enter key occur always at row 23 and column 11. The inferred model is

shown in Figure 5.7(b). * is a mandatory argument and [*] is an optional argument

Figure 5.8 shows the second example. It is modeling the transition from a browse

command results screen to a retrieve command results screen in LOCIS, by issuing a

retrieve command. Seven instances of this transition were recorded. LeNDI examines the

first word, which is R for all the examples and concludes that it is a compulsory keyword

for this action. Then it examines the second word. By applying the rules mentioned

above, no relation can be discovered between the words in the second position and none

of them appears more than 33% of the time. Thus, the second word is considered a

mandatory argument for the command because all the instances have a second word.

Doing the same analysis for the third word concludes that it is an optional argument.

Finally, by comparing the locations of all action instances, LeNDI infers that it always

takes place at a fixed location. The inferred model is shown in Figure 5.8(b).

LeNDI has a transition viewer tool, which allows reviewing all the action available on

each screen (node) of the state-transition model, their different forms and their

destination screens. For each from of an action, one can review the instances that were

used to infer this form.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Row Col. First W ord Second Word Third W ord Control Key
1 23 11 b Ali Enter
2 23 11 b b6\ Enter

• 3 23 11 B b6 Enter
4 23 11 Enter
5 23 11 Enter
6 23 11 Enter
7 23 11 Enter
8 23 11 Enter
9 23 11 b Elections Enter

10 22 11 brws rep smith Enter
11 23 11 Enter
12 23 11 Enter
13 23 11 Enter
14 21 11 b Linda Smith Enter
15 23 11 b elections— Enter
16 23 11 b astronomy—bibliography Enter
17 23 11 b term/iran Enter
18 23 11 brws text/b6 Enter
19 22 11 Browse c97/egypt Enter
20 23 11 b subj=b6 Enter
21 23 11 b b6 Enter
22 23 11 b subj=bll Enter
23 23 11 Browse Enter
24 23 11 Browse egg Research Enter
25 22 11 b r6 Enter
26 22 11 b r9 Enter
27 22 11 b Enter
28 22 11 b Enter
29 22 11 b R 2 Enter
30 23 11 b r5 Enter

(a) The action instances

b brws browse [*][*] @ Enter @ [21,23],! 1
[] @ Enter @ 23,1

(b) The inferred command model
Figure 5.7. An Example (1) of Transition Modeling in a Command-driven System.

Row CoL First Word Second Word Third Word Control Key
1 24 11 R Farm Loans Enter
2 24 11 R XXX Enter
3 24 11 R term=tax Deductions Enter
4 24 11 R Tax Deductions Enter
5 24 11 R b6 Enter
6 24 11 R si Enter
7 24 11 R elections Enter

(a) The action instances

R * [*] @ Enter @24,11

(b) The inferred command model
Figure 5.8. An Example (2) of Transition Modeling in a Command-driven System.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Evaluation
This section reports some of the experiments done to evaluate the behavior modeling

process presented in this chapter and to explore its strengths, limitations and potential

future enhancements. It reports experiments done with publicly accessible systems, since

some other LeNDI evaluation experiments were done using private data obtained from

Celcorp, the industrial sponsor of CelLEST project. Three different experiments are

presented in this section to serve different evaluation purposes. The first and second

experiments are done for the purpose of comparing and evaluating the single-path

incremental and the top-down clustering algorithms and the associated classifiers against

one another and against C4.5 [Qui93]. The results of both experiments are used to

explore the strengths and weaknesses of both algorithms. The third is a complete case

study of behavior modeling, performed on a long trace recorded during interaction with

an information system for a university library research network. In this experiment, the

GUI of a big selected part of the system was modeled. This experiment demonstrates the

applicability and efficiency of the method.

5.5.1 Experiment 5.1 - LOCIS System
In this section, we report the results of an experiment with an IBM 3270 trace of

interaction with LOCIS through its public 3270 connection. It was recorded while a user

was browsing the library catalog, retrieving sets of catalog entries, displaying them, and

running into some system errors. This trace is 406 snapshots long. Manually, an analyst

built an authoritative partition for this trace, which had 17 distinct clusters. The number

of instances of each cluster of the authoritative partition is shown in the “Cardinality”

row in Table 5.1. Note that the data set is unbalanced: some screens had only 1 or 2

snapshots in the trace, while others had up to 157. Figure 5.1 depicts a segment of the

LOCIS trace and a part of the derived model.

5.5X1 Modeling Using Single-Path Incremental Clustering and Signature-based
Classification

Typically, the single-path incremental clustering algorithm requires several rounds of

configuration, clustering and result review until reaching satisfactory results. The

efficiency and accuracy of the resulting partition depends on the intuition and experience

of the analyst. This experiment was performed by a user who had no particular familiarity

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with LOCIS but was familiar with the overall CelLEST process and was given a tutorial

on using LeNDI. Out of the discrete feature suite of LeNDI (Table 4.3) the user created

only one recognizer with the feature set of Table 5.2.

Cluster Id 1 2 3 4 5 6 1 8 9 10 11 12 13 14; 15 16 17

Cardinality 11 14 157 16 105 6 15 7 3 2 13 1 1 34 : 5 5 11

Table 5.1. The Reference Partition Cardinality of The Data Set of Experiment 5.1.

Feature Description Weight Ignore if Empty
1-3 The text in the middle of the first non-blank row 30 N
5-1 The cursor’s label 10 N
6-2 All characters binary horizontal profile 20 N
6-5 Special characters binary profile 10 Y
7-1 Layout classification 5 Y
7-2 Layout specifications 25 N
Table 5.2. The Features Used for Setting up The Single-path Incremental Clustering
Algorithm for LOCIS Experiment 5.1.

A threshold of 40% was used and the cluster centroid was defined to be its

representative. It took eight recognition/review/reconfiguration rounds to reach the setup -

shown in Table 5.2, which the user thought was satisfactory. The column “weight” gives

the relative weight of each feature compared to other features. The column “Ignore if

empty” indicates whether to ignore a feature if missing on some snapshot, or not.

The partition produced by the final configuration consisted of 23 different clusters. It

included 17 misclustered snapshots or outliers (4.2%) and 6 redundant clusters. An

outlier is a false positive error that assigns snapshots with potentially different behavior

to the same screen cluster, causing false connections between the state-transition graph

nodes. Redundant clusters are considered false negative errors which are duplications in

the state-transition graph, resulting from the snapshots of the same screen being split into

two or more clusters. This partition was reviewed by the user and 12 corrective

operations, i.e., JOINs, MOVEs and MMs operations, were necessary to fix the errors

Identified. After, moving the misclustered instances to their clusters, a signature was

calculated for every cluster using the signature calculation algorithm. When the generated

signature was used to recognize the trace snapshots one snapshot was misclustered

(0.25%); it matched more than one signature and was assigned to one of them randomly.

Such problems of signatures with overlapping applicability result from the diversity of

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the instances in some clusters, which results in little commonality among their snapshots

and hence, "weak signatures". Ideas to overcome this are given in Section 5.6.

A better measure of the algorithm’s performance on unseen data was obtained with

repeated 10-fold cross validation. This means that the data was divided to 10 equal parts

and the experiment was repeated 10 times, with one part used as a test set in each round

and the remaining 90% is the training set. 10-fold cross validation using single-path

incremental clustering yielded an error rate of (8%) (see Table 5.3) on LOCIS data set.

The second and third columns in Table 5.3 show the distance between the partition

produced by the clustering algorithm and the authoritative partition built manually in

MoJo and MoJo Plus moves, respectively. The fourth column is the percentage of

snapshots used to induce the signature classifier that were misclassified. The fifth column

is the average test error of the repeated 10-fold cross validation.

5.5X2 Modeling Using Top-Down Clustering and Decision Tree Classification

For the same LOCIS trace, the 39 binary features of LeNDI were extracted for every

snapshot of the trace. Then, the top-down clustering algorithm was applied to the data

with an input parameter of 17 clusters - the expected number of clusters was already

known from the authoritative partition built by the user in the previous experiment. The

cardinalities of the produced clusters are shown in Table 5.4 and the corresponding

cluster Ids in the authoritative partition. Three from the authoritative partition were

missing in the derived partition. 14 (3.4%) snapshots were clustered into 3 redundant

clusters. On the other hand, 44 (10.8%) snapshots were misclustered. Ignoring the 3

unnecessary splits, we can say that 89.2% of the instances were “correctly” clustered. The

partition was again reviewed and revised by the user. Using QandA, the user corrected

the preliminary clustering of the LOCIS trace. Then, MoJo Plus module inferred the

operations necessary to obtain the desired authoritative partition, which are shown in

Figure 5.9. The decision tree extension algorithm was applied, and a new tree containing

46 nodes and having a maximum depth of 12 was produced. When this decision tree was

tested on the 406 snapshots, all were correctly classified. 10-fold cross validation on

LOCIS yielded an error rate of 3.4% on the data in the test sets (see Table 5.3).

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Clustering Method Mojo
Moves

Mojo Plus
Moves

Training
Error

Test
Error

Single-path Incremental Clustering with
Signature-based Classifier

23 12 0.25% 8.0%

Top-down Clustering with Decision Tree
Classifier

47 20 0.00% 3.4%

C4.5 (Supervised Learning) NA NA 1.20% 2.4%
Table 53. The Results of Experiment 5.1.

Cluster Id 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Clusters missing after
top-down clustering

Corresponding
Authoritative
Cluster Id

8 1 14 3 9 11 —16 4 10 6 17 7 2 “ 5 12 13 15

Cardinality 7 11 34 157 3 13 1 5 16 2 6 11 15 14 5 1 105

Table 5.4 The Results of Top-down Clustering of The LOCIS Trace of Experiment
5.1. Bold Clusters Are Redundant and Need to Join Others.

JOIN C8 C6 // Merge cluster C6 into C8
JOIN C16 C14 // Empty clusters are available as “new” clusters
JOIN C2C15 // C15 is now empty. It is reused in the next step
MOVE CO (122) C15 // Take snapshot 122 from CO to C15
MM CO (306 304) C ll // A Multi-move from CO to Cl 1
MOVE Cl (309 308 307 305 303 302 301 300 299) C ll
MM Cl (405 404) C9
MOVE C2 (318) C13
MM C2 (134 133) C16
MM C2 (317 316 315 278) C14
MM C3 (401 291 195 186 132 47) C12
MOVE C3 (400) C2
MOVE C3 (338) C14
MOVE C8 (101) C5
MOVE C9 (118) C2
MM CIO (379 375 371 279 5) C13
MM CIO (388 218 110 102) C7
MOVE C ll (399) C2
MM C16 (382 57) C13
MOVE C16 (406) C6

Figure 5.9. The MoJoPlus Operations Needed to Fix the Clustering of The LOCIS
Trace Using Top-down Clustering, in Experiment 5.1.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.13 Comparative Evaluation

To evaluate the results obtained from the experiments above, we used C4.5 [Qui93], a

-standard decision-tree learning algorithm. C4.5 is a classifier-induction algorithm that

takes labeled examples as input. Hence, we used it to evaluate the final outcome of the

experiment in the form of a signature-based or decision tree classifier. Several versions of

C4.5 were tried, using the 39 binary features of LeNDI. We tried pruned decision tree,

unpraned decision tree and rule-based versions of C4.5. The best results were obtained

using the pruned version of C4.5 and are reported in Table 5.3.

5.5.1.4 Transition Modeling

LOCIS is a command-driven system. Some of the command models inferred are

shown in Figure 5.1(b). They are inferred from analyzing the entire trace not only the part

shown in Figure 5.1(a). An example action model inferred is “d_disp_display item

The command “display item” causes the transition from screen 6 to 7. In the inferred

model, LeNDI discovered three variants for the first keyword and that the second

keyword is item. Also, there is also a mandatory argument that has to be passed to the

command.

5.5.2 Experiment 5.2 - HOLLIS System
This experiment is similar to Experiment 5.1, but it is performed on three interaction

traces recorded while using Harvard Online Library Information System (HOLLIS)

[HOLLIS] through its 3270 public connection. HOLLIS is a command-driven catalog of

the millions of items at Harvard University Libraries, e.g., books, journals, manuscripts,

government documents, visual materials, etc. Together, the three traces had 542

snapshots, which were instances of 29 distinct legacy system screens. They captured

snapshots of the main user interfaces of the three subsystems of HOLLIS: Harvard Union

Catalogue (HU), Reserved Material (RV) and Library Guide (LG). An authoritative

partition was built for the input traces. Table 5.5 shows the cardinality of all the clusters

in this partition. The results of this experiment are shown in Table 5.6. First, the single-

path incremental clustering was used with signature-based classification. The final setup

used this algorithm included one recognizer that utilizes only Feature 1-3 with weight

100%. A threshold of 70% was used. In this experiment 491 (90.6%) snapshots were

correctly clustered. 48 (8.9%) were correctly clustered, but in redundant clusters. The

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of redundant clusters was 21. Only 3 (0.6%) snapshots were misclustered, i.e.,

put in clusters of snapshots of other screens. Training error was 0.6% and testing error

using 10-fold cross validation was 1.7%. Second, the top-down clustering was applied

with an input parameter of 29 clusters, followed by decision tree classifier induction.

Training error was 1.0% and testing error was 4.3%.

Cluster Id 1 1 2 3 4 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Cardinality 16 7 56 57 8 12 107 10 11 82 1 4 2 4 6 28 2 6 10 9 14 1 6 3 1 14 60 3 2

Table 5.5. The Authoritative Partition of the Data Set Used in Experiment 5.2.

Clustering Method 1 Mojo
Moves

Mojo Plus
Moves

Training
Error

Test
Error

Single-path Incremental Clustering with
Signature-based Classifier

147 92 0.6% 1.7%

Top-down Clustering with Decision Tree
Classifier

162 50 0.0% 5.4%

C4.5 (Supervised Learning) 1 NA NA 1.0% 4.3%
Table 5.6. The Results of Experiment 5.2.

5.5.3 Comments on Experiments 5.1 and 5.2
This subsection comments on the results of Experiments 5.1 and 5.2 and draws some

observations on the efficiency of the clustering and classifier induction methods used in

LeNDI.

1. As can be seen from Tables 5.3 and 5.6, in both experiments, the training error of the

decision tree classifier was 0, while that of the signature-based classifier and of C4.5

was not. For the signature based-classifier, this is due to imprecise signatures. A

suggestion to overcome this problem is given in section 5.6. As for C4.5, having

training error higher than both of LeNDFs two classifiers can be attributed to the

unbalanced data set, i.e., the lack of sufficient examples in some clusters, as shown in

Table 5.1. It shows that 2 clusters in LOCIS experiment have only one snapshot each,

6 clusters have 5 or less snapshots and 8 clusters have 10 or less snapshots. For the

HOLLIS experiment, shown in Table 5.5, 3 clusters had only 1 instance, 10 clusters

had 5 or less instances and 18 clusters had 10 or less instances.

2. The fact that all classifiers have larger test error than training error is not surprising;

they tend to overfit the training data and do not generalize well enough. Again,

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sufficient examples that cover the range of variability of the snapshots of each screen

are necessary for producing high-quality classifiers. And as can be seen from Tables

5.1 and 5.4, clusters 12, 13 and 15 in the LOCIS experiment, which did not have

equivalent clusters in the partition produced by the top-down algorithm, all had few

instances of them in the input trace. They had 1, 1 and 5 instances respectively. This

suggests that a sufficiently large number of snapshots need to be recorded from

interactive online sessions with the legacy application. What qualifies as “sufficient”

number depends on the number of CUI screens to be modeled, the types and dynamics

of these screens (see section 4.1) and the productiveness of the extracted features for

the system in hand. Similarly, the generality of the action models produced depends on

the availability of sufficient instances and on action complexity.

3. Redundant nodes on the state-transition graph occur when the snapshots belonging to

one state are split into more than one cluster. This is not a severe problem since It

would not cause the runtime process to get lost, i.e., to misinterpret a snapshot as

belonging to a wrong state. But false positive errors, resulting from misclustering

snapshots, and possibly missing nodes for some of the interface screens, is a more -

serious error. It results in wrong assumptions about the screens (states) behavior.

When a new UI or an external application uses the state transition model to execute a

navigation sequence in the legacy CUI, such errors can cause incorrect predictions of

the result of actions and result in the UI or external application “getting lost” in the

legacy CUI.

4. The top-down clustering method with a decision tree classifier performed considerably

better than the single-path incremental clustering method with a signature-based

classifier in LOCIS experiment, but considerably worse in HOLLIS. This implies that

the two methods can be complementary and therefore LeNDFs performance is

improved by employing both of them. Top-down clustering is suitable when a

reasonable estimate of the number of screen-states sought can be obtained. While, the

incremental clustering is iterative and requires several cycles of user setup, clustering

and result review. This requires good grasp of the system in hand and is useful If the

analyst will invest time in exploring and learning the legacy CUI as s/he is modeling it.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.4 Experiment 5.3 - MIRLYN System
This section reports the results of a case study to reverse engineer the legacy CUI of

an IBM 3270 legacy system and build its state-transition model. The purpose of this

modeling case study is to validate the practicality and efficiency of the legacy CUI

behavior modeling process described in this chapter, rather than evaluating or comparing

individual algorithms. Four traces were used in this experiment with 1924 snapshots in

total. 64.3% of this data was used for training and 35.7% for testing

In this experiment, the author modeled part of the legacy CUI of Michigan Research

LibrarY Newtork (MIRLYN) [MIRLYN], This information system is a catalog for the

different resources available in the libraries of University of Michigan and the remote

libraries of other institutes that are connected together under MIRLYN. The number of

states of the entire system is huge due to the many local and remote subsystems and

indices connected. Therefore, this experiment focused on building a behavior model for

part of the MIRLYN CUI. This part covers the main catalog and the basic functions of a

few subsystems and remote catalogs. The system was accessed through its publicly

accessible IBM 3270 connection.

A user interacted with the system via LeNDI for a full day querying the different

available local and remote catalogs about library items, searching for course reserve

materials and doing other related information retrieval tasks with the system. The user

was directed to which subsystems and catalogs to use and was asked to cover them

thoroughly several times to ensure having enough examples of each screen. The user

activity was recorded in one long trace of 1237 snapshots. The author modeled the

behavior of the legacy system CUI by performing clustering, classifier induction and then

transition modeling as described in details in the next subsections.

5.5.4.1 Snapshot Clustering

Since the author was not familiar with the legacy system, he decided to use the single­

path incremental clustering algorithm to explore the legacy CUI and leam it while he is

modeling it, gradually and iteratively. A review of the screen snapshots of MIRLYN

revealed that its CUI style maintains useful information in the top rows of almost all

screen snapshots. This suggests that the presentation space feature set of section 4.2

would be useful in clustering the snapshots of the input trace. On the other hand, different

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

catalogs and indexes have very similar screen layouts for functionally similar screens.

For example, the "Author Index" screens of different catalogs look very close to each

other, and in some cases, the only difference is the catalog name. This suggests that the

presentation space layout features of section 4.4 would not be very useful in clustering

the snapshots. All the feature subsets of LeNDI and combinations of them were tried in

clustering the snapshot set.

After about 10 rounds of setup, clustering and result review, the analyst reached a

satisfactory partition that is near perfect in his judgement. The final setup used included

one recognizer that was configured as in Table 5.7. A threshold of 100% was used. 88

clusters were discovered. The results were reviewed and it was discovered that:

• One cluster is redundant, i.e., it has few snapshots that should be in another cluster,

• The instances of two clusters are mixed together, and

• The instances of four other clusters are mixed together.

These errors were fixed manually. This required 5 MoJo Plus moves: 4 MM steps and

one JOIN step. The result was 91 distinguished clusters, which are shown with their

description and cardinality in Table 5.8. These clusters were the input to the classifier

induction phase.

Feature Description Weight Ignore if Empty
1-1 Encoding of the information at the snapshot periphery 20 N
1-2 Encoding of the start columns of all titles and codes 10 N
1-3 The text in the middle of the second non-blank row 30 Y
1-4 The text in the right of the second non-blank row 40 Y

Table 5.7. The Features Used for Setting up The Single-path Incremental Clustering
Algorithm for M I R L Y N Experiment 5.3.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Id Screen Description Cr Id Screen Description Cr
i U of Michigan Libraries Main Menu 81 47 Renaissance Lit No Holdings Found 3
2 UMich Catalog Introduction 29 48 Renaissance Lit No Keyword Entry Found 10
3 UMich Catalog Author Guide 27 49 Africana Introduction 5
4 UMich Catalog Author Index 22 50 Africana Subject Guide 26
5 UMich Catalog Review Search List 12 51 Africana Subject Index 19
6 UMich Catalog Brief View 32 52 Africana Brief View 3
7 UMich Catalog Holdings Detail 5 53 Africana Long View 53
8 UMich Catalog Long View 120 54 Africana No Holdings Found 6
9 UMich Catalog No Title Entries Found 3 55 Africana Review Search List 7
10 UMich Catalog Other Options 8 56 Africana No Subject Entries Fou 4
11 UMich Catalog Title Guide 10 57 Africana Other options 1
12 UMich Catalog Title Index 12 58 Africana Title Index 22
13 UMich Catalog Explanation of MIRLYN 7 59 Africana Title Guide 10
14 UMich Catalog Explain Options 4 60 Africana No Title Entries Found 1
15 UMich Catalog Long View Help 1 61 Africana Holdings Detail 4
16 UMich Catalog Title Index Help 1 62 Electronic Resources Introduction 4
17 UMich Catalog No Author Entries Found 4 63 Electronic Resources Subject Guide 4
18 UMich Catalog Call Number Browse 17 64 Electronic Resources Subject Index 6
19 UMich Catalog Explain Call Number 4 65 Electronic Resources Long View 50
20 UMich Catalog Explain Catalog 8 66 Electronic Resources Holdings Detail 6
21 Course Reserve Search Menu 59 67 Electronic Resources Other Options 4
22 Course Reserve Index by Course 40 68 Electronic Resources Author Index 22
23 Course Reserve Index by Instructor 16 69 Electronic Resources Long View Help 3
24 Course Reserve Index by Title 10 70 Electronic Resources Author Guide 10
25 Course Reserve View Detail 46 71 Electronic Resources Explain Options 3
26 Course Reserve View Detail Help 3 72 Electronic Resources Explain Display 4
27 UMich Catalog Explain Author 3 73 Electronic Resources Review Search List 7
28 UMich Catalog Subject Index 12 74 Electronic Resources No Author Entry Fo 2
29 UMich Catalog No Subject Entries Found 1 75 Electronic Resources Title Index 4
30 UMich Catalog Subject Guide 13 76 Ohio St. Univ. Introduction 6
31 UMich Catalog Call Number Browse 2 77 Ohio St. Univ. News 3
32 Map Library Introduction 5 78 Ohio St. Univ. Other Options 4
33 Map Library Author Guide 24 79 Ohio St. Univ. Author Index 11
34 Map Library Author Index 20 80 Ohio St. Univ. Brief View 4
35 Map Library Brief View 20 81 Ohio St. Univ. Long View 48
36 Map Library Long View 20 82 Ohio St. Univ. Title Index 20
37 Map Library No Author Entries Found 3 83 Ohio St. Univ. Holdings Detail 12
38 Map Library No Review Search List 8 84 Ohio St. Univ. Review Search List 4
39 Map Library Heading Information 1 85 Ohio St. Univ. Holdings Detail Help 3
40 Map Library Title Guide 8 86 Ohio St. Univ. Explain Author 4
41 Map Library Title Index 19 87 UMich Catalog Subject Index Help 1
42 Renaissance Lit Introduction 11 88 Map Library No Title Entries Found 1
43 Renaissance Lit Keyword Index 17 89 Electronic Resources Title Guide 2
44 Renaissance Lit Brief View 5 90 Ohio St. Univ. Long View Help 2
45 Renaissance Lit Long View 33 91 UMich Catalog Holdings Detail Help 1
46 Renaissance Lit Other Options 2

Table 5.8. Screen Descriptions and Cardinality for MIRLYN Experiment 5.3.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S.5.4.2 Classifier Induction

After fixing clustering results, the author asked LeNDI to generate a cluster signature

for every cluster. Such a signature captures the commonality of the feature vectors and

presentation spaces of the snapshots of a cluster in an artificial feature vector and an

artificial presentation space. Each of Figures 5.10 to 5.12 shows 9 sample snapshots and

the artificial presentations spaces of one of screens 4, 5 and 6 of Table 5.8, respectively.

The artificial presentation space is at the right bottom of each figure. One can see that

they nicely capture the common structure and content of their clusters.

To test these signatures, a test data set was recorded while the user performed more

interaction with MIRLYN system. The set included 687 snapshots, in three traces of

lengths 150, 256 and 281 snapshots. Next, LeND I’s signature-based classifier was used

to classify the snapshots of these traces. Successfully, LeNDI’s signature-based classifier

was able to correctly classify all the 687 snapshots.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S e a r c h B e q u e s t : A=MONT
S e a r c h R e s u l t s : 5 0 0 0 E n t r i e s P o u n d

MOtiTAG HORST 1 9 3 6
51 GEODESY AND PHYSICS 0 ? TK2 EARTH GEODETIC CONTRIBUTIONS TO

GEODYNAMICS 7TH IHTERNATI < 1 9 9 3 > (UL)

MONTAG IGNAZ BERNERRD
52 W A V SCHLIEBENS VOLLSTANDIGES HAND UNO L SHE SUCH DER GESAMKTSN

NIEDEREN FELDMESSKUNS <1B79> {UL!

MONTAG MILDRED LOUISE 1 903
53 COMMUNITY COLLEGE EDUCATION FOR NURSING AN EXPERIMENT IN TECHNICAL

EDUCATION FOR NUR < 1 9 5 9 > (UL)
54 EDUCATION OF NURSING TECHNICIANS <19S 1> (UL)
55 EDUCATION OF NURSING TECHNICIANS < 1 9 5 1 > m i c r o f i c h e (UL)
55 EVALUATION OF GRADUATES OF ASSOCIATE DEGREE NURSING PROGRAMS < 1 9 7 2 >

{UL)
 CONTINUED o n n e x t , p a g e --------

S T A r t o v e r T y p e n u m b e r t o d i s p l a y r e c o r d <F8> F O R w ard p a g e
HELp G U Id e <F7> BACk p a g e
O T H er o p t i o n s CH O ose

NEXT COMMAND:

S e a r c h R e q u e s t : A=MCNT
S e a r c h R e s u l t s ; 5 0 0 0 E n t r i e s F o u n d

(UL)

MONTAG ULRICH
PRACHTEINBANDE 8 7 0 1 6 0 5 SCHATZE AUS DEM BESTAND DER BAYERISCHEN

STAATSBIBLIOTHEK MUN < ------- > {UL)
PRACHTEIHBXNDE 8 7 0 1 6 8 5 SCHATZE AUS DEM BESTAND DER BAYERISCKEN

STAATSBIBLIOTHEK MU» <20C 1> (UL)
WERK DER HEXLIGEN BIRGITTA VON SCHWEDEN IN OBERDEUTSCHER

UBERLIEFEKUNG TEXTE UND UNT < 1 9 6 0 > (UL)
W ILL THE CHAIN BREAK DIFFERENTIAL PR IC IN G AS PART OF A NEW PR IC IN G

STRUCTURE FOR RES < 1 9 9 2 > (UL)
WILLEHALM- WILLEHALH D IE BRUCHSTUCKE DER GROSSES! BILDERHANDSCHRIFT

BAYERISCHE STAATSBIBLIOTHEK < 1985> <UL)

-- CONTINUED o n n e x t p a g e -----
S T A r t o v e r T y p e n u m b e r t o d i s p l a y r e c o r d <FS> F O R w ard p a g e
HELp G U Id e <F 7> BACk p a g e
O TH er o p t i o n s CH O ose

NEXT COMMAND:

S e a r c h R e q u e s t : A-MQNT
S e a r c h R e s u l t s : 5 0 0 0 E n t r i e s F o u n d

MONTAGE ORGANIZATION STANFORD UNIVERSITY
50 MONTAGE MONTAZH -cSTANFORD CA> s e r i a l {UL)

MONTAGNA BARBARA JEAN
31 1 9 7 3 7 4 STAGE INTERPRETATIONS OP PERICLES < 1 9 7 4 > {UL)

MONTAGNA BENEDETTO FL 16TH CENT
32 HABES I HOC VOLUMINE LECTOR OPTIME DIUINA LA CT A T I I F IRM IA N I OPERA

SERQS ACCURATE CAS <------- > (UL)

MONTAGNA CLARE
33 ENVIRONMENTAL PSYCHOLOGY A PSYCHO SOCIAL INTRODUCTION < 1 9 9 5 > (UL)
34 PSICOLOGIA AMBIEtfTALE ENGLISH. ENVIRONMENTAL PSYCHOLOGY A PSYCHO

SGCIAL INTRODUCTION < 19 9 S > {UL)

--------------- .------------------------------------- CONTINUED o n n e x t p a g e
S T A r t o v e r T y p e n u m b e r t o d i s p l a y r e c o r d <FS> F O R w ard p a g e
HELp G U Id e <F7> BACk p a g e
O T H er o p t i o n s CH O ose

NEXT COMMAND:

S e a r c h R e q u e s t : A=MONTG
S e a r c h R e s u l t s : 1 0 4 0 E n t r i e s F o u n d

MONTGOMERY ALA A IR FORCE LO GISTICS MANAGEMENT CENTER
“S e a r c h U n d e r : A IR FORCE LO GISTICS MANAGEMENT CENTER

MONTGOMERY ALA AUBURN UNIVERSITY AT MONTGOMERY
• S e a r c h U n d e r : AUBURN UNIVERSITY AT MONTGOMERY

MONTGOMERY ALA CHAMBER OF COMMERCE
• S e a r c h U n d e r : MONTGOMERY AREA CHAMBER OF COMMERCE

MONTGOMERY ALA EASTERN ENVIRONMENTAL RADIATION LABORATORY
• S e a r c h U n d e r : EASTERN ENVIRONMENTAL RADIATION LABORATORY U S

MONTGOMERY ALA JU N IO R CHAMBER OF COMMERCE
OUTSTANDING YOUNG WOMEN OF AMERICA < --------> (UL)

d i s p l a y r e c o r d
CONTINUED o n n e x t p a g e —

< F 8> FO R w ard p a g e
< F 7> BACk p a g e

S T A r t o v e r T y p e n u m b e r i
HELp G U Ide
O TH er o p t i o n s CHOose

NEXT COMMAND:

S e a r c h R e q u e s t : A-MQNTG
S e a r c h R e s u l t s : 1 0 4 0 S i t r i e s F o u n d

MONTGOMERY ALA MONTGOMERY AREA CHAMBER OF COMMERCE
1 1 7 ‘ S e a r c h U n d e r : MONTGOMERY AREA CHAMBER OF COMMERCE

MONTGOMERY ALA MUSEUM OF FINE ARTS
1 1 8 ‘ S e a r c h U n d e r : MONTGOMERY MUSEUM OF FIN E ARTS

MONTGOMERY ALA SOUTHERN POVERTY LAW CENTER
1 1 9 “ S e a r c h U n d e r ; SOUTHERN POVERTY LAW CENTER

1 2 0

MONTGOMERY ALBERT A
1 2 1 WASHINGTON MUNICIPAL EXPENDITURES 1 941 1 9 5 7 AN ECONOMIC ANALYSIS

< 1 9 6 3 > {UL)
--- CONTINUED o n n e x t p a g e - •
S T A r t o v e r T y p e n u m b e r t o d i s p l a y r e c o r d <F8> F O R w ard p a g e
HELp G U Ide <F 7> BACk p a g e
O TH er o p t i o n s CH Cose

S e a r c h R e q u e s t : A=MONT
S e a r c h R e s u l t s : 5 0 0 0 E n t r i e s F o u n d

MONTAG MILDRED LOUISE 19GS
57 FUNDAMENTALS IN NURSING CARE < 1 9 5 9 > (UL)
58 HANDBOOK OF FUNDAMENTAL NURSING TECHNIQUES < 1 9 7 6 > (UL)
59 NURSING ARTS < 19 4 S > (UL)
70 NURSING ARTS <19S 3> (UL)
71 NURSING CONCEPTS AND NURSING CARE < 1 9 7 0 > (UL)
72 TEXTBOOK OF MATERIA KSDICA < 1 9 4 2 > (UL)
73 TEXTBOOK OF PHARMACOLOGY AND THERAPEUTICS < 1 9 4 8 > (UL)
74 TEXTBOOK OF PHARMACOLOGY AND THERAPEUTICS INCLUDING DRUGS AND

SOLUTIONS < 19 S 9 > (UL)
75 TRANSITION I N NURSING EDUCATION GUIDELINES RESULTING FROM THE PHASING

OUT OF A D IFLO < 1967> (UL)

U M ich O n l i n e C a t a l o g
A u t h o r I n d e x

■ 1974> (UL)
— CONTINUED on n e x t p a g e

S T A r t o v e r T y p e n u m b e r t o d i s p l a y r e c o r d <F 8> FO R w ard p a g e
HELp G U Id e <?']> BACk p a g e
O THer o p t i o n s CH O ose

NEXT COMMAND:

S e a r c h R e q u e s t : A=MONT
S e a r c h R e s u l t s : 5 0 0 0 E n t r i e s F o u n d

MONTAG ULRICH
83 WILLKHALM D IE 8RUCHSTUCXE DER GROSSEN BILDERHANDSCHRIFT BAYERISCHE

STAATSBIBLIOTHEK < 1935> (UL)

MCNTAG WARREN
8 4 BODIES MASSES POWER SPINOZA AND H IS CONTEMPORARIES < 1 9 9 9 > {UL)
85 IN A MATERIALIST WAY SELECTED ESSAYS <199B > (UL)
8 6 MASSES CLASSES AND THE PUBLIC SPHERE < 2 0 0 0 > (UL)
87 NSW SPINOZA < 1 9 9 7 > (UL)
83 SELECTIONS ENGLISH 1 9 9 8 . I N A MATERIALIST WAY SELECTED ESSAYS < 1998>

(UL)
89 UNTHINKABLE SWIFT JONATHAN SW IFT AND THE IDEOLOGICAL C R IS IS OF CHURCH

AND STATE 1 6 8 8 < 1 9 9 4 > (UL)

CONTINUED o n n e x t p a g e -------
<F8> FO R w ard p a g e
< F7> BACk p a g e

U M ich O n l i n e C a t a l o g
A u t h o r I n d e x

S T A r t o v e r T y p e n u m b e r t o d i s p l a y r e c o r d
HELp G U Ide
O T H er o p t i o n s CH O ose

NEXT COMMAND:

MONTAGNA FRANK C 1 9 4 9
RESPONDING TO ROUTINE EMERGENCIES < 1 9 9 9 > (UL)

MONTAGNA PASQUINUCCI MARINELLA
• S e a r c h U n d e r : PASQUINUCCI MARINELLA

MONTAGNA PAUL D
OCCUPATIONS AND SOCIETY TOWARD A SOCIOLOGY OF THE LABOR MARKET < 1977>

(UL)

S T A r t o v e r T y p e n u m b e r t o d i s p l a y r e c o r d
HELp G U Id e
O T H er o p t i o n s CH O ose

NEXT COMMAND:

CONTINUED o n n e x t p a g e -------
<F8> FO R w ard p a g e
<F7> BACk p a g e

U M ich O n l i n e C a t a l o g
A u t h o r I n d e x

AL QARI AL HARAWI A L I I BN SULTAN MUHAMMAD D 1 6 0 5 OR 6
DAW AL M AALI. HASHIYAH L I BAD AL MUKAQQIQIN TUSAMMA TUHFAT AL AALI

ALA SHARK A L I I BN SULTAN AL GAR < 1 8 9 1 > m i c r o f i l m (UL)

AL QASIDAH AL YATIMAH
QASIDAH AL YATIMAH B i RIWAYAT AL QADI A L I I BN MUHSIN AL TANUKHI

< 1 9 7 0 (UL)

S T A r t o v e r T y p e n u m b e r 1
HELp G U Id e
O T H er o p t i o n s CH O ose

NEXT COMMAND:

• d i s p l a y r e c o r d
CONTINUED o n n e x t p a g e —

< F 8> FO R w ard p a g e
< F7> BACk p a g e

NEXT COMMAND:

S T A r t o v e r
HELp
O T H er o p t i o n s

NEXT COMMAND:

T y p e n u m b e r t o d i s p l a y r e c o r d

Figure 5.10. The Signature and Some Snapshots of Cluster 4 of Experiment 5.3.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U M ich O n l i n e C a t a l o g
R e v ie w S e a r c h L i s t

U M ich O n l i n e C a t a l o g
R e v ie w S e a r c h L i s t

REVIEW P r i o r S e a r c h e s REVIEW P r i o r S e a r c h e s

L IN E SEARCH
S I A “ MONT

K IT S
5 0 0 0

L IN E SEARCH
5 1 A =AL-BA
52 T “A LB ANNA
53 A =AL-Q
54 T =ISLAM
55 A =MONTG
SS A =MONTO
S7 A “ MONT

H IT S
1 0 5

0
6 0

3 3 6 3
1 0 4 0

2 6 0
5 0 0 0

S T A r t o v e r
HELp
O T H er o p t i o n s

T y p e l i n e
T y p e EDIT
IN D ex

n u m b e r t o r e - e x e c u t e a s e a r c h
l i n e n u m b e r t o r e c a l l a s e a r c h

G U Id e CHOose

S T A r t o v e r T y p e l i n e
H ELp T y p e EDIT
O T H er o p t i o n s CH O ose

n u m b e r t o r e - a x e c u t e a s e a r c h
l i n e n u m b e r t o r e c a l l a s e a r c h

NEXT COMMAND: NEXT COMMAND:

U M ich O n l i n e C a t a l o g
R e v ie w S e a r c h L i s t

U M ich O n l i n e C a t a l o g
R e v ie w S e a r c h L i s t

REVIEW P r i o r S e a r c h e s REVIEW P r i o r S e a r c h e s

LIN E SEARCH
S I A =MQNT

H IT S
5000

L IN E SEARCH
5 1 A =HAT
52 C “AS
5 3 A =JUSTTRY
5 4 A “ NCWAYMAN
55 T “ AFRICA

H IT S
3 103

1 4
0
0

3 8 9 8

S T A r t o v e r
HELp
O T H er o p t i o n s

T y p e l i n e
T y p e E D IT
IN D ex

n u m b e r t o r s - e x e c u t e a s e a r c h
l i n e n u m b e r t o r e c a l l a s e a r c h

C SJIde CHOose

S T A r t o v e r T y p e l i n e n u m b e r t o r e - e x e c u t e a s e a r c h
HELp T y p e E D IT l i n e n u m b e r t o r e c a l l a s e a r c h
O T H er o p t i o n s IN D ex G U Id e CHOose

NEXT COMMAND; A =MDNT NEXT COMMAND:

U M ich O n l i n e C a t a l o g
R e v ie w S e a r c h L i s t

U M ich O n l i n e C a t a l o g
R e v ie w S e a r c h L i s t

REVIEW P r i o r S e a r c h e s REVIEW P r i o r S e a r c h e s

L IN S SEARCH
51 A “ MONTO
52 A =MONT

H IT S
2 6 0

5 0 0 0

L IN E SEARCH
5 1 A “ SALEM
5 2 T =CR
5 3 C =S S
5 4 A “ HAT
5 5 C =AS
5 6 A “ JUSTTRY
57 A “NOWAYMAN
5 8 T “ AFRICA

H IT S
3 1 1

5 0 0 0
1 4

3 1 0 3
1 4

0
0

3 8 9 8

S T A r t o v e r
HELp
O THer o p t i o n s

T y p e l i n e n u m b e r t o r e - a x e c u t e a s e a r c h
T y p e E D IT l i n e n u m b e r t o r e c a l l a s e a r c h
IN D ex G U Id e CH O ose

S T A r t o v e r T y p e l i n e
HELp T y p e ED IT
O T H er o p t i o n s IN D ex

n u m b e r t o r e - e x e c u t e a s e a r c h
l i n e n u m b e r t o r e c a l l a s e a r c h

G U Id e CH O ose

NEXT COMMAND: NEXT COMMAND:

U M ich O n l i n e C a t a l o g
R e v ie w S e a r c h L i s t

U M ich O n l i n e C a t a l o g
R e v ie w S e a r c h L i s t

REVIEW P r i o r S e a r c h e s REVIEW P r i o r S e a r c h e s

LIN E SEARCH
51 A “ MONTO
52 A “ MONT

H IT S
2 6 0

5 0 0 0

L IN E SEARCH
S I A =140

H IT S
5 0 0 0

S T A r t o v e r
HELp
O THer o p t i o n s

T y p e l i n e
T y p e ED IT
IN D ex

n u m b e r t o r e - e x e c u t e a s e a r c h
l i n e n u m b e r t o r e c a l l a s e a r c h

G U Id e CH O ose

S T A r t o v e r T y p e l i n e
HELp T y p e ED IT
O T H er o p t i o n s CHOose

n u m b e r t o r e - e x e c u t e a s e a r c h
l i n e n u m b e r t o r e c a l l a s e a r c h

NEXT COMMAND: A =M0NT NEXT COMMAND:

U M ich O n l i n e C a t a l o g
R e v ie w S e a r c h L i s t

U M ich O n l i n e C a t a l o g
R e v ie w S e a r c h L i s t

REVIEW P r i o r S e a r c h e s SEVTSW P r i o r S e a r c h e s

LTNE SEARCH K IT S LXN3 SEARCH H IT S

52 T =ISLAM
53 A =MONTG
54 A =MONTO
5 5 a =m ont

336 3
1 0 4 0

2 6 0
5 0 0 0 ::

::::

S T A r t o v e r
HELp
O T H er o p t i o n s

T y p e l i n e
T y p e EDIT
CH O ose

n u m b e r t o r e - e x e c u t e a s e a r c h
l i n e n u m b e r t o r e c a l l a s e a r c h

S T A r t o v e r T y p e l i n e
HELp T y p e E D IT
O T H er o p t i o n s ? ? ? ? ? -

n u m b e r t o r s - e x e c u t e a s e a r c h
l i n e n u m b e r t o r e c a l l a s e a r c h

NEXT COMMAND: NEXT COMMAND: - ----------------

igure 5.11. The Signature and Some Snapshots of Cluster 5 of Experiment 5.3.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S e a r c h R e q u e s t : A=MQNTG U M ich O n l i n e C a t a l o g
BOOK - R e c o r d 1 2 5 o f 1 0 4 0 E n t r i e s F o u n d B r i e f V ie w

S e a r c h R e q u e s t : A=MONTG U M ich O n l i n e C a t a l o g '
BOOK - R e c o r d 1 2 1 o f 1 0 4 0 E n t r i e s F o u n d B r i e f V ie w

A u th o r : W e s t e r n A u s t r a l i a . D e p t , o f M in e s .

T i t l e : R e p o r t o n t h e N o r t h a m p t o n m i n e r a l f i e l d .

P u b l i s h e d : P e r t h , M o r a in e h e r a l d j o b p r i n t i n g d e p t . , 1 9 0 8 .

SUBJECT HEADINGS (L i b r a r y o f C o n g r e s s ; u s e s =) :
M in e s a n d s i i n e r a l r e s o u r c e s — W e s te r n A u s t r a l i a .

A u t h o r : M o n tg o m e ry , A l b e r t A .

T i t l e : W a s h in g t o n m u n i c i p a l e x p e n d i t u r e s , 1 9 4 1 - 1 9 5 7 ? a n e c o n o m ic
a n a l y s i s .

P u b l i s h e d : P u l lm a n . W a s h in g to n S t a t e U n i v e r s i t y , B u r e a u o f E c o n o m ic a n d
B u s i n e s s R e s e a r c h , C o l l e g e o f E c o n o m ic s a n d B u s i n e s s . 1 9 6 3 .

SUBJECT HEADINGS (L i b r a r y o f C o n g r e s s ; u s e s =) :
M u n ic ip a l f i n a n c e — W a s h in g t o n (S t a t e)LOCATION: CALL NUMBER: STATUS:

BUHR - A sk a t a n y TN 1 2 2 .W5 A3 N o t c h e c k e d o u t
l i b r a r y LOCATION; CALL NUMBER: STATUS:

3UHR - A sk a t a n y H J 9 3 3 2 -K 79 N o t c h e c k e d o u t
l i b r a r y

S T A r t o v e r LONg v i e w CH O ose <F 6> N EX t r e c o r d
HELp IK D ex < F 5> P R E v io u s r e c o r d
O T H er o p t i o n s G U Ide

NEXT COMMAND:

S T A r t o v e r LONg v i e w CHOo3e <F 6> NEXt r e c o r d
HELp IN D ex <F5> P R E v io u s r e c o r d
O T H er o p t i o n s G U Ide

NEXT COMMAND:

S e a r c h R e q u e s t ; A=MCNTG U M ich O n l in e C a t a l o g
BOOK - R e c o r d 1 2 7 o f 1 0 4 0 E n t r i e s P o u n d B r i e f V ie w

S e a r c h R e q u e s t : A=MDNTG U M ich O n l i n e C a t a l o g
BOOK - R e c o r d 122 o f 1 0 4 0 E n t r i e s F o u n d B r i e f V ie w

A u t h o r : D e t r o i t R e g i o n a l T r a n s p o r t a t i o n a n d L e n d U s e S t u d y .

T i t l e : B a s e m a p p in g m a n u a l ; a r e p o r t o f TALUS

P u b l i s h e d : D e t r o i t 1 9 6 7 .

SUBJECT HEADINGS (L i b r a r y o f C o n g r e s s ; u s e s =) :
R e g i o n a l p l a n n i n g — M i c h i g a n - - D e t r o i t M e t r o p o l i t a n A r e a .
D e t r o i t M e t r o p o l i t a n A r e a (M i c h .) — M a p s .

A u t h o r : M o n tg o m e ry , A l b e r t a V i c t o r i a .

T i t l e : T h e r o s e a n d t h e f i r e .

P u b l i s h e d : C r a n l e i g h , P r i n t e d & p u b l i s h e d b y t h e S a m u r a i p r e s s 1 9 0 8

LOCATION: CALL NUMBER: STATUS:
SPECIA L COLLECTIONS Z 2 3 2 -S 1 8 5 1 9 0 8 f C h e c k S h e l f

L I B . (7 1 1 GL)
(N o n - C i r c u l a t i n g)
(C l o s e d S t a c k s)LOCATION: CALL NUMBER: STATUS:

MEDIA UNION LIBRARY - HT 3 9 4 ,0 6 D 432 N o t c h e c k e d o u t
L o w er L e v e l

S T A r t o v e r LCNg v i e w CH O ose < F 6> N EX t r e c o r d
HELp IN D e x < F 5> P R E v io u s r e c o r d
O T H er o p t i o n s G U Ide

NEXT COMMAND:

S T A r t o v e r LONg v ie w CH O ose <F 6> N EX t r e c o r d
HELp IN D ex < F 5 » P R E v io u s r e c o r d
O T H er o p t i o n s G U Id e

NEXT COMMAND:

S e a r c h R e q u e s t : A=MONTG U M ich O n l i n e C a t a l o g
BOOK - R e c o r d 1 2 8 o f 1 0 4 0 E n t r i e s F o u n d B r i e f V ie w

S e a r c h R e q u e s t : A=MONTG U M ich O n l i n e C a t a l o g
BOOK - R e c o r d 123 o f 1 0 4 0 E n t r i e s F o u n d B r i e f V iew

A u t h o r : D e t r o i t R e g i o n a l T r a n s p o r t a t i o n a n d L a n d U s e S t u d y .

T i t l e : G r i d c o o r d i n a t e c o d i n g m a n u a l ; a r e p o r t o f TALUS.

P u b l i s h e d : D e t r o i t 1 9 6 7 .

SUBJECT HEADINGS (L i b r a r y o f C o n g r e s s ; u s e s =) :
R e g io n a l p l a n n i n g — M ic h ig a n — D e t r o i t M e t r o p o l i t a n A r e a .
G r i d s (C a r to g r a p h y)

A u t h o r : W e s t e r n A u s t r a l i a . D e p t , o f M in e s .

T i t l e : R e p o r t o n t h e K anow na m in e s

P u b l i s h e d : P e r t h , F . W. S im p s o n , g o v e r n m e n t p r i n t e r , 1 9 0 8 .

SUBJECT HEADINGS (L i b r a r y o f C o n g r e s s ; u s e s =) :
G o ld m in e s a n d m i n i n g — W e s te r n A u s t r a l i a .

LOCATION: CALL NUMBER: STATUS:
BUHR - A sk a t a n y TN 4 2 8 .W5 A3 N o t c h e c k e d o u t

l i b r a r y
LOCATION: CALL NUMBER: STATUS:
MEDIA UNION LIBRARY - HT 3 9 4 .D 6 D 4848 N o t c h e c k e d o u t

L o w e r L e v e l
BUHR - A sk a t a n y HT 3 9 4 .0 6 D 4848 N o t c h e c k e d o u t

l i b r a r y

S T A r t o v e r LCNg v i e w CH O ose <F S> N EX t r e c o r d
HELp IN D ex < F 5 > P R E v io u s r e c o r d
OTH er o p t i o n s G U Ide

NEXT COMMAND:

S T A r t o v e r LONg v i e w CH O ose <F 6> N EX t r e c o r d
HELp IN D ex <F 5> P R E v io u s r e c o r d
O T H er o p t i o n s G U Ide

NEXT COMMAND:

S e a r c h R e q u e s t : A=MC®fTG
ARCHIVE - R e c o r d 1 3 0 o f 1 0 4 0 E n t r i e s F o u n d

XJMich O n l i n e C a t a l o g
B r i e f V ie w

I n s t i t u t e o f L a b o r a n d I n d u s t r i a l R e l a t i o n s (U n i v e r s i t y o f
M ic h ig a n -W a y n e S t a t e U n i v e r s i t y) . U n i o n i s e i n t h e A u to m o b i l e
I n d u s t r y P r o j e c t .

U n io n is m i n t h e A u to m o b i l e I n d u s t r y P r o j e c t i n t e r v i e w s , 1 9 5 9 -
1 9 5 3 .

D e s c r i p t i o n : 130 ' : 4 b o x e s .

B i o g r a p h i c a l N o te :
T r a n s c r i p t s o f i n t e r v i e w s c o n d u c t e d w i t h M ic h ig a n l a b o r

l e a d e r s b y s t a f f o f U n i v e r s i t y o f M ic h ig a n a n d W ayne S t a t e
U n i v e r s i t y I n s t i t u t e o f L a b o r a n d I n d u s t r i a l R e l a t i o n s .

S T A r t o v e r H C L d in a s G U Ide
HELp LCNg v i e w CH O ose
O TH er o p t i o n s IN D ex

NEXT COMMAND:

S e a r c h R e q u e s t : A=MCNT'3
ARCHIVE - R e c o r d 1 3 0 o f 1 0 4 0 E n t r i e s P o u n d

• P a g e 1 o f 2 ---------------------------
<F 8> FO R w ard p a g e
<F 6> NEXt r e c o r d
<F 5> P R E v io u s r e c o r d

i t h e A u to m o b i l e I n d u s t r y P r o j e c t i n t e r v i e w s

LOCATION:
BENTLEY HISTORICAL

LIBRARY
(N o n - C i r c u l a t i n g)
(C l o s e d S t a c k s)

S T A r t o v e r H C L d in g s
HELp LONg v ie w
O T H er o p t i o n s IN D ex

CALL (DUMBER:
8 3 1 7 4 3 B im u C 542 2

STATUS:
E n t e r HOL 1 f o r h o l d i n g s

G U Id e
CH O ose

BACk p a g e
NEXt r e c o r d
P R E v io u s r e c o r d

S e a r c h R e q u e s t : A=MONTG
BOOK - R e c o r d 1 2 4 o f 1 0 4 0 E n t r i e s F o u n d

U M ich O n l i n e C a t a l o g
B r i e f V ie w

A u t h o r : W e s t e r n A u s t r a l i a . D e p t , o f M in e s .

T i t l e : R e p o r t o n t h e m in e s o f t h e Y i l g a r n g o l d f i e l d .

P u b l i s h e d : P e r t h , F . W. S im p s o n , g o v e r n m e n t p r i n t e r , 1 9 0 8 .

SUBJECT HEADINGS (L i b r a r y o f C o n g r e s s ; u s e s =) :
G o ld m in e s a n d m in i n g — W e s te r n A u s t r a l i a .

LOCATION:
BUHR - A sk a t a n y

l i b r a r y

S T A r t o v e r LONg v ie w
HELp IN D ex
O TH er o p t i o n s G U Ide

NEXT COMMAND:

S e a r c h R e q u e s t : ? = ? ? — -

? ? t ? ? ? - ? ? ? -------------

<F6> N EX t r e c o r d
<F5> P R E v io u s r e c o r d

U M ich O n l i n e C a t a l o g
B r i e f V ie w

S T A r t o v e r
HELp
O T H er o p t i o n s

NEXT COMMAND:

Figure 5.12. The Signature and Some Snapshots of Cluster 6 of Experiment 5.3.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.43 Transition Modeling

Next, transition modeling was performed on the input interaction trace. 369

transitions were discovered. Some of these transitions are shown in Table 5.9. The

transition < ixactionxj> is represented by the action model action at row i and column

j. A means a mandatory keyword, argument or option, i.e., something has to be input

in this location. A 1*]’ means an optional input. @e is Enter key and @n is the control

key PFn. A T means a numerical input is mandatory. Some action models are too general

due to lack of examples, i.e., LeNDI could not discover the specific keywords or options

of the action, although some exist, due to lack of enough examples. In this case, LeNDI

takes a safe route by assuming a too general model. Such action models are shown with

gray backgrounds. Some action models are too narrow, which means that the model

would not generalize probably and it overfits the examples available in the trace. This

happens when the examples of this action were too similar to each other. Such models are

shown with white font and black background. The locations (x,y coordinates or range) of

action models are omitted to spare space in Table 5.9.

The entry point to MIRLYN is screen 1 (U of Michigan Libraries Main Menu). This -

menu is 14 screens long, with each of them presenting new options to the user. In other

words, screen 1 has 14 versions. The user may access more instances of this screen by

moving forward by pressing Enter or PF8, typing ''remote'' followed by Enter or typing

an undefined string followed by Enter. The user can move to screen 2 (UMich Catalog

Introduction) and open University of Michigan catalog by just pressing Enter (cell 1,2).

From screen 2, the user can open screen 3 (UMich Author Guide) or screen 11 (UMich

Title Guide) by issuing the command "a = *@e" or "t = *@e", respectively, as in row 2.

These two commands are the catalog commands for searching for a specific author or

title. Similarly, the user can move to other screens as her/his task needs.

One can see that some columns have similar action models, suggesting that the

corresponding screen can be reached using the same action from only some specific

screens. For example, screen 7 (UMich Catalog Holdings Detail) can be accessed only by

typing "hold" or "hoi" and pressing Enter from screens 6 (UMich Catalog Brief View) or

8 (UMich Catalog Long View). Another example is screen 10 (UMich Catalog Other

Options). It can be accessed only by typing "oth" and pressing Enter. However, many

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

action models in column 10 have gray background due to lack of examples, and hence,

they are too general and do not show the specific keyword ("oth"). Too general models

occur due to lack of examples and are not a problem. This is because lack of examples

means that the action occurred a rare navigation sequence. Such sequences would not be

discovered as an interaction pattern. If needed, a too general action model can be made

more specific manually.

An example of an overfitting model is the transition from screen 5 to screen 5, via the

action model "edit sl@e". The edit command allows the system user to edit one of the

previous searches in the open library catalog performed previously. Since many of the

examples had the user revising the first line in his search history (line si), LeNDI

mistakenly assumed that "si" is a possible argument of the command. This problem can

be fixed either by collecting more examples of the same action or by changing the model

manually.

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

S, H
W o'
« e?
3.5
8 cc
H O5. g
W O

Ho'»
H
*1psw

O i

|fDsr
w

cr
V -

on
Hsr

po
fB

too VO00 Ov Ux to © v© 00 •o Os Ox u> to! s

' 1 1® ®<T> o>
u*

® ®<u . a>

remote @e
[*]@

e@8

M :
!

U of Michigan Libraries
Main Menu

2 ® ®i-o « fl>
tO:UMich Catalog Introduction

/ l i
P11* 4fr ® ® ®..... 0. .

pH*
®...Ct> J

!U) UMich Catalog Author
Guide

n

P11*#
®Q ®m

in@
e

ind@
e

!@e

UMich Catalog Author
Index

iim
m ® ill 3c

®a>
s0><©

Ox
UMich Catalog Review
Search List

i f ®
cr3.®r&

r
*_) ® <D © ®© :avUMich Catalog Brief View

ll© n
1
©

o UMich Catalog Holdings
Detail

®n> ®©

T
r*

® ® ® ® © oo ©\ ox n> n>

-
@

pv

l@
e

lon@
e

flf

®rr>
00UMich Catalog Long View

Ml V©UMich Catalog No Title
Entries Found

—
1©. . n> . .. ©■UMich Catalog Other

Options

!
i :

V|

ite?
IT
*i®! j Wk

■ HI. tel
1!
®... . C6„

z UMich Catalog Title Guide

@a

ex mirlyn@
e

exp mirlyn@
e

T?
OO fft

©o>
Sii —

iilo
S'a
®.......© i 1 K-to

L_
UMich Catalog Title Index

| \

£UMich Catalog Explanation
of MIRLYN

5.6 Discussion
This chapter presented the interaction-based legacy UI reverse engineering process

developed in CelLEST project. The process builds a behavioral model for a character-

based legacy user interface using traces of interaction with the legacy system, recorded

while its users are performing their regular activities using the legacy system. The model

is in the form of a state-transition model. Its nodes represent the behavioral states or

screens of the legacy system. Its edges represent the user actions necessary to cause a

transition from the source screen where the action took place to a destination screen. The

two substasks in building this model are identifying its nodes and its edges. The first is

accomplished by clustering similar screen snapshots together automatically or semi-

automatically, verifying clustering results, and then inducing a classifier that is able to

generalize clustering results by classifying new snapshots to one of the existing clusters.

The second process involves analyzing the available instances of every transaction

between two screens, assuming that all the user keystrokes done to initiate such a

transition are instances of the same user action. This analysis leads to identifying what is

common in these instances and what is variable in terms of their textual contents and

locations on the source screen. The following discussion elaborates on the strengths,

limitations and possible enhancements of this work.

5.6.1 Strengths
This subsection presents the strengths of the CUI behavioral modeling process

presented in this chapter. It discusses how this process advances current modeling

practices, while requiring lower skills and less time, effort and cost.

5.6.1.1 A Coherent Automated CUI Behavior Modeling Process

The novel coherent CUI behavior modeling process of LeNDI supersedes the manual

practices used currently in industry, which are described in fair detail in section 2.2.

These practices focus on manual modeling of either some interesting parts of a given

legacy CUI or the user tasks that will be reengineered, from scratch.

In these practices, using a simple or rich pattern language, an analyst manually

defines classifiers that are able to classify some of the snapshots of the system in hand to

one of a set of classes, each represents a legacy system screen. Since the analyst is

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

usually unfamiliar with the system in hand, s/he needs the aid of some expert users of the

system. Also s/he needs to familiarize her/himself with the system via reading the system

documents, if any, talking with and observing the system users, trial and error, reading

help screens, etc. Then s/he needs to figure out how many distinct screens or states are

there in order to infer classifiers for them. Classifiers are logical combinations of patterns

described in the given pattern language. For example, patterns can represent the existence

or absence of a certain text at a certain location or within a range on the screen. To do the

modeling task, the analyst goes through many sample snapshots of each screen under

analysis trying to discover what is common on them and what differentiates them from

other instances of other screens. This is done by visually inspecting the snapshots and

finding one pattern or a combination of patterns that distinguishes the snapshots. This is

quite a labor-intensive and time-consuming job. Moreover, due to the limited set of

features offered by pattern languages, some times it is very hard to construct a logical

expression of patterns to distinguish the instances of a screen and may require forming

quite complex patterns.

To model the possible transitions among the screens of a legacy system, the analyst_

needs to see different instances of each transition, try them and familiarize him/herself

with the interaction style adopted in the legacy CUI. By analyzing these instances, s/he

has to infer a model of each transition that describes what keywords, arguments and

options are needed/possible for this transition and what are the possible variants for each

of them. Also, her/his manual analysis should discover how many pieces of data are

needed for the transition and whether they are optional or mandatory. Finally, s/he needs

to figure out where on the screens all these pieces take place.

LeNDI provides an alternative coherent semi-automated behavior modeling process

that eliminates the need for tedious error-prone manual model building. It pushes

interaction-based legacy UI reengineering forward and significantly advances its current

practices making it a favorable solution when code reengineering is not essential. By

relieving the analyst from manual piece by piece model building, LeNDI saves time,

effort and cost.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While this process relies on inferring most of the elements of the required behavioral

model almost automatically, it leaves room for user feedback to revise the generated

model and overrule LeNDfs decisions.

5.6.1.2 Low Skills

LeNDI requires lower skills than current manual practices. To use LeNDI, moderate

analysis skills and fair understanding of the system under analysis is needed. Current

practices require solid software development and programming skills and the aid of

expert users of the legacy system. This is because LeNDI infers many pieces of

information automatically and asks the analyst just for verification and feedback. While

in current practices, all information is extracted manually.

5.6.1.3 Comprehensibility of the Results

The state-transition model produced by LeNDI is intuitively understandable, with

little legacy system user experience. Hence, verifying the model and giving feedback is

easy. This is especially true due to the coherent modeling approach used in LeNDI as

opposed to the segmented approach followed in current practices and because of the tool

support for visualization, offered by QandA [Yij02],

5.6.1.4 Flexibility and Extensibility

LeNDI’s behavior modeling process is flexible to possible changes in the legacy

system GUI. Minor changes can be done manually to the generated state-transition model

and major ones can be done by recording new traces of interaction and partially redoing

the modeling process.

LeNDI employs two different clustering algorithms that require different levels of

familiarity with the legacy GUI and different inputs. It also employs two different

classifier induction methods. Thus, it offers flexibility in choosing the right methods

based on the legacy GUI in hand and the judgement of the analyst.

Additionally, the GUI modeling process is open to improvements by adding new

features, clustering algorithms and/or classifier induction algorithms. Since the generated

state-transition model is stored in an MS Access database, it would be possible to query it

using SQL about possible navigation paths from a screen to another in order to build a

navigation plan for a novel task model, or other reasons.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.2 Limitations
Interaction-based legacy CUI behavior modeling in LeNDI has some limitations in

terms of the accuracy and completeness of the model built and the necessity of some

h um an setup and feedback. These limitations are detailed below.

5.6.2.1 Model Completeness and Classifier Accuracy

Two important questions should arise after presenting the experiments and evaluation

of section 5.5. These questions are 1) how complete is the state-transition model

produced? and 2) how accurate is the classifier induced to classify new snapshots as

instances of exiting nodes or states? There is no straightforward answer to both questions

as both measures rely heavily on the amount and quality of input data. Therefore, instead

of giving a precise answer to these questions, the following elaborates on what factors

affect these two measures.

First, model completeness depends on the coverage of the data collected. It is obvious

that LeNDI would not be able to model states (screens) that were never accessed while

recording the interaction traces, and hence no sample snapshots of them were available

for clustering. The same applies to edges (transitions). However, a complete model of the

entire legacy UI is not really of interest. Instead, “enough” modeling is what is needed.

This means producing a model that covers the services of the legacy CUI that would be

subject to reengineering, and the necessary related screens, e.g., help screens, messages

screens, etc.

Second, the accuracy of the classifier, and consequently the ability of the new

interface front-end to monitor and control the state of the underlying legacy application,

depends on two factors. First, it is important that enough examples of all screens of the

legacy interface have been recorded. Since the trace-recording emulator is not intrusive, a

large number of emulators, installed on the terminals of a variety of legacy users for

sufficiently long time should result in long and sufficiently representative traces.

However for a given screen, “sufficient” is a function of its feature vector, content

dynamics and its similarity to other screens.

Another factor affecting the classifier accuracy is the quality of the partition produced

by the clustering process. This is why the clustering process is interactive and can be

guided by the LeNDI analyst. Then, the clusters can be reviewed and Incorrectly

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

clustered snapshots can be identified. This process continues until all errors are

eliminated. By analogy, the accuracy of transition modeling depends on having enough

representing examples of each modeled transition. Lack of enough examples or having

very similar examples may lead to too general or too specific models, respectively.

Therefore, transition modeling is open to user revisions to fix the overfitting models and

to specify the too general ones, if needed.

5.6.2.2 User Feedback Is Necessary

Albeit mostly automatic, some user input is still required in the current legacy CUI

behavior modeling process of LeNDI. Complete automation of the reverse engineering

process is not possible due to the variety of practices used in designing legacy GUIs.

There will always be a need for some user feedback to complete the UI model. Smarter

feature sets and better clustering and classifier induction methods can reduce the user

feedback. The single-path incremental clustering algorithm relies on a good human setup

of its parameters, while the top-down algorithm has minimized the needed input to only

one number, the estimated number of clusters (or the maximum internal cluster

incoherence threshold). But in both cases, clustering is done iteratively and a few rounds

of clustering/results review are usually needed. And ultimately after clustering, user

feedback is needed in the form of result review/revision before generating a classifier.

This is to verify model correctness since there is some judgement needed for the

modeling process. For example, on some screens, one may issue the wrong command or

pass the wrong piece of data and as a result s/he receives what seems to be an instance of

the same screen with an error message. Should the snapshot with the error message be

considered an instance of the original one or an instance of a separate state? Does it

exhibit a different behavior than the original one? These are questions whose answers

need the judgement of the analyst.

5.6.3 Future Enhancements
In the following I include some of the areas where legacy CUI behavior modeling can

be improved and enhanced.

5.6.3.1 Feature Selection for Clustering

Currently the LeNDI analyst has to decide which features to use for clustering

snapshots using the single-path incremental clustering algorithm. On the other hand, s/he

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

has no choice on which binary features to include in decision tree building using the top-

down algorithm. This is because one of the motives behind developing this algorithm is

relive the user from having to decide which features to use for clustering and leaving it to

the algorithm to decide which feature to use for splitting at each decision tree node. There

is a body of work on feature selection in machine learning [BL97, KS96] and a number

of other areas. The main idea is that discovery and removal of irrelevant and redundant

features with respect to a given data set can lead to more accurate results in clustering and

classifier induction. In the problem in hand, this means less human input as well.

5.63.2 Enhancing Clustering and Classifier Induction

Currently, the LeNDI analyst chooses which clustering and classification methods to

use for a given system. S/he can alternate between methods by using one of them and

then switching to the other. However, currently, LeNDI does not allow hybrid clustering

or classification by combining results from both clustering algorithms or both

classification algorithms. This idea is worthy of investigation for potential performance

improvement. During clustering phase and before user correction of clustering mistakes,

it would be possible to apply both algorithms simultaneously and assign more confidence -

to the results that they both generated, i.e., the area where both produced partitions

overlap. The same idea can be used for classifiers’ decisions. One can generate both

available classifiers and use them to classify a new snapshot simultaneously. In this case,

more confidence should be given to the decision shared by both classifiers.

Another future improvement is adding a measure of matching strength for the

signature-based classifier to use in case of more than one match due to loose signatures. It

is possible also to add a signature analysis heuristic to discover loose signatures and

report them to the analyst at design time and suggest switching to the decision tree

classifier to identify new snapshots of the clusters with loose signatures.

Another future possible improvement is integrating more clustering algorithms and

classifier induction algorithms to LeNDI to allow more choice for the analyst, depending

on the system in hand. Also, it is possible to add simple pattern definition capabilities to

LeDNI so that the user can create his own signature pattern if he wishes so for some

screens.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.33 Enhancing Action Modeling

The current version LeNDI has focused on systems adopting a combination of

function key and command-driven interaction style, which is a frequently occurring

combination. The future version of LeNDI will cover other forms of interaction,

particularly, form-filling and menu selection.

Additional enhancements can include transition generalization. In many systems there

are user actions that are available on many or most of the legacy UI screens, e.g.,

invoking a help screen, returning to a main menu or quitting the system. LeNDI would

model such an action only as part of the transitions that has instances in the recorded

traces that include this action. In other words, if it is possible to invoke a help screen

from, say, 50 possible screens but there are only instances for invoking it from 5 screens,

then LeNDI will model only these five transitions. It would be possible to use some

document layout and content analysis methods, possibly with some user input, to

compare areas on different screens that describe available standard user actions and use

the results to generalize a transition. This means declaring the action of that transition a

global action that is permissible on any screen with certain characteristics despite that

there is no record of that action performed on an instance of the screen.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Six

Mining Interaction Traces for Patterns of
Frequent User Tasks

Chapter 5 detailed the process of building behavior models for legacy system GUIs in

the form of state-transition models. The next step in the CUI reverse engineering process

is to discover what services of the legacy CUI are being used, or from a user’s

perspective, what frequent tasks the users execute through the legacy CUI. This is

represented by task T2 in Figure 3.1. LeNDI discovers these frequent tasks in the form of

frequent segments of interaction with the legacy CUI, or as we call them “interaction

patterns”. Each pattern is a hypothesis of a user task interesting enough to appear

frequently in the traces. LeNDI analyst needs to verify these hypotheses. Semi-

automatically in task T3, the forward engineering tool of CelLEST, Mathaino [KapOl],

augments each verified interaction pattern with the information exchange that occurs

during its execution. Thus, each interaction pattern provides the basis for a task model

that is used in generating abstract GUI specifications in task T4. At runtime, these task

models are used by the XHTML or WML front-ends generated in task T5 to execute the

corresponding user task, feed the legacy application with user inputs, collect the required

outputs and present them to the user through the new front-end.

Current industrial practices, as described in section 2.2.3, do not support automatic

discovery of frequent user tasks. Instead, they adopt a manual modeling process during

which, an analyst and an expert user sit together and manually define the navigation

sequence to take place for every user task. So, given the state-transition model of the

legacy system, they need to identify the main navigation path and any alternative paths

for the task in terms of the starting screen and the sequence of screens to be accessed to

perform the task. LeNDI automates this process by mining the recorded interaction traces

for interaction patterns. The LeNDI analyst has the freedom to accept, reject or modify

the discovered interaction patterns after reviewing them. This is done to verify that each

pattern represents an actual user task of interest and faithfully represents the navigational

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path traversed to execute this task and any alternative paths that may exist for the same ■

task.

In addition to eliminating the need to define the navigation path(s) for every task,

LeNDI supplies the necessary input to the task modeling process (T3) of Figure 3.1, done

by Mathaino. In the earlier versions of LeNDI and before developing the interaction-

pattem discovery process, it was required to collect task specific traces to use as input for

T3. Each set of such traces are multiple executions of the same task with different

parameters that cover all the navigational and input and output possibilities of the same

task, without any mistakes or spurious navigation. Then automatically, Mathaino

analyzes the user inputs on the snapshots of the instances of each task to classify them to

constants, derived variables, redundant values, range variables or unpredictable variables.

Additionally, the Mathaino engineer manually highlights on the snapshots of each task

instance the areas that contain the displayed information required to successfully

complete the task. These highlighted locations are analyzed to infer the fixed or relative

locations of the outputs of interest.

By introducing the process and algorithms of interaction pattern mining, LeNDI

eliminated the need to collect multiple task specific traces. The regular interaction traces

collected to build the state-transition model of legacy CUI are also used to discover

interaction patterns, retrieve the instance of these patterns and feed them to Mathaino as

multiple executions of the same task.

Interaction pattern discovery is a three-step process. It starts by some necessary

preprocessing that transforms the data to the format needed by the mining algorithm and

also reduces its size. Then, the mining algorithm is applied to discover the patterns that

meet a user-defined interestingness criterion. The user usually reviews the discovered

patterns and changes the interestingness criterion to narrow or widen the results set as

needed or to see the effect of changing some parameters in the criterion on the results.

Finally, s/he analyzes and comprehends the discovered patterns to distinguish the useful

patterns from spurious navigational segments.

It is often the case that there are alternative paths to accomplish the same user task,

e.g., the user can enter some value directly or open a list of choices to choose from.

Additionally, it is possible to invoke some screens irrelevant to the user task intentionally

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

or unintentionally, e.g., help screens or error messages. Due to these factors, it is

important that the algorithm used for interaction pattern mining accommodates a user-

defined level of noise in the instances of the patterns retrieved. This is done by defining

the maximum number of “insertion errors” allowed in any instance of a pattern in order

for it to be counted or considered. In this context, insertion errors are extra snapshots that

may exist in the instances of a pattern, due to user mistakes or due to the existence of

alternative paths for the same task. The type of patterns retrieved are called approximate

patterns with insertion errors.

In [ESS02a], we introduced a more restricted version of this problem, in which exact

interaction patterns with no insertion errors are discovered using an Apriori-based

algorithm. But, since this limits the number and type of patterns retrieved, LeNDI needed

to accommodate insertion errors. Since the existing sequential pattern mining algorithms

did not address exactly the problem we have in hand, there was a need to develop a

tailored algorithm to handle this problem. Thus we developed two algorithms for

approximate interaction pattern mining with insertion errors, which are Interaction

Pattern Miner (IPM), a breadth first algorithm, and Interaction Pattern Miner 2 (IPM2), a

depth first algorithm. IPM requires more memory than IPM2 but is faster. This gives

LeNDI analyst a choice between speed and memory usage depending on the trace set

analyzed.

This chapter introduces the concept of interaction patterns and their use within

CelLEST project and their other potential uses. Then, it introduces the problem of

Interaction pattern mining in traces of interaction with legacy GUIs and two novel

algorithms for solving it, IPM and IPM2. The rest of this chapter is organized as follows.

First, section 6.1 provides an example interaction pattern to illustrate how such patterns

look like and how they can be represented. Section 6.2 formulates the interaction pattern

mining problem. Section 6.3 describes the necessary simple preprocessing that is

performed on the interaction traces before pattern discovery. Sections 6.4 and 6.5

describe the two algorithms developed for interaction pattern mining, EPM and IPM2.

Section 6.6 is a brief on the post-discovery analysis of interaction patterns. Section 6.7

presents a case study and an evaluation and comparison of IPM and IPM2. Section 6.8

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

includes some final comments and discussion of other possible representations and uses

of interaction patterns.

6.1 An Example Interaction Pattern
This section describes what an interaction pattern is and how it looks like and how it

is represented. To do so, a user interacted with the Library of Congress Information

System (LOCIS) [LOCIS] through its IBM 3270 public connection and performed a

number of information retrieval tasks repeatedly, while LeNDI recorded this interaction.

Figure 6.1(a) below shows a segment of the recorded interaction trace. Boxes represent

screen snapshots and arrows represent transitions from one snapshot to another. The

labels on the arrows are the user actions performed on the corresponding snapshots. The

Ids in the circles at the upper left comers of the snapshots are the cluster Ids given to

them by LeNDI after behavior modeling. Figure 6.1(b) shows the corresponding part of

the state-transition model inferred by LeNDI from this trace. The boxes represent legacy

screens or the nodes of the model. The numbers in the comers of the screens are the Ids

given to them by LeNDI. Associated with each Id is the predicate or signature of the

corresponding screen. The arrows are the model edges and the labels on them are the user

action models.

The portion of the trace shown in Figure 6.1(a) starts by the user making the menu

selections needed to open the relevant library catalog. Then, the trace shows two very

similar segments of navigating LOCIS in solid line boxes that occurred apart from each

other in the trace. They represent two different executions of the same user task. In this

task, the user issued a browse (b) command with some keyword(s) to browse the relevant

part of the library catalog file. Then he issued a retrieve (r) command to retrieve a subset

of the catalog items. Then, he displayed brief information about the items in this set using

display (d) command. Finally, he selected an item using the display item (d item)

command to display its full or partial information, e.g., the full legislation, its abstract, its

list of sponsors, its official title, etc.

If a sufficient number of instances of this user task appear in the recorded traces and

meet some user-defined criterion for pattern interestingness, LeNDI can discover that

these instances represent a candidate interaction pattern, even if some of them include

some insertion errors. Figure 6.2(a) shows the two similar navigation segments of Figure

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1(a). One can see that the u ser accessed the same screens, in both segments, but he

accessed a different number of snapshots of screens 6 and 9. The pattern corresponding to

these navigation segments or task instances is {4+,5,6+,7+,8+,9}, where V means one or

more instances of the preceding screen Id. A ’+’ is added after screen Ids 4 and 7 in this

pattern because other instances of the pattern had multiple consecutive occurrences of

these Ids. Sections 6.4 and 6.5 describe how this pattern and other ones are discovered.

Figure 6.2(b) shows a diagrammatic representation of the discovered pattern, augmented

with extra semantic information. Note that a mixture of constant and unpredictable values

needs to be provided as input to perform this task. Some of the unpredictable variables

are mandatory, represented by **’, and others are optional, represented by [*]. Other

semantic information, like the outputs of interest to the user on each screen, needs to be

added to the pattern before turning it into a complete task model.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

■— t . —
1 LOCIS
Main Menu

Federal I
Legislation!

i _ Jflenu I
 f l 1 @ E
' W elcome \

' Brief
Display

133@E j

Brief
Display

Item Details

@E
' Brief
Display

First P age j

rd item 133@E ^summ@E
tem Display] iltem Details!

O ptions 1

joisplay ltem| jltem Display'
O ptions (

@E . al!@E
Brief

Display
item Details
First Page

3 |item Details!
J j First Page |

_j[ottl@ E
E

Options

"b ^ e n a t e Q ^ ^ " ~j~ @ E

4 } Catalog
B row se

Item Details
Last Page

, rrb5@E
Display Iterri

Options j
R etrieve
Results

@E
:em Details

Intrmd. Pg.
d 6@Ewilliams @E

Stem Details
Last Page

Brief
Display

X

Catalog
Browse

em Details
Intrmd. Pg.

Brief
Display

em Details
First Page

rb06@E
em Details

Intrmd. Pg
Brief

Display
Details

Intrmd. Pg.
Retrieve
Results

Brief
Display

m Display
Options

d 1 @E d item 12@E

kwic@E

(a) A segment of an interaction trace with LOCIS.

* Mandatory Argument
[*] Optional Argument
@E Enter Key

1 = LOCIS
II Main Menu

<
r3@E

2 Federal
Legislation

Menu
v 11 @E

? Welcome

r b *n@E
4 “ Catalog1 Browse

r * [*]@E
0 “II Retrieve
ILResults

@E

@E

Stem Details
Intrmd. Pg.
I

*@E
8 :

1 0 :
iltem Details
Last Page

@E

| Item Details
I First Page

r f

@E

*@E

em Display
Options

•@E

@E

@E
d item *@E

J Brief

□ @ e d *@E

(b) The state-transition graph part corresponding to the segment in (a).

Figure 6.1. An Example Trace of User Interaction with the Library of Congress
Information System (LOCIS) with Multiple Executions of the Same Task.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Catalog
Browse

r b06 @E
5 Retrieve

Results

4 Catalog
I Browse

rb 5
8 Retrieve
|| Results

d 6 @E

® Brief
Display

| d item 133 @E

Brief
Display

, r d item 133 @E

Item Display
|_ O g t io n s _

Item Display
Options

,, kwic @E j all @E

® Item Details
First Page

8 Item Details
I First Page

T @E

® Item Details
|_ Intrmd. Pg^

® Item Details
ll Intrmd. Pg.

„ @E
10 Item Details

J_yist_Page_

10 Item Details
|^ s t_ P a g e _

(a) Similar Navigation Segments of LOCIS That Represent The Same User Task.

* Mandatory Argument
[*] Optional Argument
@E Enter Key
@ ?,« The user action

occurs at an unspecified
row and column n.

«^======i§i
r * [*] @ E I......—J,.........) * n @ E j * Catalog

J Browse @23, 11

Retrieve

d *@E

@ 18,8

@E

@ ?, 67

............ .11.11 w.
(Item Details d item * @E e Brief
| First Page a •> r Display

8 Item Details
|_ Jn tr^ ^ P g ^

@E 9 item Details
9 >> HI Last Page_

(b)The corresponding interaction pattern.

Figure 6.2. Similar Navigation Subsequences of The LOCIS Trace of Figure 6.1(a)
and The Corresponding Interaction Pattern Augmented with Action Locations.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Problem Formulation
This section provides the terminology and formulation of the problem of interaction

pattern mining in the recorded traces of interaction with a legacy user interface.

1. Let A be the alphabet of legacy screen Ids, i.e., the set of Ids given by LeNDI to the

screens of the legacy system under analysis.

2. Let S = {5i,52,....,5’n} be a set of sequences. Each sequence s,- is an ordered set of

screen Ids from A that represents a recorded trace of interaction between the user

interface of the legacy system and one of its users, similar to the partial trace shown

in Figure 6.1(a).

3. An episode e, is an ordered set of screen Ids occurring together in a given sequence.

4. A pattern p is an ordered set of screen Ids that exists in every episode e e E, where E

is a set of episodes of interest according to some user-defined criterion c. E and e are

said to “support” p. The individual Ids in an episode e or a pattern p are referred to

using square brackets, e.g., e[l] is the first Id of e. Also, \e\ and |pj are the number of

items in e and p respectively.

5. If a set of episodes E supports a pattern p, then the first and last Ids in p must be the

first and last Ids of any episode e e E, respectively, and all Ids in p should exist in the

same order in e, but e may contain extra Ids, i.e., \p\ < \e\ V e e E. Formally,

• p[l] = e[l] Me e E ,

• p[\p\] = e[\e\] V e e E, and

• V pair of positive integers (z , j), where i < \p\, j < jpj and i<j, 3 e[k] = p[i] and e[l] =

p\j] such that k< I.

The above predicate defines the class of patterns that we are interested in, namely,

approximate interaction patterns with at most a predefined number of insertions. For

example, the episodes {2,4,3,4}, {2,4,3,2,4} and {2,3,4} support the pattern {2,3,4}

with at most 2 insertions per episode, which are shown in bold italic font.

6. An exact interaction pattern q is a pattern supported by a set of episodes E such that

none of its instances has insertion errors

• q[ij = e[i] V e e E and 1 < i < \q \

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7. The location list of a pattern p, written as loclist (p), is a list of triplets (seqnum,

startLoc, endLoc), each is the location of an episode e e E, where sseqnum is the Id of

the sequence containing e. startLoc and endLoc are the locations of e[l] and e[\e\] in

S s e q n u m , respectively.

8. The support of a pattern p, written as support (p), is the number of episodes in S that

support p. Note that support (p) equals the length of loclist (p), i.e., loclist (p)dength.

9. The density of a pattern p, supported by a set of episodes E, is written as density (p)

and is defined as the ratio of jp| to the average episode length of episodes e E:

density (p) = \p\ * support (p)
X M«e£

10. A qualification criterion c, or simply criterion, is a user defined quadruplet (minLen,

minSupp, maxError, minScore). Given a pattern p, the minimum length minLen is a

threshold for jp|. The minimum support minSupp is a threshold for support (p). The

maximum error maxError is the maximum number of insertion errors allowed in any

episode e e E. This implies that \e\ < |p| + maxError V e e £ The minimum score

minScore is a threshold for the scoring function used to rank the discovered patterns.

This function is:

score ip) = log2 jp| * log2 supportip) * densityip)

Experiments showed that this function is suitable and sufficient for the application in

hand as it considers and balances between the pattern length, its support and its

density. The default values for minLen, minSupp, maxError and minScore are 2, 2, 0

and 0 respectively. Other scoring functions can be used depending on the application.

11. A maximal pattern is a pattern that is not a sub-pattem of any other pattern with the

same support.

12. A qualified pattern is a pattern that meets the user-defined criterion, c.

13. A candidate pattern is a pattern under analysis that meets the minSupp and maxError

conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Given the above definitions, the problem of interaction pattern discovery can be

formulated as follows:

Given:

(a) an alphabet A,

(b) a set of sequences S, and

(c) a user criterion c

Find all the qualified maximal patterns in S.

63 Preprocessing Interaction Traces
An interaction trace is initially represented as a sequence s of integer screen Ids. We

denote this representation as RO. RO often contains repetitions, resulting from accessing

many instances of the same screen consecutively, e.g., browsing many pages of a library

catalog. Repetitions may result in missing some important patterns. For example, the two

instances of the interaction pattern of Figure 6.2(b), shown in Figure 6.2(a), are

{4,5,6,6,6,6,6,6,7,8,9,9,9,10} and {4,5,6,6,7,8,9,10}. The user may keep flipping the

pages of the result set that resulted from querying the library catalog until reaching the

needed items. Hence, a variable number of snapshots of screen 6 may exist in a task

instance. The same applies to screen 9. Unless LeNDI can tolerate this type of variability

during its pattern mining process, it would miss some of the instances of such pattern and

possibly not discover this pattern altogether. To avoid this problem, LeNDI encode s

using the run-Iength encoding algorithm [Way99] that replaces immediate repetitions

with a count followed by the repeated Id. Repetition counts are stored separate from the

sequence. This representation is called Rl. Figure 6.3 shows RO and R1 representations of

the trace segment of one of the pattern instances of Figure 6.2(a).

RO : {4,5, 6, 6,6, 6, 6, 6 ,7, 8, 9,9, 9,10,}
Rl : {4, 5, (6)6,7, 8, (3)9,10}

Figure 6.3. Preprocessing Interaction Traces.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 IPM: Breadth-first Discovery of Approximate Interaction
Patterns

Interaction Pattern Miner (IPM) [ESS02b] is one of two algorithms developed and

implemented in LeNDI to discover interaction patterns. IPM utilizes a common idea in

the field of data mining (DM). The idea is to construct shorter candidate patterns that

meet the user required minimum support (number of occurrences) and maximum number

of insertion errors and then glue them together to construct longer candidate patterns.

Every pattern constructed is examined to ensure that it still meets these two conditions,

before it is used to construct longer patterns. If a constructed pattern does not have

enough support, then it is discarded and not used for constructing longer patterns. IPM is

a breadth-first algorithm because it generates all candidate patterns of length I before

generating any candidate pattern of length Z+l, and so on and so forth. This requires

saving the location lists of all candidate patterns of length Z, to use them to generate the

location lists of the patterns of length 1+1.

The input to IPM is a set of sequences S and a criterion c. IPM outputs all the

qualified patterns in S. IPM consists of two distinct phases. First, it exhaustively searches

the input sequences to identify all the candidate patterns of length 2 during an

initialization phase (Algorithm 6.1a). For every such pattern, a location list is constructed.

The candidate patterns are stored in a matrix |A| x |A| of pattern lists, ptList, whose rows

and columns are labeled after the Ids e A. Each cell ptList[i,J] of the matrix contains

every pattern p, such that p[2]= i and p[|p|]= j . For example, the pattern {1,3,4,2} is

stored inptList[3,2],

In the second phase, Algorithm 6.1b recursively extends the candidate pattern set. For

every pair of patterns p i and p2 of length I, if prefix (pi) = suffix (p2), a new pattern p3

of length 1+1 is generated, such that p3 = p2 + p i [I], and is then stored in ptList. p i can

only extend patterns in ptList \pl{ 1], p i [1-1]]. For example, if p i = {1,3,4,2}, then it will

be used to extend the patterns of length 4 in ptList [1,4], which have the format {?,1,?,4},

where ? refers to any Id e A. The extension will succeed only with patterns with

matching suffixes, i.e., of the format {?,1,3,4}. The location list of the extended pattern

p3 is constructed from the location lists of p i and p2 (Algorithm 6.1c). Locations of the

episodes that support p3 but have more than maxError insertion errors are excluded. If

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

support (p3) > minSupp, then p3 and loclist (p3) are stored in ptList, otherwise p3 is

discarded. If support (p3) = support (p i) and/or support (p3) = support (p2), then p i

and/or p2 is marked as non-maximal. When no more candidates can be generated, the

algorithm reports the qualified maximal patterns in ptList. The following is a step by step

description of Algorithms 6.1a, 6.1b and 6.1c.

6A1 IPM Phase 1: Producing The Initial Candidate Pattern Set
Algorithm 6.1a implements the initialization phase of IPM. Step 1 creates the pattern

list matrix, ptList. Step 2 is repeated for every input sequence st £ S. Step 2.a iterates

over the Ids of Sk, from Sk [1] to st [j^j - maxError-1], For each Id, it iterates in the inner

loop over its consecutive Ids up to maxError+1. Step 2.a.I uses each of these consecutive

Ids to build a new pattern with original Id. For example if Sk = {1,3,2,3,4} and

maxError=2, then s* [1] will be glued to each of s*[2], ^[3] and ^[4] separately, resulting

in the generation of the new patterns {1,3}, {1,2} and {1,3}. Step 2.a.II adds the new

pattern in ptList, if it is not already there. The location of the episode supporting the

pattern is added to its location list in step 2.a.ffl. Step 2.b performs the same function as

steps 2.a, but it handles the last maxError Ids of s*. Note that the only cells of ptList, used

by Algorithm 6.1a, are the diagonal cells. This is because for a pattern of length 2, p[2] is

p[\p\], i.e., it is stored in ptLisl [p[2],p[[p|]], which is ptLisl \p[2], p[2]]. Step 3 removes

from ptList any pattern whose support is less than minSupp.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6.1a: IPM Initial Phase
Input: An alphabet A, a criterion c and a set of sequences S.
. Output: All candidate patterns of length 2.
Steps:
1. Create a matrix |A| X |Aj of pattern lists, ptList
2. For every trace i t e S , l < l < |S|

a. For i = 1 to |s*j - maxError-1
• For j = i +1 to i + maxError +1

I. Construct new patternp ~ {sk p], $k If]}
13. If p NOT in ptList [s* [j], s* [/]] then Add p to ptList [sk \j], Sk jj]]
HI. Add (k,ij) to ptList [sk[j\, Sk J/fl.getLocationlist (p)

b. For i = |s*| - maxError to Js*| -1
• For j = i +1 to Js*|

I. Construct new pattern p = {s* [i], Sk [/]}
H. If p NOT in ptList [5* [/], s* {/]] then Add p to ptList f>* [/], 5* [/]]
in. Add (fc,h/) to ptList [s* [/], s* (/]].getLocationList (p)

3. For every irf e A
a. For every pattern p in ptList [id, id]

• If support (ptList [id, id]) < minSupp then Remove p from ptList [id, id]

Algorithm 6.1a. IPM Initial Phase.

6.4.2 IPM Phase 2: Generating Longer Candidate Patterns from
Shorter Ones

Algorithm 6.1b implements the second phase of IPM. Step 2 iterates as long as more

candidate patterns can be generated as indicated by the morePattems flag, which is set to

false in step 2.a, at the beginning of every new iteration. Step 2.b loops over every cell in

ptList matrix. For every cell it access every pattern p i of length I and checks if p i can be

used to extend any pattern p2 from its end. Only the patterns in ptList \pl[l], p i [I-1]] are

inspected because these are the ones whose second Id, p2[2] and last Id, p2[l] match

pl[l] andplff-1], respectively. If extension is possible, i.e., suffix (p2) equals prefix (pi),

then step 2.a.I generates the new pattern p3 and step 2.a.II constructs its location list. Step

2.a.III checks if p3 satisfies the minimum support condition. If yes, it adds p3 to ptList,

marks p i and/or p2 as non-maximal if they have the same support as p3 and sets the flag

morePattems to true to execute a new iteration. Step 2.c increments the pattern length

counter I for the next iteration. When no more candidates can be generated, step 3 iterates

over every cell in ptList and step 3.a access every candidate pattern in the cell. Step 3.a.I

reports the pattern only if it is qualified and maximal.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6.1b: IPM Phase 2: Generating Long Candidate Patterns from Short Ones.
Input: A matrix of pattern lists, ptList, initialized with all candidate patterns of length 2

and their location lists and a criterion c.
Output: All the qualified maximal patterns according to c.
Steps:
1. i = 2
2. Repeat

a. morePattems = false
b. For every a e A For every b e A

• For every pattern p i in ptList [a, b] with Jpl| = /
□ For every pattern p2 in ptList [pl[l], p i [I-1]] with |p2| == I

• If suffix (p2) == prefix (pi) then
I. Construct new pattern p3 = p2 + p i [I]
II. Construct loclist (p3) (Algorithm 6.1c)
HI. If support (p3) > minSupp then

• Add p3 to ptList [p l[l],p l[/]]
• If support (p3) = support (pi) then mark p i as non-maximal
• If support (p3) == support (p2) then mark p2 as non-maximal
• morePattems = true

c. /++
While morePattems == true

3. For every a e A For every b e A
a. For every pattern p in ptList [a, b]

i. i f H > minLen AND score (p) > minScore AND p is maximal then report p

Algorithm 6.1b. IPM Phase 2: Generating Long Candidate Patterns from Short Ones.

Algorithm 6.1c creates the location list of a new candidate pattern. It takes as input

the location lists of two patterns p i and p2 of length I, sorted by seqnum and startLoc. It

outputs the location list of p3, where p3 =p2 + p i [/]. Step 2 iterates over the locations of

the episodes supporting p2. Steps 2.a to 2.c retrieve startLoc and endLoc of such an

episode e2. Step 2.d retrieves the locations of the episodes that support p i and satisfy

some conditions. For such an episode el:

• el and e2 should be in the same sequence

• el should not be a sub-episode of e2 and vise versa.

• The overlap of el and e2 should be at least 1-1 long.

• The distance from startLoc of e2 to endLoc of el, inclusive, should be no more than I

+ 1 + maxError.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6.1c: Generating The Location List of a Candidate Pattern for IPM
Input: The location lists of patterns p i and p2 of length I and maxError.
Output: The location list of p3, where p3 =p2 + p i [/].
Steps:
1. Create a empty location list Loc3
2. For i = 1 to loclist (p2).length

a. loc2 = loclist (p2).getLocation(z)
b. st = loc2.startLoc
c. end = loc2.endLoc
d. Find a set Loci = (any loci e loclist (pi) such that locLseqnum = loc2.seqnum

AND sf < loci.startLoc < end - / +1
AND end < loci.endLoc <st + maxError +1)

e. For every loci e Loci
• Add a triplet (locLseqnum, st, loci.endLoc) to LocJ

3. Remove any duplicates from Loc3
4. Return Loc3

Algorithm 6.1c. Generating The Location List of a Candidate Pattern for IPM.

Step 2.e constructs the location list of p3. Step 3 removes duplicates from the list. Finally,

step 4 reports the results back.

6.4.3 An IPM Application Example
This subsection illustrates the operation of IPM algorithm with a simple example.

Assume:

(a) A = {1,2,3,41,
(b) S = {{1,3,2,3,4,3},{2,3,2,4,1,3}}, and

(c) c = (minLen, minSupp, maxError, minScore) = (2,2,1,0)

Discover all the qualified maximal patterns in S.

Tables 6.1 to 6.3 show the steps of applying IPM. Patterns are enclosed between

curved brackets, e.g., {2,1}, and their locations in the input sequences are between

parentheses, e.g., (2,3,5). Candidate patterns are shown in bold. Patterns with insufficient

support are shown in normal font for clarification, although they are not stored in ptList

according to Algorithms 6.1a and 6.1b. Candidate patterns of the previous iteration that

turned out to be non-maximal in the current iteration are shown in normal font and

followed by —imax.

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Li
2nd f

ist Id 1
d

2 3 4

1 {2,1} (2,3,5)
{4,1} (2,4,5)

2 {1,2} (1,1,3)
{3,2} (1,2,3)(2,2,3)
{2,2} (2,1,3)

3 {1,3} (1,1,2) (2,5,6)
{3,3} (1,2,4) (1,4,6)
{2,3} (1,3,4) (2,1,2)
{4,3} (1,5,6) (2,4,6)

4 {2,4} (1,3,5)(2,3,4)
13,4.},.(1,4,5)(2,2,4)

Table 6.1. The Matrix ptList after IPM Phase 1 (Algorithm 6.1a) for The Example of
Subsection 6.4.3.

Last Id
2nd Id

1 2 3 4

1
2 {3,2} -imax {3,2,3} (1,2,4) {3,2,4} (1,2,5)(2,2,4)
3 {1,3,2}(1,1,3)

{3,3,2}
{2,3,2}(2,1,3)
{4,3,2}

{1,3} (1,1,2)(2,5,6)
{3,3} (1,2,4)(1,4,6)
{2,3} -imax
{4,3} —imax
{1,3,3} (1,1,4)
{2,3,3} (1,3,6)
{3,3,3}
{4,3,3}

{1,3,4}
{3,3,4}(1,2,5)
{2,3,4} (1,3,5)(2,1,4)
{4,3,4}

4 {3,4,3} (1,4,6)
{2,4,3} (1,3,6)(2,3,6)

{2,4} -imax
{3,4} -imax

Table 6.2. The Matrix ptList after Iteration 1 of IPM Phase 2 (Algorithm 6.1b) for
IPM Application Example of Subsection 6.4.3

Table 6.1 shows the pattern list matrix, ptList, containing the initial candidate patterns

of length 2 generated by Algorithm 6.1a. Table 6.2 shows ptList after the first iteration of

Algorithm 6.1b, during which all candidate patterns of length 3 were generated and non-

maximal patterns of length 2 were marked. Table 6.3 shows ptList after the second

iteration of Algorithm 6.1b. Table 6.4 shows the discovered qualified patterns, their

support, density and score.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Last Id
2nd Id

1 2 3 4

1
2 (3,2,4,3}(1,2,6)(2,2,6) {3,2,4}-imax
3 {1,3} (1,1,2)(2,5,6)

{3,3} (1,2,4)(1,4,6)
{2,3,4} (1,3,5)(2,1,4)

4 {2,4,3}—max

Table 6.3. The Matrix ptList after Iteration 2 of IPM Phase 2 (Algorithm 6.1b) for
IPM Application Example of Subsection 6.4.3.

Pattern p Ip Support (p) Densityip) Score ip)
{3,2,4,3} 4 2 0.80 1.60
{2,3,4} 3 2 0.86 1.36
11,3} 2 2 1.00 1.00
{3,3} 2 2 0.67 0.67

Table 6.4. All The Maximal Qualified Patterns in S for IPM Application Example of
Subsection 6.4.3

6.5 IPM2: Depth-first Discovery of Approximate Interaction
Patterns

Interaction Pattern Miner 2 (IPM2) [ESS02c] is LeNDI’s second interaction pattern

mining algorithm. Like IPM, BPM2 develops longer candidate patterns from shorter ones.

Unlike the breadth-first strategy of IPM, IPM2 uses a depth-first strategy. It requires less

memory than IPM but is slower. Hence, it can handle bigger data sets than IPM. IPM2

was developed to offer the LeNDI analyst a choice. If s/he is analyzing a small trace set,

then IPM is faster. If the data set is too big for IPM, then EPM2 can analyze it.

IPM2 extends a pattern of length 2 with another pattern of length 2 to form a pattern

of length 3. If the latter has enough support, then it is extended again with another pattern

of length 2 and so on and so forth until no further extension is possible. Then, BPM2

backtracks, reports any maximal qualified pattern found and continues depth-first

extensions. This eliminates the need to store all the patterns of length I at the same time in

a matrix |Aj x |Aj of patterns and their location lists, which can be memory exhaustive if

the size of the data and alphabet A is big. So, IPM2 is more suitable for big systems with

numerous screens. This advantage comes at the cost of generating more candidate

patterns than IPM, and hence, more computational time. An evaluation and comparison

of both algorithms is provided in section 6.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IPM2 consists of two distinct phases. Phase 1 exhaustively searches the input

sequences to find all the candidate patterns of length 2 that meet the “minimum support”

and “maximum error” conditions (Algorithm 6.2a). For every such pattern, a location list

is constructed. The patterns are stored in a vector of length |A| of pattern lists, ptListVec,

whose cells are labeled after the Ids of A. Each cell ptListVec[i] contains all patterns p,

such that p[1]= i. For example, the pattern {1,3} is stored in ptLisVect[1],

Phase 2 (Algorithm 6.2b) recursively extends each candidate pattern in ptListVec

using a depth-first approach. If an extension of a candidate pattern p i using another

pattern p2 produces a new candidate pattern p3 = pl+p2[2], then p3 is extended further.

p i can be extended only with patterns in ptListVec (pl[|pi|]], i.e. patterns of length 2

whose first Id is the same as the last Id of p i. The location lists of p i and p2 are used to

construct that of p3 (Algorithm 6.2c). The locations of the episodes that support p3, but

have more insertion errors than maxError are excluded. If support (p3) > minSupp then

p3 is extended further using the patterns in ptListVec [p3[|p3|]], otherwise p3 is ignored

and the algorithm records p i if it is qualified and then backtracks. During backtracking

and after reporting a pattern p i, the algorithm examines the parent pattern pO of p i. Since

pO is a sub-pattern of p i, it is a candidate pattern also. If pO is qualified and support (pO)

> support (pi), i.e., it is not non-maximal relative to pi, then it is recorded too. After

trying to extend all patterns in ptListVec, non-maximal patterns are removed and only

qualified maximal patterns are reported.

6.5.1 IPM2 Phase 1: Producing the Initial Candidate Pattern Set
Algorithm 6.2a describes the first phase of IPM2. Step 1 creates a vector ptListVec of

pattern lists. PattemList is a hash-table-like data structure that can hold a list of hashed

patterns. Step 2 is repeated for every input sequence Sk € S. Step 2.a iterates over the Ids

of Sk, from Sk [1] to Sk [W - maxError -1]. In step 2.a.I, each Id is used to build a pattern

with each of its consecutive Ids up to maxError +1. For example if Sk = {1,3,2,3,4,3} and

maxError = 2, the first Id will be tried with each of its next three resulting in the

generation of these patterns {1,3}, {1,2} and {1,3}. A new pattern is stored in ptListVec, if

it is not there already and the location of the episode supporting it is added to its location

list. Steps 2.b does the same as step 2.a, but it handles the last maxError Ids of Step 3

removes any non-candidate pattern p, i.e. patterns with support (p) < minSupp.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6.2a: IPM2 Initial Phase
Input: An alphabet A, a criterion c and a set of sequences S.
Output: All candidate patterns of length 2.
Steps:
1. PattemList ptListVec [jAj]
2. For every trace Sk £ S, 1 < k < |Sj

a. For i = 1 to |s*| - maxError-1
I. For j = i +1 to z + maxError +1

□ Construct new pattern p = Sk UJ + Sk jj]
□ If p NOT in ptListVec [s* [i]] then Add p to ptListVec [5* [£]]
□ Add (k,ij) to loclist (p)

b. For i = l l̂ - maxError to |s*j -1
I. For j = i +1 to \sk\

□ Construct new pattern p = Sk [i] + sjt [/]
o If p NOT in ptListVec [st [fj] then then Add p to ptListVec [5* [i]]
□ Add (k,ij) to loclist (p)

3. For every id e A
a. For every pattern p in ptListVec [id]

• If loclist (p).length < minSupp then Remove p from ptListVec [id]

Algorithm 6.2a. IPM2 Initial Phase.

6.5.2 IPM2 Phase 2: Generating Longer Candidate Patterns from
Shorter Ones

Algorithm 6.2b generates longer patterns from shorter ones. Step 1 creates a pattern

list, called resultsIPM2 to store the discovered patterns. Step 2 iterates over every cell in

ptListVec using the iterator id and for each cell ptListVec [id], it iterates over each pattern

in it. For every such pattern p, step 2.a calls the procedure “Extend (pi)”, which returns

all the qualified extension patterns of p that are maximal relative to each other, i.e., none

of them is a sub-pattern of another with the same support. Step 2.b adds the discovered

extensions of p to resultsIPM2. Step 3 removes any non-maximal pattern from the final

results. Step 4 reports the final results in resultsIPM2.

The “Extend (pi)” procedure works as follows. Step 1 creates a pattern list

extensionResults to hold the patterns resulting from successful extensions of the

parameter pattern p i. Step 2 iterates over every pattern p2 that can extend p i, i.e., every

pattern whose first Id is the same as the last Id of p i. Steps 2.a and 2.b construct the

extended pattern p3 and its location list. Step 2.c tests if the support of p3 > minSupp.

Steps 2.C.I to 2.C.III are executed in case of True and step 2.d.I is executed in case of False.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 6.2b: IPM2 Phase 2: Generating Long Candidate Patterns from Short
Ones.

Input: A vector of pattern lists, ptListVec, initialized with all candidate patterns of length
2 and their location lists and a criterion c.

Output: All the maximal qualified patterns according to c.
Steps:
1. Create new PattemList resultsIPM2
2. For every id e A For every pattern p in ptListVec [id]

a. Create new PattemList tempResults - Extend ip)
b. Merge tempResults with resultsIPM2

3. Remove non-maximal patterns from resultsIPM2
4. Report resultsIPM2

PattemList Extend (pi)
1. PattemList extensionResults
2. For every pattern p2 in ptListVec [pi [|pi|]]

a. Construct new pattern p3 = p i + p2 [|p2|]
b. Construct the location list of p3 (Algorithm 6.2c)
c. If support (p3) > minSupp then

I. Create new PattemList tempResults = Extend ip3)
II. Merge tempResults with extensionResults
HI. If support (pi) > support (p3) then

• i t h i > minLen AND score (pi) > minScore then
□ If p i is NOT in extensionResults then add p i to extensionResults

d. Else
i. i f H I > minLen AND score (pi) > minScore then

• If p i is NOT in extensionResults then add p i to extensionResult
3. Return extensionResults

Algorithm 6.2b. IPM2 Phase 2: Generating Long Candidate Patterns from Short
Ones

In case of a successful extension, step 2.C.I extends the new candidate p3 more by calling

Extend (pi) with p3 as a parameter. Step 2x.II adds the qualified patterns resulting from

extending p3 to extensionResults. Step 2.C.IH adds p i to extensionResults if it has more

support than its successful extension p3, it is qualified and it is not already in

extensionResults. In case of failing to extend p i using p2, then the extension pattern p3 is

ignored and steps 2.d.I adds p i to the results list extensionResults if it is qualified and it is

not already in extensionResults. Step 3 reports all the qualified maximal (relative to one

another) extension patterns of p i.

Algorithm 6.2c describes the process of creating the location list of a new candidate

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pattern. It combines the locations lists of two patterns p i and p2, where jp2j = 2, to provide

Algorithm 6.1c: Generating The Location List of a Candidate Pattern for IPM2
Input: The location lists of patterns p i and p2 and maxError.
Output: The location list of p3, where p3 = p i + p2 [2].
Steps:
1. Create an empty location list UstLocS
2. For i = 1 to loclist (pl).length

a. loci = location i in loclist (pi)
b. Find a set Loci = (any loc2 e loclist (p2) such that

loc2.seqnum == locl.seqnum AND
loc2.startLoc == locl.endLoc AND
loc2.endLoc < locl.startLoc + maxError + Jpl|)

c. For every loci e Loci
• Add (loc2.seqnum, start, loc2.endLoc) to UstLocS

3. Remove any duplicates from UstLocS
4. Return UstLocS

Algorithm 6.1c. Generating The Location List of a Candidate Pattern for IPM2

the location list of p3, where p3 = p i + p2 [2]. The input locations lists are sorted by

seqnum and startLoc. Step 2 iterates over the locations of the episodes supporting p i.

Steps 2.a retrieves the location of such an episode el. Step 2.b retrieves the locations of

the episodes that support p2 and satisfy these conditions, assuming such an episode e2:

• e l and e2 should be in the same sequence

• el should not be a sub-episode of e2 and vise versa.

• el and e2 should overlap in exactly one location which is el[\el\].

• The distance from startLoc of el to endLoc of e2, inclusive, should be no more than

|pl| + 1 + maxError.

Step 2.c constructs the location list of p3 and step 3 removes any duplicates. Finally, step

4 reports the results back.

6.5.3 An IPM2 Application Example
This simple example illustrates the operation of JPM2. Assume:

(d) Let A = {1,2,3,4},

(e) 5= {{1,3,2,3,4,3},{2,3,2,4,1,3}}, and

(f) c = (minLen, minSupp, maxError, minScore) = (3,2,1,0).

Discover all the qualified maximal patterns in S according to c.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First Id 1 2 3 4
Candidate
Patterns
(bold)

{1,2} (1,1,3)
{13} (1,1,2)(2,5,6)

{2,1} (2,3,5)
{2,2} (2,1,3)
{23} (13,4) (2,1,2)
{2,4} (133) (23,4)

{3,2} (1,23) (2,23)
{3,3}(1,2,4) (1,4,6)
{3,4} (1,4,5) (2,2,4)

{4,3} (1,5,6)(2,4,6)
{4,1} (2,4,5)

Table 6.5. ptListVec after IPM2 Initial Phase (Algorithm 6.2a) for IPM2 Application
Example of Subsection 6.5.3.

{13 } {2,4} {3,2}

{ 13,2 } {133} {13,4}
{43}

(1,1,3) (1,14) {2,43} {3,23 , {3,2,4}

{2,3}

(1.3.6)
(2.3.6)

(13,4) (1,2,5X2,2,4)

{4

{2 3 3 }] [{2,3 3 }| 1(2 3 ,4}!
(2,1,3) (1,3,6) (1,3,5) (2,1,4)

{43}

(y /v ,3}>S
<1

{2,4,3,2} {2,4,3,3} {2,4,3,4}

3}

1(33,43)1

{2,3,4,3}

{ ^ {2 3 X ^ 4 }

{3,2,4,3,2} 13,2,4,3,3} {3,2,4,3,4}

(1,3,6)

Figure 6.4. The Application of IPM2 Phase 2 (Algorithm 6.2b) for IPM2 Application
Example of Subsection 6.5.3.

Table 6.5 shows the result of applying the initial phase of IPM2 to S. The second row

corresponds to the cells of ptListVec. Patterns are enclosed between curved brackets, e.g.,

{1,2}, and their locations in the sequences are shown next to them between parentheses,

e.g., (1,1,3). Candidate patterns are shown in bold. Patterns with insufficient support are

shown in normal font. They are removed from ptListVec at the end of Algorithm 6.2a, but

are kept in Table 6.5 for clarification. Figure 6.4 shows partial application of Algorithm

6.2b to extend 4 of the 8 candidate patterns in Table 6.5. The patterns in boxes are the

ones being extended or resulting from extension. The patterns on the arcs are the ones

used for extension. The location list of every generated pattern is shown under its box.

Qualified patterns that are reported by the sub-procedure “Extend (pi)” are shown in bold

font. Maximal qualified patterns, returned by IPM2, are in double-line boxes. Note that

the pattern {3,2,4} is qualified but not reported by “Extend (pi)” because its extension

{3,2,4,3} which has the same support, is reported first, while {2,4,3} is reported by

“Extend (pi)” but is removed at the end of phase 2 for being non-maximal. Table 6.6

shows the discovered maximal qualified patterns, their support, density and score.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pattern p M support ip) Densityip) Score ip)
{2,3,4} 3 2 0.86 1.36

{3,2,4,3} 4 2 0.80 1.60
Table 6.6. All The Maximal Qualified Patterns in S for IPM2 Application Example
of Subsection 6.5.3.

6.6 Understanding The Extracted Patterns
After reviewing the discovered patterns, the criterion c can be modified to narrow or

widen the results set, if too few or too many patterns were retrieved. Also, any group of

patterns, whose score and/or support are within specific range(s), can be compacted by

removing any pattern that is a sub-pattern of another pattern, even if it is maximal.

This interactive step of scoping out and “cleaning” the extracted interaction patterns

is crucial in identifying the usage scenarios corresponding to the functional requirements

of the legacy application. Methodologically, the longer the recorded traces and the

“stricter” the criterion c, the more likely it becomes to discover true usage scenarios,

since all “noise patterns” should not gain enough support when evaluated in the context

of long-term use. However, the LeNDI analyst has to decide which of the discovered

patterns correspond indeed to real usage scenarios. To do so, the analyst retrieves and

reviews instances of the interaction patterns discovered. Then, s/he can exclude trivial

patterns, accept complete real patterns and/or complete partial patterns.

6.7 Evaluation
To evaluate our interaction pattern mining process and algorithms, we applied them

to traces of interaction with a number of legacy systems [ESS02c, SES02]. Additionally,

we tested the scalability of the algorithms using very long traces generated artificially

using a simulator. Finally, we applied our interaction pattern mining algorithms, IPM and

IPM2, to a different domain. We used them to discover frequent user navigation patterns

from server logs of a focused web site, i.e., one that is usually navigated in a systematic

task-driven way in support of an ongoing process [ES03, NSE02]. The web site we used

was a university course site, where new material and assignment are posted weekly, and

students access them in a task-oriented way. The goal in that application was to

recommend web pages to the users based on their navigation history if it matches the

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

prefix(es) of some of the discovered pattem(s). In such case, the suffix(es) of the

pattem(s) are recommended to the user.

This section reports two different evaluation experiments. The first is a case study,

during which, traces of interaction between a library information system and a user were

recorded and then mined to discover what frequent tasks the user was performing. This

case study demonstrates the applicability and usefulness of the interaction pattern mining

process and shows how much human input is required to recover accurate representations

of the frequent user tasks. Second, a comparison between the memory requirements and

speed of IPM and XPM2 is performed using long artificial traces that were generated

using LeNDFs Legacy System Trace Generator (LSTG), as described in details shortly.

6.7.1 A Case Study of Interaction Pattern Mining in the Traces of
LOCIS

This section presents a demonstrative case study of recovering the usage scenarios or

interaction patterns from recorded traces of interaction with the Library of Congress

Information System (LOCIS) [LOCIS], via its public 3270 connection. A user conducted

five interaction sessions with LOCIS, during which, he repeatedly performed various

information retrieval tasks about federal legislation. Each session was captured in an

interaction trace. Thus, S ={51,̂ 2,53,54,55}, where |si|, |s2|, H , M and |55| are 454, 185,

369, 410 and 239, respectively. In total, 1657 snapshots were captured in these traces.

Part of si is shown in Figure 6.1(a). LeNDI was used to build the state-transition model

corresponding to S. Part of this model is shown in Figure 6.1(b). The model has 27 nodes.

Each node corresponds to a LOCIS system screen. Thus, A = {1,2,3,....,27}. The screen

descriptions are provided in Table 6.7. The frequency (Fr.) of each screen is the number

of times it was recorded in S.

After preprocessing S, IPM2 was applied to S several times to discover the user’s

interaction patterns with LOCIS, and model them. Several runs were done with different

parameters for the criterion c (minLen, minSupp, maxError, minScore) to see the effect of

changes in c. The results of the most interesting runs are recorded in Tables 6.8 to 6.11.

£7.1.1 The First Run

The first run used c - (6, 9, 0, 7). Its results are shown in Table 6.8 ordered by their

score. Six patterns were discovered and the results were further compacted by removing

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the patterns that are subsets of other patterns. The removed patterns are shown in gray.

Then, sample instances of each interaction pattern were reviewed to see how well it

corresponds to a real user task, i.e., to a usage scenario of the system. This inspection

revealed that the patterns in bold, 2, 3 and 4, closely correspond partially or fully to three

repetitive user tasks. The actual interaction patterns of the three tasks discovered are:

1. 4+-5-6+-7+-8+-9+-10

2. 4+-14-15+-6+-7+-8+

3. 22-23-22-6+-7+-8+-9+-i0
Note that S is in R1 format. By checking the instances of each pattern in the original

traces in RO format, we saw which screens are consecutively repeated and added to them

V signs. A Complete description of the tasks of these interaction patterns follows shortly.

Id Screen Description Fr.
1 Main LOCIS Menu 18
2 Federal Leg. Menu 13
3 Welcome 13
4 Browse Result 132
5 Retrieve Result 55
6 Brief Display 268
7 Display Item Options 201
8 Display item 1/1 or 1st 161
9 Display item (2/n or more/n) page 178
10 Display item (n/n) page 81
11 Error 91

12 Search History 62
13 Display List 5
14 Select Result12 33

Id Screen Description Fr.
15 Combine Result** 37
16 Release Result*1 9
17 Comments & Logoff 3
18 Goodbye 6
19 Ready for a Command 3
20 System Message 43
21 Livt Results (1/1) page10 44
22 Expand Results (1/n)11 63
23 Expand/Li vt Results

(n/n, i.e. last) page
47

24 Expand/Li vt Results
(2/n or more/n) page

5

25 Livt Results (1/n) page 19
26 Expand Results (1/1) 23
27 Help 44

Table 6.7. LOCIS Screen Descriptions and Frequencies for The Interaction Pattern
Mining Case Study of Subsection 6.7.1.

8 Combine command creates a new set of records by logically combining previously created sets.
9 Release command releases search result sets not needed anymore.
10 Livt views Legislative Indexing Vocabulary Thesaurus online.
U Expand command combines Livt and Select commands.
12 Select command creates 1 or more record sets for a specified search term

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pattern Support Score Density
1 6-7-8-9-10-7 19 10.98 1.0
2 4-14-15-6-7-8 14 9.84 1.0
3 22-23-22-6-7-8-9-10 9 9.51 1.0
4 4-5-6-7-8-9-10 10 9.33 1.0
5 22-23-22-6-7-8 12 9.27 1.0
6 4-5-6-7-8-9 11 8.94 1.0

Table 6.8. The Qualified Maximal Patterns Discovered Using c (6,9,0,7) for The
Interaction Pattern mining Case Study.

Pattern Support Score Density
1 21-22-23-22-6-7-8 8 8.42 1.0
2 15.6-7-8-9-10 8 7.75 1.0
3 7-8-9-10-7-4 8 7.75 1.0

Table 6.9. The Qualified Maximal Patterns Discovered Using c (6,8,0,7) That Are
Not in Table 6.8 for The Interaction Pattern mining Case Study.

6.7.1.2 The Second Run
The second run was done with c = (6,8,0,7) to see what extra patterns would be

discovered if less support was required. The run gave the three extra patterns shown in

Table 6.9 besides those shown in Table 6.8. These extra patterns do not represent any

new tasks, as they widely overlap with the three significant patterns of Table 6.8. Close

examination of instances of the extra patterns revealed that the two patterns in bold

enhance the current understanding of the user tasks. The first bold pattern (pattern 1) is a

sub-pattern of pattern 3 in Table 6.8 but with Id 21 extra, which suggests that some

instances of the corresponding task may optionally start with Id 21. The second bold

pattern overlaps with pattern 2 in Table 6.8, suggesting that the corresponding task is

actually the union of both patterns. These findings suggest modifying the three

interaction patterns or task representations given earlier to be:

1. 4+-5-6+-7+-8+-9+-io

2. 4+-14-15+-6+-7+-8+-9+-10

3. [21]-22-23-22-6+-7+-8+-9+_ig

where [n] means that an instance of Id n may or may not exist. Modifications are shown

in bold font.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pattern Support Score Density
1 21-22-23-22-6-7-8 13 9.85 0.95
2 22-23-22-6-7-8-9-10 10 9.84 0.99
3 4-5-6-7-8-9-10 10 9.33 1.0
4 22-23-22-6-7-8-10 12 8.99 0.89
5 4-5-6-7-8-10-7 11 8.8 0.91
6 22-23-6-7-8-9-10 10 8.16 0.88

Table 6.10. The Qualified Maximal Patterns Discovered Using c (7,10,1,7) for Th<
Interaction Pattern mining Case Study.

Pattern Support Score Density
1 22-23-22-6-7-8-9-10 13 10.4 0.94
2 21-22-23-22-6-7-8 17 10.34 0.9
3 7-4-14-15-6-7-8 16 9.75 0.87
4 4-5-6-7-8-9-10 12 9.61 0.96
5 22-23-22-6-7-8-10 13 9.18 0.88
6 6-7-8-9-10-7-4 12 9.09 0.9
7 6-7-8-9-10-21-22 13 8.92 0.86
8 7-8-7-4-14-15-6 12 8.63 0.86
9 22-23-6-7-8-9-10 12 8.63 0.86

Table 6.11. The Qualified Maximal Patterns Discovered Using c (7,12,2,7) for The -
Interaction Pattern mining Case Study.

6.7.1.3 The Third and Fourth Runs

The third run was done with c - (7,10,1,7) to see the effect of allowing some errors in

the episodes that support the pattern on the results retrieved. The minimum support was

increased to limit the results set since allowing insertion errors usually increases the

number of retrieved patterns significantly. The retrieved patterns are shown in Table

6.10. The three patterns in normal font were also retrieved in the previous runs. The bold

patterns add significant information to the task models discovered so far. Patterns 4 and 5

have more support than patterns 2 and 3 respectively, but lack Id 9. This suggests that Id

9 is optional in these tasks. Reviewing few instances that support patterns 4 and 5 proves

this, especially that Id 9 represents “Display Item (2/n or more/n) Page” as in Table 6.7.

Since some items in the library catalog have only two pages of details, i.e., a first and a

last item details pages (Screen Ids 8 and 10), then the related interaction patterns do not

include instances of Id 9. Similarly, pattern 6 is identical to pattern 2 with Id 22 missing.

Since they have the same support, one can be deceived and think that pattern 6 is a false

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pattern, i.e., it is the same as 2 with Id 22 considered the one spurious Id (error) permitted

in this run. However, pattern 2 is supported by nine exact episodes (as shown in Table

6.8) and one approximate episode. Hence, 9 supporting episodes of pattern 6 actually

have Id 22 and they do in fact support pattern 2 as well, but one episode that supports

pattern 6 lacks Id 22, suggesting it is optional for the corresponding task. These findings

are also emphasized by the results of the fourth and last run with c = (7,12,2,7), which are

shown in Table 6.11. The patterns in normal font were previously discussed in Tables 6.8

and 6.9. The patterns in bold font lead to the same conclusion as those in bold font in

Table 6.10. The gray ones are spurious patterns.

6.7.1.4 The Final Results

The result of the above findings is modifying the task models discovered as shown

below in bold:

1. 4+-5-6+-7+-8+-[9+j -10

2. 4+-14-15+-6+-7+-8+-[9+J-10

3. [21]-22-23-[22]-6+-7+-8+-[9+]-10

The task corresponding to the first pattern of the three interaction pattern discovered

{4+, 5, 6+, 7+, 8+, [9+], 10} was discussed in subsection 6.1. It is shown in Figure 6.5, with

an extra arc to reflect that Id 9 is optional. In the second task (4+, 14, 15+, 6+, 7+, 8+, [9+],

10}, the user starts by browsing part of the currently open library catalog. Then s/he

issues a select command to retrieve some records from the catalog. The select command

constructs separate subsets of results for the specified search term, each for a different

search field, e.g., one for the records that have the search term in the title, one for the

records that have it in the abstract, etc. Then, the user issues a combine command to

merge some of these subsets together into one set using some logical operators. Next,

s/he displays brief information about the items in this set and selects some items to

display their full or partial information, using the same navigation sequence used in the

first task.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b* n@E 4 Catalog
[I Browse

r * [*] @ E__ f ~Retrieve~)| d *

@E

10 Item Details
l^La^Page^

8 ?, 87

@E ® Item Details
? ? 11 Intrmd. Pg.

d item *@EBrief
fl Display

@E

?, 67

® Item Details
■|_Firet_P^e_

\ Item Display
Options

* @ e

Figure 6.5. A Diagrammatic Representation of The Pattern 4+-5-6+-7+-8+-[9+]-10,
Corresponding to The Information Retrieval Task of Figure 6.1(a).

In the third task {[21], 22, 23, [22], 6+, 7+, 8+, [9+], 10}, the user starts by issuing a

livt command. This command takes as a parameter a term that is classified by LOCIS as a

subject index term, and it displays all the related, broader and narrower terms available in

the Legislative Indexing Vocabulary Thesaurus of LOCIS. For example, if the user

wishes to search for legislation related to drugs, but thinks it is a broad term, s/he can

type livt drugs. The results screen will display terms like Anesthetics, Antibiotics,

Antihistamines, Aspirin, Generic Drugs, Narcotics, etc. Next, the user can expand some

of the displayed terms using expand command, creating a results set of catalog entries. -

Finally s/he displays the needed information as in the two other tasks.

In all three tasks the legacy system may follow alternative paths to present the results

to the user, depending on how many pages of details are retrieved for the legislation of

interest. In the last task, other optional steps exist as well.

6.7.2 A Comparison between IPM and IPM2
In this subsection a comparison between IPM and IPM2 in terms of their memory and

time requirements is presented. In order to perform this comparison with long traces, a

component, called Legacy System Trace Generator (LSTG), was added to LeNDI. The

next is a description of LSTG, followed by the experiment details.

6.7.2.1 Legacy System Trace Generator (LSTG)

LSTG simulates an existing legacy system and generates traces as sequences of Ids for

the purpose of testing the interaction pattern mining capabilities of LeNDI. LSTG models

the navigational behavior of a legacy system user as captured in the interaction traces

recorded while the user was working with the legacy system of interest. The model

produced is in the form of a transition matrix whose rows and column correspond to the

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ids of the legacy system screens as given by LeNDI’s clustering module. A cell, cellbms

[i,j], in this matrix contains the probability of having a transition from Id i to Id j. The

probability is calculated by dividing the number of times the transition from i to j was

recorded in the traces by the total number of occurrences of Id i in the traces. Practically,

the transition matrix is converted to and stored as an accumulative transition matrix. A

cell in this matrix is calculated as follows:

C^/Zaccnm [h j] = C e l / t a n s

k<j

Additionally, all possible starting screens (Ids) of the system that were recorded in the

traces are stored in an array. In all the real systems we dealt with so far, there was only

one start Id. Then using this model, artificial traces of arbitrary length can be generated

that simulate the navigational behavior of the user whose navigation was captured in the

original traces. Given the desired length, this is done as follows:

1. LSTG randomly picks, from the list of possible starting Ids, an Id, id\,

2. LSTG generates a random number that is in the interval [0,1). Then it searches the

row corresponding to id\ in the accumulative transition matrix for the first cell that is

larger than the generated number and takes the corresponding column’s Id as the next

Id in the trace, idj, and

3. Then, id$ is generated as in step 2 and so on and so forth until a trace of the required

length is generated.

Note that only the transitions that occurred in the real recorded interaction traces can

occur in the artificial traces. Also, the probability of such a transition in the artificial

traces equals its probability in the original traces. Different transition probabilities

matrices may exist for the same system, depending on the tasks being captured and

modeled at the time, and hence the navigational sequences of interest that accomplish

these tasks. Note that LSTG does not generate sample snapshots for the Ids generated.

6.7.2.2 Experiment Details

After describing how LSTG works, the specifics of the experiment follow. First, the

traces of the case study of subsection 6.7.1 were fed to LSTG and the corresponding

accumulative transition matrix was produced. It is shown in Table 6.12, with

accumulative probabilities replaced by percentages. Due to space limitation, if a number

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a consecutive cells of Table 6.12 on the same row have the same percentage, they are

all merged together. For example, all cells from [20, 12] to [20,19] have the value 16.3%.

Second, three criteria were selected for the experiment. The first criterion c\ (minLen,

minSupp, maxError, minScore) is (6, 0.5%, 0, 0), where minSupp is chosen to be a

percentage of the trace length so that it scales up with the length of the trace generated. It

is set to 0.5% since in the case study of subsection 6.7.1, the initial support used was 9,

which is 0.54% of 1657, the total length of all the traces used. So, a minimum support of

0.5% would result in a comprehendible set of patterns. The second criterion, C2, is (7,

0.5%, 1, 0). The third criterion, ĉ , is (7, 0.5%, 2, 0). For each criterion, interaction

pattern mining was done using IPM and IPM2 on artificial traces of length starting from

3000 till 60000, with a step 3000, that were generated randomly using LSTG. For every

run, the time needed and the maximum heap used were recorded. The results of these

runs are shown in Figures 6.6 to 6.8.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 6.3 87.5 100
2 0 100

3 15.4 69.2 76.9 76.9 92.3 100

4 1.5 33.3 56.8 57.6 71.2 93.9 94.7 97.7 100

5 1.8 14.5 21.8 65.5 67.3 76.4 89.1 90.9 92.7 96.4 100
6 0 0.4 0.7 56.3 89.6 91 96.6 98.1 98.9 100

7 1 14.5 17 26 87 87.5 88.5 91 94 98.5 99.5 100

8 0 1.9 3.7 5 28 43.5 80.7 96.9 97.5 98.1 98.8 99.4 100
9 0 0.6 3.4 69.7 100
10 1.2 12.3 66.7 69.1 75.3 j 77.8 86.4 93.8 97.5 100

11 0 23.1 30.8 41.8 51.6 52.7 72.5 79.1 81.3 82.4 83.5 85.7 89.0 90.1 96.7 97.8 98.9 100
12 0 8.1 9.7 29 32.3 74.2 82.3 91.9 98.4 100

13 0 40 60 80 100

14 0 12.1 18.2 21.2 24.2 93.9 93.9 |l00

15 0 73.0 75.7 86.5 89.2 100

16 0 11.1 66.7 100
17 0 i 33.3 100
18 100
19 0 33.3 66.7 100

70 0 4.7 7 9.3 16.3 51.2 83.7 97.7 100
71 0 23 9.1 11.4 22.7 75 77.3 100

7,7 0 38.1 46 47.6|96.8 98.4 100
73 0 2.1 31.9 89.4 91.5 97.9 100
74 0 60 100
25 0 j36.8 68.4| 84.2 100

76 0 43.5 47.8 56.5 60.9| 78.3 95.7 100

27 0 |ll.4 |l3 .6 18.2 20.5 25 | 27.3 29.5 100

Table 6.12. The Accumulative Transition Matrix of LOCIS Traces of The Case
Study of Subsection 6.7.1 (Probabilities are replaced by %s).

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Heap usage Is taken as a measure of the memory used by an algorithm while

processing the given data. It is calculated using an idea similar to that explained in

[Rou02] for calculating the size of a Java object. The heap usage calculated by our code

is approximate and is consistent within the same experiment. But when the whole

experiment was repeated three times, numbers varied significantly between the three

runs, although they were still consistent within each run. Thus, the curves produced

represent the relative heap requirements of IPM and IPM2 but cannot be taken as

absolute measures of memory usage. The time and memory requirements of IPM and

IPM2 shown in Figures 6.6 to 6.8 can be reduced if the implementation is done in C or

C++ with optimization in mind. However, since LeNDI is implemented in Java, and

interaction pattern mining is an offline one-time process, i.e., it needs to be performed

once or a few times at most on a given data set, we focused on the correctness of the

implementation rather than optimizing it.

As expected and as was intended in designing both IPM and DPM2, Figures 6.6 to 6.8

show that IPM2 needs less memory than IPM, while IPM is faster than IPM2. It is

important to note that IPM and IPM2 were designed for a pragmatic reason, which is

solving the interaction pattern mining problem in legacy system interaction traces. So,

this experiment was done to verify the performance assumptions on which IPM and

EPM2 were designed, which determine their applicability to certain problems. It is not

meant to be a complete and comprehensive study of the performance of both algorithms.

For such a study, different data sets with different characteristics, e.g., data size and

alphabet size, need to be used plus theoretical analysis of both algorithms.

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.0

2.5
«
ffl
2
c 2.0

O)a
5 1-5
CL«
X 1 0

92
0.5

- Phase 2 of IPM
- Phase 1 of IPM
- IPM2

0.0 T T T T T TT T T

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

T race L ength in 1 0 0 0 s

10 -

mm
3
C

£

1
i—
o»c
c
c3cc

IPM

IP M2

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Trace Length in 1000s

Figure 6.6. A Comparison of Memory and Time Requirements of IPM and IPM2 in
The Experiment of Subsection 6.7.2 with c\ = (6,0.5%, 0,0).

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

5 ^

4

3

2

Phase 2 of IPM
Phase 1 of IPM
IPM2

1

0
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Trace Length in 1000s

m
&zic
i
c
0)
E

c
c
c
3
£

50

40

30

20

10
IPM

IP M2

0
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

T race Length in 1000s

Figure 6.7. A Comparison of Memory and Time Requirements of IPM and IPM2 in
The Experiment of Subsection 6.7.2 with c% = (7, §.5%, 1,0).

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2

1 I I" 5”........ i I T T T i s

Phase 2 of iPM
Phase 1 of IPM

i I S S “ s

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

T race Length in 1000s

160

140

m 120
1
•| 100
£
| 80
F
£ 60 c£
3 40 jrS' IPM*20 - »

IP M2

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Trace Length in 1000s

Figure 6.8. A Comparison o f Memory and Time Requirements of IPM and
The Experiment of Subsection 6.7.2 with C3 = (7,0.5%, 2,0).

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.8 Discussion
The interaction pattern mining process can be considered from two viewpoints. On

one hand, it is a requirement recovery process, during which, LeNDI tries to recapture the

functional requirements of a legacy system as they are currently manifested and exercised

not as they were originally proposed. It does this by generating hypotheses of the user

tasks supported by the legacy application, which are anticipated to correspond to the

system services or functionality required to be migrated. These hypotheses are verified,

accepted, rejected or modified by the LeNDI analyst. In many cases, the functional

requirements of a legacy system are no longer properly documented due to bug fixing,

behavioral adaptations and enhancements and functionality upgrades of the system that

did not back propagate to the original requirements document, assuming that such

document exists in the first place. Recapturing these requirements can be useful for many

reengineering, migration and program comprehension activities, other than GUI reverse

engineering. Hence, the interaction patterns produced by LeNDI can be deployed in

different contexts.

On the other hand this process is an instance of sequential pattern mining process:

user tasks are patterns of frequently occurring episodes in the legacy GUI run-time

behavior traces. In this variant of the problem, the episodes supporting the discovered

patterns match only approximately. Because the users may face exceptional conditions

while executing their tasks, spurious intermediate states may exist in a variety of

locations in some of the episodes. Additionally, multiple paths may exist to execute one

or more subtasks of a user task, resulting in slightly different navigation paths for the

same task. To that end, IPM and IPM2 algorithms were developed to tackle the

interaction pattern mining problem, but are general and applicable to other similar

problems, e.g., discovering frequent user navigation patterns in web server logs [NSE02,

ES03],

In this discussion, the focus is on interaction pattern mining from a requirements

recovery viewpoint, as this is the broad application area that motivated tackling this

problem. From this viewpoint, one can identify some potential uses of the interaction

patterns, and/or consequently, the task models based on them. These uses include use

case recovery, building user interfaces for new applications that are consistent with the

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

existing user conceptual models, documenting interactive systems and building help or

user support systems. Two examples of such potential uses are described below.

The first example is use case recovery for a legacy application. Use case models are

part of the UML toolkit for object oriented system analysis and design [OMG99], It is a

widely accepted representation of the user-oriented requirements of a software system. A

use case describes a sequence of interactions (activities) between a system and an

external “actor” that results in the actor accomplishing a task that provides benefit to

someone. An actor is a person, another software application, a piece of hardware or some

other entity that interacts with the system to achieve some goal [Wie99].

For a legacy system it is not important to document the requirements that led to the

original application development, but rather to capture the current uses of the application

as they have evolved through continuous evolution of the application after its original

deployment. These uses are the de facto functional requirements, as perceived by the

application’s current users, which are of great importance to migration activities. An

interaction pattern can be looked at as a use case, which can be represented textually or

by an activity diagram as shown in Figure 6.9 for the interaction pattern of Figure 6.2. -

Thus, the process of interaction pattern or task pattern discovery can be seen as a process

of use case discovery from one type of dynamic data collected during program runs. This

data is the external program behavior, represented by recorded traces of the users' dialog

with the legacy user interface or simply interaction traces. However, instead of manually

translating interaction patterns to use case models, it would be very beneficial to develop

an automated tool support to this task.

The second example is the recovery of the task model representation of the legacy

user interface in order to redesign the user interface on the same or a different platform or

to build new related applications with user interfaces that are consistent with the user’s

conceptual model. A task model in human-computer interaction (HCI) context is a logical

description of the user activities to be performed to reach a goal. In some cases

alternative tasks may support achieving the same goal. A goal is either a desired

modification of the state of an application or an attempt to retrieve some information

from an application. This definition is not any different from what is described in this

work as a task model, which is an interaction pattern enriched with semantic information.

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In HCI, task models are used in designing, analyzing and evaluating interactive software

applications [Pat02]. Some notations were developed to describe task models in HCI

context, e.g., the ConcurTaskTrees notation [LP98, Con]. Once again, it would very

interesting to develop automated tool support to translate the enriched interaction patterns

discovered by mining interaction traces to ConcurTaskTrees or other HCI notation.

Use Case name: Retrieving Information on a Federal Legislation
Participating actor: LOCIS User
Entry condition: The user issues a browse command to LOCIS
Flow of events:

1- Flip the catalog pages until the relevant page.
2- Issue a retrieve command to construct a results set for the chosen catalog entry.
3- Display the results set using display command and turn its pages until the required

item is found.
4- Issue a display item command.
5- Specify a display option.
6- Display the item details.

Exit condition: The user retrieves the required information about the legislation he wants.

(a) A textual description of the use case.

the required
catalog page. [item found]) i Retrieve

Results Set
Browse
Catalog

Display Results
Subsetfound

item not found
[not found]

Multi page details]
Display FirstDisplay the

Last Page
Display the Inter­
mediate Pages

Specify a Display
Option

(•K-
[not multi

page
details]

(b) An activity diagram representation of the use case.

Figure 6.9. A Use Case Model Representing The Interaction Pattern of Figure 6.2(b).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Seven

Summary, Conclusions And Future Work

This chapter provides a summary of the work accomplished in this thesis, draws some

conclusions and discusses the future directions of this work.

7.1 Summary
This thesis presents a novel method for reverse engineering the character-based user

interfaces of legacy systems using recorded traces of interaction with these interfaces, as

its only input. The method is implemented in a prototype tool called LeNDI. This method

was developed as part of the CelLEST project for legacy system UI reengineering at the

Software Engineering Research Lab., University of Alberta. The goal of the project was

to develop a lightweight method for legacy user-interface reengineering, integration and

Web-enabling that does not alter the legacy system’s code or structure. The CelLEST UI

reengineering method is two-phase, and semi-automatic. In the reverse engineering

phase, a behavioral model of the legacy system character-based user interface is derived

from the interaction traces. Additionally, models of the user tasks of interest are extracted

from these traces. In the forward engineering phase, a reengineered UI is built. The

reengineered UI interacts with the legacy system through its GUI using a host-access

middleware to execute the desired task plans. The reengineered UI is task-oriented in the

sense that it does not mimic the legacy user-system interaction. Instead, it encapsulates

coherent user tasks or packages of functionality in suitable modem GUIs or web-

interfaces, that are generated automatically using the forward engineering tool of

CelLEST, Mathaino. The reverse engineering phase of CelLEST method consists of three

distinct steps. The first is recording traces of interaction with the legacy system through

its user interface while the users are doing their regular jobs. The second is building a

behavioral state-transition model of the legacy system CUI. This model is the road map

used by the new front-end to verify the identity of the legacy screen snapshots accessed

to perform a user task, and hence input the appropriate inputs and extract the required

outputs. The third step is mining the interaction traces for frequent segments of

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interaction with the legacy system, which represent hypotheses of the user tasks

supported by the legacy CUI. These automatically discovered patterns are reviewed and

augmented with semantic information and then used as task models to be wrapped in a

new reengineered UI.

7.1.1 Trace Recording
In effect, the traces of interaction are records of the user dialog with the legacy CUI.

This dialog reflects the currently active user services of the legacy system. Here, the term

“active” is used to refer to the services that are still in use frequently by the system users

as opposed to “inactive” or “dead” services, which are functions that are almost never

used or expired due to aging. The recorded traces contain multiple usage scenarios of

each service, most likely with different input data. These scenarios usually cover the

active parts of the legacy CUI, specifically the screens that are frequently accessed and

the user actions that are frequently entered.

The traces are recorded using a specially instrumented terminal emulator. Each trace

is a sequence of screen snapshots interleaved with user actions. A snapshot consists of a

presentation space (a matrix of characters received on the user's terminal) and some

additional information that depends on the data transfer protocol used. For example, for

the IBM 3270 data transfer protocol, LeNDI records the initial cursor location on the

screen and some of the IBM 3270 field information, e.g., field location, length, and

protection status (read only or read/write). A user action is a sequence of keystrokes that

occurs on a snapshot as the user's response to the screen snapshot s/he sees. The current

version of LeNDI can record, analyze, model and mine traces of interaction with systems

that use a block-mode data transfer protocol, e.g., IBM 3270, as opposed to scroll-model

protocols, e.g., IBM 5250.

By equipping enough users' desktops with LeNDI's recorder, it is relatively easy to

collect a sufficient and representative number of interaction traces unobtrusively.

Assuming that the recording emulators run long enough, the collected traces will cover

the subsystems subject to reengineering with enough examples of screens and actions. If

not, it would be easy to collect more traces that focus on covering the missing parts.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7X2 Behavior Modeling
Behavior modeling (chapter 5) builds a state-transition model of the legacy CUI,

whose nodes represent the screens of the CUI and whose edges represent the transitions

between these screens. A screen or a node reflects a behavioral state of the legacy CUI

that allows a small number of user actions. Building such a model requires identifying the

states and transitions of the model. Identifying the states is done in three steps: feature

extraction, snapshot clustering and classifier induction. Identifying the transitions is a one

step process.

Feature extraction (chapter 4) is the process of computing a feature vector for every

recorded screen snapshot from its presentation space and the associated information.

LeNDI employs a variety of heuristics and document analysis methods to extract a rich

set of visual and other features for every snapshot. Currently, LeNDI extracts 14 single­

part and multi-part features. Associated with each feature is a metric for measuring the

similarity of two values of this feature. Discritization and abstraction is applied to this

feature set to generate 39 single-part binary features. This binary feature set is used by

LeNDI’s top-down clustering algorithm that requires all binary features, i.e., whose -

comparison yields either 1 or 0.

After feature extraction, LeNDI clusters similar snapshots together using one of its

two clustering algorithms, in order to infer what uniquely distinguishes their identity. The

first algorithm is a single-path incremental clustering algorithm (subsection 5.2.1) that

processes the snapshots one at a time and places each new snapshot in the most similar

cluster, among the clusters available so far. If the snapshot is not similar enough to any

existing cluster, then it becomes the first member of a new cluster. This algorithm is

iterative and requires familiarity with the system in hand and some effort and judgement

in configuring its parameters, but does not need an estimate of the number of clusters

sought. The second algorithm is a top-down algorithm (subsection 5.2.2) that places all

the snapshots in one cluster initially. Then it keeps decomposing the existing clusters one

at time using the best-split test that minimizes the maximum internal cluster incoherence,

until reaching a user-desired number of clusters or until internal cluster incoherence is

below a given threshold. This algorithm is fully automated, but needs as input either an

estimated number of the clusters sought or a threshold for the maximum internal cluster

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

incoherence tolerated. This algorithm produces a decision tree that represents the best-

split decision hierarchy followed to construct the output partition. The user may

iteratively try different runs using different input numbers. The LeNDI analyst may

choose which clustering algorithm to use depending on his familiarity with the CUI of the

system under analysis. S/he can also switch from one algorithm to the other.S/he can also

switch from one algorithm to the other.

After clustering, the LeNDI analyst inspects the produced partition and provides

feedback regarding potential clustering mistakes by moving misclustered snapshots to

their correct clusters and joining redundant clusters together. LeNDI uses this feedback to

generate a classifier that is able to classify a new snapshot to one of the existing clusters

using its feature vector. This classifier can then be used at runtime to recognize the

identity of new snapshots as instances of the existing CUI states, and hence, to infer what

actions are possible on each snapshot and to which screens they lead. Additionally, at

runtime after identifying a snapshot, the new reengineered UI can apply whatever

relevant input or output actions of a task plan that is being executed for the snapshot, via

the host-access middleware. LeNDI has a signature-based classifier and a decision tree

classifier. The later is associated with the top-down algorithm. The accuracy of the

classifier induced depends mostly on the quality of the input traces, i.e., how well it

covers the legacy CUI screens and behaviors.

To model the edges of the state-transition model (section 5.4), i.e., the transitions

initiated from each state, LeNDI uses a model of command-language design. Currently

LeNDI can model command-driven and control and function key-driven transitions but

not form-filling or menu selection ones. LeNDI employs an algorithm that groups

together the actions performed on the same source screen, leading to the same destination

screen and analyzes them as instances of the same action. Then, it infers the different

forms of this transition, if there is more than one, by analyzing these instances. LeNDI

analyzes the first word in all instances first, then the second, etc. For each word, it tries to

infer if it is a keyword, an option or an argument, and whether it is optional or mandatory.

Additionally, LeNDI tries to infer the location of that action on the screen or the range

within which it may take place.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.3 Usage Pattern Mining
The purpose of this step (chapter 6) is to automate modeling of the legacy system

services that would be subject to reengineering. To do so, LeNDI tries to discover

patterns of frequent usage of these services in the form of frequent patterns of interaction

with the legacy system that occurred in the recorded traces. Each interaction pattern is a

candidate model of a system service or user task to be reengineered in terms of the

interface navigation and the information exchange it implies. The patterns are enriched

with additional semantic information to be ready for wrapping in a new Web-based

interface or GUI. To discover these interaction patterns, data mining is applied to

interaction traces through three steps. First, the traces are preprocessed to reduce their

size and transform them to the format needed for the mining algorithm. Second, one of

two novel interaction pattern mining algorithms of LeNDI, IPM (section 6.4) and JPM2

(section 6.5), is applied to discover the patterns. These algorithms are especially designed

to suit the problem of interaction-pattem mining in recorded traces of interaction with

legacy systems. IPM is a breadth first algorithm and IPM2 is a depth first algorithm. Both

rely on constructing longer patterns from shorter qualified ones. Finally, the algorithm ~

reports the patterns that meet some user criteria. This criteria define the minimum pattern

length, the minimum number of occurrences, the maximum number of insertion errors

allowed in the pattern instances and the pattern minimum score, according to LeNDI’s

scoring function. Allowing insertion errors gives the user the flexibility to accommodate

user errors and unnecessary navigations like invoking help screens and/or the presence of

alternative paths for some subtasks. Without allowing insertion errors, experiments

showed that many useful patterns would not be recovered. Finally, the resulting patterns

are reviewed by the user who may like to see sample supporting instances of each pattern

to judge if it is a real pattern or just spurious repetitive navigation. Then, s/he may alter or

complete the patterns chosen and then provide them as input to Mathaino to transform

them to task models.

7.2 Contributions
The interaction reverse engineering method developed in this work is a novel

contribution to the research in the field of reverse engineering legacy systems and to the

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

practice of CUI reengineering and Web-enabling. The following sections describe the-

specific scientific and engineering contributions of this thesis.

7.2.1 Engineering a Feature Suite for Characterizing CUI screen
Snapshots

The research in this thesis resulted in a suite of features for characterizing the

snapshots of character-based user interface screens, and a set of corresponding document-

analysis methods to extract these features from the presentation space and the hidden

information of a snapshot. This suite includes three distinct feature subsets. The first is

extracted from special information discovered at the periphery of the snapshot. The

second is extracted from the non-visual information of the snapshot, received with IBM

3270 data streams. The third is extracted from the snapshot layout and content

distribution. While the second subset is specific to IBM 3270 data streams, the first and

third are general and applicable to any block-mode data transfer protocol. The

effectiveness of this set in characterizing snapshots and clustering similar ones together

was tested using LeNDI on real case studies with very encouraging results.

7.2.2 An Intelligent Method for Modeling the Behavior of Legacy CUIs
The second contribution is the invention of a novel semi-automated method for

modeling the behavior of a legacy CUI in the form of a state-transition model, by reverse

engineering the legacy system-user interaction. The steps of this method are:

1. Recording the user dialog with the legacy system in the form of interaction traces.

2. Extracting a feature vector for every recorded snapshot to use in the next step.

3. Clustering similar snapshots together to identify the distinct states of the legacy CUI.

4. Classifier induction to infer predicates for all distinct CUI states in order to recognize

instances of these states at runtime.

5. Example-based learning of the syntax of the user actions causing transitions from one

state to another.

6. Data mining of the interaction traces to discover frequent executions of the user tasks

of interest for reengineering.

The invention of this method is a significant contribution to the research field of

legacy system UI reverse engineering and to the state-of-the-art practice. It builds the

necessary infrastructure and foundation for carrying out semi-automated CUI

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reengineering and Web-enabling. More on the strengths of this method comes in

subsection 7.2.5.

7.2.3 Two Novel Sequential Pattern Mining Algorithms
In this thesis, two novel sequential pattern mining algorithms, IPM (section 6.4) and

IPM2 (section 6.5), were developed to solve the interaction-pattem mining problem.

However, they are general enough to mine other types of sequential data for frequent

segments of navigation that may include a preset level of noise, which may occur

anywhere within the segment. The algorithms were implemented in Java and they were

applied in two different contexts. IPM is a breadth-first algorithm, while JPM2 is a depth-

first algorithm. Consequently, the DPM2 is more space efficient than IPM, while IPM is

more time efficient than HPM2. These complementary properties make them appropriate

for different application scenarios. An experimental comparison (subsection 6.7.2)

between IPM and IPM2 was conducted on long sequences of artificial data generated

with a legacy system simulator designed for that purpose.

7.2.4 A Prototype Tool, LeNDI
The interaction reverse engineering method engineered in this work and its different

components are implemented and evaluated in a prototype tool, called LeNDI (Legacy

Navigation Domain Identifier). LeNDI is implemented in Java. It serves as a test-bed for

the overall process and for the individual algorithms developed in this work.. It was used

in reverse engineering a number of legacy CUIs with promising results.

7.2.5 The Strengths of Interaction Reverse Engineering
The legacy CUI reverse engineering method developed in this work is novel and

distinct in several ways. First, this method employs an easy to collect, yet underutilized,

input, which is interaction traces. Therefore, our interaction reverse engineering method

is code-independent and does not require any modifications of the legacy system code or

even the availability of the code, its documentation or the right to modify it. It is

independent of the programming language used and implementation details. Hence, it is

suitable for reengineering legacy systems when it is desired to keep the system running

on its platform and only migrate its front-end or integrate it with other systems’ front-

ends, while changes to the code are undesirable. In cases when it is impossible to change

the existing system, this becomes the only way to reengineer it. This approach has the

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

limitation that only limited functionality extension and re-purposing can be done, and

only according to what is offered by the legacy GUI. In cases when the source code and

documentation are unavailable, interaction reverse engineering becomes a valuable

method for comprehending the system for maintenance or other purposes, other than

reengineering.

Second, interaction reverse engineering employs a mixture of document analysis,

feature extraction, clustering, classifier induction, data mining and modeling methods, in

the reverse engineering phase of CelLEST, to leverage and advance the current practices

of legacy GUI reengineering. It supersedes the manual practices of screen scraping and

mapping by introducing a coherent automated process that is less time and cost

demanding and less error-prone. Consequently, the overall CelLEST process does not

replicate the legacy system-user interaction with different widgets in new platforms, but

adopts a task-centered approach that encapsulates interesting behavioral segments in new

UI front-ends on different platforms.

Third, the method is lightweight in terms of the skills it assumes. It needs moderate

analysis skills and fair understanding of the system under analysis as opposed to the solid

software development and programming skills and expert understanding of the legacy

system that current practices need. Although we did not conduct a formal usability

experiment, we can report that after 2 or 3 hours of training a junior member of CelLEST

project team, who is a summer student, could actually use LeNDI to record traces of

interaction with an IBM 3270 legacy system and reverse engineer and model its GUI.

Fourth, interaction reverse engineering constructs a high-level, intermediate

abstraction of the legacy system behavior In the form of state-transition and task models.

These models are used in the subsequent CelLEST forward engineering process to

support abstract interaction reengineering and hence, simultaneous migration to multiple

platforms.

Fifth, it is possible to reverse engineer only some portion(s) of the legacy GUI if these

are the only parts that need be reengineered, comprehended and/or modeled. Also, it is

possible to do staged legacy GUI reengineering using CelLEST, starting by the services

that are most desired to be reengineered, etc. In other words part of being a lightweight

engineering method, CelLEST and consequently, its reverse engineering phase, are

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

incremental methods as opposed to big bang reengineering methods, which are risky and

expensive.

Sixth, experiments for testing and evaluating LeNDI and the underlying methods

have given very promising and encouraging results. They have provided ample evidence

of the usefulness and applicability of the methods proposed in this work, although there is

still room for future improvements and enhancements.

Finally, because exactly this work has been motivated by a partnership with an

industrial sponsor and its methodology is inspired by industrial practices in the area, we

believe that our interaction reverse engineering method can potentially have an impact to

the legacy migration and GUI reengineering practice.

73 F u t u r e W o r k

Subsections 4.8, 5.6 and 6.8 discussed in details the future work for improving and

enhancing LeNDI and the underlying methods, and for extending the use of individual

methods to other areas. This section discusses possible extensions of the entire

interaction-based GUI reverse engineering process in two orthogonal directions. The first

is using interaction-based legacy GUI reverse engineering for purposes other than UI

reengineering. The second is extending it to different types of interaction, other than

interaction with legacy systems, and hence broadening the application spectrum of this

method.

7.3.1 Other Applications of CelLEST Legacy CUI Reverse Engineering
Method

The research and ideas presented in this thesis can be utilized beyond their use in

CelLEST project. In the future, some of these other uses will be explored, especially the

ones presented below.

First, the analysis done to reverse engineer a legacy CUI is a form of dynamic

analysis [SS02], which aims to model and understand the external dynamic or run-time

behaviour of the legacy system. Mostly, dynamic analysis focuses on the internal

behavior of the software during run-time, e.g., flow of control, memory utilization,

function entry and exit data, count of executed instructions, etc. [RR01], etc. There is a

growing interest in combining static and dynamic analysis of legacy and large software

systems for better program understanding, visualization and other purposes [IWPC01]

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[LLS01]. It would be interesting to see how external behaviour analysis, in the form of

interaction reverse engineering, can be combined with static or code analysis of legacy

systems or with dynamic analysis of the internal program behavior for better and more

complete program understanding.

Second, the state-transition model and interaction patterns generated for a legacy

system can aid the process of re-documenting an existing system or developing a help

system (documented or electronic). This can be done with a pragmatic approach that

focuses on documenting the currently "active" or "usable" functions of the system, from a

user perspective. Interaction patterns can be translated, after some editing by an expert on

the system, to "how to" subsections in the new user document.

Third, interaction pattern discovery, as explained in chapter 6, can be seen as a form

of requirements recovery. It can be used to infer use cases for systems that were

developed before the advent of UML. Or, it can be used to recapture the current uses of

the system as its de facto functional requirements for the purpose of aiding system

migration, building a new system or extending the system with new subsystems that

respect the users’ conceptual models of the tasks they perform.

Fourth, it is possible to use interaction reverse engineering as a means for

“objectifying” or “APIing” a legacy system by creating a new API for it via screen

mapping as briefly introduced in subsection 2.3.5. In such a case, a task model can be

encapsulated in a function or a procedure that implements the corresponding task plan

and executes it whenever it is invoked. Then, the outputs of this plan are not presented to

the user directly via a new GUI or Web-UI, but are consumed by the calling program. In

an object-orientated context, a group of related legacy system services can be

encapsulated in a class, with the corresponding task models encapsulated in methods.

This way, it is possible that some or all of the legacy system services are integrated with

other programs in creating bigger applications, with minimal effort.

7.3.2 Reverse Reengineering Different Types of Interaction
Interaction reengineering is a broad approach for legacy system reengineering that is

not necessarily related to legacy GUIs. It simply means reengineering the way the users

of a system interact with the system, without necessarily reengineering the code of the

system, although code reengineering may be needed depending on the goals to be

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

achieved. In the case of a legacy CUI, as shown in this thesis, this is done be

understanding and modeling the current CUI and the user tasks of interest and then

forward engineering these tasks. To reengineer other kinds of interaction, one would still

need similar reverse engineering and forward engineering steps, which may differ in their

details from the case of legacy GUIs depending on the context.

A potentially interesting use of interaction reengineering is to extend it to legacy

applications that use scroll-mode data transfer protocols, like VT 100 and IBM 5250. The

challenge in this case is defining the elements of the state-transition model of the legacy

CUI and then identifying them from the recorded traces. Defining the elements of the

state-transition model means characterizing what constitutes a behavioral state of the

system that corresponds to a legacy screen in the case of IBM 3270 and also what an

edge would be in this case.

We have applied interaction reengineering for lightweight web site run-time

reengineering by introducing on-the-fly URL recommendations [ES03]. The target of that

work is focused web sites, which are web sites that support an ongoing process and offer

information essential to that process, e.g., web sites of university courses. Users navigate -

such sites in a consistent task-driven (as opposed to data-driven) way that reflects the

tasks of the underlying process. In the reverse engineering step, we applied interaction

pattern mining using IPM2 to discover frequent user navigation patterns from server logs

of the first three working days of the week. In the forward engineering step, these

patterns are used to generate URL recommendations for students navigating the web site

in the last two working days of the week. The choice of the length of the logs to use for

pattern generation and of the period during which these patterns would be recommended

is optional. Recommendation is done by instrumenting the server to use dynamic page re­

writing with hidden fields for two tasks. First, it is used to keep track of the client identity

using embedded session-specific Ids. Second, it is used to recommend some URLs to the

user based on her/his navigation history. This is done by matching the user’s recent

navigation history with the prefixes of the collected patterns and offering the suffixes of

the relevant patterns, or some of them based on a selection criterion, as URL

recommendations for subsequent navigation. During dynamic re-writing, these URLs are

embedded in the HTML page before forwarding it to the client.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While the application described in [ES03] seems to be quite different from the work

of this thesis, in essence we applied the same process in both cases. A legacy system here

corresponds to a web site there. A recorded trace of interaction with the legacy system

corresponds to a web log. Frequent user tasks performed in interaction with a legacy CUI

correspond to frequent web site navigation segments. The purpose of forward engineering

phase was different. In [ES03] it was simply to save some navigation steps by predicating

where the user may like to go based on her/his navigation history. In this work, no code is

touched, while in [ES03] minimal run-time HTML page re-writing is required in order to

identify the clients and to insert recommendations in the web pages received.

Interaction reengineering can also be applied to window-based applications or GUI

driven applications (GDAs) in general. In principle, it would be possible to monitor the

sequences of events occurring in the service of user tasks and then inferring some model

or plan of this task. Then it would be possible to encapsulate this plan in a class method

in order to replay it by invoking the method from other programs. Thus the user

interaction with the GDA can be reengineered and/or the services of the GDA can be

integrated with other applications or used to build bigger applications.

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[AFMT95]

[AGL98]

[AIS93]

[AkeOO]

[AmbOO]

[AS94]

[AS95J

[AttOO]

[BBOl]

[BB94]

[BCBOO]

G. Antonio!, R. Fiutem, E. Merlo and P. Tonella, Application and User
Interface Migration From Basic to Visual C++. In Proc. of the Int.
Conf. on Software Maintenance (ICSM), pg. 76-85,1995.

R. Agrawal, D. Gunopulos and F. Leymann, Mining Process Models
from Workflow Logs. In Proc. of the 6th Int. Conf. on Extending
Database Technology (EDBT), pg. 469-483, 1998.

R. Agrawal, T. Imielinski and A. Swami, Mining Association Rules
between Sets o f Items in Large Databases. In Proc. of the 1993 Int.
Conf. on Management of Data (SIGMOD 93), pg. 207-216, 1993.

L. Akers, Web-enabling Legacy Applications - An Overview for VSE
Users. VSE/ESA Software Newsletter, IBM, Third/Fourth Quarter,
2000.

S. Ambler, Legacy Integration Techniques for Java Applications: How
to Reuse Your Legacy Investments within Java Applications. IBM
developerWorks Journal, IBM, Nov. 2000.

R. Agrawal and R. Srikant, Fast Algorithms for Mining Association
Rules. In Proc. of the 20th Int. Conf. on Very Large Data Bases
(VLDB), pg. 487-499, 1994

R. Agrawal and R. Srikant, Mining Sequential Patterns. In Proc. of the
11th Int. Conf. on Data Engineering (ICDE), pg. 3-14, 1995.

Attachmate, Repurposing Legacy Applications for the Web: Screen-
Based Access in Perspective. A White Paper, Attachmate Corporation,
2000.

D. Berman and K. Bregar, Don't Replace — Extend: Why Leveraging
Your Legacy Systems Is the Way to Go. Enterprise Systems, June 2001.

A. Bairoch and P. Bucher, PROSlT'E: Recent Developments. Nucleic
Acids Research, vol. 22, pg. 3583-3589,1994.

J. Baixeries, G. Casas and J. Balcazar, Frequent Sets, Sequences, and
Taxonomies: New, Efficient Algorithmic Proposals. Report Number
LSI-00-78-R, El departament de Llenguatges i Sistemes Informatics,
Universitat Politecnica de Catalunya, Spain, Dec. 2000.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[BDVHHPOO]

[BFM02]

[BL97]

[BS02]

[BSTWW99]

[CCDDOl]

[Cel]

[Cel99]

[Cha98]

[Coh94]

[Con]

[CriOl]

Brejova, B., DiMarco, C., Vinar, T., Hidalgo, S. R., Holguin, G. and
Patten, C. Finding Patterns in Biological Sequences. Unpublished
project report for CS798G, University of Waterloo, Fall 2000.

B., Braswell, G. Forshay and I. Martinez, IBM Web-to-Host Integration
Solutions. Redbooks Series, IBM, Jan. 2002.

A. Blum and P. Langely, Selection of Relevant Features and Examples
in Machine Learning. Artificial Intelligence, vol. 97, no. 1-2, pg. 245-
271,1997.

R. Biuk-Aghai and S. Simoff, Assisting the Design of Virtual Work
Processes via On-line Reverse Engineering. In Proc. of the 35th Hawaii
Int. Conf. on System Sciences, pp. 58-67, 2002.

J. Bergey, D. Smith, S. Tilley, N. Weiderman and S. Woods, Why
Reengineering Projects Fail. Technical Report CMU/SEI-99-TR-010,
Software Engineering Institute, April 1999.

G. Canfora, A. Cimitile, A. De Lucia and G. Di Lucca, Decomposing
Legacy Systems into Objects: An Eclectic Approach. Information and
Software Technology, vol. 43, no. 6, pg. 401-412, 2001.

Celcorp, www.celcorp.com.

Celcorp. CelEngineer User’s Guide - Evaluation Version 2.0. Celcorp,
1999.

R. Chadha, Integration of Web with Legacy Systems Through Java
Applets and Distributed Objects. In Workshop on Compositional
Software Architectures, 1998.

W. Cohen, Recovering Software Specifications with Inductive Logic
Programming. In Proc. of the 12th National Conf. on Artificial
Intelligence, vol. 1, pg. 142-148, 1994.

The ConcurTaskTrees Environment Version 1.5.6. Available at
http://giove.cnuce.cnr.it/ctte.html.

R. Crigler, Use Screen Mapping For Wireless Access to Legacy
Enterprise Data. Enterprise Application Integration (EAI) Journal,
Aug., 2001.

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.celcorp.com
http://giove.cnuce.cnr.it/ctte.html

[CWSROO]

[D95]

[DFDOO]

[EISSMOl]

[ES03]

[ESS02a]

[ESS02b]

[ESS02c]

[Fio99]

[FOLD96]

S. Comella-Dorda, K. Wallnau, R. Seacord and J. Robert, A Survey of
Legacy System Modernization Approaches. Technical Note: CMU/SEI-
2000-TN-003, Software Engineering Institute, 2000.

R. Dannelly, Reverse Engineering X Window System based Graphical
User Interface Source Code. Ph.D. Dissertation, Auburn University,
Dec. 1995.

G. Di Lucca, A. Fasolino, and U. De Carlini, Recovering Use Case
Models from Object-oriented Code: a Thread-based Approach. In Proc.
of the 7th Working Conf. on Reverse Engineering (WCRE), pg.108-
117,2000.

M. El-Ramly, P. Iglinski, E. Stroulia, P. Sorenson and B. Matichuk,
Modeling the System-User Dialog Using Interaction Traces. In Proc. of
the 8th Working Conf. on Reverse Engineering (WCRE), pg. 208-217,
2001.

M. El-Ramly and E. Stroulia, Web-usage Mining and Run-time URL
Recommendation for Focused Web Sites: A Case Study. Journal of
Software Maintenance and Evolution: Research and Practices, 2003.
(accepted)

M. El-Ramly, E. Stroulia, and P. Sorenson, Mining System-User
Interaction Traces for Use Case Models. In Proc. of the 10th Int.
Workshop on Program Comprehension (IWPC), 2002.

M. El-Ramly, E. Stroulia and P. Sorenson, Recovering Software
Requirements from System-user Interaction Traces, In Proc. of the 14th
Int. Conf. on Software Engineering and Knowledge Engineering
(SEKE’02), 2002.

M. El-Ramly, E. Stroulia and P. Sorenson, Interaction-Pattem Mining:
Extracting Usage Scenarios from Run-time Behavior Traces. In Proc.
of the 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD 2002), 2002.

A. Floratos, Pattern Discovery in Biology: Theory and Applications.
Ph.D. Thesis, Department of Computer Science, New York University,
Jan. 1999.

D. Howe (Editor), The Free On-line Dictionary of Computing.
Available at www.foldoc.org.

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.foldoc.org

[GBP02]

[Gold98]

[HOLLIS]

[Hor98]

[BBM99]

[IWPC01]

[JMOO]

[Jon96]

[KapOl]

[KD99]

[Kie98]

[KonOO]

[KS96]

M. Grechanik, D. Batory and D. Perry, Integrating and Reusing GUI-
Driven Applications. In Proc. of the Int. Conf. on Software Reuse
(ICSR), pg.1-16, 2002.

N. Gold, The Meaning o f Legacy Systems. Technical Report 7/98, Dept,
of Computer Science, Durham University, UK, 1998.

Harvard OnLine Library Information System (HOLLIS). The IP
address of its public IBM 3270 connection is hollis.harvard.edu.

E. Horowitz, Migrating software to the World Wide Web. IEEE
Software, vol. 15, no. 3, pg. 18-21,1998.

IBM, Screen Customizer Version 2.0.60: Getting Started. IBM, 1999.

E. Stroulia and T. Systa (Chairs), Structure-Behavior-Function
Program Understanding. A Working Session at the 9th Int. Workshop
on Program Comprehension, 2001.

M. Jugel and M. MeiBner, The Javatm Telnet Application/Applet,
version 2.0. http://javassh.org/download/2-0/index.html, 2000

I. Jonassen, Methods for Finding Motifs in Sets of Related
Biosequences. Dr. Scient Thesis, Dept, of Informatics, Univ. of Bergen,
1996.

R. Kapoor, Device-Retargetable User Interface Reengineering Using
XML. Technical Report TR01-11, Department of Computing Science,
University of Alberta, Aug. 2001.

T. Kieninger and A. Dengel, The T-Recs Table Recognition and
Analysis System. Lecture Notes in Computer Science 1655, Springer,
pg. 255-269, 1999.

T. Kieninger, Table Structure Recognition Based on Robust Block
Segmentation. Document Recognition V, pp. 22-32, 1998.

L. Kong, Legacy Interface Migration: From Generic ASCII UIs to
Task-Centered GUIs. M.Sc. Thesis, Department of Computing Science,
University of Alberta, Canada, 2000.

D. Koller and M. Sahami, Toward Optimal Feature Selection. In Proc.
of the 13th Int. Conf. on Machine Learning (ICML), pg. 284-292, 1996.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://javassh.org/download/2-0/index.html

[KS01]

[KSM99]

[LanOO]

[LAQ99]

[LBS94]

[LHHP96]

[LLSOl]

[LOCIS]

[LP98]

[Mir96]

[MIRLYN]

[MRS 94]

R. Kapoor and E. Stroulia, Simultaneous Legacy Interface Migration to
Multiple Platforms. In Proc. 9th Int. Conf. on Human-Computer
Interaction, vol. 1, pg. 51-55, 2001.

L. Kong, E. Stroulia, and B. Matichuk, Legacy Interface Migration: A
Task-Centered Approach. In Proc. 8th Int. Conf. on Human-Computer
Interaction, pg. 1167-1171,1999.

G. Langan, From Legacy to the Web. Enterprise Application Integration
(EAI) Journal, Jan. 2000.

K. Liu, A. Alderson, and Z. Qureshi, Requirements Recovery from
Legacy Systems by Analysing and Modelling Behaviour. In Proc. Int.
Conf. on Software Maintenance (ICSM), pg. 3-12, 1999.

Z. Liu, M. Ballantyne and L. Seward, An Assistant for Re-Engineering
Legacy systems. In Proc. of the 6th Innovative Applications of Artificial
Intelligence Conf., pg. 95-102,1994.

J. Liang, J. Ha, R. Haralick and I. Phillips, Document Layout Structure
Extraction Using Bounding Boxes o f Different Entities. In Proc. of the
3rd IEEE Workshop on Applications of Computer Vision, pg. 278-283,
1996.

W. Lowe, A. Ludwig and A. Schwind, Understanding Large Software
Systems - Static and Dynamic Aspects. In Proc. of the 17th Int. Conf.
on Advanced Science and Technology, (ICASTDl), 2001.

The Library of Congress Information System (LOCIS). The IP address
of its public IBM 3270 connection is 140.147.254.3 or locis.loc.gov.

A. Lecerof and F. Patemo, Automatic Support for Usability Evaluation.
IEEE Transaction on Software Engineering, vol. 24, no. 10, pg. 863-
888,1998.

B. Mirkin, Mathematical Classification and Clustering. Kluwer
Academic Publishers, 1996.

Michigan Research Library Network (MIRLYN). The IP address of its
public IBM 3270 connection is mirlyn.lib.umich.edu.

M. Moore, S. Rugaber and P. Seaver, Knowledge-based User Interface
Migration. In Proc. of the Int. Conf. on Software Maintenance (ICSM),
pg. 72-79, 1994.

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[MTV97]

[NSE02]

[OMG99]

[PA97]

[Par94]

[Pat02]

[PRSV97]

[PZKM99]

[Qui93]

[REGSOO]

[Rij79]

H. Mannila, H. Toivonen and A. Yerkamo, Discovery o f Frequent
Episodes in Event Sequences. Data Mining and Knowledge Discovery,
vol.l, no. 3, pg. 259-289, 1997.

N. Niu, E. Stroulia and M. El-Ramly, Understanding Web Usage for
Effective Dynamic Web-Site Adaptation. In the Proc. of the 4th Int.
Workshop on Web Site Evolution (WSE 2002), 2002.

QMG, The OMG Unified Modeling Language Specification, version
I.3. Object Management Group, 1999.

C. Phanouriou and M. Abrams, Transforming Command-Line Driven
Systems to Web Applications. Computer Networks and ISDN Systems,
vol. 29, no. 8, pg. 1497-1505, 1997.

D. Pamas, Software Aging. In Proc. of the 16th Int. Conf. on Software
Engineering, pg. 279-287, 1994.

F. Patemd, Task Models in Interactive Software Systems. In Handbook
of Software Engineering and Knowledge, vol. I, World Scientific
Publishing Co., pg. 817-836, 2002.

C. Plaisant, A. Rose, B. Shneiderman and A. Vanniamparampil, Low
Effort High Payoff User Interface Reengineering. IEEE Software, vol.
14, no. 4, pg. 66-72, 1997.

P. Patil, Y. Zou, K. Kontogiannis and I. Mylopoulos, Migration of
Procedural Systems to Network-Centric Environments. In Proc. of
Center of Advanced Studies Conference (CASCON'99), pg. 68-82,
1999.

J. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

P. Rayson, L. Emmet, R. Garside and P. Sawyer, The REVERE Project:
Experiments with the Application o f Probabilistic NLP to Systems
Engineering. In Proc. of the 5th Int. Conf. on Applications of Natural
Language to Information Systems, pg. 288-300, 2000.

C. van Rijsbergen, Information Retrieval. Butterworths, London, UK,
1979.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[RMBOO]

[Rou02]

[RROl]

[Sch99]

[SCT02]

[SEIS03]

[SEKSM99]

[SES02]

[SESPOO]

[SK02]

W. Ruh, F. Maginnis and W. Brown, Types of Integration. In
“Enterprise Application Integration: A Wiley Tech Brief’, John Wiley
& Sons, Oct. 2000.

V. Roubtsov, Java Tip 130: Do you know your data size? In JavaWorid
(www.javaworld.com/javaworid/javatips/jw-javatipl30.html), August,
2002

S. Reiss and M. Renieris, Encoding Program Executions. In Proc. of
the 23rd Int. Conf. on Software Engineering (ICSE'01), pg. 221-230,
2001.

B. Schneiderman, Designing the User Interface. Addison-Wesley,
1999.

C..Sorzano, J. Carazo and O. Trelles. Command Line Interfaces can Be
Efficiently Brought to Graphics: COLIMATE (The COmmand Line
MATE). Software: Practice & Experience, vol. 32, no 9, pg. 873-887,
2002.

E. Stroulia, M. El-Ramly, P. Iglinski and P. Sorenson, User Interface
Reverse Engineering in Support o f Interface Migration to the Web. ..
Automated Software Engineering, vol. 10, no. 3, 2003.

E. Stroulia, M. El-Ramly, L. Kong, P. Sorenson, and B. Matichuk,
Reverse Engineering Legacy Interfaces: An Interaction-Driven
Approach. In Proc. of the 6th Working Conf. on Reverse Engineering,
pg. 292-302, 1999.

E. Stroulia, M. El-Ramly and P. Sorenson, From Legacy to Web
through Interaction Modeling. In Proc. of the Int. Conf. on Software
Maintenance (ICSM 2002), pg. 320-329, 2002.

S. Stroulia, M. El-Ramly, P. Sorenson, R. Penner, Legacy Systems
Migration in CelLEST. Short Research Demonstration, In the Proc. of
the 22nd Int. Conf. on Software Engineering, pg. 790, 2000.

E. Stroulia and R. Kapoor, Reverse Engineering Interaction Plans for
Legacy Interface Migration. In Computer Aided User-Interface Design,
2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.javaworld.com/javaworid/javatips/jw-javatipl30.html

[SLGSH92]

[SneOO]

[SP99]

[SS02]

[TH99]

[TLRH98]

[TS99]

[Vij02]

[VisOl]

[WAP]

[Way99]

[Wie99]

S. Srihari, S. Lam, V. Govindaraju, R. Srihari and J. Hull, Document
Understanding: Research Directions. Technical Report CEDAR-TR-
92-1, Center of Excellence for Document Analysis and Recognition
State University of New York, 1992.

H. Sneed, Accessing Legacy Mainframe Applications via the Internet.
In Proc. of the 2nd Int. Workshop on Web Site Evolution (WSE’2000),
2000.

I. Shao and I. Pound, Extracting Business Rules from Information
Systems. BT Technical Journal, vol. 17, no. 4, 1999.

E. Stroulia and T. Systa, Dynamic Analysis for Reverse Engineering
and Program Understanding. Applied Computing Review, vol. 10, no.
1, pg. 8-17, 2002.

V. Tzerpos and R. Holt , MoJo: A Distance Metric for Software
Clusterings. In Proc. of the 6th Working Conf. on Reverse Engineering,
pg. 187-195, 1999.

Y. Tan, D. Lindquist, T. Rowe and J. Hind, IBM eNetwork Host On-
Demand: The Beginning o f a New Era for Accessing Host information
in a Web Environment. IBM System Journal, vol. 37, no. 1, pg. 133-
152,1998.

K. Tucker and R. Stirewalt, Model Based User-interface
Reengineering. In Proc. of the 6th Working Conf. on Reverse
Engineering (WCRE), 1999.

V. Menon, Visualization o f Legacy Interface Behavior. A Research
Report, Department of Computing Science, University of Alberta,
2002.

G., Visaggio, Ageing o f a Data Intensive Legacy System: Symptoms and
Remedies. Journal of Software Maintenance and Evolution, vol. 15, no.
3, pg. 281-308, 2001.

The WAP Forum, www.wapforum.org.

P. Wayner, Compression Algorithms for Real Programmers. Morgan
Kaufmann Publishers, 1999.

K. Wiegers, Hearing the Voice o f the Customers. Chapter 8 in Software
Requirements, Microsoft Press, 1999.

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.wapforum.org

[WJD01]

[YamOQ]

[ZK99]

E. Wohlstadter, S. Jackson and P. Devanbu, Generating Wrappers for
Command Line Programs: The Cal-Aggie Wrap-O-Matic Project. In
Proc. of the Int. Conf. on Software Engineering, pg. 243-252, 2001.

T. Yampie, Web-based Technologies for User Interface Rejuvenation.
In Web-to-Host Connectivity, A. Guruge and L. Lindgren (Ed.), CRC
Press, pg. 185-197, 2000.

Y. Zou, K. Kontogiannis, Enabling Technologies for Web-Based
Legacy System Integration. In Proc. of the 1st Int. Workshop on Web
Site Evolution (WSE99), 1999.

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

