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Abstract

Vehicle routing problems are optimization problems that deal with the location and routing of vehi-

cles. A set of clients based in different locations need to be served by a fleet of vehicles. The clients

and vehicle depots are modeled as being placed on the vertices of a graph and the distances between

them as a metric. Thus, a solution to a vehicle routing problem corresponds to covering the graph

using a number of subgraphs, each denoting the route of a vehicle. In this thesis, we consider min-

max vehicle routing problems, in which the maximum cost incurred by the subgraph corresponding

to each vehicle is to be minimized. We study two types of covering problems and present new or

improved approximation algorithms for them.

In Chapter 2, we study the rooted and unrooted variants of min-max k-tour cover problem. Given

a metric (V, c) and a number k, a set of tours τ1, . . . , τk in G is called a k-tour cover, if they cover

all the vertices of G, i.e. V = ∪ki=1V (τi). The unrooted min-max k-tour cover problem is that

of giving a k-tour cover of G where the maximum cost of a tour under the metric c is minimized.

Analogously, in the rooted version, we are given a subset of vertices R of size k and each tour of

the k-tour cover is required to be rooted at a distinct vertex in R. We improve on the approximation

ratios of these problems by giving a (16/3 + ε)-approximation algorithm for the unrooted min-max

k-tour cover problem and a (7 + ε)-approximation algorithm for rooted version.

In Chapter 3, we study the unrooted min-max k-star cover problem. Given a metric (V, c) and a

number k, a set of stars S1, . . . , Sk in G is called a k-star cover, if they cover all the vertices of G,

i.e. V = ∪ki=1V (Si). The rooted min-max k-star cover problem is that of giving a k-star cover of G

where the maximum cost of a star under the metric c is minimized. We improve on the approximation

ratio when the number of stars k is slightly violated, i.e. bi-criteria approximations and present an

(O(1/ε), 1 + ε) bi-criteria approximation. We also study the problem on more restricted metrics,

namely the line metric and Euclidean metric. For the problem on the line metric, we present a

QPTAS, and for the problem on the line metric in the special case that the stars are non-crossing, we

present a PTAS for the unrooted min-max k-star cover problem. Then, we explore the possibility

of Polynomial time approximation schemes on the Euclidean metric. We rule out this possibility by

giving an APX-hardness reduction.
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Chapter 1

Introduction

Optimization problems are ubiquitous in real world, where applications call for a solution that sat-

isfies certain hard constraints and budgets dictated by the environment, yet striving to minimize the

cost. In this thesis, we look at a few optimization problems that arise in the transportation industry

and concerns locating and routing of vehicles. Since these problems fall in a category of intractable

problems, either of optimality or running time needs to be compromised. We will propose algo-

rithms for the problems introduced that run in a reasonable amount of time, yet produce solutions

that are guaranteed to be close to the optimal value.

1.1 Motivation

A diverse class of optimization problems arise from logistics, transportation, city planning, and

routing. Consider the following two examples.

Example 1 Consider a hospital that owns a number of ambulances which could be located in cer-

tain places throughout the city. There is usually an estimated number of requests to transfer patients

between different medical facilities during the day. The hospital needs to locate the ambulances in

certain stations such that each ambulance delivers its patient as soon as possible to the required

medical facility. This decision has to be taken respecting the requirements that all patients need to

be transferred and that the hospital can only own a certain number of ambulances and cannot afford

to buy any new ambulances.

We formalize and study some variations of the above problem, called the Tour Cover Problem

in Chapter 2. Another example concerning distribution of goods is as follows.

Example 2 Assume you own a company that produces a certain product and delivers it from its

warehouses to its customers. The delivery is performed by the transportation department of the

company that has a fleet of vehicles. Each customer location demands a truckload of the product

each day, so after serving each customer, a truck needs to get back to a warehouse to restock before

serving another customer. The company is expanding to a new area and has secured funding for
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a specific number of warehouses and vehicles. The decision the company faces is to choose the

location of the warehouses and assign the customer locations to warehouses such that the last driver

checks out as early as possible, to minimize the overtime payment the company has to endure over

the course of years.

We formalize and study some variations of the above problem, called the Star Cover Problem in

Chapter 3. The above are examples of a class of problems called Vehicle Routing Problems (VRP).

1.1.1 Vehicle Routing Problems

Vehicle Routing Problems (VRP) is a rich class of problems, that are extensively studied in Op-

erations Research [40, 22, 12]. They arise from practical applications in transportation and deal

with the assignment of routes, for purposes such as the delivery of goods from certain depots to the

customers in various locations. These routes will then be assigned to a fleet of vehicles. The route

assignment has to be done subject to operation constraints imposed by the vehicles, the demands

of the customers, and the underlying structure of the transportation network they operate in. The

goal is to find such routes subject to the restrictions that satisfy the demands and minimize the cost,

such as the total mileage traveled. This research area originated by a problem introduced in [13],

for finding the optimal route for a truck delivering gasoline from a depot to a set of customers. The

field subsequently flourished by trying to answer different variations of the original question. Some

of the variations studied are described in the list below:

• Objective function: Different objectives are of practical relevance in different settings. Some

of the more common ones include: Total mileage traveled by all the vehicles, the maximum

distance (and hence time) traveled by a single vehicle, the average time that each customer

needs to wait before it is served, and the minimum number of vehicles to service all the

customers subject to the operational constraints.

• Network Symmetry: The underlying transportation network may or may not be symmetric, i.e.

the cost of visiting customer b right after customer a may or may not be equal to the cost of

the reverse action, i.e. visiting customer a right after customer b.

• Processing times: The vehicles might need to stay at each customer location for a certain

amount of time processing the request of the customer.

• Depots: Depending on the underlying facilities, there might be a single depot or multiple

depots located in the transportation network, or the location of the depots might be part of the

decision procedure.

• Capacity: Each vehicle has a capacity restricting the amount of goods that it can deliver to

customers, and thus the number of customers it can satisfy in one trip.
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• Heterogeneous Fleet of Vehicles: The fleet of vehicles might be homogeneous or heteroge-

neous, i.e. have differing specification, such as non-uniform capacity or speed.

• Time Windows: Each customer v may only be serviced in a certain time interval [R(v), D(v)].

The above classification gives a glimpse into the richness and variety of problems studied in the

area of Vehicle Routing. In this thesis, we focus on the following specific subclass of problems.

Objective functions: We consider the maximum cost each vehicle incurs as the objective function.

Symmetry: We only consider transportation networks where the cost is symmetric. Depots: We

consider variations where either multiple depots are given or where a given number of depots need

to be established in the network. Other constraints such as the heterogeneity of fleet, etc. are not

taken into account, and left as future work.

1.1.2 Covering problems in Vehicle Routing

In this section, we present a specific subclass of vehicle routing problems. In covering problems,

each location in the network has a demand for some commodities which need to be delivered by a

fleet of k vehicles for a given k. The vehicles will start from a depot and have to return to their des-

ignated depot after serving the customers. Depending on the logistics and facilities of the underlying

transportation network, we might be able to build k depots in different locations on the network, the

vehicles may all be stationed in one existing central depot (The single depot case) or in k potentially

different designated depots on the network (Multiple depots case). In any case, each vehicle needs

to return to the depot it started from.

The goal would then be to assign a depot for each vehicle that does not have one designated.

Each vehicle will thus be assigned to a route that it needs to traverse in order to deliver the goods

to the customers on the route. All customers need to be covered by some vehicle in their respective

routes. In doing so, the objective is to minimize the cost. The cost each vehicle incurs on a certain

route will be different depending on the application. Several different objective functions arise in

different scenarios that we describe below:

1. Min-Sum: Minimizing the total mileage traveled by all the vehicles. This is the most natural

objective function and comes up when we want to minimize the total fuel used by the vehicles

or the the total wage of the crew operating the vehicles.

2. Min-Max: Minimizing the latest time by which a vehicle is returned to its original depot. This

objective function arises when we want to close the facilities at the depot as soon as possible

to minimize the after-hour costs of overtime and operating of the facilities.

3. Min-Latency: The latency of each customer is the time it gets served by some vehicle. This

objective function comes up when we want to maximize customer satisfaction, thus minimize

the average service time of customers.
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In this thesis, we focus on the Min-Max objective function defined above. In order to formalize

the above problems, we formulate them in the language of graph theory as required by the rigorous

mathematical analysis of algorithms. For the sake of clarity, we review the relevant concepts of

graph theory and fix our notation.

1.2 Preliminaries and Notation

In this section, we review the basics of graph theory and approximation algorithms and present

the notation used throughout the thesis. The underlying network of depots and customers can be

modeled as a graph with an underlying cost function.

1.2.1 Graph Theory

An undirected graph G = (V,E) is an ordered pair of sets, where V (also denoted V (G)) is the set

of vertices (or nodes), andE (also denoted asE(G)) is the set of edges of V . The edge set consists of

edges that are two-element subsets of V . In the applications we consider, we take the set V to be the

set of all locations, i.e. the depots and the customer locations. For each pair of locations i, j ∈ V , we

will have an edge e = {i, j} that denotes the connection between the two locations. Let cij denote

the cost between i and j, i.e. the distance between the two locations or the time it takes to get from

i to j. In the applications, we consider, the cost function c : V ×V → Q+ is a metric, defined below:

Metric: A function c over V , c : V ×V → Q+ is a metric if it satisfies the following properties:

1. cii = 0, ∀i ∈ V .

2. cij = cji,∀i, j ∈ V (Symmetric Property)

3. cij + cjk ≥ cik,∀i, j, k ∈ V (Triangle Inequality).

The triangle inequality can be assumed, without loss of generality, since in every solution, in

going from i to k, we take the shortest path between them, thus incurring the minimum cost, which

is at most the cost incurred by going through j. Note that the cost function c of edges of a graph

G being metric, also implicitly implies that G is a complete graph, i.e. for any i, j ∈ V , we have

{i, j} ∈ E. Here, we introduce a few special metrics.

• Line Metric. (V, l) is a line metric, if there is a mapping f : V → Q, such that l(vi, vj) =

|f(vi)− f(vj)|, for every i, j ∈ V .

• 2-Dimensional Euclidean Metric. (V, l) is a 2-Dimensional Euclidean metric (from here on

called a Euclidean metric for short), if there is a mapping f : V → Q2, such that for (xi, yi) =

f(vi), we have l(vi, vj) =
√

(xj − xi)2 + (yj − yi)2 for every i, j ∈ V , i.e. the Euclidean

distance of the corresponding points on the plane.
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• Tree Metric. (V, l) is a tree metric if there exists a tree T and a mapping f : V → V (T ), such

that for every u, v ∈ V, l(u, v) is equal to the distance between f(u) and f(v) on the tree T .

• Doubling Metrics. The doubling dimension of a metric space (V, l) is the smallest δ > 0, such

that every ball of radius r (for any r ∈ Q+ ∪ {0}) can be covered by 2δ balls of radius r/2. A

metric is called a doubling metric, if its doubling dimension is a constant. Doubling metrics

were first introduced in [24].

The underlying transportation network is thus modeled as a graphG = (V,E) with a metric cost

function over the edges c : V × V → Q+. In the formal statement of the problems, we stick with

the graph theoretic definition for the sake of technical clarity. Here are a few related concepts. More

in-depth coverage of these concepts can be found in [7].

• Subgraph. A graph H is a subgraph of a graph G, if V (H) ⊆ V (G) and E(H) ⊆ V (G).

• Matching. A matching M of a graph G is a subset of its edges M ⊆ E(G) such that no

two edges in M are adjacent. A maximum matching is one with the maximum cardinality. A

perfect matching is one where each vertex is covered once.

• Walk. A walk W in a graph G is an alternating sequence of vertices and edges of G, i.e.

W = v0e1v1 . . . vl−1elvl, such that ei = {vi−1, vi}, for 1 ≤ i ≤ l.

• Tour. A tour τ in a graph G is a spanning closed walk that traverses each vertex at least once.

• Star. A graph S = (r, L) is called a star, if V (S) = {r} ∪ L, L = {l1, . . . , ln}, E(S) =

{{r, li}|∀1 ≤ i ≤ n}. The vertex r is called the root, and the vertices L are the leaves of the

star.

• Tour Cover. A tour cover of a graph G is a set of tours τ1, . . . , τk such that each vertex of

V (G) is visited by at least one tour. It is also called a k-Tour Cover where k is the number of

tours.

• Star Cover. A star cover of a graphG is a set of stars S1, . . . , Sk such that V (S1), . . . , V (Sk)

is a partition of of V (G).

1.2.2 Approximation Algorithms for NP-hard Optimization Problems

Most combinatorial optimization problems in general and vehicle routing problems in particular

are NP-hard, thus widely believed to be intractable [20]. The Operations Research community has

long studied these problems developing exact algorithms by means of heuristics, or putting major

restrictions on the size of the problems that can be solved in a reasonable amount of time. The field

of approximation algorithms on the other hand deals with the intractability of NP-hard optimization
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problems in a different way and provides efficient algorithms that produce suboptimal solutions with

a guaranteed bound on the quality of the solution. The guarantee is on the worst case error by which

the produced solution deviates from the value of the optimal solution. The error bound is usually

multiplicative with respect to the optimal value. In a few cases, additive approximation have been

given. This bound is referred to as the approximation ratio, as defined below.

Approximation Ratio. For a minimization problem Π, an algorithm A has an approximation

ratio of α, if for any given instance I of Π, the algorithm A produces a feasible solution for I that

has cost A(I) ≤ α ·OPTΠ(I), where OPTΠ(I) is the optimal value of Π on instance I .

The approximation ratio is a function of the size of the instance n = size(I). An approxima-

tion ratio of α = 1 is equivalent to solving the problem exactly. Thus, for any NP-hard problem,

there is no 1-approximation, assuming P 6= NP. The closer α is to 1, the better the approximation.

One may wonder if it is possible to approximate NP-hard problems to any degree close to 1. It

turns out in much the same way that decision version of an optimization problems can be NP-hard,

α-approximating a problem can also be NP-hard for a certain α. Results of the second type rely

on a different type of machinery from classical NP-hardness reductions, including such notions as

approximation-preserving reductions and the celebrated probabilistic characterization of the class

NP known as PCP (see [41, 42] and the references therein for more information on this). Each

NP-hard optimization problem may only be approximable up to a certain threshold function. The

approximability threshold of a problem Π is a function αΠ, for which we have an αΠ-approximation

for Π and the problem of (αΠ−ε)-approximating Π is NP-hard, for any constant ε > 0. Interestingly,

different NP-hard optimization problems behave very differently in terms of their approximability

and their approximability thresholds could be anywhere from (1 + ε) for all ε > 0 (called a PTAS,

defined below) to some polynomial function in n.

Polynomial Time Approximation Scheme (PTAS). For a minimization problem Π, a PTAS

is a class of algorithms A(ε), such that for each given ε > 0, produces a solution of cost at most

(1+ε)·OPTΠ(I), for any instance I . The running time of the algorithm must polynomial in size(I),

but may be exponential in 1
ε .

Approximation algorithms are a trade-off between optimality and running time. Thus, a major

requirement for an approximation algorithms is to run in a reasonable amount of time. This usually

means in time polynomial in the size of the input. This requirement is slightly relaxed by considering

algorithms that run in quasi-polynomial time. An algorithm running in quasi-polynomial time re-

quires O(2O(Polylog(n))) time. Note that a Quasi-polynomial running time is slower than polynomial

time, but faster than exponential time. In other words, quasi-polynomial time is super-polynomial
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and sub-exponential. The significance of quasi-polynomial algorithms comes from a hypothesis in

complexity theory called the Exponential Time Hypothesis (ETH). The ETH, first formalized by

[28], says that 3SAT cannot be solved in sub-exponential time, i.e. time 2o(n). Note that this hy-

pothesis is strong, and implies P 6= NP.

Thus, if there exists an algorithm that runs in quasi-polynomial for a problem, it gives a strong

evidence that the problem might be solvable in polynomial time. In particular, if there exists an al-

gorithm that achieves an approximation ratio α in quasi-polynomial time, it means that the problem

is approximable to a factor of α, unless NP ⊆ O(2O(Polylog(n))). The ETH states that the latter is a

sound assumption. This motivates the definition of a QPTAS, similar to a PTAS as follows.

Quasi-Polynomial Time Approximation Scheme (QPTAS). For a minimization problem Π, a

QPTAS is a class of algorithms A(ε), such that for each given ε > 0, produces a solution of cost at

most (1 + ε) ·OPTΠ(I), for any instance I , in time quasi-polynomial in size(I).

The goal of the field of approximation algorithms is pinpointing the approximability threshold

of NP-hard optimization problems. This is achieved by two types of attacks on each problem.

1. Upper bounds on the approximation ratio. First, to provide an algorithm that produces a

feasible solution that attains a certain approximation ratio.

2. Lower bounds on the approximation ratio. To prove that approximating a problem to a certain

ratio is intractable, i.e. unlikely under widely believed complexity-theoretic assumptions, such

as P 6= NP.

Such results, give in turn upper and lower bounds on the approximability ratio of the problem.

We mainly focus on the first type of results and most of the results presented in this thesis fall in that

category, except for the hardness result in Section 3.5, which is of the second type. For some NP-

hard optimization problems, tight approximations have been established and for others, the upper

and lower bounds on the approximability remain wide open. The field of approximation algorithms

is replete with open problems and has matured over the years. An overview of the field as we know

it today has been given in recent books [42, 41, 25]. We will illustrate the notion of approximation

ratio on the Traveling Salesman Problem below, which is one of the most famous problems in com-

binatorial optimization and serves as the most fundamental problem underlying the vehicle routing

problems.

The Traveling Salesman Problem (TSP). Given a complete graph G = (V,E) with a cost

function c : E → Q+ on the edges, find an ordering of the vertices, such that the resulting tour that

traverses V in this order is of minimum cost.
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TSP, in its full generality remains NP-hard to approximate to any polynomial time computable

function as can be seen by a reduction from the Hamiltonian Cycle problem. Thus, attention has been

restricted to instances, where the cost function satisfies the triangle inequality, i.e. is a metric. The

instance of TSP, where the cost function is metric is referred to as metric TSP. In most applications

in VRP, the best way to go from a vertex i to j is to take the shortest path between them, in case that

is different from the direct route between them. Thus, TSP reduces to the case where we consider

the shortest path metric graph. Since we exclusively deal with the metric TSP problem, we refer to

the metric TSP simply as TSP. Approximation algorithms for TSP have been based on two lower

bounds, namely the minimum spanning tree (MST) and the minimum perfect matching. This results

in a 3/2-approximation algorithm for TSP, that we mention below. Both lower bounds and the

approximation algorithm are common building blocks in many vehicle routing problems.

Theorem 1 (Christofides [10]) There is a 3/2-approximation for TSP.

Proof: Consider a Minimum spanning tree T of the graph G. The cost of T is a lower bound to

the cost of optimal TSP. This can be seen by removing an edge from TSP; the remaining path is a

spanning tree of G. Thus, the cost of a minimum spanning tree is less than the cost of the optimal

TSP tour, denoited by OPT. Duplicating all the edges of the MST gives a graph of cost at most

2 · OPT, where the degree of all vertices is even. Thus, by traversing the edges of this graph and

shortcutting over already-visited vertices, we can find a spanning tour, without increasing the cost.

The MST lower bound gives an approximation ratio of 2. We need another lower bound to improve

on this. Consider any even subset of the vertices of G, the optimal TSP incurs a tour of cost no more

on these vertices by shortcutting over all the other vertices. The edges of this tour are the union of

two perfect matchings, each consisting of alternating edges. Hence, the cost of the minimum perfect

matching over the nodes is at most half the cost of the optimal TSP. Now, let M be the minimum

cost perfect matching on the set of odd vertices in T , where T is an MST. The union of these two

subgraphs T ∪M induces a graph with even degrees and costs at most 3/2 ·OPT. We can traverse

the edges of this graph and find a tour of cost no more by shortcutting over vertices we have already

visited.

A closely related problem is the TSP-Path problem, where instead of a tour, we seek the min-

imum cost path. Hoogeveen [27] in a parallel result to Christofides, gave a 5/3-approximation for

the TSP-Path problem. This ratio has been improved to 1+
√

5
2 [1] very recently. Despite the fact that

TSP has been extensively studied, little progress has been made in terms of its approximability in the

past 37 years and the 3/2 ratio has been only slightly shattered for the special case of graphic TSP

very recently [35, 21]. On the other hand, the best lower bound on the approximability threshold of

this problem is 129
128 [37]. Closing this gap is a major open question in its own right.
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Chapter 2

Min-max k-Tour Cover

In this chapter, we consider the tour cover problems, that is the problem of covering the vertices of

a graph using a number of tours. The tour cover problems are some of the most natural variants

of vehicle routing problems studied. In all real world applications, the vehicles need to get back

to their designated depots for freight and fuel recharge, maintenance and administration. Thus, the

route traversed by each vehicle will be a tour. On the other hand, these problems generalize the

celebrated Traveling Salesman Problem. Thus, tour cover problems are also of theoretical interest.

Consider the case, when there is a single vehicle that needs to cover all the customers. The path

traversed by this vehicle gives a single spanning tour, minimizing which is the TSP mentioned

above. TSP is one of the most important problems in combinatorial optimization that has attracted

a lot of attention in the Operations Research community, as reflected in a number of books devoted

to the subject, e.g. [11, 2, 32]. Subsequently, it has also been subject to much research from the

standpoint of approximation algorithms, starting with [10], and culminating in a recent stream of

improvements, including [21, 35, 36]. Thus, tour cover problems are generalizations of TSP, and

thus of great practical and theoretical significance.

2.1 Problem Definitions

Here, we formally define the two variants of tour cover problem that we consider in this thesis.

Consider Example 1 in Chapter 2. The case where the hospital has already made the decision on

the locations to build the medical facilities to have the ambulances stationed at. We can model the

location of the patients and the medical facilities as the underlying network by the graph G and

represent the distances between locations by the cost function c. The decision problem will be,

given the facility locations as roots, to decide which clients to assign to each ambulance stationed at

a facility. The goal is to minimize the latest time an ambulance gets back to its assigned facility and

delivers all the patients. The problem can be formalized as the rooted tour cover problem as follows.

Problem 1 (Rooted k-Tour Cover) Given a graph (V,E) with a metric cost function on the edges

c : E → Q+, and a set of roots R ⊆ V , find a set of k = |R| tours {τi}, each rooted at a distinct
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root in R that cover the graph, i.e. ∪iV (τi) = V . The objective function is to minimize the cost of

the heaviest tour, i.e. min maxi c(τi).

Analogously, we can define the variant, in which the location of the facilities are not specified

and is part of the decision problem. We call this variant of the problem, the unrooted k-tour cover

problem.

Problem 2 (Unrooted k-Tour Cover) Given a graph G = (V,E) with a metric cost function

on the edges c : E → Q+, and an integer k, find a collection of k tours τ1, . . . , τk that cover

V , i.e. ∪ki=1V (τi) = V . The objective function is to minimize the cost of the largest tour, i.e.

min maxi c(τi).

2.2 Background

The state-of-the-art in terms of approximation ratio of tour cover problems for the min-sum and min-

max objective functions is summarized in Table 2.1, for different root structures of the network. In

each of the covering problems, determining the assignment of vertices to their respective roots will

reduce the problem into disjoint instances, which then can be solved independently of others. Each

such independent instance will be the problem of assigning a route to all the vertices that have been

assigned to a certain root. This latter problem is an an instance of TSP, for which 3/2-approximation

exists. Thus, if the assignment of vertices to the roots can be done optimally, the 3/2-approximation

of TSP would carry over to the min-max k-tour cover problem. To understand the hardness of this

assignment problem, we consider the bin packing problem, defined below.

The Bin Packing Problem. Given n items with sizes s1, . . . , sn and a bin capacity B, pack the

items into a minimum number of bins of capacity B.

Another version of the bin packing problem that is of relevance to the problems that we address

in this thesis is the Min-max version: Given n items with sizes s1, . . . , sn and m identical bins, find

a minimum size B for bins and a packing of all the items into the m identical bins of size B. Note

the similarity between bins and vehicles. The bin packing problem is one of the basic problems in

combinatorial optimization. Both variations above are NP-hard, the second one is similar to the tour

cover problems in this section. In the bin packing problem, the cost incurred by the items in a bin is

a linear function of the costs of the items, whereas in the tour cover problem there is an underlying

graph defining the costs.

For the rooted k-tour cover problem, Even et al. [16] give a (4 + ε)-approximation for the

corresponding tree cover problem, which by the doubling and shortcutting technique, gives an (8 +

ε)-approximation for the tour cover problem, which they call the nurse location problem. They

suggest the direct approach to the tour cover problem as an open problem, which might lead to a
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better approximation ratio. We improve the ratio down to (7 + ε) in Algorithm 2.1 in section 2.3.

This result was also independently obtained by [44].

For the unrooted k-tour cover problem, Xu et al. [44] gave a 6-approximation . Independently,

Khani et al. [31] give a 3-approximation for the closely related tree cover version of the problem,

which implies a 6-approximation by duplicating and shortcutting edges. In section 2.4, we introduce

algorithm 2.3 that improves the approximation ratio to 16/3 + ε.

2.3 Rooted k-tour cover algorithm

In this section, we give an algorithm for the rooted k-tour cover problem, depicted in Figure 2.1. The

algorithm takes an upper bound on the value of the optimal solution B ≥ OPT and will produce a

solution whose cost, we can bound with respect to B. We can find such a value B ≤ (1 + ε) ·OPT

by doing a binary search in the range of possible values for the value of optimal in polynomial time

and by running the algorithm on each such value and returning the best answer. This will give a

similar guarantee on the value of an optimal solution. It remains to give an algorithm that produces

a solution with a guaranteed bound on B, when it is given such a value that is an upper bound on

the optimal value, i.e. B ≥ OPT. The algorithm has been described in Figure 2.1 in detail and

works as follows. The algorithm cuts edges of cost more than B/2. If this results in more than

one connected component, the different components will be considered as separate instances of the

tour cover problem and solved independently. Consider a vertex v ∈ V . In the optimal solution,

v will be covered by a tour rooted at some root r. The tour consists of two paths from r to v; the

lighter of these two paths has cost at most OPT/2. So, we will have c(v, r) ≤ OPT/2. If edges

of cost greater than B/2 ≥ OPT/2 are deleted from the graph, each vertex will remain in the

same connected component as its corresponding root in the optimal solution. So, without loss of

generality we can solve the problem in each connected component separately.

In each connected component, the algorithm finds a minimum spanning tree. Then this tree is

split away into smaller trees of the appropriate size as explained in Lemma 3 with λ = 3B/2. Then,

a matching is found between the set of split trees and potential roots that could cover them. A root

can cover a tree it the cost of the smallest edge between the root and the tree is at mostB/2. This has

been formalized by the bipartite graph G′ in algorithm 2.1. The existence of this matching has been

Table 2.1: The currently best approximation ratios for different versions of the k-tour cover problem
when the depots are unspecified (Unrooted), there is a single depot or there are multiple depots on
the network, with respect to two different objective functions, i.e. (i) minimizing the sum of the cost
of all the tours, and (ii) minimizing the maximum cost incurred by each vehicle; αTSP is the best
approximation ratio for TSP.

k-Tour cover Unrooted Single depot r Multiple depots R={ri}ki=1

Min sum 2 3/2 [19] 3/2 [43] for k const
Min max 6 [31] αTSP + 1− 1/k [18] 8 + ε [16]; 7 + ε (Theorem 5)
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shown in Lemma 4. This, gives a k-tree cover, which can be turned into a tour cover by duplicating

and shortcutting edges.

Figure 2.1: Algorithm for the rooted k-Tour cover problem

Input: G = (V,E), c : E → Q+, R = {r1, . . . , rk}, B ∈ Q+

Output: A set of tours τ1, . . . , τk of cost at most 7B each, rooted at r1, . . . , rk respectively, if
B ≥ OPT.

1. Find the forest F by discarding edges of length greater than B
2 (let E≤B2 be the set of remain-

ing edges e with c(e) ≤ B/2). Apply an MST algorithm, e.g. Kruskal on each connected
component of G≤B/2 = (V \R,E≤B2 ) .

2. For each connected component T of F , split T into trees that have size in the interval [ 3
2B, 3 ·

B) and potentially one left-over tree of size in (0, 3
2B)

3. Consider the bipartite graph G′ = (T , R,E′), where T is the set of trees split from T in the
previous step, and the set of edges are
E′ = {(T, r)|T ∈ T , r ∈ R,∃v ∈ T such that c(r, v) ≤ B

2 }.

4. Find a maximum matching M in G′. For each root r ∈ R, let eM (r) be the edge matched
to r. Consider the tree resulting from the union of this edge and the tree TM (r) that the
root has been matched to. Form a tour rooted at r by doubling and shortcutting the edges of
TM (r) ∪ eM (r).

As mentioned above, we assume that F is connected and is a tree. First, we prove an upper

bound on the cost of this tree.

Lemma 2 c(F ) ≤ (3k/2− 1)B

Proof: Consider an optimal solution, where every vertex v ∈ V is covered by a tour. The sum

of the cost of all the tours is at most k · B. Now, shrink the components induced by these optimal

tours down to their respective roots and consider the MST on the roots in the shrunk graph. As per

our assumption, the graph is connected and has no edge of cost greater than B/2. So the cost of the

MST is at most (k − 1)B/2. Expanding the tours back, together with this MST gives a connected

subgraph of cost (3k/2−1)B. Hence, the same upper bound applies to the minimum spanning tree.

The following lemma has been proved in [16]. We reproduce the proof in here for the sake of

completeness.

Lemma 3 [16] For any tree T with a cost function c on the edges and some λ, where c(e) ≤ λ for

every e ∈ E, T can be split away to edge-disjoint trees of size in [λ, 2λ) and at most one left-over

tree of size in (0, λ).

Proof: For every vertex v, let Tv be the subtree rooted at v. If e = (u, v) is an edge in the

tree and u is a parent of v, let Te denote the tree rooted at u with the edge e and the subtree Tv .

Looking at each vertex v, we consider all the subtrees rooted at v where the degree of v is 1. If v
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is connected to its children by means of the edges e1 = (v, u1), . . . , ed(v)−1 = (v, ud(v)−1), such

degree-1 subtrees are Te1 , . . . , Ted(v)−1
(see Figure 2.2). Now, consider the deepest vertex v, where

c(Tv) > 2λ, but for all its degree-1 subtrees c(Tei) < 2λ. We can take away each degree-1 subtree

that has cost in [λ, 2λ). All the remaining degree-1 subtrees will have cost in (0, λ). Start packing

these subtrees together one at a time in some arbitrary order until the cost of the tree is greater than

λ for the first time. Take this new subtree T ′ as a new one and set it aside; c(T ′) < 2λ. Now iterate

on finding the new vertex v. In the last iteration, there may be only one tree left of cost less than λ.

Figure 2.2: (a) Tv , the subtree rooted at v, and all its children, u1, . . . , ud(v)−1. (b) Te, a degree-1
subtree of v that is formed by its edge to its child ui, and Tui .

v

u1 u2

. . .

v

e = (v, ui)

ui
ud(v)−1

(a) (b)

By adding such subtrees one at a time we can form a tree T of the desired size, add it to T , split

it away from F and iterate.

Now apply the above lemma to F with λ = 3B/2. Furthermore note that these trees are edge

disjoint and their costs can add up to at most c(F ), thus there will be at most k − 1 trees of cost in

[3B/2, 3B) and one left-over tree of cost in (0, 3/2B).

Lemma 4 G′ has a a perfect matching.

Proof: G′ is a bipartite graph with bipartition (T , R) of the trees that we split away in the algorithm

and the roots available. Our goal is to show that every tree that we split away can be matched to a dif-

ferent root close to it. Note that the edges areE(G′) = {(T, r)|T ∈ T , r ∈ R,∃v ∈ T such that c(r, v) ≤ B
2 }.

In order to prove this, we appeal to Hall’s theorem which gives a sufficient and necessary condition

for the existence of a perfect matching. In this case, Hall’s theorem assures the existence of a match-

ing of size |T |, when the following condition holds. For every T ′ ⊂ T , it has at least as many

neighbors in G′, i.e. |NG′(T ′)| ≥ |T ′|.

Now, consider a subset T ′ ⊂ T , which consists of t = |T ′| trees. For the sake of conve-

nience, name the trees as T ′ = {T1, . . . , Tt}. We can characterize the set of its neighbors as

R′ = NG′(T ′) = {r ∈ R|c(r, v) ≤ B/2, such that v ∈ Ti, for some i ≤ t}.

Note that no root in R \R′ can cover any vertex in V (T ) in the optimal solution, since any such

root is too far from all the vertices. So, there are |R′| tours C1, . . . , C|R′| rooted at R′ that cover
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∪iV (Ti) in the optimal solution. We stress the fact that we don’t know what these tours are, and use

them to prove existence.

The Hall’s condition that we are left to prove is that |R′| ≥ t. Assume for the sake of contradic-

tion that |R′| < t. Suppose we shrink the tours C1, . . . , C|R′| in the original graph G. Let E′ be the

set of the edges of F that lie in the shrunk graph G/{V (C1), . . . , V (C|R′|)}. In other words, E′ is

the set of edges that run between the different components spanned by the tours Ci.

Now, consider the tree F , we remove all the edges in the trees {Ti}ti=1 and add all the edges in⋃|R′|
i=1 E(Ci)∪E′ to make a graph F ′. We show that: (a) F ′ has cost strictly less than F , and (b) F ′

maintains all the connectivities provided by F . The points (a) and (b) contradict with the fact that F

is an MST.

Proof of (a): Consider all the edges removed, ET =
⋃t
i=1E(Ti). We know that all the trees

in T , except potentially one have cost in [3/2B, 3B), so c(ET ) ≥ 3
2 (t − 1)B. On the other hand,

consider all the edges added to the graph, EC =
⋃|R′|
i=1 E(Ci) ∪ E′. Each cycle Ci has a cost of

at most OPT and the cost of E′ is dominated by a minimum spanning forest in the shrunk graph

G/{V (C1), . . . , V (C|R′|)} when the edges are of cost at most B/2. Thus, c(E′) ≤ (|R′| − 1)B2 .

So, c(EC) ≤ |R′| ·OPT+(|R′|−1)B
2 ≤

3
2 |R
′| ·B− B

2 . Together with the assumption that |R′| < t,

this gives c(EC) ≤ 3
2 (t − 1)B − B

2 . This shows that the edges removed have greater cost than the

edges added c(ET ) > c(EC).

Proof of (b): Now, we claim that if we replaceE(F ) with (E(F )\(
⋃t
i=1E(Ti)))∪(

⋃|R′|−1
i=1 E(Ci)∪

E′), the connectivity of vertices remains unchanged. The only vertices that can lose their connec-

tivity are the ones in a tree that has its edges removed. Let s, t ∈ T be two such vertices in some

T ∈ T ′. Let s and t be connected in T by a path s = v0, v1, . . . , vr = t. For each 0 ≤ i < r, vi and

vi+1 are covered by two tours Ci1 and Ci2. If the two tours happen to be the same, E(Ci1) maintains

the connectivity of vi and vi+1. Otherwise, (vi, vi+1) ∈ E(T ) will be an inter-cycle edge in T . So,

it will be kept in E′. Thus, the connectivity will be preserved.

(a) and (b) together with F being the minimum spanning tree, results in a contradiction, hence

we must have |R′| ≥ t. This, in turn will prove the existence of a matching in G′ that covers all

trees T ′ by Hall’s theorem as stated above.

Theorem 5 Algorithm of Figure 2.1 is a (7+ε)-approximation for the rooted k-tour cover problem.

Proof: The set of trees split away from F in Lemma 3 covers all the vertices of G and the perfect

matching M ensured by Lemma 4 gives a way to map the trees T to the roots R. Each tree formed

by connecting a root r ∈ R to a corresponding tree costs at most OPT/2 + 3B ≤ 3.5B. Each tree

can be turned into a tour by duplicating the edges and shortcutting over the vertices of each graph

results in a tour of cost 7B ≤ (7 + ε) ·OPT.

As shown above, this improves upon the factor (8+ ε)-approximation of [16], namely to (7+ ε).

Note that if we can partition the vertices and assign each partition to the respective root in R as in
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the optimal solution, the problem breaks down to solving k independent instances of the traveling

salesman problem and the αTSP = 3/2 approximation of TSP will follow. In our approach above,

we manage to partially disentangle the k instances of TSP by removing edges of cost B/2, where

no partition might be broken up. This suggests that further disentangling the instances might lead

into better approximations.

2.4 Unrooted k-tour cover algorithm

In this section, we give an algorithm for the unrooted k-tour cover problem. The algorithm is

depicted in Figure 2.3. Similar to the algorithm for the rooted version, algorithm 2.3 guess an upper

bound B on the optimum such that OPT ≤ B ≤ (1 + ε) ·OPT. This guess is carried out by means

of a binary search over the range of possible values. Algorithm 2.3 takes such a value B ≥ OPT as

an argument, and produces a solution with a guaranteed bound with respect to B.

The algorithm works as follows. Edges with a cost of more than B/3 are discarded. This might

result in more than one connected component. Note that a tour in an optimal solution can only

have at most two edges discarded, and thus will either be entirely in one connected component or

two. The algorithm then tries to restore some of the lost connectivity by adding edges. Consider the

small components in G≤B/3 (defined in step 2 in Algorithm 2.3). We only restore the connectivity

for such small components. The algorithm guesses the values d and f by iterating over all the

possible values. f is the number of small components that have a broken part of a tour from an

optimal solution and the other part being part of a large component. And d is the number of small

components that cannot be matched to any other component. This can be due to the fact that the

small component does not include a broken part of a tour in an optimal solution. To represent all

the possible connections to the small components, the graph G′ is built in Step 4 of the algorithm.

V (G′) = X ∪Y ∪Z, where X corresponds to all the small components, Y is a set of dummy nodes

that will define which components won’t be matched, and Z is the set of small components that get

matched to a large component. This correspondence of Y and Z to the small components and the

possible matchings of different small components together is found by a matching M in G′ in Step

5 of the algorithm. The connectivities between the components in G′ are restored according to the

matching M in Step 6. Then in each component we split away trees from the minimum spanning

tree by the procedure of lemma 3 with λ = 4B/3. The resulting tree cover is then duplicated and

shortcut to form a tour cover as explained in Algorithm 2.3.

Lemma 6 The cost of each tour τ output by Algorithm 2.3 is at most 16B/3.

Proof: We first bound the cost of a tree T ∈ T : (i)If T ∈ T1, then T is the MST on the union of

two small trees, which can be connected by an edge of cost at most B/2. As the cost of each small

tree is at most B. There is a graph spanning vertices of T of cost at most 5B/2. (ii) If T ∈ T2,

then T is a small tree and has cost c(T ) < B. (iii) If T ∈ T3, then T is output by the tree splitting
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Figure 2.3: Algorithm for the unrooted k-tour cover problem

Input: G = (V,E), c : E → Q+, k ∈ N, B ∈ Q+

Output: A set of tours τ1, . . . , τk, covering V , where the cost of each tour is at most 16B/3, if
B ≥ OPT.

1. Remove edges of cost ce > B/3. Let G≤B/3 be the resulting graph, and C1, . . . , Cs be its
connected components.

2. Compute the MST in each connected component of G≤B/3, and partition them into two
groups S and L, called small and large respectively as follows.

• S = {Ci|MST (Ci) ≤ B}.
• L = {Ci|MST (Ci) > B}.

3. Guess the values d, f by iterating over all the possible values in {0, . . . , |S|}, running the
algorithm with each such guessed pair and returning the best output.

4. Build the graph G′ = (V ′, E′) as follows.

• V ′ = X ∪ Y ∪ Z, where

– X = {x1, . . . , x|S|}, where each xi corresponds to the i-th small component in S .
– Y = {y1, . . . , yd} are dummy vertices.
– Z = {z1, . . . , zf}.

• E′ = E1 ∪ E2 ∪ E3, where

– E1 = {{xi, xj}|xi, xj ∈ X, c(Ci, Cj) < B/2}, and set cost c(e) = 0, for all
e ∈ E1.

– E2 = {{xi, yj}|xi ∈ X, yj ∈ Y }, and set cost c(e) = 0, for all e ∈ E2.
– E3 = {{xi, zj}|xi ∈ X, zj ∈ Z, c({xi, zj}) = cl(Ci) < B}, where the costs

on the edges are defined by c({xi, zj}) = cl(Ci) = MST (Ci) + c(Ci,L). And
c(Ci,L) = min u∈Ci,

v∈C,C∈L
c(u, v) is the minimum cost of an edge between the com-

ponent Ci and large components.

5. Find a minimum cost matching M in G′ = (V ′, E′). Let M = M1 ∪ M2 ∪ M3, where
Mi = M ∩ Ei, for i = 1, 2, 3.

6. Let T = T1 ∪ T2 ∪ T3, where

• T1 = {MST (Ci ∪ Cj)|{xi, xj} ∈M1}.
• T2 = {MST (Ci)|{xi, yj} ∈M2, for some j}.
• For each {xi, z} ∈ M3, merge the small component Ci with the large component Cj

that is closest to it. Let L′ be the new large components after merging. For each T ′3
be the union of the MSTs of components in L′. Apply the tree splitting Lemma 3 to
each tree in T ′3 with λ = 4B/3, with the modification that the second last tree and the
left-over tree are taken as one tree. Let T3 be the set of resulting trees.

7. Output the tours resulted by duplicating and shortcutting the edges in each of the trees in T .

Lemma 3 which produces trees of cost at most 2λ = 8B/3. Each tour τ is produced by duplicating

and shortcutting a tree T ∈ T . Thus, c(τ) ≤ 2c(T ) ≤ 16B/3.

Lemma 7 The number of tours output by algorithm 2.3 is at most k.
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Proof: For the proof of this theorem, we need to look at the structure of the optimum solution. Let

TOPT = {τ1, . . . , τk} be the k tours of an optimal solution. Each such tour τi has cost at most B.

Thus, τi either falls in one connected component in G≤B/3, or in at most two different connected

components, as it can have at most two edges greater thanB/3. In the latter case, τi has been broken

by removal of edges of cost greater than B/3. The optimum tours of TOPT in G≤B/3 fall in one of

the following categories:

1. Small tours. The whole tour or its two parts fall in S, i.e. small components of G≤B/3. Let

ks be the number of such tours in TOPT.

2. Mixed tours. The tour has been broken in G≤B/3, and one part is in S and the other part is in

L. Let km be the number of such tours in TOPT.

3. Large Tours. The whole tour or its two parts fall in L, i.e. large components of G≤B/3. Let

kl be the number of such tours in TOPT. These tours consist of the two following groups:

• Tours that are wholly contained in one large component in L. Let k(h)
l be the number of

such tours in TOPT.

• Tours that are broken, but both parts are in large components in L. Let k(b)
l be the

number of such tours in TOPT.

By definition, we have kl = k
(h)
l + k

(b)
l . Now, in order to consider the structure of TOPT over

the components corresponding to V ′, we define the following graph. Let G′′ = (X,E′′), where

there is an edge E′′ = {(xi, xj)|∃τ ∈ TOPT s.t. V (τ) ∩ Ci 6= ∅, V (τ) ∩ Cj 6= ∅}. Note that E′′

also includes loops, as i and j are not required to be distinct. Let I ⊂ X be the set of isolated nodes

in G′′. This means that the corresponding components to I are contain incident to mixed tours. Let

MG′′ be a maximum matching in G′′, and UG′′ = X \ (I ∪V (MG′′)), the isolated nodes of G′′ that

are not matched. Similarly, let U = X \ (I ∪ V (M)).

Consider an iteration of algorithm 2.3, where f = |I|, and d = |UG′′ |. We have |M | + |U | ≤

|MG′′ |+ |UG′′ |. Furthermore, |MG′′ |+ |UG′′ | ≤ ks.

In Algorithm 2.3, for the number of trees we have |T1| = |M | and |T2| = |U |, thus |T1|+ |T2| ≤

ks. It remains to bound |T3|. In order to bound this value, we consider the total cost of T3. Note that∑
T∈T3 c(T ) ≤

∑
T∈T ′3 c(T ) and that T ′3 is a forest with |L| connected components. We bound

the total cost
∑
T∈T ′3 by considering the large and mixed tours of TOPT and the edges connecting

the mentioned tours. The total cost of large and mixed tours is at most (kl + km) · B. Any two

such tours can be connected by an edge of cost at most B/3 in GB/3. Thus, a spanning forest

with |L| connected components can be made with an additional cost of (kl + km − |L|) · B/3. So,∑
T∈T ′3 c(T ) ≤ 4B/3 · (kl + km) − B/3 · |L|. Note that T3 is made from T3 by the application

of Lemma 3 with λ = 4B/3. Also, note that Lemma 3 has been applied with the modification

that the second last tree is kept together with the last, i.e. left-over tree. Thus the only trees that
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have cost less than 4B/3, is a tree that is a single component in T ′3. As each component in T3

is a large component, the cost of the tree is at least B, and there are at most |L| such trees. Thus,

|T3| ≤ kl + km.

The above two lemmas imply the main theorem of this section

Theorem 8 Algorithm 2.3 is a (16/3 + ε)-approximation algorithm for the unrooted k-tour cover

problem.
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Chapter 3

Min-max k-Star Cover

In this chapter, we consider the star cover problems, that is the problem of covering the vertices

of a graph using a number of stars. Star cover problems are at the intersection of vehicle routing

problems and clustering problems. In VRP, star cover problems model cases when each vehicle is

stationed at a depot and it needs to go back to its designated depot after serving each customer before

it can go and serve another customer. On the other hand, star cover problems can also be viewed

as a class of clustering problems. Each star denotes one cluster with the root being the cluster

center and leaves being cluster members. Clustering problems are of great practical and theoretical

importance in computer science and thus, they have been studied through different lenses and by

separate communities, such as machine learning and algorithms. The area of clustering data is rich

with an extensive literature. We will only review the most relevant literature in section 3.2.

3.1 Problem Definitions

Before we turn to the rigorous study of star cover problems, we need to define them formally.

Consider Example 2 in Chapter 1. We can model the customer locations and potential warehouse

location as the underlying network by a graph G and the distances in between locations by a metric

cost function c. Similar to the tour cover problem discussed in Chapter 2, this gives rise to two

variants of the problem, depending on whether or not the warehouse locations have already been

established. We refer to the variant in which warehouse locations have been fixed as the rooted star

cover problem and define it formally as follows.

Problem 3 (Rooted k-Star Cover) Given a graph (V,E) with a metric cost function on the edges

c : E → Q+, and a set of roots R ⊆ V , find a partitioning of V \ R into k sets V1, . . . , Vk, where

R = {r1, . . . , rk}, such that the cost of the heaviest star Si = (ri, Vi) is minimized. Thus, the

objective function is to minimize maxi
∑
v∈Vi c(ri, v).

Similarly, we can define the variant in which the locations of the roots of the stars is part of the

decision problem as the unrooted the star cover problem as follows.
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Problem 4 (Unrooted k-Star Cover) Given a graph (V,E) with a metric cost function on the edges

c : E → Q+, find a partitioning of V into k sets V1, . . . , Vk, together with a root in each partition

ri ∈ Vi, such that the cost of the heaviest star Si = (ri, Vi) is minimized. Thus, the objective

function is to minimize maxi
∑
v∈Vi c(ri, v).

3.2 Background

Even et al. [15] considered both rooted and unrooted variants of the min-max k-star cover problem.

They notice that the rooted version is a special case of the problem of Minimum makespan schedul-

ing on unrelated parallel machines, for which a 2-approximation exists due to Lenstra et al. [33].

Thus, the 2-approximation carries over to the rooted k-star cover problem as well. Lenstra et al. [33]

also give a 3/2 hardness of approximation for the scheduling problem. This result does not automat-

ically result in a corresponding lower bound on the approximability of rooted k-star cover problem.

But looking more closely at their reduction, it can be seen that the instance they construct has a

metric cost function on the edges of the graph. Thus, the 3/2 lower bound also applies to rooted

k-star cover problem. It remains to close this gap and establish the approximability threshold of

rooted k-star cover problem, which is in the interval (3/2, 2]. But, as this is almost resolved, we turn

our attention to the unrooted variant in this thesis.

For the unrooted k-star cover problem, Even et al. [15] give a (4+ε, 4) bi-criteria approximation.

Their algorithm produces 4k stars covering all the vertices, such that the cost of each star is no more

than 4 times the cost of optimally covering the vertices by k stars. Formally, an (α, β) bi-criteria

approximation algorithm for the star cover problem is a set of β · k stars that cover all the vertices,

such that the cost of each star is at most α ·OPT, where OPT is the optimal cost of covering all the

vertices by k stars. Note that the solution provided by a bi-criteria approximation is not feasible as

it uses more than k stars. However, the cost of the objective function is compared to the cost of the

optimum solution without violating the restriction of using only k stars.

Subsequently, Arkin et al, [3] improve their result and give a (3+ ε, 3+ ε) bi-criteria approxima-

tion. They also consider another variant of the star cover problem, in which the number of stars is to

be minimized, subject to a hard budget constraint on the cost of each star. For this version, they give

a (2αk−med + 1)-approximation, where αk−med is the approximation ratio of the related k-median

problem. We will review this problem in the following.

Clustering. The star cover problem can also be viewed as a k-clustering problem. In a k-

clustering problem, the goal is to partition a given metric space into k partitions, in such a way

that a certain objective function over the metric is minimized. Different objective functions have

been considered arising from various applications. Clustering problems are a mainstay of computer

science. The problem has been considered in various forms in different fields. In the following, we

review how the problem has been dealt with from the viewpoint of approximation algorithms. A

few of the objective functions that have received much attention in approximation algorithms are as
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follows.

• k-median. In the k-median problem, the goal is to produce a k-clustering of the vertices and

designate a vertex as the center in each cluster, to minimize the total sum of distances of a

vertex to its center. Note that this is very similar to the k-star cover problem considered in

this chapter, with the exception that the objective function is a sum over all the clusters, as

opposed to the maximum of each cluster. Various approximation algorithms for k-median

have been developed, exhibiting a wide range of techniques in the field from rounding [9] to

primal-dual technique [29] and local search [5, 23], just to name the hallmarks. These efforts

culminated in a recent (1 +
√

3 + ε)-approximation due to [34]. Regarding the importance

of the k-median problem, it has also been studied in more restricted metrics. In the fixed-

dimensional Euclidean metric, the problem remains NP-hard, and a PTAS is known due to [4].

For doubling metrics, a QPTAS has been given by [38]. Interestingly, the problem is solvable

in polynomial time on tree metrics as shown by a dynamic programming given by [39].

• k-means. In the k-means problem, the goal is to produce a k-clustering of the vertices and

designate a vertex as the center in each cluster, in order to minimize the total sum of squares

of distances of each vertex to its center. Note that this is very similar to the k-median problem

discussed above, with the exception that the squares of distances are considered. This minor

difference makes some of the techniques developed for the k-median problem not applicable.

k-means has been heavily used in practice for clustering data and various heuristics have been

developed for it. From a theoretical perspective, there is an O(1)-approximation by local

search due to [30].

• k-center. In the k-center problem, the goal is to produce a k-clustering of the vertices and

designate a vertex as a center to each cluster, so as to minimize the maximum distance of

each vertex to its center. Approximation algorithm with an tight approximation ratio of 2 is

known [26]. k-center has also been considered in restricted metrics. In the two-dimensional

Euclidean metric, it is hard to approximate to a factor smaller than
√

3 [17]. It remains an open

problem to give an approximation algorithm with a ratio better than 2 for the two-dimensional

Euclidean metric.

• Min sum radii. In this problem, the goal is to produce a k-clustering of the input vertices , so

as to minimize the sum of the radii of the clusters. A 3.504-approximation was given by [8]

for general metrics.

• Min Sum k-Clustering. In this problem, the goal is to produce a k-clustering of the input

vertices, in order to minimize the total sum of all the pairwise distances that fall in the same

cluster. There is a PTAS for the case when the number of clusters k is a constant, due to [14],
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and a O( 1
ε log1+ε n)-approximation algorithm for general metrics. This algorithm runs in

time nO( 1
ε ) and is due to [6].

3.3 Bi-criteria Approximations

In this section, we look at the bi-criteria approximation for the unrooted k-star cover problem. We

revisit the algorithm of Arkin et al. [3], generalize it, improve it and analyze it for general parame-

ters, and also consider its implications for some restricted metrics.

Theorem 9 [3] There is a (3+ε, 3+ε) bi-criteria approximation algorithm for the Min-max k-Star

cover problem.

We first review their algorithm, as it is the basis for the generalization we present later. The

algorithm works as follows. First, they guess an upper bound B on the optimum value of the star

cover problem. The approximation will follow by doing a binary search over the range of possible

values for the optimum. In the description of the algorithm below we assume that B is such an

upper bound in the interval [OPTk−SC, (1 + ε)OPTk−SC], where OPTk−SC is the optimal value

for the k-star cover problem. The algorithm takes the input I = (G, c : E → Q+, k) to the k-star

cover problem, together with the guessed valued B. Then, it runs the (3 + ε)-approximation of

[5] for the k-median problem given input I . This results in a k-star cover with the total cost of at

most (3 + ε) · k · B. For each star in the this cover, the algorithm starts from the arm of the star

with the largest cost, going in non-increasing order, up to the first leaf that would accumulate a cost

λ = 3B/2 in the arms of the star. This substar is then plucked away and a new star is formed, where

the leaf that had the shortest arm to the root, is the new root, covering the other leaves. The cost of

each star formed this way will be at most 2λ ≤ 3B ≤ (3 + ε)OPTk−SC. Also, the total number of

stars will be at most (3 + ε)kB/λ+ k ≤ (3 + ε)k, where the second term comes from the left-over

star at the end of each star given by the k-median algorithm. Hence, the (3 + ε, 3 + ε) bi-criteria

approximation. We parameterize the value of λ in the above algorithm and generalize their result as

follows.

Theorem 10 Let α be the approximation ratio of the k-median problem, and β > 0 be a parameter.

There is a (2β, 1+α/β) bi-criteria approximation algorithm for the Min-max k-star cover problem.

Proof: The proof is very similar to that given by [3] that was presented above. By means of a

binary search, we guess an upper boundB of the k-star cover problem, whereB ∈ [OPTk−SC, (1+

ε)OPTk−SC], for a given ε > 0. We know that OPTk−med ≤ k ·OPTk−SC ≤ k · B. Running the

α-approximation algorithm of k-median, we get k stars S1, . . . , Sk, such that
∑
i c(Si) ≤ α · k ·B.

For each star Si do the following: Let ri be its root and vi1, . . . , v
i
li

be its leaves in order of non-

increasing distance from the root ri. Find the smallest t, such that
∑t
j=1 c(ri, v

i
j) > β ·B. Separate

the leaves vi1, . . . , v
i
t from Si and make a new star Si1 that has vit as its root and vi1, . . . , v

i
t−1 as its
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leaves. Repeat the above procedure on the remaining star. Si1 will have cost at most 2β · B. The

number of the stars produced this way is at most

k∑
i=1

(bc(Si)/β ·Bc+ 1) ≤ k +

k∑
i=1

c(Si)/β ·B (3.1)

≤ k + α · k ·B/β ·B (3.2)

≤ k(1 + α/β) (3.3)

By taking β = α/ε, we get the following corollary.

Corollary 1 There is a (O( 1
ε ), 1 + ε) bi-criteria approximation for the min-max k-star cover prob-

lem:

Note that the (3 + ε, 3 + ε) bi-criteria approximation of [3] follows by an application of the

Theorem 10 with β = α/2 and α = 3+ε [5]. One immediate improvement is that the approximation

ratio of k-median has since been improved to α = 1 +
√

3 + ε[34]. Applying this, we get the

following corollary.

Corollary 2 We have the following bi-criteria approximations for the min-max k-star cover prob-

lem:

1. (α′ + ε, α′ + ε), where α′ = 1+
√

1+8α
2 =

1+
√

1+8(1+
√

3)

2 < 2.8905.

2. (α′′ + ε, 2), where α′′ = 2α = 2 + 2
√

3 < 5.4642.

Considering the approximation ratios of k-median on the line and the Euclidean plane, which

are 1 and 1 + ε, respectively, we get the following corollary.

Corollary 3 The min-max k-star cover problem on the

1. line metric has a (1 + ε, 2
ε ) bi-criteria approximation.

2. 2-dimensional Euclidean metric has a (1 + ε, 2√
ε
) bi-criteria approximation.

3.4 Line Metric

In this section, we study the Min-max k-star cover, when the cost function is a line metric. In contrast

to other clustering problems, such as k-center and k-median that are polynomial time solvable on

the line metric, the k-star cover problem remains NP-hard on the line metric.

In Section 3.4.1, we present a QPTAS for the k-star cover problem on the line metric, and in

Section 3.4.2 we give a PTAS for the special case when the stars are non-crossing. As the metric is

a line metric, we denote the metric by l rather than c in this section.
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3.4.1 QPTAS

In this section, we give a quasi-polynomial time approximation scheme for the min-max k-star cover

problem, when the input metric is a line metric. In addition to the metric (V, l) and k, the algorithm

is also given a precision parameter ε as part of the input, and it produces k clusters with respective

centers in them. The cost of the star in each cluster rooted at its center is guaranteed to be at most

(1 + ε) times the maximum cost of a star in the optimal clustering. The running of the algorithm

will be quasi-polynomial in n, i.e. O(nPolylog(n)) for any fixed ε.

Preprocessing

In the following, we assume that we have guessed the value of the optimal solution up to a factor

of 1 + ε′, for a fixed ε′ depending on ε. The algorithm will work with such a guessed value B and

produces a solution that is guaranteed to be at most (1 + ε′) ·B if B ≥ OPT. So in order to obtain

a good approximation ratio, we require that B ≤ (1 + ε′) ·OPT. Since the range of possible values

of OPT is [0,
∑
i,j l(i, j)], we can do a binary search on B in this range and run the algorithm each

time, to find a value B ∈ [OPT, (1 + ε′) · B]. Such a binary search will take time log(
∑
i,j l(i, j)),

which is polynomial in the size of the input, for each fixed ε. The cost of the solution will then be at

most (1 + ε′)2 ·OPT ≤ (1 + ε) ·OPT, for ε′ < ε/3. To simplify the notation from now on we use

ε instead of ε′ and assume OPT ≤ B ≤ (1 + ε) ·OPT.

Scaling. Given as input a sequence of points on the line {ai}ni=1, we relocate the points as

follows. Starting from a1 and going from left to right, if the distance between two consecutive

points l(i, i + 1) is less than ε·B
n2 , we relocate the point vi+1 from ai+1 to ai, the location of its

nearest left neighbor. Now, we argue that if we solve the star cover problem on this modified input

and then revert the points back to their original locations, the cost will go up by only a factor of at

most 1 + ε. Consider one arm of a star in the solution to the modified version. The distance of such

an arm will be a pairwise distance of points, l(i, j) = |ai − aj |. When we locate all the points back

to their original locations, this distance can go up by |j − i| · ε·Bn2 ≤ ε·B
n . As each star has at most n

arms, the blow-up cost to each star will be at most ε · B. Thus, if we find a solution of cost at most

B on the modified instance, this would give us a solution of cost at most (1 + ε) ·B on the original

instance.

Hence, we can assume that a non-zero distance between any two consecutive points, l(i, i+1) =

|ai+1 − ai| is at least εBn2 .

Furthermore, we can assume, without loss of generality, that every consecutive distance l(i, i+1)

is at most B, as no arm of a star in the optimal solution can run across the corresponding points vi

and vi+1. If l(i, i+ 1) > B, we can consider two independent instances of the problem with inputs

({a1, . . . , ai}, k1) and ({ai+1, . . . , an}, k2) for all the n−1 possibilities where k1 ∈ {1, . . . , n−1}

and k2 = n− k1.

So, the maximum pairwise distance l(i, j) will be at most n · B. Now, scaling the minimum
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consecutive distance l(i, i + 1) to 1, the maximum pairwise distance l(i, j) will be at most n3/ε,

which is a polynomial in n and 1/ε. Note that as each star consists of at most n arms, each of length

at most the maximum distance, B is at most n4/ε. Thus, B is also polynomial in n and 1/ε.

Dynamic Programming

We present a Dynamic Programming (DP) that produces a (1 + ε)-approximate solution to an in-

stance of the star cover satisfying the above assumptions. The subproblems for this DP are of the

form (Vij = {vi, . . . , vj}, k′), where the goal is to cover the points in the set Vij of consecutive

points by k′ stars (0 ≤ k′ ≤ k), whose centers have to be chosen from the same set Vij , such that

each star has cost at most B. Then, we will use dynamic programming to stitch together the solu-

tions. We consider the sets Vij given by the following binary dissection. The dissection will also

give a tree structure on the sets that we will use in our dynamic programming.

Dissection. To solve an instance (Vij , k
′) of the problem, we consider two subsets Vim and

Vm+1,j by breaking Vij into two sets of consecutive points each, by breaking at a midpointm ∈ [i, j]

such that |Vim| and |Vm+1,j | differ by at most 1. Note that such a midpoint m always exists. This

process gives rise to a dissection tree of height O(log n) with the set V = V1n at the root, and n

singleton intervals Vii as leaves. The proposed DP will operate on this tree structure.

The difficulty of finding a partial solution for a set Vij stems from the fact that in the optimal

solution, we might have centers of clusters in Vij covering points outside the set, and at the same

time, have cluster centers not in Vij covering points inside the set. Thus, we need to include this

information on the interface of Vij in the definition of subproblems. The interface of Vij with both

right and left sides of the rest of the line will keep track of all the edges crossing the sides of the

interval Iij = [ai, aj ] in terms of surplus and deficiency vectors as defined below.

• Surpluses. The lengths of the parts of broken arms past the point aj (resp. ai) outside the

interval Iij of stars originating from within Iij and extending to the right (resp. left). Note

that we have points co-located at the same location on the line. So the right and left surplus

vectors S(r) and S(l) will be represented as vectors (s1, . . . , sσ), where st will be the number

of points located at a certain distance lt from the right or respectively, left end of the interval

Iij that will be covered by stars originating from within Iij

• Deficiencies. The lengths of the parts of broken arms entering Iij through the point aj (resp.

ai) of stars originating from outside Iij and on its right (resp. left) side. Similar to the surplus

vectors, the right and left deficiency vectors D(r) and D(l) will be represented as vectors

(d1, . . . , dσ), where dt will be the number of points inside Iij located at a certain distance lt

from one end of the interval Iij that are to be covered by a center outside Iij .

In the above definition of surplus and deficiency vectors, the numbers st and dt of points at a

certain length can be up to n, and the number of different lengths, σ, can be up to n3/ε, leading
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to large number of possible interfaces. To cut down on the interface of an interval Iij with the

rest of the line, we round up the surplus and deficiency lengths on each of the right and left sides

to the nearest power of (1 + ε′/ log n), for some ε′ depending on ε, at each level of dissection.

Thus, we only keep track of lengths lt = (1 + ε′/ log n)t, t ∈ {1, . . . , σ}. So there will be σ =

O(log n · logB/ε′) = O(log2 n/ε′) different lengths and as a result at most nO(log2 n/ε′) different

surplus and deficiency vectors. In this way, each arm of a star (in a star cover solution) will be

scaled up by a factor of at most (1 + ε′/ log n) at each level of DP computation (to account for the

rounding), and since the depth of recursion (dissection) is dlog ne, this will result in an extra factor

of (1 + ε′/ log n)dlogne ≤ (1 + ε) (for a suitable choice of ε′) over the entire length of each arm. In

other words, if a subproblem for an interval i, j and parameter k′ is feasible (with each star costing

at most B) without rounding the lengths of deficiency and surplus vectors then the subprbolem with

rounded (up to nearest power of (1+ε′/ log n)) lengths for deficiency and surplus vectors is feasible

if each star is allowed to have cost at most (1 + ε) ·B.

The Dynamic Programming Table. Each entry of the table represents a subproblem (i, j, k′, D(r), D(l), S(r), S(l)),

where:

1. (i, j) represents the set of points Vij = {vi, . . . , vj}.

2. k′ is the number of centers to be opened from among the points in Vij .

3. D(r) = (d
(r)
1 , . . . , d

(r)
σ ) and D(l) = (d

(l)
1 , . . . , d

(l)
σ ) are the deficiency vectors on the right and

left sides of the interval Iij = [ai, aj ], respectively.

4. S(r) = (s
(r)
1 , . . . , s

(r)
σ ) and S(l) = (s

(l)
1 , . . . , s

(l)
σ ) are the surplus vectors on the right and left

sides of Iij , respectively.

Each of D(r), D(l), S(r), and S(l) is a vector of size σ = O(log2 n/ε′), where d(p)
t or s(p)

t (for

p ∈ {l, r}) is the number of broken arm parts of length (1 + ε′/ log n)t (after rounding). Each entry

of the table records in boolean values the feasibility of having k′ stars rooted in the points in Vij ,

such that each star has cost at most (1 + ε) ·B. Each of the k′ stars would cover some points in Vij

and the points located at distances S(r) and S(l) from the endpoints ai and aj of the interval. The rest

of the points have to be covered with the broken arms of D(r) and D(l), thus connected to the two

sides ai and aj , respectively. The size of the DP table is O(n2 ·k ·nO(logn logB/ε′)) = nO(log2 n/ε′),

which is quasi-polynomial in n.

Now, we show how to decide the feasibility of each subproblem in the table.

Base Case. The base case is when there is only one point in the interval, say Vii. In this case,

each configuration has the form (i, i, k′, D(r), D(l), S(r), S(l)) and k′ ∈ {0, 1}. If k′ = 0 then

point i must be covered by centers outside this interval. In this case, the subproblem is feasible

if the surplus vector is zero and the deficiency vector is all zero except for an entry of 1 in the
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corresponding to length zero. If k′ = 1 then this point will be a center and can support surplus arms

whose sum is up to (1 + ε′/ log n)B. More specifically, the deficiency vectors should be all zero,

and
∑

1≤t≤σ(s
(r)
t + s

(l)
t ) · (1 + ε′/ log n)t ≤ (1 + ε′/ log n)B. If these conditions are met then the

entry of the table is set to “True”.

Recursive Step. We decide the feasibility of a subprolem P = (i, j, k′, D(r), D(l), S(r), S(l)) by

breaking at the midpoint m ∈ Vij , considering the two subsets Vim and Vm+1,j given by the dissec-

tion tree and enumerating over all the remaining values of subproblems P1 and P2 on the two respec-

tive subsets, and checking if at least one pair of subproblems P1 and P2 exist, that are feasible and

consistent with P . The two subproblems will be of the form P1 = (i,m, k′1, D
(r)
1 , D

(l)
1 , S

(r)
1 , S

(l)
1 )

and P2 = (m+ 1, j, k′2, D
(r)
2 , D

(l)
2 , S

(r)
2 , S

(l)
2 ).

Checking consistency entails checking that all the deficiency/surplus vectors from the subprob-

lems P1, P2, and P are consistent at all the breaking points, i.e. i,m, and j. In order to do this,

we need to decide how much of the surplus of either of P1 or P2 that crosses the midpoint m is to

make up for deficiencies in the other subproblem, and how much would go all the way outside the

interval Iij . This can be easily done as follows by looking at the surplus lengths and grouping the

lengths by comparing them to the length of the other interval. Hence, we can decompose S(r)
1 and

S
(l)
2 as follows. In the following, addition and subtraction of vectors are element-wise addition and

subtraction, respectively.

• S(l)
2 must be decomposed as S(l)

2 = S
′(l)
2 + S

′′(l)
2 , where S

′(l)
2 , S

′′(l)
2 ∈ Nσ are surplus vec-

tors: S
′′(l)
2 keeps track of the surplus lengths that land outside the interval Iij , to the left

of vi, and S
′(l)
2 keeps track of all the remaining lengths, i.e. the ones that land and serve

deficiencies in Iim. Formally, let S(l)
2 = (s

(l)
1 , . . . , s

(l)
σ ), then S

′(l)
2 = (s

′(l)
1 , . . . , s

′(l)
σ ) and

S
′′(l)
2 = (s

′′(l)
1 , . . . , s

′′(l)
σ ) are constructed as follows. For all t ∈ {1, . . . , σ}, we have

s
′(l)
t = s

(l)
t , if lt ≤ l(i,m+ 1), and it’s 0 otherwise. Correspondingly, we have s′′(l)t = s

(l)
t , if

lt > l(i,m+ 1), and it’s 0 otherwise.

• S(r)
1 must be decomposed as S(r)

1 = S
′(r)
1 + S

′′(r)
1 , where S

′(r)
1 , S

′′(r)
1 ∈ Nσ are surplus

vectors. S
′′(r)
2 keeps track of the surplus lengths that land outside the interval Iij , to the right

of vj , and S
′(l)
1 keeps track of all the remaining lengths, i.e. the ones that land and serve

deficiencies in I(m+1)j .

Formally, let S(r)
1 = (s

(r)
1 , . . . , s

(r)
σ ), then S′(r)1 = (s

′(r)
1 , . . . , s

′(r)
σ ) and S

′′(r)
1 = (s

′′(r)
1 , . . . , s

′′(r)
σ )

are constructed as follows. For all t ∈ {1, . . . , σ}, we have s′(r)t = s
(r)
t , if lt ≤ l(m, j), and

it’s 0 otherwise. Correspondingly, we have s′′(r)t = s
(r)
t , if lt > l(m, j), and it’s 0 otherwise.

Correspondingly, we need to decompose the deficiency vectors ofP1 andP2 at the breaking point

m, i.e. D(r)
1 andD(l)

2 , depending on whether the deficiency is served by surpluses that originate from

the interval of the other subproblem or from outside Iij . Consider such a decomposition for D(r)
1 . A

length of D(r)
1 does not reveal by itself whether it will be served by a center in Im+1,j or by a center
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outside and to the right of Iij . This is in contrast to the surplus vectors, as shown above. However,

we can still enumerate over all such decompositions for D(r)
1 and D(l)

2 , and assume that one part

gets covered by the surplus inside Iij , and the other, by the surplus from outside Iij .

• D(r)
1 = D

′(r)
1 + D

′′(r)
1 , where D

′(r)
1 , D

′′(r)
1 ∈ Nσ are deficiency vectors. The deficiency

lengths in D
′′(r)
1 will get served by the surplus from outside Iij , i.e. a center located outside

the interval and to the right of j, and D
′(r)
1 will get served by a center in Im+1,j .

• D(l)
2 = D

′(l)
2 + D

′′(l)
2 , where D

′(l)
2 , D

′′(l)
2 ∈ Nσ are deficiency vectors. Similar to above,

D
′′(l)
2 keeps track of the deficiency lengths corresponding to vertices that get served by a center

outside Iij and to the left of i, and D
′(l)
2 keeps track of the deficiency lengths originating from

points in Im,j that are served by centers in Ii,m.

Note that the surplus and deficiency vectors, S(l)
1 , S

(r)
2 , D

(l)
1 , and D(r)

2 , by definition, deal with

deficiency and surplus that is outside the interval Iij . From the above decomposition, we see that

the surpluses S
′(r)
1 and S

′(l)
2 are used to cover deficiencies D

′(l)
2 and D

′(r)
1 in the same level of the

recursion. Thus, we need the surplus to be at least the deficiency as follows. Note that the ≥ binary

relation for vectors holds when all the ≥ relations hold component-wise for its elements.

S
′(r)
1 ≥ D

′(l)
2 (3.4)

S
′(l)
2 ≥ D

′(r)
1 (3.5)

On the other hand, surpluses S
′′(r)
1 and S

′′(l)
2 , and deficiencies D

′′(l)
2 and D

′′(r)
1 are passed up to

a higher level of the recursion, and thus integrated with other surplus/deficiency vectors, specifically

with S(r)
2 , S(l)

1 , D(l)
1 , and D(r)

2 , respectively. They will form, S(r), S(l), D(l), and D(r). Thus, each

of the surplus and deficiency vectors at the two ends of the interval Iij originate from two parts, as

mentioned above, e.g. D(r) being an aggregate of D(r)
2 and D

′′(r)
1 . In aggregating D(r)

2 and D
′′(r)
1 ,

we need to add a distance of l(m, j) to the lengths in the vectorD
′′(r)
1 . After this addition, we need to

round the lengths again up to a factor 1+ε′/ log n to make them in the appropriate format. Similarly,

the lengths represented by D
′′(l)
2 will have a distance of l(i,m+ 1) added to each one of them. Also

each length represented in the vectors S
′′(l)
2 and S

′′(r)
1 will have a distance of l(i,m+1) and l(m, j)

subtracted from them, respectively, and rounded up to form surplus vectors in the required format.

In order to formalize this idea of moving all the lengths of a surplus/deficiency vector and rounding

up the result, we define two rounding function, forward and backward, that will add and subtract a

certain distance from the lengths represented in vectors, respectively.

The forward and backward rounding functions rf , rb : Nσ ×Q→ Nσ take a surplus/deficiency

vector (n1, . . . , nσ), and a value l, which is to be added or subtracted; then add the distance l to all

the distances of type li (in the case of the forward function) represented in the surplus/deficiency vec-

tors, or subtract (in the case of the backward function), and then round up the values to get new sur-
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plus/deficiency vectors. For the forward rounding function rf , (n′1, . . . , n
′
σ) = rf ((n1, . . . , nσ), l)

is computed as follows. Starting from the all-zero vector (n′1, . . . , n
′
σ), iterate the following for all

t ∈ {1, . . . , σ}: round up lt + l to the nearest power of 1 + ε′/ log n. Let lt′ be the resulting length.

Add nt to n′t′ . At the end, rf will output the vector (n′1, . . . , n
′
σ). The backward rounding function

rb is defined similarly, where instead of rounding up li + l, we do this for li − l. Having developed

the above machinery, we can state formally how surplus/vectors at the ends of Iij are formed from

other surplus/deficiency vectors.

D(r) = D
(r)
2 + rf (D

′′(r)
1 , l(m, j)) (3.6a)

D(l) = D
(l)
1 + rf (D

′′(l)
2 , l(i,m+ 1)) (3.6b)

S(r) = S
(r)
2 + rb(S

′′(r)
1 , l(m, j)) (3.6c)

S(l) = S
(l)
1 + rb(S

′′(l)
2 , l(i,m+ 1)) (3.6d)

(3.6e)

Finally, the number of open centers in each sub-interval should match with the total number of

centers opened.

k′ = k′1 + k′2 (3.7)

Now, with the decomposition of surplus/deficiency vectors as above, the consistency of P with

P1 and P2 follows, if all the above conditions (3.4), (3.5), (3.6), (3.7) are satisfied.

Analysis

Suppose OPT ≤ B ≤ (1 + ε) ·OPT and let O be an optimum solution.

Lemma 11 For each interval Vij , ifO opens k′ centers in that interval then if D(r), D(l), S(r), S(l)

are surplus/deficiency vectors that approximately (rounded up to nearest factor of (1 + ε′/ log n))

show the number of arms going in/out of the interval to serve the points then the entry of the DP

corresponding to (i, j, k′, D(r), D(l), S(r), S(l)) will be True. Conversely, for each such entry, if the

computed value is True then there is way to open k′ centers in the interval Vij and assign each

point in Vij to one of the open centers or send them outside the interval to be served, and send the

surplus of each the k′ open center to serve points outside Vij such that the profile of the surplus and

deficiencies (again rounded up to nearest factor of (1 + ε′/ log n)) are exactly D(r), D(l), S(r), S(l)

and the cost of each star is at most (1 + ε′/ log n)` ·B where ` is the level of Vij in the dissection.

The proof of this lemma follows from a straight-forward induction. The main observation (as

pointed out earlier) is that at each level of recursion, the approximation loss we pay due to the

rounding in calculations is a factor of (1 + ε′/ log n), and since the depth of recursion (dissection)

is dlog ne, this will result in an extra factor of (1 + ε′/ log n)dlogne ≤ (1 + ε) for ε′ ≤ log(1 + ε).
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Consider a subproblem P , we can enumerate over all the possible subproblems P1 and P2 by

considering all the possible values to the parameters k′1, D
(r)
1 , D

(l)
1 , S

(r)
1 , S

(l)
1 , k′2, D

(r)
2 , D

(l)
2 , S

(r)
2 , S

(l)
2

which can be done in nO(log2 n/ε). For fixed values of the above, the consistency equations can be

checked in time Poly(σ) = Poly(log n). Finally, note that the size of the DP table is at most

nO(log4 n/ε), thus the total running time is quasi-polynomial.

3.4.2 PTAS for the line metric when Stars are non-crossing

In this section, we give a PTAS for the star cover problem on the line for the special case that the

stars are non-crossing. We call two stars S1 = (r1, C1) and S2 = (r2, C2) to be crossing, if there

exists leaves v1 ∈ C1 and v2 ∈ C2 such that the corresponding intervals to the edges (r1, v1) and

(r2, v2) on the line have overlap, i.e. have non-empty intersection and none of the vertices r1, r2, v1

or v2 are co-located on the line. In other words, two arms (r1, v1) and (r2, v2) are crossing if one of

the arms has exactly one endpoint falling in the interval spanned by the other arm. A set of stars S

is called non-crossing, if there doesn’t exist any two stars S1, S2 ∈ S that are crossing.

In this section, we give a dynamic programming algorithm for the k-star cover problem, when

the vertices are on a line and the stars are guaranteed to be non-crossing. First we perform the pre-

processing and scaling steps from section 3.4.1 and apply following DP on the modified instance.

Dynamic Programming. The DP algorithm for this problem consists of a few tables that we

define in turn.

Table T . The subproblems in T are defined as (r, i, j, b, B′, k′), where r, i, j, b ∈ {1, . . . , n} are

indices of vertices, i ≤ r ≤ j, i < b ≤ j, k′ ≤ k and B′ ≤ B. Each table entry of T is a boolean

value that is set to ”True”, if the vertices Vib can be covered either by (i) a star rooted at r. The arms

emanating from r that cover a subset of Vib incur a cost of at most B − B′ on this star. Or (ii) by

any of the k′ stars that have spans in Vib.

Base case for T . This corresponds to the case when all the vertices in Vib are covered by the star

rooted at r. The corresponding table entry is set to ”True”, if k′ = 0 and
∑
i≤t≤j l(r, vt) ≤ B−B′.

This means that all the vertices in Vib can be covered by a star of cost at most B that is rooted at r.

Recursive step for T . In order to define recursive steps for computing T , we introduce a new

table P , which is built using entries from T . Subproblems of P are of the form (i, j, k′), which

corresponds to the case that Vij can be covered by k′ stars. By definition of T , P (i, j, k′) =”True”,

if there exist r ∈ {i, . . . , j} and B′ ≥ 0 such that T (r, i, j, j, B′, k′ − 1) =”True”.

With the help of this new table, we get back to the recursive step for filling T . In the case where

T (r, i, j, b, B′, k′) corresponds to a feasible solution, b is the index of the last vertex covered. Each

vertex in Vib is covered. We look at the leftmost stretch of vertices, starting from b and to its left,

that are all covered either by (i) the star rooted at r, or (ii) by one of stars that has a smaller span that
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the one rooted at r. We give separate recursive formulas for each case. T (r, i, j, b, B′, k′) is set to

”True” when either one of the following cases holds:

(i) There exist b′, k′′ such that P (b′ + 1, b, k′′) =”True”, and T (r, i, j, b′, B′, k′ − k′′) =”True”.

(ii) There exists b′ such that T (r, i, j, b′, B′ +
∑
b′<t≤b l(r, vt), k

′) =”True”.

Lemma 12 T (r, i, j, b, B′, k′) is set to ”True”, if the vertices Vib can be covered either by (i) a star

rooted at r, of cost at most B −B′, or (ii) by one of the k′ stars that have spans in Vib.

Proof: The proof follows by an induction following the base case and recursive step of the DP used

to fill in the entries of T above.

Base case. If k′ = 0, by the base case of the DP, the corresponding entry of T is set to ”True”,

if all the vertices in Vib are covered by the star rooted at r and its cost is at most B −B′.

Inductive step. If k′ ≥ 1, there is at least another star covering vertices in Vib. Look at b, if

b is covered by the star rooted at r. Let b′ be the last vertex in Vib that is not covered by r. Thus

T (r, i, j, b′, B′ + X, k′)=”True”, where X =
∑
b′<t≤b l(r, vt) is the cost of covering Vb′+1,b by

r. This corresponds to case (ii) in the recursive step of the DP. If b is not covered by r, it must be

covered by a smaller star S′. Let [vb′+1, vb] be the span of S′ and k′′ be the number of stars covering

the vertices Vb′+1,b. Then, P (b′ + 1, b, k′′) =”True”, and T (r, i, j, b′, B′, k′ − k′′) =”True”.

Note that entries of T and P can be computed in non-decreasing order of j− i and subsequently

of k′. Having computed P , we need yet another DP to compute the solution to the k-star cover

problem. We construct the table D where the subproblems are of the form D(i, k′), 0 ≤ i ≤ n, and

k′ ≤ k. The entry D(i, k′) =”True” means that V1i can be covered by k′ stars. The base case is

the entry with i = k′ = 0, and is set to ”True”. Otherwise, D(i, k′) is set to ”True” when there

exists b ≤ i and k1, k2 such that D(b, k1) =”True”, P (b+ 1, i, k2) =”True” and k1 + k2 ≤ k′. The

correctness of computing D follows by an inductive argument similar to the one for T shown above.

3.5 Euclidean Metric

The approximation schemes for the line metric, presented in section 3.4 provide strong evidence

that the k-star cover problem on the line admits a PTAS. Thus, the natural question that arises is

exploring the possibility of a PTAS for slightly more general metrics. In the following, we rule out

such a possibility for the Euclidean metric.

3.5.1 APX-hardness

In this section, we show that the Min-max k-star cover problem on the Euclidean plane is APX-

hard. The reduction is similar to the APX-hardness proof of k-center, given by [17]. We give a

gap-introducing reduction from the dominating set problem on planar graphs with maximum degree

3. The latter problem is known to be NP-hard [20]. A planar graph of degree at most 3 can be
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Figure 3.1: A degree-3 vertex v and its three neighbors w, x, y are shown. Each edge is replaced
with a path of length 4.

v w

x

y

embedded into the plane, where each edge e is replaced with a path p(e) of edges of length 1, such

that the length of the path |p(e)| is 3i + 1, for some i. Each degree 3 vertex will have its three

edges at 120 degree angles from each other. Let H be this new graph. The Embedding of one

degree-3 vertex and its three neighbors has been shown in Figure 3.1. Note that each of the edges

{v, w, }, {v, x}, {v, y} is replaced by a path of length 4.

Lemma 13 Given an undirected planar graph G with maximum degree 3, and an integer d ∈ Z+.

G has a dominating set of size at most d, if and only if H has a k-star cover of cost at most 3, for

k = d+
∑
e
|p(e)|−1

3 .

Proof: If G has a dominating set D of cardinality d, we build a k-star cover of H as follows.

Choose each vertex v ∈ D as a root and form a star of cost at most 3 covering all its neighboring

vertices, e.g. vertex v covering its three neighbors and vertex y covering its one neighbor in Figure

3.2. Now, consider the remaining vertices on each path p(e). Every three consecutive vertices on

this path can be covered by a star of cost 2. As |p(e)| = 3i + 1, for some i, each such path needs

(|p(e)| − 1)/3 stars of cost at most 3 to have all the vertices on the p(e) covered, irrespective of

whether or not the endpoints are in D. The three different cases have been depicted in Figure 3.2.

(i) Both endpoints v, y ∈ D. The middle vertex of p({(v, y)}) is not covered by stars rooted at

either of v or y and is thus covered by a singleton star of cost 0. (ii) Each of the edges {v, x} and

{v, w} have exactly one endpoint v ∈ D and the other endpoint x,w /∈ D. Thus, there is one star

of cost 2 covering two of the vertices on each of the paths p({v, x}) and p({v, w}). This star also

covers the endpoint not in the dominating set, i.e. x and w respectively. And (iii) Neither of the

endpoints of the edge {w, z} are in D. Thus, all the vertices on the corresponding path p({w, z})
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Figure 3.2: A star cover of cost at most 3 in H . The dominating set of G includes v and y, but not
w, x, or z. The dotted lines show the arms of the star cover. The middle node on the path p({v, w})
is a singleton stars.

v w

x

y

z

can be covered by stars of cost 3. Note that in all the three cases above, we need exactly one star to

cover the vertices on the paths p(e).

Conversely, assume that vertices of H can be covered by k stars of cost at most 3. We show that

G has a dominating set of size k −
∑
e(|p(e)| − 1)/3. Note that each star of cost at most 3 in H

has one of the following structures: (a) a single edge, or a single vertex, (b) a vertex covering its

two neighbors, or (c) a vertex covering its three neighbors. Consider the internal vertices of p(e),

i.e. all the vertices of p(e), minus the two endpoints. There are at least (|p(e)| − 1)/3 stars of type

(b) or (a) needed to cover these vertices. This bound is true even if two stars of type (c) cover one

point each from the two internal vertices of distance 1 from the two vertices at the endpoint of path

p(e). Delete all the stars rooted at the internal vertices of all the paths; these will be stars of type (b)

or (a). Let S be the set of roots of remaining stars (which we can assume are all of type (c)). Since

there are at least
∑
e(|p(e)| − 1)/3 stars removed, |S| ≤ k−

∑
e(|p(e)| − 1)/3. It remains to show

that S forms a dominating set in G.

Consider an edge e = {u, v} in G and the corresponding path p(e) in H . If neither of u or v

have stars rooted at them (in S), then we show that u, v are adjacent to vertices that have stars rooted

at them in S. Suppose neighbor u nor v have stars rooted at them, then they are covered by stars of

type (b) or (a) in H . Let e′ = {u, u′} and e′′ = {v, v′} be two other edges incident to u and v (in

G), respectively. Covering p(e′) and p(e′′) by (|p(e′)| − 1)/3 and (|p(e′′)| − 1)/3 stars of type (b),

respectively, each will have two vertices at the end left over that need to be covered by a star of type

(c), i.e. u′, v′ ∈ S; thus S is a dominating set.
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For a YES instance (G, d) of dominating set, H has a k-star cover of cost 3, as shown above.

In the NO case, the cardinality of the dominating set of G is at least d + 1, and thus H needs at

least k + 1 stars of cost at most 3 to cover all its vertices. To cover H with k stars, we either need

to include a star rooted at an internal vertex covering three other vertices, instead of two, or a star

rooted at an endpoint of p(e) covering four other vertices, instead of three. In either case, the cost

of the star will be at least 4. Hence, we get the following theorem.

Theorem 14 It is NP-hard to α-approximate the min-max k-star cover problem on the Euclidean

plane, for any α < 4/3.
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Chapter 4

Conclusion

In this thesis, we studied a few covering problems arising from the area of vehicle routing from the

standpoint of approximation algorithms. We will review the results in the following and distinguish

some branches for future work.

4.1 Summary

The problems studied in this thesis concerned with covering graphs with two specific subgraphs,

specifically tours and stars. We considered both rooted and unrooted versions of tour cover and star

cover problems. The results we presented in the thesis are summarized in the following.

• We presented a (7+ε)-approximation algorithm for the rooted min-max k-tour cover problem

in Section 2.3.

• We gave a (16/3 + ε)-approximation algorithm for the unrooted min-max k-tour cover prob-

lem in Section 2.4.

• We generalized the bi-criteria approximation of [3] and showed that it gives an (O( 1
ε ), 1 + ε)

bi-criteria approximation for the unrooted min-max k-star cover problem in Section 3.3.

• We presented a QPTAS for the unrooted min-max k-star cover problem on the line metric in

Section 3.4.1.

• We designed a PTAS for the unrooted min-max k-star cover problem on the line metric, when

the stars are non-crossing, in Section 3.4.2.

• We ruled out the possibility of a PTAS for the unrooted min-max k-star cover problem in the

Euclidean metric by presenting an APX-hardness reduction in Section 3.5.

4.2 Future Directions

The whole area of vehicle routing problems is vast and fertile ground for approximation algorithms

with relatively little work done to this date. In the following however, we will focus on covering
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problems and specifically those discussed in this thesis.

For the tour cover problems, the main open problem is to improve on the approximation ratios

presented in Chapter 2, and also to improve the lower bounds on their approximability ratios. An-

other direction for future research is the consideration of more real-world constraints mentioned in

Chapter 1, such as capacities on each tour, and time-windows on the coverage time of each vertex.

For the star cover problems, it is an interesting question to close the gap on the approximabil-

ity of rooted k-star cover problem, which sits somewhere in (3/2, 2]. The unrooted k-tour cover

problem in turn presents a few open problems. The most important one is to give any non-trivial

approximation for the problem on a general metric.

In more restricted metrics, it would be interesting to give a PTAS on the line metric. We hope

that the techniques developed in Section 3.4 will lead the way to such approximation schemes. An

O(1)-approximation for the Euclidean metric has not been ruled out, and we conjecture that an

algorithm satisfying such a ratio is possible.
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