
Adaptive Representation for Policy Gradient

by

Ujjwal Das Gupta

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Statistical Machine Learning

Department of Computing Science

University of Alberta

c©Ujjwal Das Gupta, 2015



Abstract

Much of the focus on finding good representations in reinforcement learning has

been on learning complex non-linear predictors of value. Methods like policy gra-

dient, that do not learn a value function and instead directly represent policy, often

need fewer parameters to learn good policies. However, they typically employ a

fixed parametric representation that may not be sufficient for complex domains.

This thesis introduces two algorithms which can learn an adaptive representation

of policy: the Policy Tree algorithm, which learns a decision tree over different

instantiations of a base policy, and the Policy Conjunction algorithm, which adds

conjunctive features to any base policy that uses a linear feature representation.

In both of these algorithms, policy gradient is used to grow the representation in

a way that enables the maximum local increase in the expected return of the pol-

icy. Experiments show that these algorithms can choose genuinely helpful splits or

features, and significantly improve upon the commonly used linear Gibbs softmax

policy, which is chosen as the base policy.
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Chapter 1

Introduction

It is pointless to do with more
what can be done with fewer.

WILLIAM OF OCKHAM

An intelligent agent is defined to be an entity which can perceive its environ-

ment through sensors and act upon it using actuators, with the aim of achieving a

certain goal. Reinforcement learning is concerned with creating such agents, where

the goal is to maximize some notion of cumulative reward obtained. These agents

learn about the environment by interacting with it, and construct a mapping from

states to actions, which is known as the policy. Several problems, such as learning

to perform aerobatic manoeuvres with a helicopter (Ng et al., 2006), or learning to

play games (Bellemare et al., 2013), can be cast as reinforcement learning problems.

Reinforcement learning algorithms are typically of two types. The first are

value function based methods, which aim to learn an accurate function mapping

from states to values, from which a policy can be obtained. The value function

represents an estimate of the cumulative reward that can be obtained by taking an

action in a state, which indicates the benefit of choosing the action. The second

are policy search methods, which directly learn a function from states to policies.

In both of these techniques, the search for state representation is an important and

challenging problem. The representation should allow generalization of learned

values or policies to unseen states, and at the same time, needs to be powerful

enough to represent sufficiently complex functions.

In value based algorithms, a typical way to achieve generalization is to approx-

imate the value function using a linear function over the features associated with

the state. However, these methods are not guaranteed to work well when function

approximation is used (Boyan and Moore, 1995), and so learning an accurate repre-
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Figure 1.1: A simple world, and a corresponding policy tree

sentation of state is important. Also, value based methods produce a deterministic

policy, which is not guaranteed to be optimal when the state does not encapsulate

all relevant information about the environment (Singh et al., 1994). A way to get

an adaptive representation of state which can deal with these problems is to learn

a decision tree over the history of observations. The U-Tree algorithm (McCallum,

1996) is an example of this. It starts with a single node to represent state, and re-

cursively performs statistical tests to check if there exists a split for which the child

nodes have significantly different value. The resulting tree represents a piecewise

constant estimation of value. Some enhancements to U-Tree include alternative

heuristics for growing the decision tree (Au and Maire, 2004), and extensions to

continuous (Uther and Veloso, 1998) and relational (Dabney and McGovern, 2007)

domains.

Such an algorithm would grow the tree whenever doing so improves the value

estimate. It is possible for an entire branch of the tree to contain multiple splits

over fine distinctions of value, even if the optimum action from each of the nodes

in the branch is the same. For example, Figure 1.1 shows a simple grid world with a

single terminal state, indicated by a circle, transitioning to which gives a reward of

1. The agent is equipped with four sensors to detect whether there is a wall in each

direction. Assuming a discount factor of 0.5, the values of the states are shown

in each grid cell. To represent an accurate value function, a decision tree would

need to split on current as well as past observations, and eventually distinguish

between all the states. In complex domains, one would end up learning a very

large tree. In contrast, if one were to represent the policy itself as a function over

the observations, a simple and optimal policy can be obtained in the form of the

decision tree on the right.

Policy gradient algorithms are an alternate approach to reinforcement learning,

which directly learn a function from states to actions. The function is optimized by
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the principle of stochastic gradient ascent. Unlike value-based methods, they can

represent stochastic policies. They are guaranteed to converge to a locally optimal

function even when complete information about the state is unavailable. They can

also directly be applied to domains where the actions available to the agent lie

in a continuous space (like motor control in robotics). As the previous example

demonstrates, the policy function is often simpler and requires fewer parameters

than the value function. However, state of the art policy gradient algorithms use

a fixed parametrization, with less work on how the policy representation could be

learned or improved.

The primary contribution of this thesis is to present two simple algorithms

which can learn an adaptive representation of policy using policy gradient. The

first is the Policy Tree algorithm, described in detail in Chapter 4. It aims to di-

rectly learn a function representing the policy, avoiding representation of value.

This function takes the form of a decision tree, where the decision nodes test sin-

gle feature variables, and the leaves of the tree contain a parametrized representa-

tion of a base policy. When the base policy can be represented in terms of linear

functions of features, the Policy Tree algorithm is shown to be equivalent to replac-

ing the original features with conjunctions of features. This leads to a variation

called the Policy Conjunction algorithm, described in Chapter 6, which directly

introduces such conjunctions without replacing the original features. In both of

these algorithms, the representation is grown only when doing so improves the ex-

pected cumulative reward earned by following the policy, and not to increase the

prediction accuracy of a value function. These algorithms are validated on a set of

domains inspired by arcade games.
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Chapter 2

The Reinforcement Learning
Problem

As described in the previous chapter, reinforcement learning is concerned with cre-

ating agents that can interact with an unknown environment, and learn to behave

in a way such as to maximise the cumulative reward attained. In this chapter, this

view of reinforcement learning is formalized. The notation and definitions largely

follow that of Sutton and Barto (1998).

2.1 The Environment

The environment is formulated as a Markov Decision Process (MDP) (Puterman,

2009) with the following components:

• a set of states S .

• a set of actions A.

• an environmental dynamics function P : S ×A → DIST(S × R).

where DIST(X ) is the set of all probability distributions over the set X .

At each time step t ∈ {0, 1, 2, ...}, the agent is in a state St ∈ S and selects

an action At ∈ A. It receives a real valued reward Rt+1 ∈ R and transitions

to the next state St+1, both of which are drawn from the probability distribution

P (St+1, Rt+1|St, At). If the agent reaches a special state called the terminal state,

the agent-environment interaction terminates, and no further rewards or states are

observed.

It is assumed that each state St can be factored into a D-dimensional binary fea-

ture vector φ(St) ∈ {0, 1}D. The purpose of factoring is to allow generalization
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in the learning agent. Two different feature vectors, which share many common

elements, may correspond to similar states. There exist methods, such as Coarse

Coding, Tile Coding or Kanerva Coding (Sutton and Barto, 1998), which can con-

vert a set of real valued parameters (like position or velocity) associated with the

state into such a binary feature vector.

2.2 The Agent

The agent implements a function mapping states to the probability of choosing

actions. This is known as the policy function πθ : S → DIST(A). The agent chooses

an action a at each time step by drawing from the probability distribution πθ(·|St),

where θ represents an internal parametrization of its policy.

2.3 The Goal

The set of all the actions, states and rewards observed over one episode of learning

of length T is called a trajectory, denoted by τ = {St, At, Rt+1 ∀t ∈ {0, ..., T −
1}}. The cumulative reward obtained over an episode is called the return, denoted

by R(τ). A general formulation for the return is a weighted sum of all rewards

obtained during an episode:

R(τ) =
T−1
∑

t=0

wtRt+1. (2.1)

There are two kinds of tasks usually encountered in reinforcement learning:

1. Episodic Tasks: In these problems, the terminal state is always encountered,

and so the episode length T is always finite. The learning agent interacts

with the environment over multiple episodes of learning. The return is well

defined for wt = 1, often called the total reward formulation.

2. Continuing Tasks: In these problems, it is possible that T → ∞, and the

agent interacts with the environment in one single episode of learning. Hence,

modifying the policy during the episode is essential for learning in such tasks.

The return is unbounded for wt = 1, and a usual choice is to choose wt = γt,

where γ ∈ [0, 1) is called the discount factor.
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The goal of a reinforcement learning agent is to find a policy which maximises

the expected return, which is denoted as ρ(θ):

ρ(θ) = E[R(τ)]

=

∫

τ

R(τ) Pr(τ).
(2.2)

Note that the probability distribution over τ depends on both the environmental

dynamics function P , and the agents policy πθ. As the only thing which can be con-

trolled by the agent is its internal parameter θ, the expected return can be viewed

as a function of these parameters, from the perspective of the agent. In the next

chapter, a particular class of reinforcement learning algorithms is introduced, in

which gradient optimization is used to find a value of θ which is locally optimal

with respect to the expected return.

6



Chapter 3

Policy Gradient

Policy gradient algorithms work by applying gradient ascent to find a policy which

maximizes the expected return. Note that computing the gradient ∇θρ(θ) would

involve an expectation over observed rewards, with the underlying probability dis-

tribution being a function of both the policy and the model of the environment.

The model is unknown to the agent, but a sample estimate of the gradient can be

obtained by observing trajectories of observations and rewards, while acting on-

policy. This is the principle which underlies all policy gradient algorithms. In this

chapter, two such algorithms REINFORCE (Williams, 1992) and GPOMDP (Bax-

ter and Bartlett, 2000), shall be derived. There are many other policy gradient

algorithms based on the Policy Gradient Theorem (Sutton et al., 2000), like Nat-

ural Actor-Critic (Peters and Schaal, 2008a) which learn both a policy and a value

function. This thesis shall not describe them in detail, although the algorithms pre-

sented in the future chapters are readily applicable to them. Finally in this chapter,

specific parametrizations of policy that can be applied to factored state representa-

tions are presented.

3.1 The REINFORCE Algorithm

The REINFORCE algorithm (Williams, 1992) is a way to obtain a Monte Carlo es-

timate of the gradient ∇θρ(θ). Given the environmental dynamics function P and

the policy πθ, one can calculate the probability of obtaining a trajectory τ :

Pr(τ) = Pr(S0)
T−1
∏

t=0

(πθ(At|St)P (St+1, Rt+1|St, At)) , (3.1)
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where Pr(S0) is the probability of obtaining S0 as the starting state. Now, taking

the logarithm:

log Pr(τ) = log Pr(S0) +

T−1
∑

t=0

log πθ(At|St) +

T−1
∑

t=0

logP (St+1, Rt+1|St, At). (3.2)

By taking the gradient with respect to θ, the terms of this expression which are

dependent on the environment dynamics disappear, as they do not depend on θ:

∇θ log Pr(τ) =
T−1
∑

t=0

∇θπθ(At|St)

πθ(At|St)

∇θ Pr(τ)
Pr(τ)

=

T−1
∑

t=0

∇θπθ(At|St)

πθ(At|St)

∇θ Pr(τ) = Pr(τ)

T−1
∑

t=0

∇θπθ(At|St)

πθ(At|St)
.

(3.3)

If one takes the gradient of the expected return in Equation 2.2, and combines it

with Equation 3.3, one can get:

∇θρ(θ) =
∫

τ

R(τ)∇θ Pr(τ)

=

∫

τ

R(τ) Pr(τ)
T−1
∑

t=0

∇θπθ(At|St)

πθ(At|St)

=

∫

τ

Pr(τ)F (τ)

= E[F (τ)],

(3.4)

where F (τ) =
∑T−1

t=0
∇θπθ(At|St)
πθ(At|St)

R(τ). Computing the expected value of F (τ) re-

quires knowledge of the environmental model P , which is unknown to the agent.

However, a Monte Carlo estimate of this expectation can be obtained.

If the trajectories were generated by following the policy πθ, they represent

samples of the distribution Pr(τ), and the sample average of F (τ) represents an

unbiased estimate of the gradient. This will converge towards E[F (τ)] as the num-

ber of sampled trajectories increases. And so:

∇θρ(θ) ≈ ∇̃θρ(θ) = 〈F (τ)〉 , (3.5)

where 〈X〉 denotes the sample mean of random variable X . F (τ) is a random vari-

able which can be computed from the observed trajectories and the policy param-

eters θ, and so its sample average can be computed by the agent. The procedure

8



Algorithm 1 The REINFORCE algorithm

∇̃θρ(θ)← 0 . The gradient estimate
Z ← 0 . An eligibility trace vector of the same size as θ
R← 0 . The return
while St is not the terminal state do . St denotes the current state

Choose action At according to πθ(·|St)
Observe reward Rt

Z ← Z +∇θπθ(At|St)/πθ(At|St)
R← R+Rt

end while

∇̃θρ(θ)← RZ

to calculate ∇̃θρ(θ) from the trajectory of a single episode, when R(τ) is defined as

the total reward, is shown in Algorithm 1. The parameters can be updated by the

gradient ascent rule:

θ ← θ + α∇̃θρ(θ), (3.6)

where α is a chosen step size. In practise, as long as the step size is sufficiently

small, it is possible to use the noisy estimate from a single trajectory for each gra-

dient step.

3.2 The Policy Gradient/GPOMDP Algorithm

The REINFORCE algorithm can obtain an unbiased estimate of the gradient, how-

ever this estimate usually has high variance. There exists a method to reduce this

variance when the return is a sum of scalar rewards, as pointed out by Williams

(1992). This technique was further described as the GPOMDP algorithm by Baxter

and Bartlett (2000), who showed that the method is valid even when the environ-

ment is partially observable. The exact same estimate of the gradient can also be

obtained from the Policy Gradient Theorem (Sutton et al., 2000). In some literature

(Peters and Schaal, 2008b), this method is known as the Policy Gradient/GPOMDP

algorithm, and that is the convention adopted here. In this section, this method is

derived from REINFORCE by removing some of the terms in F (τ), which have an

expected value of zero, but add to the variance of the estimator.

When R(τ) is defined as some weighted sum of the individual rewards, as in

9



Equation 2.1, one can write E[F (τ)] in Equation 3.4 as follows:

∇θρ(θ) = E[F (τ)]

= E

[(

T−1
∑

t=0

∇θπθ(At|St)

πθ(At|St)

)(

T−1
∑

t=0

wtRt+1

)]

=

T−1
∑

i=0

T−1
∑

j=0

E

[∇θπθ(Ai|Si)

πθ(Ai|Si)
wjRj+1

]

=
T−1
∑

i=0

T−1
∑

j=0

E

[
∫

Ai∈A

∇θπθ(Ai|Si)

πθ(Ai|Si)
wjRj+1πθ(Ai|Si)dAi

]

=

T−1
∑

i=0

T−1
∑

j=0

E

[
∫

Ai∈A
∇θπθ(Ai|Si)wjRj+1dAi

]

.

(3.7)

Intuitively, one would expect that past rewards do not depend on future actions.

That is, for any j < i, Rj+1 can be shown to be independent of Ai (Baxter and

Bartlett, 2000). For any such i and j:

E

[
∫

Ai∈A
∇θπθ(Ai|Si)wjRj+1dAi

]

= wjE [Rj+1]E

[
∫

Ai∈A
∇θπθ(Ai|Si)dAi

]

.

(3.8)

As πθ is a probability distribution:

∫

ai∈A
πθ(Ai|Si)dAi = 1, (3.9)

therefore,
∫

ai∈A
∇θπθ(Ai|Si)dAi = 0. (3.10)

This shows that Equation 3.8 evaluates to 0. From Equations 3.7, 3.8 and 3.10 the

calculation of∇θρ(θ) can be simplified as follows:

∇θρ(θ) = E





T−1
∑

i=0

T−1
∑

j=i

∇θπθ(Ai|Si)

πθ(Ai|Si)
wjRj+1



 . (3.11)

The Monte Carlo estimate of this integral can be calculated by the agent, and

used to perform gradient ascent:

∇̃θρ(θ) =
〈

T−1
∑

i=0

T−1
∑

j=i

∇θπθ(Ai|Si)

πθ(Ai|Si)
wjRj+1

〉

. (3.12)

The procedure to calculate this estimate from the trajectory of a single episode un-

der the total reward formulation is presented in Algorithm 2. This method can also

be used for continuing tasks (Baxter and Bartlett, 2001).
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Algorithm 2 The Policy Gradient/GPOMDP algorithm

∇̃θρ(θ)← 0 . The gradient estimate
Z ← 0 . An eligibility trace vector with the same size as θ
while St is not the terminal state do . St denotes the current state

Choose action At according to πθ(·|St)
Observe reward Rt

Z ← Z +∇θπθ(At|St)/πθ(At|St)

∇̃θρ(θ)← ∇̃θρ(θ) +RtZ

end while

3.3 Using Baselines to Reduce Variance

If one were to subtract a constant baseline bt+1 from each reward Rt+1 in the trajec-

tory, E[F (τ)] in Equation 3.7 becomes:

∇θρ(θ) =
T−1
∑

i=0

T−1
∑

j=0

E

[
∫

Ai∈A
∇θπθ(Ai|Si)wj(Rj+1 − bj+1)dAi

]

=
T−1
∑

i=0

T
∑

j=i

E

[
∫

Ai∈A
∇θπθ(Ai|Si)wjRj+1dAi −

∫

Ai∈A
∇θπθ(Ai|Si)wjbj+1dAi

]

=
T−1
∑

i=0

T−1
∑

j=0

E

[
∫

Ai∈A
∇θπθ(Ai|Si)wjRj+1dAi

]

.

(3.13)

Therefore, the addition of a constant baseline does not introduce bias in the gradi-

ent estimator, although it can affect the variance. Greensmith et al. (2004) suggest

an optimal baseline corresponding to minimum variance, in which bt is a weighted

average of rewards obtained at time step t.

3.4 Policy Parametrizations for Factored State

All of the algorithms described in this chapter can be applied to any policy πθ that

is differentiable with respect to all of its parameters. In other words, ∇θπθ(·|St)

should exist. Here, some common ways to define such a policy function are dis-

cussed.

3.4.1 Linear Gibbs Softmax Policy

As discussed in Section 2.1, the assumption here is that each state s is associated

with a D-dimensional binary feature vector φ. This parametrization also assumes
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that the set of actions is finite, and associates |A|D-dimensional real valued param-

eter vectors θa corresponding to each action a ∈ A. The linear Gibbs softmax policy

associates with each action a linear function of the feature vector, the magnitude of

which represents the desirability of choosing that action. A softmax function is

applied over the magnitudes for each action to generate a probability distribution:

πθ(a|St) =
H(St, a)

∑

i∈AH(St, i)
,

where,

H(St, a) = exp(θa
Tφ(St)),

(3.14)

3.4.2 Normally Distributed Policy

When A is a space of real numbers, a policy suggested by Williams (1992) consists

of a normal (or Gaussian) distribution, the mean and standard deviation of which

are dependent on the state:

πθ(a|St) = N (a|µ(St), σ(St)),

where,

µ(St) = θµ
Tφ(St),

σ(St) = exp(θσ
Tφ(St)),

N (a|µ, σ) = 1√
2πσ2

exp

(

−(a− µ)2

2σ2

)

.

(3.15)

3.4.3 Multi-Armed Bandit Policy

Another possible parametrization consists of a single scalar parameter θa per ac-

tion, over which a softmax function is applied. This corresponds to a multi-armed

bandit agent, which has a fixed probability of taking each action, independent of

the state:

πθ(a|St) =
exp(θa)

∑|A|
i=1 exp(θi)

. (3.16)

3.5 Non-Parametric Policy Gradients

One notable work on adaptive (or non-parametric) representation for policy gradi-

ent includes the NPPG algorithm (Kersting and Driessens, 2008). In each iteration

of the algorithm, a regression model is learned over a batch of data, with the func-

tional gradient as its target. The final policy is a weighted sum of these models.
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The regression model can be any complex function of the data, including decision

trees. A disadvantage of this method is that each gradient step adds a new model

to the policy, increasing the computational cost of action selection, and degrading

the generalization ability (Da et al., 2014). Additionally, the functional gradient, as

the derivative of the value, could be as complex as the value function itself. And so,

as with value-based representation learning, a more complex representation may

be learned than is necessary.

In the next chapter, an algorithm which can adapt its representation of policy,

yet does not attempt to model the value of the gradient, shall be described.

13



Chapter 4

The Policy Tree Algorithm

This chapter describes the Policy Tree algorithm, which consists of a base paramet-

ric representation of policy and a binary decision tree. The tree divides the state

space into distinct regions corresponding to its leaf nodes, in each of which a sepa-

rate instantiation of the base policy is learned.

A decision tree architecture is commonly used in supervised learning, where

the problem is to find an accurate function mapping the input space to a label. In

such problems, the decision tree maps each input to a leaf node, and the output

of the function is usually the sample average of the training examples mapped

to the same leaf node. There are many standard algorithms to construct a tree in

such a case, like C4.5 (Quinlan, 1993), in which the aim is to maximize the mutual

information of the label and the leaf node.

The Policy Tree does not deal with labelled examples, and the standard algo-

rithms used for classification and regression trees cannot be applied to learn the

decision tree structure. Instead, the criterion used to grow the tree is to find the

split which corresponds to the maximum increase in the expected return in a lo-

cal region of the parameter space. The policy gradient algorithms described in the

previous chapter are used to measure this criterion.

4.1 Notation

The internal nodes of the tree are decisions on an element of the feature vector. The

index of this element is called the decision index of the node. An internal node with

decision index i maps a state St to one of its two child nodes, based on the value of

φ(i)(St) (the ith element of the vector φ(St)). Every state St maps to one leaf node

l(St) in the tree, which is associated with a real valued parameter vector θl(St). The

14



base policy at the leaf is parametrized by this vector and is denoted by πθl(St)
(·|St).

This could be the policy functions in Equations 3.14, 3.15, 3.16 or any other valid

parametrization of policy.

4.2 Overview of the Policy Tree Algorithm

The high level procedure can be described as:

1. Start with a single-node decision tree, with its root node containing a ran-

domly initialized parametrization of the base policy.

2. Optimize all leaf node parameters using policy gradient for a fixed number

of episodes or time steps.

3. Keep the parameters fixed for a number of episodes or time steps, while the

merit of each split is judged. Choose a leaf node and an observation index to

split, according to our tree growth criterion. Create two new children of this

node, which inherit the same policy parameters as their parent. Go to step 2

and repeat.

The steps 2 and 3 of the algorithm are described in detail in the following sec-

tions.

4.3 Parameter Optimization

During this phase, the tree structure is kept fixed, while the parameters are opti-

mized using a policy gradient algorithm, such as Algorithm 1 or 2. The per-step

computational complexity during this phase depends on the actual algorithm and

parametrization used. For most policy gradient algorithm, this would be linear

in the number of parameters, which is O(NLNP ), where NL is the number of leaf

nodes and NP is the number of parameters in the base policy.

4.4 Tree Growth

In this phase, the structure of the tree is altered by splitting one of the leaf nodes,

changing the underlying representation. In order to choose a good candidate split,
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one would ideally like to know the global effect of a split after optimizing the re-

sulting tree. This would require making every candidate split and performing pa-

rameter optimization in each case, which is unrealistic and inefficient. However, if

one were to suggest a candidate split, and keep its parameters fixed, the gradient

of the expected return of this new policy function provides a first order approxi-

mation of the expected return. This approximation is valid within a small region of

the parameter space, and can be used to measure the local effect of the split. This is

the basis of our criterion to grow the tree. First, a method to calculate the gradients

corresponding to every possible split in the tree is described.

A valid addition to the policy tree involves a split on one of the leaf nodes, on

a parameter k ∈ {0, ..., D − 1}, such that k is not a decision index on the path from

the leaf node to the root. For every leaf node L in the tree, and for every valid index

k in {0, ..., D−1}, a pair of fringe child nodes are created, denoted by FL,k and F
′

L,k.

They represent the child nodes of L which would be active when φ(k) = 1 and

φ(k) = 0, respectively. Both of these nodes are associated with a parameter vector

which is the same as that of the parent leaf node, that is, for all L and k:

θFL,k
= θ

F
′

L,k

= θL. (4.1)

Let ψL,k denote the combined vector of all the parameters associated with the

tree, when it is expanded to include the pair of fringe nodes FL,k and F
′

L,k. This

vector is a concatenation of the vectors θFL,k
, θ
F

′

L,k

and θL′ for all leaf nodes L′ 6= L.

Note that each such vector corresponds to a different policy function, which is

denoted by πψL,k
. Let ρ(ψL,k) denote the corresponding expected return.

Equation 4.1 ensures that πψl(St),k
(·|St) = πθl(St)

(·|St), which means that all

these policies have the same distribution over actions as the one represented by the

existing policy tree, even though the underlying representation has changed. This

ensures that a correct sample estimate of the fringe gradient ∇ψL,k
ρ(ψL,k) can be

measured by following the policy represented by the tree. It is important to obtain

a good estimate of these gradients to avoid making spurious splits based on noise.

Therefore, during this phase, the policy is kept fixed while a suitably large number

of trajectories are observed, and∇ψL,k
ρ(ψL,k) is estimated for all L and k.

The leaf node L to split on, and the split index k, is chosen by the following

procedure:

L, k = argmax
L,k

||∇ψL,k
ρ(ψL,k)||q. (4.2)
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p = 2

p = ∞ p = 1

Figure 4.1: The p-norm spheres representing ||∆θ||p = ε

It is worth reflecting on the interpretation of the q-norm of the gradient vector,

in order to understand the above criterion. By using a first order Taylor expansion

of the expected return, one can measure the change corresponding to a tiny step

∆ψ:

ρ(ψL,k +∆ψ) = ρ(ψL,k) +∇ψL,k
ρ(ψL,k)

T
∆ψ. (4.3)

If ∆ψ is constrained to lie within a small p-norm sphere with radius ε, then:

max
{∆ψ : ||∆ψ||p≤ε}

∇ψL,k
ρ(ψL,k)

T
∆ψ = ||∇ψL,k

ρ(ψL,k)||qε,

where,
1

p
+

1

q
= 1.

(4.4)

This shows that the q-norm of the gradient represents the maximum change in the

objective function within a local region of the parameter space bounded by the

p-norm sphere, where p and q are the dual norms of each other (Kolmogorov and

Fomin, 1957). Figure 4.1 shows a graphical representation of various p-norm sphere

for two dimensions.

By the same reasoning, ||∇θρ(θ)||q represents the maximum local improvement

in the expected return that can be obtained without altering the representation of

the tree. A simple stopping condition for the tree expansion is ||∇ψL,k
ρ(ψL,k)||q <

λ||∇θρ(θ)||q, for some λ.

The fringe gradient ∇ψL,k
ρ(ψL,k) has (NL + 1)NP components, as it is de-

fined over all the parameters corresponding to an incremented tree. However,

(NL−1)NP of these components are partial derivatives with respect to the existing
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parameters in the tree, and are shared by all the fringe gradients. Thus NLD gradi-

ents involving 2NP unique parameters need to be measured, and the per-step com-

putational complexity during this phase when using REINFORCE or GPOMDP is

O(NPNLD). Note that the length of this phase will almost always be considerably

lower than the previous one, as making an accurate gradient estimate is simpler

than optimizing the parameters.

4.4.1 Fringe Bias Approximation

For most base policies, the number of parameters will increase with the number of

features, making the complexity of the tree growth phase quadratic (or worse) in

the number of features. Here, an approximation which can reduce this complexity

is described, when the base policy depends on linear functions of the features. If

there are NF such functions, then NP = NFD. An example of this is the linear

Gibbs softmax policy (Equation 3.14), where NF = |A|.
The standard practise when defining a linear function is to augment the input

vector with a bias term, usually chosen as the first term of the vector. This term,

denoted as φ(0)(St), is always 1. If one were to choose a few components to repre-

sent the gradient of the fringe parameters, choosing the parameters associated with

φ(0)(St) is a reasonable choice. Let θ0FL,k
represent the vector of NF parameters that

are associated with this feature in fringe node FL,k.

To apply this approximation to the Gibbs policy in Equation 3.14 as the base,

∇θ0
FL,k

ρ(ψL,k) is computed, and the other terms of the gradient are set to zero. The

tree growth criterion remains the same, which is to measure the norm of the gra-

dient in this reduced space. The computational complexity becomes O(NLNFD),

which is the same as that for parameter optimization.
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Chapter 5

Experiments on Policy Tree

In this section, the following questions are evaluated empirically:

1. Can the Policy Tree improve over the base policy?

2. How well does the fringe bias approximation work?

3. Is the improvement merely due to an increase in the number of parameters,

or does Policy Tree choose intelligent splits?

To answer these questions, I implemented a set of domains inspired by arcade

games.

5.1 Domains

The test suite is a set of 4 simple games, which have a 16x16 pixel game screen

with 4 colours. A pictorial representation of them is presented in Figures 5.1 to

5.4. All of these games are episodic with a maximum episode length of 256 time

steps, and every object moves with a speed of one pixel per step. Objects in these

games, including the player agent, enemy agents, friendly agents or bullets are a

single pixel in size, and each object type is of a distinct colour. Unless specified

otherwise, the actions available to the agent are to move up, down, left, right or

stay still.

These games contain elements of partial observability and non-linearity in the

optimal policy function. As examples, the direction of objects in the games can-

not be determined from a single game screen, and the best action to take is often

conditional on multiple variables.
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5.4 Experimental Setup

Four different algorithms were tested on the domains. The first was the standard

Policy Tree algorithm with the ε-greedy Gibbs policy as the base. The second was

a version with the fringe bias approximation enabled. The third was a version of

the algorithm which chooses a random split during tree growth, for the purpose

of testing whether the Policy Tree just benefits from having a larger number of

parameters, or whether it makes good representational choices. And finally, the

base policy was tested, representing the standard parametric approach to policy

gradient.

For Policy Tree, a parameter optimization stage of 49000 episodes and a gra-

dient averaging phase during tree growth of 1000 episodes was used. Splits were

therefore made after every 50000 episodes. The value of ε used was 0.001. For the

tree growth criterion, the q = 1 norm of the gradient was chosen. Policy Gradi-

ent/GPOMDP (Algorithm 2) under the total reward formulation is used to mea-

sure the gradient in all of the algorithms. Additionally, the optimal baseline for

reducing variance (Greensmith et al., 2004) is used. The stopping condition pa-

rameter λ was set to 1. A good step size during gradient optimization for the base

policy was obtained via a parameter sweep for each domain (over the set α ∈ {0.1,

0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}. The same step size was used for all the al-

gorithms on that domain. For each algorithm, 30 different runs of learning over

500000 episodes were performed. The average return was measured as the moving

average of the total reward per episode with a window length of 50000.

5.5 Results

The learning curves of the Policy Tree algorithm as compared to the base policy are

shown in Figures 5.6 to 5.9. The standard error in the results, across the 30 runs,

is represented by the vertical error bars in the graphs. These results allow us to

answer the questions posed earlier:

1. The Policy Tree algorithm improves upon the underlying base policy with

statistical significance.

2. The fringe bias approximation does not do as well as the exact measure in

most domains, but still does improve over the linear parametrization in all 4
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Figure 5.6: Results of the Policy Tree algorithm on Monsters
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Figure 5.7: Results of the Policy Tree algorithm on Switcheroo
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Figure 5.8: Results of the Policy Tree algorithm on Mothership
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Figure 5.9: Results of the Policy Tree algorithm on Rescue
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games significantly, without enduring additional computational complexity

during the tree growth phase.

3. An arbitrary increase in the number of parameters via the random splitting

does not improve performance at all. This shows that the tree growth crite-

rion contributes significantly to the effectiveness of the algorithm.

The Monsters domain shows the biggest improvement, as well as the greatest

gap between the exact and approximate versions. In this domain, the feature that

represents whether or not the agent is powered is very informative. Policy Tree

chooses this as the first split in 80% of the runs, while this drops to 20% with the

approximation enabled. However, the approximate version was found to outper-

form the base policy even when this split was not made over the course of learning,

indicating that the chosen splits are not meaningless.
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Chapter 6

The Policy Conjunction Algorithm

The Policy Tree algorithm described in the previous chapter is applicable to any

differentiable base policy function. Some commonly used policy functions depend

on the state only through linear functions of the feature vector. These policies are

called semi-linear policies in this chapter for convenience. The first section of this

chapter shows that for such policies the Policy Tree function can be thought of

as replacing existing features in the feature vector with higher-order conjunctions.

The next sections develop a variation on Policy Tree called the Policy Conjunction

algorithm, which is restricted to working with semi-linear policies. It can adapt the

representation by including an arbitrary number of higher order feature conjunc-

tions during the growth stage, and does not remove the original features. As with

Policy Tree, the representation change is chosen to maximize the local increase in

expected return.

6.1 A Flat View of the Policy Tree Algorithm

If the Policy Tree algorithm is used with a semi-linear policy like the the normally

distributed policy (Equation 3.15) as the base, the effective policy function at a leaf

node L can be written as:

πθL (· | St) = N
(

· | θL,µTφ (St) , exp
(

θL,σ
Tφ (St)

))

, (6.1)

The policy πθL (·|St) is used to select actions if and only if L is the active leaf

node, which is true when the conjunction of features corresponding to the decisions

taken on the path from the root to the leaf node (denoted by FL (St)) is true. So, the
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effective policy of the entire tree can be written as:

πθ (· | St) = N
(

· |
∑

L

θL,µ
Tφ (St)FL (St) ,

∑

L

θL,σ
Tφ (St)FL (St)

)

, (6.2)

where the summation is over all the leaf nodes in the tree. Note that FL (St) is

non-zero only for the active leaf node. This can be simplified as:

πθ(· | St) = N (· | θµTΦ(St),θσ
T
Φ(St)), (6.3)

where θµ, θσ and Φ(St) are concatenations of θL,µ, θL,σ and φ (St)FL (St), respec-

tively, over all leaf nodes L. The effective policy of the tree thus uses the same

probability function as that used in the base policy, although it uses an expanded

feature vector Φ(St).

The expanded features corresponding to leaf node L are of the formφ(i)∧FL for

all i ∈ {0, ..., D− 1}. A split on index k replaces these features with φ(k) ∧φ(i) ∧FL

and ¬φ(k)∧φ(i)∧FL, and is chosen when doing so leads to the best collective local

improvement as measured by Equation 4.2. So, for semi-linear base policies, the

Policy Tree algorithm can be seen as a way to perform adaptive feature expansion,

with the following restrictions:

1. A feature corresponding to a leaf node cannot be individually expanded. It

needs to be chosen for expansion along with all the other features correspond-

ing to the same node.

2. The existing features corresponding to a leaf node are removed, once the node

is split.

The next section describes the Policy Conjunction algorithm, which can be viewed

as a variation of the Policy Tree algorithm that does not obey the above restrictions,

but is only applicable in the case of linear base policies .

6.2 Overview of the Policy Conjunction Algorithm

1. Start with a randomly initialized linear base policy πθ with a feature vector

Φ, where Φ is initially equal to the original feature vector φ. The parameter

vector θ represents the combined vector of all the parameters used in the

policy.
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2. Optimize θ using a policy gradient algorithm like Algorithm 1 or 2 for a fixed

number of episodes or time steps.

3. The growth phase: Keep θ fixed for a number of episodes or time steps, while

the scores of all valid candidate features are judged (explained further in Sec-

tion 6.3). Add the top C candidates to Φ. Append the corresponding param-

eters to θ and set them to 0. Modify the step size as necessary (explained in

Section 6.4). Go to step 2 and repeat.

6.3 Adding candidate features

Unlike the Policy Tree algorithm, the Policy Conjunction algorithm considers fea-

ture expansion on each individual feature in Φ. To measure the benefit of such an

expansion, it considers replacing a feature Φ(i) with φ(j) ∧ Φ(i) and ¬φ(j) ∧ Φ(i) for

some j, such that neither of these new features are already present in Φ . Each fea-

ture introduces as many parameters to the representation as there are linear func-

tions in the policy. For example, the normally distributed policy in Equation 6.3

has two parameters θ
(i)
µ and θ

(i)
σ for each feature Φ(i).

Let θi,j and θ′i,j denote vectors of parameters corresponding to the candidates

feature φ(j) ∧ Φ(i) and ¬φ(j) ∧ Φ(i), respectively, while θi ⊂ θ denotes a vector of

parameters for the original feature Φ(i). Let ψi,j denote the concatenation of θi,j ,

θ′i,j and θk for all k 6= i, representing the resulting feature vector after replacing

Φ(i) with φ(j) ∧ Φ(i) and ¬φ(j) ∧ Φ(i).

Let the policy function when using the feature vector ψi,j be denoted by πψi,j

and its expected return be denoted by ρ
(

ψi,j

)

. If θi,j = θ′i,j = θi, then πψi,j
= πθ,

and one can obtain the gradient ∇ψi,j
ρ
(

ψi,j

)

, for all valid values of i and j, by

following the policy πθ. The index best (i) corresponding to the best split on feature

Φ(i) is obtained as:

best (i) = argmax
j

||∇ψi,j
ρ
(

ψi,j

)

||q. (6.4)

As argued in Section 4.4, this corresponds to the maximum local improvement in

the policy. Similarly to the stopping condition in Policy Tree, expansion on feature

i could be stopped when ||∇ψi,best(i)
ρ
(

ψi,j

)

||q < λ||∇θρ (θ) ||q.

Now, it is also possible to obtain the representational power of the features

φ(j)∧Φ(i) and ¬φ(j)∧Φ(i), by including one of them in Φ while retaining Φ(i). These

two representational choices are compared in Table 6.1. As θi, θi,j and θ′i,j can span
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Φ(i) φ(j)
Active Parameters

(φ(j) ∧ Φ(i) and
¬φ(j) ∧ Φ(i) added)

Active Parameters
(Φ(i) retained,

φ(j) ∧ Φ(i) added)

0 0 − −
0 1 − −
1 0 θ′i,j θi

1 1 θi,j θi + θi,j

Table 6.1: Choice of representation during feature expansion

the entire range of real valued vectors, the space of policies that can be represented

in both cases is the same. However, they differ in terms of the candidate features

they consider in subsequent growth phases. Retaining the original feature allows

the algorithm to choose simpler features like φ(k) ∧ Φ(i) in the future, for some

k 6= j, reducing the harm of choosing a poor split. This is the choice made in the

Policy Conjunction algorithm, and is one of its major departures from the Policy

Tree algorithm. Note that as θi is retained, θi,j must be initialized to 0 such that

the policy is unchanged.

Under first order Taylor approximation conditions, the local benefit of a split

on each feature Φ(i) can be computed independently. Therefore, one can choose the

best C candidate features of the form φ(best(i))∧Φ(i), with ||∇ψi,best(i)
ρ
(

ψi,best(i)

)

||q
being the score, and add them to Φ.

6.4 Modifying the Step Size during Gradient Optimization

In general, as the number of active features increases, each gradient step causes a

greater change in the policy’s distribution over actions, making gradient optimiza-

tion potentially unstable as the feature vector θ expands. To address this, a simple

fix is to keep the step size inversely proportional to the number of features. This is

not needed in the Policy Tree algorithm, because at any time step, only the features

corresponding to a single leaf node can be active.

6.5 Experiments

The Policy Conjunction algorithm was evaluated on the domains described in Sec-

tion 5.1, and a comparison with Policy Tree is presented in Figures 6.1 to 6.4. The

same base policy described in Equation 5.1 was used for both algorithms.
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Figure 6.1: Results of the Policy Conjunction algorithm on Monsters
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Figure 6.2: Results of the Policy Conjunction algorithm on Switcheroo
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Figure 6.3: Results of the Policy Conjunction algorithm on Mothership
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Figure 6.4: Results of the Policy Conjunction algorithm on Rescue
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All of the parameters common to the two algorithms were kept identical. That

is, a parameter optimization stage of 49000 episodes, a gradient averaging phase of

1000 episodes, a gradient norm of q = 1 during the growth phase, and a stopping

condition parameter of λ = 1 were used. An initial step size equivalent to that

used in the Policy Tree experiments was used for each domain, although it was

decreased over time as described in Section 6.4. The number of features introduced

in the growth phase was set to C = D, so that the computational complexity of

the two algorithms was similar. And finally, as before, 30 different runs of learning

over 500000 episodes were performed, and the average return was measured as the

moving average of the total reward per episode with a window length of 50000.

The results show that the Policy Conjunction algorithm can significantly out-

perform the base policy. In general, Policy Conjunction tends to perform worse

than Policy Tree during the early stage of learning, but can catch up with Policy

Tree and even outperform it in some cases. The comparatively slower improve-

ment over the base policy might be due to the decrease in step size after each

growth phase in the former algorithm, which is necessary to ensure stability.

The domain where Policy Conjunction does comparatively worse is Monsters.

As mentioned in Section 5.5, Policy Tree tends to split on the power feature (the

presence of a power suit at the agent location, indicating whether the agent is pow-

ered) early in the learning process. This effectively creates a conjunction of this

feature with every other feature, allowing the agent to learn completely different

behaviours depending on the power feature (which is the desired policy). Policy

Conjunction individually chooses a conjunction for each feature, and not all such

decisions favour the power feature.

Policy Conjunction does well in Mothership and Rescue. In both of these do-

mains, the algorithm outperforms Policy Tree by the end of the learning stage. Un-

like in Monsters, Policy Tree does not always pick a good split in the beginning

stages in these domains. Policy Conjunction, by retaining the existing features,

most likely does not suffer too much from poor choices made in some of the runs.
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Chapter 7

Future Work

There are a number of areas in which this work can be expanded. This chapter

elaborates on a few of these.

7.1 Detecting Convergence of the Phases

Both the Policy Tree and Policy Conjunction algorithm use two phases for parame-

ter optimization and representation growth, with fixed lengths. One could test for

convergence of the objective function during optimization, to get the best possi-

ble performance before trying to expand the structure. However, highly optimized

policies tend to be highly deterministic, making re-optimization of the parameters

after a split trickier. The Gibbs policy, for instance, has a low gradient in regions

of high determinism. The use of natural gradients (Kakade, 2001) could alleviate

this problem, by measuring the change of the objective function with respect to

the actual change in the policy distribution, rather than the change in parameter

values.

7.2 Removing Redundant Features/Splits

Due to the presence of noise in the gradients, or due to the locality of our improve-

ment measuring criterion, it is possible that some splits or conjunctive features do

not enhance the policy significantly. This causes needless increase in the number of

parameters, and slows down learning in both the Policy Tree and the Policy Con-

junction algorithms. In the former, this would cause splitting the data available

to each branch. A possible fix for this would be to prune the tree if optimization

after a split does not significantly change the parameters. In the latter, additional
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features decrease the step size, and could be removed by performing L1 regular-

ization (Langford et al., 2009).

7.3 Generalizing the Decision Nodes in Policy Tree

The splits in the decision tree are currently based on the value of a single observa-

tion variable. In general, we could define a split over a conjunction or a disjunction

of observation variables. This would increase the size of the fringe used during

tree growth, but would allow the algorithm to find splits which may be signifi-

cantly more meaningful. A different kind of split in the decision nodes would be

on a linear combination of features. This can be viewed as a split on a non-axis

aligned hyperplane in the observation space. As there are infinite such splits, it is

not possible to measure them using our fringe structure. However, there may be

ways to develop alternative criterion in order to grow a tree with such a represen-

tation. Prior research suggests that such an architecture is useful for classification

but not for regression (Breiman et al., 1984). It is unclear how useful it would be in

the search for optimal policy.

7.4 Using Off-Policy Experience

The two phase structure of our algorithm is slightly sample inefficient, as the expe-

rience during the gradient averaging phase is not used to optimize the parameters.

In the experiments in this thesis, 2% of the episodes were unused for optimization.

Due to the requirement to stay on-policy to estimate the gradient, this is difficult

to avoid. One possible solution would be to use importance sample weighting and

utilize off-policy trajectories to compute the gradient. This would in fact avoid

the necessity of keeping the policy fixed to get a reliable gradient estimate. The

use of importance sampling in policy gradient has been studied previously (Jie

and Abbeel, 2010). However, the weights for the off-policy samples would reduce

exponentially with the horizon of the problem, and it is uncertain whether it is

possible to have a reliable off-policy estimate of the gradient in most domains.
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Chapter 8

Conclusion

This thesis presented two algorithms for adaptive representation using policy gra-

dient, and their utility was demonstrated on a variety of domains inspired by

games. These algorithms have the same convergence guarantees as parametric

policy gradient methods, but can adapt their representation whenever doing so

improves the policy.

To the best of my knowledge, Policy Tree is the first algorithm which can learn

a decision tree to represent the policy in a model-free setting. It is the most general

of the algorithms presented, since it can work with any parametric representation

of policy as its base.

In the case when the base policy depends only on linear functions of the fea-

tures, two alternate approaches have been described. The first is an approximate

version of Policy Tree, which has a linear computational complexity per time-step

in the number of parameters during the entire learning phase, and can still improve

over the base policy.

The second is the Policy Conjunction algorithm, which is an interesting varia-

tion of Policy Tree, demonstrating the relationship between decision tree methods

and feature expansion. It is simpler to implement, and allows an arbitrary number

of features to be introduced into the representation during the growth phase. It re-

tains the original features of the policy, allowing it to correct poor choices of feature

expansion made early in the algorithm. It improves upon Policy Tree in certain

domains, although Policy Tree tends to perform better early during the learning

process.

These algorithms demonstrate that the gradient of the expected return is a use-

ful signal in the search for policy representation in reinforcement learning.
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