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ABSTRACT

Most of the currently available models for watershed modelling are limited in 

practice because of the extensive requirement for landscape data. A class of models that 

can simulate the response of ungauged watersheds, without being ground-based data 

collection and time intensive, was developed to provide the necessary information for 

responsive watershed management practices.

A class of watershed models that are less reliant on ground-based measurements by 

using remote sensing (RS) information instead was devised. The focus was on 

formulating streamflow (Q) and total phosphorus (TP) concentrations models, which 

are only reliant on the currently available meteorological information, as well as public- 

domain free-of-cost Moderate Resolution Imaging Spectroradiometer (MODIS)-derived 

RS information. A number of Q and TP models were devised and applied to a number 

of watersheds (5 to 130 km2 in basin area.) The thesis presented: (1) the first effort to 

compare autoregressive moving average with exogenous input (ARMAX) modelling to 

artificial neural network (ANN) modelling for TP predictions and confirmed that the 

ANN approach is superior to the ARMAX in modelling time-correlated gapped data; 

(2) a step-by-step guideline to ANN modelling of time-correlated variables that can 

account for data hystereses; (3) an ANN modelling algorithm that relies only on low- 

cost, readily available meteorological data, and careful time series manipulation prior to 

model building for Q predictions and, thus, is suitable for modelling streamflow in 

ungauged watersheds; (4) a new remotely-sensed hydrologic similarity measure that 

provided a successful indicator of basins similarity; (5) a successful modelling 

algorithm that can rely on a dynamic suite of RS vegetation indices (Vis) for predicting
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TP concentrations and; (6) the first attempt to address the impact of watershed 

subdivision on a water quality parameter using an ANN modelling technique.

The results from this exercise demonstrated the applicability o f the ANN modelling 

approach, and the usefulness of the MODIS-derived Vis in simulating Q and TP 

dynamics. Such models can potentially serve as valuable tools for watershed-scale 

forest management.
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CHAPTER 1. BACKGROUND AND GENERAL INTRODUCTION

1.1. Background

Watershed disturbances can be classified into two main classes; natural and 

anthropogenic. Natural disturbances include wildfire, insects, floods, and droughts with 

wildfires being the most important and the greatest economic burden (Smith et al.

2003). Anthropogenic disturbances are many, however timber harvesting and oil and 

gas exploration/production are the two sources of greatest economic impact in the 

Boreal plain of Canada (Smith et al. 2003). Such disturbances can potentially alter the 

hydrologic budgets and may expose soils to erosion, resulting in the potential for 

increased export of nutrients and sediment to surface waters (Munn and Prepas 1986; 

Cooke and Prepas 1998; Smith et al. 2003). The resulting excessive nutrient loads can 

cause an imbalance in biomass production in an aquatic ecosystem. The system can then 

react by producing more phytoplankton than can be consumed by the ecosystem. The 

resulting biomass overproduction can lead to a variety of problems ranging from anoxic 

waters (through decomposition) to toxic algal blooms and a decrease in habitat 

diversity, and thus leading to habitat destruction (Hallengraeff 1993; Chorus 2001; 

Landsberg 2002). Algal blooms’ impacts adversely affect not only the health of people, 

animals, and aquatic organisms, but also the "health" of local and regional economies 

(Hoagland et al. 2002). Hence, nutrient modelling and, in particular, phosphorus (P) 

modelling—as a limiting nutrient—is critical to provide the necessary information for 

responsive watershed management practices.

1
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Numerous conceptual and data-driven models have been developed to simulate flow 

(Q) and water-phase P dynamics. Section 1.2 summarizes some of the currently 

available Q and P models, highlighting their advantages and limitations.

1.2. Watershed Modelling

Models of watershed hydrology and water quality parameters are important tools for 

hydrological investigations for both operational and research purposes. A multitude of 

applications (e.g., streamflow and water quality parameters forecasting in time and 

space, the evaluation of the impact of different forest management and agricultural 

activities on water quantity and quality, and the evaluation of watershed responses to 

different climate change scenarios) have contributed to the development of a vast 

number of watershed models starting in the early 1960s (Wagener 2005).

These models are usually a mixture of linear and non-linear functions, combined to 

represent those processes occurring in a specific watershed and important for the study 

objectives at hand. Different model classification systems can be recognized as 

discussed in Section 1.2.1.

1.2.1. Watershed models classification

Watershed models classification can be represented either according to the degree of 

physical conceptualization or the spatial resolution of the watershed inputs.
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Watershed models can be classified based on the spatial resolution into three 

classes: (1) lumped models that use average values of input variables over the entire 

watershed area, and thus having minimal data requirements; (2) semi-distributed models 

that divide the watershed into sub-watersheds, in which each sub-watershed carry 

distinct set of input variables; and (3) distributed models that are pixel-based in terms of 

inputs representations and parameter routing, and therefore having huge data 

requirements. Although using distributed models is conceptually appealing, the 

superiority of the more complex distributed models over the simpler lumped models is 

still an issue of debate (Wilcox et al. 1990; Michaud and Sorooshian 1994; Hauhs et al. 

1996; Donnelly-Makowecki and Moore 1999; Gan et al. 2006).

On the other hand, it is common to classify watershed models according to the 

physical conceptualization into three distinct types: (1) empirical (also called data- 

driven or black-box); (2) conceptual (also called parametric or gray box); and (3) 

physically-based (also called mechanistic or white box) model structures.

Empirical models use available time-series of input and output variables (nutrient, 

precipitation, streamflow, temperature etc.) to derive both the model structure and the 

corresponding parameter values. They are therefore purely based on the information 

retrieved from the data and generally do not include, explicitly, prior knowledge about 

the physical, chemical, hydro-morphological, and biological processes controlling flow 

processes and contaminant transport mechanisms, hence the name black box. Popular 

examples of empirical models are Artificial Neural Networks (ANNs) (e.g., Lek et al. 

1996; Dawson and Wilby 2001) and time series modelling (e.g., Abrahart and See
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2000). Empirical models are usually spatially lumped. A variant on purely empirical 

models are data-based mechanistic models, that constrain the degrees of freedom to 

those structures that are physically interpretable, thereby using the hydrologist’s 

understanding of the system under study (e.g., Young 1992; Jakeman and Homberger 

1993; Young and Beven 1994).

Conceptual models are formulated from storage elements that represent parts of the 

watershed where water is temporarily stored; e.g., soil, aquifers or streams. These 

elements are filled through fluxes such as rainfall, infiltration or percolation, and 

emptied through evapotranspiration, runoff, and drainage. The modeler, based on a 

conceptualization of the watershed, specifies the structure of these models in advance. 

These models are usually spatially lumped but can be semi-distributed (Boyle et al.

2001). The modeler has to use observations of the watershed response to find 

appropriate values for the model parameters through empirical relations. Conceptual 

models form the large majority of models used in practice. Their dependence on 

measurements of the watershed response (mainly streamflow) limits their use in 

ungauged watersheds. However, research is ongoing to resolve this problem (e.g., 

Wagener et al. 2004).

Physically-based models are based on the conservation of mass, momentum and 

energy. The spatial discretization applied is usually based on grids of pixels (i.e. 

distributed models), but sometimes also on some type of hydrologic response unit or 

triangular irregular networks (Beven 2000). The initial philosophy of this class of 

models was that the degree of physical realism on which these models are based on
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would be sufficient to relate their parameters to physical characteristics of the 

catchment under study, thus eliminating the need for observed system response to 

condition the parameters of the model. However, the currently available physically- 

based models do not fulfill this ideology. They suffer from extreme data demand, and 

over parameterization (Beven 1989). The expectation that these models could be 

applied to ungauged catchments has therefore not been fulfilled (Refsgaard and Knutsen 

1996). Beven (1989) argues that this type of models is applied in a way similar to 

lumped conceptual models, though at a different scale.

1.2.2. Conceptual Watershed Q and P Models

Conceptual watershed-scale Q and P models include; but are not limited to; soil and 

water assessment tool (SWAT) developed by Arnold et al. (1998), aerial non-point 

source watershed environment simulation-2000 (ANSWERS-2000) (Bouraoui and 

Dillaha 1996; Beasley et al. 1980), hydrologic simulation program fortran (HSPF) 

(Johanson et al. 1984), erosion productivity impact calculator (Sharpley and Williams 

1990), annualized agriculture non-point source pollutant loading model (AnnAGNPS) 

(Bingner et al. 2001), and the Guelph model for evaluating the effects of agricultural 

management systems on erosion and sedimentation (GAMES) by Cook et al. (1985). 

The use of this class of models presents the challenge of estimating or calibrating a 

large number of model parameters from limited available information. Obtaining 

necessary information for model calibration is always time consuming and expensive.

5
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1.2.3. Data-driven Q and P Models

Data-driven models have been successful in capturing patterns in data with less 

knowledge of the behavior of the system in terms of interactions between biological, 

geological, chemical, and physical processes affecting the modelled system and are 

consequently attractive alternatives to traditional conceptual models. Among those 

techniques, artificial neural network (ANN) and time series (TS) models hold promise 

for water quantity and quality modelling.

The application of ANNs in hydrological modelling has been the topic of over 300 

refereed publications in the last two decades. The ASCE task committee (2000a,b) and 

Maier and Dandy (2000) published comprehensive reviews of pertinent work prior to 

the late 1990s. Most researchers used either a feed-forward multi layer perceptron (FF- 

MLP) ANN or a recurrent neural network (RNN) for modelling daily streamflow. 

However, the feed-forward MLP trained with the error backpropagation (BP) algorithm 

was by far the most widely used network architecture and training algorithm 

(Castellano-Mendez et al. 2004; Anctil and Tape 2004; Anctill and Rat 2005; Riad et al. 

2004; Agarwal and Singh 2004; Riad and Mania 2004; Baratti et al. 2003; Kisi 2004; 

Tokar and Markus 2000). In all reviewed cases, a sliding window of rainfall and 

recently observed flow values were utilized to forecast future flow values.

Although ANN has found wide applications in water quality modelling in the last 

decade (e.g., Brion and Lingireddy 2003; Maier et al. 1998; Maier and Dandy 1996; 

Wilson and Recknagel 2001; Moatar et al. 1999; Zhang and Stanley 1997; Zhang et al.
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2004), ANN modelling of phosphorus dynamics has been limited to a few efforts (e.g., 

Lek et al. 1996; Holmberg et al. 2006).

In contrast, TS modelling applications in water resources and environmental 

engineering focused mainly on streamflow forecasting (e.g., Padilla et al. 1996; 

Abrahart and See 2000; Ali and Dechemi 2004; Chibanga et al. 2003; Hsu et al. 1995; 

Malgras and Debouzie 1997; Novotny and Zheng 1989; Weeks and Boughton 1987).

Owing to the complexity of hydrologic processes—especially in a forested 

ecosystem—(Burton et al. 2003; Hewlett 1982), and motivated by the ability of ANNs 

to model complicated non-linear relationships, almost all previous efforts that compared 

ANN models to either TS models or conceptual models demonstrated that ANN models 

performed at least comparatively to, if not better than, other conceptual and statistical 

models. The focus of this thesis is limited to TS and ANN modelling.

Most of the currently available models, both conceptual and data-driven, are 

undermined in practice because of the extensive requirement for landscape data (e.g., 

soils, vegetation, and precipitation) needed for model calibration (Liu et al. 2006; Hauhs 

et al. 1996; Haan 1989). However, satellite remote sensing (RS) has recently made 

available a large inventory of cost-effective landscape data over the entire landbase, 

rather than providing only a sampling of it as is the case with ground-based 

measurements. In particular, the Moderate-resolution Imaging Spectroradiometer 

(MODIS) launched by the National Aeronautics and Space Administration (NASA) in 

December, 1999 has provided scientists with the ability to measure forest growth and 

snow cover with greatly improved spatial and temporal resolution. Furthermore, the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MODIS data is freely available, thus providing a means of acquiring time series 

representation of vegetation dynamics and snow cover at an affordable cost. Developing 

a class of models that can rely on such RS information can potentially boost the 

applications of watershed water quantity and quality models. Section 1.3 reviews the 

pertinent literature on the usage of RS information in watershed modelling.

1.3. Application of Remote Sensing in Watershed Modelling

The current resurgence in earth-observing satellite and airborne platforms, along 

with the advancements in computer and software technology, has made it possible to 

evaluate and quantify large numbers of watershed physical characteristics and state 

variables via RS. RS techniques have expanded widely, to the point that they now 

include most of the electromagnetic spectrum. Different sensors can provide unique 

information about properties of the surface or shallow layers of the Earth. For example, 

measurements of the reflected solar radiation give information on albedo, thermal 

sensors measure surface temperature, and microwave sensors measure the dielectric 

properties and hence, the moisture content, of surface soil or of snow. This continued 

development has added new techniques that hydrologists and watershed modelers can 

use in a large number of applications (Schultz and Engman 2000).

The application of RS imagery can be divided into three main categories: (1) to 

delineate surface features, such as snow-covered areas, surface water extent or sediment 

plumes; (2) to retrieve information such as land cover, geological features, or other 

hydrologic parameters through interpretation and computer classification of remotely

8
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sensed data; and (3) to directly use remotely sensed digital data to estimate hydrological 

state parameters. The third application is the most important to watershed modelling 

and is normally achieved through electro-optical or statistical modelling of known 

hydrometric data with satellite data. A thorough description of different applications of 

RS information in hydrology is summarized in the literature by a number of researchers 

(Kite and Pietroniro 1996; Pietroniro and Leconte 2000; Pietroniro and Leconte 2005; 

Smith 1997; Shultz and Engman 2000). Despite the ongoing improvement of remote 

sensing techniques, only very few success stories on the applications of remote sensing 

in watershed modelling currently exist (e.g., Andersen et al. 2002; Biftu and Gan 2001, 

2004; Boegh et al. 2004; Kite 1998; Sandholt et al. 2003).

Although there has been some success in the application of RS data in hydrology, 

the application of RS information in watershed water quality modelling has been 

minimal. A successful nutrient model should rely on information regarding the soil and 

the vegetation nutrient contents, thus, retrieving remotely sensed information that can 

be linked to soil/vegetation nutrient interactions can aid in formulating relatively 

accurate and usable nutrient watershed models. RS vegetation indices (Vis) can 

represent the vegetation health/stress in terms of the vegetation chlorophyll content and 

the leaf water content (Cheng et al. 2006). Such information can potentially act as 

surrogates to soil/vegetation nutrient transport and therefore can potentially represent 

vegetation dynamics in formulating nutrient models.

The Moderate Resolution Imaging Spectroradiometer (MODIS) launched in 1999, 

onboard the Terra platform is the primary earth observing system (EOS) sensor for
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providing data on vegetation dynamics. The MODIS instrument includes seven visible 

and shortwave bands for land surface studies and provides continuous, 1 to 2-day global 

coverage at 250 m, 500 m, and 1 km spatial resolutions. Repetitive coverage from this 

radiometrically and atmospherically corrected MODIS data sets can provide useful 

information to detect vegetation and land cover moisture contents (Zarco-Tejada et al. 

2003), thus the focus in this study is to assess the usefulness of MODIS derived 

vegetation indices in capturing phosphorus dynamics within a watershed model.

1.4. Research Needs

In Canada and elsewhere, the prediction of daily streamflow (Q) and total 

phosphorus (TP) concentrations is important for evaluating downstream hydrologic 

impacts, simulating the impact of extreme floods and droughts, evaluating the impact of 

different climate change scenarios, and thus for safeguarding against any expected 

adverse consequences. Providing the resources to gauge all watersheds of interest is 

practically impossible; thus, most of the currently available models for watershed 

modelling are limited in practice because of the extensive requirement for landscape 

data (e.g., soils, vegetation, precipitation) needed for model calibration. Therefore, a 

class of models that can simulate the response of ungauged watersheds with reasonable 

accuracy is critical to provide the necessary information for responsive watershed 

management practices.

With the advent of remote sensing (RS) techniques, the availability of high quality 

time- and space- variant data at an affordable cost has been made real. Developing a
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class of watershed models, that can utilize this RS information and that is less reliant on 

ground-based watershed specific measurements, is expected to overcome the drawbacks 

of more readily available models that are ground based data collection and time 

intensive. It will provide a substitute approach using inexpensive RS data with few 

ground truthing requirements that can move this class of models from a research base to 

possible industrial applications.

This thesis aims at investigating the possibility of developing a modelling approach 

capable of simulating streamflow and water quality in ungauged and unmonitored 

watersheds. It focuses on formulating Q and TP models that are only reliant on 

currently available meteorological information in Canada, as well as public-domain 

free-of-cost MODIS RS information. The specific objectives are summarized in Section

1.5.

1.5. Research Objectives

In an attempt to construct a set of Q and TP ANN models that can rely on currently 

available free-of-cost MODIS RS information as well as scattered meteorological 

measurements’ stations, the following main objectives have to be achieved:

(1) to provide guidelines for modelling time correlated variables using ANN;

(2) to compare ANN modelling to a more traditional manipulation like the 

multivariate TS approach (ARMAX) highlighting the strength and drawbacks of 

each technique;
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(3) to compare the different interpolation techniques for mapping daily rainfall 

values attempting to incorporate the most reliable rainfall information available 

from sparse meteorological and fire tower measuring stations in the modelling 

activity;

(4) to develop an ANN modelling algorithm capable of modelling Q in ungauged 

watersheds;

(5) to find a reasonable indicator of hydrologic similarity that can guide model 

transferability;

(6) to devise a robust ANN TP model that can rely on RS information and currently 

available meteorological information;

(7) to develop a protocol for linking RS data with ANN models;

(8) to assess the usefulness of MODIS vegetation indices in capturing phosphorus 

dynamics within a watershed; and

(9) to assess the impact of watershed subdivision on model performance.

1.6. Research Contributions

To achieve the above mentioned objectives, a number of water quantity and quality 

models were devised and applied to a number of watersheds ranging in basin area from 

5 to 130 km2. The protocols used for data pre-processing, model formulation, and 

model evaluation have presented the following original contributions to the disciplines 

of hydroinformatics and environmental informatics:
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(1) This thesis presents the first effort to compare autoregressive moving average 

with exogenous input (ARMAX) modelling to artificial neural network (ANN) 

modelling for TP predictions. Earlier efforts had focused on comparing the two 

modelling approaches for Q predictions;

(2) the current study established step-by-step guidelines to ANN modelling of time- 

correlated variables that can account for data hystereses;

(3) it proposes a feed-forward multi-layer perceptron (FF-MLP) modelling 

algorithm that relies only on low-cost, readily available meteorological data and 

careful time series manipulation prior to model building for Q predictions, and 

thus, is suitable for modelling streamflow in ungauged watersheds;

(4) a new remotely sensed hydrologic similarity measure was proposed in this 

study, and was found to provide a successful indicator of basin similarity;

(5) the current research is the first to attempt to build a model that can rely on a 

dynamic suite of remotely sensed vegetation indices for predicting the water- 

phase TP concentration; and

(6) it is also the first to address the impact of watershed subdivision on a water 

quality parameter using an ANN modelling algorithm.

1.7. Thesis Organization

In order to preserve the diversity of the models and applications developed in 

meeting the abovementioned research objectives, a paper format has been employed in
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preparing this document. Chapter 2 compares ARMAX to ANN modelling of TP 

concentrations highlighting the strength and drawbacks of each modelling technique. It 

provides step-by-step guidelines to ANN modelling of time-correlated variables that can 

account for data hystereses.

Chapter 3 is devoted to modelling the daily change in TP concentration (ATP) using 

ANN. In addition, the impact of wetland area and composition on model formulation 

and performance was also assessed.

The struggle to develop better models of hydrologic processes requires special 

attention to data quality. Rainfall time series, in particular, is an important input in 

hydrologic water quantity and quality models. Kriging is now commonly used as a 

mapping technique; however, practitioners often get confused in the realm of kriging 

methods and other interpolation schemes available. In Chapter 4, five geostatistical 

interpolation techniques; simple kriging (SK), ordinary kriging (OK), multi-Gaussian 

kriging (MGK), log-normal kriging (LNK), and kriging with an external drift (KED), in 

addition to the more traditional inverse distance weight (IDW) interpolation technique; 

were compared for their merits in mapping daily rainfall values, attempting to achieve 

the most accurate rainfall time series to be used for the subsequent devised models. In 

addition, sequential Gaussian simulation (SGS) was then implemented to produce 100 

equiprobable maps of daily rainfall values. A multi-objective approach; that is based on 

overlaying the map of the kriging variance, the digital elevation model (DEM), and land 

use/land cover and road networking maps in a geographic information system (GIS)
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framework to identify the areas of commonly favorable features; was also proposed to 

identify potential future sampling locations.

Chapter 5 presents the first step towards a generic ANN modelling algorithm for 

dynamic predictions of daily streamflow in ungauged watersheds. It also proposes a 

new measure of hydrologic similarity that can be remotely sensed.

The previous efforts on modelling water-phase TP concentrations showed that there 

is a need for incorporating information regarding soil/vegetation phosphorus content to 

reasonably model TP concentration. In absence of this information, only the daily 

change in TP concentration can be accurately predicted. In Chapter 6, we attempted to 

model TP concentration through a train of models, in which a streamflow ANN model 

was developed to predict Q from meteorological information. Modelled Q values were 

then coupled with weather information to serve as inputs for a total suspended solids 

(TSS) ANN model. Finally, modelled Q and TSS were used to augment weather data in 

predicting TP concentration.

Chapter 7 describes an attempt to build an ANN model that can rely on a time series 

of remotely sensed vegetation indices (Vis) for predicting the dynamics of water-phase 

TP concentration. We examined the possibility of using five literature based Vis; 

enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), 

greenness fraction vegetation index (GFVI), simple ratio vegetation index (SRVI), and 

normalized difference water index (NDWI), in addition to two indices proposed in this 

study (SRVIm and GFVIm); to provide sufficient landscape information for water- 

phase TP modeling.
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In Chapter 8, the impact of watershed subdivision on TP model predictions was 

assessed. Automatic delineation of the watershed into different sub-divisions was 

achieved using a 3 0 m x 3 0 m  resolution DEM.

Finally, pertinent conclusions from all modelling efforts, an overall assessment of 

the research program, and recommendations for future work are presented in Chapter 9.
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CHAPTER 2. ARTIFICIAL NEURAL NETWORKS AND TIME SERIES MODELLING 

OF TP CONCENTRATION IN BOREAL STREAMS: A COMPARATIVE 

APPROACH

2.1. Introduction

The Boreal Plain ecozone in the western portion of the Canadian Boreal Forest is 

experiencing an increase in the frequency and intensity of both natural (e.g., wildfire 

and insects) and human-induced (e.g., forest harvesting) watershed disturbances, which 

are thought to cause a measurable increase in water yield, primarily from overland flow 

(Smith et al. 2003). The typically high phosphorus content of Boreal Plain soils (Evans 

et al. 2000) and enhanced mobility of soil nutrients after vegetation removal may, in 

turn, enhance phosphorus export to water bodies. Snow melt and storm events are 

critical periods for phosphorus migration to receiving water bodies. During these 

periods, the soil is more susceptible to erosion, thus leading to elevated particulate 

phosphorus loads to water bodies (Chanasyk et al. 2003; Prepas et al. 2003; Burke et al. 

2005). The resultant increase in phosphorus concentrations in water bodies may 

promote dissolved oxygen depletion, increased cyanobacterial biomass, and even 

cyanobacterial toxin production, threatening to destabilize the aquatic ecosystem of the 

region (McEachem et al. 2000; Prepas et al. 2001). Therefore, a reasonable prediction 

of TP concentration can aid management plans aimed at preserving aquatic ecosystems

A version o f this chapter has been published. Nour, M.H., Smith, D.W., Gamal El-Din, M., and Prepas, 
E.E. 2006. Artificial neural networks and time series modelling o f  TP concentration in Boreal streams: a 
comparative approach. J. Environ.Eng. Sci. 5: S39-S52.
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in the region.

The hydrologic, biologic, and chemical mechanisms controlling phosphorus 

transport are well understood at the microscale level. Upscaling to the larger watershed 

scale through parameterization and calibration techniques is very data-intensive and 

economically unfeasible in most cases (Maier et al. 1998). On the other hand, data 

driven models have been successful in capturing patterns in data, with less knowledge 

of the behavior of the system in terms of the interactions among the biological, 

geological, chemical, and physical processes affecting the modelled system and are, 

consequently, attractive alternatives to traditional conceptual models. Among those 

techniques, artificial neural network (ANN) and time series (TS) models hold promise 

for water quality modelling.

ANN has found wide applications in water quality modelling in the last decade. 

Brion and Lingireddy (2003) predicted the peak microbial contamination of Giardia 

and Cryptosporidium spp. in Delaware River, USA. Maier et al. (1998) predicted the 

incidence of the cyanobacterium Anabaena spp. in the River Murray, Australia, four 

weeks in advance with ANN. They also used ANN for 14-day ahead salinity prediction 

(Maier and Dandy 1996). Other applications included predicting phosphorus 

concentrations using watershed characteristics of 927 tributary sites throughout USA 

(Lek et al. 1996), same-day and 30-day-ahead predictions of algal abundance in six 

freshwater lakes in Japan and Australia (Wilson and Recknagel 2001), pH modelling in 

the Middle Loire River, France (Moatar et al. 1999), and colour modelling in the North 

Saskatchewan River (Zhang and Stanley 1997).

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In contrast, TS applications in water resources and environmental engineering 

focused on hydrology, mainly on stream flow forecasting. Padilla et al. (1996) used 

autoregressive moving average (ARMA) models to model the flow of the Karastic 

springs in Spain and France. Abrahart and See (2000) compared ARMA to ANN 

modelling for river flow forecasting and found that ANN outperformed ARMA in their 

case study. Ahn (1999) used an autoregressive model with a covariate to predict 

atmospheric phosphorus deposition in South Florida, USA. Ruan and Wiggers (1997) 

used the autoregressive multivariate TS model to predict the sediment load from flow 

time series. TS modelling has also been used for other environmental engineering 

applications, such as the prediction of air pollution levels (Salcedo et al. 1999) and the 

estimation of the rate of municipal solid waste generation (Katsamaki et al. 1998). El- 

Din and Smith (20026) used a transfer function TS approach to model the total 

suspended solids and chemical oxygen demand in the effluent of a full-scale primary 

sedimentation tank.

The previous ANN modelling efforts, although successful in their case studies, 

mostly used a rather “hit and miss” approach in model building and parameter 

optimization. In addition, although the autoregressive moving average with exogenous 

inputs (ARMAX) has been used extensively to model streamflow, to our knowledge, it 

has never been used in the literature to model the TP concentration. Thus, the objectives 

of this study were to provide guidelines for modelling time-correlated variables using 

ANN, to compare ANN to a more traditional manipulation like the multivariate TS 

approach (ARMAX) in order to highlight the strength and drawbacks of each technique,
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and finally to apply these techniques for modelling total phosphorus (TP) concentration 

in a 2nd order stream watershed on the Boreal Plain.

2.2. Study Area and Database

The study area is the 16 km Willow Creek watershed, northwest of Edmonton, 

Alberta, Canada (Prepas et al. 2006). The mean, minimum, and maximum daily 

temperature data were obtained from Environment Canada (Downsview, Ontario). Data 

from the Whitecourt airport weather station (latitude 54.15° N; longitude -115.78° W) 

were used because it is the closest station to the study watershed. Mean daily stream 

flow (Q) and TP concentration data were collected in 2001 and 2002 as part of the 

Forest Watershed and Riparian Disturbance (FORWARD) Study (see J. Environ. Eng. 

Sci. Volume 2, special issue, 2003 for details). In these years, high flows occurred in 

late spring and early summer due to snow melt and rain events (Figure 2-1). The 

hydrograph in 2001, an average year in terms of total annual precipitation, was derived 

mainly from storm events, whereas that of 2002, a relatively dry year, was a reflection 

mainly of snow melt. The series of TP concentrations resembles the flow series in its 

daily fluctuations (Figure 2-1). Both the Q and TP concentration series peak almost at 

the same time and have proportional values with time reflecting two highly correlated 

variables.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3. Methodology

The TP concentration time series in receiving water bodies of the Boreal Plain is 

affected mainly by soil phosphorus concentration and the intersection of the water table 

with surface soil layers. Hence, the TP concentration in water bodies is likely to 

increase the most during snow melt and storm events. During these periods, the soil is 

more susceptible to erosion, thus leading to elevated particulate phosphorus loads to the 

receiving waters (Chanasyk et al. 2003). Knowledge of the soil nutrient concentration, 

as well as of the phosphorus loads from other sources like air deposition, is crucial to 

accurately predict TP concentrations in surface waters. Without this information, the 

focus is necessarily the daily change in TP concentration.

To achieve the study objectives, ARMAX time series and ANN models were 

constructed to predict the daily change in the TP concentration (ATP). The results are 

displayed in terms of TP concentration by adding the predicted ATP to the previous 

day’s TP concentration to improve the visibility of the results. Finally, the two 

approaches were compared based on statistical measures of goodness-of-fit as well as 

visual inspection of the predicted versus measured profiles.

In the following sections, TS modelling is introduced, followed by the ARMAX 

model results. The ANN modelling and the associated results are then discussed. 

Finally, the merits of the two approaches are discussed, and guidelines for future 

modelling are provided.
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2.4. ARMAX TP Modelling

Multivariate TS analysis requires identifying the dependency of the current value on 

past values of not only the same series but also on those of the other time series as well. 

To evaluate the strength of the relationship between the output time series and the 

potential input time series, cross-correlation analysis was performed to estimate such 

strength at different time lags. The lags of the input time series that can be significantly 

correlated to the output time series were then considered as model inputs. Estimating 

significant correlations requires the evaluation of several statistical functions: the 

autocorrelation function (ACF), cross-correlation function (CCF), and partial 

autocorrelation function (PACF). The ACF measures the linear dependence between 

two points on the same series observed at different times. The CCF denotes the linear 

dependence of one series on another as time progresses and is usually used to measure 

the predictability of one series from another. Sample ACF and CCF can be estimated 

from the modelled data using Equations 1 and 2, respectively (Shumway and Stoffer 

2000).

n -h

[1] ACF = n

Zto+A ~x̂y< -y)
[2] CCF =
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where n is the number of data points, h is the time lag, t is the time, xt and xt+h denote 

observations of variable x  at times t and t+h, respectively, y t and y t+h represent 

observations of variable y  at times t and t+h, respectively, and x  and y  are the mean of x  

and y, respectively. Although the ACF and CCF are important for model formulation, 

they do not provide all the information needed to choose a candidate TS model order, 

especially if an autoregressive component is to be modelled (Box and Jenkins 1970). 

Thus, PACF is required to provide the missing information needed for model 

development. The Durbin-Levinson algorithm (Durbin 1960) can be used for sample 

estimation of PACF.

An alternative representation to TS analysis is spectral analysis, which deals with 

the frequency domain in place of the time domain. Such representation is very 

important to highlight the dominant frequencies entrenched in the studied series and to 

distinguish between true variation and variation due to noise. Although this 

representation was not used in formulating a candidate ARMAX model, it is described 

here because it was used later to improve the ANN model construction. The variance 

profile over the frequency (periodogram) is used to estimate the dominant frequency in 

all studied series. The periodogram and squared coherence are the Fourier transformed 

version of the sample ACF and CCF, respectively. Equations 3 through 5 evaluate the

smoothed periodogram ( f ( v ) ) estimated from n data points (Shumway and Stoffer 

2000). The squared coherence can be estimated from a bivariate extension of Equation 

3:
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[3] f{v) = j  (Lf l x 2c 0ok +l /n)  + X ] (ok +l /  n)]
L l = - ( L - 1 ) / 2

n

[4] X c(vk + IIn) -  n xll'Y_lxt cos(2;r(ut + / / n)t)
t= \

[5] X s(ok + / / « )  = n~xn^ x ,  sin(2^-(t>i +/ /«)r) ,
( = i

where « is the number of data points, t is the time, xt is the observation of variable x  at 

times t, vk is the frequency of interest, L is a smoothing parameter that should be 

assigned an odd number and should be fairly small relative to n, and X c and Xs are the 

cosine and sine Fourier transformations, respectively.

The development of the ARMAX models incorporated in this study can be divided 

into four stages. First, the patterns of the sample ACF, PACF, and CCF were analyzed 

and significant model parameters were identified. Second, maximum likelihood was 

used for model parameter estimation. Third, the first two stages resulted in a set of 

models that could define the problem of interest, thus, a selection criterion for the 

produced models was made based on two statistical measures of goodness-of-fit that 

penalize the error variance by a term proportional to the number of model parameters 

(Shumway and Stoffer 2000). The multivariate corrected Akaike’s information criterion 

(AICc) suggested by Bedrick and Tsai (1994) and the Bayesian information criterion 

(BIC) recommended by Schwartz (1978) (Equations 6 and 7, respectively) were used as 

model selection criteria. The AICc and BIC statistics are expected to provide adequate
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model parsimony and to prevent overfitting of the data. Their use acts as dividing the 

data into a calibration data set (for parameters estimation) and a cross-validation data 

set (for testing model generality) (Shumway and Stoffer 2000). Finally, model 

diagnostic checking was conducted by examining model residuals and comparing them 

to white noise. The ACF of the residuals with the Ljung Box form of the Q-statistic test 

(Ljung and Box 1978) was used to examine the model residuals. The ASTSA software 

package (Shumway and Stoffer 2000) was used for parameter estimation, ACF, PACF, 

CCF, periodograms and squared coherence calculations.

[6] AICc = In
RSSk

n
n + k

H----------------
n - k - 2

RSSk k log(«) 
n J n

where RSS^ denotes the residual sum of squares under the model with k  parameters, and 

n is the number of data patterns.

A key assumption in estimating the previously mentioned statistics is that the

studied TS should be weakly stationary (i.e., the mean and variance are assumed

constant and independent of time, and the covariance is assumed to be a function of the

lag h and not the time). This condition is a decision of pooling data together for

subsequent statistical calculations. Investigating the ACF and PACF of the Willow

Creek TP concentration TS (Figure 2-2) provided sufficient evidence that the stationary

condition had been violated. The slow decay in the ACF and the peak at lag 1 in the

PACF indicate nonstationary behavior (Shumway and Stoffer 2000). Willow Creek
34
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flow TS exhibited a similar behavior. To be able to model these series, a transformation 

was mandatory to attempt to achieve stationary conditions. The first difference 

transformation was found to enhance the process towards stationary conditions 

significantly. Figures 2-3 and 2-4 demonstrate that the slow decay in the ACF of both 

flow and TP concentration no longer existed and that the lag-1 peak of their 

corresponding PACF was highly reduced. These are symptoms of weakly stationary TS, 

making modelling the first difference series by using ARMAX a valid option 

(Shumway and Stoffer 2000).

Examining the sample ACF and PACF after applying the first difference operator to

the series illustrates that ACF cuts off at lag 5 and that PACF cuts off at lag 7 for TP

(Figure 2-3), whereas ACF cuts off at lag 6 and PACF cuts off at lag 8 for Q (Figure 2-

4). The sample CCF demonstrated a significant correlation between the flow and TP

concentration series in the lag range of (0 to 6), with a maximum correlation of 0.55 at

zero-lag (Figure 2-5). This result proved that the daily change in the TP concentration

was strongly correlated to the daily change in the mean daily Q. The high correlation

between the two series suggested that it is possible to model the daily change in the TP

concentration (ATP) from Q data by using the ARMAX modelling approach. The

results of the smoothed periodograms of both the Q and TP concentration illustrated

that most of the power was at frequencies less than 0.03, corresponding to a period of

one to two months (Figure 2-6). This result indicated that monthly variation within the

typical annual cycle represented the highest contributor to the variance and should be

dealt with as the dominant frequency in the data. A peak at a period in the neighborhood

of four days was also significant, but with much less power than that of the monthly
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variation. The strong coherence at the Q and TP frequencies of interest (squared 

coherence > 0.95) confirmed the likelihood of modelling ATP from the Q series (Figure 

2-7).

Following the ARMAX model-building guidelines summarized above and 

expressed in more detail in Box and Jenkins (1970) and Shumway and Stoffer (2000), 

and based on the examined ACFs, PACFs, and CCF, we concluded that ATP 

concentration at time t was likely a function of ATP concentration for seven lags and 

AQ for six lags. The previous set of possible inputs resulted in 126 different models. All 

alternative models were formulated, and model parameters were estimated by using 

maximum likelihood. Both AICc and BIC were used for model selection. Equation 8 

represents the model that resulted in the minimum value of the two criteria. Equation 8 

can be expressed in terms of the TP concentration instead of the ATP, as represented by 

Equation 9.

[8] ATP, =p, AQt + p2 AQt.i + wt

[9] TP, = TP,.j +Pj (Q, - Qt.O + p2 (Qts - Qt-d + w ,,

where TPt and TPt.i are the TP concentration in pg L '1 at times t and t-1, respectively;

i  I

Qh Qt-h Q,s, and Qt- 4  are mean daily stream flows in m s' for times t, t-1, t-3, and t-4, 

respectively; Pi and p2 are model parameters; and w, is the model residual at time t. 

The values of Pi and ,82 were found to be equal to 204.6 (P < 0.001) and 134 (P < 

0.001), respectively.
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Cross-correlation analysis of the air temperature and TP concentration revealed the 

low dependency of the TP on the air temperature. However, because the air temperature 

plays an important role in the dynamics of the TP in the environment and because the 

weather data were already available via Environment Canada, including such 

information in ARMAX model development was also investigated. The results 

indicated that adding the air temperature to the model increased both the AICc and BIC, 

confirming that the previously obtained model (Equation 9) was the most parsimonious.

The model managed to predict the peak locations correctly, but the predicted peak 

response was overestimated for three peaks (Figure 2-8). During snow melt, ARMAX 

managed to predict the peaks; however, it tended to oscillate around the mean value 

between peaks (Figure 2-9). The overall model performance was satisfactory with a 

coefficient of multiple determination, R (Equation 10) of 0.78. Table 2-1 summarizes 

the statistical performance of the model results based on five measures of goodness-of-

where y  is the actual value, y  is the predicted value, and y  is the mean of the y  values.

The final stage of the modelling procedure was to examine the model residuals. The 

obtained ACF for the residuals resembled white noise with 90% confidence. The Q- 

statistic test showed a slight deviation from the acceptable chi-squared value at the same 

confidence level. Attempting to improve model predictions even more, ARM A models 

were fitted to the residuals. Nevertheless, the model accuracy was not enhanced

fit.

[10] i?2 = l -
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significantly, and therefore, the obtained model (Equation 9) was represented as the 

most parsimonious model obtained by using the TS approach.

2.5. ANN TP Modelling

ANN models attempt to implement structures and functions to simulate the data 

processing capabilities of human brains. The most widespread ANN design consists of 

an input layer, hidden layer(s), and an output layer, usually termed the multi-layer 

perceptron (MLP). The input layer introduces inputs to the network and scales them in a 

range that the neural network can deal with efficiently. The hidden layer(s) processes 

inputs by applying non-linear activation function(s) attaining the non-linearity of the 

network. The output layer represents the response of the network (Hayken 1994). A set 

of connection weights (model calibration parameters), which link neurons together, 

provides the connection strength between these neurons. Typically, the data to be 

modelled are split into two sets: a training set for model calibration and a testing set for 

model validation. ANN models apply a set of rules that change the connection weights 

iteratively during the learning process until a stopping criterion is reached. Maier and 

Dandy (1996) and Zealand et al. (1999) reported that over 80% of previous neural 

network models used a back-propagation (BP) training algorithm, which is a supervised 

learning technique. In the BP algorithm, the weights initially are assigned arbitrary 

small values. As training progresses, the weights are updated systematically, and the 

network output is compared with the target output; meanwhile, the mean squared error 

(MSE) between the two is calculated. Weight adjustments are made based on an
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objective function that reduces MSE attempting to reach a global minimum. The 

training process stops when a prescribed stopping criterion is reached. Performance 

criteria to measure goodness-of-fit for both training and testing data sets are used to 

assess model accuracy.

Albeit easy in concept, vigilant care must be taken in the choice of network 

architecture (number of hidden layers, number of neurons, type of scaling and activation 

functions, learning and momentum rates, and stopping criteria). A good design should 

provide parsimony, generalization ability, avoid overlearning (memorizing the data), 

and should not be stuck in a local minimum.

The ANN modelling approach conducted in this study can be divided into three 

main phases: data pre-processing, model building, and model evaluation. During the 

data pre-processing phase, the modeller should develop an understanding of all the data 

features, identify possible model inputs and highlight their proportional importance, and 

survey the possible causes of any unexpected feature entrenched in the data. The model 

building phase relies on the modeller’s experience to construct a parsimonious model 

capable of not only representing the data used in its building but also generalizing to a 

wider span of data. This phase includes the choice of the optimum ANN architecture, 

selection of training algorithm, optimal data division for ANN training and testing, and 

the decision about when to stop training. The model evaluation includes statistically 

measuring the goodness-of-fit of the developed model, graphically examining the 

measured versus predicted profiles, and analyzing the model residuals.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As demonstrated by the TS approach, the daily change in the TP concentration is a 

function mainly of the change in the mean daily Q at different time steps (being the 

outcome of all hydrologic processes defining the study watershed). Although air 

temperature did not enhance the ARMAX prediction skill, it was still included in the 

ANN model attempting to achieve the best possible model using this approach. TP and 

Q are known to experience hystereses loops due to the seasonal TP/Q cyclic behavior, 

and thus, spectral analysis was used to identify the predominant data cyclicity. This 

information was then fed to the ANN in terms of additional input parameters, as 

described later in this section.

The CCF of Q and TP concentration (Figure 2-5) demonstrated that the daily change

in TP concentration was strongly correlated to Q at the same time through six days

ahead. Initial model runs showed that the addition of Q inputs beyond three days ahead

did not have any impact on ANN predictions, likely because the CCF values above lag

three slightly deviated from the 95% confidence boundaries. Hence, four inputs were

used to represent Q, and maximum, minimum, and average air temperatures were used

to account for the temperature effect. To account for the seasonal variation in TP/Q

behavior, spectral analysis was utilized. The motivation for the method was based on

the fact that any parameter subject to natural periodic variation can be approximated

with sine and cosine waves at different phase angles (Chatfield 2001). The TP/Q

hystereses loops was dealt with by introducing two additional model inputs namely,

sin(27tvx) and cos(27ivx), where v  represents the dominant frequency of the data, and r

is a time index. The dominant frequencies were obtained from the smoothed

periodogram of the TP concentration (Figure 2-6). This frequency range corresponds to
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a time interval of one to two months. One month (v = 1/12) was used in this study for 

not missing any period of interest.

Therefore, 10 neurons were used in the input layer (representing Qt, Qt.i, Qt-2, Qt-3,

TPt.i, Tmin, Tmax, Tavg, sin(2n t/12), and cos(2n r/12)), where Qh Q,.h Qt.2, Qt-3 represent

mean daily stream flow at the downstream end of the creek at times t, t-1, t-2, and t-3,

respectively; r  is the month number; and Tmin, Tmax, and Tavg were the minimum,

maximum, and average air temperatures, respectively. A linear scaling function was

used to scale the inputs in the range of « - l  , 1 » .  Only one neuron was used in the

output layer to represent TP concentration. The tanh activation function was used in the

output layer because it outperformed linear, sigmoidal, and Gaussian functions. The

initial model runs demonstrated that one hidden layer with one activation function was

not adequate to represent the complex system under investigation. Increasing the

number of hidden layers did not improve prediction, as the network started to memorize

the data. Upon examination, three distinct processes (base flow, snow melt, and storm

events) became apparent. To account for possible variation in the system response when

dominated by any of the three distinct processes, the hidden layer was constructed from

three slabs with different activation functions. Different activation functions applied to

hidden layer slabs can detect different features in a data pattern processed through the

network. Thus, a three-slab hidden layer design may use a Gaussian function on one

hidden slab to detect features in the mid-range of the data, and use a Gaussian

complement in another hidden slab to detect features from the upper and lower

extremes of the data. Using the sigmoidal function in the third slab can also be helpful

to map irregularities in the data and patterns not captured by the other Gaussian
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functions. Thus the network can “view” the data analogously to the three distinct 

processes. The sigmoidal, Gaussian, and Gaussian complement functions were the 

selected activation functions for the three slabs because they revealed the highest model
‘j

performance in terms of R . Equations 11, 12, and 13 denote the sigmoidal, Gaussian, 

and Gaussian complement functions, respectively, representing the hidden layer slabs’ 

transfer functions within the selected network architecture (Figure 2-10).

[11] =  71 + e

[12] f (x )  = e-xl

[13] / (* )  = l - e ~ xl

The data set was divided into two portions, three-quarters for model training

(calibration) and one-quarter for model testing (validation). The data set was divided

based on an algorithm that targeted a similar frequency distribution of each data set,

with extreme and rare values going to the training data set. A back-propagation training

algorithm with a batch update technique was used for training. The NeuroShell 2

TurboProp training algorithm was used to achieve this task (available from Ward

Systems Group, Inc., USA). In this algorithm, training proceeds through an entire epoch

(the number of patterns in the training set) before the weights are updated. It adds all of

the weight changes and at the end of an epoch modifies the weights. Training was

stopped at the best testing set to prevent overfitting the data. A systematic approach was

utilized to choose the optimum number of neurons per hidden layer slab (El-Din and
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Smith 2002a). Too many neurons can make the network memorize the data, thereby 

reducing the generalization ability of the model, whereas an insufficient number of 

neurons can make the network be unable to capture all input/output relations 

successfully. In this study, a constructive network was used where only one neuron was 

used per slab, and the network performance was monitored for both the training and 

testing data sets. We then continued to add neurons and to monitor the network

9  9performance (by using R ) and plotted the R versus the number of neurons for the 

testing and training data sets. Typically, increasing the number of neurons should 

enhance the training-set performance, but the testing-set R2 should increase as long as 

adding neurons helps in correctly predicting outputs from inputs, and should decrease 

when the network starts to memorize the data. The use of two neurons per slab achieved 

the best network performance with the maximum probability of getting a parsimonious 

model (Figure 2-11). As a final step in model development, scatter plots of the model 

residuals were examined for possible trends; however, none existed, indicating 

acceptable model residuals.

The ANN model (Figure 2-10) managed to predict the training and testing data sets

9    9with R values of 0.92 and 0.86, respectively. The high R values associated with both 

data sets provided evidence of good model prediction accuracy and high generalization 

ability (Figure 2-12). It could be inferred that prediction accuracy was good for the 

entire data range (all predictions were close to the 45° line). In general, the model was 

successful in predicting the TP concentration trend, including the low concentrations 

(mostly corresponding to the base flow) as well as the peaks (corresponding to the rain

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



events and snow melt) (Figure 2-13). Moreover, the model did not suffer from any lag 

phenomena.

It is important to assess the relative importance of model inputs as described by 

Garson (1991). Doing so can help improve the data collection protocol, and to allow 

more time and effort to be expended on more important inputs. Stream flow, as 

expected, proved to be the most significant input (Figure 2-14). This result supports the 

hypothesis mentioned previously, that the main source of the TP loading to the stream is 

the erosion of watershed soils (particulate phosphorus). The periodic nature of the 

process (seasonal variation impact and TP/Q hystereses) was an important factor, but 

the temperature effect was the least significant (Figure 2-14).

2.6. Discussion and Implications

The main goal of this study was to compare the merits of two data-driven modelling 

alternatives for their ability to model the water-phase TP concentration. Thus, each 

approach was optimized to its best even if the model inputs were different in both cases. 

However, for the sake of comparison, the times when the TP concentration was 

estimated to allow ARMAX model formulation were eliminated to provide a similar 

time basis for comparing both approaches. Table 2-1 summarizes their statistical 

performance. The devised ANN model outperformed the ARMAX model based on R2, 

root mean squared error (RMSE), AICc, and BIC. However, ARMAX produced less 

bias, reflected by the lower mean relative error (MRE). The better statistical 

performance, as well as the better match of the measured versus the predicted TP

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



concentration profiles for the devised ANN model, demonstrated that ANN is superior 

to ARMAX in modelling nonstationary TS and gapped data. The nonlinear processes 

inherent in the TP dynamics are likely what favored the ANN approach.

Based on our experience and confirmed by the results of this case study, the 

following guidelines can improve ANN modelling of time correlated variables 

experiencing hystereses loops:

(1) Model inputs should be divided into causal inputs, time-lagged inputs, and 

inputs that represent seasonality. Causal inputs are to be identified based on 

the physical understanding of the modelled process and according to data 

availability and economy. TS analysis should be included to identify 

possible time-lagged inputs. A smoothed periodogram is to be plotted and 

investigated for the dominant periodic nature. Two additional model inputs 

are to be included to represent such cyclic behavior. This application would 

provide the modeller with all relevant model inputs.

(2) All input/output data pairs are to be grouped and then divided in two data 

sets: training for model calibration and testing for model validation. The 

division should be made by attempting to match the two data sets’ 

histograms with the extreme values being assigned to the training data set. 

This process can be performed by sorting all input/output data pairs in 

ascending order with respect to the modelled parameter, and then extracting 

one input/output data pair for the testing data set every n+1 patterns and 

leaving the rest for training. Here, n represents the ratio of the training to the
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testing data sets (a value of two is commonly used in practice; however, this 

value should be increased for shorter data spans). The histograms of the two 

data sets should then be investigated, and any absent data patterns in the data 

sets should be identified. Redistribution should be iteratively conducted until 

the two histograms have an optimal match.

(3) The ANN is then to be trained by using the error back-propagation algorithm 

and according to the description in the “ANN TP Modelling” section.

(4) The modeller should start with the simplest converging model possible (this 

takes few iterations until convergence is attained). Adding network 

complexity in terms of the number of hidden neurons, changing the 

activation function per hidden neuron, and choosing the number of hidden 

layers should be based on the prediction performance criterion set by the 

modeller (e.g., R ).

(5) Finally, several statistics like R , RMSE, and MAE, as well as visual 

inspection of the measured versus predicted profiles and model residuals, 

should be utilized for model evaluation.

Figure 2-15 summarizes the proposed guidelines for modelling time-correlated 

variables using back-propagation ANN models.

The current study established step-by-step guidelines for modelling time-correlated 

variables using ANN. It provided two modelling alternatives that can be applied for the 

real-time prediction of the TP concentration in the Willow Creek watershed. Such 

models can also act as transfer functions to simulate the impact of scenario-based daily
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increases in streamflow on daily changes in TP concentration. These scenarios can be 

designed to reflect important factors like climate change impacts. Moreover, the 

algorithm can potentially be generalized for larger industrial landscapes and different 

snow-pack-dominated constituents.

2.7. Conclusions and Final Remarks

In this study, two approaches were used to model the in-stream TP concentration for 

the Willow Creek watershed, Alberta, Canada. Based on the modelling results, the 

following conclusions can be drawn:

• Both ARMAX and ANN predicted the TP concentration with reasonable accuracy. 

R2 values of 0.78, 0.86, and 0.92 were obtained for ARMAX, the ANN testing data 

set, and the ANN training data set, respectively.

• Based on 4 measures of goodness-of-fit statistics (R , RMSE, AICc, and BIC) and 

by examining the predicted versus the measured TP concentration profiles for the 

two modelling approaches, it was evident that ANN outperformed ARMAX. The 

inherent nonlinearity of the modelled process is likely to favour the ANN approach.

• Whereas ANN was capable of modelling gaped data efficiently, the ARMAX 

approach required equally spaced data values; therefore, values had to be estimated 

for the times when measurements were not available for model development.
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• In this study, a multi-slab ANN was designed and utilized, in which a three-slab 

hidden layer with three different activation functions was used to reflect the distinct 

system behavior with respect to base flow, snow melt, and rain events.

• The seasonal variation in the TP/Q behavior was adequately addressed by coupling 

spectral analysis and ANN techniques.

• The strength of the ANN connection weights can reflect the relative importance of 

the input parameters. Applying this concept demonstrated that the flow and seasonal 

indices (representing data periodicity) were more important than temperature 

variations for predicting TP concentration.

• The current study provided two modelling alternatives that can be applied for the 

real-time prediction of the TP concentration in the Willow Creek watershed. Such 

models can also act as transfer functions to simulate the impact of scenario-based 

daily increases in the streamflow on daily changes in the TP concentration. These 

scenarios can be designed to reflect important factors like climate change.

• This study also proposed systematic guidelines for modelling time-correlated 

variables that suffer data hystereses by combining the TS concepts to identify 

possible time-lagged inputs and the dominant periodicities in the data, and the ANN 

modelling capabilities. These guidelines can potentially be applied for modelling 

other water quality parameters including diffuse pollutants associated with the 

melting of contaminated snow packs.
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Table 2-1. Summary statistics of the two modelling approaches.

Rz RMSE (pg L 1) MRE AICc BIC

ARMAX model1 0.77 36.7 1.3 % 8.22 7.21

ANN model 0.91 23.6 -6.5 % 7.39 6.40

tPeriods when TP concentration was estimated for the sake of ARMAX modelling were 
eliminated to compare both models based on similar data patterns.
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Figure 2-1. Daily stream flow hydrograph and TP concentration profile of Willow 

Creek watershed from 5 May 2001 through 31 October 2002.
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Figure 2-2. ACF (a) and PACF (b) of TP concentration time series, dotted lines 

showing upper and lower 95% confidence boundaries.
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Figure 2-3. ACF (a) and PACF (b) of first difference TP concentration time series, 

dotted lines showing upper and lower 95% confidence boundaries.
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Figure 2-4. ACF (a) and PACF (b) of first difference Q time series, dotted lines 

showing upper and lower 95% confidence boundaries.
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Figure 2-5. CCF of flow and TP concentration time series after applying first 

difference to both series, dotted lines showing upper and lower 95% confidence 

boundaries.
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Figure 2-6. Smoothed periodogram of Q (a) in ([m3/s]2 and TP

concentration (b) in [fig/L]2 time series, L=3.
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Figure 2-7. Squared coherence of flow and TP concentration time series. Dotted 

lines depict dominant frequency of both series, L=3.
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Figure 2-8. Measured and ARMAX predicted TP concentration profiles.
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Figure 2-9. Scatter plot of measured and ARMAX predicted TP concentration.
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model performance.
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training data set (a) and testing data set (b).
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CHAPTER 3. THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO 

Q AND ATP IN SMALL STREAMS ON THE BOREAL PLAIN, WITH 

EMPHASIS ON THE ROLE OF WETLANDS

3.1. Introduction

Natural (mainly wildfires and insects) and anthropogenic (primarily forest 

harvesting) watershed disturbance are thought to cause a measurable increase in water 

yield and water-phase nutrient concentrations in the Canadian Boreal Plain. This in turn 

has implications for the ecological function in terrestrial and aquatic habitat. Possible 

consequences of the accelerated rate of watershed disturbance are dissolved oxygen 

depletion, increased cyanobacteria growth, and cyanobacteria toxin production, 

threatening to destabilize aquatic ecosystems of the region (McEachem et al. 2000; 

Prepas et al. 2001). Ecological considerations in forest management in the Canadian 

Boreal forest have focused on forest polygons and terrestrial biodiversity. The Forest 

Watershed and Riparian Disturbance (FORWARD) project looks into the problem from 

a watershed perspective rather than a forest polygon viewpoint. It is a multi-sector 

interdisciplinary initiative based in the Province of Alberta, Canada. The study area is 

located in the Virginia Hills, Alberta (Figure 3-1).

A version o f this chapter has been published. Nour, M.H., Smith, D.W., Gamal El-Din, M., and Prepas, 
E.E. 2006. The application o f artificial neural networks to flow and phosphorus dynamics in small 
streams on the Boreal Plain, with emphasis on the role o f  wetlands. Ecol. Modell. 191: 19-32.
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Extensive monitoring of soil, vegetation, and water phases of 16 small watersheds 

(3 to 250 km ) began in the year 2000. Seven of the watersheds are undisturbed 

systems, four were up to 100% burned during the massive Virginia Hills fire of 1998, 

whereas four were harvested in the winter of 2003. Stream discharge and water quality 

data were collected and analyzed for suspended solids, phosphorus, nitrogen, and 

dissolved organic carbon (detailed description of the project is presented in the special 

issue of J. Environ. Eng. Sci. volume 2, 2003). The area is exemplified by low 

topographic relief and alkaline phosphorus-rich soils (mainly fine-textured Luvisols) 

developed from sedimentary bedrock (Prepas et al. 2004). During snowmelt and rain 

events, when soil is more susceptible to erosion, it represents the highest threat with 

respect to phosphorus migration to water bodies. Particulate phosphorus, being the 

dominant phosphorus form in the region during storm flow, is the main contributor to 

nutrient enrichment of receiving streams. This study focuses on modelling total 

phosphorus (TP) concentration based on data collected from two of the undisturbed 

watersheds from 2001 to 2003. Earlier studies have demonstrated the importance of 

wetlands in controlling hydrologic processes and nutrient dynamics in the region 

(Prepas et al. 2004). The two watersheds (1A Creek, 5.1 km2 and Willow Creek, 15.6 

km2) reflect variations in wetland percentage areal coverage and wetland composition in 

the study area (Figure 3-1). 1A Creek differs from Willow Creek not only in the 

percentage of area occupied by wetlands (30% and 10% for 1A and Willow, 

respectively) but also in wetland composition. Watershed 1A is distinguished by having 

over 75 % of its wetland surface area occupied by the so called “toe seepage 2” map 

unit adjacent to stream channels (Figure 3-2). This map unit shares moist to wet soil
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conditions of other wetland types. It differs in that forest vegetation is often lacking, and 

instead these sites are dominated by shrubs, alder and willow. Unlike the other map 

units, it is not found at major slope inflection points, but occur higher up on the plateau 

flanks. The physiographic setting and soil conditions within this unit suggest that 

groundwater discharge from the ground water of neighboring watersheds could be 

responsible for the wet soil conditions. Just to the west of where these units were 

mapped lies an area of several square kilometers of muskeg, considerably higher in 

elevation, which may be the source of the discharge in the 1A watershed. In addition to 

soil moisture conditions, soil profiles often have organic enriched A-horizons reflecting 

good conditions for vegetation growth. In addition, the wettest sites typically have peat 

layers. Common soil profiles include Terric Mesisol in depressional slope positions, 

Gleysolic (Humic and Luvic Gleysols) at lower to mid slope positions and Luvisolic 

(Gleyed Dark Gray Luvisolic subgroup) at mid to upper slope positions. The parent 

materials are primarily moderately fine textured till. These features make this wetland 

composition distinct and is, thus, suspected of being transiently disconnected from 

stream networks eliminating and/or delaying the influence of this land area on water 

and nutrient export, especially in periods when the soil is still frozen early in the snow 

melting season (Prepas et al. 2004).

The temporal and spatial dynamics of physical, chemical, hydro-morphological, and 

biological processes controlling phosphorus transport are relatively well understood at 

the microscale. Upscaling to the larger watershed through parameterization techniques 

is very data intensive and economically infeasible in most cases (Maier et al. 1998). 

Scarcity of relevant data at the watershed scale and the heterogeneity and incomplete
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understanding of biogeochemical processes at this scale make physically based models 

of limited use (Band et al. 2001). On the other hand, data driven models have been 

successful in capturing trends, with less knowledge of the behavior of the system in 

terms of interactions between biological, geological, chemical, hydro-morphological, 

and physical processes affecting the modeled system. Data driven models are 

consequently attractive alternatives to traditional conceptual models. Amongst these 

techniques, artificial neural networks (ANNs) and time series (TS) models hold promise 

for water quality modelling. The focus of this work is the ANN models due to their 

capabilities in handling multi-dimensional non-linear problems, their ability to learn 

from examples, and to generalize to a wider data domain. However, TS analysis is also 

included for better representation of the modeled processes. In the last decade, ANN has 

found a wide range of applications in the area of water quality modelling. Examples 

include: (1) Brion and Lingireddy (2003) predicted peak microbial contamination of 

Giardia and Cryptospordium spp. in Delaware River, USA; (2) Maier et al. (1998) 

modeled the incidence of Anabaena spp. in the River Murray, Australia four weeks in 

advance; (3) Maier and Dandy (1996) used ANN for salinity prediction 14 days in 

advance; and (4) other applications include: predicting phosphorus concentrations based 

on watershed characteristics of 927 tributary sites throughout the USA (Lek et al. 1996), 

same-day and 30-day ahead predictions of algal abundance in six freshwater lakes in 

Japan and Australia (Wilson and Recknagel 2001), pH modelling in Middle Loire 

River, France (Moatar et al. 1999), and color in the North Saskatchewan River (Zhang 

and Stanley 1997).
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The objectives of this study were: (1) to provide a modelling tool to predict the 

average daily flow and the daily change in the TP concentration that can be applied for 

both gauged and ungauged forested watersheds; and (2) to assess the impact of the 

wetland area and composition on model formulation and performance based on two 

selected case studies, 1A Creek and Willow Creek watersheds.

3.2. Time Series Analysis

A time series is a collection of samples of a given variable measured at different 

points in time. Time series analysis typically expresses the information contained in the 

data in either the time domain or the frequency domain (Shumway and Stoffer 2000).

The time domain analysis is motivated by the assumption that the correlation 

between adjacent points in time is best explained in terms of a dependence of current 

value on past values of the same parameter of interest. Multivariate time series analysis 

not only requires identifying the dependency of current value on past values of the same 

series but more importantly on other time series as well. To evaluate the strength of the 

relationship between the output time series and the potential input time series, cross

correlation analysis has to be performed to estimate such strength for several time lags. 

The time-lagged inputs that can be correlated with the output variable are then 

considered as model inputs. To identify the significant time-lagged inputs for all four 

models developed in this study, cross-correlation analysis was adopted. A statistical 

cross-correlation function (CCF) was estimated for the candidate model output time 

series and the potential input time series (Shumway and Stoffer (2000) provided a
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detailed description of this technique). Figure 3-3 presents the CCF of 1A Creek flow 

and TP concentration to demonstrate the approach. It shows that TP concentration can 

be significantly affected by flow for six consecutive lags. The CCF estimation is not 

very accurate if  the time series under study is not weakly stationary, which is the case in 

the studied series. Hence, the identified significant time-lagged inputs are dealt with as 

upper boundaries, and the possibility of eliminating some of these inputs is further 

explored in an attempt to build a parsimonious candidate ANN model.

Frequency domain analysis or spectral analysis assumes that the primary 

characteristic of interest in any time series relates to the periodic systematic sinusoidal 

variation found in data. It is inspired by the possibility of representing any complex 

signal as the sum of pure sine and cosine wave functions. This representation of a time 

series allows emphasis of the important information within a time series and the 

opportunity to distinguish between the true variation and the variation due to noise 

(Masters 1995). A spectral analysis approach is used in this study to identify the 

dominant periodic nature in the flow and TP time series. This information is used to 

address hystereses between TP concentration and flow. The variance profile over the 

frequency (power spectrum) was used to estimate the dominant frequency in all studied 

series. Figure 3-4 is a demonstrative power spectrum of 1A Creek flow and TP 

concentration. It shows that most of the power is highlighted at frequencies less than 

0.03 (the peak of the power spectrum in Figure 3-4), corresponding to a period of one to 

two months for both time series. This outcome indicated that the monthly variation 

within the typical annual cycle represents the highest contributor to the variance and 

should be dealt with as the dominant frequency in the data.
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3.3. Artificial Neural Networks

Inspired by the computational capabilities of human brains, artificial neural 

networks (ANNs) have found wide applications in recent years. The most widespread 

ANN design consists of an input layer, hidden layer(s) and an output layer of processing 

units (neurons). This ANN structure is usually termed the multilayer perceptron (MLP). 

The input layer introduces inputs to the network, and applies a scaling function to them 

so that they are in a range that the network can deal with efficiently. The hidden layer 

then transforms the inputs by non-linear activation function(s), thus attaining the non- 

linearity of the network. The hidden layer can be divided into multi slabs (each slab is a 

group of neurons), in which neurons within a slab have the same activation function, 

whereas neurons in different slabs have different types of activation functions with 

sparse interconnection between slabs. The output layer represents the response of the 

network (Haykin 1994). A set of weighted connections link neurons together, reflecting 

the strength of the connection in magnitude. These connection weights can be looked at 

as the model calibration parameters. ANNs apply a set of rules that change connection 

weights iteratively, during the learning process, until a stopping criterion is reached. 

Maier and Dandy (2000) and Zealand et al. (1999) reported that over 80% of previous 

neural network models used a back-propagation (BP) training algorithm, which is a 

supervised learning paradigm. By supervised learning, it is meant that a desired 

response is available to guide the learning process. In the BP algorithm, the weights are 

initially assigned arbitrary small values. As training progresses, the mean squared error 

(MSE) between the target output and the network output is calculated, and the weights 

are updated systematically. Weight adjustments are made based on an objective
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function that reduces MSE, attempting to reach a global minimum in the error surface. 

The training process stops when a prescribed stopping criterion is reached. Figure 3-5 

shows the training process, illustrating how the input information propagation and the 

error back-propagation algorithm are utilized within the neural network architecture.

Typically, data have to be divided into two sets; training and testing data sets akin to 

the calibration and validation data sets used for conventional model development. 

However, the authors’ experience with ANN modelling suggests that, subject to data 

availability, data should be divided into three sets in the ratio 3:1:1 for training, testing, 

and cross validating the model, respectively. The training data set was used to adjust the 

connection weights. The testing data set allowed building a robust model by 

determining when to stop training. The ability of the model to generalize (i.e. to 

produce correct results on previously unseen data, rather than just to memorize the data 

already encountered during training) was finally measured by applying the developed 

model to the cross-validation data set. This strategy was adopted by other researchers, 

for example Maier and Dandy (2000), Ryan et al. (2004), and Zhang et al. (2004).

In this study a MLP ANN trained with the error BP algorithm was used to model 

both the flow and TP concentration of 1A Creek and Willow Creek watersheds. A 

thorough description of model formulation is given in the model development section.
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3.4. Development of ANN Models

This study was aimed at devising an ANN modelling tool that can predict the flow 

and TP concentration for ungauged watersheds (where daily flow is not monitored) in 

the Boreal Plain of Western Canada. Therefore, all inputs should be easily accessed via 

a public-domain database, like the Environment Canada weather database, without the 

need to install flow gauges in each modeled watershed. This requires predicting flow 

first, then using the predicted daily flow as inputs to predict the associated daily change 

in TP concentration. The ANN modelling approach conducted in this study can be 

divided into three distinct phases: data pre-processing, model building, and model 

evaluation.

During the data pre-processing phase, the modeler should develop an understanding 

of all the data features, identify possible model inputs and highlight their proportional 

importance, and survey possible causes of any unexpected feature(s) entrenched in the 

data. The model building phase relies on the modeler’s experience to construct a 

parsimonious model capable of not only representing the data used in its training but 

also a wider span of data, including that related to other similar watersheds. This 

includes the choice of the optimum ANN architecture and network internal parameters, 

the selection of the training algorithm, the optimal data division for ANN training and 

testing, and the decision about when to stop training. The model evaluation includes 

statistically measuring the goodness of fit of the developed models, graphically 

examining the measured versus the predicted profiles, and analyzing the model 

residuals.
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3.4.1. Data Pre-processing Phase

The data pre-processing phase is intended to ensure that all data features are well 

understood, to identify possible model inputs, and to detect possible causes of any 

unexpected feature(s) entrenched in the data. Five important features were identified to 

be consistent in all studied data sets (Willow Creek and 1A Creek flow and TP 

concentration time series):

(1) an annual cyclic nature;

(2) seasonal variations within the year;

(3) the variables are highly correlated with time;

(4) the 2001 flow hydro graph reflects high rain events while both the 2002 

and 2003 hydrographs are dictated merely by snowmelt and base flow 

conditions; and

(5) hystereses loops of flow and TP concentration are noted.

Model inputs can be divided into cause/effect inputs, time-lagged inputs, and inputs 

reflecting annual and seasonal cyclic nature. The cause/effect class of inputs was 

acquired from an understanding of the physical factors controlling the modeled 

parameters. This class of inputs is described in more details for the flow models in 

Section 3.4.1.1., and for the TP concentration models in Section 3.4.1.2. However, to 

address points 1 to 5 mentioned above, time-lagged inputs, as well as inputs reflecting 

seasonal and annual cyclisity must be identified. To account for the annual and seasonal
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cyclic nature (points 1 and 2), spectral analysis was conducted to identify the dominant 

frequency explaining the data. A smoothed periodogram (as the one shown in Figure 3-

4) was constructed for all the four series in order to identify the frequencies that 

contributed most to the variance. The results showed that in an annual cycle, the 

monthly variation represents the dominant periodicity in the data, and therefore, the 

dominant frequency (v) is equal to 1/12. Acknowledging that any periodic function can 

be approximated by two sine and cosine wave functions at different phase angles 

(Chatfield 2001), the seasonal variation in the flow and TP for the two studied 

watersheds was represented by adding two distinct model inputs, namely, sin(27ivt) and 

cos(27tvt) where t is a time index that varies from 1 to 12 according to the month of the 

year. Good representation of the periodic features of the data can help the network to 

differentiate between seasons, to dynamically change the input/output relation 

according to the season, and thus, to address data hystereses (point 5 mentioned above).

When modelling time-correlated variables, model inputs should not be limited to 

cause/effect type inputs but should also include time-lagged inputs to address point 3 

mentioned above. The cross-correlation time domain analysis, as explained in Section 

3.2, was used to identify the possible time-lagged inputs.

3.4.1.1 Flow Models

Traditionally, stream flow has been estimated from rainfall using rainfall-runoff 

models. As the stream flow is closely related to the amount of rainfall, therefore the

measured rainfall time series (Rt) was used as one of the primary model inputs.
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Investigation of the modeled hydrographs implied that snowmelt is another important 

hydrologic process in the studied area. High flow values in early spring were closely 

linked to snowmelt at this time of each year. The daily snowfall measurements were 

available from the weather station close to the study area (Figure 3-1 shows the location 

of the weather station). Other variables controlling water flow include 

evapotranspiration and soil properties. Measuring these parameters and their variation 

in space and time is economically infeasible in many cases, and thus, this study 

attempted to build flow models that utilize limited weather station information, typically 

available from Environment Canada weather stations scattered on the Canadian Boreal 

forest. Therefore, the cause/effect inputs used for the flow modelling were rainfall, 

snowfall, and temperature as indicative of solar energy controlling evapotranspiration 

and snowmelt in such a forested ecosystem.

Snowmelt is typically estimated by either the energy balance approach or the 

temperature-index approach. However, due to the difficulty and expense of fulfilling the 

data requirements of the former, the latter approach is the most extensively used in the 

literature (Dingman 2002). The temperature-index approach estimates snowmelt as a 

linear function of average air temperature. The logic relies on the strong correlation 

between solar radiation and air temperature during snowmelt. This technique equates 

the daily snowmelt (Aw) as a linear function of the mean air temperature, provided that 

this temperature exceeds a base temperature for that day (Equation 1). Therefore, during 

a specified time interval (t), snowmelt is a function of the total of degree-days (ddt) 

summed up for days where temperature was above a baseline temperature (typically 

taken as zero) as represented by Equation 2.
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The cumulative snowfall at time t  (St) was used to reflect the available snow depth, 

representing the amount of snow available for melting. The cumulative degree-days 

( d d t)  were used to provide an integrated measure of the heat energy available for snow 

melting. Thus, cumulative snowfall and degree-days can act as surrogates to the 

temperature-index snowmelt approach and are therefore used as inputs for the 

developed flow models.

[  f ( T  -  T 1 T > T
n n  * \J  \  mean b / ’ mean — b[11 Aw = <

[0, Tmean < Tb

[2 ]  d d t — ^ ( T mea„(() ^6 (o )-(^+ 1  * / ) j
i=0

where, Aw is the daily snowmelt, Tmean is the daily average air temperature in °C, Tb is a 

base temperature typically taken as 0 °C, N  is the number of days during which Tmean

>  Tb, d d t  are the total degree days at time t  in °C.day, and ( t i+/ -  t t)  is typically taken as 

1 day.

Having identified the cause/effect inputs (rainfall and snowmelt), cross-correlation 

analysis was used to identify significant time-lagged inputs. Two additional inputs were 

finally added to address data periodicity and TPIQ hystereses as explained earlier. A 

summary of the inputs used in this study is presented in Table 3-1.
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3.4.1.2 ATP models

TP concentration in receiving water bodies of the Boreal Plain is mostly affected by 

soil phosphorus concentration and the intersection of the water table with surface soil 

layers. Hence, it is likely that TP concentration in water bodies increases maximally 

during snowmelt and storm events. During these periods, the soil is more susceptible to 

erosion, yielding elevated particulate phosphorus loads to water bodies. Due to the 

phosphorus-rich nature of the soil in the studied area (mainly fine-textured Luvisols 

developed from sedimentary bedrock), it is envisaged that snowmelt and storm events 

are the driving forces that cause increases in TP concentration in water streams 

(Chanasyk et al. 2003; Prepas et al. 2004). However, knowledge of soil nutrient 

concentrations, as well as possible phosphorus loads from other sources such as air 

deposition, is crucial for accurate prediction of water-phase TP concentration. In the 

absence of this information, it is only possible to predict the daily change in TP 

concentration. Nour et al. (2004) developed a model that can predict TP concentration 

using measured flow values. However, continuous flow measurements are not always 

easy to obtain, so the model’s applicability is limited to gauged watersheds. This study 

provides modelling tools that can be more broadly applied to both gauged and ungauged 

watersheds. Modeled daily flow values were used as TP ANN model inputs instead of 

flow measurements.

In the case of TP modelling, cause/effect inputs were limited to the daily average

flow (being the outcome of all hydrologic processes defining the studied watershed),

and the daily average air temperature. As with the flow modelling case, the time domain

analysis was used to identify possible time-lagged inputs, and the frequency domain
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analysis was conducted to determine the dominant frequencies embedded in the TP 

concentration time series. However, in this case the daily change in flow (A 0  rather 

than the time-variant flow (Q) was used as model input because it is the daily change in 

flow that explains the daily change in TP concentration. Table 3-1 summarizes the set 

of inputs that were used in the final models developed for 1A Creek and Willow Creek 

watersheds.

3.4.2. Model Building Phase

The model building phase aims at producing a robust ANN model that can 

accurately map outputs from inputs. A good ANN model should not be confined to 

mapping the data used during its development, but should be able to generalize by 

mapping other data sets. Hence, the choice of the training algorithm, the network 

architecture and internal parameters (number of hidden layers, number of neurons, type 

of scaling and activation functions, learning and momentum rates, and stopping 

criterion), and the division of the data into training (calibration), testing (validation), 

and cross-validation data sets are crucial to achieving a parsimonious model. A single 

hidden layer with three slabs operating with three different activation functions was 

found to provide the optimum network architecture for all the devised models. It 

appears that the three-slab hidden layer can capture the three different hydrologic 

behaviors of the modeled system (base flow, storm events, and snowmelt). Initial model 

development attempts demonstrated that one hidden layer with one activation function 

is not adequate to represent the complex system under investigation. Increasing the
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number of hidden layers did not improve the models’ prediction ability, as the network 

started to memorize the data. Dividing the hidden layer into three slabs with three 

different activation functions produced the most accurate model in all the studied cases. 

The exploration of the studied system highlighted three distinct controlling processes 

(base flow, snowmelt, and storm events). Interestingly, the three slabs were able to 

represent the three distinct processes. This modular division in the hidden layer could 

possibly detect different features of the pattern processed through the network. For 

example, a network design may use a Gaussian function on one hidden slab to detect 

features in the mid-range of the data and use a Gaussian complement in another hidden 

slab to detect features from the upper and lower extremes of the data. The logistic 

function can also be helpful to map irregularities in the data and extreme patterns that 

are not captured by the other Gaussian functions. Thus, the network has three ways of 

viewing the data, analogous to the three distinct processes. The logistic, Gaussian, and 

Gaussian complement functions were the selected activation functions for the three 

slabs. The selection was based on the model performance measured by the coefficient of 

multiple determination (R ). The optimum neural network architecture for all the four 

developed models used a linear scaling function that scales the input data in the open 

interval of -1 to 1, a three-slab hidden layer utilizing the Gaussian, Gaussian 

complement, and the logistic activation functions, and the output layer consisted of one 

output neuron with different output activation functions according to the case (Figure 3-

5). The choice of the model architecture and internal parameters was judged by the 

models’ performance in terms of R2 of the testing data set and the ability to recognize 

all data patterns.
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Two training algorithms were tested in this study; the first is the typical gradient 

descent BP algorithm that utilizes a learning rate and a momentum coefficient to control 

the training speed and to facilitate moving towards a global minimum in the error 

surface (Haykin 1994), and the second is a BP algorithm with a batch update technique 

(BP-BM). NeuroShell 2 software package was used to train the models (Ward Systems 

1996). In the batch mode of BP learning, training proceeds through an entire epoch (i.e. 

it cycles through all of the patterns in the training data set) before the weights are 

updated. In the BP learning, the repeated training iterations successively increases the 

performance of the network in the training data set, typically by memorizing the 

training examples, but the resulting network may perform poorly on other data sets 

(commonly referred to as network overfitting or network memorization). The 

methodology adopted to solve this problem was to simultaneously monitor the 

performance of the training and the testing data sets in terms of R2. Training continued 

as long as the error of the testing data set was continuously decreasing and was halted 

when this error started to increase, even if that of the training data set was still 

decreasing. However, the connection weights were adjusted only on the basis of the 

training data set. A systematic approach was utilized to choose the optimum number of 

neurons per hidden layer slab (El-Din and Smith 2002). The use o f too many neurons 

could cause the network to memorize the data and, thus, reducing the ability of the 

model to generalize, whilst an insufficient number of neurons could prevent the network 

from capturing all input/output relations successfully. A constructive neural network 

was used in which each hidden layer slab was constructed only from one neuron, and 

the network performance was monitored for both the training and testing data sets. The
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network performance, in terms of R , was monitored as additional neurons were 

introduced to the hidden layer slabs. The R was then plotted against the number of 

neurons in the hidden layer for the testing and the training data sets. Typically, 

increasing the number of neurons should enhance the training-set performance. The 

testing-set performance would increase whilst the additional neurons help to correctly 

predict outputs from inputs, and will decrease when the network starts to memorize the 

data. The advantage of the second algorithm (the BP-BM algorithm) is that it is 

insensitive to both the learning rate and the momentum coefficient, giving flexibility to 

less experienced modelers (El-Din and Smith 2002). Table 3-2 summarizes the 

optimum model architecture and internal parameters utilized for the four developed 

models in this study.

3.4.3. Model Evaluation Phase

Model evaluation was based on four criteria:

(1) the coefficient of multiple determination (R );

(2) the graphical examination of both the measured and the predicted flow 

hydrographs;

(3) the residuals analyzed and checked for independence, by plotting the 

residuals versus time and versus flow time series, then the resulting plots 

were explored for trends; and

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(4) the model stability was tested by swapping the testing and cross- 

validation data sets, then retraining the ANN model and re-assessing the 

new model performance, a robust model should still perform well, even 

when the testing and the cross-validation data sets are swapped.

3.5. Results and Discussion

3.5.1. Case study 1: The Willow Creek watershed

The devised flow model for the Willow Creek watershed was able to simulate the

average daily flow successfully, with R values of 0.96, 0.85, and 0.84 for the training

data set, the testing data set, and the cross-validation data set, respectively. The

developed ANN model proved to be stable and consistent in prediction. A high R2 was

retained even by swapping the testing and the cross-validation data sets. The maximum

root mean squared error (RMSE) for all the data sets was 0.08 m3/s. The RMSE was

very small compared to the magnitude of the corresponding average daily flow,

highlighting the high model performance. The ANN flow model was able to

successfully predict both peak flow and base flow and the predictions did not exhibit

any lag phenomena when compared to the measurements (Figure 3-6). Residual

analysis was then conducted as a final stage in model evaluation. Graphing the residuals

is very important in model judgment. If the model fits the data, the residuals should

only reflect the measurement error that is assumed to be random. Hence, any lack of

randomness in the residuals undermines the strength of the fitted model. In this case, the

residuals were plotted versus time and versus flow to check for independence. Residual
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plots showed only random scatter (no obvious trends were detected, instead, points were 

scattered all over the graph plot), indicating that the developed models have no serious 

deficiencies.

The predicted flow values were used to produce inputs for the TP concentration 

model. The statistical performance measures for the devised model are presented in 

Table 3-3. The R values for the training, testing, and cross-validation data sets were 

calculated to be equal to 0.95, 0.91, and 0.78, respectively. Although the R2 value of the 

cross-validation data set was relatively low, the RMSE ranged from 15 to 34 pg/L for 

all the data sets. The RMSEs were small in magnitude compared to the respective actual 

TP concentration. The predicted versus the measured TP concentration profiles (Figure 

3-7) show fair agreement between modeled and measured values for all cases. The 

residual analysis conducted on model residuals proved to have no structure other than 

the random structure leaving no statistical reason to question the model’s validity.

The performance of both the flow and the TP concentration ANN models was high 

in modelling the Willow Creek watershed. The low percentage of the wetland areal 

cover (10% of the watershed area) as compared to 30% in case of the 1A Creek 

watershed did not affect the accuracy of model predictions, and thus, based on the 

results, there is no need to incorporate wetland-specific inputs when modelling similar 

landscape areal coverage.
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3.5.2. Case study 2 : 1A Creek Watershed

Watershed 1A differs from Willow Creek watershed in that 30% of the watershed 

area is occupied by wetlands. Over 75% of this area is occupied by a distinct wetland 

composition (the “toe seepage 2” map unit). The developed flow model for this 

watershed was good in simulating the average daily flow values (Figure 3-8), with R2 

values ranging from 0.81 to 0.99 for all the modeled data sets (Table 3-3). As before, 

the simulated daily flow values were used to model the TP concentration. The 

simulation was good in dry years, as indicated by 2002 and 2003 predictions (Figure 3- 

9). The peak locations were adequately replicated, providing no lag phenomena; 

however, the model overestimated TP concentration in the early spring of 2001 (a storm 

dominated year) and underestimated TP concentration in the summer of the same year.

It is likely that the large “toe seepage 2” area in the watershed can be hydrologically 

disconnected when the ground is still frozen. This in turn may delay water export from 

the wetland to the stream. It appears that the ANN model was able to capture this 

phenomenon, highlighting the robustness of the coupled time series/ANN approach 

when flow was being modeled. However, when modelling TP concentration, the model 

was not very successful in accurately simulating peak responses. This is likely because 

wetlands tend to accumulate sediment that has high phosphorus content over time. The 

sediment build-up continues until a high storm event washes it out to the nearest 

receiving stream. Thus, during early snowmelt, the wetland exports less sediment, being 

possibly disconnected (explaining model overestimation of the 2001 spring peak). Later 

in the season, when a storm washes accumulated sediment, phosphorus export is

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



consequently higher (likely reflecting model underestimation of the 2001 summer 

peak).

3.6. Conclusions and Recommendations

An ANN stream flow model was devised and applied to two forested watersheds in 

Northern Alberta, Canada. The simulated daily flow values were then used to develop a 

predictive tool for the daily change in the TP concentration. The power of the developed 

models was verified by the high coefficient of multiple determination, the low root 

mean squared error, and the consistency in predicting the trends in data patterns for all 

the studied cases. The developed ANN flow models managed to successfully simulate 

average daily flow with R exceeding 0.8 for all modeled data sets. ANN provided an 

adequate tool for modelling TP concentration attaining R ranging from about 0.78 to 

0.96 for all models. A three-slab hidden layer MLP ANN was designed and utilized in 

this study. It is believed that each slab can manipulate one of three distinct processes 

that control the system behavior (base flow, snowmelt, and rain events). This is an 

interesting conclusion, and is, thus, the topic of an ongoing study that examines the 

relation between different types of flow hydrographs and neural networks’ 

architectures. The effect of TPIQ hysteresses was reasonably accounted for based on a 

hybrid spectral analysis/ ANN approach. The cross-correlation analysis was successful 

in highlighting the important time-lagged inputs despite the fact that the studied series 

were non-stationary.
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The wetland area and composition appears not to influence average daily flow 

predictions, thus, there was no need to incorporate wetland-specific inputs for the study 

watersheds when daily flow was being modeled using ANN. However, results of TP 

concentration predictions for a watershed of high percentage of wetland areal coverage 

(1A Creek) suggested that watershed-specific inputs are needed to improve the ANN 

model predictions. Therefore, more information about the dynamics of phosphorus 

export from at least some wetland types is required for better representation of wetland 

characteristics in the development of TP ANN models.

Models like the ones developed in this study that use commonly available inputs, 

yet reasonably accurate, provide a useful tool for modelling ungauged watersheds. The 

concepts presented in this study can easily be extrapolated to other similar watersheds 

permitting flow and water quality predictions in response to climate change and 

landscape management practices. It can also offer a hydrologic link to the development 

of multi-objective forest management plans.
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Table 3-1. Summary table for all models’ inputs

Final Model Inputs

Model 1 (Q for Willow) Rt, Rt-i, Rt-2, Rt-3, sin(2nvt), cos(2Tivt), Tmax, Tmean, Tmin, ddt, ddt- 
i, dd t-2, St, St-i, St-2

Model 2 (TP for Willow) TPt-i, sin(2nvt), cos(2nvt), Tmean,, AQt, AQt-i, AQ t-3

Model 3 (Q for 1A) R t, R t_h R t_2, sin(2n:vt), cos(2nvt), Tmax, Tmin, ddt, ddt-i, St, St.i

Model 4 (TP for 1A) TPt-i, sin(2nvt), cos(2nvt), Tmean,, AQt, AQt.2, AQt.3, AQ t.4

where: Rt, R t.i, R t-2, and Rts  are the rainfall in mm at lags 0 through 3; Tmax, Tmean, and 
Tmin represents maximum, daily mean, and minimum air temperatures in °C, 
respectively; ddt, ddt-i, and dd t-2 are the cumulative degree days at lags zero to two; St, 
St-i, and St-2 are the cumulative snowfall in mm for lags 0 through two; AQt = {Qt -  Qt i), 
AQt-i, AQt-2, AQt-3, and AQ t_4 are the daily change in flow at lags 1, 2, 3 and 4, 
respectively.

Table 3-2. Summary table showing optimum ANN models’ architecture and ANN 

internal parameters

Model 1 
(Q for Willow)

Model 2 
(TP for Willow)

Model 3 
(Q for 1A)

Model 4 
(TP  for 1A)

Scaling function Linear, « - l , l » Linear, « - l , l » Linear, « - l , l » Linear, « - l , l »

Optimum network 
(I-HG-HL-HGC-O)

15-4-4-4-1 8-5-5-5-1 11-5-2-5-1 7-7-5-7-1

Output activation 
function

tanh Logistic tanh tanh

Training algorithm BP BP-BM BP BP-BM

Learning rate 0.2 Insensitive 0.15 Insensitive

Momentum
coefficient

0.2 Insensitive 0.15 Insensitive

where: I denotes the input layer; HG, HL, and HGC are the Gaussian, logistic, and 
Gaussian complement slabs hidden layer, respectively; tanh is the hyperbolic tangent 
function; and «  »  denotes an open interval.
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Table 3-3. Statistical measures of models’ performance

Model 1 Model 2 Model 3 Model 4
(Q for Willow) (TP  for Willow) (Q for 1A) (TP for 1 A)

T SI S2 T SI S2 T SI S2 T SI S2

SI as R2 0.96 0.85 0.84 0.95 0.91 0.78 0.98 0.92 0.81 0.86 0.84 0.82
testing 

data set RMSE 0.04 0.07 0.07 15 18 34 0.02 0.04 0.05 33 22 26

S2 as R2 0.94 0.84 0.8 0.96 0.81 0.79 0.99 0.81 0.82 0.81 0.82 0.78
testing 

data set RMSE 0.05 0.06 0.08 14 31 27 0.02 0.05 0.06 37 36 24

T , training data set; SI, testing data set; S2, cross-validation data set; RMSE is in m3/s for flow and in 
jj.g/L for TP concentration

Canada

Legend
Environment Canada 
Weather Station 
Watershed Boundary

km
Willow

fTWhitecourt

Figure 3-1. The study area showing the two modeled watersheds
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Figure 3 -2 .1A Creek watershed soil map showing the wetlands locations within

the watershed
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Figure 3-3. CCF of 1A Creek flow and TP concentration, dashed line is the 95%

confidence boundary
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Figure 3-4. Power spectrum of 1A Creek flow in [m3/s]2 (left panel) and TP 

concentration in [pg/1]2 (right panel)
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Figure 3-5. Schematic showing ANN optimum architecture for all four models
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Figure 3-6. Measured versus ANN predicted flow hydrographs for the Willow

Creek watershed
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Figure 3-7. Measured versus ANN predicted TP concentration profile for the

Willow Creek watershed
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Figure 3-8. Measured versus ANN predicted flow hydrographs for the 1A Creek

watershed
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Figure 3-9. Measured versus ANN predicted TP concentration profile for the 1A

Creek watershed
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CHAPTER 4. GEOSTATISTICAL MAPPING OF PRECIPITATION: 

IMPLICATIONS FOR RAIN GAUGE NETWORK DESIGN

4.1. Introduction

The struggle to develop better models of hydrologic processes has been a continuing

area of intense research for the last two decades. The precipitation time series, in

particular, is an important input in hydrologic water quantity and quality models.

However, networks measuring stations are typically sparse, and available data are

insufficient to characterize the highly variable—in space and time—precipitation

distribution, undermining the applicability of many modelling efforts (St-Hilaire et al.

2003; Singh and Woolhiser 2002; Tsintikidis et al. 2002). Therefore, reliable mapping

of precipitation is crucial to the success of water quantity and quality modelling. Several

sparse data interpolation techniques have been discussed in the literature. These

interpolation methods include but are not limited to: The Thiessen polygon method

(Thiessen 1911); inverse distance weight, IDW (Watson and Philip 1985); spline

interpolation (Guenni 1997); and geostatistical or kriging techniques (Isaaks and

Srivastava 1989; Joumel 1989). However, geostatistical techniques are increasingly

preferred because they allow one to capitalize on the spatial structure/correlation

between neighbouring observations, to predict attribute values, and to quantify

prediction uncertainty at unsampled locations (Diodato and Ceccarelli 2005; Apaydin et

al. 2004; Goovaerts 2000 and 1999; Pardo-Iguzquiza 1998; Tabios and Salas 1985).

A version o f this chapter has been published. Nour, M.H., Smith, D.W., Gamal El-Din, M., and Prepas 
E.E. 2006. Neural networks modelling o f streamflow, phosphorous, and suspended solids: application to 
the Canadian Boreal forest. Water Sci. Technol. 53(10): 91-99.
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This paper compares five geostatistical interpolation techniques for mapping daily 

rainfall values: simple kriging (SK), ordinary kriging (OK), multi-Gaussian kriging 

(MGK), log-normal kriging (LNK), and kriging with an external drift (KED). The 

kriging methods were also compared to the more traditional IDW interpolation 

technique. All the interpolation schemes were compared in terms of cross-validation 

statistics. Sequential Gaussian simulation was then implemented to develop conditional 

stochastic simulation (100 realizations in a 250 x 250 m grid) of rain events. A multi

objective approach was finally introduced to suggest potential sites for the installation 

of further weather stations.

4.2. Study Area and Data Analysis

Rainfall information was acquired from 15 weather stations (Table 4-1) at close

proximity to the forest watershed and riparian disturbance (FORWARD) project study

area (see J. Environ. Eng. Sci. special issue Volume 2, 2003 for a detailed description of

the project). The frequency of acquiring rainfall information varied among the

monitored stations between one hour and one day. The time interval during which each

station is operating within a year is highly variable. To overcome this problem, a code

was implemented in Matlab to sum the sub-daily values and to present all rainfall data

as daily representations. Rainfall data was available from May 2001 to October 2004.

However, data was kept only if  at least one of the rain gauges captured more than a

trace value. A histogram of rainfall values revealed a highly skewed distribution

(coefficient of skewness = 3.8, coefficient of Kurtosis = 19.7) with approximately 70%

of the data close to the trace value. In addition to the precipitation information, a 30-m
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resolution digital elevation model (DEM) was acquired for the study area (Figure 4-la). 

ESRI® ArcMap™ 9.0 was used to derive the slope from the DEM (Figure 4-lb).

4.3. Variography and Variogram Modelling

The discipline of Geostatistics is based on the random function (RE) concept 

(Deutsch 2002; Isaaks and Srivastava 1989; Joumel 1989) whereby the set of unknown 

values is regarded as a set of spatially dependent random variables (RVs). Usually the 

RF definition is restricted to RVs related to the same attribute (rainfall in this case); 

hence, a second RF is needed to express the spatial variability of a second attribute (say,

elevation). Geostatistical techniques replace the Euclidean distance ( h = yjx2 + y 2 ) with 

a structural distance named the variogram (2 y(h)), which is specific to the attribute and 

the field under investigation. The variogram is a measure of spatial variability; it 

increases as samples become more dissimilar. The variogram and the covariance 

function (C(h)) are closely related (Equation 1) under the stationarity assumption (i.e., 

the mean and variance are assumed constant and independent of data location, and the 

covariance is assumed to be a function of the translation h and not the data locations).

[1] C(h) = or2 - y(h),

where <j2 is the deemed stationary variance, C(h)and y(h)are the covariance and the 

semivariogram calculated for lag-h , respectively. Although the covariance is what is 

needed for subsequent geostatistical modelling, it is a common practice to infer the 

semivariogram from data because it is easier to model. The covariance counterpart can
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then be calculated from Equation 1. Equation 2 demonstrates the relation used to 

estimate the semivariogram from sparse data:

Y(h) = “  z (u + W 22 N(h) f a

where N(h) is the number of data pairs separated by lag-/*. In practice, some tolerance in 

h is identified to have enough data for constructing a reliable variogram. z(u) and 

z(u+h) are the rainfall intensities at locations u and u+h, respectively.

To identify the optimum lag spacing and lag tolerance, a histogram of the separation 

distances (h) between weather station data pairs was constructed (Figure 4-2a). It shows 

that the minimum h to be used is 10 km and that a reasonable one with respect to the 

number of data pairs is 35 km. The spatial structure/correlation of the precipitation is 

known to be anisotropic in most cases. Thus, a wind-rose type histogram (Figure 4-2b) 

and a colour-coded directional semivariogram (Figure 4-2c) were constructed and 

analyzed to assess the feasibility of including anisotropy in further modelling 

procedures. The wind rose shows that the data was fairly well distributed except for the 

direction of 120° from the East. The 30° from the East direction contained the largest 

number of data pairs. An ideal isotropic random function (RF) should show circular 

contours on the colour-coded semivariogram. According to the degree and direction of 

anisotropy, the circle will be distorted into an elliptical shape. Figure 4-2c shows a mild 

geometric anisotropy with a major axis in the direction of 80° from the East. Thus, 

based on these outcomes, directional variograms were constructed in the major and 

minor directions of anisotropy and were proven to be noisy due to insufficient data pairs 

in these directions. An omni-directional variogram was then constructed owing to the
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mild degree of anisotropy, and attempting to construct a well-suited variogram. Because 

the covariance must be known at all distances—not only at the separation distances 

between weather stations—a licit model that describes the experimental variogram is 

required. The sole constraint is that the variogram has to be modelled with a positive 

definite model in order to ensure the existence and uniqueness of the solution to the 

kriging set of equations. Figures 4-3 a through 4-3 c portray the experimental and 

modelled semivariograms for the original data, normal-score transformed data, and log

normal transformed data, respectively. The correlation structure of the data values is 

evidently similar in the three data spaces. Table 4-2 summarizes the parameters of the 

modelled variograms. All three models included a nugget effect, a short-scale 

exponential variogram model and a large-scale spherical model. However, the variance 

contributions and the range parameters were different in each case. The models were 

fitted to reach an asymptotic sill outside the data range, and thus should not be used for 

h > 135 km (maximum spacing supported by the data).

4.4. Kriging Techniques

Consider the problem of estimating the daily rainfall value (Z(u)) at an unsampled

location u. The available information consists of same-day daily rainfall values at n

locations (ua, ce = 1.... n). To create a map of the daily rainfall from measurements at

sparse sampling stations, a least-square optimization technique (kriging) that can predict

a random variable (RV) at an unsampled location with the objective of minimizing

squared error was used. This section briefly discusses the different kriging algorithms

used in this study. A more detailed discussion of the kriging methods can be found in
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many references (e.g., Deutsch 2002; Isaaks and Srivastava 1989; Joumel 1989). We 

examined four univariate kriging techniques (SK, OK, MGC, LNK) and two 

multivariate kriging algorithms—KED using elevation as the external drift (KED- 

ELEV), and KED using slope as the external drift (KED-SLOPE). In all the kriging 

algorithms used, the rainfall spatiotemporal RF {Z(u), u e study area} was modelled as a 

collection of a finite number (T) of temporally correlated space RFs where T  represents 

the number of days during which at least one of the rain gauges recorded more than the 

trace rainfall value within the duration of the study. Thus, spatial maps of the rainfall 

distribution were constructed only for the T  time instances, and no time interpolation 

was possible without some additional modelling (Kyriakidis and Joumel 1999; 

Kyriakidis et al. 2004).

4.4.1. Simple Kriging (SK)

The SK algorithm allows for the estimation of the daily rainfall depth (Z*(u) at an 

unsampled location u as a linear combination of neighbouring observations as expressed 

by Equation 3.

a = \

i - 5 > »
a=1

m ,

where Z(u) is the RV model of daily rainfall at location u, the ua values are the n data 

locations, n is the number of data points that went into kriging, XJu) , a  = 1, ..., n are 

the SK weights used in estimating Z(u) at location u, and m is the deemed stationary 

mean over the study area. The stationary mean was estimated from the sample data, and
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the SK weights were obtained by minimizing the error variance. This method is 

equivalent to solving a set of simultaneous equations known as the SK system of 

equations (Equation 4):

n
[4] - u a) = C (u -u a),cc = \, ,n

i

where C(h) denotes the covariance function calculated at a lag-distance as reported 

between parentheses. The only information needed to formulate the kriging system is 

the covariance (C(h)). C(h) was calculated from the original-space variogram model 

(Table 4-2) followed by substitution into Equation 1. The strength of kriging methods is 

that one can get a sense of the prediction uncertainty by evaluating the location 

dependent error variance {<t 2sk ) as represented by Equation 5:

[5] cr

The above estimation procedure was repeated at each estimation node on a 250 x 250 m 

grid, and a daily precipitation map was produced.

4.4.2. Ordinary Kriging (OK)

The OK estimator is, in essence, a SK estimator in which the deemed stationary

mean (m) is replaced by the location-dependent mean estimate m*(u). Thus, OK is

already a nonstationary algorithm corresponding to a nonstationary RE with a variable

mean but a stationary covariance. The same procedures implemented in the SK case

were repeated here by replacing Equations 3, 4, and 5 with their OK counterparts
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represented by Equations 6, 7, and 8, respectively.

[7]

n

Y J^ K(u)c (up - u a) + /i(u) = C (u -u a),a  = l, ,n
/? = i

where / / ( h ) is a Lagrange multiplier added to account for the additional 

constraint , ̂ pK (u) = 1 •

[8] « u )  = <72 + 2
a=l  /?=1

4.4.3. Multi-Gaussian Kriging (MGK)

Prediction accuracy is typically better if  the sample histogram does not suffer high

skewness; thus, a normal-score transformation was used to transfer the sample

histogram to a standard Gaussian histogram by matching the p-quantiles of the two

distributions (details can be found in Deutsch (2002)). SK was then performed on the

transformed values. The results were then back-transferred to the original data space.

However, normal-score transformation is reversible only if  no spikes or ties (a large

proportion of the data holding a constant value) are present in either the original or the

target histograms (Deutsch 2002). Our data indicated about 70% close to zero value, a

large spike. Thus, two despiking algorithms were tried prior to applying the normal-
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score transform. The first was random despiking implemented by using the public 

domain GSLIB software (Deutsch and Joumel 1998). The second was a local average 

despiking algorithm that computes local averages within local neighbourhoods centred 

at each tied data value. The data was then de-spiked according to local averages; tighed 

values in high valued areas would then get larger ranks than those in low-valued areas. 

The implementation of the MGK was similar to that of SK, except for dealing with the 

normal transferred data values and normal space semivariogram (fifli)) instead of the 

original ones.

4.4.4. Log-Normal Kriging (LNK)

The histogram of the original daily rainfall values clearly demonstrated a log normal 

distribution. Therefore, carrying out a log-normal transform prior to kriging was 

worthwhile. The natural logarithm of the data was calculated, and then SK (Equations 3 

to 5) was conducted on the transformed data. The results of SK on the transformed data 

were then back-transferred to the original space. The log-normal space (/3(h))—rather 

than the original data space (yi(h))—was used to solve the kriging system.

4.4.5. Kriging with an External Drift (KED)

Precipitation tends to increase by increasing elevation and may vary in response to 

the variation of the slope and aspect. Hence, incorporating a secondary variable that 

identifies such variation may enhance rainfall estimation. KED is a simple and efficient 

kriging algorithm for including a secondary variable in the estimation of the primary
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variable. If the secondary variable is known to vary smoothly in space over the study 

area, and if this variable is known at all locations of interest (ua), the algorithm can be 

applied and can produce fairly robust results. Analogous to other kriging algorithms, the 

spatial estimates of rainfall was computed as a linear combination of the surrounding 

data. However, two conditions were added to the optimization of weight values to 

assure unbiasedness and utilization of the secondary RF. Equations 9 to 11 represent the 

estimation process, the kriging system, and the kriging variance in the case of using 

KED, respectively:

[9] =
a=1

[10]

rt

AKED(u)C(up - u a) + ju0(u) + f t (u)y(ua) = C(u - ua),a  = 1,......, n
p=\

£ x KED(u)y(Up) = y(u)
p=\

[11] a 2 KED{u) = a 2 + £ £ a : e d ( u )A * ; d ( u ) C ( u p  -  ua) -  2 ^ =1 - ua),
<2=1 P = 1

where y(u) represents the secondary variable (in this study, either elevation or slope), 

and H o (u )and juj( u)  are the Lagrange multipliers that account for conditional 

optimization. KED does not require data transformation, and thus the original space 

semivariogram was utilized in this case. In this case, there is no need to calculate the 

cross-variogram between the primary and the secondary variables because such
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variogram plays no role in the kriging algorithm. Only an estimate of the secondary 

variable at all estimation nodes is required.

4.5. Inverse Distance Weights (IDW) Interpolation

IDW interpolation is a widely used interpolation technique, which assumes that 

objects close to one another are more alike than those that are far apart. Thus, IDW 

interpolation presumes that each measured location has a local influence that diminishes 

with distance. To predict a rainfall value for any unmeasured location, IDW 

interpolation uses the surrounding weather stations’ measurements; however, the 

stations closest to the prediction location will have the greatest influence on the 

predicted values. At each time step, the code calculates the separation distance between 

the point of interest and each of the relevant stations by using Equation 12. The code 

then calculates the corresponding weights (w,) by using Equation 13, and finally an 

estimate of rainfall at the point of interest is made by using Equation 14. Estimating a 

measure of prediction uncertainty, akin to the kriging variance, is not possible when the 

IDW scheme is used as an interpolation technique.

[12] rt = y j(x -x i ) 2 + ( y - y , ) 2

[13]
1/ r.

w. =

[i4] V r i ( o = i > , - * , ( o ,
i=i
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where (x,y) are the coordinates of the point where rainfall is to be estimated, ^  (x ,y)(t) is 

the estimated average daily rainfall in mm/d at time t, n is the number of weather 

stations to be used in estimation, i  is the weather station number, and R t( t )  is the 

measured daily rainfall at station i  and time t  in mm/d.

4.6. Evaluation of The Different Interpolation Methods

Daily maps were produced according to the seven aforementioned algorithms.

Because assessing the performance of each algorithm by visually examining the

produced maps is subjective, the performance of the kriging algorithms was

alternatively assessed by using cross-validation statistics. The idea is to temporarily

remove one weather station at a time from the data set and then re-estimate the removed

value from the remaining data using the alternative interpolation algorithms. Pearson’s

correlation coefficient (r) and the root mean squared error (RMSE) were computed for

each algorithm and were used to compare the different interpolation algorithms. Table

4-3 summarizes the statistical performance of the cross-validation data in response to

each interpolation scheme. In our case study, incorporating information from DEM into

the rainfall estimation did not enhance the rainfall predictions. This result can be

explained by the relatively mild slope of the study area. The correlation coefficients of

rainfall/elevation and rainfall/slope time series were very small for the study domain (<

0.2) explaining why a secondary variable did not enhance the results. The results also

indicated that SK, OK, LNK, and IDW are comparative algorithms with respect to

prediction performance; however, OK produced slightly better results in terms of r, and

IDW produced the best results in terms of RMSE and came next to OK with regards to
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r. MGC was the worst univariate estimator, mainly due to large data spikes. Although 

data despiking was carefully done, the Gaussian back-transfer was disrupted due to the 

high proportion of data spikes.

Despite the smoothness of the developed maps, it is important to observe the spread 

of the rainfall values. Figure 4-4 depicts two kriging maps constructed by using OK for 

June 28, 2002 and July 8, 2004. The map shows that for June 28, 2002, the SW region 

received more rainfall than the NE whereas for July 8, 2004, the NW region 

experienced more intense rainfall than the SE. Interestingly, the prevailing wind 

directions for these days were NE and SE (arrows shown on Figure 4-4), likely leading 

to this distribution of rainfall. Apparently, the modelled variogram managed to grasp 

this feature of the data without including any wind information in the modelling 

process. It is critical to note that the calculated kriging variance is a function of the data 

configuration and not the data values (notice the similarity of the two maps of kriging 

variance in Figure 4-5), and, therefore, this variance can be used to provide implications 

about the expected error surface in response to different weather network 

configurations.

4.7. Sequential Gaussian Simulation (SGS)

The produced kriging maps confirmed that kriging, when used as a mapping

algorithm, acts as a low-pass filter that tends to smooth out the details and extreme

values of the original data set. Thus, the actual values of a RF are more random than

their corresponding kriged estimates. Stochastic simulation, on the other hand, can

correct the missing variance and can produce a number of equiprobable realizations of
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the rainfall while honouring data values at the measurement locations and assuring the 

reproduction of the data joint spatial continuity. In the current study, we utilized the 

SGS algorithm (details in Deutsch 2002) to produce 100 equiprobable maps of rainfall 

and then calculated the probability of exceeding a certain threshold of rainfall over the 

study domain. Examples of such probability maps are displayed in Figure 4-6 for 

thresholds of 50 and 5 mm/d. As expected, the proportion of the landscape with a high 

probability of receiving above 5 mm/d of rainfall is much larger than the proportion 

with a high probability of exceeding 50 mm/d.

4.8. Future Rain Gauge Network Design

In Alberta, rain gauge network design is experience-based. Decisions are based 

mainly on the proximity to specific locations of interest and the accessibility to the 

proposed sites, rather than on a methodological scientific approach. On the other hand, 

geostatistitians typically utilize the kriging variance as the sole criterion for selecting 

extra sampling sites. This approach is incomplete because the operational needs are also 

important for an engineering decision. In this study, we combined the two approaches to 

identify the optimal locations for new rain gauges. The approach is based on overlaying 

the map of the kriging variance, the DEM, and land use/land cover and road networking 

maps in a Geographical information system (GIS) framework. Zones of high kriging 

variance were delineated first, then checked for accessibility by using the DEM, the 

land use/land cover, and the road networking maps. The common areas of favourable 

features were proposed as future sites.

The FORWARD project models flow and water quality for 16 watersheds in the
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Canadian Boreal forest. Four weather stations were recently installed in the area as part 

of the project. Identification of future sites for the installation of further weather stations 

is required. The abovementioned approach was utilized for this case study. The four 

FORWARD weather stations were added to the 15 stations used in this study. The 

resulting map of kriging variance was obtained by using OK (Figure 4-7a). It is evident 

that the variance is close to zero at close proximity to the weather stations and increases 

with the distance from each weather station. The NW and SE regions of the 

FORWARD study area were identified as zones of higher kriging variance. The map of 

kriging variance was then overlaid on the DEM map (Figure 4-7b), and the road 

network map (Figure 4-7c) and the areas of high kriging variance, good accessibility, 

and as close as possible to the FORWARD study watersheds were identified and 

displayed as black rectangles in Figure 4-7c. Since other measurements of interest (like 

those of air temperature and solar radiation) take place in each weather station, no 

attempt should be made to optimize for the number and exact locations of future 

stations until the same procedure has been conducted for the other parameters of interest 

as well. Upon completion for all parameters of interest, an optimization algorithm that 

targets the minimization of a cost function which reduces cost and kriging variance by 

choosing optimal locations of new stations can be conducted for areas that are 

commonly favourable for all the parameters of interest.

4.9. Conclusions and Recommendations

Kriging is now commonly used as a mapping technique; however, practitioners are

often confused by all the available kriging methods and other interpolation schemes.
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The choice of the optimal interpolation algorithm should be guided primarily by the 

characterization of the data under study. Adequate understanding of the theory and 

intrinsic assumptions of each technique is, therefore, critical. We examined four 

univariate kriging techniques (SK, OK, MGC, LNK) and two multivariate kriging 

algorithms—KED using elevation as the external drift (KED-ELEV), and KED using 

slope as the external drift (KED-SLOPE), as well as the traditional IDW interpolation 

scheme for the estimation of daily rainfall in a 250 m x 250 m grid over a 750 Km area 

in the Canadian Boreal forest. The results indicated that multivariate kriging did not 

enhance daily rainfall estimation skill. This finding can be explained by the relatively 

mild slope of the study area. SK, OK, LNK, and IDW were proven to be comparative 

algorithms with respect to prediction performance; however, OK produced slightly 

better results in terms of Pearson’s correlation coefficient. IDW outperformed OK in 

terms of RMSE but came next to it in performance with regards to r. The strength of 

OK, as compared to IDW, was in the ability to estimate a measure of prediction 

uncertainty by evaluating the kriging variance. However, for our case study, if  a 

prediction error estimate is not required, IDW can be used as an interpolation technique 

without jeopardizing accuracy. MGC was the worst univariate estimator, likely due to 

the high percentage of data spikes. Although data despiking was carefully done, the 

Gaussian back-transfer was disrupted due to the high proportion of spikes. SGS was 

then implemented to produce 100 equiprobable maps of rainfall, and the probability of 

exceeding nominal thresholds of rainfall over the study domain was calculated. Such 

information can be used as inputs to hydrologic and water quality models to address the 

uncertainty in the modelled parameter in response to the uncertainty in rainfall
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information. A multi-objective approach, based on overlaying the map of the kriging 

variance, the DEM, and land use/land cover and road networking maps in a GIS 

framework to identify the areas of commonly favourable features, was proposed to 

identify potential future sampling locations. The approach was applied to the 

FORWARD study area, and favourable regions for the installation of further weather 

stations were identified.
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Table 4-1. Summary table of weather stations’ locations

Station ID Station Name Latitude Longitude Elevation (m)

EA Eagle 54.4569N 116.4397W 1048

FA Ft Assiniboine 54.3414N 114.8083W 640

GM Goose Mountain 54.7506N 116.0332W 1385

IM Imperial 54.4666N 115.571W 1202

MB Maybeme 53.8613N 116.6645W 1453

PS Pass Creek 54.2289N 116.8388W 1081

SD Swan Dive 54.7283N 115.3545W 1241

SO Shining Bank 53.8064N 115.9389W 899

W1 Freeman Auto 54.5561N 115.2972W 821

W3 Meekwap Auto 54.6249N 116.6597W 836

W4 Windfall Auto 54.1883N 116.2497W 808

W5 Fox Creek Auto 54.3974N 116.8025W 850

wc Whitecourt 54.0324N 115.7197W 1172

zu Whitecourt 54.0836N 115.7856W 741

ENVCAN Environment Canada 54.15N 115.78W 782.4
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Table 4-2. Summary of variogram models utilized in this study

Space Variogram model

Original space YiW =
0.15 + 0.2311 -  exp

1.00, if h >  280000

3 h \  
45000 J + 0.6211.5-

280000
-0.5

280000 J , if h <  280000

Normal space r2(h) =
0.12 + 0.13jl-exp | 

1.00, if h>  320000

3 h 
15000J

+ 0.7511.5- - 0 . 5 _ * _ Y
320000 ' 1320000 J [, if h <  320000

Log-normal
space m )--

0.17 + 0 .1211-expl - ~ ^ 7 T Ii + 0.7l]l.5 h
17000J

-0.5
(  h

350000 1,3500007 , i f h <  350000

1.00, if h>  350000

Table 4-3. Statistical performance of utilized kriging algorithms

IDW SK OK MGC LNK KED-
ELEV

KED-
SLOPE

Correlation
coefficient 0.74 0.74 0.76 0.67 0.75 0.73 0.65

RMSE (mm) 3.04 4.90 4.78 5.5 4.81 4.96 5.74
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Figure 4-1. (a) 30-m resolution DEM and (b) slope distribution in the study area
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Figure 4-2. (a) Histogram of weather station pairs of separation distances, (b) 

wind-rose type histogram of separation distances, and (c) colour coded directional

semivariogram
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Figure 4-3. Experimental and modelled omni-directional semivariograms for (a) 

original data space, (b) normal-score transformed data, and (c) log-normal 

transformed data; solid lines represent modelled semivariograms
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Figure 4-4. Kriging maps of rainfall in mm obtained by OK for (a) June 28,2002 

and (b) July 8,2004; arrows showing prevailing wind direction
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Figure 4-5. Estimation variance obtained by OK for (a) June 28,2002 and (b) July

8,2004
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Figure 4-6. Spatial probability distribution of exceeding (a) 50 mm/d and (b) 5

mm/d
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Figure 4-7. (a) Kriging variance distribution after adding the four FORWARD 

weather stations (b) DEM, and (c) proposed new sites for future weather stations 

(black rectangles); A denoting current FORWARD study weather stations
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CHAPTER 5. TOWARDS A GENERIC ARTIFICIAL NEURAL NETWORK 

MODEL FOR DYNAMIC PREDICTIONS OF DAILY STREAMFLOW IN 

UNGAUGED WATERSHEDS: INTRODUCING A NEW MEASURE OF 

HYDROLOGIC SIMILARITY

5.1. Introduction

The application of artificial neural networks (ANNs) in hydrological modelling has 

been the topic of over 300 refereed publications in the last two decades. The ASCE task 

committee (2000a and 2000b) and Maier and Dandy (2000) published comprehensive 

reviews of pertinent work prior to the late 1990s. Most researchers used either a feed

forward multi layer perceptron (FF-MLP) ANN or a recurrent neural network (RNN) 

for modelling daily streamflow. However, the feed-forward MLP trained with the error 

backpropagation (BP) algorithm was by far the most widely used network architecture 

and training algorithm (Castellano-Mendez et al. 2004; Anctill and Rat 2005; Riad et al. 

2004; Agarwal and Singh 2004; Riad and Mania 2004; Baratti et al. 2003; Kisi 2004; 

Tokar and Markus 2000). In all reviewed cases, a sliding window of rainfall and 

recently observed flow values were utilized to forecast future flow values. Tawfik 

(2003) constructed a FF-MLP ANN model to predict the River Nile’s flow utilizing 

information from four gauging stations along the River Nile. She used the past values 

for the flow at the four stations to predict the flow at Aswan, Egypt.

A version o f this chapter has been submitted for publication. Nour, M.H., Smith, D.W., Gamal El-Din,
M., and Prepas, E.E. 2006. Towards a generic artificial neural network model for dynamic predictions of  
daily streamflow in ungauged watersheds: introducing a new measure o f hydrologic similarity. J. 
Environ.Eng. Sci. (submitted 03/2007).
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Sudheer et al. (2003) demonstrated that the performance of a MLP-ANN could 

significantly be improved by applying an appropriate data transformation to the historic 

time series prior to model formulation. The authors were successful in simulating peak 

flows; however, their algorithm’s need for antecedent flow information limits its use in 

ungauged watersheds. Anctil et al. (2004) proposed the use of soil moisture index as an 

auxiliary ANN input to the typically used rainfall and flow inputs attempting to account 

for the low-frequency hydrologic processes. Including such information enhanced their 

models’ prediction ability, specifically in dry weather periods for the Leaf River in the 

USA and the Serein River in France.

Kumar et al. (2004) compared a RNN to a feed-forward MLP for single step ahead 

and multiple step ahead streamflow forecasts of an Indian River catchment and 

concluded that the RNN outperformed the FF-MLP network. Chang et al. (2002) and 

Cahng et al. (2004) developed a recurrent neural network model for flow prediction one 

hour and two hours in advance. They compared their models’ prediction ability to that 

of time series models and concluded that the ANN models outperformed the time series 

class of models.

Owing to the complexity of hydrological processes, and motivated by the ability of 

artificial neural networks (ANNs) to model complicated non-linear relationships, all 

previous efforts demonstrated that ANN models performed at least comparatively to, if 

not better than, other deterministic and statistical models. However, most of these 

studies, albeit successful in simulating streamflow and forecasting flow at different lead 

times, failed to address the topic of modelling the streamflow of ungauged watersheds. 

The reviewed modelling efforts used past values of flow to predict the future ones. This
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class of models, although important for the real-time forecasting of gauged watersheds, 

cannot provide flow predictions in ungauged watersheds due to the lack of pertinent 

inputs.

In Canada and elsewhere, the prediction of daily streamflow is important for 

evaluating downstream hydrologic impacts, simulating the impact of extreme floods 

and droughts, and thus for safeguarding against any expected adverse consequences. 

Providing the resources to gauge all watersheds of interest is practically impossible; 

thus, a class of models that could simulate the response of ungauged watersheds with 

reasonable accuracy is important for effective watershed management and planning. 

Hence, the objectives of this study were (1) to develop a neural network modelling 

algorithm capable of modelling ungauged watersheds, (2) to apply the developed model 

to four watersheds in the Canadian Boreal forest, (3) to give an example of the 

applicability of the approach for an ungauged watershed case study, and (4) to find a 

reasonable indicator of hydrologic similarity that can guide model transferability. Initial 

results from this work was presented in the eighth international conference on the 

application of artificial intelligence to civil, structural and environmental Engineering 

(Nour at al. 2005).

5.2. Research Area and Database

The study area is located in the Virginia Hills, Alberta, Canada (Figure 5-1). As part 

of the forest watershed and riparian disturbance (FORWARD) project, the monitoring 

of the daily streamflow of four small watersheds (with a basin area of 5 to 130 km )

began in the year 2001 and is still in operation. The four studied basins are 1 A, 5.1 km2;
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Cassidy, 5.9 km2; Willow, 15.6 km2, and Two Creek, 129.4 km2. The province of 

Alberta is covered by over 300 weather stations (mostly from fire towers and 

Environment Canada meteorological stations). Rainfall information was acquired from 

15 weather stations at close proximity to the study area (Figure 5-1). The frequency of 

acquiring the rainfall varied among the monitored stations between 1 hr to 1 day. Also, 

the time interval during which each station was operating within a year was highly 

variable. To overcome this problem, a code was written to add up sub-daily values and 

to present all rainfall data as a daily representation.

5.3. Artificial Neural Networks Model Development

A parsimonious ANN model was systematically constructed in three phases: (1) 

data pre-processing, (2) model construction, and (3) model evaluation. The first phase 

aims at identifying the input variables, exploring all input/output data patterns, 

highlighting the data’s main trends and features, and pinpointing any irregularities that 

would require further investigation. In the second phase, the modeller should carefully 

select the optimum ANN topology, the best training algorithm, should optimize the 

network internal parameters and data division among training (calibration), testing 

(validation), and cross-validation data sets. Finally, the third phase requires statistical 

and graphical assessment of the candidate model performance.
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5.3.1. Data Pre-processing and Input Determination

In general, streamflow is highly correlated with time, exhibits an annual and 

seasonal cyclic variation, and passes through hystereses loops. Thus, when modelling 

streamflow, the inputs should reflect causality, time correlation, and the seasonal 

periodicity. Adequate understanding of the physical processes driving the modelled 

parameter is critical for identifying the causal inputs. Time series analysis (both the time 

domain and the frequency domain) can adequately identify time-lagged inputs and can 

feed the ANN model with information to reflect hystereses loops and the seasonal 

cyclic nature.

5.3.1.1 Causal inputs

The objective behind the choice of cause/effect type inputs used in this study was to 

identify a surrogate for each component of the water cycle. However, to be able to 

construct an efficient modelling tool for ungauged watersheds, all inputs should be 

easily acquired at a reasonable cost. Streamflow is dictated mainly by the processes 

responsible for the catchment’s fast response (as manifested by peaks of the flow 

hydrograph), namely, rainfall and snowfall; and also by lower-frequency information 

(e.g.: soil moisture fluctuation, subsurface flow, and actual evapotranspiration) that can 

allow for the mapping of much slower processes associated with exchanges at the soil 

and vegetation surfaces. Constrained by the readily available data for the Canadian 

ungauged watersheds, the authors selected rainfall (R) and snowfall to reflect the 

catchement’s fast response regimes, and selected the air temperature (!) as a surrogate

for the solar energy available for evapotranspiration and snowmelt.
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The local variations of rainfall can be significant even for a small area. Variations of 

up to 50% between recorded rainfalls at a given time were detected in the study area. 

Thus, in the devised models, the inverse distance weighted (IDW) interpolation scheme 

was utilized to better represent the rainfall at each modelled catchment.

Inverse distance weighted (IDW) interpolation is a widely used interpolation 

technique. It assumes that objects close to one another are more alike than those that are 

far apart. Thus, IDW interpolation presumes that each measured location has a local 

influence that diminishes with distance. To predict a rainfall value for any unmeasured 

location, IDW interpolation uses the surrounding weather stations’ measurements; 

however, the stations closest to the prediction location will have the greatest influence 

on the predicted values. Figure 5-2 shows a hypothetical area with n weather stations 

and a location (x,y) where R is to be predicted by using data from the surrounding 

stations.

Eqs. 1 through 3 summarize the approach. A procedure was adopted to detect the n 

closest weather stations to the centroid of each of the four modelled watersheds at each 

time step, and thus accommodating the inconsistency in the time period of operation of 

each of the surrounding stations. At each time step, the code calculates the separation 

distance between the point of interest and each of the relevant stations by using Eq. 1. 

The code then calculates the corresponding weights (w,) by Eq. 2, and finally an 

estimate of rainfall at the point of interest is made by Eq. 3:

[1] r, = ^ j ( x - x i ) 2 + ( y - y iY
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[2]
1 rf

w. =
i n i

[3] ^ ) ( 0  = X w <- ^ ( 0 ,
1=1

where (x,y) are the coordinates of the point where rainfall is to be estimated, R (X,y)(t) is 

the estimated average daily rainfall in mm/d at time t, n is the number of weather 

stations to be used in estimation, i is the weather station number, and Rt(t) is the 

measured daily rainfall at station i and time t in mm/d.

This approach produced a time series of daily rainfall for each of the modelled 

watersheds. The temperature (daily maximum, Tmax; daily minimum, Tmin\ and daily 

average, Tavg) and the snowfall were available from a nearby Environment Canada 

weather station (Figure 5-1).

At high latitudes, snowmelt plays a key role in streamflow, especially in early 

spring. Thus, snowmelt has to be explicitly accounted for when constructing the 

streamflow model. Snowmelt is typically estimated by using either the energy balance 

approach or the temperature-index approach. However, due to the difficulty and the 

expenses of fulfilling the former’s data requirements, the latter approach is the most 

extensively used in the literature (Dingman 2002). The temperature-index approach 

estimates snowmelt as a linear function of the average air temperature. The logic relies 

on the strong correlation between the solar radiation and the corresponding air 

temperature during snowmelt. This technique equates the daily snowmelt (AM) as a
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linear function of the mean air temperature provided that this temperature exceeds a 

base temperature for that day (Eq. 4). Therefore, during a specified time interval (t), the 

snowmelt is a function of the total of the degree-days (ddt) summed up for the days 

when the temperature was above a baseline temperature (typically taken as zero), as 

represented by Eq. 5.

where A M  is the daily snowmelt in m, Tavg is the daily average air temperature in °C, 7* 

is a base temperature typically taken as 0 °C, L  is the number of days during which Tavg 

>Tb, ddt are the total degree days at time t in °C.day, and (ti+/ -  tt) is typically taken as 1 

day.

The cumulative snowfall at time t (St) was used to reflect the available snow depth, 

representing the amount of snow available for melting. The cumulative degree-days 

(ddt) were used to provide an integrated measure of the heat energy available for snow 

melting. Thus, the cumulative snowfall and the degree-days can act as surrogates for the 

temperature-index snowmelt approach and are therefore used as inputs for the 

developed flow models:

[5] <M, = 2 ] ( r  - r w
i=0
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5.3.1.2 Time-lagged inputs

In an atempt to evaluate the strength of the relation between the flow and the 

potential time-lagged input variables, a cross-correlation analysis was performed. The 

time-lagged variables of the causal inputs that are correlated to the flow were used as 

additional model inputs to represent the highly correlated nature of the studied time 

series. A statistical cross-correlation function (CCF) was calculated for each flow time 

series and the corresponding causal inputs (Eq. 6).

where n is the number of data points; h is the time lag in increment of days; t is the time 

expressed in integer intervals of days; ut and ut+h denote observations of variable u at 

times t and t+h, respectively; vt and vt+k represent observations of variable v at times t 

and t+h, respectively; and u and v are the mean of both u and v, respectively.

The time-lagged inputs with a CCF value higher than the 95% significant CCF 

were taken into consideration in model building. Figure 5-3 summarizes the CCF (Q, R) 

for the four studied watersheds. An interpretation of the CCF can be represented as it is 

in Figure 5-3b, where Q(t) is correlated to R(t) and R(t-l) for the Cassidy watershed. 

This correlation means that, for Cassidy, not only will its causal inputs be used in model 

building, but R(t-l) will be added to the vector of inputs to account for the time series 

behavior. A similar interpretation for the other watersheds can be made from Figure 5- 

3. However, due to the non-stationary nature of the studied series, the used CCF is not

n-h

Y j ( ut +h- u )(vt ~ v )
[6] CCF =
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very accurate, and thus the time-lagged inputs were used as guidelines, and the 

possibility of eliminating the less correlated inputs was further investigated when 

building a candidate ANN model.

5.3.1.3 Inputs reflecting flow periodicity and Q/R hystereses loops

It was observed that the studied flow series exhibited an annual and sub-annual 

cyclic nature. Also the data exemplified the hystereses loops typical of recorded flow 

and rainfall. Additional inputs, to represent this seasonal behaviour, must be 

incorporated into the construction of a streamflow ANN model in order not to feed the 

model with contradictory information. (For instance, the yield from a given rainfall 

event on an initially dry catchment is lower than that from the same rainfall event on 

catchments which have recently received precipitation.).

Spectral analysis is used to efficiently manipulate a cyclic time series. The variance 

profile over the frequency, usually referred to as the “power spectrum”, was constructed 

to identify the frequency that contributed most to the variance. This frequency (v) was 

used later to help the model to dynamically change the input/output function according 

to the seasonal variation. Eqs. 7 to 9 demonstrate the calculation procedure of the power 

spectrum of a given flow time series:

1 (z-n/2
[7] f i p )  = -  + l /n)  + X 2(vk +//«)]

L l=-(L-1)/2

[8] X,(ut + / /n )  = n-|,22 ; a  cos{2.n(vk + / / n)t)
i=i
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[9] X,  (vk + / /« )  = n ljl Qt sin(2^(ut + 1/ n)t) ,
t =1

where n is the number of data points, t is the time in integer days, Qt is the daily flow 

observation at times t, Vk is the frequency of interest in units of d '1, L is a smoothing 

parameter that should be assigned an odd number and should be fairly small relative to 

n, and Ac and As are the cosine and sine Fourier transforms, respectively.

Figure 5-4 depicts the flow’s power spectrum for the four watersheds. It can be 

concluded that the frequency that contributed most to the power spectrum was in the 

range of 0.01 to 0.04 d'1, corresponding to a period of 25 to 100 days. A value of 0.033 

d '1, corresponding to the month-to-month variation within the typical annual cycle, was 

used in order not to lose necessary information. Two additional ANN model inputs,

s in (2 ;r^ ) and c o s (2 ;r^ ) , were included to account for the cyclic nature of the studied

series. Through the sign of the two inputs, the model is expected to be able to identify 

the season under study (for example, a positive value for both the sine and cosine inputs 

identifies the winter season), and with the aid of the magnitude of these parameters, the 

model is believed to identify the month within each season as illustrated by Figure 5-5.

5.3.2. Model Construction

The aim of this phase is to build a parsimonious model. Such a model should not be 

limited to mapping the data used during its development but should also be able to 

generalize by mapping other data sets. Thus, the choice of the training algorithm, the
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network architecture, and the model internal parameters (number of hidden layers, 

number of neurons, type of scaling and activation functions, learning and momentum 

rates, and stopping criterion), and the division of data into training (calibration), testing 

(validation), and cross-validation data sets are crucial to achieve a robust model. A 

thorough description of the model’s construction phase is presented in Nour et al. 

(2006b) and Maier and Dandy (2000).

5.3.2.1 Data division

According to the size of the available data, they must be split into different sets for 

the testing and validation of the ANN model. Without doubt, all data sets should be 

representative of the same population. When using an ANN, the available data are 

usually divided into two data sets for testing and validating the network (Maier and 

Dandy 2000). However, based on our experience and provided that sufficient data are 

available, the authors recommend operating in a cross-validation mode by dividing the 

data into three sets in the ratio of 3:1:1 for training, testing, and cross-validating the 

model, respectively. The training data set is used to calibrate the model by updating the 

neural network weights. The testing set is used to help in selecting a robust model out of 

the developed candidate models by determining when to stop training. Finally, the 

cross-validation data set is used to test the generalization ability of the chosen model 

through its application to a third data set. In this study, the models developed for the 

four watersheds were based on dividing the data in the ratio of 3:1:1 for training, 

testing, and cross-validating each model. The split was based on an algorithm that
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targets a similar frequency distribution of each data set, with any extreme and rare 

values being assigned to the training data set.

5.3.2.2 Identifying optimum network architecture

Maier and Dandy (2000) and Gamal El-Din and Smith (2002) provided a systematic 

approach for identifying the network architecture. This approach, with some 

modifications, was adopted in this study. Earlier work has found that a typical feed

forward (FF) multi-layer perceptron (MLP) ANN with a single hidden layer that utilizes 

one activation function in its processing elements (nodes) cannot accurately map the 

streamflow in higher latitudes (Nour at al 2006b). The complex nature of the 

streamflow system in higher latitudes is due mainly to the dynamic change of the 

driving forces of flow. At times, rainfall is the main driving force, but at other times, 

either the base flow or the snowmelt may control the flow values. Thus, a modification 

was made by applying a FF-MLP ANN with one hidden layer with processing elements 

that use more than one activation function. The approach proposed in Maier and Dandy 

(2000) and Gamal El-Din and Smith (2002) was then used to optimize the number of 

nodes and their corresponding activation functions.

5.3.2.3 Training algorithm

Two training algorithms were tested in this study: (1) the typical gradient descent 

BP algorithm that uses a learning rate and a momentum coefficient to control the 

training speed and to facilitate moving towards a global minimum in the error surface
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(Haykin 1994), and (2) a BP algorithm with a batch update (BP-BU) technique. The 

NeuroShell 2 software package was used to train the models (Ward Systems Group 

1996). In the batch mode of BP learning, training proceeds through an entire epoch (i.e. 

it cycles through all of the training data set patterns) before the weights are updated. 

The advantage of the second algorithm (the BP-BU algorithm) is that it is insensitive to 

both the learning rate and the momentum coefficient, giving flexibility to less 

experienced modelers (Gamal El-Din and Smith 2002).

5.3.2.4 Stopping criterion

In BP learning, minimizing an error function, mean squared error (MSE) in this 

case, is desirable; however, this process is complicated due to a typically multi-local 

minima error surface. Attempting to build a robust model that does not memorize the 

training data, we used the testing data set statistical performance measured by the MSE 

to dictate when to stop training. Typically, the repeated training iterations successively 

enhance the network’s performance in the training data set, but the testing data set 

performance has an optimal point beyond which the statistical performance deteriorates 

again. Figure 5-6 demonstrates the approach. Training continued as long as the error of 

the testing data set was continuously decreasing, and was halted when this error started 

to increase even if that of the training data set was still decreasing, but the connection 

weights were always adjusted based on the training data set.
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5.3.3. Model Evaluation

In this phase, the developed model’s performance was evaluated by using statistical 

and graphical means. There is no single measure of “goodness-of-fit” statistic that can 

adequately describe model performance, and thus, an array of complementary measures 

was used for a complete assessment of model performance (Legates and McCabe Jr. 

1999; Fox 1981; Willmot 1981). In this study, several relative- and absolute-error 

measures have been incorporated: percent relative bias, RB(%) (Eq. 10); the root mean 

squared error, RMSE (Eq. 11); the mean absolute error, MAE (Eq. 12); the square of 

Pearson’s correlation coefficient, r2; the coefficient of multiple determination, R2 

(usually referred to as the coefficient of efficiency (Nash and Sutcliffe 1970) as denoted 

by Eq. 13; and the second-order index of agreement, d2 (Willmott et al. 1985) 

represented by Eq. 14:

(  N  N

[10] RB(%) = 100 _i=i______ :=i
N

V <=1 /

[11] RMSE

1 N
[12] MAE = — VIO, ~P, 

N i t
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where P, and O, are the predicted and the measured streamflow values at time /, 

respectively; and O is the mean of the measured streamflow for the entire time period.

All six measures of “goodness-of-fit” were calculated for the training, the testing, 

and the cross-validation data sets and assessed to judge the candidate model 

performance. A graphical representation of the measured and the predicted flow 

hydrographs were then investigated to highlight zones of poor performance. In addition, 

the possible reasons for the poor simulations of some data regions were identified, and 

model improvements were attempted.

5.4. Model Application

The proposed algorithm was applied to model the daily streamflow of the four study 

watersheds. Causal inputs, time-lagged inputs, and inputs reflecting flow periodicity 

and Q/R hystereses loops were identified for each watershed. Table5-1 summarizes the 

inputs used for each of the modelled watersheds.
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By following the guidelines provided in the ANN model development section, a 

robust feed-forward MLP ANN model was developed for each of the studied 

watersheds. Successful model training was achieved for all the cases by using a back- 

propagation training algorithm with batch update. A single hidden layer with three 

activation functions produced the best results for all the modelled watersheds, likely 

because each of the three distinct flow regimes (base flow, storm events, and snowmelt) 

is best manipulated with a separate activation function. Table 5-2 presents the 

architecture of the best model for each watershed.

Six statistical measures of “goodness-of-fit” were used to evaluate the performance 

of the devised models (Table 5-3). All models provided relatively low bias in the order 

of 10% with the exception of the cross-validation data sets of 1A watershed (-18%). 

Both RMSE and MAE were small as compared to peak flow reflecting the high 

performance of the devised models. The index of agreement, d2 , and the coefficient of 

multiple determination, R2, exceeded 0.92 and 0.71, respectively for all studied data 

sets. These comparatively high values for all training, testing, and cross-validation data 

sets for all candidate models reflect the superiority of the modelling approach and its 

good generalization ability.

Figures 5-7 through 5-10 show the modelled versus the measured flow hydrographs 

for the four studied watersheds. For all watersheds, the modelled and measured 

hydrographs were in good match. The smaller the watershed, the more accurate the 

prediction was. The flow patterns (at peak locations) were accurately simulated for all 

devised models, with summer events being better represented by the models than spring 

snowmelt events (2004 Two Creek is an exception, as the spring runoff was better
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simulated than the summer runoff.). Although these models were constructed from low- 

cost readily available inputs, all models performed fairly well, providing a successful 

algorithm for modelling the streamflow based on meteorological information and 

efficient time series manipulation of this information without the need to include past 

flow values in the model vector of inputs.

Many times, when conducting a data-driven modelling approach, the parameters 

that are physically important might turn out to be rather trivial in the actual modelling 

application. Thus, it is important to assess the relative importance of model inputs with 

respect to their influence on the model output to make sure that the devised models are 

consistent with our conceptual understanding of the modelled system. In this study, the 

“weights” method as described by Garson (1991) was used to identify the relative 

contribution of inputs on the modelled daily streamflow. Rainfall, R, (summation of all 

time-lagged rainfall inputs) was found to be the main contributor for modelling daily 

streamflow for the Willow, Two Creek, and 1A watersheds (Figure 5-11). The Cassidy 

watershed was an exception where snowmelt inputs (degree-day, dd\ snowfall 

accumulation, S(ct); and temperature information)) were the main contributors. The 

Cassidy streamflow time series, unlike the other three watersheds, spanned the period 

from 2002 to 2004 (all relatively dry years as compared to 2001). In such dry periods, 

the hydrograph is merely derived by base flow and snow melting explaining the 

relatively high importance of these inputs in case of the Cassidy watershed. The inputs 

reflecting Q/R hystereses were important in all four models and being more important in 

the Cassidy watershed as displayed in Figure 5-11.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5. Application to an Ungauged Watershed

The proposed algorithm managed to adequately simulate the streamflow of four 

watersheds relying on easily accessed information, highlighting the possibility of using 

such models in modelling ungauged watersheds. The application of this class of models 

requires delineating watershed basins by using GIS and digital elevation models 

(DEM). The generated basins should then be grouped together based on watershed 

characteristics and hydrologic similarity. A sample of each category should be gauged 

to formulate a representative model. Each representative model can then be used in a 

predictive mode to simulate the hydrologic impacts in all mapped ungauged watersheds 

with similar characteristics.

To test this approach, the model initially developed for the 1A watershed was used 

in a predictive mode to predict the streamflow of the Cassidy watershed —being of 

similar basin area. Figure 5-12 presents the results of this application. The model was 

very good in predicting the flow hydrograph in 2002 (a relatively dry year), but did not 

replicate the spring snowmelt of 2003. All 2004 hydrograph patterns were picked by the 

model; however, peak responses were not as good. Goodness-of-fit statistics were as 

follows: RB, -41%; RMSE, 0.06 m3/s; MAE, 0.02 m3/s; R2, 0.56; d2, 0.8; and i2, 0.66. 

The initial results from this example are very promising. Fair prediction of three years 

of streamflow was achieved for an ungauged watershed using a model not trained, even 

with a single data point, for that specific watershed. Given that the 1A watershed has a 

very specific-wetland dominated soil (Prepas et al. 2006; Nour et al. 2006a) and that the 

originally developed model for 1A was not trained with a similar snowmelt event, it is 

believed that the approach would produce significantly better results if  the similarity
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between the watershed used in model formulation and the ungauged watershed were 

higher in terms of basin area, soil, and vegetation type (i.e. more hydrologicaly 

homogenous watersheds). Yet, even with the two dissimilar watersheds, the approach is 

very appealing.

5.6. Scaling-up and Regionalization of Models

There is an interest to model ungauged watersheds, where no streamflow

monitoring is taking place. However, the variability in climate, basin characteristics in

terms of topography, vegetation, land use, and surficial geology is huge. Such

variability makes it difficult in some cases to the extent that Linden and Woo (2003)

had problems even when transferring a model calibrated for a basin to its sub-basins.

All what we know is that the probability of having success in transferring models from

one watershed to another increases when they are more hydrologicaly similar. Crude

measures of hydrologic similarity that use annual water budgets can be found in the

literature (e.g., Gan and Burges 2006). In many instances, even quantifying simple

water budget components in an ungauged watershed is impossible due to lack of

pertinent data. In this study, we proposed a measure of hydrologic similarity that relies

on remote sensing (RS) information available for the public via the National Oceanic

and Aeronautics Administration (NOAA). Bi-weekly composites of 250 m x 250 m

pixel resolution satellite images acquired by the Moderate-resolution Imaging

Spectroradiometer (MODIS) were downloaded and averaged over the area of each of

the studied watersheds. Reflection information in the near infrared ( A m ir )  and the mid

infrared (A m ir )  frequency ranges were used to calculate a vegetation index termed
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shortwave mid infrared (SWMIR) vegetation index as explained by Eq. 15. This index 

was recently found to be highly correlated to leaf water content (Chen et al. 2005). In 

this study, we proposed a hydrologic similarity index (SWMIR_SIij) that makes use of 

RS SWMIR vegetation index (Eq. 16).

[15] SWMIR = Anir Amir
N̂IR M̂IR

[16] SWMIR_SIU = Hr
k=\

SWMIRi k -  SWMIRM

& SWMIR J

where Amir and Amir are MODIS reflection at the near infrared and the mid infrared 

frequency bands, respectively; SWMIR is the short-wave mid infrared water index at 

any instant of time; SWMIRJSIy is the proposed similarity index between basin i and 

basin j; k  is a time index of two-week interval; and N  is the number of two-week 

intervals in the total study duration.

A fifth watershed, the Mosquito watershed (Figure 5-1) of 3.1 km basin area was 

used in order to test the proposed hydrologic similarity indicator. Low values of a good 

indicator should reveal more hydrologicaly similar basins, and thus, model performance 

is expected to be higher for lower values of a good hydrologic similarity indicator. All 

previously calibrated models were applied to the Mosquito watershed and models’ 

performance in terms of “goodness-of fit” statistics was monitored. SWMIR_SIij was 

then calculated for each pair of watersheds. The obtained “goodness-of fit” statistics
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were finally regressed to the corresponding SW M IR_SIj to assess the success of the 

proposed indicator in describing hydrologic similarity between the previously trained 

watersheds and the Mosquito watershed.

In order to account for the large variation in basin areas, two modelling approaches 

were implemented: first, the previously calibrated models were run on the Mosquito 

watershed and the predicted streamflow values were multiplied by 

AreaMosquitc/Areaoriginai basin (Case 1); second, the original models were retrained by 

changing all the rainfall inputs to the corresponding “Areaonginai basin-Rainfall0riginai basin” 

then the ANN input layer scaling function was rescaled to accommodate the new range 

of “AreaMosquito.RainfallMosquito” before applying the models to the Mosquito watershed 

(Case 2). Table 5-4 summarizes the results of this application. Since R was negative for 

some cases, it is difficult to interpret, and thus, regressing SWMIR SIij to a “goodness- 

of-fit” measure was limited to and r2. Case 1 models were found to always behave 

better than case 2 models in terms of prediction accuracy reflecting the superiority of 

the first modelling approach over the second one (Table 5-4). Figure 5-13 summarizes 

the results of the conducted linear regression. Significant correlation (r2 > 0.71) was 

established suggesting the usefulness of the proposed indicator. However, more data is 

required to strengthen our results.

The model with the lowest SWMIR_SIij value—the Willow model applied on the 

Mosquito watershed—performed fairly well acknowledging that the calibrated 

watershed is 5 times bigger than the ungauged watershed (Figure 5-14).
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5.7. Conclusions and Recommendations

Most of the reviewed streamflow neural network models were either recurrent 

network based or feed-forward multi-layer perceptron (FF-MLP) requiring the past flow 

values for lead-time prediction. These models cannot be used in modelling ungauged 

watersheds when such information is missing. The current study proposed a FF-MLP 

algorithm using low-cost, readily available meteorological data and careful time series 

manipulation prior to model building. The proposed algorithm used inverse distance 

weighted interpolation for better rainfall representation. The temperature index 

snowmelt approach was used to account for the snowmelt. Cross correlation analysis 

was used to identify the time-lagged inputs, and spectral analysis was used to feed the 

model with information representing Q/R hystereses loops and the flow’s seasonal 

cyclic behaviour.

The algorithm was applied to four watersheds in the Canadian Boreal Plain. All 

models managed to simulate streamflow fairly well at all data ranges. Six measures of 

“goodness-of-fit” were used to assure model accuracy. In all cases, the best network 

architecture was a FF-MLP ANN with a single hidden layer. The hidden layer neurons 

were operating with three different activation functions. Likely, this division was 

analogous to the three main driving forces of streamflow (the base flow, snowmelt, and 

rainfall events).

To demonstrate the approach’s applicability to modelling ungauged watersheds, the

calibrated models were applied to a smaller watershed, the Mosquito watershed. In

addition, the model initially developed for the 1A watershed (5.1 km2) was used in a

predictive mode to simulate three years of streamflow for the Cassidy watershed (5.9
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km2). The initial results from these applications are very promising. The prediction 

accuracy was fair in all years except in predicting the early snowmelt in 2003. A new 

hydrologic similarity index (SWMIRJSIiJ) that makes use of public domain remote 

sensing information was proposed and was found to be significantly correlated to model 

performance. However more data is needed to strengthen our results.
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Table 5-1. Summary table for all models’ inputs

Model Inputs

1A Model R[> Rf-1, Rt-2, Rt-3, sin(2nvt), COS(27TVt), Tmax, Tmin, 
ddt , 5/

Cassidy Model R[> Rt-h sin(27Tvt), cos(2nvt), Tmax, Tmin, ddt, St

Two Creek Model Rt, Rt-i, Rt-2, Rt-3, Rt-4, R,-s, Rt-6, sin(2 nvt), 
COS(27ZVt), Tmax, Tmtn, ddt, St

Willow Model Rt, Rt-1, Rt-2, Rt-3, Rt-4, Rt-5, Rt-6, sin(2 nvt), 
cos(2nvt), Tmax, Tmin, ddt, St

where: R, through Rt-6 are the estimated rainfall at the centroid of the watershed in mm/d 
at lags 0 through 6; Tmax and Tmin represents maximum and minimum air temperatures in 
°C, respectively; ddt, is the cumulative degree days; and St, is the cumulative snowfall in 
cm.

Table 5-2. Summary table showing optimum ANN models’ architecture and ANN 

internal parameters

1A Model „  . ,  j  , Two Creek 
Cassidy Model j^0(jei Willow Model

Data division 
(TS:SS:CVS)

3:1:1

Scaling function Linear, < - l,l> Linear, <-1,1 > Linear, <-1,1 > Linear, < - l ,l>

Optimum network 10L-[7G-7GC- 8L-[5G-5GC- 13L-[5G-5GC- 13-L-[4G-4GC-
(I-[H-H-H]-0) 5LO]-T 5LO]-LO 5TJ-LO 4LO]-LO

Training
algorithm BP-BU

Learning rate Insensitive

Momentum
coefficient Insensitive

Initial weights Random 
[-0.3,0.3]

Epoch size TS (485) TS (351) TS (480) TS (383)

Stopping criterion Best test set (in terms o f MSE)

where: I and O denote input and output layers, respectively.; [H-H-H], represents a single hidden layer 
with different activation function; L, is the linear scaling function; G, GC, LO, and T are the Gaussian, 
Gaussian complement, logistic, and the hyperbolic tan activation functions, respectively; TS, SS, and 
CVS are the training, the testing, and the cross-validation data sets, respectively; and < > denotes an open 
interval.
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Table 5-3. Statistical measures of models’ performance

1A Model Cassidy Model Two Creek Model Willow Model

TS SS CVS TS SS CVS TS SS CVS TS SS CVS

RB(%) -7 -9 -18 1 9 14 1 -7 -3 5 7 11

RMSE 0.05 0.08 0.06 0.01 0.03 0.05 0.52 1.19 1.59 0.05 0.08 0.08

MAE 0.03 0.04 0.03 0.01 0.02 0.02 0.29 0.69 0.75 0.02 0.04 0.04

R2 0.91 0.79 0.75 0.98 0.90 0.78 0.97 0.77 0.71 0.92 0.71 0.79

d2 0.98 0.94 0.92 0.99 0.97 0.95 0.99 0.93 0.92 0.98 0.92 0.95

r2 0.91 0.8 0.76 0.98 0.90 0.86 0.97 0.77 0.72 0.96 0.72 0.82

TS, training data set; SS, testing data set; CVS, cross-validation data set; RMSE and MAE are in m3/s

Table 5-4. Statistical measures of models’ performance applied to the Mosquito 

watershed

1A model applied 
to Mosquito

Two Creek model 
applied to Mosquito

Cassidy model 
applied to Mosquito

Willow model 
applied to Mosquito

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2

RB(%) 99 -39 179 5 22 -36 24 -27

RMSE 0.04 0.03 0.04 0.03 0.02 0.02 0.02 0.02

MAE 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01

R2 -2.06 -0.08 -1.97 -0.32 0.33 0.46 0.57 0.51

d2 0.58 0.54 0.64 0.45 0.82 0.76 0.88 0.79

r2 0.27 0.13 0.4 0.05 0.48 0.49 0.63 0.55

Class 1 models are original models applied to the Mosquito watershed and the output 
was then scaled to reflect Mosquito’s basin area, Class 2 models are original models 
retrained using “Area x Rain” as inputs instead of Rain values then applied to the 
Mosquito watershed, and RMSE and MAE are in m3/s
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Figure 5-1. Study area showing studied watersheds and utilized weather 

stations (some weather stations are not shown at this scale)
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Figure 5-2. Schematic of the inverse distance weighted (IDW) interpolation
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Figure 5-3. CCF (Q, R) for (a) 1A, (b) Cassidy, (c) Two Creek, and (d) Willow 

watersheds. Solid line shows the 95% confidence boundary
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CHAPTER 6. DEVELOPING A TRAIN OF ARTIFICIAL NEURAL 

NETWORKS MODELS FOR MODELLING STREAMFLOW, 

SUSPENDED SOLIDS, AND PHOSPHORUS

6.1. Introduction

During storm events and snow melts—when the soil is susceptible to erosion—not 

only does total suspended solids (TSS) increase considerably but it can also act as a 

vector for the transport of many contaminants like; phosphorus, nitrogen, organic 

matter, and heavy metals (Gong et al. 1996; Munn and Prepas 1986). The resulting 

increase in nutrient loading to receiving water bodies, particularly phosphorus, can 

potentially lead to an increase in algal biomass, dissolved oxygen depletion, 

cyanobacteria toxin production, and ultimately accelerated eutrophication (Carpenter et 

al. 1998). Thus a reasonable prediction of TSS, TP, and their associated Q is critical to 

preserving aquatic ecosystems of interest.

Although conceptual models—for Q, TSS, and TP—are considered to be the best in 

terms of providing an understanding of the hydrological, geological, biogeochemical, 

and physical processes controlling water and contaminant transport, they are 

undermined in practice due to the incomplete understanding of the transport 

mechanisms at the watershed scale, and for the scarcity of data required for model 

calibration.

A version o f this chapter has been published. Nour, M.H., Smith, D. W., Gamal El-Din, M., and Prepas 
E.E. 2006. Neural networks modelling o f streamflow, phosphorus, and suspended solids: application to 
the Canadian Boreal forest. Water Sci. Technol. 53(10): 91-99.
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Alternatively, artificial neural network (ANN) models have gained popularity for 

efficient modelling of non-linear systems—like the one under investigation. ANNs have 

been successfully applied to modelling streamflow, salinity, pH, and other water quality 

variables (Maier and Dandy 2000; Brion and Lingireddly 2003; Lek et al. 1996; Wilson 

and Recknagel 2001; Moatar et al. 1999; Zhang and Stanley 1997; Zhang et al. 2004) 

providing premise for utilization in the current study.

The objectives of this study were to develop robust ANN models for modelling 

daily streamflow, total suspended solids, and total phosphorus; to apply the developed
>y

models to a 130-km watershed in the Canadian Boreal forest; and to provide a 

framework for model implementation into water resources management plans.

6.2. Materials and Methods

The daily Q, TSS, and TP concentrations were collected as part of the forest 

watershed and riparian disturbance (FORWARD) project for the Two Creek watershed 

(130 km2; latitude, 54.4° N; longitude, -116.4° W) from 2001 to 2004 (Detailed 

description of the project and data collection protocols can be found on J. Environ. Eng. 

Sci. special issue Volume 2, 2003). The daily rainfall (R) was obtained from 15 fire 

towers and weather stations in close proximity to the study watershed. The snowfall (S), 

mean, maximum, and minimum air temperatures (Tmean, Tmax, and Tmin, respectively) 

were recorded at the Environment Canada Whitecourt weather station (latitude, 54.15°; 

longitude, -115.78°).

The rainfall values recorded at each weather station were significantly different (up
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to 50% variation in some cases). Thus, in order to obtain a more representative rainfall 

time series for the study watershed, the inverse distance weighted (IDW) interpolation 

scheme was utilized (Detailed description of the approach and its implementation is 

presented in Weber and Englund (1992)). In the ensuing sections, Rt will be used to 

denote the IDW interpolated rainfall at time t. The mean air temperature and snowfall 

obtained from the Environment Canada weather station were further processed to 

calculate the cumulative degree-days (ddt) and the cumulative snowfall (Sc,) at time t 

(Equations are presented in Nour et al. 2006a). The Sc, was used to reflect the available 

snow depth, representing the amount of snow available for melting, and the dd, was 

used to provide an integrated measure of the heat energy available for snow melting.

In the current study, a streamflow ANN model was developed to predict Q from 

meteorological information. Modelled Q values were then coupled with weather 

information to serve as inputs for a TSS ANN model. Finally, modelled Q and TSS were 

used to augment weather data in predicting TP concentration. The utilized approach 

provided robust modelling of all three parameters utilizing data currently available to 

the public from Environment Canada at no cost.

6.3. ANN Model Development

Among many ANN topologies, the feed-forward multilayer perceptron (FF-MLP) 

ANN is by far the most widely used in water quantity and quality studies (Maier and 

Dandy 2000). FF-MLP is a neural network constituted by an input layer, one or more 

hidden layers, and an output layer. The nodes of any two consecutive layers are
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mutually connected but information only flows in one direction with no feedbacks 

(More detailed descriptions of ANNs are given in many journal papers and textbooks 

e.g. Haykin (1994)). FF-MLP networks are typically trained by supervised learning 

using the back-propagation (BP) algorithm (Haykin 1994). Unlike FF-MLP ANN, 

Kohonen neural network (KNNs), sometimes referred to as Kohonen self-organizing 

maps (SOMs), are based on the unsupervised learning methodology, in which the 

relevant multivariate algorithms seek clusters in the data. Unsupervised learning allows 

the investigator to group objects together based on their perceived similarity (Kohonen 

1982). During the training process, the data set, which consists of a large number of 

patterns, is presented to the SOM. The Euclidean distances between a pattern and all 

output neuron patterns are calculated. The weights of the output neuron, which is the 

nearest to the pattern, and also of its neighbouring neurons, are modified so that it 

moves slightly closer to the input pattern. After an iterative training process, 

neighbouring output neurons will have more similar patterns than distant ones. In this 

way, a Kohonen layer consisting of homogeneous groups of data can be obtained 

(Figure 6-1).

This study utilized the capabilities of KNN in pattern recognition to divide the data 

into training (for model calibration) and testing (for model validation) data sets. FF- 

MLP was used for ANN model formulation. The main building blocks in model 

construction are described below.
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6.3.1. Determination of Model Inputs

Adequate understanding of the processes deriving the modelled parameter is critical 

to identifying model causal inputs (factors that are known to affect the modelled 

parameter). However, when modelling time correlated variables, in addition to causal 

inputs, additional inputs should be included to reflect the time dependence and the 

seasonal cyclic nature of the modelled variables.

This study modelled Q, TSS, and TP utilizing information available to the public via 

Environment Canada without the need for supplementary case-specific information. The 

rationale behind the choice of cause/effect type inputs was to identify a surrogate for 

each component of the water cycle with emphasis on components representing storm 

events and snow melts. However, to be able to apply such modelling tool in water 

resources management of the region, all inputs should be easily acquired at a reasonable 

cost (preferably to be available for the public at no cost).

Cross correlation analysis was used to evaluate the strength of the relation between 

the modelled variable(s) and the potential time-lagged input variables. The time-lagged 

inputs that proved to be correlated to the modelled parameter(s) were identified as 

additional model inputs. Spectral analysis was utilized to quantify data periodicity in 

terms of the dominant frequency (v) (see Shumway and Stoffer (2000) for details). This 

information was then used—in terms of two additional model inputs (sin(2;rvf) and 

cos(27tvt))—to reflect the seasonal variations in the modelled parameters, TSS/Q and 

TP/Q hystereses loops. A summary of causal and time series inputs utilized in 

modelling the three parameters of interest is shown in Figure 6-2.
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6.3.2. Data Division

Maier and Dandy (2000) highlighted the importance of data division in ANN 

modelling. Training and testing data sets should be statistically similar to achieve model 

robustness. KNN was used to separate available data into as many statistically 

homogeneous groups as possible (Figure 6-1). Implementing this approach yielded 38, 

36, and 35 homogenous clusters for Q, TSS, and TP, respectively. Each group is then 

divided into training and testing data sets in the ratio of 3:1 formulating two statistically 

similar (homogeneous) groups; a training data set (for model calibration) and a testing 

data set (for model validation).

6.3.3. Determination of Network Architecture

Earlier work has proven that a typical FF-MLP ANN with a single hidden layer that 

utilizes one activation function in its processing elements (nodes) cannot accurately 

map Q and TP in higher latitudes due to the added complexity resulting from snow 

melts (Nour et al. 2006a,b). The complexity in modelling streamflow and its associated 

water quality parameters is mostly due to the dynamic change of the driving forces 

controlling their magnitude. At times, rainfall events are the main driving forces of 

these variables, but at other times, either base flow or snow melt may control their 

values. Thus, a modification was made by applying FF-MLP ANN with one hidden 

layer with processing elements that utilize more than one activation function. A 

combination of activation functions, scaling functions, learning and momentum rates, 

and training algorithms were systematically examined attempting to build the most
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possible parsimonious ANN models. The configurations that resulted in the best model 

performance (for Q, TSS, and TP) are illustrated in Figure 6-2.

6.4. Results and Discussion

6.4.1. ANN Q Model

The performance of each candidate model (representing different model 

configurations) was assessed based on statistical and graphical means. Root mean 

squared error (RMSE) and the coefficient of multiple determination (R2) of the training 

and testing data sets were compared in each case and important data patterns were 

graph:-~"y examined. The model that performed the best utilized a linear scaling

function that scales the inr  in the open interval of -1 and 1, one hidden layer (18

nodes; each 6 operates with one of the following activation functions: Gaussian, 

Gaussian complement, and tanh). The logistic activation function was used in the output 

layer. The best network was trained with BP algorithm with a batch update (BP-BU) 

technique (see Haykin (1994) for details). This training algorithm was insensitive to the 

learning and momentum rates. The developed model provided good flow predictions for 

both the training and testing data sets (RMSE values were 0.6 and 1.0 m3/s for the 

training and testing data sets, respectively). Figure 6-3a is a scatter plot of modelled and 

measured Two Creek watershed streamflow. The model was capable of accurately 

mapping the flow hydrograph at all data ranges (Figure 6-3b). R values were 0.95 and 

0.89 for the training and testing data sets, respectively. The retained good model 

performance for the two data sets reflects high generalization ability.
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6.4.2. ANN TSS Model

Simulated flow values were augmented with meteorological information to 

construct a TSS model. The developed model performance was even better than the flow 

model. The optimized network architecture was similar to the ANN flow model 

architecture in everything except in the hidden layer neurons. In the TSS model, 30 

neurons were used (each 10 operates with one of the following activation functions: 

Gaussian, Gaussian complement, and tanh). Measured and ANN predicted TSS profiles 

were in good agreement. R2 values exceeded 0.91 for the training and testing data sets 

(Figure 6-4a). RMSE of 18 and 24 mg/L were obtained for the training and testing data 

sets, respectively. The recorded RMSE was small as compared to the magnitude of the 

corresponding TSS values. Figure 6-4b portrays the measured and the modelled TSS 

profiles. It shows very good match of the measured and the predicted profiles with the 

model slightly underestimating peaks during snowmelt events. Whereas, incorporating 

rain and snowmelt information—as model inputs—contributed largely to mapping peak 

TSS concentration, simulated Q values likely enhanced TSS simulation in times when 

base flow was dominating.

6.4.3. ANN TP Model

Akin to the ANN TSS model, simulated Q and TSS values were used along with 

other meteorological data to formulate the TP ANN model. The optimum network 

configuration was identical to the ANN Q model configuration with the exception that 

the tanh activation function was used in place of the logistic activation function in the
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output layer. The simulation performance was as good as the previous two models 

(Figure 6-5). The (R2 value, RMSE) pair was (0.90, 11 pg/L) and (0.89, 15 pg/L) for 

the training and testing data sets, respectively. The similarity in the obtained optimum 

network configuration for the three modelled variables highlighted the robustness of the 

model building approach and the possibility of generalizing the approach to other water 

quality parameters.

6.5. Conclusions and Final Remarks

The current study proposed an artificial neural network (ANN) modelling algorithm 

that relies on low-cost readily available meteorological data for modelling streamflow 

( 0 ,  total suspended solids (TSS) and total phosphorus (TP) concentrations. The models 

were applied to a 130-km2 watershed in the Canadian Boreal Plain. Our results 

demonstrated that through careful manipulation of time series analysis and rigorous 

optimization of ANN configuration, it is possible to simulate Q, TSS, and TP reasonably 

well. R2 values exceeding 0.89 were obtained for all modelled data cases.

Models of this kind can provide very useful applications. They can provide real time 

prediction of Q, TSS, and TP in the studied watershed and can potentially be 

extrapolated to hydrologically similar watersheds. In both cases, questions related to 

climate change scenarios and their impact on streamflow and water quality can be 

addressed. Moreover, probabilities of exceeding a certain threshold of a contaminant 

can also be calculated by such models. Figure 6-6 illustrates a proposed framework for 

utilizing the developed models in water resources management. Of interest to water
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resources management is to assess the impact of rare events (like 1/20 years storm 

event) on water quantity and quality. This task can be demonstrated through evaluating 

the impact of a hypothetical 1/30 years storm event as follows: (1) the probability 

density function (PDF) for all ANN Q model inputs can be calculated (in North 

America, historic meteorological data at different weather stations is currently available 

for periods from 30 to over 100 years allowing such calculations); (2) through Monte 

Carlo simulations, one can randomly sample input PDFs and run the ANN Q model for 

all realizations resulting in a cumulative probability distribution (CDF) of the 

responsive Q (Figure 6-6); (3) the obtained Q PDF can be sampled again with other TSS 

ANN model inputs by Monte Carlo simulations and similarly, PDF and CDF can be 

calculated for the TSS; and (4) the same procedure can be repeated for the TP 

concentration. The obtained CDFs for Q, TSS, and TP can then be used in water 

resources management by estimating the probability of exceeding a certain threshold of 

the modelled parameters in the event that a 1/30 years event is to occur. This 

information can guide watershed land use activities and management plans.
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CHAPTER 7. ON THE POTENTIAL OF SATELLITE DERIVED VEGETATION 

INDICES FOR WATERSHED PHOSPHORUS MODELLING: A 

NEURAL NETWORK APPROACH

7.1. Introduction

A measurable increase in nutrient loading to water bodies may promote dissolved 

oxygen depletion, increased cyanobacteria biomass, and cyanobacterial toxin production. 

This may lead to the disruption of aquatic habitats and might also deteriorate the 

performance of downstream water treatment plants (Prepas et al. 2001). Therefore, the 

presence of cyanobateria in water bodies, used either for drinking water, animal watering, 

or for recreational purposes, can result in both a major economic burden and a serious 

health risk for human and animal populations (Hoeger et al. 2004). For example, the 1991 

algal bloom of the Darling-Barwon River in Australia has been largely attributed to a high 

concentration of phosphorus. This bloom led to a loss of one million people-days of 

drinking water (Herath 1995). Moreover, an algal bloom causes downstream water 

treatment plants to incur additional treatment costs not only to reduce cyanobacterial cells, 

odor and color, but also to remove the toxins produced by the cyanobacteria. Thus, nutrient 

modelling, and in particular phosphorus modelling that can reflect landscape/aquatic

A part o f this chapter has been published. Nour, M.H., Khan, A., Smith, D.W., and Gamal El-Din, M. 2005. 
On the potential o f satellite derived vegetation phenology for watershed nutrient modelling: a neural network 
approach. Proceedings o f the Water Environment Federation, WEFTEC® 2005. Washington, D.C. 23 pp.
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phosphorus interaction, is critical in protecting aquatic ecosystems and preserving source 

water quality.

While it is easy to understand the hydrological, biological, and chemical mechanisms 

controlling phosphorus transport at the microscale, upscaling to the watershed level is not 

only data intensive and economically unviable, but attempts also generally yield inaccurate 

results (Hauhs et al. 1996; Haan 1989; Band et al. 2001; Zhao et al. 1999; Kami et al 1998; 

Maier et al. 1998). Instead, Artificial Neural Network (ANN) models have been relatively 

successful in capturing data patterns without incorporating extensive knowledge of the 

biological, geological, chemical, and physical processes governing the modelled system, 

and consequently appear to be attractive alternatives to traditional conceptual models (e.g. 

Brion and Lingireddy 2003; Lek et al. 1996; Maier et al. 1998; Maier and Dandy 1996; 

Wilson and Recknagel 2001; Moatar et al. 1999; Zhang and Stanley 1997; Zhang et al. 

2004).

In the Canadian Boreal Plain, total phosphorus (TP) concentration in receiving water 

bodies is mostly affected by soil phosphorus content. Because of the higher susceptibility of 

soil to erosion during the snowmelt and storm events, it is very likely that particulate 

phosphorus concentration in water bodies would increase to a maximum during such 

events. In order to characterize export mechanisms and to predict the water-phase TP 

concentration in all cases, knowledge of the time patterns of both the soil nutrient 

concentration and the vegetation nutrient uptake is crucial. In the absence of such 

information, it is only possible to predict the daily change in TP concentration (Nour et al. 

2006a). Providing this information in a cost effective manner is a challenge and, thus, many
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of the currently available models for TP predictions (both physically-based and data-driven) 

are undermined in practice because of the extensive landscape data required for model 

calibration.

Recently, rather than having to rely on a limited sampling of data, as would be the case 

with ground based measurements, satellite remote sensing (RS) has made cost-effective 

data available for the entire landscape. The Moderate-resolution Imaging Spectroradiometer 

(MODIS) launched by the National Aeronautics and Space Administration (NASA) in 

December 1999 has greatly improved scientists’ ability to measure plant growth and snow 

cover with an adequate spatial and temporal resolution and, most importantly, at no cost to 

the data user. The MODIS-derived vegetation indices (Vis), the enhanced vegetation index 

(EVI), its predecessor, the normalized difference vegetation index (NDVI) can potentially 

explain phosphorus dynamics within a watershed. For example Griffith et al. (2002a, b) 

found significant correlations between the National Oceanic and Atmospheric 

Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) NDVI- 

derived phenological metrics and water quality parameters, particularly phosphorus and 

nitrogen. Despite this promising data, so far very few studies have focused on linking RS 

land use/vegetation dynamics parameters to phosphorus content in a catchment’s streams. 

In addition, to our knowledge, no previous effort has attempted either dynamic empirical 

correlations of Vis and water quality parameters (as opposed to time static correlations) or 

has utilized such information in constructing a predictive water quality model.

This study is the first to attempt to build a model that can rely on a dynamic suite of 

remotely sensed vegetation indices for predicting water-phase TP concentration. It is aimed
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at building an ANN phosphorus model that utilizes vegetation indices, capitalizing on high 

quality data available via MODIS and the flexible model development procedures of the 

ANN technique. The specific objectives of this research were: (1) to devise a robust ANN 

phosphorus model, (2) to develop a protocol for linking RS data with ANN models, (3) to 

assess the usefulness of the MODIS-derived Vis in capturing phosphorus dynamics within a 

watershed, and (4) to apply the developed models to a second-order stream watershed in 

the Canadian Boreal forest.

7.2. Remotely Sensed Vegetation Indices

To carry out photosynthetic activities, chlorophyll in vegetation absorbs solar radiation 

primarily in blue and red wavelengths, permitting green to be transmitted through and 

reflected from the leaves. Non-visible Near Infra Red (NIR) is strongly reflected by the leaf 

structure to avoid over-heating. The RS vegetation indices (Vis) are derived from the 

manipulation of this characteristic and the unique spectral response signature of live 

vegetation, in order to yield a single dimensionless value that helps to distinguish plants 

from non-photosynthetic terrain features of the earth. While high values of VI represent 

dense, actively growing healthy vegetation, lower or negative values correspond to bare 

soil, snow, clouds or non-photosynthetic surfaces. The VI algorithms are designed to 

extract the vegetation signal portion from the measured reflected radiation by the remote 

sensor. One such algorithm is the simple ratio vegetation index (SRVI), which is the ratio 

of the atmospherically corrected reflectance of NIR to red wavelength. The NDVI is the 

normalized transform of the SRVI, designed to constrain the VI value between -1 and +1
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(Tucker 1979).

All vegetation indices share similar information in regards to the relationship of the 

seasonal sequence o f climatic factors to the timing of growth and reproductive phases in 

vegetation, such as the initiation of seasonal growth, time of blooming, time of seed set, 

and the development of new terminal buds (commonly referred to as vegetation phenology). 

The differences between the Vis are in the sensitivity of each indicator to the phenological 

cycle, the degree of saturation at high vegetation levels, and the distortion in plant response 

as a result of background scatter. Comparisons of the various vegetation indices can be 

found in Huete and Liu (1994), Elvidge and Chen (1995), Huete et al. (1997), McDonald et 

al. (1998) and Diaz and Blackburn (2003). Table 7-1 summarizes the vegetation indices 

examined as inputs to the predictive phosphorus model developed in this study.

This study examines five literature based Vis, enhanced vegetation index (EVI), 

normalized difference vegetation index (NDVI), greenness fraction vegetation index 

(GFVI), simple ratio vegetation index (SRVI), normalized difference water index (NDWI), 

and two additional modified indices proposed in this study (SRVIm and GFVIm) for use as 

possible inputs to the model. The GFVI and SRVI were modified to be based upon EVI 

instead of NDVI and represented as SRVIm and GFVIm as shown in Table 7-1. Because 

the EVI was designed to perform better in dense vegetation (Huete et al 1994,1999, and 

2002), modified versions of SRVI and GFVI utilizing EVI in place of NDVI were proposed 

to cope with the forested ecosystem under study (SRVIm and GFVIm).

NDVI derived from different sensors has been used extensively by the research

community in the last two decades and has been shown to correlate with several biophysical
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parameters such as chlorophyll density (Tucker et al. 1985), absorbed photosynthetically 

active radiation (Myneni and Williams 1994), leaf area index (LAI) (Spanner et al. 1990), 

productivity (Prince et al. 1995), and percent canopy cover (Yoder and Waring 1994). 

Other studies have shown the NDVI to be related to carbon-fixation (Raich and Schlesinger 

1992), canopy resistance, and potential evapotranspiration (Running et al. 1989) allowing 

it to be used as an input to models of biogeochemical cycles (Asrar et al. 1984).

In contrast to NDVI, EVI employs the blue wavelength, which is more atmosphere- 

sensitive, in addition to the red and NIR, to correct the red band for aerosol influence 

(Huete et al. 2002). EVI is designed to provide improved vegetation monitoring in high 

biomass regions through the reduction of canopy background influence (Huete et al. 2002). 

This index is relatively new to the research community and will take time to be fully 

evaluated for its strengths and limitations. While the NDVI is chlorophyll sensitive, the EVI 

is more responsive to canopy structural variations, including LAI, canopy type, plant 

physiognomy, and canopy architecture (Gao et al. 2000). These two vegetation indices 

complement each other, though EVI is designed to be more efficient in a forested 

ecosystem (Huete et al. 2002).

The principle behind the derivation of the GFVI from NDVI is to relate NDVI of mixed 

pixels to reference NDVI values, such as the NDVI of dense vegetation (NDVLo) and that 

of bare soil (NDVI0), assuming the individual component NDVIs in mixed pixels can be 

represented by these reference NDVIs (Gutman and Ignatov 1998).

Unlike the NDVI, SRVI, GFVI, and EVI that are sensitive to the vegetation

chlorophyll-content, the normalized difference water index (NDWI) is more sensitive to the
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change of liquid water content of vegetation canopies (Gao 1996). The NDWI relies on two 

spectral regions; the NIR and the mid infrared (MIR) or shortwave infrared. The inclusion 

of information from the MIR spectral region allows the monitoring of leaf water content 

(Grant 1987).

7.3. Study Area and Data Acquisition

7.3.1. Study Area and Ground-Based Data Acquisition

The study area is located in the Virginia Hills, Alberta, Canada (Figure 7-1). The 

studied watershed, The Willow Creek watershed, has a basin area of about 16 km2. The 

area is exemplified by low topographic relief and alkaline phosphorus-rich soils (mainly 

fine-textured Luvisols) developed from sedimentary bedrock. The studied watershed is 

mostly forested. Its forests contain white spruce (Picea glauca), lodgepole pine (Pinus 

contorta), trembling aspen (Populus tremuloides), and balsam poplar (P. balsamifera). The 

climate is cool-temperate (the mean monthly air temperatures range from -23 to 18 °C), and 

the mean annual precipitation is 584 mm (1972 to 1997 (Environment Canada 2002)).

Mean, minimum, and maximum daily temperature data were obtained from 

Environment Canada’s Whitecourt airport weather station due to its proximity to the 

studied watershed (Figure 7-1). The mean daily stream flow (Q) and TP concentration data 

were collected for three successive years (2001 to 2003) as part of the Forest Watershed and 

Riparian Disturbance (FORWARD) Study (see J. Environ. Eng. Sci. special issue Volume 

2, 2003 for details). The meteorological data indicated that, while the hydrograph of the
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year 2001 was mainly influenced by storm events, snowmelt events in the years 2002 and 

2003 were the most significant contributors to their hydrographs. Both the Q and TP 

concentration data time series peaked at almost the same time and had proportional values 

over time, indicating a high correlation between these variables.

7.3.2. Remote Sensing Data Acquisition

The U.S. National Aeronautics and Space Administration (NASA) has several moderate 

and coarse spatial resolution sensing systems in orbit that scan the entire surface of the 

earth and collect data. MODIS (or Moderate Resolution Imaging Spectroradiometer) is the 

key sensor on board NASA’s Terra and Aqua satellites, which are part of the Earth 

Observing System (EOS) satellite constellation. The EOS program, since its creation in 

1958, has focused on understanding the Earth’s air, land, water, and life as an integrated 

system, generating an extensive long-term database of remotely sensed observations. 

MODIS’ design is built on the National Oceanic and Atmospheric Administration (NOAA) 

Advanced Very High Resolution Radiometer (AVHRR) and Landsat Thematic Mapper 

(TM) experiences, to provide improved monitoring for land, ocean and atmospheric 

research. Compared to other global coverage moderate resolution spectrordiometers, 

MODIS has the highest spectral resolution and provides better cloud and atmospheric 

characterization (Justice et al. 1998). While viewing the entire earth's surface every 1 to 2 

days and acquiring data in 36 spectral bands, MODIS has improved spatial resolutions of 

250 m and 500 m in addition to 1 km.

The dataset is obtained in Hierarchical Data Format - Earth Observing System (HDF-
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EOS), which is the standard archive format for EOS Data Information System (EOSDIS) 

products. HDF-EOS is a multi-object file format and supports a variety of data types. The 

name of the data set is “MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN 

Grid V004”, or “MOD13Q1”. L3 in the dataset name stands for Level 3, whereas 

collection 4 (V004) refers to reprocessed collection 1 and 3 MODLAND products that were 

sensed from November 2000 to date, applying the latest available version of the science 

algorithm and using the best calibration and geolocation information available (Land Data 

Operational Product Evaluation (LDOPE) 2002). The MOD13Q1 HDF-EOS file size is 

approximately 500 MB and consists of 11 Science data sets (SDSs), which are the actual 

data stored in array format (MODIS Land Science Team (MLST) 2004)). The first two 

layers of the MOD13Q1 file are the EVI and NDVI images. These are 16-day composite, 

re-sampled, 250 m spatial resolution, 4800 x 4800 rows/columns, cloud-free, pre-processed 

high quality imagery VI pixels, produced for each year since 2000.

Although the valid range of NDVI or EVI is from -0.2 to +1, the values are scaled up by 

a factor of 10,000 with a fill value of -3000 if no data was available. The next two layers 

provide the NDVI and EVI per-pixel quality information followed by the four SDSs of 

reflectance data from which NDVI and EVI are derived. This provides users with the 

flexibility to change the coefficient values in the EVI equation or modify the algorithms in 

relevance to regional conditions. The last three SDSs provide the sun-canopy-sensor angles. 

This information is needed in order to know the variable scan geometry under which the 

pixel reflectances were measured by the MODIS sensor. Each SDS (or layer) is a tile unit 

(fixed-area size) in a Sinusoidal (SIN) grid projection. The tile unit is the smallest unit of
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MODIS land data processed at any time and has an aerial extent of approximately 1200 km 

x 1200 km (10° x 10°). The tiles are defined in a global non-overlapping grid such that there 

are 460 tiles, of which 326 contain land pixels.

A sequence of 3 years, from 2001 to 2003, of MODIS Vis (NDVI and EVI) and spectral 

reflectance (red (band 1,620 to 670 nm); NIR (band 2, 841 to 876 nm); blue (band 3,459 

to 479 nm); and MIR (band 7, 2105 to 2155 nm)) datasets was ordered through EOS data 

gateway interface, accessed using MODIS’ website: http://modis.gsfc.nasa.gov/ through the 

“data” link. The Terra MODIS MOD 13 Q1 dataset was chosen in the search criteria and the 

coordinates of the study area were fed into the system. 23 EOS-HDF files for each year; 

2001, 2002 and 2003, (total of 69 files with 69 metadata files) were downloaded from 

NASA’s server. After quality checks, 69 MOD13Q1 files were imported into ERDAS 

Imagine® GIS software. All of the 11 Scientific Data Sets (SDSs) produced by MODIS in 

each HDF-EOS file were converted to 11 image files (.img), the ERDAS Imagine® 

standard raster file format. The images corresponding to each spectral band of interest for 

each year were then stacked using the “Image Stack” module and subsetted using the Area 

of Interest (AOI) shape file of the study watershed. Finally, each SDS was averaged over 

the watershed area to present the overall watershed response with respect to the vegetation 

dynamics.

7.4. Vegetation Dynamics and Linkage to TP Modelling

Watershed level vegetation dynamics were captured using MODIS atmospherically

corrected reflectance data and subsequently manipulated to yield various vegetation indices.
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Figures 7-2 through 7-4 depict the vegetation dynamics pattern, as represented by NDVI, 

EVI, NDWI, GFVI, GFVIm, SRVI, and SRVIm for the Willow Creek watershed from May 

2001 to October 2003. These curves conform to a typical forest phenological cycle, which 

has the same basic elements: from null in winter (or low) to full photosynthetic status in 

late spring and back to senescent in the fall. These profiles suggest that all vegetation 

indices share information about the relationship of the seasonal sequence of climatic factors 

to the timing of growth and reproductive phases in vegetation representing phenological 

cycles. The differences are in the sensitivity of each indicator to the phenological cycle, the 

degree of saturation at higher photosynthetic activity levels, and the distortion in plant 

response as a result of the background scatter.

NDVI based indices clearly show extreme fluctuations and appear to be very sensitive 

to a certain degree of photosynthetic activity in the ecosystem while EVI based indices are 

less sensitive to the same degree of activity. Reduced sensitivity enables EVI based indices 

to avoid saturation at higher levels of photosynthetic activity, indicating their potential 

utility in a primarily forested ecosystem such as the Willow Creek watershed.

GFVI and GFVIm represent another normalization process, constraining the values of 

both EVI and NDVI between 0 and 1 (for dense vegetation environments). Essentially, it 

stretches the values between these two extremes. Thus, both indicators are very alike in 

pattern and magnitude (Figure 7-4).

The NDWI behavior was different from the previous chlorophyll-based indices. The

winter season with snow present, yielded the highest NDWI values. This is a consequence

of NDWI being sensitive to vegetation moisture content as well as soil surface moisture or
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snow content. However, the typical forest phenological cycle was still captured by the 

NDWI (Figure 7-2).

Because of differing sensitivity and sensing patterns of each index to the same levels of 

photosynthetic activity, background contamination, and plant health (as a responsive 

indicator of soil nutrient availability and other growth limiting factors), we examined the 

possibility of using all seven Vis to provide landscape information for water-phase TP 

modelling. In addition, we conducted a sensitivity analysis designed to address the 

uncertainty of the studied Vis; and finally, we made recommendations on the most useful 

indicators in TP modelling within a forested landscape.

7.5. Methodology

This study assessed the usefulness of the MODIS-derived Vis in devising a robust ANN 

model for predicting the dynamics of water-phase TP concentration. The following steps 

summarize our methodology towards these objectives:

(1) A conceptual design for the development of parsimonious ANN TP models with a 

protocol for linking RS Vis to ANN was first established.

(2) Modelling TP in ungauged watersheds requires utilizing modeled flow values as inputs.

However, to reduce inputs uncertainty associated with non VI inputs in this case,

models employed measured flow values in place of model predicted ones. Therefore,

different ANN TP models were developed in which all models utilized the same inputs

except for the input representing the VI yielding seven TP models, namely:
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ANNTP(EVI), ANNTP(NDVI), ANNTP(GFVI), ANNTP(GFVIm), ANNTP(SRVI), 

ANNTP(SRVIm), and TP(NDWI).

(3) Sensitivity analysis was performed to test the impact of the VI uncertainty on model 

predictions.

(4) The best performing model (based on model evaluation criteria and sensitivity analysis) 

was then used to predict three years of data of a ten-fold bigger watershed, the Two- 

Creek watershed (130 km2) (see Figure 7-1 for location) in order to test the applicability 

of the proposed modelling algorithm outside the present case study.

7.6. Development of Artificial Neural Networks Models

A neural network is a computational model that is inspired by the neuron cell structure

of the biological nervous system. Historical data, representing the process under

consideration, is fed to the neural network during the network training, thus allowing the

ANN to learn the relationships between the input(s) and the output(s). A learning rule

dictates how the ANN responds to the training data. The networks consist of numerous

individual processing units called neurons, interconnected in a variety of structures. The

most common of these is a three layer structure called the “three-layer multilayer

perceptron (MLP)”. These neurons are analogous to the neurons in the human brain, which

are responsible for information processing. The neurons in the input layer receive input

data. Each input neuron represents a single input parameter and scales inputs in a numeric

range that is consistent with the training scheme. The neurons in the hidden layer process
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the data through a set of non-linear activation functions (transfer functions) achieving the 

nonlinearity of the network. The output layer neurons report the results from the network in 

the original numeric scale (Haykin 1994). Each neuron in a layer is connected to every 

neuron in the subsequent layer (feed-forward (FF) connections). These connections are 

similar to the human dendrites and axons that allow the communication between the 

neurons in the brain. In the human brain, signals are transferred between neurons through 

these connections and across the synaptic gap, resulting in the release of chemicals that 

stimulate or inhibit the ability of the neighboring neurons to generate impulses. In the 

ANN, the “connection weight” between neurons represents this communication process. 

The sign and magnitude of connection weights describe the nature and strength of influence 

between the connected neurons (Smith 1993).

During the learning process, ANNs apply a set of rules that change connection weights 

iteratively until a stopping criterion is reached. Maier and Dandy (2000) and Zealand et al. 

(1999) reported that over 80% of previous neural network models used a backpropagation 

(BP) training algorithm, which is a supervised learning paradigm. By supervised learning, it 

is meant that a desired response is available to guide the learning process. In the BP 

algorithm, the weights are initially assigned small values arbitrarily. As training progresses, 

the mean squared error (MSE) between the target output and the network output is 

calculated, and the weights are systematically updated. Weight adjustments are made based 

on an objective function that reduces the MSE, attempting to reach a global minimum in the 

error surface. The training process stops when a prescribed stopping criterion is reached.

The development of the ANN models in this study can be summarized by three
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important phases: data pre-processing and input determination, model building, and model 

evaluation.

7.6.1. Data Pre-processing and Input Determination Phase

TP concentration in receiving water bodies of the Boreal Plain is mostly affected by soil 

phosphorus concentration and the intersection of the water table with the surface soil layers. 

Thus, snow melt and storm events enhance phosphorus migration to water bodies because 

the soil is more susceptible to erosion during these events (Chanasyk et al. 2003). 

Therefore, Q (being the outcome of all hydrologic processes defining the study watershed) 

and remotely sensed Vis (as a representation of soil/vegetation phosphorus interaction), 

with proper time series manipulation, can serve as inputs to a dynamic TP concentration 

model.

During the data pre-processing, TP concentration and Q time series indicated an annual 

cyclic variation, a seasonal periodicity, and TP/Q hystereses loops. Thus, when modelling 

TP, not only causal inputs were included in model formulation, but also input reflecting 

time correlation, and the TP/Q hystereses seasonal variations. An adequate understanding 

of the physical processes deriving the modeled parameter is critical to identifying its causal 

inputs; time series analysis (cross-correlation analysis and spectral analysis) can identify 

time-lagged inputs and can feed the ANN model with information to indicate hystereses 

loops.
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Efficient manipulation of cyclic time series was attained by conducting spectral analysis 

to the data. The variance profile over the frequency, usually referred to as the power 

spectrum, was constructed to identify the frequency that contributed most to the variance. 

The monthly variation, indicating the changes between months within the typical annual 

cycle, was identified as the dominant data periodicity (Figure 7-5). In reflection to that, two

additional ANN model inputs, s in (2 ;r^ ) and cos(2tt̂ )  were introduced to the model in

order to account for the cyclic nature of the studied series. Figure 7-6 illustrates this 

approach. By detecting the sign of the two inputs (either positive or negative), the model is 

thought to be able to identify the season under study (e.g., a positive value for both the sine 

and cosine inputs identifies the winter season), and with the aid of the magnitude of these 

inputs, the model is expected to be able to identify the month within each season. The 

inclusion of these two additional inputs likely enabled the model to dynamically change 

input/output relation according to the season and, thus, to address TP/Q hystereses.

The cross-correlation analysis was used to address inputs’ time correlation and to 

identify possible time-lagged inputs based on the strength of the correlation between the 

output variable and each of the time-lagged inputs. It was found that TP is correlated to 

Q(t), Q(t-l), Q(t-2), and Q(t-3). A Detailed description of the spectral analysis and the 

cross-correlation analysis is presented in Nour et al. (2006b).

Seven models were constructed in this study; all models utilized the following inputs as 

dictated by input/output causality and time series manipulation: Q(t), Q(t-l), Q(t-2), Q(t-3),

s in (2 7 r^ ), cos(27t^ )  , and the mean average daily air temperature (Tavg). In addition to
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the previous seven inputs, each of the seven developed models utilized a different VI (EVI, 

NDVI, SRVI, SRVIm, GFVI, GFVIm, and NDWI).

7.6.2. Model Building Phase

The goal of this phase is to build a parsimonious model that is not limited to mapping 

the data used during its development but that can also generalize by mapping other data 

sets. Thus, the choice of the training algorithm, the network architecture and internal 

parameters (number of hidden layers, number of neurons, the type of scaling and activation 

functions, the learning and momentum rates, and the stopping criterion), and the division of 

data into training (calibration), testing (validation), and cross-validation data sets, are 

crucial to achieving a robust model. A thorough description of the model-building phase is 

presented in Nour et al. (2006b), and Maier and Dandy (2000). Following their guidelines 

in building a robust model, a three-layered feedforward multilayer perceptron (FF-MLP) 

ANN model, trained with the error backpropagation algorithm, was found to perform best 

for this case study. In all cases, the optimum model employed a single hidden layer with 

three different activation functions (it appears that the three activation functions are 

analogous to the three driving forces in the modeled system: base flow, snow melt, and 

storm events.) Figure 7-7 portrays the structure of the ANN model that was optimum in all 

the seven devised models.

Two training algorithms were tested in this study: firstly, the typical gradient descent

BP algorithm that utilizes a learning rate and a momentum coefficient to control the

training speed and to facilitate moving towards a global minimum in the error surface
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(Haykin 1994), and secondly, a BP algorithm with a batch update (BP-BU) technique. The 

NeuroShell 2® software package was used to train both models (Ward Systems 1996). In 

the batch mode of the BP learning, training proceeds through an entire epoch (i.e. it cycles 

through all of the training data set patterns) before the weights are updated. The advantage 

of the second algorithm (the BP-BU algorithm) is that it is insensitive to both the learning 

rate and the momentum coefficient, giving flexibility to less experienced modelers (Gamal 

El-Din and Smith 2002).

The data was divided into three portions in the ratio of 3:1:1 for training (T), testing (S), 

and cross validating (V) the model, respectively. The training data set was used to adjust 

the connection weights. The testing data set determined the point at which training has to be 

stopped to prevent overfitting the data. The ability of the model to generalize (i.e. to 

produce correct results on previously unseen data, rather than just to memorize the data 

already encountered during training) is finally measured by applying the developed model 

to the cross-validation data set. Table 7-2 summarizes the features of the optimum ANN 

model in each of the devised models.

7.6.3. Model Evaluation Phase

During the model evaluation phase, the coefficient of multiple determination (R ) was

used as a statistical measure of goodness of model fit, along with the root mean squared

error (RMSE). Measured versus predicted profiles were graphically examined, and the

model residuals were analyzed and checked for possible trends not explained by the

developed model. In addition, in order to test the robustness of each candidate model, the
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testing (S) and the cross-validation (V) data sets were swapped, each model was retrained, 

and the new model performances were then monitored.

7.7. Results and Discussion

7.7.1. Modelling Results

Following the model development algorithm and the methodology section described

above, seven ANN models were built and applied to the Willow Creek watershed. Table 7-

2 illustrates the ANN model configuration for each of the developed models. The

robustness of the modelling approach in terms of the model architecture is portrayed by the

similarity in the model configurations among all the devised models. The only difference

found was in the number of hidden neurons. The statistical performances of all models are

summarized in Table 7-3. The devised ANN TP models for the Willow Creek watershed

were able to simulate TP concentration successfully. All EVI-based Vis performed better

than their corresponding NDVI-based Vis with R2 ranges of (0.74 to 0.98) and (0.63 to

0.96) for the EVI-based and NDVI-based models, respectively. This result can be supported

by the fact that the watershed under study is a primarily forested watershed. The EVI was

designed to serve densely vegetated ecosystems by preventing the index saturation at high

photosynthetic activity levels and consequently performed well when used as an input for

modelling TP concentration. ANNTP(EVI) and ANNTP(GFVIm) models performed almost

identically in their results because in ANN, the data is internally normalized through a

linear scaling function analogous to the transformation of EVI to GFVIm and thus would

deal with these indicators in almost the same way. The same trend was detected for their
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corresponding NDVI-based models: ANNTP(NDVI) and ANNTP(GFVI). The minor 

variation seen in their performance; however, might be attributed to the difference in the 

normalization range between the ANN scaling function and the function that transforms 

NDVI and EVI to GFVI and GFVIm, respectively. The ANNTP(NDWI) model performed 

slightly better than the ANNTP(NDVI) but worse than the ANNTP(EVI). SRVI and 

SRVIm were the poorest Vis in representing water-phase TP dynamics.

The ANN models developed proved to be stable and consistent in their prediction. This 

was reflected by the maintained high R value, even when the testing and cross-validation 

data sets were swapped. The maximum root mean squared error (RMSE) for all data sets 

was 40 pg/L (corresponding to the SRVI). The RMSE was small compared to the 

magnitude of its corresponding TP concentration, highlighting the high performance of the 

developed models in all data cases. The residual analysis was then conducted as a final 

stage in the model evaluation. Graphing the residuals is very important in model judgment; 

if the model fit the data well, the residuals can only be expected to reflect the measurement 

error that is assumed to be random. Hence, any lack of randomness in the residuals 

undermines the strength of the fitted model. In this case, the residuals were plotted versus 

time and versus flow to check for residual independency. Residual plots showed only 

random scatter (no trends were detected, instead, points were scattered all over the graph 

plot), indicating that the developed models have no serious deficiencies.

The results detailed above indicated that either the EVI or its normalized transform, 

GFVIm, can successfully represent landscape phosphorus dynamics and can therefore serve 

as inputs to a TP ANN model for adequate TP predictions. Their corresponding NDVI-
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based indices, as well as the NDWI were slightly lower in their performances, yet they can 

still provide ample information for fair TP modelling, especially for periods when EVI 

values are missing given that NDVI has more than 20 years of historic data.

Finally, to be able to select the optimum VI in terms of representing landscape 

phosphorus dynamics in a TP model, sensitivity analysis was conducted to test the model 

robustness in response to the Vis uncertainty. The following section will summarize the 

conducted sensitivity analysis.

7.7.2. Sensitivity Analysis

In response to input parameters’ uncertainty, quantifying the uncertainties in model 

predictions is important in evaluating a modelling tool. Although a robust model is 

supposed to be largely insensitive to expected errors in the input VI, it has to be sensitive 

enough to capture changes responsive to land use and watershed management activities. A 

sensitivity analysis is presented here to evaluate the robustness of all candidate models with 

respect to the impact of Vis uncertainty on TP models’ predictions skill.

The MODIS land science team has evaluated VI accuracies in response to the 

reflectance calibration uncertainty, possible spectral band shift, and band-to-band 

coregistration error. Their calculations have revealed an estimated error in the range of ± 

3% VI units for NDVI and ± 4% VI units for EVI in cloud free conditions (MLST 2004). 

MODIS has an algorithm designed to eliminate cloud contamination. Thus, ± 5% VI units 

will be used as the threshold to assess the model robustness. The Vis were also allowed to
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vary up to ± 10% in order to evaluate the vigor of the sensitivity, in terms of the responsive 

changes in TP concentration as a result of changes in the landscape vegetation composition. 

Figures 7-8 through 7-14 depict the sensitivity scatter plots for all the developed ANN 

models.

In terms of a ± 5% change in the VI level, the EVI-based models and NDWI-based 

model were found to be more robust when compared to the NDVI-based models. This

'j
observation is reflected in retaining a high R value by the ANNTP(EVI) model (Figure 7- 

8), the ANNTP(GFVIm) model (Figure 7-11), and the ANNTP(NDWI) model (Figure 7- 

14). The minimum R2 obtained in response to a ± 5% change in VI was 0.88 (only 6% 

lower than the original value) for the EVI-based models, and was 0.85 (only 6.5% lower 

than the original value) for the NDWI-based model. The ANNTP(NDVI) model was

<y
slightly lower in performance (8 % decrease in R .) Surprisingly, the ANNTP(GFVI) model 

was not sensitive at all to changes in the GFVI values. ANNTP(SRVI) and 

ANNTP(SRVIm) models were, as previously observed, inferior in performance.

In terms of the ability of the model to capture variation in vegetation cover and to 

predict the impact of such variation on the water-phase TP concentration (measured here by 

the ± 10% VI change), ANNTP(EVI) and ANNTP(GFVIm) remain superior, as the impact 

of the ± 10% change in vegetation typically resulted in a similar variation as predicted for a 

forested watershed of such scale (Prepas et al. 2001). Whereas ANNTP(NDVI) was very 

sensitive to the 10% change in NDVI (R2 dropped to 0.5), ANNTP(GFVI) was insensitive 

to this level of disturbance suggesting that the NDVI-based Vis are not the best alternatives 

for a forested landscape. The ANNTP(NDWI) model dropped in performance (in terms of
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R2) from 0.91 to 0.74 by decreasing the value of the NDWI by 10%.

Based on the models’ performances and sensitivity analyses, the ANNTP(EVI) was 

selected as the best candidate model for modelling TP concentration in a forested 

watershed. To test the applicability of the approach outside the presented case study, the 

same modelling algorithm was applied to another watershed in the Canadian Boreal Plain 

as described in the following section.

7.8. Model Applications

Assuming that we do not have either flow or TP measurements in the watershed of 

interest and that the ungauged watershed behaves as the Willow Creek watershed, one 

would be able to obtain real time forecasting of TP concentration by utilizing the developed 

ANNTP(EVI) model as follows: (1) download MODIS derived EVI as pixel based EVI 

values; (2) average the pixel based values over the entire watershed; (3) simulate the flow 

values by using a hydrologic model capable of modelling ungauged watersheds (eg., the 

hydrologic model developed by Nour et al. (2006a); and (4) estimate the time-lagged inputs 

and the inputs reflecting TP/Q hystereses as discussed in the “Data Pre-processing and 

Input Determination Phase” section. At such point, all model inputs can be available to run 

the ANN model for TP dynamics prediction.

To test the applicability of the modelling approach outside the current case study, the 

above algorithm was used to model TP concentrations in the Two-Creek watershed (Figure

7-1). The inputs to the model were: Q(t), Q(t-l), Q(t-2), s in (2 ;r^ ) , c o s ( 2 ^ ^ ) , EVI, and
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the mean average daily air temperature (Tavg). The optimum ANN architecture was found to 

be similar to the previous ANN models in architecture; a three-layer MLP with one hidden 

layer that contains 21 neurons (7 using the Gaussian, 7 using the Gaussian Complement, 

and 7 using the logistic activation functions). The input scaling function was the linear 

function and the output was the logistic activation function. The developed model 

performance in terms of (R2, RMSE in pg/L) was (0.94, 9), (0.88,14), and (0.86,16) for 

the training, the testing, and the cross-validation data sets, respectively. The high model 

performance was maintained when the testing and the cross-validation were swapped 

yielding (R2, RMSE) of (0.95,9), (0.88,15), and (0.85,16) for the training, the testing, and 

the cross-validation data sets, respectively. The measured and the predicted TP 

concentrations profiles were in good agreement highlighting the success of model in 

predicting the TP concentration dynamics in the Two-Creek watershed (Figure 7-15).

7.9. Conclusions and Recommendations

To our knowledge, this study is the first to attempt to build a model that relies on a time 

series of remotely sensed vegetation indices for predicting the dynamics of water-phase TP 

concentration. Because of the different degrees of sensitivity of each vegetation index (VI) 

to ecosystem disruption and plant health (as a responsive indicator of soil nutrient 

availability and other growth-limiting factors), we examined the possibility of using seven 

Vis (NDVI, EVI, NDWI, GFVI, GFVIm, SRVI, and SRVIm) to provide sufficient 

landscape information for water-phase TP modelling. In addition, we conducted sensitivity 

analyses to quantify the uncertainty in model predictions in response to the uncertainty in
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the Vis. As a result, a protocol for constructing parsimonious ANN TP models and for 

linking RS Vis to ANN was developed. Seven ANN TP models were devised in this study: 

ANNTP(EVI), ANNTP(NDVI), ANNTP(NDWI), ANNTP(GFVI), ANNTP(GFVIm), 

ANNTP(SRVI), and ANNTP(SRVhn). All models utilized the same information except for 

the input representing the VI. The EVI-based models were found to be superior in terms of 

the model prediction accuracy, the model robustness and stability. The R2 values for the 

EVI-based models ranged from 0.8 to 0.98 for all data sets, and the results of the sensitivity 

analyses confirmed the robustness of the devised models to possible errors in the EVI 

values, as well as its sensitivity to vegetation disruption in response to watershed 

disturbance practices.

To test the applicability of the modelling approach outside the current case study, the 

proposed modelling algorithm was used to model TP concentrations in another watershed, 

the Two-Creek watershed (130 km ). The predicted TP concentration profile matched the 

measured one very well. The high model performance was further confirmed by the 

consistent high values of R2 for all data cases, reflecting the superiority of the presented 

modelling approach.

This improved model responses over previous TP models can be attributed to the 

incorporation of the MODIS VI profiles, particularly the EVI in this case, in the modelling 

process. This is because identifying low and peak photosynthetic levels in the growing 

season has considerable implications for nutrient uptake and export studies. Thus, the 

present study serves as a leading effort in incorporating low-cost time-variant information 

in constructing a predictive tool for the water-phase TP concentration. It can potentially
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serve as a valuable tool in simulating the impact of different watershed harvesting activities 

on water quality parameters.

The implications of phenological information on hydrological and nutrient modelling, 

however, have not yet been completely explored in full depth. Thus, further studies are 

required to confirm the applicability of this approach for different landscape dominated 

watersheds. In particular, low density vegetated watersheds should be examined as NDVI- 

based models may perform better.
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Table 7-1. A summary table of the vegetation indices explored in this study

Acronym
VI

Description Formula Reference

Normalized

N D V I =  ^ NIR ~  ^ red
^NIR +

NDVI
difference
vegetation
index

Tucker
(1979)

EVI
Enhanced
vegetation
index

£ Y J  _  Q  ^ NIR Ked

^NIR +  C, X ^red ~  ^2  X 4>/ae +  ^

Huete et 
al. (1994)

SRVI

Simple
ratio
vegetation
index

SR V I =  ^ = ! +  W /

I -N D V I
Jordan
(1969)

Modified 
simple ratio 
vegetation 
index

epy im  -  1 +  SVI _ (G  +  +  (C l ~ 1 )Ked

+I

SRVIm I - E V I  (G - l )A NIR- ( C ,+ l ) l red + C 2^blue L This study

NDWI
Normalized 
difference 
water index

N D W I =  ^N,R ~ ^ MIR
^ NIR +  'IMIR

Gao
(1996)

GFVI

Greenness
fraction
vegetation
index

GFVI = ND VI~ NDVIo 
NDVIg -  NDVI0

NDVI g = NDVIx -{NDVIX - NDVI0) e '“ *

Gutman
and
Ignatov
(1998)

GFVIm

Modified
greenness
fraction
vegetation
index

E V I-E V I
GFVI =

EVIg - E V I 0 

EVIg =EVIx -{E V IX - EVIoy **
This study

where, ^  re(j ,  ^  b lu e ,  ^  n i r ,  and ^  MIR are the atmospherically corrected surface reflectance at the red, blue, 
near infra red, and mid infra red wavelengths; L is the canopy background adjustment (to correct for non- 
linearity, differential NIR and red radiant transfer through a canopy); C; and C2 are coefficients o f the 
aerosol resistance term, which use the blue band to correct for aerosol influences in the red band; and G is 
the gain factor. The coefficients adopted in the EVI algorithm are L = 1, Q  = 6, C2 = 7.5, and G = 2.5 
(values after Huete et al. 2002). Lg is the number o f vegetation layers; NDVI0 and NDVI v are the

NDVI signals corresponding to bare soil (Lg —► 0) and dense green vegetation (Lg —» oo), respectively; 
and k is the extinction coefficient.
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Table 7-2. Summary table showing optimum ANN models’ architecture and ANN 

internal parameters

Model

Data

division

(T:S:V)

Scaling

function

Training

algorithm

Learning

rate

Momentum

coefficient

Initial

weights

Stopping

criterion

Optimum

network

(I-[H-H-H]-0)

■ p p *
7L-[5G-5GC-

5LO]-tanh

TP(NDVI)
8L-[8G-8GC-

8LO]-LO

TP (EVI)

1s
PQ
C/3

8L-[12G-12GC-

12LO]-LO

TP(GFVI)

TP(GFVIm)

3:
1:

1

Li
ne

ar
, 

<
-1

,1 
>

B
P-

B
U

In
se

ns
iti

ve

In
se

ns
iti

ve

R
an

do
m

, 
[-

0.
3,

0.
3]

2
<*-o
CO

CD

.s,
I d
CO

t o
CD

t o

8L-[8G-8GC-

8LOJ-LO

8L-[8G-8GC-

8LO]-LO

TP(SRVI)

CD
CQ

8L-[13G-13GC-

13LOJ-LO

TP(SRVIm)
8L-[12G-12GC-

12LOJ-LO

TP (NDWI)
8L-[6G-6GC-

6LO]-tanh

where: I and O denote input and output layers, respectively; [H-H-H] represents a single hidden layer with 
a different activation function; L is the linear scaling function; G, GC, and LO are the Gaussian, Gaussian 
complement, and logistic activation functions, respectively; T, S, and V are the training, the testing, and 
the cross-validation data sets, respectively; and < > denotes an open interval. TP* model is the 
background model that does not use Vis in the vector o f inputs.
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Table 7-3. Statistical measures of models’ performances

Model

R2, S used as testing 

data set

R2, V used as testing 

data set

RMSE, S used as 

testing data set

RMSE, V used as 

testing data set

T S V T S V T S V T S V

yp* 0.88 0.41 0.48 0.79 0.58 0.32 24 55 44 32 39 59

TP(NDVI) 0.81 0.78 0.71 0.91 0.77 0.76 32 29 35 21 32 30

TP(EVI) 0.98 0.88 0.82 0.98 0.81 0.88 9 21 28 9 28 21

TP(GFVI) 0.8 0.78 0.71 0.91 0.77 0.76 32 29 35 21 32 30

TP(GFVIm) 0.98 0.89 0.84 0.98 0.89 0.87 10 20 26 10 22 22

TP(SRVI) 0.96 0.79 0.61 0.89 0.72 0.63 14 28 41 24 35 37

TP(SRVIm) 0.98 0.91 0.74 0.96 0.79 0.86 9 19 34 15 30 23

TP(NDWI) 0.97 0.83 0.77 0.96 0.85 0.78 13 25 32 14 25 28

where: T is the training data set; S is the testing data set; and V is the cross-validation data set. RMSE

in (pg/L). TP* model is the background model that does not use Vis in the vector o f  inputs.
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Creek watershed
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Figure 7-8. Sensitivity of TP predictions to changes in EVI, Rsq = R2
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Figure 7-9. Sensitivity of TP predictions to changes in NDVI, Rsq = R2
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Figure 7-10. Sensitivity of TP predictions to changes in GFVI, Rsq = R2
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Figure 7-11. Sensitivity of TP predictions to changes in GFVIm, Rsq = R2
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Figure 7-12. Sensitivity of TP predictions to changes in SRVI, Rsq = R2
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Figure 7-13. Sensitivity of TP predictions to changes in SRVIm, Rsq = R2

235

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



800

X  TP(1.1 NDWI), Rsq=0.88
600

o7P(1.05NDWI), Rsq=0.9o>

400 •  TP(NDWI), Rsq =0.91

■ TP(0.95 NDWI), Rsq=0.85

200

A TP(0.9 NDWI), Rsq=0.74

600 800200 400

Measured TP (|xg/L)

Figure 7-14. Sensitivity of TP predictions to changes in NDWI, Rsq = R

236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TP
 

Q
ig

/L
)

450  1

♦ Measured TP

Predicted TP
300

150

0 h----
Mar-01 Sep-02 Mar-03 Sep-03Sep-01 Mar-02

Date

Figure 7-15. Measured vs. ANN predicted TP concentration profiles for the 

ANNTP(EVI) model applied to the Two-Creek watershed

237

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 8. EFFECT OF WATERSHED SUBDIVISION ON WATER-PHASE 

PHOSPHORUS MODELLING: AN ARTIFICIAL NEURAL 

NETWORK MODELLING APPLICATION

8.1. Introduction

Natural and anthropogenic watershed disturbances can alter the hydrologic budgets 

and may expose soils to erosion, resulting in the potential for increased export of 

nutrients to surface waters (Smith et al. 2003; Munn and Prepas 1986; Cooke and 

Prepas 1998). The resulting excessive nutrient loads can cause an imbalance in biomass 

production in an aquatic ecosystem. The system then reacts by producing more 

phytoplankton than can be consumed by the ecosystem. This overproduction can lead to 

a variety of problems ranging from anoxic waters (through decomposition) to toxic 

algal blooms and a decrease in habitat diversity, thus leading to habitat destruction 

(Chorus 2001; Landsberg 2002; Hallengraeff 1993). Algal blooms’ impacts can 

adversely affect not only the health of people, animals, and marine organisms, but also 

the "health" of local and regional economies (Hoagland et al. 2002). Hence, nutrient 

modelling, and in particular phosphorus (P) modelling, is critical to provide the 

necessary information for responsive watershed management practices.

A version o f this chapter has been submitted for publication. Nour, M.H., Smith, D.W., Gamal El-Din, 
M., and Prepas, E.E. Effect o f watershed subdivision on water-phase phosphorus modelling: an artificial 
neural network modelling application. J. Environ.Eng. Sci. (submitted 05/2007).
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Numerous conceptual and data-driven models have been developed to simulate 

water-phase P dynamics. Conceptual watershed-scale P models include; but are not 

limited to; the soil and water assessment tool (SWAT) developed by Arnold et al. 

(1998), aerial non-point source watershed environment simulation-2000 (ANSWERS- 

2000) (Bouraoui and Dillaha 1996; Beasley et al. 1980), the hydrologic simulation 

program fortran (HSPF) (Johanson et al. 1984), the erosion productivity impact 

calculator (Sharpley and Williams 1990), the annualized agriculture non-point source 

pollutant loading model (AnnAGNPS) (Bingner et al. 2001), and the Guelph model for 

evaluating the effects of agricultural management systems on erosion and sedimentation 

(GAMES) by Cook et al. (1985). The use of this class of models presents the challenge 

of estimating or calibrating a large number of model parameters from limited available 

information. Obtaining necessary information for model calibration is always time 

consuming and expensive. Thus, most of the currently available models are limited in 

practice because of the extensive requirement for landscape data (e.g., data about soils, 

vegetation, and precipitation) needed for model calibration (Liu et al. 2006; Hauhs et 

al. 1996; Haan 1989).

Alternatively, data-driven models, in particular artificial neural network (ANN) 

models, have been successful in capturing data patterns without incorporating an 

extensive knowledge of the biological, geological, chemical, and physical behaviours of 

the system and, consequently, are attractive alternatives to traditional conceptual models 

when limited landscape data is available (Holmberg et al. 2006; Lek et al. 1996).

Watershed-scale P models can vary in complexity from lumped to spatially 

distributed representations of the landscape. Although the use of distributed models is
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conceptually appealing, the superiority of the more complex distributed models over the 

simpler lumped models is an issue of debate (Donnelly-Makowecki and Moore 1999; 

Wilcox et al. 1990; Michaud and Sorooshian 1994). Lumped models have minimal 

requirements for basin-specific data but cannot explicitly address the future impacts of 

changes in landscape activities. Distributed models, on the other hand, can explicitly 

account for spatial variability in the physical characteristics of a basin and, in principle, 

should perform better than lumped models when applied to ungauged basins or for 

predicting the impacts of land use changes (Refsgaard and Knudsen 1996). In practice, 

however, the superiority of more complex models over simpler ones for operational 

purposes is still in doubt (Donnelly-Makowecki and Moore 1999; Hauhs et al. 1996).

Several studies have addressed the impact of watershed subdivision on streamflow 

simulation. Most of these studies demonstrated that beyond an optimum threshold in 

terms of the number of subwatersheds, no significant improvement occurs in the 

modelling accuracy as a result of increasing the number of subwatersheds (Norris and 

Haan 1993; Zhang and Montgomery 1994; Kalin et al. 2003; Boyle et al. 2001). Other 

researchers have found that runoff volume is not significantly affected by the number 

and the size of subwatersheds (Tripathi et al 2006; Jha et al. 2004; Bingner et al. 1997; 

FitzHugh and McKay 2000). In contrast, Mamillapalli (1998) and Zhang et al. (2004) 

found that model runoff simulations tended to be more accurate with finer discretization 

of the watershed into subwatersheds. Thus, the role of spatial discretization on 

streamflow prediction is still unclear, with conflicting viewpoints being expressed by 

researchers. In addition, none of the above efforts considered the impact of watershed 

discretization on total phosphorus (TP) prediction accuracy.
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This paper addresses the impact of watershed subdivision in modelling TP 

concentration. The understanding of this impact is important for judging whether the 

increased costs and effort of obtaining and processing spatially-distributed basin 

information can be justified in terms of the increased accuracy and reliability of model 

predictions.

In the current study, models were formulated with artificial neural networks 

(ANNs). To alleviate the typical problem of landscape data scarcity, our models were 

formulated using public domain remote sensing (RS) information and regularly 

available weather station data.

Satellite RS has recently made available a large inventory of cost-effective 

landscape data over the entire landbase, rather than providing only a sampling of it as is 

the case with ground-based measurements. The Moderate-resolution Imaging 

Spectroradiometer (MODIS) launched by the National Aeronautics and Space 

Administration (NASA) in December, 1999 has provided scientists with the ability to 

measure forest growth with greatly improved spatial and temporal resolution. 

Furthermore, MODIS data is freely available, thus providing a means of acquiring time 

series representation of vegetation dynamics at an affordable cost. The present study 

involves an attempt to build models that can rely on a dynamic suite o f remotely sensed 

vegetation indices for predicting TP concentration in a 2nd order watershed. To our 

knowledge, it is the first to attempt to address the impact of watershed discretization on 

TP prediction. Earlier studies that utilized ANN for TP modelling focused on the 

lumped parameter representation of the modelled basin (Holmberg et al. 2006; Nour et 

al. 2006a; Lek et al. 1996). Thus, this study is the first to address the impact of
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watershed subdivision on a water quality parameter by using an ANN modelling 

algorithm.

The specific objectives of this work were: (1) to model TP as an influencing 

parameter for aquatic ecosystems on the Boreal Plain, (2) to develop a useful modelling 

tool that is less reliant on ground based data, (3) to utilize RS data availability via 

MODIS to represent vegetation dynamics in model formulation, and (4) to assess the 

impact of watershed subdivision on model performance.

8.2. Study Area and Input Database

The Willow watershed covers an area of 15.6 km2 in the Virginia Hills of Northern 

Alberta, Canada (Figure 8-1). The area is exemplified mainly by low topographic relief 

and alkaline phosphorus-rich soils (mainly fine-textured Luvisols) developed from 

sedimentary bedrock. The studied watershed is mostly forested. Its forests contain white 

spruce (Picea glauca), lodgepole pine (Pinus contorta), trembling aspen (Populus 

tremuloides), and balsam poplar (P. balsamifera). The climate is cool-temperate (the 

mean monthly air temperatures range from -23 to 18 °C), and the mean annual 

precipitation is 584 mm (1972 to 1997 (Environment Canada 2002)). The study 

watershed is one of the control watersheds of the Forest Watershed and Riparian 

Disturbance (FORWARD) Study (see J. Environ. Eng. Sci. special issue Volume 2, 

2003 for details). The data used for formulating, calibrating and validating the study 

watershed can be divided into two main sources: ground based and remotely sensed.
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8.2.1. Ground-Based Data Acquisition

Average daily air temperature data was obtained from the Environment Canada 

weather station located at the Whitecourt airport (Figure 8-1). Daily stream flow (Q) 

and TP concentration data were collected from May 2001 to October 2004 as part of the 

FORWARD Study. A 30 m x 30 m resolution digital elevation model (DEM) was 

acquired for the study area (Figure 8-2) and was used for watershed delineation.

8.2.2. Remotely-Sensed Data Acquisition

Watershed level vegetation dynamics were captured by using the Moderate 

Resolution Imaging Spectroradiometer (MODIS) atmospherically corrected reflectance 

data. This information was further manipulated to produce remotely sensed vegetation 

indices (Vis). Two vegetation indices were used in the TP modelling as surrogates for 

the soil/vegetation phosphorus transport. The first was the enhanced vegetation index: 

EVI (Eq. 1), a remote sensing (RS) representation of vegetation chlorophyll content that 

was designed to perform better than its predecessors in dense vegetation (Huete et al. 

2002). The second index was the normalized difference water index (NDWI) 

represented by Eq. 2., which is a RS representation of vegetation water content (Cheng 

et al. 2006).

[1] EVI = G- ^IR -K ed
^nir + C, x Xred C2 x Ablue + L

[21 NDWI = Anir Xmir
2  4 - 2NIR "r  MIR
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where, ̂  red, ^  blue, ^  nir , and ^ m ir  are the atmospherically corrected surface 

reflectance at the red, blue, near infra red, and mid infra red wavelengths; L is the 

canopy background adjustment (to correct for non-linearity, differential NIR and red 

radiant transfer through a canopy); C/ and Q  are coefficients of the aerosol resistance 

term, which use the blue band to correct for aerosol influences in the red band; and G is 

the gain factor. The coefficients adopted in the EVI algorithm are L = 1, Cj = 6, C2 = 

7.5, and G = 2.5 (values after Huete et al. 2002).

MODIS has the highest spectral resolution compared to other global coverage 

moderate resolution spectroradiometers and provides better cloud and atmospheric 

characterization (Justice et al. 1998). While viewing the entire earth's surface every 1 to 

2 days and acquiring data in 36 spectral bands, it has an improved spatial resolution of 

250 m. The dataset comes in the Hierarchical Data Format - Earth Observing System 

(HDF-EOS), which is the standard archive format for EOS Data Information System 

(EOSDIS) products. HDF-EOS is a multi-object file format and supports a variety of 

data types. Each HDF-EOS file size is approximately 500 MB and consists of 11 

Science data sets (SDSs), which are the actual data stored in an array format (MODIS 

Land Science Team (MLST) 2004)). The first two layers of an HDF-EOS file are the 

EVI and NDVI images. These are 16-day composite, re-sampled, 250 m spatial 

resolution, cloud-free, pre-processed high-quality imagery pixels produced for each 

year since 2000. Although the valid range of NDVI or EVI is from -0.2 to +1, the 

values are scaled up by a factor of 10,000 with a fill value of -3000. The next two layers 

provided the NDVI and EVI per-pixel quality information followed by the four SDSs of 

reflectance data (red (620 to 670 nm), NIR (841 to 876 nm), blue (459 to 479 nm), and
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MIR (2105 to 2155 nm)) from which the NDWI and EVI were derived. The last three 

SDSs provide the sun-canopy-sensor angles. This information is needed to know the 

variable scan geometry under which the pixel reflectances were measured by the 

MODIS sensor. Each SDS (or layer) is a tile unit (fixed-area size) in the Sinusoidal 

(SIN) grid projection. The tile unit is the smallest unit of MODIS land data processed at 

any time and has an aerial extent of approximately 1200 km x 1200 km.

A sequence of four years, from 2001 to 2004, of the MODIS HDF-EOS files was 

ordered through the EOS data gateway interface. The gateway can be accessed by using 

MODIS’ website: http://modis.gsfc.nasa.gov/ through the “data” link. The Terra 

MODIS MOD13Q1 dataset was chosen in the search criteria, and the coordinates of the 

study area were fed into the system. The search criteria retrieved the datasets from the 

years 2001 to 2004. Twenty-three EOS-HDF files for each year (a total of 92 files with 

92 metadata files) were downloaded from NASA’s server. After quality checks, 88 

MOD13Q1 files were imported into ERDAS Imagine® GIS software. All 11 Scientific 

Data Sets (SDSs) produced by MODIS in each HDF-EOS file were converted to 11 

image files (.img), the ERDAS Imagine® standard raster file format. For each band of 

interest (red, blue, NIR, MIR, and EVI), the images for each year were then stacked by 

using the “Image Stack” module and subsetted by using the Area of Interest (AOI) 

shape file of the studied watershed, or its subwatersheds according to the case. Finally, 

each SDS was averaged over the watershed area, or its subwatersheds according to the 

case, to present the selected area’s overall response with respect to vegetation dynamics. 

This information was then exported to a database. Equations 1 and 2 were then applied 

to the respective reflectance information to evaluate the EVI and NDWI, respectively.
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The results were then interpolated by using spline interpolation to obtain a value at each 

time instant when the TP concentration was measured in the stream. This information 

was finally used as inputs to the devised ANN models.

8.3. Watershed Delineation/Discretization

Automatic delineation of the watershed was achieved using a 30 m x 30 m

resolution raster DEM of the FORWARD study area. The commonly used D8 method

(Fairchild and Leymarie 1991) was used to determine the direction of the overland flow

at each cell of the DEM. ArcHydro extension of the ArcGIS 9.1 package from ESRI

was used for watershed delineation and further subdivision into smaller subwatersheds.

First, the input DEM was modified to remove depressions and flat areas, thus

eliminating indefinite down-slope drainages (Figure 8-2). Second, by using the D8

method, the flow direction in each grid cell was estimated by allowing the water to flow

from each cell to only one of the eight neighbouring cells, along the direction of the

steepest descent. Each grid cell was then given a value corresponding to its flow

direction. The output of this operation was a raster image with eight distinct values

according to the flow direction, as represented by Figure 8-3. Third, the number of cells

draining into a given cell along the flow network was monitored and reported at the

drained-to cell formulating the flow accumulation raster map (Figure 8-4). The flow

accumulation grid can thus be viewed as the drainage area reported in units of numbers

of grid cells. As expected, the large values of “flow accumulation” are associated with

streams receiving water from the surrounding land. Fourth, streams were defined by

identifying a threshold drainage area (TDA). All cells with a “flow accumulation” value
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greater than or equal to the specified TDA were classified as stream cells, whereas the 

others were considered as land cells draining into the stream cells. The stream cells 

were assigned a value of “1”, while the land cells were assigned a value of “NO 

DATA.” Fifth, stream links were generated by separating each stream at the confluence 

point and giving each stream a distinct value. The zone cells, whose drainage flows into 

each stream link, were identified and given the value of the stream link they drain into. 

Each delineated catchement grid was then transferred to a polygon by using the ArcGIS 

“raster-to-vector” tool formulating the delineated basin. Figure 8-5 depicts the 

delineated catchments for the FORWARD study area for a representative TDA of 250 

ha. Sixth, several TDAs were used to generate the corresponding catchments in order to 

identify the impact of watershed subdivision on the modelled TP concentration. The 

choice of a good TDA is rather arbitrary and case-sensitive. However, it is common 

practice to start with a big TDA—that will yield a single representation of the 

watershed—and then to reduce the TDA until spurious (small and/or highly elongated) 

subwatersheds start to appear (FitzHugh and Mackay 2000). This approach was 

implemented in the current study to produce four watershed subdivisions, ranging from 

no subwatersheds (i.e., lumped parameters representation) to 11 subwatersheds, as 

shown in Figure 8-6.

8.4. Methodology

The previous efforts to model water-phase TP concentrations showed that there is a

need for information regarding soil/vegetation phosphorus content to reasonably model

TP concentration. Without this information, only the daily change in the TP
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concentration can be accurately predicted (Nour et al. 2006a). This study attempted to 

devise a robust ANN TP model that relies on remotely sensed vegetation information to 

represent the missing soil/vegetation phosphorus component in the previous model 

described by Nour et al. (2006a). The goal was to build models that could rely on 

available information in the Boreal forest of Canada. Building models that do not rely 

on watershed-specific measurements would help to make the developed models 

applicable to similar watersheds without the need to invest in collecting watershed- 

specific data. The devised models relied solely on weather station information available 

from Environment Canada and local fire towers, in addition to public domain remote 

sensing information. The impact of watershed subdivision on the prediction 

performance of the developed models was studied in detail. The following steps 

summarize the methodology used to achieve the study objectives:

• Modelling TP in ungauged watersheds requires utilizing modelled flow values 

—in place of measured ones—as inputs. Thus, the flow model proposed by 

Nour et al. (2007) was used to generate a time series of daily streamflow values 

for the studied watershed. This flow model relies only on available weather 

station information and, therefore, can be used with the currently available input 

database in the Boreal forest.

• Four watershed delineations were achieved to test the impact o f watershed 

subdivision on TP predictions. For each delineation, a time series of MODIS 

derived EVI and NDWI was calculated for each subwatershed.

• Four ANN TP models were developed. All models utilized the same inputs

except for the inputs representing the Vis. For these inputs, a semi-distributed
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representation of the EVI and NDWI was allowed to test the impact of 

watershed subdivision on model performance.

• The relative contributions of model inputs to TP predictions was computed for 

the four models and compared to assess model consistency. Finally, the spatial 

distribution of the relative contribution of the landscape vegetation content to 

the water-phase TP was studied to help guide forest management in the region.

8.5. ANN Model Building

ANN applications have expanded over the past two decades to include such 

disciplines as engineering, computer science, statistics, physics, medicine, biology, 

pharmacy, and psychology. In these fields, ANNs are beginning to be the favoured 

option over other modelling alternatives because ANNs are highly nonlinear and 

universal approximators. The main advantages of ANNs are their ability to model 

nonlinear processes of a system without any a priori assumptions about the nature of 

the generating processes, and their ability to efficiently handle incomplete noisy and 

nonstationary data (Zealand et al. 1999).

The multi-layer perceptron neural network trained with the error back-propagation 

training algorithm (MLP-BP) is, by far, the most popular of all neural networks 

(Dawson and Wilby 2001; Maier and Dandy 2000). Because of the popularity of the 

algorithm and because the authors have applied it successfully in different applications, 

it was used in this study.

249

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To construct a robust ANN model, three stages were implemented in this study: (1) 

data pre-processing, (2) model formulation, and (3) model assessment. Each stage is 

briefly described in the following sections.

8.5.1. Data Pre-processing

In the data pre-processing phase, the input variables were identified; all input/output 

data patterns were explored to highlight the data’s main trends and features; and any 

irregularities entrenched in the data were checked further to ensure good data quality. 

Data pre-processing involved determining the appropriate model inputs, and dividing 

the data patterns into calibration, validation, and cross-validation data sets.

8.5.1.1 Determining appropriate model inputs

The main objective of this piece of work was to build TP ANN models that could 

rely on readily available information on the Boreal plain of western Canada. Thus, the 

input selection was based on our conceptual understanding of the process under 

investigation, but was constrained by data availability. Nour et al. (2006b) constructed 

an ANN model for modelling the daily change in TP concentration and concluded that 

supplementary information regarding soil/vegetation phosphorus content is needed to 

facilitate the modelling of daily TP concentrations. They recommended dividing the 

inputs into causal inputs, time-lagged inputs, and inputs reflecting TP/Q hystereses 

loops. A similar approach was used here by adding a fourth component to represent the 

subdivision of the watershed under investigation.
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The causal inputs included streamflow (Q), average air temperature (Tavg) ,  and both 

the NDWI and EVI as surrogates for the soil/vegetation phosphorus content.

To account for the time-series effect of the inputs, time-lagged inputs were 

incorporated in the model by applying a cross-correlation analysis as described in Nour 

et al. (2006b) to identify possible time-lagged inputs. This step resulted in including Q 

three days ahead (Qt-3), Q two days ahead (Qt-2), and Q one day in advance in 

addition to Qt as inputs representing the daily streamflow.

To take into consideration the inputs reflecting TP/Q hystereses, spectral analysis, 

as proposed by Nour et al. (2006b), was conducted to identify the dominant frequency 

identifying the cyclic/seasonal fluctuations. A smoothed periodogram was constructed, 

and a monthly variation was found to be the main contributor to the cyclic fluctuations. 

The TP/Q hystereses was then incorporated in the model by adding two additional

inputs, sin(2;r^-) and co s(2 ^^ -). By looking at the sign of the two inputs, the model

is expected to be able to identify the season under study (for example, a negative value 

for both the sine and the cosine inputs identifies the summer season), and with the aid of 

the magnitude of these two inputs, the model is believed to be able to identify the month 

within each season, as illustrated by Figure 8-7.

Since semi-distributed models had to be formulated, the EVI and NDWI were 

evaluated for each subwatershed and were included as multiple inputs corresponding to 

the number of subwatersheds under study (for example in the TDA = 250 ha model, five 

inputs were used to represent the EVI of the five subwatersheds, and five inputs were 

used for the NDWI variables of the five sub watersheds).
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The previous categorization of inputs resulted in using 9, 17, 21, and 29 inputs for 

the lumped, TDA = 250 ha, TDA = lOOha, and TDA = 50 ha models. Q t , Qt~u Qt-2, Qt-

3 , sin(2^-^-) ,cos(2^-^-), and Tavg. were common inputs to all four models. The

number of EVI and NDWI inputs varied and was equal to twice the number of 

subwatersheds in each model.

8.5.1.2 Data division

Three data sets were used for a rigorous analysis of a candidate ANN model. The 

first set is the training data set (TS), which was used for model training and the 

optimization of the connection weights. The second set is the testing set (SS), which 

was used to decide when to stop training to avoid model overfitting. Thirdly, the cross- 

validation data set (CVS) was used to evaluate the model against a totally independent 

data set. In this study, the data patterns were divided into three data sets in the ratio of 

3:1:1 for training, testing, and cross-validating the model, respectively. The split was 

based on an algorithm that targeted a similar frequency distribution of each data set, 

with any extreme and rare values being assigned to the training data set.

8.5.2. Model Formulation

The methodical approach suggested by Maier and Dandy (2000) and Gamal El-Din

and Smith (2002) was adopted in this study with some modifications. Earlier work

found that a typical feed-forward (FF) multi-layer perceptron (MLP) ANN with a single

hidden layer utilizing one activation function in its processing elements (nodes) cannot
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accurately map the streamflow at higher latitudes (Nour at al 2006b). Thus, a 

modification was made by applying a FF-MLP ANN with one hidden layer with 

processing elements that used more than one activation function. The approach 

proposed in Maier and Dandy (2000) and Gamal El-Din and Smith (2002) was then 

used to optimize the number of nodes and their corresponding activation functions.

Two training algorithms were tested in this study: (1) the typical gradient descent 

BP algorithm that uses a learning rate and a momentum coefficient to control the 

training speed and to facilitate moving towards a global minimum in the error surface 

(Haykin 1994), and (2) a BP algorithm with a batch update (BP-BU) technique. The 

NeuroShell 2 software package from Ward Systems Group was used to train the 

models. In BP learning, minimizing an error function, the mean squared error (MSE) in 

this case, is desirable; however, this process is complicated due to a typically multi

local minima error surface. Attempting to build a robust model that would not become 

overfamiliarized with the training data, to the extent that it could not generalize to 

problems it had not yet encountered, we used the early stopping technique that relies on 

the testing data set statistical performance measured by the MSE to dictate when to stop 

training. Typically, the repeated training iterations successively enhance the network’s 

performance in the training data set, but the testing data set performance has an optimal 

point beyond which the statistical performance deteriorates again. Training continued as 

long as the error of the testing data set was continuously decreasing, and was halted 

when this error started to increase, even if  that of the training data set were still 

decreasing, but the connection weights were always adjusted based on the training data 

set.
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Applying the abovementioned model development algorithm to each of the four 

developed models yielded similar model architectures with the MLP-BP using one 

hidden layer with three activation functions (namely Gaussian, Gaussian complement, 

and logistic functions), a linear scaling function, and a hyperbolic tangent output 

activation function. The typical gradient descent BP algorithm that uses a learning rate 

and a momentum coefficient was found to perform better than the BP-BU method. 

Table 8-1 summarizes the optimum ANN architecture including the network internal 

parameters for the four devised models. The similarity in the architecture for all models 

highlights the strength and consistency of our modelling algorithm. Figure 8-8 depicts a 

general ANN architecture that can represent any of the devised models.

8.5.3. Model Assessment

There is a general agreement in the literature that one should not rely on an 

individual error measure when assessing ANN model performance (Dawson and Wilby 

2001; Legates and McCabe 1999). Thus, a number of complementary error measures 

were used in this study: (1) percent relative bias, RB(%) (Eq. 3); (2) the root mean 

squared error, RMSE (Eq. 4); (3) the mean absolute error, MAE (Eq. 5); (4) the square 

of Pearson’s correlation coefficient, r2; (5) the coefficient of multiple determination, R2 

(sometimes referred to as the coefficient of efficiency) (Nash and Sutcliffe 1970) as 

denoted by Eq. 6; (6) the second-order index of agreement, d2 (Willmott et al. 1985) 

represented by Eq. 7; (7) the multivariate corrected Akaike’s information criterion, 

AICc (Eq. 8) suggested by Bedrick and Tsai (1994); and (8) the Bayesian information

criterion, BIC (Eq. 9) recommended by Schwartz (1978);
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where RSSk denotes the residual sum of squares under the model with k  parameters, and 

N  is the number of data patterns.

The first six measures of “goodness-of-fit” were calculated for the training, the 

testing, and the cross-validation data sets and assessed to judge the candidate model’s 

performance. One would expect that a model with more parameters would match data 

better than a model with fewer parameters; however, increasing model complexity does 

not necessarily lead to proportionate increases in model accuracy. Therefore, the last 

two performance measures were used because they penalize the models with more 

parameters and can thus provide a good evaluation of model parsimony when models 

are to be compared.

A graphical representation of the measured and the predicted TP concentration 

profiles was then investigated to highlight zones of poor performance. In addition, the 

possible reasons for the poor simulations of some data regions were identified, and 

model improvements were attempted.

8.6. Results and Discussion

Four ANN models were devised and applied to the Willow watershed to simulate 

daily TP concentrations over the period from May 2001 to October 2004. Eight 

statistical measures of model performance were used to assess the prediction accuracy 

of each model. The period of the study was divided, in each model, into three data sets 

for model calibration, testing, and cross-validation. The same data sets were used in all 

four models to provide a similar basis of comparison. The statistical measures of the
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“goodness-of-fit” of all candidate models are summarized in Table 8-2. All models 

produced an almost perfect mass balance of TP with a relative bias not exceeding 3% 

for all data cases. RMSE and MAE were reasonably low for all candidate models and 

all data sets. Both RMSE and MAE were decreased by increasing the degree of 

watershed subdivision. However, the difference in RMSE and MAE between the 

coarsest resolution and the finest resolution ranged from 4 to 10 pg/L for all training, 

testing, and cross-validation data sets, suggesting that all four models are reasonably 

accurate. The index of agreement, d2 , and the coefficient of multiple determination, R2, 

exceeded 0.95 and 0.82, respectively, for all the studied data sets for the four developed 

models. The comparatively high values for all the training, the testing, and the cross- 

validation data sets, for all candidate models, reflects the superiority of the modelling 

approach and its good generalization ability. Both d2 and R2 increased in value by 

increasing the number of subwatersheds. However, all models provided satisfactory 

results in terms of “goodness-of-fit” statistics.

To better compare the candidate models, two measures of model performance (AICc 

and BIC), which have a penalty term for increasing model complexity were used to 

assess whether the increased prediction accuracy could justify the increased model 

complexity. The full period of the study was used as a basis for comparing the four 

models. The results showed that both AICc and BIC were decreased by increasing the 

number of subwatersheds, suggesting that Model 4 (TDA = 50 ha) is the most 

parsimonious (Table 8-2). Figure 8-9 depicts the changes in AICc, BIC, and R with 

increasing the number of watershed subdivisions. It reflects the previously described 

trend of increasing R2 and decreasing both AICc and BIC by incorporating more
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subwatersheds into the modelling exercise. However, the slope of enhancement 

decreased significantly after 7 subwatersheds, suggesting that the enhancement of the 

model performance between 7 subwatersheds and 11 subwatersheds was operationally 

minimal, yet statistically significant.

Although model 4 (TDA = 50 ha) was proved to be statistically the most 

parsimonious, it is important to visually compare the TP concentration profiles of all 

models attempting to compare the models’ performance in all date ranges. The cross- 

validation data set was used as a basis of comparison to test the accuracy of all four 

models when applied to an independent data set. All models replicated the TP profile 

reasonably well (Figure 8-10). All models did not experience any lag phenomena (peak 

location shift) in prediction; however, the semi-distributed models managed to predict 

peak responses a little better than the lumped model (Figure 8-10).

In Alberta, the surface water quality guidelines for the protection of freshwater and

aquatic life dictate a maximum allowable TP concentration of 50 pg/L (Alberta

Environment 1999). However, Alberta forest management standards require

maintaining such low levels of TP concentration only for third-order watercourses and

higher (Alberta Sustainable Resource Development 2006). Although the studied

watershed is lower than third-order, and thus is allowed to experience TP concentrations

above 50 pg/L, it is important to assess the comparable models’ performance in

predicting TP concentration values above 50 pg/L, being of more importance to forest

management. Thus, all data patterns of the cross-validation data set that had a TP

concentration above 50 pg/L were clipped, and the comparative model accuracy in

terms of the statistical measure of “goodness-of-fit” was computed. The results showed
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that the statistical performance measures included in Table 8-2 did not change 

considerably by focusing only on TP concentrations above 50 pg/L. To test the models’ 

stability, the testing and the cross-validation data sets were swapped, and the models 

were retrained. Next, the performance measures were recalculated for the new cross- 

validation data set. All measures of “goodness-of-fit” statistics were comparable to the 

previous values summarized in Table 8-2, reflecting the stability of the four devised 

ANN models. For example, the R2 value was evaluated to be 0.82, 0.84, 0.90, and 0.92 

for the lumped, TDA = 250 ha, TDA =100 ha, and TDA = 50 ha, respectively. Figure 

8-11 presents a scatter plot of the measured versus the predicted TP concentrations 

above 50 pg/L for the cross-validation data sets before and after data swapping. It 

shows that all four models were successful in predicting TP concentrations above 50 

pg/L and that the semi-distributed models were generally better than the lumped model. 

Models with TDA = 100 ha and TDA = 250 ha were better in predicting peak TP 

concentrations above 350 pg/L, and the model with the finest resolution (TDA = 50 ha) 

was the best overall.

When conducting a data-driven modelling approach, the parameters that are 

physically important might often turn out to be rather trivial in the actual modelling 

application. Moreover, sometimes the input parameters’ importance changes 

significantly by changing the data set used in the model calibration, reflecting poorly 

tuned models. Thus, the relative importance of the model inputs with respect to their 

influence on the model output had to be assessed to ensure that the devised models are 

consistent with our conceptual understanding of the modelled system, and with each 

other. In this study, the “weights” method as described by Garson (1991) was used to
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identify the relative contribution of the inputs to the modelled daily TP concentration. 

The consistency in the importance of the model inputs was evident for all semi

distributed models (Figure 8-12). The relative importance of the summation of all 

model EVI and NDWI inputs (named VI in Figure 8-12) was close to 60% for all three 

semi-distributed models. The relative contribution of the daily streamflow inputs was 

close to 25%, ranking second after the VI inputs. The TP/Q hystereses inputs (named 

sin/cos in Figure 8-12) accounted for a 10% relative contribution, and the average air 

temperature ranked last in importance. The consistency among the three semi

distributed models reflects that the formulated models are robust representations of the 

modelled parameter. On the other hand, the lumped model performed differently, with 

streamflow being the most influential (45% relative contribution as opposed to 25% in 

the semi-distributed case) and with the VI inputs ranking second with a relative 

contribution of 25% (as opposed to 60% in the semi-distributed case). TP/Q hystereses 

and average air temperature relative importance were comparable in importance with 

their semi-distributed counterparts. Apparently, averaging the VI values over the entire 

watershed had a smoothing effect on the data that prevented the lumped model from 

extracting all possible relations between TP and both the EVI and NDWI. The lumped 

model had to rely more than the other models on streamflow to map TP (analogous to 

rainfall-runoff lumped models in hydrology). The prevalence of particulate phosphorus 

(PP) contribution of the TP time series and the high association between PP and Q made 

it easy for the lumped model to reasonably map TP in the absence of more detailed 

vegetation/soil information by giving more weight to the Q inputs.

260

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As a final step, the spatial importance of the landscape vegetation in affecting water- 

phase TP concentration was studied. The sum of the relative contributions of the EVI 

and NDWI was calculated for each subwatershed. ArcGIS was used to group similar 

values and to display their variation on the map. An example output map for TDA of 50 

ha is depicted in Figure 8-13. Such an output can be effectively used to guide forest 

management in a scenario-based analysis. It shows that, for the sake of preserving water 

quality, if  we are to harvest and/or disturb a specified area of the watershed, we have to 

start with the yellow portion of the watershed, followed by the white, and finally the 

red. To move this analysis a step forward, a correlation between the currently used 

vegetation metrics and the RS Vis (the EVI and NDWI in this case) has to be 

formulated. Once the correlation is established, we can force disturbances in the 

landscape (by changing the values of the EVI and NDWI) and simulate the impact of 

the changes on the water quality.

8.7. Conclusions and Recommendations

This study developed four artificial neural network (ANN) models for daily total

phosphorus (TP) predictions applied to the Willow watershed in Northern Alberta,

Canada. Four years of data were used to calibrate and validate the models. The devised

models were less reliant on ground based watershed-specific information and thus can

be extrapolated for application to hydrologically similar watersheds. Four watershed

subdivisions were incorporated to test the impact of watershed subdivision on the

prediction accuracy of the ANN TP modelling. Eight measures of “goodness-of-fit”

statistics including two with a penalty term for increasing model complexity were used
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to evaluate the developed models. Based on our modelling results, it was concluded that 

ANN modelling is well suited to model the daily TP concentration. The developed 

models utilized public domain remote sensing (RS) information available from the 

Moderate-resolution Imaging Spectroradiometer (MODIS) and typically available 

meteorological information as inputs for model building. The MODIS-derived 

Enhanced vegetation index (EVI) and the normalized difference water index (NDWI) 

were successful in representing vegetation dynamics in the devised models and, thus, in 

representing soil/vegetation phosphorus transport.

The results from the four models presented a good match of the measured and 

predicted TP profiles and an almost perfect material balance (a % relative bias of less 

than 3%). The statistical measures of the “goodness-of-fit” minimally favored the finest 

resolution semi-distributed model over other watershed subdivisions. In general, all the 

used measures of “goodness-of-fit” including the multivariate corrected Akaike’s 

information criterion (AICc) and the Bayesian information criterion (BIC) were 

enhanced by increasing the degree of watershed subdivision. However, the slope of 

enhancement was minimal when the number of subwatersheds exceeded 7 

sub watersheds.

Although the statistical model evaluation did favor the finest resolution in this case 

study, all model performance indicators were satisfactory for the four devised models. 

The differences in performance indicators were not significant, by any means, for any 

practical application. Therefore, it is concluded that the choice of the optimum 

watershed subdivision should depend upon the modelling objective. Lumped parameter 

modelling is easy to construct, relies on affordable landbase information, but cannot
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address questions related to the impact of different land use scenarios on water quality. 

Therefore, if  the objective is to forecast real-time water quality or to assess the impact 

of climate change scenarios on water quality, lumped parameters modelling can be used 

for any practical purpose without jeopardizing prediction accuracy. On the other hand, 

if the objective is to quantify the impact of different land use activities, then the 

watershed must be divided into subwatersheds to make the model recognize the 

locations of disturbances and, thus, to be able to simulate the corresponding impacts on 

water quality. Based on our results, we conclude that only in this case is the added time, 

cost, and effort of preparing distributed landbase information and its subsequent data 

processing justifiable.

Although evidence and basic justifications for the obtained results were provided in 

this study, to strengthen our results even more, further investigations are needed to 

determine the influence of the impact of watershed discritization on watersheds of 

various sizes, and in different geomorphological and spatial settings, and with other 

water quality parameters.
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Table 8-1. Summary table showing optimum ANN models’ architecture and ANN 

internal parameters

Model 1 
(lumped)

Model 2 Model 3 
(TDA = 250 ha) (TDA = 100 ha)

Model 4 
(TDA = 50 ha)

Data division 
(TS:SS:CVS) 3:1:1

Scaling function Linear, < - l ,l>

Optimum network 
(I-[H-H-H]-0)

9L-[4G-4GC-
10LOJ-T

17L-[4G-4GC- 21L-[3G-3GC- 
2LOJ-T 10LOJ-T

29L-[4G~4GC-
LO]-T

Training
algorithm Back-propagation

Learning rate 0.1

Momentum
coefficient

0.1 0.1 0.1 0.02

Initial weights
Random
[-0.3,0.3]

Stopping criterion Best test set (in terms o f MSE)

where: I and O denote input and output layers, respectively.; [H-H-H], represents 
a single hidden layer with different activation function; L, is the linear scaling 
function; G, GC, LO, and T are the Gaussian, Gaussian complement, logistic, and 
the hyperbolic tan activation functions, respectively; TS, SS, and CVS are 
training, testing, and cross-validation data sets, respectively; and < > denotes an 
open interval.

271

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 8-2. Statistical measures of models’ performance

Model 1 Model 2 Model 3 Model 4
(lumped) (TDA = 250 ha) (TDA = 100 ha) (TDA = 50 ha)

TS SS CVS TS SS CVS TS SS CVS TS SS CVS

RB(%) -2 -3 -2 3 -1 3 -1 -1 3 0 -2 0

RMSE 13.2 22.9 24.0 10.3 17.6 21.3 8.7 15.0 17.7 6.4 11.3 20.0

MAE 9.3 13.2 14.2 6.7 9.7 11.4 5.3 8.1 9.7 4.1 6.5 10.0

R2 0.95 0.82 0.86 0.97 0.90 0.89 0.98 0.92 0.92 0.99 0.96 0.90

6 2 0.99 0.95 0.96 0.99 0.97 0.97 0.99 0.98 0.98 1.00 0.99 0.97

r2 0.95 0.83 0.86 0.97 0.90 0.89 0.98 0.93 0.92 0.99 0.96 0.90

AICc 6.82 6.44 6.11 5.97

BIC 5.82 5.45 5.13 5.00

TS, training data set; SS, testing data set; CVS, cross-validation data set; RMSE and 
MAE are in pg/L. AICc and BIC were calculated for all data patterns t compare 
between models.
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Figure 8-1. A schematic showing the studied watershed
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Figure 8-2.30 m x 30 m resolution filled DEM of the FORWARD study area
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Figure 8-3. The FORWARD study area generated flow direction map using

the D8 method
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Figure 8-4. Generated flow accumulation map for the FORWARD study

area
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Figure 8-5. Generated watersheds for the FORWARD study area using a 250

ha TDA
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Figure 8-6. The Willow watershed subdivisions used in this study
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Figure 8-7. Trigonometric quadrants describing the concept of feeding 

ANN TP models with seasonal variation and TP/Q hystereses loops
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Figure 8-9. Impact of watershed discretizations on models’ performance
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Figure 8-10. TP concentration profiles for all four models applied to the

cross-validation data set
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CHAPTER 9. GENERAL CONCLUSIONS AND RECOMMENDATIONS

9.1. Thesis Overview

In Canada and elsewhere, the prediction of daily streamflow (Q) and total 

phosphorus (TP) concentrations is important for evaluating downstream hydrologic 

impacts, simulating the impact of extreme floods and droughts, evaluating the impact of 

different climate change scenarios and, thus, for safeguarding against any expected 

adverse consequences. Providing the resources to gauge all watersheds of interest is 

practically impossible, therefore, most of the currently available models for watershed 

modelling are limited in practice because of the extensive requirement for landscape 

data (e.g. soils, vegetation, precipitation) needed for model calibration. Therefore, a 

class of models that can simulate the response of ungauged watersheds with reasonable 

accuracy is critical to provide the necessary information for responsive watershed 

management practices.

This thesis attempted to build a class of watershed models that are less reliant than 

currently available models on ground-based watershed specific measurements by using 

remotely sensed information instead. It investigated the possibility of developing a 

modelling approach capable of simulating streamflow and water quality in ungauged 

and unmonitored watersheds. The focus was on formulating Q and TP models that are 

only reliant on currently available meteorological information in Canada, as well as 

public-domain ffee-of-cost Moderate Resolution Imaging Spectroradiometer (MODIS) 

derived remote sensing (RS) information. A number of water quantity and quality
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models were devised and applied to a number of watersheds ranging in their basin area
i j

from 5 to 130 km . The protocols used for data pre-processing, model formulation, and 

model evaluation made the following original contributions: (1) This thesis represents 

the first effort to compare autoregressive moving average with exogenous input 

(ARMAX) modelling to artificial neural network (ANN) modelling for TP predictions. 

Earlier efforts had focused on comparing the two modelling approaches for Q 

predictions (Chapter 2); (2) the current study established step-by-step guidelines to 

ANN modelling of time-correlated variables that can account for data hystereses, as 

described in Chapter 2. The approach was tested further in Chapters 3, 5, 6, 7, and 8; (3) 

it proposed a feed-forward multi-layer perceptron (FF-MLP) modelling algorithm that 

relies only on low-cost, readily available meteorological data and careful time series 

manipulation prior to model building for Q predictions, and thus, is suitable for 

modelling streamflow in ungauged watersheds (Chapter 5); (4) in this thesis, a new 

remotely-sensed hydrologic similarity measure was proposed and was found to provide 

a successful indicator of basin similarity (Chapter 5); (5) the current research is the first 

to attempt to build a model that can rely on a dynamic suite of remotely sensed 

vegetation indices for predicting the water-phase TP concentration (Chapter 7); (6) it is 

also the first to address the impact of watershed subdivision on a water quality 

parameter using an ANN modelling algorithm (Chapter 8).

In the preceding eight chapters, thorough discussions of the pertinent work were 

presented and the specific conclusions of each chapter were drawn. This chapter 

presents briefly the general conclusions of this study, as well as the recommendations 

for possible future work.
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9.2. Conclusions

(1) In this study, ARM AX modelling was compared to ANN modelling for TP 

concentration predictions. Both ARMAX and ANN predicted TP concentration with 

reasonable accuracy. Based on four measures of goodness-of-fit statistics, including 

two with a penalty term for increasing model complexity, and by examining the 

predicted versus the measured TP concentration profiles for the two modelling 

approaches, it was evident that ANN outperformed ARMAX. The inherent 

nonlinearity of the modelled process is likely to favor the ANN approach. Whereas 

ANN was capable of modelling gaped data efficiently, the ARMAX approach 

required equally spaced data values; therefore values had to be estimated for times 

when measurements were not available for the ARMAX model development.

(2) A multi-slab ANN was designed and utilized in this study in which a three-slab 

hidden layer with three different activation functions was used to reflect the distinct 

system behavior with respect to base flow, snow melt, and rain events. The 

approach was found useful throughout all devised models in this thesis and, thus, 

can be proposed as an improved ANN architecture for modelling streamflow and 

water quality parameters in northern latitudes.

(3) The hystereses in TP/Q and in Q/R behaviors were adequately addressed in this 

thesis by first conducting spectral analysis on the data and then by introducing two 

additional hystereses-specific inputs into the ANN model development.

(4) This study also proposed systematic guidelines for modelling time-correlated 

variables that can account for data hystereses. These guidelines can potentially be

286

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



applied for modelling other water quality parameters including diffuse pollutants 

associated with the melting of contaminated snow packs.

(5) The rainfall time series is the most important input in hydrologic water quantity and 

quality models. Thus, securing the highest-possible rainfall data quality has always 

been a priority in order to ensure the development of reliable water quality and 

streamflow predictions models. Practitioners often get confused in the realm of 

kriging methods and other interpolation schemes available. This thesis examined 

five geostatistical interpolation techniques; simple kriging (SK), ordinary kriging 

(OK), multi-Gaussian kriging (MGK), log-normal kriging (LNK), and kriging with 

an external drift (KED), in addition to the more traditional inverse distance weight 

(IDW) interpolation technique for the estimation of daily rainfall in a 250 m x 250 

m grid over a 750 Km2 area in the Canadian Boreal forest. The results indicated that 

multivariate kriging did not enhance the daily rainfall estimation skill. This can be 

explained by the relatively mild slope of the study area. SK, OK, LNK, and IDW 

were proven to be comparable algorithms with respect to prediction performance; 

however, OK produced slightly better results in terms of Pearson’s correlation 

coefficient (r). IDW outperformed OK in terms of RMSE but came next to it in 

performance with regards to r. MGC was the worst univariate estimator, likely due 

to the high percentage of data spikes. Although data despiking was carefully done, 

Gaussian back-transfer was disrupted due to the high proportion of data spikes.

(6) The strength of OK, as compared to IDW, was in the ability to estimate a measure 

of prediction uncertainty by evaluating the kriging variance. However, for our case 

study, because a prediction error estimate is not required, IDW was used for
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estimating daily rainfall from 15 Environment Canada and fire towers weather 

stations.

(7) Sequential Gaussian Simulations (SGS) was then implemented to produce 100 

equiprobable maps of rainfall and the probability of exceeding nominal thresholds 

of rainfall over the study domain was calculated. Such information can be used as 

inputs to hydrologic and water quality models in order to address the uncertainty in 

the modelled parameter in response to the uncertainty in rainfall information.

(8) A multi-objective approach for selecting future rain gauge sites; that is based on 

overlaying the map of the kriging variance, the digital elevation model (DEM), and 

the land use/land cover and road networking maps in a GIS framework to identify 

the areas of commonly favorable features; was proposed to identify potential future 

sampling locations. The approach was applied to the FORWARD study area and 

favorable regions for the installation of further weather stations were identified.

(9) Most of the reviewed streamflow neural network models were either recurrent

network based or feed-forward multi-layer perceptron (FF-MLP), requiring the past

flow values for lead-time prediction. These models cannot be used in modelling

ungauged watersheds when such information is missing. The current study proposed

a FF-MLP algorithm using low-cost, readily available meteorological data and

careful time series manipulation prior to model building. The proposed algorithm

used IDW interpolation for better rainfall representation. The temperature index

snowmelt approach was used to account for the snowmelt. Cross correlation

analysis was used to identify the time-lagged inputs, and spectral analysis was used

to feed the model with information representing the Q/R hystereses loops. The
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algorithm was applied to four watersheds (5 to 130 Km of basin area) in the 

Canadian Boreal Plain. All models managed to simulate streamflow fairly well at all 

data ranges. Six measures of the “goodness-of-fit” were used to assure model 

accuracy. To demonstrate the approach’s applicability to modelling ungauged 

watersheds, the calibrated models were applied to a smaller watershed, the 

Mosquito watershed. In addition, the model initially developed for the 1A watershed 

(5.1 km2) was used in a predictive mode to simulate three years of streamflow for 

the Cassidy watershed (5.9 km2). The initial results from these applications are very 

promising.

(10) A new hydrologic similarity index (SWMIRJSIij) that makes use of public 

domain remote sensing information was proposed and was found to be significantly 

correlated to model performance.

(11) In this study, we attempted to build a model that relies on a time series of 

remotely sensed vegetation indices for predicting the dynamics of water-phase TP 

concentration. Because of the different degrees of sensitivity of each vegetation 

index (VI) to ecosystem disruption and plant health (as a responsive indicator of soil 

nutrient availability and other growth limiting factors), we examined the possibility 

of using seven Vis; enhanced vegetation index (EVI), normalized difference 

vegetation index (NDVI), greenness fraction vegetation index (GFVI), simple ratio 

vegetation index (SRVI), normalized difference water index (NDWI), in addition to 

two indices proposed in this study (SRVIm and GFVhn) to provide sufficient 

landscape information for water-phase TP modeling. In addition, we conducted a 

sensitivity analyses to quantify the uncertainty in model predictions in response to
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the uncertainty in these Vis. A protocol for constructing parsimonious ANN TP 

models and for linking RS Vis to ANN was developed. EVI-based models were 

superior in terms of the model prediction accuracy, model robustness and stability. 

The sensitivity analysis confirmed the robustness of the model to possible errors in 

EVI values and its sensitivity to vegetation disruption in response to watershed 

disturbance practices. Building TP models that rely on both EVI, as a representative 

to vegetation chlorophyll content, and NDWI, representing vegetation water 

content, proved to be a superior modelling alternative. The improved model 

responses can be attributed to the incorporation of the MODIS derived Vis in the 

modelling exercise and their success in reflecting the vegetation dynamics and the 

dynamics of the soil/vegetation phosphorus transport.

(12) The impact of watershed subdivision on modelling TP concentrations was also 

studied in this thesis. Four watershed subdivisions were incorporated to test the 

impact of watershed subdivision on the prediction accuracy of the ANN TP 

modelling. Eight measures of the “goodness-of-fit” statistics including two that have 

a penalty term for increasing model complexity were used to evaluate the developed 

models. The results of the four models presented a good match of the measured and 

the predicted TP profiles and an almost perfect material balance (a percentage 

relative bias of less than 3% was achieved). The statistical measures of the 

“goodness-of-fit” minimally favored the finest resolution semi-distributed model to 

the other watershed subdivisions. In general, all the used measures of “goodness-of- 

fit” including the multivariate corrected Akaike’s information criterion (AICc) and 

the Bayesian information criterion (BIC) were enhanced by increasing the degree of

290

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



watershed subdivision. However, the slope of enhancement was minimal when the 

number of subwatersheds exceeded 7 subwatersheds. Although the statistical model 

evaluation did favor the finest resolution in this case study, all model performance 

indicators were satisfactory for the four devised models. The differences in 

performance indicators were not significant for any practical application. Therefore, 

it was concluded that the choice of the optimum watershed subdivision should 

depend upon the modelling objective. Lumped parameter modelling is easy to 

construct, relies on affordable landbase information, but cannot address questions 

related to the impact of different land use scenarios on water quality. Therefore, if 

the objective is to forecast real-time water quality or to assess the impact of climate 

change scenarios on water quality, lumped parameters modelling can be used for 

any practical purpose without jeopardizing prediction accuracy. On the other hand, 

if  the objective is to quantify the impact of different land use activities, then the 

watershed must be divided into subwatersheds to make the model recognize the 

locations of disturbances and, thus, to be able to simulate the corresponding impacts 

on water quality. Based on our results, we conclude that only in this case is the 

added time, cost, and effort of preparing distributed landbase information and its 

subsequent data processing justifiable.

(13) Models like the ones developed in this study that use commonly available 

inputs, yet are reasonably accurate, provide a useful tool for modeling ungauged 

watersheds. The concepts presented in this study can easily be extrapolated to other 

similar watersheds permitting flow and water quality predictions in response to 

climate change and landscape management practices. It can also offer a hydrologic
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link to the development of multi-objective forest management plans. Moreover, 

probabilities of exceeding a certain threshold of a contaminant as a result of a 

specific rare storm event (like the occurrence of 1/30 years storm event) can also be 

calculated by such models.

9.3. Recommendations for Future Work

Like all techniques, ours has room for improvements. Thus, a number of

recommendations can be made for future research in this topic:

(1) The division of the hidden layer into three slabs, each using a different activation 

function, was found to be the best ANN architecture in all the devised models. It is 

believed that each slab can manipulate one of the three distinct processes that 

control the system behavior (base flow, snowmelt, and rain events). However, this 

thesis did not attempt to examine this hypothesis. Future research examining the 

relationship between the different types of streamflow hydrographs and neural 

networks’ architectures can shed more light on to the abovementioned hypothesis.

(2) The results of TP concentration predictions for a watershed with a relatively high 

percentage of wetland aerial coverage (1A Creek) suggested that wetland-specific 

inputs are needed for better ANN model predictions. Therefore, more information 

about the dynamics of phosphorus export from at least some wetland types is 

required for better representation of wetland characteristics in the development of 

future TP ANN models.
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(3) This thesis proposed a new remotely sensed measure of hydrologic similarity. While 

evidence and basic justifications for the obtained results were provided, to 

strengthen our results even more, additional applications to other watersheds is 

required to investigate the advantages and the limitations of the proposed hydrologic 

similarity index.

(4) The proposed hydrologic similarity index can potentially provide a good measure of 

the potential of streamflow model transferability from one watershed to the other. 

Future investigations should test the applicability of using the proposed index when 

modelling water quality parameters as well.

(5) A multi-objective approach for the selection of future weather stations’ locations 

was proposed in this study. Favorable regions for the installation of further weather 

stations were then identified. Other measurements of interest (like those of air 

temperature and solar radiation) typically take place in each weather station. In 

future research, therefore, the same procedure should be conducted for the other 

parameters of interest as well. Upon completing the study of all the parameters of 

interest, an optimization algorithm targeting the minimization of a cost function, 

which reduces the cost and the kriging variance by choosing the optimal locations of 

the new stations, can be conducted for the areas that are commonly favorable for all 

the parameters of interest. Such an optimization could be a topic o f a future research 

investigation.

(6) A study designed to investigate the impact of developing individual season-specific 

interpolation models and to compare their prediction performance to that of the

general model devised in this study can be beneficial.
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(7) The present study represents as a leading effort in incorporating low-cost time- 

variant information in constructing a predictive tool for water-phase TP 

concentration. It can potentially provide a valuable tool for simulating the impact of 

different watershed harvesting activities on water quality parameters. Further studies 

are required to confirm the applicability of the approach for different landscape 

dominated watersheds (e.g. urbanized, harvested, and burnt watersheds). In 

particular, low density vegetated watersheds should be examined as NDVI-based 

models may perform better than other models.

(8) To move this analysis a step forward, a correlation between the currently used 

vegetation metrics (e.g., timber supply, average height, average age, average 

diameter at breast height) and the RS Vis (like EVI and NDWI) has to be 

formulated. Once the correlation is established, we can force a disturbance in the 

landscape (by changing the values of such Vis) and then simulate the consequent 

impact of these changes on water quality.

(9) Although evidence and basic justifications for the obtained results were provided in 

this study, to strengthen the results even more, further investigations are needed to 

determine the influence of the impact of watershed discritization on watersheds of 

various sizes, and in different geomorphological and spatial settings, and with other 

water quality parameters.

(10) The possibility of linking the devised ANN models with another physically- 

based modelling approach that could ensure physically plausible model predictions 

by creating boundaries on ANN model parameters is another area for future 

research.
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(11) The present study has shown the potential uses and benefits of some of the 

currently available satellite images. However, many new satellites valuable to 

watershed modelling either have been launched recently, or are to be launched in the 

near future. Improved estimation of vegetation characteristics, precipitation, soil 

moisture, inundated areas and snow characteristics seems to be an immediate 

outcome of this development. Future research should test the applicability of using 

such information in water quality modelling, and should address the future cost 

savings from incorporating RS information into modelling.

(12) Cross-correlation analysis was used to account for the time series effect of the 

model inputs. Despite the apparent success of the approach, as demonstrated in this 

study and in others, other nonlinear dependence techniques like the mutual 

information criterion (MIC) may prove more useful in accounting for the time- 

correlated variables in the model development. Future work should investigate 

whether the added effort in computing the MIC is justifiable in terms of the 

enhancement of the model’s prediction capability.
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