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ABSTRACT

This study incorporates the combined effects of climate change and yield uncertainty 

into estimates of the expected value and variance of future stand yields and net 

benefits for six management prescription options. These estimations provide the 

input data for three distinct mathematical programming based risk models that are in 

turn used to assess the effects of climate change and yield uncertainty on total 

economic returns and optimal harvest patterns for a stylized, 1000 hectare aspen 

forest located in central Alberta. The risk model formulations include a Markowitz 

minimum variance model, an expected value/variance -  chance constraint hybrid 

model, and a discrete stochastic programming (recourse) model. All other factors 

equal, the impacts o f climate change are positive for aspen timber management in 

central Alberta up to the year 2070. This result holds even when increased costs 

associated with climate risk are accounted for. A notable result is that climate risk 

accounts for only 25 % of the standard deviation in timber returns from the 

hypothetical forest. The remainder is due to variance in yield parameters. When 

compared to a baseline o f normal climate and no uncertainty, objective function 

values are lower when both climate effects and yield parameter variances are 

included. However, if  the decision maker is able to eliminate yield uncertainty in the 

first period, certainty equivalent values are higher than the baseline -  meaning that 

the effects o f climate change may be positive conditional on certain management 

response. The analysis also shows that if  recourse is not permitted, solutions that 

permit harvesting to occur are not feasible under current sustained yield policy
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regimes. Thus, AAC should not be viewed as a single target harvest volume that 

ensures sustained yield into the future. Rather AAC could be viewed as a decision 

tree representing a range of future possible harvests that are contingent on the 

realization o f particular states of nature through the planning horizon. Flexibility in 

long term planning will be increasingly important for successful adaptation to not 

only climate but other factors that contribute to risk and uncertainty in timber 

management.
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CHAPTER ONE

INTRODUCTION

“ With the possible exception o f  the equator, everything begins somewhere”
P.R. Fleming

Climate change and uncertainty
Although there is general agreement about global warming (IPCC 2001), there

is uncertainty about the timing, magnitudes and pattern of climate change and related 

impacts. Henderson-Sellers (1993) and Jones (2000) refer to an "uncertainty 

explosion" embedded within the various stages (climate-^biological 

-*• socioeconomic) o f climate change impact assessments. Schneider (1983) and New 

and Hulme (2000) describe cascading levels o f uncertainty with prediction 

uncertainty being compounded at each phase o f impact assessment. Sources of 

uncertainty about impacts are described as follows. First, there is uncertainty about 

the magnitude and pattern of future global warming. This uncertainty is due to 

various factors including uncertainty in emission scenarios, climate sensitivity, 

strength o f aerosol forcing, ocean heat uptake and mixing, and carbon cycle 

feedbacks (Wigley and Raper 2001). Second, there is uncertainty about how natural 

systems may respond to climate change. Third, there is uncertainty about how 

individuals, social groups, socioeconomic systems and institutions will respond to 

climate change (both directly and indirectly as a result of changes in natural systems 

and global markets) (Arrow et al. 1996).

Economic implications o f climate change in forestry
Change in climatic conditions could influence productivity, growth, mortality,

species distributions, disturbance frequency, plantation success and performance, 

disturbance intensity and the age class structure of Canadian forests (Saporta et al. 

1998; Beaulieu and Rainville 2005). The expected values o f key variables used in 

timber supply and economic analysis (such as stand yield coefficients) are anticipated

1
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to change. Given that there is uncertainty in future climate, there is also uncertainty 

about the future value of variables such as timber stand yields.

A number o f US based studies have considered the impact o f climate change 

on the forest sector at national and global levels (e.g. see Sohngen and Mendelsohn 

1999; Perez Garcia et al. 2002). These models incorporate uncertainty by combining 

different general circulation model outputs with different ecosystem models and then 

comparing the different outcomes o f different combinations o f models. This scenario 

approach addresses uncertainty by showing outcome frontiers. These studies do not, 

however, consider how individual preferences for risk might be a determining factor 

relative to net benefits, landowner choices, and timber supply under a changing 

climate at local levels.

The previous two paragraphs suggest three things. First, since there is a 

relationship between forests and climate, climate change will affect forests at both the 

stand level (due to changes in growth and yield) and the landscape level (due to 

changes in disturbance patterns and species distributions). Second, because there is 

no way o f knowing what the magnitude and pattern o f future climate change will be 

with certainty -  there is no way of predicting with certainty the impact on forest 

yields and structure. Thus, the future values o f measures used in forest economic 

analysis (such as stand yield) are uncertain. Third, economic theory predicts that 

uncertainty affects optimal choices (e.g. optimal harvest timing choices). Therefore, 

to the extent that climate change is a source of uncertainty, we might expect that not 

only is there an economic cost associated with this effect but that the existence of 

uncertainty and/or changes in the level o f uncertainty will influence the choices that a 

rational decision maker might make if he/she had; (a) knowledge o f the risks, and (b) 

the flexibility to adapt. Thus, uncertainty, in and of itself, may have implications for 

timber supply at local levels.

Another consideration relative to understanding the economic implications of 

climate change in a Canadian forest management context is that much of Canada’s 

forest land base is publicly owned and managed in order to achieve sustained yield
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objectives1. There are, however, opportunity costs associated with sustained yield 

and these opportunity costs will likely be affected by changes in climate and by 

uncertainty. Moreover, changes in climate and in uncertainty about forestry yields 

and benefits are likely to influence optimal harvest schedules under a sustained yield 

management regime. Thus, the institutional context for forest management may also 

have important implications for the benefits of forest management and optimal 

harvest plans.

Analytical context
This study investigates how climate change and uncertainty affects economic 

returns from timber management and the optimal harvest for an individual private 

firm managing a public forest subject to regulatory constraints (e.g. sustained yield 

constraints). The approach involves the creation of a stylized hypothetical central 

Alberta located forest o f aspen (populus tremuloides Michx.). Although the forest is 

stylized, the yield functions are based on regression analysis using actual mensuration 

data for aspen sites across western Canada.

The objective o f the firm is to maximize the expected value o f benefits from 

harvesting while accounting for risk. The manager is also required to fulfill other 

objectives (i.e. sustained yield objectives) and these additional objectives are 

incorporated as constraints. This study will focus on aspen management because 

deciduous species are becoming increasingly valuable as a feedstock for various 

forest products in Alberta, including oriented strand board and chemical-thermal 

mechanical pulps. Studies by forest scientists also indicate that aspen productivity 

and health will be affected by climate change (Hogg, 1994)2.

1 Even though forest management in Canada is moving toward sustainable forest management, 
sustained yield is still an important objective in forest management (Luckert and Williamson 2005).
2 The focus on aspen in this study is not intended to imply that deciduous trees will be affected more 
or less than coniferous trees. Coniferous species are also economically important and will also be 
affected by climate change. The magnitude and nature o f the effects on forests in general and specific 
tree species will likely vary from location to location.

3
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Analytical objectives
Forest management provides a unique context for climate change risk and

uncertainty analysis. First, significant and sometimes irreversible investments are 

made by society and landowners to establish forest capital. Second, forests have long 

growth cycles and the period that forest capital is vulnerable to environmental change 

is significant. Uncertainty about future yields may have important implications for 

socially optimal investment and harvest sequences.

This study will evaluate how the net benefit o f forest harvesting changes when 

uncertainty (or risk), expected productivity effects and risk attitudes are explicitly 

incorporated into a timber supply model. A comparison o f the present value of 

timber harvests with, and without, climate change effects provides a measure of the 

economic impact o f climate change at a local forest management unit level. The first 

requirement is to obtain estimates of the current values for yield and net benefits, and 

predictions of the distributions of the future values of random variables (i.e. yield 

coefficients and net benefit coefficients). Thus, the study will consider how climate 

change, climate uncertainty, and general uncertainty affects the optimal value o f 

choice variables (e.g. the optimal harvest area over time) and levels o f economic 

benefits. A second issue that will be considered is to evaluate the economic 

implications of regulatory requirements (such as those associated with sustained 

yield) in a climate change context.

Methodological objectives
The first methodological objective of this study is to estimate a stand yield

function that incorporates climate variables. Spittlehouse and Stewart (2003) suggest 

that the estimation o f yield models that incorporate climate variables as predictor 

variables is an activity that could be immediately undertaken in order to begin 

adapting to climate change. The yield model will be used to predict current yield 

(using historical climate data) and future yield (using climate scenario data).

Uncertainty associated with climate change implies that a number of the 

coefficients in the timber supply / risk models will be random variables. The second

4
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methodological objective of the study is to evaluate uncertainty in harvest yields, 

ending inventory yields, and net benefit coefficients. The yield functions described in 

the previous paragraph will be incorporated into a Monte Carlo simulation model 

framework in order to generate sample distributions for the random variable 

coefficients required by the economic models.

The third methodological objective o f this study is to develop, solve and 

compare different types of timber supply / risk models. There are three main risk 

model formulations that will be considered: 1. Variance minimization (i.e. a 

Markowitz asset allocation model), 2. Expected utility (or certainty equivalent 

maximization), and 3. Discrete stochastic programming (or recourse) models. These 

risk models use different approaches for dealing with uncertainty. The goal is to 

evaluate the strengths and weaknesses o f each approach and the specific kinds of 

problems and questions that each approach is best suited to address.

In summary, there are three methodological objectives and one analytical 

objective. The objectives of this study are:

1. To estimate a yield model that describes functional relationships between 

timber yield and non-traditional yield function variables (e.g. climate 

variables) as well as traditional yield function variables (age, site index, stand 

density).

2. To employ Monte Carlo simulation to generate distributions for harvest 

yields, ending inventory, and net benefit values with climate change.

3. To develop, solve, compare and evaluate different types o f linear and non

linear risk programming / timber supply optimization models (variance 

minimization, expected utility, discrete stochastic programming).

4. The general analytical objective involves conducting economic analysis:

a) To quantify and evaluate the effects o f climate change and uncertainty on net 

benefits and optimal decisions when productivity effects, risk (or yield 

coefficient uncertainty) and risk preferences are incorporated into the 

objective function, and

b) To evaluate the degree to which climate change affects economic returns both 

with and without sustained yield constraints imposed.

5
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Organization o f the thesis

The theoretical basis for the analysis for this study is provided by decision 

theory or expected utility theory. Chapter two provides an overview of expected 

utility theory and related concepts and theories that pertain to the economics of risk 

and uncertainty.

Chapter three provides a literature review of climate change impacts on 

forests, and uncertainty in climate and forestry analysis. This chapter also identifies 

gaps in our knowledge of climate change and forestry impacts and of methodologies 

for impact assessment at local scales.

The data requirements for the analysis in this study include: (1) cross sectional 

/ stand level yield and climate data across a range of sites with varying climates (for 

estimation of a variable density yield function), (2) climate scenario data for the study 

site (for prediction), and (3) other site-specific information (e.g. site index and soil 

features) also required for yield prediction. Chapter four describes data sources and 

methods for data collection and generation.

The overall methodology employed in this study involves the integration of 

three analytical techniques including regression analysis, Monte Carlo simulation, 

and mathematical programming. Chapter five provides an overview of how these 

various techniques are linked in order to provide a methodological approach for 

assessing the impacts of climate change on optimal harvest levels and forest benefits.

The first step in assessing the effects o f climate change on optimal harvest 

(and the consequent economic impacts) for our stylized forestry case study is to 

estimate empirical yield equations that incorporate climate variables. A number of 

alternative functional forms for yield prediction models were estimated and evaluated 

using regression analysis. Chapter six reports the results o f these various estimations 

and identifies a specific functional form for use as a prediction model for future yields 

under future climate conditions.

The next step in assessing the economic impact o f climate change is to 

estimate statistical distributions for the future predicted values o f random variables 

that are required for the economic models used to determine impacts. However,

6
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when random variables are functions o f other random variables, the estimation of 

their distributions can become intractable using analytical approaches. Monte Carlo 

simulation methods provide a straightforward, convenient, and accepted means of 

estimating the distributions of continuous random variables in cases where random 

variables are functions o f other random variables. The specific random variables 

required for the economic models are harvest yield, ending inventory yield, and net 

benefits. Chapter seven describes the methods used to estimate predictions of the 

future distributions of these random variables and presents the results o f this analysis.

A key objective o f this study is to develop and illustrate an approach for 

understanding the economic impact of climate change at a local forest management 

unit scale and to estimate how climate change affects optimal harvest. Three distinct 

economic risk models are developed, solved and compared. They include a portfolio 

variance (or risk) minimization approach (Markowitz asset allocation), a certainty 

equivalent maximization / chance constraint hybrid risk model, and a discrete 

stochastic programming (recourse) model. The structure and solutions for each o f 

these three economic models is described in chapter 8, 9 and 10. These chapters 

include analysis of the impacts o f climate change at a local forest management unit 

scale along with analysis of the implication of climate change on the social 

opportunity costs of constraints. Chapter 11 compares and contrasts the various risk 

models and provides a summary of findings. Also, areas o f future research are 

identified.
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CHAPTER TWO

AN OVERVIEW OF THE ECONOMICS OF RISK AND UNCERTAINTY

“The only certainty is uncertainty” 
Pliny the Elder, AD 23- 79

Introduction

The risk models developed in this study assume that agents are rational. The 

assumption o f rational behaviour essentially means that we assume that decision 

makers can, and do, successfully maximize (or minimize) some objective function 

(e.g. utility, profits, expenditures or costs) subject to constraints (e.g. budget, 

expenditures, resource constraints, etc.)3. Economic theory and models often assume 

that decision makers are rational. Moreover, in many cases economic theories are 

premised on the assumption that agents are certain about the outcomes of their 

decisions. However, in some situations, a decision maker may be uncertain about the 

outcome o f his/her decisions. In these cases theory and models that are premised on 

assumptions of certainty o f outcomes are likely to provide disappointing results 

relative to predictions o f behavior, choice and utility (Arrow and Lind 1970). Social 

science models and theories have, however, been extended to account for the effects 

of uncertainty on equilibrium conditions and on the behaviors o f individuals and 

social groups (Robison and Barry 1987). In some cases these theories and models 

maintain the assumption of rationality (e.g. expected utility theory) while in other 

cases the assumption of rationality is relaxed (e.g. bounded rationality is assumed). 

This chapter provides an overview of some o f the approaches and theories that have 

been developed in the social sciences for characterizing uncertainty and for 

understanding human behaviors and responses to uncertainty.

3 This in turn implies that preferences are complete, reflexive, transitive, and continuous (Binger and 
Hoffman 1998).

8
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Expected utility theory

von Neumann and Morgenstem (1944) and Savage (1954) introduced and 

developed expected utility theory in order to explain and describe behavior under 

uncertainty. Expected utility theory assumes that agents are rational. The principal 

underlying expected utility is that individuals facing uncertainty in outcomes will 

attempt to maximize expected utility subject to constraints where expected utility is 

defined as:

Where;

U (xj) = utility associated with outcome i 

pi = probability of outcome i

Expected utility and the welfare effects o f uncertainty are influenced by both 

the risk preferences o f individuals and by the variance (or dispersion) of possible 

outcomes. Three categories of risk preferences are risk aversion, risk neutrality, and 

risk seeking preferences. Figure 2.1 shows a utility function characterizing risk- 

averse consumer preferences. The utility function for a risk-averse consumer is 

concave. The degree o f curvature represents the consumer's relative degree of risk 

aversity. The curvature of the utility function is higher for more risk-averse 

consumers. The horizontal axis o f Figure 2.1 shows three points: (E[x]-a), E[x], and 

(E[x]+a). If the consumer were certain that he/she was able to obtain E[x] units then 

his/her utility is U[E(x)].  With uncertainty, however, the consumer may face more 

than one possible outcome for x. In this case, if  there is a §i % chance of obtaining 

(E[x]-a) units and a (l-5i) % chance of obtaining (E[x]+a) units then the theory 

suggests that the consumer maximizes expected utility subject to his/her budget 

constraint where:

Expected Utility =E[U(x)] = SlU ( x - a )  + ( \ - S l)U(x + a).  Figure 2.1 shows that 

U[E(x)\ > E[U(v)]. Thus, the utility o f the risk-averse consumer facing uncertainty 

is less than the utility o f the certain outcome for x.

n

(1)
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Figure 2.2 illustrates the effect of increasing the dispersion between the two 

possible outcomes for x (i.e. increasing uncertainty). The distance "A" represents the 

difference between utility from the certain outcome and utility for the uncertain 

outcome with low variance in x (i.e. E[x] ±  a). Distance "B" represents the 

difference in utility from the certain outcome and utility for the uncertain outcome 

with higher variance in outcomes (i.e. E[x] ±  b). When there is uncertainty in x, a 

higher variance in possible values for x results in a more significant welfare effect 

(i.e. a more significant reduction in utility).

A similar type of analysis is shown in Figure 2.3. This figure shows the effect 

of a higher degree o f aversion to risk (i.e. an increase in the curvature o f the expected 

utility function). In this case the utility o f the certain outcome increases relative to 

the less risk-averse individual (i.e. U(E[x])’>U(E[x])). The net welfare loss 

associated with a given level o f uncertainty is higher for the more risk-averse 

individual (distance B on Figure 2.3) than for the less risk averse individual (distance 

A on Figure2.3).

Figures 2.1 to 2.3 show the effects of uncertainty in terms o f losses in utility 

for a risk-averse individual. An important question is: What are the relative 

magnitudes of these losses? Alternatively, what would the risk-averse agent be 

willing to pay in order to avoid uncertainty? The first step in determining this value 

is to ascertain the level o f wealth (measured in terms of units of x) where the utility 

obtained with x units (obtained with certainty -  U(xc)) is exactly equivalent to 

expected utility (with uncertain outcomes). The value of x where this occurs (see 

Figure 2.4) is called the certainty equivalent (CE). The difference between E(x) and 

CE is the risk premium. Risk premium is defined as "the amount a risk-averse person 

is willing to pay to avoid risk" (Binger and Hoffinan 1998 pg 521).

The welfare loss associated with uncertainty is a function o f both the variance 

of outcomes and the degree of curvature o f the utility function. The formula 

describing the curvature of the utility function is called the “absolute risk aversion 

function” (Pratt 1964). This function is defined as follows:

10
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(2)

The value of R(x) provides a measure of the degree of risk aversion of an individual 

facing uncertain outcomes. As the degree of curvature o f U(x) increases the second 

derivative o f U(x) increases relative to the first derivative resulting in a higher value 

of R(x) evaluated at any particular value of x. A higher value of R(x) indicates a 

more risk averse individual. A lower value indicates a less risk-averse individual. In 

the extreme case o f risk neutrality, U(x) is a linear function and the value o f R(x) at 

any value of x is zero due to the fact that the value of the second derivative o f a linear 

function is zero.

Pratt (1964) also developed an equation for approximating the value of risk 

premiums. The risk premium function employs the absolute risk aversion function 

evaluated at the expected value of the outcome variable (i.e. R(E[x])). The 

approximate risk premium equation is:

Where:

tc - risk premium

R(E[x]) -  value of the risk aversion function evaluated at E[x] 

a 2 -  outcome variance

The equation shows that risk premium increases as the degree of risk aversion 

(evaluated at E[x]) increases and as outcome variance increases (as shown in Figures 

2.2 and 2.3).

As is shown in Figure 2.4, once the expected value and risk premium are 

known it is possible to determine the certainty equivalent according to the following 

relationship.

zr = (1 / 2 ) R ( E [ x ] ) a 2 (3)

CE = E[x \ - (H2)R{E[x \ )a2 (4)

11
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Where CE is the certainty equivalent and all other variables are as defined previously. 

The equation for certainty equivalent can be used in a risk programming formulation. 

For example the following basic model has been employed extensively in agricultural 

economics research. The optimization problem is to maximize certainty equivalent 

subject to constraints.

M a x : ii[x] -  0.5R{x)a2x

s -L  lAc -c
Where E[x] -  ay

This section provides a description of expected utility theory and how it can 

be used to understand choices of rational agents in an environment where outcomes 

are uncertain or risky. The previous discussion does not, however, discuss what kinds 

of strategies a decision maker might use as a way o f managing the risk that he/she 

faces. Freeman (1999) identifies and discusses two separate types of risk 

management options: risk reduction and risk prevention. We introduce these 

concepts here because one o f the research questions addressed in Chapter 10 pertains 

to measurement o f the benefits o f risk prevention. Risk has two main components: an 

adverse impact and a probability o f occurrence. Accordingly, the management of risk 

can involve two separate types o f activities. The first is to take actions that reduce the 

magnitude of adverse consequences. Freeman (1999) defines such activities as risk 

reduction activities. An example of risk reduction in a forestry context might be 

managing the fuels on a landscape so that when an ignition occurs fires remain 

controllable (assuming action is taken within a reasonable amount of time). Risk 

prevention, alternatively, refers to activities taken to reduce the probability o f adverse 

consequences. An example of risk prevention in a forestry context might be 

restricting access to areas during highly flammable burning conditions.

12
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Pure uncertainty

The previous section discusses the decision theory approach to risk and 

uncertainty. The decision theory approach requires some knowledge (objective or 

subjective) about the probability or likelihood of outcomes given certain choices. 

There are, however, cases and situations where the assignment of probabilities to 

outcomes is not possible. Human and biophysical systems are inherently complex. 

In some cases our understanding of human and biophysical systems and their 

interaction is so incomplete that it is not possible to reasonably assign probabilities to 

outcomes or future states o f nature. Moreover, there may be a lack o f consensus in 

expert opinion thereby precluding subjective estimates o f probabilities. Inability to 

assign probabilities may be due to the number and complexity of interactions between 

systems or due to a lack o f knowledge or due to both knowledge gaps and 

complexity. In cases where there is uncertainty in outcomes but it is not possible to 

characterize the uncertainty by assigning probabilities then uncertainty is referred to 

as pure uncertainty (Woodward and Bishop 1997).

Pure uncertainty is characterized by three conditions: (1) there is a lack of 

objective scientific data from which it might be possible to infer or assign 

probabilities or outcomes related to specific choices, (2) there is a lack of consensus 

among experts about the relative likelihood of outcomes, and (3) there is no basis for 

differentiating between experts in terms of the quality o f their opinions (Woodward 

and Bishop 1997). In cases where experts disagree and where there is no basis for 

assigning weights to expert opinions, then it might be tempting to assign uniform 

probabilities to the outcome predicted by each expert. The justification for this 

approach is referred to as the “Principle of Insufficient Reason” (Woodward and 

Bishop 1997). Although this approach is commonly employed, Woodward and 

Bishop argue that it may result in irrational choices.

Woodward and Bishop (1997) refer to an axiomatic framework developed by 

Arrow and Hurwicz (1972) for explaining behavior under pure uncertainty. 

According to Woodward and Bishop (1997) choice criteria under pure uncertainty 

should satisfy the axioms described under the Arrow and Hurwicz (1972) framework
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(i.e. be AH consistent). These axioms include: 1. Independence of irrelevant 

alternatives, 2. Re-labeling, 3. Irrelevance of repetitive states, and 4. Dominance. A 

decision maker’s choices under pure uncertainty are said to be rational “if his/her 

behavior is consistent with these four axioms...the only choice criteria that are AH 

rational will rank actions based entirely upon the maximum and/or minimum of the 

state space..” (Woodward and Bishop 1997, pg 496). Thus, a fundamental 

distinction between expected utility approaches and the pure uncertainty approach 

proposed by Arrow and Hurwicz (1972) is that in the expected utility approach, 

choice is based on expected values and variances o f outcomes. Under the Arrow and 

Hurwicz (1972) approach, however, rational choice is based on consideration o f 

extreme outcomes. Woodward and Bishop (1998, pg 497-498) state:

“we can conclude, therefore, that when a decision maker is faced with pure or 

second-order uncertainty, then the use of a maximin-type choice 

criterion... would be consistent with axioms o f rationality. Moreover, the use 

o f probability based on equal weighting would not be rational under pure or 

second-order uncertainty.”

Woodward and Bishop (1997) discuss a range o f choice criterion under pure 

uncertainty -  each based on consideration o f extreme outcomes. Once such choice 

criteria is the maximin criteria4. The maximin criterion applies in cases where (a) the 

decision maker is pessimistic, and/or (b) decision makers exhibit uncertainty 

aversion.

The maximin criterion is described as follows. If there are two policy 

scenarios and two possible outcomes associated with each scenario, then a rational 

policy maker will first ascertain the minimum payoff in each scenario and choose the 

scenario that maximizes the minimum payoff between scenarios (Woodward and 

Bishop 1997).

As noted an important result o f the Arrow and Hurwicz (1972) approach is 

that rather than focusing on measures of central tendency, a rational agent focuses on 

potential extreme outcomes. This means that research should attempt to develop an

4 Woodward and Bishop (1997, pg 496) note “Maximin and the maximax are two criteria out o f the 
set of criteria that would be AH rational. Any combination o f these extremes would also be 
acceptable.”

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



improved understanding of the likelihood and consequences of extreme outcomes 

(Woodward and Bishop 1997).

In cases where pure uncertainty exists, the maximin choice criterion generally 

suggests forgoing or reducing development. Such conclusions are consistent with the 

rationale for invoking safe minimum standards (Ciriacy-Wantrup 1968). Safe 

minimum standards are a form of policy mechanism for ensuring that public policies 

and programs take account of pure uncertainty. The underlying assumption with a 

safe minimum standard approach is that there exists pure uncertainty regarding our 

ability to substitute man-made capital for particular types of natural capital in the 

future (Castle et al. 1996). Based on the maximin criterion, society should adopt 

policies that maintain our capacity to adapt to new circumstances and situations. This 

capacity may require explicit policies (such as the imposition o f safe minimum 

standards) that ensure that key attributes of natural capital are not irreversibly lost. 

Safe minimum standards are a form of constraint on resource development that 

recognizes pure uncertainty in the form of potential loss o f future unknown benefits 

from large-scale irreversible development (Toman and Ashton 1996). Some authors 

(e.g. Castle et al. 1996) have suggested that a safe minimum standard (in combination 

with policies that encourage adaptive management) should be the basis for 

sustainable forest management policies. Implementation of a safe minimum standard 

involves: (a) the identification of resource attributes at risk to irreversible loss, (b) the 

identification of a critical zone for the resource or environmental feature (i.e. a level 

below which the feature is likely to be irreversibly lost), (c) the estimation of costs 

associated with implementation, and (d) the establishment of enforceable policies and 

regulations that ensure that the standard is maintained.

Another policy option for addressing pure uncertainty is to delay development 

decisions until uncertainties about future benefits o f preservation are reduced through 

new information. Delaying decisions allows for new information or knowledge to be 

generated regarding unknown future values o f benefits. If development proceeds and 

if it leads to an irreversible loss of some environmental feature, future benefits (that 

are presently not known) may be permanently lost. Delaying development keeps 

options open. Society and individuals are willing to pay to retain their options
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relative to future possible uses. The welfare gain associated with avoiding 

irreversibility and retaining the opportunity to realize future environmental benefits is 

called quasi-option value (Freeman 1999).

Weisbrod (1964) introduced the concept of option value. He described option 

value as the value people are willing to pay to keep the option of future use open. 

The subsequent extension of Weisbrod's concept to uncertainty analysis proceeded in 

two different directions. Graham (1981) interpreted option value as being the 

difference between option price and the expected value of the consumer surplus. This 

view has subsequently been shown to be arbitrary and inappropriate as a choice 

criterion for addressing uncertainty in cost benefit analysis. Arrow and Fisher (1974) 

and Henry (1974) proposed an alternative interpretation. Their interpretation of 

option value pertains more to pure uncertainty as opposed to Graham's application 

(which was incorporated into an expected utility theory construct). Arrow and Fisher 

(1974) and Henry (1974) considered the possibility o f future benefits that are 

currently unknown and the role o f information gathering and learning in reducing 

uncertainty about these benefits over time. According to Henry (1974): "The mere 

prospect of getting fuller information [about future values] combined with the 

irreversibility o f the non-preservation alternative, brings forth a positive option value 

in favor of preservation." This type o f value is referred to as "quasi-option" value 

(Fisher and Hanemann 1987).

What are the implications of addressing pure uncertainty by incorporating 

quasi-option value into cost benefit analysis? Fisher and Hanemann (1987) argue that 

the quasi option value o f preservation is always positive5. Therefore, consideration of 

quasi-option value in economic analysis o f development projects will result in lower 

benefit cost ratios. This occurs because quasi-option value is a type o f opportunity 

cost of development. It is a benefit that is foregone if  development proceeds and an 

irreversible loss occurs. Moreover, it is over and above the net present value of the 

stream of known environmental benefits that would be lost. Thus, the first 

consideration is to recognize that future information will provide clarification of

5 It is useful to note that this finding was based on a relatively simple scenario (2 periods -  passive 
information)
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future benefits (note the basis for the recourse model developed in Chapter 10 is that 

for multi-period and long term problems such as timber harvest scheduling, some 

uncertainty is resolved before the end o f the planning horizon and this may have 

positive economic benefits). The second consideration is recognition that there is a 

public welfare value associated with not foreclosing on the option o f realizing these 

unknown future benefits by adopting decisions today that lead to irreversible loss of 

natural capital. The welfare gain associated with delaying development in order to 

take advantage of new information constitutes an opportunity cost o f development. 

As noted by Hanemann (1989) quasi option value "is equal to the conditional value of 

perfect information -  conditional on there being no development initially."

Adaptive management

This chapter began by providing an overview of expected value/utility-based 

approaches for addressing uncertainty. The previous section provides an overview of 

concepts related to pure uncertainty. The underlying assumptions o f both sets of 

concepts are that: (a) knowledge can reduce uncertainty (either immediately or at 

some time in the future), and (b) socioeconomic systems are inherently stable. In this 

section we provide an overview of a third approach for characterizing, accounting for, 

and responding to uncertainty. This approach is based on an emerging integrative 

theory that is attempting to describe the performance, relative viability and processes 

of change in human and environmental systems. The theory is being developed by 

the ecologist C.S. Holling and other interdisciplinary researchers with the "Resilience 

Project." (Holling 2001).

The underlying premise o f the theories o f change being developed by the 

Resilience Project is that human and social systems are complex and unpredictable 

and in some respects unstable in that they are continually evolving and redefining 

themselves. Thus social and ecological systems never attain a steady state. Rather 

social and ecological systems are continuously changing (Holling 2001). One 

implication is that predicting outcomes or future states of nature is not feasible. Pure 

uncertainty does not just prevail in some special case. Rather, pure uncertainty is a 

general property of human and biological systems. Sustainability is not threatened by
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change and instability in social and ecological systems. Rather, sustainability 

requires change and instability. Important system features that facilitate evolutionary 

change o f  social and ecological systems over time are: (a) functional diversity, (b) 

management systems and institutional structures that recognize and account for 

uncertainty and unpredictability, and (c) social structures that encourage adaptive 

management (Holling 2001). In fact Holling (2001) states: "For linked 

ecological/social/economic systems, slow variables, multistable behaviors, and 

stochasticity cause adaptive management to outperform optimization approaches that 

seek stable targets" (pg 403). '

The emphasis on adaptive management promoted by this new theory is 

consistent with the emerging views o f some natural resource economists regarding 

competing paradigms on sustainable development. For example, Castle et al. (1996) 

argue that the axiomatic foundations o f both weak and strong definitions of 

sustainability are flawed because they assume that the outcomes are predictable. 

Castle et al. (1996) argue that the future cannot be predicted and that sustainable 

development should focus on maintaining flexibility and adaptive capacity. They 

recommend that greater attention be paid to encouraging adaptive management 

approaches as a way o f achieving sustainable development.

Bounded rationality and risk perceptions

The behavioral assumptions of utility and profit maximization are 

fundamental to economic theory. These assumptions imply that decision makers are 

rational relative to their choices and therefore predictable in terms of their behavior 

and the outcome of their decisions. Rationality o f decision makers in turn implies 

that the contexts for decision problems are clearly defined and that there are no 

limitations in terms of the capacity of individuals to understand, interpret, and 

evaluate the full range o f options and choices available to them. Simon (1959) was 

among the first to question the legitimacy of rationality and expected utility theory. 

He noted:

"the classical economic theory of markets with perfect competition and 

rational agents is deductive theory that requires almost no contact with
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empirical data once its assumptions are accepted. Undoubtedly there is an 

area o f human behavior that fits these assumptions to a reasonable 

approximation, where the classical theory with its assumptions o f rationality is 

a powerful and useful tool. Without denying the existence of this area, or its 

importance, I may observe that it fails to include some of the central problems 

o f conflict and dynamics with which economics has become more and more

concerned Economics has been moving steadily into new areas where the

power o f the classical equilibrium model has never been demonstrated, and 

where it adequacy must be considered anew. Labor markets is such an area, 

oligopoly or imperfect competition theory another, decision making under 

uncertainty a third, and the theory of economic development a fourth."

The issue for Simon (1959) was the extent to which the assumption o f rational 

agents is relevant in inherently complex multidimensional decision-making 

environments. His research focused on the need to develop a more complete and 

realistic understanding of the psychological motivations, processes and strategies 

used by individuals to make decisions in complex and rapidly changing 

environments. Simon (1959) introduced the concept o f "bounded rationality" (Slovic 

2002). Bounded rationality proposes that instead of being rational in terms of 

decisions, individuals are adaptive (i.e. they reach their objective in small steps 

instead o f immediately achieving their objective as a result o f a single decision) and 

instead o f making choices to maximize an objective function they make choices in 

order to obtain some level o f satisfaction that may be less than an optimal or 

maximized level of a particular objective (Slovic 2002).

Tversky and Kanemann (1974) had similar misgivings about assumptions o f 

rationality and initiated a series of studies trying to better understand how people 

make decisions in complex environments where they are subject to risk and 

uncertainty. They approached the problem from a social psychology perspective. 

Specifically, they were interested in understanding the kinds o f heuristic strategies 

that people use to evaluate and make choices given uncertainty and whether these 

heuristic strategies lead to systematic biases in assessing risk. Their findings suggest 

that individuals do not rely on all the information that is available to them. Nor do
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they attempt (or are they able) to fully understand all aspects o f complex risk issues. 

Rather, they tend to simplify complex risk problems by applying a limited number of 

strategies that allow them to reduce complex problems to something that is easier to 

comprehend and judge. These heuristic rules are useful in that they facilitate 

decision-making. However, they can also result in “systematic errors” in evaluating 

risks. Tversky and Kahneman (1974) identify three specific categories of heuristic 

rules that are used to simplify decision making under uncertainty: representativeness, 

availability, and anchoring.

Representativeness refers to the use by individuals of similarities between 

events and/or processes to evaluate outcomes. For example, an individual might 

associate particular personality traits with a particular occupation and then rely on this 

association to make an evaluation about the likelihood that a particular individual has 

a certain occupation. However, this simple assessment ignores a significant amount 

o f information that could influence the real probability including for example, the 

number o f people in society with that occupation. So there is the potential for the 

introduction of systematic errors by relying on this type of heuristic.

The availability heuristic refers to “situations in which people assess the 

probability of an event by the ease with which instances or occurrences can be 

brought to mind.” (Tversky and Kahneman 1974, pg 1127). For example, a person’s 

perceptions o f risk of a car accident could be influenced by the fact that an 

acquaintance had recently been involved in a car accident. This type of heuristic can 

lead to a number of sources of bias. Even though the probability over any given time 

period is constant, the same individual may make very different judgments about a 

particular risk based on the availability of personal knowledge or experience with that 

risk.

The anchoring heuristic refers to the strategies employed by individuals of 

evaluating risks by making some initial judgment (i.e. the anchor) and then adjusting 

the assessment as the individual acquires new information. In this case, the final 

assessments or judgments are significantly influenced by the initial anchoring 

assessment. Thus, if  the initial assessment is in error, and if  there is insufficient 

adjustment, the final evaluation can be significantly biased. Anchoring bias occurs
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when individuals have pre-conceived notions about a risk but these preconceived 

ideas are in error. Moreover, the adjustments that the individual makes over time are 

insufficient to compensate for the initial misconceptions.

Tversky and Kahneman’s (1974) research suggests that economic agents are 

not rational. Rather, because o f the complexity of risk problems and the need to 

simplify these problems by applying heuristic rules, systematic errors can be 

introduced in processing information about risks. In other words, final choices may 

not be rational in the sense that they optimize some objective function value. Arrow 

(1982) provides a number of additional examples o f individual irrationality in 

financial and economic markets.

In a later article, Kahneman and Tversky (1979) evaluated and specifically 

critiqued the axioms o f expected utility theory. Their critique was based on the 

results o f a series o f experiments that were conducted on the preferences of 

individuals relative to various combinations o f risk scenarios. They discovered a 

number o f cases where actual behavior and choices contradicted the predictions of the 

expected utility hypothesis. The first contradiction discovered by Kahneman and 

Tversky (1979) was that people attached variable weights to probabilities that are out 

of proportion to the actual probabilities. They tended to exaggerate some outcomes 

because they are relatively more certain. Expected utility predicts that people 

maximize expected utility based on the actual probability of a state o f nature 

multiplied by the utility associated with that state (i.e. objective risk). Kahneman and 

Tversky’s (1979) findings suggest that people actually assign subjective probabilities 

and they maximize utility using these subjective measures. So in cases where 

expected utility calls for indifference between two gambles, Kahneman and Tversky’s 

experiment finds that there are clear preferences o f one gamble over another.

Viscusi (1985) also discusses biases in risk evaluations. His study finds there 

is a high correlation between wage compensation and occupational risk. Moreover, 

the subjective evaluation of workers regarding job risk is highly correlated to 

technical risk indexes. So in the context of job choice, behaviors do seem rational. 

Second, in cases where failures to correctly assess risk do occur it is likely a 

temporary condition because people are continuously learning and updating
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judgements about prior probabilities with new information. Thus economic agents 

are adaptive and even if behaviour appears to be irrational, this may be a temporary 

result and that agents move toward more rational choices through adaptation.

It would be remiss not to mention recent papers that challenge the expected 

utility theory and offer alternative explanations for risk aversion. Rabin and Thaler 

(2001) suggest that the expected utility model does not consistently explain risk 

aversion in cases where only a portion of a decision maker’s wealth is a stake. These 

authors provide an alternative theory for explaining risk aversion that builds on 

Kahneman and Tversky’s (1979) prospect theory. Rabin and Thaler (2001) suggest 

that risk aversion behaviour is better explained by considering the concepts of loss 

aversion and mental accounting. The arguments presented by Rabin and Thaler 

(2001) are compelling. Their theories, however, have not tipped the scales in terms 

of full rejection of the expected utility hypothesis. Moreover, they offer no 

alternatives in terms o f normative behavioral approaches that permit the explicit 

consideration of risk and risk preferences in models of agents’ choices and decisions. 

The limits o f expected utility are well recognized by applied economists (Hardaker et 

al. 1997). Applied economists do not dispute the underlying inability of expected 

utility to consistently explain every individual’s behaviour. However, as a general 

theory, efficiency analysis and expected utility theory do provide reasonable 

approximations of the expected behaviors o f decision makers facing risk (Hardaker et 

al. 1997). Moreover, expected utility theory continues to be the theory o f choice for 

explaining behaviour under uncertainty in advanced microeconomics theory text 

books (e.g. see Jehle and Reny 1998).

Conclusion

The remainder o f the analysis in this study is based on expected utility theory. 

As noted, there are a number o f different views and perspectives concerning: (a) 

approaches for understanding behavioral response to uncertainty, and (b) the validity 

of assumptions regarding rational agents and therefore the validity o f decision theory 

and expected utility theory. The advantage of the expected utility approach is that it 

provides clear, explicit, concrete conceptual base that provides a foundation for
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model construction and testing. The expected utility approach provides a way of 

"organizing our thinking about economic decision making under conditions of 

uncertainty" (Schotter 1994, pg 458). Also, as Viscusi (1985) suggests, decision 

makers are, in many cases rational relative to evaluation of risks and when they are 

not, patterns o f failure to correctly assess risks are fully consistent with a Bayesian 

learning process. The point of this is to note that expected utility theory is a general 

theory and that it does have some limitations. The theory may be suitable as a 

general conceptual framework but its limitations also need to be recognized and 

acknowledged.
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Figure 2.1 Expected utility for risk averse consumers.
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2,2. Effects o f variance in outcomes on the difference between utility o f the
certain outcome and utility o f the uncertain outcome.
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Figure 2.3. The effect of degree o f risk aversion on the difference between utility
of the certain outcome and utility of the uncertain outcome.
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Figure 2.4. Certainty equivalents and risk premiums with expected utility theory.
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CHAPTER THREE

A REVIEW OF CLIMATE CHANGE AND UNCERTAINTY RESEARCH IN
FORESTRY

This chapter provides an overview of two topic areas. First, an overview of 

the effects o f climate change on Canadian forests is provided. Second, the applied 

literature on uncertainty analysis in forestry is reviewed. The last section o f this 

chapter identifies knowledge gaps.

Climate change and forestry impacts

This section provides a brief overview o f the effects of climate change on 

forests and the forest sector. The literature on the impacts o f climate change on forest 

ecosystems is not extensive6. There is considerably less material addressing the 

socioeconomic impacts -  particularly in a Canadian context. This section does not 

provide a comprehensive overview of the literature on climate change and forest 

impacts. References that provide useful overviews of the range o f possible impacts 

on forests and the forest sector in Canada include Singh and Wheaton (1991), Binkley 

and van Kooten (1994), Saporta et al. (1998), Hauer et al. (2001), Climate Impacts 

and Adaptation Directorate (2002), Spittlehouse and Stewart (2003) and Hogg and 

Bernier (2005). Rather, a brief summary o f potential biophysical effects and 

socioeconomic impacts is provided here.

According to the IPCC Third Assessment Report (IPCC 2001) the global 

average surface air temperature is projected to increase between 1.4 and 5.8 degrees 

centigrade by the year 2100. Temperatures in northern latitudes are predicted to 

increase more than in southern latitudes. Winter temperatures will increase more than 

summer temperatures and nighttime minimums will increase more than daytime 

maximums. Rates o f precipitation may increase in some areas and decrease in other

6 The amount of research looking at impacts and adaptation is starting to increase thanks to the 
Canadian Climate Impacts and Adaptation program and to the Canadian Climate Impacts and 
Adaptation Research Network (CCIARN) and the Canadian Model Forest Program.
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areas, as will moisture regimes. Growing seasons will become longer. Storm 

frequency and intensity may increase.

Changes in climatic variables will impact forests by influencing physiological 

and ecological processes. First, forest productivity and health will be affected. In 

some areas, productivity may increase as a result of C 02 fertilization, longer growing 

season, and warmer soil temperature. In other areas productivity may decrease as a 

result o f  moisture deficits (i.e. the case where evapotranspiration exceeds 

precipitation), increased exposure to existing pathogens, or exposure to new 

pathogens (Flogg et al. 2002). Second, the frequency and intensity o f disturbance 

events (wildfire, insect and diseases, wind throw, drought) may increase (Flannigan 

2004, Hogg et al. 2002). A significant increase in disturbance will result in structural 

changes in forest ecosystems as new forests better suited to the new growing 

conditions replace old forests following disturbances. Third, in some cases, climate 

change will manifest as a more gradual change in forest types over time. The ability 

of species to resist (i.e. their inherent resiliency) or adapt to climate change depends 

on the severity and rate o f climate change and individual species tolerances. As noted 

in Hauer et al. (2001 pg 3) "If climate change is beyond the limit of trees 

physiological tolerance, forest dieback and ecosystem changes are inevitable, 

particularly at the margins of different forest ecosystems." Fourth, forest boundaries 

may shift (Hogg 1994). The southern boundary o f the boreal forest is predicted to 

move northward and the northern boundary may also move north. However, 

movement o f the northern boundary will be constrained by adequacy o f  northern soils 

to support forests.

Canadian society has significant economic and social ties to forests. 

Canadians place significant value on the knowledge that forests and wildlife are being 

sustained and that representative natural areas are protected. Climate change will 

result in shifts in ecosystem types and may threaten the existence o f some species 

(Gray 2005). Climate change may curb our capacity to manage forests in ways that 

are consistent with current views of sustainable forest management. Canadians also 

utilize forest environments as destinations for outdoor recreation. Summer recreation 

activities may be positively influenced by longer season length or fewer rainy days
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but negatively influenced if forest aesthetics are changed or water bodies are 

negatively affected (e.g. a lowering of lake levels, impacts on fish population or 

increases in weeds). Winter recreation may suffer negative consequences due to 

reduced season length, milder temperatures and possibly by reductions in snow packs. 

Many forest based communities may be vulnerable because of strong linkages to 

surrounding forests, relatively low adaptive capacity (compared to larger urban 

centers), and socio-cultural circumstances that may contribute to a tendency to 

underestimate changes in climate related risks (Davidson et al. 2003).

Timber is an important natural resource that will be affected by climate 

change. Changes in biophysical factors affecting tree growth and timber supply 

include increased growing seasons, increased precipitation in some regions 

(decreased in other regions), changes in moisture regimes (due to changes in rates of 

evapotranspiration), increased site productivity (due to increased heat units and C02 

fertilization effects -  assuming moisture is not limiting), increases in disturbance 

frequency and intensity (wildfire, insects and disease, wind damage), and increased 

incidence o f drought. In addition to the direct impacts o f climate change on 

productivity and growth, there will also be market effects caused by expected lower 

prices for forest products and timber due to a general increase in timber supply in the 

global market (van Kooten and Arthur 1989; Sohngen and Sedjo 2005). Some US 

studies forecast increased regional supply in some areas and decreased supply in other 

regions but overall climate change leads to an increase in US timber supply (Sohngen 

and Sedjo 2005; Shugart et al. 2003) and global timber supply (Perez-Garcia et al. 

2002). However, the findings o f these studies may not be applicable to Canada 

because: (a) climate change is expected to be more extreme at northern latitudes, (b) 

climate change may result in a shift in species distributions from higher valued, long 

fibered coniferous species to shorter fibered deciduous species, (c) most forest land in 

Canada is under public ownership which means that the kinds o f autonomous 

adaptations that occur within competitive markets will not occur on Canadian forest 

land (Hauer et al. 2001).

To some extent the impacts o f climate change on the Canadian forest sector 

can be reduced by adaptation (Hauer et al. 2000). Duinker (1990) and Spittlehouse
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(2005) suggest that there is a need to review forest policies to ensure that they permit 

adaptation. Spittlehouse and Stewart (2003) identify a number o f specific types of 

adaptation measures that could be considered in forest management. Because o f the 

long-term nature of forestry and because of increasing vulnerability to timber capital 

with climate change, it is important to begin incorporating climate change 

considerations and adaptation strategies into current forest management planning. 

One adaptation strategy suggested by Spittlehouse and Stewart (2003) is to include 

climate variables in growth and yield models.

Uncertainty in forestry analysis

This section reviews some o f the applied forest science and forest economics 

literature on uncertainty, risk modeling and related concepts such as risk preferences. 

Prior to the late 1980's, risk and uncertainty was not a significant topic in the forest 

science and forest economics literature. Fight and Bell (1977) suggest that this was 

primarily due to the complexities o f uncertainty analysis. Lack of recognition o f the 

relevance o f uncertainty analysis may also have been a factor (Dempster 1987). 

However, after the late 1980’s the number o f published studies addressing risk and 

uncertainty in forestry increased (Brazee and Newman 1999). The increased attention 

paid to risk and uncertainty was due to increased recognition o f the long periods 

associated with forest investment and the high levels o f variance that are experienced 

in variables (such as patterns o f disturbance, growth, product prices and stumpage 

prices) that are important for forest investment analysis (Brazee and Newman 1999). 

Kangas and Kangas (2004) provide a comprehensive review o f approaches for 

considering risk in forestry. They identify and discuss various sources of uncertainty 

relevant to forestry decision making (e.g. disturbance risk, growth and yield 

uncertainty, price uncertainty), various ways that uncertainty is classified (e.g. due to 

lack of information, conflicting evidence, ambiguity, measurement error, etc), and the 

wide range of approaches (e.g. classical ffequentist approaches, Baysien methods, and 

fuzzy set theory) that have been employed to study uncertainty in forestry research.

Some studies have looked at risk management in forestry contexts and 

mechanisms for incorporating risk into forest policy and planning. Dempster (1987)
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notes that a general lack o f understanding of risk in Canadian forestry and of 

approaches and concepts for incorporating risk management into planning pose a 

barrier to application. The Dempster (1987) study recommends that a stronger 

emphasis should be placed on incorporating risk into operational decisions and long

term planning. Montgomery (1996) offers an assessment of the implications o f 

modem forest policies for public exposure to risk and calls for explicit consideration 

of public preferences and perceptions o f risk when looking at tradeoffs between 

various forest outputs.

Pukkala and Kangas (1995) describe a scenario approach for generating 

outcomes for alternative forest management plans. The authors then evaluate the 

effect o f risk attitudes on preferred management plan scenarios. They find that when 

uncertainty exists, risk attitudes have a significant influence on preferred management 

strategies. Shaw (1999) also describes a scenario-based approach for incorporating 

risk into forest planning in the Tongass National Forest in Alaska. The process 

involved the establishment o f 16 risk assessment panels. The panels were asked to 

evaluate outcomes o f different management planning scenarios. The results of the 

panels provide a defined range of potential outcomes. As noted by Shaw (1999) in 

(the abstract of his report) "The panel results provided estimates o f the relative risk 

that implementation o f a range of alternative approaches to management of the 

Tongass National Forest would pose to the continued existence across the landscape 

of an array of species or resources and estimates o f potential socioeconomic effects 

on communities.”

Mendoza and Sprouse (1989) introduced a new approach to planning and 

decision making in forestry under uncertainty. They introduced a method called 

fuzzy set theory and an analytical method called fuzzy programming. Fuzzy 

approaches permit the incorporation o f complexity and lack o f clearly defined 

objectives into forest planning. Ells et al. (1997) apply fuzzy set theory to analyze 

optimal ways of allocating public forestlands given uncertainty (or lack o f clear 

definition) in management objectives and uncertainty regarding the relationship 

between actions and outcomes.
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Buongirono (2001) also looks at how uncertainty influences land use. His 

study however, incorporates stochastic growth and prices into a Faustmann land 

valuation model. The study uses a Markov decision process model that includes 

future prices and states as probability distributions.

A number o f studies have considered risk and uncertainty in the context of 

sustainable forest management. Toman and Ashton (1996) note that consideration of 

quasi-option values (i.e. the value associated with avoiding irreversibility under pure 

uncertainty) provide added reason for preservation and/or the establishment of safe 

minimum standards approaches relative to defining and implementing sustainable 

forest management policies. Montgomery (1996) makes a case for a more direct and 

explicit treatment o f risk in forest policy. As noted, incorporating risk into policy 

means that more attention needs to be paid to public risk perceptions and preferences 

and that policy should be reoriented to allow for flexibility and adaptability in order 

to manage and plan for risk. More specifically, there are public goods associated with 

forests that may be at risk as a result of any number of human interventions or natural 

processes. Market failure occurs relative to both the amount of public good to 

provide as well as in terms of determining the allocation o f resources to reduce or 

manage risk to forest related public goods. Haener and Adamowicz (2000) identify 

the need to incorporate risk into measures or indicators o f forest sustainability. They 

discuss a methodology for incorporating fire risk and price risk into forest resource 

accounts.

One of the earliest subject areas where risk concepts were applied in a forestry 

context was to the determination of the impacts o f fire risk on stand and forest level 

timber supply. A number of stand level studies considered the impacts of fire risk on 

optimal rotation (Martell 1980; Routledge 1980, Reed 1984). Other studies adopted a 

broader perspective. These studies considered the impact o f fire risk on timber 

supply at a forest level (Van Wagner 1979; Van Wagner 1983; Reed and Errico, 

1986; Boychuk and Martell 1996). Blattenberger et al. (1984) incorporate risk and 

uncertainty into a cost plus net value change model for the purpose o f identification 

of socially efficient levels of investment in fire management.
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As noted previously, forest management and forest investment are long-term 

in nature. Significant effort is put into obtaining data for estimating growth and yield 

for stands through the establishment of temporary and permanent sample plots. The 

data from these plots are in turn used to estimate yield functions for the purposes of 

predicting future production. These predictions are used in long-term forest 

management planning and timber supply analysis. Generally, in operational 

planning, predictions are point estimates. Thus, consideration o f uncertainty by 

looking at density functions for yield predictions in operational planning is not 

common. However, there have been a number of research studies looking at 

uncertainty relative to model predictions. Nillson (2003), for example, develops a 

framework for evaluating the relative benefits o f different options for reducing model 

uncertainty.

The majority of studies that have sought to incorporate uncertainty in growth 

and yield prediction have applied some form o f a Bayesian approach. In general, 

Bayesian methods entail updating prior knowledge regarding uncertainty o f the 

parameters o f a particular model with new information to obtain posterior estimates 

of probability distributions o f parameters and model predictions. Early studies used a 

method called empirical Bayes (Green and Strawderman 1985; Green et al. 1992). 

Empirical Bayes methods soon were replaced by hierarchical Bayes approaches 

(Green and Strawderman 1992). Hierarchical Bayes was shown to provide more 

accurate estimates o f the marginal posterior distributions of model parameters. 

Three studies applied Bayesian methods to evaluate uncertainty in growth and yield 

parameters between 1994 and 1997. Green et al. (1994) used a Bayesian model to 

evaluate the distribution o f tree diameters in forest stands. Green and Strawderman 

(1996) developed a Bayesian version o f a slash pine yield model to estimate 

probability distributions for various stand variables. Green and Valentine (1998) 

compared least squares estimates of model parameters of a linear model to estimates 

inferred by a Bayesian model. The estimates provided by the Bayesian model are 

close to maximum likelihood estimates and these models provide the added benefit of 

providing posterior probability distributions o f model parameters. A method called 

Bayesian synthesis (or Bayesian melding) was applied to ascertain marginal posterior
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distributions of model parameters and model outputs (or predictions) (Green et al 

1999; Green et al. 2000; Radtke et al 2002). The method is applied to simulation 

models where there is uncertainty associated with model parameters. Nystrom and 

Stahl (2001) apply a Bayesian approach to develop a better understanding o f 

uncertainty in yield predictions o f Scots Pine and Norway spruce. Similarly, Gertner 

et al. (1999) use a Bayesian methodology to evaluate the posterior distribution o f 

parameters of a forest process model. The majority o f  studies considering 

uncertainties in yield modeling have utilized a Bayesian oriented approach. Kangas 

(1999) evaluated various methods for assessing uncertainty in growth and yield. 

None were based on a Bayesian approach but each of the methods evaluated by this 

author was based on a related Monte Carlo simulation type approach.

A number of papers in the forestry literature consider uncertainty and its 

effects on stand management, harvest scheduling, and land use. Kao (1984) uses a 

dynamic programming approach to evaluate the effects o f uncertainty on the joint 

optimization o f thinning regimes and rotation length. Incorporating uncertainty 

reduces the optimal Mean Annual Increment (MAI) by around 6 %. Gong (1998) 

uses an expected utility model to ascertain the optimal harvest policy o f a private 

forestland owner under stumpage price uncertainty. The model incorporates the risk 

preferences o f the landowner. They find that harvest age for risk averse land owners 

is lower than harvest age for risk neutral landowners. They also find that risk averse 

landowners prefer adaptive harvest strategies to harvest rates based on optimal 

rotation calculations. A number of other authors have considered the effets o f risk 

preferences on agent behaviour in forest management. The results o f these studies 

tend to be mixed. Pel tola and Knapp (2001) for example, find that risk preferences 

have little effect on harvest sequences. Gong (1998), Pukkala and Kangas (1996), 

and Uusivuori (2002) find that risk preferences have a significant effect on harvesting 

behavior. Loonstedt and Svensson (2000) suggest that preferences are sensitive to 

sources of risk. They find, for example, that Swedish private landowners are more 

risk averse to price risk than they are to sources o f variability in incomes that result 

from biological factors.
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A subject area that has attracted a significant number o f papers in the forestry 

literature is the consideration o f stochastic coefficients in harvest scheduling models. 

This general approach provides a means of directly incorporating uncertainty into 

timber supply analysis at operational levels. One approach is to apply fuzzy set 

theory to harvest scheduling problems (Bare and Mendoza 1992). A much more 

common approach in the literature is to incorporate the density functions of 

coefficients directly into the optimization model. Studies that follow this latter 

approach include: Hoganson and Rose (1987), Marshall (1987), Gassmann (1989), 

Hof et al. (1988), Hof et al. (1992), Hof et al. (1995), Uusivuori (2002) and 

Weintraub and Abramovich (1995). The methodologies for incorporating uncertainty 

in coefficients into timber supply models are well established. In most cases, 

however, these studies have ignored risk preferences (i.e. they have assumed risk 

neutrality).

A relatively new methodological approach for capturing uncertainty is the real 

options approach. This approach originated in the finance literature and has recently 

been applied to forestry. If a forest manager has the option to revise or modify 

harvest levels in response to stochastic fluctuations in random variables (such as 

lumber price) then this flexibility has a certain value that should be included in 

decisions regarding when and how much to harvest from a land base. This approach 

is applied by Insley (2002) to determine "the value o f the option to harvest a stand of 

trees and the optimal cutting time when lumber prices are assumed to follow some 

known stochastic process." (pg 485). Insley and Rollins (2003) apply a real options 

approach to evaluate the opportunity cost o f limiting options by imposing sustained 

yield regulation constraints. Insley and Rollins (2005) also apply a real options 

method to determine the value of forest stands when there is complete flexibility in 

selection of harvest timing vs. when harvest timing is dictated by regulations. A 

number of studies (Conrad 1997; Forsyth 2000; Reed 1993) have applied the real 

options approach to evaluate option values relative to preservation o f natural forests.

Uncertainty is particularly germane to investment analysis -  especially in a 

forestry context given the long time periods associated with forestry investment. 

Hyldahl and Baumgartner (1991) review the forestry literature on risk and investment
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up to 1989. They divided studies into the following categories: capital asset pricing, 

portfolio theory, stochastic dominance, forestry investment analysis, decision theory, 

and option pricing. One common approach for accounting for risk in forestry 

investment is to add a risk premium to the opportunity cost o f capital discount rate. 

Klemperer et al. (1994) looks at issues related to whether risk premiums differ 

between short and long term investments. He finds that for short-term investments, a 

risk premium of around 7 percent is appropriate but for longer-term investments a 

lower risk premium may be more appropriate.

Knowledge gaps

As the effects o f climate change become more prominent and/or more widely 

recognized and understood, it is expected that forest managers and policy makers will 

begin to seek answers relative to long-term impacts and adaptation options. Some 

companies (e.g. Millar Western at Whitecourt, Alberta and Louisiana Pacific at Swan 

River Manitoba) have already initiated research programs to better understand climate 

change effects so that they can incorporate climate effects into their long-term 

planning.

The forest economics literature on climate change impacts on the Canadian 

forest sector is not well developed. Part o f the issue is that there is a lack of 

knowledge of the implications that climate change may have for growth and yield. 

Estimations o f growth and yield are a basic requirement for economic analysis. Basic 

information on growth and yield is also required for timber supply analysis. 

Spittlehouse and Stewart (2003) identify the development o f yield relationships that 

consider the effects o f future climate as an area that needs to be addressed.

Another significant gap relative to research on the effects o f climate change 

on the Canadian forest sector pertains to the lack o f previous analysis that recognizes 

the fact that in an environment o f climate change, the future values of all variables o f 

importance to benefit cost analysis, long term forest planning and harvest scheduling 

are random variables. The previous section describes a number o f different studies in 

the forestry literature dealing with uncertainty. Although a few of these studies 

recognize risk preferences, the majority assumes risk neutrality and therefore they
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ignore (or simplify) the costs of risk and uncertainty and the impacts that uncertainty 

may have on the optimal choices of risk averse decision makers. Moreover, none of 

the literature on uncertainty in forestry has explicitly given consideration to 

uncertainty in a climate change context. This might be considered to be a general 

weakness in studies o f the economic impacts of climate change on the forest sector to 

date. There are three main implications. First, methodologies that recognize, 

estimate and incorporate the stochastic nature o f variables o f importance to decision

making under climate change must be identified or developed. Second, the 

methodologies should be applied in some specific forest management context in order 

to illustrate: (a) the relative economic impacts (of both productivity effects and 

uncertainty effects), and (b) the implications o f climate change and climate change 

uncertainty for optimal choices. Third, the methodologies should be tailored so that 

they can be applied to evaluate the implications of climate change given particular 

institutional contexts. In the case o f Canadian forestry this means that the models 

should be able to analyze the economic impacts o f climate change recognizing that 

the objective function of private sector loggers operating on public forest lands may 

be constrained by public forest land management objectives -  namely sustained yield 

objectives.

If  decision makers are risk averse then the uncertainties associated with 

climate change may have an economic cost that must be considered not only in terms 

of developing a better understanding the economic impacts o f climate change but also 

because the existence of this uncertainty may influence adaptation strategies and the 

choices and optimal decisions made by rational forest managers. Climate change 

may also have implications for the opportunity costs o f sustained yield and our ability 

to manage forests in order to achieve sustained yield objectives. Thus, there are gaps 

both in terms o f methodological approaches for assessing the economic impacts of 

climate change in local forest management contexts and in terms of understanding the 

magnitudes and nature o f economic impacts.
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CHAPTER FOUR

METHODOLOGY OVERVIEW

Introduction

This chapter provides an overview of the methods used for this study. There 

are four stages for the analysis presented in this study. They include:

1. Estimation of a yield model that incorporates climate variables.

2. Prediction o f statistical distributions for coefficients required for risk 

models (including present value o f net benefits, harvest yields and ending 

inventory volumes).

3. Development of mathematical programming based risk models to provide 

the ability to assess the economic consequences of climate change.

4. Application o f the risk models in order to assess the economic 

implications o f climate change from a local forest management 

perspective.

A flow chart illustrating the linkages between these various stages is provided 

in Figure 4.1. The remainder of this Chapter provides an overview of these various 

components. More details on the methodology for each element are provided in 

Chapters 6 to 10.

The stylized forest and the harvest scheduling problem context

This section provides an overview o f the stylized forest and the problem 

context. The stylized forest for this study is a 1000-hectare forest o f pure aspen 

located near Calling Lake, Alberta. The forest is comprised of two stand types. 

Stand type one is a collection of 40-year old stands. There are 250 hectares of stand 

type one at the start o f the planning horizon. Stand type 2 is a collection o f 80-year 

old stands. There are 750 hectares o f stand type two at the start o f the planning 

horizon. The planning horizon is 60 years. There are two 30-year planning periods 

and two harvest decisions. The forest manager is a private sector individual operating 

on public land (although for comparison purposes we have also run the models
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assuming private land ownership). Therefore the manager’s primary objective is to 

maximize the present value o f net benefits from the forest subject to sustained yield 

constraints (i.e. including even flow and ending inventory constraints). There are 

three possible prescriptions. They include: (a) leave a hectare uncut, (b) cut in period 

1, and (c) cut in period 2. The three management prescription options and the cutting 

schedules are provided in Table 4.1. The stand age at harvest for each prescription is 

shown in Table 4.2.

One issue to be aware o f is that the length o f the planning horizon 

incorporated into the model may affect the results. Typically in operational timber 

supply analysis, the planning horizon for timber supply analysis is two rotations. For 

the purposes of this analysis the length of the feasible planning horizon is limited by a 

lack o f availability and/or low reliability o f climate scenario information 160-200 

years in the future, and increases in computing requirements for analysis over longer 

time periods. The results o f this study should be interpreted with this limitation in 

mind.

Estimation o f yield models with climate predictors

The first methodological objective is to estimate a model that can be used to 

predict aspen stand yield (see step 1 in Figure 4.1) under present and future climate 

conditions. The approach is to estimate and evaluate different functional forms and 

then select a functional form for prediction. The detailed methodology and results are 

presented in Chapter 6.

A general model for yield prediction for the climate model includes age, site 

class, density, climate variables and other variables as independent variables. The 

general model is as follows:

Y = f  (age, site, density, climate)

Where:

Y -  stand yield (cu. m. per ha)

Site -  site index value and site variables (such as soil characteristics)

Density -  some measures o f density such as trees per ha. or crown closure
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Climate -  growing season length, monthly average temperature, climate moisture 

indexes, seasonal average precipitation, and possibly other variables.

A number of specific functional forms are available including simple linear, 

exponential (log-linear), double-log, reciprocal and Schumacher functional forms. 

Fekedulegn et al. (1999) summarize a number of traditional functional forms used in 

growth and yield modeling including negative exponential, logistic, Chapman- 

Richards, and Weibull functional forms. For this study three separate and somewhat 

distinct functional forms are evaluated. They include the reciprocal functional form, 

the Schumacher functional form and the Chapman-Richards functional form.

The approach for incorporating climate variables is to estimate a yield 

function using data that covers a range o f sites. This analogue approach means that it 

is necessary to obtain data at a number of different geographic locations that are 

differentiated by unique climate conditions. This approach is similar to Ricardian 

models used to evaluate the impacts o f climate change on agriculture (Mendelsohn et 

al. 1994; Reinsborough 2003; Weber and Hauer 2003). Cross-sectional aspen yield 

data are available through the Canadian Forest Service’s Climate Impacts on the 

Productivity and Health of Aspen (CIPHA) project. A description of the CIPHA 

project is provided in Chapter 5.

One factor that is not considered is C 02 fertilization effects. Measuring the 

effects o f C02 fertilization would require a database covering a time span long 

enough that increasing C 02 in the atmosphere would be measurable. The data base 

used for yield estimation in this study is cross-sectional. Moreover, data on 

atmospheric C02 concentrations at each site are not available, and even if the data 

was available, there is likely limited variation in C 02 concentration across sites.

Expected values and variances o f  risk model coefficients

Given that there is uncertainty in future climate, predictions o f future yields 

and benefits that are based on climate variables are also uncertain. In other words, 

net benefits, harvest yields and ending inventory values are random variables. 

Random variables are characterized by their expected values, the form o f their 

distributions, and measures of dispersion (e.g. their variance). Moreover, since in
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some cases random variables are interrelated, there may exist covariance between 

random variables.

Climate change will have two fundamental effects on risk model coefficients 

for forest management problem analysis. First, it will change expected values of 

stand yields (and therefore net benefits). Second, it will change the variance around 

expected values (and therefore the degree o f risk associated with forest management). 

Both o f these responses may affect management decisions and timber supply 

planning under various types of objective functions -  particularly if  those making 

choices about timber supply are risk averse.

Thus, the second methodological objective is to estimate: (a) expected values 

o f risk model coefficients, (b) variances around risk model coefficients, and (c) 

covariances between risk model coefficients (steps 2 -  5 in Figure 4.1). The approach 

will be to simulate distributions for random variables o f interest using Monte Carlo 

simulation. The software program @RISK (Palisade Corporation 2002) will be used 

to conduct these simulations.

The variables required for the risk models that will be used to address the 

analytical objectives include: (a) net benefits (for each stand type, prescription 

combination), (b) harvest yields (for each combination), and (c) ending inventory 

values (for each combination). The risk models require measures o f expected values 

and variance for each o f the above random variables and a matrix with the 

covariances between the random variables.

As shown in Figure 4.1, four separate sets o f results for the random variables 

will be used as input data in the risk models. These are referred to as scenarios one, 

two, three and four. Scenario one assumes climate normal data and it does not 

include uncertainty. The results using scenario one data on benefits, yields, and 

ending inventory provide a baseline for comparison with results using predictions that 

include climate change and various sources o f uncertainty. Scenario two predictions 

are based on predictions o f the distribution o f future climate variables. Yield model 

parameters are considered fixed with this scenario so the only source o f uncertainty is 

with respect to the climate variables. Scenario three predictions are also based on 

predictions of the distribution of future climate variables. However, scenario three
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also considers yield model parameters to be random variables (i.e. for this scenario 

we adopt the Bayesian perspective that the parameters of the estimated yield model 

are random). Therefore, the Monte Carlo simulations include uncertainty in both 

climate variables and yield model parameters. Scenario four is similar to scenario 

three with respect to sources o f uncertainty and climate effects (i.e. the predictions 

include climate change productivity effects plus this scenario considers uncertainty in 

both yield parameters and climate variables). The aspect where scenario four 

deviates from scenario three is in terms o f assumptions regarding period one harvest 

yields. As will be described in more detail later in this chapter, scenario four assumes 

that the manager has obtained detailed information about the first period harvest 

yields (i.e. the uncertainty in the first harvest period is eliminated by a detailed stand 

inventory for example). A more detailed description of the methodology employed is 

provided in Chapter 7.

Risk programming analysis o f  timber supply

The third methodological objective is to solve and compare different types o f 

risk programming timber supply optimization models. The approach for this 

objective is to incorporate the fixed values, expected values and covariance matrices 

on net benefits, harvest yield, ending inventory yield coefficients, and various 

deterministic scalars into risk programming models (step 6 in Figure 4.1). Three 

types of risk models are developed. The first is called the Markowitz asset allocation 

model. This model minimizes the variance of a portfolio subject to earning a 

minimum return. A more detailed description o f this model is provided in Chapter 8.

The second model is an expected value-variance- chance constraint hybrid 

model. The objective function for this model is to maximize certainty equivalent 

(where certainty equivalent is equal to net benefits minus a penalty for risk - see 

Chapter two) subject to area constraints, flow constraints, and ending inventory 

constraints. This model incorporates risk preferences and behavioral response to risk. 

In this case the risk model is based on a Model I timber harvest scheduling timber 

supply model. A more detailed description o f this formulation is provided in Chapter 

9.
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The third type o f model is a discrete stochastic programming (DSP) model. 

The objective function is to maximize net present value o f benefits subject to area, 

flow and ending inventory constraints. DSP models allow the decision maker to 

adapt as uncertainty becomes resolved over time. Therefore, the DSP model 

developed for this study is used to evaluate the influence o f recourse on estimation of 

the net economic impacts of climate change in a forest management context. A more 

detailed description of the specific DSP formulation and the results provided by this 

model are provided in Chapter 10.

Sources o f  uncertainty fo r  each risk model formulation

We have developed four different sets o f model coefficients and covariance 

matrices. These sets provide the input data for the risk models. They are referred to 

as scenarios one, two, three and four. Each of the input data sets reflects a unique set 

o f assumptions about climate and about sources of variability in predictions. The 

objective function coefficients for scenario one are based on climate normals for the 

study area. Also, the variables are viewed as fixed (i.e. there is no uncertainty 

relative to the predicted values). The objective function and constraint coefficients 

for scenarios two, three and four are considered to be random variables. Their 

distributions are estimated using Monte Carlo simulation (see Chapter 7). The 

estimates of future values for specific coefficients are the expected values obtained 

from the estimated sample distributions. The covariance matrices are also derived 

from the sample distributions generated by the Monte Carlo simulation. In the case 

of scenario 2, the coefficient distributions are based on predictions o f the distribution 

of climate variables only. In the case o f scenario 3, the coefficient distributions are 

based on predictions o f the distribution o f climate variables and on estimates o f the 

distributions o f yield model parameters. Thus, the scenario 3 values incorporate an 

additional source of uncertainty compared to scenario 2. In the case o f scenario four, 

we have considered the possibility that variances in variables in the first planning 

period will be removed through some action taken by the decision maker to 

intensively measure the forest. Thus, yield for first period harvest is fixed (i.e. there 

is no variance associated with the first period yield). Scenario four does, however,
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still assume that there is uncertainty in second period harvest and in ending inventory 

yields.

The three risk models discussed above use different scenarios and/or 

combinations o f scenarios for their data. The Markowitz model is primarily 

concerned with risk/return tradeoffs. We assume that the decision maker is a rational 

investor with an interest in incorporating uncertainty in his/her decisions and choices. 

For this model we have used scenarios 2 and 3 as input data (Table 4.3). The 

objective function for the expected value-chance constraint model is to maximize 

certainty equivalent values. The expected value -  chance constraint model 

determines the optimal solution based on risk and returns as well as the explicit risk 

preferences of the decision maker. All four scenarios have been used to generate 

objective function values and solutions using this formulation (Table 4.3). In the case 

o f the discrete stochastic programming model we have used scenarios 2 and 3 

estimations for the input data. In this case the decision maker faces uncertain 

outcomes but he/she is risk neutral. The main contribution o f this model is that it 

permits the decision maker to adjust his/her decisions as uncertainty becomes 

resolved over time.

A final point to note regarding sources of uncertainty that are incorporated 

into the models developed and discussed in this study is that potential sources of 

uncertainty are restricted to climate uncertainty and uncertainties relative to yield 

estimations (for example drought, insects and diseases, and physiological factors 

affecting growth and yield). The analysis in this study does not consider uncertainty 

in economic variables such as prices and discount rates. The assumption is that these 

values are fixed. A useful extension o f the analysis undertaken in this dissertation 

would be to consider price trends and price and discount rate variability as additional 

sources o f impacts and uncertainty relative to understanding climate effects at a local 

scale.

Economic analysis

The approach for assessment o f the net economic impacts o f climate change 

and climate uncertainty will be to run separate models that are differentiated by the
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extent to which they consider climate effects and uncertainty effects (i.e. the models 

will be run with different scenarios). The first model (the Markowitz asset allocation 

model) is designed to consider tradeoffs between portfolio risk and potential returns. 

Some specific questions that are addressed with this model are:

1. What is the shape of the retum-risk frontier for forest management with 

climate change and how do assumptions regarding sources o f uncertainty 

affect the this frontier?

2. What are the relative magnitudes o f climate variance vs. yield parameter 

variance as sources o f variance for this problem?

3. How might biased perceptions o f real risk influence choices?

The second model (the EV-chance constrained hybrid model) is designed to 

identify the optimal harvest pattern given changes in productivity over time and 

changes in degree o f uncertainty in model coefficients over time. Some questions that 

are considered using the results of this model include:

1. What are the economic impacts o f climate change and uncertainty with 

and without sustained yield constraints?

2. How sensitive are the model results to different assumptions about 

parameter values?

The third model (Discrete Stochastic Programming with recourse) is designed 

to evaluate the present value o f net benefits under climate change where uncertainty 

is sequential and where uncertainty about some variables is resolved at certain points 

in time within the planning horizon. In effect, this model incorporates the adaptive 

responses of decision makers over time in assessing the net economic impacts of 

climate change. Some questions that are addressed using the DSP model formulation 

are:

1. What is the effect o f recourse (ex post adaptation) on economic returns 

from forest management?

2. What is the effect of risk prevention (ex ante adaptation) on economic 

returns from forest management?
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Figure 4.1 Sequence o f analysis and linkages between models.
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Table 4.1. Description of management 
prescriptions

Period
2010-2039

Period 
2040 -  2070

Management
Prescription

Base year 
2025

Base year 
2055

1
2
3

X
X

Where "X" indicates harvest and reforest and indicates no action.

Table 4.2. Age and year o f harvest combinations

40
Starting age

80
Management
Prescription

Age at harvest Year o f harvest

1
2 55
3 85

95
125

2025
2055

Table 4.3 Scenarios used for each risk model

Markowitz EV-Chance Recourse model
constraint

Scenario 1 X
Scenario 2 X ' X X
Scenario 3 X X X
Scenario 4 X
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CHAPTER FIVE

DATA

“It is a capital mistake to theorize before one has data. ”
Sir Arthur Conan Doyle

Three types o f data are required for this study. First, cross sectional 

mensurational and climate history data are required for estimating a yield model that 

includes climate variables. Second, climate scenario data (i.e. climate predictions) 

are required for prediction of future yields and benefits under different climatic 

conditions. Third, data specific to the study site (Calling Lake, Alberta) are required 

for yield and benefit predictions. This chapter describes the data, identifies data 

sources and provides a description of methods used for data derivation.

7 8Data used fo r yield model estimation

As was described in Chapter four, the first step in this study is to estimate a 

yield model. Variable density yield models relate stand yield in f  -ha~{) to predictor 

variables. Predictor variables traditionally included in empirical yield models are 

age, stand density (measured as stems per hectare or basal area), and site index 

(Clutter et al 1983). For this study we also consider the influence o f other site 

variables such as soil characteristics and location (i.e. a boreal forest location vs. an 

aspen parkland location). Because the estimated yield model will be used as a 

predictive model for future timber supply, it is also necessary to incorporate climate 

variables into the yield model. The set o f climate variables that are considered for 

each estimation model include: annual average temperature, annual average 

precipitation, average precipitation from May to September, and soil moisture. A 

description of all variables, the rationale for their consideration in the yield model, 

and data sources is provided in the remainder of this chapter.

7 Mike Michaelian and Ted Hogg at the Northern Forestry Centre provided immeasurable assistance in 
terms of understanding factors affecting aspen yields, understanding the CIPHA data and in developing 
the methodologies for determining merchantable volume and site index for the CIPHA plots.
8 The data used for estimating the yield model and for obtaining yield predictions is available upon 
request.
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The yield model for this study is estimated using cross sectional data 

representing a gradient of climate conditions under which aspen currently grows. The 

source o f  the mensurational data used to estimate the yield model is CFS research 

plots that are part of the Climate Impacts on Productivity and Health of Aspen 

(CIPHA) study (Study leaders: Ted Hogg, James Brandt -  Northern Forestry Centre, 

Edmonton). Detailed data on forest stand characteristics, individual tree 

measurements within plots, climate histories, defoliation histories, and drought 

history are contained in the CIPHA database. The study is described as follows:

“The CIPHA study includes a network o f long-term research plots in pure, 

undisturbed aspen stands across the western Canadian interior, extending from 

the Northwest Territories to southern Manitoba. The CIPHA study design for 

this core region consists of 25 study areas (nodes), with three stands per node 

and two plots per stand, with 13 nodes located in the boreal forest and 12 

nodes in the more prairie-like aspen parkland zone).” (Hogg, et al. 2002) 

Figure 5.1 illustrates the research design for the CIPHA study.

The geographic location o f CIPHA plot sites is shown in Figure 5.2. For the 

purposes of this study there are 140 useable observations in the CIPHA sample 

database. The variables obtained for each observation are defined and described in 

the remainder of this section.

The dependent variable for the yield model is merchantable timber stand yield 

(MVOL)9. Timber stand yield is defined as the merchantable volume(m3 -ha~x) of 

standing timber in a homogenous stand on a particular site at a particular age (note 

stands are assumed to be even age stands o f pure aspen). A common standard for 

determining merchantability in Alberta is the 15 -  10 rule. Merchantability is defined 

as the total stem volume, down to a top diameter inside bark o f 10 cm, on all trees 

that are larger than 15 cm diameter at breast height (DBH). The method used to 

derive merchantable volume per ha for the individual observations in the database

9 It was determined in later stages of this study that the use o f merchantable volume for the dependent 
variable has important implications for yield model functional form. Specifically, restricting the 
dependent variable to larger and older trees means that young age classes are not represented. In turn 
this means that our data is representative o f only the concave portion o f the “s” shaped biological 
growth relationship. This is discussed in more detail in Chapter 6 and Chapter 11.
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used for this study follows methods outlined in Huang (1994). First, all trees that met 

the 15-10 merchantability standard within each CIPHA plot were identified. Second, 

merchantable volume per tree was estimated using taper equations (Kozak 1988) and 

tree volume equations (i.e. Newton’s formula (Huang 1994)) parameterized for aspen 

growing in various ecoregions in Alberta (see Huang 1994). This procedure 

essentially involves dividing the merchantable stem into a series o f disks, calculating 

the volume of each disc and them summing the volume in each disk to obtain a total 

volume for the merchantable portion of the stem. Third, the volume for each 

merchantable tree in the plot was summed to obtain a total merchantable volume for 

the plot. Fourth, the merchantable volume per plot was converted to merchantable 

volume per ha10.

The previous paragraph describes the method used to derive the dependent 

variable for the yield model for each CIPHA plot. The remaining paragraphs in this 

section identify and describe the independent variables required for yield model 

estimation. A standard and obvious variable for yield model estimation is AGE. 

The average age for trees in CIPHA plots is determined by increment boring.

It can be reasonably hypothesized that plots located in the northern boreal 

forest are qualitatively different than plots located on southern aspen parkland sites. 

In northern latitudes growing season length is shorter but the length o f daily 

photoperiod during the growing season is longer. With respect to boreal forest sites, 

these sites are often wetter and/or have different types of soil structures. Therefore, 

there may be qualitative differences between northern boreal sites and southern aspen 

parkland sites that are not captured by the other independent variables. A dummy 

variable called ZONE is included to account for qualitative differences between the 

boreal forest and aspen parkland sites. The variable has a value o f “1” for boreal sites 

and “0” for aspen parkland sites.

Soil characteristics can affect stand productivity by affecting drainage, 

moisture holding capacity and oxygen availability within root layers. Two separate 

variables are included for consideration in the estimations. They include CLAY

10 The estimation of merchantable volume per plot and site index was conducted by Michael 
Michaelian at the Northern Forestry Centre.
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(percent clay within the soil) and SAND (percent sand within the soil). Some sand 

within a soil contributes to drainage. However, a high percentage o f sand in soil 

results in limited water holding capacity. Therefore, the expected sign on the sand 

coefficient is negative. In contrast, some clay within a soil may increase water- 

holding capacity. However, high percentages o f clay within soils may limit the 

ability o f soils to absorb moisture. Therefore, a moderate proportion o f clay within a 

soil is beneficial for tree growth. However, as the percentage o f clay increases, site 

productivity is expected to decline.

Site index is often used to evaluate differences in productivity for different 

stand locations. Site index measures the height o f dominant and co-dominant trees at 

some reference age. Site index is a relative measure o f the productivity o f a site for a 

particular species where site is described as “the totality o f environmental conditions 

(biotic, edaphic, and climate) existing at a particular location” (Clutter et al. 1983, pg 

31). Site index was calculated for each CIPHA plot location by cutting down two 

representative trees adjacent to each plot and determining the height at age 50. Site 

index is affected by a number o f factors -  many o f which are incorporated as separate 

independent variables (e.g. soil structure). However, it is also possible that site index 

will be an indicator of factors determining stand yield that are not picked up by other 

variables -  nutrient availability for example. Therefore the variable SITE is also 

included in the estimations for consideration as an independent variable.

The density of trees on the site also affects stand yield and productivity. If 

stands are over stocked, trees growth is suppressed. A fundamental premise behind 

thinning as a silviculture treatment is that such treatments can either increase overall 

yield or redistribute yield volume from a large number o f small trees to fewer larger 

trees. Theory and silvicultural practices, therefore suggest that DENSITY o f stands 

may influence yields.

The influence of climate variables on stand yield is a primary interest for this 

study. It is recognized that the relationships between particular climate variables and 

stand growth and yield is complex and that a large number o f interrelated factors 

probably should be considered. However, there is little precedence in the literature 

for studies relating climate variables to stand yield across large geographic areas.
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Hogg (1994) notes that temperature, precipitation, and moisture are key variables. 

For the purposes o f this study we have incorporated the following local climate 

variables for estimation purposes: ANTEMP (for average annual temperature), 

ANPREC (for average annual precipitation), GSPRECIP (for average precipitation 

during the May to September growing season) and MOIST (a moisture index 

calculated by the Jenson-Haise method) (note that the source of the climate normal 

data for each CIPHA plot is historical climate data for weather stations nearest each 

plot -  in some cases multiple weather station data is used). The effects (and therefore 

the signs) on the climate coefficients is difficult to predict prior to estimation. There 

are complex interactions between the variables themselves and between the variables 

and aspen stand response. For example, increased annual average temperature could 

increase stand productivity by being associated with higher rates o f metabolism or 

lengthened growing seasons. However, higher temperature is associated with higher 

levels o f evapotranspiration. If evapotranspiration exceeds precipitation, moisture 

deficits may result.

In summary the following variables are considered in the various estimations

undertaken.

MVOL: Merchantable volume (m3 ) per hectare (15-10 utilization standard)

AGE: Stand age (years)

ZONE: Dummy variable (aspen parkland = 0, boreal = 1 )

SITE: Site index (ht in meters at reference age 50)

LAT: Latitude (degrees)

DENSITY: Stems per hectare (#)

SAND: Percent sand in soils

CLAY: Percent clay in soils

ANTEMP: Average annual temperature (degree centigrade)

ANPREC: Average annual precipitation (millimeters)

GSPRECIP: Average precipitation between May and September (mm)

MOIST: Moisture index (Jenson-Haise).

Data for each o f the above variables was obtained for the 140 useable CIPHA 

plots used in the estimation of the yield model. Table 5.1 provides descriptive
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statistics for these variables. Merchantable volume per hectare (MYOL) falls within 

the expected range of values. The forest industry generally expects mature stands o f 

aspen to have 200 -  250 cubic meters per hectare on average sites in the northern 

boreal forest11. In some cases aspen yield is over 400 cubic meters per hectare o f 

merchantable volume. In the sample the maximum value for merchantable volume is 

454 cubic meters per hectare and the minimum value for stand volume is 5 cubic 

meters. Therefore the sample represents a good range of stand types. The mid-point 

value for the range o f values for merchantable volume is 229.5 cubic meters per 

hectare. A comparison o f the mid-point (229.5) to the mean (162.4) indicates that the 

observations are skewed toward the lower end of the range of values (probably 

because the merchantable volumes for aspen parkland sites tend to be lower at 

particular ages compared to boreal forest sites). The standard deviation for MVOL is 

102.4. Thus sixty-eight percent of the observations on merchantable volume are 

between 60 and 264 cubic meters per hectare and therefore the majority o f 

observations are within the normal operability range for harvesting operations.

Plot age (AGE) ranges from 28 years to 97 years. Therefore, a good range of 

ages is represented within the data. However, 68 % of the observations are between 

51 years and 76 years (i.e. one standard deviation on each side o f the mean). So the 

observations are somewhat grouped around the mean age of 63.6 years. The mid

point age (62 years) is close to the mean age (63.6) so the observations do not seem to 

be skewed.

Climate scenario data

Since yield is a function o f climate and since future climate will be different 

than present climate, predictions o f future yields require predictions o f future climate. 

However, future climate cannot be known with any degree o f certainty. Future 

climate variables are random variables. It is possible to obtain information regarding 

the potential range of values for climate variables at future points in time by 

considering the range o f predictions provided by various combinations o f general 

circulation models (GCMs) and future emission scenarios.

11 Source: Grant Williamson: Timber Operations Forester with Ainsworth in Grande Prairie.
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The source of climate scenario data used for this study is the Canadian 

Institute for Climate Studies (CICS) web site.12 Sixteen predictions o f future values 

o f annual temperature, annual precipitation and growing season precipitation were 

developed for the Calling Lake study site. Predictions are obtained for the 2020’s, 

2050’s and 2080’s. The predictions are based on different combinations o f general 

circulation models driven by different sets o f future emission scenarios. We use the 

outputs o f three models including 1. The Canadian General Circulation Model, 2. The 

Australian CSIRO model, and 3. The UK Hadley Centre GCM. The models are 

driven by eight possible greenhouse gas emissions scenarios recently developed by 

the Intergovernmental Panel on Climate Change (2000). The eight scenarios are part 

o f four families o f emissions scenarios: A l l  is from the A l family; A21, A22, A23, 

and A2X are from the A2 family; B11 is from the B1 family; and B21, B22 are from 

the B2 family. These various families o f scenarios are based on different storylines 

o f future economic development based on different assumptions about population 

growth, energy use, technological change, and income distributions. Basically the A2 

scenarios result in highest levels o f GHG emissions. The B 1 scenario family results 

in the lowest levels o f emissions. IPCC (2000) provide a more detailed description of 

the specific storylines underlying each emissions scenario.

For the purposes of this study, the first six predictions are based on predictions 

by the Canadian General Circulation Model using the following IPCC Special Report 

on Emission Scenarios (SRES): A21, A22, A23, A2X, B21, and B22. The next four 

predictions are based on the Australian CSIRO GCM using the following SRES’s: 

A ll ,  A21, B l l ,  B21. The next six predictions are based on the UK Hadley GCM 

model using the following SRESs: A21, A22, A23, A2X, B21, B22.

Obtaining data from the CICS interface site involves downloading change 

data for the variable of interest, for the future time period o f interest, and for the 

particular combination of general circulation models (GCMs) and emission scenarios 

(SRES) combinations. The change data are then applied to climate normal data (i.e. 

average value of climate variables for the period 1961 to 1990) for the Calling Lake 

site. For the purposes o f this study the high and low prediction values for the 16

12 located at: http://www.cics.uvic.ca/

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cics.uvic.ca/


predictions define the boundaries o f a uniform distribution for the climate variable of 

interest. The distributions of the climate variables obtained from the procedure 

described above are shown in Table 7.2 in Chapter Seven.

Other values and variables

The final data requirements for modeling purposes include fixed values for 

price, discount rate, soil features, site index, and stand density. The price of aspen is 

assumed to be a constant value o f $ 2.50 per cubic meter over the planning horizon 

(Table 7.1). This price is based on prices provided on Alberta SRD’s timber damage 

appraisal tables.13 The assumed value of the real discount rate is 4 % (see Row et al. 

1981 and Thomson 1992). Soil characteristics, site index, and climate normals are 

obtained directly from a specific CIPHA plot at Calling Lake. The percent sand is 34 

% and the percent clay is 19 %. The site index is 19.8. Stand density by age (see 

Table 7.1) is based on information provided in Tables 8 and 9 in Peterson and 

Peterson (1992).

13 web site located at: http://www3.gov.ab.ca/srd/land/m li timberdamage.html
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Figure 5.1. Diagram showing the research design for the CIPHA study.
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Figure 5.2 Map showing the location o f nodes for the CIPHA study.
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Table 5.1. Summary statistics o f the variables

Variable Mean St. Dev Minimum Maximum

MVOL 162.40 102.37 5.32 454.22
AGE 63.63 12.47 28 97
SITE 16.75 3.75 9.01 26.83
LAT 54.36 2.70 49.47 61.34
DENSITY 1531.40 669.73 473.68 3600
SAND 44.74 23.64 5 90.02
CLAY 21.59 14.37 5.85 67.66
ANTEMP 0.80 1.53 -3.80 3.60
ANPREC 439.61 42.82 354 518.80
GSPREC 287.77 30.76 208.30 326.30
MOIST 1.91 8.51 -21.76 19.86
n=140

MVOL -  Merchantable volume per hectare (cu. m. per ha) -  15 cm DBH -  10 cm top 
AGE -  In years
SITE -  Height at age 50 (meters)
LAT -  Latitude o f the plot (degrees)
DENSITY -  Stems per hectare (#)
SAND -  Percent sand in soil (%)
CLAY -  Percent clay in soil (%)
ANTEMP -  Average annual temperature (deg C)
ANPREC -  Average annual precipitation, (millimeters)
GSPREC -  Average precipitation from May to September (millimeters)
MOIST -  Average moisture index using the Jenson-Haise calculation method.
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CHAPTER SIX

YIELD FUNCTION ESTIMATION RESULTS

Introduction

This chapter presents the results o f the yield equation estimations. Three 

different prediction models are described, estimated and compared. Two o f these 

models are traditional functional forms for forestry yield models: the Schumacher 

functional form (Schumacher 1939; Sullivan and Clutter 1972) and the Chapman 

Richards functional form (Richards 1959; Chapman 1961; Liu and Li 2003). The 

shape o f the yield-age relationship with these functional forms is a curve that is 

sigmoid shaped. The third model (the reciprocal functional form) is a more general 

functional form (Griffiths et al. 1993). The reciprocal functional form is concave 

with respect to the x-axis and it intercepts the x-axis as* -> 0 . To our knowledge the 

reciprocal functional form has not been previously used in forestry applications. 

However, as will be described in this chapter, the reciprocal functional form is very 

similar to the Schumacher functional form.

This chapter is organized as follows. First, various options for yield 

prediction are identified and the reasons for the approach adopted for this study are 

discussed. Second, the origins and properties of each of the three functional forms 

are discussed. Third, the estimation results for the three functional forms are 

provided. Fourth, the estimation results are compared and assessed and a model is 

selected for refinement and further analysis. In the final section, further refinements 

are made to the selected model (the reciprocal model) in order to ensure an 

appropriate specification for simulations o f yield response to climate variables at a 

boreal forest site in central Alberta.

Yield prediction methodologies

There are a number of different approaches for stand yield modeling (Clutter 

et al. 1983). These methods include:

1. Whole stand normal yield tables.

2. Variable density whole stand yield models (or empirical regression based
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modeling approaches where the whole stand is one unit of observation).

3. Diameter-distribution based yield models (i.e. the stand is broken down into a 

series o f  diameter classes and growth and yield within each diameter class is 

modeled).

4. Individual tree models -  distance dependent or independent (growth/yield of 

individual trees is modeled or simulated and then aggregated to the stand level).

5. Multiple / simultaneous equation simulation models.

The normal yield table approach is deterministic and therefore it is not suited 

to the kinds of probabilistic predictions o f future yields that we require for this 

analysis. Methods 3, 4 and 5 are more rigorous approaches for simulating and 

predicting future stand yields. However, these methods require data for estimating 

aspen response to climate that is not currently available (e.g. -  tree distributions by 

diameter class, distance between trees, mortality functions). Method two has a 

number o f advantages. First, the data required for estimating empirical yield models 

are available from the CIPHA database (described in Chapter 5). Second, it is 

relatively straightforward to specify and estimate models that directly incorporate 

climate variables. Third, this method is commonly used in operational timber-supply 

analysis and forest management planning. Therefore, for the purposes o f this study 

we have adopted a variable density - whole stand empirical yield modeling approach 

for estimating stand yield prediction functions.

This study relies on the use o f stand level inventory (or yield) prediction 

functions to account for the effects o f climate change on future expected stand yields. 

An alternative approach would be to estimate growth functions. Growth and yield 

functions are closely related. Yield functions describe the accumulated volume o f 

inventory (either merchantable or total volume) on a site at various stand ages (a kind 

of stand level production function). A growth function describes the incremental 

volume (again merchantable or total volume) that is added as the stand grows one 

period. Thus, a yield function is the integral o f a growth function. Similarly, the 

derivative of a yield function provides a growth function. Growth and yield functions 

can be estimated separately or jointly. For this study, a lack information on growth
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means that it is only possible to estimate a yield function.

Functional form s

Selection of a functional form that is supported by the data and is consistent 

with theory is important for modeling. Prior knowledge of the relationships between 

variables will have a bearing on functional form selection and model specification. 

Forest stands are biological systems. The expected pattern o f growth in biological 

systems is sigmoidal. However, the estimation of sigmoidal yield functions requires 

that all age classes be represented in the data (Fekedulegn et al. 1999). In our case 

the dependent variable is not total volume. Rather, merchantable volume is used. In 

the case o f merchantable volume, the dependent variable only reflects the volume that 

is present on larger and older trees (i.e. those trees that are > 15 cm dbh). Yield 

functions (estimated with merchantable volume as the dependent variable) must be 

able to capture the portion o f the sigmoid yield curve that is concave with respect to 

increasing age and should not be forced to pass through the origin14. Three functional 

forms are suited to estimation of either sigmoid shaped yield functions or functions 

that are concave with respect to age. These functions include: reciprocal functional 

form, Schumacher (log-inverse) functional form, and Chapman-Richards functional 

form.

Reciprocal functional form

The reciprocal functional form is not a standard functional form for timber 

yield modeling. This type o f functional form is, however, suited to estimation of 

models where the algebraic form of a relationship is a concave curve that intercepts 

the x axis at a point other than the origin (Griffiths, et al. 1993). The general form of 

a reciprocal relationship between age and yield is as follows:

}' = A  + A “  [6-iJAge

14 Another data related issue is that we have estimated the yield functions using cross sectional data. 
Use of cross sectional data may, however, may be problematic because o f the effects of unobserved 
factors that vary spatially. Thus, predictions o f yield at a particular location using yield functions that 
are estimated from cross sectional data that does not capture all effects at a specific site could 
potentially be biased.
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The properties of the reciprocal functional form are as follows. The reciprocal 

function is concave if  /?, < 0 . Figure 6.1 illustrates the case where/?, < 0. If /?, < 0, 

then /?0 can be interpreted as the upper asymptote o f the function 

(i.e. Y —> /?0 as Age —» oo ). The reciprocal functional form intercepts the age axis at

the point ( - — ). The above properties suggest that this functional form may be well
fio

suited to modeling yield / age relationships in cases where the data are restricted to 

trees above a certain size (or implicitly for stands that are above a certain age).

In addition to being influenced by age, timber stand yield is influenced by site 

(represented by site index), soil characteristics (represented by percent sand, silt and 

clay), stem density, geographic location (e.g. boreal forest vs aspen parkland), and 

local climatic factors. In theory, each o f these variables has the potential to influence 

maximum yield potential (i.e. the asymptote of the yield function). Thus, in order to 

incorporate these variables into the reciprocal function, it is necessary to redefine the 

asymptote term (i.e. the constant).

The reciprocal variable density yield function with a redefined constant (that 

includes site, soils, location, climate, density and a dummy variable for boreal forest 

plots) within the asymptote is shown as follows:

Y = /?0 + (\ZONE  + ffS IT E  + [fLA T  + f,D E N SIT Y  + ffSA N D  + [3(CLA Y  + /?7ANTEMP  +

/?„ANPREC + /39GSPREC + PV]M ()IST  + /?,, —
AGE

[6.2]

Schumacher functional form

One of the earliest variable density yield model functional forms used in 

forestry was the Schumacher-type yield model. MacKinney et al. (1937) and 

Schumacher (1939) were the first to suggest this type o f functional form. More 

recently this functional form has been incorporated into simultaneous equation 

systems that jointly estimate growth and yield functions (Buckman 1962; Sullivan 

and Clutter 1972).
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The general form of the Schumacher-type yield model (Clutter et al. 1983) is 

as follows:

LnY = (30+ /?, + j32f(S i te ) + ̂ ( D e n s i ty )  [6.3]
Age

The first thing to note about the above functional form is its similarity to the 

reciprocal function described in the previous section. The functions are similar in all 

respects except that the value for the dependent variable is "LnY" for the 

Schumacher type yield model and it is "7" in the case o f the reciprocal functional 

form. The second thing to note is that the third term is a function o f site and the 

fourth term is a function o f density. Thus, site and density variables may be defined 

in terms o f their logarithms, their reciprocals, or in some cases, the equation may be 

estimated with these variables un-transformed.

Although the mathematical expressions o f the Schumacher and reciprocal 

functions are similar, the shapes o f these two functions are quite distinct. As noted 

earlier, the shape of the reciprocal yield function in a two-dimensional yield / age 

plane is a curve that is concave to the x-axis and that intersects the x-axis. The 

Schumacher-type yield model, alternatively, has a sigmoid shape and it goes through 

the origin.

The Schumacher-type variable density stand yield functional form has some 

parallels in empirical economic analysis. The log-inverse function is a functional 

form that is sometimes used to model company sales as a function o f advertising 

effort (Griffiths et al. 1993). The non-linear form of the log-inverse function is:

r  = expj/?0 + f l j J  [6.4]

And the linear form of this model is:

LnY = /30+ / 3 ^  [6.5]
s i

The algebraic relationship between yield and age with the Schumacher yield 

function is s-shaped (or sigmoid shaped) (i.e. if  (3X < 0 then

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-oo as X  -» 0  and p x- - +  0 as X  - » co). Thus, equation [6.5] is 
2f vT

asymptotic to /i0. As was the case for the reciprocal functional form, climate 

variables are incorporated into the asymptotic ( /( ,)  parameter of the model. A re- 

specified Schumacher model with climate variables is provided as follows:

LnY = P0 + p;ZONE + p 2SITE + p f A  T  + p ADENSITY + p sSAND + p 6CLA Y

+P7ANTEMP + PgANPREC + P9GSPREC + Pl0MOIST + Pn —
AGE

[6 .6]

Chapman Richards functional form

A  more contemporary functional form for yield prediction modeling 

(compared to the Schumacher functional form) is the Chapman-Richards model 

(Richards 1959; Chapman 1961). Studies that have used a Chapman-Richards 

formulation include Pienarr and Turnbull (1973), Pienarr (1979), Zhang et al. (2002), 

Liu and Li (2003).

The Chapman-Richards model is the integral form of a basic differential 

growth equation for measuring rates o f growth of biological organisms or systems 

(Clutter et al. 1983). The equation upon which the Chapman-Richards model is based 

is represented by the following differential:

A Y
—  = ccYp - y Y  [6.7]
dt

The first right hand side term is the “anabolic growth rate” or “constructive 

metabolism.” The second right hand side term is the “catabolic growth rate” or 

“destructive metabolism” (Clutter et al. 1983). Both terms are proportional to the 

size of the organism or biological system (such as a forest stand for example). The 

first term dominates when the biological system is relatively small (young) but as the 

system grows (ages) the second term has a more significant influence.

The integral o f equation [6.7] provides the generalized form o f the Chapman- 

Richards yield model (Liu and Li 2003). This general functional form is provided as 

follows:
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Yt = 6 { \ -T - z x V{-yAge)}(m~P) [6.8]

The Chapman-Richards functional form has a sigmoid shape and therefore it 

is a form that is consistent with the expected pattern of growth o f a forest stand as it 

ages over time. Before estimating a relatively complex, non-linear model such as 

Chapman-Richards it is important to have an understanding of the meaning of the 

parameters of the model. Fekedulegn et al. (1999) and Liu and Li (2003) describe the 

correct interpretation o f the parameters in Chapman-Richards types models. These 

interpretations are summarized as follows:

• 9 - Represents the maximum value that stand yield can attain (i.e. it represents 

the upper asymptote of the growth curve).

•  t  - Represents the biological constant.

• y  - Represents the rate parameter. This parameter defines the rate o f growth -  or 

the rate at which yield approaches its upper asymptote.

• [5 - Represents the “allometric” constant. This parameter defines the shape of the 

function and its inflection point.

For the purposes of this study we are interested in extending the basic model 

to incorporate additional explanatory variables (location, site, density, soils, local 

climate). Liu and Li (2003) show that the upper asymptote for the Chapman 

Richards model is related to the three parameters:

9-
i-p

(Note: a  is from equation [6.7]) [6.9]

Our expectation is that the traditional yield variables (site index, density, 

zone) and the climate variables affect both the anabolic and catabolic growth of 

stands. Since the parameters that determine these rates o f growth are embedded 

within the parameter describing the upper asymptote o f the yield function (9) ,  it is 

logical that these additional parameters be incorporated into the parameter 9.  

Therefore, we redefine 9  as follows:

9 = . / (Pu, ZONE, SITE, DENSITY, SAND, CLA Y, ANTEMP, ANPREC, GSPREC, MOIST, LA T)
[6.10]

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The above variables were defined and described in Chapter 5. The re-specified 

Chapman Richards model is as follows:

LnY = (A, + frZONE  + fcSITE + A DENSITY + P4SAND + fiC LA Y 

+P6ANTEMP  + P7 ANPREC + (ifiSPREC  + MOIST + PnLAT) 

+A 0ln (l-A 3 ^ (' Al̂ )) [6_n ]
Where :
0 = exp[A, + ( \Z O m  + P2SITE + /i, DENSITY + PaSAND + PfILA  T 

+ /36ANTEMP + A7 ANPREC + pfiSP R E C  + p,M OIST  + /TI2/^ 7 T]

Estimation procedures and results

The Reciprocal model

The reciprocal model is linear in the parameters and is therefore a fairly 

straightforward model. The reciprocal yield model was estimated using ordinary least 

squares regression with SHAZAM (Version 10) (Northwest Econometrics 2004). 

Table 6.1 provides the estimation results for the reciprocal functional form. Two 

models are presented. One model estimates yield as a function of ZONE, SITE, LAT, 

DENSITY, SAND (percent sand), CLAY (percent clay), and AGEINV (the inverse o f  

age). The second model adds in the following climate variables: ANTEMP, 

ANPREC, GSPREC, MOIST (all variables were described and defined in Chapter 5). 

Equation [6.2] shows the specification for the second model. The first model is 

nested within this specification. The reason for estimating two models is to compare 

and contrast the estimation results for yield models with and without climate 

variables.

The reciprocal yield model provides a reasonably good fit to the data. The R- 

squared for model 1 (no climate variables) is 0.71. Including climate variables 

increases the R-squared value to 0.74. Model 2 has 12 coefficients. All variables 

(except DENSITY, ANPREC and MOIST) are significant at the 5 % level. The p- 

value shows that DENSITY is significant at the 16.7 % level. All the variables with 

this estimation have expected signs. AGE, ZONE, SITE, ANTEMP and MOIST have 

positive effects on stand yield. LAT, DENSITY, SAND, CLAY, and GSPREC have 

negative effects on stand yield. One result that is intriguing is the negative coefficient
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value on GSPRECIP. Intuitively one would expect that average precipitation during 

the growing season would have a positive effect on yield. However, aspen 

productivity is, in fact, sensitive to excess precipitation. High moisture levels may 

contribute to increased decay and pathogen mortality in aspen stands (Source: Dr. R. 

Yang, Forest mensuration researcher, Canadian Forest Service -  personal 

communication -  April 2004). Moreover, the sign on annual precipitation is positive 

so that it may this variable that is capturing the positive effects o f higher 

precipitation.

The Schumacher model

The Schumacher model is also linear in its parameters and can be estimated 

by ordinary least squares. The Schumacher model was estimated using SHAZAM 

V.10 (Northwest Econometrics 2004). Table 6.2 provides the estimation results for 

the Schumacher functional form. As was the case with the reciprocal model, two 

separate models are presented: with and without climate variables included.

The Schumacher model also provides a fairly good fit to the data. The R 

squared for the regression without climate variables is 0.69. Including climate 

variables increases the R-squared to 0.70. Therefore, adding the climate variables 

does not improve the overall fit o f the model significantly. As was the case with the 

reciprocal model, the coefficients on DENSITY, ANPREC, and MOIST are not 

significant with the Schumacher estimation. In addition, the coefficients on ZONE, 

SAND, and CLAY are not significant. Therefore an issue with the Schumacher 

functional form estimation is that a number o f variables are not significant.

The Chapman Richards model

The Chapman Richards model is a more contemporary yield model but it is 

also a more complex model than the previous two models. The Chapman Richards 

model is not linear in its parameters and therefore parameter estimation requires a 

non-linear estimation procedure. The model was estimated using SHAZAM’s V.10 

(Northwest Econometrics 2004) non-linear regression routine. SHAZAM uses a 

numerical optimization method called the quasi-Newton method to estimate the
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parameters of non-linear models. This is an iteration procedure that requires the 

specification of starting values for the parameters. These starting values can have an 

important influence on whether the results converge to local or global maxima and/or 

whether the model converges at all. Thus, depending on the starting values, the 

estimation method may provide different results or no results whatsoever. The 

estimation o f the Chapman Richards model for this study proved to be highly 

sensitive to starting values. The estimation was especially sensitive to starting values 

selected for f \ (] and , in equation [6.11]. The procedure used for this study was to 

use the results of the Schumacher model as a guide for determining starting values for 

the coefficients in the asymptote term. For selecting starting values for [ \{) and (5n

we first looked at the following three papers for general guidance: 1. Liu and Li 

(2003), 2. Fekedulegn et al. (1999), and 3. Pienaar and Turnbull (1973). These papers 

provide general indications o f the correct sign and relative magnitudes for starting 

values for the parameters. A set o f starting values were defined. However, the initial 

starting values failed to result in models that converged. The model was then re- 

estimated with different combinations o f starting values. This process was repeated 

until the model converged and did not provide error messages. The set of starting 

values selected are as follows: B0:4.0, Bl:0.04, B2:0.2, B3:-0.001, B4:-0.02, B5:- 

0.05, B6:0.1, B7:0.01, B8:-0.01, B9:-0.01, B10:7, B l l :  0.001, B12:-0.1.

Table 6.3 provides the estimation results for the Chapman-Richards functional 

form15. Including climate variables into this specification increases the R-squared 

from 0.69 to 0.71. However, a number of the coefficients are insignificant including 

the constant and the coefficients associated with the variables ZONE, DENSITY, 

SAND, CLAY, ANPRECIP, MOIST and AGE. An insignificant coefficient on AGE 

is not consistent with the results of the reciprocal model or the Schumacher model. 

Moreover, insignificance of the coefficient on AGE raises questions about the degree 

to which this specification fits the data.

15 It should be noted that numerous attempts were made to estimate the specification represented by 
equation [6.11]. The SHAZAM runs failed to converge. It was determined that the problem pertained 
to the biological constant parameter (i.e. the parameter directly in front o f the exponent term in 
equation [6.11]). This parameter was dropped and the models were rerun. Convergence was 
achieved.
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Model comparisons and selection

In this section the yield model estimation results are compared in four ways. 

First, a comparable R-squared value for each model is calculated and compared. 

Second, predictions o f yield over age for a hypothetical aspen site are derived and 

graphed. Third, the general estimation results are evaluated and compared on the 

basis o f numbers o f significant coefficients and consistency of signs on coefficients 

with theoretical expectations. Finally, we compare our estimation results of the 

Chapman Richards functional form with results from a study by Fekedulegn et al. 

(1999). This study used a similar type of data to estimate a Chapman Richards yield 

function.

The dependent variable for the reciprocal model is merchantable volume. In 

the case of the Schumacher and the Chapman Richards functions, the dependent 

variable is the natural log of merchantable volume. Thus, the dependent variables for 

the three models are not the same. In cases where the dependent variables are 

different -  R-squared values cannot be used to compare and contrast models. In order 

to obtain comparable R-squared values it is necessary to transform predicted values 

for all models to a common basis and then determine the degree to which the 

transformed predicted values explain the variance in the comparable actual values o f 

the dependent variables. This was done by first converting the predicted values for 

the Schumacher and Chapman Richards models from predictions of the log o f 

merchantable volume to predictions of merchantable volume. The conversion was 

conducted by generating a new variable (PMVOL) that was determined by 

calculating the exponent o f LNMVOL. This is equivalent to an untransformed 

predicted value for merchantable volume. Auxiliary regressions were then estimated 

for MVOL as a function of PMVOL with the “noconstant” option invoked. The 

resulting R-squared values for these auxiliary regressions are comparable to the R- 

squared value for the reciprocal model estimation. The comparable R-squared values 

are provided in Table 6.4. Based on comparable R-squared values, the reciprocal 

model explains a higher percentage o f the variance in merchantable volume. The
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reciprocal model also showed the greatest increase in R-squared value with the 

addition o f the climate variables.

Figure 6.2 shows the yield over age relationships for each of the three models. 

As expected, the shape of the reciprocal-yield-age relationship is a concave curve. 

Also, as expected the Schumacher and Chapman Richards functions are sigmoidal 

with respect to yield over age. These figures are based on estimation results for 

Equations 6.2, 6.6 and 6.11. The only variable (other than age) that is allowed to vary 

is stand density (Clutter et al. 1983). For the purposes of incorporating changes in 

density for each age we have used the stand density results in Kirby et al.’s (1957) 

stand density table for average site aspen stands (Table 6.5). The values for all other 

variables are treated as constants. The values used were the average variable values 

for the sample (see Table 5.1).

The reciprocal model predicts that the age at which the mean annual 

increment for the sample stand culminates (i.e. the age at which the average growth 

rate is maximized) occurs at around 55 years. This is consistent with other studies 

that have found that the MAI for aspen culminates at around 60 years (Heeney et al. 

1980) on medium sites. Mean annual increment appears to culminate at around 100 

years for the Schumacher simulation and MAI culminates well past 100 years for the 

Chapman Richards simulation. The late culmination of MAI with the Schumacher 

estimation and the Chapman Richards simulation brings into question the degree to 

which these functional forms provide an acceptable fit of the data used in this study. 

These models predict continued growth increases at ages that normally are associated 

with stand breakup16.

The third consideration for model selection is to assess the number of 

significant coefficients for each model and the general fit of each model to the data. 

The variables selected for the initial estimations were selected because they have 

some apriori justification for being included as predictors in yield equations. For the 

reciprocal model, 9 out of 12 coefficients were statistically significant. The

16One feature of aspen yield that is not reflected in the models estimated in this study is that after a 
certain period of time aspen stand yields will begin to decline as a result o f stand breakup, stem decay 
and tree mortality. None of the models estimated here reflect declines in aspen volumes in over
mature stands. The reciprocal model is approaching its asymptote at age 100.
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estimation results for the Schumacher and Chapman Richards models had fewer 

significant coefficients. For example, the coefficient for ZONE is insignificant in the 

Schumacher model. Similarly, the soil characteristic variables (SAND, CLAY) are 

not significant. An insignificant coefficient for the ZONE coefficient is a concern 

because previous research has shown that there are qualitative differences between 

aspen in the aspen parkland and boreal zones (Hogg 1994). Similarly, soil 

characteristics are an important determinant of site productivity. There are also a 

number o f  insignificant coefficients in the Chapman-Richards estimations. Similar to 

the Schumacher model estimation, the coefficients on ZONE, SAND, and CLAY are 

not significant. In addition, however, the coefficient on the variable AGE is also not 

significant.

The shape of the curves in Figure 6.3 indicate that the Chapman Richards and 

Schumacher models do not fit the data particularly well and do not provide 

reasonable prediction models. Moreover, there are a number o f insignificant 

coefficients on variables that apriori we would have expected to be significant for 

these models. One reason for the poor results for these two models may be due to the 

fact that the data are restricted to larger and older trees and data on growth in juvenile 

stands is not represented in this particular sample. Therefore, these functional forms 

may be attempting to force sigmoidal type relationships between the dependent and 

independent variables based on data that is only representative o f the concave portion 

o f the yield-age relationship. Fekedulgen et al. (1999) had similar results with a data 

set that lacked observations in young age classes. They note that:

“Investigation of the differential forms and second derivatives of the 

Chapman-Richards and von Bertalanffy models indicate that the functions are 

suitable to model a system that encompasses the entire range o f the life cycle o f a 

biological response variable...This clearly illustrates that significance of the 

parameters of the Chapman-Richards and von Bertalanffy growth models depends on 

the range of the growth data.” (pg. 333 and 334)

In order to proceed to the next phase of this study, one o f the three models 

estimated in this chapter must be selected. The Schumacher function is a traditional 

functional form for yield prediction model estimation. More sophisticated non-linear
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models (such as the Chapman Richards functional form) are currently more 

commonly used. These functional forms are grounded in forest science. The 

reciprocal model has not been previously used in forest yield modeling. However, 

the results presented in this chapter show that the simpler reciprocal model appears to 

fit the data better than the Schumacher and the Chapman Richards functional forms. 

The reciprocal model is therefore selected as the functional form most suited for use 

in the next phases of this study.

Refinements to the reciprocal model

The previous section presents estimation results for the purpose of comparing 

and selecting a suitable model for yield estimation with climate variables included. 

The results suggest that a reciprocal model may be the most applicable for the 

analysis proposed in this study. Having selected the reciprocal model it was decided 

to try and further refine the specification and the estimation method.

In order to reduce multicollinearity, and make the prediction model more 

applicable to a boreal forest site some modifications o f the basic model presented in 

Table 6.1 were considered. First, it was decided to drop the variable LAT (latitude) 

from the specification. The reason for dropping the variable LAT was due to likely 

strong correlations with climate variables o f interest (namely ANTEMP). Second it 

was decided to drop the moisture variable due to likely collinearity with the 

precipitation variables and temperature variables. Finally, in order to make the model 

specific to a boreal forest site, interaction variables between ZONE and the other 

exogenous variables were incorporated into the model. This provides the ability to 

consider the effect o f zone on both the intercept parameter as well as the response 

parameters. A “Z” in front of the relevant coefficient identifies the interaction terms. 

For example, the interaction term for density (i.e. DENSITY*ZONE) is referred to as 

ZDENSITY in the results tables (Table 6.6). Similarly, the coefficient for the 

interaction term (SITE*ZONE) is referred to as ZSITE.
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The refined specification for the model is as 

follows:

MVOL = A, + [3, ZONE + (32DENSITY + (3} (DENSITY * ZONE) + /34SITE 

+ A  {SITE * ZONE) + (3bSAND + A  (S>1/VD * ZONE) +  A8C L Z  T 

+fl9(CLAY * ZONE) + 0 lo ANTEMP + /3U(ANTEMP* ZONE) [6.12]

+f3n ANPREC  + A, (ANPREC * ZONE) + A14GSPREC + /?15 (GSPREC * ZONE) 
+/3l6AGEINV

The above general model provides two separate prediction models: one for aspen 

parkland (ZONE=0) and one for boreal sites (ZONE=l). The boreal model will be 

used for prediction purposes.

MVOL

( A + A ) + ( A + /33) d e n s i t y + ( A  + (35) s i t e  

+ ( 0 6  + A  )SAND + ( A  + {39)CLAY 
+(Ao + A ,) ANTEMP + (#2  + A  3) ANPREC  
+(A,4 + (3ls)GSPREC + /3l6AGEINV

Ao + (3-.DENSITY + AA/7’£  + fcSAND  

+/3.CLAY + J3l0 ANTEMP + A12 ANPREC 
+A 4GST,tf£C + p„AGEINV

When ZONE=l

When ZONE = 0

One feature of the data that needs to be addressed in obtaining suitable 

estimates of parameters and their variances is that the dependent variable in our 

model (merchantable volume per hectare) is always a positive number. Therefore, the 

dependent variable for our model has a truncated distribution. The density function 

for our dependent variable is given as:

f { y \ y > Q)  = ---------------------
Prob(y > 0)

Estimation of yield functions without accounting for the fact that the 

dependent variables are non-negative may result in a prediction model that 

overestimates volume in young stands and underestimates volume in older stands. 

Therefore, in addition to refining the specification o f the reciprocal functional form
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(as described above) a procedure that accounts for the fact that the dependent variable 

is always a non-negative number was used to estimate the parameters. This 

procedure is called truncated regression (Greene 1997).

Truncated regression models are estimated using maximum likelihood 

estimation. The likelihood function for a truncated regression model (where the 

dependent variable is truncated at 0) is as follows:

— *)/ <*]
/ ( T , l T > 0 )  = -^------------ :--------- [6.13]

1 - O [ ( 0  — / ? X , ) / < 7 ]

Where:

<f>\(yl -  /? x,) / cr] is the standard normal density function, and

<D[(0 - / ?  x,) / cr] is the standard normal cumulative distribution function truncated at 0 

Source: Greene (1997)

Estimates of "/?"are obtained by maximizing the log-likelihood of equation 6.13. 

The truncated regression model was estimated using LIMDEP: Version 7.0 

(Econometric Software Inc. 1995).

The results o f the truncated regression estimation for the reciprocal yield 

model are provided in Table 6.6. For comparison, parameter estimates for the same 

model using ordinary least squares (i.e. not using truncated regression) are also 

provided in Table 6.6. The use o f truncated regression does not have drastic effects 

on the values o f the parameters or on their standard errors. In most cases the signs 

are the same with both estimations. In general, the standard errors for the truncated 

regression are slightly higher. The result is that one extra coefficient (ZANPREC) 

becomes insignificant. Also there is no significant loss in explanatory power with the 

truncated regression model. Auxiliary regressions were run with actual volumes as 

the dependent variable and predicted volume as the independent variable and with the 

“no constant” option invoked. Since we are interested in a model that predicts 

volume on a boreal site, only the data for boreal sites (n=70) were used for the 

auxiliary regressions. The R-squared values for the un-truncated refined reciprocal 

model and the truncated model were 0.76 and 0.77 respectively.
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Finally, yield over age relationships using the un-truncated model and the 

truncated model were plotted to determine if  in fact the un-truncated model provides 

an overestimate of volume in young stands and an underestimate o f volume in old 

stands. The results are shown in Figure 6.3. Yield for young stands in the truncated 

model is clearly lower than yield predicted by the un-truncated model. Similarly, 

yield for old stands in the truncated model is clearly higher than yield predicted by 

the un-truncated model. These results show that failing to account for the fact that the 

dependent variable is truncated at zero may result in biased predictions o f yield.

Thus based on the analysis presented in this chapter, the specific model 

selected for analysis in the next phase of analysis for this study is the refined 

reciprocal model estimated using truncated regression with the dependent variable 

truncated to values greater than zero.
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Figure 6.1 A reciprocal stand yield growth/age relationship.
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Figure 6.2. Simulation of yields using the three functional
forms.
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Figure 6.3 Comparison of refined reciprocal model yield 
curves estimated with truncated and untruncated regression 

using average values for boreal sites.
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Table 6.1 Estimation results for the reciprocal timber stand yield model

Model 1 - Without Climate Model 2 - With Climate

Variable Estimated Standard Estimated Standard
Name Coefficient Error P-value Coefficient Error P-value

CONSTANT 1161 148.7 0 1334.5 232.3 0

ZONE 24.69 13.14 0.062 57.651 18.02 0.002

LAT -18.594 2.662 0 -19.057 3.857 0

SITE 23.201 2.088 0 23.32 2.061 0

DENSITY -1.35E-02 9.67E-03 0.167 -1.35E-02 9.75E-03 0.169

SAND -1.6697 0.3833 0 -1.2797 0.4036 0.002

CLAY -1.5932 0.5349 0.003 -1.2894 0.5313 0.017

ANTEMP 13.953 6.586 0.036

ANPREC 0.28508 0.2397 0.236

GSPREC -1.2054 0.3879 0.002

MOIST 0.39244 1.114 0.725

AGEINV -15824 1717 0 -14687 1690 0

R-squared 0.71 0.74

R-squared -adjusted 0.69 0.71

SE of estimate (sigma) 56.80 54.86

F-statistic 182.97 131.91

Significance <1% <1%
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Table 6.2 Estim ation results for the Schumacher timber stand yield model

Model 1 - Without Climate Model 2 - With Climate

Variable
Name

Estimated
Coefficient

Standard
Error P-value

Estimated
Coefficient

Standard
Error P-value

CONSTANT 8.9711 1.316 0 8.8639 2.1 0

ZONE -0.13012 0.1163 0.265 0.12173 0.1629 0.456

SITE 0.22214 1.85E-02 0 0.22131 1.86E-02 0

LAT -8.83E-02 2.36E-02 0 -7.42E-02 3.49E-02 0.035

DENSITY -1.52E-04 8.56E-05 0.078 -1.68E-04 8.82E-05 0.059

SAND -4.64E-03 3.39E-03 0.174 -2.17E-03 3.65E-03 0.553

CLAY -7.24E-03 4.74E-03 0.128 -5.54E-03 4.80E-03 0.251

ANTEMP 0.12037 5.96E-02 0.045

ANPREC 3.27E-03 2.17E-03 0.134

GSPREC -8.87E-03 3.51E-03 0.013

MOIST 3.09E-04 1.01E-02 0.976

AGEINV -147.42 15.2 0 -139.93 15.28 0

R-squared 0.69 0.70
R-squared -
adjusted 0.67 0.68
SE of estimate
(sigma) 0.50 0.49

F - statistic 1642 1125

Significance <1% <1%
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Table 6.3 Estim ation results for the Chapman-Richards timber stand yield model

Model 1 -  Without Climate Model 2 -  With Climate

Coefficent 
(See equation 6.11)

Estimated
Value

Standard
Error t-ratio

Significance 
5 %

Estimated
Value

Standard
error t-ratio

Significance
5%

BO (CONSTANT) 11.302 10.753 1.051 NS 31.802 23.462 1.3555 NS

B1 (ZONE) -0.14963 0.1011 -1.48 NS 0.14025 0.15808 0.88717 NS

B2 (SITE) 0.22968 1.82E-02 12.64 S1G 0.22804 1.75E-02 13.037 SIG

B8( LAT) -8.21E-02 2.28E-02 -3.60 SIG -5.73E-02 2.95E-02 -1.9447 SIG

B3 (DENSITY) -1.05E-04 8.54E-05 -1.23 NS -1.27E-04 8.65E-05 -1.4727 NS

B4 (SAND) -4.81E-03 3.36E-03 -1.43 NS -2.39E-03 0.33E-02- 0.71926 NS

B5 (CLAY) -6.28E-03 4.72E-03 -1.33 NS -4.61E-03 4.29E-03 -1.0747 NS

B6 (ANTEMP) 0.14569 5.81E-02 2.5065 SIG

B7 (ANPREC) 3.29E-03 2.03E-03 1.6231 NS

B8 (GSPREC) -9.04E-03 3.37E-03 -2.6837 SIG

B9 (MOIST) -6.95E-04 0.98E-02- 7.05E-02 NS

BIO 3.1051 1.4711 2.11 SIG 2.70E+00 2.86E-01 9.41E+00 SIG

B 11 (AGE) 3.24E-03 1.55E-02 0.21 NS 9.23E-07 7.98E-06 0.11565 NS

R-squared 0.69 0.71
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Table 6.4 Comparable R-squared values between models
Model 1 Model 2
without with
climate climate

Reciprocal model 0.71 0.74
Schumacher model 0.62 0.62
Chapman Richards 0.62 0.63

Table 6.5 Stems per ha by age
Age Number

40 3743
50 2296
60 1596
70 1198
80 912
90 724
1 0 0 623
Source: Kirby et al. 1957
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Table 6.6 Estimation results for the refined reciprocal model estimated w ith truncated regression
Ordinary least squares estimation Truncated regression estimation

Variable Coefficient
value

Standard error P value Coefficient value Standard
emor

P value

CONSTANT -56.64 110 .607 4.59 115.49 .968
ZONE 425.75 182.8 .021 406.41 179.76 .024
DENSITY 0.015 0.014 0.302 .0227 .0149 .129
ZDENS1TY -0.059 0.019 0.002 -.065 .020 .0009
SITE 17.609 2.92 0.0 25.12 3.47 0.0
ZSITE -0.112 3.842 0.977 -.643 4.11 .876
SAND 0.774 0.538 0.153 .845 .545 .121
ZSAND -3.37 0.880 0.0 -3.080 .864 .0004
CLAY -0.119 0.864 0.89 -.373 .942 .692
ZCLAY -2.060 1.144 0.074 -1.351 1.184 .254
ANTEMP -0.683 9.808 0.945 8.303 10.038 .4081
ZANTEMP 43.811 13.29 0.001 33.73 13.43 .012
ANPREC -0.132 0.317 0.677 .011 .319 .973
ZANPREC 1.377 0.627 0.03 .802 .616 .193
GSPREC 0.376 0.560 0.503 -.135 .572 .814
ZGSPREC -2.548 0.9123 0.006 -1.637 .918 .075
AGEINV -11254 1676 0.0 -19183 2624 0.0
Sigma 54.38 50.53
R squared 0.75
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CHAPTER SEVEN 

ESTIMATION OF RISK MODEL COEFFICIENT VALUES, VARIANCES

AND COVARIANCES

Introduction

The general objective of this study is to assess the effects of climate change on 

the benefits o f timber production and on decisions regarding optimal harvest choices. 

However, embedded within this general objective are a number o f more specific 

questions (see Chapters 8 , 9 and 10). In order to address the general objective and the 

sub-questions of interest we require a range of different types of models. Chapters 8 , 

9 and 10 look specifically at how different types o f risk models and different 

formulations o f these models can be used to address various types o f climate change 

impact questions. However, as described in Chapter 4, an additional consideration 

that will affect the range of questions that can be answered and/or the range of 

analytical contexts that can be addressed pertains to the definitions of coefficients and 

input data used in the optimization models and the assumptions that these values are 

based on. The input data for the optimization models in Chapters 8 , 9, and 10 are in 

the form of coefficient values (or expected values for random variables) and 

covariance matrices. The variables o f interest include net benefits, harvest yields, and 

ending inventory yields. There are a number o f factors that affect coefficient values 

and variances and covariances. Some o f these factors include: (a) whether yields are 

based on climate history or climate futures, (b) whether climate uncertainty17 is 

included in the covariance matrices, (c) whether yield uncertainty is included in the 

covariance matrices, and (d) alternative assumptions that can be made about whether 

there is uncertainty in first period harvest yields. For this study we specify four 

scenarios that include various combinations o f assumptions regarding the factors 

noted above. The values of the coefficients, the variances of the coefficients, and the

17 For the purpose o f this study climate uncertainty refers to uncertainty in the expected values of 
climate variables in future years. This is not the same as climate variability which generally refers to 
the distribution for a particular climate variable in any given year.
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covariances between the coefficients vary for each of these four scenarios. This 

Chapter describes these four scenarios; describes the methodology used to estimate 

expected coefficient values and covariances under each scenario; and presents results 

of the coefficient, variance and covariance estimations for each scenario.

The first step in assessing the effects of climate change is to obtain a baseline 

estimate o f maximum economic returns and the optimal harvest pattern for our 

hypothetical forest when there are no climate effects and there is no uncertainty about 

yields and benefits. Scenario one provides baseline values for coefficient values. For 

scenario one, the estimate o f coefficient values is based on the assumptions that yields 

are not impacted by climate (climate normals are used for prediction purposes) and 

that there is certainty with respect to all objective function and constraint coefficients 

in the risk models. Again, model results from this scenario will provide baseline 

results against which model runs using input data from scenarios 2, 3, and 4 can be 

compared for the purposes of estimating relative changes in economic returns and 

optimal harvest patterns with climate change.

Scenario two input data incorporates climate change impacts on stand 

productivity. The only source of uncertainty in coefficient estimates is with respect to 

the future values o f climate. Climate variables within the yield function are assumed 

to be random variables. However, under scenario two, the parameters o f the yield 

model are assumed to be constants. Therefore, scenario two incorporates climate 

uncertainty (i.e. uncertainty in climate variables) but this scenario assumes that the 

parameters o f the yield models are known with certainty.

Scenario three input data also incorporates climate change impacts on stand 

productivity. However, there are two sources o f uncertainty under this scenario. For 

scenario three both climate variables in the yield function and yield function 

parameters themselves are assumed to be random variables. Therefore, for this 

scenario, we have extended the analysis to look at climate change in the context of 

other potential sources o f uncertainty -  namely uncertainty in the parameters of the 

yield prediction equation.

Our final scenario (scenario 4) incorporates a new assumption about the 

variances. For scenarios 2 and 3, we assume that the period 1 harvest is uncertain.
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This uncertainty comes from the fact that the logger is initially unsure about how 

much inventory is on the land and/or how much timber he/she will be able to harvest 

from the inventory in period one. However, in practice it may be possible for the 

logger to estimate (with high confidence) the volume of timber that he/she could 

harvest in period one, even before he/she actually harvests the stand. For example, 

this could be done with an operational inventory o f the current standing forest. If a 

forestland owner were to pursue this option (which is entirely plausible if costs are 

not prohibitive) then uncertainty regarding period one harvest yields could be 

eliminated. For a risk-averse decision maker, it can be hypothesized that this added 

information will influence benefits and harvest choices. Thus, in summary, scenario 

4 maintains the assumption that climate change occurs and this will affect 

productivity in future periods. We also continue to include uncertainty about climate 

and yield parameters as sources o f uncertainty. However, the new assumption under 

scenario four is that uncertainty about period one harvest is eliminated through an 

operational cruise. Areas where there continues to be uncertainty include period two 

harvest yield (and associated net benefits), the ending inventory yields, and soil 

expectation values.

The objective function and constraint coefficients required for the risk models 

(in Chapter 8 , 9 and 10) include net benefit ($ per ha) for each option in the choice 

set, harvest yield (cu. m. per ha) for each option in the choice set, and ending 

inventory (cu. m. per ha.) for each option in the choice set. This chapter presents 

predictions for the above coefficients for each scenario. As noted, for scenario one 

these coefficients are based on climate normals and they are deterministic values. 

The estimation and presentation o f these deterministic values is relatively 

straightforward. However, the coefficients in scenarios 2, 3 and 4 are random 

variables. Thus, there is not a single value for these coefficients. In general, random 

variables are described by distribution type, expected value, and variance. For 

multivariate problems, knowledge of covariance between random variables may also 

be required. If knowledge of distribution types, expected values, variances and 

covariances are known ahead o f time, then random variables can be fully described 

and included in the risk models. However, for this study, the distributions o f random
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variables o f interest for the risk models are not known apriori. They must be 

estimated. This chapter describes how sample distributions of random variables and 

parameters describing these sample distributions (namely expected values, variances, 

and covariances) are estimated. The process of estimating sample distributions for 

these random variables is complicated by the fact that the random variables of interest 

(net benefits, harvest yields, and ending inventory) are often functions of other 

random variables (e.g. the random objective function coefficients are functions o f 

random yield coefficient variables and the random yield coefficient variables are 

functions o f random model parameters and random climate variables). Therefore, the 

problem o f estimating sample distributions for random variables o f interest is 

hierarchical. A common technique for estimating distributions o f outcome variables 

when there are multiple random input variables is Monte Carlo simulation (Saluga 

and Kicki 2002, Gill 2002, Geweke 1996).

The remainder of this chapter is organized as follows. First, a brief overview 

of probability and distribution theory and concepts is provided. This is followed by 

an overview of the theoretical basis for Monte Carlo simulation. The next section 

provides the theoretical context for assumptions about sources o f variance and 

distributions of random variables is provided. This section is followed by a 

description o f the specific Monte Carlo simulation procedure used for this study. 

Finally, the prediction results for net benefits, harvest yields, and ending inventory 

yield for each of the three scenarios are presented.

General statistical concepts

Probability concepts and distribution theory are commonly used for describing 

random variables and for characterizing degrees of uncertainty associated with 

random variables. There are two main types o f random variables: discrete and 

continuous. The random variables employed in this study are, in general,
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1 8continuous . Therefore, the discussion in this section pertains to continuous random 

variables.

For the purposes of this chapter upper case letters are used to identify random 

variables and lower case letters are used to notionally identify values within the 

distribution of a random variable (recognizing that for any single real number “y” 

P(Y=y)=0 for continuous random variables). Continuous random variables are 

represented by their probability density and cumulative distribution functions. The 

probability density function (PDF) of a single random variable is denoted as <f>(x). 

The joint multivariate probability density function is denoted as </>{xv ...xn) . The 

cumulative distribution function (CDF) o f a random variable (X) is denoted as <t>(x) 

where 0 < fb(x) < 1. The relationship between a PDF and CDF is as follows:

<f>(x) = jV (0 <*.
—CO

The expected value (E[x]) o f a continuous single random variable (X) is:

co
E[x\=  Jx(Zl>(x)dx [7.1]

—oo

A value that is a function of random variables is also a random variable. For example 

if  X is a random variable and y = g (x), then Y is a random variable with a specific 

distribution. In some cases the distribution function for X is known (or can be 

assumed with some degree of justification) and the functional form for g (x) is known 

but the expected value, variance and distribution o f Y are not known apriori. In cases 

where Y is the principal variable of interest, we require a method o f estimating the 

expected value, variance and distribution for Y based on what we know about X and 

the functional form g(x).

The expected value of a measure “Y” that is a function of a random variable

(X) is:

18 There is one exception. The random variables for the DSP model in Chapter 10 are discrete. The 
method used for transforming the continuous random variables presented in this chapter into discrete 
random variables is described in Chapter 10.
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CO

E[y]= \  g(x)<f>{x)dx [7.2]
—co

It may be that Y is a function o f a vector of random variables “X” . The expected 

value of a function of “n” random variables is:

E[y]= \ xV. . . \ x g{xv ...xn)</){xv ...xn)dxi dxn [7.3]

Knowledge of Y ’s expected value is important but if  we are interested in knowledge 

of the relative uncertainty (or variance) surrounding Y we also need to know how Y 

is distributed. In cases where the dimension o f g(x) is low and where <j>(xv ..xn) is not 

complex, it may be feasible to analytically determine the distribution and density 

functions for Y ( O(y) and <f>(y)). Wackerly et al. (1996) for example describe the 

“Methods of Distributions Functions” technique for estimating the probability 

distribution of a random variable that is a function of other random variables. In 

summary, this method involves determining O(y) by integration o f (f){xy ..xn) and 

then solving for (j>{y) by differentiating <t>(y).

Monte Carlo simulation

For complex problems, the ability to rely on analytical procedures to 

determine the distribution of a random variable is limited by the complexity o f the 

integrals that are involved. In many cases, an analytical solution is impractical or 

impossible. An alternative to an analytical procedure is Monte Carlo simulation. 

Monte Carlo simulation is designed to simulate the distributions o f random variables 

that are functions of other random variables. In many of these types o f situations a 

simulation procedure (such as Monte Carlo) may be the only option.

The principle behind Monte Carlo simulation is to draw samples of size “n” 

from right hand side (RHS) random variables that have a known distribution and then 

use individual draws from each distribution to calculate a value for the left hand side 

variable. If the random variables on the right hand side are not independent, then the
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draws are conditioned by taking account o f correlations between the right hand side 

random variables. A sample distribution for the left hand side variable is generated. 

From this sample it is possible to estimate the expected value, variance and 

distribution of the dependent variable.

Equation 7.4 shows a case where Y is a function o f the “k” vector of random 

variables (Xi...Xk).

Y = f ( X r ..Xk) [7.4]

I f  the specific distribution for each RHS random variable is known and if  the 

interdependence (or correlation) between the RHS random variables is known it is 

possible to draw a sample o f size “n” from the density functions for each RHS 

random variable. In cases where the random variables are interdependent, draws 

from individual density functions for individual RHS random variables are 

conditional on the draws o f other random variables. This can be accounted for by 

considering correlations between random variables during the sampling phase.

For each sample drawn from the distributions for the Xs, an individual value from the 

distribution of Y is calculated.

yl = f ( * u~ xu) [7.5]

The generated sample o f values for the random variable “Y” can then be used to 

calculate estimators for the expected value of Y and its variance. For example, an 

estimate of the expected value of Y using Monte Carlo simulation is as follows:

E[y] = - ' t f ( X u - x ki) [7.6]
n /=i

Each draw of x; is from its own distribution.

The estimated variance of Y is

VarY = — !—  £  ( / ( x „ ... ) -  E {y}f  [7.7]
(« “  1) /=!

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The generated sample of Y represents the distribution of Y assuming the functional 

form is correct, the assumptions regarding the distributions o f the right hand side 

variables are correct, interdependencies between the random right hand side variables 

are accounted for, and the simulation sample size is sufficiently large that sampling 

bias is acceptable.

Monte Carlo simulation has been employed in many different types of 

applications. Monte Carlo analysis is an accepted methodology for characterizing 

uncertainty in environmental risk assessment (Environmental Protection Agency 

1997). A number o f authors have also recommended Monte-Carlo (or alternatively 

Bayesian) methods for characterizing uncertainties in climate impact studies (New 

and Hulme 2000; Katz 2002; Hobbs 1994; Shackley et al. 1998; Dowlatabadi 1998; 

Wigley and Raper 2001; Jones 2000). However, to our knowledge, no studies have 

applied Monte Carlo methods to investigate the impacts o f climate and climate 

uncertainty in a forest management context.

An overview o f  the statistical context for the Monte Carlo simulations in this study
The goal of the analysis in this Chapter is to estimate expected values,

variances, and covariances for net benefits, harvest yields, and ending inventory 

yields for the various management prescription options under the different scenario 

assumptions. This Chapter provides a bridge between the yield function estimation in 

Chapter 6 and the mathematical programming models presented in Chapters 8 , 9, and 

10. The input data for the models in the next three Chapters is based on the Monte 

Carlo simulation results presented in this Chapter. The Monte Carlo simulation 

results presented in this Chapter depend on the truncated regression model estimation 

results presented in Chapter 6 .

There are two types of random variables that are discussed in this section. 

They are (a) random variables where the distributions are known (or can be directly 

inferred) and (b) random variables that we require for the risk models but for which 

we do not have any prior information. The first type pertains to random variables that 

are on the RHS of the yield prediction equations. The expected values and variances
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for these random variables are provided either from the regression models (in the case 

of the parameters) or are provided from external sources (in the case o f the climate 

variables). The Monte Carlo approach in effect involves taking draws from the 

known distributions (with draws being conditioned by correlations between random 

variables) and generating a sample distribution for the unknown random yield 

variable. In this section we describe the statistical basis underlying our assumptions 

about the known RHS variable distributions. The second type o f random variable 

pertains to variables where we do not know the distribution ahead of time and where 

it is therefore necessary to estimate expected values and variances by generating 

samples using Monte Carlo simulation. This section also provides more detail 

pertaining to what is included in the sample distributions for the unknown random 

variables.

In the sections that follow, the specific methods and equations used to conduct 

the Monte Carlo simulations of the risk model coefficients required in Chapters 8 , 9, 

and 10 are described and the results are presented. Prior to providing the details 

relative to the specific equations used in the Monte Carlo simulations, it is important 

to clarify some of the underlying statistical assumptions and adopted for the purposes 

of simulating distributions of variables o f interest for this study.

For the purposes of describing the underlying statistical assumptions and the 

general random variable estimation approach we will use a general version o f the 

yield models estimated in Chapter 6 . This general yield model is presented as 

follows:

Y = P0+PlX l +P2X 2 
Where
Y = stand yield ^
P = a parameter
X, = some climate variable

X2 = some non-climate variable affecting stand yield (e.g. age)

The equivalent statistical model is as follows:
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Yi -  A) + P \X U + /]7X 2, + C
Where
i = \...n (n= number of observations)
Yt = stand yield for observation i

/?= a parameter estimated by truncated regression [7.9]
XM = some climate variable for observation i

X 2i = some non-climate variable affecting stand yield (e.g. age) for obs. i 

e; = residual error term

The first part o f the Monte Carlo simulation procedure involves the estimation 

o f a sample distribution for the random variable “Y” through simulation. Equation 

7.9 provides the stylized version of the formula used within the simulations. The 

simulation essentially involves taking draws from the known distributions o f RHS 

random variables where the draws are conditioned by known correlations between the 

RHS variables. Before providing a description of the various assumptions 

underlying the simulation of a sample distribution o f “Y” it is useful to describe 

which o f the terms in equation 7.9 are considered random (with known and unknown 

distributions), which are considered fixed, and which are considered irrelevant for 

this study. As noted, one of the goals19 o f the Monte Carlo procedure for this study is 

to simulate the distribution for future values o f Y based on the following 

assumptions: (a) Y ’s future distribution is not known, (b) the betas may be random 

(i.e. they are random for scenarios 3 and 4) and in cases where they are random their 

distributions can be inferred from the truncated regression results, (c) the future value 

of the Xi term (some climate variable) may be random (i.e. they are random for 

scenarios 2, 3, and 4) and in cases where they are random their distributions can be 

inferred by looking at ranges of predictions from various climate model-emission 

scenario combinations (note: the value o f X2 is deterministic (for all scenarios) and is 

known for the specific location of the forest o f interest), and (d) the model error 

variance (et ) is irrelevant. We now sequentially describe the basis and rational for 

each of these assumptions.

19 It is important to keep in mind that the estimated distributions for Y are in turn used to estimate 
distributions for net benefits.
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Y is a random variable whose distribution is not known

Future values of Y depend on future climate. However, there is uncertainty 

about future values o f climate and therefore the future values of climate variables are 

random variables. Since climate variables are random, Y is a random variable. 

However, in addition to the uncertainty due to climate variables there may also be 

uncertainty about the parameters o f the yield functions (particularly if  one adopts a 

Bayesian perspective). Since Y is potentially a function o f multiple uncertain random 

variables, its distribution is not known. Moreover, Y ’s distribution likely cannot be 

analytically derived because o f the complexity of the integrals (as described in a 

previous section). One option (the classical approach) is to infer a distribution of Y 

from the error distribution provided by the regression. However, this approach would 

ignore the fact that the climate variables are also random variables and that future 

expected values will be different than the historical expected values. This approach 

would also ignore changes that might occur in variances in climate variables in 

different time periods. A second option is to assume that the betas are random and 

the data is fixed. This is the Bayesian approach. The problem here, however, is that 

it again ignores, and is unable to capture, uncertainty in the exogenous climate 

variables. Thus, a more general Monte-Carlo simulation approach is employed for 

this study. This more general approach is part Bayesian in that we adopt the Bayesian 

perspective that the betas are random variables and part classical in that we also 

assume that for prediction purposes, some o f the independent variables are random 

variables.

The betas in the yield prediction equation are random variables

The truncated regression reciprocal yield model results presented in Chapter 6  

provides estimates o f the betas, variances for the betas, a covariance matrix, and the 

overall model standard error (sigma). Under the classical / frequentist approach to
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OClestimation, Y is a random variable and beta is fixed . Y ’s probability density 

function is f ( Y \  f t).  The relevant distributions in this case are as follows:

Y is distributedN (flX ,cr2) 

and

e is distributed N(0,cr2)

However, because o f uncertainty in yields we require an approach that assumes that 

there is uncertainty about the betas. It is the uncertainty in the parameters that partly 

results in uncertainty in predictions o f stand yields in the future. Thus, we are 

interested in density functions of the form / ( / ?  | F ) . The Bayesian approach provides 

both the theoretical basis and an approach for obtaining / ( / ?  \ Y ) . The fundamental 

premise o f the Bayesian approach (and the aspect where the Bayesian approach 

deviates from classical frequentist statistics) is that betas are random and the data is 

fixed. Moreover, the Bayesian approach provides a way of obtaining f ( j B\ Y)  by 

combining observed data with prior knowledge o f the distribution of a particular 

parameter. The relationship is defined by Bayes theorem.

/DM
Where
/( /?  | F) is the post sample density o f /3
f ( Y  | /?) is the sampling distribution from which sampling [7.10] 
variances for (5 are obtained
/( /? )  is the prior. For a non-informative prior/( /? )=  1 

m=\f(p)f<j\p)dp
f  (F) is a normalizing constant for a set o f observed values 

(see Gelman et al. 2000 pg. 8 and Griffiths et al. 1993 pg 791)

Equation 7.10 implies that it is possible to make Bayesian type inferences directly 

from the sample variance of the parameter estimates obtained from the truncated

20 Beta is a fixed parameter. Estimates of beta are, however, normally distributed random variables. 
The variances of the betas are based on sample variance. Sample variance is the degree to which 
estimated betas will vary over large numbers o f hypothetical future samples o f similar size as the 
current sample.
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regression estimation (given the fact that we have no prior knowledge of the 

distribution o f the parameters (i.e. /( /? )  = 1)). Thus, for the purposes o f this study, 

our underlying assumption regarding the post sample density functions of RHS 

random variables in equation 7.9 are that the parameters are normally distributed, that 

the expected values are equal to the parameter estimates provided by the regression 

model presented in Chapter 6  (see Tables 6 .6  and 7.2) and that the variances o f the 

parameters can be also be inferred from the sample variances for the estimated betas 

obtained from the regression output (see Tables 6 .6  and 7.2). The betas and sigma for 

the truncated regression model are estimated by maximum likelihood. Thus, the 

expected values o f the beta’s in equation 7.9 are approximated by selecting the betas 

and sigma that maximize the following likelihood function: 

f i y l, y2 , - y t \xl,x2..jct,p0,p x,p2,(72) =

A>- M , -  Pix2t)
(2 ncr ) 2 exp /=i

2(7

[7.11]

An approximation for the variance-covariance matrix for the betas is given by: 

co v(f3) = a 2( X ' X y x [7.12]

One important aspect to note is that the standard deviations obtained from the 

regression output (see Table 7.2) are adjusted to account for the fact that the estimates 

are obtained from a truncated regression model. For the purposes o f estimation, the 

distribution o f Y is truncated at 0. Thus, the likelihood function for the truncated 

model is given by:

f  ( /? I fnon-truncatedJtruncated I J -r̂ Y'\y fTAr N\ i  > v)
Where [7.13]

PN (Y > 0) is the probability that Y is greater than zero 

based on a normal distribution
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The future values o f X ) may be a random variable

A complicating factor for estimation of future expected values and variances 

o f Y in equation 7.9 is that in addition to the betas being random variables, the 

climate variable (Xi) may also be a random variable. For example, if we are 

predicting what the harvest yield will be in the year 2055, we need to acknowledge 

that climatic factors contributing to growth between now and 2055 will be different 

than they were historically. We may, for example, want to incorporate our best guess 

about what the value of the climate variable for the year 2 0 2 0  might be into the 

prediction equation. However, as noted in Chapter 5, we cannot predict with 

certainty what the value o f the climate variable will be in 2020. Therefore this 

variable is a random variable. The source and type of information used to determine 

the distribution for future climate variables was described in Chapter 5. The 

distributions for climate variables are assumed to be uniform. The upper and lower 

limits of the distributions are based on the best and worst case outcomes from a range 

of general circulation model predictions. Thus, in addition to draws being made from 

the distributions for the random Beta’s, draws are also made from the distributions 

from the random climate variables.

The model error variance is not relevant fo r  estimation offuture variances

Equation 7.9 includes an error term. When considered over the entire 

population the assumption regarding the distribution o f the error term is that: 

e~  N {0,cr2) . If the goal of this study was to provide predictions o f future yield of a 

specific individual stand, then model variance (i.e. the variance of “e”) should be 

incorporated into the Monte Carlo simulation as a separate random variable. 

However, for this study we adopt the view that we are not making a yield prediction 

for any single stand. Rather, the prediction is being made for a particular class of 

stand types where this class is actually made up of a number o f different stands. For 

example, the 250 hectares of age class 40 aspen in our forest may actually be made up 

of five separate 50 hectares stands of 40 year old aspen. For the purpose of this study 

we are primarily interested in the average predicted value for this class of stands. 

This has significant implications for the basic model. For obtaining predictions of the
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average yields over a group of stands we use a “conditional mean forecasting” (CMF) 

approach (Griffiths, et al 1993). To save space we will simply provide the relevant 

formulas (see Griffiths et al. 1993 pg. 244 for a discussion of CMF) for the expected 

values and variance of predicted value using a conditional mean forecasting approach 

(i.e. generating a prediction of the mean value o f the dependent variable instead of the 

predicted value for any specific observation). First, for comparison, we provide the 

relevant prediction error equations and prediction error variance for prediction of 

yield for a single stand. The starting equations are:

To ~ Po M o  PlX20 eo
and [7.14]

To — 00 A*10 P l X20 

The prediction error is defined as: PE  = (y0 -  yn) . PE is, in fact, a random variable

with an expected value and a variance. The expected value is: E[y0 -  y0 ] = 0 and the 

prediction error variance is:

V ar( y 0 “ To) = *'o[cov(/?)]*o +cr2 [715]

Equation 7.15 shows that the model error variance (a ) contributes to the prediction 

error variance. Thus, if  we were estimating the yield of a single stand, it would be 

appropriate to include draws from the distribution e~N(0,o2) in simulating the 

distribution o f Y. However, in our case, equation 7.14 is not the correct prediction 

equation. The correct prediction equation (based on conditional mean forecasting) is 

given by:

E[y0 ] = 00+ M o  + Pix 20 [7-16]

In this case, the variance of the prediction of E[y}is given as:

Var{E[y,}) = x \[  cov(A) ]* 0 [7.17]

Note that the only difference between Equations 7.15 and 7.17 is that a 2 is included 

as a separate term in 7.15 and it is not included in equation 7.17. The main result 

here, therefore, is that the error variance is not necessary for assessing the variance of 

the predicted value o f the mean with a conditional mean forecasting approach. The 

only measures o f relevance for the variance o f the prediction are the sample variances 

of the estimators.
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The above arguments are provided to provide a rationale for not including the 

error as an additional random variable in the Monte Carlo simulation. The question 

may arise: if  one can calculate the variance o f the prediction o f y from equation 7.17 

-  why bother with Monte Carlo simulation? However, it is important to keep in mind 

that for our models, we also have to deal with uncertainty in the exogenous variables. 

It is because o f the fact that for some scenarios both the exogenous variables and the 

model parameters are random variables that we rely on Monte Carlo simulation to 

obtain sample distributions for Y from which estimates o f expected values, variances 

and covariances are obtained.

Setting up the prediction models

In the case o f scenario one the estimates o f net benefits, harvest yield and 

ending inventory values are deterministic. For scenarios two, three, and four these 

coefficients are random variables. However, whether the coefficients are 

deterministic or probabilistic, we require prediction models in order to estimate future 

values. Therefore, the initial steps are to identify the structure o f  the problem, 

provide the specification of the prediction equations, identify which variables in the 

problem are random and which are constant under each scenario, identify which 

random variables have a known distribution, and identify where Monte Carlo 

simulation is required in order to estimate a distribution for a particular random 

variable. The discussion in the previous section addressed these issues for a general 

model. The discussion in this section revisits these questions in the context of the 

specific equations required for estimating the variables required for the risk models in 

Chapters 8 , 9 and 10. In order to address these issues it is useful to start by providing 

a brief overview of the optimization problem. More details about the problem context 

are provided in Chapter 4.

As described in Chapter 4, the hypothetical starting forest for this study is a 

1000 ha stand of pure aspen forest near Calling Lake, Alberta. The forest is 

comprised of two age classes. Two hundred and fifty hectares is in the form of even- 

age, 40 year old aspen. This stand type is referred to as initial age class 1 (IAC1). 

Seven hundred and fifty hectares is in the form of even-age 80 year old aspen. The
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80-year old forest is referred to as initial age class 2 (IAC2). The planning period and 

prescription options were also described in Chapter four (see Tables 4.1 and 4.2). 

The planning horizon is a 60-year period starting in the year 2010 and ending in 2070. 

The 60 year period is divided into two 30 year sub-periods with period 1 spanning the 

years 2010-2039 and period 2 spanning the years 2040 -  2070. The three 

management options available to the logger are: (a) leave the stand uncut 

(prescription 1), (b) cut in period one (prescription 2 ), (c) cut in period two 

(prescription 3). Thus, there are six possible values for each coefficient.

The nomenclature for identification of net benefit coefficients is provided as 

follows:

NBtJ = Net Benefit for presciption i and initial age class j 

i = 1 for prescription one (no cut),
2  for prescription 2  (cut in period 1),
3 for prescription 3 (cut in period 2)

j = 1 for initial age class 1 (i.e. 40 year old stand at time=0)
2  for initial age class 2  (i.e. 80 year old stand at time=0 ).

A similar nomenclature is used to identify the harvest yield and ending inventory 

coefficients.

The objective functions in the risk models in Chapter 8 , 9 and 10 require an 

estimate o f the net benefit o f forest management for each initial age class (IAC) and 

management prescription under each scenario. A constant price of $ 2.50 per cu. m. 

is assumed and the discount rate is fixed at 4 % for this study. The net benefit 

coefficient prediction equations for all six age-prescriptions options are defined as 

follows:

1. Objective function value for IAC1 and prescription 1:

NB (FW ,)(2-5) [ {Vsev){2.5)
“ (1.04)60 (e“ -1)(1.04)60

Where "t" in this and the remaining equations refers to optimal rotation 
[7.18]

This is the net benefit associated with leaving the 40-year old stand uncut for the 

entire planning period. NBn incorporates the present value o f the ending inventory 

(where V eii.i is the volume o f ending inventory) and the present value o f the soil
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expectation value21 (where V sev is the volume of stands at optimal rotation) at the 

end o f the planning period. The two RHS yield coefficients that are incorporated in
99this coefficient are random variables for scenarios 2, 3 and 4.

2. Objective function formula for IAC2 and prescription 1:

N B a J ^ t  2  3 + y „ X 2.5)
12 (1.04) (e —1)(1.04)

This is the net benefit associated with leaving the 80-year old stand uncut for the 

entire planning period. N B 12 includes the value of the ending inventory for the 80- 

year old stand (V eii .2 in the year 2070 discounted to present value) plus the present 

value o f soil expectation value. The two RHS yield coefficients are random variables 

for scenarios 2, 3 and 4.

3. Objective function formula for IAC1 and prescription 2:

21 (1.04) (1.04) (e —1)(1.04)

This formula calculates the net benefit o f harvesting the 40-year old stand in period 

one. NB21 includes the present value o f the harvest in period one (cut in 2025) 

(where V 21 is the harvest volume), the present value of the ending inventory (i.e. the 

aspen inventory that accumulates after harvest) (where V Ei2.o is the volume of ending 

inventory), and the present value o f soil expectation value. The RHS yield 

coefficients are random variables for scenarios 2, 3 and 4.

4. Objective function formula for IAC2 and prescription 2:

K 2K23) + (VEn^ + (^ ) ( 2 ^  
22 (1.04) (1.04) (e“ —1)(1.04)

21 Note that the SEV is not constrained by flow and inventory constraints for the purposes o f this 
study.
22 The term coefficient begins to be used here. This term is used in the context o f these random 
variables because these terms are coefficients for the mathematical programming models presented in 
Chapters 8, 9 and 10. These terms are, however, in reality variables in the context o f the analysis 
presented in this chapter. Depending on the scenario, the net benefit and yield terms may be random 
variables or fixed.
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This formula calculates the net benefit o f harvesting the 80-year old stand in period 

one. NB22 includes the present value of the harvest of the IAC2 stand in period one 

(cut in 2025), the present value of inventory that accumulates after harvest, and the 

present value o f soil expectation value.

5. Objective function formula for IAC1 and prescription 3:

m ,i = W | 4 J W 1  p , 22]
31 (1.04) (e“ - 1)(1.04)

This formula calculates the net benefit o f harvesting the 40-year old stand (IAC1) in 

period two (harvested in the year 2055). NB31 includes the present value of the 

harvest revenue in period two plus the present value of the soil expectation value. In 

this case there is no ending inventory value because it is assumed that the stand is cut 

in the year 2055. This is only 15 years before the end of the planning period. This is 

an insufficient time for developing merchantable timber on the site.

6 . Objective function formula for IAC2 and prescription 3:

( ^ > ( 2 .5 )
32 (1.04) (eu —1)(1.04)

This formula calculates the net benefits of harvesting the 80-year old stand (IAC2) in 

period two. NB32 includes the present value of the harvest revenue in period two plus 

the present value of the soil expectation value. Again there is no ending inventory for 

this prescription.

As noted, each o f the above objective function coefficients is a constant for 

scenario one and a random variable for scenarios two, three and four. The 

distributions for the coefficients are not known and therefore they are estimated by 

Monte Carlo simulation. However, before these simulations can take place, 

knowledge of the distributions of the random yield variables is required. Each of the 

yield variables included within the objective function equations shown above is 

described as follows:
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1. Equation for V21

V2l = (fi, + /?,) + (/?2 + A  )1800 + (A  + p 5 )19.8 + (/?6 + A  )34 

+ ( A  + A> )*9 + (Ao + A 1 )Antemp1(ms + (/?12 + fin )Anprecmo

+ ( A 4 +  & 5)GsPrec2020s +  A e 0 -0 18

V21 is the harvest yield for IAC 1 and prescription 2. This is a 5 5-year old stand 

harvested in 2025. For scenario 1, climate normal data are used and all coefficients 

and variables are constants. For scenario 2, climate variables are uncertain (i.e. the 

climate variables in the yield equation are random variables) but the values of yield 

parameters are known (yield parameter values are constants). 

The distribution o f climate variables is uniform with a lower and upper limit based on 

high and low projections for the 2020s. For scenario 3, the climate variables and the 

beta’s are random variables. As previously noted, for scenario 4, V21 is a fixed value. 

Uncertainty about first period harvest yields under scenario 4 is eliminated through 

measurement.

2. Equation for V22

V22 is the harvest yields for IAC 2 and prescription 2. This is a 95-year old stand 

harvested in 2025 (estimated with the 2020 climate variables for scenarios 2,3, and 4). 

For scenario 2, the climate variables are random. For scenario 3, the climate 

variables and the betas are random. For scenario 4, V22 is a constant.

3. Equation for V31

V31 is the harvest yields for IAC 1 and prescription 3. This is an 85-year old stand 

harvested in 2055 (estimated with the 2020/2050 climate variables for scenarios 2,3

p 22 =  ( A ) + A ) + ( A  +  A  ) 5 ° 0 + ( A + A  )19 -8 + ( A  +  A  ) 3 4
+ ( A  + A ) 19 + ( A o  + A 1 )Antemp + (fil2+ fin )Anprec 
+(Am + fil5)Gsprec + /?16 0.0105

[7.25]

Vn = ( A > + A )  + ( A  + A)700 + (P4 + Ps)19.8 + (P6 + P7)34

+ ( A  +  A  ) ! 9  +  (A o  +  A 1 )Antemp + (/?12 + /?13 )Anprec 
+(Pl4+ P 5)Gsprec + Pl6 0.012

[7.26]
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and 4). For scenario 2, the climate variables are random. For scenarios 3 and 4 both 

the climate variables and the betas are random.

4. Equation for V32

A  =  ( A  +  A ) + ( A  + A )5 0 0 + (A + A )i9 -8 + (A  + A  )34 
+ ( A  +  A ) 19 +  ( A o  + /3n)Antemp + (j3n + /3n )Anprec 
+ (/? 14 + )3{S)Gsprec + /?l6 0.008

[7.27]

V32 is the harvest yield for IAC 2 and prescription 3. This is a 125-year old stand 

harvested in 2055 (estimated with the 2020/2050 climate variables). For scenario 2 

the climate variables are random. For scenarios 3 and 4 both the climate variables 

and the betas are random.

5. Equation for Veii.i

Veii.i is the ending inventory yield for IAC 1 and prescription 1. This is a 100-year- 

old stand in 2070 (estimated with the 2020/2050 climate variables). For scenario 2 

the climate variables are random. For scenarios 3 and 4 both the climate variables 

and the betas are random.

6 . Equation for VEi 1.2

Veii.2 is the ending inventory yields for IAC 2 and prescription 1. This is a 140-year- 

old stand in 2070 (estimated with the 2020/2050 climate variables). For scenario 2, 

the climate variables are random. For scenarios 3 and 4 both the climate variables 

and the yield model parameters are random.

A/1.1 = (A> + A) + (A + A)500+ ( A +A )i 9-8+(A + A )34
+ ( A  +  A  A 9 +  (A o  +  A 1 )Antemp + (p n + )Anprec
+(A 4 + PXi)Gsprec + As 0.01

[7.28]

A / 1.2 = ( A + A )  +  ( A  +  A 3)500 +  (A  +  A ) 1 9 . 8  +  ( A  +  A /)34 

+ ( A 8 + A )!9  + ( A o  + A 1 )Antemp + ( /?12 + A s  )Anprec 

+ (  Ah + A s  )Gsprec + A 6 O-0 0 7

[7.29]
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7. Equation for VEi2.o

Ve,  2.0 = ( A , + A )  +  ( A  +  A ) 2 2 5 0  +  ( A  +  A  )19 .8  +  ( A  +  £ ) 3 4
+ (/? 8 + /?9)19 + (/?10 + Pn )Antemp + (Pn + fin )Anprec [7.30]

+(A 4 + P\5)Gsprec + /?16 0.022

V ei2 .o is the ending inventory yields for IACs 1 or 2 and prescription 2 . This is a 4 5 -  

year-old stand in 2 0 7 0  (estimated with the 2 0 5 0  climate variables). For scenario 2 , 

the climate variables are random. For scenarios 3 and 4 both climate variables and 

yield model parameters are random.

8 . Equation for Veb ,o

VEi3.o: This is a 15-year-old stand in 2070. It is assumed that merchantable volume is 

zero.

9 . Equation for V sev

Vsew Yield at optimum economic rotation (estimated with the 2080 climate 

variables). Optimal economic rotation is based on the Faustmann equation. Stand 

age varies from draw to draw within the sample.

The distributions of the yield coefficients defined above are not known for 

scenarios 2, 3 and 4. A sample distribution is estimated for each variable with Monte 

Carlo simulation.

The starting values for the constants required for the yield prediction and net 

benefit prediction models are shown in Table 7.1. The climate normal data for the 

scenario one predictions is also provided in Table 7.1. The estimations of the 

coefficients under scenario 2  require distribution information for the climate 

variables. This is shown in Table 7.2. For scenarios 3 and 4 the coefficient 

predictions require baseline information about the distributions o f the yield model 

parameters and the climate variables. This information is also shown in Table 7.2.

The distributions for the yield model parameters (shown in Table 7.2) are 

based on the estimation results from the truncated reciprocal regression model 

reported in Chapter 6 . Each parameter is assumed to have a normal distribution with 

an expected value equal to the value of the estimator and a standard deviation equal to
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the standard error from the regression output. The climate variables are assumed to 

have a uniform distribution. The reason for a uniform distribution is that according to 

the IPCC (2000) all GCM projections are equally likely and therefore it is not 

possible to assign different probabilities to different GCM forecasts. The source of 

the climate data and methods used to determine their distributions are described in 

Chapter 5. Climate forecast data for the variables ANTEP, ANPREC, and GSPREC 

are generated for the 2020’s, 2050’s and 2080’s for the Calling Lake study location.

Estimation method for scenario one coefficient values

The estimation method for scenario one is straightforward. First, the 

estimators for the yield model parameters, the site data and the climate normal data 

are incorporated into equations 7.24 to 7.30 to estimate harvest yield and ending 

inventory. Then climate normal data is used to estimate the present value of soil 

expectation value. Finally, the estimated yield information and SEV results are 

incorporated into equations 7.18 to 7.23 to estimate deterministic net benefit values 

for each o f the six combinations o f IAC and prescription.

Monte Carlo simulation method for values in scenarios two, three, and four

Monte Carlo simulation o f the distributions o f the random yield variables and 

random net benefit coefficient values is conducted in this study using @RISK 

(Palisade Corporation 2002). This software conducts Monte Carlo simulation for 

hierarchical problems (such as this study) in an integrated way. For example, @RISK 

simultaneously generates distributions for yield variables and net benefit coefficients 

in one simulation run. The program accounts for interdependencies between random 

variables in the yield equations through the use o f a correlation matrix. The sampling
23method employed is Latin Hypercube sampling . The -selected sample size for the 

simulations is 5,000. The procedure for conducting the simulations is as follows.

23 The approach with Latin Hypercube is to first stratify the input probability distribution into a set of 
intervals. A sample is then created by sampling from each intervals. A more detailed explanation of 
Latin Hypercube sampling is provided in Palisade Corporation (2002).
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1. The first step involves setting up the simulation model. The relevant 

equations are defined and entered into an @RISK Monte Carlo simulation model 

spreadsheet (see equations defined above) and constant values and the known 

distributions for random variables are entered into the model.

2. Step two is to estimate a distribution for the Soil Expectation Value (SEV) 

random variable. This is done using @RISK. The calculation of SEV follows the 

usual Faustmann formulation:

[7-31]
e - 1

The optimal rotation occurs at the time “t” where SEVt is maximized. Eight separate 

samples o f SEV for ages 40, 50, 60, 70, 80, 90, 100 and 110 are created. For each 

observation the SEV is calculated for each age and the maximum SEV is selected and 

copied to a separate column. This results in a 5000 entry long vector o f SEV values. 

This sample is used to fit a distribution using the “curve fit” function within @RISK. 

The resulting distribution is entered into cell L3. The distribution of SEV is Beta 

General (2.41, 8.19, -2.01, 798.7). Draws are made from this distribution for 

equations 7.18 and 7.23.

3. The third step is to set up a correlation matrix to take account o f 

interdependencies between random variables in the yield equations. @RISK accounts 

for interdependent random variables with a correlation matrix that is incorporated into 

the Monte Carlo model. Correlations between the parameters are derived from the 

covariance matrix generated by LIMDEP-Version 7.0 (Econometric Software Inc. 

1995). The correlation matrix was expanded to account for correlations between 

climate variables. The correlations between the climate variables were determined by 

creating sample distributions for each climate variable. Then, EXCEL was used to 

determine the correlation between the observations in the sample. An underlying 

assumption is that historical correlations between climate variables will continue into 

the future.
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4. The fourth step is to truncate the distributions at zero (to ensure non-negative 

yields). The adjustment factor is a component of the truncated estimation model 

(Greene 1997 pg.954). The adjustment factor is as follows:

E \V i | Tj > 0] = [3'xi +<7- ^ (°
1-<D [(0 - 0 X , ) l < T ]

Where:
Vi is the adjusted yield for observation i (truncated at zero),

J3'xi is the unadjusted predicted yield for observation i, 

cr is model standard error,

<(>[(() -  /3 xi) / cr] is a probability density function value for observation i,

<t>[(0 -  /?* ,)/ cr] is a cumulative distribution function value for observation i, and 

< f > { Q - 0 x t ) I < j  ~ jV(0,1)
[7.32]

This adjustment factor is incorporated into the simulation model. The resulting 

distributions are truncated at zero.

5. The fifth step is to conduct a Monte Carlo simulation (using @RISK) to 

generate samples from estimated probability distributions for each variable of interest 

(V21, V22, V31, V32, V EII.I, VEI1.2, VEI2.0, VEI3.0, VSEV, NB11, NB12, NB21, 

NB22, NB31, NB32) under each scenario (scenarios 2, 3, and 4). As previously 

described Monte Carlo simulation involves drawing samples for right hand side 

(RHS) variables with known distributions to generate a sample for left hand side 

(LHS) yield variables. For this study, the @RISK software simultaneously 

determines the sample o f the yield random variables and the net benefit random 

variables by: (a) drawing from the known yield parameter and climate distributions 

(conditioned by the correlation matrix), (b) incorporating each draw into the relevant 

yield equation, (c) generating a sample value for all yield coefficients, (d) adjusting 

the sample of yield estimates to ensure it is truncated at zero, and (e) incorporating 

the sample yield estimate into the relevant net benefit equation to generate a sample 

for net benefits. A total of 5000 samples are obtained. Thus, a sample of size n=5000 

for each yield coefficient and each net benefit coefficient is obtained.
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6. The sixth step is to utilize the generated sample distributions to obtain 

estimates o f expected values, variances, and covariances for each coefficient 

under each scenario.

Simulation procedure fo r  values in scenario two

As noted scenario two includes the climate future data in the coefficient 

estimations and it considers them to be random variables. As a result, all yield 

estimates and net benefits are also random variables. The estimation, therefore, is 

done using the Monte Carlo simulation procedure described above. The only 

variables that are random at the start are climate variables. Samples are drawn from 

the known distributions for the climate variables. A distribution for each of the 

dependent variables in equations 7.18 to 7.30 is estimated.

Simulation procedure fo r  values in scenario three

Scenario three includes the climate future data in the coefficient estimations 

plus it considers both the climate variables and the yield model parameters to be 

random variables. Therefore, the Monte Carlo simulation model is run with the 

assumption that climate change occurs and that climate variables and yield 

parameters are uncertain. The distributions o f both the future climate variables and 

the yield model parameters are known ahead o f time. These assumed distributions 

are shown in table 7.2. The Monte Carlo simulation is set up to make draws from the 

distributions of both the climate variables and the yield parameter distributions in 

deriving a sample distribution for all yield and net benefit coefficients.

Simulation procedure fo r  values in scenario four

Scenario four includes the climate future data in coefficient estimations plus it 

considers both the climate variables and the yield model parameters to be random 

variables. However, under scenario four, the first period harvest yield (V21 and V22 ) 

are known with certainty. The Monte Carlo simulations are run assuming all 

parameters used for prediction o f first period harvests are deterministic. The 

parameters used for prediction of the other yield and net benefit coefficients remain
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uncertain. The Monte Carlo simulation produces distributions for all coefficients

other than the first period harvest yields.

Expected values and variances

Equations 7.18 to 7.30 are used within the Monte Carlo simulation models to 

generate samples for each variable for scenarios two, three and four. The samples 

(e.g. 5000 estimates o f NBn) are in turn utilized to determine expected values and 

variances. Also, the estimated samples are combined in order to estimate covariances 

between the random variables (within EXCEL). This leads to the question: What is 

the theoretical basis for estimation of expected values, variances and covariances? In 

order to illustrate the theoretical basis for estimation of expected value and variance 

for our random variables we provide the relevant rules for determining expected value 

and variance for the random variable NB21.

The deterministic version of equation NB21 is repeated here for convenience.

(F2I)(2.5) | (VEI2,)(2.5) | (Vsev)(2.5)
[7.33]

(1.04)15 (1.04)60 (e“ -1)(1.04)60

As noted, for scenarios two, three, and four the yield coefficients are random 

variables and therefore NB21 is a random variable with some expected value and 

variance. Applying the rule for determining the expected value o f the weighted sum 

of random variables (Griffiths et al. 1993) the expected value version o f equation

[7.33] is as follows:

(Vsev)(2.5)E[NB2l] = EE \ V 2i)(2.5)
+ E > m ,)(2 -5 )~ + E

(1.04)15 (1.04)60 (e " -1X1.04) 60 [7.34]

Since the price and discount factor are constants they can be factored from the RHS 

expected values to provide:

(2.5)
W sevI [7-35]£[^ ' ] W £[^ 1 + ̂ £[F''“ ]+ (,''-.)(1.04)»

Thus, with information on the expected values of the yield variables on the RHS it is 

possible to estimate the expected value o f NB21.
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Another random variable parameter o f interest is variance. The variance of 

the random variable NB21 can be shown by applying the rule for the variance of a 

weighted sum of random variables (Griffiths et al. 1993).

Var(NB2l) = Var
(Vu )(2.5) | (Fe/20)(2.5) | (Vsev)(2.5)
(1.04)' (1.04) 60 ( / - 1 ) ( 1 .04)60 [7.36]

Cov{V2l,VE!X0)

Var(V2l) +

(e“ -1)(1.04)

Var(yE I 2 q ) +
(2.5) \ 2

(e“ 1)(1 -04)60 Var(VSEV)

(e —1)(1 -04)

Cov(V2l,VSEy)

Cov(VEIZ0 5 Vsev )

Thus, the variance o f NB21 depends on the variances and covariances of V21, 

VEI2.0, and VSEV. The expected value, variance and covariance equations for the 

remaining random variable coefficients will not be repeated here. The main point 

here is to show the relationship between the Monte Carlo simulation results and 

general rules for determining expected values and variances o f random variables that 

are functions o f other random variables using a coefficient that is specific to this 

study.

Results

This section reports on the prediction results. There are three management 

prescriptions (no cut, cut in period 1, cut in period 2) and two starting forest types 

(initial age class (IAC1) 40 year old aspen stands, and initial age class (IAC2) 80 year 

old aspen stands). Thus, there are six choices in the choice set for each coefficient 

and for each scenario. The six choices are:

1. IAC 1 (40 yrs) -  no cut

2. IAC2 (80 yrs) -  no cut
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3. IAC1 (40 yrs) -  period 1 cut (age at cut = 55)

4. IAC2 (80 yrs) -  period 1 cut (age at cut = 95)

5. IAC1 (40 yrs) -  period 2 cut (age at cut = 85)

6. IAC2 (80 yrs) -  period 2 cut (age at cut = 125)

Scenario 1

Scenario 1 is the baseline scenario. Predictions of objective function and 

constraint coefficients are based on climate normals. The prediction results under this 

baseline scenario are provided in Table 7.3. The highest present value net benefit 

occurs when the IAC2 stand is harvested in period one (prescription two). The IAC2 

stand is 95 years when harvested in period one. Similarly, economic return from the 

IAC1-stand is highest when the stand is harvested at age 55 (harvested in period one). 

Waiting until period two to harvest these stands reduces the present value o f returns 

significantly. Harvest yields are highest when the stands are harvested in period two. 

In period two the harvest age for the IAC1 stand is 85 and the harvest age for the 

IAC2 stand is 125 years. As would be expected, ending inventory values are highest 

under prescription 1 (no cut).

Scenario 2

Tables 7.4 and 7.5 provide the scenario 2 expected values, variances and 

covariances for net benefits, harvest yields, and ending inventory for each age class- 

prescription combination. In general, the pattern o f expected values for net benefits, 

harvest yield and ending inventory are similar to what was shown for scenario 1. 

However, it should be noted that the coefficient values for this scenario are expected 

values only and they may not be the values that actually occur. The actual returns are 

not known apriori. The net benefits with climate change may be lower or higher than 

the values reported in Table 7.3 (without climate change). The degree o f uncertainty 

in the random variables under this scenario is shown in the estimated covariance 

matrix (Table 7.5). The variances of the net benefit results for prescription two tend 

to be the highest. Thus, although the returns under prescription two are the highest, 

the degree of uncertainty in these returns is also higher than prescription one or three.
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Scenario 3

The expected values for net benefits, harvest yields and ending inventory for 

scenario 3 are shown in Table 7.6. Here again, expected values for net benefits are 

highest for the period one harvest. Harvest yields are highest for the period two 

harvest. Ending inventory values are highest for the no cut option. Coefficient 

variances and covariances under scenario 3 are shown in Table 7.7. Including yield 

parameter variance results in a very high variance for the period one harvest net 

benefit. The variance in net benefits associated with the period one harvest is 

significantly higher than the variances in net benefits for the period two harvests or 

the no cut option. There are two reasons for this result. First, the period one net 

benefit includes harvest revenues, soil expectation value and the present value o f the 

ending inventory. Each o f these values is uncertain and the variances from these 

three sources of variance is additive (see equation 7.36). The second reason is due to 

discounting. As will be discussed in later chapters, the reason why the net benefits 

are lower in future periods compared to the current period is that all the values in the 

sample distributions are discounted. This means that future distributions are 

discounted at 4 %. This tends to reduce both the expected values and variances. A 

more in depth discussion of this issue is provided in Chapter 8.

Scenario 4

As noted in the discussion in the previous section, when both climate 

uncertainty and yield parameter uncertainty are considered as sources of uncertainty, 

the variances of net benefits in period one harvest are very high compared to 

variances in net benefits for period two harvests or the no cut option. In some ways, 

the period one harvest can be interpreted as the current harvest (or at least the short 

term harvest). If this is the case, then the forest manager may not be satisfied with the 

high variance o f benefits of the current harvest compared to variance in future 

harvest. As noted previously, this may motivate the manager to try and reduce or 

eliminate this variability by obtaining information about current inventory that results 

in less uncertainty about period one-harvest benefits. Thus, the set o f assumptions
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for this scenario are the same as scenario three except that for this scenario we 

assume that the uncertainty of harvest yield for the period one cut is eliminated.

The results for the expected value of net benefits for scenario four are shown 

in Figure 7.8. Again, the expected value of net benefits are highest for prescription 2 

(cut in period one), the expected value of harvest yields are highest for prescription 3 

(cut in period two), and the expected value o f ending inventory is highest for 

prescription 1 (no cut). The interesting result for this scenario pertains to the pattern 

of the variances for the various prescriptions. The variances for each coefficient for 

scenario four are provided in Table 7.9. The trend over time o f the variance for net 

benefits is unique under scenario four. In this case, the variance o f the net benefit 

coefficient is lowest for the period one harvest, then it increases in period two, then it 

decreases for the no cut option. Flowever, the variance of net benefits for the no cut 

option is still higher than for the period one cut option.

Comparison o f  the results across the scenarios

Figure 7.1 compares the value of net benefits for scenario one and the 

expected values of net benefits for scenarios two, three and four. In terms o f benefit 

measures only (not accounting for costs of uncertainty and/or benefits of 

diversification) climate change has a positive effect on the coefficient for net benefits 

per hectare for each prescription-IAC combination. The expected values o f the net 

benefits for scenarios that include future climate change (scenarios two, three and 

four) values are higher than for scenario one (where no climate change occurs).
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Figure 7.2 compares the variances for net benefits across scenarios two, three 

and four. The coefficients where different scenario assumptions have the most 

dramatic affect is for the period one harvest (prescription two) net benefits. Here, the 

variances for scenario four are the lowest, the variances for scenario two are in the 

middle, and the variances for scenario three are very high. Figure 7.2 also shows that 

for the period two cut and no cut prescriptions, the variances for net benefits for 

scenarios three and four are significantly higher than for scenario two. This begins to 

suggest that the contribution of variability in climate variables is low compared to 

variability contributed by uncertainty in yield parameters.

Figure 7.3 compares the value o f harvest yield for scenario one and the 

expected values of harvest yield for scenarios two, three and four. Here again it can 

be seen that expected values under future climate (scenarios two, three and four) are 

higher than the harvest yield value under a normal climate. This suggests that for this 

study site, climate change may increase stand yield (although it is important to note 

that the values for future climate are “expected values” and that in reality these values 

are random variables with a positive probability that future yields may be less than 

current yields). Figure 7.3 also shows that the relative increase in harvest yield 

between period 1 and 2 (prescription 2 and 3) is higher for the IAC1 stand (HY21 

HY31) than the IAC2 stand (HY22 HY32).

Figure 7.4 shows the variances o f harvest yield for each scenario / prescription 

combination. For HY21 and HY22 we can see that the variance of harvest yield for 

scenario four is zero. A comparison o f scenarios two and three shows that the 

inclusion of uncertainty in yield parameters results in a significant increase in 

variances of harvest yield.

Discussion

An issue to note for the analysis in this chapter pertains to scale. Uncertainty 

and variance are in some respects dependent on scale o f analysis (Katz 2002). For 

example, the variance o f a small number o f 60 year-old stands o f aspen will tend to 

be greater than the variance of a large sample o f 60 year old aspen stands within a 

forest level analysis. This has potentially important implications for this study. First,
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although our hypothetical forest is relatively small and it is specific to a particular 

location — we are nonetheless looking at a forest level analysis for this study. As 

previously noted, our yield model is predicting a conditional mean yield value (a 

mean merchantable yield over a range of sites in a forest). Therefore, the variance o f 

the error term is not required as a source of prediction variance (Griffiths 1993 pg. 

250). If we were predicting the expected value and variance for a specific stand 

within the forest, then the error variance would be relevant as a factor that contributes 

to the overall prediction variance. Therefore, one implication of conducting a forest 

level analysis is that we are not required to incorporate the error variance of the 

prediction model as a source o f prediction error.

A second scale related issue is that our future climate predictions are based on 

average predictions over a large area (Northeastern Alberta). Therefore, the variances 

o f our climate variables are based on a much higher level o f aggregation than our 

prediction o f yield parameter variances. The main implication is that the variances o f 

the climate variables are based on a different level of spatial aggregation. A higher 

level o f aggregation tends to reduce sample variances. Thus, the variances we are 

employing in this study will likely underestimate the true variance in predicted 

climate futures at the spatial level that pertains to this study. Other than arbitrarily 

adjusting these variances, there is very little else that can be done to remedy this scale 

effect. It may be possible to obtain climate futures at higher levels o f spatial 

resolution (for example using regional climate models). However, it is not possible to 

generate a range o f estimates using regional climate models. This can only be done 

using the higher-level general circulation models. Therefore, the method that we use 

to assess variability in future climate predictions can only be applied at high levels o f 

aggregation. Thus, for the purposes of this study we adopt the variances of future 

climate variables as given. These variances should, however, be considered to be 

lower bound estimates o f the true variance in climate variables.

Another issue related to the determination of climate variances pertains to the 

source of information we have used for determining the distributions for our climate 

variables. As noted, predictions of future distributions o f climate variables are based 

on obtaining a range o f future values for climate variables from different

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



combinations of general circulation models and SRES scenarios. At this point in 

time, there are no alternatives relative to obtaining measures o f uncertainty in future 

climate. Thus, the uncertainty in future climate variables is a function o f the degree 

to which the models embody different assumptions about atmospheric physics or 

employ different approaches for modeling climate response to GHG concentrations. 

However, it should also be recognized that it is possible that over time models tend to 

converge. The reason is that there is a tendency for modelers to discuss and debate 

areas where models deviate from each other. As a result o f this scientific dialogue -  

models begin to conform with each other over time. The implication is that 

uncertainty (as measured by model disagreement) may decrease. In some respects, 

the process o f model refinement may reduce uncertainty because this process may be 

a reflection of modelers having a better understanding of how climate will respond to 

changes in atmospheric chemistry. At the same time we need to keep in mind that it 

is possible that there are forces that are not included in models that may affect future 

climate. To the extent that these unknown factors are not considered or included, it is 

possible that measures of real uncertainty of future climate may not be decreasing. 

As a result, it is possible that our estimates o f uncertainty in future climate variables 

are underestimated. Here again, the implications may be that our estimates of 

uncertainty in the future value of climate variables should be viewed as lower bound 

estimates.

Another issue to note relative to our predictions concerns the range of the 

temperature variables in the database used for the yield prediction model. As noted, 

the source of data for the yield function estimation results presented in this section is 

the CIPHA database. The CIPHA project includes plots ranging from southern 

Manitoba to the Yukon (see Figure 5.2). A comparison o f the range o f average 

annual temperatures for plots in the CIPHA data base with the predicted ranges o f 

future average annual temperatures shows that the maximum average annual 

temperature for plots in the CIPHA database is lower than the maximum annual 

temperatures predicted in the years 2050 and 2080. Thus, our yield model is being 

used to predict future yields at temperature values that are outside the range of the 

data from which the yield model was estimated. This might be a significant concern
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if  future predicted temperatures were outside the range o f aspen in North America. 

However, aspen in North America has a wide range. It occurs from Virginia to 

Alaska. Thus aspen occurs on sites that are well within the range of future predicted 

temperatures predicted for the Calling Lake site.

As noted there are potential sources of uncertainty that are not included in the 

variance estimates presented in this chapter. One possible source of uncertainty is 

price uncertainty. Future studies should look into sources o f data on price uncertainty 

and ways of modeling this uncertainty. Another source o f uncertainty is catastrophic 

mortality. Major system failures could occur if  there are non-linearities, non

convexities, and thresholds within growth, yield and survival functions that are 

breached as a result o f change climate. Possible causes o f major ecosystem failure 

(however unlikely) include major infestation by exotic pests or by pest that expanded 

their range, massive drought, extreme wildfire conditions, extreme weather, or 

dieback due to changed climatic conditions exceeding physiological tolerances. 

Risks due to these types o f catastrophic impacts are not incorporated into the 

biophysical model in this study. The reason for excluding these effects was that our 

study site is not in an area close to a transition zone and because we are only 

considering impacts up to the year 2070. Widespread mortality and dieback is 

therefore less likely. A third possible source o f uncertainty is growth uncertainty. 

This study estimates a stand yield function and uses this function to provide a 

prediction o f the distribution of stand yields in future time periods. As a result, our 

estimates of the distributions o f the parameters o f the yield curve are invariant with 

respect to age and time. As we have noted, this results in a model where the only 

source of variance that changes with respect to time is the variance in the climate 

variables. Variances in the yield model parameters are invariant to time. If, however, 

we were able to estimate a growth function, then it is possible that variances in yield 

parameters would be a function o f time and may actually increase with respect to 

prediction time. This may have resulted in a far higher rate of change in yield 

variances with respect to prediction period. This is an area that merits further 

investigation.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



As previously noted, climate change has two potentially important 

implications for timber management. First, there are implications for growth rates 

and stand yields (productivity effects). Second, climate change introduces additional 

sources o f uncertainty about future returns from timber production (uncertainty 

effects). Both of these effects have the potential to influence the economic benefits of 

timber production, choices regarding harvest rates and timing, timber investment, and 

the social opportunity costs of forest management policies (e.g. sustained yield type 

policies such as ending inventory constraints and even flow constraints). The next 

three chapters present the results o f three separate models that are designed to assess 

the consequences of productivity change and uncertainty on total benefits and optimal 

decisions for our hypothetical forest management case study situation. The objective 

function and constraint coefficients and the covariance matrices included in the risk 

models in the next three chapters rely on the estimates o f expected values, variances 

and covariances provided in this chapter.
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Figure 7.1 Expected value of net benefits for each scenario.
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- Figure 7,3 Expected value of harvest yields for each scenario.
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Figure 7.4 Variances of harvest yield for each scenario.
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Table 7.1 Values o f constants in yield predictions: Calling Lake study site

Variable Value

Stumpage price $ 2.50 per cu. m.
Discount rate 4.0 %
Climate normal data

Annual temperature 0.7 deg C
Annual precipitation 463 mm
Growing season precip. 326 mm

Sand 34%
Clay 19%
Site index 19.8 meters at 50 yrs

Density and reciprocal of age by age class
Age Density Reciprocal o f age
30 3000 0.033
40 2,500 0.029
45 2,250 0.025
50 2,000 0.022
55 1,800 0.020
60 1,600 0.018
65 1,425 0.017
70 1,250 0.014
80 900 0.013
85 700 0.012
90 500 0.011
100 500 0.010
110 500 0.009
120 500 0.008
125 500 0.008
130 500 0.008
140 500 0.007

Source for tbe stand density data: Tahles 8 and 9 in Peterson and Peterson (1 992)
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Table 7.2 Known distributions for random variables in scenarios two, three and four 
(Model parameters from Table 6.6)

Coefficient

Distribution
Type

Expected
value

Standard
deviation

Constant Normal 4.59 115.5
Zone Normal 406.41 179.76
Density Normal 0.023 0.015
Zdensity Normal -0.065 0.02
Site Normal 25.12 3.47
Zsite Normal -0.643 4.11
Sand Normal 0.845 0.545
Zsand Normal -3.08 0.864
Clay Normal -0.373 0.942
Zclay Normal -1.35 1.183
Antemp Normal 8.3 10.04
Zantemp Normal 33.73 13.43
Anprec Normal 0.011 0.319
Zanprec Normal 0.802 0.616
Gsprec Normal -0.135 0.572
Zgsprec Normal -1.64 0.918
Ageinv Normal -19183 2624

Climate variables
2020’s
Variable Distribution Lower Upper
Antemp Uniform 1.03 4.03
Anprec Uniform 411.41 561.23
Gsprec Uniform 285.84 394.06
2020's / 2050's
Variable Distribution Lower Upper
Antemp Uniform 1.37 4.87
Anprec Uniform 421.65 563.5
Gsprec Uniform 293.85 387.41
2050’s
Variable Distribution Lower Upper
antemp Uniform 1.71 5.72
anprec Uniform 431.9 565.78
gsprec Uniform 301.87 380.76
2080’s
Variable Distribution Lower Upper
antemp Uniform 2.79 8.78
anprec Uniform 430.59 591.51
gsprec Uniform 300.31 390.37
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Table 7.3 Predictions of net benefits (NBij), harvest yields (HYy), and ending
inventory yield (Elij) for scenario one._________________________________

Prescription
(i= l,2 ,3 )

Initial age 
class
(j=l,2)

Net benefit 
(NBij)

($ per ha)

Harvest yield 
(HYjj) 

(cu. m. per 
ha)

Ending
inventory

(Elij)
(cu. m. per ha)

1 - (no cut) 1 (40 yrs) 101 0 400
1 - (no cut) 2 (80 yrs) 114 0 458
2 - (period 1 cut) 1 (40 yrs) 295 192 97
2 - (period 1 cut) 2 (80 yrs) 570 390 97
3 - (period 2 cut) 1 (40 yrs) 159 358 0
3 - (period 2 cut) 2 (80 yrs) 193 439 0
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Table 7.4 Predictions of expected values of net benefits (NB;j), harvest yields (HYij),
and ending inventory yield (Elij) for scenario two._____________________________

Prescription
(i= l,2 ,3)

Initial age 
class
0=1,2)

Net benefit 
E[NBjj]

($ per ha)

Harvest yield 
E[HY,j] 

(cu. m .  per 
ha)

Ending
inventory

E[EIij]
(cu. m .  per ha)

1 - (no cut) 1 (40 yrs) 135 0 501
1 - (no cut) 2(80 yrs) 149 0 558
2 - (period 1 cut) 1 (40 yrs) 436 264 225
2 - (period 1 cut) 2 (80 yrs) 711 462 225
3 - (period 2 cut) 1 (40 yrs) 212 459 0
3 - (period 2 cut) 2 (80 yrs) 247 539 0

Table 7.5 Covariance matrices for net benefits (NBij), harvest yields (HYij) and 
ending inventory (Eljj) for scenario two__________________________________
Net Benefits

N B l l N B12 NB21 NB22 NB31 N B 32
N B ll 119
NB12 119 119
NB21 651 651 4183
NB22 651 651 4183 4184
NB31 198 198 1156 1156 341
NB32 198 198 1156 1156 341 341

Harvest Yield
H Y l l H Y12 H Y21 H Y22 HY31 H Y32

HY11 0
HY12 0 0
HY21 0 0 1534
HY22 0 0 1534 1534
HY31 0 0 1584 1584 1752
HY32 0 0 1584 1584 1752 1752

Ending Inventory
E l 11 E l  12 EI21 E122 E l31 E I32

Ell 1 1752
EI12 1752 1752
EI21 1925 1925 2201
EI22 1925 1925 2201 2201
EI31 0 0 0 0 0
EI32 0 0 0 0 0 0
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Table 7.6 Predictions of expected values o f net benefits (NBij), harvest yields (HYy),
and ending inventory yield (Elij) for scenario three_______________________

Prescription
(i= l,2 ,3 )

Initial age 
class
0=1,2)

Net 
benefit 
E[NBij] 

($ per ha)

Harvest 
yield 

E[HYy] 
(cu. m. per 

ha)

Ending
inventory

E[EIij]
(cu. m. per ha)

1 - (no cut) 1 (40 yrs) 136 0 500
1 - (no cut) 2 (80 yrs) 150 0 558
2 - (period 1 cut) 1 (40 yrs) 450 264 225
2 - (period 1 cut) 2 (80 yrs) 715 461 225
3 - (period 2 cut) 1 (40 yrs) 213 458 0
3 - (period 2 cut) 2 (80 yrs) 248 539 0

Table 7.7 Covariance matrices for net benefits (NBij), harvest yields (HY,,) and 
ending inventory (Efij) for scenario three________________________________
Net Benefits

N B l l N B12 NB21 N B 22 N B31 N B32
N B ll 1754
NB12 1778 1806
NB21 9942 10036 60902
NB22 11072 11220 65629 72795
NB31 3052 3092 17707 19642 5366
NB32 3118 3166 17944 20048 5474 5603
Harvest Yield

HY11 HY12 HY21 H Y 22 HY31 H Y32

HY11 0
HY12 0 0
HY21 0 0 23262
HY22 0 0 25443 28890
HY31 0 0 25475 28739 28807
HY32 0 0 25838 29385 29400 30105
Ending Inventory

E l l  1 E l l  2 EI21 E I22 EI31 EI32

Ell 1 29486
EI12 29915 30412
EI21 24431 24597 22204
EI22 24431 24597 22204 22204
EI31 0 0 0 0 0
EI32 0 0 0 0 0 0
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Table 7.8 Predictions o f expected values o f net benefits (NBij), harvest yields (HYij),
and ending inventory yield (Elij) for scenario four______________________________

Prescription
(i=l,2,3)

Initial age 
class
(J=l,2)

Net benefit 
E[NB,j]

($ per ha)

Harvest yield 
E[HYjj] 

(cu. m. per ha)

Ending
inventory

E[EIjj]
(cu. m. per ha)

1 - (no cut) 1 (40 yrs) 136 0 501
1 - (no cut) 2 (80 yrs) 150 0 558
2 - (period 1 cut) 1 (40 yrs) 440 264 236
2 - (period 1 cut) 2 (80 yrs) 714 462 236
3 - (period 2 cut) 1 (40 yrs) 214 459 0
3 - (period 2 cut) 2 (80 yrs) 248 539 0

Table 7.9 Covariance matrices for net benefits (NBij), harvest yields (HYij) and
ending inventory (Eljj) for scenario four
Net Benefits

N B l l  NB12 NB21 N B 22 NB31 N B 32
N B ll 1757
NB12 1781 1808
NB21 1484 1493 1363
NB22 1484 1493 1363 1363
NB31 3053 3092 2587 2587 5358
NB32 3117 3164 2608 2608 5464 5590
Harvest Yield

H Y11 H Y12 H Y21 H Y22 N Y 3 1 H Y32
HY11 0
HY12 0 0
HY21 0 0 0
HY22 0 0 0 0
HY31 0 0 0 0 28616
HY32 0 0 0 0 29197 29887
Ending Inventory

E l l  1 E l 12 EI21 E I22 E131 EI32
E ll 1 29282
EI12 29702 30189
EI21 24462 24621 22336
EI22 24462 24621 22336 22336
EI31 0 0 0 0 0
EI32 0 0 0 0 0 0
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CHAPTER EIGHT

MARKOWITZ PORTFOLIO FRONTIER MODEL

The complexity comes from the nature o f  the real system, not from  some weakness in 
model formulation. The task fo r  the analyst is to find  a simplification o f  the real 
system that is good enough fo r  the purpose at hand. The decision is inevitably 

subjective, emphasizing once again the artistic nature o f  decision analysis.

Hardaker et al. 2004

Introduction

In this chapter, we apply efficiency analysis methods to our stylized forestry 

problem by incorporating the distributions developed in Chapter 7 into a Markowitz 

portfolio frontier model. The particular formulation used in the analysis in this 

chapter is one that estimates the expected value-variance (EV) frontier for our 

stylized forest management problem (Note: the formulation presented in Chapter 9 is 

also a Markowitz model, however, in that case the model is formulated to identify the 

specific portfolio that maximizes expected utility).

The Markowitz model has been used in a number of agriculture applications. 

Hardaker et al. (2004) and Brealy and Myers (2003) review the underlying theory and 

a number of applications in agriculture. The model has also been used in forestry 

applications. Mills and Hoover (1982) apply this model to look at the economic 

benefits of institutional investment in forestland as a portfolio diversification strategy. 

Thomson (1991) compares the results of single period models (such as the Markowitz 

model) with a multi-period “power utility function” where the investor has access to 

forest land purchase and non-timber financial investment alternatives for inclusion in 

ones portfolio. Heikkinen (1999) was the first to apply the Markowitz approach in a 

forest management decision-making context. He used the Markowitz model to 

evaluate the effect of harvesting rules on portfolios made up o f forest stands and 

stocks. The study described in Reeves and Haight (2000) is the closest to the study 

presented here. They incorporate a Model I timber harvest scheduling model into a 

Markowitz risk model and look at the implication of price uncertainty on harvest
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timing and forest stand composition. Finally, Heikkinen (2003) compare the results 

of a single period Markowitz model to the results o f a multi-period discrete stochastic 

programming (i.e. recourse) model applied to a land owner whose decision problem is 

to harvest and invest the resulting income or delay harvesting. To our knowledge, the 

methodology has not been used to evaluate the potential implications of climate 

change and climate change related uncertainty for forest management.

This chapter is organized as follows. In section two we introduce and define 

the terms: portfolios and prospects. Section three describes how the concept of 

portfolios and prospects apply to the stylized decision analysis problem context 

presented in this study. Section four describes the concepts and criteria underlying 

efficiency analysis. Section five introduces the Markowitz portfolio model and 

presents the particular specification used. Section six presents and provides a 

discussion o f the estimation results. Finally, the last section provides a discussion of 

some of the possible implications o f the results for broader forest management policy 

issues.

Prospects and portfolios

An investment prospect represents investment in a single asset such as a 

particular stock, bond, piece o f real estate, or as will be described later, a particular 

forest management prescription. Investors are generally not restricted to a single 

prospect. Rather, they may prefer to invest in a number of prospects in order to 

diversify their investments and manage risk (Elton and Gruber 1995). The collection 

of prospects that an investor chooses is referred to as a portfolio. It is the expected 

value o f returns from the portfolio that is of particular interest to the investor and it is 

the variance associated with the overall portfolio that provides the investor with a 

measure of the level of investment risk (Binkley et al. 1996). The choice facing the 

decision maker is: What group of prospects should he included in the portfolio in 

order that one’s investment objectives or preferences are optimal (i.e. the optimal 

combination of return and risk)?

One forest sector example o f portfolio construction and diversification is the 

increase in institutional holdings o f U.S. timberlands that occurred during the 1990s

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(Binkley et al. 1996; Caulfield and Newman 1999). The main reason for the 

inclusion o f forest timberland holdings in the portfolios o f large pension funds, 

insurance companies, banks, and endowments was the opportunity these types of 

assets offered in terms of both return and portfolio diversification.

The main rationale for looking at returns and variances of portfolios rather 

than single prospects is that the interrelationships between prospects in a portfolio 

influence the level of risk (or variance) of the portfolio. The variance associated with 

a portfolio o f prospects tends to be less than the weighted average of the variances of 

the individual prospects (Zerbe and Dively 2004). In fact, if  there are numerous 

prospects in a portfolio, the variance of the portfolio is largely influenced by the 

covariances between prospects and the variances of individual prospects have less 

importance. In undiversified portfolios, the variances of the individual prospects will 

dominate the variance of the portfolio. Thus, in general, investors manage risk by 

including a diverse range o f prospects in their portfolios.

The choice set o f available prospects and a general description o f  the management 
problem

This section describes the management problem developed for this study and 

identifies the set of investment options that are available to the decision maker. The 

analytical construct described in this section pertains to the analysis presented and 

discussed in this Chapter as well as the analysis presented in Chapters 9 and 10.

For this study we are applying the notion of prospects and portfolios to a 

particular forest management decision-making problem. The decision maker’s initial 

assets for this study are 250 hectares of 40-year old aspen and 750 hectares of 80-year 

old aspen. The decision maker has already invested in this forest. Available 

prospects for this study are limited to individual harvest prescriptions (defined as 

prospects for this study). The general problem is one o f selecting the optimal 

portfolio (and therefore an optimal set o f prospects) in an environment where: (a) 

yield curves are shifting as a result o f climate change, (b) there is uncertainty as a 

result of climate change, and (c) there is uncertainty in yield model predictions.
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Chapter 7 provides estimates o f expected values and a covariance matrix for 

net benefits for six specific prospects for each of four scenarios. The six prospects 

that are available to the decision maker in this study are defined as follows:

1. Leave initial age class 40 (IAC1) uncut for the entire period

2. Leave initial age class 80 (IAC2) uncut for the entire period

3. Cut initial age class 40 (IAC1) in period one

4. Cut initial age class 80 (IAC2) in period one

5. Cut initial age class 40 (IAC1) in period two

6. Cut initial age class 80 (IAC2) in period two.

Each prospect has a unique expected net benefit, a unique variance, and there 

exist a set of unique covariances between the six prospects (note these values 

constitute the input data for the risk models presented in this Chapter and in Chapters 

Nine and 10). The portfolios (i.e. the solution set provided by the risk models), 

therefore, are comprised o f various combinations o f the six prospects or management 

prescriptions (where the weight of each prospect in a portfolio is based on the number 

o f hectares assigned to the prospect). There exist a large number o f possible 

portfolios (i.e. differences in portfolios are based on variations in number of hectares 

assigned to each prospect) and each has a unique combination o f expected return and 

variance.

Some forestry-based applications o f the Markowitz portfolio approach provide 

the decision maker with the opportunity to invest in other financial market 

investments in addition to forest management (e.g. see Heikkenen 1999; Thomson 

1991). These studies assume that the investor is starting with a pool of capital to 

invest and is not constrained in terms of where the capital can be invested. This study 

assumes that the decision-maker has already invested in forestland. The objective of 

the decision maker for this chapter is not to minimize risk (subject to minimum 

return) of his/her entire wealth holdings. Rather, the objective o f the decision maker 

for this chapter is to minimize portfolio risk (subject to a minimum return for the 

forestry asset). The objective function in Chapter 9 is to maximize certainty 

equivalent but again the decision maker is restricted to the six prospects described 

here. This construct is admittedly somewhat restricted. However, optimizations
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within type problems, such as the one posed in this study, are not without precedence. 

For example, the approach adopted in this study is similar to demand system models. 

Demand system models use assumptions about two-stage budgeting, utility trees, and 

weak separability to model demand for commodity groups (Deaton and Muellbauer 

1998). Demand system models choose the basket of goods that optimizes utility for 

some sub-group o f commodities.

Thus, the available set of prospects defined for this study does not include 

other types o f financial market investments (e.g. stocks, bonds, treasury bills, etc.). 

Moreover, the model in this chapter (and in Chapters 9 and 10) assumes that harvest 

revenues (i.e. revenues from period 1 and 2 harvest) are invested in risk free 

investments that earn an annual return of exactly 4 % (i.e. our assumed discount rate) 

and that mature at the end of the planning horizon. Thus, the real returns from 

reinvestment o f harvest income have no effect on prospect choices. The reason for 

limiting the set of investment and reinvestment opportunities for this study is to keep 

the problem context as simple as possible so that we can focus on analyzing the 

effects o f climate change and uncertainty in a forest management context without 

complicating the analysis by considering other investment types and other potential 

land uses. The question that we are principally interested in for this study is: How 

does climate change and uncertainty affect returns to forest management and manager 

choices relative to harvest timing? The set o f six prospects defined in this chapter are 

also used for the risk models developed in chapters nine and ten.

It is useful at this stage to provide a bulleted summary o f the stylized forest 

and an overview o f the management problem adopted for this study. The construct 

described below applies to the models developed in this Chapter as well as in 

Chapters 9 and 10.

• The investor’s starting assets for this study are 250 hectares o f 40-year old 

aspen and 750 hectares of 80-year old aspen.

• The objective functions in this study focus on optimization o f outcomes by 

selecting optimal portfolios where portfolios are comprised of various 

combinations of six possible management prescriptions. Individual 

management prescriptions are viewed as investment prospects. The investor
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does not have access to other financial market investment options and/or the 

opportunity to invest in alternative land types. Moreover, reinvestment of 

harvest revenues is restricted to investment in risk free assets that have an 

annual return o f exactly 4 % and that mature at the end of the planning period.

• The models in Chapters 8 and 9 are single-period models. They do not permit 

the consideration o f dynamic risk and they do not provide opportunities to 

adjust management choices over time. Time is not an explanatory variable in 

these models. The models are static. The optimal solution is determined at 

the beginning of the planning horizon and this solution is fixed over the entire 

period.

• There are a maximum of two sources o f variance that can be considered 

(depending on which scenario is selected): 1. Variance in climate variables, 

and 2. Variances in yield parameters. Variances in climate variables are 

permitted to change for different prediction periods in the future. Variances in 

yield model parameters are constant.

• The planning horizon is 60 years (2010 -  2070) and this planning horizon is 

divided into two 30-year planning periods.

• Stumpage prices are fixed at $ 2.50 per cu meter and the discount rate is fixed 

at 4%. Both of these values are constants.

Efficiency analysis and criteria

The expected utility theory described in Chapter two relies on having some 

understanding o f the shape of the utility function for the individual in question 

(Hardaker et al. 2004). However, the elicitation of utility functions is inherently 

complex and requires significant data collection. The determination of a specific 

utility function is beyond the scope o f this study. Alternatively, we will employ 

approaches that allow for the assessment and ranking of risky portfolios based only 

on information about expected returns and variances. The approach is referred to as 

“efficiency analysis” (Hardaker et al. 2004).

Efficiency analysis starts by making certain assumptions about the form of the 

utility function and about the extent to which the decision-maker’s subjective
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assessment o f likelihoods matches the actual probability distribution o f outcomes (i.e. 

the individual is fully informed and rational). Given these assumptions, the set o f all 

possible portfolios can be subdivided into the efficient set and the inefficient set 

(Hardaker et al. 2004). In order to characterize efficient and inefficient sets it is 

useful to characterize portfolios in terms of expected returns and variance (EV). The 

EV efficiency rule states that for two portfolios (“A” and “B”) if E[A]>E[B] and Var 

A is less than or equal to the Var B then A is preferred to B. Similarly if E[A] is less 

than or equal to E[B] and Var A > Var B then B is preferred to A. Using these 

criteria, a frontier o f efficient portfolios (n expected income -  variance space) can be 

identified such that for any efficient portfolio with a given expected return, it is not 

possible to obtain a portfolio with the same return but lower variance. The inefficient 

set contains all portfolios that are dominated by portfolios in the efficient set.

The EV efficiency mle requires that: (a) portfolio returns are normally 

distributed, and (b) the utility function is concave for risk averse decision makers 

(Hardaker et al. 2004; Hazell and Norton 1986). However, functional forms such as 

quadratic utility have been shown to be somewhat contrary to theory and returns are 

not necessarily normally distributed (Hardaker et al. 2004; Hazell and Norton 1986). 

Therefore, the EV efficiency approach is generally considered to provide an 

approximate criterion for ranking risky choices (Heikkinen 1999; Elton and Gruber 

1995). Its main advantage is that portfolios can be evaluated with only information 

on means and variances - without having to estimate utility functions. Thus, the 

approach provides a convenient method for looking at risk issues such as the one 

posed in this study. Hardaker et al. (2004) state: “Portfolio analysis in an EV 

framework is a widely used...method of decision analysis...Where direct 

maximization of utility is possible, it is to be preferred to the EV 

approximation...However, the convenience of EV analysis means that it is likely to 

remain in the tool-kit of agricultural economists for some time to come.” (pg. 147).

The Markowitz portfolio model

An important modeling method used in EV analysis is called Markowitz 

portfolio optimization (Reeves and Haight 2000; Hardaker et al. 2004). One
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application of this type o f model is to estimate the frontier o f efficient portfolios by 

finding the set of prospects that minimizes portfolio variance subject to a minimum 

return. Parametric programming is used to define the frontier of efficient portfolios 

by varying the minimum return in the constraint and repeatedly rerunning the model. 

The remainder o f this chapter outlines a model and presents results for this 

application. A second application o f the Markowitz portfolio model is to find the 

portfolio that maximizes certainty equivalent. This application is discussed in the 

next chapter.

The asset allocation (or portfolio) model (Markowitz 1952) was one of the 

first risk models to be developed. Markowitz shared the 1990 Nobel Prize in 

Economics for this contribution to economic theory. The Markowitz model is 

described by Zenios (1996) as follows:

"Asset allocation decisions are, usually, made based on the principle of 

diversification. Assuming that the risk o f the asset classes is captured by the 

variance in their returns, the asset allocation model will diversify risk by 

selecting securities whose returns are not highly correlated with each other."

The Markowitz portfolio model provides for explicit consideration o f the 

relationship between returns and risk for our stylized forest management decision 

context. For the purposes of this model, we assume that the decision maker is a 

rational economic agent whose only concern relative to his/her choice of portfolio of 

investments is return and risk (i.e. the EV efficiency rule).

When estimated using quadratic programming methods, the Markowitz model 

is a single period model (Thomson 1991). In our case, the period is 60 years long. 

This means that a single solution is estimated for the entire period. There is no 

reinvestment over the planning horizon and there is no recourse. In effect, a solution 

is obtained regarding how much area to harvest in periods one and two and how much 

area to leave uncut and this solution is fixed for the entire harvest period.

As noted, there are only six prospects available to the investor. Individual prospects 

are based on combinations of harvest prescriptions (prescriptions 1,2, and 3) and
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initial age classes (40 and 80). For convenience, the six prospects (i.e. 3 alternatives

for the area in each starting age class) are repeated here. They include:

1. Leave initial age class 40 (IAC1) uncut for the entire period

2. Leave initial age class 80 (IAC2) uncut for the entire period

3. Cut initial age class 40 (IAC1) in period one

4. Cut initial age class 80 (IAC2) in period one

5. Cut initial age class 40 (IAC 1) in period two

6. Cut initial age class 80 (IAC2) in period two.

In terms of portfolio construction, the forest landowner can construct a wide 

range o f different portfolios by assigning his/her forestland to the above six prospects 

in varying proportions. The only constraint is that the total amount of hectares 

assigned must equal the starting area available (i.e. 250 hectares o f IAC1 timber and 

750 hectares of IAC2 timber).

The objective function for the Markowitz risk model presented in this chapter 

is to minimize portfolio variance of net benefits. Model constraints include: (a) a 

minimum portfolio return, (b) area constraints, and (c) non-negativity constraints. 

The perspective we are adopting for the model developed in this chapter is that of a 

private investor. Therefore, harvest constraints (i.e. ending inventory and flow 

constraints) are not imposed.

The model structure is as follows:

Min 3 2

( V ,
V *  ij J z'=l j= 1

St
3 2

Z Z X V E^NBij ] - E[Minimum Return]
i= i j= \

Z ^ < i  ~  2 5 0  [8 .1]
1=1

2 X £ 750
1=1

^ > 0
3 2

Where ^ ^ X V  Cov{NBJ}XiJ measures portfolio variance
1=1 7=1

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



And where:

Xjj is the area o f compartment j that receives prescription i.

E[NBjj ] is the expected net benefit from prescription i and initial age class j.

The data for this model include both the scenario two and three estimates o f 

expected net benefits, variances, and covariances o f the six prospects (see Chapter 7). 

One set of results is generated by running the model using the scenario two data and a 

second set of results is generated by running the model using the scenario three data. 

We selected scenarios two and three because one o f the goals of this Chapter is to 

look at the contribution of climate risk relative to overall risk in a forest management 

context. The two scenarios differ only in terms of the fact that scenario three includes 

both yield parameter uncertainty and climate uncertainty while scenario two includes 

climate uncertainty only.

Parametric programming is used to estimate the frontier o f portfolios for each 

scenario. The optimal investment portfolios (i.e. the optimal number o f hectares 

allocated to each prospect) are estimated for each of eleven different levels of 

minimum returns starting at $ 147,000 (minimum possible return for this forest) then 

going to $ 200,000 then increasing by increments of $50,000 up to a level of 

$650,000 (maximum possible return for this forest). The objective function is a non

linear quadratic functional form and therefore a non-linear optimization routine is 

required for solving the model. The optimization problem is solved using CONOPT 

in GAMS (Brooke et al. 1998)24.

Analysis

There are four questions that will be addressed in this chapter using the results 

o f the Markowitz model. They are:

1. What is the shape of the retum-risk frontier for this particular forest

management problem and how does portfolio composition vary 

along the frontier?

2. What are the relative magnitudes of climate variance vs. yield

parameter variance as sources o f variance for this problem?

24 The GAMS program code is available upon request
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3. What are the implications of discounting?

4. How might biased perceptions of risk influence choices?

The return-risk frontier

Figure 8.1 shows the EV portfolio frontiers for scenarios 2 and 3. The shapes 

of these curves are roughly consistent with the mean value -  variance (EV) frontier 

predicted by expected utility theory (i.e. 8R/dSD> 0; d2R /d S D 2 < 0  - where R is 

expected return and SD is standard deviation). The curves shown in Figure 8.1 are in 

fact, quite similar in shape to the expected value-variance frontier for a problem 

provided in Hardaker et al. (2004) (see Figure 8.2). The decision maker for our 

stylized forestry case study, has significant flexibility relative to substituting expected 

returns for risk. A highly risk averse decision maker will tend to prefer portfolios on 

the lower and steeper portions o f the frontier. However, if  the decision maker is 

prepared to accept higher levels of risk, then it is possible to increase expected returns 

significantly.

This study was intentionally structured to keep the problem scenario as simple 

as possible. This was done in order to isolate climate effects and also in order to 

look at climate change and risk using different risk model constructs. However, as 

we have noted in a previous section, one consequence is that the number of 

investment prospects available to the decision maker is limited to six forestry 

prescriptions. The limited number o f prospects available for portfolio selection has 

implications relative to the solutions o f the Markowitz model. Table 8.1 provides the 

set of model solutions for scenario 3. If this particular decision maker is so risk 

averse that he/she is willing to sacrifice any amount of return to reduce portfolio risk 

then he/she will decide to leave almost the entire forest uncut -  with the exception of 

6 hectares of initial age class 2 (Table 8.1). As shown in Table 7.5, the variances for 

prospects 1 and 2 (i.e. leave the stands uncut for initial age class 1 and 2) are lower 

than variances for the other four prospects (prescriptions). At the other extreme, if  

the decision maker is close to risk neutral and wants to maximize returns regardless of 

risk, then he/she will choose to cut the entire forest in period 1. Table 7.5 shows that 

again the variances for prescriptions (prospects) 2 and 3 are the highest o f the six

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



options. Thus, it would appear that at the extreme ends of the frontier, the portfolio is 

made up o f those prospects where the variance of the individual prospects (not 

covariances between prospects) is the dominant consideration. This finding may be 

the result o f the fact that there are a relatively small number of prospects for the 

particular forest management portfolio selection problem being considered in this 

study. Zerbe and Dively (1994) note that a major benefit o f having a larger number 

o f prospects in a portfolio is diversification.

Diversification o f a portfolio has two effects. First, it tends to reduce portfolio 

variance. Second, as the number o f prospects in a portfolio increases, the covariance 

terms become relatively more important with respect to overall portfolio variance. If 

the number of prospects is relatively small, the portfolio variance is dominated by the 

variances o f the individual prospects. If the number o f prospects is large, then 

portfolio variance is primarily affected by the covariances. Zerbe and Dively (1994) 

illustrate this as follows. If there are 5 prospects in a portfolio (i.e. N=5) then there 

are 5 variance terms and 20 covariance terms (i.e. N -  N) that are contributing to 

portfolio variance. If the number of prospects is equal to 10 (i.e. N=10) then there are 

10 variance terms and 90 covariance terms that are contributing to portfolio variance.

Sources o f  variance

One way to assess the relative contribution o f climate variance to total 

variance is to compare the position o f the EV frontier when climate variance is the 

only source o f uncertainty to the position of the EV frontier when both climate and 

yield variances are considered. As described in Chapter 7, scenario 2 is based on 

changes in climatic variables and climate variances only. Yield parameters are 

considered to be deterministic in scenario 2. Scenario 3 results, on the other hand, 

include uncertainty (variance) in both yield model parameters and in climate 

variables. Thus the positions of the scenario 2 and 3 EV frontier may be used to 

compare the relative contribution of climate variance to total variance. Figure 8.1 

shows that climatic factors account for a relatively small portion of total portfolio 

variance in that the scenario 3-curve is much further to the right of the y-axis than the 

scenario 2-curve.
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Table 8.2 compares the portfolio standard deviations for scenarios 2 and 3. 

The results in Table 8.2 confirm the findings in Figure 8.1. Climate variance 

accounts for about 25 % of the standard deviation in minimum expected return. This 

result suggests that the relative contribution o f climatic factors to variance o f forestry 

portfolios may not be large -  at least within the 60 year planning horizon defined for 

this study and given the range of variables considered.

A potentially important implication of the relatively low contribution of 

climate variance to total risk is that uncertainty in yields may not increase 

significantly over time. A priori one might expect that the further into the future one 

is predicting -  the higher the predicted variance will be. One objective o f the study 

is to consider climate as a factor that potentially increases risk in forestry investments 

because predictions o f future yields are more uncertain given uncertain climate 

variables. For the models estimated in this study, climate is the only source of 

variance that is allowed to change relative to predictions o f future values o f variables. 

The variance that is contributed by uncertainty in yield model parameters is constant 

for predictions o f future values o f yields. The underlying premise is that (ignoring 

climate effects) inventory variance of a stand o f age “G” is the same in year 2070 as it 

is in the year 2010. This does not seem to be an unreasonable assumption. Since 

climate is the only factor that contributes to changes in variances for future predicted 

yields, and since climate contributes a relatively small amount to overall variance - 

the net effect may be that the increase in variance of predicted yields associated with 

increases in prediction period may not be particularly significant.

In order to test the degree to which variances of inventory yields for 40 and 80 

year old stands are sensitive to prediction period (when climate effects are included), 

yield variances for 40 and 80 year old stands were estimated for three future time 

periods. Table 8.3 shows that the variances for stand yields do increase as the length 

o f the prediction period increases, however, the amount o f increase in variance o f 

stand yield is not large. As noted, this may be partly because of the relatively small 

contribution of climate variances to overall portfolio variances.

Another possible reason that the variances are somewhat insensitive to climate 

change is that the variances of the climate variables themselves do not increase over
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time to the degree expected. Table 8.4 shows the first differences (i.e. high prediction 

value minus low prediction value) for the three climate variables used in the yield 

prediction models (i.e. temperature, annual precipitation and growing season 

precipitation). These high and low climate variable predictions are based on the 

upper and lower prediction values from various GCM model and emission scenario 

combinations. The predictions were obtained for the specific geographic location of 

interest for this study (i.e. Calling Lake). As seen in Table 8.4, uncertainty associated 

with temperature does increase with time. However, contrary to the temperature 

results and contrary to expectations, the spread between the high and low values for 

annual precipitation and growing season precipitation actually decreases after 2020 

and increases significantly in the 2080 prediction data. There are two possible 

reasons. First, for the 2010 -  2070 period, the general circulation models are in 

general agreement about precipitation responses to increases in greenhouse gas 

concentrations. Second, precipitation response is not as sensitive as temperature to 

differences in atmospheric GHG concentrations for the study period.

The main conclusion from these results is that for the defined study period 

climate change does affect uncertainty and risk in forestry analysis but it is not a 

strong factor. It does appear from Table 8.4 that uncertainty in climate variables 

increases significantly in the 2070 prediction period. Thus, the effects o f climate 

change in terms of uncertainty and risk may be more pronounced for analysis that 

covers longer time periods. This conclusion, however, should be qualified by the fact 

that the further into the future the analysis goes, the more that distributions of net 

benefits become discounted. Somewhat large increase in yield variance would be 

required in order to offset the effects o f exponential discounting o f future net benefit 

distributions. The issue o f discounting is discussed further in the following section.

One final point about sources of variance in portfolios bears mentioning. The 

analysis presented in this study does not consider price uncertainty. Price is one o f 

the variables in the net benefit equation. For this study we have assumed that price is 

constant. However, some forestry studies (e.g. Thomson 1992, Brazee and 

Mendelsohn 1988) consider stumpage price to be a source of variance in outcomes 

and incorporate price into forestry analysis as a random variable (note these studies
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generally ignore yield variance). Moreover, some recent studies predict that climate 

change will influence future stumpage prices (Sohngen and Sedjo 2005). Thus, the 

expected value and variance o f price may be impacted by climate change and 

therefore price may not only be a source of variance in terms of short term 

investments it may become a relatively more important as a source of variance in 

medium and longer term investments as a result o f climate change. The main issue 

for analysis in a Canadian context is that because stumpage prices are not determined 

in open competitive markets in Canada, data on the distribution of current stumpage 

price now and in the future (with climate change effects incorporated) are 

unavailable. For the purposes o f this study we restricted our analysis to areas where it 

was possible to develop empirical relationships between climate and response 

variables. Our data support an analysis of how climate change might influence the 

distribution of stand yields at points in the future. We do not, however, have data that 

would support extending the analysis to consider how climate change will affect 

variances in Canadian stumpage prices. Thus, although we can speculate that climate 

change will result in lower future expected prices and increased variance over time - 

there is no way to incorporate price variability considerations into our quantitative 

risk model.

Implications o f discounting

Climate change and climate change risk raise a number of dynamic issues. 

Some o f these issues have already been the topic o f significant discussion within the 

economics literature. Lind (1995), Toth (1995), and Tol (2003) discuss the 

applicability o f cost-benefit analysis and discounting to climate change impact 

assessment. They note that the application o f market discount rates can lead to 

drastically reduced estimates of long-term future impacts (thereby reducing the 

threshold for levels o f costs justified for mitigation). Two key issues that arise from 

this literature are: (a) the extent to which use of market discount rates is equitable (i.e. 

does the use of market discount rates result in present value estimates o f 

environmental damage from climate change that favor current generations and 

penalize future generations), and (b) the extent to which it is justified to use discount
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rates given the possibility of unbounded variance (i.e. the possibility of extreme 

calamity) surrounding predictions of future impacts.

The counter argument for the use o f discounting is that it is required to ensure 

an efficient allocation of capital over time. For this study we assume that uncertainty 

around forestry benefits is not unbounded (at least for the time period of interest here) 

and that discounting does not result in inequitable distribution. Discount rates 

adopted in the forestry literature for long-term investment analysis range from 3 % 

(Klemperer et al. 1994; Brazee and Mendelsohn 1988) to 5 % (Thomson 1991; Berck 

1979). Row et al. (1981) and Thomson (1992) recommend the use o f a 4 % discount 

rate for forest investment analysis. We have assumed a long-term risk free discount 

rate of 4 % throughout this study.

Table 8.1 shows that the lowest risk portfolios are comprised o f the no cut 

prospects. This suggests that portfolios with a weighting of long-term prospects (i.e. 

associated with harvesting in period two or leaving the area uncut for the entire 

planning period) are less risky (with respect to net benefits) than portfolios with 

prospects based on harvesting in period one. Thus, delaying the harvest reduces 

portfolio risk. As noted in a previous section, in situations where there are relatively 

few prospects that can be included in a portfolio, variance is dominated by the 

variances of the individual prospects. In this study individual prospects are the 

equivalent o f management prescriptions. Table 7.7 provides the variance o f net 

benefits of individual prescriptions under scenario 3. The table shows that with 

scenario 3, the variance in net benefit associated with cutting the IAC1 stand in 2025 

is much larger than the variance of the net benefit associated with harvesting the 

IAC1 stand in period two. Thus, delaying the harvest reduces the variance o f net 

benefits for that stand. There are two combined reasons for this result. The first 

reason is that, as noted in a previous section, increases in yield variance as prediction 

period increases are modest. The second reason relates to discounting. The 

distributions for future net benefits are discounted to present value using a 4 % 

discount rate. The compound nature o f discounting means that future values in the 

sample distribution are discounted to present value at an exponential rate. 

Discounting the sample distribution of future values results in a lower expected value
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and lower variance o f net benefits. Thus, for this study, discounting of net benefits 

significantly outweighs increases in yield uncertainty from climate change. The net 

result is lower variances for portfolios with a high percentage of area in the no cut or 

cut in period two prescriptions.

Although discounting does lead to lower variance for long-term future net 

benefits, it also leads to lower expected values (Table 7.6). A fundamental premise of 

the EV efficiency criterion is that investment portfolios are ranked on the basis of 

both expected values and relative risk. Therefore, low variance for portfolios 

dominated by long-term investment does not mean that these portfolios will be 

selected.

The finding that time is a risk reducing input (albeit only in terms of the 

present values o f net benefits) was a cause o f concern. Therefore, the remainder of 

this section considers this result in more detail. One question to consider is: should 

the variances o f future net benefits be discounted? Discounting of future variances is 

supported by expected utility theory. For example, Zerbe and Dively (1994) suggest 

that the correct measure for an uncertain future benefit is discounted certainty 

equivalent where discounted certainty equivalent is estimated by the following 

equation:

r r  CE Y . X * E [ N B , } - p X V a r X  

(1 +  0' 0 +  0 '

This implies that variance and expected value o f net benefits are both discounted. 

This is basically the same as saying that to convert the future value o f a random 

variable to present value, each and everyone one o f the observations in the sample 

distribution o f the future value should be discounted to present value. Discounting 

reduces both the expected value and the variance.

A second way to evaluate our result that time is risk reducing (with respect to 

net benefits) is to consider if  this result is logical and whether the decision to delay 

harvest in order to reduce risk is rational. In the context o f the stylized forest that we 

have created for this study, delaying harvest in order to reduce risk may be logical 

and rational for two reasons. First, low risk ventures are generally associated with
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low return and high return investments often come with significant risk. In our study 

the lowest expected value of net benefits come from holding the stands until the end 

of the planning period. These stands also have the lowest variances o f net benefits. If 

our prospects had high returns and low variances for period one harvest, and lower 

returns and higher variances associated with delaying the harvest then clearly 

harvesting in period one will always be preferred over harvesting in later periods.

The second reason time is risk reducing with respect to net benefits is that 

individuals may prefer to delay risky decisions. A justification for discounting future 

variance is that the cost o f risk in the future is lower than the present. Therefore, 

decision makers are prepared to discount future risk compared to immediate risk 

because they consider the cost of future risk to be lower than immediate risk.

Perceptions o f risk

One of the goals of this study is to evaluate how climate effects and 

uncertainty effects influence the choices of a utility maximizing decision maker. As 

noted in a previous section, efficiency analysis and the EV efficiency criterion are 

based on the assumption that the decision maker’s subjective assessment o f outcome 

probabilities matches actual probabilities (i.e. the decision maker is fully informed). 

However, what if  the decision maker is not informed? In Chapter 2, Tversky and 

Kahneman’s (1974) tests on bounded rationality were introduced. Their theories 

suggest that people exposed to complex risk may use strategies that can result in 

biased perceptions and potentially suboptimal responses to risk. Thus, the responses 

o f an individual with bounded rationality may be different from those of an informed 

or rational investor.

Thus, it is possible to conceive of many types of decision makers where each 

is differentiated by what they consider relevant in terms o f sources o f uncertainty in 

forestry decision-making. For example, some might be take yield uncertainty into 

account, some might take price uncertainty into account, some might take climate 

uncertainty into account, some might take risk o f catastrophic losses into account, and 

some might take various combinations of the above sources o f uncertainty into

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



account. The fully rational and informed decision maker would take all sources o f 

uncertainty into account.

In this section we are considering two types o f decision makers. The first type 

of decision maker is one: (a) who is primarily concerned about climate risk, (b) who 

considers yield relationships to be deterministic, and (c) who ignores uncertainties 

associated with all other factors. This decision maker is referred to as John Doe for 

the purposes o f this study. He would base his decisions about prospect choices (i.e. 

relative proportions of management options selected) based on the frontier for 

scenario two.

The second type o f decision maker is one who incorporates both yield and 

climate risk in decisions. We shall refer to this decision maker as Jane Doe. Jane 

would tend to base her asset mix (or harvest pattern) on the scenario 3-portfolio 

frontier. This scenario provides a more realistic representation o f risk facing the 

decision maker.

For the purpose o f this study we consider John to have bounded rationality. 

Jane (a U of A alumnus) on the other hand is informed and rational. The main 

consequence of having bounded rationality is that choices may be suboptimal.25 For 

example, assume John selects point “A” (with a standard deviation o f 46,000) on 

Figure 8.1. Under scenario two the harvest pattern associated with point “A” 

involves harvesting all 1000 hectares in period 1 (i.e. this result is reported in the text 

only). However, under scenario three the estimated standard deviation associated 

with a portfolio that involves harvesting the entire area in period one is $ 186,000 

(Table 8.1). If John was Jane and if  he/she was aware that this was the variance 

associated with this particular portfolio, then depending on his/her relative risk 

preferences he/she might have selected something like point “B” on Figure 8.1 

instead o f a portfolio that resulted in harvesting the entire forest. The optimal harvest 

pattern in this case is to harvest 237 hectares o f stand type 2 in period 1 and harvest 

the remaining 763 hectares of stand types 1 and 2 in period 2. Thus, basing the

25 It is possible to obtain suboptimal choices even with rational choices if  there are transaction costs 
and these transaction costs are ignored. See various discussions on “Coase theory” for more 
elaboration. Also, according to the theory o f second best, it is also possible that bounded rationality is 
still rational Black (1997).
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harvest pattern (asset mix) on scenario 2 curve results in a sub-optimal decision. The 

suboptimal selection o f prospects (or harvest prescriptions in our case) results in an 

economic cost in the form of reduced utility.

The discussion above considers portfolio choice from the perspective of a 

decision maker who only accounts for climate uncertainty (with and without 

uncertainty in yield predictions). The reverse situation is also possible. That is to say 

the choices o f an individual who only considers uncertainty in yield from traditional 

sources (i.e. variability in growing conditions and biological response) and ignores 

climate related uncertainty will also tend to be suboptimal (as we have noted earlier -  

climate uncertainty accounts for 25 % of the standard deviation in expected returns). 

The point here is that not accounting for all sources o f  uncertainty (climate or 

otherwise) can result in higher economic costs (and sub-optimal decisions) than might 

have been the case had investors been fully informed about their investment risk.

Summary and discussion o f the results

The analysis and results in this chapter illustrate that both climate and yield 

uncertainty contribute to forestry investment risk (although climate risk is less 

significant). It is important that decision makers acknowledge and take account of all 

sources o f risk and uncertainty in their decision-making. Ignoring some sources o f 

risk may lead to choices that are not consistent with utility maximization.

One finding that is confirmed by the results presented in this chapter is that 

forest managers do have the opportunity to manage risk by varying harvest patterns 

and management prescriptions. It is also generally recognized that diversification can 

significantly reduce the risk associated with a particular portfolio. Thus, two features 

that may be important relative to managing future forestry risk are flexibility (in 

terms of the ability to choose different prospects for inclusion within a portfolio) and 

diversity (in terms of the number of prospects that are available for inclusion in a 

portfolio).

The results presented in this chapter show that climate change will increase 

the level of uncertainty associated with forestry operations. The section on adaptive 

management in Chapter 2 suggests that in complex, rapidly changing, and risky
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decision environments, adaptive management strategies become more important. 

Risk management might be viewed as an important adaptive management strategy in 

a forestry and climate change context. As timber supply uncertainties and risk 

becomes more evident, there might be higher demand for (and a higher premium on) 

having the flexibility to manage this risk (i.e. option price). The results provided in 

Figure 8.1 and Table 8.1 show that it is possible to manage risk by adjusting 

harvesting patterns. This result implies that increasing the diversity o f management 

options in forestry as well as increasing the degree o f flexibility that forest managers 

have relative to the utilization and management o f the forest has the potential of 

reducing the economic costs of uncertainty and avoiding suboptimal choices. 

Moreover, given the significance o f non-climate factors as sources o f risk, adopting a 

risk management strategy based on diversification of management options and 

flexibility may be justified irrespective o f the implications of climate change.

It might be argued that contemporary Canadian forestry is analogous to our 

simplified forestry problem from the point of view of having limited number of 

available forest management options available to managers. Just as there are 

relatively few available prospects for inclusion in our stylized case study, there are 

relatively few options available to industrial forest managers who are managing large 

areas o f public forestland. For example, there are few options relative to rotation age. 

There are limited options relative to species for reforestation. And there are 

constraints on land conversion (e.g. from one species to another or from one use to 

another). This leads to the question o f whether or not current forest management 

policy could be (or should be) modified to increase the number and diversity o f 

available forest management options (prospects) and to increase the flexibility to 

allow forest managers to select alternative approaches. For example, could 

modification of sustained yield policy increase diversity and flexibility? Should 

forest managers be allowed greater flexibility with respect to selecting rotation age, 

harvest volume, reforestation species, and even land use? Is it possible to change 

tenures in a way that provides a greater role for markets to determine resource 

allocation under climate change and that provides more incentives for forestry 

companies to implement adaptation strategies to climate change?
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An even more fundamental question pertains to the extent to which sustained 

yield should even be pursued as a part o f public forest policy given climate change. 

Strong sustainability policies, like sustained yield, may be constraining relative to the 

degree o f flexibility they permit. A number of studies are beginning to point to the 

importance o f flexibility in institutions and the need for adaptive management 

approaches to forest management as the only way to ensure sustainable forest 

management (e.g. see Castle et al. 1996; and Holling 2001). Luckert and Williamson 

(2005) note:

“opportunity costs arise because SY institutionalizes inflexibility and market 

insensitivity. Values o f forest products may change markedly over time 

following cycles and trends. As discussed above, a constant stream of timber 

production within such an environment may exacerbate market fluctuations. 

As this process unfolds, there may be significant losses incurred because of an 

inability of firms to respond to changing prices by varying quantities supplies” 

(pg 361.) and “the focus and orientation of sustainable development turns to 

defining and preserving critical zones with safe minimum standards, and the 

development o f social institutions that promote flexibility and adaptability.” 

(pg 358).

The analysis and results provided here suggest there may be social benefits 

associated with greater diversity in management options and flexibility in terms of 

their implementation. There may, of course, also be social costs that would also have 

to be considered. These types o f questions and issues are left for follow up analysis.

There are a number o f possible directions for extending the analysis described 

in this chapter. One possible direction would be to include price uncertainty as an 

additional source o f uncertainty. A number o f studies (Klemperer et al. 1994; Brazee 

and Mendelsohn 1988; Reed and Haight 1996 Brazee et al. 1999) find that price 

variance increases over time. A model formulation would be possible that would 

allow for systematic dynamic uncertainty in both price and growth to be incorporated. 

One issue concerning the Markowitz model is that it is a single period (i.e. static) 

model. A single period model means that decisions are fixed for the entire planning 

horizon. Thus, a dynamic model that permits multi-period analysis would be
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required. Another issue pertains to availability o f stumpage price data and changes 

over time. Understanding the temporal properties o f price variance would require 

modeling using time series data. Generally, long term time series o f competitively 

determined stumpage prices in Canada is not available.

Another extension would be to broaden the diversity of investment options 

available to the investor. This study assumes that the decision to invest in a forestry 

asset has already been made. The problem is one o f optimizing harvest choices in 

order to maximize returns from the forestry asset given climate change and yield 

uncertainty. However, an interesting problem might be to consider the possibility o f 

purchasing different types of land and/or the possibility o f switching land use over 

time in response to climate change. Or, one might be interested in looking at how the 

opportunity to invest in non-forest financial market assets (e.g. stocks, bonds, treasury 

bills, etc) affects the optimal forest management choices. Heikkenen (1999), for 

example, incorporates the opportunity to purchase stocks as a prospect option that 

could be included in the portfolio o f assets. For example, one could assume that the 

starting asset is a quantity o f cash (instead of forestry land). The prospects would 

include various options related to: (a) purchasing and managing forest land and 

possibly reinvesting harvest income in forest assets or other types of assets, or (b) 

various options that may not have anything to do with forestry (e.g. stocks, bonds, 

commodity futures, real estate, etc). Another and possibly more relevant extension 

from a climate change perspective would be to consider the possibility o f  conversion 

to other land-uses (e.g. grazing, crops, renewable energy plantations) following 

harvesting at the end of periods one and two.
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Figure 8.1 Expected return vs standard deviation for scenarios
2 and 3.
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Figure 8.2 Mean-variance frontier from Hardaker et al. 2004.
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Table 8.1 Optimal investment portfolios for different levels o f minimum required returns using scenario 3 data

Minimum return required from the portfolio

147000 200000 250000 300000 350000 400000 450000 500000 550000 600000 650000
Investment option (prospects) Optimal portfolio (i.e. # of ha under each initial age class / prescription combination)
Leave 40 year old stand uncut 250 250 0 0 0 0 0 0 0 0 0
Leave 80 year old stand uncut 744 203 0 0 0 0 0 0 0 0 0
Cut 40 year old stand in period 1 0 0 0 0 0 0 0 0 0 45 250
Cut 80 year old stand in period 1 0 0 23 130 237 344 451 558 665 750 750
Cut 40 year old stand in period 2 0 0 250 250 250 250 250 250 250 205 0
Cut 80 year old stand in period 2 6 547 727 620 513 406 299 192 85 0 0

Portfolio variance 9.05E+08 1.80E+09 3.11E+09 4.96E+09 7.26E+09 9.99E+09 1.32E+10 1.68E+10 2.08E+10 2.60E+10 3.47E+10
Standard deviation 30,078 42,403 55,767 70,449 85,176 99,935 114,891 129,615 144,222 161,245 186,279

The minimum expected return o f $ 147,000 results from the ending inventory value of stands and soil expectation value

The maximum expected return of $ 650,000 results when the entire forest is cut in period one.
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Table 8.2. Relative contribution of climate variance to total 
portfolio variance

Minimum
return

Scenario 2 standard 
deviation 

($)

Scenario 3 standard 
deviation 

($) (Seen 2 /  Seen 3)* 100
147,000 7792 30078 25.91
200,000 10644 42403 25.10
250,000 13784 55776 24.71
300,000 17231 70449 24.46
350,000 20724 85176 24.33
400,000 24243 99935 24.26
450,000 27779 114891 24.18
500,000 31326 129615 24.17
550,000 34886 144222 24.19
600,000 39497 161245 24.49
650,000 45738 186279 24.55
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Table 8.3 Scenario 3 sample variances in predictions of future values o f yields and 
net benefits based on Monte Carlo simulation

Initial age class Prediction year Variance o f stand 
yield

40 2025 23262
40 2055 28807
40 2070 29486

80 2025 28890
80 2055 30105
80 2070 30412

Table 8.4 Differences between high and low prediction values for climate variables 
for different future time periods

Prediction year Temperature 
(deg. cent.)

Annual
precipitation

(mm)

Annual growing 
season 

precipitation 
(mm)

2020 3.0 149.82 108.22
2035 3.5 141.85 93.56
2050 4.0 133.88 78.89
2080 6.0 160.92 90.06

Table 8.5 Scenario 3 expected present value of net benefits and sample variances 
based on Monte Carlo simulation

Initial age class Prediction year Expected present 
value o f net benefit 

($ per ha)

Variance o f present 
value of net benefit

40 2025 450 60902
40 2055 213 5366
40 2070 136 1754

80 2025 715 72795
80 2055 248 5603
80 2070 150 1806
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CHAPTER NINE

EXPECTED VALUE-VARIANCE / CHANCE CONSTRAINT HYBRID
MODEL

Introduction

The previous chapter described and estimated a model that identified the 

frontier o f efficient EV portfolios for our forest management problem from the set of 

feasible portfolios. However, in order to assess the economic impact o f climate 

change and in order to understand the implications o f climate change for short and 

long term rates o f harvest, we require a model that predicts the decision maker’s 

actual portfolio choices (note: the behavioral assumption is that the decision maker 

selects the optimal portfolio and therefore the decision maker is rational and 

informed). Thus, a new type o f risk model formulation is required. The first goal o f 

this chapter is to develop a model that identifies the specific portfolios that maximize 

expected utility (with and without climate change). The second goal is to use the 

model to estimate the economic impacts of climate change and risk and to assess the 

implications o f sustained yield on the ability o f forest managers to adapt to climate 

change and risk.

The analysis in the previous chapter was based on efficiency theory using a 

Markowitz portfolio approach. The objective function was to minimize portfolio 

variance subject to a minimum return constraint. The model in this chapter is also 

based on efficiency analysis. Moreover, the Markowitz portfolio model provides the 

basis for the risk model -  but with some significant structural modifications. The 

objective function for the model in this chapter is to maximize certainty equivalent. 

This type of objective function differs from the objective function o f the previous 

chapter in two main ways. First, expected portfolio returns, variance, and covariances 

are jointly considered within the objective function. Second, the objective function 

requires that a measure of the individual’s risk preference be included (Hazell and 

Norton 1986).

The inclusion of risk preferences in the risk model for this chapter requires 

that we adopt some initial assumptions about these risk preferences. In particular, we
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require some initial assumptions about how risk preferences are affected by the 

decision maker’s wealth. There are two aspects to consider including the decision 

maker’s initial stock of wealth, and the degree to which the decision maker’s risk 

preferences are sensitive to incremental changes in wealth. For this study we assume 

that incremental changes in wealth over the range of potential portfolios does not 

affect preferences. Thus, risk preferences are constant for all EV combinations 

available to the decision maker. Risk preferences are represented by a single constant 

called the constant absolute risk aversion coefficient (CARA) (Hardaker et al. 2004).

The optimal portfolio for a decision maker is at the point where the slope o f 

the indifference curve o f the expected utility function is equal to the slope of the 

portfolio frontier. This is shown graphically in Figure 9.1. For a highly risk-averse 

decision maker CARA is relatively large and the indifference curve (iso-utility curve) 

is steeper than that o f a less risk-averse decision maker. Therefore, the more risk 

averse an individual is -  the more he/she will prefer points lower on the efficient 

portfolio curve.

Another fundamental way that the model in this chapter differs from the 

model in the previous chapter is that in this chapter we introduce forest management 

policy constraints into the model (described in the next section). The type of decision 

maker we are interested in modeling in this chapter is an individual who is a rational 

utility maximizer (where utility is a function o f returns from the hypothetical forest), 

and who is subject to forest harvesting constraints because the forest in question is 

publicly owned. This requires further extensions to the basic EV risk model. First, 

we require a model that incorporates the kind o f harvest constraints typically imposed 

for management of public forestland. Second, because harvest constraints also 

include yield parameters, and because there is uncertainty in yield parameters, we 

require a model that accounts for uncertainty in both the objective function and the 

constraints. The usual approach for modeling the former is timber harvest 

scheduling. The usual approach for modeling the latter is chance constraint risk 

modeling (McCarl and Spreen 1997).

The remainder o f this chapter is organized as follows. First, the timber 

supply-modeling framework is introduced and discussed. Second, the specific

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



formulation for the EV -  Chance Constraint optimization model is provided. Third, 

the model is used to address questions pertaining to; sensitivity o f the results to 

parameters, the economic impacts o f climate change and risk, and the effects of 

climate change and risk on harvest timing.

Application in a timber management context

The Markowitz portfolio model application in the previous chapter assumes 

that the decision maker is a rational investor whose choices are not restricted by 

objectives such as having to ensure sustained yield. In the case presented in this 

chapter, the decision maker is a rational utility-maximizing logger who has some 

flexibility to determine his/her own harvest schedule. However, given that he/she is 

operating on crown land, his/her harvest plan is subject to harvest constraints. 

Harvest scheduling models are required for problems of this nature (Johnson and 

Scheurman 1977; Dykstra 1984). The foundation for the model discussed in this 

chapter is a Model I type harvest scheduling optimization model (Dykstra 1984) 

modified to take account o f risk and risk preferences. The objective in Model I 

harvest scheduling models is to maximize some measure related to harvesting 

(economic returns in our case) subject to harvest constraints such as ending inventory 

constraints and flow constraints. Marshall (1988) and Reeves and Haight (2000) also 

employ a Model I formulation to assess the effects o f uncertainty on timber 

management.

The formulation described and evaluated in this section extends the basic 

Model I harvest-scheduling model in two ways. First, it takes account o f uncertainty 

in objective function coefficients and the risk preferences of the decision-maker. It 

does this by modifying the usual timber harvest scheduling objective function from 

maximizing benefits to maximization o f certainty equivalent. An additional 

dimension of our forest management problem is that the constraints for the problem 

require yield coefficients. Since for the purposes of our analysis, yield coefficients 

are random variables, there exists uncertainty with respect to the constraints. 

Therefore, a second main feature of the model described in this chapter is that it takes 

account o f uncertainty in the constraint coefficients using a chance constraint type o f

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



approach (Hazell and Norton 1986, McCarl and Spreen 1996). Thus, the existence of 

uncertainty in both the objective function and in the constraints requires the 

development of a hybrid risk model that incorporates aspects o f both EV types of risk 

models (for uncertainty in objective function coefficients) and chance constrained risk 

models (for uncertainty in constraints).

Model structure

The theoretical context and general framework for EV risk models is 

discussed in Hazell and Norton (1986) and Hardaker et al. (2004). They note that if  

income (Y) is normally distributed and if  the following functional form26 

(representing constant risk preferences) represents the decision maker’s utility:

U(Y)=  l - e ® r [9.1]

then the formulation for the objective function in an EV risk model (i.e. the
27individuals expected utility function) is as follows :

M a x : E[U(Y)] = CE = E[Y] -  0 .50  Var(Y) [9.2]

Where:

Maximization of E[U(Y)] is equivalent to maximization of certainty equivalent, Y is 

portfolio income, O is the Pratt constant absolute risk aversion (CARA) parameter, 

and Var(Y) is portfolio variance.

For the purposes of obtaining a model capable o f assessing the implications o f 

climate change on our forest management case study, we are interested in a 

formulation that can be used to determine the maximum risk adjusted return (or 

certainty equivalent return) that is possible from our 1000 hectare forest given 

predictions o f changes in stand yield and uncertainty related to climate change. For 

convenience, the management problem is restated. There are two initial age classes:

26 Hazell and Norton (1986) note that the utility function can also take other forms such as the 
quadratic utility function. The functional form provided in equation 9.1 implies that the risk aversion 
coefficient is constant over varying levels o f wealth- i.e. CARA.
27 In fact it is possible to derive the portfolio frontier (discussed in Chapter 8) from the EV model by 
running the model a number of times with a different value of the risk aversion parameter used in each 
ran. The set of solutions can be used to map out the portfolio frontier.
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(1) 250 hectares o f 40-year old aspen (IAC1 or j= l); and (2) 150 hectares o f 80-year 

old aspen (IAC2or j=2). There are three prescriptions: (1) no cut (i=l), (2) cut in 

period 1 in 2025 (i=2), and (3) cut in period 2 in 2055 (i=3). The planning horizon 

starts in the year 2010 and ends in 2070. The planning horizon is 60 years and there 

are two planning periods (each 30 years long). The specific formulation of the EV /
9Rchance constrained risk model evaluated in this study is provided as follows :

M U X  3 2 3 2

, F  y Z 2 W B IJ]X,J - 0 . W ' Z ' Z X ' , C o v {NBIJ}XIJ [9.3]
lA y  /  i=l j=\ M /=!

Where:

•  E[NB;j] is the expected present value of net benefit coefficients (defined in 

equations 7.18 to 7.23 in chapter 7),

• Xjj is the activity level for the choice variable associated with prescription “i” 

and initial age class “j”.

• <3> is the risk aversion coefficient, and

•  Cov(NBij) is the covariance matrix for the variable “net benefits”.

There are fours sets o f constraints in this model. The first two sets o f 

constraints are area constraints (i.e. limit area of IAC1 harvested to 250 hectares and 

area of IAC2 harvested to 750 hectares) and non-negative choice variable constraints. 

The remaining two sets o f constraints incorporate random variables. They are ending 

inventory constraints and flow constraints. The yield coefficients within these latter 

two sets of constraints are random variables. Hazell and Norton (1986) outline an 

approach for incorporating uncertainty in constraints in mathematical programming 

models called chance-constrained programming. For constraints where “a ^ ” is the 

random coefficient value, the chance constraint is formulated as follows:

+ K al’Z ' Z x ’,t c o v ^ W J 1,2 [9.4]
j  k j  k

Ka is a constant obtained from a cumulative normal distribution table. The value of 

Ka is obtained as follows. In cases where Z is normally distributed with a mean o f 0 

and a variance o f 1 (standard normal distribution), then Za is the value o f z such that

28 The model is non linear. The CONOPT solver in GAMS (Brooke et al. 1998) was used to run the 
model. The GAMS program code is available upon request.
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Probability (z < Ka ) = a. Thus, if  the decision maker requires that the constraint be 

feasible 90 % of the time, then K a = 1.28.

Applying the chance constrained programming formulation to the ending 

inventory constraint for our hypothetical forest management problem leads to the 

following equation:
3 2 3 2

1=1 y = l i= \ J= l

[9.5]

Applying the chance constrained programming formulation to the flow 

constraints for our optimization problem leads to the following equations:

( l-a)X ;£K JK !j- X £ K J]^ ,+^J{0 .0 ,( l -a )X 2l, ( l -a )X I2, - X JI, - X J2}'
2=1 2=1

0

Cov{V..}

0
(1 - a ) X 2X 

(1 - a ) X 22
-X31

- X 32

f 2 <0

[9.6]

(1 + /J) £  E[V2j ]Xl t -  X  w ,  J ]Xh + K .  I {0,0, (1 + /})X2, , (1 + P ) X 12, -  X si, -  X J2}'
3=1 3=1

Cov{Vu}

0

0

(1 + ^ )X 2, 
(1 + /?)X22 

- X  

- X
31

32

]1/2> 0

[9.7]
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Estimation of expected values, variances and covariances for all the random 

variables (E[NBij], E[VEIij], E[Vij]) was discussed in chapter 7. There are five 

remaining parameters that require values:

1. The maximum allowable fractional reduction in between period flow (a) 

(i.e. the maximum % decrease allowed in harvests in period two compared 

to period one),

2. The maximum allowable fractional increase in between period flow (J3) 

(i.e. the maximum % increase allowed in harvests in period two compared 

to period one),

3. The risk aversion coefficient value (<1>),

4. The standard normal statistic (K„) corresponds to the percentage o f times 

that the constraint must be satisfied given the selected values of the choice 

variables, and

5. The ending inventory target (Em).

Values for these parameters are context specific. For example, if  the decision 

maker is risk averse, a certain value for <1> is implied. The strategy adopted here for 

addressing variations in parameter values is to conduct sensitivity analysis by running 

the models for different values o f the parameters and comparing the results.

Harvest flows are determined by the fractional increase (j3) or decrease (a) 

that is permitted between periods one and two. Three sets of values are considered in 

this study: a=fi=0.1 , a=f}=0.25 and a=(3=0.50. A value of 0.1 implies that harvest 

flow is allowed to vary between period one and two harvest by 10 %.

The conceptual and theoretical basis o f the risk aversion parameter was 

described in chapter two (see equation 2.2). The parameter <I> is a constant absolute 

risk aversion (CARA) parameter (Pratt 1964; Hardaker et al. 2004). This measure is 

a function of (and is therefore sensitive to) absolute levels o f wealth (or income), 

units of measurement, and to the risk preferences of the decision maker (or the slope 

of the individual’s utility function). The measurement of a specific CARA parameter 

is beyond the scope o f the study. Hardaker et al. (2004) describe a method for 

inferring the CARA from measures o f relative risk aversion and measures o f wealth.
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In order to obtain plausible values for <I>, all that is required is information on relative 

risk aversion values for different types o f risk preferences and a measure o f wealth 

that is specific to the problem context o f the study (in terms o f wealth and 

measurement units). Anderson and Dillon (1992) suggest that a value o f the relative 

risk aversion coefficient of 0.5 represents an individual who is hardly risk averse 

while a value of 4.0 represents an individual who is very risk averse. Arrow (1965) 

suggests a value of 1 as generally representing the relative risk aversion coefficient of 

the average individual, although Hardaker et al. (2004) suggest that values higher 

than one are likely more typical. They note “while it is a matter for individual 

judgement,... values o f relative risk aversion somewhat higher than 1.0 may be more 

common than has been implied in the literature.” (pg 109).

In terms of alternative values for wealth for this study we use the high and low 

objective function values for the net present value for our 1000-hectare forest. These 

values range from $100,000 to $650,000 depending on assumptions regarding climate 

scenarios and constraints. In terms of relative risk aversion, we consider values o f 0.5 

(hardly risk averse) and 4 (very risk averse) as a representative range. The formula 

for converting the relative risk aversion parameter to an absolute risk aversion 

parameter is as follows (Hardaker et al. 2004):

Oa(w) = U\ w) / U ' (w)
= ®r(w)/ w

With two possible values for O r(w) (0.5 and 4.0) and two values for wealth ($100,000 

and $650,000) there is the possibility of four values for the constant absolute risk 

aversion parameter for this study. We also employ a general value o f 0.00001 as a 

measure roughly representing the absolute risk aversion for the average forestry 

decision maker. The full range of values for CARA used in this study are shown in 

Table 9.1.

The ending inventory and flow constraints are also controlled by the selected 

value of the normal statistic (K J  (i.e. the critical value for the chance constraint). 

The normal statistic in the objective function determines the percentage o f times that 

the constraint must be satisfied (Hazell and Norton 1986). For example, a value o f

0.53 means that values of “X” (in equation 9.6 and 9.7) are selected such that there is
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a 70 % likelihood that the ending inventory and flow constraints will be satisfied 

given the known distributions of the yield variables. A value of Ka of 1.28 means that 

values o f  “X” (equations 9.6 and 9.7) are selected such that there is a 90 % chance 

that the ending inventory and flow constraints will be satisfied given the distributions 

of these variables. For this study, we estimate the model over a range o f values of the 

normal statistic starting at 0.0 (50 % chance constraints are satisfied), then 0.1 (54 % 

probability that constraints are satisfied), and increasing by increments up to a value
7Qof 2.05 (98 % probability that constraints are satisfied) .

The final parameter that requires a value is the ending inventory constraint 

target (Em). The previous paragraphs identify a range of possibilities for values of the 

flow constraint parameters, the CARA parameters, and the chance constraint 

parameter. The analysis in the following sections will be based on a wide range o f 

different model structures -  each based on different combinations o f values of the 

parameters. A large number o f models are anticipated. Incorporating a range o f 

possible values for the target ending inventory parameter would have increased the 

number of combinations of parameter values and the number o f models that would be 

estimated. For the purposes of this study it was decided to adopt a single value of the 

target ending inventory parameter and use this value for all models that include 

harvest constraints. The rationale was to avoid further increases in the number of 

models developed and solved. The target ending inventory value is set at 220,000 

cubic meters. This is roughly based on having about 500 hectares of 40-year old 

aspen (140 cu. m. per ha) and 500 hectares o f 80-year old aspen on the site (300 cu. 

m. per ha.) at the end o f the planning horizon.

Analysis

There are four questions that will be addressed using the Expected Value -  

Variance / Chance Constraint hybrid model. They are:

29 In some circumstances the chance constraint and the value o f CARA may be interrelated in the 
sense that an individual’s degree of risk aversity might also influence the appropriate value of the 
chance constraint parameter (K). For this study we are looking at a situation where the risk aversion 
parameter pertains to the logger who is making the harvesting decision and the value of K applies to 
the public forest land manager. So they are not interdependent. But for other types o f problem 
constructs it is possible that the risk aversion parameter and K are jointly determined.
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1. How sensitive are certainty equivalent values and portfolio composition

to variations in the critical value of the normal statistics used for the 

chance constraints and to the allowable increase or decrease in between 

period harvest?

2. How sensitive are certainty equivalent values and portfolio composition

to variations in the constant absolute risk aversion (CARA) coefficient?

3. What are the economic impacts of climate change and uncertainty?

4. What are the implications o f climate change and uncertainty for harvest 

scheduling?

Sensitivity to chance and flow  constraints

The purpose o f the analysis undertaken with the EV/Chance constraint model 

in this section is to conduct a sensitivity analysis o f how the risk model results vary 

with different combinations of even flow constraints and chance constraints. 

Analysis was conducted using the scenario three input data (i.e. climate change 

productivity effects, climate change uncertainty, and yield uncertainty all included). 

The value o f CARA for the models in this section was set to 0.00001 (i.e. the 

representative average value for a moderately risk averse decision maker). The 

model formulation with sustained yield constraints imposed was used. The ending 

inventory constraint was set at 220,000 cubic meters. The range o f values tested for 

the chance constraints and flow parameters are described below30.

Three separate models were estimated. The first model sets the value for 

alpha and beta at 0.1 (i.e. 10 % allowable deviation in harvest between periods one 

and two). The second model set the value for alpha and beta at 0.25 (i.e. 25 % 

allowable deviation in harvest between periods one and two). The third model set the 

value for alpha and beta at 0.5 (i.e. 50 % allowable deviation in harvest between 

periods one and two).

Each of the three models above was initially estimated with a value for the 

standard normal statistic (i.e. “K” in equations 9.5, 9.6, and 9.7) set at 0 (implying

The GAMS (Brooke et al. 1998) program code for the basic model used in 
this chapter is available on request.
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that there is a 50-50 chance that the constraint will be met). The models were then re- 

estimated for a range of increasing values for the standard normal statistic up to 2.05 

(i.e. implying that the constraints are satisfied 98 % of the time). The certainty 

equivalent value results are shown graphically in Figure 9.2. The solutions for the 

nine models that are identified in groupings A,B, and C in Figure 9.2 are provided in 

Table 9.2.

The model presented in this section is a traditional harvest-scheduling model 

with sustained yield constraints. Sustained yield constraints are often associated with 

public forestland management. Thus, the scenario being modeled is one o f a private 

harvester making harvest decisions on public lands to maximize his/her certainty 

equivalent subject to harvest constraints that the harvester is required to meet as part 

of his/her harvesting obligations. It seems reasonable to assume that a private sector 

logger will only be interested in obtaining a lease for a parcel o f public land if  there is 

some possibility that he/she will have the opportunity to harvest timber from that 

land. If the risk model provides a no harvest (or a low harvest) solution (i.e. an 

optimal portfolio that holds most of the 1000 hectare forest until the end of the 

planning period), then the forest has limited value to a potential leaseholder. Thus, 

for the purpose o f this analysis we assume that harvest restrictions that result in no 

harvest solutions (or limited harvest opportunities) are outside the boundary of 

operability.

Figure 9.2 shows that the certainty equivalent value for each model without 

chance constraints (i.e. the three models shown in group A) are roughly equivalent. 

Permitting greater flexibility in flows between periods does increase certainty 

equivalent slightly but the effect is not large (see Table 9.2). In fact, as shown in 

Figure 9.2, differences in certainty equivalent values as a result o f changes in 

allowable deviation in flow constraints are small for all levels o f the chance 

constraint. Furthermore, as the required likelihood of meeting the constraint 

increases, the differences in certainty equivalent values between the three models (i.e. 

10 %, 25 % and 50 % allowable deviations in between period flows) narrows. There 

are two main conclusions that derive from these results. First, significant tradeoffs 

between chance constraints and allowable flow deviations are not evident from these
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results. Second, increasing the allowable deviation in between period harvest flow 

does not appear to be particularly effective as a strategy for adapting to uncertainty in 

harvest yields. This is the case, at least for the model presented here which is a static 

one period model without recourse. This issue is addressed again using a recourse 

model in Chapter 10.

One of the reasons for undertaking the sensitivity analysis in this section is to 

see what effect assumptions about parameter values have on the results. The analysis 

provided above suggests that the models are relatively insensitive to modifications in 

allowable flow deviations. Therefore, for the purposes of the models developed in 

the next two sections we will adopt the middle value for allowable flow deviations 

(i.e. 25 %) for the flow parameter (alpha and beta).

Figure 9.2 illustrates that increasing the required likelihood of meeting the 

harvest flow constraint does change certainty equivalent values. Initially certainty 

equivalent values decrease gradually as the required likelihood increases. However, 

certainty equivalent values decrease at an increasing rate as required likelihood 

increases. For example, for the model that allows a 10 % deviation in between period 

flows, increasing the required likelihood of meeting the flow constraint from 50 % to 

73 % results in a 9 % decrease in certainty equivalent (Table 9.2). Increasing the 

required likelihood from 73 % to 90 % results in a 20 % decrease in certainty 

equivalent. Therefore, the marginal cost o f increasing the required likelihood of 

meeting the constraints is increasing. The implications o f these results are that 

reducing the required likelihood for meeting the flow constraints can have significant 

effects on returns. These gains would need to be viewed in the context of the social 

costs or relaxing the constraints.

Table 9.2 shows that the reason that certainty equivalent values increase as 

chance constraint requirements become less stringent is that the area harvested 

increases. For example, when the required likelihood of meeting the constraints is set 

at 98 % (i.e. see group D in Figure 9.2) there is no harvesting (note -  this result is 

reported in the text only and is not shown in Table 9.2). In cases where the flow 

constraints must be satisfied 90 % of the time and the allowable deviation in flow 

between period 1 and 2 is 25 %, then about 32 % of the 1000 hectare forest is
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harvested (Table 9.2). In the case where the flow constraint must be satisfied 73 % of 

the time and the allowable deviation in flow between period 1 and 2 is 25 %, then 59 

% of the 1000 hectare forest is harvested over the planning horizon. Thus, the 

incentive for a logger (whose primary interest in obtaining a lease is to maximize 

utility from harvest income), to obtain a lease for the forest area is much higher if 

he/she only needs to satisfy the flow constraints 73 % of the time as opposed to 90 % 

of the time. An important implication of this result is that adjusting likelihood 

requirements can increase flexibility relative to adapting to climate related uncertainty 

and general uncertainty in forest management.

As noted, one o f the reasons for undertaking the sensitivity analysis in this 

section is to identify suitable values for parameter values that will be used in models 

in later sections. Hazell and Norton (1986), suggest that in agriculture economics 

problems, the required likelihood for chance constraints are typically 90 % or higher. 

However, as shown in Table 9.2 a required value o f 90 % results in only 32 % of the 

area being harvested (with a 25 % allowable deviation in flow). A required 

likelihood at a level o f 73 % results in 59 % of the 1000 hectares being harvested over 

the planning horizon. On the basis o f the fact that the marginal cost o f a 73 % 

required likelihood is significantly lower than the marginal cost o f a 90 % required 

likelihood and a 73 % likelihood permits a higher harvest we feel that the 73 % 

threshold best suits the analysis to follow. Therefore, for the purpose o f the models 

developed in later sections, we will adopt a required likelihood threshold value o f 73 

%. The equivalent value o f “K” is 0.6.

It should be noted that there is some divergence between current forest 

management policies and the methods and results presented in this section. This is 

mostly due to the fact that uncertainties in yield coefficients and chance constraints 

are generally not an explicit part of operational harvest scheduling and timber supply 

analysis. There are, therefore, no real standards relative to what likelihood threshold 

is most appropriate for the purpose o f chance constraint models. However, the fact 

that potential uncertainty in constraints is generally not explicitly considered in 

operational planning does not necessarily make it less relevant. Generally, forest 

managers probably do recognize that uncertainty in yields does exist. They may
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employ a number o f strategies to take this uncertainty into account in their choices. 

For example, they may base their final decisions about allowable annual harvests on a 

range o f different model outputs. A second strategy is that managers generally 

continuously update their information and regularly recalculate AACs. A third 

strategy is that they may incorporate conservative values into planning models 

resulting in conservative estimates of allowable harvests. The premise of the 

approach for this thesis is that the array of strategies that managers may use to deal 

with risk implicitly will have roughly an equivalent result as the explicit way that risk 

and uncertainty are addressed in the specific models presented in this dissertation. A 

parallel can be drawn to the agriculture economics research literature. Generally, 

farmers probably do not base their decisions on risk models. At the same time, risk 

modeling is used in agricultural economics research to evaluate the effects o f risk and 

uncertainty on agricultural decision-making.

Sensitivity to variations in risk aversion

One purpose of this study is to understand what the implications o f climate 

change and risk are for optimal harvest choices and economic benefits. The model 

described in this chapter incorporates decision maker risk preferences. We are not, 

however, modeling the choices o f a specific decision maker with specific preferences. 

This means that the risk preferences of our decision maker could range anywhere 

from being risk neutral to being extremely risk averse. This in turn leads to the 

question: How important might differences in risk preferences be with respect to the 

results of this study and future studies looking at risk and climate change in a forestry 

context? The analysis in this section looks at the sensitivity o f risk model solutions 

and objective function values to variations in the degree o f risk aversity o f the 

decision maker. The modeling approach is to re-estimate the model under various 

combinations o f values for the CARA parameter and chance constraints (i.e. with and 

without chance constraints).

The values of parameters and the basic model structure used for the analysis 

in this section are as follows:

• Modeling is based on scenario three input data.
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• The objective function is to maximize certainty equivalent subject to all 

harvesting constraints (i.e. ending inventory and even flow constraints), area 

constraints, and non-negativity constraints.

• Chance constraints are set at two levels: 0 (50 % likelihood) and 0.6 (73% 

likelihood).

• The even flow constraint allows for a 25% deviation in between period 

harvests.

• The target ending inventory parameter is set at 220,000 cubic meters.

• The model is estimated for the following values o f CARA -  0.0, 0.00000077, 

0.0000055, 0.00001, 0.000025, 0.00004 -  with and without chance constraints 

imposed.

The results for the models described above are presented in Figure 9.3 and 

Table 9.3. The baseline value for comparison purposes is the objective function value 

(i.e. certainty equivalent value) when chance constraints are not imposed and when 

CARA is set to zero (implying risk neutral decision makers). The objective function 

value and solution for this scenario are shown in the first column o f Table 9.3. The 

certainty equivalent for the stand is $439,863. Moreover, 77 % of the total 1000 

hectares is harvested in either period 1 or 2. If one looks only at the effect of 

increasing risk aversion (i.e. ignoring chance constraints for the time being) then, as 

would be expected, certainty equivalent decreases with increasing risk aversion but at 

a decreasing rate (top line in Figure 9.3). There is a 28 % decrease in the certainty 

equivalent value for the average decision maker (CARA=0.00001) compared to the 

risk neutral decision maker (CARA-0.0). Thus, failure to account for risk in the 

objective function may lead to significant overestimates o f the benefits o f forestry
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production because of failure to account for a significant economic cost (i.e. the risk 

penalty).

Similar trends are evident in the results when the chance constraints are 

imposed (i.e. the normal statistic is set at 0.6 which implies that the constraint must be 

satisfied at least 73 % of the time). The imposition of the chance constraints shifts 

the CE / CARA curve downward (particularly at low values o f CARA). Including 

chance constraints (in addition to risk preferences) magnifies the bias in estimation of 

benefits that occurs if  uncertainty is not considered. For example, the certainty 

equivalent value for the average decision maker (CARA=0.00001) when both 

objective function and constraint risk is considered is $285,775 (Table 9.3). This 

value is 35 % lower than the certainty equivalent value when risk is ignored.

Figure 9.3 shows that as the value o f CARA increases, the influence of chance 

constraints on certainty equivalent decreases. Including chance constraints has a 

large impact on certainty equivalent at low levels o f risk aversion but as the risk 

aversity of the decision maker increases, risk aversion becomes more dominant. The 

reason for this result seems to be that as risk aversion increases, less and less area is 

harvested. As less and less area is harvested, the even flow constraints (and therefore 

the chance constraints) become less important in terms o f their effect on certainty 

equivalent. As noted in Table 9.3, the optimal harvest solutions for the model with 

chance constraints are almost identical to the optimal harvest solution for the model 

without chance constraints when CARA is 0.00004. In both cases about 83 % of the 

land area remains un-harvested over the planning horizon.

Although optimal harvest solutions (both with and without chance constraints) 

at high levels o f risk aversion are similar, the same is not true at low levels of risk 

aversity. Table 9.3 shows that for decision makers with relatively low levels o f risk 

aversion, certainty equivalent values and optimal solutions are very different between 

the models with, and without, chance constraints imposed. For example, for decision 

makers with average risk aversion (CARA=0.00001) certainty equivalent is 10 % 

higher in the model without chance constraints. The imposition of chance constraints 

also affects the optimal portfolio. Seventy seven percent o f the area is harvested in 

the model without chance constraints. When chance constraints are included, the
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percent of the area harvested in periods one and two drops to 59 %. So in addition to 

affecting objective function values, the imposition o f chance constraints also has 

significant implications relative to optimal solutions (i.e. portfolio selection). At 

lower levels, risk aversion is relatively less important, but constraint risk has a 

significant influence on both certainty equivalent and on solutions (i.e. optimal 

harvest solutions or the optimal portfolio).

A number o f significant findings come out of the analysis in this section. 

First, accurate measurement of forestry benefits requires that risk and uncertainty be 

taken into account. Second, consideration o f risk and uncertainty is important 

irrespective of the specific risk preferences o f decision makers. At high levels o f risk 

aversity, risk preferences have a major influence on benefits and portfolio selection. 

Flowever, risk and uncertainty considerations are also important even when the risk 

aversity o f decision makers is somewhat low. In this case, it is the uncertainty in the 

constraints that has a significant effect on benefits and on portfolio choice. These 

results imply that risk and uncertainty have important implications for forestry 

analysis irrespective of whether or not risk preferences are viewed as low or high.

Economic impacts o f climate change and uncertainty

A feature of the EV / Chance constraint model developed for this chapter is 

that it is flexible and can be modified to analyze different contexts and scenarios. 

Changing the values of parameters leads to new models. Also, changing the types of 

constraints imposed can permit application o f the model to different types of 

problems. The previous two sections have used the model to assess the sensitivity of 

certainty equivalent and optimal portfolio selection to variations in chance 

constraints, flow constraints and risk aversity. The situation presented was one o f a 

private harvester obtaining timber rights for public lands (i.e. a leaseholder) and 

maximizing certainty equivalent subject to sustained yield harvest constraints. In this 

section we are interested in looking at both the impacts o f climate change and 

uncertainty as well as the interrelationships between climate change and sustained 

yield forest policy. The goal o f the analysis in this section is to evaluate the 

economic impacts of uncertainty and climate both with, and without sustained yield
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constraints imposed. We also consider the economic implications o f climate change 

and uncertainty in a case where the decision maker takes action to reduce or eliminate 

the uncertainty associated with the period one harvest yield.

Another feature o f the analysis in this section is that we compare the results 

using the scenario one, two, three and four input data. Scenario one provides the 

baseline input data (no climate effects and yield predictions are deterministic). 

Comparisons of model runs using the scenario two input data (future random yields 

based on climate change) with model runs using the scenario one input data are used 

to estimate the pure effects o f climate change (without uncertainty in yield 

parameters). Comparisons of model results using the scenario three input data 

(predictions based on future uncertain yields with both climate and yield variance as 

sources o f uncertainty) with model runs using the scenario one input data are used to 

compare choices o f individuals who ignore uncertainty and climate with the choices 

o f individuals who take full account of climate change and yield uncertainty in their 

decision making. Comparisons o f model results using scenario four input data (i.e. 

uncertainty in period one harvest yields is eliminated by conducting an inventory) 

with model results using scenario three input data, allows us to look at the 

implications of eliminating uncertainty in period 1 harvest yields on benefits and 

portfolio choices.

First we look at the case without sustained yield constraints. In this case 

harvesting decisions are not constrained by forest policies (i.e. this is the case o f a 

private landowner). The objective function is similar to what was used in the 

previous two sections (i.e. maximize certainty equivalent). However, the constraints 

for this problem are limited to area constraints and non-negativity constraints. We 

drop the ending inventory and flow constraints for this initial model.

Since there are no harvest constraints in the first model used in this section, 

the model is referred to strictly as an EV model (as opposed to the EV -  Chance 

constraint model discussed later). The objective function for the EV model is 

unchanged. The decision maker’s goal remains to maximize certainty equivalent. As 

previously noted, certainty equivalent is defined as expected return minus a risk 

premium. The modeling approach for the analysis in this section is to solve the EV

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



model for each of the four sets o f input data (i.e. scenarios one, two, three and four) 

over the same range of CARA values used in the analysis in the previous section. 

The results o f this analysis are provided in Figure 9.4 and Table 9.4.

The maximum certainty equivalent value without sustained yield constraints 

for the 1000 ha forest based on current yields and ignoring uncertainty (i.e. using 

scenario one input data) is about $ 500,000 (Figure 9.4). Since the scenario one input 

data are deterministic, there is no reduction for risk. The scenario two input data 

represents the productivity effects of climate change and the effects of climate 

uncertainty. The pure productivity effects of climate change can be seen by 

comparing CE values resulting from use o f scenario two input data with CE values 

resulting from use of scenario one input data when the CARA parameter is set at zero 

(i.e. setting CARA at zero essentially makes the risk premium equal to zero). Figure 

9.4 shows that the pure productivity effects of climate change from a private 

landowner perspective are positive. Certainty equivalent values are 28 % higher with 

climate change when the CARA is set to zero (Table 9.4). The effect o f climate 

uncertainty can be seen by viewing the scenario two curve in Figure 9.4. Certainty 

equivalent values decrease somewhat as CARA increases, however, the effects are 

not large. Even for the most risk averse decision maker, the certainty equivalent 

value using the scenario two input data is higher than the baseline value (scenario 

one). Thus, the overall effects of climate change on economic benefits from a private 

landowner perspective (i.e. without sustained yield constraints) are positive. 

Uncertainty in climate variables does decrease certainty equivalent somewhat at high 

levels o f risk aversity but not enough to offset the positive productivity effects of
31climate change.

The results change significantly when yield uncertainty is included in the 

model. The effect o f risk aversity on certainty equivalent when both climate effects 

and yield uncertainty effects are included (i.e. scenario three input data) is also shown 

in Figure 9.4. When yield uncertainty is considered, certainty equivalent tends to be 

below the baseline certainty equivalent at values of CARA above 0.000005. This

31 It should be noted, however, that as previously stated, the variances o f the climate variables may be 
conservatively estimated.
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result suggests that not considering yield uncertainty results in a significant 

overestimation o f benefits from forestry operations (for private landowners). The 

positive climate change productivity effects actually dampen the negative effects of 

yield uncertainties. However, the economic costs o f uncertainty in yield parameters 

are relatively large. Moreover, these costs increase as the degree of risk aversity
32increases .

The decline in certainty equivalent values with increasing risk aversion under 

scenario three is rather dramatic. A factor contributing to this decrease is the high 

levels of variance in net benefits associated with period one (i.e. short term) harvest. 

However, because the period one harvest is close to the present, managers may have 

the option to reduce uncertainty in period one harvest benefits by measurement (e.g. 

by conducting an intensive inventory or by employing some other stand yield 

measurement option that eliminates uncertainty regarding period one harvest yields). 

This is the basis for the scenario four input data. The scenario four input data is 

premised on the assumption that harvest yields in period one are known with 

certainty. Figure 9.4 shows that eliminating uncertainty in period one harvest yield 

results in relatively large increases in certainty equivalent values for the 

unconstrained model. In fact, certainty equivalent values for scenario four are higher 

than scenarios one, two and three for all positive values o f risk aversion. Thus, there 

appear to be relatively large economic benefits associated with eliminating 

uncertainty in period-one harvest yields. In fact, Table 9.4 shows that the certainty 

equivalent for a logger with moderate risk aversion (i.e. CARA=0.00001) is 184 % 

higher under scenario four compared to scenario three. The difference in absolute 

dollar terms is $ 292,427. This is approximately the benefit o f new information about 

period one harvest yield. The economic gain o f eliminating uncertainty in period-

32 Note these results are contrary to the results suggested by Parmell et al. (2000) who note that by and 
large the costs of risk in a farm management context tend to be low. This may be due to the fact that a) 
our assumed risk aversion coefficients are higher, b) the variances associated with forestry production 
are higher, or c) a combination of the two.
33 This amount pertains to the private landowner case. In our simple hypothetical forest case, the 
landowner might be prepared to pay up to this amount to reduce first period harvest yield uncertainty. 
In reality a large number of additional factors would likely affect the amount the owner would be 
willing to pay including profit requirements, tax considerations, the relative extent to which period one 
harvest yield is fully eliminated vs partially reduced by operational inventories, etc.
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one harvest yield increases with increases in the degree of risk aversion of the logger. 

The economic return from eliminating period-one harvest yields is highest for an 

individual who is very risk averse (i.e. CARA = 0.00004). In this case, eliminating 

uncertainty in period-one harvest yield results in a 470 % increase in certainty 

equivalent value.

Another question o f interest regards the impacts of climate change and 

uncertainty on portfolio choice (i.e. optimal solutions). The optimal portfolios for the 

various scenario / risk aversion value combinations are provided in Table 9.4. For the 

baseline case, the entire 1000 hectares is harvested in period 1. This is not surprising 

because: (a) the expected value of net benefit per ha is highest for period one harvest, 

(b) there are no harvest constraints, (c) there is no premium on risk, and (d) the 

planning periods are 30 years long and therefore as long as the economically optimal 

rotation is less than 70 yrs (i.e. 40 yrs (starting age) plus 30 yrs (planning horizon)) 

the unconstrained solution will be to harvest in period one. A similar result is evident 

using the scenario two input data.

Portfolio adjustments to risk do, however, start to become evident in the 

model using the scenario three input data. For example, at somewhat moderate 

values o f CARA (0.0000055) the composition o f the portfolio begins to change. 

Maximization of certainty equivalent requires that 71 hectares in IAC1 is cut in 

period 2 (Table 9.4). For very risk-averse forest landowners, all o f the area in IAC2 

is cut in period 2 and all o f the area in IAC1 remains un-harvested. Therefore, as 

decision makers become more averse to risk, their general response is to want to defer 

harvesting to later periods. As noted and described in Chapter 8, variances o f net 

benefits in later periods tend to be smaller than variances in net benefits in early 

periods. Therefore, a decision maker looking for ways to reduce risk will defer 

harvesting. The motivation for this type o f decision may be that by delaying 

harvesting the decision maker is delaying risk. She/he may prefer future risk to 

present risk thereby justifying the discounting o f risk and choices that result in putting 

risk off to some future date.
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Under scenario four with the unconstrained model, much of the uncertainty in 

net benefits is eliminated. Thus, the penalties for risk also become smaller. The 

optimal portfolio under scenario four is to harvest the entire forest in period one.

For the next model in this section we return to the case with sustained yield 

constraints. Assumptions about parameter values and the basic modeling approach 

are described as follows:

• Modeling is based on scenario one, two, three and four input data.

• The objective function is to maximize certainty equivalent subject to all 

harvesting constraints (i.e. ending inventory and even flow constraints), area 

constraints, and non-negativity constraints.

• Chance constraints are set at 0.6 (73% likelihood).

• The even flow constraint allows for a 25 % deviation in between period 

harvests.

• The target ending inventory value is set at 220,000 cubic meters.

• The model is estimated for the following values of CARA -  0.0, 0.00000077, 

0.0000055, 0.00001, 0.000025, 0.00004

Figure 9.5 shows the overall and relative effects of productivity changes and 

uncertainty on the economic benefit with sustained yield constraints. A comparison 

o f certainty equivalent values when CARA = 0.0 shows the pure productivity effects 

o f climate change for this scenario. The present value o f net benefits using climate 

normal data to predict harvest yields and ending inventory yields (scenario 1) is about 

$300,000. The present value o f net benefits using scenario 2 input data (based on 

pure climate change related productivity effects with the risk premium ignored - 

chance constraints are still in effect) is about $ 419,164 (Figure 9.5 and Table 9.5). 

Thus, productivity increases associated with climate change have a significant
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positive impact in terms of economic benefits -  even when sustained yield constraints 

are incorporated. These results are similar to the private forestland management case.

Figure 9.5 also shows the degree of sensitivity of objective function values to 

changes in degree of risk aversion of the decision maker. Certainty equivalent values 

for model results using the scenario two input data are not particularly sensitive to 

risk preferences and chance constraints. In fact, even at the highest level o f risk 

aversion, certainty equivalent values with climate change (scenario two) are much 

higher than certainty equivalent values without climate change (scenario one results). 

This confirms previous findings that climate change is not particularly prominent as a 

source o f risk and uncertainty. Certainty equivalent values for model results using the 

scenario three input data are, however, much more sensitive to risk aversion. 

Certainty equivalent values decrease from $ 371,201 to $ 120,680 (67% decrease) 

with increasing risk aversity (Figure 9.5 and Table 9.5).

The results shown in Figure 9.5 for scenario four are interesting. These 

results show that under the assumption that a leaseholder is able to eliminate 

uncertainty in period-one harvest yield, then certainty equivalent values with climate 

change and all sources o f uncertainty included (i.e. scenario four) are higher than 

certainty equivalent values without climate change and uncertainty (scenario one) at 

all levels of risk aversion for the model with sustained yield constraints. The 

difference in benefits between scenario three and scenario four (i.e. the economic 

benefit of new information about period-one harvest yield) for the moderately risk 

averse decision maker (i.e. CARA=0.00001) is $ 60,896. The absolute difference 

between the scenario three and four results for the unconstrained model was $ 

292,427. Thus, the imposition o f sustained yield dramatically reduces the benefits o f 

reducing uncertainty in period one harvest yield.

A comparison of Figures 9.4 and 9.5 suggests that the overall pattern o f 

results for objective function values for the public forestland management scenario 

are similar to the results observed for the private forestland scenario. In absolute 

terms, objective function values are lower when sustained yield constraints are 

imposed. A potential question of interest is: What are the relative opportunity costs 

of sustained yield for the various scenarios? The relative opportunity costs o f
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sustained yield can be seen by comparing relative differences in certainty equivalent 

with and without sustained yield constrained models for each scenario for a decision 

maker with a particular level o f risk aversion. In this case we compare certainty 

equivalent values for the moderately risk averse decision maker (i.e. 

CARA=0.00001). The imposition of sustained yield constraints results in the

following relative decreases in certainty equivalent value. For scenario one (the 

baseline case), certainty equivalent decreases 44 % when sustained yield is imposed. 

For scenario two, certainty equivalent decreases 34 %. For scenario three, certainty 

equivalent decreases 18 %. For scenario four, certainty equivalent decreases 46 %. 

These results are mixed. Comparing the scenario one and two results would suggest 

that climate change tends to reduce the opportunity costs of sustained yield (i.e. the 

relative decrease declines when climate change effects are included). A similar result 

is evident with the scenario three. However, the results from comparing scenario four 

and scenario one, suggest that when the decision maker has the opportunity to 

eliminate uncertainty in period-one harvest yields, then the opportunity costs o f 

sustained yield slightly increase under climate change. Thus, the results are 

dependent on the underlying assumptions made about sources of variance and about 

actions that a decision might take to reduce variance in areas where it is feasible to do 

so. If the logger does have the flexibility and capability to eliminate uncertainty in 

period-one harvest yields, then the benefits o f climate change may be more 

pronounced without sustained yield than with sustained yield and therefore, the 

relative opportunity costs o f sustained yield under climate change increases 

somewhat. If, however, the logger is not able to eliminate uncertainty in period-one 

harvest yield, then the opportunity costs o f sustained yield appear to be lower under 

climate change.

The pattern o f results pertaining to portfolio choice (i.e. harvest solutions) for 

the model with sustained yield constraints is different from the model without 

sustained yield constraints case. The solutions to the model with sustained yield 

constraints are shown in Table 9.5. Comparing the optimal portfolios for each 

scenario with the optimal portfolios provided in Table 9.4 (i.e. solutions without 

sustained yield constraints) shows that the imposition of harvest constraints results in

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a more diversified forestry portfolio compared to what a private landowner would 

select.

The results in Table 9.5 show that risk aversion does have some affect on 

portfolio composition (with the public forestland case). For scenario three, the 

preferred portfolio for decision makers with moderate to low risk aversion (i.e. less 

than 0.00001) is to harvest the majority of the 1000-hectare forest in periods 1 and 2. 

However, the preferred portfolio for loggers with higher levels o f risk aversity for 

scenario three is to not harvest the majority o f the area. The motivation may be 

similar to the motivations described for a private decision maker. If  a harvester is 

highly risk averse, he/she may prefer to postpone harvesting (and therefore risk) until 

sometime in the future (as was shown in Chapter 8). The pattern o f solution results 

for scenario four is not the same as scenario three. For scenario four, the optimal 

portfolio is unchanged for all levels o f risk aversion. Thus, in cases where the 

decision maker has the opportunity to eliminate uncertainty in period one harvest 

yield; differences in decision maker risk preferences have no effect on portfolio 

selection. Questions related to the implications o f climate change, uncertainty, and 

assumptions about period-one harvest yield on total areas harvested and harvest 

timing will be addressed in more detail in a later section.

The results presented up to this point leads to additional questions o f interest. 

First, what are the direct implications o f climate change productivity change in a 

deterministic management setting? Second, is it possible to satisfy sustained yield 

constraints for public forestland timber management if  we combine risk and 

uncertainty with parameter assumptions that more closely reflect current sustained 

yield requirements? Third, what are the implications o f climate change and risk if  we 

consider the risk preferences o f society instead o f the risk preferences o f an individual 

in the risk model? These questions are addressed in the remainder o f this section 

using results obtained by further modifying the model structure in a way that allows 

us to specifically address each question.
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Effects o f  climate change on sustained yield objectives in a deterministic setting

In many respects current forest management planning is deterministic because 

forest managers generally do not consider variables upon which decisions are made in 

a probabilistically. A question of interest might be: What are the direct implications 

o f climate change productivity effects if  we ignore all the risk aspects of our harvest- 

scheduling problem? In order to obtain results that pertain to this question we can 

compare the model results when using scenario 1 and 2 input data with chance 

constraints and risk aversion values set at zero. In effect the model becomes 

deterministic. An additional modification of the model is that we have imposed a 

flow constraint that allows a more typical 10 % (as opposed to 50 %) deviation in 

between period flows. This structure permits us to isolate the effects of climate 

change productivity effects relative to the extent to which sustained yield constraints 

become more or less constraining. The specific model outputs that will provide some 

indication of whether sustained yield is more or less constraining under climate 

change are differences in the marginal stand values o f the two stand types (i.e. IAC1 

and IAC2), and differences in the optimal portfolio. Marginal stand values are 

obtained from the GAMS output. These values represent the marginal increase in 

objective function values with a 1 hectare increase in each stand type. Table 9.6 

provides a summary of model results based on the modeling approach described 

above. Table 9.6 shows that the marginal values o f the two stand types for this 

particular construct are significantly higher with climate change than without. Also, 

the percentage of the area that can be harvested while still satisfying the constraints is 

higher with climate change than without. These results show that in a deterministic 

setting, climate change increases the ability to satisfy sustained yield constraints 

while increasing forestry benefits. Increases in net portfolio benefits occur as a result 

o f being able to harvest a larger percentage o f available area in periods one and two. 

As shown in Table 9.6, climate change productivity effects allow for a larger area to 

be harvested in periods 1 and 2. This is because productivity is increasing in each 

period in the planning horizon. Therefore, flow constraints and ending inventory 

constraints are easier to satisfy.
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Effects o f  climate change on sustained yield in a stochastic setting

As emphasized throughout this study, forest management is not deterministic. 

Moreover, with climate change, forest management is becoming more (not less) 

uncertain (although as we have shown perhaps not to the degree we might have 

expected). The second sub-question o f interest for this section is: Can we satisfy SY 

constraints if  we combine risk and uncertainty along with parameter assumptions that 

more closely resemble current sustained yield requirements? For the models in the 

previous sections somewhat flexible assumptions about parameter values were 

adopted. For example, the analysis in previous sections allows harvest levels to 

deviate by 25 % between periods one and two. Also, the models have a low threshold 

for satisfying the chance constraint. For example, flow and ending inventory

constraints only need to be satisfied 73 % of the time. A related question of interest

is: Is it possible to satisfy harvesting constraints for public forestland timber 

management if we use a more restrictive set of assumptions about flow constraints 

and chance constraints in the risk model? The model for answering this question is 

structured as follows:

• 10 % deviation in flow constraints

• Chance constraint requires that constraints are satisfied 90 % of the 

time.

• Risk aversion coefficient set at 1.0E-05

• Model results are based on scenario 1, 2, 3 and 4 input data.

The solution for a model based on these assumptions is shown in Table 9.7. 

As was noted previously, a solution that suggests that only a small portion of the 

1000-hectare forest is harvested is considered to be an inoperable solution. Table 9.7 

shows that only 31 % of the forest is harvested under scenario three and 0 % is 

harvested under scenario four given the above assumptions. Thus, when risk and 

uncertainty considerations are included in a harvest-scheduling model with parameter 

values reflecting current sustained yield policy requirements, then harvesting 

becomes at best marginally operable -  even with productivity enhancements from 

climate change and even when the logger has the opportunity to eliminate uncertainty 

in period one harvest yield. This raises the question of the feasibility o f sustained
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yield in increasingly uncertain operating environments. At minimum it suggests that 

as the operating environment becomes more uncertain (as a result o f climate change 

or any other number of factors) forest management agencies may find it beneficial to 

continually review management policies and standards and to consider ways of 

making forest management more flexible. A more assertive statement about the 

implications o f the results o f the analysis in this section is that sustained yield may 

actually prevent tenure holders from considering risk because of the possibility that 

satisfying relatively rigid sustained yield constraints may not be possible or feasible 

when considering the inherent uncertainty in yield forecasts.

Risk preferences o f  society

The third sub-question of interest is: What are the implications o f climate 

change and risk if  we consider the risk preferences of society instead o f the risk 

preferences o f an individual in the public forestland management risk model? 

Hardaker et al. (2004) note “risk aversion should seldom be assigned much 

importance in public decision making.” (pg 115). They argue that since the wealth of 

society is large, then the absolute risk aversion coefficient for society may be 

infinitesimal. Therefore, the risk premium will be close to zero. We can show that 

when CARA is low, the implications of risk and uncertainty are negligible by looking 

at the results in Table 9.5. The model results using scenario 3 input data show that 

the CE values are only slightly lower with a CARA value o f 7.7E-07 than they are 

when CARA = 0.0. Moreover, portfolio choices are identical in both cases. 

Therefore, if  it is society in general (instead of the logger) that is being exposed to 

yield and climate risk (for example if  the loggers lease guarantees him a certain 

volume of timber in each period), then risk aversion may not be a particularly 

important aspect to consider in decision making -  even with climate change. There 

are some interesting implications associated with the question o f who bears the risk. 

One way loggers might be exposed is because o f the way regulations are 

implemented. In some cases, forest management agencies deal with new information 

by regularly updating annual allowable cuts (AACs). If  this process o f continual 

revision and updating results in changes in the amount o f timber available to loggers,
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then the logger may be exposed to risk and uncertainty. If on the other hand, lease 

arrangements are long term and if  management agencies endeavor to avoid changes in 

available supply, then risk may be moot. Thus, the impacts of climate change and 

uncertainty are fundamentally dependent on property rights and institutional 

structures. The design o f actual vulnerability assessments and/or climate impacts 

assessments must take these considerations into account.

Implications o f  climate change and uncertainty fo r  harvest schedules

An important question in climate analyses is: How will decision makers 

adapt? (Hauer et al. 2001). In a forest management context we want to know how 

forest managers should adapt to climate change (Spittlehouse and Stewart 2003). 

Particular adaptation strategies will in turn be affected by the effects o f climate 

change on productivity, by levels o f uncertainty (in climate and yields), by the degree 

of risk aversion of the decision maker, by patterns of variance facing the decision 

maker in different time periods, and by the institutional setting (i.e. is harvesting 

constrained by sustained yield and what values are assumed relative to sustained yield 

parameters within the harvest model). This section discusses the implications of 

climate change and uncertainty in terms o f what these mean relative to adaptation. 

The analysis in this section considers two levels of risk aversion (CARA=0.00001 

and CARA=0.00004), two institutional settings (with and without sustained yield 

constraints), two levels o f chance constraints (K=0.6 and K=0.0), and looks at how 

optimal harvest schedules change across the four scenarios.

It is important to acknowledge at the outset that the crude structure o f the 

stylized management problem developed for this study results in some significant 

limitations in the kinds of adaptation questions that can be addressed. For example, 

the individual planning periods are 30 years long. This means that for this study we 

cannot look at how climate change affects optimal rotation. The best we can do is to 

consider the implications of climate change and uncertainty relative to adaptive 

changes in short-term vs. long-term harvest.

The first situation considered is that o f adaptation to climate change and 

uncertainty for a private landowner (i.e. sustained yield constraints are not imposed).
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Figure 9.6 provides the harvest schedule for each o f the four scenarios under various 

assumptions about risk preferences and chance constraints. Figure 9.6 (a) shows the 

harvest schedule for a moderately risk-averse decision maker. Figure 9.6 (b) shows 

the harvest schedule for a decision maker who is highly risk-averse. With or without 

climate change, in general, the manager prefers to harvest everything in the short term 

(i.e. period one). The one exception is for scenario three. In this case, high levels of 

uncertainty in period one net benefit lead to reductions in period one harvest. In the 

case o f the moderately risk averse decision maker, a little over 20 % of the harvest is 

deferred to period two. In the case o f the highly risk averse decision maker the entire 

period one harvest is either shifted to period two (about 75 %) or held uncut (about 25 

%). The option to eliminate uncertainty in period one harvest yield (scenario four) 

results in harvest shifting back to period one. Thus, the general result shown from 

this case is that a private forestland decision maker exposed to climate change and 

uncertainty may prefer to delay some portion o f the harvest to later periods in the 

planning horizon. However, if this decision maker is able to eliminate uncertainty in 

period one harvest yields, then the optimal harvest schedule is to harvest the entire 

forest in period one.

The implications of climate change and uncertainty on adaptation in the case 

where sustained yield constraints are imposed is more interesting. The implications 

of climate change and uncertainty on harvest timing (i.e. adaptation) for a forest 

subject to sustained yield constraints are shown in Figure 9.7. This figure shows the 

optimal harvest schedules for each of the four scenarios under various assumptions 

about risk aversion and chance constraints. Figure 9.7 (a) looks at total area allocated 

to period one harvest, period two harvest, and no harvest for a moderately risk averse 

decision maker (CARA-0.00001) with sustained yield constraints and with chance 

constraints set so that there is a 73 % likelihood of satisfying the constraint. A 

comparison of scenarios one and two for this case shows that climate change by itself 

tends to result in an increase in area allocated to period one and two. In fact the area 

allocated to periods one and two harvest is equal to or greater than the scenario one 

harvest for all three scenarios that include climate change effects. Thus, two general 

results appear to be that for moderately risk averse decision makers operating under
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sustained yield constraints, climate change permits a general increase in short and 

long-term harvests within the planning horizon and it permits a reduction in the 

amount o f  area that needs to be held uncut in order to satisfy ending inventory 

constraints. A qualification is that this result applies for only aspen management in 

central Alberta and for a planning period that spans the period 2010 to 2070. 

Analysis in different locations or for different time spans may have different results.

An interesting result from the analysis discussed in the previous paragraph is 

that variance patterns have very little effect on the optimal harvest schedules. For 

example, even though variances o f net benefits decline as time progress for scenario 3 

and increase between period one and two for scenario 4, the harvest schedules are 

virtually identical (Table 9.5). This lack o f sensitivity to differences in temporal 

variance patterns may be the result o f (a) the crude structure of the management 

problem (i.e. long planning periods), and (b) the fact that significantly higher levels of 

uncertainty may be required in order trigger different solutions when the planning 

periods are so large. This is not the case, however, when the decision maker is highly 

risk-averse. Figure 9.7 (b) shows that the amount harvested in periods one and two is 

very low for highly risk-averse decision makers under scenario three. The risk-averse 

decision maker operating under scenario three variance assumptions prefers to delay 

the harvest in order to minimize the degree o f uncertainty he/she faces. This result is 

largely due to the fact that time is risk reducing relative to variance in net benefits for 

scenario three.

What happens to harvest choices, when the variance patterns facing the highly 

risk averse decision maker change? For example, as previously noted, in scenario 

four, the variances o f net benefits are low for period one harvest (due to elimination 

of period one harvest yield), then increase for period two harvest benefits (due to a 

combination of climate and yield model uncertainty), then decrease again for the 

ending inventory (due to discounting o f future benefit distributions). This modified 

variance pattern has significant implications for the preferred harvest schedule and for 

the type of adaptation response that a risk averse manager should pursue. Under 

scenario four, the highly risk averse decision maker takes advantage of new 

knowledge about harvest yields and as a result shifts more hectares into periods one
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and two (compared to S3) and reduces the number of hectares held uncut. Thus, for 

the highly risk averse decision maker, reducing period one benefit variances increases 

the period one harvest.

Figure 9.7 (c) shows the case of a moderately risk averse decision maker 

where chances constraints are not binding (i.e. uncertainty in the constraints is 

eliminated). Under this set of assumptions the recommended harvest schedule for 

scenarios two, three and four are very similar. The majority o f the 1000 hectares 

forest is harvested in period one for all three scenarios. Scenario 4 calls for a small 

increase in period one harvest relative to scenario 3 but the increase is not significant. 

The main effect pertains to the difference in the optimal harvest schedule under 

climate change compared to scenario one. Under scenario one, almost 45 % of the 

area remains uncut, about 34 % is cut in period one, and about 21 % is cut in period 

two. For scenarios two, three and four over 45 % o f the area is cut in period one, 

around 30 % is cut in period two, and around 25 % of the total area remains uncut. 

Here again, climate change has a positive effect in terms of increasing both the area 

that can be harvested in the short term and reducing the total amount of area that 

needs to remain uncut for the entire planning period.

Summary and conclusions

The first main finding of the analysis presented in this chapter is that all other 

factors equal, the economic impact of climate change would appear to be positive for 

aspen timber management for this experimental forest -  even with costs associated 

with higher climate related risk accounted for (for our location and for a period up to 

2070).

A second finding is that for managed forests subject to sustained yield 

constraints, increasing risk aversion reduces benefits, and the incremental decline 

varies depending on relative degrees o f uncertainty. This confirms the expected 

result that accounting for risk preferences becomes increasingly important as levels of 

uncertainty increase. The fact that climate change increases uncertainty reinforces the 

importance o f accounting for risk preferences and the economic costs o f uncertainty 

when considering the impacts of climate change.
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A third finding is that uncertainty associated with yield predictions and the 

economic costs of this uncertainty is more significant than risk caused by uncertainty 

in climate variables. For this study, yield uncertainty accounts for about 84 % of the 

risk premium and uncertainty related to future climate variables accounts for the 

remaining 16 % (Note this roughly compares to the finding in Chapter 8 that climate 

uncertainty accounted for 25 % of total portfolio standard deviation). It is important 

to qualify this finding somewhat because the distributions for the climate variables 

and the yield parameters are assessed differently. For example, uncertainty around a 

future climate variable is usually based on the range of predictions from various 

combinations o f climate models and emission scenarios whereas uncertainty around 

yield parameters is based on cross sectional variability in yield data used to estimate 

the yield models. As noted, variances in climate variables are likely conservatively 

estimated and price variance is not included. Thus the economic costs of uncertainty 

from climate change are likely conservatively estimated in this study.

A fourth finding is that with the exception o f scenario four, the relative gains 

expected from climate change are higher under a forest managed with sustained yield 

constraints than under a forest with no sustained yield constraints. This may be a 

result of the fact that higher growth rates in future periods make the satisfaction of 

flow constraints and ending inventory constraints relatively easier to achieve. At the 

same time, it is important to note that there is a significant opportunity cost associated 

with sustained yield -  even with climate change. In the case o f the logger with 

average risk aversion (CARA=0.00001) and subject to scenario three input data, the 

total certainty equivalent for the forest subject to sustained yield constraints is 18 % 

lower than the certainty equivalent value for the forest without sustained yield 

constraints (i.e. $285,775 compared to $346,258) (Tables 9.4 and 9.5). In the case of 

scenario four, certainty equivalent value with sustained yield are 46 % lower than 

certainty equivalent values without sustained yield constraints imposed. This exceeds 

the decrease in certainty equivalent values of 44 % associated with the scenario one 

(i.e. no climate) input data.

A fifth finding is that for moderately risk averse decision makers operating 

under sustained yield constraints, climate change increases the area that can be
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harvested in the short and long-term and decreases the area that is required to be held 

as uncut (this result depends on the existence of flexibility in flow and chance 

constraints). Moreover, differences in variance patterns (i.e. scenario three vs. 

scenario four) have no effect on how the harvest is scheduled. This result, however, 

only applies in the case where the decision maker has a moderate level of risk 

aversion. In the case o f a decision maker who is very risk averse, then the optimal 

harvest pattern is to hold the majority of the stand uncut under scenario three. If, on 

the other hand, the decision maker has the opportunity to eliminate period one harvest 

yields (i.e. the scenario four case) then higher levels of harvesting in periods one and 

two are permitted. A related result is that under rigid flow constraints (i.e. allowable 

harvest can only deviate by 10 % between harvest periods and high chance 

constraints) then sustained yield effectively eliminates the incentive to consider risk 

(as indicated by the fact that there is little period one and two harvest when sustained 

yield constraints are inflexible) and reduces harvest feasibility.

A final finding o f the results in this chapter is that levels o f impact are 

affected by institutional settings and property rights configurations. If the 

institutional structure and property rights configuration are such that it is the 

leaseholder who is exposed to yield and climate uncertainties, then it might be 

expected that this exposure will have some influence on optimal harvesting decisions 

and on the stream of economic benefits that forest harvesting provides. In this case, 

accounting for risk aversion relative to climate change impact assessment may be 

important and needed. If  on the other hand property rights are configured in such a 

way that it is society who is primarily exposed (i.e. society bears the risk associated 

with public forestland management), then accounting for risk aversion in decisions 

and choices about harvesting may be less important. One interesting possibility for 

future research might be to look at this problem as a principal agent problem. If 

indeed the public (the principal) has ownership of forestland but assigns property 

rights for timber management and if harvesting to the private sector (the agent), then 

the study of climate impacts and effects on decisions could be treated as a principal 

agent type of problem. Investigating the climate change impact analysis problem 

using a principal agent construct would permit consideration of other issues such as
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how does stumpage fee structures affect incentives for managing risk or becoming 

more informed (Nilsson 2003). If becoming more informed simply results in higher 

stumpage fees, then leaseholders may have little incentive to pursue this as an option 

for managing risk.

Finally, it is important to note some o f the limitations in what can be done 

with the crude model structure developed for this study. The planning period for this 

study is only 60 years in length. Moreover there are only two 30-year planning 

periods within this planning period. Also there is only one species (aspen) and two 

initial age classes (40 year and 80 years). This is a highly simplified problem context 

compared to more typical decision analysis problems in forestry. One consequence 

of keeping the problem context simple, however, is that some potentially interesting 

questions cannot be addressed and the course model set up obscures potentially 

interesting results. For example, it is not possible to consider potentially important 

adaptation questions such as optimal rotation questions with this model.
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Figure 9.1 The EV model formulation with a graphical representation o f the key 
terms and optimal points on the EV frontier for different levels o f risk aversity.

Expected utility function:
E[U(NB)] = CE = E[NB\-Q.5<&Var(NB)
Risk Premium=0.5OFar(7V5)
Terms:
CE1, E[NB1], and Variance 1 correspond to a decision maker who has a relatively 
low aversity to risk.
CE2, E]NB2], and Variance 2 correspond to a decision maker who has a relatively 
high aversity to risk.

Iso-utility for highly
risk averse person

Iso-utility for a 
person with low 
aversitv to risk

E[NB2] -►

E[NB1]

Portfolio frontier

CE1

VarianceVI V2
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Figure 9.2 Sensitivity anaysis showing the effects of variations in 
likelihood of meeting flow constraints and variations in allowable 
flow deviations on objective function values.
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Figure 9.3 Sensitivity analysis showing the effects of chance 
constraints and risk aversion on objective function values.
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Figure 9.4 Effects of climate change, uncertainty, variance assumptions, and risk 
preferences on objective function values - without sustained yield constraints.
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Figure 9.5 Effects of climate change, uncertainty, variance assumptions and risk 
preferences on objective function values with sustained yield constraints.
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Figure 9.6 Effects o f climate change and variance assumptions on harvest timing without 
sustained yield constraints imposed.

Figure 9.6 a Area harvested without sustained yield constraints im posed,
CARA=1.0E-5
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Figure 9.6 b Area harvested without sustained yield constraints 
imposed, CARA=4.0E-5
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Figure 9.7 Effects o f climate change and variance assumptions on harvest timing with 
sustained yield constraints imposed (ending inventory = 220,000 cu.m., allowable 
deviations in flow = 25 %, chance constraint = 0.6).

Figure 9.7 a Area harvested by period with sustained yield constraints imposed,
CARA=1.0E-5 and K=73 %
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Figure 9.7 b Area harvested by period with sustained yield constraints imposed,
CARA=4.0E-7, K=73%
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Figure 9.7 (continued)

Figure 9.7 c Area harvested with sustained yield constraints 
imposed, CARA=1 .OE-5 and K=50%

□  Total no cut 

■  Period 1 cut
□  Period 2 cut

Scenario 1 Scenario 2 Scenario 3 Scenario 4
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Table 9.1 Values o f the CARA (<t>a (w)) parameter utilized in this study

Wealth

$650,000 $100,000

CARA Values

Hardly risk averse 
O r(w) = 0.5 0.00000077 0.000005

Very risk averse 
O rO )  = 4.0 0.000006 0.00004

CARA -  Constant absolute risk aversion - <t>a (w)
CRRA -  Constant relative risk aversion - <t>r (w)

Note 1: For modeling purposes we have used a common CARA value of 0.0000055 that 
occurs for decision makers with low wealth and low-risk aversion and decision makers 
with high wealth and high-risk aversion.
Note 2: For some o f the models in this chapter we have used a CARA value o f 0.00001 
as a representative value for the risk preferences o f an average private logger.
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oo<N
Table 9.2 Objective function values and solutions (hectares) for various combinations of chance constraints and allowable deviations

Likelihood of satisfying the constraint - 
50 % (Group A)

Likelihood of satisfying the 
constraint - 73 % (Group B)

Likelihood of satisfying the 
constraint - 90 % (Group C)

Allowable deviation
50% 25% 10% 50% 25% 10% 50% 25% 10%

Objective function values

Certainty equivalent 329201 314909 307125 300540 285775 278332 235716 226284 221686

IAC1 -  no cut 187 230 249 250 250 250 228 240 250
IAC2 -  no cut 0 0 0 137 158 167 448 441 434
IAC 1 - cut period 1 0 0 0 0 0 0 0 0 0
IAC2 - cut period 1 563 467 424 426 357 325 222 190 174
IAC 1 - cut period 2 63 20 1 0 0 0 22 10 0
IAC2 - cut period 2 187 283 326 187 235 258 80 119 141

Analysis based on scenario 3 input data
CARA=0.00001 for the results presented in Table 9.2. -  ending inventory = 220,000 
Likelihood o f 50 % - K = 0.0 
Likelihood o f 73 % - K=0.6 
Likelihood o f 90 % - K=1.3
Group A, B, and C refer to A, B, and C in Figure 9.2.
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T able 9.3 O bjective function values and solutions for constant absolute risk aversion coefficient sensitivity analysis

Without chance constraints 
CARA values

With chance constraints (K=0.6) 
CARA values

0 7.70E-07 5.50E-06 1.00E-05 2.50E-05 4.00E-05 0 7.70E-07 5.50E-06 1.00E-05 2.50E-05 4.00E-05

Certainty equivalent 439863 430241 371138 314909 169992 120732 371201 364623 324216 285775 169850 120680
Harvest solutions (hectares)

IAC 1 -  no cut 230 230 230 230 250 250 250 250 250 250 250 250
IAC2 -  no cut 0 0 0 0 274 574 158 158 158 158 282 577
IAC 1 - cut period 1 0 0 0 0 0 0 0 0 0 0 0 0
IAC2 - cut period 1 467 467 467 467 230 85 357 357 357 357 231 85
IAC1 - cut period 2 20 20 20 20 0 0 0 0 0 0 0 0
IAC2 - cut period 2 283 283 283 283 246 91 235 235 235 235 237 88

CARA -  Constant absolute risk aversion 
Model assumptions:
1. Scenario 3 used as input data
2. Chance constraint set at 0.6 (i.e. 73 % likelihood of satisfying the constraint)
3. All harvest constraints (i.e. ending inventory and flow constraints) applied.
4. Allowable deviations in periodic flow = 25 %
5. Ending inventory = 220,000 cu m.
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Table 9.4 Certainty equivalent values and optimal portfolios without sustained yield
constraints

Scenario 1 0 7.70E-07

Risk aversion coefficient 

5.50E-06 1.00E-05 2.50E-05 4.00E-05

Certainty equivalent 501250 501250 501250 501250 501250 501250

Harvest solutions (hectares)

IAC 1 -  no cut 0 0 0 0 0 0

IAC2 -  no cut 0 0 0 0 0 0

IAC1 - cut period 1 250 250 250 250 250 250

IAC2 - cut period 1 750 750 750 750 750 750

IAC1 - cut period 2 0 0 0 0 0 0

IAC2 - cut period 2 0 0 0 0 0 0

Risk aversion coefficient

Scenario 2 0 7.70E-07 5.50E-06 1.00E-05 2.50E-05 4.00E-05

Certainty equivalent 642250 640639 630745 621332 589955 558579

Harvest solutions (hectares)

IAC 1 -  no cut 0 0 0 0 0 0

IAC2 -  no cut 0 0 0 0 0 0

IAC 1 - cut period 1 250 250 250 250 250 250

IAC2 - cut period 1 750 750 750 750 750 750

IAC 1 - cut period 2 0 0 0 0 0 0

IAC2 - cut period 2 0 0 0 0 0 0

Risk aversion coefficient

Scenario 3 0 7.70E-07 5.50E-06 1.00E-05 2.50E-05 4.00E-05

Certainty equivalent 648750 622045 458428 346258 176049 131389

Harvest solutions (hectares)

IAC1 -  no cut 0 0 0 0 0 250

IAC2 - no cut 0 0 0 0 0 0

IAC1 - cut period 1 250 250 179 0 0 0

IAC2 - cut period 1 750 750 750 750 112 0

IAC1 - cut period 2. 0 0 71 250 250 0

IAC2 - cut period 2 0 0 0 0 638 750

Risk aversion coefficient

Scenario 4 0 7.70E-07 5.50E-06 1.00E-05 2.50E-05 4.00E-05

Certainty equivalent 645500 644975 641752 638685 628462 618240

Harvest solutions (hectares)
IAC1 - no cut 0 0 0 0 0 0

IAC2 - no cut 0 0 0 0 0 0

IAC1 -  cut period 1 250 250 250 250 250 250

IAC2 - cut period 1 750 750 750 750 750 750

IAC 1 - cut period 2 0 0 0 0 0 0

IAC2 - cut period 2 0 0 0 0 0 0
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Table 9.5 Certainty equivalent values and optimal portfolios with sustained yield1 constraints

Scenario 1 0 7.70E-07

Risk aversion coefficient 

5.50E-06 1.00E-05 2.50E-05 4.00E-05

Certainty equivalent 281400 281400 281400 281400 281400 281400

Harvest solutions (hectares)
IAC 1 - no cut 250 250 250 250 250 250

IAC2 - no cut 191 191 191 191 191 191

IAC 1 - cut period 1 0 0 0 0 0 0

IAC2 - cut period 1 336 336 336 336 336 336

IAC1 - cut period 2 0 0 0 0 0 0

IAC2 - cut period 2 224 224 224 224 224 224

Risk aversion coefficient

Scenario 2 0 7.70E-07 5.50E-06 1.00E-05 2.50E-05 4.00E-05

Certainty equivalent 419164 418658 415549 412592 402734 392876

Harvest solutions (hectares)

IAC1 - no cut 250 250 250 250 250 250

IAC2 - no cut 28 28 28 28 28 28

IAC 1 - cut period 1 0 0 0 0 0 0

IAC2 - cut period 1 437 437 437 437 437 437

IAC 1 - cut period 2 0 0 0 0 0 0

IAC2 - cut period 2 285 285 285 285 285 285

Risk aversion coefficient

Scenario 3 0 7.70E-07 5.50E-06 1.00E-05 2.50E-05 4.00E-05

Certainty equivalent 371201 364623 324216 285775 169850 120680

Harvest solutions (hectares)

IAC 1 - no cut 250 250 250 250 250 250

IAC2 - no cut 158 158 158 158 282 577

IAC 1 - cut period 1 0 0 0 0 0 0

IAC2 - cut period 1 357 357 357 357 231 85

IAC 1 - cut period 2 0 0 0 0 0 0

IAC2 - cut period 2 235 235 235 235 237 88

Risk aversion coefficient

Scenario 4 0 7.70E-07 5.50E-06 1.00E-05 2.50E-05 4.00E-05

Certainty equivalent 358431 357525 351963 346671 329031 311392

Harvest solutions (hectares)
IAC1 - no cut 250 250 250 250 250 250

IAC2 - no cut 157 157 157 157 157 157

IAC 1 - cut period 1 0 0 0 0 0 0

IAC2 - cut period 1 330 330 330 330 330 330

IAC1 - cut period 2 0 0 0 0 0 0

IAC2 - cut period 2 263 263 263 263 263 263

1 Sustained yield parameter assumptions: Ending inventory = 220,000 cu.m., allowable flow deviation = 25 %, K=0.6,
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Table 9.6. Effects o f climate change productivity effects on ability to satisfy 
sustained yield constraints____________________________________________
Variable Scenario 1 Scenario 2
Certainty equivalent $270,313 $415,843
Marginal stand value
IAC1 $ 387 per ha $ 518 per ha
IAC2 $ 441 per ha $ 606 per ha

Harvest solutions (hectares)
IAC 1 - no cut 250 249
IAC2 - no cut 197 0
IAC 1 - cut period 1 0 0
IAC2 - cut period 1 307 424
IAC1 - cut period 2 0 1
IAC2 - cut period 2 246 326

Parameter assumptions: CARA=0.0, K=0.0, allowable deviations in flow=10%, ending inventory =220,000 
cu.m.
Scenario 1 -  Predictions based on climate normals.
Scenario 2 -  Predictions based on climate futures.
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Table 9.7 Certainty equivalent value and harvest solutions using a risk model with parameters based on 
current forest management standards________________________________________________________
Variable Scenario 1 Scenario 2 Scenario 3 Scenario 4

Certainty equivalent $270,313 $373,561
$221,686 $137,527

Marginal stand value

IAC1 $ 387 per ha $ 506 per ha $ 310 per ha
$ 118 per ha

1AC2 $ 441 per ha $ 568 per ha $ 365 per ha $ 132 per ha

Harvest solutions (hectares)

IAC 1 - no cut
250 250

250 250

1AC2 - no cut
197 96

434 750

IAC1 - cut period 1
0 0

0 0

1AC2 - cut period 1
307 365

174 0

IAC 1 - cut period 2
0 0

0 0

IAC2 - cut period 2
246 289 141 0

Parameter assumptions: Allowable deviations in flow=10%, K=1.3, CARA=1.0E-5, ending inventory = 220,000 cu.m.
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CHAPTER TEN

DISCRETE STOCHASTIC PROGRAMMING (RECOURSE) MODEL 

Introduction

The EV / Chance Constraint risk model developed in the previous chapter 

shows how the combined effects o f productivity changes, forest management 

constraints, uncertainty in objective function and constraint coefficients and risk 

preferences influence returns from timber harvesting and choices o f forest landowners 

and/or managers. The model presented in the previous chapter, however, is a static, 

one-period model. It does not permit taking account of the sequential nature of 

decision-making in forest management contexts and it does not allow the decision 

maker to modify his/her decisions and choices over time as new knowledge is gained 

and uncertainties that occur early in the planning horizon become resolved.

Forest harvest scheduling problems involve making choices at the beginning 

of the planning horizon about harvests in various planning periods over the planning 

horizon. In our case, the decision maker faces uncertainty about potential benefits in 

periods 1, 2 and at the end of the planning horizon. However, it is possible that the 

uncertainty that exists relative to period 1 yields and benefits may be resolved once 

the decision maker reaches period two. Assuming that the decision maker knows 

what choice she/he would make in period 2 (given the realization of a particular state 

of nature in period 1), the decision maker will develop alternative harvest plans for 

period 2 and subsequent periods based on whatever state o f nature actually occurs in 

period 1. Modeling this type of multi-period sequential decision-making problem 

requires a different approach. It requires an approach that accounts for the fact that 

decision makers will obtain new knowledge as time progresses and will consequently 

adjust their decisions as uncertainties are resolved (Hardaker et al. 2004).

The type of mathematical programming model used for optimization problems 

where learning occurs and uncertainty is sequentially resolved over time is discrete 

stochastic programming (DSP) (or stochastic programming with recourse) (Hardaker 

et al. 2004, McCarl and Spreen 1997, Apland and Hauer 1993). Discrete stochastic 

programming models permit periodic adaptation based on new information. For
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example, a logger might be uncertain about what the yield of a stand will be in the 

first cutting period. However, once she/he harvests the stand, she/he will know with 

certainty what the yield was. This new knowledge, in turn, may affect his/her choices 

relative to future harvest levels. New information results in new choices over time. 

Moreover, a purely rational decision-maker will recognize that levels o f uncertainty 

for some variables that may be apparent today will be eliminated in the future and 

he/she will incorporate this knowledge into his/her current choices.

An aspect o f the DSP model presented in this chapter is that the model 

assumes risk neutrality. The objective function maximizes returns without penalties 

for risk (i.e. there is no risk premium in the objective function). There is no 

adjustment for differences in relative degree of risk preferences between different 

decision makers. It is possible to include risk preferences into a DSP model. Apland 

and Hauer (1993) describe a formulation that incorporates risk premiums. The 

approach outlined in Apland and Hauer (1993) requires the determination of the 

covariance matrix between the objective function coefficient values in the DSP 

objective function. However, the two reasons for estimating the DSP model in this 

chapter are to illustrate the kind of models used for optimization problems with 

sequential risk, and show how sequential adaptation can influence climate impacts 

and harvest choices. The incorporation o f risk premiums into the DSP objective 

function was considered to be unnecessary relative to the above objectives. In effect, 

the analysis presented in this chapter is representative o f a public forestland 

management situation where the government assumes all risk associated with timber 

harvesting. Risk preferences, therefore, are close to neutral and the value o f the risk 

aversion coefficient is negligible.

DSP models provide a structure for sequential multi-period decision-making 

under uncertainty (Apland and Hauer 1993). Dantzig (1963) is credited with the early 

development o f DSP. Rae (1971 a and b) introduced DSP to agriculture decision

making problems. Hardaker et al. (2004) and McCarl and Spreen (1997) discuss 

techniques for conducting DSP. Hoganson and Rose (1987), Gassman (1989),
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Boychuck and Martell (1996)34 and Hekkinen (2003) discuss various forestry 

applications. To our knowledge there are no applications of DSP models to climate 

change and forestry related uncertainty problems.

One of the reasons why a recourse model may be of interest for climate 

change and forest management problems is that these types of models explicitly 

incorporate sequential adaptation. As noted in the previous chapter, adaptation is an 

important part o f climate impact studies. The previous chapter looked at adaptation 

with a static model. This chapter considers adaptation using a dynamic model. Use 

of a dynamic model permits us to consider the possibility that decision makers will 

adjust their choices as uncertainty becomes resolved. As the uncertainty arising from 

climate change and yield risk becomes resolved over time, decision makers will adapt 

by adjusting their harvest choices. Thus, for dynamic models, adaptation is explicitly 

incorporated into the model.

Another type o f adaptation considered in this chapter is risk prevention. One 

potential adaptation strategy to climate change and uncertainty could be to reduce the 

probabilities of low yield states and increase the probability o f high yield states. 

Freeman (1999) refers to this type of adaptation measure as risk prevention35.

A final point to note about the analysis in this chapter is that it focuses on 

looking at how economic returns and harvest solutions vary with different 

assumptions about recourse, uncertainty and sustained yield parameters. The models 

presented in this chapter are based on scenarios 2 and/or 3 input data. Each of these 

scenarios has climate effects already incorporated in them. Thus, we are not 

considering the impact o f climate change by comparing returns and feasible solutions 

with and without climate change in this chapter. Analysis o f the impact o f climate 

change was presented in Chapter 9. The issue o f primary interest in this chapter is: 

How important is recourse in terms o f returns from timber harvesting and in terms of 

optimal harvest choices?

34 This paper introduces the novel concept of incorporating a penalty into the objective function in 
order to avoid situations where solutions are dominated by low probability outcomes.
35 In addition to risk prevention Freeman (1999) also discusses risk reduction. Risk reduction 
activities are actions taken to reduce negative consequences when undesirable states of nature occur
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Model structure

The DSP model developed for this study is a three-stage model with two 

states o f nature or outcomes in each stage (Figure 10.1). The two states o f nature 

are: 1. Fligh harvest yields and returns, and 2. Low harvest yields and returns. The 

decision tree in Figure 10.1 provides a visual representation o f  the DSP model 

developed for this study.

There are a number of terms in Figure 10.1 that require definition. The term 

e ij,ta 0 n Figure 10.1) represents the value o f an uncertain model parameter given the

occurrence o f state o f nature “i” (i = H for high yield state and L for low yield state), 

in stage “t” (t = stage 1,2, or 3), for initial age class “a” (where a = Y is for the IAC 

40 year old stands and O is for the IAC 80 year old stands). The term “j t” identifies 

the decision alternative in stage “t”. For example if  a high yield state actually occurs 

in stage one, then the decision alternatives for stage two will be 1 and if  a low yield 

state occurs in stage one then the value o f the decision variable in stage two is 2.

Combinations o f values for “i” over the three stages define an event history 

(Apland and Flauer 1993). Figure 10.1 shows that for a three-stage model with two 

states o f nature at each stage there are 8 possible event histories for the IAC1 stand 

and an additional 8 possible event histories for the IAC2 stand. For example, the first 

event history that could occur is represented by the following sequence 

{eH\\Yi emiY ’eH\3Y )• Using the value of “i” for each stage -  this event history is 

identified as HHH (high yield state in stage one, high yield state in stage two, and 

high yield state in stage three). Other event histories for IAC1 (i.e. a = Y) are HHL, 

HLH, HLL, LHH, LHL, LLH, and LLL. A similar set o f event histories exist for the 

IAC2 stand (i.e. a = O). The event histories for stand types Y and O are linked in that 

solutions assume that returns are based on the same event history applying to both 

stand types. Each event history has a probability o f occurring. A separate set of 

solutions for the choice variables is determined for each possible event history.

The term eij ta in Figure 10.1 represents two types of model parameters that

are uncertain for the purposes o f this study. The first uncertain model parameter 

(Cijta) is the uncertain objective function parameter (see equation 10.2 later in this
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section). This is defined as net benefit per hectare. The second parameter ( Yy ta)

represents the uncertain constraint parameter (see equations 10.4, 10.5, and 10.7 later 

in this section). This is defined as stand yield (in cubic meters) per hectare.

Figure 10.1 shows the choice variables ( X j ta) (note: this is the area of stand

type Y and O harvested in stage “t” under decision alternative “j ”). Permissible 

values for the choice variables depend on assumptions about the underlying 

information structure. This study assumes that the decision maker has perfect 

knowledge of the past but not the present. This implies that the decision maker’s 

choices across states for any particular stage are fixed. However, the decision maker 

does have the flexibility to adjust choices in response to new knowledge gained in the 

previous stage. Perfect knowledge of the past is a specific type o f  information 

structure. There are, however, other types o f information structures. For example, 

for some types o f problems the decision maker might have perfect knowledge of the 

past and present (Apland and Hauer 1993). However, for the problem considered in 

this Chapter we assume that the decision maker will not know the exact yields from 

stand types 1 and 2 until she/he has actually harvested the stands.

As noted, there are two possible values for net benefits and yield for each 

stage: high and low. At the start o f the planning horizon the decision maker is 

uncertain about yield and net benefits of harvesting in future periods because these 

values are functions o f uncertain future climate variables and uncertain yield 

parameters. In stage one the decision maker faces two possible states o f nature -  high 

benefits and yields and low benefits and yields. Irrespective o f this uncertainty, the 

decision maker makes a choice about the area of each stand type that will be 

harvested. The DSP model provides a solution for the amount o f area o f IAC1 

(Young) and IAC2 (Old) to harvest in stage 1. Since she/he is uncertain what the 

stand yields will be in stage 1 -  the optimal solution for area harvested for both states 

is fixed (e.g. see X hy in Figure 10.1). Following harvest in stage one; the decision 

maker will have determined what state of nature actually occurred. The solution for 

the stage two harvest will then be based on the values of the objective function and 

yield parameters that actually occurred in stage one. If state “H” in stage 1 occurs, 

then the harvest choice will be X 12Y (Figure 10.1). If state “L” occurs in stage 1, then
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the harvest choice is X22Y (Figure 10.1). Here again, the decision maker’s choices in 

stage 2 are not affected by what state o f nature occurs in stage 2. The choices in stage 

2 are fixed for each state o f nature.

Finally, Figure 10.1 shows a set of arrows that lead from the four stage one 

boxes to a central box. This central box represents the total area o f IAC1 and IAC2 

forest harvested in stage one. Areas harvested in stage one grow for 45 years before 

the end o f  the planning horizon is reached. These areas may, therefore, contribute to 

ending inventory. The actual ending inventory yields that will be realized from stage 

one harvest will depend on future event histories. The ending inventory yields from 

stage one harvest are, therefore, also uncertain. However, a dilemma for this problem 

structure is that it is necessary that uncertainty in stage one parameters be resolved at 

the end o f stage one (i.e. in order to determine a solution for stage one harvest area, 

uncertainty in yield parameters associated with stage one harvest -  including ending 

inventory yield - must be resolved at the beginning o f stage two). This means that it 

is necessary to use the expected value of ending inventory yield as the measure o f 

ending inventory yield associated with hectares harvested in stage one. The expected 

value o f ending inventory yield from areas harvested in stage one is 225 cubic meters. 

This is based on estimating ending inventory yields from stage one harvest under 

each possible event history and taking the average value as representative o f an 

expected value.

Another random variable where it is necessary to include a single expected 

value is soil expectation value. Soil expectation value is the present value of bare 

land at the end o f the planning horizon. This value is included in the net benefit 

parameter (i.e. the objective function coefficient). Soil expectation value is a function 

of future climate and yields. Because future climate and yields are uncertain, this 

variable is also random. It is not, however, possible to incorporate uncertainties in 

variables that extend past the planning horizon into the DSP problem formulation. 

Therefore, we were required to consider a single expected value for soil expectation 

value. The expected present value o f soil expectation value is $ 13.6 per cubic meter. 

This is the expected value from the soil expectation value distributions estimated in 

Chapter 7.
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In the introduction it was suggested that one o f the reasons for wanting to use 

a DSP model is that it is a dynamic model. The previous two paragraphs suggest that 

the model developed in this study is only partly dynamic. Some values that are 

uncertain are incorporated as deterministic expected values and therefore the 

uncertainty in these variables does not influence the solutions. However, yields o f 

ending inventory from stage one harvests are relatively low. Also, the present value 

of soil expectation value is low relative to overall net benefit values. Thus, we do not 

feel that including a deterministic value for these random variables will introduce 

large biases in the estimations.

The next step in this section is to provide the formulation for the DSP model. 

The DSP model presented in this Chapter is linear. The various versions and runs o f 

the model presented in this chapter were solved using CP LEX within GAMS (Brooke 

et al. 1998)36.

The formulation of the DSP model is as follows:

Max,y , z = 2 > . r s [ i o . i ]
\Aijk) 5=1

36 The GAMS program code for the basic model used in this chapter is available on request.
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Where:

ChWY^wy + Ch\2yX\2Y + T̂/I3K̂ 23K ~
C-n\\yXm  + CH[2YX l2Y + CLi3YX l3r = Y2

'̂HWY '̂WY + Cli2yX\2y + CH2JYX 2iy = Y3

^'HllY^’llY + CLmX m  + £̂23X̂ "23K — 4̂ 
F' F  -4- C Y  a-C  Y  = F

£ 1 IX 1 IX H 2 2 Y  22 X H 3 3 Y  3 } Y  J S

^ £ 1 1 X ^ 2  IX +  ^ H 2 2 Y ^ - 2 2 Y  +  0 . 3 3 X ^ 3 3 X  =  ^ 6  

^illK^HK + ^L22Y-^22Y '̂H42Y^42Y ~ 7̂
r*  y  A - r  y  -y- c  y  z= y

£ 1 1 X  11X £ 2 2 X  22X £ 4 3  X 43X J 8

1 1 0 ^ 1 1 0  +  ^7 / 1 2 0 ^ 1 2 0  ^7 / 1 3 0 ^ 1 3 0  =  ^9

F” F  -t-r* F  4-C Y  —Y
' ^ / / u o ^ 1 n o  ^  £130 130 -*10

^-T/no^no + CLmX m  + Yu
C Y  4-F  Y  a-C Y  —Yno T £120 120 T £230 230 -*12

Q .1 1 0 ^ 2 1 0  +  220-^220  +  ^ £ £ 3 3 0 ^ 3 3 0  =  ^23

^£110^110 + 220̂ 220 "̂£330̂ 330 — ^4
^ " £ 1) 0 ^ 1 1 0  "*" ^ £ 2 2 0 ^ 2 2 0  ^ 7/ 4 3 0 ^ 4 3 0  ~  ^15 [ 1 0 . 2 ]

^ - '£ 1 1 0 ^ 2  10 +  Q . 2 2 0 ^ 2 2 0  +  ^ 7 . 4 3 0 ^ 4 3 0  ~~ ^ 6

Subject to:

Area constraints (8 equations):
<250 

<250

<250 [10.3]

<750 

<750 

<750 

<750

Upper flow constraints (4 equations):

(1 — ̂ X ^llK ^U r + ^NUO^llo) ~ ̂ H\2Y-^\2Y +
(1 -  a){Ym „ X, {Y + Ym wX x ,0 ) -  {YLmX UY + YLU0X l20) < 0 [10.4]

(1 — a)(YLlirX nY + YLlwX no) — {YH22YX 22y + YH220 X 220) ^  0 

0~^X^lnx^-nx ^~YLll0X li0') — (YL22YX 22Y + Yl220X 220) < 0

X x Y + Y
\2Y + V̂ I3 X

x x Y + Y
\2Y + X 23K

X> Y + X 22Y + X J3Y

x x Y + Ŷ
2 2  Y + - ^ 4 3 f

X t o + Y
[ 2 0 + ^ 2 3 0

X 1o + X\20 + " ^ 2 3 0

x xo + Y
22 0 + " ^ 3 3 0

X, 0 + X 22 0 + ^ 4 3 0
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Lower flow constraints (4 equations):

0  + lY^lW + /̂/l 10^110 )_ (YHl2YX [2Y + ^ 120^ 120) — 0
0  17̂ 117 + Ym w X yxo) - ( Y Lm X i2r + -̂ z.120^ 120) — ®

0  +  / 0 ( - ^ z . n r " ' SL i r  + i r£ , i 0 ^ i . o ) - ( W ^  2 2 7  +  2 2 0 - ^ 2 2 0 )  —  ^

[10 .5 ]

227  +  ^ I 2 2 0 ^ 2 2 o )  — ^

Area cut in period 1 that contributes to ending inventory 

A] 17 + A 110 = Area
[10.6]

Ending inventory constraints (8 equations):
Tarend -  (Area * EIVOL) -  (YHX3YX X3Y) -  (YHl30X l30) < 0 

Tarend -  (Area * EIVOL) -  (YU3YX l3Y) -  (YLl30X l30) < 0 
Tarend -  (Area * EIVOL) - ( Y H23yX 23Y) -  (YH230X 23Q) < 0 

Tarend -  (Area * EIVOL) -  (Fi23KX 23K) -  (YL230 X 230) < 0 

Tarend -  (Area * EIVOL) -  (YH33YX 33Y ) -  (YN330X 330) < 0 

Tarend -  (Area * EIVOL) -  (YL33YX 33Y) -  (YL330X 330) < 0 

Tarend -  (Area * EIVOL) -  (YH43yX 43Y ) -  (F„430A430) < 0 

Tarend -  (Area * EIVOL) -  (YL43YX 43y ) -  (Y[ 430 X 430 ) < 0

[10.7]

Non-negativity constraints (i.e. Y/Xjta, X jta > 0 )

Where:

Z is the expected value of net income, 

ps is probability of a particular event history,

Ys is net income associated with a particular event history (Note Y in equation 10.2 

represents income -  Y in equations 10.4, 10.5, and 10.7 represent yield),

Chuy is net present value o f benefits for state “high yield”, decision 1, stage 1, IAC 

40 years,

X uy is the area of the IAC 40 area harvested in stage one,

Y h u y  is stand yield -  state “high yield, decision 1, stage 1, IAC 40, 

a  - maximum percent increase allowed in period 2 harvest,

P - maximum percent decrease allowed in period 2 harvest,

Tarend = target ending inventory,

EIVOL - expected value of volume of ending inventory from period one harvest - 

(225 cu. m. per ha).
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The input data for the model in this chapter are based on the scenario two 

and/or three estimates of yield and net benefits described in chapter 7 (note: scenario 

two incorporates climate variables into yield and includes climate uncertainty only 

while scenario three includes climate change productivity effects, climate uncertainty 

and uncertainty in yields). A fundamental difference is that the random variables 

estimated in Chapter 7 are continuous random variables. The coefficients used for the 

model in this chapter are discrete random variables. Thus, a procedure was required 

to convert the estimates o f continuous random variables for scenarios 2 and 3 

provided in Chapter 7 into a discrete form (see equations 7.8 to 7.13 for a definition 

o f how benefits are estimated and equations 7.14 to 7.20 for a definition of specific 

yield variables). The correlation between the variables reported in Chapter 7 and the 

model developed here is as follows. Stage one o f the model developed in this chapter 

corresponds to the harvest in planning period one in the data presented in Chapter 7. 

Similarly, stage two of the model presented in this chapter corresponds to the harvest 

in planning period two in the data presented in Chapter 7. Finally, stage three of the 

model presented in this chapter corresponds to the no cut prescription for the data 

presented in Chapter 7. Chapter 7 provides estimates of expected values and 

variances for harvest yields and net benefits for each IAC for each planning period. 

The model for this chapter requires an estimate o f high and low value for harvest 

yield and net benefits for each stage of the recourse model. The discrete data for this 

chapter were derived from the data in Chapter 7 by adding (for high yield outcomes) 

or subtracting (for low yield outcomes) one standard deviation to the expected value 

for each variable. The resulting discrete outcome data for yield and net benefits for 

each stand, for each outcome, for each decision alternative, for each stage, and for 

scenarios two and three are provided in Table 10.1, Figure 10.2, and Figure 10.3.

Analysis

There are four questions that will be addressed using the discrete stochastic 

programming model developed in this chapter. They are:

1. What is the effect o f recourse on returns and harvest choices?
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2. How sensitive are economic returns and harvest choices to differences in 

levels of uncertainty o f outcomes when using a recourse model approach?

3. How sensitive are economic returns and harvest choice to variations in 

sustained yield constraints?

4. What effect does increasing the probabilities of high yield states have on 

returns and on harvest choices with recourse?

Effects o f  recourse on returns and harvest choices

This section considers the effects of recourse on returns and harvest choices - 

both with and without sustained yield constraints imposed. The first model in this 

section estimates returns and provides solutions using a model with recourse but 

without sustained yield constraints. The results of this model are reported in the text 

only. The model predicts that total returns without sustained yield constraints are 

approximately $648,750 (compared to $398,960 when sustained yield is included -  

see Figure 10.4) and that the entire 1000-hectare forest is cut in stage 1. However, 

recourse is largely irrelevant in this model because states o f nature that occur in 

stages two and three have no influence on the decision makers choices. This is not a 

particularly surprising result but it does reinforce that the use o f a recourse type 

model in a forestry and climate change assessment context would appear to be best 

suited to situations or cases where decisions are long term and sequential, and/or 

where there is an incentive to delay taking action until later stages.

The remainder o f this section considers the effects o f recourse in a climate 

change context with sustained yield constraints imposed. The assumptions for the 

DSP formulation with sustained yield constraints (see Equations 10.1 -  10.7) are as 

follows:

• Scenario 3 input data (in discrete form) is used (see Table 10.1),

• There is a 50 % likelihood of each discrete outcome (high yield state vs. low yield 

state) for each stage (resulting in an equal probability o f 0.125 for each event 

history -  see Table 10.2),

• The decision maker is risk neutral (i.e. there is no risk premium in the objective 

function),
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•  Flow constraints are imposed - a  — /? = 0.25 (similar to the EV model in Chapter 

9), and

• Ending inventory constraints are imposed - the target-ending inventory is 220,000 

cubic meters (similar to the EV model in Chapter 9).

In order to assess what effect recourse has on economic returns and harvest 

schedules we first estimated the harvest patterns and returns that would occur in the 

absence o f recourse. A restricted version of the DSP model in equations 10.1 -  10.7 

was estimated37. The model restricts choices so that harvest levels are fixed at each 

stage over all states that occurred in the previous stage. Thus, the decision maker 

cannot adjust harvest levels as uncertainties about states are resolved. The results for 

the model with no recourse are provided in Figure 10.4. The expected value o f 

income for the restricted model is approximately $ 146,500. The solution requires 

that all 250 hectares o f IAC1, and all 750 hectares of IAC2 stay uncut over the 

planning period. Thus, without recourse, solutions that permit harvesting to occur in
i o

stage one or two are not feasible . In order to evaluate what factors caused the 

model to provide a no harvest solution the model without recourse was rerun with 

different values for the constraint parameters. First, we lowered the ending inventory 

requirement to 100,000 cubic meters. The no harvest solution continued to occur. 

Then we increased the allowable deviation in flow constraints from 25 % to 50 %. A 

solution that permitted harvesting in stage one and two resulted. Thus, the factor 

driving the no harvest solution in the without recourse model seems to be the flow 

constraint.

The results o f the DSP formulation when recourse is permitted are provided in 

Figure 10.5. The figure shows that the expected value o f returns with the recourse 

model is $ 398,960. The optimal solution is for 157 hectares o f IAC1 and 310 

hectares of IAC2 area to be harvested in stage one. If the high yield state of nature 

occurs in stage 1 then the optimal solution is for 327 hectares o f IAC2 to be harvested 

in stage two. If, however, the low yield state occurs in stage one then the decision

37 The formulation for the restricted model is not repeated here but can be seen by looking at the 
GAMS program code in Appendix 2.
38 Armstrong (2004) finds that a forest manager’s ability to set a harvest that can be sustained with 
certainty withinin a stochastic fire regime is low to non-existent.
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maker adjusts his/her choices and reduces the amount of IAC2 harvested in stage two 

to 221 hectares. There is no harvest of IAC1 in stage two. Ninety-three hectares of 

IAC1 are left uncut for all states. In the case o f the IAC2 stand, 113 hectares remain 

uncut if  the high yield state occurs in stage one and 220 hectares remain uncut if  the 

low yield state occurs in stage one.

The remainder o f this section explores these results in more detail by 

comparing the effects of recourse on economic returns, and considering the 

implications o f recourse on harvest schedules. A comparison of Figure 10.4 and 10.5 

shows that allowing for recourse (sequential adaptation) increases the expected value 

o f income by about 270 % (i.e. net benefits increase from $146,500 to $ 398,960). 

This result occurs mainly because without the flexibility o f recourse, it is not possible 

to satisfy sustained yield constraints and still harvest -  given uncertainty in outcomes 

from climate and yield. Recourse means that the decision maker has more 

information upon which to base his/her choices. In single period models, and/or in 

models where recourse is not permitted, this type o f learning does not occur. Thus, 

choices with a recourse model will be based on relatively more complete
39information . As shown here, this flexibility can have significant implications for 

harvest solutions.

What are the implications of recourse relative to harvesting in the short run 

and long run? For this study, the short run pertains to the harvest solution that is 

provided in the first stage. The long run solution is the solution provided in stage 2. 

The short run solution is particularly important because these solutions are 

permanent, irreversible and they provide the basis for immediate actions. Long-run 

solutions are relatively less permanent in the sense that new solutions can be obtained 

over time as new information becomes available and model solutions are recalculated. 

Nevertheless, knowledge of the long run may be important to investors who are 

interested in returns over the life time o f the investment and/or who may require 

information on future supply in order to construct the right type and scale of 

manufacturing facility.

39 This could be viewed as being analogous to quasi-option value.
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One question of interest for this section is: Does recourse have any direct 

implications for short run solutions (i.e. the optimal harvest schedule in stage one)? 

As shown in Figures 10.4 and 10.5 the difference between the short run solutions with 

and without recourse are substantial. With recourse, 157 hectares of the 1AC1 stand 

are harvested and 310 hectares o f the IAC2 stand are harvested in stage one. Without 

recourse, there is no harvest in the short term. Thus, recourse is necessary for 

feasibility o f solutions that permit harvesting under sustained yield and when there is 

uncertainty in yields and returns - even with climate change productivity effects 

included (as they are in scenario three).

Another question of interest is: What does recourse mean with respect to long 

run solutions? This question is also o f interest for this study because under an 

information structure of perfect information o f the past but not the present, it is only 

the harvest in stage two that is flexible. The harvest in stage one is fixed, irrespective 

of what state of nature occurs. Figure 10.5 shows that the state o f nature that occurs 

in stage one has significant implications for how much LAC2 is harvested in stage 2 

(i.e. the long run). The area of the IAC2 stand harvested in the long run is 48 % 

higher in stage two if the high yield outcome occurs in stage one. Also, the area of 

IAC2 left uncut is significantly lower if  the high yield outcome occurs in stage one. 

Thus, the knowledge gained in stage two regarding what state o f nature actually 

occurred in stage one has significant implications for harvest rates in stage two.

There are two main reasons why the results presented in this section are 

interesting. The first reason is to reinforce that understanding how decision makers 

will adapt is an important aspect of climate change impact analysis and climate 

change policy. Climate change will, to some degree, result in increased uncertainty. 

Moreover, there is considerable existing uncertainty in future stand yields, 

irrespective of climate effects. Having the flexibility to adjust choices over time as 

uncertainty becomes resolved has important implications for forestry decision-making 

in uncertain environments. In fact, as shown in the results in this section, without the 

flexibility of recourse, feasible solutions to the management problem given sustained 

yield requirements preclude harvesting.
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The second reason that the results presented in this section are interesting is in 

terms of how they might be applied by a decision maker. All the solutions presented 

up to this point in this study have been in terms of area harvested under each 

prescription. A tenure holder is probably also interested in the question: What does 

climate change and uncertainty mean with respect to the potential range of volumes 

that can be harvested in the short term and long term? For example, as previously 

noted, the decision maker might be interested in purchasing a small portable sawmill 

and the decision about what size to purchase and the type o f technology to purchase 

might depend on the variability of harvest volumes in the short and long term. In the 

case o f the problem presented in this section, the tenure holder harvests 157 hectares 

o f IAC1 and 310 hectares o f IAC2 in stage one. Taking the low and high yields for 

each age class (from Figure 10.3) and multiplying by the hectares harvested (Figure 

10.5) suggests that the decision maker can expect to harvest anywhere from 107,794 

cubic meters ((157*112)+(310*291)) to 259,980 cubic meters 

((157*416)+(310*631)) in stage one. In stage two the decision maker harvests 221 

hectares o f IAC2 in stage two if a low yield outcome occurs in stage one. If a low 

yield outcome also occurs in stage two the yield for the IAC2 stand is 366 cubic 

meters. Thus if  the event history is LL then the maximum the decision maker can 

harvest in stage two is 80,886 cubic meters. If a high yield outcome occurs in stage 

one, then the decision maker harvests 327 hectares o f IAC2 land in stage two. If the 

high yield state o f nature repeats in stage two then the maximum amount the decision 

maker harvests in stage two is 232,824 cubic meters. Therefore, at the start of the 

planning period the decision maker faces the possibility that the amount available for 

harvesting in the long term (i.e. stage two) will range from almost 81,000 cubic 

meters to 233,000 cubic meters. However, the decision maker also knows that once 

he/she reaches the end o f the first stage, his/her level of uncertainty about stage two 

harvest rates will decrease. He/she will know that if  a low yield state occurs in stage 

one, then the amount available for harvesting in stage two will range from 81,000 

cubic meters (366 cu. m. per ha*221 ha) to 106,522 cubic meters (482 cu. m per ha 

*221 ha). If on the other hand the high yield state occurs in stage one then the range
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of harvest volume available in stage two will be from 195,219 cubic meters (597 cu. 

m. per ha*327 ha) to 233,000 cubic meters (712 cu m. per ha * 327 ha).

The previous paragraph illustrates how a recourse type model can be used to 

identify the range of volumes a decision maker could potentially harvest in various 

stages and at the start of the planning horizon and how the range of predicted volumes 

changes as one moves from the short term to the long term in the planning horizon.

Sensitivity to differences in levels o f  uncertainty

The analysis in this section considers the effects o f different levels o f 

uncertainty on economic returns and harvest choice using a recourse model 

formulation. In the analysis in Chapter 9 the effects o f different variance assumptions 

were evaluated using the EV -  Chance Constraint model formulation. The approach 

was to estimate the model using scenarios one to four input data and compare the 

results. A similar approach is adopted for the analysis presented in this section except 

that only scenarios 2 and 3 input data are used. As noted in Chapter 7, the scenario 2 

input data incorporates climate change as a driver o f change in projected harvest and 

ending inventory yields and it also includes uncertainty in climate variables. Scenario 

3, includes productivity effects o f climate change, uncertainty effects o f climate 

change and also uncertainty in yield parameters. Thus, the variances associated with 

scenario 3 input data are considerably higher than the variances associated with the 

scenario 2 input data.

The basic model assumptions for the models presented in this section are 

similar to the assumptions defining the models in the previous section (i.e. flow 

deviations = 25 %, ending inventory requirement -  220,000 cubic meters). The 

expected returns and harvest solutions using the scenario 3 input data were presented 

and discussed in the previous section (see Figure 10.5). The expected returns and 

harvest solutions using the scenario 2 input data are shown in Figure 10.6. The 

expected return using the scenario 2 input data is $427,437. The expected return for 

scenario 3 is 7 % lower than expected return for scenario 2. This is not surprising or 

interesting in and of itself. Nor is it inconsistent with the results presented in Chapter 

9. So this result reinforces the expected result that increasing uncertainty reduces the
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expected benefits o f timber operations even when the decision maker is risk neutral 

(note: despite this result -  the costs of uncertainty are still often ignored in economic 

analysis o f  forestry investments).

A more interesting question is: Does the increased uncertainty in model 

parameters associated with the scenario 3 input data have a significant impact on 

harvest solutions? Figure 10.6 shows that when using the lower variance scenario 2 

input data, almost all o f the IAC1 land is held as ending inventory and almost all o f 

the IAC2 land is harvested in either stage one or stage two. Figure 10.5 shows that 

when using the scenario 3 input data, more of IAC1 is harvested in stages one and 

two, and less o f IAC2 is harvested in stages one and two. Generally, with a lower 

variance in outcomes, the decision maker relies more on IAC2 for harvesting and on 

IAC1 for satisfying the ending inventory constraint. With higher variance in yields, 

the decision maker relies more on IAC1 for harvest revenues and more on IAC2 to 

satisfy ending inventory requirements. Another notable result is that recourse has a 

larger effect in terms o f harvest possibilities in stage two. Under the low variance 

scenario -  the difference in harvest area for decision alternative 1 and 2 for LAC2 is 

relatively small. For the high variance scenario, the difference is quite large. Thus, 

the increased uncertainty does have a significant impact on optimal harvest solutions. 

An irrational decision maker who utilizes scenario 2 input data to determine a harvest 

schedule when the actual input data should be scenario 3 will either be inefficient or 

unable to satisfy sustained yield constraints for some event histories. Another 

implication is that recourse becomes more important as variance in outcomes 

increases. As noted previously, variances from climate change are relatively small 

for this study. This may be because o f the relatively short length o f the planning 

horizon. If the time horizon of this problem was longer, then it is possible to 

speculate that yield variances related to climate change would be more substantial. 

Thus, a recourse approach might be even more applicable in a climate change context 

for longer-term forestry problems.
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Sensitivity to sustained yield constraints

In the previous section it was noted that flow constraints are the determining 

factor relative to a no harvest solution when the model without recourse is run. This 

suggests that flow constraints may play an important role relative to the results in the 

recourse model. In the previous chapter the effect of increasing flexibility in harvest 

flow constraints on objective function values in an EV-Chance Constraint model was 

assessed. The results suggested that increasing harvest flow constraint flexibility 

does not have a large effect on objective function values (see Figure 9.2). However, 

it is possible that increasing flexibility in flow constraints could be much more 

effective in cases where the logger can adjust harvest rates over time in response to 

new information. It is possible that having the opportunity to adjust harvest makes 

increased flow flexibility more beneficial. The purpose of the analysis in this section 

is to evaluate the effect that increasing flexibility in flow constraints has on objective 

function values and harvest selections in a decision setting where recourse is 

permitted.

The underlying assumptions for the model used in this section are as follows:

• The recourse model in equations 10.1 to 10.7 is the base model,

• Scenario 3 input data (in discrete form) were used,

• There is a 50 % likelihood o f each discrete outcome for each stage. This results 

in an equal probability o f 0.125 for each event history,

• The decision maker is risk neutral (i.e. there is no risk premium in the objective 

function),

• Two sets of flow constraints are tested. In the first model, the allowable deviation 

in flow constraints is plus or minus 10 %. In the second model the allowable 

deviation in flow constraints is plus or minus 50 %,

• Ending inventories are set at 220,000 cubic meters.

Results showing the effect of increasing allowable deviations in periodic flow 

from 10 % to 50 % are provided in Figure 10.7. Increasing the allowable deviation in 

periodic flows in a recourse setting has a significant effect on expected income using 

the recourse model. Expected income values increase from $146,500 to $445,789
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when the allowable flow deviation is increased from 10 % to 50 %. In terms of 

harvest choices, when allowable flow deviations are at 10 % then harvesting in stages 

one and two is not feasible. Thus, even with recourse and improvement in 

productivity from climate change, achieving sustained yield is problematic in a 

stochastic setting. When allowable flow deviations are increased to 50 %, however, 

harvesting occurs in both stage one and stage two. It is also possible to assess the 

effect of increasing allowable flow deviations from 25 % to 50 % by comparing the 

results o f Figure 10.5 with Figure 10.7. Increasing allowable flow deviations from 

25 % to 50 % increases expected returns by 12 % ($398,960 to $445,789) and it 

increases the area harvested in both stages one and two.

Hoganson and Rose (1987) point out that flexibility is inherent in sequential 

decision making processes. As noted in the previous section, allowing for recourse -  

by itself - has positive implications for objective function values. Also, the analysis 

in the previous chapter found that increasing flexibility in flow constraints had some 

effect on objective function values but the effect was relatively small. In this section, 

we have looked at the effects of recourse and increased constraint flexibility in a 

combined way. The results obtained in this section suggest that when these two 

sources o f flexibility are combined, the results are more significant. The message that 

comes from this analysis is that a desirable property of decision-making processes 

when uncertainty exists is flexibility and that there are a number of ways to improve 

flexibility. To the extent that climate change increases uncertainty about future yields 

and returns, planners and policy makers may find it useful to explore ways of 

incorporating increased levels o f  flexibility in timber management planning. 

Moreover, an approach that both allows recourse and relaxes flow constraints has 

significant positive economic benefits.

Effects o f  change in probabilities

The current climate change literature refers to various types o f adaptation. 

One type of adaptation is autonomous adaptation (Intergovernmental Panel on 

Climate Change 2001). This type of adaptation occurs as an automatic response to 

some climate induced signal (e.g. a price effect, a yield effect, a fire risk effect, etc).
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Another type of adaptation is planned adaptation. Planned adaptations are measures 

taken ahead of time to reduce the impacts o f future changes or reduce the likelihood 

of impacts. For example, a particular decision maker might be able to take some 

action ahead o f time that influences the levels o f benefits derived under the best case 

and/or worst-case scenarios. Or alternatively, the decision maker might be in a 

position to take some action ahead o f time that influences the probabilities o f future 

states of nature. The next section, investigates the effect of modification of the 

probabilities of high yield vs. low yield outcomes. Actions taken to influence these 

probabilities can be considered to be a form of planned adaptation.

Freeman (1999 pg. 221) differentiates between risk reduction and risk 

prevention activities. Risk reduction activities are actions that are taken to reduce the 

magnitude or impacts o f low yield outcomes. Risk prevention activities are actions 

taken that result in a reduction in the probabilities o f low yield outcomes. The kind 

of adaptation we are addressing in this section is risk prevention.

The purpose of the analysis in this section is to analyze what a decision maker 

is willing to pay for increasing the probability o f the high yield outcome (or 

equivalently reducing the probability o f low yield outcomes), and how increasing the 

probability of high yield outcomes affects harvest choices. In order to assess the 

effects of increasing the probability o f high yield outcomes we require two sets of 

probabilities. For the analysis in this section, one model is run with the assumption 

that the probability o f a high yield outcome in each stage is 50 %. A second model is 

run where the probability o f a high yield outcome at each stage is increased to 90 %. 

When applied over the entire planning horizon, changing the probabilities o f high 

yield and low yield outcomes at each stage results in a change in the probability of 

each event history. The probabilities o f each event history under each risk situation 

are shown in Table 9.2.

The assumptions underlying the models used for this section are as follows:

• The recourse model in equation 10 .1 -1 0 .7  is the base model,

• Scenario 3 input data (in discrete form) is used,

• The model is run for two sets o f probabilities. One set is based on an assumed

50 % likelihood of a high yield state at each stage. The second is based on an
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assumed 90 % likelihood o f a high yield stage at each stage. The probabilities are 

shown in Table 10.2,

• The decision maker is risk neutral (i.e. there is no risk premium in the objective 

function),

• Allowable deviations in periodic flow constraints are plus and minus 25 %, and

• Ending inventory constraints are imposed - the target-ending inventory is 220,000 

cubic meters.

For the remainder o f this section, we refer to actions taken to increase the 

probability of high yield states as risk prevention. However, a cautionary note is 

warranted here. The model presented in this chapter assumes risk neutrality on the 

part o f the decision maker. The incentive for reducing uncertainty and managing risk 

comes from increases in expected values o f returns. If the decision maker were risk 

averse, he/she would have an added incentive to prevent risk because risk prevention 

would reduce the risk premium and therefore increase the agent’s utility. However, 

additional potential benefits in the form of reduced risk premiums are not included in 

this analysis. This assumes, therefore, that the decision maker is the public forestland 

manager (as noted -  if  it is the public land management agency that is exposed to risk 

then risk preferences are low and risk premiums have a negligible effect on choice).

Figure 10.8 shows the effects o f risk prevention on objective function values 

for our hypothetical forest management problem. Objective function values increase 

as the likelihood of the high yield outcome increases (i.e. the likelihood o f the low 

yield outcome decreases). Figure 10.8 shows that for our hypothetical case study, the 

net present value of benefits increases by about 132 % (i.e. $398,960 to $ 526,443) 

when the probability of the high yield outcome increases from 0.50 to 0.9. This 

result shows that risk prevention has the potential for increasing the expected value o f 

returns in forest management under climate change. Thus, a decision maker would be 

willing to pay about $ 127,000 to increase the likelihood of high yield to 90 % at each 

stage (Note: here again that other factors such as stumpage payments changes are not 

accounted for here). The critical question here becomes do the returns from risk 

prevention justify the costs. If the present value of costs o f risk prevention is lower, 

then risk prevention activity is a viable investment.
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The recourse model was also used to show the effects of probability change 

on harvest choices. Probabilities for each event history were recalculated (see Table 

10.2) and the DSP model was run for two probabilities (50 % and 90 % likelihood of 

good states). The solutions are insensitive to variations in the probabilities of the 

event histories (Figure 10.8). Optimal harvest solutions remained unchanged for the 

two probability situations. Therefore, in summary, the main effect o f risk prevention 

in a climate change and uncertainty context is that it can significantly increase the 

expected value o f returns. There is, however, no effect with respect to harvest 

solutions -  at least for the problem defined for this study.

A related practical question pertaining to risk prevention is: What kinds of 

strategies might a forest manager utilize in order to prevent risk (i.e. reduce 

probabilities of low yield outcomes)? The empirical data that the yield curves in this 

study are based on is cross sectional. These yields will reflect historical insect 

defoliation events, droughts, and the effects o f other pathogens. Therefore, risk 

prevention strategies could come in the form o f forest management strategies that 

reduce exposure to these kinds of stochastic events. Reducing the likelihood of these 

disturbances is one example of a strategy that may reduce the probability o f low yield 

outcomes in the discrete climate scenarios presented in this chapter.

Summary and conclusions

A recourse model approach applies in situations where decision-making is 

sequential and where some portion of the uncertainty in variables is resolved part way 

through a planning horizon. The ability to model adjustment part way through the 

planning horizon means that DSP models (i.e. recourse models) are dynamic. Timber 

harvest planning is by nature a multi-period sequential decision process where 

uncertainties may be resolved through time. In some respects, therefore, the decision 

problem defined for this study is suited to the application of a recourse type approach. 

However, as noted, the problem for this study is only partly dynamic. Moreover, the 

static models presented in the previous chapter also have features that make them 

applicable to this study (e.g. they take account o f covariance between management 

prescriptions). In our view no single model is preferred, or more applicable, or best
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in all respects for problems related to looking at the impacts of climate change and 

uncertainty in forestry decision making contexts. Thus, the approach we have taken 

for this study is to estimate a suite o f different models one of which is the recourse 

model presented in this chapter.

As noted, timber harvest-scheduling problems can be viewed as sequential 

decision problems where the resolution o f uncertainty part way through the planning 

horizon results in alternative choices. A recourse model would apply to a timber 

harvest-scheduling problem even without a climate change dimension. However, the 

addition o f sequential climate change productivity and uncertainty effects makes a 

recourse approach even more potentially valuable as a decision support tool or as an 

approach for looking at climate change impacts and adaptation.

The main findings o f the analysis presented in this chapter are summarized as 

follows. The first main finding is that without some way of managing risk (through 

the flexibility o f being able to adjust harvest) or addressing uncertainty, harvesting 

and sustained yield objectives may not be compatible in uncertain operating 

environments -  even where climate change is increasing productivity over time (as 

was the case for our study site). This conclusion is supported by the fact that when 

the no recourse model is run using the scenario 3 input data, the entire forest remains 

uncut over the 60 year planning horizon. When the model is run where recourse is 

permitted (using the same input and the same set o f model parameters), a solution is 

obtained that allows harvesting to occur in stage one and two. With recourse, forty 

seven percent o f the forest is harvested in stage one. In stage two, an additional 33 % 

is harvested if  the high yield state occurs in stage one and 22 % of the area is 

harvested if the low yield state occurs in stage one. Thus, the decision maker adjusts 

the area harvested in stage two after discovering what state o f nature actually occurs 

in stage one.

A second general finding is that when uncertainty in outcomes is relatively 

high, forest managers are required to retain a higher proportion o f their existing 

mature forest uncut in order to satisfy the constraints. Lower uncertainty means that 

forest managers can harvest a higher proportion o f mature stands in the short term and 

rely more on immature stands to satisfy ending inventory requirements. The analysis
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supporting this conclusion was provided in the section “Sensitivity to differences in 

levels of uncertainty” where it was found that using the scenario two input data, 450 

hectares o f IAC2 forest is harvested in stage one while when the scenario three input 

data is used (i.e. higher variance) 310 hectares o f IAC2 forest is harvested in stage 

one.

A third finding is that, the benefits o f timber operations in a setting that 

permits recourse are considerably higher when considered in conjunction with the 

effects o f policy adjustments aimed at making forest policies more flexible. The 

analysis pertaining to the impact of increasing the allowable deviation from periodic 

flows from 10 % to 50 % shows significant increases in expected income when using 

a recourse model. Similar sensitivity analysis using the EV -  Chance Constraint 

model in Chapter 9, suggested that results were somewhat insensitive to variations in 

flow constraints. Thus, it would appear that flow policy adjustments, in conjunctions 

with recourse, offer greater potential in terms o f management options in a climate 

change adaptation context.

Finally, the analysis in this chapter shows that there are significant economic 

benefits associated with risk prevention. Risk prevention activities include activities 

that reduce the probability o f low yield states and increase the probability o f high 

yield states. Such activities include reducing the incidence o f pathogens, reducing 

susceptibility to drought, and/or other forms of increasing productivity through 

management (e.g. thinning, spacing, fertilization) and increased research (in which 

case the benefits can be viewed as a return to research). Although the expected value 

o f timber returns can increase significantly with risk prevention activities, the optimal 

harvest solutions are generally not affected by risk prevention -  at least for the 

stylized forestry scenario presented in this study.

As noted in the introduction to this final section, discrete stochastic 

programming models have some applicability to the problem context outlined in this 

study. However, discrete stochastic programming models also have limitations. The 

main limitation is that these models suffer from what is called the “curse o f 

dimensionality” (McCarl and Spreen 1997). This refers to the fact that network 

models in general, and discrete stochastic programming models in particular, quickly
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explode with the addition of more stages and/or the addition of more outcome 

alternatives. This limitation significantly restricts the applicability of the approach to 

climate impact studies conducted at larger scales (e.g. more stand types, more age 

classes, more periods, more prescriptions).

Another limitation of the DSP approach relative to the EV-Chance constraint 

model is that covariances between management prescriptions have no bearing on 

objective function values or solutions. This feature of the DSP approach makes it 

difficult to consider benefits that might arise from portfolio diversification. Ignoring 

the role o f covariances in potentially reducing overall variance could mean that the 

impacts o f uncertainty are somewhat overstated in a DSP framework.

The analysis presented in this chapter has led to a number o f additional 

questions of interest for possible future research. Two such questions include 1. 

What are the effects on net benefits and harvest choices if the forest manager is able 

to gain better insights into yields and benefits in the current harvest period (i.e. invest 

in the kind of new information and knowledge that provides perfect information of 

the present and the past)? And 2. What are the implications o f including risk 

preferences into the objective function o f the recourse model? There was insufficient 

time to address these questions for the purposes o f  this thesis. They are left for future 

study.
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Figure 10.1 Decision tree for the discrete stochastic programming problem.

Event
history
HHHeH13Y X I3Y

eH !2Y  X12Y

HHLeL l3Y  X13Y

HLHeH23Y X23Y

eL12Y X12Y

HLLeL23Y X23Y

Initial 

Age 

Class 1 

(40 yr old)

LHHeH33Y X33Y

eH22Y X22Y

LHLeL33Y X33Y

e L U Y  X I1Y

LLHeH43Y X43Y

eL22Y X22Y

LLLeL43Y X43Y

Hectares harvested 

in stage 1 

that contribute to 

ending inventory

X I 1R * 225 = 

ending inventory from

stage one harvest

]HHH

'HHL

eH 130  X I3 0

eH 120  X 120

eL 1 3 0  X 1 3 0

e H llO  X l lO

HLHeH 2 3 0  X 2 3 0

eL 120 X 120Initial

Age 

Class 2 

(80 yr old)

ILLeL 230  X 2 3 0

LHHeH 330  X 3 3 0

eH 220 X 220

LHLeL 330  X 3 3 0

eL U O  X l lO

LLHeH 430  X 4 3 0

eL 220 X 220

LLLeL43 0  X 4 3 0

2025 2055 2070

Stage 1 harvest Stage 2 harvest Ending inventory

Variable identifier = eijta Where i = state

j = decision alternative

H for high yield state, 
L for low yield state 
j = 1 in stage 1

Area harvested = Xjta

t = stage
a = initial age class

j = 1 or 2 in stage 2 
j = 1,2,3 or 4 in stage 3 
t=  1,2 or 3
Y for 1AC 40 yr old stands 
O for IAC 80 yr old stands 
R for regenerated stands

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 10.2 Data for the discrete stochastic programming problem -  Scenario two.
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Figure 10.3 Data for the discrete stochastic programming problem -  Scenario three
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Figure 10.4 Solutions for the DSP problem without recourse using the scenario 3
input data.
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Figure 10.5 Solutions for the DSP problem with recourse using the scenario 3 input data.
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Figure 10.6 Solutions for the DSP problem with recourse using the scenario 2 input
data.

Max returns = $ 427,437

Initial

(40 yr old)

X I1R

Oha /  \

0 hi

 ̂ r

0+449=449 ha

234 ha

234 ha

234 ha

234 ha

0 ha
I

Oha
JL

250 ha

250 ha

250 ha

250 ha

449 ha

301 ha

449 h

301 ha
Initial 

Age 

Class 2 

(SO year old) 294 ha

449 ha

294 ha

2010 2025 2055 2070

Area harvested in 
stage 1

Area harvested in 
stage 2

Area remaining 
as ending inventory

236

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 10.7 Comparison o f solutions with two levels of flexibility in flow constraints 
(10 % and 50 %) based on scenario 3 input data.

Objective function value (10 % deviation) = $ 146,500 
Objective function value (50% deviation) = $ 445,789
Top numbers shows solution when harvest is allowed to deviate by 10 % between periods 
Bottom number shows solutions when harvest is allowed to deviate by 50 % between periods.
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Figure 10.8 Comparison of solutions with 50 % likelihood of good state vs solutions 
with a 90 % likelihood of good state.

Max returns (50 % likelihood) = $ 398,960
Max returns (90 % likelihood) = $ 526,443_________________________________
Numbers above the line show solutions when likelihood of good outcome is 50 %. 
Numbers below the line show solutions when likelihood of good outcome is 90 %.
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Table 10.1 Parameter values used in the basic recourse model

Stage States
Scenario two 

Yield NPV
Scenario three 

Yield NPV Choice Var.
1 el 114 303 501 416 697 X I14
1 e2114 225 371 112 203 X I14
1 el 118 501 776 631 985 X I18
1 e2188 423 646 291 445 X I18

2 el 124 501 230 628 286 X124
2 e2124 473 218 515 237 X124
2 el224 445 206 402 188 X224
2 e2224 417 194 288 140 X224

2 e ll2 8 553 265 712 323 X128
2 e2128 534 253 597 273 X128
2 el228 515 240 482 223 X228
2 e2228 497 229 366 173 X228

3 e l 134 543 146 672 178 X134
3 e2134 531 143 623 166 X134
3 el234 519 140 574 154 X234
3 e2234 507 137 525 142 X234
3 el334 495 134 476 130 X334
3 e2334 483 131 427 118 X334
3 el434 471 127 378 106 X434
3 e2434 459 124 329 94 X434

3 e ll3 8 600 160 732 192 X138
3 e2138 588 157 682 180 X138
3 el238 576 154 632 168 X238
3 e2238 564 151 582 156 X238
3 el338 552 148 532 144 X338
3 e2338 540 145 482 132 X338
3 el438 528 141 432 120 X438
3 e2438 516 137 382 108 X438
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Table 10.2 Probabilities o f  outcom es for different assumptions o f  likelihoods o f  good and low  yield states o f  nature

Likelihood Likelihood Likelihood Likelihood Likelihood
Good Bad Good Bad Good Bad Good Bad Good Bad

0.5 0.5 0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1

Event history Probabilities of each event history

1AC1 111 0.125 0.216 0.343 0.512 0.729
112 0.125 0.144 0.147 0.128 0.081
121 0.125 0.144 0.147 0.128 0.081
122 0.125 0.096 0.063 0.032 0.009
211 0.125 0.144 0.147 0.128 0.081
212 0.125 0.096 0.063 0.032 0.009
221 0.125 0.096 0.063 0.032 0.009
222 0.125 0.064 0.027 0.008 0.001

1AC2 111 0.125 0.216 0.343 0.512 0.729
112 0.125 0.144 0.147 0.128 0.081
121 0.125 0.144 0.147 0.128 0.081
122 0.125 0.096 0.063 0.032 0.009
211 0.125 0.144 0.147 0.128 0.081
212 0.125 0.096 0.063 0.032 0.009
221 0.125 0.096 0.063 0.032 0.009

222 0.125 0.064 0.027 0.008 0.001
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CHAPTER ELEVEN

SUMMARY AND CONCLUSIONS

Summary o f the methodology and approach

The goal o f this study is to understand what the implications of climate 

change and uncertainty might be for economic returns from timber management and 

for harvest choices in the short term and long term. In order to address specific 

questions pertaining to this general goal, a methodology was developed and applied 

to a stylized forest management scenario. The methodology is unique in two ways. 

First, it is unique in terms o f the ways that models and methods used in traditional 

forest economics analysis have been modified to account for climate change and 

uncertainty. For example, we have extended traditional yield function estimation and 

traditional net present value models to incorporate climate effects on stand 

productivity and to take account of uncertainty in climate variables and yield model 

parameters. The second way that the method and approach described in this study is 

unique is in terms o f the way that various types o f models and analysis are integrated. 

The study required an approach that predicts the effects of climate change on stand 

yields in the future, predicts the distributions of random variables, and takes account 

o f the risk preferences o f individuals.

The first requirement was to obtain a model that could be used to predict 

future yields under alternative potential climate futures. This required the estimation 

of a yield model that includes climate variables. The estimation of this type of model 

requires cross-sectional yield data that covers a range o f sites with varying current 

climate conditions. Cross-sectional, spatial data was made available through the 

Canadians Forest Service’s Climate Impacts on the Productivity and Health o f Aspen 

(CIPHA) study40. The CIPHA data was transformed into formats suitable for yield 

curve estimation and a variety of yield model specifications were estimated by linear 

and non-linear regression methods. A reciprocal yield model functional form was 

selected.

40 T. Hogg -  Principal Investigator
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The second requirement was to obtain predictions of the distributions o f future 

random variables used in the risk models. The complicating factor for this study was 

that the random variables required for the risk models are functions o f other random 

variables. An approach for estimating the distributions o f random variables was 

required. The approach adopted was Monte Carlo simulation. The approach was to 

incorporate the yield curves estimated in Chapter 6 into a Monte Carlo simulation 

model along with information on the distributions of random variables known apriori. 

The Monte Carlo simulation model provided expected values, variances, and 

covariances for harvest yields, net present values o f returns, and ending inventory 

values for all stand types, all prescriptions, and for each of scenarios 2, 3 and 4 

assumptions about sources of variance.

The final requirement was to develop a model that could be used to assess the 

implications o f climate change and uncertainty on forestry returns and on harvest 

choices. The traditional approach is to develop a deterministic timber supply model. 

The timber supply model adopted for this study was a Model I type formulation. 

However, in order to accommodate risk and uncertainty the Model I formulation 

needed to be extended. The approach used for this study was to transform the Model 

I timber supply formulation into a probabilistic mathematical programming based risk 

model.

There are a variety o f models for addressing risk. In this study we considered 

three different types of formulations. The first formulation is referred to as a 

Markowitz variance minimization model. This model estimates the frontier of 

efficient portfolios that represent different combinations o f risk and return that are 

efficient. The second formulation estimated in this study is an expected value -  

chance constraint type model. The model incorporates decision maker risk 

preferences through the inclusion of a risk aversion parameter. The model identifies 

the specific portfolio that is optimal from the range o f possible portfolios available to 

the decision maker. The third risk model estimated in this study is referred to as a 

discrete stochastic programming model (or recourse model). This formulation 

models the decision making process as a series of sequential decisions and it 

recognizes that with some types of information structures, some portion o f the
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uncertainty facing decision makers is resolved over time. Thus, dynamic adjustment 

of the choice variables is explicitly incorporated into the modeling frame. The 

following section provides a more detailed comparison o f these three types of 

modeling approaches.

Risk model comparisons

There are two reasons for estimating three separate risk models. The first 

reason is to develop an understanding o f the types o f risk questions that can be 

addressed with specific types of risk models in a climate change and forest 

management decision-making context. The second reason is to understand the 

strengths and weaknesses of the various approaches in different types of applications 

(e.g. impact assessment, policy analysis, prediction o f adaptation response, etc).

The first risk model considered in this study was the Markowitz asset 

allocation model. This particular model is the most straightforward of the three risk 

models. The model looks for the particular asset mix that minimizes variance subject 

to a minimum expected return. One of the strengths of the Markowitz model is that 

the model can be employed without having to determine or derive a risk aversion 

coefficient. Obtaining suitable measures for the risk aversion coefficient can be 

challenging. An issue relative to the Markowitz approach is that it cannot be used for 

evaluation of the impacts of climate change. Impacts assessment requires a model 

that explicitly considers the agents degree o f aversion to risk and uncertainty. The 

absence o f consideration of risk preference in the Markowitz model precludes impact 

assessment. However, the Markowitz model could have useful applications for other 

types of climate change related analysis. For example, risk management is often 

quoted as a potentially useful adaptive response to climate change (Jones 2001). A 

Markowitz model approach would be appropriately applied for finding the particular 

mix of land uses and/or species mix configurations that minimize variance of 

portfolio returns under increasingly uncertain future climatic conditions.

The second risk model estimated in this study was the expected value variance 

- chance constraint hybrid model. This model has been widely used in studies o f 

agricultural risk but to our knowledge there are no applications to forest management
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and climate change risk analysis. This risk modeling approach treats random 

variables as continuous random variables. Essentially the variance of a particular 

portfolio is derived with the aid of variance-covariance matrices between prospects 

within portfolios. The EV-CC model has a number of strengths. First, the 

formulation is explicitly and directly linked to decision theory and expected utility 

theory. For example, the objective function is to maximize certainty equivalent. A 

second advantage is that uncertainties in objective function coefficients and constraint 

coefficients are incorporated into the optimization framework with relative ease. 

Those objective function and constraint coefficients that are considered to be random 

variables are represented by their expected values, their variances, and covariances. 

A third advantage (relative to the Markowitz model) is that the model identifies a 

specific optimal portfolio for a decision maker with particular risk preferences. A 

fourth advantage (relative to the recourse model) is that random variables can be 

incorporated as continuous random variables41. One of the drawbacks of the EV / CC 

model is that it is a static model. This means that there is no opportunity to adjust 

decisions as states o f nature become realized and uncertainty is resolved over time.

The third risk model approach presented in this study is the discrete stochastic 

programming (DSP) model (i.e. recourse model). The DSP modeling approach is 

designed to address problems that are sequential in nature and for which some portion 

of the uncertainty about future states o f nature will become resolved part way through 

the planning period o f interest. This is the main strength of this risk modeling 

approach. The approach treats future states o f nature as discrete events. That is, there 

are a finite number (two in our case) o f possible future states of nature at each stage 

of the analysis. These types of problems are quite typical in forestry -  particularly 

when sustained yield constraints are included in the problem setting. Thus a DSP 

formulation is well suited to forestry management decision analysis type problems.

There are four main issues related to this type of risk model. The first is that 

most forestry applications o f this approach have not incorporated risk preferences.

41 The random variables of interest for this study are in fact continuous random variables. Thus, the 
EV-Chance constraint formulation provides a framework that is somewhat more consistent with the 
way the variables are defined. In the case o f  the DSP formulation, it was necessary incorporate 
additional assumptions in order to convert the continuous random variables to a discrete form.
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That does not mean that it is not feasible to design a DSP that takes risk preferences 

into account. Apland and Hauer (1993) describe an approach for incorporating risk 

preferences into a DSP model. However, the approach does require the specification 

of a particular utility function and generally the form of such utility functions is not 

known. The second issue concerns what is known as the curse of dimensionality. As 

shown in chapter 10, DSP risk approaches are essentially decision trees. The 

formulation of these types of models is manageable as long as the number o f states of 

nature and the number o f stages is relatively low. However, these types of 

formulations explode quickly as the number o f stages and or states o f nature is 

increased. Thus, even though this type o f formulation is manageable for our 

relatively straightforward problem (i.e. two stand types, three stages, and two states of 

nature at each stage) for larger and more realistic forest management problem 

contexts with many stand types, multiple planning periods, and multiple potential 

states of nature -  a DSP approach may prove to be infeasible. A third issue with the 

DSP model approach is that it does not account for covariance between objective 

function coefficients or between random variables in the constraints. In Chapter 8 the 

potential important role o f covariances between coefficients as a factor affecting 

choices was noted. A final issue relative to the application of the DSP approach to 

the specific problem in this study is that because of the structure o f the approach it is 

necessary to ignore some sources o f uncertainty. For example, the terminal values 

for the forest management problem (i.e. the soil expectation values) are incorporated 

as fixed values (i.e. these values are considered to be deterministic). Also the ending 

inventory values for hectares that are harvested in period one are incorporated as 

fixed values. The reason it is necessary to incorporate these as fixed values is that the 

DSP model requires that the terminal values o f variables are fixed. The model 

assumes that the decision maker is not concerned about levels o f uncertainty in 

variables for periods following the end o f the planning period.

Summary o f the main findings o f  this study

A finding of this study is that the contribution of climate uncertainty to total 

portfolio variance is relatively small. Climate variance accounts for only 25 % of the
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standard deviation in expected return. The remainder is due to variance in yield 

parameters. A cautionary note is required here. Variance in the climate variables is 

based on the range of predictions from different GCMs using different SRES 

emission scenarios. Moreover, climate variances are based on climate predictions 

made over large geographic areas and the resulting variance may tend to be lower 

than climate variances o f predictions at a specific site. Yield parameter variance, on 

the other hand, is based on variations in the cross sectional data obtained from 

specific sites. Thus, part o f the reason why climate variances may be relatively lower 

may be attributable to the methods used. Our results, therefore, likely provide a 

lower bound estimate o f the costs o f climate change due to increased uncertainty.

This study also confirms that economic returns from forestry and optimal 

harvesting decisions are sensitive to risk and uncertainty. For example, the analysis 

in Chapter 9 shows that certainty equivalent values with sustained yield constraints 

for highly risk averse decision makers are 57 % lower when risk preferences, climate 

effects, and uncertainty are taken into account. One of the implications o f the results 

in this study is that since climate change does affect variation in expected returns, and 

since higher variation has an economic cost, the cost of risk and uncertainty should be 

included in climate impact assessments. However, such assessments also need to 

recognize other sources of uncertainty. Analysis of returns and harvest choices with 

climate change require a full accounting of all sources uncertainty for accurate 

assessments o f impacts.

A somewhat surprising result in this study is that lower risk portfolios have 

higher proportions o f longer-term prospects within them. The reason for this result is 

due to discounting. The discounting o f future distributions results in lower present 

values of expected values and lower variances around the expected values. The net 

effect is that time is a risk reducing input. This implies that since decision makers are 

averse to risk they prefer to delay risky decisions until the future. They are prepared 

to discount future risk compared to immediate risk.

A main conclusion o f this study is that all other factors equal, the impacts of 

climate change would appear to be positive for aspen timber management for areas in 

central Alberta up to 2070. This result holds even with the costs associated with
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higher climate risk accounted for. This conclusion is not inconsistent with US studies 

looking at the impacts of climate change on forest yields. These studies conclude that 

for some regions climate change results in higher productivity. The result showing 

positive benefits for this study must be qualified in a couple o f ways. First, our 

analysis is regional in nature. We have assumed that the manger is a price taker and 

that timber demand is perfectly elastic. Thus, supply changes from climate change do 

not have a price effect. Prices are known with certainty and they are fixed at a single 

value over the entire planning period. In point o f fact, climate change is likely to 

have important implications for timber prices and it will also likely affect price 

uncertainty. For example, previous studies suggest that global timber supply will 

increase faster than global demand resulting in a trend of decreasing prices for North 

American produced timber (Sohngen and Sedjo 2005).

Another important qualification is that although productivity is predicted to 

increase in the study area we are considering, similar effects may not be universally 

experienced across the boreal forest. For example, in areas in the aspen parkland or 

near the boreal / aspen parkland boundary -  increased moisture deficits are possible 

under climate change. Productivity in areas that are subject to moisture deficits and 

increased drought frequency is more likely to decline (Hogg 1994; Hogg and Bemier 

2005). For these types of areas, the economic impacts o f climate change in terms of 

the forest sector will likely decrease.

Another consideration or qualification for this study is that the time horizon is 

relatively short for forestry analysis. The study covers a 60 year period. It is 

important to acknowledge that climate will continue to change after the end o f the 

planning period defined for this study. It is also quite possible that changes in climate 

will eventually be o f such magnitudes that the directions and magnitudes o f impacts 

identified in this study will reverse.

This study has also looked at climate change from the point of view of 

potential implications for sustained yield forest policies. There are a number o f 

conflicting implications of climate change for sustained yield. First, in the case 

where sustained yield constraints are imposed, expected net benefits are higher with 

climate change than they are without climate change. This is as a result of higher
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growth rates in future periods that make satisfying flow constraints and ending 

inventory constraints easier to achieve. At the same time it is important to note that 

there are significant opportunity costs associated with sustained yield. The total 

certainty equivalent of a forest with SY constraints is 18 % lower than certainty 

equivalent for our forest without SY constraints. Moreover, the imposition of SY 

tends to reduce flexibility and it tends to result in relatively undiversified sets of 

management options. Thus, the variances around forestry benefits are likely higher 

under sustained yield than would otherwise be the case and in addition risk and 

uncertainty becomes relatively more difficult to respond to when managers are faced 

with having to satisfy sustained yield constraints. One interesting result obtained 

from the DSP model analysis is that without recourse, harvesting is not compatible 

with sustained yield in uncertain decision environments. This result implies that we 

may need to rethink policies such as sustained yield and sustainable forest 

management. The models imply that without flexibility (i.e. the flexibility that is 

implied in a recourse type model) then our ability to satisfy sustained yield and still 

harvest timber is limited. There is already considerable uncertainty associated with 

information used for long term planning. Climate change simply augments the 

uncertainty. Thus, an important question to begin thinking about is: To what extent 

does the pursuit o f sustained yield limit our ability to adapt and adjust to changing 

conditions?

Another finding in this thesis is that climate change impacts are a function of 

institutional settings and property rights configurations. Property rights 

configurations determine who is exposed to risk. If property rights are configured in 

a way such that it is society that is exposed to uncertainty, then taking account of risk 

in assessment models may be moot because risk aversion is of little importance for 

public projects. If, on the other hand, property rights are configured such that 

individual firms or landowners are exposed, then risk aversion is important in terms 

of impacts assessment and behavioral responses.

The discrete stochastic programming models provide solutions for short run 

and long run harvests. Short run harvests are the harvest prescriptions that are 

indicated for stage 1 harvest. Long run harvests are harvest solutions that are
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indicated for stage 2. The implication of recourse for harvesting in the short term 

depends on the information structure. If the individual has perfect information o f the 

past but not the present, then recourse has little effect on harvest choices in the short 

run. However, recourse does influence harvest choice in the long run. Recourse 

under an information structure o f perfect information of the past but not the present 

does, however, provide flexibility relative to stage 2 harvest.

A final finding o f this study is that risk models can be used to look at different 

types o f adaptation. One form of adaptation is to make adjustments in decisions as 

uncertainty is resolved. This is the type of ex -  post adaptation that is modeled with a 

DSP risk model. Another example o f adaptation is risk prevention. Risk prevention 

activities are ex-ante. Risk prevention involves actions taken by decision makers to 

influence the probability of a preferred state o f nature occurring. In the case of this 

study a preferred state of nature is a high yield outcome in each stage. If the decision 

maker has the opportunity to influence the probability of a high yield outcome 

occurring, then the expected value of returns increases (see Chapter 10). If the 

benefits (in terms o f increased expected value o f returns) are higher than costs then 

planned adaptation investments in risk prevention are economically viable activities.

Discussion o f some policy implications o f  climate change and risk in forest 
management

This section provides a general discussion of some possible policy 

implications of climate change and risk for forest management. Some o f the 

discussion in this section is based on the results o f this study and some o f the 

discussion is based on application of the general risk and uncertainty literature to the 

issue of forest management decision making given climate change and risk.

One of the messages that comes from this study is that climate change and risk 

have the potential for real economic impacts and also the potential for influencing 

optimal harvest plans. Thus, ignoring climate change and risk may result in mis- 

estimation of forestry benefits and sub-optimal planning decisions. Undertaking 

research to better understand the impacts o f climate change and risk in forestry is a 

start, but given the long growth cycles that are inherent in forest management it may 

also be opportune to begin thinking about the kinds of changes in forest policies that
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might be pursued in order to facilitate the identification and implementation of 

adaptation in the near term. For example, some possible responses to changes in risk 

exposure include risk prevention (discussed in Chapter 10), risk reduction (reduce the 

magnitudes o f possible negative impacts), risk spreading (e.g. insurance schemes), 

portfolio diversification (discussed in Chapter 8), and adopting more flexible forest 

policies (e,g, build the capacity for adaptive management into forest policy).

The current risk literature shows that, in most cases, undiversified financial 

portfolios have higher variance than diversified portfolios. In this study we have 

attempted to make a link between benefits associated with diversification of a 

portfolio o f financial assets with potential benefits o f diversification o f a portfolio o f 

management options for forest management. Increasing the range o f management 

options available to forest managers may be an important strategy for reducing 

uncertainty and risk resulting from climate change and other sources.

One practical example of how this might be implemented is in terms o f forest 

practices and reforestation policies. Current policies and practices often involve 

clear-cutting areas and reforesting harvested stands with the same species that was 

harvested from the site. This strategy will likely lead to a managed forest made up of 

a narrow range of species (some of which may be mal-adapted to future growing 

conditions) growing in even age stands. But the question that needs to be addressed 

is what are the risks to future returns from this type of undiversified forest compared 

to a structurally more diversified forest and if  a structurally more diversified forest is 

deemed desirable - what kind o f policy adjustments are needed in order to provide the 

kinds o f incentives that will result in this new type of forest. For example, an 

alternative strategy could be to (a) encourage the use of a broader range of forest 

management systems (e.g. mixed wood, agro-forestry systems, etc), and (b) 

encourage the reforestation o f areas with a broader mix of species. Such a strategy 

could lead to a more diverse portfolio o f forestry assets and this should reduce the 

risk associated with future forestry returns. The potential for reduced risk would, o f 

course, need to be compared with whatever implications there might be relative to 

expected economic benefits of such a restructured forest.
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Our ability to deal with the expected uncertainties inherent in climate change 

and forest management in general, may require some fundamental changes in our 

approaches to management. In chapter two, the concepts of evolutionary changes for 

unstable systems that are continually changing and redefining was introduced. It was 

noted that functional diversity, management systems and institutional structures that 

recognize and account for uncertainty and unpredictability, and social structures that 

encourage adaptive management are important system features relative to adaptability 

Some natural resource economists (Castle et al. 1996) argue that maintaining the 

quantity and quality o f the stock of natural capital should not be the goal o f 

sustainable development. Rather, the focus o f sustainability should be on maintaining 

or increasing flexibility and adaptive capacity. These concepts did not emerge in 

response to uncertainties introduced by climate change. However, climate change 

does increase the level o f uncertainty and unpredictability that we face in forest 

management. Therefore, the arguments for building flexibility and adaptive 

management into our current thinking regarding resource management and our 

current policies for resource management are strengthened.

Qualifications and considerations

The research in this thesis has covered a wide range o f  topics in a relatively 

new area of research. In order make the study manageable the study context was 

simplified, the approaches were generalized and some simplifying assumptions were 

adopted. Therefore the results presented in this study should be viewed with these 

considerations in mind. A number of specific areas that are components o f this study 

would probably merit further analysis in order to improve and further refine the 

analytical foundation. In this section we identify and discuss what we view as the key 

qualifications and considerations relative to the analysis and results presented in the 

study. Some o f these issues are raised again in the section following that deals with 

areas for future research.

One of the first issues to note is that the relationship between climate variables 

and yield was estimated using cross-sectional data. A similar approach (called 

Ricardian analysis) was used by Mendelsohn et al. (1994). The use o f  cross sectional
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data to estimate a yield function for this study assumes that future yields for our study 

site will be similar (all other factors equal) to current yields of stands growing on sites 

with climate that match future conditions. It should be recognized, however, that 

other factors that are not part of the estimated yield relationships may also explain 

yield at a particular site. These unobserved factors could result in biases with respect 

to yield predictions based on models estimated from cross sectional data. Three ways 

to reduce this bias would be to significantly expand the number of samples, expand 

the range o f sites within the sample, and obtain data from permanent sample plots that 

include re-measurement data (i.e. growth data). Access to a data base that includes 

both stock and growth data would permit the simultaneous estimation o f parameters 

for both yield and growth functions.

A related issue concerns the range of climate data in our cross-sectional 

database relative to the range of future predictions o f climate variables (discussed in 

Chapter 6). As noted in Chapter 5, the source o f data for estimating the yield 

function in this study is the CIPHA data base. The CIPHA project includes plots 

ranging from southern Manitoba to the Yukon. A comparison of the range of average 

annual temperatures for plots in the CIPHA data base with the predicted ranges of 

future average annual temperatures shows that the maximum average annual 

temperature for plots in the CIPHA database is lower than the maximum annual 

temperatures predicted in the years 2050 and 2080. Thus, our yield model is being 

used to predict future yields at temperature values that are outside the range of the 

data from which the yield model was estimated. This might be a significant concern 

if  future predicted temperatures were outside the range of aspen in North America. 

However, aspen in North America has a wide range. It occurs from Virginia to 

Alaska. Thus aspen occurs on sites that are well within the range o f future predicted 

temperatures predicted for the Calling Lake site.

Another issue for this study is that all o f our predictions of future yields and 

variances are based on a stand yield model. One of the limitations that this imposes is 

that we are unable to consider the possibility that variances in stand yield predictions 

changes with time. However, if  we had estimated a growth function in conjunction 

with a yield function, it would have been possible to model how variance changes
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dynamically. That is to say, we would have been able to look at the possibility that 

variance o f  stand yield are non-stationary as stands grow or as prediction period 

increases. One o f the reasons why estimation of a growth function was not possible 

was due to data limitations. However, if  at some point in the future data on both 

growth and yield becomes available for a broad cross-section of sites then a more 

sophisticated approach to variance modeling would be possible.

Another issue pertaining to the yield modeling component o f this study is that 

we were not able to obtain satisfactory estimations using yield functions that are 

generally accepted within forest science (see Chapter 6). We were, however, able to 

estimate a non-traditional functional form (i.e. the reciprocal model) that provides a 

good fit with our data. As discussed in Chapter 6, this was mainly due to the fact 

that our sample was restricted to older and larger trees). Nevertheless, although the 

functional form estimated in this study is an acceptable start, it should not be viewed 

as the final answer relative to yield prediction for aspen under climate change. 

Further attention needs to be paid to the development o f improved approaches for 

predicting how climate change will affect both stand yields over time and the 

variance around predictions of stand yields.

As noted in Chapter 7, the measures of uncertainty in climate variables for this 

study are obtained from ranges of predictions from different combinations of GCM 

models and SRES scenarios. There are two main issues that should be noted as a 

result o f this approach. The first issue pertains to scale. GCM models provide 

predictions o f future climate variables for large geographic areas. Thus, our approach 

results in a measure o f uncertainty in a climate variable over a large geographic area. 

For this study we have applied this uncertainty to uncertainty in climate variables for 

a particular site. Generally, we would expect the variance in climate at a particular 

site to be higher than the variance in a climate variable for a large area. Thus, our 

approach provides a lower bound estimate of climate variance. A second issue 

relative to using ranges of GCM model / SRES scenarios to generate measures of 

uncertainty is that these models are tending to converge with each generation of new 

model. As noted in Chapter 7, however, it is possible that there may be factors that 

will affect future climate that we are currently unaware of and that are not part of the
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suite o f current climate models. Here again, the approach used to obtain estimates o f 

uncertainty in the future value of climate variables may be a lower bound estimate of 

what the true uncertainty is.

As was noted in Chapter 8, a number o f previous studies have found that price 

uncertainty is a major source of uncertainty relative to management decisions. 

Moreover, some studies find that decision makers tend to be as much (if not more) 

concerned about price risk as uncertainty in biological factors. This study has 

assumed a constant price for the planning horizon. However, uncertainty in timber 

price risk could be an important source of uncertainty in climate impact analysis. 

This is an area that should be considered in future analysis o f climate impacts.

An area that has not been considered within this study is the possibility that 

climate change in central Alberta could lead to massive mortality due to unforeseen 

and previously un-experienced events. Two simplifying assumptions in our 

biological model are that a) climate change does not change the fundamental growth 

relationships that are reflected in our yield function, and b) climate change does not 

change disturbance patterns. However, major system failures are possible if there are 

non-linearities, non-convexities, and thresholds within growth, yield and survival 

functions that are breached as a result of change climate. Possible causes o f major 

ecosystem failure (however unlikely) include major pest and disease infestation, 

drought, wildfire, extreme weather, or dieback due to changed climatic conditions 

exceeding physiological tolerances. Risks due to these types o f catastrophic impacts 

are not incorporated into the biophysical model in this study. The reason for 

excluding these effects was that our study site is not in an area close to a transition 

zone and because we are only considering impacts up to the year 2070. Widespread 

mortality and dieback is therefore less likely. However, the possibility o f some 

unforeseen set o f circumstances leading to forest ecosystem failure and mortality 

should not, perhaps, be entirely ruled out -  especially for studies looking at longer 

time frames or for study sites situated in or near transition zones. One way to address 

this would be to include a mortality component into the biophysical models.
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Future research

A number o f potential extensions o f the research conducted in this study have 

emerged. One useful extension would be to incorporate additional sources o f risk and 

also to examine alternative ways o f assessing risk. For example, as was noted in 

Chapter 8 and in the previous section, the sources o f risk evaluated in this study are 

limited to uncertainty in climate variables and uncertainty in yield model parameters. 

Stumpage price and interest rates are incorporated deterministically. Moreover, in the 

case o f variables that are considered to be random, only climate variable risk changes 

over time and the procedure for incorporating dynamic risk in these variables is 

limited by data availability. A useful extension o f the analysis presented in this study 

would be to include both price risk and disturbance risk into the analysis as additional 

sources o f  risk. The inclusion of risk around these variables would necessitate the 

consideration of other methodologies for modeling risk and variance. For example, in 

the case o f disturbance risk, the methods suggested by Reed (1984) where the number 

of major disturbance events in a planning period is considered to follow a Poisson 

distribution and the period of time between major disturbances follows an exponential 

distribution could be considered. Reed (1984) shows how the rate parameter from a 

Poisson distribution can be included in a Faustmann soil expectation value model. In 

terms o f price risk, a number o f studies (Reed and Haight, 1995; Conway 1999; 

Buongiomo 2001; Gong 1992; Haener and Adamowicz 2000) have incorporated price 

risk into forest economic models. These studies model price risk in various ways, 

however, in all cases price risk is allowed to vary over time (note studies show that 

price can be modeled as a random walk in which case it may be non-stationary 

resulting in increasing variance with respect to time). In a climate change context the 

consideration o f price risk may be important for two reasons. First, the expected 

values of stumpage prices may be decreasing as a result of climate change (Sohngen 

and Sedjo 1995) - thereby offsetting potential benefits from positive productivity 

effects. Second, the variances o f price may increase as a result of climate change, 

thereby increasing the economic costs o f uncertainty for forestry returns (a lack o f 

data on historical variation in stumpage prices or in information that might provide 

insights into future price risk is a significant limiting factor).
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Another area that may be worth including in future studies would be to also 

consider the possibility that the variances of harvest yields and ending inventory 

yields are also time dependent. This study does not allow variances in yield 

parameters to change over time. The possibility that yield parameters may change 

over time and the resulting implications for certainty equivalent and optimal harvest 

choice remains an unanswered question.

Another extension o f this study would be to apply similar types o f models 

using a wider mix o f species over a larger range of sites (possibly varying over some 

latitudinal gradient so that both negative and positive climate related site effects are 

captured). This could be accomplished by increasing the number o f stand types in the 

choice set to include more species, more initial age classes, and a broader range of 

sites as input data for the programming models. Since the basic structure o f the risk 

models would not change, the extension to a larger problem would be fairly 

straightforward. The main challenges would be to obtain high quality cross sectional 

mensuration data for other species and to estimate the necessary expected values, 

variances, and covariances for a larger set of objective function and constraint 

variables.

One of the issues identified in Chapter 8 was that the number of prospects 

included in the forest management portfolio was relatively small, and was limited to 

forest land-use options. If our decision maker is a private landowner, then one of the 

options that may be available is to not invest in forestland in the first place, and/or 

invest harvest revenues in alternative types of investments. A useful extension of this 

analysis would be to provide the decision maker with the opportunity to include non

forest investments (e.g. stocks, bonds, real estate) in their portfolio.

An aspect o f the analysis conducted in this study that was only briefly touched 

on concerns the role o f institutional contexts and property rights configurations 

relative to problem formulation. As was noted, assumptions regarding how property 

rights are configured may have significant implications for the distributions o f 

benefits and costs and even for the need to consider risk preferences. In Canadian 

forestry, the context for decision-making can in some ways be viewed as a principal 

agent type of decision-making scenario. The forest industry (the agent) obtains the
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property rights for harvesting timber and in exchange agrees to manage the land base 

to satisfy other objectives of the crown (i.e. the principal). An interesting extension 

of the analysis in this thesis would be to define the problem as a principle agent type 

of problem with clearly defined property rights configurations and formulate the risk 

models accordingly.

An area that requires further study is the identification of who bears climate 

risks and the kinds of practical risk management tools that are available to forest 

managers. This study has only briefly touched on the questions o f how impacts may 

vary depending on who bears risk. However, we have not made any attempt to assess 

how climate risks are actually distributed. Moreover, we have made little attempt to 

provide a review of the kinds of instruments that forestry managers currently use to 

manage risk and whether these instruments are adequate for addressing expected 

change in risks under a changing climate. A useful component o f the institutional 

analysis proposed in the previous study would be to undertake an analysis o f the 

distribution o f climate and other risks to forestry stakeholders, and to provide a 

comparative assessment o f existing approaches and instruments for managing risk 

across various forestry jurisdictions in Canada.

Another potential area for future research would be to consider alternative 

types of information structures and risk preference assumptions. The recourse model 

analysis provided in Chapter 10 assumes an information structure o f perfect 

information of the past but not the present. Also, the model assumes risk neutrality. 

In many ways, both of these assumptions are a reasonable representation of the 

current reality in Canadian forestry. However, one management option that managers 

might want to consider is improving their knowledge o f yields so that they have 

perfect information of the past and present. Also, in order to apply the recourse 

model to a private woodlot situation, it would be necessary to include an individual’s 

risk preferences within the model. Therefore, two useful extensions of the recourse 

model would be to consider the case where the decision maker has perfect 

information of the past and the present, and to include risk preferences in the recourse 

model objective function.
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In some respects the study presented in this dissertation might be viewed as 

first generation economic analysis of climate change effects on forestry. It is a first 

generation analysis in the sense that “prior” knowledge of parameter distributions 

under future climate change for variables important for forest planning and economic 

analysis do not exist. As a result, the methods are highly generalized, and the 

problem context is stylized. Also, distributions o f future random variables are 

estimated using fairly straightforward Monte Carlo simulation methods. There may 

be questions about the degree to which the results o f this dissertation can be directly 

applied for use in operational decision making. Managers, likely will require more 

context specific information for on the ground decision making and policy 

development and this will require additional research (perhaps to some degree along 

the lines described in the previous paragraphs in this section). Thus, we expect that 

as the demand for knowledge and information about climate change grows, a second 

generation of economic and forestry research will emerge. As we have noted 

throughout this study, uncertainty is an important dimension o f climate change 

impacts analysis. Generally, including uncertainty requires some information about 

the distributions o f parameters used in models. One option for the second generation 

of climate impact and adaptation models would be to continue to rely on simple 

Monte Carlo simulation techniques to estimate the distributions o f model parameters. 

This approach, however, ignores the possibility that some prior knowledge about 

model parameters might already exist. An alternative approach would be to build on 

existing knowledge and refine our understanding o f uncertainty in models parameters 

in climate impact models by using Bayesian statistical modeling methods. The 

Bayesian concept is based on learning. The approach starts from the premise that 

there is some prior knowledge of the distribution o f parameters and/or model 

outcomes and then uses new data and knowledge to update the distribution 

information leading to posterior distributions o f random variables and model 

outcomes that are based on previous knowledge but are updated with new knowledge 

and data collection.
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