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Abstract

Integrated photonics have received much attention in recent years as there is a concerted
effort towards achieving Very-Large-Scale-Integration of optical components. One of
the key elements enabling such dense integration is the optical microring resonator, which
has found pervasive applications in integrated optics due to its ultrahigh quality factor
and highly dispersive spectral characteristics. Recently it was shown that two
dimensionally coupled microring resonators (2D-CMRs) can be used to realize advanced
optical transfer functions, making them highly attractive for spectral engineering
applications.  Existing methods for analysis and design of 2D-CMR networks based on
the energy coupling formalism are limited to narrowband devices due to its inherent weak
coupling assumptions. This thesis develops rigorous field coupling methods for
analyzing and synthesizing general 2D-CMR networks in the strong coupling regime,
which exhibit novel physical phenomena not previously observed. Advanced
applications of strongly coupled CMR networks are also proposed for broadband

applications.
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Chapter 1

Introduction

The last decade has seen an explosive growth in digital communications as
the average user data consumption has significantly expanded compared to years
before. Data transmissions through optical channels have long since become an
inseparable part in communications due to its extreme high capacity and speed
compared to electrical systems. However, implementations of bulk optical
information signal processing systems are clumsy and difficult to scale up, so
miniaturization and integration has become an important drive in the development
of more practical optical networks as it proved to be the key that enabled the
electronics to be used in countless applications as we see today. Thus the field
of integrated photonics was born from this need to allow VLSI integration of

many optical components to achieve high level of functionalities on a single chip.

Coupled microring resonators (CMR) are promising building blocks for
integrated optics due to their versatile spectral characteristics which can be
designed to meet desired specifications. These devices have especially received
attention in spectral and dispersion engineering applications such as optical filters
[1], slow light [2], optical delay lines [3], coupled-resonator induced transparency
[4]. Recently it has been shown that coupled microring resonators of two
dimensional (2D) coupling topologies exhibit much richer spectral characteristics

than 1D coupling topologies [5], and can be used to realize many general high

1



order optical transfer functions not realizable by 1D topologies [6]. As the 2D
coupling architectures open up more design possibilities of coupled microring
devices, it is important to develop rigorous and accurate methodologies for

analyzing and designing these devices.

1.1 Optical microring resonators

A microring resonator is essentially a waveguide bent in a closed loop, such
as a circle, ellipse, or racetrack, and behaves as a whispering gallery mode
travelling-wave resonator. Signals from the input waveguide (or bus) are
typically coupled to the resonator through evanescent coupling which occurs
when the evanescent fields outside the waveguides begin to overlap and result in
energy transfer. As the waveguide is bent into a closed loop, signals will
resonate in the ring if its round-trip phase is an integral multiple of 2rt, which
results in constructive interference of the signal with itself and a build up of stored

energy in the resonator. One of the simplest devices we could achieve

Through Port

input Port

- ™~

< Microring

Resonater

Add Port

Drop Port
- | Output BuUs
Figure 1.1 — Schematic of single microring add/drop filter



exploiting this property is an add/drop filter as seen in Figure 1.1. When a
spectrum of wavelength-division multiplexed (WDM) signals is applied to the
input port, only the signal satisfying the resonance condition will resonate in the
microring and be eventually transmitted or “dropped” at the drop port, while the
rest of the signals will pass on to the through port. Another signal of the same
resonance wavelength could also be “added” to the WDM spectrum in the input
bus by feeding it from the add port. In practice, however, WDM add/drop filters
require stringent spectral characteristics that cannot be met by a single microring
resonator and higher order filter architectures with multiple coupled microring

resonators are generally used in order to achieve better filter response.

1.2 Microring optical filter architectures

Different architectures of high order microring optical filters have been
proposed in the past, such as the microring-loaded Mach-Zehnder interferometer
topologies [7, 8], the serial coupling topology [1,9,10], the parallel cascaded
array topology [11,12], the two dimensional coupling topology [5,13], and even
the dual mode reflection filter topology [14]. Serially coupled microring
resonators, as shown in Figure 1.2(a), often referred to as Coupled Resonator
Optical Waveguides (CROWs), have received the most attention due to their
simple structures for both analysis and design. However, the serial coupling
microring topology cannot be used to realize transfer functions with transmission
zeros, which limits its spectral performance so that the filter might not be able to
meet the sharp skirt roll-off and high out-of-band rejection requirements for

Dense Wavelength Division Multiplexing (DWDM) applications [5]. While the
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Figure 1.2 — Common high order microring filter architectures, showing serial coupling (a),
parallel coupling (b), and microring loaded Mach-Zehnder schemes.

parallel cascaded microring array scheme (Figure 1.2(b)) could realize
transmission zeros, its design is more complicated as the poles of the filter cannot
be independently controlled. The microring-loaded Mach-Zehnder scheme
(Figure 1.2(c)) is based on the sum and difference of two all pass filters in the two
arms of the interferometer, and can be used to realize arbitrary poles and
transmission zeros with simple design. However, it requires the implementation
of individual phase shifters on each of the microring resonators. Recently it has
been shown that the microring-loaded Mach-Zehnder structure can be converted
into a parallel cascade of double-microrings to simplify its implementation,

requiring only one phase shift [15].

Of the various microring filter architectures described above, the two
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Figure 1.3 — Schematic of a general 2D-CMR network consisting of coupled microrings
arranged in a square lattice

dimensionally coupled microring resonator network (shown in Figure 1.3) is the
most compact architecture that can be used to achieve various advanced filter
transfer functions. The structure consists of synchronously tuned microring
resonators (of the same resonance frequency) arranged in a two dimensional
square lattice, creating a compact and versatile structure that can be used to
realize rich spectral characteristics by adjusting the coupling strengths between
the resonators. However, due to the complexity of the structure, the analysis and
design of 2D CMR filters have been restricted to narrowband approximations
based on the energy coupling formalism. The lack of more rigorous and general
analysis and synthesis methodologies limits the usefulness of the 2D CMR

architecture in more advanced applications.



1.3 Theoretical treatments of microring resonators

Analysis of coupled microring resonators is typically performed in terms of
either energy coupling in time or field coupling in space. The energy coupling
formalism is strictly valid only for weakly-coupled CMRs where the field
circulating in each microring is assumed to be uniform, so that each resonator can
be conveniently described by its total stored energy. Energy transfer among the
microrings is described by a simple coupled mode equation in time, enabling
analytic solutions of the device transfer functions to be obtained and direct filter
synthesis method to be developed [5,6]. However, the restriction of weak
coupling means that the energy coupling formalism is applicable only for
narrow-band CMRs. For strongly-coupled microring resonators, which are
characterized by having a bandwidth that is a significant fraction of the free
spectral range (FSR) of the microrings, an accurate analysis must be performed
based on field coupling in space. However, the field coupling analysis is
complicated by the fact that in strongly-coupled CMRs, the field in each
microring is not uniform but depends on the positions of the microring coupling
junctions. Typically a field-coupling matrix equation is needed to describe each
coupling junction, resulting in a large system of matrix equations that generally do
not admit analytical solutions or offer physical insight into the characteristics of
the device. Thus, although the field coupling formalism has been used to
analyze relatively simple structures such as CROWs [9,16] and parallel-cascaded
microring resonators [13,17], its application to general 2D microring coupling

topologies [18,19] is less popular because the lack of a systematic formulation



makes the analysis cumbersome and tedious. It should be noted that other
approaches such as tight binding [20] and Mason’s rule in flow-graph theory [21]
are also possible, but their applications are restricted to periodic microring
structures in the former case and simple coupling topologies in the latter case due

to the complexity of the approach.

1.4 Objectives

The objective of this thesis is to develop rigorous analysis and synthesis
methodologies based on the field coupling formalism for general two dimensional
coupled microring resonator networks. A systematic formulation achieved by
transforming a general 2D-CMR structure into an equivalent coupled waveguide
array will be presented. The formulation yields closed form expressions for the
transfer functions of a 2D CMR network in the strong coupling regime. The
relationship between the presented field coupling formalism and the traditional
energy coupling formalism will also be derived. The analysis of CMR structures
in the strong coupling regime also allows new physics to be uncovered, such as
indirect coupling induced transparency. A synthesis method based on the field
coupling formalism is also developed, which can be used to design strongly

coupled CMR structures with broadband characteristics.

1.5 Thesis organization

This thesis is organized as follows. The theoretical background of
microring resonator filters is discussed in Chapter 2, with a review of the analysis

approach of the device based on energy coupling formalism. Chapter 3



highlights our work on the development of a general 2D CMR network analysis
method based on the field coupling formalism. Chapter 4 presents two methods
of the direct synthesis of 2D CMR networks for realizing prescribed optical
transfer functions, one based on the inverse procedure of the analysis technique
presented in Chapter 3, and the other based on the network order reduction
method for designing a 2xN network. Finally, Chapter 5 concludes the thesis

highlighting key contributions of the work.



Chapter 2
Energy Coupling Analysis of

Microring Resonators

This chapter reviews the basic theory of microring resonators based on the
energy coupling formalism. The transfer functions and fundamental

characteristics of microring resonators are discussed.
2.1 Coupled waveguides

In recent years, rectangular dielectric waveguides are of major interest in the
photonic research field due to its simple structure, ease of fabrication and
potential to be integrated on many platforms. These waveguides are typically
designed to operate under the single mode condition (for each dominant
polarization).  Energy transfer between two dielectric waveguides can be
achieved by bringing them close to each other. The evanescent tail extending
outside the core of each waveguide would start interacting with each other,
resulting in the fields being “coupled”. Evanescent power transfer between two
coupled waveguides has been well studied through the Coupled Mode Theory

[22,23].



a

b,
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a, w1 | —

Waveguide 1

Figure 2.1 — Schematic of a coupling junction between waveguide 1 and 2.

Consider a lossless coupling junction between waveguides 1 and 2 as shown
in Figure 2.1. The fields entering the junction in each waveguide are denoted as
complex field variables (i.e. include amplitude and phase) a; and a, and the fields
exiting the junction are denoted as b; and b,. Coupled mode theory yields the

following coupling matrix equation relating the output fields to the input fields:

AN
In the above equation, 7 represents the field transmission coefficient, x represents
the field coupling coefficient, and the factor —j represents the n/2 phase change
experienced by the coupled fields. The coupling junction itself is assumed to
have zero physical length in the model, so there would be no phase shift in the

transmitted fields, and the coupling and transmission coefficients are real.

Power conservation is maintained by requiring the two coefficients to be related
by,

it =1, (2.2)

10



2.2 Energy coupling in time description of microring resonators

One of the most successful methods for analyzing systems of coupled
resonators is the energy coupling in time formalism. This method has been used
to analyse coupled microring resonators in 1D [10] and 2D coupling topologies
[5]. In this approach, each microring resonator is considered as a lumped
oscillator and energy transfer among the resonators is described by a system of
coupled mode equations in time. Analytic solutions of the system of equations
allow closed form expressions for the transfer functions of the microring networks
to be obtained. Filter synthesis methods based on the energy coupling formalism
have also been developed for 1D and 2D coupled microring topologies [5,6].
Below we review the analysis approach of microring resonators using the energy

coupling formalism.

2.2.1 Transfer function of a single microring resonator

To better demonstrate the analysis approach based on the energy coupling
formalism, we will analyse the basic single microring add/drop filter
configuration and obtain formulas describing its spectral responses [10].
Consider the structure in Figure 2.2, where a single microring resonator of radius
R is evanescently side coupled to a pair of bus waveguides acting as input/output
ports. The optical energy wave amplitudes guided in the input, through, add, and

drop ports are denoted as sj, Si, S., and sg, such that the square modulus

2
’

2
9

2

S S

a

. , and |sd|2) is the energy of the signal in each respective port.

(|Si

The input and output energy coupling coefficients, g4 and x,, denote the rates of

11
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Figure 2.2 — Single microring resonator add/drop filter

energy that gets coupled between the microring and the bus waveguides, and can

be related to the field coupling coefficients, x, mentioned earlier as [5]:

K2

2
K
- = 23
T, 2R/v, (@3)

2

ﬂ:

where Ty is the round-trip time it takes the signal travelling at group velocity, vy,
to travel around the microring of radius R. The microring resonator is
considered as a lumped oscillator with energy signal amplitude a(¢) (such that its
stored energy is |a(f)]) with resonant angular frequency of @, and cavity
amplitude decay time-constant of z.. The total decay rate includes the effects of
energy loss due to external coupling to the input (1/7) and output (1/7,) bus

waveguides as well as intrinsic loss (1/7;) according to
lz, =1z, +1/7, +1/7,. (2.4)

The intrinsic loss in the microring resonator includes bending loss, material
absorption, and surface roughness scattering. By considering the energy flows in

and out of the resonator, the stored energy in the microring changes with respect

12



to time according to

d 1
Za=|jo ——la-jus. . 2.5
7° [] 5 T}l JHS, (2.5)

c

Assuming an input signal with harmonic time dependence s, ~exp(jwt), we can

find from (2.5)

a=— I (2.6)

The drop port and through port signals are related to the energy signal in the

microring as

Sd = _jluoa’

S =8~ JHa.

2.7)

Using equations (2.6), (2.7) and setting s = j(a)—a)o) we can express the

drop and through port responses of the filter in terms of the input signal as:

5, =——tike (2.82)
s+%
1 2
S+ —H;
s, :Lls (2.8b)
S+

e
TL'

The energy coupling coefficients £4 and 4 are related to the decay rates 1/t; and

1/7,, as: [10]

—=tl —=te (2.9)

13



Using the above results, we can obtain the following expressions for the
through-port and drop-port transfer functions of the single microring resonator

add/drop filter as:

Sd _ /’li:uo (2103)

T = =- 5
d(S) s, S+%] +’u12 +l[102

s+/ 1+
(2.10b)

T 5 s+ 1 vut e

The above energy coupling analysis is strictly valid only for a

weakly-coupled (or narrow-band) microring resonator where the field circulating
in the microring is assumed to be uniform, so that the resonator can be
conveniently described by its total stored energy in this model. This formalism
leads to a description of the resonator in the complex frequency s-domain as in
equations (2.10), and is equivalent to the approach commonly used to analyze

low-frequency resonators such as microwave cavities and electrical oscillators.

2.3 Spectral characteristics of a microring resonator

Microring resonators exhibit spectral characteristics similar to standing-wave
oscillators. They are typically characterized by their resonant frequencies,

spectral line widths, free spectral range (FSR), finesse (F), and quality factor (Q).

2.3.1 Resonance condition

Figure 2.3 shows the simulated spectral response of a typical single

microring resonator add/drop filter. The microring is resonating whenever the

14
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Figure 2.3 — Typical spectral response of single microring resonator add/drop filter at through
port (solid) and drop port (dashed), showing various spectral properties

field guided in the ring is in constructive interference with itself after travelling
around the microring, which can be described by the following resonance

condition:

mA, =27R (2.11a)

where m is an integer (called the resonance mode number), 4, is the guided
wavelength, and R is the microring radius. The above condition can also be
expressed in terms of frequency as

2mm = ol (2.11b)
where o is the angular frequency and 7}, is the microring round-trip time. In the
add/drop configuration, the resonant condition indicates the wavelength location

of the peak transmission at the drop port (dashed curve in Figure 2.3) and the

transmission dip at the through port (solid curve).
2.3.2 Full width at half maximum (FWHM) bandwidth

Assuming a symmetric structure (equal input and output coupling

15



coefficients) with no loss, we can solve for the FWHM bandwidth of the single
ring add/drop filter as follows. First by squaring Equation (2.10a) and equating

it to 1/2 we obtain:

|2

Y p 1
= o= =—. (2.12)
‘]Aa)l/Z TH ‘ Aoy, +u 2

Sd |
Si

Solving for Aw,,,, the FWHM could then be found as:

FWHM =2Aw,, =2u". (2.13)

The FWHM bandwidth could also be derived based on the field coupling

formalism which yields the expression [10]

2
FWHM =—~¢

(2.14)
ﬂRneﬁ

where n.yis the effective index of the microring waveguide, c is the speed of light

in vacuum. We can confirm that the two expressions are the same if 7, =n, by

4
using Equation (2.3).

2.3.3 Free Spectral Range (FSR)

The spacing between two consecutive resonant peaks is referred to as the

free spectral range (FSR) of the resonator, and can be found from (2.11b)

2r c
FSR =0, -0, =—=—— 2.15
frequency m+1 m Tn Rng ( )

where n, is the group index of the microring waveguide.
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2.3.4 Finesse (F)

Similar to Fabry-Perot resonators, we can find the finesse (F) of a microring

resonator, which is defined as the ratio of the FSR to its resonance width, as
F="—"T9o_"_ (2.16)

The above expression assumes n, = nerr.  The figure of finesse represents the
ability of a cavity to resolve spectral lines; in terms of WDM filter applications it
represents the number of frequency channels that can be accommodated within

one FSR.

2.3.5 Quality factor (Q)

The quality factor of a resonator commonly defined as

Q:wow (2.17)

Power loss

where @, is the resonance frequency, can be found for the microring resonator of

negligible internal loss as

w, @,7mRn,

Q=0 ="2""9 (2.18)

Aw K°c

The higher the quality factor, the better the resonator behaves as an energy storage

device, and the sharper its resonance peaks are.

2.4 Energy coupling analysis of 2D coupled microring resonators

The energy coupling formalism can also be used to analyze more

complicated two dimensional coupled microring structures, such as the one shown
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Figure 2.4 - General schematic of a 2-D array of N mutually coupled microring resonators. [5]

in Figure 2.4. Each microring resonator Ry, k = 1 to N, in the structure has
resonant frequency @y, such that the frequency detune from the center frequency
(Aw, = w, —w,) is small and the microrings could be assumed to have the same

intrinsic cavity lifetime t.. Time harmonic optical signals s,, s,, §,, and s,,

denote the energy wave amplitudes at the input, through, add, and transmitted
ports. The rate of energy coupling between adjacent microrings i and j is
denoted by the energy coupling coefficient y;;. Microrings 1 and N are also

coupled to the input and output waveguides via the corresponding input and

output energy coupling coefficients g4 and g. Denoting a, (t) as the energy

amplitude stored in microring k, we can write the system of equations describing

the flow of energy in the network similar to equation (2.5) as: [24]

a, (]a)l _l/Ti) _jﬂl,z _j/Jl,N a, _jﬂi§i
i a, _ —JHi, (]wz _l/rc) —JHa a, 4 0
dt| : : : : : :
ay — JHy — JH 5 (ja)N _I/To) ay 0
(2.19)

In this expression 1/t; and 1/1, are the total rates of energy change in
18



microrings 1 and A, similar to 1/t.in equation (2.4). Assuming the signals to

Jjor

have harmonic time dependence, which allows us to write a, =a,e’” and

§.=s,e’”, and defining the complex frequency variable s = j(a)—a)o), we can

simplify (2.19) into the matrix equation

HS+LJI+L+]'M}1 =b, (2.20)
T

c

where a= [al,az,---aN]T , b= [—j,ul.sl.,O,---O]T, I is the NxN identity matrix, M

is an NXN symmetric energy coupling matrix having the form

Aw, Hio = Hy
Aw. -
m=| 2 B0 A (221)
My Moy Ay

and L is a diagonal matrix denoting the coupling between the input/output

waveguides and the microring network as
L = diag|y’ /2,0,-+-,0, 12 /2]. (2.22)

Now obtaining the system response would simply mean solving equation

(2.20). First, we factor the matrix —(L+ jM) into its eigenvalue

decomposition as
-(L+,M)=Q-D-Q", (2.23)

where D is the diagonal matrix containing the eigenvalues, and Q is the matrix

containing the eigenvectors. Substitute (2.23) into (2.20), and we have
19



Q-Ks +L]I—D}-Q‘la=b. (2.24)
T

c

The stored energies in the microring resonators are solved to give

a=Q-Hs+LJI—D} Qb (2.25)
T

c

Expanding the matrix product, we can write the expression for the amplitudes in

each microring n as
,n=1t0N (2.206)

where py is the £ diagonal element of D, or the k" eigenvalue of — (L + jM) in
(2.23). Similar to equation (2.7), we can find the following relations at the input

and output coupling junctions of microrings 1 and N as,

S, =8 — JH4,

_ (2.27)
S(/ = _.]ﬂoaN

Combining (2.26) and (2.27), we obtain the following closed form

expressions for the transfer functions of the 2D CMR:

S0 Q
Sy Lk, 2.28
s Z s+l/z, - (2.28)
N -1
s, Oy 9,
4 =—yu — = 2.29
. ﬂlﬂokz:,ﬁl/rc Y (2.29)

In the above expressions, it can be seen that if the microrings are assumed to
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be lossless (1/7, =0), then the poles of the device transfer functions are given by
Pr.  Any loss in the microring would result in a shifting of the poles to the left in
the s-plane. This property is useful in that it enables one to design lossy filters in
which the effect of loss can be compensated by shifting the filter poles in the
opposite direction through the pre-distortion technique [25]. In Chapter 3, it will
be shown that we can derive similar expressions to equations (2.28) and (2.29) for

strongly coupled CMRs using the field coupling formalism.
2.5 Summary

In this chapter, a theoretical overview of microring resonators is presented
based on the energy coupling formalism. The transfer functions and spectral
characteristics of single microring add/drop filters are derived. An energy
coupling analysis of general 2D microring coupling topology is also presented.
While the energy coupling formalism has been shown to be able to model various
advanced coupled microring structures, its inherent assumption of weak coupling
limits its applications to narrow-band filters. A more rigorous technique based
on the field coupling formalism will be developed in the next chapter that can be

used to analyze strongly coupled CMRs.
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Chapter 3
Field Coupling Analysis of Coupled

Microring Resonators

3.1 Field coupling formalism

In the field coupling formalism, each microring coupling junction is
described by a coupled mode equation in space, whose solution leads to the
coupling matrix description of the junction as in equation (2.1). The field
coupling formalism is sometimes referred to as “coupling of modes in space” [26],
and does not have the intrinsic assumption of uniform field distribution around the
microring as in the energy coupling formalism. As a result it can more
accurately describe a CMR structure under strong coupling. However, to date
there is no systematic method to analyze CMRs using the field coupling
formalism and the method has only been applied to analyze simple structures such
as CROWs [27,28] and parallel-cascaded microring resonators [17,29]. In the
followings, we develop a systematic approach which could be used to analyze
general two dimensional CMR networks. This work has been published in [30]

and [31].

We begin by considering a general coupled microring resonator network in
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cut point

Figure 3.1. Schematic of a general 2D-CMR structure consisting of an n x m array of N
coupled microring resonators. [30]

the form of a two dimensional array of n x m = N coupled microring resonators,
as shown in Figure 3.1. This topology represents the most densely packed
microring coupling configuration that does not give rise to coupling between
counter-propagating waves in the microrings, which occurs in rhombic or
hexagonal lattice due to the presence of triplets as shown in Figure 3.2. This
restriction greatly simplifies the analysis, and does not give rise to a reflecting
wave in the input bus, which is undesirable in many integrated optical filter
applications. The microrings are labelled from 1 to N as shown in Figure 3.1,

although the numbering does not affect the analysis. For simplicity, we also

Figure 3.2 — Example of coupled microring triplets that would give rise to counter-propagation waves.
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assume the microrings are identical with radius R, meaning they have the same
resonant wavelengths, and all coupling junctions are lossless. A field coupling
coefficient x;; describes the coupling between two adjacent microrings i and ;.
The input and output buses are also coupled to microrings 1 and N, respectively,
via the input and output coupling coefficients «; and «,, respectively, as shown in
the figure. The field amplitudes of the optical signals in the input and output
buses are labelled as s; (input), s; (through), sq (drop) and s, (add). In each
microring i, we follow the direction of the wave propagation and label the
amplitude of the circulating wave in each quarter segment of the ring a;, b;, ¢;, d;,
as shown in Figure 3.1. Note that we also maintain the order of labelling, i.e. a
— b = ¢ — d, in different but adjacent microrings connected through coupling
junctions. For example, in Figure 3.1, the field a; in ring 1 is directly coupled to
field b, in ring 2 via coupling coefficient «;», which is then coupled to field cap-1
in ring 2m-1 via coupling coefficient K, ,.1, and so on. The reason for this
labelling is that it will allow us to decompose the coupling matrix of the CMR

structure into products of simpler matrices, which will become clear later.

To facilitate the analysis of the structure, we transform the two dimensional
CMR network into an equivalent coupled-waveguide array as shown in Figure
3.3(a). The easiest way to visualize this process is to imagine “cutting” each
microring at the point just before the field a; is defined and unfolding the
microring into a straight waveguide while keeping track of the coupling junctions
between adjacent microrings and its coupling locations. Effectively, we have

transformed the CMR structure in Figure 3.1 into its equivalent "unfolded"
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Figure 3.3. (a) Equivalent unfolded coupled-waveguide array of a general 2D-CMR. (b) “Stacked-rings”
schematic of a 2D-CMR characterized by field coupling matrix M and extrinsic loss matrix L. [31]

configuration as shown in Figure 3.3(a), where each connection between the
waveguides denotes coupling between two adjacent microrings. Also note that
the resulting unfolded structure resembles an array of coupled Fabry-Perot
waveguide cavities, except the reflective boundary conditions at the facets have
been replaced with periodic boundary conditions, indicating that the waves can

travel only in the forward direction (no counter propagating waves).

We now proceed to analyze the unfolded coupled-waveguide array using the
transfer matrix method to determine the spectral response of the 2D-CMR
structure.  The coupled-waveguide array can be treated as four sections
connected in series; each section representing a phase delay of a quarter ring,
e /0t/4 = 714 "\where ¢y is the microring roundtrip phase. The fields, or signals,

in each section are denoted by arrays a, b, ¢, d, where
T
az[al, Ay, 0 Ay, aN] , (3.1)
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with similar expressions for b, ¢ and d. The coupling junctions connecting two

successive sections, as shown in Figure 3.3(a), can be described by four transfer

matrices M;, M, M3 and My. These NXN matrices are symmetric with the

property that if there is coupling between waveguides i and j at junction k& with

coupling coefficient k;;, then My(i, i) = Mi(j, j) = 1;; and My(i, j) = M(j, 1) = —jkij,
2

where 1 ; +K7 ;=1 due to the lossless coupling assumption. If waveguide i is

uncoupled at junction k, then My(i, i) = 1, signifying that the field propagates to
the next section unchanged. Specifically, with the microring numbering order as

shown in Figure 3.1, the matrix M has the form of a block-diagonal matrix

K]
(K., ]
M, = [K; ] ; (3.2)

where K;; is the 2x2 coupling matrix associated with the coupling junction

between microrings i and j,

Tij _jKi,'
K, { g ’}. (3.3)

—JK;; Tij

The other coupling matrices My can be reduced to the above block-diagonal

form through a suitable permutation matrix Py as

P.M, P/ = M), (3.4)
where ME{blk—diag) is the block-diagonal form of M. The above simply means
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that within section £, it is always possible to renumber the waveguides so that the
associated coupling matrix M has the block-diagonal form similar to (3.2). This
property is used in Section 3.6 — Appendix to prove that all the matrices My, are
circular, i.e., they can be expressed in the form My = exp(j¥x), where W is a real

coupling-angle matrix [32].

We now apply transfer matrix analysis to the coupled-waveguide array.

The field array in each section is related to the one following it by:

b=z"'"Ma, (3.5a)
c=z""M,b, (3.5b)
d=z"*"M,c, (3.5¢)
a=z""M,d, (3.5d)
a=La'+s. (3.5¢)

In the above, s= [— jxis,, 0, - 0, —jK'OSa]T is the input field array

which contains all the input fields to the CMR structure; a' is the field array
defined just before the input and output bus coupling junctions (see Figure 3.3(a)),

and L is a diagonal matrix representing the bus-to-ring couplings,

L=diaglr;, 1, - 1 7], (3.6)
where 7, =,/1-&;, . Combining the above equations we obtain
a=z'MM,M,Ma=z"Ma, (3.7)

where M is the total ring-to-ring coupling matrix of the 2D-CMR and
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T,

z' =e* =¢7/** is the roundtrip delay variable, with T, = 2nn R/c being the

roundtrip time of the microrings with radius R and group index ng. If there is

loss in the microrings, it could be accounted for by defining z™' = a, e " , where

ay 1s the round-trip amplitude attenuation. Also, to account for small phase
shifts in section k£ of the microrings, which may be intentionally introduced or
arise due to fabrication or coupling-induced frequency shifts [33], the matrix M
is pre-multiplied by the factor exp(j®y), where @, = diag[d;, o, ... dy] represents

the phase shifts in the waveguides. Substituting (3.7) into (3.5¢) we obtain
(I-z"'LM)a=s, (3.8)

where I is the NxN identity matrix. The above equation, which could be
regarded as the characteristic equation of the 2D-CMR structure, shows that the
spectral responses of the field amplitudes in a 2D-CMR are characterized by a
field coupling matrix M, which is determined by the coupling topology, and a
ring-to-bus coupling matrix L representing extrinsic loss due to coupling to the
bus waveguides. Equation (3.8) also suggests that schematically, any 2D-CMR
with arbitrary coupling topology may be represented by the “stacked-rings” block
diagram as shown in Figure 3.3(b). It is also observed that the field-coupling
equation in (3.8) has a somewhat similar form as the energy-coupling equation
derived using the energy coupling in time formalism. (e.g., Equation (2.20)).
The relationships between the parameters in the two formulations are derived in
Section 3.4 , where it is explicitly shown that Eq. (3.8) can be reduced to the
energy coupling equation under the limit of weak coupling between the microring

resonators.

28



It is also possible to obtain a closed form solution for the field array a in the
matrix equation (3.8). This is achieved by diagonalizing the matrix product
LM = QDQ', where D is a diagonal matrix containing the eigenvalues of LM

and Q is the corresponding eigenvector matrix. We then obtain from (3.8)
a=QI-z"'D)"'Q's. (3.9)
If the input signal is applied only to the input port (si # 0, s, = 0), we can
further simplify equation (3.9) and obtain the following expression for the field
amplitude @; in microring i,

. 049w
a, = _JKisizll_’Z_l’;t : (3.10)
k

N
k=

where A, are the eigenvalues of LM (diagonal elements of D) and Q,, and O, !

are the elements of the matrices Q and Q~', respectively. The field amplitudes b,

c and d in the microrings can be obtained from a using (3.5a) — (3.5c¢).
3.1.1 Through-port and drop-port transfer functions

The transmission responses at the through port and drop port of the 2D-CMR
network due to input signal s; can be obtained by relating the output signals s; and
sq to the field amplitudes a; and ay in microrings 1 and N. At the input
bus-to-ring coupling junction of microring 1 (see Figure 3.3(a)), we have the
relations

s, =18, — jKa, (3.11)

a, =—jK;s, — 7,4 . (3.12)
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Eliminating «f from the above equations gives

S, =is. —‘]—Kial. (3.13)

1

T T.

1 1

Using (3.10) for a;, we get for the through-port response 7;

N -1
T, :S—t:i[l—KfZ—Q“‘Q"" j (3.14)
.

-1
S ml—z A,

i i

The above expression is also valid if the CMR structure is coupled to only
one bus waveguide (i.e., the all-pass configuration). In this case the matrix L in

(3.6) has all ones on the diagonal except for the first element L;; = ;.

For the drop port response, since we already assumed s, = 0, we have the
following relations at the output bus-to-ring coupling junction of microring N,
Sy =—JK,ay, (3.15)
ay =7t,ay . (3.16)
Combining the above equations and using (3.10), we obtain for the drop-port

response

. N _1

_ Sy __chv ay __KKO ZQNJCQ/(:N
L 0 N = - .

o l—z7 A,

(3.17)

i
i o i o

S T S

Equations (3.14) and (3.17) give the closed form expressions for the
through-port and drop-port transfer functions of a general 2D-CMR network and
are one of the main results of the field coupling analysis. If we take the squared
modulus of each term in the summation of (3.17), we obtain an expression of the

form
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(3.18)

which has the form of an Airy function. Thus the response of a 2D-CMR
consists of a sum of N Airy resonances. This is an intuitive result but has not
been proved for a general 2D-CMR structure before. In the limit of weak
coupling, the device response reduces to a sum of N Lorentzian resonances, a
result which can be obtained by taking the square modulus of each term of

equations (2.28) and (2.29).

Note that the transfer functions of the 2D-CMR (3.14) and (3.17) have the

form of rational functions of the roundtrip delay variable z”/,

-1 R(Zil)
T, = , 3.19
(z7) o) (3.19a)
-1 P(Z_l)
()= 3.19b
(z7) oG (3.19b)

In the above R(z') and Q(z'') are polynomials of degree N, which
corresponds to the order, or number of microrings in the network. The roots of
O(z") are the N resonances or poles of the device, which in the absence of
resonator loss are given by the inverse of the eigenvalues, 1/A;, of the matrix
product LM.  For the polynomial P(z""), the coefficient of its highest-power term,

the (N—1)" power, is given by

KiKO

Pya =~
T

[}

N

2Ovi it » (3.20)

k=1

which is zero since the summation is the product of row N of Q and column 1 of
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Q. Thus P(z"") has a maximum degree of only N — 2, yielding a maximum of
N — 2 transmission zeros for the drop-port transfer function. Similar expressions
are also obtained for weakly-coupled 2D-CMR structures using the energy
coupling formalism, where the drop-port and through-port transfer functions are

rational functions of the frequency parameter s = jo as seen in (2.28) and (2.29).
3.1.2 2D-CMRs with no external bus waveguides

Coupled microring resonators with no external bus waveguides are
sometimes referred to as “photonic molecules” since they exhibit photon states
similar to electronic states of a molecule [34]. These structures have potential
applications such as microlasers [35], quantum emulators and simulators [36].
Tight binding analysis has been applied to determine the quantum states of simple
coupled cavity systems such as a twin disk [37], but this approach is strictly valid
only for weakly coupled systems. For strongly-coupled photonic molecules, the
supermodes of the structure would have non-uniform field distribution within
each microring, so that an accurate determination of the eigenstates and
eigenvalues of the structure requires a field coupling analysis. In an isolated
2D-CMR with no external bus waveguides (ki = K, = 0, s = 0), the bus-to-ring

coupling matrix L. = I and (3.8) becomes an eigenvalue equation
I-z"'"M)a=0. (3.21)

Solutions of a in the above equation are the N orthogonal eigenvectors Q of
the coupling matrix M. Along with the associated solutions for the field arrays b,
¢ and d in the microrings, they constitute the N supermodes of the photonic

molecule. The resonance frequency y (or energy level Zwy) of the supermode &
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is given by @y = —x/Tx, where ¢z = £ is the phase of the k™ eigenvalue of the

coupling matrix M and 7 is the roundtrip time of the microrings.
3.1.3 Direct and indirect coupling-angle matrices

In the energy coupling formulation of weakly-coupled microring resonator
networks, a 2D-CMR is characterized by an energy-coupling matrix which
describes the direct couplings between the microring resonators (Equation (2.21)).
In this section we show that in the field coupling formulation, the field coupling
matrix M in (3.8) can be decomposed into a sum of a direct coupling-angle matrix
plus a term representing all indirect resonator couplings. In this case, the
indirect coupling refers to the effective coupling which arises from all indirect
coupling pathways between two microrings, which could also include those that
exist between two adjacent resonators. We will later show by example that the
indirect coupling matrix can give rise to distinct resonance features not observed

in weakly-coupled CMRs.

In Section 3.6 — Appendix, it is shown that the matrix My of each section k of

the coupled-waveguide array is circular, which means it can be expressed as
M, =W,A, W/ =e™, (3.22)

where Ay is a diagonal matrix containing the eigenvalues of My and Wy is the

corresponding (real) eigenvector matrix. The eigenvalues of My are given by

A=A () =1, — Kk, =, (3.23)
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_ -1 . . . . .
where 0, =—tan" (x, /7, ;) is the coupling angle between waveguides i and .

If waveguide i of section k is not coupled to any other waveguide then we simply
have Ax(i, i) = 1. The matrix W in (3.22) is the coupling-angle matrix for
section k of the coupled-waveguide array (see Equations (3.47) and (3.48) in
Section 3.6 ), and it is real and symmetric with zero diagonal elements. The
off-diagonal elements are also zero except if there is direct coupling between
waveguides i and j, then Wi(i, j) = Wi(j, i) = 0,;. Using (3.22), the total coupling

matrix M of the 2D-CMR can be expressed as
M=MMM,M, =e'"eMeMe™, (3.24)

Since the matrices My do not commute in general, we expand the product of
the matrix exponentials in (3.24) using the Baker-Campbell-Hausdorff formula

[38] as

4
M= exp(z ¥, + jX] =exp(j¥ + jX). (3.25)

k=1

In the above, the matrix sum ¥ =¥, + ¥, + ¥; + ¥, is a symmetric matrix
with zero’s on the diagonal and off-diagonal elements Y(i, j) = ¥(j, i) given by
the coupling angle 0;; between microrings i and j. The matrix X denotes the sum

of all nested commutators,
X=>P (¥.¥, ¥, ¥,), (3.26)

where P, represents polynomials of the commutators of the matrices ;.

Equation (3.25) shows that in general a 2D-CMR structure is characterized by a
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coupling-angle matrix ¥ plus a commutation matrix X. The matrix ¥ accounts
for the direct couplings between adjacent microring resonators and has the same
form as the energy coupling matrix M in equation (2.21) in the energy coupling
formulation, except that its (i, ) element is given by the coupling angle 0;; instead
of the energy coupling coefficient p;;.  The significance of the direct
coupling-angle matrix ¥ is that it explicitly shows the coupling topology of the
2D-CMR structure, i.e., the topology of the device can be reconstructed and the
values of the coupling elements determined if ¥ is known. By contrast, it is not
possible to reconstruct the CMR topology based on the field coupling matrix M,

which is in general a full and complex-valued matrix.

The commutation matrix X in (3.24) accounts for the effective couplings
arising from all the indirect coupling paths between two microrings. It is in
general a full but symmetric matrix, with alternating diagonal bands of real and
pure imaginary elements. In the limit of weak coupling, the indirect coupling
term can be neglected (X = 0) so that the coupling matrix M can be approximated
by only the direct coupling term, M =~ exp(j¥). This is indeed the approximation
made in the energy coupling formulation of 2D-CMRs, as will be shown in
Section 3.4 . It can thus be said that the energy coupling formulation does not

take into account the effect of the indirect couplings.

For certain microring coupling topologies for which the matrices My in (3.24)
do commute, the commutation term also vanishes. One such special case is a
quadruplet, with identical coupling coefficients «;; = «, arranged in a 2x2 square

which can be seen in Figure 3.4(a) whose field coupling matrices are included in
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Figure 3.4 — Special case of a quadruplet CMR network arranged in 2x2 square (a), and its corresponding
field counling matrices (b)

Figure 3.4(b). For this structure it can be shown that M3 = M4 = I and M, and
M, commute with each other so that X = 0. All the indirect coupling paths
cancel themselves out and the coupling matrix is given by only the direct

couplings between adjacent resonators, M = exp(j\V').

3.2 Example of a 3x3 2D-CMR

To demonstrate the effect of the indirect coupling term on the 2D-CMR’s
spectral response, we consider a 3x3 2D-CMR structure as shown in Figure 3.5(a)
under both weak and strong coupling conditions. The coupling coefficients are
chosen to be x; = k, = 0.2 (couplings to the input and output buses), ks = K45 =
Ks¢ = Ksg = K1 (couplings to the center microring) and all the remaining coupling
coefficients k;; = x». For the weak coupling case, we let k; = 0.02 and k, =
0.015 whereas for the strong coupling case k; = 0.2 and k, = 0.15. The unfolded

coupled-waveguide array is shown in Figure 3.5(b).

To visualize the effect of indirect coupling, we plot the magnitude of the

direct and indirect coupling matrices ¥ and X of the strongly-coupled device in
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Figure 3.5. (a) 3x3 2D-CMR structure. (b) Unfolded coupled-waveguide array. (c) and (d) Magnitudes of
the elements of the direct and indirect coupling matrices of the strongly-coupled CMR structure. [31]

Figures 3.5(c) and (d). The elements of the direct coupling matrix ¥ is non-zero
only if there is a direct coupling between the two adjacent microrings as shown in
the unfolded waveguide array. However, matrix X shows that in general there
could be nonzero elements which indicate indirect couplings between both

adjacent and non-adjacent microrings.

We compare the drop-port spectral response of the 2D-CMR structure under
weak and strong coupling conditions in Figures 3.6(a) and 3.5(b) For the
weakly-coupled case, its spectral response (solid black line in Figure 3.6(a))
shows two resonance peaks at the normalized frequencies Af/FSR = £0.05 and

three transmission nulls. For the strongly coupled case (Figure 3.6(b)), we
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Figure 3.6. Drop-port response of the 3x3 2D-CMR under (a) weak coupling and (b) strong coupling
conditions. In (a), results were computed using field coupling (solid black line) and energy coupling
(dashed grey line). In (b), results were computed using field coupling with (solid grey line) and
without (solid black line) indirect coupling matrix X. Energy coupling result is shown by dashed grey

line. [31] In (c) drop port response in the strong coupling case is calculated using field coupling with
1% round-trip loss

plotted the device response computed with the indirect coupling matrix
X neglected (i.e., M = exp(j¥), black solid line) and as well with matrix X

included (i.e., M = exp(j¥ + jX), grey solid line).

It could be seen that with the indirect coupling term neglected, the device’s
spectral response is similar to that of the weakly-coupled device (Figure 3.6(a)),
with two resonance peaks and three transmission nulls. However, when the
indirect coupling term is included, the device exhibits two additional resonance
peaks at the frequencies +0.2, where the transmission nulls were located in the

case where we ignored indirect coupling. This shows that the new resonance
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peaks are caused by the indirect coupling term (X). In analogy to the
phenomenon of coupled-resonator-induced transparency (CRIT) [4], we may refer
to this effect as “indirect coupling induced transparency” to emphasize the origin

of the observed transmission peaks.

For comparison, we also plotted in Figures 3.6(a) and (b) the device
responses obtained using the energy coupling formalism (dashed grey lines).
For the weakly-coupled device, the energy coupling analysis yields almost
identical device responses to the field coupling analysis. However, in the
strongly coupled device, the energy coupling result is in agreement with the field
coupling result only when we have neglected the indirect coupling term. We can
also show that these discrepancies in the analyzed spectral responses are not
related to loss. The drop port spectral response of the same strongly coupled
structure with 1% round-trip loss (i.e. round-trip amplitude transmission of 99%,

1

or z'=0.99¢ ") is plotted in Figure 3.6(c), where resonance peaks are also

observed at frequencies 0.2, similar to the full field coupling result in Figure

3.6(b).

To further understand the reason behind the appearance of the new
transmission peaks under the strong coupling case, we have plotted the pole-zero
diagrams for the drop port response as shown in Figure 3.7. In the case where X
is neglected (Figure 3.7(a)), the resonances (in the form of double poles) at the
frequencies +0.2 are seen to be suppressed by the presence of two zeros occurring
at the same locations. However, if we use the full field coupling matrix with X

included (Figure 3.7(b)), the two zeros at £0.2 begin to split and move away from
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Figure 3.7. Pole-zero diagram of the 3x3 2D-CMR under strong coupling condition computed (a)
without and (b) with the indirect coupling matrix X. [31]

the suppressed poles, thereby giving rise to the new transmission peaks. This
example illustrates that indirect resonator couplings can indeed have a
pronounced effect on the device response and should not be neglected in the
design and analysis of strongly-coupled 2D-CMRs. Since the energy coupling
formalism has been shown to ignore the indirect coupling term, it is not
appropriate for the analysis and design of strongly-coupled microring resonators

with broad transmission bandwidths.

3.3 Similarity transformations of the field coupling matrix

Similarity transformations have been exploited in the energy coupling
formalism to simplify and optimize weakly-coupled 2D-CMRs in order to achieve
better coupling topologies [S]. In this section, we show that it is also possible to
apply such similarity transformations on the coupling-angle matrix of

strongly-coupled 2D-CMRs without altering the device’s spectral characteristics.
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Let R represent an NXN similarity transformation matrix that does not
disturb the first or last row of a vector/matrix. The latter assumption is
necessary so that the transformation does not alter the coupled input and output
bus signals. Applying R to both sides of (3.8) and using the fact that RR” =1,

we can write
R(I-z"'LM)R'Ra=Rs. (3.27)

Since s and L are nonzero only in the first and last element/row, the
transformation does not disturb them so we have Rs = s and RL = LR. The

above equation can thus be simplified as
(I-z"'LMa’'=s (3.28)

where M'=RMR’ is the new field coupling matrix and a’ = Ra is the new field

arrays. Writing M = exp(j'¥ + jX), we can express M’ as
M’ =Rexp(j¥ + jX)R" =exp(j¥'+ jX), (3.29)

where ¥’ = RPR” and X’ = RXR’. This result shows that applying a similarity
transformation R to the field coupling matrix M is equivalent to applying the
same transformation simultaneously to both the direct (¥) and the indirect (X)
coupling matrices. Thus in applying similarity transformations to optimize or
generate new coupling topologies, we can perform the optimization directly on ¥
(and simultaneously on X) instead of M. This is an important observation since
as mentioned earlier, the coupling topology (and its coupling values) of a CMR
structure can be determined from the direct coupling-angle matrix ¥, but not from

the total field coupling matrix M.
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Figure 3.8. Generation of a new microring coupling topology by similarity transformation of the
coupling-angle matrix: (a) original coupling topology; (b) transformed coupling topology. The
direct coupling-angle matrix ¥ of each topology is also shown. [31]

To illustrate the application of similarity transformations to generate new
microring coupling topologies, we consider the 2D-CMR structure consisting of 6
microrings with coupling topology shown in Figure 3.8(a). Its direct
coupling-angle matrix is also shown on the right. The values of the coupling
angles were obtained from the design of an inverse Chebyshev filter using the
energy-coupling method presented in [S]. An alternative coupling topology of
the device can be generated by eliminating the coupling between microrings 2 and

3. This can be accomplished by applying a Jacobi rotation matrix R given by
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R — cos® sin0 ’ (3‘30)

—sin® cosO

with the rotation angle O chosen such that the element (2, 3) of the new direct
coupling matrix ¥’ = R¥R” is zero. By multiplying out the product R¥R’, we
can show that the element (2, 3) of matrix ¥’ could be annihilated if the rotation
angle 0 = tan '[¥(2, 3)/¥(2, 4)] = —1.0869. The new direct coupling matrix ¥
and the associated coupling topology are shown in Figure 3.8(b). It is seen that
the annihilation of the coupling between microrings 2 and 3 in the old topology in
this case generates a new coupling between microrings 3 and 6. Note that this
operation has not only changed the device’s coupling topology, but also the values

of some of the coupling angles as well. The devices’ spectral responses are
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Figure 3.9. Drop-port and through-port spectral responses of the CMR structure in
Figure 6(a) (solid lines) and Figure 6(b) (dashed lines). [31]
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plotted in Figure 3.9, which confirms that the two CMR topologies indeed have
identical drop-port and through-port spectral responses. In general, similarity
transformations can also be used to optimize a CMR structure by eliminating as
many coupling elements as possible in the coupling topology, as typically done in

the coupling matrix synthesis of CMR filters [5, 39].
3.4 Relationship between energy and field coupling formulations

In this section, we show that the characteristic equation of a 2D-CMR in the
energy coupling formulation, Equation (2.20), can be directly derived from the
field coupling formalism (Equation (3.8)) under the weak coupling and
narrowband approximations. Explicit relationships between the parameters in

both formulations will also be derived.

First, we note that since the bus-to-ring coupling matrix L in (3.6) is

diagonal, we can express it as L = exp(A), where
A =diag[ln(z,), 0, -~ 0, In(z,)]. (3.31)

If we assume the input and output bus couplings are weak (t; = 1 and 1, = 1), then

L =1, so that LM = ML, i.e., L and M commute. This approximation allows us

to write (3.8), with the help of (3.25) and (3.31), as
[I-z"exp(A+ ¥+ jX)la=s. (3.32)

For the roundtrip delay variable z~', we have

sl =g et = oo , (3.33)

— Y1t

where y = 1/7, = —In(ay)/T} is the rate of energy loss from each resonator, 1 is the
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intrinsic cavity lifetime, and 7 is the roundtrip time of the microrings.

Substituting (3.33) into (3.32) gives

{I—exp[-(y +jo)T I+ A+ j¥ + jX]la=s. (3.34)

Now we apply the narrowband approximation by assuming that the argument
of the exponential in (3.34) is small over a narrow frequency range around the

microring resonance of interest. This allows us to expand the exponential to the

first order as

exp[-(y + jo)T, 1+ A+ j¥ + jX]=

I-(y+jo)T,1+A+ ¥+ jX (3:33)
which, after substitution into (3.34), gives
[(y + jo)TI-A—j¥— jX]a=s (3.36)
or
{(s +y)I —TL(A + ¥+ jX)}(Tna) =, (3.37)
i

where s = jo is the complex frequency variable. Under weak coupling condition,
we could assume the field amplitude in each microring is approximately uniform
(i.e., a = b = ¢ = d), in which case the term Twa = @ can be regarded as
representing the amplitudes of the energies stored in the microrings. We further

define the relationships

M- A~ diaglx® 0 -~ 0 7], (3.38)
T, 2T,
_ ly (3.39)
p=--¥, :
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where the elements of p are given by

l wii o] Kij | _
i, =——Y0Gj)= T—tan ~ (3.40)

T y

Kij
It It TKT

In the above I' gives the rates of energy coupling between the external bus
waveguides and the CMR network, and p is the direct energy coupling matrix
whose element p;; gives the rate of energy transfer between microrings i and j.

Using (3.38) and (3.39) in (3.37) and neglecting the indirect coupling matrix X,

we obtain the energy coupling equation for a weakly-coupled CMR,

(s+7)M+T+jp)a=s, (3.41)
where §= [§i,0, 0,..., §a] represents the rates of external energies being applied

to the input and add ports of the device. Equation (3.41) is the same as (2.20),

where I'=L, y=M, and y=1/rz..
3.5 Summary

In this chapter, we presented an analytic theory for analyzing general two
dimensional coupled microring resonator networks based on the field coupling
formalism. It was shown that the field coupling matrix can be decomposed into
a direct and indirect coupling term. The indirect coupling term is neglected in
the energy coupling formulation but could have prominent contributions to the
device’s spectral characteristics under strong coupling between the microring
resonators. We also showed how the energy formulation of 2D-CMR networks
can be derived from the field coupling formulation under the weak coupling and
narrow band approximations. Finally we showed that similarity transformations
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can also be applied to the field coupling matrix in the field coupling formalism to

generate new CMR coupling topologies having the same spectral characteristics.
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3.6 Appendix — Proof of the Circular Property of the Field Coupling

Matrices

We show in this section that the coupling matrix M; associated with each
section k of the coupled-waveguide array in Figure 3.3(a) is circular. First we
note that each 2x2 coupling matrix K;; in the block-diagonal matrix M; in (3.2)

has the eigenvalue decomposition

K, =W W', (3.42)

i,

where ©;; = diag[0;, —0;], 6,, =—tan"'(x,,/7,;) is the coupling angle

129

between microrings i and j, and the eigenvector matrix is

111
W:EL _J. (3.43)

It follows that K;; is a circular matrix since it can be expressed as

K. =e™euW _ Yy (3.44)

i,j s

where ¥, is a real coupling-angle matrix given by

. [0 @,
¥, =We, W= b (3.45)

L]

Since the block-diagonal matrix M, is composed of either the matrices K;; or

1’s on its diagonal, it can be diagonalized in the form
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M, =W, W =e™, (3.46)
where O is a diagonal matrix containing the coupling angles associated with the
coupling junctions of M; and W; is the corresponding (real) eigenvector matrix.
The matrix ¥, = W,0,W, is the direct coupling-angle matrix of section 1, with
the property that all its elements are zero except for Wi(7, j) = 0,; if there is
coupling between waveguides i and j. Equation (3.46) indicates that M, is a
circular matrix. According to (3.4) M,, M3 and M4 can be converted to the
block diagonal form as M, via a suitable permutation matrix P;. It follows then

that these matrices are also circular since they can be expressed as

M, =P, (W’ WP/ =e/*", (3.47)

where

Y, =PWO WP/ . (3.48)
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Chapter 4
CMR Filter Synthesis Using Field

Coupling Formalism

The filter synthesis problem is to determine the coupling topology and
coupling coefficients of the microring structure that can realize a prescribed
optical transfer function, and can be regarded as the inverse of the analysis
problem. As a result, the synthesis problem is typically more difficult than the
analysis problem, and does not always have solutions. Different methods for
synthesizing various microring filters have been developed based on various
approaches. A popular approach of microring filter synthesis utilizes techniques
from the mature field of microwave filter design and applies them to an
appropriate narrowband model of coupled microring resonators [10]. Other
design techniques based on pole-zero dynamics [40] or parameter optimizations
[41] have also been proposed; however, these methods require numerical
optimizations. A direct synthesis method which does not require optimization is
more desirable since it can exactly realize a prescribed filter transfer function and

often provides more realistic parameters.

Microring filter synthesis can be carried out in either the complex frequency
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domain (s-domain) or the unit delay variable domain (z-domain). While the
energy coupling formalism generally provides simpler equations than the field
coupling formalism, its synthesis method is less accurate for broadband CMR
devices due to its assumption of weak coupling. Therefore there is a need to
develop a more rigorous synthesis procedure based on field coupling for

applications in designing broadband devices.

4.1 General 2D-CMR field coupling synthesis

In this section, we develop a procedure for synthesizing 2D-CMR networks
based on the inverse problem of the field coupling analysis. The synthesis
procedure developed should be applicable to general 2D-CMR networks for

realizing high order filter responses. Part of the work has been presented in [39].

4.1.1 Description of the CMR network

Similar to Figure 3.1, the general schematic of a 2D CMR network consists

of N coupled and identical microring resonators as shown in Figure 4.1(a). The

Inner network

fs
Y, T, azz\
Y, Y.||%
21 122 /Ko I ‘.
Port 2

(b)

Figure 4.1 — (a) Schematic of a general 2D coupled microring array with N microrings; (b) inner CMR
network.
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same field labelling scheme is also applied, where we follow the direction of
wave propagation in each microring i and label the field amplitudes as a;, b;, ¢;, d;
as shown in the figure. The field coupling coefficient between adjacent
microrings i and j is denoted by k;;. Microrings 1 and N are also coupled to the
input and output bus waveguides, respectively, via coupling coefficients «; and «,.
The input and output signals of the network are labelled s; (input), s; (through), s4
(drop) and s, (add). We define the transfer matrix S relating the output and input

signals as

|:St:|:|:Sll S12:||:Si:|. 4.1)
Sq Sy Sn s,

From equations (3.14), (3.17), (3.19a) and (3.19b), the transfer functions at
the through port (S11) and drop port (S>1) of the device can be expressed as ratios

of polynomials of the roundtrip delay variable z™' =e /% where ¢ is the

roundtrip phase of the microring, as

N
s Zrkz_l R(z™")
Sy(z)="t=— =——, (4.2a)
S; 1+zqszl Q( )
k=1
NZ*Z |
j ka_ . -1
S,(z)="0= = EJP(Z_I). (4.2b)
S; 1+zqkz—l 0(z™)

Since the microring network can be regarded as a lossless digital network,

we also have S, =R/Q and S,=jP/Q, where R and P are the
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para-conjugate polynomials of R and P obtained by reversing the coefficients of
the respective polynomials [42,43]. In the synthesis problem, given the
polynomials P, R, and Q of the prescribed transfer function, we would like to
determine the coupling topology and the coupling coefficients of the CMR

network that could achieve the desired filter spectral response.

To facilitate the synthesis, we define an inner CMR network without the

input and output coupling buses, as shown in Figure 4.1(b). The input and

output signals of the inner network are given by [a,, a;]atport 1 and [a,, a} ]
at port 2, where a; and a) are the signals just before the input and output
coupling junctions, respectively. We define a Y-parameter matrix which
characterizes the behaviour of the inner CMR network by relating its input and

output signals as

{a{}:[YH Y12i||:al} (4.3)
ay Y, Y,|ay

The Y-parameters of the inner network can be related to the S-parameters of
the total CMR network as follows. At the input coupling junction, we have the
following relations between the bus signals s; and s; and the fields in ring 1 (g,
and a):

a, =t,a, — jK,s;, (4.4a)

s, =18 — jKka, (4.4b)

t

where 7, =4/1-x’ . Solving (4.4b) for a/, and substituting into (4.4a) we have
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ai = (7,5, —5,)/(jx;) (4.4¢)

b

a, = (s, —7,)/(jx;) (4.4d)

Similar expressions can also be found for the output coupling junction:

ay =T,ay — jK,S, , (4.5a)
S, =T,8, — jK,ay, (4.5b)
or
ay, =(z,5,-5,)/(x,), (4.5¢)
ay = (s, ~7,5,)/(ix,), (4.5d)

where 7, =+/1-x. . Using (4.3) — (4.5), we can relate the S-parameters of the

total network to the inner network Y-parameters. First, from equation (4.3) we
have:
a; =Y,a, +Yyay, (4.62)

ay =Y, a,+Y,ay. (4.6b)

Using equations (4.4c,d) and (4.5c,d) we eliminate «;,a),qa,,a, from (4.6a)

and (4.6b) to get
Tinl _IS, + T?le s, = Y“._Ti s, + )‘]12 s, (4.7a)
JK; JKs JK; JK,
Ti_YZI s, + T")Tzz -1 S, = ?21 s, + Yzz._r" s, - (4.7b)
JK; JKs JK; JK,

Using (4.7a) and (4.7b) and settings, =0 we solve for s; and s, in terms of s; to

get:

54



S i =()]11_TOAY)_Ti(1_TO)]22) (4 88.)
: S; 5,20 7 (Yll _ToAY)_(l_ToYzz) ’

s, =3 = KiKo by (4.8b)
. S; 5,20 Ti(Yll _TOAY) _(I_ToYzz) ’

where A, =Y,,Y,, —Y,,Y,, isthe determinant of the Y-parameter matrix.

We now consider the network under the condition t, = 1. This is equivalent
to removing the output bus waveguide so that the CMR network becomes an
all-pass network with input s; and output s;. The all-pass transfer function can be

obtained by setting 1, = 1 in (4.8a),

ap_S_t _(YII_AY)_Ti(l_YZZ)
S11 - =

S; Ti(Yll_AY)_(l_YZZ).

Uz, =1

(4.9)

From the digital two-port network perspective, the all-pass transfer function
is simply the reflection coefficient of the network, which is given in terms of the

S parameter as

ap:1+§11 :Q+1§.
"1+S, O+R

(4.10)

For the inner CMR network, the condition t, = 1 implies that a) =a, (i.c.

no change as the signal passes through the junction). Setting a) =a, in (4.3)

we can obtain the following expressions:

Rt i (4.11a)

r_
1 ay=ay
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yr =2y :%. (4.11b)
11 Y

1 g, =
ay=ay

By dividing the numerator and denominator of (4.9) by Y, —A, and using

(4.11a), we obtain

Y™
Sy = Lol TIYLI : (4.12)
T, - Yy
or
_7.g%®
yor = L2m00 (4.13)
T, =S\
Upon substitution of (4.10) into the above, we get
K?p:(Q+R)_Ti(Q+R) (414)

7.(Q+R)-(0+R)

As for the expression for Y,¥ in (4.11b), we recognize that it has the same
denominator as Y’ and the same numerator as Y,,. From (4.8b) we also see
that Y,,, and hence Y, has the same zeros as §,,. Thus we can express Y,

as

Y = kP (4.15)

L (Q+R)—(0+R)’

where £ is some constant. Equations (4.14) and (4.15) allow us to construct the
all-pass Y-parameters of the inner CMR network from the polynomials P, R and Q

of the given optical transfer functions.
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4.1.2 Field coupling synthesis of CMR networks

It has already been shown in Section 3.1 that the CMR network in Figure
4.1(a) can be characterized by a field coupling matrix M which is constructed
from the ring-to-ring field coupling elements «;;. The goal of this section is to
derive expressions linking the coupling matrix M with the all-pass Y-parameters
Y and Y,} of the inner network. A procedure for constructing M will then

be described.

Similar to the procedure presented in Section 3.1 , we first transform the
CMR structure into an equivalent coupled waveguide array and obtain the
ring-to-ring field coupling matrix, M, of the CMR network as presented in

equation (3.7).

For microring 1, at the input bus coupling junction, we can combine (4.4a)

and (4.4b) to get a, =a, +u, , where

l-7,

M1=

(s, +s,). (4.16)

JK;

Similarly for microring N, at the output bus coupling junction we have

—_— 4 ]
a, =ay +u, , with

1-—
Uy =—2 (s, +5,) . (4.17)

JK,

. . T
Thus in general we can write a=a'+u, where u = [uj, 0, ..., 0, uy] .

Substituting this expression into (3.7) we get a —u =z 'Ma, or

(I-z'"Ma=u, (4.18)
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where I is the NxN identity matrix. In the above equation the term on the left
hand side completely characterizes the inner CMR network, whereas the right
hand side accounts for the external effects of the input and output bus couplings «;

and x,.

Assuming lossless coupling between adjacent microrings, the conservation
of power requires that the coupling matrices M be unitary. It follows that the
total field coupling matrix M is also unitary and normal so that its eigenvectors
are orthogonal to each other. Thus we can diagonalize M as M =TAT", where
A is a diagonal matrix containing the eigenvalues of M and T is a unitary matrix

containing the corresponding eigenvectors. Substituting this into (4.18) gives
I-z"'"TATYa=u, (4.19)
and we can solve for a to get
a=TA-z"'A)"'"T'u=Au, (4.20)

where A is an NxN matrix defined as in the above equation. From (4.20) we

obtain the following expressions for a; and ay :

a, = Ayu, + A yuy
‘T ‘ leTNk (4.21a)

N
D e Az Z1 Az

k=1

ay = Ay + Ay y

v o, T, 7 k\ (4.21b)

g0 Sy Az Z1 Az

k=1 L7
where A;’s are the eigenvalues of M. For the all-pass CMR network with no
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output bus waveguide, setting 1, = 1 in (4.17) gives uy = 0. Under this condition

we obtain from (4.21a) and (4.21b)

2
a Moy
4, == =Z—1‘ 1/1‘ -, (4.222)
ul uy=0 k=1 17 kZ
a NOT T
Ay, =2 =D AL 4.22b
M B kz_:‘l—/lkz_l ( )

Moreover, since u; = a; —aj , we also have

- >

A11=ﬂ_ 4 ;= la (4.23a)
u, a—a 1-Y7F

and similarly,

ap
Ay =vo O T (4.23b)
wooa-a 1-Y

Finally, substituting (4.14) and (4.15) into the above expressions, we obtain

_ 1 ©O+R)-7(Q+R) _N,(") (4.24a)
Yolen (O+R)+(Q+R) D)’ |

L _Na@) (4.24b)
-7, (O+R)+(Q+R) D(z)

Equations (4.22a) and (4.22b) provide a link between the polynomials of the
transfer functions of the CMR network and the eigenvalues and eigenvectors of
the coupling matrix M. In the next subsection, we discuss how the matrix M can

be constructed from the prescribed optical transfer functions.

4.1.3 Constructing the coupling matrix M
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Given the polynomials P, R and Q, as in (4.2a) and (4.2b), of the prescribed
optical transfer functions (S»; and S);) at the drop port and through port of the
CMR network, we can determine the bus coupling coefficients x; and «, and
construct the coupling matrix M of the network as follows. Since T is a unitary

matrix, its columns have unity magnitude. For the first column, we have
ul 2
Y.l =1 (4.25)
k=1

From (4.22a), we recognize that the above expression is also the zeroth order
coefficient of the numerator polynomial of 4;;. Enforcing this condition to the

right hand side expression in (4.24a), we obtain

=t (4.26)
I+7,

For filters with symmetric spectral responses, the CMR network is also
symmetric so that 7, =7, (or x, =x;). Knowledge of 7 allows us to compute

the polynomials N;;, N,; and D as defined in (4.24a) and (4.24b). Performing

partial fraction expansions of the rational functions N;;/D and N,;/D, we can write

Nuz) _ > & (4.272)
Dz SHpo-z ,

NZI(Z_I) _ S 5/521) (4 27b)
D(Z_l) k=1 pk_Z_l ’ .

where p; are the poles and &'" and &PV are the residues of the respective

rational function. Comparing (4.27a) and (4.27b) with (4.22a) and (4.22b)

shows that the inverse of the poles, 1/p;, are the eigenvalues A; of the matrix M.
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The elements T 4 and Tn, of the first and last rows, respectively, of T are obtained

from the residues &Y and &7V as

1/2
U A (4.28a)
(21
Typ =——. (4.28b)
y i

The remaining rows of T are obtained by Gram-Schmidt orthogonalization

[5]. The total field coupling matrix M is then obtained from M =TAT".

4.1.4 Determining the CMR network topology and coupling coefficients

From the coupling matrix M we can then proceed to determine the device
topology and the corresponding coupling coefficients of the CMR network. This
is achieved by first determining the coupling-angle matrix ¥ such that M =
exp(j¥). Since M is normal, its eigenvalues have unity magnitude so A can be
expressed as A = exp(j®). The coupling-angle matrix is then obtained from
¥ =TOT". The element ¥;; gives the coupling angle between microrings i and j,
with the coupling coefficient equal to k;; = sin(¥;;). The matrix ¥ initially
obtained from the above procedure is in general a full matrix, which is not
physically realizable since it requires each microring in the network to be coupled
to every other microring. In order to reduce W to a simpler and realizable
microring coupling topology, we employ a procedure similar to the

energy-coupling synthesis of 2D-CMRs [5] where a series of Jacobi matrix
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rotations is applied to W to eliminate as many coupling elements as possible.

It

has already been shown in Section 3.3 that such similarity transformation is also

applicable to the field coupling formulation of CMRs without disturbing the

device response.

By applying successive rotations to the matrix ¥ to eliminate

as many coupling angles as possible, a final matrix can then be obtained which

gives the optimized coupling topology and the corresponding coupling angles of

the CMR.

4.1.5 Design example: a 6™-order optical filter

As an example to illustrate the synthesis procedure developed above, we

consider the design of a broadband optical filter with a 3dB bandwidth of 250GHz

transmission (dB)

-70 I I I ] 1 | I
-500-400-300-200-100 O 100 200 300 400 500

frequency detune Af (GHz)

(a)

0 -0.5906 0 0 0 0.0291

0 0.4184 0 0.1918 0

0 0.5862 0 0

0 -0.4184 0
0 0.5906

0

(matrix is symmetric)
(©

Figure 4.2.
Polynomials of the transfer functions of the target filter.
synthesized CMR network. [39]

Transfer Functions of Target Filter Res

0onse

z P@E) Rz o
k=6 | 0 0.516597 0.266962
5 0 -2.593950 -1.656049
4 0.0258022 5.858650 4.580674
3 -0.0373108 -7.557028 -7.234019
2 0.0626788 5.860069 6.921709
1 -0.0373108 -2.595245 -3.839138
0 0.0258022 0.517011 1

(b)

—Psd

(d)

(a) Target filter responses (dashed lines) and responses of the synthesized CMR network (solid lines).
(c) Coupling-angle matrix and (d) coupling topology of the

(b)
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using microring resonators with 1THz FSR. The in-band ripples are 0.1dB and
the stop-band rejection is specified to be better than 40dB. Using an appropriate
filter approximation method [44], the transfer functions of a sixth-order filter
satisfying the above specifications are obtained as given by the polynomials in
Figure 4.2(b). The desired target through-port and drop-port spectral responses
are shown by the dashed lines in Figure 4.2(a). Using equation (4.26), the
computed bus-to-ring coupling coefficients of the CMR network are ki = x, =
0.8563. The coupling-angle matrix ¥ after optimization and the corresponding
CMR coupling topology are shown in Figures 4.2(c) and (d). The spectral
responses of the synthesized CMR network are also plotted in Figure 4.2(a) (solid
lines), which shows good agreement with the target filter responses. The small
discrepancies are due to the fact that in constructing the coupling-angle matrix ¥
from the matrix M, we have neglected the fact that M is actually a cascade of 4
coupling matrices My in the coupled-waveguide array. This is equivalent to
neglecting the effect of indirect couplings between the microrings, which arise

from the non-commutative nature of the matrices My [30, 31, 39].

4.2 Synthesis of 2xN CMRs by network order reduction

While the synthesis method presented in Section 4.1 can be used to
synthesize general 2D-CMR networks, a difficulty which arises in the method is
the determination of the coupling topology and the coupling coefficients from the
field coupling matrix M. A solution to this problem has not been found unless
the indirect coupling matrix X is neglected, as was done in the example. Due to

this approximation, the synthesized filter response does not exactly match with
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the prescribed response, as seen in Figure 4.2(a).

We have also developed an alternative synthesis approach which can exactly
realize the prescribed filter response. The method is based on the network order
reduction approach, and is at the present limited to the 2xN microring coupling
topology. However, this is not a serious limitation, since any general 2D
microring coupling topology of order 2N can be reduced to the 2x/N configuration
via appropriate similarity transformations [5]. The network order reduction
technique has previously been used to synthesize microring filters of simple one
dimensional coupling topology (e.g., CROWs) [9], cascaded arrays of ring-loaded
Mach-Zehnder interferometers [7], and parallel cascades of microring networks
[45]. Here we show that the method can also be applied to synthesize 2D-CMR

networks of the 2xN coupling topology. This work has been published in [46].

4.2.1 Description of the 2xN CMR network

A general schematic of a 2xN CMR network consisting of 2N coupled
microring resonators is shown in Figure 4.3. The microring resonators are
numbered from 1 to 2N as shown, and are assumed to be identical and lossless.
The field coupling coefficient between adjacent microrings i and j is denoted by
K;;. Input and output bus waveguides are coupled to the network via microrings
N and 2N, with coupling coefficients k; and k, respectively. We denote the input
and output signals of the network as s; (input), s; (through), s4 (drop) and s, (add)

as shown in the figure. The transfer matrix S of the network is defined as
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stage N stage k+1 stagek  stage k-1 stage 1

Figure 4.3 . Schematic of a 2xN CMR network and its depiction as a cascade of N stages of

microring pairs. [46]

|:St:|:|:Sll S12:||:Si:| (4.29)
Sq Sy Sy s, ’

in which the transfer functions at the through port (S1;) and drop port (S2;) can be

expressed as ratios of polynomials of the roundtrip delay variable z~' similar to

equations (4.2a) and (4.2b):

2N

>zt -1
Sy h=Sto o KE ) (4.30a)
ity quz_k o)
k=1
_2N-2 k
o X Dk+1Z Pz
Sz =4 =—4= =220 (4.30b)
5 1+3 gz * 0@
k=1

For the network of order 2/, transmission response at the drop port has 2N
poles and 2N —2 zeros, while the through-port response has 2N poles and 2N
zeros. For most optical filters of practical interest, the spectral responses are

symmetric about the center frequency, in which case we also have the relations
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S,=8,=R/Q and S§,=S5, =jP/0O . In addition, power conservation

requires that the determinant of the transfer matrix S obeys the relation [7, 43]

R*+P> 00 0
S18% =818y = P :%:g, (4.31)
0 o 0

where O is the para-conjugate polynomial of O obtained by reversing its

coefficients.
4.2.2 Network order reduction

The idea of the network order reduction method is based on regarding the
2xN CMR network as a cascade of N stages and synthesizing each stage one by
one by extracting it from the cascaded array. The order of the network is
reduced each time a stage is synthesized and removed from the cascade, until the
last stage is reached. For the 2xN CMR network, each stage consists of a pair of
coupled microrings as shown in Figure 4.3, and we number the stages as k£ = 1,
2, ... N starting from the right most pair. The transfer matrix S® of the 2xk

CMR network formed by microring pairs 1 to k is defined as

b, _ Sl(f: S%) a4y :L I‘Qk JB || a 4.32)
d, Sy Sy el OB R o
where QO and R, are polynomials of degree 2k and Py is of degree 2k — 1. We

next derive the relationships between the S-parameters of the 2xk network and the

previous network, 2x(k—1) in the following.

As seen in Figure 4.3, networks 2xk and 2x(k—1) are connected by the

microring pair in stage k. For convenience, we re-label the three coupling
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coefficients of this stage as kj, K, and «x3, and define the fields inside the
microrings as shown in the same figure. At the coupling junctions x; and K, we

have the relations

{bﬂ:[ h _j’q"“k} (4.33a)
a, | |-jx 1, b
{dk}:{ 7, —sz__ck} (4.33b)
c, -jr, T, ||d;]

and at the coupling junction «3,

|:bk,} = Zl/z|: 7'3 _]K3:||:bk—1 } ’ (4.33¢)
d, —JK; 73 d,

where 7, =./1-x7 (for i = 1, 2, 3). Using the relations a, , =z "’a, and

c,, =z "%c,, we eliminate the fields a},b, c;,d, from (4.33a)-(4.33c) and

express the results in the form

b, , _ Sl(lk_l) Sl(f_l) a4 (4.34)
d., S;H) Sélzc_l) Cra . ‘

Specifically, the parameters S\ and S{'™ are given by

(k) (k) . (k)
er(rzAk_Su —70,7,8,, + 7))~ JKK,K3S,

s -
77,4, _TISI({() _Z_ng) +1

, (4.352)

. (k) (k) (k)
gD _ZJK3(TzAk -S1 07,8 +1) KK, 7385
20 =

, (4.35b
77,4, _Tlsl(f) _Tzsélzc) +1 ( )

where A, is the determinant of S(k),
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Ay =S{85 =SS5 = 0,10, (4.36)

Using (4.32) in (4.35a) and (4.35b) we can obtain the following recursive
relations connecting the transfer polynomials of network 2xk with those of the

previous network:

0, =1,7,0, — (1, +T,)R, + O, , (4.37a)
R, =z(t;M | + k5, 6,P,) , (4.37b)
P =z(ksM, — k5,7,F,), (4.37¢)
where
M, =1,0, —(1+7,7))R, +7,0, . (4.37d)

The transmission coefficients7,,z, and 7, of stage k can be determined by

considering the degrees of the polynomials in the above equations. Since QO

k

has degree 2(k — 1), we require the coefficients of the z > and z *™ terms in

(4.37a) to be zero:
1,7, = (7, + 1) + 45 =0, (4.382)
1,70,q" = (0, + )R + g5, =0, (4.38b)

where ¢* and r® are the i" coefficients of Oy and Ry, respectively. Solving

for 1 and 1, from the above equations we get

++/B* -
7,7, :w, (4.39)
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where

(k) (k) (k) (k)
A= o 9okt — Nog190k

4.40a)
(k) (k) (k) ? ( '
Pl =T 4,

(k) (k) (k)

p=Tr T Ao (4.40b)
Paket =T 4

For filters with symmetric spectral responses, it turns out that B> —44 =0
so that t; = 1, = B/2. For the polynomial R;.; in (4.37b), which also has degree

2(k— 1), we require the z™' and z " terms to be zero. This implies that the

z% and z?* terms of M, in (4.37d) must be zero,

m" = 1,45 —(1+7,0)r” +1, =0, (4.41a)

) =5~ n )+l =0, @410)

The above equations provide an alternative expression for determining t; and

12,

T, =7, =C-vC* -1,

(4.42)

where C=[1+¢"1/2r".

Finally, since P, has degree 2k — 3, by requiring
that the coefficient of the z *** term in (4.37¢) to be zero, we obtain

(k) (k) _
Kymy,' | — K\ K,T3py =0,

(4.43)

which can be solved for k3 to get

(k)
Ky = Sin[tan‘l (%ﬂ (4.44)
My

69



In the synthesis procedure, we start with the prescribed optical transfer

functions s and s{) to be realized by a 2xN CMR network. First, we

compute the coupling coefficients of the last stage (kK = N) to obtain the input and

output bus coupling coefficients (i, k,) and the ring-to-ring coupling coefficient

kyaoy-  The network is then reduced by one stage by computing S{¥" and

s§¥-D . and the process is repeated until the first stage, k = 1, is reached. The

coupling coefficients of this stage can be obtained directly from the transfer

functions of a pair of coupled microrings: © =7", 1, =r" and «;= pl(l) /KKy .

4.2.3 A design example

As an illustrative example, we consider the design of an optical interleaver
using a 2xN coupled microring structure. Optical interleavers are a special class
of optical devices that can be used to combine or separate the interleaved dense
wavelength-division multiplexed signals on the even or odd channels. The
device in this example is specified to have a 3dB bandwidth equal to half the free
spectral range of the microrings, where FSR = 200GHz. The in-band ripples and
stop-band rejection are specified to be better than 0.05dB and 30dB, respectively.
Note that the device is very broadband as its 3dB bandwidth is half the FSR, so
the microrings are expected to be very strongly coupled to each other. For this
reason, the structure cannot be designed using the energy coupling formalism but

requires a synthesis method based on the field coupling formalism in the z-domain.
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¢ | P R o)
k=6 | 0 0.110545 0.011908
5 0.145945 -0.380969 -0.078046
4 0.333375 0.723671 0.278279
3 0.454924 -0.888338 -0.439130
2 0.333375 0.723671 1.076002
1 0.145945 -0.380969 -0.435345
0 0 0.110545 1

Table 4.1. Coefficients of the transfer polynomials of the target filter response [46]
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Figure 4.4. (a) Target (grey dotted lines) and synthesized (black solid lines) filter responses at the drop port

(1S21P) and through port (|Sy;*). Grey solid lines show the group delay responses.
parameters of the synthesized CMR network. [46]

(b) Schematic and coupling

Using an appropriate filter approximation method (e.g., [44]), the transfer
functions of a sixth-order filter satisfying the above specifications are obtained as
given by the polynomials in Table 4.1.

The target magnitude responses of >

and S; of the device are shown by the grey dotted lines in Figure 4.4(a).

The interleaver can be realized by a 2x3 CMR network, as shown in Figure
4.4(b). The coupling coefficients for each stage were computed using equations
(4.42) and (4.44), and shown in the table in Figure 4.4(b). Since the device is
very broadband, several coupling junctions have very large coupling values close
to 1. To realize such strong couplings, the microrings should be designed to

have long straight waveguide sections for coupling, as shown in Figure 4.4(b).
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In Figure 4.4(a) we plotted the spectral responses of the synthesized CMR
network (black solid lines), which are in good agreement with the target filter
responses. Due to the very sharp roll-off of the filter, the transition band from
the -0.5dB to -30dB attenuation point is only 12GHz, and the 0.5dB bandwidth
extends as large as 96GHz, or 48% of the FSR. We also plotted the group delay
response at each port in Figure 4.4(a) (grey solid lines), which shows that each
channel has a relatively flat and small group delay of about 10ps at the center
frequency. This example highlights a novel application of 2xN CMR networks

for realizing very compact interleavers.

4.3 Summary

In this chapter, we have presented two methods to synthesize a prescribed
optical filter transfer function using two dimensional coupled microring resonator
networks based on the field coupling formalism. The first method generates the
field coupling matrix for the structure by solving the inverse of the analysis
problem presented in Chapter 3. The method can be applied to general 2D
coupling topologies; however, an approximation involving neglecting the indirect
coupling matrix is required in order to construct the coupling topology from the
field coupling matrix. The second method solves for the coupling coefficients
exactly using the network order reduction technique and is applicable to 2xN
microring networks. Examples of advanced CMR optical filters were provided
to illustrate the application of both methods in realizing prescribed optical transfer

functions.
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Chapter 5

Conclusions

In this thesis, we have presented a comprehensive analytic theory for the
analysis and synthesis for two dimensional coupled microring resonator (2D CMR)
networks based on the field coupling formalism. The techniques developed can
be applied to strongly coupled CMRs for a wide range of applications in
integrated optical filter analysis and design applications. A simple characteristic
equation describing CMRs with general topologies allows closed form analytic
expressions for the transmission characteristics to be derived. The theory
developed characterizes the CMR structure through a field coupling matrix, which
can be further decomposed into the direct and indirect coupling terms. It was
found that the existing energy coupling formalism essentially makes the
approximation that the indirect coupling term is negligible; such an approximation
however is no longer valid under strong couplings between microrings and can
have prominent effects on the device spectral characteristics. The field coupling
formalism has the advantage over the existing energy coupling formalism in that
it is no longer restricted to weakly-coupled microring networks, and is therefore
suitable for analysis of broadband devices whose bandwidth becomes significant

compared to its free spectral range.
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Two methods for 2D CMR filter synthesis were also developed based on the
field coupling formalism. One synthesis method is based on the inverse of the
analysis problem and has the advantage of maintaining generality of the coupling
topologies, but still requires some approximations in the determination of the
coupling coefficients. The other method is based on the network order reduction
approach and synthesizes the CMR network directly stage by stage, but it is

limited to the 2xN coupling topology.

5.1 Major contributions

Major achievements of the work could be summarized as the following:

*  Formulated a general theoretical framework for the analysis of general

2D CMR structures based on the field coupling formalism;

* Investigated novel effects in strongly coupled CMR structures such as

the effects of indirect couplings;

* Developed two CMR filter synthesis techniques based on the field

coupling formalism;

*  Demonstrated advanced applications of strongly coupled microring

resonator networks in realizing broadband integrated optical filters.

5.2 Recommendations for future works

While the presented work provides a comprehensive theoretical framework

for the coupled microring resonators, there are still rooms for improvements and
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further investigations in the following areas:

e Search for a novel solution to remove the final approximation in the

general synthesis approach;

e  Validate the analytical spectral responses obtained with the field
coupling formalism by comparing them to rigorous full-wave

simulations of 2D CMR networks;

*  Explore feasibility of experimentally realizing 2D CMR filter designs;

* Extend the field coupling theory developed to non-linear 2D CMR

networks.
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