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Abstract 
 

Integrated photonics have received much attention in recent years as there is a concerted 

effort towards achieving Very-Large-Scale-Integration of optical components.  One of 

the key elements enabling such dense integration is the optical microring resonator, which 

has found pervasive applications in integrated optics due to its ultrahigh quality factor 

and highly dispersive spectral characteristics.  Recently it was shown that two 

dimensionally coupled microring resonators (2D-CMRs) can be used to realize advanced 

optical transfer functions, making them highly attractive for spectral engineering 

applications.  Existing methods for analysis and design of 2D-CMR networks based on 

the energy coupling formalism are limited to narrowband devices due to its inherent weak 

coupling assumptions.  This thesis develops rigorous field coupling methods for 

analyzing and synthesizing general 2D-CMR networks in the strong coupling regime, 

which exhibit novel physical phenomena not previously observed.  Advanced 

applications of strongly coupled CMR networks are also proposed for broadband 

applications. 
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Chapter 1  

Introduction  

The last decade has seen an explosive growth in digital communications as 

the average user data consumption has significantly expanded compared to years 

before.  Data transmissions through optical channels have long since become an 

inseparable part in communications due to its extreme high capacity and speed 

compared to electrical systems.  However, implementations of bulk optical 

information signal processing systems are clumsy and difficult to scale up, so 

miniaturization and integration has become an important drive in the development 

of more practical optical networks as it proved to be the key that enabled the 

electronics to be used in countless applications as we see today.  Thus the field 

of integrated photonics was born from this need to allow VLSI integration of 

many optical components to achieve high level of functionalities on a single chip. 

Coupled microring resonators (CMR) are promising building blocks for 

integrated optics due to their versatile spectral characteristics which can be 

designed to meet desired specifications.  These devices have especially received 

attention in spectral and dispersion engineering applications such as optical filters 

[1], slow light [2], optical delay lines [3], coupled-resonator induced transparency 

[4].  Recently it has been shown that coupled microring resonators of two 

dimensional (2D) coupling topologies exhibit much richer spectral characteristics 

than 1D coupling topologies [5], and can be used to realize many general high 
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order optical transfer functions not realizable by 1D topologies [6].  As the 2D 

coupling architectures open up more design possibilities of coupled microring 

devices, it is important to develop rigorous and accurate methodologies for 

analyzing and designing these devices. 

1.1 Optical microring resonators 

A microring resonator is essentially a waveguide bent in a closed loop, such 

as a circle, ellipse, or racetrack, and behaves as a whispering gallery mode 

travelling-wave resonator.  Signals from the input waveguide (or bus) are 

typically coupled to the resonator through evanescent coupling which occurs 

when the evanescent fields outside the waveguides begin to overlap and result in 

energy transfer.  As the waveguide is bent into a closed loop, signals will 

resonate in the ring if its round-trip phase is an integral multiple of 2π, which 

results in constructive interference of the signal with itself and a build up of stored 

energy in the resonator.  One of the simplest devices we could achieve 

Figure 1.1 – Schematic of single microring add/drop filter  



 

 3

exploiting this property is an add/drop filter as seen in Figure 1.1.  When a 

spectrum of wavelength-division multiplexed (WDM) signals is applied to the 

input port, only the signal satisfying the resonance condition will resonate in the 

microring and be eventually transmitted or “dropped” at the drop port, while the 

rest of the signals will pass on to the through port.  Another signal of the same 

resonance wavelength could also be “added” to the WDM spectrum in the input 

bus by feeding it from the add port.  In practice, however, WDM add/drop filters 

require stringent spectral characteristics that cannot be met by a single microring 

resonator and higher order filter architectures with multiple coupled microring 

resonators are generally used in order to achieve better filter response.  

1.2 Microring optical filter architectures 

Different architectures of high order microring optical filters have been 

proposed in the past, such as the microring-loaded Mach-Zehnder interferometer 

topologies [7, 8], the serial coupling topology [1,9,10], the parallel cascaded 

array topology [11,12], the two dimensional coupling topology [5,13], and even 

the dual mode reflection filter topology [14].  Serially coupled microring 

resonators, as shown in Figure 1.2(a), often referred to as Coupled Resonator 

Optical Waveguides (CROWs), have received the most attention due to their 

simple structures for both analysis and design.  However, the serial coupling 

microring topology cannot be used to realize transfer functions with transmission 

zeros, which limits its spectral performance so that the filter might not be able to 

meet the sharp skirt roll-off and high out-of-band rejection requirements for 

Dense Wavelength Division Multiplexing (DWDM) applications [5].  While the 
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parallel cascaded microring array scheme (Figure 1.2(b)) could realize 

transmission zeros, its design is more complicated as the poles of the filter cannot 

be independently controlled.  The microring-loaded Mach-Zehnder scheme 

(Figure 1.2(c)) is based on the sum and difference of two all pass filters in the two 

arms of the interferometer, and can be used to realize arbitrary poles and 

transmission zeros with simple design.  However, it requires the implementation 

of individual phase shifters on each of the microring resonators.  Recently it has 

been shown that the microring-loaded Mach-Zehnder structure can be converted 

into a parallel cascade of double-microrings to simplify its implementation, 

requiring only one phase shift [15]. 

Of the various microring filter architectures described above, the two 

Figure 1.2 – Common high order microring filter architectures, showing serial coupling (a), 
parallel coupling (b), and microring loaded Mach-Zehnder schemes. 

(a)

(b)

(c)
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dimensionally coupled microring resonator network (shown in Figure 1.3) is the 

most compact architecture that can be used to achieve various advanced filter 

transfer functions.  The structure consists of synchronously tuned microring 

resonators (of the same resonance frequency) arranged in a two dimensional 

square lattice, creating a compact and versatile structure that can be used to 

realize rich spectral characteristics by adjusting the coupling strengths between 

the resonators. However, due to the complexity of the structure, the analysis and 

design of 2D CMR filters have been restricted to narrowband approximations 

based on the energy coupling formalism.  The lack of more rigorous and general 

analysis and synthesis methodologies limits the usefulness of the 2D CMR 

architecture in more advanced applications.  

 

 

Figure 1.3 – Schematic of a general 2D-CMR network consisting of coupled microrings 
arranged in a square lattice 
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1.3 Theoretical treatments of microring resonators 

Analysis of coupled microring resonators is typically performed in terms of 

either energy coupling in time or field coupling in space.  The energy coupling 

formalism is strictly valid only for weakly-coupled CMRs where the field 

circulating in each microring is assumed to be uniform, so that each resonator can 

be conveniently described by its total stored energy.  Energy transfer among the 

microrings is described by a simple coupled mode equation in time, enabling 

analytic solutions of the device transfer functions to be obtained and direct filter 

synthesis method to be developed [5,6].  However, the restriction of weak 

coupling means that the energy coupling formalism is applicable only for 

narrow-band CMRs.  For strongly-coupled microring resonators, which are 

characterized by having a bandwidth that is a significant fraction of the free 

spectral range (FSR) of the microrings, an accurate analysis must be performed 

based on field coupling in space.  However, the field coupling analysis is 

complicated by the fact that in strongly-coupled CMRs, the field in each 

microring is not uniform but depends on the positions of the microring coupling 

junctions.  Typically a field-coupling matrix equation is needed to describe each 

coupling junction, resulting in a large system of matrix equations that generally do 

not admit analytical solutions or offer physical insight into the characteristics of 

the device.  Thus, although the field coupling formalism has been used to 

analyze relatively simple structures such as CROWs [9,16] and parallel-cascaded 

microring resonators [13,17], its application to general 2D microring coupling 

topologies [18,19] is less popular because the lack of a systematic formulation 
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makes the analysis cumbersome and tedious.  It should be noted that other 

approaches such as tight binding [20] and Mason’s rule in flow-graph theory [21] 

are also possible, but their applications are restricted to periodic microring 

structures in the former case and simple coupling topologies in the latter case due 

to the complexity of the approach. 

1.4 Objectives 

The objective of this thesis is to develop rigorous analysis and synthesis 

methodologies based on the field coupling formalism for general two dimensional 

coupled microring resonator networks.  A systematic formulation achieved by 

transforming a general 2D-CMR structure into an equivalent coupled waveguide 

array will be presented.  The formulation yields closed form expressions for the 

transfer functions of a 2D CMR network in the strong coupling regime.  The 

relationship between the presented field coupling formalism and the traditional 

energy coupling formalism will also be derived.  The analysis of CMR structures 

in the strong coupling regime also allows new physics to be uncovered, such as 

indirect coupling induced transparency.  A synthesis method based on the field 

coupling formalism is also developed, which can be used to design strongly 

coupled CMR structures with broadband characteristics. 

1.5 Thesis organization 

This thesis is organized as follows.  The theoretical background of 

microring resonator filters is discussed in Chapter 2, with a review of the analysis 

approach of the device based on energy coupling formalism.  Chapter 3 
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highlights our work on the development of a general 2D CMR network analysis 

method based on the field coupling formalism.  Chapter 4 presents two methods 

of the direct synthesis of 2D CMR networks for realizing prescribed optical 

transfer functions, one based on the inverse procedure of the analysis technique 

presented in Chapter 3, and the other based on the network order reduction 

method for designing a 2×N network.  Finally, Chapter 5 concludes the thesis 

highlighting key contributions of the work. 
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Chapter 2  

Energy Coupling Analysis of 

Microring Resonators  

2  

This chapter reviews the basic theory of microring resonators based on the 

energy coupling formalism.  The transfer functions and fundamental 

characteristics of microring resonators are discussed.   

2.1 Coupled waveguides 

In recent years, rectangular dielectric waveguides are of major interest in the 

photonic research field due to its simple structure, ease of fabrication and 

potential to be integrated on many platforms.  These waveguides are typically 

designed to operate under the single mode condition (for each dominant 

polarization).  Energy transfer between two dielectric waveguides can be 

achieved by bringing them close to each other.  The evanescent tail extending 

outside the core of each waveguide would start interacting with each other, 

resulting in the fields being “coupled”.  Evanescent power transfer between two 

coupled waveguides has been well studied through the Coupled Mode Theory 

[22,23]. 
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Consider a lossless coupling junction between waveguides 1 and 2 as shown 

in Figure 2.1.  The fields entering the junction in each waveguide are denoted as 

complex field variables (i.e. include amplitude and phase) a1 and a2 and the fields 

exiting the junction are denoted as b1 and b2.  Coupled mode theory yields the 

following coupling matrix equation relating the output fields to the input fields:  

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡

2

1

2

1

a
a

j
j

b
b

τκ
κτ

. (2.1) 

In the above equation, τ represents the field transmission coefficient, κ represents 

the field coupling coefficient, and the factor –j represents the π/2 phase change 

experienced by the coupled fields.  The coupling junction itself is assumed to 

have zero physical length in the model, so there would be no phase shift in the 

transmitted fields, and the coupling and transmission coefficients are real.  

Power conservation is maintained by requiring the two coefficients to be related 

by, 

 122 =+ κτ . (2.2) 

 

Figure 2.1 – Schematic of a coupling junction between waveguide 1 and 2. 

a1 

a2 
b2 

b1 
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2.2 Energy coupling in time description of microring resonators 

One of the most successful methods for analyzing systems of coupled 

resonators is the energy coupling in time formalism.  This method has been used 

to analyse coupled microring resonators in 1D [10] and 2D coupling topologies 

[5].  In this approach, each microring resonator is considered as a lumped 

oscillator and energy transfer among the resonators is described by a system of 

coupled mode equations in time.  Analytic solutions of the system of equations 

allow closed form expressions for the transfer functions of the microring networks 

to be obtained.  Filter synthesis methods based on the energy coupling formalism 

have also been developed for 1D and 2D coupled microring topologies [5,6].  

Below we review the analysis approach of microring resonators using the energy 

coupling formalism. 

2.2.1 Transfer function of a single microring resonator  

To better demonstrate the analysis approach based on the energy coupling 

formalism, we will analyse the basic single microring add/drop filter 

configuration and obtain formulas describing its spectral responses [10].  

Consider the structure in Figure 2.2, where a single microring resonator of radius 

R is evanescently side coupled to a pair of bus waveguides acting as input/output 

ports.  The optical energy wave amplitudes guided in the input, through, add, and 

drop ports are denoted as si, st, sa, and sd, such that the square modulus 

( 2
is , 2

ts , 2
as , and 2

ds ) is the energy of the signal in each respective port.  

The input and output energy coupling coefficients, μi and μo, denote the rates of 
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energy that gets coupled between the microring and the bus waveguides, and can 

be related to the field coupling coefficients, κ, mentioned earlier as [5]: 

 
grt vRT π

κκμ
2

22
2 ==  (2.3) 

where Trt is the round-trip time it takes the signal travelling at group velocity, vg, 

to travel around the microring of radius R.  The microring resonator is 

considered as a lumped oscillator with energy signal amplitude a(t) (such that its 

stored energy is |a(t)|2) with resonant angular frequency of ωo and cavity 

amplitude decay time-constant of τc.  The total decay rate includes the effects of 

energy loss due to external coupling to the input (1/τi) and output (1/τo) bus 

waveguides as well as intrinsic loss (1/τl) according to  

 loic ττττ 1111 ++= . (2.4) 

The intrinsic loss in the microring resonator includes bending loss, material 

absorption, and surface roughness scattering.  By considering the energy flows in 

and out of the resonator, the stored energy in the microring changes with respect 

Figure 2.2 – Single microring resonator add/drop filter 

Input  si 

Drop  sd 

μi 

Add  sa 

a 

Through  st 

μo 

R 
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to time according to 

 ii
c

o sjaja
dt
d μ

τ
ω −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

1  . (2.5) 

Assuming an input signal with harmonic time dependence )exp(~ tjsi ω , we can 

find from (2.5) 

 
( ) i

c
o

i s
j

ja
τωω

μ
1+−

−
= . (2.6) 

The drop port and through port signals are related to the energy signal in the 

microring as 

 
.

,
ajss

ajs

iit

od

μ
μ

−=
−=

 (2.7) 

Using equations (2.6), (2.7) and setting ( )ojs ωω −=  we can express the 

drop and through port responses of the filter in terms of the input signal as: 

 i

c

oi
d s

s
s

τ

μμ
1+

−= , (2.8a) 

 i

c

i
t s

s

s
s

τ

μτ
1

1 2

+

−+
= . (2.8b) 

The energy coupling coefficients μi and μo are related to the decay rates 1/τi and 

1/τo, as: [10]  

 
2

1 2
i

i

μ
τ

=  ; 
2

1 2
o

o

μ
τ

= . (2.9) 
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Using the above results, we can obtain the following expressions for the 

through-port and drop-port transfer functions of the single microring resonator 

add/drop filter as: 

 ( )
221
oi

l

oi

i

d
d ss

ssT
μμτ

μμ
+++

−== , (2.10a) 

 ( )
22

22

1

1

oi
l

oi
l

i

t
t s

s

s
ssT

μμτ

μμτ
+++

+−+
== . (2.10b) 

The above energy coupling analysis is strictly valid only for a 

weakly-coupled (or narrow-band) microring resonator where the field circulating 

in the microring is assumed to be uniform, so that the resonator can be 

conveniently described by its total stored energy in this model.  This formalism 

leads to a description of the resonator in the complex frequency s-domain as in 

equations (2.10), and is equivalent to the approach commonly used to analyze 

low-frequency resonators such as microwave cavities and electrical oscillators.  

2.3 Spectral characteristics of a microring resonator 

Microring resonators exhibit spectral characteristics similar to standing-wave 

oscillators.  They are typically characterized by their resonant frequencies, 

spectral line widths, free spectral range (FSR), finesse (F), and quality factor (Q). 

2.3.1 Resonance condition  

Figure 2.3 shows the simulated spectral response of a typical single 

microring resonator add/drop filter.  The microring is resonating whenever the 
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field guided in the ring is in constructive interference with itself after travelling 

around the microring, which can be described by the following resonance 

condition: 

 Rm g πλ 2=  (2.11a) 

where m is an integer (called the resonance mode number), gλ  is the guided 

wavelength, and R is the microring radius.  The above condition can also be 

expressed in terms of frequency as  

 rtTm ωπ =2  (2.11b) 

where ω is the angular frequency and Trt is the microring round-trip time.  In the 

add/drop configuration, the resonant condition indicates the wavelength location 

of the peak transmission at the drop port (dashed curve in Figure 2.3) and the 

transmission dip at the through port (solid curve).  

2.3.2 Full width at half maximum (FWHM) bandwidth  

Assuming a symmetric structure (equal input and output coupling 

Figure 2.3 – Typical spectral response of single microring resonator add/drop filter at through 
port (solid) and drop port (dashed), showing various spectral properties 

FSR 

FWHM
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coefficients) with no loss, we can solve for the FWHM bandwidth of the single 

ring add/drop filter as follows.  First by squaring Equation (2.10a) and equating 

it to 1/2 we obtain: 

 
2
1

42
2/1

42

2
2/1

22

=
+Δ

=
+Δ

−
=

μω
μ

μω
μ

js
s

i

d . (2.12) 

Solving for 2/1ωΔ , the FWHM could then be found as:  

 2
2/1 22 μω =Δ=FWHM . (2.13) 

The FWHM bandwidth could also be derived based on the field coupling 

formalism which yields the expression [10] 

 
effRn
cFWHM

π
κ 2

=  (2.14) 

where neff is the effective index of the microring waveguide, c is the speed of light 

in vacuum.  We can confirm that the two expressions are the same if geff nn = by 

using Equation (2.3). 

2.3.3 Free Spectral Range (FSR) 

The spacing between two consecutive resonant peaks is referred to as the 

free spectral range (FSR) of the resonator, and can be found from (2.11b)  

 
grt

mmfrequency Rn
c

T
FSR ==−= +

πωω 2
1  (2.15) 

where ng is the group index of the microring waveguide. 
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2.3.4 Finesse (F) 

Similar to Fabry-Perot resonators, we can find the finesse (F) of a microring 

resonator, which is defined as the ratio of the FSR to its resonance width, as  

 2κ
π

ω
ω =

Δ
=

FSRF . (2.16) 

The above expression assumes ng = neff.  The figure of finesse represents the 

ability of a cavity to resolve spectral lines; in terms of WDM filter applications it 

represents the number of frequency channels that can be accommodated within 

one FSR. 

2.3.5 Quality factor (Q) 

The quality factor of a resonator commonly defined as  

 
lossPower 

Energy Stored
oQ ω=  (2.17) 

where ωo is the resonance frequency, can be found for the microring resonator of 

negligible internal loss as 

 
c

Rn
Q effoo

2κ
πω

ω
ω

=
Δ

= . (2.18) 

The higher the quality factor, the better the resonator behaves as an energy storage 

device, and the sharper its resonance peaks are.  

2.4 Energy coupling analysis of 2D coupled microring resonators 

The energy coupling formalism can also be used to analyze more 

complicated two dimensional coupled microring structures, such as the one shown 
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in Figure 2.4.  Each microring resonator Rk, k = 1 to N, in the structure has 

resonant frequency ωk , such that the frequency detune from the center frequency 

( 0ωωω −=Δ kk ) is small and the microrings could be assumed to have the same 

intrinsic cavity lifetime τc.  Time harmonic optical signals iŝ , tŝ , aŝ , and dŝ , 

denote the energy wave amplitudes at the input, through, add, and transmitted 

ports.  The rate of energy coupling between adjacent microrings i and j is 

denoted by the energy coupling coefficient μi,j.  Microrings 1 and N are also 

coupled to the input and output waveguides via the corresponding input and 

output energy coupling coefficients μi and μo.  Denoting ( )takˆ  as the energy 

amplitude stored in microring k, we can write the system of equations describing 

the flow of energy in the network similar to equation (2.5) as: [24] 

( )
( )

( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣
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⎥
⎥
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⎤

⎢
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⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦
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⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
−−−

=
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0

0
ˆ

ˆ

ˆ
ˆ

1

1
1

ˆ

ˆ
ˆ

2

1

2,1,1

,222,1

,12,11

2

1

MM

L

MOMM

L

L

M

ii

NoNN

Nc

Ni

N

sj

a

a
a

jjj

jjj
jjj

a

a
a

dt
d

μ

τωμμ

μτωμ
μμτω

 

  (2.19) 

In this expression 1/τi and 1/τo are the total rates of energy change in 

Figure 2.4 - General schematic of a 2-D array of N mutually coupled microring resonators. [5] 

iŝ  

tŝ  

dŝ  

aŝ  
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microrings 1 and N, similar to 1/τc in equation (2.4).  Assuming the signals to 

have harmonic time dependence, which allows us to write tj
kk eaa ω=ˆ  and 

tj
ii ess ω=ˆ , and defining the complex frequency variable ( )ojs ωω −= , we can 

simplify (2.19) into the matrix equation 

 baMLI =⎥
⎦

⎤
⎢
⎣

⎡
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ js

cτ
1 , (2.20) 

where [ ]T
Naaa L,, 21=a , [ ]T

ii sj 0,0, Lμ−=b , I is the N×N identity matrix, M 

is an N×N symmetric energy coupling matrix having the form 

 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ

Δ
Δ

=

NNN

N

N

ωμμ

μωμ
μμω

L

MOMM

L

L

,2,1

,222,1

,12,11

M , (2.21) 

and L is a diagonal matrix denoting the coupling between the input/output 

waveguides and the microring network as 

 [ ]2,0,,0,2diag 2
o

2
i μμ L=L . (2.22) 

Now obtaining the system response would simply mean solving equation 

(2.20).  First, we factor the matrix ( )ML j+−  into its eigenvalue 

decomposition as  

 ( ) 1−⋅⋅=+− QDQML j , (2.23) 

where D is the diagonal matrix containing the eigenvalues, and Q is the matrix 

containing the eigenvectors.  Substitute (2.23) into (2.20), and we have  
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 baQDIQ =⋅⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⋅ −11

c

s
τ

. (2.24) 

The stored energies in the microring resonators are solved to give  

 bQDIQa 1

1
1 −

−

⋅⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⋅=

c

s
τ

. (2.25) 

Expanding the matrix product, we can write the expression for the amplitudes in 

each microring n as 

 ∑
=

−

−+
−=

N

k kc

kkn
iin ps

QQ
sja

1

1
1,,

1 τ
μ , n = 1 to N (2.26) 

where pk is the kth diagonal element of D, or the kth eigenvalue of ( )ML j+−  in 

(2.23).  Similar to equation (2.7), we can find the following relations at the input 

and output coupling junctions of microrings 1 and N as, 

 
Nod

iit

ajs
ajss

μ
μ

−=
−= 1  (2.27) 

Combining (2.26) and (2.27), we obtain the following closed form 

expressions for the transfer functions of the 2D CMR: 

 ∑
=

−

−+
−=

N

k kc

kk
i

i

t

ps
QQ

s
s

1

1
1,,12

1
1

τ
μ , (2.28) 

 ∑
=

−

−+
−=

N

k kc

kkN
oi

i

d

ps
QQ

s
s

1

1
1,,

1 τ
μμ . (2.29) 

In the above expressions, it can be seen that if the microrings are assumed to 
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be lossless ( 01 =cτ ), then the poles of the device transfer functions are given by 

pk.  Any loss in the microring would result in a shifting of the poles to the left in 

the s-plane.  This property is useful in that it enables one to design lossy filters in 

which the effect of loss can be compensated by shifting the filter poles in the 

opposite direction through the pre-distortion technique [25].  In Chapter 3, it will 

be shown that we can derive similar expressions to equations (2.28) and (2.29) for 

strongly coupled CMRs using the field coupling formalism. 

2.5 Summary 

In this chapter, a theoretical overview of microring resonators is presented 

based on the energy coupling formalism.  The transfer functions and spectral 

characteristics of single microring add/drop filters are derived.  An energy 

coupling analysis of general 2D microring coupling topology is also presented.  

While the energy coupling formalism has been shown to be able to model various 

advanced coupled microring structures, its inherent assumption of weak coupling 

limits its applications to narrow-band filters.  A more rigorous technique based 

on the field coupling formalism will be developed in the next chapter that can be 

used to analyze strongly coupled CMRs. 
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Chapter 3  

Field Coupling Analysis of Coupled 

Microring Resonators  

3  

3.1 Field coupling formalism  

In the field coupling formalism, each microring coupling junction is 

described by a coupled mode equation in space, whose solution leads to the 

coupling matrix description of the junction as in equation (2.1).  The field 

coupling formalism is sometimes referred to as “coupling of modes in space” [26], 

and does not have the intrinsic assumption of uniform field distribution around the 

microring as in the energy coupling formalism.  As a result it can more 

accurately describe a CMR structure under strong coupling.  However, to date 

there is no systematic method to analyze CMRs using the field coupling 

formalism and the method has only been applied to analyze simple structures such 

as CROWs [27,28] and parallel-cascaded microring resonators [17,29].  In the 

followings, we develop a systematic approach which could be used to analyze 

general two dimensional CMR networks.  This work has been published in [30] 

and [31]. 

We begin by considering a general coupled microring resonator network in 
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the form of a two dimensional array of n × m = N coupled microring resonators, 

as shown in Figure 3.1.  This topology represents the most densely packed 

microring coupling configuration that does not give rise to coupling between 

counter-propagating waves in the microrings, which occurs in rhombic or 

hexagonal lattice due to the presence of triplets as shown in Figure 3.2.  This 

restriction greatly simplifies the analysis, and does not give rise to a reflecting 

wave in the input bus, which is undesirable in many integrated optical filter 

applications.  The microrings are labelled from 1 to N as shown in Figure 3.1, 

although the numbering does not affect the analysis.  For simplicity, we also 

Figure 3.2 – Example of coupled microring triplets that would give rise to counter-propagation waves. 
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Figure 3.1.  Schematic of a general 2D-CMR structure consisting of an n × m array of N 
coupled microring resonators. [30] 
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assume the microrings are identical with radius R, meaning they have the same 

resonant wavelengths, and all coupling junctions are lossless.  A field coupling 

coefficient κi,j describes the coupling between two adjacent microrings i and j.  

The input and output buses are also coupled to microrings 1 and N, respectively, 

via the input and output coupling coefficients κi and κo, respectively, as shown in 

the figure.  The field amplitudes of the optical signals in the input and output 

buses are labelled as si (input), st (through), sd (drop) and sa (add).  In each 

microring i, we follow the direction of the wave propagation and label the 

amplitude of the circulating wave in each quarter segment of the ring ai, bi, ci, di, 

as shown in Figure 3.1.  Note that we also maintain the order of labelling, i.e. a 

→ b → c → d, in different but adjacent microrings connected through coupling 

junctions.  For example, in Figure 3.1, the field a1 in ring 1 is directly coupled to 

field b2 in ring 2 via coupling coefficient κ12, which is then coupled to field c2m-1 

in ring 2m-1 via coupling coefficient κ2,2m-1, and so on.  The reason for this 

labelling is that it will allow us to decompose the coupling matrix of the CMR 

structure into products of simpler matrices, which will become clear later. 

To facilitate the analysis of the structure, we transform the two dimensional 

CMR network into an equivalent coupled-waveguide array as shown in Figure 

3.3(a).  The easiest way to visualize this process is to imagine “cutting” each 

microring at the point just before the field ai is defined and unfolding the 

microring into a straight waveguide while keeping track of the coupling junctions 

between adjacent microrings and its coupling locations.  Effectively, we have 

transformed the CMR structure in Figure 3.1 into its equivalent "unfolded" 
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configuration as shown in Figure 3.3(a), where each connection between the 

waveguides denotes coupling between two adjacent microrings.  Also note that 

the resulting unfolded structure resembles an array of coupled Fabry-Perot 

waveguide cavities, except the reflective boundary conditions at the facets have 

been replaced with periodic boundary conditions, indicating that the waves can 

travel only in the forward direction (no counter propagating waves).  

We now proceed to analyze the unfolded coupled-waveguide array using the 

transfer matrix method to determine the spectral response of the 2D-CMR 

structure.  The coupled-waveguide array can be treated as four sections 

connected in series; each section representing a phase delay of a quarter ring, 

4/14/rt −φ− = ze j , where φrt is the microring roundtrip phase.  The fields, or signals, 

in each section are denoted by arrays a, b, c, d, where  

 [ ]T
NN aaaa ,,, 121 −= La , (3.1)  

Figure 3.3.  (a) Equivalent unfolded coupled-waveguide array of a general 2D-CMR.  (b) “Stacked-rings” 
schematic of a 2D-CMR characterized by field coupling matrix M and extrinsic loss matrix L. [31] 

M

L

si

sa

st

sd

a1

aN

M

L

si

sa

st

sd

a1

aN

1

2

3

2m-2

N

κ12

κ23

a1

[M1] [M2] [M3] [M4][L]

2m-1

2m

κ1,2m κ2,2m-1

N-1

N-2

b1 c1 d1

κN-1,N

a2

a3

a2m-2

a2m-1

a2m

aN

si st

sd

κo

κi

aN-2

aN-1

a1′

sa

aN′

a2′

a3′

κN-2,N-1

z-1/4

b2

1

2

3

2m-2

N

κ12

κ23

a1

[M1] [M2] [M3] [M4][L]

2m-1

2m

κ1,2m κ2,2m-1

N-1

N-2

b1 c1 d1

κN-1,N

a2

a3

a2m-2

a2m-1

a2m

aN

si st

sd

κo

κi

aN-2

aN-1

a1′a1′

sa

aN′aN′

a2′a2′

a3′a3′

κN-2,N-1

z-1/4

b2

(a) (b) 



 

 26

with similar expressions for b, c and d.  The coupling junctions connecting two 

successive sections, as shown in Figure 3.3(a), can be described by four transfer 

matrices M1, M2, M3 and M4.  These N×N matrices are symmetric with the 

property that if there is coupling between waveguides i and j at junction k with 

coupling coefficient κi,j, then Mk(i, i) = Mk(j, j) = τi,j and Mk(i, j) = Mk(j, i) = −jκi,j, 

where 12
,

2
, =κ+τ jiji  due to the lossless coupling assumption.  If waveguide i is 

uncoupled at junction k, then Mk(i, i) = 1, signifying that the field propagates to 

the next section unchanged.  Specifically, with the microring numbering order as 

shown in Figure 3.1, the matrix M1 has the form of a block-diagonal matrix 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

O

1
][

][
][

,

34

12

1 jiK
K

K

M , (3.2) 

where Ki,j is the 2×2 coupling matrix associated with the coupling junction 

between microrings i and j, 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

jiji

jiji
ji j

j

,,

,,
, τκ

κτ
K . (3.3) 

The other coupling matrices Mk can be reduced to the above block-diagonal 

form through a suitable permutation matrix Pk as 

 )diagblk( −⇒ k
T
kkk MPMP , (3.4) 

where )diagblk( −
kM  is the block-diagonal form of Mk.  The above simply means 
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that within section k, it is always possible to renumber the waveguides so that the 

associated coupling matrix Mk has the block-diagonal form similar to (3.2).  This 

property is used in Section 3.6  – Appendix to prove that all the matrices Mk are 

circular, i.e., they can be expressed in the form Mk = exp(jΨk), where Ψk is a real 

coupling-angle matrix [32]. 

We now apply transfer matrix analysis to the coupled-waveguide array.  

The field array in each section is related to the one following it by: 

 ab 1
4/1 M−= z , (3.5a) 

 bc 2
4/1 M−= z , (3.5b) 

 cd 3
4/1 M−= z , (3.5c) 

 da 4
4/1 M−=′ z , (3.5d) 

 saa +′= L . (3.5e) 

In the above, [ ]Tsjsj aoii ,0,0, κκ −−= Ls  is the input field array 

which contains all the input fields to the CMR structure; a′ is the field array 

defined just before the input and output bus coupling junctions (see Figure 3.3(a)), 

and L is a diagonal matrix representing the bus-to-ring couplings,  

 [ ]oi ,1,1,diag ττ L=L , (3.6) 

where 2
o)(i,o)(i, 1 κτ −= .  Combining the above equations we obtain 

 aaa MMMMM 1
1234

1 −− ==′ zz , (3.7) 

where M is the total ring-to-ring coupling matrix of the 2D-CMR and 



 

 28

rtrt1 Tjj eez ωφ −−− ==  is the roundtrip delay variable, with Trt = 2πngR/c being the 

roundtrip time of the microrings with radius R and group index ng.  If there is 

loss in the microrings, it could be accounted for by defining rt
rt

1 φjeaz −− = , where 

art is the round-trip amplitude attenuation.  Also, to account for small phase 

shifts in section k of the microrings, which may be intentionally introduced or 

arise due to fabrication or coupling-induced frequency shifts [33], the matrix Mk 

is pre-multiplied by the factor exp(jΦk), where Φk = diag[φ1, φ2, … φN] represents 

the phase shifts in the waveguides.  Substituting (3.7) into (3.5e) we obtain 

 sa =− − )( 1LMI z , (3.8) 

where I is the N×N identity matrix.  The above equation, which could be 

regarded as the characteristic equation of the 2D-CMR structure, shows that the 

spectral responses of the field amplitudes in a 2D-CMR are characterized by a 

field coupling matrix M, which is determined by the coupling topology, and a 

ring-to-bus coupling matrix L representing extrinsic loss due to coupling to the 

bus waveguides.  Equation (3.8) also suggests that schematically, any 2D-CMR 

with arbitrary coupling topology may be represented by the “stacked-rings” block 

diagram as shown in Figure 3.3(b).   It is also observed that the field-coupling 

equation in (3.8) has a somewhat similar form as the energy-coupling equation 

derived using the energy coupling in time formalism. (e.g., Equation (2.20)).  

The relationships between the parameters in the two formulations are derived in 

Section 3.4 , where it is explicitly shown that Eq. (3.8) can be reduced to the 

energy coupling equation under the limit of weak coupling between the microring 

resonators. 
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It is also possible to obtain a closed form solution for the field array a in the 

matrix equation (3.8).  This is achieved by diagonalizing the matrix product 

1−= QDQLM , where D is a diagonal matrix containing the eigenvalues of LM 

and Q is the corresponding eigenvector matrix.  We then obtain from (3.8) 

 sa 111 )( −−−−= QDIQ z . (3.9) 

If the input signal is applied only to the input port (si ≠ 0, sa = 0), we can 

further simplify equation (3.9) and obtain the following expression for the field 

amplitude ai in microring i, 

 ∑
=

−

−

−
−=

N

k k

ikki
i z

QQ
sja

1
1

1
,,

ii 1 λ
κ , (3.10) 

where λk are the eigenvalues of LM (diagonal elements of D) and kiQ ,  and 1
,

−
ikQ  

are the elements of the matrices Q and Q−1, respectively.  The field amplitudes b, 

c and d in the microrings can be obtained from a using (3.5a) – (3.5c). 

3.1.1 Through-port and drop-port transfer functions 

The transmission responses at the through port and drop port of the 2D-CMR 

network due to input signal si can be obtained by relating the output signals st and 

sd to the field amplitudes a1 and aN in microrings 1 and N.  At the input 

bus-to-ring coupling junction of microring 1 (see Figure 3.3(a)), we have the 

relations 

 1iiit ajss ′−= κτ , (3.11) 

 1iii1 asja ′−−= τκ . (3.12) 
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Eliminating 1a′  from the above equations gives 

 1
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i
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i
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κ
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−= . (3.13) 

Using (3.10) for a1, we get for the through-port response Tt 

 ⎟
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The above expression is also valid if the CMR structure is coupled to only 

one bus waveguide (i.e., the all-pass configuration).  In this case the matrix L in 

(3.6) has all ones on the diagonal except for the first element L11 = τi. 

For the drop port response, since we already assumed sa = 0, we have the 

following relations at the output bus-to-ring coupling junction of microring N, 

 Najs ′−= od κ , (3.15) 

 NN aa ′= oτ . (3.16) 

Combining the above equations and using (3.10), we obtain for the drop-port 

response 
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1

1
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. (3.17) 

Equations (3.14) and (3.17) give the closed form expressions for the 

through-port and drop-port transfer functions of a general 2D-CMR network and 

are one of the main results of the field coupling analysis.  If we take the squared 

modulus of each term in the summation of (3.17), we obtain an expression of the 

form 
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which has the form of an Airy function.  Thus the response of a 2D-CMR 

consists of a sum of N Airy resonances.  This is an intuitive result but has not 

been proved for a general 2D-CMR structure before.  In the limit of weak 

coupling, the device response reduces to a sum of N Lorentzian resonances, a 

result which can be obtained by taking the square modulus of each term of 

equations (2.28) and (2.29).  

Note that the transfer functions of the 2D-CMR (3.14) and (3.17) have the 

form of rational functions of the roundtrip delay variable z-1, 

 
)(
)()( 1

1
1

t −

−
− =

zQ
zRzT , (3.19a) 

 
)(
)()( 1

1
1

d −

−
− =

zQ
zPzT . (3.19b) 

In the above R(z−1) and Q(z−1) are polynomials of degree N, which 

corresponds to the order, or number of microrings in the network.  The roots of 

Q(z−1) are the N resonances or poles of the device, which in the absence of 

resonator loss are given by the inverse of the eigenvalues, 1/λk, of the matrix 

product LM.  For the polynomial P(z−1), the coefficient of its highest-power term, 

the (N−1)th power, is given by 

 ∑
=

−
− −=

N

k
kkNN QQp

1

1
1,,

o

oi
1 τ

κκ ,  (3.20) 

which is zero since the summation is the product of row N of Q and column 1 of 
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Q−1.  Thus P(z−1) has a maximum degree of only N – 2, yielding a maximum of 

N – 2 transmission zeros for the drop-port transfer function.  Similar expressions 

are also obtained for weakly-coupled 2D-CMR structures using the energy 

coupling formalism, where the drop-port and through-port transfer functions are 

rational functions of the frequency parameter s = jω as seen in (2.28) and (2.29). 

3.1.2 2D-CMRs with no external bus waveguides 

Coupled microring resonators with no external bus waveguides are 

sometimes referred to as “photonic molecules” since they exhibit photon states 

similar to electronic states of a molecule [34].  These structures have potential 

applications such as microlasers [35], quantum emulators and simulators [36].  

Tight binding analysis has been applied to determine the quantum states of simple 

coupled cavity systems such as a twin disk [37], but this approach is strictly valid 

only for weakly coupled systems.  For strongly-coupled photonic molecules, the 

supermodes of the structure would have non-uniform field distribution within 

each microring, so that an accurate determination of the eigenstates and 

eigenvalues of the structure requires a field coupling analysis.  In an isolated 

2D-CMR with no external bus waveguides (κi = κo = 0, s = 0), the bus-to-ring 

coupling matrix L = I and (3.8) becomes an eigenvalue equation 

 0)( 1 =− − aMI z . (3.21) 

Solutions of a in the above equation are the N orthogonal eigenvectors Q of 

the coupling matrix M.  Along with the associated solutions for the field arrays b, 

c and d in the microrings, they constitute the N supermodes of the photonic 

molecule.  The resonance frequency ωk (or energy level ħωk) of the supermode k 
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is given by ωk = −φk/Trt, where φk = ∠λk is the phase of the kth eigenvalue of the 

coupling matrix M and Trt is the roundtrip time of the microrings. 

3.1.3 Direct and indirect coupling-angle matrices 

In the energy coupling formulation of weakly-coupled microring resonator 

networks, a 2D-CMR is characterized by an energy-coupling matrix which 

describes the direct couplings between the microring resonators (Equation (2.21)).  

In this section we show that in the field coupling formulation, the field coupling 

matrix M in (3.8) can be decomposed into a sum of a direct coupling-angle matrix 

plus a term representing all indirect resonator couplings.  In this case, the 

indirect coupling refers to the effective coupling which arises from all indirect 

coupling pathways between two microrings, which could also include those that 

exist between two adjacent resonators.  We will later show by example that the 

indirect coupling matrix can give rise to distinct resonance features not observed 

in weakly-coupled CMRs. 

In Section 3.6 – Appendix, it is shown that the matrix Mk of each section k of 

the coupled-waveguide array is circular, which means it can be expressed as 

 kjT
kkkk e ΨWΛWM == , (3.22) 

where Λk is a diagonal matrix containing the eigenvalues of Mk and Wk is the 

corresponding (real) eigenvector matrix.  The eigenvalues of Mk are given by 

 jij
jijikk ejjjii ,

,,),(),( θκτ =−== ΛΛ , (3.23) 
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where )/(tan ,,
1

, jijiji τκθ −−=  is the coupling angle between waveguides i and j.  

If waveguide i of section k is not coupled to any other waveguide then we simply 

have Λk(i, i) = 1.  The matrix Ψk in (3.22) is the coupling-angle matrix for 

section k of the coupled-waveguide array (see Equations (3.47) and (3.48) in 

Section 3.6 ), and it is real and symmetric with zero diagonal elements.  The 

off-diagonal elements are also zero except if there is direct coupling between 

waveguides i and j, then Ψk(i, j) = Ψk(j, i) = θi,j.  Using (3.22), the total coupling 

matrix M of the 2D-CMR can be expressed as 

 1234
1234

ΨΨΨΨMMMMM jjjj eeee== . (3.24) 

Since the matrices Mk do not commute in general, we expand the product of 

the matrix exponentials in (3.24) using the Baker-Campbell-Hausdorff formula 

[38] as 

 )exp(exp
4

1
ΧΨΧΨM jjjj

k
k +=⎟

⎠

⎞
⎜
⎝

⎛
+= ∑

=

. (3.25) 

In the above, the matrix sum Ψ = Ψ1 + Ψ2 + Ψ3 + Ψ4 is a symmetric matrix 

with zero’s on the diagonal and off-diagonal elements Ψ(i, j) = Ψ(j, i) given by 

the coupling angle θi,j between microrings i and j.  The matrix Χ denotes the sum 

of all nested commutators, 

 ∑
∞

=
m

mP ),,,( 4321 ΨΨΨΨΧ , (3.26) 

where Pm represents polynomials of the commutators of the matrices Ψk.  

Equation (3.25) shows that in general a 2D-CMR structure is characterized by a 
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coupling-angle matrix Ψ plus a commutation matrix Χ.  The matrix Ψ accounts 

for the direct couplings between adjacent microring resonators and has the same 

form as the energy coupling matrix M in equation (2.21) in the energy coupling 

formulation, except that its (i, j) element is given by the coupling angle θi,j instead 

of the energy coupling coefficient μi,j.  The significance of the direct 

coupling-angle matrix Ψ is that it explicitly shows the coupling topology of the 

2D-CMR structure, i.e., the topology of the device can be reconstructed and the 

values of the coupling elements determined if Ψ is known.  By contrast, it is not 

possible to reconstruct the CMR topology based on the field coupling matrix M, 

which is in general a full and complex-valued matrix. 

The commutation matrix Χ in (3.24) accounts for the effective couplings 

arising from all the indirect coupling paths between two microrings.  It is in 

general a full but symmetric matrix, with alternating diagonal bands of real and 

pure imaginary elements.  In the limit of weak coupling, the indirect coupling 

term can be neglected (Χ ≈ 0) so that the coupling matrix M can be approximated 

by only the direct coupling term, M ≈ exp(jΨ).  This is indeed the approximation 

made in the energy coupling formulation of 2D-CMRs, as will be shown in 

Section 3.4 .  It can thus be said that the energy coupling formulation does not 

take into account the effect of the indirect couplings. 

For certain microring coupling topologies for which the matrices Mk in (3.24) 

do commute, the commutation term also vanishes.  One such special case is a 

quadruplet, with identical coupling coefficients κi,j = κ, arranged in a 2×2 square 

which can be seen in Figure 3.4(a) whose field coupling matrices are included in 
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Figure 3.4(b).  For this structure it can be shown that M3 = M4 = I and M1 and 

M2 commute with each other so that Χ = 0.  All the indirect coupling paths 

cancel themselves out and the coupling matrix is given by only the direct 

couplings between adjacent resonators, M = exp(jΨ).  

3.2 Example of a 3×3 2D-CMR 

To demonstrate the effect of the indirect coupling term on the 2D-CMR’s 

spectral response, we consider a 3×3 2D-CMR structure as shown in Figure 3.5(a) 

under both weak and strong coupling conditions.  The coupling coefficients are 

chosen to be κi = κo = 0.2 (couplings to the input and output buses), κ25 = κ45 = 

κ56 = κ58 = κ1 (couplings to the center microring) and all the remaining coupling 

coefficients κi,j = κ2.  For the weak coupling case, we let κ1 = 0.02 and κ2 = 

0.015 whereas for the strong coupling case κ1 = 0.2 and κ2 = 0.15.  The unfolded 

coupled-waveguide array is shown in Figure 3.5(b).   

To visualize the effect of indirect coupling, we plot the magnitude of the 

direct and indirect coupling matrices Ψ and Χ of the strongly-coupled device in 

Figure 3.4 – Special case of a quadruplet CMR network arranged in 2×2 square (a), and its corresponding 
field coupling matrices (b)
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Figures 3.5(c) and (d).  The elements of the direct coupling matrix Ψ is non-zero 

only if there is a direct coupling between the two adjacent microrings as shown in 

the unfolded waveguide array.  However, matrix Χ shows that in general there 

could be nonzero elements which indicate indirect couplings between both 

adjacent and non-adjacent microrings. 

We compare the drop-port spectral response of the 2D-CMR structure under 

weak and strong coupling conditions in Figures 3.6(a) and 3.5(b)  For the 

weakly-coupled case, its spectral response (solid black line in Figure 3.6(a)) 

shows two resonance peaks at the normalized frequencies Δf/FSR = ±0.05 and 

three transmission nulls.  For the strongly coupled case (Figure 3.6(b)), we 
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plotted the device response computed with the indirect coupling matrix 

Χ neglected (i.e., M = exp(jΨ), black solid line) and as well with matrix Χ 

included (i.e., M = exp(jΨ + jΧ), grey solid line).   

It could be seen that with the indirect coupling term neglected, the device’s 

spectral response is similar to that of the weakly-coupled device (Figure 3.6(a)), 

with two resonance peaks and three transmission nulls.  However, when the 

indirect coupling term is included, the device exhibits two additional resonance 

peaks at the frequencies ±0.2, where the transmission nulls were located in the 

case where we ignored indirect coupling.  This shows that the new resonance 

Figure 3.6.  Drop-port response of the 3×3 2D-CMR under (a) weak coupling and (b) strong coupling 
conditions.  In (a), results were computed using field coupling (solid black line) and energy coupling 
(dashed grey line).  In (b), results were computed using field coupling with (solid grey line) and 
without (solid black line) indirect coupling matrix Χ. Energy coupling result is shown by dashed grey 
line.  [31]  In (c) drop port response in the strong coupling case is calculated using field coupling with 
1% round-trip loss  
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peaks are caused by the indirect coupling term (X).  In analogy to the 

phenomenon of coupled-resonator-induced transparency (CRIT) [4], we may refer 

to this effect as “indirect coupling induced transparency” to emphasize the origin 

of the observed transmission peaks.   

For comparison, we also plotted in Figures 3.6(a) and (b) the device 

responses obtained using the energy coupling formalism (dashed grey lines).  

For the weakly-coupled device, the energy coupling analysis yields almost 

identical device responses to the field coupling analysis.  However, in the 

strongly coupled device, the energy coupling result is in agreement with the field 

coupling result only when we have neglected the indirect coupling term.  We can 

also show that these discrepancies in the analyzed spectral responses are not 

related to loss.  The drop port spectral response of the same strongly coupled 

structure with 1% round-trip loss (i.e. round-trip amplitude transmission of 99%, 

or rt99.01 φjez −− = ) is plotted in Figure 3.6(c), where resonance peaks are also 

observed at frequencies ±0.2, similar to the full field coupling result in Figure 

3.6(b). 

To further understand the reason behind the appearance of the new 

transmission peaks under the strong coupling case, we have plotted the pole-zero 

diagrams for the drop port response as shown in Figure 3.7.  In the case where X 

is neglected (Figure 3.7(a)), the resonances (in the form of double poles) at the 

frequencies ±0.2 are seen to be suppressed by the presence of two zeros occurring 

at the same locations.  However, if we use the full field coupling matrix with X 

included (Figure 3.7(b)), the two zeros at ±0.2 begin to split and move away from 
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the suppressed poles, thereby giving rise to the new transmission peaks.  This 

example illustrates that indirect resonator couplings can indeed have a 

pronounced effect on the device response and should not be neglected in the 

design and analysis of strongly-coupled 2D-CMRs.  Since the energy coupling 

formalism has been shown to ignore the indirect coupling term, it is not 

appropriate for the analysis and design of strongly-coupled microring resonators 

with broad transmission bandwidths. 

3.3 Similarity transformations of the field coupling matrix 

Similarity transformations have been exploited in the energy coupling 

formalism to simplify and optimize weakly-coupled 2D-CMRs in order to achieve 

better coupling topologies [5].  In this section, we show that it is also possible to 

apply such similarity transformations on the coupling-angle matrix of 

strongly-coupled 2D-CMRs without altering the device’s spectral characteristics. 

(a) (b) 
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Figure 3.7.  Pole-zero diagram of the 3×3 2D-CMR under strong coupling condition computed (a) 
without and (b) with the indirect coupling matrix Χ. [31]
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Let R represent an N×N similarity transformation matrix that does not 

disturb the first or last row of a vector/matrix.  The latter assumption is 

necessary so that the transformation does not alter the coupled input and output 

bus signals.  Applying R to both sides of (3.8) and using the fact that RRT = I, 

we can write 

 sa RRRLMIR =− − Tz )( 1 . (3.27) 

Since s and L are nonzero only in the first and last element/row, the 

transformation does not disturb them so we have Rs = s and RL = LR.  The 

above equation can thus be simplified as 

 sa =′′− − )( 1 MLI z  (3.28) 

where TRMRM =′  is the new field coupling matrix and a′ = Ra is the new field 

arrays.  Writing M = exp(jΨ + jΧ), we can express M′ as 

)exp()exp( XΨRXΨRM ′+′=+=′ jjjj T , (3.29) 

where Ψ′ = RΨRT and X′ = RXRT.  This result shows that applying a similarity 

transformation R to the field coupling matrix M is equivalent to applying the 

same transformation simultaneously to both the direct (Ψ) and the indirect (Χ) 

coupling matrices.  Thus in applying similarity transformations to optimize or 

generate new coupling topologies, we can perform the optimization directly on Ψ 

(and simultaneously on Χ) instead of M.  This is an important observation since 

as mentioned earlier, the coupling topology (and its coupling values) of a CMR 

structure can be determined from the direct coupling-angle matrix Ψ, but not from 

the total field coupling matrix M.  



 

 42

 

To illustrate the application of similarity transformations to generate new 

microring coupling topologies, we consider the 2D-CMR structure consisting of 6 

microrings with coupling topology shown in Figure 3.8(a).  Its direct 

coupling-angle matrix is also shown on the right.  The values of the coupling 

angles were obtained from the design of an inverse Chebyshev filter using the 

energy-coupling method presented in [5].  An alternative coupling topology of 

the device can be generated by eliminating the coupling between microrings 2 and 

3.  This can be accomplished by applying a Jacobi rotation matrix R given by 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

0
00

0645.00424.00
00614.000
000223.00424.00
0000645.00

Ψ

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

0
00

0300.00346.00
0571.00661.000
000479.000
0000645.00

Ψ

si

κ12

κi

1

4 5

st

32

κ35
κ24

κ45
sd

κo

6

κ46

κ23

si

κ12

κi

1

4 5

st

32

κ35
κ24

κ45
sd

κo

6

κ46

κ23

si

κ12

κi

1

4

3

st

5

2

κ35

κ24 κ45

sd

κo

6

κ46

κ36

si

κ12

κi

1

4

3

st

5

2

κ35

κ24 κ45

sd

κo

6

κ46

κ36

(a) 

(b) 

Figure 3.8.  Generation of a new microring coupling topology by similarity transformation of the 
coupling-angle matrix:  (a) original coupling topology; (b) transformed coupling topology.  The 
direct coupling-angle matrix Ψ of each topology is also shown. [31] 
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with the rotation angle θ chosen such that the element (2, 3) of the new direct 

coupling matrix Ψ′ = RΨRT is zero.  By multiplying out the product RΨRT, we 

can show that the element (2, 3) of matrix Ψ′  could be annihilated if the rotation 

angle θ = tan−1[Ψ(2, 3)/Ψ(2, 4)] = −1.0869.  The new direct coupling matrix Ψ 

and the associated coupling topology are shown in Figure 3.8(b).  It is seen that 

the annihilation of the coupling between microrings 2 and 3 in the old topology in 

this case generates a new coupling between microrings 3 and 6.  Note that this 

operation has not only changed the device’s coupling topology, but also the values 

of some of the coupling angles as well.  The devices’ spectral responses are 
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Figure 6(a) (solid lines) and Figure 6(b) (dashed lines). [31] 
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plotted in Figure 3.9, which confirms that the two CMR topologies indeed have 

identical drop-port and through-port spectral responses.  In general, similarity 

transformations can also be used to optimize a CMR structure by eliminating as 

many coupling elements as possible in the coupling topology, as typically done in 

the coupling matrix synthesis of CMR filters [5, 39]. 

3.4 Relationship between energy and field coupling formulations  

In this section, we show that the characteristic equation of a 2D-CMR in the 

energy coupling formulation, Equation (2.20), can be directly derived from the 

field coupling formalism (Equation (3.8)) under the weak coupling and 

narrowband approximations.  Explicit relationships between the parameters in 

both formulations will also be derived. 

First, we note that since the bus-to-ring coupling matrix L in (3.6) is 

diagonal, we can express it as L = exp(A), where 

 [ ])ln(,0,0),ln(diag oi ττ L=A . (3.31) 

If we assume the input and output bus couplings are weak (τi ≈ 1 and τo ≈ 1), then 

L ≈ I, so that LM ≈ ML, i.e., L and M commute.  This approximation allows us 

to write (3.8), with the help of (3.25) and (3.31), as 

 sa =++− − )]exp([ 1 XΨAI jjz . (3.32) 

For the roundtrip delay variable 1−z , we have 

  rtrt )(
rt

1 Tjj eeaz ωγφ +−−− == , (3.33) 

where γ = 1/τc = −ln(art)/Trt is the rate of energy loss from each resonator, τ is the 
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intrinsic cavity lifetime, and Trt is the roundtrip time of the microrings.  

Substituting (3.33) into (3.32) gives 

sa =++++−− ]})(exp[{ rt XΨAII jjTjωγ . (3.34) 

Now we apply the narrowband approximation by assuming that the argument 

of the exponential in (3.34) is small over a narrow frequency range around the 

microring resonance of interest.  This allows us to expand the exponential to the 

first order as 

XΨAII
XΨAI

jjTj
jjTj

++++−
≈++++−

rt

rt

)(                           
])(exp[

ωγ
ωγ

 (3.35) 

which, after substitution into (3.34), gives 

 sa =−−−+ ])[( rt XΨAI jjTjωγ  (3.36) 

or 

 ( ) sa =⎥
⎦

⎤
⎢
⎣

⎡
++−+ )()(1

rt
rt

Tjj
T

s XΨAIγ , (3.37) 

where s = jω is the complex frequency variable.  Under weak coupling condition, 

we could assume the field amplitude in each microring is approximately uniform 

(i.e., a ≈ b ≈ c ≈ d), in which case the term Trta = â can be regarded as 

representing the amplitudes of the energies stored in the microrings.  We further 

define the relationships 
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where the elements of μ are given by 
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In the above Γ gives the rates of energy coupling between the external bus 

waveguides and the CMR network, and μ is the direct energy coupling matrix 

whose element μi,j gives the rate of energy transfer between microrings i and j.  

Using (3.38) and (3.39) in (3.37) and neglecting the indirect coupling matrix Χ, 

we obtain the energy coupling equation for a weakly-coupled CMR, 

 ( )( ) sa ˆˆ =+++ μΓI js γ , (3.41) 

where [ ]ai ˆ , 0, 0, ,ˆˆ ss K=s  represents the rates of external energies being applied 

to the input and add ports of the device.  Equation (3.41) is the same as (2.20), 

where Γ=L, μ=M, and γ=1/τc. 

3.5 Summary 

In this chapter, we presented an analytic theory for analyzing general two 

dimensional coupled microring resonator networks based on the field coupling 

formalism.  It was shown that the field coupling matrix can be decomposed into 

a direct and indirect coupling term.  The indirect coupling term is neglected in 

the energy coupling formulation but could have prominent contributions to the 

device’s spectral characteristics under strong coupling between the microring 

resonators.  We also showed how the energy formulation of 2D-CMR networks 

can be derived from the field coupling formulation under the weak coupling and 

narrow band approximations. Finally we showed that similarity transformations 
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can also be applied to the field coupling matrix in the field coupling formalism to 

generate new CMR coupling topologies having the same spectral characteristics. 
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3.6 Appendix – Proof of the Circular Property of the Field Coupling 

Matrices 

We show in this section that the coupling matrix Mk associated with each 

section k of the coupled-waveguide array in Figure 3.3(a) is circular.  First we 

note that each 2×2 coupling matrix Ki,j in the block-diagonal matrix M1 in (3.2) 

has the eigenvalue decomposition 

 Tj
ji

jie WWK Θ ,
, = , (3.42) 

where Θi,j = diag[θi,j, −θi,j], )/(tan ,,
1

, jijiji τκθ −−=  is the coupling angle 

between microrings i and j, and the eigenvector matrix is 

 ⎥
⎦

⎤
⎢
⎣

⎡
−

=
11

11
2

1W . (3.43) 

It follows that Ki,j is a circular matrix since it can be expressed as 

 ji
T

ji jj
ji ee ,,

,
ΨWWΘK == , (3.44) 

where Ψi,j is a real coupling-angle matrix given by 

 ⎥
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⎡
==
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0

,

,
,,

ji

jiT
jiji θ

θ
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Since the block-diagonal matrix M1 is composed of either the matrices Ki,j or 

1’s on its diagonal, it can be diagonalized in the form 
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 11
111

ΨΘ WWM jTj ee == , (3.46) 

where Θ1 is a diagonal matrix containing the coupling angles associated with the 

coupling junctions of M1 and W1 is the corresponding (real) eigenvector matrix.  

The matrix T
1111 WΘWΨ =  is the direct coupling-angle matrix of section 1, with 

the property that all its elements are zero except for Ψ1(i, j) = θi,j if there is 

coupling between waveguides i and j.  Equation (3.46) indicates that M1 is a 

circular matrix.  According to (3.4) M2, M3 and M4 can be converted to the 

block diagonal form as M1 via a suitable permutation matrix Pk.  It follows then 

that these matrices are also circular since they can be expressed as 

 kk jT
k

Tj
kk ee ΨΘ PWWPM == )( 11 , (3.47) 

where 

 T
k

T
kkk PWΘWPΨ 11= . (3.48) 
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Chapter 4  

CMR Filter Synthesis Using Field 

Coupling Formalism  

4  

The filter synthesis problem is to determine the coupling topology and 

coupling coefficients of the microring structure that can realize a prescribed 

optical transfer function, and can be regarded as the inverse of the analysis 

problem.  As a result, the synthesis problem is typically more difficult than the 

analysis problem, and does not always have solutions.  Different methods for 

synthesizing various microring filters have been developed based on various 

approaches.  A popular approach of microring filter synthesis utilizes techniques 

from the mature field of microwave filter design and applies them to an 

appropriate narrowband model of coupled microring resonators [10].  Other 

design techniques based on pole-zero dynamics [40] or parameter optimizations 

[ 41 ] have also been proposed; however, these methods require numerical 

optimizations.  A direct synthesis method which does not require optimization is 

more desirable since it can exactly realize a prescribed filter transfer function and 

often provides more realistic parameters. 

Microring filter synthesis can be carried out in either the complex frequency 
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domain (s-domain) or the unit delay variable domain (z-domain).  While the 

energy coupling formalism generally provides simpler equations than the field 

coupling formalism, its synthesis method is less accurate for broadband CMR 

devices due to its assumption of weak coupling.  Therefore there is a need to 

develop a more rigorous synthesis procedure based on field coupling for 

applications in designing broadband devices. 

4.1 General 2D-CMR field coupling synthesis  

In this section, we develop a procedure for synthesizing 2D-CMR networks 

based on the inverse problem of the field coupling analysis.  The synthesis 

procedure developed should be applicable to general 2D-CMR networks for 

realizing high order filter responses.  Part of the work has been presented in [39]. 

4.1.1 Description of the CMR network 

Similar to Figure 3.1, the general schematic of a 2D CMR network consists 

of N coupled and identical microring resonators as shown in Figure 4.1(a).  The 

Figure 4.1 – (a) Schematic of a general 2D coupled microring array with N microrings; (b) inner CMR 
network. 
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same field labelling scheme is also applied, where we follow the direction of 

wave propagation in each microring i and label the field amplitudes as ai, bi, ci, di 

as shown in the figure.  The field coupling coefficient between adjacent 

microrings i and j is denoted by κi,j.  Microrings 1 and N are also coupled to the 

input and output bus waveguides, respectively, via coupling coefficients κi and κo.  

The input and output signals of the network are labelled si (input), st (through), sd 

(drop) and sa (add).  We define the transfer matrix S relating the output and input 

signals as 
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From equations (3.14), (3.17), (3.19a) and (3.19b), the transfer functions at 

the through port (S11) and drop port (S21) of the device can be expressed as ratios 

of polynomials of the roundtrip delay variable rt1 φjez −− = , where φrt is the 

roundtrip phase of the microring, as  
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Since the microring network can be regarded as a lossless digital network, 

we also have QRS /~
22 =  and QPjS /~

12 = , where R~  and P~  are the 
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para-conjugate polynomials of R and P obtained by reversing the coefficients of 

the respective polynomials [ 42 , 43 ].  In the synthesis problem, given the 

polynomials P, R, and Q of the prescribed transfer function, we would like to 

determine the coupling topology and the coupling coefficients of the CMR 

network that could achieve the desired filter spectral response. 

To facilitate the synthesis, we define an inner CMR network without the 

input and output coupling buses, as shown in Figure 4.1(b).  The input and 

output signals of the inner network are given by [ 1a , 1a′ ] at port 1 and [ Na , Na′ ] 

at port 2, where 1a′  and Na′  are the signals just before the input and output 

coupling junctions, respectively.  We define a Y-parameter matrix which 

characterizes the behaviour of the inner CMR network by relating its input and 

output signals as 
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The Y-parameters of the inner network can be related to the S-parameters of 

the total CMR network as follows.  At the input coupling junction, we have the 

following relations between the bus signals si and st and the fields in ring 1 ( 1a  

and 1a′ ): 

 ii1i1 sjaa κτ −′= , (4.4a) 

 1iiit ajss ′−= κτ , (4.4b) 

where 2
ii 1 κτ −= .  Solving (4.4b) for 1a′ , and substituting into (4.4a) we have 
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 ( ) ( )itii jssa κτ −=′1 , (4.4c) 

 ( ) ( )itii jssa κτ−=1 . (4.4d) 

Similar expressions can also be found for the output coupling junction:  

 aoo sjaa NN κτ −′= , (4.5a) 

 Najss ′−= oaod κτ , (4.5b) 

or  

 ( ) ( )odaoN jssa κτ −=′ , (4.5c) 

 ( ) ( )odoaN jssa κτ−= , (4.5d) 

where 2
oo 1 κτ −= .  Using (4.3) – (4.5), we can relate the S-parameters of the 

total network to the inner network Y-parameters.  First, from equation (4.3) we 

have: 

 NaYaYa 121111 +=′ , (4.6a) 

 NN aYaYa 22121 +=′ . (4.6b) 

Using equations (4.4c,d) and (4.5c,d) we eliminate NN aaaa ,,, 11 ′′ from (4.6a) 

and (4.6b) to get 
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Using (4.7a) and (4.7b) and setting 0=as  we solve for st and sd in terms of si to 

get: 
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where 21122211Y YYYY −=Δ  is the determinant of the Y-parameter matrix. 

 We now consider the network under the condition τo = 1.  This is equivalent 

to removing the output bus waveguide so that the CMR network becomes an 

all-pass network with input si and output st.  The all-pass transfer function can be 

obtained by setting τo = 1 in (4.8a), 

 
)1()(
)1()(

22Y11i

22iY11

1i

tap
11

o
YY
YY

s
sS

−−Δ−
−−Δ−

==
=

τ
τ

τ

. (4.9) 

From the digital two-port network perspective, the all-pass transfer function 

is simply the reflection coefficient of the network, which is given in terms of the 

S11 parameter as  
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For the inner CMR network, the condition τo = 1 implies that NN aa =′  (i.e. 

no change as the signal passes through the junction).  Setting NN aa =′  in (4.3) 

we can obtain the following expressions: 
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By dividing the numerator and denominator of (4.9) by Y11 Δ−Y  and using 

(4.11a), we obtain 
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Upon substitution of (4.10) into the above, we get 
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As for the expression for ap
21Y  in (4.11b), we recognize that it has the same 

denominator as ap
11Y  and the same numerator as 21Y .  From (4.8b) we also see 

that 21Y , and hence ap
21Y , has the same zeros as 21S .  Thus we can express ap

21Y  

as 

 
)~~()(i

ap
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kPY
+−+

=
τ

, (4.15) 

where k is some constant.  Equations (4.14) and (4.15) allow us to construct the 

all-pass Y-parameters of the inner CMR network from the polynomials P, R and Q 

of the given optical transfer functions. 
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4.1.2 Field coupling synthesis of CMR networks 

It has already been shown in Section 3.1  that the CMR network in Figure 

4.1(a) can be characterized by a field coupling matrix M which is constructed 

from the ring-to-ring field coupling elements κi,j.  The goal of this section is to 

derive expressions linking the coupling matrix M with the all-pass Y-parameters 

ap
11Y  and ap

21Y  of the inner network.  A procedure for constructing M will then 

be described. 

Similar to the procedure presented in Section 3.1 , we first transform the 

CMR structure into an equivalent coupled waveguide array and obtain the 

ring-to-ring field coupling matrix, M, of the CMR network as presented in 

equation (3.7).  

For microring 1, at the input bus coupling junction, we can combine (4.4a) 

and (4.4b) to get 111 uaa +′= , where 
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Similarly for microring N, at the output bus coupling junction we have 

NNN uaa +′= , with 

 )(1
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=
κ
τ . (4.17) 

Thus in general we can write uaa +′= , where u = [u1, 0, …, 0, uN]T.  

Substituting this expression into (3.7) we get aua M1−=− z , or 

 ua =− − )( 1MI z , (4.18) 
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where I is the N×N identity matrix.  In the above equation the term on the left 

hand side completely characterizes the inner CMR network, whereas the right 

hand side accounts for the external effects of the input and output bus couplings κi 

and κo. 

Assuming lossless coupling between adjacent microrings, the conservation 

of power requires that the coupling matrices Mk be unitary.  It follows that the 

total field coupling matrix M is also unitary and normal so that its eigenvectors 

are orthogonal to each other.  Thus we can diagonalize M as HTTM Λ= , where 

Λ is a diagonal matrix containing the eigenvalues of M and T is a unitary matrix 

containing the corresponding eigenvectors.  Substituting this into (4.18) gives 

 ua =− − ) ( H1 TTΛI z , (4.19) 

and we can solve for a to get 

 uua ATΛIT ≡−= −− H11 )( z , (4.20) 

where A is an N×N matrix defined as in the above equation.  From (4.20) we 

obtain the following expressions for a1 and aN : 
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where λk’s are the eigenvalues of M.  For the all-pass CMR network with no 
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output bus waveguide, setting τo = 1 in (4.17) gives uN = 0.  Under this condition 

we obtain from (4.21a) and (4.21b) 

 ∑
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Moreover, since 111 aau ′−= , we also have 
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Finally, substituting (4.14) and (4.15) into the above expressions, we obtain 
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Equations (4.22a) and (4.22b) provide a link between the polynomials of the 

transfer functions of the CMR network and the eigenvalues and eigenvectors of 

the coupling matrix M.  In the next subsection, we discuss how the matrix M can 

be constructed from the prescribed optical transfer functions.  

4.1.3 Constructing the coupling matrix M 
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Given the polynomials P, R and Q, as in (4.2a) and (4.2b), of the prescribed 

optical transfer functions (S21 and S11) at the drop port and through port of the 

CMR network, we can determine the bus coupling coefficients κi and κo and 

construct the coupling matrix M of the network as follows.  Since T is a unitary 

matrix, its columns have unity magnitude.  For the first column, we have  

 ∑
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,1 1 . (4.25) 

From (4.22a), we recognize that the above expression is also the zeroth order 

coefficient of the numerator polynomial of A11.  Enforcing this condition to the 

right hand side expression in (4.24a), we obtain 
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For filters with symmetric spectral responses, the CMR network is also 

symmetric so that io ττ =  (or io κκ = ).  Knowledge of τi allows us to compute 

the polynomials N11, N21 and D as defined in (4.24a) and (4.24b).  Performing 

partial fraction expansions of the rational functions N11/D and N21/D, we can write 
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where ρk are the poles and )11(
kξ  and )21(

kξ  are the residues of the respective 

rational function.  Comparing (4.27a) and (4.27b) with (4.22a) and (4.22b) 

shows that the inverse of the poles, 1/ρk, are the eigenvalues λk of the matrix M.  
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The elements T1,k and TN,k of the first and last rows, respectively, of T are obtained 

from the residues )11(
kξ  and )21(

kξ  as 

 
2/1)11(

,1 kkkT ρξ= , (4.28a) 
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The remaining rows of T are obtained by Gram-Schmidt orthogonalization 

[5].  The total field coupling matrix M is then obtained from HTTM Λ= . 

  

4.1.4 Determining the CMR network topology and coupling coefficients 

From the coupling matrix M we can then proceed to determine the device 

topology and the corresponding coupling coefficients of the CMR network.  This 

is achieved by first determining the coupling-angle matrix Ψ such that M = 

exp(jΨ).  Since M is normal, its eigenvalues have unity magnitude so Λ can be 

expressed as Λ = exp(jΘ).  The coupling-angle matrix is then obtained from 

HTTΨ Θ= .  The element Ψi,j gives the coupling angle between microrings i and j, 

with the coupling coefficient equal to κi,j = sin(Ψi,j).  The matrix Ψ initially 

obtained from the above procedure is in general a full matrix, which is not 

physically realizable since it requires each microring in the network to be coupled 

to every other microring.  In order to reduce Ψ to a simpler and realizable 

microring coupling topology, we employ a procedure similar to the 

energy-coupling synthesis of 2D-CMRs [5] where a series of Jacobi matrix 
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rotations is applied to Ψ to eliminate as many coupling elements as possible.  It 

has already been shown in Section 3.3 that such similarity transformation is also 

applicable to the field coupling formulation of CMRs without disturbing the 

device response.  By applying successive rotations to the matrix Ψ to eliminate 

as many coupling angles as possible, a final matrix can then be obtained which 

gives the optimized coupling topology and the corresponding coupling angles of 

the CMR.  

4.1.5 Design example: a 6th-order optical filter 

As an example to illustrate the synthesis procedure developed above, we 

consider the design of a broadband optical filter with a 3dB bandwidth of 250GHz 
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Figure 4.2.  (a) Target filter responses (dashed lines) and responses of the synthesized CMR network (solid lines).  (b) 
Polynomials of the transfer functions of the target filter.  (c)  Coupling-angle matrix and (d) coupling topology of the 
synthesized CMR network. [39] 
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using microring resonators with 1THz FSR.  The in-band ripples are 0.1dB and 

the stop-band rejection is specified to be better than 40dB.  Using an appropriate 

filter approximation method [44], the transfer functions of a sixth-order filter 

satisfying the above specifications are obtained as given by the polynomials in 

Figure 4.2(b).  The desired target through-port and drop-port spectral responses 

are shown by the dashed lines in Figure 4.2(a).  Using equation (4.26), the 

computed bus-to-ring coupling coefficients of the CMR network are κi = κo = 

0.8563.  The coupling-angle matrix Ψ after optimization and the corresponding 

CMR coupling topology are shown in Figures 4.2(c) and (d).  The spectral 

responses of the synthesized CMR network are also plotted in Figure 4.2(a) (solid 

lines), which shows good agreement with the target filter responses.  The small 

discrepancies are due to the fact that in constructing the coupling-angle matrix Ψ 

from the matrix M, we have neglected the fact that M is actually a cascade of 4 

coupling matrices Mk in the coupled-waveguide array.  This is equivalent to 

neglecting the effect of indirect couplings between the microrings, which arise 

from the non-commutative nature of the matrices Mk [30, 31, 39]. 

4.2 Synthesis of 2xN CMRs by network order reduction 

While the synthesis method presented in Section 4.1  can be used to 

synthesize general 2D-CMR networks, a difficulty which arises in the method is 

the determination of the coupling topology and the coupling coefficients from the 

field coupling matrix M.  A solution to this problem has not been found unless 

the indirect coupling matrix X is neglected, as was done in the example.  Due to 

this approximation, the synthesized filter response does not exactly match with 
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the prescribed response, as seen in Figure 4.2(a). 

We have also developed an alternative synthesis approach which can exactly 

realize the prescribed filter response.  The method is based on the network order 

reduction approach, and is at the present limited to the 2×N microring coupling 

topology.  However, this is not a serious limitation, since any general 2D 

microring coupling topology of order 2N can be reduced to the 2×N configuration 

via appropriate similarity transformations [5].  The network order reduction 

technique has previously been used to synthesize microring filters of simple one 

dimensional coupling topology (e.g., CROWs) [9], cascaded arrays of ring-loaded 

Mach-Zehnder interferometers [7], and parallel cascades of microring networks 

[45].  Here we show that the method can also be applied to synthesize 2D-CMR 

networks of the 2×N coupling topology.  This work has been published in [46]. 

4.2.1 Description of the 2×N CMR network 

A general schematic of a 2×N CMR network consisting of 2N coupled 

microring resonators is shown in Figure 4.3.  The microring resonators are 

numbered from 1 to 2N as shown, and are assumed to be identical and lossless.  

The field coupling coefficient between adjacent microrings i and j is denoted by 

κi,j.  Input and output bus waveguides are coupled to the network via microrings 

N and 2N, with coupling coefficients κi and κo respectively.  We denote the input 

and output signals of the network as si (input), st (through), sd (drop) and sa (add) 

as shown in the figure.  The transfer matrix S of the network is defined as 
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in which the transfer functions at the through port (S11) and drop port (S21) can be 

expressed as ratios of polynomials of the roundtrip delay variable 1−z  similar to 

equations (4.2a) and (4.2b): 
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For the network of order 2N, transmission response at the drop port has 2N 

poles and 2N − 2 zeros, while the through-port response has 2N poles and 2N 

zeros.  For most optical filters of practical interest, the spectral responses are 

symmetric about the center frequency, in which case we also have the relations 

Figure 4.3 .  Schematic of a 2×N CMR network and its depiction as a cascade of N stages of 
microring pairs. [46] 
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QRSS /1122 ==  and QjPSS /2112 == .  In addition, power conservation 

requires that the determinant of the transfer matrix S obeys the relation [7, 43] 
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where Q~  is the para-conjugate polynomial of Q obtained by reversing its 

coefficients. 

4.2.2 Network order reduction 

The idea of the network order reduction method is based on regarding the 

2×N CMR network as a cascade of N stages and synthesizing each stage one by 

one by extracting it from the cascaded array.  The order of the network is 

reduced each time a stage is synthesized and removed from the cascade, until the 

last stage is reached.  For the 2×N CMR network, each stage consists of a pair of 

coupled microrings as shown in Figure 4.3, and we number the stages as k = 1, 

2, … N starting from the right most pair.  The transfer matrix S(k) of the 2×k 

CMR network formed by microring pairs 1 to k is defined as 
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where Qk and Rk are polynomials of degree 2k and Pk is of degree 2k – 1.  We 

next derive the relationships between the S-parameters of the 2×k network and the 

previous network, 2×(k−1) in the following. 

As seen in Figure 4.3, networks 2×k and 2×(k−1) are connected by the 

microring pair in stage k.  For convenience, we re-label the three coupling 
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coefficients of this stage as κ1, κ2 and κ3, and define the fields inside the 

microrings as shown in the same figure.  At the coupling junctions κ1 and κ2 we 

have the relations 
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and at the coupling junction κ3, 
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where 21 ii κτ −=  (for i = 1, 2, 3).  Using the relations kk aza ′= −
−

2/1
1  and 

kk czc ′= −
−

2/1
1 , we eliminate the fields , , kk ba ′′ kk dc ′′  ,  from (4.33a)-(4.33c) and 

express the results in the form 
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Specifically, the parameters )1(
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−kS  and )1(
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where Δk is the determinant of S(k), 
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Using (4.32) in (4.35a) and (4.35b) we can obtain the following recursive 

relations connecting the transfer polynomials of network 2×k with those of the 

previous network: 

 kkkk QRQQ ++−=− )(~
21211 ττττ , (4.37a) 
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 )( 32131 kkk PMzP τκκκ −=− , (4.37c) 

where 

 kkkk QRQM 1212 )1(~ ττττ ++−= . (4.37d) 

The transmission coefficients 1τ , 2τ  and 3τ  of stage k can be determined by 

considering the degrees of the polynomials in the above equations.  Since Qk-1 

has degree 2(k – 1), we require the coefficients of the kz 2−  and )12( −− kz  terms in 

(4.37a) to be zero: 
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where )(k
iq  and )(k

ir  are the ith coefficients of Qk and Rk, respectively.  Solving 

for τ1 and τ2 from the above equations we get 
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For filters with symmetric spectral responses, it turns out that 042 =− AB  

so that τ1 = τ2 = B/2.  For the polynomial Rk-1 in (4.37b), which also has degree 

2(k – 1), we require the 1+z  and )12( −− kz  terms to be zero.  This implies that the 

0z  and kz 2−  terms of Mk in (4.37d) must be zero, 
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The above equations provide an alternative expression for determining τ1 and 

τ2, 
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where )(
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k rqC += .  Finally, since Pk-1 has degree 2k – 3, by requiring 

that the coefficient of the )22( −− kz  term in (4.37c) to be zero, we obtain 
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which can be solved for κ3 to get 
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In the synthesis procedure, we start with the prescribed optical transfer 

functions )(
11

NS  and )(
21

NS  to be realized by a 2×N CMR network.  First, we 

compute the coupling coefficients of the last stage (k = N) to obtain the input and 

output bus coupling coefficients (κi, κo) and the ring-to-ring coupling coefficient 

κN,2N.  The network is then reduced by one stage by computing )1(
11

−NS  and 

)1(
21

−NS , and the process is repeated until the first stage, k = 1, is reached.  The 

coupling coefficients of this stage can be obtained directly from the transfer 

functions of a pair of coupled microrings: )1(
01 r=τ , )1(

22 r=τ  and 21
)1(

13 / κκ=κ p .   

4.2.3 A design example 

As an illustrative example, we consider the design of an optical interleaver 

using a 2×N coupled microring structure.  Optical interleavers are a special class 

of optical devices that can be used to combine or separate the interleaved dense 

wavelength-division multiplexed signals on the even or odd channels.  The 

device in this example is specified to have a 3dB bandwidth equal to half the free 

spectral range of the microrings, where FSR = 200GHz.  The in-band ripples and 

stop-band rejection are specified to be better than 0.05dB and 30dB, respectively.  

Note that the device is very broadband as its 3dB bandwidth is half the FSR, so 

the microrings are expected to be very strongly coupled to each other.  For this 

reason, the structure cannot be designed using the energy coupling formalism but 

requires a synthesis method based on the field coupling formalism in the z-domain.   
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Using an appropriate filter approximation method (e.g., [44]), the transfer 

functions of a sixth-order filter satisfying the above specifications are obtained as 

given by the polynomials in Table 4.1.  The target magnitude responses of S21 

and S11 of the device are shown by the grey dotted lines in Figure 4.4(a). 

The interleaver can be realized by a 2×3 CMR network, as shown in Figure 

4.4(b).  The coupling coefficients for each stage were computed using equations 

(4.42) and (4.44), and shown in the table in Figure 4.4(b).  Since the device is 

very broadband, several coupling junctions have very large coupling values close 

to 1.  To realize such strong couplings, the microrings should be designed to 

have long straight waveguide sections for coupling, as shown in Figure 4.4(b).  

Stage k )(
2

)(
1

kk κ=κ
 

)(
3
kκ  

Stage 3 0.9940 0.4011 
Stage 2 0.9291 -0.8915 
Stage 1 0.7014 0.9963 

Figure 4.4.  (a) Target (grey dotted lines) and synthesized (black solid lines) filter responses at the drop port 
(|S21|2) and through port (|S11|2). Grey solid lines show the group delay responses.  (b) Schematic and coupling 
parameters of the synthesized CMR network. [46] 
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z−k P(z−1) R(z−1) Q(z−1) 
k = 6 0 0.110545 0.011908 
5 0.145945 -0.380969 -0.078046 
4 0.333375 0.723671 0.278279 
3 0.454924 -0.888338 -0.439130 
2 0.333375 0.723671 1.076002 
1 0.145945 -0.380969 -0.435345 
0 0 0.110545 1 

Table 4.1.  Coefficients of the transfer polynomials of the target filter response [46] 
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In Figure 4.4(a) we plotted the spectral responses of the synthesized CMR 

network (black solid lines), which are in good agreement with the target filter 

responses.  Due to the very sharp roll-off of the filter, the transition band from 

the -0.5dB to -30dB attenuation point is only 12GHz, and the 0.5dB bandwidth 

extends as large as 96GHz, or 48% of the FSR.  We also plotted the group delay 

response at each port in Figure 4.4(a) (grey solid lines), which shows that each 

channel has a relatively flat and small group delay of about 10ps at the center 

frequency.  This example highlights a novel application of 2×N CMR networks 

for realizing very compact interleavers. 

4.3 Summary 

In this chapter, we have presented two methods to synthesize a prescribed 

optical filter transfer function using two dimensional coupled microring resonator 

networks based on the field coupling formalism.  The first method generates the 

field coupling matrix for the structure by solving the inverse of the analysis 

problem presented in Chapter 3.  The method can be applied to general 2D 

coupling topologies; however, an approximation involving neglecting the indirect 

coupling matrix is required in order to construct the coupling topology from the 

field coupling matrix.  The second method solves for the coupling coefficients 

exactly using the network order reduction technique and is applicable to 2×N 

microring networks.  Examples of advanced CMR optical filters were provided 

to illustrate the application of both methods in realizing prescribed optical transfer 

functions.  
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Chapter 5  

Conclusions  

In this thesis, we have presented a comprehensive analytic theory for the 

analysis and synthesis for two dimensional coupled microring resonator (2D CMR) 

networks based on the field coupling formalism.  The techniques developed can 

be applied to strongly coupled CMRs for a wide range of applications in 

integrated optical filter analysis and design applications.  A simple characteristic 

equation describing CMRs with general topologies allows closed form analytic 

expressions for the transmission characteristics to be derived.  The theory 

developed characterizes the CMR structure through a field coupling matrix, which 

can be further decomposed into the direct and indirect coupling terms.  It was 

found that the existing energy coupling formalism essentially makes the 

approximation that the indirect coupling term is negligible; such an approximation 

however is no longer valid under strong couplings between microrings and can 

have prominent effects on the device spectral characteristics.  The field coupling 

formalism has the advantage over the existing energy coupling formalism in that 

it is no longer restricted to weakly-coupled microring networks, and is therefore 

suitable for analysis of broadband devices whose bandwidth becomes significant 

compared to its free spectral range.   
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Two methods for 2D CMR filter synthesis were also developed based on the 

field coupling formalism.  One synthesis method is based on the inverse of the 

analysis problem and has the advantage of maintaining generality of the coupling 

topologies, but still requires some approximations in the determination of the 

coupling coefficients.  The other method is based on the network order reduction 

approach and synthesizes the CMR network directly stage by stage, but it is 

limited to the 2×N coupling topology.  

5.1 Major contributions 

Major achievements of the work could be summarized as the following: 

 Formulated a general theoretical framework for the analysis of general 

2D CMR structures based on the field coupling formalism; 

 Investigated novel effects in strongly coupled CMR structures such as 

the effects of indirect couplings;  

 Developed two CMR filter synthesis techniques based on the field 

coupling formalism;  

 Demonstrated advanced applications of strongly coupled microring 

resonator networks in realizing broadband integrated optical filters.  

 

5.2 Recommendations for future works 

While the presented work provides a comprehensive theoretical framework 

for the coupled microring resonators, there are still rooms for improvements and 
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further investigations in the following areas: 

 Search for a novel solution to remove the final approximation in the 

general synthesis approach; 

 Validate the analytical spectral responses obtained with the field 

coupling formalism by comparing them to rigorous full-wave 

simulations of 2D CMR networks; 

 Explore feasibility of experimentally realizing 2D CMR filter designs; 

 Extend the field coupling theory developed to non-linear 2D CMR 

networks. 
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