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Abstract

High transmission rates will be demanded in future wireless communication networks.

However, we will soon experience a spectrum scarcity problem since almost all available

spectrum has been allocated to various wireless applications. A promising solution to this

problem is to significantly improve the spectrum utilization efficiency by using opportunis-

tic channel access (OCA). In the literature, OCA approaches have been developed in two

kinds of networks: cognitive radio networks (CRNs) (in which secondary users, which are

unlicensed users, may access the spectrum when primary users, which are licensed users,

are not active) and wireless networks exploiting time diversity (in which a user may give

up its transmission opportunity if its channel is deeply faded). This thesis is focused on

optimal OCA in such two networks, with four research components.

The first three research components are to achieve optimality in CRNs. The first re-

search component is for the scenario that the statistical information of primary traffic (such

as busy/idle probabilities) is known at a secondary user. When a secondary user can sense

multiple channels simultaneously but the maximum numbers of channels that can be sensed

simultaneously and that can be accessed simultaneously are both limited, we derive optimal

strategies to select which channels to sense and which sensed-free channels to access. The

second research component is for the scenario that statistical information of primary traffic

is unknown and thus needs to be learned during channel sensing and access process (which

results in learning loss). When busy/idle states of each channel are independent from one



slot to another, we derive secondary channel sensing and access rules with asymptotically

finite learning loss or logarithmic learning loss. As an extension of the second research

component, the third research component uses another popular channel statistical behavior

model: busy/idle states of each channel over time slots follow a Markov chain. We derive a

channel sensing and access rule with logarithmic learning loss.

The last (but not the least) research component is for optimal distributed OCA that

utilizes time-diversity in wireless cooperative networks. Two cases are considered: the case

when the source knows channel state information of links from itself to relays and from

relays to its destination; and the case when a source knows only channel state information

of links from itself to relays. In the two cases, the optimal transmission strategies that

maximize the average system throughput are derived theoretically. Our research reveals

that time diversity can be exploited in a wireless cooperative network by our proposed

strategies.
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Chapter 1

Introduction

With the rapid development of wireless communication technology in the past decades,

very high speed data transmission is expected to be demanded, to provide wireless Internet

service anywhere and anytime for emerging wireless multimedia applications. Increasing

data traffic demand has led to significant expansion of wireless networks in the past, but also

resulted in shortage of communication resources (bandwidth resources, buffer resources,

computation resources, etc.).

To meet the high-speed service requirements for existing and emerging wireless applica-

tions in the near future, one possible solution is to use new spectrum with large bandwidth.

However, we will soon experience a spectrum scarcity problem since almost all available

spectrum has been allocated to various wireless applications. Therefore, to achieve high

data rate, we have to significantly improve spectrum utilization efficiency. Three main

challenges that affect spectrum utilization efficiency are as follows.

First of all, in the current spectrum regulation structure in different countries, only li-

censed users have the permission to access a specific spectrum band. On the other hand,

the licensed spectrum is severely under-utilized, as evidenced by an actual spectrum usage

measurement conducted by the US Federal Communications Commission (FCC) Spectrum

Policy Task Force [1] that shows that, at any particular time, a large portion of licensed

spectrum is actually not utilized by licensed users. This implies that the spectrum scarcity

problem is actually due to spectrum under-utilization rather than the lack of new spectrum.

Secondly, the wireless channel fading largely affects spectrum utilization efficiency. In

wireless transmissions, the transmitted signal normally suffers from path loss, large-scale

1



fading and small-scale fading. The path loss means the reduction of the signal’s power

in the order of dκ, with d being the distance between the transmitter and the receiver and

κ being path loss attenuation exponent (varying from 2 to 4 in different environments).

The large-scale fading, also known as shadowing or slow fading, is due to the blocking

effect of some objects (such as mountains, high buildings, etc.) between the transmitter

and the receiver. Small-scale fading, also known as multipath fading or fast fading, arises

from the constructive or destructive effect of signals from multiple paths (due to reflection,

scattering, or diffraction by objects) between the transmitter and receiver.

Thirdly, multiple access largely affects spectrum utilization efficiency. The wireless

transmission medium is usually shared by multiple users. When multiple users in a neigh-

borhood transmit simultaneously over the same spectrum band, they generate large interfer-

ence to each other, and their packets may even collide with each other. Thus, the capacity

obtained by each user is heavily degraded. So far this challenge has been well addressed in

centralized networks (e.g., cellular networks) where a central controller (e.g., a base station)

helps schedule the transmissions from multiple users. However, it is much challenging to

achieve high spectrum efficiency in a distributed network, and it is harder to achieve spec-

trum utilization optimality.

To address the challenges in spectrum efficiency, three promising solutions, namely

cognitive radio, cooperative diversity and time diversity, have been introduced in the liter-

ature and have attracted tremendous attention recently.

1.1 Cognitive Radio

The cognitive radio, which was originally introduced in [2], was considered to have great

potential to alleviate the scarcity of available spectrum and the under-utilization of licensed

spectrum, since it enables efficient spectrum utilization in an opportunistic manner. In

cognitive radio networks (CRNs), nodes that have licence to operate in a spectrum band

are referred to as primary users, while nodes that do not have license are called secondary

users. Secondary users can utilize the spectrum opportunistically, i.e., in a non-intrusive

manner. In such a channel access structure, primary users always have priority to access

the spectrum, while secondary users are required not to affect primary users’ activities

whenever possible. Based on cognitive radio technique, some wireless communication

2



standards are under development [3], [4], such as the IEEE 802.22 wireless regional area

network (WRAN) standard that provides broadband Internet access in rural and remote

areas.

Secondary users can use either of two approaches to share the licensed spectrum: spec-

trum underlay approach and spectrum overlay approach.

With the spectrum underlay approach, secondary users are permitted to use the licensed

spectrum at any time. However, their generated interference at the primary users’ sites

should be below a tolerable threshold such that primary users can still have reliable trans-

missions. This means that the power spectrum density of signals of secondary users is

very low. To meet secondary users’ quality-of-service (QoS) requirement, secondary users

may spread their signals over a large bandwidth for transmission, for example, using ultra-

wideband communications or using code division multiple access (CDMA) technique to

spread the spectrum.

In the spectrum overlay approach, secondary users are allowed to use spectrum holes

(which are the spectrum bands that are not being used by primary users at a time period) to

opportunistically transmit their data. The limit of power spectrum density in the spectrum

underlay approach does not apply in the spectrum overlay approach. Thus, the spectrum

overlay approach has attracted lots of research attentions recently [5]–[17]. Since primary

users always have channel access priority, secondary users in the spectrum overlay ap-

proach need to first check (by using spectrum sensing techniques such as energy detection

[18], matched filter detection [19], cyclostationary feature detection [20], etc.) whether the

channel is busy (i.e., being occupied by primary users) or idle. If the channel is sensed idle,

the secondary users can access the channel for a limited time period, and then start spec-

trum sensing again; otherwise, the secondary users wait for a time period and start spectrum

sensing again. During data transmission, secondary users may also need to keep monitoring

primary activities. If primary users are detected to be back, secondary users are required to

stop transmission over the channel immediately, and may switch to other idle channels to

keep service continuation. In other words, opportunistic channel access (OCA) is adopted

by secondary users.

3



1.2 Cooperative Diversity

An effective approach to overcome negative effects due to channel fading is to utilize the

spatial diversity [21] in a system that is equipped with multiple sufficiently-spaced anten-

nas that transmit/receive the same information, by using, for example, the multiple-input-

multiple-output (MIMO) technique. However, in a typical wireless network, mobile user

devices usually have a small size. Therefore, it is very hard to deploy multiple antennas on a

mobile device. To solve this problem, a new paradigm called cooperative transmission was

introduced, to achieve cooperation diversity (a new form of spatial diversity) [22], [23].

In cooperative transmission, the advantage of spatial diversity can be achieved by letting

one or more intermediate relaying nodes forward information from the source to the desti-

nation. With the relaying node(s), a virtual multiple-antenna system is built up. Since the

signal of the source has multiple paths to the destination (direct path and relay paths), the

probability that the destination receives an overall heavily-degraded signal can be largely

reduced, which means the negative effect of channel fading can be significantly alleviated.

Cooperative transmission can improve both system throughput and energy consumption,

with a higher diversity order [24]–[26].

Two popular schemes are adopted in cooperative communications, namely amplify and

forward (AF) and decode and forward (DF) [24], [26]. The AF scheme is the simpler

one, in which a relay node forwards to the destination an amplified version of its received

signal from the source without decoding the message. The drawback is that the noise at the

relay is also amplified, referred to as noise propagation. In the DF scheme, a relay node

first decodes the received signal from the source. It then re-encodes the message either

using the same code-book as used in the message from the source (called regenerative DF)

or adopting an independent code-book (called non-regenerative DF). The relay node then

forwards to the destination the encoded signal.

1.3 Time Diversity

Apart from cooperative diversity, time diversity is another new form of diversity that also

has the potential to significantly increase the spectrum utilization efficiency. The major

idea is that, for transmission of a source to its destination, since the channel varies with
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time (due to fading), it is desired that the source transmits only when its channel is good

such that a high transmission rate can be achieved. This idea was first explored in cen-

tralized wireless networks (for example, a cellular network) in which a central node such

as the base station coordinates the transmission schedules of multiple users in the medium

access control (MAC) layer. To exploit the time diversity, the MAC layer protocol should

be jointly designed with the physical layer, thus leading to a cross-layer design concept,

namely channel-aware scheduling or OCA. In specific, if a transmitter is found to have

poor channel quality, the central node may ask the transmitter to give up its channel access

opportunity to other users that have good channel quality (since those other users can gain

more by utilizing the channel). In a long term, all users will benefit, since although a user

may sacrifice its channel access opportunity when its channel is poor, it can get much more

when its channel is better by utilizing the channel access opportunity of other users that

have poor channel quality. It can be seen that it is not difficult to achieve optimal OCA that

maximizes the time-diversity gain in a centralized network [27], [28], in which the cen-

tral controller is responsible to collect the channel state information (CSI) of all users and

schedule only those users with the best channel conditions. On the other hand, the research

on distributed OCA is still in its infancy. Without a central controller, it is hard for a user to

decide when to give up its transmission opportunities. An intuitive way is to categorize the

channel of a user into two states: good state when the channel gain is above an arbitrarily

selected threshold; and bad state otherwise. Then a user gives up its channel access oppor-

tunity when its channel is bad. Apparently time diversity (i.e., a user experiences different

channel gain when time varies) is not fully utilized by the intuitive method.

It is worth noting that the OCA in CRNs is in a reactive manner (i.e., secondary users

wait for transmission opportunities), while the OCA that exploits time diversity is in a

proactive manner (i.e., a user offers its transmission opportunity to others).

1.4 Thesis Motivations and Contributions

This thesis focuses on optimal OCA in both CRNs and time-diversity approaches.
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1.4.1 Optimal Opportunistic Channel Sensing and Access in CRNs

In CRNs, since the spectrum overlay approach is much more popular than the spectrum

underlay approach, it is adopted in this thesis research. In the spectrum overlay approach,

a secondary user needs to first sense the channel, and can access the channel only when

the channel is sensed free (which means primary users are idle). Therefore, a slotted time

structure is usually adopted: time is partitioned into slots, and each slot consists of a sensing

period (used by secondary users to sense the channels) and a transmission period (used

by secondary users to transmit over sensed-free channels). For such a slotted structure,

OCA is normally jointly designed with channel sensing strategies (such as strategies that

decide which channels are selected to sense in the sensing period of a time slot), referred

to as opportunistic channel sensing and access (OCSA) in the sequel.1 Optimal OCSA

has been well investigated in the literature [8], [11]–[15], [29]–[31]. Most of the research

efforts assume that the channel sensing is perfect with no missed detections or false alarms.

However, in a practical CRN, the channel sensing is generally imperfect. To fill this research

gap, optimal OCSA with imperfect channel sensing is investigated in this thesis in two

directions: when the statistical information of primary traffic is known and unknown, as

follows.

By assuming that the statistical information of primary traffic (for example, the avail-

ability information of the channels) is known at a secondary user, we are interested in two

questions: which channels should be sensed in the sensing period of a time slot? and which

sensed-free channels should be accessed in the transmission period of the time slot? To

be more specific, a secondary user usually has a large number of potential channels, but

cannot sense all of them simultaneously at the sensing period. Then it needs to select a

subset of the channels to sense. Due to hardware or power constraints, the secondary user

may not be able to access all sensed-free channels in the transmission period. Therefore,

it needs to select a subset of the sensed-free channels to access. These two questions are

answered in Chapter 3 of this thesis, which derives optimal OCSA strategies that maximize

the secondary user’s average reward at a slot.

By assuming that the statistical information of primary traffic is unknown at a sec-
1To avoid confusion, in the sequel of the thesis, OCA only means opportunistic channel access exploiting

time diversity, while OCSA means opportunistic channel access in CRNs that is jointly designed with channel
sensing.
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ondary user, a secondary user needs to learn the information in its channel sensing and

access process, and thus, learning loss (also called regret) is inevitable. We are still inter-

ested in the two questions: which channels to sense and which channels to access? Our

target is the minimal regret (compared to the genie-aided ideal case that knows the statisti-

cal information of primary traffic). Although the problem was solved in the literature when

the channel sensing is perfect, the existing solutions/methods do not work anymore when

channel sensing is imperfect. To fill the research gap, we solve the problem with imper-

fect channel sensing, in two popular channel availability models: 1) for each channel, the

busy/idle states at different slots are independent and identically distributed (i.i.d.), referred

to as i.i.d. model; 2) the busy/idle states of each channel over time slots follow a Markov

chain, referred to as Markov model. The optimal OCSA with the i.i.d. model is addressed

in Chapter 4. Since regret is inevitable, the most desired OCSA rules are those with asymp-

totically finite regret. When all potential channels can be sensed simultaneously, we derive

OCSA rules with asymptotically finite regret, which are most desired. On the other hand,

when the secondary user cannot sense all channels simultaneously, we prove that the best

possible OCSA rules are the order optimal rules (i.e., rules with logarithmic regret). We

also derive order optimal OCSA rules. In Chapter 5, an OCSA rule is proposed and proved

to be order optimal for the case that the busy/idle states of each channel follow the Markov

model.

1.4.2 Optimal Distributed OCA in Wireless Cooperative Networks

It is well recognized that, by exploiting the cooperative diversity, wireless cooperative net-

works can largely improve the spectrum efficiency. On the other hand, by exploiting time

diversity, OCA can also largely enhance the system throughput. OCA has been well stud-

ies in centralized networks [27], [32], and has also be investigated recently in a distributed

network [33]–[35]. Then a natural question is: can we (and how to) further exploit time

diversity in a distributed wireless cooperative network? This question is answered in Chap-

ter 6 in this thesis. A wireless cooperative network with multiple source-destination pairs

and multiple AF relays is considered. All source nodes contend through a random access

procedure. For the case that a source has CSI of links from itself to relays and from relays

to its destination and the case that a source has only CSI of links from itself to relays, we

theoretically prove the existence of optimal OCA strategy, and derive optimal strategies for
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the two cases. The derived optimal OCA strategies are with simple structure, and thus, can

be easily implemented in a practical distributed network. Our research reveals that time

diversity can also be exploited in a wireless cooperative network by our derived strategies.

1.5 Thesis Outline

The thesis is organized as follows. In Chapter 2, basic concepts of OCA and OCSA are

introduced, and related works are surveyed. Optimal OCSA strategies when statistical in-

formation of primary traffic is known are presented in Chapter 3. Optimal or order optimal

OCSA strategies without statistical information of primary traffic are proposed and theo-

retically analyzed in Chapter 4 and Chapter 5, for the i.i.d. model and the Markov model,

respectively, of busy/idle states of a channel over time slots. Distributed OCA in wireless

AF relay networks is discussed in Chapter 6. Chapter 7 concludes the thesis, and gives

possible future research directions as well.
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Chapter 2

Background and Literature Review

The wireless medium is a shared medium by a number of wireless users, and thus, the

access to the medium by all the users should be coordinated effectively and efficiently. In

general, the wireless channel access can be either horizontal or vertical [37]. In horizontal

channel access, all the users have the same priority, for example, in a traditional wireless

local area network (WLAN) with the same type of users. In vertical channel access, some

users are given higher priority than other users, and thus can have an advantageous position

in channel access. One example is the IEEE 802.11e-based WLANs, in which users with

shorter arbitration inter-frame space (AIFS) and smaller backoff window can gain more

channel access opportunities [38]. Another example is the CRNs, in which primary users

should always have higher priority than secondary users.

2.1 OCA in Wireless Networks

2.1.1 Traditional Wireless Channel Access

Wireless channel access schemes can be categorized into two classes: centralized channel

access and distributed channel access.

In a centralized channel access, a central controller, such as the base station in a cellular

network and the access point in a WLAN, is responsible to decide how the resources (fre-

quency, time, code channels, etc.) are shared among the users and how much power level

a user can use. In a fixed channel assignment, each user is assigned a fixed frequency band

in frequency-division multiple access (FDMA), a fixed time slot in time-division multiple
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access (TDMA), or a fixed code channel in code-division multiple access (CDMA). Such

fixed channel assignment is easy to implement since it needs to be done only when a call

is admitted. Its major drawback is potential waste since the assigned resources are exclu-

sively used by the particular users. To improve the resource utilization, dynamic channel

access lets all resources shared by all users [39], [40]. The central controller first collects

information (for example, queueing size at each user, and waiting time of each packet in

the queue) from all users at each time slot and then decides when and how a user can trans-

mit. So the major drawback of dynamic channel access is the communication overhead and

computation complexity.

In a distributed channel access (also known as random channel access), no central con-

troller is involved in the channel access, and thus, the users need to decide by themselves

whether to transmit and if yes, how to transmit (e.g., with what power level?) at each time

slot, based on their own local observations of the network. The first distributed channel

access scheme is the ALOHA [41], in which each user transmits whenever it has traffic.

When two transmissions have overlap in time, then the two transmissions collide with each

other. Therefore, the normalized throughput of ALOHA is low (18%). The normalized

throughput is doubled if all transmissions are synchronized at the beginning of a slot, re-

ferred to as slotted ALOHA [42]. Some other variants of ALOHA can be found in [43],

[44]. On the other hand, in the literature, it was also proposed that each user senses the

channel first and transmits if the channel is idle, or defers otherwise. This is the basic idea

of carrier sense multiple access (CSMA) and its variants: CSMA with collision detection

(CSMA-CD) used in Ethernet, and CSMA with collision avoidance (CSMA-CA), which is

the basis for the IEEE 802.11 Medium Access Control Standard [45].

2.1.2 Centralized OCA

To exploit time diversity in a wireless network, it is desired that only users with the best

channel quality can access the channel. This can be achieved in a centralized channel

access, by letting the central control collect CSI from the users, select those users with the

best channels, and announce the scheduling decision to all the users. Therefore, centralized

OCA has been well studied in cellular networks, which are typical centralized networks

with the base station working as the central controller.

Centralized OCA strategies can be found, for example, in [46]–[50], for uplink trans-
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mission in cellular networks. While most of existing OCA efforts assume that CSI is known

at the scheduler and that each user has infinite data to transmit, some other works also inves-

tigate channel-aware queue-aware rules taking into account queue state of each user [51].

Ergodic scheduling is investigated in [52], [53], which maximizes the expected system

throughput subject to imperfect CSI at the scheduler.

For downlink transmission in cellular networks, two major classes of OCA schemes

are: margin adaptive (which satisfies user QoS requirement) and rate adaptive (which max-

imizes system throughput) [54]. In [55]–[57], margin adaptive OCA schemes are presented

to minimize the total transmit power while satisfying each user’s QoS requirement, for ex-

ample, in terms of data rate and bit error rate (BER). In [58]–[66], rate adaptive schemes are

presented that maximize the system throughput constrained by the total transmit power. All

these works assume perfect CSI is available at the scheduler. By assuming imperfect CSI

at the scheduler, ergodic scheduling is investigated in the downlink of cellular networks in

[60], [67], which maximizes the expected system throughput subject to imperfect CSI.

2.1.3 Distributed OCA

In centralized OCA models, the central controller is responsible to collect CSI from all users

and conduct channel/power assignment. Therefore, the communication and computation

overhead may be large. In some cases, communication overhead to get instantaneous CSI

may not be tolerable. In other cases, the central controller may not exist (for example, in a

self-organized ad hoc network). Therefore, OCA in a distributed manner, called distributed

OCA, is more interesting and challenging.

In distributed networks where multiple users randomly access the channel, it is hard for

a user to decide when it is optimal to give up its transmission opportunities. An intuitive

way is to categorize the channel of a user into two states: good state when the channel gain

is above an arbitrarily selected threshold; and bad state otherwise. Then a user gives up its

channel access opportunity when its channel is bad. Apparently time diversity (i.e., a user

experiences different channel gain when time varies) is not fully utilized by the intuitive

method. This problem was addressed recently in [33], by means of optimal stopping. The

major idea is to let all the users contend for channel access. It is found that, 1) if the winner

in a contention has an achievable (transmission) rate smaller than a threshold (which can be

obtained numerically), it is optimal for the winner to give up its transmission opportunity
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and all users continue to contend; and 2) if the winner in a contention has an achievable

rate larger than the threshold, it is optimal for the winner to stop here, i.e., to utilize the

transmission opportunity and transmit its data. The beautiful part of the work is in the

pure-threshold strategy, which is easy to implement. As extensions to the work in [33],

interference channel which can tolerate multiple users transmitting is considered in [34]

where more than one node can share the channel simultaneously, and delay constraints are

considered for real-time service in [35]. Pure-threshold strategies are also derived in [34],

[35].

2.1.3.1 Optimal Stopping Problem Background

The following is a brief introduction to the optimal stopping problem. Please refer to [36]

for detailed discussion.

The theory of optimal stopping is to decide the best time to stop observing a random

process. The random process is sequentially observed. The player has some knowledge of

the random process (such as the distribution of the observed value at any moment). At any

moment, after the observation of the random process is obtained, a player needs to decide

whether 1) to stop the observation, take a pre-defined action, and get the reward, or 2) to

continue to observe the random process. The target is to maximize the long-term reward.

For example, consider a seller who would like to sell a house. The seller receives an offer

every day. Denote Xn as the offer received on the nth day. The seller needs to decide

whether to accept the offer (i.e., to stop observation) and sell the house (the pre-defined

action) or to decline the offer and wait for other offers later. If the seller accepts the offer,

the net reward is Xn−nC, in which C is the daily cost to keep the house (such as property

tax and fees for electricity, water, gas, and waste management). It is desired that optimal

stopping rule is taken to maximize the net reward.

To mathematically model a stopping problem, we can denote the observations at dif-

ferent moments as X1, X2, ..., Xn, where 1, 2, ..., n are the time indexes. Define Yn as the

net reward if the player stops after the nth observation. Yn is a random variable. In the

house-selling example, Yn = Xn − nC. So at moment n, if the player stops, then he/she

gets reward Yn; otherwise, the player continues to observe Xn+1 and the player’s expected

reward is E[Yn+1], in which E[·] means expectation.

To solve an optimal stopping problem, we must first prove that, there exists an optimal
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stopping rule. The existence of an optimal stopping rule can guarantee that the supremum of

all expected rewards from any stopping rule can be attained. Two conditions that guarantee

existence of an optimal stopping rule are:

Condition 1.E[sup
n
Yn] <∞ (2.1)

Condition 2. lim sup
n→∞

Yn ≤ Y∞ a.s. (2.2)

Here Y∞ defines the reward if the player never stops, while “a.s." is the short form for

the terminology “almost surely", which means that Condition 2 is satisfied in a sense of

probability 1.

Two most challenging tasks in solving an optimal stopping problem are the proof of

existence of an optimal stopping rule and the derivation of an optimal stopping rule.

In some optimal stopping problems, the target is to maximize the average reward per

unit of time. A typical example is the wireless communication system considered in [33]–

[35]. A number of wireless users share a wireless channel. So the users contend for channel

access. When a user succeeds in the channel contention, called a winner user, it observes

its channel gain, and decides whether to stop (i.e., transmit over the channel within a fixed

transmission time by using a transmission rate determined by its channel gain) or give

up this transmission opportunity (i.e., all users contend again for the channel access and

subsequently the winner user observes its channel gain). If a winner user stops, the reward

is the amount of information bits that can be transmitted. The target is to maximize the

average reward per unit of time, which is also the average system throughput. The optimal

stopping problem can be formulated as: to find an optimal stopping rule whose average

reward per unit of time is sup
N>0

E[YN ]
E[TN ] , in which N denotes the stopping time, YN is the

reward (i.e., the amount of information bits transmitted), Ti is the time duration until the ith

observation, and TN is the time duration until a stop.

Generally it is difficult to find an optimal rule that can maximize E[YN ]
E[TN ] . However, the

problem can be transformed into a classical form of optimal stopping problem, as follows.

In the transformation, a price λ > 0 is introduced for the time cost TN . Then a new stopping

problem is formulated, which maximizes E[YN − λTN ]. Let N also denote stopping rule.

If an optimal stopping rule for the new stopping problem can be derived for any λ, denoted

as N(λ), and if there exists a special price value λ∗ such that E[YN(λ∗) − λ∗TN(λ∗)] =
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sup
N>0

E[YN − λ∗TN ] = 0, then it can be proved that N(λ∗) is an optimal stopping rule for

the original problem. Two challenging issues are 1) to prove existence of optimal stopping

rule and derive an optimal stopping rule for the new stopping problem with any λ, and 2) to

derive the special price value λ∗.

2.2 Channel Access through Cooperative Networks

In a wireless cooperative network, the users with different and varying channel conditions

cooperate with each other and relay each other’s packet to the destination. Through cooper-

ation, cooperative diversity is exploited. Cooperative communication also has the capability

to enlarge network coverage.

Thanks to the advantages, academia and wireless industry have been working on relay-

based architectures in various cooperative networking environments. For example, although

early WLAN standards (such as IEEE 802.11a/b/g) do not support relay-based transmission

due to the nature of channel contention, recently a number of medium access control pro-

tocols have been proposed and investigated to support relays [68]–[73], and WLANs that

support relays are amended in IEEE 802.11s [74].

For standards in cellular networks, relaying technique is not supported in early IEEE

802.16 standard until IEEE 802.16e. Following IEEE 802.16e, the IEEE 802.16j supports

multiple-hop relaying. In addition, the 3GPP advanced long term evolution (LTE-A) is

evolving to support relaying technique [75], [76].

The cooperative communications can also be very helpful in other networks when spec-

trum bandwidth and energy are both limited. For example, consider a wireless sensor net-

work in which each sensor node is with low cost and limited energy supply. The dense

deployment of sensors may degrade the spectrum efficiency due to the large interference

generated by sensors. In this situation, cooperative communications can help to largely

improve communication efficiency, as discussed in [77]–[80].

2.3 Optimal OCSA in CRNs

As a novel idea of vertical spectrum sharing, cognitive radio communications can largely

enhance the spectrum efficiency by utilizing the spectrum holes. As an intelligent system,

the CRN has the capability to learn the networking environment and adapt its transmission
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accordingly. To be more specific, a secondary user first senses the primary channels before

its channel access, and during its transmission, the secondary user should immediately stop

transmission over the channel if the primary users are back. In the literature, OCSA in

CRNs can be categorized into two classes: OCSA with and without statistical information

of primary traffic.

2.3.1 Optimal OCSA with Statistical Information of Primary Traffic

Optimal OCSA when secondary users have statistical information of primary traffic, such as

information of available probabilities of primary channels, has been extensively studied in

the literature [6]–[8], [11], [13]–[15], [81] to maximize the spectrum utilization efficiency.

Optimal Sensing Time Setting: In a CRN, the sensing time duration is essential, since a

longer sensing time can more reliably detect primary activities while a shorter sensing time

means more time for secondary transmission. The optimal sensing time setting is addressed

in [8] for a CRN with a single channel. Time is partitioned into slots, and each time slot

has a sensing portion and a transmission portion. In each slot, the target channel is first

sensed in the sensing portion, and if it is sensed free, the secondary user transmits in the

transmission portion. Optimal duration of the sensing portion is derived that maximizes the

throughput of the secondary user. The optimal channel sensing time for multiple-channel

CRNs is derived in [11] with slotted time sensing mode (i.e., the sensing time of a channel

is one or more minislots) and continuous time sensing mode (i.e., the sensing time of a

channel can be any arbitrary continuous value within the sensing portion of a time slot).

Optimal Sensing Order: In some CRNs, a secondary user may be designed to sequen-

tially sense the potential channels one after another until a free channel or a free channel

with good quality is found. The optimal sensing order in the sequential sensing is derived

in [7] for a single user case. It is shown that, if adaptive modulation is not used, then it is

optimal to have a sensing order being the descending order of the channel available prob-

abilities, which is intuitive. However, if adaptive modulation is used, the intuitive sensing

order may not be optimal in general. And optimal sensing order in this case is derived. The

sensing order setting for a two-user case is solved in [82]. Two low-complexity suboptimal

schemes are proposed, whose performance are shown to be very close to the performance

of the exhaustively-searched optimal scheme.
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Asynchronous OCSA: Since the slotted structure may require time synchronization with

primary users, an asynchronous OCSA is studied in [81]. A secondary user can start sens-

ing at any arbitrary moment, and access the channel if the channel is sensed free. In an ideal

case with perfect spectrum sensing, an optimal OCSA policy is developed that can maxi-

mize secondary user throughput. In a practical case with imperfect spectrum sensing, a

modified threshold-based OCSA is presented, which can obtain near-optimal performance.

Optimal Power Allocation: In [13], sensing time and power allocation are jointly op-

timized to maximize the secondary system throughput in a multiple-channel spectrum-

overlay CRN, conditioned on that the detection probability of primary activities is above

a certain threshold. In [14], optimal power allocation that maximizes the secondary system

throughput is derived in a single-channel spectrum-underlay CRN, in which the secondary

users’ transmit power has either short-term or long-term constraint and the interference

level to primary users also has either short-term or long-term constraint.

In addition, since cognitive radio has been a popular research area recently, several sur-

veys/reviews are available that discuss some related issues in CRNs. Reference [83] gives

an overview for important issues for OCSA in CRNs, such as network architecture, spec-

trum sensing, spectrum sharing, and spectrum mobility. Some main features of multiple-

channel MAC protocols in CRNs are discussed in [84]. The main differences of cognitive

radio MAC protocols from those in traditional networks are highlighted in [85]. In [86],

control channel implementation for OCSA in CRNs is categorized in four classes: common

control channel, hopping control channel, split phase control channel, and multiple ren-

dezvous control channel. And a comparison is conducted among the four classes in terms

of system throughput.

2.3.2 Optimal OCSA without Statistical Information of Primary Traffic

Research on the optimal OCSA without a priori statistical knowledge of primary traffic is in

its infancy. Since the statistical information of primary traffic is unknown, secondary users

need to learn the information during its channel sensing and access process. For example,

by sensing a channel in a large number of different time slots, the available probability of

the channel can be estimated, referred to as channel exploration. However, if the channel is

with a low available probability, the sensing of the channel only brings few rewards. This

is because, since the sensing results of the channel may often be “busy”, the secondary user
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cannot access the channel after the sensing. In other words, the secondary user may need

to take a long time to sense those not-good channels before the secondary user realizes that

those channels are not good. This means that learning loss (also called regret) is inevitable,

compared to the genie-aided ideal case that the secondary user knows statistical informa-

tion of primary traffic and thus can always select the optimal channel(s). To minimize the

regret, it is essential to achieve an optimal tradeoff between channel exploration and chan-

nel exploitation (the process to utilize observed channel opportunities). In the literature,

the channel sensing and access process has been modeled as a multi-armed bandit problem

(MABP) [12].

2.3.2.1 Multi-Armed Bandit Problem

The name “multi-arm bandit problem" comes from an imaginary slot machine equipped

which multiple hands (also called arms). For each arm, if it is pulled, a reward, which is

a random variable, can be obtained. The distribution of the random variable is unknown.

And each arm has a unique distribution of the random variable reward. Time is partitioned

into slots. At each time slot, a player can pull an arm and obtain a reward. The player can

also estimate the statistical behaviors of the arms based on the observations over time. The

decision (i.e., which arm to pull) at each time slot is made based on the player’s observations

in previous time slots and the player’s estimate of the arms’ statistical information. The

player is to maximize a long-term accumulated reward.

Such an MABP is a classical stochastic adaptive control problem. In the problem,

the player faces a dilemma between limited information obtained and effective control ex-

pected. Here the information means the distribution of the random variable reward of each

arm, which needs be learned by pulling the arm for a sufficiently long time. The control

refers to the goal of maximization of the long-term accumulated reward, which means that

it is preferred to select the arm with the largest reward to pull. As a simple example, con-

sider a slot machine with two arms: Arm A and Arm B. The probability density function

of the random variable rewards of the two arms are denoted as pA and pB , respectively. At

each time slot, say Slot j, the player selects to pull either Arm A or Arm B, and obtains

a reward Aj or Bj (which are random variables with probability density function pA and

pB , respectively). Denoting the reward at Slot j as xj , the MABP is to decide on the arm
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selection at each slot such that the expected value of the sum St ,
t∑

j=1
xj is maximized

when t is sufficiently large.

2.3.2.2 Modeling of OCSA by MABP

The OCSA with multiple channels can be modeled by an MABP as follows. Consider that

a secondary user has multiple potential channels. At each time slot, the secondary user can

sense one channel during the sensing period, and access the channel in the transmission

period of the slot if the channel is sensed free. Therefore, the secondary user is the player,

the channels are the arms to be pulled, the amount of data transmitted over the transmission

period is the reward, and the distribution of the state (idle/busy) of each channel is the dis-

tribution of the reward of each arm. The objective is to maximize the amount of transmitted

secondary traffic.

For an MABP, the regretR(t) until time instant t is the expected difference between the

actual reward of an arm-selection rule and the reward of a genie-aided rule that has known

statistical information of the arms [87]. It is proved in [88] that, for any adaptive allocation

rule1, the regret is at least µ ln t when t → ∞, where the factor µ is determined by the

statistical information of arms. A rule that achieves the lower bound of µ is called effi-

ciently optimal, and a rule with regret O(ln t) is called order optimal. For OCSA in CRNs,

reference [12] derives order optimal rules to well coordinate the balance between channel

exploration and exploitation, with the assumption of perfect channel sensing. Although not

efficiently optimal, the rules are sample mean based index rules [89], and their implemen-

tation is much simpler than the efficiently optimal rules given in [88]. Moreover, a regret

bound is also observed with finite t 2 in rules in [12], while no such bound is observed for

finite t in the efficiently optimal rules in [88]. A distributed cognitive sensing problem is

investigated and formulated as an adversary bandit problem in [29], where no statistical

assumption is made on channel states. Multi-user OCSA in a distributed manner is investi-

gated in [31], modeled as an MABP with multiple players. In the above existing research

efforts for OCSA in CRNs, perfect channel sensing is assumed, and each secondary user

can utilize all observed spectrum opportunities (i.e., can access all sensed-free channels).

1This means the decisions of the rule are only based on observations in the history [88].
2In this report, when we say “finite t", it means sufficiently large and finite t.
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Chapter 3

CRNs with Statistical Information of

Primary Traffic and with Imperfect

Spectrum Sensing: The Optimal Sets

of Channels to Sense and to Access

In this chapter, OCSA problem of a secondary user with multiple potential primary channels

is investigated. The secondary user can sense a limited number of channels, and channel

sensing is imperfect. If the secondary user can access all channels sensed free, it is proved

that the secondary user should sense the channels with the largest rewards, where the reward

of a channel is the reward that the secondary user can acquire if it senses the channel and

accesses the channel when the channel is sensed free. If the secondary user can access only

a limited number of sensed-free channels, in general it may not be optimal to sense the

channels with the largest rewards. However and interestingly, for some special cases (for

example, when all the channels have the same detection probability), simple rules are given

for the optimal selection of channels to sense. For the general case, methods are given to

reduce the searching complexity for the optimal set of channels to sense.1

1A version of this chapter has been published in IEEE Wireless Communications Letters, 1: 133-136
(2012).
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3.1 Introduction

In a CRN, secondary users need to first detect possible primary activities, usually by spec-

trum sensing, and then access the spectrum if no primary activities are detected. When

there are multiple potential primary spectrum bands (called primary channels) for a sec-

ondary user, the secondary user needs to decide which channel(s) to sense and access, and

how they are sensed and accessed. In [7], at the beginning of a time slot, a secondary user

sequentially senses the channels one after another, until a free channel or a free channel with

good channel quality is found. Then the secondary user transmits in the channel within the

remaining duration of the slot. The optimal order for sensing the channels is derived. In

[90], sensing order when the channel gain information is known is studied. In [91], sensing

order is jointly designed with sensing strategy (to specify when to stop sensing and start

secondary transmission) and power allocation, to maximize energy efficiency. In [12], a

secondary user senses one channel or senses multiple channels simultaneously at the be-

ginning of a time slot, and accesses sensed-free channel(s) in the remaining duration of the

slot. The channel sensing and access problem is formulated as a multi-armed bandit prob-

lem. Sensing time optimization is investigated in [8] for a single-channel case and in [11]

for a multiple-channel case. Aggregated opportunistic throughput is maximized in [15].

In the above existing works, it is assumed that the secondary user can access all sensed-

free channels. In this research, we consider a system when a secondary user simultaneously

senses a limited number of channels (e.g., by wideband spectrum sensing technique dis-

cussed in [92]) at the beginning of a time slot and uses the remaining duration in the slot for

data transmission. Different from existing works, spectrum sensing is imperfect, and the

secondary user can only access up to a limited number of sensed-free channels in a slot.2

We aim at deciding which channels to sense so that the secondary user can gain the maxi-

mal reward. We find that, when the secondary user can access all sensed-free channels, the

secondary user should sense the channels that have the largest rewards (the definition of re-

ward of a channel is to be given in Section 3.2). However and interestingly, if the secondary

user can only access up to a limited number of sensed-free channels at a time, it may not

be optimal to sense the channels with the largest rewards, and thus, exhaustive search may
2For example, in a voice conversation, the secondary user may only have limited packets to send during a

time period. As another example, as shown in [93], due to energy constraint, the secondary user may not be
able to access all sensed-free channels.
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Fig. 3.1. The slotted time structure.

be needed to find the optimal set of channels to sense. Some simple rules are given for the

optimal selection of channel set to sense in some special cases. And a property is also given

for the general case, which helps to simplify the search for the optimal channel set to sense.

3.2 System Model

Consider a secondary user withN potential primary channels, denoted as Channel 1, Chan-

nel 2, ..., Channel N . Similar to [7], [8], [12], [90], time is partitioned into slots, each with

fixed duration T . Each slot is further divided into a sensing period with duration τ and a

data transmission period with duration (T − τ), as shown in Fig. 3.1. The secondary user

can sense M (≤ N) channels simultaneously in the sensing period, and subsequently in

the data transmission period it can access up to K (≤M) channels that are sensed free. To

protect primary users, the secondary user is not permitted to access channels sensed busy.

Since sensing is imperfect, for sensing of Channel i (i = 1, 2, ..., N), let P i
d denote the

detection probability (i.e., probability of detecting primary activities that do exist), and P i
f

denote the false alarm probability (i.e., the probability of mistakenly estimating presence of

primary activities that actually do not exist).

At each slot, say Slot j, Channel i (i = 1, 2, ..., N ) is free with probability θi. Let

Si(j) = 1 and Si(j) = 0 denote that Channel i is free and busy, respectively; and if

Channel i is sensed, let Xi(j) = 1 and Xi(j) = 0 denote that Channel i is sensed to

be free and busy, respectively. The probability of Channel i being sensed free is denoted

f(θi) = θi(1−P i
f )+(1−θi)(1−P i

d) = θi(P
i
d−P i

f )+1−P i
d. The i.i.d. model of busy/idle

states of a channel over time slots is considered, i.e., for each channel, the channel state

varies independently across time slots. The N primary channels have independent channel

states.

In a slot, if the secondary user accesses a channel that is sensed free, it can transmit B

bits in the data transmission period. Define reward as the successfully transmitted bits in

a slot. So if there is a missed detection of primary activities in an accessed channel, then
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the reward is 0. For a channel, say Channel i, define its reward as the expected reward the

secondary user can acquire if the secondary user senses Channel i and accesses it when it is

sensed free. Also define conditional reward of Channel i as the expected reward to access

Channel i conditioned on that Channel i is sensed free. So for Channel i, its reward is given

as Bθi(1− P i
f ), and its conditional reward is given as BE[Si(j)|Xi(j) = 1] =

Bθi(1−P i
f )

f(θi)
,

where E[·] denotes expectation.

Since the secondary user does not sense all the channels, and may not access all chan-

nels sensed free, the secondary user has two decisions: which channels to sense, and which

sensed-free channels to access. For the second decision, it is apparent that: if the number

of channels sensed free is not more than K, then all channels sensed free are accessed;

otherwise, the secondary user should access the K channels with the K largest conditional

rewards. Therefore, in this research, we focus on the first decision of the secondary user:

which M channels to sense. Our objective is to maximize the expected reward of the sec-

ondary user in a slot (say Slot j), given as:

max
M⊆N

RM
△
= E

[
B max

K⊆IM

∑
i∈K

E [Si(j)|Xi(j) = 1]
]

(3.1)

where N = {1, 2, ..., N}, M denotes the set of channels to sense, IM is the set of channels

that are sensed free if channels in M are sensed, K denotes the set of channels to access,

RM denotes the reward of M, defined as expected reward of the secondary user if it senses

the channels in set M and accesses up to K sensed-free channels with the largest condi-

tional rewards. In (3.1), the outer expectation is for IM, while the inner expectation is for

Si(j), i ∈ K. For (3.1) and subsequent equations, we have |M| =M , and |K| ≤ K, where

| · | means the cardinality of a set.

3.3 Optimal Selection of Channels to Sense

We consider two cases: full channel access with K = M (i.e., the secondary user accesses

all channels that are sensed free), and partial channel access with K < M .
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3.3.1 Full Channel Access (K = M )

Full channel access also means K = IM. Then we have the following theorem for the

optimal set of channels to sense.

Theorem 3.1. The optimal set of channels to sense, denoted as M∗, consists ofM channels

with the M largest values of θi(1− P i
f ), i ∈ N .

Proof. Since K = IM, problem in (3.1) is equivalent to

max
M⊆N

E
[
B
∑
i∈IM

E [Si(j)|Xi(j) = 1]
]
= max

M⊆N
B
∑
i∈M

P(i ∈ IM)E [Si(j)|Xi(j) = 1]

= max
M⊆N

B
∑
i∈M

f(θi) ·
θi(1− P i

f )

f(θi)
= max

M⊆N
B
∑
i∈M

θi(1− P i
f )

where P(·) means probability of an event.

Therefore, to maximize the expected reward of the secondary user, the secondary user

should sense the M channels with the M largest values of θi(1− P i
f ), i ∈ N .

Since Bθi(1 − P i
f ) is reward of Channel i, Theorem 3.1 is intuitive: to sense the M

channels with the M largest rewards.

3.3.2 Partial Channel Access (K < M )

For partial channel access, our first question is: does an intuitive rule as that in Theo-

rem 3.1 exist? Unfortunately, for partial channel access, it may not be optimal to sense

the M channels with the M largest rewards. Here is an example. Let N = 5, M = 4,

K = 1, and B = 1. (θ1, θ2, ..., θ5) = (0.83, 0.47, 0.34, 0.39, 0.51), (P 1
d , P

2
d , ..., P

5
d ) =

(0.7, 0.6, 0.55, 0.65, 0.9), (P 1
f , P

2
f , ..., P

5
f ) = (0.4, 0.2, 0.15, 0.3, 0.5). By choosing the

M = 4 channels with largest θi(1−P i
f ), we have a set M = {1, 2, 3, 4}, and the secondary

user’s expected reward in a slot is 0.746. However, by exhaustive search, the optimal set of

channels to sense is M = {1, 2, 3, 5}, with which the secondary user’s expected reward in a

slot is 0.768. Therefore, although the intuitive rule (i.e., selecting the channels with largest

rewards) is optimal for full channel access, it may not be optimal for partial channel access.

The reason is: in partial channel access, the secondary user may not access a channel that

is sensed free.
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Since the intuitive rule is not optimal in general for partial channel access, it seems that

exhaustive search may be needed to find the optimal set of channels to sense. However,

interestingly, in some special cases, some simple rules exist, as shown in Sections 3.3.2.1

and 3.3.2.2, while in the general case, the searching complexity for the optimal channel set

to sense can be reduced according to a property, as shown in Section 3.3.2.3.

3.3.2.1 With Homogeneous Sensing

Here homogeneous sensing means all the channels have the same detection probability (i.e.,

P i
d = Pd, i ∈ N ) and the same false alarm probability (i.e., P i

f = Pf , i ∈ N ). Without

loss of generality, we assume θ1 > θ2 > ... > θN in Section 3.3.2.1. We have the following

theorem.

Theorem 3.2. With homogeneous sensing, the optimal set of channels to sense is {1, 2, ...,

M}.

Proof. We use proof by contradiction. Assume that the optimal set of channels to sense,

M∗, is not {1, 2, ...,M}. Denote M∗ as M∗ = {n1, n2, ..., nM} with n1 < n2 < ... <

nM . It means θn1 > θn2 > ... > θnM . Note that, with homogeneous sensing, if a channel

has a larger free probability θi, it also has a larger conditional reward.

Since M∗ is not {1, 2, ..,M}, there exists a channel, denoted Channel l ∈ {1, 2, ...,M},

such that l /∈ M∗. Then l is smaller than at least one element in M∗, and thus, there exists

k ∈ {1, 2, ...,M} such that nk−1 < l < nk.3 It also means θnk−1
> θl > θnk

.

Now we derive an expression for RM∗ , the reward of M∗. Consider sensing of the

(M − 1) channels in M∗\{nk}. Define the set of channels sensed free, IM∗\{nk}, as the

sensing result, and denote the set of all 2M−1 possible sensing result realizations as U.

Further, we have U = U1 ∪ U2, where U1 is the set of sensing result realizations in which

the number of sensed-free channels among Channels n1, n2, ..., nk−1 is less thanK, and U2

is the set of sensing result realizations in which the number of sensed-free channels among
3If k = 1, then we have l < n1, which can be treated similarly.
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Channels n1, n2, ..., nk−1 is equal to or more than K. Then the reward of M∗ is given as

RM∗ =

f(θnk
)

( ∑
U∈U1

P(IM∗\{nk} = U)
(

Bθnk
(1−Pf )

f(θnk
) + rK−1

U

)
+
∑

U∈U2

P(IM∗\{nk} = U)rKU
)

+
(
1− f(θnk

)
)( ∑

U∈U1

P(IM∗\{nk} = U)rKU +
∑

U∈U2

P(IM∗\{nk} = U)rKU
)

=
∑

U∈U1

P(IM∗\{nk}=U)
(
θnk

(
(1−Pf )B−(Pd−Pf )(r

K
U −rK−1

U )
)
−(1−Pd)(r

K
U −rK−1

U )
)

+
∑
U∈U

P(IM∗\{nk} = U)rKU

where U is a sensing result realization of sensing channels in M∗\{nk}, rK−1
U and rKU are

the rewards by accessing up to (K − 1) and K channels in U , respectively, that have the

largest conditional rewards.

In M∗, if we replace Channel nk with Channel l, we get set {n1, n2, ..., nk−1, l, nk+1, ...

, nM}. Similarly, its reward is given as

R{n1,n2,...,nk−1,l,nk+1,...,nM} =
∑

U∈U1

P(IM∗\{nk} = U)
(
θl
(
(1− Pf )B

− (Pd − Pf )(r
K
U − rK−1

U )
)
− (1− Pd)(r

K
U − rK−1

U )
)
+
∑
U∈U

P(IM∗\{nk} = U)rKU .

Then the difference of the rewards of M∗ and {n1, n2, ..., nk−1, l, nk+1, ..., nM} is

given as

R{n1,n2,...,nk−1,l,nk+1,...,nM} −RM∗ =

(θl − θnk
)(1− Pf )B

∑
U∈U1

[
P(IM∗\{nk} = U) ·

(
1−

Pd − Pf

(1− Pf )B
(rKU −rK−1

U )
)]

> 0

(3.2)

where the inequality comes from θl > θnk
and the following fact. According to the defini-

tion of rKU and rK−1
U , their difference is no more than the conditional reward of Channel 1

(which has the largest conditional reward), which means:

rKU − rK−1
U ≤ BE[S1(j)|X1(j) = 1] =

Bθ1(1−Pf )
θ1(Pd−Pf )+1−Pd

<
B(1−Pf )
Pd−Pf

. (3.3)

Inequality (3.2) contradicts the assumption that M∗ is optimal. This completes the

proof.
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3.3.2.2 With Common Detection Probability

Now we consider a special case when all the channels have a common detection proba-

bility (i.e., P i
d = Pd, i ∈ N )4 but have different false alarm probabilities. Without loss

of generality, we assume θ1 > θ2 > ... > θN in Section 3.3.2.2. We have the following

theorem.

Theorem 3.3. When all the channels have a common detection probability, if both θ1 >

θ2 > ... > θN and θ1(1−P 1
f ) > θ2(1−P 2

f ) > ... > θN (1−PN
f ) are satisfied, the optimal

set of channels to sense is {1, 2, ...,M}.

Proof. From θ1 > θ2 > ... > θN and θ1(1− P 1
f ) > θ2(1− P 2

f ) > ... > θN (1− PN
f ), we

have the following for the conditional rewards of the channels

E[S1(j)|X1(j) = 1] > E[S2(j)|X2(j) = 1] > ... > E[SN (j)|XN (j) = 1]. (3.4)

Then the optimality of {1, 2, ...,M} can be proved as follows.

We use proof by contradiction. Assume that the optimal set of channels to sense, M∗ =

{n1, n2, ..., nM} with n1 < n2 < ... < nM , is not {1, 2, ..,M}. Then there exists a

channel, denoted Channel l ∈ {1, 2, ...,M}, such that l /∈ M∗. And there exists k ∈

{1, 2, ...,M} such that nk−1 < l < nk.

Similar to (3.3.2.1), the reward of M∗ is given as

RM∗ =
∑
U∈U1

P(IM∗\{nk} = U)
(
θnk

(1− Pnk

f )
(
B − (rKU − rK−1

U )
)

+ θnk
(1− Pd)(r

K
U − rK−1

U )− (1− Pd)(r
K
U − rK−1

U )
)
+
∑
U∈U

P(IM∗\{nk} = U)rKU

(3.5)

where U , U, U1, rK−1
U , and rKU have the same definitions as in proof of Theorem 3.2.

In M∗, if we replace Channel nk with Channel l, we get set {n1, n2, ..., nk−1, l, nk+1, ...

, nM}. Similar to (3.5), its reward is given as

R{n1,n2,...,nk−1,l,nk+1,...,nM} =
∑
U∈U1

P(IM∗\{nk} = U)
(
θl(1− P l

f )
(
B − (rKU − rK−1

U )
)

4As an example, if it is required that the detection probability in each channel is above a common threshold
so as to protect primary users, then the secondary user may set its detection probability in each channel as the
common threshold value.
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+ θl(1− Pd)(r
K
U − rK−1

U )− (1− Pd)(r
K
U − rK−1

U )
)

+
∑
U∈U

P(IM∗\{nk} = U)rKU . (3.6)

Since θl > θnk
, θl(1 − P l

f ) > θnk
(1 − Pnk

f ), 0 ≤ rKU − rK−1
U ≤ B, it can be seen

that R{n1,n2,...,nk−1,l,nk+1,...,nM} > RM∗ , which contradicts the assumption that M∗ is

optimal.

Theorem 3.2 indicates that for homogeneous sensing, the secondary user should sense

the M channels with the M largest free probabilities. Theorem 3.3 indicates that, for a

case when only detection probabilities are common while false alarm probabilities are dif-

ferent, if adding factor (1− P i
f ) does not affect the ordering of the free probabilities of the

channels, then the secondary user should still sense the M channels with the M largest free

probabilities.

Next, for determining of the optimal M, we have a definition of preferred channel as

follows. Channel a is said to be preferred to Channel b if the following condition is satisfied:

if Channel b is in the optimal M, then Channel a should be also in the optimal M.

Theorem 3.4. When all the channels have a common detection probability, for any pair of

channels, a channel is preferred to the other channel if it has both larger free probability

(i.e., θi) and larger reward (i.e., Bθi(1− P i
f )) than those of the other channel, respectively.

Proof. We use proof by contradiction. For Channels i1 and i2, assume θi1 > θi2 and

θi1(1− P i1
f ) > θi2(1− P i2

f ). Denote M∗ as the optimal set of channels to sense, and

i1 /∈ M∗, i2 ∈ M∗. Denote the conditional rewards of Channels i1 and i2 as

y1 =
Bθi1(1− P i1

f )

θi1(1− P i1
f ) + (1− θi1)(1− Pd)

and

y2 =
Bθi2(1− P i2

f )

θi2(1− P i2
f ) + (1− θi2)(1− Pd)

respectively. Then y1 > y2.

In M∗, if we replace Channel i2 by Channel i1, we get set M†.

For sensing of the (M − 1) channels in M∗\{i2}, denote U as a sensing result realiza-

tion (i.e., the set of sensed-free channels). We partition U into three subsets: U1 includes the
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sensed-free channels whose conditional rewards are larger than y1, U2 includes the sensed-

free channels whose conditional rewards are less than or equal to y1 and larger than y2, and

U3 includes the sensed-free channels whose conditional rewards are less than or equal to y2.

When the sensing result of the (M − 1) channels in M∗\{i2} is fixed as U , denote the

reward of M∗ and M† as R∗
U and R†

U , respectively. Next, we derive expressions of R∗
U and

R†
U . Let rK−1

U and rKU be the rewards by accessing up to (K − 1) channels and K channels

in U , respectively, that have the largest conditional rewards. We have the following three

possible scenarios for U .

• Scenario with |U1| ≥ K: We have R∗
U = R†

U = rKU .

• Scenario with |U1| < K and |U1| + |U2| ≥ K: We have R∗
U = rKU , R†

U =

f(θi1)(r
K−1
U + y1) + (1 − f(θi1))r

K
U . Then we have R†

U − R∗
U = f(θi1)

(
y1 −

(rKU − rK−1
U )

)
≥ 0.

• Scenario with |U1|+ |U2| < K: We have

R∗
U = f(θi2)(r

K−1
U + y2) + (1− f(θi2))r

K
U = f(θi2)

(
y2 − (rKU − rK−1

U )
)
+ rKU ,

(3.7)

R†
U = f(θi1)(r

K−1
U + y1) + (1− f(θi1))r

K
U = f(θi1)

(
y1 − (rKU − rK−1

U )
)
+ rKU .

(3.8)

If f(θi1) ≥ f(θi2), then we have R†
U > R∗

U since y1 > y2, y1 − (rKU − rK−1
U ) > 0,

and y2 − (rKU − rK−1
U ) ≥ 0. If f(θi1) < f(θi2), then (3.7) and (3.8) can be rewritten

as

R∗
U = Bθi2(1− P i2

f )− f(θi2)(r
K
U − rK−1

U ) + rKU

and

R†
U = Bθi1(1− P i1

f )− f(θi1)(r
K
U − rK−1

U ) + rKU

respectively, which also lead to R†
U > R∗

U since θi1(1− P i1
f ) > θi2(1− P i2

f ) and

rKU − rK−1
U ≥ 0.

The probability of the last scenario is nonzero. Therefore, averaged on all possible U’s, the

reward of M† is larger than the reward of M∗, which contradicts the assumption that M∗
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is the optimal set of channels to sense. This completes the proof.

Based on Theorem 3.4, the following corollary can be proved straightforwardly.

Corollary 3.1. For N channels with common detection probability and with θ1 > θ2 >

... > θN , if there exists k ∈ {1, 2, ...,M} such that θ1(1 − P 1
f ) > θ2(1 − P 2

f ) > ... >

θk(1−P k
f ) > max{θk+1(1−P k+1

f ), θk+2(1−P k+2
f ), ..., θN (1−PN

f )}, then {1, 2, ..., k}

is a subset of the optimal M.

3.3.2.3 Property for the General Case

For the general case with neither common detection probability nor common false alarm

probability, we have the following theorem, whose proof is similar to that of Theorem 3.4,

and is omitted.

Theorem 3.5. For any pair of channels, a channel is preferred to the other channel if it has

both larger sensed-free probability f(θi) and larger conditional reward than those of the

other channel, respectively.

Theorem 3.5 can be used to reduce the searching complexity for the optimal M in the

general case. Based on Theorem 3.5, the following corollaries can be straightforwardly

proved.

Corollary 3.2. If (n1, n2, ..., nN ) is a permutation of (1, 2, ..., N), and if conditions f(θn1)

> f(θn2) > ... > f(θnN ) and
θn1 (1−P

n1
f )

f(θn1 )
>

θn2 (1−P
n2
f )

f(θn2 )
> ... >

θnN
(1−P

nN
f )

f(θnN
) are satisfied,

the optimal set of channels to sense, denoted as M∗, is {n1, n2, ..., nM}.

Corollary 3.3. If (n1, n2, ..., nN ) is a permutation of (1, 2, ..., N), with f(θn1) > f(θn2) >

... > f(θnN ), and if there exists k ∈ {1, 2, ...,M} such that
θn1 (1−P

n1
f )

f(θn1 )
>

θn2 (1−P
n2
f )

f(θn2 )
>

... >
θnk

(1−P
nk
f )

f(θnk
) > max

{
θnk+1

(1−P
nk+1
f )

f(θnk+1
) ,

θnk+2
(1−P

nk+2
f )

f(θnk+2
) , ...,

θnN
(1−P

nN
f )

f(θnN
)

}
, then {n1,

n2, ..., nk} is a subset of the optimal M.

3.4 Performance Evaluation

Next we show numerical results to demonstrate the impact of the selection of channels to

sense. Consider 4 channels with channel free probabilities (θ1, θ2, θ3, θ4) = (0.650, 0.727,

0.852, 0.918). Three cases are investigated: homogeneous case with Pd = 0.7 and Pf =
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Fig. 3.2. Reward of the set of channels to sense.

0.3; common detection probability case with Pd = 0.7 and (P 1
f , P

2
f , P

3
f , P

4
f ) = (0.1, 0.28,

0.39, 0.43); and general case with (P 1
d , P

2
d , P

3
d , P

4
d ) = (0.8, 0.8, 0.8, 0.95) and (P 1

f , P
2
f ,

P 3
f , P

4
f ) = (0.1, 0.28, 0.39, 0.43). The secondary user can sense two channels and access

one channel. Fig. 3.2 shows the reward of different set of channels to sense in the three

cases. The reward of the intuitive rule (i.e., the two channels with the two largest θi(1 −

P i
f ) are sensed) is also indicated. It can be seen that the intuitive rule is optimal in the

homogeneous case, and not optimal in the other two cases.

3.5 Conclusion

In this chapter, we have found some interesting results for the optimal set of channels to

be sensed by a secondary user. When the secondary user can utilize all sensed-free chan-

nels, the intuitive rule is optimal. However, this intuitive rule is not optimal in general

when the secondary user can only access up to a limited number of sensed-free channels.

Interestingly, we have found some simple rules for the optimal set of channels to sense in

some special cases. And for the general case, we have provided a guideline to reduce the

searching complexity for the optimal channel set to sense.
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In this chapter, the secondary user can transmit B bits at each slot over each free chan-

nel. It is interesting to consider that the number of transmitted bits at a slot over different

free channels are different. For full channel access, it can be found optimal to sense the

M channels with largest rewards, defined as Biθi(1 − P i
f ), in which Bi is the number of

transmitted bits at a time slot on Channel i if it is free. But the case for partial channel

access is more complicated, and deserves further investigation.
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Chapter 4

Channel Exploration and

Exploitation with Imperfect

Spectrum Sensing in CRNs: i.i.d.

Model of Channel Busy/Idle States

over Time

In this chapter, the problem of OCSA in CRNs when the sensing is imperfect and a sec-

ondary user can access up to a limited number of channels at a time is investigated. Primary

users’ statistical information is assumed to be unknown, and therefore, a secondary user

needs to learn the information online during channel sensing and access process, which

means learning loss, also referred to as regret, is inevitable. For each channel, the busy/idle

state is independent from one slot to another. In this research, the case when all potential

channels can be sensed simultaneously is investigated first. The channel access process is

modeled as an MABP with side observation. And channel access rules are derived and

theoretically proved to have asymptotically finite regret. Then the case when the secondary

user can sense only a limited number of channels at a time is investigated. The channel

sensing and access process is modeled as a bi-level MABP. It is shown that any adaptive

rule has at least logarithmic regret. Then we derive OCSA rules and theoretically prove that

they have logarithmic regret asymptotically and with finite time. The effectiveness of the
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derived rules is validated by computer simulation.1

4.1 Introduction

In a spectrum-overlay CRN, OCSA is used, in which the secondary users search for spec-

trum holes through sensing, and utilize the observed spectrum opportunities for their data

transmission. Optimal OCSA when the secondary users have statistical information of pri-

mary users, such as information of idle probabilities of primary channels, has been ad-

dressed in [8], [11], [13]–[15] and Chapter 3 of this thesis, to maximize transmission capac-

ity, optimize transmission power efficiency, etc. However, research on the optimal OCSA

without a priori statistical knowledge of primary channels is still in its infancy. The research

challenge is how to achieve the optimal tradeoff between channel exploration (the process

to sense the channels so as to learn the statistical information) and channel exploitation

(the process to utilize observed channel opportunities). If statistical information of pri-

mary channels is known in advance, a secondary user can select the optimal channel(s) to

sense and subsequently access sensed-idle channel(s). However, without such information,

a learning process is needed, and the secondary user should also explore suboptimal chan-

nels through sensing to learn statistical information of those channels. Therefore, learning

loss is expected, compared to the case that the secondary user always selects the optimal

channel(s).

As discussed in Chapter 2, in the literature, the OCSA process in CRNs has been mod-

eled as MABPs [12], [29]–[31], [87]–[89], which assume that channel sensing is perfect and

a secondary user can access all sensed-idle channels. Different from these existing research

efforts, this chapter investigates OCSA when (i) imperfect channel sensing is assumed and

(ii) a secondary user can access up to a limited number of channels simultaneously (i.e., it

may not use all observed spectrum opportunities at a time). Our motivation for (i) is that

channel sensing is always imperfect in a real network. And our motivation for (ii) is that

the secondary user may have energy and/or hardware constraints, and thus, the number of

channels that can be accessed is limited. A similar setting is also adopted in [16], [17], [93],

[94].2

1The version of this chapter was published in IEEE Journal on Selected Areas in Communications, 31:
429-441 (2013).

2Actually the case when a secondary user can access an unlimited number of channels can be viewed as a
special case of our work.
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Therefore, unlike existing OCSA research where there is only one decision (i.e., to

decide which channels to sense, and subsequently access all sensed-idle channels), we have

two decisions in the OCSA in our work: to decide which channels to sense; and if a number

of channels are sensed idle, to decide which channels to access. Two cases are considered

in our work:

• Case I: when a secondary user can sense all potential channels simultaneously3, re-

ferred to as full channel sensing;

• Case II: when a secondary user can sense a limited number of potential channels

simultaneously, referred to as partial channel sensing.

4.2 Case I: with Full Channel Sensing

Consider the same slotted time structure as in Fig. 3.1, where time is partitioned into

slots, and the duration of each slot is T . For a secondary user, there are N potential

primary channels, denoted as Channels 1, 2, ..., N , respectively. In each slot, Channel i

(i ∈ {1, 2, ..., N}) is idle (i.e., without primary activities) with probability θi, and θi is

unknown by the secondary user. Let Si(j) = 1 and Si(j) = 0 denote Channel i is idle

and busy, respectively, at Slot j. The i.i.d. model of busy/idle states of a channel over time

slots is considered. In other words, for each channel, the channel state (busy or idle) varies

independently from a slot to another. And the N channels have independent channel states.

Similar settings are adopted in [7], [8], [11], [12], [93].

Each slot consists of a sensing period with duration τ and data transmission period with

duration T − τ . For each slot, during the sensing period the secondary user senses all the N

channels. Among all the sensed-idle channels, the secondary user can access (i.e., transmit

its data over) up to K channels in the data transmission period. For each accessed channel,

reward (i.e., the information bits the secondary user can transmit in a slot) is normalized to

1.

During the sensing in Slot j, denote X(j) = (X1(j), X2(j), ..., XN (j)) as the sensing

observation of the N channels, where Xi(j) = 1 and Xi(j) = 0 mean that Channel i

is sensed to be idle and busy, respectively. Since sensing errors are inevitable, similar to

Chapter 3, we let P i
d denote the detection probability of Channel i (i.e., the probability

3This may be achieved by the wideband spectrum sensing technique discussed in [92].
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of detecting the primary user activity if there is primary user activity), and P i
f denote the

false-alarm probability of Channel i (i.e., the probability of mistakenly estimating that the

primary user is active when there is actually no primary user activity). For Channel i at Slot

j, the probability that it is sensed idle (i.e.,Xi(j) = 1) is given as f(θi)
△
= (1−P i

f )θi+(1−

P i
d)(1−θi). So, conditioned on that Channel i is sensed idle at Slot j, the conditional reward

of Channel i if it is accessed at Slot j can be calculated as E[Si(j)|Xi(j) = 1] =
(1−P i

f )θi

f(θi)
,

where E[·] denotes expectation.

Since the secondary user senses all the N channels, the only decision of the secondary

user to make is on which channel(s) to access based on its sensing observation. To protect

primary users, only channels sensed idle can be accessed. Since primary users’ statistical

information Θ
△
= (θ1, θ2, ..., θN ) is unknown, online learning is needed for the secondary

user to estimate Θ. In the following, we first investigate the situation of single channel

access (i.e., K = 1, the secondary user can access only one channel at a slot), and subse-

quently extend the research result to the situation of multiple channel access (i.e., K ≥ 2,

the secondary user can access more than one channel simultaneously at a slot).

4.2.1 Single Channel Access at a Slot (K = 1)

To evaluate the performance of a channel access rule, we use the performance of a genie-

aided rule (in which the channel statistical information Θ is known) as a benchmark for

comparison. For the genie-aided rule, let I(j) denote the set of channels sensed idle at

Slot j. Then among channels in I(j), the secondary user should access the channel with

the maximal expected reward. If Channel i is sensed idle (i.e., i ∈ I(j)), Channel i’s

expected reward is actually the conditional reward E[Si(j)|Xi(j) = 1]. Therefore, the

secondary user should access the sensed-idle channel with the maximal conditional reward,

i.e., max
i∈I(j)

E [Si(j)|Xi(j) = 1]. And until Slot t, the expected reward of the genie-aided

rule is thus given as
t∑

j=1
E
[
max
i∈I(j)

E [Si(j)|Xi(j) = 1]
]
, where the outer expectation is for

I(j) (totally there are 2N different possible sets of sensed-idle channels), and the inner

expectation is to calculate the conditional reward of Channel i.

For any adaptive allocation rule denoted ψ, where ψ(j) = imeans Channel i is decided

to be accessed at Slot j, the expected reward until Slot t is E
[ t∑
j=1

N∑
i=1

E[Si(j)|Xi(j) =

1] × I[ψ(j) = i]
]
, where the outer expectation is for ψ(j), and I[·] means the indicator
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function.

The regret (also the learning loss) of ruleψ until Slot t, defined as the difference between

the expected rewards of ψ and the genie-aided rule, is given as

R(t, ψ) =

t∑
j=1

E
[
max
i∈I(j)

E[Si(j)|Xi(j) = 1]
]
−E
[ t∑
j=1

N∑
i=1

E[Si(j)|Xi(j) = 1]I[ψ(j) = i]
]
.

(4.1)

Since the secondary user can sense all the channels before selecting a channel to access,

the channel access process can be modeled as an MABP with side observation [95]. For an

MABP, it is extremely hard to derive an optimal channel access strategy such that the regret

is minimized. Therefore, researchers instead focus on regret bound in asymptotic sense.

For example, in [12], asymptotically order optimal rules are derived such that the regret is

O(ln t) when t → ∞. In our research, we also focus on channel access rules with good

asymptotic performance such as asymptotically finite regret. Note that for two-armed bandit

problem with side observation, reference [95] gives a rule with asymptotically finite regret

under direct information setting. In our work, we derive a rule with asymptotically finite

regret for our multi-armed bandit problem with side observation, as follows.

Define sensing result as the set of channels that are sensed idle. For sensing of the N

channels, we have 2N possible sensing results. At Slot t, we keep a 2N -sized vector of the

sample-mean probabilities of the 2N sensing results, denoted Ps = (Ps,1, Ps,2, ..., Ps,2N ),

in which Ps,i is the sample-mean probability of the ith sensing result, given as (the num-

ber of slots until Slot t in which the ith sensing result happens)/t. We also denote PΘ′ =

(PΘ′,1, PΘ′,2, ..., PΘ′,2N ) as a 2N -sized vector of the probabilities of the 2N sensing re-

sults by assuming that Θ′ = (θ′1, θ
′
2, ..., θ

′
N ) is the vector of the channel idle probabili-

ties. For example, if the 2nd sensing result is the set of Channels 1 and 2, then PΘ′,2 =

f(θ′1)f(θ
′
2)
∏2N

i=3(1− f(θ′i)), where f(θi) is defined at the beginning of Section 4.2.

Our proposed channel access rule is shown in Algorithm 4.1.

In Line 7 of Algorithm 4.1, EΘ̂ [Si(t)|Xi(t) = 1] means the conditional reward of

Channel i, by assuming that Θ̂ is the vector of the channel idle probabilities. In other

words, EΘ̂ [Si(t)|Xi(t) = 1] =
(1−P i

f )θ̂i

f(θ̂i)
, where θ̂i is the ith element in Θ̂. Here we select

the channel with the largest conditional reward by using Θ̂ as the estimation of Θ.

Remark 4.1. In Algorithm 4.1, the key concept is the 2N -sized vectors of the probabilities
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Algorithm 4.1 Single Channel Access with Full Channel Sensing at Slot t

1: Sense N channels, record sensing observation X(t) = (X1(t), X2(t), ..., XN (t)), and
update Ps.

2: Construct candidate set C(t) of the form

C(t) =
{
Θ† : ||PΘ† −Ps||2 ≤ inf

Θ′∈(0,1]N
||PΘ′ −Ps||2 +

1

t

}
where || · ||2 is the L2-norm of a vector, given as ||x||2 =

√
x21 + x22 + ...+ x2n for a

vector x = (x1, x2, ..., xn).
3: Arbitrarily pick up Θ̂ ∈ C(t), as the estimation of Θ.
4: if the set of channels sensed idle at Slot t, I(t), is empty then
5: Do not access any channel at Slot t.
6: else
7: Access Channel i∗ = argmax

i∈I(t)
EΘ̂ [Si(t)|Xi(t) = 1].

of the 2N sensing results. At each slot, Ps is the sample-mean vector until the slot. And

by assuming any channel idle probability vector Θ′, we can calculate PΘ′ . Here we use

the L2-norm of (PΘ′ − Ps) to represent the distance of the two vectors PΘ′ and Ps. The

first term on the right hand side of the inequality in Line 2 of the algorithm is the infinimum

of the distance from PΘ′ to the sample-mean vector Ps. In the algorithm, any vector Θ†

can be taken as the estimated channel idle probability vector, as long as the distance of

its associated vector PΘ† to the sample-mean vector Ps is “not far" from the infinimum

distance. Here “not far" means that the difference of the two distances is bounded by 1/t.

When t is small, the sample-mean vector Ps may not be accurate to reflect the vector of real

probabilities of the 2N sensing results, and thus, we search PΘ† in a large region around

Ps (i.e., 1/t is large). When t becomes large, the sample-mean vector Ps becomes accurate

enough to reflect the vector of real probabilities of the 2N sensing results, and thus, we

search PΘ† in a small region around Ps (i.e., 1/t is small).

Theorem 4.1. Algorithm 4.1 achieves asymptotically finite regret; that is, lim sup
t→∞

R(t) <

∞.

Proof. Recall that Θ is the vector of real channel idle probabilities, and in Line 3 of Al-

gorithm 4.1, Θ̂ is used to estimate Θ. Denote the sensing result at Slot t as u(t), where

u(t) = l (1 ≤ l ≤ 2N ) means the lth sensing result. Denote kΘ(u(t)) and kΘ̂(u(t)) as the

best channel which has the largest conditional reward (conditioned on that the sensing result

is u(t)) when Θ and Θ̂ are used as the vector of channel idle probabilities, respectively.
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By following Algorithm 4.1, the probability of wrong access (i.e. access a suboptimal

channel) is

P
(
kΘ̂(u(t)) ̸= kΘ(u(t))

)
≤ P

(
∃u ∈ U , kΘ̂(u) ̸= kΘ(u)

)
(4.2)

where P(·) means probability, and U = {1, 2, 3..., 2N}.

Define a set Ce , {Θ′ : ∃u ∈ U , kΘ′(u) ̸= kΘ(u)}. Then (4.2) is equivalent to

P
(
kΘ̂(u(t)) ̸= kΘ(u(t))

)
≤ P

(
Θ̂ ∈ Ce

)
. (4.3)

Define ε
△
= inf

Θ′∈Ce
||PΘ′ −PΘ||2. Then we have ε > 0 with proof given in Appendix 4.A.

We first consider that an event
{
||PΘ −Ps||2 < ε

3

}
happens. From Algorithm 4.1, we

have

||PΘ̂ −Ps||2 ≤ inf
Θ′∈(0,1]N

||PΘ′ −Ps||2 +
1

t
≤ ||PΘ −Ps||2 +

1

t
<
ε

3
+

1

t
. (4.4)

When t is large enough such that 1
t ≤ ε

3 , from (4.4) we have

||PΘ −PΘ̂||2 ≤ ||PΘ −Ps||2 + ||PΘ̂ −Ps||2 < ε (4.5)

which means Θ̂ /∈ Ce from the definition of ε. It also means that, if Θ̂ ∈ Ce, then we should

have ||PΘ −Ps||2 ≥ ε
3 . Then we have

P
(
Θ̂ ∈ Ce

)
≤ P

(
||PΘ −Ps||2 ≥

ε

3

)
≤ a(t)

△
= (t+ 1)2

N
e
−t inf

P′
s∈B

∑
i∈U

P ′
s,i ln

P ′
s,i

PΘ,i (4.6)

where the second inequality comes from the Sanov Theorem (i.e., Theorem 2.1.10) in

[96], and B denotes a vector space
{
P′

s : ||PΘ −P′
s||2 ≥ ε

3

}
, which is closed, and P′

s =

(P ′
s,1, P

′
s,2, ..., P

′
s,2N

).

For the exponent in the expression of a(t), we have

∑
i∈U

P ′
s,i ln

P ′
s,i

PΘ,i
=
∑
i∈U

PΘ,i

P ′
s,i

PΘ,i
ln
P ′
s,i

PΘ,i
≥

(∑
i∈U

PΘ,i

P ′
s,i

PΘ,i

)
ln
∑
i∈U

PΘ,i

P ′
s,i

PΘ,i
= 0

(4.7)

where the inequality comes from the Jensen’s inequality and the fact that x lnx is a convex
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function. In addition,
∑
i∈U

P ′
s,i ln

P ′
s,i

PΘ,i
is continuous and strictly convex, which, together

with ε > 0 and (4.7), leads to inf
P′

s∈B

∑
i∈U

P ′
s,i ln

P ′
s,i

PΘ,i
> 0. And thus, from the definition of

a(t) given in (4.6), we have lim
t→∞

a(t+1)
a(t) < 1.

From (4.3) and (4.6), we have P
(
kΘ̂ (u(t)) ̸= kΘ(u(t))

)
≤ a(t) when 1

t ≤ ε
3 . So for

regret R(t) of Algorithm 4.1, we have

lim sup
t→∞

R(t)

≤ c0

⌊ 3
ε
⌋∑

j=1

P
(
kΘ̂ (u(j)) ̸= kΘ(u(j))

)
+ c0 lim

t→∞

t∑
j=⌊ 3

ε
⌋+1

P
(
kΘ̂ (u(j)) ̸= kΘ(u(j))

)

≤ c0

⌊
3

ε

⌋
+ c0 lim

t→∞

t∑
j=⌊ 3

ε
⌋+1

a(j) <∞ (4.8)

where ⌊·⌋ is a floor function, c0 denotes the largest possible reward loss due to wrong access

in a slot, which is finite, and the last inequality comes from lim
t→∞

a(t+1)
a(t) < 1 by the ratio test

of convergency of a series.

Therefore, by following Algorithm 4.1, asymptotically finite regret is achieved.

Theorem 4.1 indicates the performance of Algorithm 4.1 is surprisingly good through

full channel sensing prior to channel access. As a comparison, in the rules derived in [12]

where the secondary user senses one channel with perfect sensing, performance of R(t) ∼

O(ln t) is achieved, which means the regret goes to infinity when t→ ∞.

Algorithm 4.1 suffers from high complexity in the construction of candidate set C(t) in

each slot, especially when t is large. To reduce complexity, an alternative channel access

rule with linear complexity is introduced, as given in Algorithm 4.2.

Algorithm 4.2 Single Channel Access with Full Channel Sensing at Slot t

1: Sense N channels, and get sensing observation X(t).
2: Estimate the idle probability of Channel i (i ∈ {1, 2, ..., N}) to be θ̂i(t) =

1
t

t∑
j=1

Xi(j)+P i
d−1

P i
d−P i

f
.

3: if the set of channels sensed idle at Slot t, I(t), is empty then
4: Do not access any channel at Slot t.
5: else
6: Access Channel i∗ = argmax

i∈I(t)
EΘ̂ [Si(t)|Xi(t) = 1] where Θ̂ = (θ̂1, θ̂1, ..., θ̂N ).
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Remark 4.2. For Channel i with idle probability θi, detection probability P i
d, and false

alarm probability P i
f , the expectation of the sample-mean 1

t

t∑
j=1

Xi(j) is f(θi) = (P i
d −

P i
f )θi + 1− P i

d. Thus, we use unbiased estimator of θi, given as θ̂i(t) =
1
t

t∑
j=1

Xi(j)+P i
d−1

P i
d−P i

f
.

Note that, in a CRN, normally a large detection probability (e.g., not less than 0.9 in the

IEEE 802.22 proposal) and a small false alarm probability (e.g., not more than 0.1 in the

IEEE 802.22 proposal) are required. Therefore, we have P i
d ̸= P i

f .

Theorem 4.2. Algorithm 4.2 achieves asymptotically finite regret.

Proof. Define function gi(x)
△
=

(1−P i
f )x

(1−P i
f )x+(1−P i

d)(1−x)
, 0 < x < 1. Then the conditional

reward of Channel i at Slot j, i.e., E[Si(j)|Xi(j) = 1] =
(1−P i

f )θi

(1−P i
f )θi+(1−P i

d)(1−θi)
, can be

expressed as gi(θi). Without loss of generality, assume g1(θ1) > g2(θ2) > ... > gN (θN ).

Then the genie-aided rule is to access the channel with the smallest index among all sensed-

free channels. Define ε
△
= min1≤i<N

(
gi(θi)−gi+1(θi+1)

)
, which is the minimal difference

of the conditional rewards of any two channels.

At Slot t, gi(θ̂i(t)) is the conditional reward of Channel i based on the estimated

channel idle probability θ̂i(t) in Algorithm 4.2. It is apparent that, if for each channel

i ∈ {1, 2, ..., N} we have |gi(θ̂i(t)) − gi(θi)| < ε
2 , then Algorithm 4.2 will make correct

access (i.e., access the same channel as the genie-aided rule does) at Slot t. This means

P(correct access at Slot t) ≥
N∏
i=1

P
(
|gi(θ̂i(t))− gi(θi)| <

ε

2

)
. (4.9)

Note that gi(x) is a continuous and strictly increasing function of x ∈ (0, 1). Denote

its inverse function as g−1
i (·), which is a continuous and strictly increasing function within

(gi(0), gi(1)). Denote νi
△
= min

(
g−1
i (gi(θi) +

ε
2)− θi, θi − g−1

i (gi(θi)− ε
2)
)
,4 which is a

positive value. So, if |θ̂i(t)− θi| < νi, then we have |gi(θ̂i(t))− gi(θi)| < ε
2 . This means

P
(
|gi(θ̂i(t))− gi(θi)| <

ε

2

)
≥ P

(
|θ̂i(t)− θi| < νi

)
. (4.10)

4Note that the range of gi(x) is (gi(0), gi(1)). So when gi(θi)+
ε
2
> gi(1), we set g−1

i (gi(θi)+
ε
2
) = 1;

when gi(θi)− ε
2
< gi(0), we set g−1

i (gi(θi)− ε
2
) = 0.
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Based on Chernoff-Hoeffding bound, we have

P
(
|θ̂i(t)− θi| < νi

)
≥ 1− 2e−2ν2i t. (4.11)

Based on (4.9)-(4.11), we have

P(wrong access at Slot t) = 1− P(correct access at Slot t)

≤ 1−
∏N

i=1

(
1− 2e−2ν2i t

)
≤ 1− (1− 2e−2ν2t)N

= 2Ne−2ν2t −
∑N

l=2

(
N
l

) (
−2e−2ν2t

)l (4.12)

where ν = min1≤i≤N νi.

Then for regret R(t) of Algorithm 4.2, we have

lim sup
t→∞

R(t) ≤ lim sup
t→∞

t∑
j=1

c0P (wrong access at Slot t)

≤ lim sup
t→∞

t∑
j=1

c0

(
2Ne−2ν2t −

∑N
l=2

(
N
l

) (
−2e−2ν2t

)l)
<∞

where c0 denotes the largest possible reward loss by accessing a wrong channel at a slot.

4.2.2 Multiple Channel Access at a Slot (K > 1)

Assume the secondary user can simultaneously access up to K(> 1) channels at a slot.

Therefore, if the number of channels sensed idle at a slot is less than or equal to K, then all

those sensed-idle channels are accessed by the secondary user; otherwise, K channels are

selected among the sensed-idle channels to be accessed by the secondary user.

We still use the performance of a genie-aided rule with Θ known as a benchmark for

comparison. Until Slot t, the expected reward of the genie-aided rule is given as

t∑
j=1

E
[

max
K(j)⊂I(j),|K(j)|≤K

∑
i∈K(j)

E[Si(j)|Xi(j) = 1]
]

where I(j) denotes the set of channels sensed idle at Slot j and K(j) denotes the set of

channels to be accessed at Slot j. The outer expectation is for I(j), while the inner expec-

tation is to calculate the conditional reward for Channel i.

For any adaptive allocation rule Ψ with multiple channel access, where Ψ(j) denotes the
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set of channels to be accessed at Slot j, the expected reward until Slot t is E
[ t∑
j=1

N∑
i=1

E[Si(j)|

Xi(j) = 1]I[i ∈ Ψ(j)]
]
.

The regret of rule Ψ is given as

R(t,Ψ) =
t∑

j=1

E
[

max
K(j)⊂I(j),|K(j)|≤K

∑
i∈K(j)

E[Si(j)|Xi(j) = 1]
]

− E
[ t∑
j=1

N∑
i=1

E[Si(j)|Xi(j) = 1]I[i ∈ Ψ(j)]
]
.

For multiple channel access, we modify Line 7 in Algorithm 4.1 and Line 6 in Algo-

rithm 4.2 as follows: if |I(t)| ≤ K, then access all channels in I(t); otherwise, among all

the channels in I(t), access the K channels with the largest K values of EΘ̂[Si(t)|Xi(t)=

1]. It can be proved that the resulted algorithms have asymptotically finite regret, by using

similar proofs to those of Theorems 4.1 and 4.2.

4.3 Case II: with Partial Channel Sensing

Still consider N channels. At a slot, the secondary user can sense M(< N) channels and

can access up to K(≤M) channels among the sensed-idle channels. Therefore, we have a

bi-level MABP: the first level is to decide which M channels to sense; and the second level

is to decide, among the sensed-idle channels, which up to K channels to access. The arms

played in the two levels are different, which makes the problem much more challenging

than classical MABP. To the best of our knowledge, a general bi-level MABP is still an

open problem. In the following, we provide solutions to our particular bi-level MABP.

Possible extension of our solutions to a more general bi-level MABP is to be investigated

in our future work.

Unlike Case I where we have common channel access rules for homogeneous sensing

(i.e., P i
d = Pd, P i

f = Pf , ∀i ∈ {1, 2, ..., N}) and heterogeneous sensing (i.e., for each

channel, say Channel i, we have distinct setting {P i
d, P

i
f}), the homogeneous sensing and

heterogeneous sensing need to be treated in different ways in Case II, as discussed in Section

4.3.1 and 4.3.2, respectively.
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4.3.1 Homogeneous Sensing

Consider P i
d = Pd, P i

f = Pf , ∀i ∈ {1, 2, ..., N}. Without loss of generality, we assume

θ1 > θ2 > ... > θN .

We still use the performance of a genie-aided rule as a benchmark for comparison.

From Theorem 3.2, it can be seen that the genie-aided rule should always sense M∗ =

{1, 2, ...,M}. So until Slot t, the expected reward of the genie-aided rule is given as

U∗(t) =
t∑

j=1

E

 max
K(j)⊂IM∗ (j),|K(j)|≤K

∑
i∈K(j)

E [Si(j)|Xi(j) = 1]


where IM∗(j) denotes the set of sensed-idle channels at Slot j if the channels in M∗ are

sensed, and K(j) denotes the set of channels to access at Slot j.

In the following, we investigate single channel access (K = 1) and multiple channel

access (K > 1), respectively.

4.3.1.1 Single Channel Access at a Slot (K = 1)

The expected reward of the genie-aided rule until Slot t is:

U∗(t) =

t∑
j=1

E
[

max
i∈IM∗ (j)

E [Si(j)|Xi(j) = 1]

]
. (4.13)

Compared with the genie-aided rule, regret of a single channel access rule ϕ, in which ϕ(j)

denotes the channel to be accessed at Slot j, is given as

R(t, ϕ) = U∗(t)− E

 t∑
j=1

N∑
i=1

E[Si(j)|Xi(j) = 1]I[ϕ(j) = i]

 . (4.14)

Unlike Case I in Section 4.2, we cannot expect asymptotically finite regret R(t). The

reason is as follows. For partial channel sensing, consider a perfect scenario in which all

sensed-idle channels are to be accessed and all sensings are perfect. It is shown in Theorem

3.1 in [88] and Lemma 2 in [12] that the perfect scenario has a lower bound of O(ln t) on

R(t) as t→ ∞. Compared with such perfect scenario, our considered system suffers extra

learning loss due to the possibility that among the sensed-idle channels, not those with the

largest conditional rewards are accessed. Therefore, the regret of any rule in our Case II has
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a lower bound of O(ln t).

Note that references [88] and [89] give rules with regretO(ln t) when t→ ∞. However,

performance of the rules with finite t is still unclear. In the following, using the UCB1 (here

UCB stands for Upper Confidence Bound) in [97], we derive an OCSA rule that has regret

R(t) ∼ O(ln t) with t → ∞ and with finite t. Note that the original UCB1 cannot be

directly applied to our research problem, because, if it is directly applied, there is only one

decision, i.e., which channels to sense at a slot. Since in our research problem there are two

decisions (which channels to sense, and which channel to access among the sensed-idle

channels), we have nontrivial extensions to the original UCB1.

At each slot (say Slot t), the secondary user keeps records T(t) = (T1(t), T2(t), ...,

TN (t)) and Y(t) = (Y1(t), Y2(t), ..., YN (t)), where Ti(t) is the number of slots in which

Channel i has been sensed until Slot t, and Yi is the number of slots in which Channel i has

been sensed idle until Slot t. The proposed OCSA rule is given in Algorithm 4.3.

Algorithm 4.3 Single Channel Access with Homogeneous Sensing in Case II (Partial Chan-
nel Sensing)

1: Sense allN channels by using
⌈
N
M

⌉
slots (where ⌈·⌉ is a ceiling function). At each slot,

randomly select one sensed-idle channel to access. Update T and Y at each slot.
2: for each subsequent Slot t do

3: Estimate θi (i = 1, 2, ..., N ) by θ̂i(t) =
Yi(t−1)

Ti(t−1)
+Pd−1

Pd−Pf
, and determine channel

set M(t) to sense, which includes channels with the largest M indices θ̂i(t) +
1

Pd−Pf

√
2 ln(t−1)
Ti(t−1) .

4: Sense channels in M(t). Let I(t) denote the set of sensed-idle channels. Update
T(t) and Y(t).

5: if I(t) is nonempty then
6: Access Channel i∗ = argmax

i∈I(t)

{
θ̂i(t) +

1
Pd−Pf

√
2 ln(t−1)
Ti(t−1)

}
.

7: else
8: Do not access any channel at Slot t.

Remark 4.3. Similar to Algorithm 4.2, we use an unbiased estimation of θi. When de-

termining the channels to sense, we add the extra term 1
Pd−Pf

√
2 ln(t−1)
Ti(t−1) in the index. Its

purpose is to guarantee that each channel is sensed in a sufficient number of slots, as fol-

lows. When a channel, say Channel i, is not sufficiently sensed, this channel has a relatively

small Ti(t − 1), while all channels have the same ln(t − 1). So Channel i is very likely to

have a larger index than other channels, which gives Channel i a larger chance to be selected
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to sense. Consider two channels, Channel i1 and Channel i2, as an example. For Channel

i1, its Ti1(t) does not grow in the scale of O(ln t), and thus, the extra term (which is very

likely larger than 1) dominates in the index of Channel i1. For Channel i2, its Ti2(t) grows

in the scale of O(ln t), and thus, the term θ̂i2(t) dominates in the index of Channel i2. Then

it is very likely that Channel i1 has a larger index than Channel i2, which gives Channel

i1 more chance to be selected. Therefore, the extra term in the index implies that the time

to sense each channel is at least O(ln t).5 When all the channels’ Ti(t)’s (i = 1, 2, ...N )

grow at least in the scale of O(ln t), the terms θ̂i(t)’s tend to dominate in the indices, and

the secondary user tends to select the channel with the largest θ̂i(t).

And when the sensing of a channel is not accurate enough (small Pd or large Pf ), the

extra term will give the channel a larger chance to be sensed. This is desired because more

sensings are needed to estimate θi if the sensing is not accurate enough.

Theorem 4.3. The regret R(t) of Algorithm 4.3 is O(ln t) with t→ ∞ and with finite t.

Proof. Recall that we assume θ1 > θ2 > ... > θN , and for the genie-aided rule, M∗ =

{1, 2, ...,M} is the optimal set of channels to sense. Then for any rule, the expected reward

loss in a slot (say Slot j) is bounded by the maximal expected reward of the genie-aided

rule in the slot, given as ∆
△
= E

[
max
i∈M∗

θi(1−Pf )
f(θi)

Xi(j)
]
, where f(θi) = (1 − P i

f )θi + (1 −

P i
d)(1− θi) is the probability that Channel i is sensed idle.

Recall that in Algorithm 4.3, M(j) denotes the set of channels to sense at Slot j. So

until Slot t, the regret R(t) of Algorithm 4.3 is bounded as

R(t) ≤ ∆

t∑
j=1

E
[
I[M(j) ̸= M∗]

]
+∆

t∑
j=1

E

[
I[M(j) = M∗]×

I
[

∪
i<k,i∈IM∗ (j),k∈IM∗ (j)

{
θ̂i(j) +

1

Pd − Pf

√
2 ln(j − 1)

Ti(j − 1)
< θ̂k(j) +

1

Pd − Pf

√
2 ln(j − 1)

Tk(j − 1)

}]]
(4.15)

where IM∗(j) denotes sensed-idle channels in Slot j when channels in M∗ are sensed. On

the right hand side of (4.15), the first term is the regret bound when the secondary user does

not select exactly M∗ to sense (i.e., M(j) ̸= M∗), and the second term is the regret bound

when the secondary user senses channels in M∗ but does not select the best sensed-idle

channel to access.
5This is consistent with the result in the subsequent Theorem 4.3 that the regret of Algorithm 4.3 is O(ln t).
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In the sequel of this proof, for Slot j, denote θ̂Tk (Tk(j − 1)) as the estimated idle prob-

ability of Channel k, as described in Algorithm 4.3, when Channel k has been sensed by

Tk(j − 1) slots until Slot j − 1.

Now we derive a bound for the first term on the right hand side of (4.15). Recall that

Ti(t) is the number of slots in which Channel i is sensed until Slot t. Then we have

t∑
j=1

E
[
I [M(j) ̸= M∗]

]
≤

N∑
i=M+1

E[Ti(t)]. (4.16)

Further, for M + 1 ≤ i ≤ N and any positive integer l, we have

Ti(t) = 1 +
t∑

j=⌈ N
M ⌉+1

I [i ∈ M(j)]

= 1 +
t∑

j=⌈ N
M ⌉+1

I [i ∈ M(j), Ti(j − 1) ≥ l] +
t∑

j=⌈ N
M ⌉+1

I [i ∈ M(j), Ti(j − 1) < l]

≤ l +
t∑

j=⌈ N
M ⌉+1

I [i ∈ M(j), Ti(j − 1) ≥ l]

≤ l +
t∑

j=⌈ N
M ⌉+1

I
[

min
k∈M∗

{
θ̂Tk (Tk(j − 1)) + 1

Pd−Pf

√
2 ln(j−1)
Tk(j−1)

}
≤ θ̂Ti (Ti(j − 1)) + 1

Pd−Pf

√
2 ln(j−1)
Ti(j−1) , Ti(j − 1) ≥ l

]
≤ l +

M∑
k=1

t−1∑
j=⌈ N

M ⌉
I
[
θ̂Tk (Tk(j)) +

1
Pd−Pf

√
2 ln j
Tk(j)

≤ θ̂Ti (Ti(j)) +
1

Pd−Pf

√
2 ln j
Ti(j)

, Ti(j) ≥ l
]

≤ l +
M∑
k=1

t−1∑
j=⌈ N

M ⌉
I
[

min
0<t1≤j

{
θ̂Tk (t1) +

1
Pd−Pf

√
2 ln j
t1

}
≤ max

l≤t2≤j

{
θ̂Ti (t2) +

1
Pd−Pf

√
2 ln j
t2

}]
≤ l +

M∑
k=1

t∑
j=1

j∑
t1=1

j∑
t2=l

I
[
θ̂Tk (t1) +

1
Pd−Pf

√
2 ln j
t1

≤ θ̂Ti (t2) +
1

Pd−Pf

√
2 ln j
t2

]
.

(4.17)

Similar to analysis in [97], we have the fact that if event θ̂Tk (t1) +
1

Pd−Pf

√
2 ln j
t1

≤

θ̂Ti (t2)+
1

Pd−Pf

√
2 ln j
t2

happens, then at least one of the following three events will happen:

θ̂Tk (t1) ≤ θk − 1
Pd−Pf

√
2 ln j
t1

, θ̂Ti (t2) ≥ θi +
1

Pd−Pf

√
2 ln j
t2

, and θk < θi+
2

Pd−Pf

√
2 ln j
t2

.

In other words, we have

E
[
I
[
θ̂Tk (t1) +

1
Pd−Pf

√
2 ln j
t1

≤ θ̂Ti (t2) +
1

Pd−Pf

√
2 ln j
t2

]]
≤ E

[
I
[
θ̂Tk (t1) ≤ θk − 1

Pd−Pf

√
2 ln j
t1

]]
+ E

[
I
[
θ̂Ti (t2) ≥ θi +

1
Pd−Pf

√
2 ln j
t2

]]
+ E

[
I
[
θk < θi +

2
Pd−Pf

√
2 ln j
t2

]]
.

(4.18)

Using Chernoff-Hoeffding bound, the first two terms on the right hand side of (4.18) are
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bounded as

E
[
I
[
θ̂Tk (t1) ≤ θk − 1

Pd − Pf

√
2 ln j

t1

]]
≤ j−4,E

[
I
[
θ̂Ti (t2) ≥ θi +

1

Pd − Pf

√
2 ln j

t2

]]
≤ j−4.

(4.19)

We note that if t2 ≥ 8 ln t
(θM−θi)2(Pd−Pf )2

, then we always have θk ≥ θi +
2

Pd−Pf

√
2 ln j
t2

for

any k ∈ M∗ and j ≤ t, which means I
[
θk < θi +

2
Pd−Pf

√
2 ln j
t2

]
= 0. Therefore, by

setting l =
⌈

8 ln t
(θM−θi)2(Pd−Pf )2

⌉
, from (4.16)-(4.19) we have

t∑
j=1

E [I [M(j) ̸= M∗]]

≤
N∑

i=M+1

⌈
8 ln t

(θM−θi)2(Pd−Pf )2

⌉
+

N∑
i=M+1

M∑
k=1

∞∑
j=1

j∑
t1=1

j∑
t2=

⌈
8 ln t

(θM−θi)
2(Pd−Pf )2

⌉ 2j−4

≤
N∑

i=M+1

8 ln t
(θM−θi)2(Pd−Pf )2

+ (N −M)
(
Mπ2

3 + 1
)
.

(4.20)

To bound the second term on the right hand side of (4.15), we have

t∑
j=1

I[M(j) = M∗]I
[

∪
i<k,i∈IM∗ (j),k∈IM∗ (j)

[
θ̂Ti (Ti(j − 1)) + 1

Pd−Pf

√
2 ln(j−1)
Ti(j−1)

< θ̂Tk (Tk(j − 1)) + 1
Pd−Pf

√
2 ln(j−1)
Tk(j−1)

]]
≤ 1 +

t∑
j=⌈ N

M ⌉+1

I[M(j) = M∗]I
[

∪
i<k,i,k∈IM∗ (j)

[
θ̂Ti (Ti(j − 1)) + 1

Pd−Pf

√
2 ln(j−1)
Ti(j−1)

< θ̂Tk (Tk(j − 1)) + 1
Pd−Pf

√
2 ln(j−1)
Tk(j−1)

]]
≤ 1 +

∑
i<k, i,k∈M∗

t∑
j=⌈ N

M ⌉+1

I[M(j) = M∗]I
[
θ̂Ti (Ti(j − 1)) + 1

Pd−Pf

√
2 ln(j−1)
Ti(j−1)

< θ̂Tk (Tk(j − 1)) + 1
Pd−Pf

√
2 ln(j−1)
Tk(j−1)

]
≤

∑
i<k, i,k∈M∗

{
li,k +

t∑
j=⌈ N

M ⌉+1

(
I [M(j) = M∗, Tk(j − 1) ≥ li,k]

· I
[
θ̂Ti (Ti(j − 1)) + 1

Pd−Pf

√
2 ln(j−1)
Ti(j−1) < θ̂Tk (Tk(j − 1)) + 1

Pd−Pf

√
2 ln(j−1)
Tk(j−1)

])}
≤

∑
i<k, i,k∈M∗

{
li,k +

t∑
j=1

j∑
t1=1

j∑
t2=li,k

I
[
θ̂Ti (t1) +

1
Pd−Pf

√
2 ln j
t1

< θ̂Tk (t2) +
1

Pd−Pf

√
2 ln j
t2

]}
(4.21)

where li,k can be an arbitrary positive integer.

Similar to the treatments in (4.18)-(4.20), the second term on the right hand side of
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(4.15) is bounded as

∆
t∑

j=1
E

[
I[M(j) = M∗]I

[
∪

i<k,i,k∈IM∗ (j)

{
θ̂Ti (Ti(j − 1)) + 1

Pd−Pf

√
2 ln(j−1)
Ti(j−1)

< θ̂Tk (Tk(j − 1)) + 1
Pd−Pf

√
2 ln(j−1)
Tk(j−1)

}]]
≤ ∆ln t

∑
i<k∈M∗

8
(θi−θk)2(Pd−Pf )2

+∆
(
M
2

)(
π2

3 + 1
)
.

(4.22)

Then, from (4.15), (4.20) and (4.22), the regret until Slot t, R(t), is bounded as

R(t) ≤ ∆ln t
N∑

i=M+1

8
(θM−θi)2(Pd−Pf )2

+∆ ln t
∑

i<k∈M∗

8
(θi−θk)2(Pd−Pf )2

+∆(N −M)
(
Mπ2

3 + 1
)
+∆

(
M
2

) (
π2

3 + 1
)
.

(4.23)

In other words, R(t) ∼ O(ln t) for finite t and for t→ ∞.

4.3.1.2 Multiple Channel Access at a Slot (K > 1)

When the secondary user can simultaneously access K channels at a slot, we modify Al-

gorithm 4.3 as follows: in Line 6, instead of accessing a single channel, the secondary user

selects up toK channels in I(t) with the largest values of θ̂i(t)+ 1
Pd−Pf

√
2 ln(t−1)
Ti(t−1) . Similar

to proof of Theorem 4.3, it can be proved that the regret of the resulted rule is O(ln t) for

finite t and for t→ ∞.

4.3.2 Heterogenous Sensing

Consider that Channel i (i = 1, ..., N ) has distinct setting
{
P i
d, P

i
f

}
. The genie-aided rule

with known channel statistics Θ is still used as a benchmark of performance.

When channel statistics Θ is unknown, it is desired to find a rule of good performance

on regret R(t) under heterogenous sensing. Then a question is raised: can we find a similar

rule to those in Section 4.3.1, with R(t) ∼ O(ln t) for finite t and for t → ∞? To answer

this question, we first look into the insights in the rules in Section 4.3.1.

As aforementioned, in Case II (partial channel sensing), there are two levels of MABP:

the first level is to select which channels to sense, i.e., at Slot j, select channel set M to

maximize

E
[

max
K(j)⊂IM(j),|K(j)|≤K

∑
i∈K(j)

E[Si(j)|Xi(j) = 1]
]
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while the second level is to select which channels to access, i.e., to select sensed-idle chan-

nels with the largest E [Si(j)|Xi(j) = 1]. With homogeneous sensing, the criterion in the

first level is simplified to finding the M channels with largest M θi’s, while the criterion in

the second level is simplified to, among sensed-idle channels, finding up toK channels with

the largest θi’s. Therefore, in Algorithm 4.3, in both levels we use sample mean of sensing

observations of each channel to estimate θi. On the other hand, with heterogeneous sensing,

the criteria in the two levels cannot be simplified to finding channels with the largest θi’s.

Therefore, it is not feasible to use sample mean of sensing observations as Algorithm 4.3

does. Rather, we need samples to reflect reward of each arm in each level, as shown in the

following.

4.3.2.1 Single Channel Access at a Slot (K = 1)

Since the secondary user can sense M channels at a slot, the secondary user can sense

one from
(
N
M

)
possible sets of M channels, denoted M1,M2, ...,M(NM). In set Mi (i =

1, 2, ...,
(
N
M

)
), let mi,j (j = 1, 2, ...,M ) denote the jth channel in Mi. If the secondary

user senses set Mi at Slot t, let IMi(t) represent the sensing result, which is the set of

sensed-idle channels. Until Slot t, let Ti(t) denote the number of slots in which Mi is

sensed, and Yi(t) denote the cumulative reward of the slots in which Mi is sensed. Until

Slot t, let Ti,j(t) (j = 1, 2, ...,M ) denote the number of slots in which Mi is sensed

and subsequently Channel mi,j is accessed, and Yi,j(t) denote the cumulative reward of

Channel mi,j in slots in which Mi is sensed and subsequently Channel mi,j is accessed.

Note that when we say “reward”, it means the secondary user transmits over a channel,

and receives acknowledgement (ACK) for the transmission. Here we assume the ACK

transmission is error free. If no ACK is received (which means secondary transmission

fails due to collision with primary transmission which is not detected), the reward of the

corresponding secondary transmission is 0. The proposed OCSA rule is given in Algorithm

4.4. The secondary user keeps records of Ti(t), Yi(t), Ti,j(t), and Yi,j(t). In the sequel, for

simplicity of presentation, the index (t) may be omitted for Ti(t), Yi(t), Ti,j(t), and Yi,j(t).

Remark 4.4. For set Mi, Yi
Ti

is the sample-mean of the reward if the channels in Mi are

sensed. It is desired that a channel set with the largest reward is sensed. Similar to Al-

gorithm 4.3, to guarantee each channel set is sensed sufficiently, we add an extra term,√
2 ln(t−1)

Ti
, to Yi

Ti
, to form the index in Line 4 of Algorithm 4.4. In Line 8 of Algorithm
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Algorithm 4.4 Single Channel Access with Heterogeneous Sensing in Case II (Partial
Channel Sensing)

1: for i = 1 :
(
N
M

)
do

2: Keep sensing Mi in continuous slots, and at each slot access one idle channel that
was not accessed before when Mi is sensed. This procedure is repeated until each
channel in Mi has been accessed at least once. For each slot, update Ti, Yi, Ti,j , and
Yi,j , j = 1, 2...,M .

3: for each subsequent Slot t do
4: Calculate indices Yi

Ti
+
√

2 ln(t−1)
Ti

(i ∈ {1, 2, ...,
(
N
M

)
}), and choose i† =

arg max
i=1,...,(NM)

{
Yi
Ti

+
√

2 ln(t−1)
Ti

}
.

5: Sense channels in Mi†

6: if IM
i†
(t), the set of sensed-idle channels at Slot t, is nonempty then

7: Calculate indices
Y
i†,j

T
i†,j

+

√
2 ln(t−1)
T
i†,j

, mi†,j ∈ IM
i†
(t).

8: Select j† = argmax
m

i†,j∈IMi†
(t)

{
Y
i†,j

T
i†,j

+

√
2 ln(t−1)
T
i†,j

}
, access Channelmi†,j† , and check

whether the transmission is successful.
9: Update Ti† , Yi† , Ti†,j† , Yi†,j† .

10: else
11: Update Ti† .

4.4, the extra term
√

2 ln(t−1)
T
i†,j

is to guarantee each channel in Mi† , say Channel mi†,j , is

accessed in a sufficient number of slots such that, after Channel mi†,j has been sufficiently

sensed, the sample mean
Y
i†,j

T
i†,j

, which dominates in the index when Ti†,j is large, can accu-

rately represent the real average reward of Channel mi†,j at a slot.

Theorem 4.4. The regret R(t) of Algorithm 4.4 is O(ln t) with t→ ∞ and with finite t.

Proof. Denote Mi∗ as the optimal set of channels to sense (i.e., the set of channels to sense

in the genie-aided rule). Denote M(t) as the channel set decided by Algorithm 4.4 to be

sensed at Slot t. Similar to proof of Theorem 4.3, the regret R(t) until Slot t is bounded as

R(t) ≤

∆
t∑

j=1

E
[
I[M(j) ̸= Mi∗ ]

]
+∆

t∑
j=1

E

[
I[M(j) = Mi∗ ]× I

[
∪

mi∗,k,mi∗,r∈IMi∗
(j)

E[Smi∗,k
|Xmi∗,k

=1]>E[Smi∗,r
|Xmi∗,r

=1]

{Yi∗,k(j − 1)

Ti∗,k(j − 1)
+

√
2 ln(j − 1)

Ti∗,k(j − 1)
<
Yi∗,r(j − 1)

Ti∗,r(j − 1)
+

√
2 ln(j − 1)

Ti∗,r(j − 1)

}]]
. (4.24)

Next we derive bounds for the two terms on the right hand side of (4.24), respectively.
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Since Ti(t) is the number of slots that channel set Mi is sensed until Slot t, the first term

on the right hand side of (4.24) is ∆
t∑

j=1
E [I [M(j) ̸= Mi∗ ]] = ∆

∑
i̸=i∗,i∈{1,2,...,(NM)}

E[Ti(t)].

For each i ∈ {1, 2, ...,
(
N
M

)
}, it can be proved that the reward sequence Yi(t)|Ti(t)=1,

Yi(t)|Ti(t)=2, ..., Yi(t)|Ti(t)=n satisfies a so-called drift condition6, with the proof given in

Appendix 4.B.

Similar to the treatments in (4.17)-(4.20), we have E[Ti(t)] ≤ 8 ln t
ξi

+ π2

3 + 1 where

ξi
△
=
(
E
[

max
l∈IMi∗

E [Sl|Xl = 1]
]
− E

[
max
l∈IMi

E [Sl|Xl = 1]
])2

and IMi is the set of sensed-idle channels if Mi is sensed. Therefore, the first term on the

right hand side of (4.24) is bounded as

∆

t∑
j=1

E
[
I[M(j) ̸= Mi∗ ]

]
≤ ∆ln t

∑
i∈{1,2,...,(NM)}

i ̸=i∗

8

ξi
+∆(

(
N

M

)
− 1)(

π2

3
+ 1). (4.25)

Similar to the treatments in (4.21)-(4.22), we have a bound for the second term on the

right hand side of (4.24) as ∆ln t
∑

k<r≤M

8( (1−P
mi∗,k
f

)θmi∗,k
f(θmi∗,k )

−
(1−P

mi∗,r
f

)θmi∗,r
f(θmi∗,r )

)2+∆
(
M
2

)(
π2

3 +

1
)
.

It can be seen that, the two terms on the right hand side of (4.24) are both bounded by

O(ln t). Therefore, the regret until Slot t, R(t), is O(ln t).

4.3.2.2 Multiple Channel Access at a Slot (K > 1)

When the secondary user can simultaneously access up to K channels at a slot, we modify

Algorithm 4.4 as follows: In Lines 8 and 9, the secondary user selects to access up to K

sensed-idle channels with the largest values of
Y
i†,j

T
i†,j

+

√
2 ln(t−1)
T
i†,j

, mi†,j ∈ IM
i†
(t), and

updates Ti†,j and Yi†,j accordingly if Channel mi†,j is accessed. Similarly, it can be proved

that the regret of the resulted rule is O(ln t) with finite t and with t→ ∞.

6Its definition is given in Section 2.4 of [98].
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TABLE 4.1
PARAMETERS USED IN THE SIMULATION.

N = 5
P i
d heter.: (0.9286,0.7729, 0.8878, 0.9627, 0.9364)

P i
f heter.: (0.2292, 0.3031, 0.0829, 0.2335, 0.1573)

θi (i.i.d.) (0.5296,0.4001,0.9817,0.1931,0.2495)

N = 6
P i
d heter.: (0.8961,0.8298, 0.7675, 0.7529, 0.8331, 0.9167)

P i
f heter.: (0.1653, 0.2700, 0.1448, 0.0777, 0.1093,0.0341)

θi (i.i.d.) (0.3605,0.9291,0.7694,0.6199,0.4109,0.3559)

N = 7
P i
d heter.: (0.8700,0.7788, 0.8595, 0.8134, 0.8958, 0.9128, 0.8932)

P i
f heter.: (0.1567, 0.3204, 0.2472, 0.3354, 0.3458, 0.3093, 0.0899)

θi (i.i.d.) (0.8811,0.5390,0.3468,0.9522,0.7823,0.0471,0.7968)

N = 8
P i
d heter.: (0.8556,0.7283,0.9319,0.7260,0.8103,0.8707,0.9165,0.8359)

P i
f heter.: (0.2377,0.2342,0.2552,0.1397,0.1350,0.1699,0.3101,0.1497)

θi (i.i.d.) (0.6923,0.5430,0.3544,0.8753,0.5212,0.6759,0.8783,0.9762)

4.4 Performance Evaluation

We use Monte-Carlo simulation to validate our analysis. Consider a CRN with N =

5, 6, 7, 8 channels. Other parameters are listed in Table 4.1, where “heter." means heteroge-

neous sensing. And for homogeneous case with all N values, P i
d = 0.8 and P i

f = 0.3.

4.4.1 Full channel sensing with i.i.d. model

Case I (full channel sensing) with i.i.d. model is evaluated first. Figs. 4.1 and 4.2 show

the average regret of Algorithm 4.1 with homogeneous sensing and heterogeneous sensing,

respectively. It can be seen that when t is large, the regretR(t) tends to be finitely bounded.

Figs. 4.3 and 4.4 show the average regret of Algorithm 4.2 with homogeneous sensing and

heterogeneous sensing, respectively. The regret R(t) also tends to be finitely bounded.

Fig. 4.5 shows the impact of K (the maximal number of channels that can be accessed)

in Algorithm 4.2 with homogeneous sensing. It can be seen that R(t) increases when K

changes from 1 to 3, and R(t) decreases when K further changes to 5 and 7. This can

be explained as follows. When K = 1, the wrong access (i.e., the proposed rule does not

access the same channel as the genie-aided rule does) is only on one single channel. When

K changes to 3, the wrong access is on up to 3 channels, and thus, the regret is likely to be

larger than that with K = 1. When K further increases, the up-to-K channels selected by

the proposed rule and the up-to-K channels selected by the genie-aided rule are likely to be
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Fig. 4.1. Average regret R(t) of Algorithm 4.1 with homogeneous sensing in Case I (full channel sensing),
i.i.d. model.

with minor difference, and thus, the regret is reduced. As an extreme case, when K = 8 in

this example (not shown in the figure), there is no difference between the channels selected

by the proposed rule and the channels selected by the genie-aided rule, which means the

regret is 0.

4.4.2 Partial channel sensing with i.i.d. model

Case II (partial channel sensing) with i.i.d. model is then evaluated. Since the proposed

algorithms for partial channel sensing have regrets bounded by O(ln t), we evaluate nor-

malized regret, given asR(t)/ln t. Figs. 4.6 and 4.7 show averageR(t)/ln t of the proposed

algorithms in homogeneous sensing and heterogeneous sensing, respectively. It can be seen

that the normalized regrets in the two figures are finitely bounded, which is consistent with

our claim that the proposed algorithms have regrets bounded by O(ln t).

The impact of K in homogeneous sensing and partial channel sensing with the i.i.d.

model is shown in Fig. 4.8, while the impact of K in heterogenous sensing and partial

channel sensing with the i.i.d. model can be observed from Fig. 4.7. It can be seen that,

for homogeneous sensing and partial channel sensing with the i.i.d. model, the normalized
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Fig. 4.2. Average regret R(t) of Algorithm 4.1 with heterogeneous sensing in Case I (full channel sensing),
i.i.d. model.
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Fig. 4.3. Average regret R(t) of Algorithm 4.2 with homogeneous sensing in Case I (full channel sensing),
i.i.d. model.
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Fig. 4.4. Average regret R(t) of Algorithm 4.2 with heterogeneous sensing in Case I (full channel sensing),
i.i.d. model.

56



0 0.5 1 1.5 2

x 10
4

−1

0

1

2

3

4

5

6

7

8

9

t

A
ve

ra
ge

 R
eg

re
t R

(t
)

 

 
N=8,K=1
N=8,K=3
N=8,K=5
N=8,K=7

Fig. 4.5. The impact of K on the average regret R(t) of Algorithm 4.2 with homogeneous sensing in Case I
(full channel sensing), i.i.d. model.

regret increases when K increases from 1 toM . This is because, in partial channel sensing,

theM sensed channels in our algorithms and in the genie-aided rule may not be the same. If

we select more channels (larger K) to access, then the channels selected by our algorithms

may have bigger difference from the channels selected by the genie-aided rule, and thus, the

normalized regret increases. However, for heterogenous sensing and partial channel sensing

with the i.i.d. model, from Fig. 4.7 it can be seen that the normalized regret decreases when

K increases to M . This is because we use different algorithms in homogeneous sensing

and heterogeneous sensing. In homogeneous sensing with the i.i.d. model, we use sensing

results to update our indices (the selection metrics), while in heterogeneous sensing with

the i.i.d. model, we use channel access results to update our indices. So in heterogeneous

sensing with the i.i.d. model, when K is larger, the secondary user can access more chan-

nels, and can have more accurate estimation, and thus, has a larger chance to select the same

set of channels to sense as the genie-aided rule, leading to smaller normalized regret.
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sensing), i.i.d. model.
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Fig. 4.9. Estimation errors of Θ = (θ1, θ2, ..., θN ), i.i.d. model.

4.4.3 Estimation for θi’s

Now we evaluate the accuracy of the estimators for channel idle probabilities θi’s in the i.i.d.

model. Fig. 4.9 shows the estimation errors for the i.i.d. model in full channel sensing of

Algorithm 2 (denoted as “full"), i.i.d. model in homogeneous sensing and partial channel

sensing (denoted as “iid")7. Here the estimation error is defined as ratio of L2-norm of

(Θ − Θ̂) to L2-norm of Θ (i.e., ||Θ−Θ̂||2
||Θ||2 ) where Θ and Θ̂ are the vector of real channel

idle probabilities and the vector of estimated channel idle probabilities, respectively. It can

be seen that the estimation error tends to converge to 0 when t keeps increasing. This can

be explained as follows. In full channel sensing, all channels are sensed at each time slot.

So the estimation error should converge to 0 when t → ∞, according to the Strong Law

of Large Number. For partial channel sensing in Fig. 4.9, as explained in the Remark for
7For i.i.d. model in heterogeneous sensing and partial channel sensing, our proposed algorithm is not based

on estimation of channel idle probabilities θi’s. So we do not have results for accuracy of estimators for θi’s.
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Algorithm 4.3, the extra term in the indices determines that when t increases, the secondary

user mainly senses the best channel (the channel with the largest θi), while other inferior

channels will still be sensed in the scale of O(ln t). Therefore, the estimation error should

also converge to 0 when t→ ∞, although the convergence speed is much smaller than that

in the full channel sensing case.

4.4.4 Comparison with other schemes

Next we compare our proposed rules with other rules in the literature. Since reference [12]

is one most related work, we compare our proposed rules with Rule 2 in [12], for partial

channel sensing and homogeneous/heterogeneous sensing. The average normalized regrets

in those rules are shown in Fig. 4.10. It can be seen that our proposed rules in homogeneous

sensing and heterogeneous sensing have better performance than the rule in [12].

4.5 Conclusion

In this chapter, the problem of OCSA by a secondary user in a CRN is investigated. The

i.i.d. model is investigated. In the case with full channel sensing, with side information

through sensing all the channels, the regret due to unknown primary users’ statistical infor-

mation is proved to be asymptotically finite. On the other hand, for the case with partial

channel sensing, asymptotically finite regret cannot be achieved since it is proved that the

regret is at least O(ln t). Therefore, in our research we derive OCSA rules with regret

O(ln t), for homogeneous sensing and heterogeneous sensing, respectively. This research

should provide insights to the design of OCSA in CRNs with unknown statistical informa-

tion of primary channels. Further research may include the case with competition among

multiple secondary users, the generalization of our solution in i.i.d. model with partial

channel sensing and heterogeneous sensing to a more general bi-level MABP, and the case

with time-varying θi’s.

Appendix 4.A: Proof of ε > 0

We have ε ≥ 0. Next we prove ε > 0 by using proof by contradiction.

Suppose ε = 0. It means that, for any small enough σ > 0, there always exists Θ† ∈ Ce
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such that ||PΘ† − PΘ||2 < σ. In addition, it can be seen that ||PΘ′ − PΘ||2 < σ is a

continuous function over Θ′, and equation ||PΘ′ −PΘ||2 = 0 has a unique root Θ′ = Θ.

Based on the above two facts, it can be concluded that Θ† should approach sufficiently

close to Θ.

On the other hand, since Θ† ∈ Ce, there exists δ0 > 0 and i ∈ {1, ..., N} such that

|θ†i−θi| > δ0,8 which contradicts the above conclusion that Θ† should approach sufficiently

close to Θ. Thus it concludes ε > 0.

Appendix 4.B: Proof of Drift Condition

The drift condition is satisfied if 1) lim
n→∞

E[Yi(t)
n |Ti(t) = n] = E

[
max
l∈IMi

E [Sl|Xl = 1]
]
; 2)

there exists n0 such that if n ≥ n0, we have

P

(
Yi(t)|Ti(t)=n

n
≥ E

[Yi(t)
n

]
+

√
2 ln t

n

)
≤ t−4 (4.26)

P

(
Yi(t)|Ti(t)=n

n
≤ E

[Yi(t)
n

]
−
√

2 ln t

n

)
≤ t−4. (4.27)

Part 2) is a conclusion directly from Theorem 4 in [98]. Next we give proof of 1).

Each channel set Mi has M channels, and thus, if set Mi is sensed, we have 2M pos-

sible results of the set of sensed-idle channels, denoted R1,R2, ...,R2M ⊆ {1, 2, ...,M}.9

Denote Ti,k as the number of time slots in which channel set Mi is sensed, and sensing

result is Rk. Denote Ti,k,j as the number of time slots in which channel set Mi is sensed,

8Otherwise, no wrong access is made based on Θ†, and thus, Θ† /∈ Ce.
9As an example, if R1 = {1}, it means the first channel in Mi is sensed idle, and other channels in Mi

are sensed busy.

64



sensing result is Rk, and the jth channel in Mi is accessed.

∣∣∣E[ max
l∈IMi

E [Sl|Xl = 1]
]
− E[Yi

n |Ti = n]
∣∣∣

=
∣∣∣ 2M∑
k=1

P
(
Rk

)
max
l∈Rk

(1−P
mi,l
f )θmi,l

f(θmi,l
) −

M∑
j=1

E
[

2M∑
k=1

Ti,k,j

]
n

(1−P
mi,j
f )θmi,j

f(θmi,j
)

∣∣∣
=

∣∣∣∣∣ 2M∑
k=1

M∑
j=1

E[Ti,k,j ]

n max
l∈Rk

(1−P
mi,l
f )θmi,l

f(θmi,l
) −

2M∑
k=1

M∑
j=1

E[Ti,k,j ]

n

(1−P
mi,j
f )θmi,j

f(θmi,j
)

∣∣∣∣∣
= 1

n

2M∑
k=1

∑
j∈Rk

E[Ti,k,j ] max
l∈Rk

(1−P
mi,l
f )θmi,l

f(θmi,l
) − 1

n

2M∑
k=1

∑
j∈Rk

E
[
Ti,k,j

](1−P
mi,j
f )θmi,j

f(θmi,j
)

(a)
= 1

n

2M∑
k=1

∑
j ̸=j∗i,k,j∈Rk

E [Ti,k,j ]max
l∈Rk

(1−P
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f )θmi,l

f(θmi,l
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](1−P
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≤ 1
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E [Ti,k,j ] max
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l∈Mi
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1
n

2M∑
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∑
j ̸=j∗i,k,j∈Rk

E [Ti,k,j ]

(4.28)

where the first equality comes from Wald’s lemma (see, e.g., Lemma 3.1 in [99]), and

in (a) we have j∗i,k = arg max
j∈Rk

(
1−P

mi,j
f

)
θmi,j

f(θmi,j )
(in other words, when the channel set Mi

is sensed, and sensing result is Rk, then the optimal channel to be accessed is the j∗i,kth

channel in Mi).

Given Ti,k (the number of time slots in which channel set Mi is sensed, and sensing

result is Rk), the number of slots that the jth (j ̸= j∗i,k) channel in Mi is accessed has

an expectation E[Ti,k,j |Ti,k] ≤
8 lnTi,k

δi,j,k
+ 1 + π2

3 , where δi,j,k =
(
max
l∈Rk

(
1−P

mi,l
f

)
θmi,l

f(θmi,l
) −(

1−P
mi,j
f

)
θmi,j

f(θmi,j )

)2
. The proof is similar to (4.18)-(4.22).

Therefore, from (4.28) we have
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(4.29)
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where (b) comes from Ti,k ≤ n.

On the right hand side of the last inequality in (4.29), the first term is lnn
n times a

constant, and the second term is 1
n times a constant. Therefore, when n → ∞, both terms

converge to 0. So from (4.29) we have

lim
n→∞

E
[
Yi(t)

n
|Ti(t) = n

]
= E

[
max
l∈IMi

E [Sl|Xl = 1]
]
, ∀i ∈

{
1, 2, ...,

(
N

M

)}
. (4.30)
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Chapter 5

Channel Exploration and

Exploitation with Imperfect

Spectrum Sensing in CRNs: Markov

Model of Channel Busy/Idle States

over Time

In this chapter, the online learning problem of OCSA in CRNs is studied. The channel

sensing is imperfect. A secondary user cannot sense all potential channels simultaneously,

and can access up to a limited number of channels at a time. Different from Chapter 4,

the channel busy/idle states of each channel over time slots follow a discrete-time Markov

chain. The parameters of the Markov chain are unknown by the secondary user. In this

research, the OCSA problem is modeled as restless multi-arm bandit problem. And an

OCSA rule with logarithmic regret is derived.

5.1 System Model

In Chapter 4, for each channel, it has the same probability to be idle at all slots, and its chan-

nel busy/idle states over time slots follow the i.i.d. model. In this chapter, we consider that

the channel busy/idle states of each channel over time slots follow a discrete-time Markov
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Fig. 5.1. The Markov model of busy/idle states of a channel (say Channel i) over time slots.

chain, i.e., with the Markov model as shown in Fig. 5.1. For Channel i at Slot j, Si(j) = 1

means the channel is idle, and Si(j) = 0 means the channel is busy. From one time slot to

the next, the transition probability matrix is given as

 pi00 1− pi00

1− pi11 pi11


where pi00 and pi11 are the transition probability from a busy state to a busy state, and from

an idle state to an idle state, respectively, and pi00, p
i
11 ∈ (0, 1). Therefore, the stationary

idle probability of Channel i is given as θi =
1−pi00

2−pi00−pi11
. All the N Markov chains of the

N channels are independent. Here we consider homogeneous sensing with partial channel

sensing (which is more general than the full channel sensing) and single channel access.

Extension to multiple channel access is straightforward. The heterogeneous sensing case is

more complicated, and will be investigated in our future work.

For performance comparison, it is desired to have the performance of a genie-aided rule

as a benchmark. However, it is still unclear what the optimal performance of a genie-aided

rule is when the secondary user does not access all sensed-idle channels with imperfect

sensing. Therefore, similar to [100] and [101], a genie-aided rule is set up as: select the M

channels with the highest stationary idle probabilities, and access the sensed-idle channel

with the largest conditional reward. So for the genie-aided rule, the reward until Slot t is

given as t · E
[
max
i∈M∗

E[Si|Xi = 1]
]

where M∗ consists of the M channels with the largest

θi, and the conditional reward of Channel i (conditioned on that Channel i is sensed idle) is
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given as E[Si|Xi = 1] =
(1−P i

f )θi

f(θi)
.

For a practical OCSA rule, denote M(j) as the set of channels to be sensed at Slot j,

and if there are at least one sensed-idle channel, denote K(j) as the channel to be accessed.

So the reward of the rule is given as U(t) =
t∑

j=1

{
SK(j)(j) · I

[
max

i∈M(j)
Xi(j) > 0

]}
, where

Xi(j) is the sensing observation of Channel i, and I
[
max

i∈M(j)
Xi(j) > 0

]
indicates whether

there are at least one sensed-idle channel. And the learning loss until Slot t is R(t) =

t · E
[
max
i∈M∗

E[Si|Xi = 1]
]
− E[U(t)]. It is shown in [101] that the learning loss when

sensing is perfect and the secondary user can access all sensed-idle channels is at least

O(ln t) as t→ ∞.

5.2 Partial Channel Sensing and Access

In this section, we design our OCSA rule for single channel access with imperfect sensing.

The first question is: what is the design challenge with the Markov model? In the i.i.d.

model, for any two slots with whatever interval between them, the observations of a chan-

nel at the two slots are always independent and identically distributed. Therefore, based on

observations of a channel at “scattered” slots, we can estimate the channel statistics (i.e.,

the channel idle probability), as we have done in Algorithm 4.3. However, with the Markov

model, with randomly “scattered” observations, it is hard to accurately estimate the channel

statistics [102]. To tackle the problem, inspired by the proof of Lemma 2.1 in [101], if a

channel is selected to sense, we keep sensing it until two idle states are observed. So for

each channel, we have scattered variable-length sensing periods, called blocks, and in each

block, we have three phases: the first phase includes the first sampling until the sampling

immediately prior to the first idle sampling; the second phase includes the first idle sam-

pling until the sampling immediately prior to the second idle sampling; and the third phase

includes the second idle sampling. If we concatenate the second phases of all the scattered

blocks of a channel, say Channel i, we can construct a Markov chain. Based on the strong

Markov property, the newly constructed Markov chain has the same statistics as the original

Markov chain of Channel i. Then it suffices that we estimate the statistics of the newly con-

structed Markov chain. Accordingly we have a OCSA rule given in Algorithm 5.1, which

is inspired by RCA-M in [102].

Remark 5.1. In the algorithm, the secondary user records Ti as the number of slots in
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Algorithm 5.1 Single Channel Access with Partial Channel Sensing (Markov Model)

1: Initialization: A = ∅ (null set), Iini = 0, IP2 = 0, t2 = 0, Yi = 0, Ti = 0,
i ∈ N = {1, 2, ..., N}.

2: for each subsequent Slot t do
3: if |A| < M then
4: for i := 1 to N do
5: if Iini(i) = 0 then
6: A = A ∪ {i}, Iini(i) = 1.
7: if |A| < M then
8: Calculate an index of any channel i ∈ N\A as Yi

Ti
+
√

L0 ln t2
Ti

; from channel
set N\A, choose (M −|A|) channels with the largest indices, and then include
these channels to A.

9: Sensing channels in A, denote the set of channels sensed idle as I(t).
10: for all channels i ∈ A do
11: if IP2(i) = 0 then
12: if i ∈ I(t) then
13: IP2(i) = 1, Yi = Yi + 1, Ti = Ti + 1.
14: else
15: Do nothing
16: else
17: if i ∈ I(t) then
18: IP2(i) = 0,A = A\{i}.
19: else
20: Ti = Ti + 1.
21: if IP2 ̸= 0 then
22: t2 = t2 + 1.
23: if I(t) = ∅ then
24: Wait until slot t+ 1.
25: else
26: Calculate indices Yi

Ti
+
√

L0 ln t2
Ti

, i ∈ I(t), access the channel with largest index.
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phases 2 of Channel i’s blocks, and Yi as the number of slots in which Channel i is sensed

idle in phases 2 of its blocks (in other words, Yi is also the number of blocks of Channel i).

So Yi
Ti

is the sample mean of the probability of Channel i being idle in the newly constructed

Markov chain. N -length vector Iini indicates whether the channels have been sensed yet,

with its ith element, denoted Iini(i), equal to 1 if Channel i has been sensed at least once,

or equal to 0 otherwise. N -length vector IP2 indicates whether the channels are in phase 2

of their blocks, with its ith element, denoted IP2(i), equal to 1 if Channel i is in phase 2 of

one of its blocks, or equal to 0 otherwise. Set A is the set of channels that are to be sensed.

t2 records the number of time slots in which there is at least one channel that is in phase

2 of one of its blocks. In the algorithm, Lines 2–8 are to determine A, in which channels

that are sensed in the previous slot have the highest priority (if the channels do not finish

their blocks in the previous slot), channels that have not been sensed yet have the second

highest priority, and other channels have the lowest priority. When those “other channels”

are selected, similar to Algorithms 4.3 and 4.4, an extra term, which guarantees that each

channel is sufficiently sensed, is added to the sample mean Yi
Ti

to form the index. Lines

10–20 of Algorithm 5.1 are to update IP2, Yi, and Ti (i = 1, 2, ..., N ).

Theorem 5.1. When L0 ≥ 90
min

i=1,2,...,N
(2−pi00−pi11)

, the regretR(t) of Algorithm 5.1 isO(ln t)

with t→ ∞ and with finite t.

Proof. For Channel i following Markov model with θi =
1−pi00

2−pi00−pi11
as the stationary

idle probability, if it is sensed in successive time slots, and we denote the observations

as Xi(1), Xi(2), ..., then for any δ0 ≥ 0, we have [103]

P

(
1
n

n∑
j=1

Xi(j)− f(θi) ≥ δ0

)
≤ 1+

2−pi00−pi11
10

δ0(
min{f(θi),1−f(θi)}

)− 1
2
e−δ20n

2−pi00−pi11
20 ,

P

(
1
n

n∑
j=1

Xi(j)− f(θi) ≤ −δ0

)
≤ 1+

2−pi00−pi11
10

δ0(
min{f(θi),1−f(θi)}

)− 1
2
e−δ20n

2−pi00−pi11
20 .

(5.1)

These two inequalities will be used in the following proof.

Without loss of generality, assume θ1 ≥ θ2 ≥ ... ≥ θN . Therefore, for the genie-aided

case, the secondary user should always sense channels in set M∗ = {1, 2, ...,M}, and

access the sensed-idle channel with the largest θi.

For our proposed OCSA rule, regret comes from sensing a different channel set from

M∗, or sensing channels in M∗ but accessing a wrong channel.
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Fig. 5.2. An example of the blocks.

First consider that the secondary user senses a different channel set from M∗. In spe-

cific, for a channel i /∈ M∗, we investigate the number of slots that Channel i is sensed.

Recall that in our algorithm, if a channel is selected to sense, the channel will be sensed

in successive slots until the second idle state of the channel is observed, and then a new

channel (which may or may not be Channel i) will be decided by the secondary user to be

added into the sensing set. Recall that a block is the sensing period of a channel until the

second idle state is observed. Then a block is associated with a channel: at the beginning

of the block, the secondary user starts sensing the channel until the end of the block. In this

work, each block is assigned an index, starting from 1. Fig. 5.2 shows an example when the

secondary user can sense two out of four channels at a slot. Channels 1 and 2 are sensed

at Slot 1. So Block 1 (associated with Channel 1) and Block 2 (associated with Channel 2)

start at Slot 1. At Slot 5, the second idle state of Channel 1 is observed, and thus, Block 1

ends at Slots 5. And a new channel, Channel 3, is added into the sensing set. Thus, Block

3 (associated with Channel 3) starts at Slot 6. At Slot 6, the second idle state of Channel 2

is observed, and thus, Block 2 ends at Slot 6. And a new channel, Channel 4, is added into

the sensing set. Thus, Block 4 (associated with Channel 4) starts at Slot 7. At Slot 11, both

Channels 3 and 4 have the second idle states, and thus, Blocks 3 and 4 end at Slot 11. And

two channels, Channels 1 and 4 are decided by our proposed algorithm to sense from Slot

12. So Block 5 (associated with Channel 1) and Block 6 (associated with Channel 4) start

at Slot 12. It can be seen that the blocks may overlap with each other.

We use x(n) to denote the value of x at the end of Block n, and x(t) to denote the value
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of x at Slot t. For a worse channel i /∈ M∗, let bi denote the number of completed blocks

Channel i has been associated with. For any positive integer l, we have

b
(n)
i = 1 +

n∑
j=N+1

I [Channel i is associated with Block j ]

≤ l +
M∑
k=1

n∑
j=N+1

I

Y (j−1)
k

T
(j−1)
k

+

√√√√L0 ln t
(j−1)
2

T
(j−1)
k

≤ Y
(j−1)
i

T
(j−1)
i

+

√√√√L0 ln t
(j−1)
2

T
(j−1)
i

, b
(j−1)
i ≥ l


≤ l +

M∑
k=1

n∑
j=N+1

I
[

min
0<s1≤t

(j−1)
2

Yk|Tk=s1

s1
+

√
L0 ln t

(j−1)
2

s1
≤ max

l≤s2≤t
(j−1)
2

Yi|Ti=s2

s2
+

√
L0 ln t

(j−1)
2

s2

]

≤ l +
M∑
k=1

n∑
j=N+1

t
(j−1)
2∑
s1=1

t
(j−1)
2∑
s2=l

I

Yk|Tk=s1

s1
+

√
L0 ln t

(j−1)
2

s1
≤ Yi|Ti=s2

s2
+

√
L0 ln t

(j−1)
2

s2


≤ l +

M∑
k=1

t
(n)
2∑

t1=1

t1∑
s1=1

t1∑
s2=l

I

[
Yk|Tk=s1

s1
+

√
L0 ln t1
s1

≤ Yi|Ti=s2

s2
+

√
L0 ln t1
s2

]
. (5.2)

At Slot t, the number of completed blocks should be no more than t. So from (5.2) with

l =
⌈
4L0 ln t

∆i

⌉
and ∆i = (f(θi)− f(θM ))2, we have the expected number of completed

blocks associated with Channel i bounded as

E[bi(t)] ≤
⌈
4L0 ln t

∆i

⌉
+

M∑
k=1

t∑
t1=1

t1∑
s1=1

t1∑
s2=

⌈
4L0 ln t

∆i

⌉{
P

(
Yk|Tk=s1

s1
≤ f(θk)−

√
L0 ln t1
s1

)
+ P

(
Yi|Ti=s2

s2
≥ f(θi) +

√
L0 ln t1
s2

)}

≤
⌈
4L0 ln t

∆i

⌉
+

M∑
k=1

t∑
t1=1

t1∑
s1=1

t1∑
s2=

⌈
4L0 ln t

∆i

⌉
(
βit1

−L0(2−pi00−pi11)−10

20 + βkt1
−L0(2−pk00−pk11)−10

20

)

(5.3)

where βi = 2(
min{f(θi),1−f(θi)}

)− 1
2

. Here the second line of (5.3) is similar to (4.18), and

the third line comes from (5.1) and the fact that if we concatenate the observations in phases

2 of blocks of a channel, we form a new Markov chain with the same statistics as that of the

original Markov chain that models the busy/idle states of the channel.

By setting L0 ≥ 90/ min
i=1,2,...,N

(2− pi00 − pi11), we have an inequality

E [bi(t)] ≤
⌈
4L0 ln t

∆i

⌉
+

M∑
k=1

∞∑
t1=1

t1∑
s1=1

t1∑
s2=1

(βi + βk)t1
−4
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≤ 4L0 ln t

∆i
+ βiM

π2

3
+

M∑
k=1

βk
π2

3
+ 1. (5.4)

By strong Markov property which guarantees the independence of the blocks associated

with Channel i, and by Wald’s lemma, the expected number of slots in which Channel i is

sensed in completed blocks until Slot t is bounded by γiE[bi(t)], in which γi = 1 + 2
f(θi)

is the expected length of an interval from the moment when a first idle state of Channel i is

observed to the moment when the third idle state of Channel i is observed, and is finite. Here

γi is an upper bound of the expected block length of Channel i. Then, the average number

of slots where a non-optimal set is sensed in completed blocks until Slot t is bounded by

E[T‡(t)] ≤
N∑

i=M+1

γiE[bi(t)] ≤ ln t
N∑

i=M+1

4L0γi
∆i

+
N∑

i=M+1

(
γiβiM

π2

3
+

M∑
k=1

γiβk
π2

3
+ γi

)
(5.5)

where ‡ means non-optimality.

Next we consider that the secondary user senses the optimal channel set M∗ but ac-

cesses a wrong (suboptimal) channel. Let T∗,‡(t) denote number of slots in completed

blocks until Slot t where M∗ is sensed but a wrong channel is accessed. Here the first sub-

script ∗ means optimal sensing set, and the second subscript ‡ means wrong channel access.

Let T∗,i‡(t) denote the number of slots in completed blocks until Slot t where M∗ is sensed

and Channel i is wrongly accessed. So we have T∗,‡(t) =
∑M

i=2 T∗,i‡(t).
1 Here we use x[n]

to denote the value of x at the slot when the optimal sensing set M∗ is sensed the nth time

slot. When M∗ is sensed the jth time, let I [j]
M∗ denote the set of sensed-idle channels, and

k[j] denote the channel selected to access. So the number of slots in which M∗ is sensed

but channel i is wrongly accessed until the slot when M∗ is sensed the nth time is given as

T
[n]

∗,i‡ =
n∑

j=1

I

[
k[j] = i, i > min

m∈I[j]
M∗

m

]

≤ l +

n∑
j=1

∑
S⊂M∗

I
[
k[j] = i, I [j]

M∗ = S, i > min
m∈S

m,T
[j−1]

∗,i‡ ≥ l

]

≤ l +

n∑
j=1

i−1∑
k=1

I

Y [j]
k

T
[j]
k

+

√√√√L0 ln t
[j]
2

T
[j]
k

≤
Y

[j]
i

T
[j]
i

+

√√√√L0 ln t
[j]
2

T
[j]
i

, T
[j−1]

∗,i‡ ≥ l


1Since Channel 1 has the largest idle probability, it is always optimal to access Channel 1 as long as

Channel 1 is sensed idle.
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≤ l +

i−1∑
k=1

n∑
j=1

I

 min
0<s1≤t

[j]
2

Yk|Tk=s1

s1
+

√
L0 ln t

[j]
2

s1
≤ max

l≤s2≤t
[j]
2

Yi|Ti=s2

s2
+

√
L0 ln t

[j]
2

s2


≤ l +

i−1∑
k=1

n∑
j=1

t
[j]
2∑

s1=1

t
[j]
2∑

s2=l

I

Yk|Tk=s1

s1
+

√
L0 ln t

[j]
2

s1
≤ Yi|Ti=s2

s2
+

√
L0 ln t

[j]
2

s2


≤ l +

i−1∑
k=1

t
[n]
2∑

t1=1

t1∑
s1=1

t1∑
s2=l

I

[
Yk|Tk=s1

s1
+

√
L0 ln t1
s1

≤ Yi|Ti=s2

s2
+

√
L0 ln t1
s2

]
.

Then, similar to inequalities (5.3) and (5.4), we can bound expectation of T∗,i‡(t) as

E[T∗,i‡(t)] = E
[

t∑
n=1

I [M∗ is sensed n times until slot t]T [n]

∗,i‡

]
≤ l +

i−1∑
k=1

t∑
t1=1

t1∑
s1=1

t1∑
s2=l

E
[
I
[
Yk|Tk=s1

s1
+
√

L0 ln t1
s1

≤ Yi|Ti=s2
s2

+
√

L0 ln t1
s2

]]
≤ 4L0 ln t

∆i,i−1
+ (i− 1)βi

π2

3 +
i−1∑
k=1

βk
π2

3 + 1

(5.6)

where ∆i,k = (f(θi)− f(θk))
2.

Therefore, we have

E [T∗,‡(t)] =

M∑
i=2

E
[
T∗,i‡(t)

]
≤ ln t

M∑
i=2

4L0

∆i,i−1
+

M∑
i=2

(i− 1)βi
π2

3
+

M∑
i=2

i−1∑
k=1

βk
π2

3
+M − 1. (5.7)

In the following, the regret R(t) is calculated. We denote the slot index of the last

completed block until Slot t as T (t). We use r∗,∗ to denote the expected reward at a slot by

sensing M∗ and accessing the optimal channel.

R(t) = t · r∗,∗ − E
[ t∑
j=1

I
[
max

i∈M(j)
Xi(j) = 1

]
Sk(j)(j)

]
=
{
E [T (t)] · r∗,∗ − E[T∗,∗(t)] · r∗,∗

}
+
{
E[T∗,∗(t)] · r∗,∗ − E

[ T (t)∑
j=1

I
[
max

i∈M(j)
Xi(j) = 1

]
Sk(j)(j)

]}

+
{
E[t− T (t)] · r∗,∗ − E

[ t∑
j=T (t)+1

I
[
max

i∈M(j)
Xi(j) = 1

]
Sk(j)(j)

]}
. (5.8)
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It can be seen that the regret R(t) is decomposed into three parts. In the following we

analyze them one by one.

The first part in (5.8) is

E [T (t)] · r∗,∗ − E [T∗,∗(t)] · r∗,∗ = r∗,∗(E [T‡(t)] + E [T∗,‡(t)]) (5.9)

which is bounded by O(ln t) from (5.5) and (5.7).

Now we investigate the second part in (5.8). For our OCSA algorithm, consider the

channel sensing and access states at successive slots. Denote b̄(t) as the number of transi-

tions from “sense M∗ and access the best idle channel" to any other states (“not sense M∗"

or “sense M∗ but not access the best idle channel") until T (t). Therefore, from Slot 1 to

Slot T (t), we have b̄(t) + 1 scattered intervals: in each interval the secondary user senses

M∗ and accesses the best idle channel. For the vth interval, we divide it to two partitions:

the first partition is until the slot by which all channels have been sensed idle at least once,

and the second partition is the rest in the interval. Note that it is possible that the second

partition does not exist in some intervals. Denote the lengths of the first and the second

partition as x{v}1 and x{v}2 , respectively, and denote the total reward in the first and second

partition as r{v}1 and r{v}2 , respectively. Then the second partitions of the b̄(t) + 1 intervals

are independent from each other.

Then, we bound the second part is (5.8) as

E [T∗,∗(t)] · r∗,∗ − E

T (t)∑
j=1

I
[
max

i∈M(j)
Xi(j) = 1

]
Sk(j)(j)


≤ E [T∗,∗(t)] · r∗,∗ − E

b̄(t)+1∑
v=1

(r
{v}
1 + r

{v}
2 )


= r∗,∗E

b̄(t)+1∑
v=1

(
x
{v}
1 + x

{v}
2

)− E

b̄(t)+1∑
v=1

(r
{v}
1 + r

{v}
2 )


≤ r∗,∗E

b̄(t)+1∑
v=1

x
{v}
1

+ r∗,∗E

b̄(t)+1∑
v=1

x
{v}
2

− E

b̄(t)+1∑
v=1

r
{v}
2


≤ r∗,∗E

[
b̄(t) + 1

] M∑
i=1

(
1

f(θi)
+ 1

)
. (5.10)
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TABLE 5.1
PARAMETERS USED IN THE SIMULATION.

N = 5
θi (stationary) (0.5296,0.4001,0.9817,0.1931,0.2495)

P i
00 (0.7914,0.9372,0.3080,0.9793,0.8778)
P i
11 (0.8147,0.9058,0.9871,0.9134,0.6324)

N = 6
θi (stationary) (0.3605,0.9291,0.7694,0.6199,0.4109,0.3559)

P i
00 (0.7450,0.2806,0.7077,0.0459,0.4178,0.9242)
P i
11 (0.5476,0.9451,0.9124,0.4150,0.1653,0.8628)

N = 7
θi (stationary) (0.8811,0.5390,0.3468,0.9522,0.7823,0.0471,0.7968)

P i
00 (0.9044,0.1652,0.7675,0.2490,0.2838,0.9550,0.6355)
P i
11 (0.9871,0.2860,0.5621,0.9623,0.8007,0.0900,0.9071)

N = 8
θi (stationary) (0.6923,0.5430,0.3544,0.8753,0.5212,0.6759,0.8783,0.9762)

P i
00 (0.3486,0.4313,0.7378,0.2363,0.7159,0.3479,0.1595,0.2371)
P i
11 (0.7105,0.5214,0.5224,0.8912,0.7390,0.6873,0.8835,0.9814)

Notice that E
[
b̄(t)
]
≤

N∑
i=M+1

E [bi(t)] + E [T∗,‡(t)]. From (5.4) and (5.7), it can be seen

that the second part in (5.8) is bounded by O(ln t).

The third part in (5.8) is upper bounded as

E [t− T (t)] r∗,∗ − E

 t∑
j=T (t)+1

I
[
max

i∈M(j)
Xi(j) = 1

]
Sk(j)(j)


≤ r∗,∗E [t− T (t)] ≤ r∗,∗ max

i∈{1,2,...,N}

1

f(θi)
. (5.11)

By (5.8), (5.9), (5.10) and (5.11), we have our regret R(t) bounded by O(ln t).

5.3 Performance Evaluation

We use Monte-Carlo simulation to validate our analysis. Consider a cognitive radio net-

work with N = 5, 6, 7, 8 channels. Homogeneous sensing is considered with P i
d = 0.8 and

P i
f = 0.3 for any i. and other parameters are listed in Table 5.1.

Our proposed algorithm for the Markov model is evaluated, and Fig. 5.3 shows the

average R(t)/ln t in homogeneous sensing and partial channel sensing. It can be seen that

the normalized regrets are finitely bounded, which is consistent with our analysis.

The impact of K in homogeneous sensing and partial channel sensing with the Markov

model is shown in Fig. 5.4. It can be seen that, for homogeneous sensing and partial channel
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Fig. 5.3. Average R(t)/ ln t of the proposed algorithm for Markov model with homogeneous sensing and
partial channel sensing.
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partial sense

Fig. 5.5. Estimation errors of Θ = (θ1, θ2, ..., θN ), Markov model.

sensing with the Markov model, the normalized regret increases when K increases from 1

to M . This is because, in partial channel sensing, the M sensed channels in our algorithms

and in the genie-aided rule may not be the same. If we select more channels (larger K) to

access, then the channels selected by our algorithms may have bigger difference from the

channels selected by the genie-aided rule, and thus, the normalized regret increases.

Then, we evaluate the accuracy of the estimators for the stationary channel idle proba-

bility θi’s in the Markov model. Fig. 5.5 shows the estimation errors for the Markov model

in homogeneous sensing and partial channel sensing (denoted as “markov"). Here the es-

timation error is defined as ratio of L2-norm of (Θ − Θ̂) to L2-norm of Θ (i.e., ||Θ−Θ̂||2
||Θ||2 )

where Θ and Θ̂ are the vector of real channel idle probabilities and the vector of estimated

channel idle probabilities, respectively. It can be seen that the estimation error tends to

converge to 0 when t keeps increasing. This can be explained as follows. For partial chan-

nel sensing in the Markov model, as shown at Algorithm 5.1, the extra term in the indices

determines that when t increases, the secondary user mainly senses the best channel (the

channel with the largest θi), while other inferior channels will still be sensed in the scale of

O(ln t). Therefore, the estimation error should also converge to 0 when t → ∞, although
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the convergence speed is much smaller than that in the full channel sensing case in Fig. 4.9

of Chapter 4.

5.4 Conclusion

In this chapter, the problem of OCSA in a CRN is investigated, where the Markov model of

channel idle/busy states over time slots is assumed. In the case with partial channel sensing,

an OCSA rule is proposed, and under mild condition (i.e., the condition of L0 in Theorem

5.1) the regret O(ln t) can be achieved for a finite time t and t → ∞. The performance of

our proposed rule is verified through numerical computation. This research should provide

insights to the design of OCSA in CRNs with unknown statistical information of primary

traffic.

In the homogeneous sensing considered in this chapter, the stationary channel idle prob-

abilities can be estimated by using samples of the newly constructed Markov chain. It may

not be feasible to extend this idea to OCSA design with heterogeneous sensing. The reason

is that the information of estimated stationary channel idle probabilities does not help in

designing an order optimal algorithm for heterogeneous sensing (recalling that in Chapter

4, we use reward rather than channel idle probability as criterion in designing our order

optimal algorithm for heterogeneous sensing). So the heterogeneous sensing with Markov

model deserves future investigation.
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Chapter 6

Optimal Distributed OCA in

Wireless AF Relay Networks

In this chapter, we investigate distributed OCA in a cooperative network with multiple

AF relays. Two cases are considered: Case I with full CSI at a winner source where a

winner source in a contention has CSI of links from itself to relays and from relays to its

destination, and Case II with partial CSI at a winner source where a winner source only

has CSI of links from itself to relays. In Case I, it is found that a pure-threshold strategy

exists to optimize the average system throughput. There are two stopping problems in Case

II, one in the main layer (for channel access of sources) and the other in the sub-layer (for

channel access of relays). An intuitive strategy is proposed, which is shown to be non-

optimal. We also theoretically derive an optimal strategy for Case II. In either the intuitive

strategy or the optimal strategy, the first-hop stopping rule has a pure-threshold structure,

while the second-hop stopping rule has a threshold determined by channel gain realization

in the preceding first-hop transmission. Numerical results are presented to demonstrate the

effectiveness and efficiency of proposed strategies.1

6.1 Introduction

OCA has received much attention in the literature, particularly in centralized networks [27],

[32]. A central controller can collect the CSI of the users, and schedule only those users
1A version of this chapter has been published in IEEE Journal on Selected Areas in Communications, 30:

1675–1683 (2012).
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with the best channel conditions. On the other hand, the research on optimal distributed

OCA is still in its infancy. As discussed in Section 2.1.3, existing research efforts for

optimal distributed OCA are for single-hop peer-to-peer communications in an ad hoc net-

work. As wireless relaying has recently attracted a lot of research interests [104]–[114],

in this chapter we investigate optimal distributed OCA in a wireless AF relay network.

We consider multiple source-destination pairs aided by multiple relays. Since transmission

between each source-destination pair involves two hops: from source to relays and from re-

lays to the destination, the problem of OCA in a relay network is quite different from those

in a single-hop network (e.g., in reference [33]–[35]), and is challenging as multi-source

diversity, multi-relay diversity, and time diversity should be all exploited.

6.2 Case I: with Full CSI at a Winner Source

6.2.1 System Model

Consider K source-destination pairs aided by L relays, as shown in Fig. 6.1. For transmis-

sion from a source to its destination, there is no direct link, and only one relay is selected

to help with AF mode. The transmission power of a source and a relay is Ps and Pr, re-

spectively. Channel reciprocity in terms of channel gain is assumed, and we denote the

channel gain from the ith source to the jth relay (and vice versa) as fij , the channel gain

from the jth relay to the ith destination (and vice versa) as gji. Assume fij and gji follow

a complex Gaussian distribution with mean being zero and variance being σ2f and σ2g , re-

spectively. Noise is assumed to be Gaussian with unit variance. For source-to-destination

transmission, say from the ith source to its destination aided by the jth relay, the maximal

rate that can be achieved in AF mode is

log2

(
1 +

PsPr|fij |2|gji|2

1 + Ps|fij |2 + Pr|gji|2

)
(6.1)

and the data transmission time from the source to the relay and from the relay to the desti-

nation are both τd
2 .

Channel contention of the sources is as follows. At the beginning of a time slot with

duration δ,2 each source independently contends for the channel by sending a request-to-
2Note that this time slot used in the channel contention, which usually has length of a few microseconds,

is different from the time slot used in Chapters 3–5.
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Fig. 6.1. System model.

send (RTS) packet3 with probability p0. There are three possible outcomes:

• If there is no source transmitting RTS in the time slot (with probability (1 − p0)
K),

then all the sources continue to contend in the next time slot;

• If there are two or more sources transmitting RTS (with probability 1− (1− p0)
K −

Kp0(1 − p0)
K−1), a collision happens, and then in the next time slot after the RTS

transmission all sources continue to contend;

• If there is only one source, say Source i, transmitting RTS (with probabilityKp0(1−

p0)
K−1), then Source i is called winner of the contention. By reception of the RTS,

each relay can estimate CSI between Source i and itself. Then the first relay transmits

an RTS to Destination i, and Destination i replies with a clear-to-send (CTS) packet4,

which can be received by all relays. By reception of the CTS from Destination i, each

relay can estimate its CSI with Destination i. Then all relays send a CTS to Source i

in turn. In the CTS from a relay to Source i, CSI of the relay with Source i and with

Destination i is included. After reception of the CTSs, Source i knows CSI from it-

self to all relays and from all relays to its destination. Then Source i has two options:

1) Source i selects the relay that renders its maximal source-to-destination rate, i.e.,

Source i selects Relay j∗ = arg max
j∈{1,...,L}

{
log2

(
1 +

PsPr|fij(n)|2|gji(n)|2
1+Ps|fij(n)|2+Pr|gji(n)|2

)}
and

3In this chapter, different from traditional RTS in IEEE 802.11, training signal is embedded, but the dura-
tion value (which specifies the total duration of handshake between the transmitter and receiver) is not included.

4In this chapter, different from traditional CTS in IEEE 802.11, channel gain information is embedded, but
the duration value is not included.
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data TX

(relay to destination)

Fig. 6.2. An example of channel contention of sources.

transmits its packet to Relay j∗ within duration τd
2 , then Relay j∗ forwards the packet

to Destination i within duration τd
2 ; or 2) Source i gives up its transmission oppor-

tunity, and other sources can detect an idle slot after the RTS and CTS exchanges

among Source i, all relays, and Destination i (i.e., that idle slot tells other sources

that Source i gives up its transmission opportunity). After that a new contention is

started among all the source nodes.

An example of the channel contention procedure is shown in Fig. 6.2. In the example,

no source transmits RTS in the first two time slots. Then two or more sources transmit RTS,

which results in a collision. After three idle slots, one winner appears. However, it gives up

its transmission opportunity. Then after three more idle slots (the first is used to indicate the

previous winner gives up, and the other two are for two new contentions), another winner

appears. After exchange of 2 RTSs and (L + 1) CTSs, the winner transmits its data to its

selected relay and the relay forwards the data to the winner’s destination.

6.2.2 Optimal Stopping Strategy

Define an observation as the process of channel contention among the sources until a suc-

cessful contention (i.e., a winner source appears). In an observation, the number of con-

tentions follows a geometric distribution with parameter Kp0(1 − p0)
K−1. Among all the

contentions in an observation, the last contention is successful, with total duration (exclud-

ing data transmission) 2τRTS +(L+1)τCTS where τRTS and τCTS are duration of an RTS

and CTS, respectively; and any other contention is either an idle slot (with duration δ) or a

collision (with duration τRTS). The mean of the duration of an observation is then given as

τo = 2τRTS + (L+ 1)τCTS + (1−p0)K

Kp0(1−p0)K−1 · δ + 1−(1−p0)K−Kp0(1−p0)K−1

Kp0(1−p0)K−1 · τRTS .

After each observation, the winner source decides whether to continue a new observa-

tion (i.e., a new contention is started) or to stop (i.e., the winner source transmits its data).

In the nth observation, let s(n) denote the winner source. Then the observed information in
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the nth observation is X(n) :=
{
s(n), fs(n)1(n), ..., fs(n)L(n), g1s(n)(n), ..., gLs(n)(n)

}
.

Here f and g with index (n) means the channel gain realizations at the end of the nth ob-

servation. For the nth observation, the reward Yn is the total traffic volume that can be

sent if the winner source transmits its data, which is a function of X(n), and the cost Tn

is the total waiting time from the first observation until the nth observation plus the data

transmission time. If it is decided to stop at the N th observation, then the average system

throughput is YN
TN

. In the sequel, capital N is called the stopping time. And our objec-

tive is to find the optimal stopping time (also called optimal stopping strategy), N∗, which

attains the maximal average system throughput sup
N≥0

E[YN ]
E[TN ] . According to [36, Chapter 6],

this maximal-expected-return problem can be equivalently transformed into a standard form

with its reward being (YN − λ∗TN ). In particular, to get N∗, we need to find an optimal

strategy to reach maximal expected reward

V ∗(λ∗) = sup
N≥0

{E[YN ]− λ∗E[TN ]} (6.2)

where λ∗ satisfies sup
N≥0

{E[YN ]− λ∗E[TN ]} = 0. Here λ∗ is actually the maximal system

throughput in our problem. This transformation method will be used when we solve the

optimal stopping problems in our research, as shown in the sequel.

To formulate our research problem as an optimal stopping problem, in the nth observa-

tion, the reward is Yn = τd
2 Rn with the spent time denoted as Tn =

n∑
l=1

tl + τd where Rn is

the achievable rate of the winner source in the nth observation via the best relay, given as

Rn =
K∑
i=1

I[s(n) = i] max
j∈{1,...,L}

{
log2

(
1 +

PsPr|fij(n)|2|gji(n)|2

1 + Ps|fij(n)|2 + Pr|gji(n)|2

)}
. (6.3)

Here I[·] means an indicator function, and tl is the time spent in the lth observation with

mean being τo. For finding a strategy N∗ to achieve maximal average system throughput
E[YN ]
E[TN ] , it is equivalent [36] to design a strategy which attains

V ∗(λ∗) = sup
N≥0

{
τd
2
E[RN ]− λ∗E

[
τd +

n∑
l=1

tl

]}
(6.4)

where λ∗ satisfies V ∗(λ∗) = 0.
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Before deriving an optimal stopping strategy N∗, two conditions

E
[
sup
n
{Yn − λTn}

]
= E

[
sup
n

{τd
2
Rn − λ(τd +

n∑
l=1

tl)
}]

<∞

and

lim sup
n→∞

{
Yn − λTn} = lim sup

n→∞

{τd
2
Rn − λ

(
τd +

n∑
l=1

tl
)}

= −∞ a.s.

should be checked which guarantee the existence of an optimal stopping strategy. Here λ

can be viewed as the system throughput, while λ∗ has the physical meaning of maximal

system throughput.

Lemma 6.1. The first condition is satisfied as E
[
sup
n>0

{ τd
2 Rn − λ(τd +

n∑
l=1

tl)}
]
<∞.

Proof. The mean of achievable transmission rate at the nth observation is

E[Rn] =

K∑
i=1

1

K
E
[

max
j∈{1,...,L}

{
log2

(
1 +

PsPr|fij(n)|2|gji(n)|2

1 + Ps|fij(n)|2 + Pr|gji(n)|2

)}]
. (6.5)

Since fij and gji follow complex Gaussian distribution with mean being zero and vari-

ance being σ2f and σ2g , respectively, we have E[|fij |2] = σ2f and E[|gji|2] = σ2g . Then we

have

E[Rn] =
K∑
i=1

1
KE

[
max

j∈{1,...,L}

{
log2

(
1 +

PsPr|fij(n)|2|gji(n)|2
1+Ps|fij(n)|2+Pr|gji(n)|2

)}]
<

K∑
i=1

1
KE

[∑L
j=1 log2

(
1 +

PsPr|fij(n)|2|gji(n)|2
1+Ps|fij(n)|2+Pr|gji(n)|2

)]
(c)

≤
K∑
i=1

1
K

∑L
j=1

1
ln 2E[Ps|fij |2]E[Pr|gji|2]

= 1
ln 2LPsPrσ

2
fσ

2
g <∞

(6.6)

E[R2
n] =

K∑
i=1

1
KE

[(
max

j∈{1,...,L}

{
log2

(
1 +

PsPr|fij(n)|2|gji(n)|2
1+Ps|fij(n)|2+Pr|gji(n)|2

)})2
]

<
K∑
i=1

1
KE

[∑L
j=1 log

2
2

(
1 +

PsPr|fij(n)|2|gji(n)|2
1+Ps|fij(n)|2+Pr|gji(n)|2

)]
(d)

≤
K∑
i=1

1
K

∑L
j=1

1
(ln 2)2

E[P 2
s |fij |4]E[P 2

r |gji|4]

= 4
(ln 2)2

LP 2
s P

2
r σ

4
fσ

4
g <∞

(6.7)
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where (c) and (d) come from the fact that for x, y ≥ 0, we have

log2

(
1 +

xy

1 + x+ y

)
≤

xy
1+x+y

ln 2
≤ xy

ln 2
. (6.8)

Based on [36, Theorem 4.1], from E[Rn] <∞, we have sup
n

{
τd
2 Rn − nc

}
<∞ a.s.;

from E[R2
n] <∞, we have E

[
sup
n

{
τd
2 Rn − nc

}]
<∞. By decomposition similar to (43)

in [33], the first condition for existence of an optimal stopping strategy can be proved.

Lemma 6.2. The second condition is also satisfied, namely lim sup
n→∞

{ τd
2 Rn−λ(τd+

n∑
l=1

tl)}

= −∞ a.s.

Proof. Using a similar method to that in [33], for 0 < ε < τo, we have the following

decomposition:

τd
2
Rn − λ

(
τd +

n∑
l=1

tl
)
=
[τd
2
Rn − nλ(τo − ε)− τdλ

]
+
[
λ

n∑
l=1

(τo − ε− tl)
]
. (6.9)

From [36, Theorem 4.1], τo − ε > 0, and (6.7), we have

lim
n→∞

[τd
2
Rn − nλ(τo − ε)

]
= −∞ a.s. (6.10)

Next we focus on the second component on the right-hand side of (6.9).

Using [36, Theorem 4.2], when E
[
τo−ε− tl

]
< 0 holds, E

[
sup
n≥0

n∑
l=1

(τo−ε− tl)
]
<∞

if and only if E
[
(τo − ε− tl)

+]2 <∞, where (τo − ε− tl)
+ = max{τo − ε− tl, 0}.

We have E[τo−ε−tl] = τo−ε−τo = −ε < 0, and E[(τo−ε−tl)+]2 ≤ E[τo−ε−tl]2 =

(τo − ε)2 − 2(τo − ε)τo + E[t2l ] < ∞ (since E[t2l ] can be shown to be finite). As a result,

we have E
[
lim sup
n→∞

{ n∑
l=1

(τo − ε− tl)
}]

≤ E
[
sup
n≥0

{ n∑
l=1

(τo − ε− tl)
}]
<∞

which leads to

lim sup
n→∞

{ n∑
l=1

(τo − ε− tl)
}
<∞ a.s. (6.11)

From (6.9), (6.10), and (6.11), we have lim sup
n→∞

{
τd
2 Rn − λ(τd +

n∑
l=1

tl)
}
= −∞ a.s.

Based on Lemmas 6.1 and 6.2, the existence of an optimal stopping strategy is guaran-

teed.
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Theorem 6.1. An optimal stopping strategy which achieves maximal system throughput

sup
N≥0

E[YN ]
E[TN ] is given as: N∗ = min {n ≥ 1 : Rn ≥ 2λ∗} where λ∗ is the solution of the

equation E
[
max

{
τd
2 Rn − λτd, 0

}]
= λτo.

Proof. Recall that to maximize throughput E[YN ]
E[TN ] , we need to achieve V ∗(λ∗) = sup

N≥0

{E[YN ] − λ∗E[TN ]} where λ∗ satisfies V ∗(λ∗) = 0. Here λ∗ is actually maximal aver-

age throughput. Therefore we need to know expression of V ∗(λ).

For λ ≥ 0, the stopping strategy which achieves maximal reward V ∗(λ) can be de-

scribed as N∗ = min
{
n ≥ 1 : τd

2 Rn − λτd ≥ V ∗(λ)
}

, where V ∗(λ) is determined by

optimality equation

V ∗
n = max

{τd
2
Rn − λτd − λ

n∑
l=1

tl, E[V ∗
n+1|X(1), ..., X(n)]

}
. (6.12)

Here V ∗
n represents expected reward if the winner source at the nth observation does not

stop and the optimal stopping strategy is followed starting from the (n+ 1)th observation.

Since V ∗
n = V ∗(λ)− λ

n−1∑
l=1

tl, after taking expectation over both sides of (6.12) we have:

E[V ∗(λ)− λ

n−1∑
l=1

tl] = E
[
max{τd

2
Rn − λτd − λ

n∑
l=1

tl, V
∗(λ)− λ

n∑
l=1

tl}
]

(6.13)

which leads to

V ∗(λ) = E
[
max{τd

2
Rn − λτd, V

∗(λ)} − λtn
]
.

Setting V ∗(λ∗) = 0, the maximal throughput λ∗ satisfies

E[max{τd
2
Rn − λ∗τd, 0}] = λ∗E[tn] = λ∗τo. (6.14)

And an optimal stopping strategy which maximizes throughput is of form

N∗ = min{n ≥ 1 :
τd
2
Rn − λ∗τd ≥ V ∗(λ∗)} = min{n ≥ 1 : Rn ≥ 2λ∗}. (6.15)

With threshold 2λ∗ as a fixed value, our derived strategy N∗ has a pure-threshold struc-

ture and achieves the maximal system throughput λ∗ = E[YN∗ ]
E[TN∗ ] . And as the solution of
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the equation E[max{ τd
2 Rn − λτd, 0}] = λτo, the maximal system throughput λ∗ always

uniquely exists. The proof is similar to that of Proposition 3.1 in [33], and thus, is omit-

ted. The uniqueness of λ∗ is consistent with its physical meaning as the optimal system

throughput.

With {Rn}n=1,...,∞ i.i.d. and pure-threshold structure ofN∗, the stopping time denoted

N determined by the optimal stopping strategy N∗ follows a geometric distribution with

P(N = n) = FRn(2λ
∗)n−1

(
1 − FRn(2λ

∗)
)

where FRn(·) means cumulative distribution

function (CDF) of Rn given in (6.3). Let RN∗ denote the achievable rate when the winner

source stops. It has the CDF as FRN∗ (x) = I[x ≥ 2λ∗]
FRn (x)−FRn (2λ

∗)
1−FRn (2λ

∗) .

With the stopping time N determined by the strategy N∗ geometrically distributed, the

expectation of the stopping time E[N ] = 1
1−FRn (2λ

∗) is finite. According to Wald Theorem

[36] we have E[TN ] = E[tl]E[N ] + τd = τo
1−FRn (2λ

∗) + τd.

In addition, the pure-threshold structure largely simplifies implementation. In details,

after the nth successful channel contention, Source s(n) wins the channel and calculates its

achievable transmission rate Rn (which is via the best relay). If Rn ≥ 2λ∗, Source s(n)

transmits to the best relay node and the best relay node helps forward to Destination s(n);

otherwise, Source s(n) gives up the transmission opportunity and re-contends for channel

access with the other (K − 1) sources again. In this way, the maximal average system

throughput λ∗ can be achieved.

Note that the value of λ∗ can be calculated off-line. And the following iterative algo-

rithm can be used to calculate λ∗:

λk+1 = λk + α ·
{
E
[
max

{τd
2
Rn − λkτd, 0

}]
− λkτo

}
(6.16)

where λ0 is a non-negative initial value and α is step size such that ϵ ≤ α ≤ 2−ϵ
τo+τd

where

ϵ > 0 can be arbitrarily selected.

Theorem 6.2. The sequence {λk} generated by the iterative algorithm converges to λ∗.

Proof. Proposition 1.2.3 in [115] says that

“Let {xk} be a sequence generated by a gradient method xk+1 = xk + αkdk, where dk

is gradient related. Assume that for some constant C > 0 we have
∥∥▽ h(x)−▽h(y)

∥∥ ≤

C
∥∥x − y

∥∥, ∀x, y ∈ ℜ,5 and that for all k we have dk ̸= 0 and ϵ ≤ αk ≤ (2 − ϵ)β, where

5Note that this condition is called the Lipschitz continuity condition.
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β =

∥∥▽h(xk)
′dk

∥∥
C
∥∥dk∥∥2 and ϵ is a fixed positive scalar. Then every limit point of xk is a stationary

point of h.” Here ▽h(·) means gradient of function h(·).

We take ▽h(λ) = λτo −E
[
max

{
τd
2 Rn −λτd, 0

}]
. Then there is one unique solution

satisfying ▽h(λ) = 0, which is λ∗ in our optimal stopping problem.

For the Lipschitz continuity condition, we have

| ▽ h(x)−▽h(y)| =
∣∣xτo−E[max{τd

2
Rn − xτd, 0}]−yτo+E[max{τd

2
Rn − yτd, 0}]

∣∣
≤
∣∣xτo − yτo

∣∣+ ∣∣∣E[max{τd
2
Rn − xτd, 0}

]
− E

[
max{τd

2
Rn − yτd, 0}

]∣∣∣
≤ τo|x− y|+

∣∣E[max{τd
2
Rn − xτd, 0} −max{τd

2
Rn − yτd, 0}]

∣∣
≤ (τo + τd)|x− y| = C|x− y|

where C = τo + τd. This means the Lipschitz continuity condition in Proposition 1.2.3 in

[115] is satisfied.

Define directions dk as the steepest descent direction dk
∆
= −▽h(λk) = E

[
max{ τd

2 Rn

−λkτd, 0}
]
− λkτo. Then it can be proved that {dk} is gradient related.

Then based on Proposition 1.2.3 in [115], a generated sequence {λk} by

λk+1 = λk + αkdk when ϵ ≤ α ≤ (2− ϵ) · 1

C
=

2− ϵ

τo + τd
(6.17)

converges to the stationary point of h, which is λ∗.

Iteration form (6.17) is actually the iteration form (6.16).

6.3 Case II: with Partial CSI at a Winner Source

6.3.1 System Model

In the previous section, the winner source in each observation has CSI of links from itself

to all relays and from all relays to its destination. Next we consider a more practical case

that the winner source in each observation has only CSI of links from itself to relays. Since

the winner source does not have CSI in the second hop, relay is not selected by the winner

source. Rather, there is another channel access contention among the relays, with details as

follows.
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The channel contention of sources is similar to that in Section 6.2. The difference is as

follows: If there is only one source, say Source i, transmitting RTS in a contention, there

is no information exchange between relays and Destination i. So Source i has only its CSI

to relays (obtained from the CTSs from the relays). And if Source i decides to stop, it

broadcasts its packet to all relays, and then all relays start to contend for channel access,

as follows. At the beginning of a time slot, each relay independently transmits an RTS

with probability p1. If no relay transmits RTS, or two or more relays transmit, then a new

contention of relays is started subsequently. If only one relay, say Relay j, transmits RTS

(in which information of Destination i is included), then Destination i estimates its channel

gain with Relay j and replies with a CTS with channel gain information gji included. Then

Relay j can decide 1) to stop (i.e., to forward its received packet to Destination i, and then

a new source contention is started), or 2) to give up its transmission opportunity and then a

new contention of relays is started.

The channel access is actually a bi-layer stopping problem: the main layer for channel

access of sources, and the sub-layer for channel access of relays. In either layer, still de-

fine an observation as the process until a successful winner appears. So in the main layer,

the winner source in the nth observation, denote s(n), decides whether to stop based on

its observed information
{
s(n), fs(n)1(n), ..., fs(n)L(n)

}
. In the sub-layer, the winner re-

lay in the mth observation, denote s(m), decides whether to stop based on its observed

information {s(m), gs(m)s(n)(m)} and channel gain realization fs(n)s(m)(n) in the preced-

ing first-hop transmission. Recall that information of fs(n)j(n) (j = 1, 2, ..., L) is already

obtained by Relay j when Source s(n) broadcasts to relays in the first hop.

Similar to Section 6.2, the mean of duration of an observation in the main layer and the

sub-layer are

τ so = τRTS +LτCTS +
(1− p0)

K

Kp0(1− p0)K−1
· δ+ 1− (1− p0)

K −Kp0(1− p0)
K−1

Kp0(1− p0)K−1
· τRTS

τ ro = τRTS + τCTS +
(1− p1)

L

Lp1(1− p1)L−1
· δ + 1− (1− p1)

L − Lp1(1− p1)
L−1

Lp1(1− p1)L−1
· τRTS .

Note that in this chapter, superscript ‘s’ and ‘r’ stand for source (first hop) and relays (sec-

ond hop), respectively.

A winner source does not have CSI of links in the second hop (from relays to destina-
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tions). Rather, statistical information (e.g., channel gain distribution) of channel gains in the

second hop is assumed to be available. Therefore, in the main layer, the reward (which is

the source-to-destination data volume) in the nth observation is the expected reward in the

sub-layer. On the other hand, in the sub-layer, the stopping problem should be conditioned

on channel gain realization of the preceding first-hop transmission.

In the main layer, let n and N denote the observation index and stopping time, respec-

tively. And in the sub-layer, let m and M denote the observation index and stopping time,

respectively. We use E1[·] and E2[·] to present expectations on the main layer and sub-layer,

respectively.

6.3.2 Intuitive Stopping strategy

An intuitive method to solve the bi-layer stopping problem is to let the sub-layer and main

layer apply optimal stopping theory to maximize sub-layer and main-layer throughput, re-

spectively.

We first consider the sub-layer. The relays already know channel gain realization in

the preceding first-hop transmission of F =
{
fs(n)1(n), ..., fs(n)L(n)

}
.6 Then in the mth

observation, the achievable rate of the winner relay, s(m), is

Rm =
L∑

j=1

I[s(m) = j] log2
(
1 +

PsPr|fs(n)j(n)|2|gjs(n)(m)|2

1 + Ps|fs(n)j(n)|2 + Pr|gjs(n)(m)|2
)
. (6.18)

The reward in the mth observation is Ym = τd
2 Rm. The cost is the total waiting

time until the mth observation plus the data transmission time in the second hop: Tm =∑m
l=1 t

r
l +

τd
2 , where trl is the time used in the lth observation. Then we need to find an

optimal stopping rule M∗ in the sub-layer to attain the maximal λ∗ = sup
M≥0

E2[YM |F ]
E2[TM |F ] .

In the main layer, define Tn as the total waiting time until the nth observation plus the

data transmission time in the first hop: Tn =
∑n

l=1 t
s
l +

τd
2 , where tsl is the time used in the

lth observation. If the stopping time is N , then the reward is E2[YM∗ |F ], and the waiting

time is E2[TM∗ |F ] + TN . Then we need to find an optimal stopping rule N∗ to attain the

maximal sup
N≥0

E1[E2[YM∗ |F ]]
E1[E2[TM∗ |F ]+TN ] .

For the sub-layer optimal stopping problem, we have the following theorem.

6Note that it means Relay j knows fs(n)j(n), j = 1, 2, ..., L.
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Theorem 6.3. Conditioned on F , a sub-layer optimal stopping rule achieving the maximal

sub-layer throughput λ∗ = sup
M≥0

E2[YM |F ]
E2[TM |F ] is given as: M∗ = min{m ≥ 1 : Rm ≥ λ∗}

where λ∗ is the unique solution of the equation E2[max{Rm−λ, 0}|F ] = 2λτro
τd

and always

exists.

Proof. We first prove the finiteness of E[R2
m].

E2[R
2
m|F ] = E2

[ L∑
j=1

I[s(m) = j] log22
(
1 +

PsPr|fs(n)j(n)|2|gjs(n)(m)|2
1+Ps|fs(n)j(n)|2+Pr|gjs(n)(m)|2

)∣∣F]
=

L∑
j=1

1
LE2

[
log22

(
1 +

PsPr|fs(n)j(n)|2|gjs(n)(m)|2
1+Ps|fs(n)j(n)|2+Pr|gjs(n)(m)|2

)∣∣F]
(e)

≤
L∑

j=1

1
L

1
(ln 2)2

P 2
r E[|gjs(n)|4]

=
L∑

j=1

1
L

2
(ln 2)2

P 2
r σ

4
g <∞

(6.19)

where (e) comes from the fact that for x, y ≥ 0, we have

log2

(
1 +

xy

1 + x+ y

)
≤

xy
1+x+y

ln 2
≤ y

ln 2
. (6.20)

With the finite property of E2[R
2
m|F ], we have

E2[Rm|F ] <∞. (6.21)

Then similar to proofs of Lemmas 6.1 and 6.2, the existence conditions of an optimal

stopping rule in the sub-layer can be proved. With the reward as τd
2 Rm−λ τd

2 −λ
m∑
l=1

trl , by

following a similar way to that in proof of Theorem 6.1, we can obtain an optimal stopping

rule for the sub-layer as the form: M∗ = min {m ≥ 1 : Rm ≥ λ∗} where λ∗ satisfies the

equality

E2[max{Rm − λ, 0}|F ] =
2λτ ro
τd

. (6.22)

And the existence and uniqueness of λ∗ can be straightforwardly proved.

Define FRm(·) as the CDF of Rm given in (6.18). The sub-layer optimal stopping rule

has the following property.

Corollary 6.1. Conditioned on F , we have finite λ∗, E2[TM∗ |F ] = τro
1−FRm (λ∗) +

τd
2 and

E2[YM∗ |F ] = λ∗τro
1−FRm (λ∗) +

λ∗τd
2 .
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Proof. E2[max{Rm − λ, 0}|F ] is a decreasing function from +∞ to 0 with respect to λ,

and λτro
τd

linearly increases with respect to λ. Hence, the uniqueness and non-negativeness

of the root λ∗ are guaranteed, since λ∗ is the root of E2[max{Rm − λ, 0}|F ] = 2λτro
τd

.

Further, we have

2λ∗τro
τd

= E2[max{Rm − λ∗, 0}|F ]

≤ E2[Rm|F ]
from (6.21)

< ∞

(6.23)

which leads to λ∗ <∞.

Stopping time M in the sub-layer is geometrically distributed. Then according to Wald

Theorem [36], E2[TM∗ |F ] = τro
1−FRm (λ∗) +

τd
2 . Also, we have E2[YM∗ |F ] = λ∗τro

1−FRm (λ∗) +

λ∗τd
2 .

Based on the acquired strategy M∗ for the sub-layer stopping problem, a main-layer

optimal stopping rule which achieves maximal system throughput is given in the following

theorem.

Theorem 6.4. An optimal stopping rule for the main-layer problem is of the form N∗ =

min{n ≥ 1 : R1
n − γ∗R2

n ≥ γ∗ τd2 } where γ∗ satisfies the equation E1

[
max{R1

n − γR2
n −

γ τd
2 , 0}

]
= γτ so , andR1

n andR2
n are given as: R1

n = λ∗E2[TM∗ |F ] andR2
n = E2[TM∗ |F ].7

Proof. Recall that to maximize throughput E1[λ∗E2[TM∗ |F ]]
E1[E2[TM∗ |F ]+TN∗ ] , we need to achieve

V ∗(γ∗) = sup
N≥0

{
E1

[
λ∗E2[TM∗ |F ]− γ∗

(
E2[TM∗ |F ] +

τd
2

+
N∑
l=1

tsl
)]}

(6.24)

where γ∗ satisfies V ∗(γ∗) = 0. To derive an optimal stopping rule, we first need to calculate

V ∗(γ).

For γ ≥ 0, an optimal stopping rule

N∗(γ) = min{n ≥ 1 : R1
n − γ

τd
2

− γR2
n ≥ V ∗(γ)} (6.25)

7Note that here M∗ is the optimal stopping rule of the sub-layer conditioned on F , and λ∗ is the cor-
responding maximal throughput in the sub-layer stopping problem. Therefore, R1

n and R2
n are functions of

F .
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exists (with proof given in Appendix 6.A.) and achieves V ∗(γ) which satisfies the equation:

E1

[
V ∗(γ)−γ

n−1∑
l=1

tsl
]
= E1

[
max

{
R1

n−γ
τd
2
−γR2

n−γ
n∑

l=1

tsl , V
∗(γ)−γ

n∑
l=1

tsl
}]

(6.26)

which leads to

V ∗(γ) = E1[max{R1
n − γ

τd
2

− γR2
n, V

∗(γ)} − γtsn]. (6.27)

Setting V ∗(γ∗) = 0 in (6.27), the maximal throughput γ∗ satisfies

E1

[
max{R1

n − γ∗R2
n − γ∗

τd
2
, 0}
]
= τ so . (6.28)

And an optimal stopping rule which achieves γ∗ is N∗ = min{n ≥ 1 : R1
n − γ∗R2

n ≥

γ∗ τd2 }.

Note that here γ∗ is actually the maximal main-layer system throughput.

From Theorems 6.3 and 6.4, it can be seen that, the intuitive optimal stopping strategy

{N∗,M∗} with M∗ = min{m ≥ 1 : Rm ≥ λ∗} and N∗ = min{n ≥ 1 : R1
n − γ∗R2

n ≥

γ∗ τd2 } has semi-pure-threshold structure. In details, with sub-layer stopping rule M∗, its

threshold is not a fixed value, but depends on channel gain realization F in the preceding

first-hop transmission. Different from M∗, the main-layer stopping rule N∗ has a fixed-

valued threshold γ∗ τd2 .

The intuitive stopping strategy can be implemented as follows.

For channel access of sources, upon a successful contention in the nth observation, the

winner source, s(n), has the information of its channel gains F={fs(n)1(n), ..., fs(n)L(n)}.

Source s(n) can calculate R1
n and R2

n by solving the sub-layer optimal stopping problem

conditioned on F . During the calculation of R1
n and R2

n, Source s(n) needs to calculate λ∗,

which is the threshold of the sub-layer optimal stopping rule conditioned on F . In the main-

layer stopping rule, γ∗ is a fixed value satisfying E1

[
max{R1

n − γR2
n − γ τd

2 , 0}
]
= γτ so .

• If R1
n − γ∗R2

n < γ∗ τd2 , Source s(n) gives up its transmission opportunity and re-

contend with other sources.

• If R1
n − γ∗R2

n ≥ γ∗ τd2 , Source s(n) broadcasts its data and the value of λ∗ to all

relays, and the channel contention of relays starts. Upon a successful contention in
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the mth observation, the winner relay, s(m), which has information of fs(n)s(m)(n)

in the preceding first-hop transmission, calculates its source-to-destination rate Rm.

If Rm < λ∗, Relay s(m) gives up its transmission opportunity, and re-contends with

other relays. Otherwise, Relay s(m) forwards its received data (from Source s(n)) to

Destination s(n), and the source-to-destination transmission process for the packet

from Source s(n) is complete, and all source nodes start a new contention.

Note that, the threshold in the main layer γ∗ (for simplicity of presentation, the constant

factor τd
2 is omitted) can be calculated off-line, while the threshold λ∗ in the sub-layer

depends on the channel gain realization F in the preceding first-hop transmission, and thus,

should be calculated online at Source s(n), who knows F . The following iterative algorithm

can be used to calculate γ∗ and λ∗.

To calculate λ∗, we have

λl+1 = λl + αλ ·
{
E2[max{Rm − λl, 0}|F ]− 2λlτ

r
o

τd

}
(6.29)

where step size αλ satisfies ϵ ≤ αλ ≤ τd(2−ϵ)
2τro+τd

for a fixed positive ϵ.

For main-layer problem, to calculate γ∗, we have

γk+1 = γk + αγ ·
{
E1

[
max{R1

n − γkR
2
n − γk

τd
2
, 0}
]
− γkτ

s
o

}
(6.30)

where step size αγ satisfies ϵ ≤ αγ ≤ 2(2−ϵ)
2E1[R2

n]+τd+2τso
for a fixed positive ϵ.

Theorem 6.5. The sequence {γk} generated by the iterative algorithm converges to γ∗.

Proof. Similar to proof of Theorem 6.2, Lipschitz continuity conditions in the sub-layer

and main layer are derived as follows.

In the sub-layer problem, we have:

∣∣∣∣2xτ roτd
− E2[max{Rm − x, 0}|F ]− 2yτ ro

τd
+ E2[max{Rm − y, 0}|F ]

∣∣∣∣
≤ 2τ ro

τd
|x− y|+

∣∣E2[max{Rm − x, 0} −max{Rm − y, 0}|F ]
∣∣

≤ (
2τ ro
τd

+ 1)|x− y|.

Step-size αλ is fixed, which satisfies ϵ ≤ αλ ≤ τd(2−ϵ)
2τro+τd

.
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In the main-layer problem, we have:

∣∣xτ so − E1[max{R1
n − xR2

n − x
τd
2
, 0}]− yτ so + E1[max{R1

n − yR2
n − y

τd
2
, 0}]

∣∣
≤ τ so |x− y|+

∣∣E1[max{R1
n − xR2

n − x
τd
2
, 0} −max{R1

n − yR2
n − y

τd
2
, 0}]

∣∣
≤ (τ so + E1[R

2
n] +

τd
2
) · |x− y|.

Step-size αγ is fixed, which satisfies ϵ ≤ αγ ≤ 2(2−ϵ)
2E1[R2

n]+τd+2τso
.

Since the calculation of γ∗ involves the calculation of λ∗ conditioned on F , convergence

of {γk} to γ∗ also guarantees convergence of {λl} to λ∗.

6.3.3 Non-optimality of Intuitive Stopping strategy

The intuitive stopping strategy {N∗,M∗} first maximizes sub-layer system throughput and

then maximizes that of main-layer system. It is interesting to notice that the intuitive stop-

ping strategy is not optimal, as follows.

The expected system throughput can be expressed as E1[λ∗E2(TM∗ |F)]
E1[E2[TM∗ |F ]+TN∗ ] in the intuitive

stopping strategy. The sub-layer stopping rule M∗ maximizes λ∗. Considering the term

TN∗ in the expression of the expected system throughput, the sub-layer stopping rule M∗,

which maximizes λ∗, may not maximize E1[λ∗E2[TM∗ |F ]]
E1[E2[TM∗ |F ]+TN∗ ] .

6.3.4 Optimal Stopping strategy

Next we derive an optimal stopping strategy for the sub-layer and main layer.

For γ ≥ 0 and a particular stopping rule in the sub-layer (which is conditioned on F)

denoted M , the maximal average reward achieved by main-layer optimal stopping rule can

be expressed as:

V ∗(γ) := sup
N≥0

{
E1

[
E2[YM |F ]− γ(E2[TM |F ] + TN )

]}
(6.31)

which is equivalent to

V ∗(γ) := sup
N≥0

{
E1

[
E2[YM − γTM |F ]− γTN

]}
. (6.32)

In the expression of (6.32), the sub-layer affects only the term E2[YM−γTM |F ]. There-
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fore, to increase the maximal system throughput γ∗, we need to increase V ∗(γ) (this is be-

cause V ∗(γ) is a decreasing function of γ, and γ∗ is the root of V ∗(γ) = 0). And to achieve

the largest V ∗(γ) , the sub-layer should maximize E2[YM − γTM |F ]. Based on this, we

have the following theorem for the sub-layer. Here we use W ∗(γ) to denote the maximal

reward sup
M≥0

E2[YM − γTM |F ] in the sub-layer.

Theorem 6.6. For fixed γ ≥ 0, an optimal stopping rule M∗(γ) for maximizing E2[YM −

γTM |F ] is of the form: M∗(γ) = min{m ≥ 1 : τd
2 Rm ≥ W ∗(γ) + τd

2 γ} where W ∗(γ)

satisfies

E2

[
max{τd

2
Rm − τd

2
γ,W ∗(γ)}|F

]
=W ∗(γ) + γτ ro . (6.33)

Proof. Similar to proof of (6.19), we have E2[(Rm)2] <∞, which guarantees existence of

an optimal stopping rule. To achieve maximal reward W ∗(γ) = sup
M≥0

{E2[YM − γTM |F ]},

an optimal stopping rule takes the form: M∗(γ) = min{m ≥ 1 : τd
2 Rm ≥ W ∗(γ) + τd

2 γ}

where W ∗(γ) satisfies the equation

E2

[
max{τd

2
Rm − τd

2
γ,W ∗(γ)}|F

]
=W ∗(γ) + γτ ro . (6.34)

Rearranging terms in (6.34), we have

E2

[
max{τd

2
Rm − τd

2
γ −W ∗(γ), 0}

∣∣F] = γτ ro . (6.35)

Since the left hand side of (6.35) continuously decreases from ∞ to 0 with W ∗(γ), while

the right hand side is a constant, a finite unique solution W ∗(γ) always exists.

Although Theorem 6.6 is for any particular value of γ, it is desired that the sub-layer

stopping rule is corresponding to the maximal system throughput γ∗. How to obtain the

value of γ∗ will be discussed in the main-layer stopping rule, as follows.

Theorem 6.7. With the sub-layer system following the strategy M∗(γ∗), an optimal strat-

egy to maximize the average system throughput is given as N∗ = min{n ≥ 1 :W ∗(γ∗) ≥
τd
2 γ

∗} where γ∗ satisfies E1[max{W ∗(γ)− τd
2 γ, 0}] = γτ so .

Proof. Recall that to maximize throughput E1[E2[YM∗ |F ]]
E1[E2[TM∗ |F ]+TN∗ ] , we need to achieve

V ∗(γ∗) = sup
N≥0

{
E1

[
W ∗(γ∗)− γ∗(

τd
2

+

N∑
l=1

tsl )
]}

(6.36)
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where γ∗ satisfies V ∗(γ∗) = 0.

To derive an optimal stopping rule, we first need to calculate V ∗(γ).

For γ ≥ 0, an optimal stopping rule N∗ to achieve V ∗(γ) exists which is proved as

follows.

Similar to (6.19), conditioned on F , we have

Rm =
L∑

j=1
I[s(m) = j] log2

(
1 +

PsPr|fs(n)j(n)|2|gjs(n)(m)|2
1+Ps|fs(n)j(n)|2+Pr|gjs(n)(m)|2

)
≤ max

j∈{1,...,L}

{
log2

(
1 +

PsPr|fs(n)j(n)|2|gjs(n)(m)|2
1+Ps|fs(n)j(n)|2+Pr|gjs(n)(m)|2

)}
≤ Ps

ln 2 max
j∈{1,...,L}

|fs(n)j(n)|2.

(6.37)

From (6.35), we haveW ∗(γ) < τd
2 ·

Ps
ln 2 max

j∈{1,...,L}
|fs(n)j(n)|2, which leads to E1[(W

∗(γ))2]

< ∞ by integrating (W ∗(γ))2 over joint PDF of {|fs(n)1(n)|2, ..., |fs(n)L(n)|2} where

fs(n)1(n), fs(n)2(n), ..., fs(n)L(n) are exponentially distributed i.i.d. random variables.

Similar to proofs of Lemmas 6.1 and 6.2, E1[W
∗(γ)2] < ∞ and E1[(t

s
l )

2] < ∞ guar-

antee existence of an optimal stopping rule.

By using optimal stopping rule N∗(γ) = {n ≥ 1 : W ∗(γ) − τd
2 γ ≥ V ∗(γ)}, we can

achieve V ∗(γ) which satisfies the equation as

E1[max{W ∗(γ)− τd
2
γ, V ∗(γ)}] = V ∗(γ) + γτ so .

Setting V ∗(γ) = 0, the maximal throughput γ∗ satisfies

E1[max{W ∗(γ∗)− τd
2
γ∗, 0}] = γ∗τ so .

And an optimal stopping rule which maximizes the throughput is N∗ = min{n ≥ 1 :

W ∗(γ∗) ≥ τd
2 γ

∗}.

Overall, we can see that the optimal stopping strategy {N∗,M∗} has the form of

M(γ∗) = min{m ≥ 1 : τd
2 Rm ≥W ∗(γ∗)+ τd

2 γ
∗} and N∗ = {n ≥ 1 :W ∗(γ∗) ≥ τd

2 γ
∗},

which achieves average system throughput maximum γ∗. Here γ∗ is a fixed value satisfying

E1[max{W ∗(γ)− τd
2
γ, 0}] = γτ so (6.38)

100



where W ∗(γ) is an unique root of E2[max{ τd
2 Rm − τd

2 γ,W
∗(γ)}|F ] =W ∗(γ) + γτ ro .

Note that the optimal stopping strategy {N∗,M∗} has also semi-pure-threshold struc-

ture, as in the main layer the threshold τd
2 γ

∗ is a fixed value, while in the sub-layer the

threshold W ∗(γ∗) + τd
2 γ

∗ is conditioned on the channel gain realization in the preceding

first-hop transmission.

The optimal stopping strategy can be carried out as follows.

For channel access of sources, upon a successful contention in the nth observation, the

winner source, s(n), has the information of its channel gains F={fs(n)1(n), ..., fs(n)L(n)}.

Source s(n) can calculate W ∗(γ∗) by solving the sub-layer optimal stopping problem con-

ditioned on F .

• IfW ∗(γ∗) < τd
2 γ

∗, Source s(n) gives up its transmission opportunity and re-contend

with other sources.

• If W ∗(γ∗) ≥ τd
2 γ

∗, Source s(n) broadcasts its data and also the value of W ∗(γ∗) +

τd
2 γ

∗ to all relays, and channel contention of relays starts. Upon a successful con-

tention in the mth observation, the winner relay, s(m), who has information of

fs(n)s(m)(n) in the preceding first-hop transmission, calculates its source-to-destinat-

ion rate Rm. If τd
2 Rm < W ∗(γ∗) + τd

2 γ
∗, Relay s(m) gives up its transmission

opportunity, and re-contends with other relays; otherwise, Relay s(m) forwards its

received data (from Source s(n) in the preceding first-hop transmission) to Desti-

nation s(n), and the source-to-destination transmission process for the packet from

Source s(n) is complete, and all source nodes start a new contention.

Similar to the intuitive stopping strategy, the threshold in the main layer γ∗ (with the

constant factor τd
2 omitted) can be calculated off-line, while the thresholdW ∗(γ∗) (with the

constant τd
2 γ

∗ omitted) is dependent on F , and thus, should be calculated online at Source

s(n), who knows F . The following iterative algorithm can be used to calculate γ∗ and

W ∗(γ∗).

In the main layer, iterative algorithm is given below:

γk+1 = γk + αγ(E1

[
max{W ∗(γk)−

τd
2
γk, 0}

]
− γkτ

s
o ) (6.39)

where step size αγ satisfies ϵ ≤ αγ ≤ 2−ϵ
τd+τso+τro ·E1[

1
1−FRm

(2W∗(0)/τd)
]

for a fixed positive ϵ.
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For each iteration of main layer, W ∗(γk) can be calculate below:

Wl+1(γk) =Wl(γk) + αW

(
E2

[
max{τd

2
Rm − τd

2
γk −Wl(γk), 0}

∣∣F]− γkτ
r
o

)
(6.40)

where step size αW satisfies ϵ ≤ αW ≤ 2− ϵ for a fixed positive ϵ.

Theorem 6.8. The sequence {γk} generated by the iterative algorithm converges to γ∗.

Proof. Similar to proof of Theorem 6.2, Lipschitz continuity conditions in the sub-layer

and main layer are derived as follows.

In the sub-layer problem, we have:

∣∣γτ ro − E2[max{τd
2
Rm − τd

2
γ − x, 0}

∣∣F ]− γτ ro + E2[max{τd
2
Rm − τd

2
γ − y, 0}

∣∣F ]
∣∣

≤
∣∣E2[max{τd

2
Rm − τd

2
γ − x, 0} −max{τd

2
Rm − τd

2
γ − y, 0}

∣∣F ]
∣∣

≤ |x− y|.

So step-size αW is determined to satisfy ϵ ≤ αW ≤ 2− ϵ.

Conditioned on F , we have property of W ∗(γ) = sup
M>0

E2[YM − γTM |F ] as follows.

Without loss of generality, assume x > y. We have

W ∗(y)− E2[TM(y)](x− y) = E2[YM(y)]− xE2[TM(y)] ≤W ∗(x)

which leads to

W ∗(y)−W ∗(x) ≤ E2[TM(y)](x− y). (6.41)

Consider main-layer problem, we have:

∣∣xτ so − E1

[
max{W ∗(x)− τd

2
x, 0}

]
− yτ so + E1[max{W ∗(y)− τd

2
y, 0}]

∣∣
≤ τ so |x− y|+

∣∣E1[max{W ∗(x)− τd
2
x, 0} −max{W ∗(y)− τd

2
y, 0}]

∣∣
from (6.41)

≤ τ so |x− y|+ τd
2
|x− y|+ E1[E2(TM(y)|F)]|x− y|

≤ (τ so +
τd
2
)|x− y|+ E1

[τd
2

+ τ ro · 1

1− FRm(y +
2
τd
W ∗(y))

]
|x− y|. (6.42)
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From Equation (6.33), we have

yτ ro = E2

[
max{τd

2
Rm − τd

2
y −W ∗(y), 0}

]
(6.43)

which means that τd
2 y+W

∗(y) is a decreasing function of y ∈ ℜ+ with maximum at y = 0.

Similar to proof of Theorem 6.4, for ∀y ∈ ℜ+, we have E1[
1

1−FRm (y+ 2
τd

W ∗(y))
] finitely

bounded. Also, using Monotone Convergence Theorem we have:

lim
y→∞

E1

[ 1

1− FRm(y +
2
τd
W ∗(y))

]
= E1

[
lim
y→∞

1

1− FRm(y +
2
τd
W ∗(y))

]
= 1.

So if we define C = τd + τ so + τ ro · E1[
1

1−FRm (2W ∗(0)/τd)
], then from (6.42) we have

∣∣xτ so − E1[max{W ∗(x)− τd
2
x, 0}]− yτ so + E1[max{W ∗(y)− τd

2
y, 0}]

∣∣ < C|x− y|

which means the Lipschitz continuity condition of Proposition 1.2.3 in [115] is satisfied.

Then according to Proposition 1.2.3 in [115], {γk} converges to γ∗.

6.4 Performance Evaluation

We use computer simulation to validate our analysis. Consider 5 sources and 4 relays in our

network. Channels from sources to relays experience i.i.d. Rayleigh fading while channels

from relays to destinations also experience i.i.d. Rayleigh fading. The channel contention

parameters are set as: p0 = p1 = 0.3, δ = 20 µs, τRTS = τCTS = 40 µs, τd = 2 ms.

First consider the scenario that the average received signal-to-noise ratio (SNR) in the

first and the second hops are the same. When the average SNR varies from 0.5 to 10, Fig.

6.3 shows the numerically calculated (shown as “analytical” in Fig. 6.3 ) and simulated

(shown as “sim” in Fig. 6.3 ) system throughput of Case I, Case II with intuitive stopping

strategy, and Case II with optimal stopping strategy. It can be seen that the analytical

and simulation results match well with each other, which confirms the accuracy of the

analysis of our three strategies. Next we perform comparison with alternative strategies. In

particular, we consider four alternative strategies.

• Case-I-no-wait strategy: A winner source has full CSI, and always transmits (i.e.,

always stop and does not wait). It is equivalent to a stopping strategy with zero
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Fig. 6.3. Comparison of analytical and simulation results of our three strategies.

threshold.

• Case-II-no-wait strategy: A winner source has partial CSI. And a winner source

or relay always transmits. It is equivalent to a bi-layer stopping strategy with zero

threshold in the two layers.

• Case-II-wait-1st-hop strategy: A winner source has partial CSI. And a winner source

applies optimal stopping rule, while a winner relay always transmits. It is equivalent

to a bi-layer stopping strategy with zero threshold in the sub-layer.

• Case-II-wait-2nd-hop strategy: A winner source has partial CSI. And a winner source

always transmits while a winner relay applies optimal stopping rule. It is equivalent

to a one-layer stopping strategy in the sub-layer.

Fig. 6.4 shows the average throughput of our three strategies and the four alternative

strategies when the first-hop and second-hop SNRs are the same and vary from 0.5 to 10. It

can be seen that our optimal strategy in Case I and the Case-I-no-wait strategy have better

performance than other strategies. This is because of the full CSI at a winner source. The
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Fig. 6.4. Comparisons of our three strategies with alternative strategies when the first-hop and the second-hop
SNRs are the same.

optimal stopping strategy exploits the time diversity of sources (by deciding whether to stop

or not) and multi-user diversity of relays (by selecting the best relay). On the other hand,

Case-I-no-wait strategy exploits only the multi-user diversity of relays, and therefore, has

worse performance than the optimal strategy.

In Case II, among the five strategies, our intuitive strategy and our optimal strategy

are the best, with the former having some performance loss compared with the latter,

as expected. For the two alternative strategies with a stopping rule applied in one hop,

i.e., Case-II-wait-1st-hop and Case-II-wait-2nd-hop, they have a big performance gap, and

Case-II-wait-1st-hop strategy is close to the Case-II-no-wait strategy (the worst strategy)

while Case-II-wait-2nd-hop strategy is close to our intuitive strategy. The reason is as fol-

lows. In Case-II-wait-1st-hop strategy, the threshold in the stopping rule (which is in the

first hop) is based on only statistical information of second-hop channels. On the other

hand, in Case-II-wait-2nd-hop strategy, the threshold in the stopping rule (which is in the

second hop) can be determined based on exact CSI in the first hop. Compared with statisti-

cal channel gain information, the exact CSI can help select the best threshold.
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Fig. 6.5. Comparisons of our three strategies with alternative strategies when the first-hop SNR is fixed at 5
and the second-hop SNR varies.

Note that for Case II, our two strategies and the Case-II-wait-2nd-hop strategy have the

same communication overhead for a winner source to obtain its CSI with relays and for

a winner relay to obtain it CSI with the destination. Since the threshold in the stopping

rule of the second hop is dependent on the channel gain realization in the preceding first-

hop transmission, a winner source needs to online calculate the threshold (e.g., by iterative

algorithms) for the second-hop stopping rule and broadcasts the threshold value together

with its packet to all relays. On the other hand, for Case-II-wait-1st-hop strategy, a winner

source needs to know its CSI to all relays. But a winner relay does not need its CSI to the

destination. And the threshold in stopping rule, which is in the first hop, can be calculated

off-line.

Fig. 6.5 shows the comparison of the seven strategies when the first-hop SNR is fixed

at 5 and the second-hop SNR varies from 0.5 to 10. Similar observations to those of Fig.

6.4 can be obtained.
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6.5 Conclusion

In a wireless relay network, the sources and relays all experience independent fading. It

is desired to exploit the multi-source diversity, multi-relay diversity, and time diversity. To

achieve this, OCA is needed, which is investigated in our research in a distributed structure.

For the two considered cases (with a winner source having or not having CSI of the second

hop), we derive optimal stopping strategies for OCA. This research should provide insights

to the design of channel-aware MAC protocols in wireless relay network. Further research

may include the cases with quantized CSI and with quality-of-service constraints.

Appendix 6.A: Proof of Existence of Optimal Stopping Rule (6.25)

To guarantee that for γ ≥ 0 an optimal ruleN∗ which achieves V ∗(γ) exists, two conditions

should be satisfied:

lim sup
n→∞

{R1
n − γ(R2

n +
τd
2

+

n∑
l=1

tsl )} = −∞. (6.44)

E1

[
sup
n
{R1

n − γ(R2
n +

τd
2

+

n∑
l=1

tsl )}
]
<∞. (6.45)

By decomposition of left hand side of (6.45), we have

E1

[
sup
n
{R1

n − γ(R2
n +

τd
2

+
n∑

l=1

tsl )}
]
≤ E1

[
sup
n
{R1

n − nγ(τ so − ε)}
]
+

E1

[
sup
n
{γ

n∑
l=1

(τ so − ε− tsl )}
]
− γ

τd
2

+ E1

[
sup
n
{−γR2

n}
]

(6.46)

where 0 < ε < τ so .

Similar to proofs of Lemmas 6.1 and 6.2, if we prove E[(R1
n)

2] < ∞ and E[(R2
n)

2] <

∞, the existence conditions (6.44) and (6.45) are satisfied. Therefore, next we focus on

proofs of E[(R1
n)

2] <∞ and E[(R2
n)

2] <∞. We consider proof of E[(R2
n)

2] <∞ first.

From Corollary 6.1, we have R1
n = λ∗τro

1−FRm (λ∗) +
λ∗τd
2 , R2

n = τro
1−FRm (λ∗) +

τd
2 , and

E1[(R
2
n)

2] = (τ ro )
2 · E1

[( 1

1− FRm(λ
∗)

)2]
+ τ ro τd · E1[

1

1− FRm(λ
∗)
] +

τ2d
4
. (6.47)
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If E1

[(
1

1−FRm (λ∗)

)2]
<∞, we have E1[

1
1−FRm (λ∗) ] <∞, and then E1[(R

2
n)

2] <∞ is

proved. Thus, we calculate 1− FRm(λ
∗) and prove E1

[(
1

1−FRm (λ∗)

)2]
<∞.

Conditioned on F , we have

1− FRm(λ∗) = P
( L∑
j=1

I[s(m) = j] log2(1 +
PsPr|fs(n)j(n)|2|gjs(n)(m)|2

1 + Ps|fs(n)j(n)|2 + Pr|gjs(n)(m)|2
) ≥ λ∗

)
=

1

L

L∑
j=1

P
(
log2(1 +

PsPr|fs(n)j(n)|2|gjs(n)(m)|2

1 + Ps|fs(n)j(n)|2 + Pr|gjs(n)(m)|2
) ≥ λ∗

)

=
1

L

L∑
j=1

P
(
Pr|gjs(n)(m)|2

(
Ps|fs(n)j(n)|2 − (2λ

∗
− 1)

)
≥ (2λ

∗
− 1)

(
1 + Ps|fs(n)j(n)|2

) )

=
1

L

L∑
j=1

P
(
Pr|gjs(n)(m)|2≥

(2λ
∗−1)(1+Ps|fs(n)j(n)|2)

Ps|fs(n)j(n)|2−(2λ∗−1)

)
I
[
Ps|fs(n)j(n)|2−(2λ

∗
−1)>0

]
+

1

L

L∑
j=1

P
(
Pr|gjs(n)(m)|2<

(2λ
∗−1)(1+Ps|fs(n)j(n)|2)

Ps|fs(n)j(n)|2−(2λ∗−1)

)
I
[
Ps|fs(n)j(n)|2−(2λ

∗
−1)<0

]
=

1

L

L∑
j=1

e
− 1

σ2
gPr

(2λ
∗
−1)(1+Ps|fs(n)j(n)|2)

Ps|fs(n)j(n)|2−(2λ
∗−1) I

[
Ps|fs(n)j(n)|2 − (2λ

∗
− 1) > 0

]
which leads to

E1

[
(

1

1− FRm(λ
∗)
)2
]
≤ L2 · E1[Λ] (6.48)

where Λ
△
= 1/

( L∑
j=1

e
− 2

σ2
gPr

(2λ
∗
−1)(1+Ps|fs(n)j(n)|2)

Ps|fs(n)j(n)|2−(2λ
∗−1) I

[
Ps|fs(n)j(n)|2 − (2λ

∗ − 1) > 0
])

.

So, if E1[Λ] is finite, we should have E1

[(
1

1−FRm (λ∗)

)2]
< ∞. And E1[Λ] is proved

to be finite, if Λ is finite when |fs(n)j(n)|2 → 0, ∀j and when |fs(n)j(n)|2 → ∞, ∀j, as

follows.

It is proved, by using proof by contradiction, that partial derivatives lim
Ps|fs(n)j(n)|2→0,∀j

∂(2λ
∗−1)

∂Ps|fs(n)i(n)|2
are not equal to 1’s.

Then we have

lim
Ps|fs(n)j(n)|2→0,∀j

Λ = lim
Ps|fs(n)j(n)|2→0,∀j

1/
{ L∑

j=1

e
− 2

σ2
gPr

(2λ
∗
−1)(1+Ps|fs(n)j(n)|2)

Ps|fs(n)j(n)|2−(2λ
∗−1)

}

= 1/
{ L∑

j=1

lim
Ps|fs(n)j(n)|2→0,∀j

e
− 2

σ2
gPr

(2λ
∗
−1)(1+Ps|fs(n)j(n)|2)

Ps|fs(n)j(n)|2−(2λ
∗−1)

}

= 1/
{ L∑

j=1

e

− 2

σ2
gPr

1

lim
Ps|fs(n)j(n)|2→0,∀j

∂(2λ
∗−1)

∂Ps|fs(n)j(n)|2

∣∣
Ps|fs(n)j(n)|2=0

−1}
<∞.
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From (6.23) and using similar derivation as (6.19), we have λ∗ ≤ τd
2τro

L∑
j=1

1
L

1
ln 2Prσ

2
g ,

which leads to

lim
Ps|fs(n)j(n)|2→∞,∀j

Λ = 1/{
L∑

j=1

e
− 2

σ2
gPr } <∞. (6.49)

By (6.48), E1[(
1

1−FRm (λ∗))
2] <∞ is proved, and E1[(R

2
n)

2] <∞.

Since λ∗ ≤ τd
2τro

L∑
j=1

1
L

1
ln 2Prσ

2
g , we have

E1[(R
1
n)

2] = E1[λ
∗2(R2

n)
2] ≤ E1[(

τd
2τ ro

L∑
j=1

1

L

1

ln 2
Prσ

2
g)

2(R2
n)

2] <∞.
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Chapter 7

Conclusions and Future Research

Works

This chapter summarizes the contributions of the thesis work, and discusses future works.

7.1 Conclusions

Being the main focus of this thesis, two major topics are studied. The first topic is related

to OCSA in CRNs. The cases with and without statistical information of primary traffic are

analyzed. Optimal (or order optimal) strategies are derived. The second topic is related to

OCA in distritbuted wireless cooperative networks. Optimal solutions are derived theoreti-

cally. The effectiveness and efficiency of the derived strategies in the two topics are verified

numerically.

In Chapter 3, when statistic information of primary traffic is known and sensing is

imperfect, the optimal strategies that decide on the optimal set of channels to sense and the

optimal set of sensed-free channels to access are derived. Interestingly, in general, when

the secondary user can access only a limited number of channels, it may not be optimal to

sense the channels with the largest rewards.

In Chapter 4, when the busy/idle states of each channel follow the i.i.d. model, OCSA

strategies are derived. If the secondary user can sense all potential channels simultaneously,

OCSA strategies with asymptotically finite regrets are derived. If the secondary user can

simultaneously sense only a subset of the potential channels, it is impossible for any OCSA

strategies to have finite regrets, and the best possible strategies are those with asymptoti-
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cally logarithmic regrets, which are derived in Chapter 4. Further, in Chapter 5, when the

busy/idle states of each channel follow the Markov model, an OCSA strategy with asymp-

totically logarithmic regrets is derived. The low complexity of the strategies in these two

chapters can largely facilitate implementation of those strategies in real CRNs in the near

future.

In Chapter 6, optimal OCA in a distributed AF relay network is investigated. In two

considered cases depending on whether a winner source has or does not have CSI of the

second hop transmission, optimal stopping strategies are derived that maximize the average

system throughput. In the proposed strategies, the first-hop stopping rule is pure-threshold,

and the second-hop stopping rule (for the case that a winner source does not have CSI of

the second hop) has a threshold determined by channel gain realization in the preceding

first-hop transmission. The easy implementation of the strategies is of interest in potential

applications.

7.2 Future Research Directions

In OCSA in CRNs, competition among multiple secondary users is worth further investiga-

tion. In a distributed CRN, multiple secondary users sense and access the primary channels

independently, and thus, collision between secondary transmissions is inevitable. Under

such circumstance, the problem of how to design an efficient multiple-user OCSA rule is

much more challenging than the single-user case, and will be investigated.

In Chapter 6, optimal distributed OCA in wireless cooperative networks is investigated.

As multiple relays are deployed, a winner source has to probe the channels from itself to

all relays. This process demands large information overhead, and the system efficiency is

affected. Then the following question arises: is it necessary to probe all the relays? In

other words, after the winner source gets CSI to some relays, the winner source may stop

probing other relays and use only those probed relays. Then the optimal stopping strategy

that decides when to stop probing relays is of interest, which should be jointly designed

with the winner source’s strategy (on whether to give up transmission opportunity or utilize

the channel) and the relays’ stopping strategies.

In the OCA for wireless cooperative networks in this thesis, after channel probing,

transmitters get perfect CSI from receivers, and use adaptive modulation according to the
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channel conditions. Since perfect CSI is difficult to obtain in practice, limited CSI feedback

is a widely accepted case. The limited CSI feedback motivates a new research problem. In

such problem, how to design an optimal code-book for feedback information and how to

design optimal OCA are of interest, and should be jointly investigated.
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